WorldWideScience

Sample records for deg delta wings

  1. Experimental transonic flutter characteristics of two 72 deg-sweep delta-wing models

    Science.gov (United States)

    Doggett, Robert V., Jr.; Soistmann, David L.; Spain, Charles V.; Parker, Ellen C.; Silva, Walter A.

    1989-01-01

    Transonic flutter boundaries are presented for two simple, 72 deg. sweep, low-aspect-ratio wing models. One model was an aspect-ratio 0.65 delta wing; the other model was an aspect-ratio 0.54 clipped-delta wing. Flutter boundaries for the delta wing are presented for the Mach number range of 0.56 to 1.22. Flutter boundaries for the clipped-delta wing are presented for the Mach number range of 0.72 to 0.95. Selected vibration characteristics of the models are also presented.

  2. Forced Rolling Oscillation of a 65 deg-Delta Wing in Transonic Vortex-Breakdown Flow

    Science.gov (United States)

    Menzies, Margaret A.; Kandil, Osama A.; Kandil, Hamdy A.

    1996-01-01

    Unsteady, transonic, vortex dominated flow over a 65 deg. sharp-edged, cropped-delta wing of zero thickness undergoing forced rolling oscillations is investigated computationally. The wing angle of attack is 20 deg. and the free stream Mach number and Reynolds number are 0.85 and 3.23 x 10(exp 6), respectively. The initial condition of the flow is characterized by a transverse terminating shock which induces vortex breakdown of the leading edge vortex cores. The computational investigation uses the time accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux difference splitting, finite-volume scheme. While the maximum roll amplitude is kept constant at 4.0 deg., both Reynolds number and roll frequency are varied covering three cases of forced sinusoidal rolling. First, the Reynolds number is held at 3.23 x 10(exp 6) and the wing is forced to oscillate in roll around the axis of geometric symmetry at a reduced frequency of 2(pi). Second, the Reynolds number is reduced to 0.5 x 10(exp 6) to observe the effects of added viscosity on the vortex breakdown. Third, with the Reynolds number held at 0.5 x 10(exp 6), the roll frequency is reduced to 1(pi) to complete the study.

  3. Delayed detached-eddy simulation of vortex breakdown over a 70 .deg. delta wing

    International Nuclear Information System (INIS)

    Son, Mi So; Sa, Jeong Hwan; Park, Soo Hyung; Byun, Yung Hwan; Cho, Kum Won

    2015-01-01

    To investigate the vortex breakdown over the ONERA70 delta wing at an angle-of-attack of 27 .deg., unsteady simulations were performed using Reynolds-averaged Navier-Stokes and Spalart-Allmaras delayed detached-eddy simulations. A low-diffusive preconditioned Roe scheme with third-order MUSCL interpolation scheme was applied, along with second-order dual-time stepping combined with diagonalized alternating direction implicit method for unsteady simulation. Vortex breakdown was investigated through an examination of total pressure loss, axial velocity, and axial vorticity around the primary vortex. Delayed dtached-eddy simulation provided good agreement with experimental data and predicted all physical phenomena related to vortex breakdown well.

  4. Experimental Surface Pressure Data Obtained on 65 deg Delta Wing Across Reynolds Number and Mach Number Ranges. Volume 2; Small-Radius Leading Edge

    Science.gov (United States)

    Chu, Julio; Luckring, James M.

    1996-01-01

    An experimental wind tunnel test of a 65 deg. delta wing model with interchangeable leading edges was conducted in the Langley National Transonic Facility (NTF). The objective was to investigate the effects of Reynolds and Mach numbers on slender-wing leading-edge vortex flows with four values of wing leading-edge bluntness. Experimentally obtained pressure data are presented without analysis in tabulated and graphical formats across a Reynolds number range of 6 x 10(exp 6) to 84 x 10(exp 6) at a Mach number of 0.85 and across a Mach number range of 0.4 to 0.9 at Reynolds numbers of 6 x 10(exp 6) and 60 x 10(exp 6). Normal-force and pitching-moment coefficient plots for these Reynolds number and Mach number ranges are also presented.

  5. Effects of external influences in subsonic delta wing vortices

    Science.gov (United States)

    Washburn, Anthony E.

    1992-01-01

    An experimental investigation was conducted to examine inconsistencies in reported studies for the vortical flow over highly-swept delta wings. A 76-deg swept delta wing was tested in three facilities with open and closed test sections and different model-support systems. The results obtained include surface oil-flow patterns, off-body laser-light-sheet flow visualization, and aerodynamic load measurements. Parameters such as the wall boundaries and model-support systems can drastically alter the loads. The effect of a high level of free-stream turbulence on the delta-wing flowfield was also examined and found to be significant. The increase in free-stream turbulence caused boundary-layer transition, unsteadiness in the vortex core positions, and altered the loads and moments.

  6. Prediction of vortex breakdown on a delta wing

    Science.gov (United States)

    Agrawal, S.; Robinson, B. A.; Barnett, R. M.

    1992-01-01

    Recent studies of leading-edge vortex flows with computational fluid dynamics codes using Euler or Navier-Stokes formulations have shown fair agreement with experimental data. These studies have concentrated on simulating the flowfields associated with a sharp-edged flat plate 70 deg delta wing at angles of attack where vortex breakdown or burst is observed over the wing. There are, however, a number of discrepancies between the experimental data and the computed flowfields. The location of vortex breakdown in the computational solutions is seen to differ from the experimental data and to vary with changes in the computational grid and freestream Mach number. There also remain issues as to the validity of steady-state computations for cases which contain regions of unsteady flow, such as in the post-breakdown regions. As a partial response to these questions, a number of laminar Navier-Stokes solutions were examined for the 70 deg delta wing. The computed solutions are compared with an experimental database obtained at low subsonic speeds. The convergence of forces, moments and vortex breakdown locations are also analyzed to determine if the computed flowfields actually reach steady-state conditions.

  7. Conical Euler solution for a highly-swept delta wing undergoing wing-rock motion

    Science.gov (United States)

    Lee, Elizabeth M.; Batina, John T.

    1990-01-01

    Modifications to an unsteady conical Euler code for the free-to-roll analysis of highly-swept delta wings are described. The modifications involve the addition of the rolling rigid-body equation of motion for its simultaneous time-integration with the governing flow equations. The flow solver utilized in the Euler code includes a multistage Runge-Kutta time-stepping scheme which uses a finite-volume spatial discretization on an unstructured mesh made up of triangles. Steady and unsteady results are presented for a 75 deg swept delta wing at a freestream Mach number of 1.2 and an angle of attack of 30 deg. The unsteady results consist of forced harmonic and free-to-roll calculations. The free-to-roll case exhibits a wing rock response produced by unsteady aerodynamics consistent with the aerodynamics of the forced harmonic results. Similarities are shown with a wing-rock time history from a low-speed wind tunnel test.

  8. Large eddy simulation of vortex breakdown behind a delta wing

    International Nuclear Information System (INIS)

    Mary, I.

    2003-01-01

    A large eddy simulation (LES) of a turbulent flow past a 70 deg. sweep angle delta wing is performed and compared with wind tunnel experiments. The angle of attack and the Reynolds number based on the root chord are equal to 27 deg. and 1.6x10 6 , respectively. Due to the high value of the Reynolds number and the three-dimensional geometry, the mesh resolution usually required by LES cannot be reached. Therefore a local mesh refinement technique based on semi-structured grids is proposed, whereas different wall functions are assessed in this paper. The goal is to evaluate if these techniques are sufficient to provide an accurate solution of such flow on available supercomputers. An implicit Miles model is retained for the subgrid scale (SGS) modelling because the resolution is too coarse to take advantage of more sophisticated SGS models. The solution sensitivity to grid refinement in the streamwise and wall normal direction is investigated

  9. Numerical simulation of incidence and sweep effects on delta wing vortex breakdown

    Science.gov (United States)

    Ekaterinaris, J. A.; Schiff, Lewis B.

    1994-01-01

    The structure of the vortical flowfield over delta wings at high angles of attack was investigated. Three-dimensional Navier-Stokes numerical simulations were carried out to predict the complex leeward-side flowfield characteristics, including leading-edge separation, secondary separation, and vortex breakdown. Flows over a 75- and a 63-deg sweep delta wing with sharp leading edges were investigated and compared with available experimental data. The effect of variation of circumferential grid resolution grid resolution in the vicinity of the wing leading edge on the accuracy of the solutions was addressed. Furthermore, the effect of turbulence modeling on the solutions was investigated. The effects of variation of angle of attack on the computed vortical flow structure for the 75-deg sweep delta wing were examined. At moderate angles of attack no vortex breakdown was observed. When a critical angle of attack was reached, bubble-type vortex breakdown was found. With further increase in angle of attack, a change from bubble-type breakdown to spiral-type vortex breakdown was predicted by the numerical solution. The effects of variation of sweep angle and freestream Mach number were addressed with the solutions on a 63-deg sweep delta wing.

  10. Supersonic vortex breakdown over a delta wing in transonic flow

    Science.gov (United States)

    Kandil, Hamdy A.; Kandil, Osama A.; Liu, C. H.

    1993-01-01

    The effects of freestream Mach number and angle of attack on the leading-edge vortex breakdown due to the terminating shock on a 65-degree, sharp-edged, cropped delta wing are investigated computationally, using the time-accurate solution of the laminar unsteady compressible full Navier-Stokes equations with the implicit upwind flux-difference splitting, finite-volume scheme. A fine O-H grid consisting of 125 x 85 x 84 points in the wrap-around, normal, and axial directions, respectively, is used for all the flow cases. Keeping the Reynolds number fixed at 3.23 x 10 exp 6, the Mach number is varied from 0.85 to 0.9 and the angle of attack is varied from 20 to 24 deg. The results show that, at 20-deg angle of attack, the increase of the Mach number from 0.85 to 0.9 results in moving the location of the terminating shock downstream. The results also show that, at 0.85 Mach number, the increase of the angle of attack from 20 to 24 deg results in moving the location of the terminating shock upstream. The results are in good agreement with the experimental data.

  11. Reactive Flow Control of Delta Wing Vortex (Postprint)

    Science.gov (United States)

    2006-08-01

    wing aircraft. A substantial amount of research has been dedicated to the control of aerodynamic flows using both passive and active control mechanisms...Passive vortex control devices such as vortex generators and winglets attach to the wing and require no energy input. Passive vortex control...leading edges is also effective for changing the aerodynamic characteristics of delta wings [2] [3]. Gutmark and Guillot [5] proposed controlling

  12. The leading-edge vortex of swift-wing shaped delta wings

    Science.gov (United States)

    Muir, Rowan; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-11-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the Leading-Edge Vortex (LEV) for lift generation in a variety of flight conditions. In this investigation, a model non-slender delta shaped wing with a sharp leading-edge is tested at low Reynolds Number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus. The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the un-modified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift-wing shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds Number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta shaped wing. This work received funding from the Engineering and Physical Sciences Research Council [EP/M506515/1] and the Consejo Nacional de Ciencia y Tecnología (CONACYT).

  13. The leading-edge vortex of swift wing-shaped delta wings.

    Science.gov (United States)

    Muir, Rowan Eveline; Arredondo-Galeana, Abel; Viola, Ignazio Maria

    2017-08-01

    Recent investigations on the aerodynamics of natural fliers have illuminated the significance of the leading-edge vortex (LEV) for lift generation in a variety of flight conditions. A well-documented example of an LEV is that generated by aircraft with highly swept, delta-shaped wings. While the wing aerodynamics of a manoeuvring aircraft, a bird gliding and a bird in flapping flight vary significantly, it is believed that this existing knowledge can serve to add understanding to the complex aerodynamics of natural fliers. In this investigation, a model non-slender delta-shaped wing with a sharp leading edge is tested at low Reynolds number, along with a delta wing of the same design, but with a modified trailing edge inspired by the wing of a common swift Apus apus . The effect of the tapering swift wing on LEV development and stability is compared with the flow structure over the unmodified delta wing model through particle image velocimetry. For the first time, a leading-edge vortex system consisting of a dual or triple LEV is recorded on a swift wing-shaped delta wing, where such a system is found across all tested conditions. It is shown that the spanwise location of LEV breakdown is governed by the local chord rather than Reynolds number or angle of attack. These findings suggest that the trailing-edge geometry of the swift wing alone does not prevent the common swift from generating an LEV system comparable with that of a delta-shaped wing.

  14. Effect of delta wing on the particle flow in a novel gas supersonic separator

    DEFF Research Database (Denmark)

    Wen, Chuang; Yang, Yan; Walther, Jens Honore

    2016-01-01

    The present work presents numerical simulations of the complex particle motion in a supersonic separator with a delta wing located in the supersonic flow. The effect of the delta wing on the strong swirling flow is analysed using the Discrete Particle Method. The results show that the delta wings...

  15. Vortex lift augmentation by suction on a 60 deg swept Gothic wing

    Science.gov (United States)

    Taylor, A. H.; Jackson, L. R.; Huffman, J. K.

    1982-01-01

    An experimental investigation was conducted in the Langley high-speed 7- by 10-foot wind tunnel to determine the aerodynamic performance of suction applied near the wing tips above the trailing edge of a 60 deg swept Gothic wing. Moveable suction inlets were symmetrically mounted in the proximity of the trailing edge, and the amount of suction was varied to maximize wing lift. Tests were conducted at Mach 0.15, 0.30, and 0.45, and the angle of attack was varied from -4 to 50 deg. The suction augmentation increases the lift coefficient over the entire range of angle of attack. The lift improvement exceeds the unaugmented wing lift by over 20%. Moreover, the augmented lift exceeds the lift predicted by vortex lattice theory to 30 deg angle of attack. Suction augmentation is postulated to strengthen the vortex system by increasing its velocity and making it more concentrated. This causes the vortex breakdown to be delayed to a higher angle of attack

  16. Twin Tail/Delta Wing Configuration Buffet Due to Unsteady Vortex Breakdown Flow

    Science.gov (United States)

    Kandil, Osama A.; Sheta, Essam F.; Massey, Steven J.

    1996-01-01

    The buffet response of the twin-tail configuration of the F/A-18 aircraft; a multidisciplinary problem, is investigated using three sets of equations on a multi-block grid structure. The first set is the unsteady, compressible, full Navier-Stokes equations. The second set is the coupled aeroelastic equations for bending and torsional twin-tail responses. The third set is the grid-displacement equations which are used to update the grid coordinates due to the tail deflections. The computational model consists of a 76 deg-swept back, sharp edged delta wing of aspect ratio of one and a swept-back F/A-18 twin-tails. The configuration is pitched at 32 deg angle of attack and the freestream Mach number and Reynolds number are 0.2 and 0.75 x 10(exp 6) respectively. The problem is solved for the initial flow conditions with the twin tail kept rigid. Next, the aeroelastic equations of the tails are turned on along with the grid-displacement equations to solve for the uncoupled bending and torsional tails response due to the unsteady loads produced by the vortex breakdown flow of the vortex cores of the delta wing. Two lateral locations of the twin tail are investigated. These locations are called the midspan and inboard locations.

  17. Coupled Rolling and Pitching Oscillation Effects on Transonic Shock-Induced Vortex-Breakdown Flow of a Delta Wing

    Science.gov (United States)

    Kandil, Osama A.; Menzies, Margaret A.

    1996-01-01

    Unsteady, transonic vortex dominated flow over a 65 deg. sharp edged, cropped-delta wing of zero thickness undergoing forced coupled pitching and rolling oscillations is investigated computationally. The wing mean angle of attack is 20 deg. and the free stream Mach number and Reynolds number are 0.85 and 3.23 x 10(exp 6), respectively. The initial condition of the flow is characterized by a transverse terminating shock and vortex breakdown of the leading edge vortex cores. The computational investigation uses the time-accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite volume scheme. The main focus is to analyze the effects of coupled motion on the wing response and vortex breakdown flow by varying oscillation frequency and phase angle while the maximum pitch and roll amplitude is kept constant at 4.0 deg. Four cases demonstrate the following: simultaneous motion at a frequency of 1(pi), motion with a 90 deg. phase lead in pitch, motion with a rolling frequency of twice the pitching frequency, and simultaneous motion at a frequency of 2(pi). Comparisons with single mode motion at these frequencies complete this study and illustrate the effects of coupling the oscillations.

  18. Vortical flows over delta wings and numerical prediction of vortex breakdown

    Science.gov (United States)

    Ekaterinaris, J. A.; Schiff, Lewis B.

    1990-01-01

    Navier-Stokes solutions of subsonic vortical flow over a 75 deg sweep delta wing with a sharp leading edge are presented. The sensitivity of the solution to the numerical scheme is examined using both a partially upwind scheme and a scheme with central differencing in all directions. At moderate angles of attack, no vortex breakdown is observed, whereas the higher angle-of-attack cases exhibit breakdown. The effect of numerical grid density is investigated, and solutions that are obtained with various grid densities are compared with experimental data. An embedded grid approach is implemented to enable higher resolution in selected isolated flow regions, such as the leeward-side surface, the leading-edge vortical flow, and the vortex breakdown region.

  19. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    OpenAIRE

    Shabudin Mat; I. S. Ishak; Tholudin Mat Lazim; Shuhaimi Mansor; Mazuriah Said; Abdul Basid Abdul Rahman; Ahmad Shukeri Mohd. Kamaludim; Romain Brossay

    2014-01-01

    This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST). Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also per...

  20. Development of Delta Wing Aerodynamics Research in Universiti Teknologi Malaysia Low Speed Wind Tunnel

    Directory of Open Access Journals (Sweden)

    Shabudin Mat

    2014-07-01

    Full Text Available This paper presents wind tunnel experiment on two delta wing configurations which are differentiated by their leading edge profiles: sharp and round-edged wings. The experiments were performed as a part of the delta wing aerodynamics research development in Universiti Teknologi Malaysia, low speed tunnel (UTM-LST. Steady load balance and flow visualization tests were conducted at Reynolds numbers of 0.5, 1, and 1.5 × 106, respectively. The flow measurement at low Reynolds number was also performed at as low as speed of 5 m/s. During the experiments, laser with smoke flow visualizations test was performed on both wings. The study has identified interesting features of the interrelationship between the conventional leading edge primary vortex and the occurrence and development of the vortex breakdown above the delta wings. The results conclude the vortex characteristics are largely dependent on the Reynolds number, angle of attack, and leading-edge radii of the wing.

  1. Dynamic Longitudinal and Directional Stability Derivatives for a 45 deg. Sweptback-Wing Airplane Model at Transonic Speeds

    Science.gov (United States)

    Bielat, Ralph P.; Wiley, Harleth G.

    1959-01-01

    An investigation was made at transonic speeds to determine some of the dynamic stability derivatives of a 45 deg. sweptback-wing airplane model. The model was sting mounted and was rigidly forced to perform a single-degree-of-freedom angular oscillation in pitch or yaw of +/- 2 deg. The investigation was made for angles of attack alpha, from -4 deg. to 14 deg. throughout most of the transonic speed range for values of reduced-frequency parameter from 0.015 to 0.040 based on wing mean aerodynamic chord and from 0.04 to 0.14 based on wing span. The results show that reduced frequency had only a small effect on the damping-in-pitch derivative and the oscillatory longitudinal stability derivative for all Mach numbers M and angles of attack with the exception of the values of damping coefficient near M = 1.03 and alpha = 8 deg. to 14 deg. In this region, the damping coefficient changed rapidly with reduced frequency and negative values of damping coefficient were measured at low values of reduced frequency. This abrupt variation of pitch damping with reduced frequency was a characteristic of the complete model or wing-body-vertical-tail combination. The damping-in-pitch derivative varied considerably with alpha and M for the horizontal-tail-on and horizontal-tail-off configurations, and the damping was relatively high at angles of attack corresponding to the onset of pitch-up for both configurations. The damping-in-yaw derivative was generally independent of reduced frequency and M at alpha = -4 deg. to 4 deg. At alpha = 8 deg. to 14 deg., the damping derivative increased with an increase in reduced frequency and alpha for the configurations having the wing, whereas the damping derivative was either independent of or decreased with increase in reduced frequency for the configuration without the wing. The oscillatory directional stability derivative for all configurations generally decreased with an increase in the reduced-frequency parameter, and, in some instances

  2. Fundamental aerodynamic characteristics of delta wings with leading-edge vortex flows

    Science.gov (United States)

    Wood, R. M.; Miller, D. S.

    1985-01-01

    An investigation of the aerodynamics of sharp leading-edge delta wings at supersonic speeds has been conducted. The supporting experimental data for this investigation were taken from published force, pressure, and flow-visualization data in which the Mach number normal to the wing leading edge is always less than 1.0. The individual upper- and lower-surface nonlinear characteristics for uncambered delta wings are determined and presented in three charts. The upper-surface data show that both the normal-force coefficient and minimum pressure coefficient increase nonlinearly with a decreasing slope with increasing angle of attack. The lower-surface normal-force coefficient was shown to be independent of Mach number and to increase nonlinearly, with an increasing slope, with increasing angle of attack. These charts are then used to define a wing-design space for sharp leading-edge delta wings.

  3. Computational Fluid Dynamics Investigation of Vortex Breakdown for a Delta Wing at High Angle of Attack

    National Research Council Canada - National Science Library

    Freeman, Jacob

    2003-01-01

    ... (a) in preparation for investigation of active control of vortex breakdown using steady, along- core blowing A flat delta-shaped half-wing with sharp leading edge and sweep angle of 600 was modeled...

  4. Characterization and Control of Vortex Breakdown over a Delta Wing at High Angles of Attack

    National Research Council Canada - National Science Library

    Mitchell, Anthony

    2000-01-01

    .... The goal of this research is the control of leading-edge vortex breakdown by open-loop, along-the-core blowing near the apex of a delta wing to improve lift and maneuverability at high angles of attack...

  5. Investigation of vortex breakdown on delta wings using Navier-Stokes equations

    Science.gov (United States)

    Hsu, C.-H.; Liu, C. H.

    1992-01-01

    An efficient finite-difference scheme solving for the three-dimensional incompressible Navier-Stokes equations is described. Numerical simulations of vortex breakdown are then carried out for a sharp-edged delta wing and a round-edged double-delta wing at high Reynolds numbers. Computed results show that several major features of vortex breakdown are qualitatively in agreement with observations made in experiments.

  6. Effects of Coupled Rolling and Pitching Oscillations on Transonic Shock-Induced Vortex-Breakdown Flow of a Delta Wing

    Science.gov (United States)

    Kandil, Osama A.; Menzies, Margaret A.

    1996-01-01

    Unsteady, transonic vortex-breakdown flow over a 65 deg. sharp edged, cropped-delta wing of zero thickness undergoing forced coupled pitching and rolling oscillations is investigated computationally. The initial condition of the flow is characterized by a transverse terminating shock which induces of the leading edge vortex cores to breakdown. The computational investigation uses the time-accurate solution of the laminar, unsteady, compressible, full Navier-Stokes equations with the implicit, upwind, Roe flux-difference splitting, finite-volume scheme. The main focus is to analyze the effects of coupled motion on the wing response and vortex-breakdown flow by varying oscillation frequency and phase angle while keeping the maximum pitch and roll amplitude equal.

  7. Effect of Thickness-to-Chord Ratio on Flow Structure of Low Swept Delta Wing

    Science.gov (United States)

    Gulsacan, Burak; Sencan, Gizem; Yavuz, Mehmet Metin

    2017-11-01

    The effect of thickness-to-chord (t/C) ratio on flow structure of a delta wing with sweep angle of 35 degree is characterized in a low speed wind tunnel using laser illuminated smoke visualization, particle image velocimetry, and surface pressure measurements. Four different t/C ratio varying from 4.75% to 19% are tested at angles of attack 4, 6, 8, and 10 degrees for Reynolds numbers Re =10,000 and 35,000. The results indicate that the effect of thickness-to-chord ratio on flow structure is quite substantial, such that, as the wing thickness increases, the flow structure transforms from leading edge vortex to three-dimensional separated flow regime. The wing with low t/C ratio of 4.75% experiences pronounced surface separation at significantly higher angle of attack compared to the wing with high t/C ratio. The results might explain some of the discrepancies reported in previously conducted studies related to delta wings. In addition, it is observed that the thickness of the shear layer separated from windward side of the wing is directly correlated with the thickness of the wing. To conclude, the flow structure on low swept delta wing is highly affected by t/C ratio, which in turn might indicate the potential usage of wing thickness as an effective flow control parameter.

  8. Breaking down the delta wing vortex: The role of vorticity in the breakdown process. Ph.D. Thesis Final Report

    Science.gov (United States)

    Nelson, Robert C.; Visser, Kenneth D.

    1990-01-01

    Experimental x-wire measurements of the flowfield above a 70 and 75 deg flat plate delta wing were performed at a Reynolds number of 250,000. Grids were taken normal to the wing at various chordwise locations for angles of attack of 20 and 30 deg. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core and on chordwise location was also examined. The effects of nondimensionalization in comparison with other experimental data is made. The results indicate that the circulation distribution scales with the local semispan and grows in a nearly linear fashion in the chordwise direction. The spanwise distribution of axial vorticity is severely altered through the breakdown. The axial vorticity components with a negative sense, such as that found in the secondary vortex, seem to remain unaffected by changes in wind sweep or angle of attack, in direct contrast to the positive components. In addition, the inclusion of the local wing geometry into a previously derived correlation parameter allows the circulation of growing leading edge vortex flows to be reduced into a single curve.

  9. Pitot-pressure distributions of the flow field of a delta-wing orbiter

    Science.gov (United States)

    Cleary, J. W.

    1972-01-01

    Pitot pressure distributions of the flow field of a 0.0075-scale model of a typical delta wing shuttle orbiter are presented. Results are given for the windward and leeward sides on centerline in the angle-of-attack plane from wind tunnel tests conducted in air. Distributions are shown for three axial stations X/L = .35, .60, and .98 and for angles of attack from 0 to 60 deg. The tests were made at a Mach number of 7.4 and for Reynolds numbers based on body length from 1,500,000 to 9,000,000. The windward distributions at the two survey stations forward of the body boat tail demonstrate the compressive aspects of the flow from the shock wave to the body. Conversely, the distributions at the aft station display an expansion of the flow that is attributed to body boat tail. On the lee side, results are given at low angles of attack that illustrate the complicating aspects of the canopy on the flow field, while results are given to show the effects of flow separation at high angles of attack.

  10. High-Speed Measurements on a Swept-Back Wing (Sweepback Angle phi = 35 Deg)

    Science.gov (United States)

    Goethert, B.

    1947-01-01

    In the following, high-speed measurements on a swept-back wing are reported. The curves of lift, moment, and drag have been determined up to Mach numbers of M = 0.87, and they are compared to a rectangular wing. Through measurements of the total-head loss behind the wing and through schlieren pictures, an insight into the formation of the compression shock at high Mach numbers has been obtained.

  11. Aerodynamic improvement of a delta wing in combination with leading edge flaps

    Directory of Open Access Journals (Sweden)

    Tadateru Ishide

    2017-11-01

    Full Text Available Recently, various studies of micro air vehicle (MAV and unmanned air vehicle (UAV have been reported from wide range points of view. The aim of this study is to research the aerodynamic improvement of delta wing in low Reynold’s number region to develop an applicative these air vehicle. As an attractive tool in delta wing, leading edge flap (LEF is employed to directly modify the strength and structure of vortices originating from the separation point along the leading edge. Various configurations of LEF such as drooping apex flap and upward deflected flap are used in combination to enhance the aerodynamic characteristics in the delta wing. The fluid force measurement by six component load cell and particle image velocimetry (PIV analysis are performed as the experimental method. The relations between the aerodynamic superiority and the vortex behavior around the models are demonstrated.

  12. Aerodynamic Interaction between Delta Wing and Hemisphere-Cylinder in Supersonic Flow

    Science.gov (United States)

    Nishino, Atsuhiro; Ishikawa, Takahumi; Nakamura, Yoshiaki

    As future space vehicles, Reusable Launch Vehicle (RLV) needs to be developed, where there are two kinds of RLV: Single Stage To Orbit (SSTO) and Two Stage To Orbit (TSTO). In the latter case, the shock/shock interaction and shock/boundary layer interaction play a key role. In the present study, we focus on the supersonic flow field with aerodynamic interaction between a delta wing and a hemisphere-cylinder, which imitate a TSTO, where the clearance, h, between the delta wing and hemisphere-cylinder is a key parameter. As a result, complicated flow patterns were made clear, including separation bubbles.

  13. Experimental Investigations on Leading-Edge Vortex Structures for Flow over Non-Slender Delta Wings

    International Nuclear Information System (INIS)

    Jin-Jun, Wang; Wang, Zhang

    2008-01-01

    The dye injection and hydrogen bubble visualization techniques are used to investigate the dual-vortex structure including its development, breakdown and the spatial location of vortex core over nonslender delta wings. It is concluded that the dual-vortex structure can be affected significantly by sweep angle and Reynolds number, and generated only at small angle of attack. The angle between the projection of outer vortex core on delta wing surface and the root chord line has nothing to do with the Reynolds Number and angle of attack, but has simple linear relation with the sweep angle of the model tested. (fundamental areas of phenomenology (including applications))

  14. Transonic Aerodynamic Loading Characteristics of a Wing-Body-Tail Combination Having a 52.5 deg. Sweptback Wing of Aspect Ratio 3 With Conical Wing Camber and Body Indentation for a Design Mach Number of Square Root of 2

    Science.gov (United States)

    Cassetti, Marlowe D.; Re, Richard J.; Igoe, William B.

    1961-01-01

    An investigation has been made of the effects of conical wing camber and body indentation according to the supersonic area rule on the aerodynamic wing loading characteristics of a wing-body-tail configuration at transonic speeds. The wing aspect ratio was 3, taper ratio was 0.1, and quarter-chord-line sweepback was 52.5 deg. with 3-percent-thick airfoil sections. The tests were conducted in the Langley 16-foot transonic tunnel at Mach numbers from 0.80 to 1.05 and at angles of attack from 0 deg. to 14 deg., with Reynolds numbers based on mean aerodynamic chord varying from 7 x 10(exp 6) to 8 x 10(exp 6). Conical camber delayed wing-tip stall and reduced the severity of the accompanying longitudinal instability but did not appreciably affect the spanwise load distribution at angles of attack below tip stall. Body indentation reduced the transonic chordwise center-of-pressure travel from about 8 percent to 5 percent of the mean aerodynamic chord.

  15. IMPROVING THE AERODYNAMICS OF A TRANSPORT AIRCRAFT WING USING A DELTA PLANFORM WINGTIP LEADING EDGE EXTENSION

    Directory of Open Access Journals (Sweden)

    D. Gueraiche

    2018-01-01

    Full Text Available The article explores the possibility of improving the aerodynamic properties of a supercritical-airfoil wing, typical for a modern passenger aircraft, using delta planform passive devices of large relative areas, installed along the leading edge at the wing tip. Delta extensions of various configurations were considered to be used as wingtip devices, potentially improving or completely replacing classical R. Whitcomb winglets. As a result of two- and three-dimensional CFD simulations performed on DLR-F4 wing-body prototype, the potential advantage of these devices was confirmed, particularly when they are installed in a combination with an elliptical planform, largely swept, raked winglet in terms of reducing the induced drag and increasing the aerodynamic lift-to-drag ratio at flight angles of attack. The growth in lift-to-drag ratio applying these devices owes it solely to the drop in drag, without increasing the lift force acting on the wing. In comparison to the classical winglets that lead to a general increase in lifting and lateral forces acting on the wing structure, resulting in a weight penalty, the Wingtip Ledge Edge Triangular Extension (WLETE yields the same L/D ratio increase, but with a much smaller increase in the wing loading. A study has been made of the characteristics of the local (modified airfoil in the WLETE zone in a two-dimensional flow context, and a quantitative analysis has been conducted of the influence of WLETE on both the profile and induced drag components, as well as its influence on the overall lift coefficient of the wing. The resulted synthesis of the WLETE influence on the wing L/D ratio will consist of its influence on each of these components. A comparison of the efficiency of using delta extensions against classical winglets was carried out in a multidisciplinary way, where in addition to the changes in aerodynamic coefficients of lift and drag, the increments of magnitude and distribution of the loads

  16. Flow over 50º Delta Wings with Different Leading-Edge Radii

    NARCIS (Netherlands)

    Verhaagen, N.G.

    2011-01-01

    The experimental study focuses on the effects of the leading-edge radius on the flow over 50º swept delta wing models. Three models were tested, one model has a sharp leading edge and two other have a semi-circular leading edge of different radius. The vortical flow on and off the surface of the

  17. Navier-Stokes prediction of a delta wing in roll with vortex breakdown

    Science.gov (United States)

    Chaderjian, Neal M.; Schiff, Lewis B.

    1993-01-01

    The three-dimensional, Reynolds-averaged, Navier-Stokes (RANS) equations are used to numerically simulate vortical flow about a 65 degree sweep delta wing. Subsonic turbulent flow computations are presented for this delta wing at 30 degrees angle of attack and static roll angles up to 42 degrees. This work is part of an on going effort to validate the RANS approach for predicting high-incidence vortical flows, with the eventual application to wing rock. The flow is unsteady and includes spiral-type vortex breakdown. The breakdown positions, mean surface pressures, rolling moments, normal forces, and streamwise center-of-pressure locations compare reasonably well with experiment. In some cases, the primary vortex suction peaks are significantly underpredicted due to grid coarseness. Nevertheless, the computations are able to predict the same nonlinear variation of rolling moment with roll angle that appeared in the experiment. This nonlinearity includes regions of local static roll instability, which is attributed to vortex breakdown.

  18. Monostatic radar cross section of flying wing delta planforms

    Directory of Open Access Journals (Sweden)

    Sevoor Meenakshisundaram Vaitheeswaran

    2017-04-01

    Full Text Available The design of the flying wing and its variants shapes continues to have a profound influence in the design of the current and future use of military aircraft. There is very little in the open literature available to the understanding and by way of comparison of the radar cross section of the different wing planforms, for obvious reasons of security and sensitivity. This paper aims to provide an insight about the radar cross section of the various flying wing planforms that would aid the need and amount of radar cross section suppression to escape detection from surveillance radars. Towards this, the shooting and bouncing ray method is used for analysis. In this, the geometric optics theory is first used for launching and tracing the electromagnetic rays to calculate the electromagnetic field values as the waves bounce around the target. The physical optics theory is next used to calculate the final scattered electric field using the far field integration along the observation direction. For the purpose of comparison, all the planform shapes are assumed to be having the same area, and only the aspect ratio and taper ratio are varied to feature representative airplanes.

  19. Supersonic flow over a pitching delta wing using surface pressure measurements and numerical simulations

    Directory of Open Access Journals (Sweden)

    Mostafa HADIDOOLABI

    2018-01-01

    Full Text Available Experimental and numerical methods were applied to investigating high subsonic and supersonic flows over a 60° swept delta wing in fixed state and pitching oscillation. Static pressure coefficient distributions over the wing leeward surface and the hysteresis loops of pressure coefficient versus angle of attack at the sensor locations were obtained by wind tunnel tests. Similar results were obtained by numerical simulations which agreed well with the experiments. Flow structure around the wing was also demonstrated by the numerical simulation. Effects of Mach number and angle of attack on pressure distribution curves in static tests were investigated. Effects of various oscillation parameters including Mach number, mean angle of attack, pitching amplitude and frequency on hysteresis loops were investigated in dynamic tests and the associated physical mechanisms were discussed. Vortex breakdown phenomenon over the wing was identified at high angles of attack using the pressure coefficient curves and hysteresis loops, and its effects on the flow features were discussed.

  20. Rotary balance data for a typical single-engine general aviation design for an angle of attack range of 8 deg to 90 deg. 1: Low wing model C. [wind tunnel tests

    Science.gov (United States)

    Mulcay, W. J.; Rose, R. A.

    1980-01-01

    Aerodynamic characteristics obtained in a helical flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/6 scale, single engine, low wing, general aviation model (model C). The configurations tested included the basic airplane and control deflections, wing leading edge and fuselage modification devices, tail designs and airplane components. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg and clockwise and counter clockwise rotations covering an omega b/2v range from 0 to .9.

  1. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 2: High-wing model C

    Science.gov (United States)

    Hultberg, R. S.; Chu, J.

    1980-01-01

    Aerodynamic characteristics obtained in a helical flow environment utilizing a rotary balance located in the Langley spin g tunnel are presented in plotted form for a 1/6 scale, single engine, high wing, general aviation model. The configurations tested included the basic airplane and control deflections, wing leading edge devices, tail designs, and airplane components. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg and clockwise and counter clockwise rotations covering a spin coefficient range from 0 to 0.9.

  2. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 2: Low-wing model B

    Science.gov (United States)

    Bihrle, W., Jr.; Hultberg, R. S.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the spin tunnel are presented in plotted form for a 1/6.5 scale, single engine, low wing, general aviation airplane model. The configurations tested included the basic airplane, various wing leading-edge devices, tail designs, and rudder control settings as well as airplane components. Data are presented without analysis for an angle-of-attack range of 8 deg to 90 deg and clockwise and counter-clockwise rotations covering an (omega)(b)/2V range from 0 to 0.85.

  3. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 1: High-wing model B

    Science.gov (United States)

    Bihrle, W., Jr.; Hultberg, R. S.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in a spin tunnel are presented in plotted form for a 1/6.5 scale, single engine, high wing, general aviation airplane model. The configurations tested included the basic airplane, various wing leading-edge devices, tail designs, and rudder control settings as well as airplane components. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg and clockwise and counter-clockwise rotations covering an omega b/2V range from 0 to 0.85.

  4. Experimental study of flow field distribution over a generic cranked double delta wing

    Directory of Open Access Journals (Sweden)

    Mojtaba Dehghan Manshadi

    2016-10-01

    Full Text Available The flow fields over a generic cranked double delta wing were investigated. Pressure and velocity distributions were obtained using a Pitot tube and a hot wire anemometer. Two different leading edge shapes, namely “sharp” and “round”, were applied to the wing. The wing had two sweep angles of 55° and 30°. The experiments were conducted in a closed circuit wind tunnel at velocity 20 m/s and angles of attack of 5°–20° with the step of 5°. The Reynolds number of the model was about 2 × 105 according to the root chord. A dual vortex structure was formed above the wing surface. A pressure drop occurred at the vortex core and the root mean square of the measured velocity increased at the core of the vortices, reflecting the instability of the flow in that region. The magnitude of power spectral density increased strongly in spanwise direction and had the maximum value at the vortex core. By increasing the angle of attack, the pressure drop increased and the vortices became wider; the vortices moved inboard along the wing, and away from the surface; the flow separation was initiated from the outer portion of the wing and developed to its inner part. The vortices of the wing of the sharp leading edge were stronger than those of the round one.

  5. Unsteady surface pressure measurements on a slender delta wing undergoing limit cycle wing rock

    Science.gov (United States)

    Arena, Andrew S., Jr.; Nelson, Robert C.

    1991-01-01

    An experimental investigation of slender wing limit cycle motion known as wing rock was investigated using two unique experimental systems. Dynamic roll moment measurements and visualization data on the leading edge vortices were obtained using a free to roll apparatus that incorporates an airbearing spindle. In addition, both static and unsteady surface pressure data was measured on the top and bottom surfaces of the model. To obtain the unsteady surface pressure data a new computer controller drive system was developed to accurately reproduce the free to roll time history motions. The data from these experiments include, roll angle time histories, vortex trajectory data on the position of the vortices relative to the model's surface, and surface pressure measurements as a function of roll angle when the model is stationary or undergoing a wing rock motion. The roll time history data was numerically differentiated to determine the dynamic roll moment coefficient. An analysis of these data revealed that the primary mechanism for the limit cycle behavior was a time lag in the position of the vortices normal to the wing surface.

  6. Effect of a Finite Trailing Edge Thickness on the Drag of Rectangular and Delta Wings at Supersonic Speeds

    National Research Council Canada - National Science Library

    Klunker, E

    1952-01-01

    The effect of a finite trailing-edge thickness on the pressure drag of rectangular and delta wings with truncated diamond-shaped airfoil sections with a given thickness ratio is studied for supersonic...

  7. Investigation of vortex breakdown on a delta wing using Euler and Navier-Stokes equations

    Science.gov (United States)

    Agrawal, S.; Barnett, R. M.; Robinson, B. A.

    1991-01-01

    A numerical investigation of leading edge vortex breakdown in a delta wing at high angles of attack is presented. The analysis was restricted to low speed flows on a flat plate wing with sharp leading edges. Both Euler and Navier-Stokes equations were used and the results were compared with experimental data. Predictions of vortex breakdown progression with angle of attack with both Euler and Navier-Stokes equations are shown to be consistent with the experimental data. However, the Navier-Stokes predictions show significant improvements in breakdown location at angles of attack where the vortex breakdown approaches the wing apex. The predicted trajectories of the primary vortex are in very good agreement with the test data, the laminar solutions providing the overall best comparison. The Euler shows a small displacement of the primary vortex, relative to experiment, due to the lack of secondary vortices. The turbulent Navier-Stokes, in general, fall between the Euler and laminar solutions.

  8. Transonic Aerodynamic Characteristics of a Wing-Body Combination having a 52.5 deg Sweptback Wing of Aspect Ratio 3 with Conical Camber and Designed for a Mach Number of the Square Root of 2

    Science.gov (United States)

    Igoe, William B.; Re, Richard J.; Cassetti, Marlowe

    1961-01-01

    An investigation has been made of the effects of conical wing camber and supersonic body indentation on the aerodynamic characteristics of a wing-body configuration at transonic speeds. Wing aspect ratio was 3.0, taper ratio was 0.1, and quarter-chord line sweepback was 52.5 deg with airfoil sections of 0.03 thickness ratio. The tests were conducted in the Langley 16-foot transonic tunnel at various Mach numbers from 0.80 to 1.05 at angles of attack from -4 deg to 14 deg. The cambered-wing configuration achieved higher lift-drag ratios than a similar plane-wing configuration. The camber also reduced the effects of wing-tip flow separation on the aerodynamic characteristics. In general, no stability or trim changes below wing-tip flow separation resulted from the use of camber. The use of supersonic body indentation improved the lift-drag ratios at Mach numbers from 0.96 to 1.05.

  9. Breaking down the delta wing vortex: The role of vorticity in the breakdown process

    Science.gov (United States)

    Nelson, R. C.; Visser, Kenneth Dale

    1991-01-01

    Experimental x-wire measurements of the flowfield above a 70 degree and 75 degree flat plate delta wing were performed at a Reynolds number of 250,000. Grids were taken normal to the wing at various chordwise locations for angles of attack of 20 degrees and 30 degrees. Axial and azimuthal vorticity distributions were derived from the velocity fields. The dependence of circulation on distance from the vortex core and on chordwise location was also examined. The effects of nondimensionalization in comparison with other experimental data is made. The results indicate that the circulation distribution scales with the local semispan and grows in a nearly linear fashion in the chordwise direction. The spanwise distribution of axial vorticity is severely altered through the breakdown region and the amount of vorticity present appears to reach a maximum immediately preceding breakdown. The axial velocity components with a negative sense, such as that found in the secondary vortex, seem to remain unaffected by changes in wing sweep or angle of attack, in direct contrast to the visible components. In addition, the inclusion of the local wing geometry into a previously derived correlation parameter allows the circulation of growing leading edge vortex flows to be reduced to a single curve.

  10. CFD simulations of steady flows over the IAR 65o delta wing

    International Nuclear Information System (INIS)

    Benmeddour, A.; Mebarki, Y.; Huang, X.Z.

    2004-01-01

    Computational Fluid Dynamics (CFD) studies have been conducted to simulate vortical flows around the IAR 65 o delta wing with a sharp leading edge. The effects of the centerbody on the aerodynamic characteristics of the wing are also investigated. Two flow solvers have been employed to compute steady inviscid flows over with and without centerbody configurations of the wing. These two solvers are an IAR in-house code, FJ3SOLV, and the CFD-FASTRAN commercial software. The computed flow solutions of the two solvers have been compared and correlated against the IAR wind tunnel data, including Pressure Sensitive Paint (PSP) measurements. The major features of the primary vortex have been well captured and overall reasonable accuracy was obtained. In accordance with the experimental observations for the flow conditions considered, the CFD computations revealed no major global effects of the centerbody on the surface pressure distributions of the wing and on the lift coefficient. However, CFD-FASTRAN seems to predict a vortex breakdown, which is neither predicted by FJ3SOLV nor observed in the wind tunnel for the flow conditions considered. (author)

  11. Adaptive computations of flow around a delta wing with vortex breakdown

    Science.gov (United States)

    Modiano, David L.; Murman, Earll M.

    1993-01-01

    An adaptive unstructured mesh solution method for the three-dimensional Euler equations was used to simulate the flow around a sharp edged delta wing. Emphasis was on the breakdown of the leading edge vortex at high angle of attack. Large values of entropy, which indicate vortical regions of the flow, specified the region in which adaptation was performed. The aerodynamic normal force coefficients show excellent agreement with wind tunnel data measured by Jarrah, and demonstrate the importance of adaptation in obtaining an accurate solution. The pitching moment coefficient and the location of vortex breakdown are compared with experimental data measured by Hummel and Srinivasan, showing good agreement in cases in which vortex breakdown is located over the wing.

  12. Comparison of measured and computed pitot pressures in a leading edge vortex from a delta wing

    Science.gov (United States)

    Murman, Earll M.; Powell, Kenneth G.

    1987-01-01

    Calculations are presented for a 75-deg swept flat plate wing tested at a freestream Mach number of 1.95 and 10 degrees angle of attack. Good agreement is found between computational data and previous experimental pitot pressure measurements in the core of the vortex, suggesting that the total pressure losses predicted by the Euler equation solvers are not errors, but realistic predictions. Data suggest that the magnitude of the total pressure loss is related to the circumferential velocity field through the vortex, and that it increases with angle of attack and varies with Mach number and sweep angle.

  13. Flow structures in end-view plane of slender delta wing

    Directory of Open Access Journals (Sweden)

    Sahin Besir

    2017-01-01

    Full Text Available Present investigation focuses on unsteady flow structures in end-view planes at the trailing edge of delta wing, X/C=1.0, where consequences of vortex bursting and stall phenomena vary according to angles of attack over the range of 25° ≤ α ≤ 35° and yaw angles, β over the range of 0° ≤ β ≤ 20°. Basic features of counter rotating vortices in end-view planes of delta win with 70° sweep angle, Λ are examined both qualitatively and quantitatively using Rhodamine dye and the PIV system. In the light of present experiments it is seen that with increasing yaw angle, β symmetrical flow structure is disrupted continuously. Dispersed wind-ward side leading edge vortices cover a large part of flow domain, on the other hand, lee-ward side leading edge vortices cover only a small portion of flow domain.

  14. Calculations of the flow past bluff bodies, including tilt-rotor wing sections at alpha = 90 deg

    Science.gov (United States)

    Raghavan, V.; Mccroskey, W. J.; Baeder, J. D.; Van Dalsem, W. R.

    1990-01-01

    An attempt was made to model in two dimensions the effects of rotor downwash on the wing of the tilt-rotor aircraft and to compute the drag force on airfoils at - 90 deg angle of attack, using a well-established Navier-Stokes code. However, neither laminar nor turbulent calculations agreed well with drag and base-pressure measurements at high Reynolds numbers. Therefore, further efforts were concentrated on bluff-body flows past various shapes at low Reynolds numbers, where a strong vortex shedding is observed. Good results were obtained for a circular cylinder, but the calculated drag of a slender ellipse at right angles to the freestream was significantly higher than experimental values reported in the literature for flat plates. Similar anomalous results were obtained on the tilt-rotor airfoils, although the qualitative effects of flap deflection agreed with the wind tunnel data. The ensemble of results suggest that there may be fundamental differences in the vortical wakes of circular cylinders and noncircular bluff bodies.

  15. Static and Dynamic Flow Visualization Studies of Two Double-Delta Wing Models at High Angles of Attack

    Science.gov (United States)

    1992-03-01

    body, ft U.= free-stream velocity, ft/sec In the case of a wing pitching about its mid-chord location, it can be interpreted as the ratio of the...Over Moderately Swept Delta Wings," HTP -5 Workshop On Vortical Flow Breakdown and Structural Interactions, NASA Langley Research Center, August 15-16...January 6- 9,1992/Reno,Nevada. 18. User’s Manual , Flow Visualization Water Tunnel Operation for Model 1520, Eidelic International, Inc., Torrance

  16. Rotary balance data for a typical single-engine low-wing general aviation design for an angle-of-attack range of 30 deg to 90 deg

    Science.gov (United States)

    Bihrle, W., Jr.; Hultberg, R. S.; Mulcay, W.

    1978-01-01

    Aerodynamic characteristics obtained in a spinning flow environment utilizing a rotary balance located spin tunnel are presented in plotted form for a 1/5 scale single-engine low-wing general aviation airplane model. The configurations tested include the basic airplane, various airfoil shapes, tail designs, fuselage strakes and modifications as well as airplane components. Data are presented for pitch and roll angle ranges of 30 to 90 degrees and 10 to -10 degrees, respectively, and clockwise and counter-clockwise rotations covering an Omega b/2V range from 0 to .9. The data are presented without analysis.

  17. Effects of external stores on the air combat capability of a delta wing fighter

    Science.gov (United States)

    Spearman, M. L.; Sawyer, W. C.

    1977-01-01

    Delta wing point-design fighters with two pylon mounted missiles and aft tail controls (similar to several Soviet designs) have been investigated for a Mach number range from about 0.6 to 2.0. Whereas minimum drag penalties that are expected with the addition of external stores do occur, the effects at higher lifts, corresponding to maneuvering flight, are less severe and often favorable. The drag-due-to-lift factor is less with stores on although the lift curve slope is unaffected. The longitudinal stability level is reduced by the addition of stores while the pitch control effectiveness is unchanged. The directional stability was generally reduced at subsonic speeds and increased at supersonic speeds by the addition of stores but sufficiently high stability levels are obtainable that are compatible with the longitudinal maneuvering limits. Some examples of the potential maneuvering capability in terms of normal acceleration and turn radius are included.

  18. Control of Flow Structure on Non-Slender Delta Wing: Bio-inspired Edge Modifications, Passive Bleeding, and Pulsed Blowing

    Science.gov (United States)

    Yavuz, Mehmet Metin; Celik, Alper; Cetin, Cenk

    2016-11-01

    In the present study, different flow control approaches including bio-inspired edge modifications, passive bleeding, and pulsed blowing are introduced and applied for the flow over non-slender delta wing. Experiments are conducted in a low speed wind tunnel for a 45 degree swept delta wing using qualitative and quantitative measurement techniques including laser illuminated smoke visualization, particle image velocimety (PIV), and surface pressure measurements. For the bio-inspired edge modifications, the edges of the wing are modified to dolphin fluke geometry. In addition, the concept of flexion ratio, a ratio depending on the flexible length of animal propulsors such as wings, is introduced. For passive bleeding, directing the free stream air from the pressure side of the planform to the suction side of the wing is applied. For pulsed blowing, periodic air injection through the leading edge of the wing is performed in a square waveform with 25% duty cycle at different excitation frequencies and compared with the steady and no blowing cases. The results indicate that each control approach is quite effective in terms of altering the overall flow structure on the planform. However, the success level, considering the elimination of stall or delaying the vortex breakdown, depends on the parameters in each method.

  19. Numerical investigation of unsteady vortex breakdown past 80°/65° double-delta wing

    Directory of Open Access Journals (Sweden)

    Liu Jian

    2014-06-01

    Full Text Available An improved delayed detached eddy simulation (IDDES method based on the k-ω-SST (shear stress transport turbulence model was applied to predict the unsteady vortex breakdown past an 80°/65° double-delta wing (DDW, where the angles of attack (AOAs range from 30° to 40°. Firstly, the IDDES model and the relative numerical methods were validated by simulating the massively separated flow around an NACA0021 straight wing at the AOA of 60°. The fluctuation properties of the lift and pressure coefficients were analyzed and compared with the available measurements. For the DDW case, the computations were compared with such measurements as the mean lift, drag, pitching moment, pressure coefficients and breakdown locations. Furthermore, the unsteady properties were investigated in detail, such as the frequencies of force and moments, pressure fluctuation on the upper surface, typical vortex breakdown patterns at three moments, and the distributions of kinetic turbulence energy at a stream wise section. Two dominated modes are observed, in which their Strouhal numbers are 1.0 at the AOAs of 30°, 32° and 34° and 0.7 at the AOAs of 36°, 38° and 40°. The breakdown vortex always moves upstream and downstream and its types change alternatively. Furthermore, the vortex can be identified as breakdown or not through the mean pressure, root mean square of pressure, or even through correlation analysis.

  20. The lateral-directional characteristics of a 74-degree Delta wing employing gothic planform vortex flaps

    Science.gov (United States)

    Grantz, A. C.

    1984-01-01

    The low speed lateral/directional characteristics of a generic 74 degree delta wing body configuration employing the latest generation, gothic planform vortex flaps was determined. Longitudinal effects are also presented. The data are compared with theoretical estimates from VORSTAB, an extension of the Quasi vortex lattice Method of Lan which empirically accounts for vortex breakdown effects in the calculation of longitudinal and lateral/directional aerodynamic characteristics. It is indicated that leading edge deflections of 30 and 40 degrees reduce the magnitude of the wing effective dihedral relative to the baseline for a specified angle of attack or lift coefficient. For angles of attack greater than 15 degrees, these flap deflections reduce the configuration directional stability despite improved vertical tail effectiveness. It is shown that asymmetric leading edge deflections are inferior to conventional ailerons in generating rolling moments. VORSTAB calculations provide coarse lateral/directional estimates at low to moderate angles of attack. The theory does not account for vortex flow induced, vertical tail effects.

  1. EFFECT OF SWEEP ANGLE ON THE VORTICAL FLOW OVER DELTA WINGS AT AN ANGLE OF ATTACK OF 10°

    Directory of Open Access Journals (Sweden)

    JAMES BRETT

    2014-12-01

    Full Text Available CFD simulations have been used to analyse the vortical flows over sharp edged delta wings with differing sweep angles under subsonic conditions at an angle of attack of 10°. RANS simulations were validated against experimental data for a 65° sweep wing, with a flat cross-section, and the steadiness of the flow field was assessed by comparing the results against unsteady URANS and DES simulations. To assess the effect of sweep angle on the flow field, a range of sweep angles from 65° to 43° were simulated. For moderate sweep wings the primary vortex was observed to detach from the leading edge, undergoing vortex breakdown, and a weaker, replacement, "shadow" vortex was formed. The shadow vortex was observed for sweep angles of 50° and less, and resulted in reduced lift production near the wing tips loss of the stronger primary vortex.

  2. The role of flow field structure in determining the aerodynamic response of a delta wing

    Science.gov (United States)

    Addington, Gregory Alan

    Delta wings have long been known to exhibit nonlinear aerodynamic responses as a result of the presence of helical leading-edge vortices. This nonlinearity, found under both steady-state and unsteady conditions, is particularly profound in the presence of vortex burst. Modeling such aerodynamic responses with the Nonlinear Indicial Response (NIR) methodology provides a means of simulating these nonlinearities through its inclusion of motion history in addition to superposition. The NIR model also includes provisions for a finite number of discrete locations where the aerodynamic response is discontinuous with response to a state variable. These critical states also separate regions of states where the unsteady aerodynamic responses are potentially of highly-disparate characters. Although these critical states have been found in the past, their relationship with flow field bifurcation is uncertain. The purpose of this dissertation is to explore the relationship between nonlinear aerodynamic responses, critical states and flow field bifurcations from an experimental approach. This task has been accomplished by comparing a comprehensive database of skin-friction line topologies with static and unsteady aerodynamic responses. These data were collected using a 65sp° delta wing which rolled about an inclined longitudinal body axis. In this study, compelling, but not conclusive, evidence was found to suggest that a bifurcation in the skin-friction line topology was a necessary condition for the presence of a critical state. Although the presence of critical states was well predicted through careful observation and analysis of highly-resolved static loading data alone, their precise placement as a function of the independent variable was aided through the consideration of the locations of skin-friction line bifurcations. Furthermore, these static data were found to contain indications of the basic lagged or unlagged behavior of the unsteady aerodynamic response. This

  3. Numerical modeling of the vortex breakdown phenomenon on a delta wing with trailing-edge jet-flap

    International Nuclear Information System (INIS)

    Kyriakou, Marilena; Missirlis, Dimitrios; Yakinthos, Kyros

    2010-01-01

    The flow development over delta wings is highly complicated since the interaction of the angle of attack with the delta-wing geometry leads to the appearance of a pair of well-organized counter-rotating leading-edge vortical structures. For relatively moderate angles of attack, these vortices remain robust and contribute to the enhancement of the overall lift performance. However, at higher angles of attack the vortices develop instabilities leading to the well-known vortex breakdown phenomenon, resulting in a deterioration of the aerodynamic properties. Thus, delaying vortex breakdown at higher angles of attack, is important and for this reason various techniques have been developed to control the breakdown mechanism. Such a technique is the use of trailing-edge jet-flaps. In the present work, an attempt to model the vortex breakdown together with its control, above a delta wing at high angles of attack, for cases with and without a trailing-edge jet-flap, is presented. To model the turbulent stresses, the low-Reynolds-number stress-omega model was used. The computational results were in good agreement with the available experimental data regarding the prediction of the onset of vortex breakdown and showed that the use of jet-flaps can lead to a significant delay of the breakdown process.

  4. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 1: Low-wing model A. [fluid flow and vortices data for general aviation aircraft to determine aerodynamic characteristics for various designs

    Science.gov (United States)

    Hultberg, R. S.; Mulcay, W.

    1980-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance are presented in plotted form for a 1/5 scale, single engine, low-wing, general aviation airplane model. The configuration tested included the basic airplane, various control deflections, tail designs, fuselage shapes, and wing leading edges. Data are presented without analysis for an angle of attack range of 8 to 90 deg and clockwise and counterclockwise rotations covering a range from 0 to 0.85.

  5. Numerical simulation of the effects of variation of angle of attack and sweep angle on vortex breakdown over delta wings

    Science.gov (United States)

    Ekaterinaris, J. A.; Schiff, Lewis B.

    1990-01-01

    In the present investigation of the vortical flowfield structure over delta wings at high angles of attack, three-dimensional Navier-Stokes numerical simulations were conducted to predict the complex leeward flowfield characteristics; these encompass leading-edge separation, secondary separation, and vortex breakdown. Attention is given to the effect on solution accuracy of circumferential grid-resolution variations in the vicinity of the wing leading edge, and well as to the effect of turbulence modeling on the solutions. When a critical angle-of-attack was reached, bubble-type vortex breakdown was found. With further angle-of-attack increase, a change from bubble-type to spiral-type vortex breakdown was predicted by the numerical solution.

  6. A Transonic Wind-Tunnel Investigation of a Seaplane Configuration having a 40 Deg Sweptback Wing, TED No. NACA DE 387

    Science.gov (United States)

    Hieser, Gerald; Kudlacik, Louis; Gray, W. H.

    1956-01-01

    During the course of an aerodynamic loads investigation of a model of the Martin XP6M-1 flying boat in the.Langley 16-foot transonic tunnel, longitudinal-aerodynamic-performance information was obtained. Data were obtained at speeds up to and exceeding those anticipated for the seaplane in level flight and included the Mach number range from 0.84. to 1.09. The angle of attack was varied from -2deg to 6deg and the average Reynolds number, based on wing mean aerodyn&ic chord, was about 3.7 x 10(exp 6). This seaplane, although not designed to maintain level flight at Mach numbers beyond the force break, was found to have a transonic drag-rise coefficient of 0.0728, with an accompanying drag-rise Mach number of about 0.85. A large portion of the.drag rise and the relatively low value of drag-rise Mach number result from the axial coincidence of the maximum areas of the principal airplane components.

  7. Experimental and numerical analysis of the wing rock characteristics of a 'wing-body-tail' configuration

    Science.gov (United States)

    Suarez, Carlos J.; Smith, Brooke C.; Malcolm, Gerald N.

    1993-01-01

    Free-to-roll wind tunnel tests were conducted and a computer simulation exercise was performed in an effort to investigate in detail the mechanism of wing rock on a configuration that consisted of a highly-slender forebody and a 78 deg swept delta wing. In the wind tunnel test, the roll angle and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the wind tunnel test confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly showed the energy balance necessary to sustain the limit cycle oscillation. Pressure measurements on the wing revealed the hysteresis of the wing rock process. First, second and nth order models for the aerodynamic damping were developed and examined with a one degree of freedom computer simulation. Very good agreement with the observed behavior from the wind tunnel was obtained.

  8. Large CYBER-205-model of the Euler equations for vortex-stretched turbulent flow around Delta wings

    International Nuclear Information System (INIS)

    Rizzi, A.; Purcell, C.J.

    1985-01-01

    The large-scale numerical simulation of fluid flow is described as a discipline within the field of software engineering. As an example of such work, a vortex flow field is analyzed for its essential physical flow features, an appropriate mathematical description is presented (the Euler equations with an artificial viscosity model), a numerical algorithm to solve mathematical equations is described, and the programming methodology which allows us to attain a very high degree of vectorization on the CYBER 205 is discussed. Four simulated flowfields with vorticity shed from wing edges are computed with up to as many as one million grid points and verify the realism of the simulation model. The computed solutions show all of the qualitative features that are expected in these flows. The twisted cranked-and-cropped delta case is one where the leading-edge vortex is highly stretched and unstable, displaying ultimately inviscid large-scale turbulent-like phenomena

  9. Wing rock suppression using forebody vortex control

    Science.gov (United States)

    Ng, T. T.; Ong, L. Y.; Suarez, C. J.; Malcolm, G. N.

    1991-01-01

    Static and free-to-roll tests were conducted in a water tunnel with a configuration that consisted of a highly-slender forebody and 78-deg sweep delta wings. Flow visualization was performed and the roll angle histories were obtained. The fluid mechanisms governing the wing rock of this configuration were identified. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetries had to be induced at the same time. On the other hand, alternating pulsed blowing on the left and right sides of the forebody was demonstrated to be potentially an effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  10. Second Byurakan spectral sky survey. II. Results for region centered on alpha 09h50m, delta +55 deg 00 arcmin

    International Nuclear Information System (INIS)

    Markarian, B.E.; Stepanian, D.A.

    1984-01-01

    The second list of objects in the Second Biurakan Spectral Sky Survey of the region centered on alpha 09h50m, delta +55 deg 00 arcmin is given. The list contains data on 110 objects and galaxies of a peculiar physical nature and 24 blue stars. The observations were made with the 40-52 arcsec Schmidt telescope of the Biurakan Astrophysical Observatory with a set of three objective prisms using Kodak IIIaJ and IIIaF emulsions sensitized in nitrogen. The area is found to contain 20 quasar candidates and four Seyfert galaxies, 27 blue stellar objects, 24 galaxies with an appreciable ultraviolet continuum, and 39 emission galaxies without appreciable ultraviolet radiation. The surface brightness of the quasars and Seyferts on the considered area down to the limiting magnitude 19.5 M is more than 1.5 per square degree with allowance for the already known quasars. The surface density of emission galaxies is about four per square degree. 7 references

  11. Flight Investigation of the Low-Speed Characteristics of a 45 deg Swept-Wing Fighter-Type Airplane with Blowing Boundary-Layer Control Applied to the Leading- and Trailing-Edge Flaps

    Science.gov (United States)

    Quigley, Hervey C.; Anderson, Seth B.; Innis, Robert C.

    1960-01-01

    A flight investigation has been conducted to study how pilots use the high lift available with blowing-type boundary-layer control applied to the leading- and trailing-edge flaps of a 45 deg. swept-wing airplane. The study includes documentation of the low-speed handling qualities as well as the pilots' evaluations of the landing-approach characteristics. All the pilots who flew the airplane considered it more comfortable to fly at low speeds than any other F-100 configuration they had flown. The major improvements noted were the reduced stall speed, the improved longitudinal stability at high lift, and the reduction in low-speed buffet. The study has shown the minimum comfortable landing-approach speeds are between 120.5 and 126.5 knots compared to 134 for the airplane with a slatted leading edge and the same trailing-edge flap. The limiting factors in the pilots' choices of landing-approach speeds were the limits of ability to control flight-path angle, lack of visibility, trim change with thrust, low static directional stability, and sluggish longitudinal control. Several of these factors were found to be associated with the high angles of attack, between 13 deg. and 15 deg., required for the low approach speeds. The angle of attack for maximum lift coefficient was 28 deg.

  12. Aerodynamic control of NASP-type vehicles through vortex manipulation. Volume 3: Wing rock experiments

    Science.gov (United States)

    Suarez, Carlos J.; Smith, Brooke C.; Kramer, Brian R.; Ng, T. Terry; Ong, Lih-Yenn; Malcolm, Gerald N.

    1993-01-01

    Free-to-roll tests were conducted in water and wind tunnels in an effort to investigate the mechanisms of wing rock on a NASP-type vehicle. The configuration tested consisted of a highly-slender forebody and a 78 deg swept delta wing. In the water tunnel test, extensive flow visualization was performed and roll angle histories were obtained. In the wind tunnel test, the roll angle, forces and moments, and limited forebody and wing surface pressures were measured during the wing rock motion. A limit cycle oscillation was observed for angles of attack between 22 deg and 30 deg. In general, the experiments confirmed that the main flow phenomena responsible for the wing-body-tail wing rock are the interactions between the forebody and the wing vortices. The variation of roll acceleration (determined from the second derivative of the roll angle time history) with roll angle clearly slowed the energy balance necessary to sustain the limit cycle oscillation. Different means of suppressing wing rock by controlling the forebody vortices using small blowing jets were also explored. Steady blowing was found to be capable of suppressing wing rock, but significant vortex asymmetrices are created, causing the model to stop at a non-zero roll angle. On the other hand, alternating pulsed blowing on the left and right sides of the fore body was demonstrated to be a potentially effective means of suppressing wing rock and eliminating large asymmetric moments at high angles of attack.

  13. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 2: High-wing model A

    Science.gov (United States)

    Mulcay, W.; Rose, R.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/5-scale, single-engine, high-wing, general aviation airplane model. The configurations tested included various tail designs and fuselage shapes. Data are presented without analysis for an angle of attack range of 8 to 90 degrees and clockwise and counter-clockwise rotations covering an Omega b/2 v range from 0 to 0.85.

  14. Investigation at transonic speeds of the lateral-control and hinge-moment characteristics of a flap-type spoiler aileron on a 60 degree delta wing

    Science.gov (United States)

    Wiley, Harleth G; Taylor, Robert T

    1954-01-01

    This paper present results of an investigation of the lateral-control and hinge-moment characteristics of a 0.67 semispan flap-type spoiler aileron on a semispan thin 60 degree delta wing at transonic speeds by the reflection-plane technique. The spoiler-aileron had a constant chord of 10.29 percent mean aerodynamic chord and was hinged at the 81.9-percent-wing-root-chord station. Tests were made with the spoiler aileron slot open, partially closed, and closed. Incremental rolling-moment coefficients were obtained through a Mach number range of 0.62 to 1.08. Results indicated reasonably linear variations of rolling-moment and hinge-moment coefficients with spoiler projection except at spoiler projections of less than -2 percent mean aerodynamic chord and angles of attack greater than 12 degrees with results generally independent of slot geometry.

  15. A Preliminary Analysis of the Flying Qualities of the Consolidated Vultee MX-813 Delta-Wing Airplane Configuration at Transonic and Low Supersonic Speeds as Determined from Flights of Rocket-Powered Models

    Science.gov (United States)

    Mitcham, Grady L.

    1949-01-01

    A preliminary analysis of the flying qualities of the Consolidated Vultee MX-813 delta-wing airplane configuration has been made based on the results obtained from the first two 1/8 scale models flown at the NACA Pilotless Aircraft Research Station, Wallop's Island, VA. The Mach number range covered in the tests was from 0.9 to 1.2. The analysis indicates adequate elevator control for trim in level flight over the speed range investigated. Through the transonic range there is a mild trim change with a slight tucking-under tendency. The elevator control effectiveness in the supersonic range is reduced to about one-half the subsonic value although sufficient control for maneuvering is available as indicated by the fact that 10 deg elevator deflection produced 5g acceleration at Mach number of 1.2 at 40,000 feet.The elevator control forces are high and indicate the power required of the boost system. The damping. of the short-period oscillation is adequate at sea-level but is reduced at 40,000 feet. The directional stability appears adequate for the speed range and angles of attack covered.

  16. A wind-tunnel investigation at high subsonic speeds of the lateral control characteristics of various plain spoiler configurations on a 3-percent-thick 60 degree delta wing

    Science.gov (United States)

    Wiley, Harleth G

    1954-01-01

    Results are presented of wind-tunnel investigations at Mach numbers of 0.60 to 0.94 and angles of attack of -2 degrees to about 24 degrees to determine the lateral control characteristics of spoilers with various wing chord-wise and spanwise locations and spoiler spans and deflections on thin 60 degree delta wing of NACA 65a003 airfoil section parallel to free stream.

  17. An experimental study of the nonlinear dynamic phenomenon known as wing rock

    Science.gov (United States)

    Arena, A. S., Jr.; Nelson, R. C.; Schiff, L. B.

    1990-01-01

    An experimental investigation into the physical phenomena associated with limit cycle wing rock on slender delta wings has been conducted. The model used was a slender flat plate delta wing with 80-deg leading edge sweep. The investigation concentrated on three main areas: motion characteristics obtained from time history plots, static and dynamic flow visualization of vortex position, and static and dynamic flow visualization of vortex breakdown. The flow visualization studies are correlated with model motion to determine the relationship between vortex position and vortex breakdown with the dynamic rolling moments. Dynamic roll moment coefficient curves reveal rate-dependent hysteresis, which drives the motion. Vortex position correlated with time and model motion show a time lag in the normal position of the upward moving wing vortex. This time lag may be the mechanism responsible for the hysteresis. Vortex breakdown is shown to have a damping effect on the motion.

  18. Effect of external stores on the stability and control characteristics of a delta wing fighter model at Mach numbers from 0.60 to 2.01

    Science.gov (United States)

    Spearman, M. L.

    1983-01-01

    An investigation has been made to determine the effects of external stores on the stability and control characteristics of a delta wing fighter airplane model at Mach numbers from 0.60 to 2.01 for a Reynolds number of 3.0 X 1 million per foot. The angle-of-attack range was from about -4 degrees to 20 degrees at a sideslip angle of 0 degrees for the transonic tests, and from about -4 degrees to 10 degrees at sideslip angles of 0 degrees and 3 degrees for the supersonic tests. In general, the results of the tests indicated no seriously detrimental effects of the stores on the stability and control characteristics of the model but did show an increase in the minimum drag level throughout the Mach number range. However, the drag-due-to-lift was such that for subsonic/transonic speeds, the drag at higher lifts was essentially unaffected and the indications are that the maneuvering capability may not be impaired by the stores.

  19. Allostery Is an Intrinsic Property of the Protease Domain of DegS Implications for Enzyme Function and Evolution

    Energy Technology Data Exchange (ETDEWEB)

    Sohn, Jungsan; Grant, Robert A.; Sauer, Robert T. (MIT)

    2010-12-02

    DegS is a periplasmic Escherichia coli protease, which functions as a trimer to catalyze the initial rate-limiting step in a proteolytic cascade that ultimately activates transcription of stress response genes in the cytoplasm. Each DegS subunit consists of a protease domain and a PDZ domain. During protein folding stress, DegS is allosterically activated by peptides exposed in misfolded outer membrane porins, which bind to the PDZ domain and stabilize the active protease. It is not known whether allostery is conferred by the PDZ domains or is an intrinsic feature of the trimeric protease domain. Here, we demonstrate that free DegS{sup {Delta}PDZ} equilibrates between active and inactive trimers with the latter species predominating. Substrate binding stabilizes active DegS{sup {Delta}PDZ} in a positively cooperative fashion. Mutations can also stabilize active DegS{sup {Delta}PDZ} and produce an enzyme that displays hyperbolic kinetics and degrades substrate with a maximal velocity within error of that for fully activated, intact DegS. Crystal structures of multiple DegS{sup {Delta}PDZ} variants, in functional and non-functional conformations, support a two-state model in which allosteric switching is mediated by changes in specific elements of tertiary structure in the context of an invariant trimeric base. Overall, our results indicate that protein substrates must bind sufficiently tightly and specifically to the functional conformation of DegS{sup {Delta}PDZ} to assist their own degradation. Thus, substrate binding alone may have regulated the activities of ancestral DegS trimers with subsequent fusion of the protease domain to a PDZ domain, resulting in ligand-mediated regulation.

  20. Evaluation of Blended Wing-Body Combinations with Curved Plan Forms at Mach Numbers Up to 3.50

    Science.gov (United States)

    Holdaway, George H.; Mellenthin, Jack A.

    1960-01-01

    This investigation is a continuation of the experimental and theoretical evaluation of the effects of wing plan-form variations on the aerodynamic performance characteristics of blended wing-body combinations. The present report compares previously tested straight-edged delta and arrow models which have leading-edge sweeps of 59.04 and 70-82 deg., respectively, with related models which have plan forms with curved leading and trailing edges designed to result in the same average sweeps in each case. All the models were symmetrical, without camber, and were generally similar having the same span, length, and aspect ratios. The wing sections had an average value of maximum thickness ratio of about 4 percent of the local wing chords in a streamwise direction. The wing sections were computed by varying their shapes along with the body radii (blending process) to match the selected area distribution and the given plan form. The models were tested with transition fixed at Reynolds numbers of roughly 4,000,000 to 9,000,000, based on the mean aerodynamic chord of the wing. The characteristic effect of the wing curvature of the delta and arrow models was an increase at subsonic and transonic speeds in the lift-curve slopes which was partially reflected in increased maximum lift-drag ratios. Curved edges were not evaluated on a diamond plan form because a preliminary investigation indicated that the curvature considered would increase the supersonic zero-lift wave drag. However, after the test program was completed, a suitable modification for the diamond plan form was discovered. The analysis presented in the appendix indicates that large reductions in the zero-lift wave drag would be obtained at supersonic Mach numbers if the leading- and trailing-edge sweeps are made to differ by indenting the trailing edge and extending the root of the leading edge.

  1. Avian Wings

    Science.gov (United States)

    Liu, Tianshu; Kuykendoll, K.; Rhew, R.; Jones, S.

    2004-01-01

    This paper describes the avian wing geometry (Seagull, Merganser, Teal and Owl) extracted from non-contact surface measurements using a three-dimensional laser scanner. The geometric quantities, including the camber line and thickness distribution of airfoil, wing planform, chord distribution, and twist distribution, are given in convenient analytical expressions. Thus, the avian wing surfaces can be generated and the wing kinematics can be simulated. The aerodynamic characteristics of avian airfoils in steady inviscid flows are briefly discussed. The avian wing kinematics is recovered from videos of three level-flying birds (Crane, Seagull and Goose) based on a two-jointed arm model. A flapping seagull wing in the 3D physical space is re-constructed from the extracted wing geometry and kinematics.

  2. Il teatro degli spiriti.

    Directory of Open Access Journals (Sweden)

    Chiara Pussetti

    2013-07-01

    Full Text Available Questo saggio è dedicato a un culto di possessione, in cui tutte ledonne, investite dagli spiriti degli uomini morti prima dell’iniziazione, compiono un percorso iniziatico parallelo a quello maschile, consentendo a queste anime, potenzialmente pericolose, di completare il cammino che non hanno potuto percorrere da vivi e quindi di raggiungere serenamente il mondo dei morti, come antenati protettori del villaggio

  3. Ingegneria degli acquiferi

    CERN Document Server

    Molfetta, Antonio

    2012-01-01

    Il testo fornisce le conoscenze necessarie per affrontare, con un approccio quantitativo, i molteplici aspetti connessi al flusso delle risorse idriche sotterranee (acque di falda) e alla propagazione e bonifica di contaminanti nei sistemi acquiferi. Vengono illustrate le proprietà fondamentali che definiscono la capacità di immagazzinamento, trasporto e rilascio dell’acqua negli acquiferi, e successivamente, descritte le metodiche per la determinazione di tali parametri tramite l’esecuzione e l’interpretazione di prove di falda, di pozzo e di laboratorio. A partire dalla classificazione chimico fisica-tossicologica dei contaminanti vengono, quindi, analizzati i meccanismi di propagazione e illustrate le soluzioni analitiche dell’equazione del trasporto di massa nei mezzi porosi. L’ultima parte del testo è dedicata alla caratterizzazione e bonifica degli acquiferi contaminati. Il testo è rivolto sia agli studenti universitari, sia ai professionisti che debbano affrontare con un approccio quantit...

  4. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 1: Influence of airplane components for model D. [Langley spin tunnel tests

    Science.gov (United States)

    Ralston, J.

    1983-01-01

    The influence of airplane components, as well as wing location and tail length, on the rotational flow aerodynamics is discussed for a 1/6 scale general aviation airplane model. The airplane was tested in a built-up fashion (i.e., body, body-wing, body-wing-vertical, etc.) in the presence of two wing locations and two body lengths. Data were measured, using a rotary balance, over an angle-of-attack range of 8 deg to 90 deg, and for clockwise and counter-clockwise rotations covering an omega b/2V range of 0 to 0.9.

  5. Wing pressure distributions from subsonic tests of a high-wing transport model. [in the Langley 14- by 22-Foot Subsonic Wind Tunnel

    Science.gov (United States)

    Applin, Zachary T.; Gentry, Garl L., Jr.; Takallu, M. A.

    1995-01-01

    A wind tunnel investigation was conducted on a generic, high-wing transport model in the Langley 14- by 22-Foot Subsonic Tunnel. This report contains pressure data that document effects of various model configurations and free-stream conditions on wing pressure distributions. The untwisted wing incorporated a full-span, leading-edge Krueger flap and a part-span, double-slotted trailing-edge flap system. The trailing-edge flap was tested at four different deflection angles (20 deg, 30 deg, 40 deg, and 60 deg). Four wing configurations were tested: cruise, flaps only, Krueger flap only, and high lift (Krueger flap and flaps deployed). Tests were conducted at free-stream dynamic pressures of 20 psf to 60 psf with corresponding chord Reynolds numbers of 1.22 x 10(exp 6) to 2.11 x 10(exp 6) and Mach numbers of 0.12 to 0.20. The angles of attack presented range from 0 deg to 20 deg and were determined by wing configuration. The angle of sideslip ranged from minus 20 deg to 20 deg. In general, pressure distributions were relatively insensitive to free-stream speed with exceptions primarily at high angles of attack or high flap deflections. Increasing trailing-edge Krueger flap significantly reduced peak suction pressures and steep gradients on the wing at high angles of attack. Installation of the empennage had no effect on wing pressure distributions. Unpowered engine nacelles reduced suction pressures on the wing and the flaps.

  6. Rotary balance data for a single-engine agricultural airplane configuration for an angle-of-attack range of 8 deg to 90 deg

    Science.gov (United States)

    Mulcay, W. J.; Chu, J.

    1980-01-01

    Aerodynamic characteristics obtained in a helical flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/10 scale single engine agricultural airplane model. The configurations tested include the basic airplane, various wing leading edge and wing tip devices, elevator, aileron, and rudder control settings, and other modifications. Data are presented without analysis for an angle of attack range of 8 deg to 90 deg, and clockwise and counter-clockwise rotations covering a spin coefficient range from 0 to .9.

  7. Deformation characteristics of {delta} phase in the delta-processed Inconel 718 alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H.Y., E-mail: haiyanzhang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Zhang, S.H., E-mail: shzhang@imr.ac.cn [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Cheng, M. [Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016 (China); Li, Z.X. [Beijing Institute of Aeronautica1 Materials, Beijing 100095 (China)

    2010-01-15

    The hot working characteristics of {delta} phase in the delta-processed Inconel 718 alloy during isothermal compression deformation at temperature of 950 deg. C and strain rate of 0.005 s{sup -1}, were studied by using optical microscope, scanning electron microscope and quantitative X-ray diffraction technique. The results showed that the dissolution of plate-like {delta} phase and the precipitation of spherical {delta} phase particles coexisted during the deformation, and the content of {delta} phase decreased from 7.05 wt.% to 5.14 wt.%. As a result of deformation breakage and dissolution breakage, the plate-like {delta} phase was spheroidized and transferred to spherical {delta} phase particles. In the center with largest strain, the plate-like {delta} phase disappeared and spherical {delta} phase appeared in the interior of grains and grain boundaries.

  8. Urvina Bay, Galapagos Coral Radiocarbon (delta 14C) Data for 1956 to 1982

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Urvina Bay coral radiocarbon (14C) timeseries. (90 deg W, 0.5 deg S) Coral radiocarbon (Delta-14C) on untreated, low-speed drilled samples. Precision is +/- 4 per...

  9. Numerical study on aerodynamics of banked wing in ground effect

    Directory of Open Access Journals (Sweden)

    Qing Jia

    2016-03-01

    Full Text Available Unlike conventional airplane, a WIG craft experiences righting moment and adverse yaw moment in banked turning in ground effect. Numerical simulations are carried out to study the aerodynamics of banked wing in ground effect. Configurations of rectangular wing and delta wing are considered, and performance of endplates and ailerons during banking are also studied. The study shows that righting moment increase nonlinearly with heeling angle, and endplates enhance the righting. The asymmetric aerodynamic distribution along span of wing with heeling angle introduces adverse yaw moment. Heeling in ground effect with small ground clearance increases the vertical aerodynamic force and makes WIG craft climb. Deflections of ailerons introduce lift decrease and a light pitching motion. Delta wing shows advantage in banked turning for smaller righting moment and adverse yaw moment during banking.

  10. Delta Dynamics

    DEFF Research Database (Denmark)

    Bendixen, Mette

    . The warming air temperature affects the soil temperature and permafrost thaws and destabilizes the material in the coastal zone. In Greenland, the warming temperature lowers the surface mass balance of the Greenland Ice Sheet and more material is transported to the coastal zone. The sea ice extent is thinning...... of a fjord and the second type is a wider fan-shaped open delta. Most deltas are directly coupled to the Greenland Ice Sheet or local icecaps and are highly influenced by the dynamics in the catchments. It is demonstrated how a modern changing climate directly affects delta dynamics, and that Greenlandic...... deltas are prograding, contrary to the global trend showing eroding Arctic coasts. Moreover, it is revealed that the increasing proglacial freshwater runoff, caused by a lowering of the surface mass balance of the Greenland Ice Sheet is the main determining agent in delta progradation. The final part...

  11. Flutter analysis of low aspect ratio wings

    Science.gov (United States)

    Parnell, L. A.

    1986-01-01

    Several very low aspect ratio flat plate wing configurations are analyzed for their aerodynamic instability (flutter) characteristics. All of the wings investigated are delta planforms with clipped tips, made of aluminum alloy plate and cantilevered from the supporting vehicle body. Results of both subsonic and supersonic NASTRAN aeroelastic analyses as well as those from another version of the program implementing the supersonic linearized aerodynamic theory are presented. Results are selectively compared with the experimental data; however, supersonic predictions of the Mach Box method in NASTRAN are found to be erratic and erroneous, requiring the use of a separate program.

  12. Scapular winging

    International Nuclear Information System (INIS)

    Mozolova, D.

    2013-01-01

    We present the case of a boy who, up to the age of 16, was an active football and floorball player. In the recent 2 years, he experienced increasing muscle weakness and knee pain. Examinations revealed osteoid osteoma of the distal femur and proximal tibia bilaterally and a lesion of the right medial meniscus. The neurological exam revealed no pathology and EMG revealed the myopathic picture. At our first examination, small, cranially displaced scapulae looking like wings and exhibiting atypical movements were apparent (see movie). Genetic analysis confirmed facioscapulohumeral muscle dystrophy (FSHMD). Facial and particularly humeroscapular muscles are affected in this condition. Bulbar, extra ocular and respiratory muscles are spared. The genetic defect is a deletion in the subtelomeric region of the 4-th chromosome (4q35) resulting in 1-10 instead of the 11-150 D4Z4 tandem repeats. Inheritance is autosomal dominant and thus carries a 50% risk for the offspring of affected subjects. (author)

  13. Solubility of hydrogen in delta iron

    International Nuclear Information System (INIS)

    Shapovalov, V.I.; Trofimenko, V.V.

    1979-01-01

    The solubility of hydrogen in iron (less than 0.002 % impurities) at temperatures of 800-1510 deg C and a pressure of 100 atm was measured. The heat of solution of hydrogen in delta-Fe, equal to 73 kJ/g-atom, is by far greater than the corresponding values for α- and γ-Fe

  14. Wind-tunnel investigation of the flow correction for a model-mounted angle of attack sensor at angles of attack from -10 deg to 110 deg. [Langley 12-foot low speed wind tunnel test

    Science.gov (United States)

    Moul, T. M.

    1979-01-01

    A preliminary wind tunnel investigation was undertaken to determine the flow correction for a vane angle of attack sensor over an angle of attack range from -10 deg to 110 deg. The sensor was mounted ahead of the wing on a 1/5 scale model of a general aviation airplane. It was shown that the flow correction was substantial, reaching about 15 deg at an angle of attack of 90 deg. The flow correction was found to increase as the sensor was moved closer to the wing or closer to the fuselage. The experimentally determined slope of the flow correction versus the measured angle of attack below the stall angle of attack agreed closely with the slope of flight data from a similar full scale airplane.

  15. The flow over a 'high' aspect ratio gothic wing at supersonic speeds

    Science.gov (United States)

    Narayan, K. Y.

    1975-01-01

    Results are presented of an experimental investigation on a nonconical wing which supports an attached shock wave over a region of the leading edge near the vertex and a detached shock elsewhere. The shock detachment point is determined from planform schlieren photographs of the flow field and discrepancies are shown to exist between this and the one calculated by applying the oblique shock equations normal to the leading edge. On a physical basis, it is argued that the shock detachment has to obey the two-dimensional law normal to the leading edges. From this, and from other measurements on conical wings, it is thought that the planform schlieren technique may not be particularly satisfactory for detecting shock detachment. Surface pressure distributions are presented and are explained in terms of the flow over related delta wings which are identified as a vertex delta wing and a local delta wing.

  16. Unsteady transonic flow analysis for low aspect ratio, pointed wings.

    Science.gov (United States)

    Kimble, K. R.; Ruo, S. Y.; Wu, J. M.; Liu, D. Y.

    1973-01-01

    Oswatitsch and Keune's parabolic method for steady transonic flow is applied and extended to thin slender wings oscillating in the sonic flow field. The parabolic constant for the wing was determined from the equivalent body of revolution. Laplace transform methods were used to derive the asymptotic equations for pressure coefficient, and the Adams-Sears iterative procedure was employed to solve the equations. A computer program was developed to find the pressure distributions, generalized force coefficients, and stability derivatives for delta, convex, and concave wing planforms.

  17. Flight Investigation at Low Angles of Attack to Determine the Longitudinal Stability and Control Characteristics of a Cruciform Canard Missile Configuration with a Low-Aspect-Ratio Wing and Blunt Nose at Mach Numbers from 1.2 to 2.1

    Science.gov (United States)

    Brown, Clarence A , Jr

    1957-01-01

    A full- scale rocket-powered model of a cruciform canard missile configuration with a low- aspect - ratio wing and blunt nose has been flight tested by the Langley Pilotless Aircraft Research Division. Static and dynamic longitudinal stability and control derivatives of this interdigitated canard-wing missile configuration were determined by using the pulsed- control technique at low angles of attack and for a Mach number range of 1.2 to 2.1. The lift - curve slope showed only small nonlinearities with changes in control deflection or angle of attack but indicated a difference in lift- .curve slope of approximately 7 percent for the two control deflections of delta = 3.0 deg and delta= -0.3 deg . The large tail length of the missile tested was effective in producing damping in pitch throughout the Mach number range tested. The aerodynamic- center location was nearly constant with Mach number for the two control deflections but was shown to be less stable with the larger control deflection. The increment of lift produced by the controls was small and positive throughout the Mach number range tested, whereas the pitching moment produced by the controls exhibited a normal trend of reduced effectiveness with increasing Mach number.The effectiveness of the controls in producing angle of attack, lift, and pitching moment was good at all Mach numbers tested.

  18. Aerodynamic characteristics of wing-body configuration with two advanced general aviation airfoil sections and simple flap systems

    Science.gov (United States)

    Morgan, H. L., Jr.; Paulson, J. W., Jr.

    1977-01-01

    Aerodynamic characteristics of a general aviation wing equipped with NACA 65 sub 2-415, NASA GA(W)-1, and NASA GA(PC)-1 airfoil sections were examined. The NASA GA(W)-1 wing was equipped with plain, split, and slotted partial- and full-span flaps and ailerons. The NASA GA(PC)-1 wing was equipped with plain, partial- and full-span flaps. Experimental chordwise static-pressure distribution and wake drag measurements were obtained for the NASA GA(PC)-1 wing at the 22.5-percent spanwise station. Comparisons were made between the three wing configurations to evaluate the wing performance, stall, and maximum lift capabilities. The results of this investigation indicated that the NASA GA(W)-1 wing had a higher maximum lift capability and almost equivalent drag values compared with both the NACA 65 sub 2-415 and NASA GA(PC)-1 wings. The NASA GA(W)-1 had a maximum lift coefficient of 1.32 with 0 deg flap deflection, and 1.78 with 41.6 deg deflection of the partial-span slotted flap. The effectiveness of the NASA GA(W)-1 plain and slotted ailerons with differential deflections were equivalent. The NASA GA(PC)-1 wing with full-span flaps deflected 0 deg for the design climb configuration showed improved lift and drag performance over the cruise flap setting of -10 deg.

  19. CTD data from the northeast Atlantic Ocean 22 deg N - 33 deg N, 19 deg W - 24 deg W, July 1983 during RRS DISCOVERY Cruises 138, 139

    International Nuclear Information System (INIS)

    Saunders, P.M.; Manning, A.

    1984-01-01

    This report presents lists and graphs of CTD data obtained aboard RRS Discovery during July 1983. A series of approximately 27 stations were made in the vicinity of 32 deg 30' N 20 deg W, 150 miles West of Madeira, in support of an experiment to investigate the benthic boundary layer on the lower continental rise (in water depths approximately 4000 to 5000 m). South of this location stations were occupied along longitude 24 deg W culminating in a series on the lower continental rise near 23 deg N. All CTD data were reconciled with reversing thermometer observations and with measurements of salinity and dissolved oxygen derived from samples. (author)

  20. Fisica degli atomi e dei nuclei

    CERN Document Server

    Bernardini, Carlo

    1965-01-01

    Evidenza della struttura atomica della materia ; le proprietà degli atomi e la meccanica atomica ; gli atomi e le radiazioni elettromagnetiche ; struttura microscopica dello stato gassoso ; struttura microscopica dello stato liquido ; struttura microscopica della stato solido ; proprietà elettriche e magnetiche delle sostanze ; proprietà dei nuclei degli atomi ; le particelle elementari.

  1. F-8 supercritical wing flight pressure, Boundary layer, and wake measurements and comparisons with wind tunnel data

    Science.gov (United States)

    Montoya, L. C.; Banner, R. D.

    1977-01-01

    Data for speeds from Mach 0.50 to Mach 0.99 are presented for configurations with and without fuselage area-rule additions, with and without leading-edge vortex generators, and with and without boundary-layer trips on the wing. The wing pressure coefficients are tabulated. Comparisons between the airplane and model data show that higher second velocity peaks occurred on the airplane wing than on the model wing. The differences were attributed to wind tunnel wall interference effects that caused too much rear camber to be designed into the wing. Optimum flow conditions on the outboard wing section occurred at Mach 0.98 at an angle of attack near 4 deg. The measured differences in section drag with and without boundary-layer trips on the wing suggested that a region of laminar flow existed on the outboard wing without trips.

  2. Butterfly wing colours : scale beads make white pierid wings brighter

    NARCIS (Netherlands)

    Stavenga, DG; Stowe, S; Siebke, K; Zeil, J; Arikawa, K

    2004-01-01

    The wing-scale morphologies of the pierid butterflies Pieris rapae (small white) and Delias nigrina (common jezabel), and the heliconine Heliconius melpomene are compared and related to the wing-reflectance spectra. Light scattering at the wing scales determines the wing reflectance, but when the

  3. Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films

    International Nuclear Information System (INIS)

    Saison, Tamar; Peroz, Christophe; Chauveau, Vanessa; Sondergard, Elin; Arribart, Herve; Berthier, Serge

    2008-01-01

    An original and low cost method for the fabrication of patterned surfaces bioinspired from butterfly wings and lotus leaves is presented. Silica-based sol-gel films are thermally imprinted from elastomeric molds to produce stable structures with superhydrophobicity values as high as 160 deg. water contact angle. The biomimetic surfaces are demonstrated to be tuned from superhydrophobic to superhydrophilic by annealing between 200 deg. C and 500 deg. C

  4. Replication of butterfly wing and natural lotus leaf structures by nanoimprint on silica sol-gel films

    Energy Technology Data Exchange (ETDEWEB)

    Saison, Tamar; Peroz, Christophe; Chauveau, Vanessa; Sondergard, Elin; Arribart, Herve [Unite mixte CNRS/Saint Gobain Saint Gobain Recherche, BP135, 93303 Aubervilliers (France); Berthier, Serge [Institut des Nanosciences de Paris, UMR 7588, CNRS, Universite Pierre et Marie Curie-Paris 6, 140 rue Lourmel, 75015 Paris (France)], E-mail: cperoz@lbl.gov

    2008-12-01

    An original and low cost method for the fabrication of patterned surfaces bioinspired from butterfly wings and lotus leaves is presented. Silica-based sol-gel films are thermally imprinted from elastomeric molds to produce stable structures with superhydrophobicity values as high as 160 deg. water contact angle. The biomimetic surfaces are demonstrated to be tuned from superhydrophobic to superhydrophilic by annealing between 200 deg. C and 500 deg. C.

  5. Cloning and sequencing the degS-degU operon from an alkalophilic Bacillus-brevis

    CSIR Research Space (South Africa)

    Louw, M

    1994-10-01

    Full Text Available of Microbiology, University of Cape Town, Private Bag, Rondebosch 7700, Cape Town, Republic of South Africa al. 1989). Similarities were found between DegS and the histidine protein kinase family and between DegU and the response... and evaluate its effect on extracellular enzyme production. Materials and methods Strains and plasmids Transformation The polyethylene-glycol-induced protoplast transformation pro- cedure of Chang and Cohen (1979) was used...

  6. Wind-tunnel investigation of a large-scale VTOL aircraft model with wing root and wing thrust augmentors. [Ames 40 by 80 foot wind tunnel

    Science.gov (United States)

    Aoyagi, K.; Aiken, T. N.

    1979-01-01

    Tests were conducted in the Ames 40 by 80 foot wind tunnel to determine the aerodynamic characteristics of a large-scale V/STOL aircraft model with thrust augmentors. The model had a double-delta wing of aspect ratio 1.65 with augmentors located in the wing root and the wing trailing edge. The supply air for the augmentor primary nozzles was provided by the YJ-97 turbojet engine. The airflow was apportioned approximately 74 percent to the wing root augmentor and 24 percent to wing augmentor. Results were obtained at several trailing-edge flap deflections with the nozzle jet-momentum coefficients ranging from 0 to 7.9. Three-component longitudinal data are presented with the agumentor operating with and without the horizontal tail. A limited amount of six component data are also presented.

  7. Delta Plaza kohvik = Delta Plaza cafe

    Index Scriptorium Estoniae

    2010-01-01

    Tallinnas Pärnu mnt 141 asuva kohviku Delta Plaza sisekujundusest. Sisearhitektid Tiiu Truus ja Marja Viltrop (Stuudio Truus OÜ). Tiiu Truusi tähtsamate tööde loetelu. Büroohoone Delta Plaza arhitektid Marika Lõoke ja Jüri Okas (AB J. Okas & M. Lõoke)

  8. delta-vision

    Data.gov (United States)

    California Natural Resource Agency — Delta Vision is intended to identify a strategy for managing the Sacramento-San Joaquin Delta as a sustainable ecosystem that would continue to support environmental...

  9. Pigeons produce aerodynamic torques through changes in wing trajectory during low speed aerial turns.

    Science.gov (United States)

    Ros, Ivo G; Badger, Marc A; Pierson, Alyssa N; Bassman, Lori C; Biewener, Andrew A

    2015-02-01

    The complexity of low speed maneuvering flight is apparent from the combination of two critical aspects of this behavior: high power and precise control. To understand how such control is achieved, we examined the underlying kinematics and resulting aerodynamic mechanisms of low speed turning flight in the pigeon (Columba livia). Three birds were trained to perform 90 deg level turns in a stereotypical fashion and detailed three-dimensional (3D) kinematics were recorded at high speeds. Applying the angular momentum principle, we used mechanical modeling based on time-varying 3D inertia properties of individual sections of the pigeon's body to separate angular accelerations of the torso based on aerodynamics from those based on inertial effects. Directly measured angular accelerations of the torso were predicted by aerodynamic torques, justifying inferences of aerodynamic torque generation based on inside wing versus outside wing kinematics. Surprisingly, contralateral asymmetries in wing speed did not appear to underlie the 90 deg aerial turns, nor did contralateral differences in wing area, angle of attack, wingbeat amplitude or timing. Instead, torso angular accelerations into the turn were associated with the outside wing sweeping more anteriorly compared with a more laterally directed inside wing. In addition to moving through a relatively more retracted path, the inside wing was also more strongly pronated about its long axis compared with the outside wing, offsetting any difference in aerodynamic angle of attack that might arise from the observed asymmetry in wing trajectories. Therefore, to generate roll and pitch torques into the turn, pigeons simply reorient their wing trajectories toward the desired flight direction. As a result, by acting above the center of mass, the net aerodynamic force produced by the wings is directed inward, generating the necessary torques for turning. © 2015. Published by The Company of Biologists Ltd.

  10. Computational Analysis of Powered Lift Augmentation for the LEAPTech Distributed Electric Propulsion Wing

    Science.gov (United States)

    Deere, Karen A.; Viken, Sally A.; Carter, Melissa B.; Viken, Jeffrey K.; Wiese, Michael R.; Farr, Norma L.

    2017-01-01

    A computational study of a distributed electric propulsion wing with a 40deg flap deflection has been completed using FUN3D. Two lift-augmentation power conditions were compared with the power-off configuration on the high-lift wing (40deg flap) at a 73 mph freestream flow and for a range of angles of attack from -5 degrees to 14 degrees. The computational study also included investigating the benefit of corotating versus counter-rotating propeller spin direction to powered-lift performance. The results indicate a large benefit in lift coefficient, over the entire range of angle of attack studied, by using corotating propellers that all spin counter to the wingtip vortex. For the landing condition, 73 mph, the unpowered 40deg flap configuration achieved a maximum lift coefficient of 2.3. With high-lift blowing the maximum lift coefficient increased to 5.61. Therefore, the lift augmentation is a factor of 2.4. Taking advantage of the fullspan lift augmentation at similar performance means that a wing powered with the distributed electric propulsion system requires only 42 percent of the wing area of the unpowered wing. This technology will allow wings to be 'cruise optimized', meaning that they will be able to fly closer to maximum lift over drag conditions at the design cruise speed of the aircraft.

  11. Computational Analysis of a Wing Designed for the X-57 Distributed Electric Propulsion Aircraft

    Science.gov (United States)

    Deere, Karen A.; Viken, Jeffrey K.; Viken, Sally A.; Carter, Melissa B.; Wiese, Michael R.; Farr, Norma L.

    2017-01-01

    A computational study of the wing for the distributed electric propulsion X-57 Maxwell airplane configuration at cruise and takeoff/landing conditions was completed. Two unstructured-mesh, Navier-Stokes computational fluid dynamics methods, FUN3D and USM3D, were used to predict the wing performance. The goal of the X-57 wing and distributed electric propulsion system design was to meet or exceed the required lift coefficient 3.95 for a stall speed of 58 knots, with a cruise speed of 150 knots at an altitude of 8,000 ft. The X-57 Maxwell airplane was designed with a small, high aspect ratio cruise wing that was designed for a high cruise lift coefficient (0.75) at angle of attack of 0deg. The cruise propulsors at the wingtip rotate counter to the wingtip vortex and reduce induced drag by 7.5 percent at an angle of attack of 0.6deg. The unblown maximum lift coefficient of the high-lift wing (with the 30deg flap setting) is 2.439. The stall speed goal performance metric was confirmed with a blown wing computed effective lift coefficient of 4.202. The lift augmentation from the high-lift, distributed electric propulsion system is 1.7. The predicted cruise wing drag coefficient of 0.02191 is 0.00076 above the drag allotted for the wing in the original estimate. However, the predicted drag overage for the wing would only use 10.1 percent of the original estimated drag margin, which is 0.00749.

  12. Compensated-power differential calorimeter -196 deg. C/400 deg. C; Calorimetre differentiel a puissance compensee -196 deg. C/400 deg. C

    Energy Technology Data Exchange (ETDEWEB)

    Bonjour, E; Pierre, J; Agagliate, S; Bertrand, P; Faivre, J; Lagnier, R [Commissariat a l' Energie Atomique, Grenoble (France). Centre d' Etudes Nucleaires, Section physico-chimie et basses temperatures

    1967-06-01

    A differential calorimetric device of original design is described. Its allows direct measurements of thermal effects (adsorption or release) during a linear rise of temperature. The self compensated power method which is applied by means of a very sensitive control system, gives a direct value of the different heat capacity between the sample and a dummy of it. The detection threshold is about {+-} 100 micro-watts to {+-} 250 micro-watts. Applications: - Generally measurements of enthalpy changes of massive or powdered samples. - Measurement of Wigner energy after low temperature irradiation (77 deg. K). - Measurements of energy release in low temperature (77 deg. K) cold worked metals. (authors) [French] On decrit un dispositif de calorimetrie differentielle, de conception originale, qui permet de mesurer directement des effets thermiques en absorption ou en degagement de chaleur, au cours d'une montee en temperature lineaire. La methode de compensation automatique de puissance qui est mise en oeuvre au moyen de cha es d'asservissement tres sensibles, conduit a une determination directe de la capacite calorifique differencielle entre l'echantillon et sa reference. Le seuil de detection est de l'ordre de {+-} 100 a {+-} 250 microwatts. Applications: - D'une facon generale, mesure des variations enthalpiques, sur echantillons massifs ou en poudre. - Mesure de l'energie Wigner apres irradiation a basse temperature (77 deg. K). - Mesure de l'energie restauree apres deformation des metaux a basse temperature (77 deg. K). (auteurs)

  13. Testimonianze di vittime degli anni di piombo

    DEFF Research Database (Denmark)

    Cecchini, Leonardo

    Testimonianze di vittime degli anni di piombo In un articolo pubblicato nel 2008 sulla webzine Nazione indiana Christian Raimo criticava quello che poi Giovanni De Luna qualche anno dopo nel suo libro La Repubblica del dolore (2011) ha chiamato “paradigma vittimario”; cioè la presenza predominante...

  14. Supersonic aerodynamic characteristics of a low-aspect-ratio missile model with wing and tail controls and with tails in line and interdigitated

    Science.gov (United States)

    Graves, E. B.

    1972-01-01

    A study has been made to determine the aerodynamic characteristics of a low-aspect ratio cruciform missile model with all-movable wings and tails. The configuration was tested at Mach numbers from 1.50 to 4.63 with the wings in the vertical and horizontal planes and with the wings in a 45 deg roll plane with tails in line and interdigitated.

  15. Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available

    DEFF Research Database (Denmark)

    Artemieva, Irina

    2014-01-01

    with no or low quality heat flow data. This analysis requires knowledge oflithosphere age globally.A compilation of tectono-thermal ages of lithospheric terranes on a 1 deg 1 deg grid forms the basis forthe statistical analysis. It shows that, statistically, lithospheric thermal thickness z (in km) depends......This presentation reports a 1 deg 1 deg global thermal model for the continental lithosphere (TC1). The modelis digitally available from the author’s web-site: www.lithosphere.info.Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliabledata...... on borehole heat flow measurements (Artemieva and Mooney, 2001), checked with the original publicationsfor data quality, and corrected for paleo-temperature effects where needed. These data are supplemented bycratonic geotherms based on xenolith data.Since heat flow measurements cover not more than half...

  16. Comparison of temperature standards. 800 deg C to 1500 deg C (radiation pyrometers). Pt. 2

    International Nuclear Information System (INIS)

    Jimenez Rebagliati, M.; Hildebrand, E.; Tischler, M.

    1990-01-01

    A comparison between implementations of the temperature scale (IPTS-68) between 800 deg C to 1500 deg C was made at the Department of Physics and Metrology at INTI, using pyrometric lamps with a tungsten filament which were calibrated at the Physikalisch-Technische Bundesanstalt (PTB). The purpose of this analysis was the detection of possible systematic errors as well as the evaluation of the uncertainty limit. (Author) [es

  17. Delta antibody radioimmunoassay

    Energy Technology Data Exchange (ETDEWEB)

    Kselikova, M; Urbankova, J

    1985-11-15

    The principle and procedure are described of the radioimmunoassay of delta antibody (delta-Ab) using the ABBOTT ANTI-DELTA kit by Abbott Co. A description is given of the kit, the working procedure and the method of evaluation. The results are reported of the incidence of delta-Ab in sera of patients with viral hepatitis B, in haemophiliacs, carriers of the hepatitis B virus surface antigen (HBsAg) and blood donors. The presence was detected of delta-Ab in one HBsAg carrier. The necessity is emphasized of delta-Ab determinations in the blood of donors in view of the antibody transfer with blood and blood preparations.

  18. Wind-tunnel investigation of the thrust augmentor performance of a large-scale swept wing model. [in the Ames 40 by 80 foot wind tunnel

    Science.gov (United States)

    Koenig, D. G.; Falarski, M. D.

    1979-01-01

    Tests were made in the Ames 40- by 80-foot wind tunnel to determine the forward speed effects on wing-mounted thrust augmentors. The large-scale model was powered by the compressor output of J-85 driven viper compressors. The flap settings used were 15 deg and 30 deg with 0 deg, 15 deg, and 30 deg aileron settings. The maximum duct pressure, and wind tunnel dynamic pressure were 66 cmHg (26 in Hg) and 1190 N/sq m (25 lb/sq ft), respectively. All tests were made at zero sideslip. Test results are presented without analysis.

  19. Multidisciplinary Shape Optimization of a Composite Blended Wing Body Aircraft

    Science.gov (United States)

    Boozer, Charles Maxwell

    A multidisciplinary shape optimization tool coupling aerodynamics, structure, and performance was developed for battery powered aircraft. Utilizing high-fidelity computational fluid dynamics analysis tools and a structural wing weight tool, coupled based on the multidisciplinary feasible optimization architecture; aircraft geometry is modified in the optimization of the aircraft's range or endurance. The developed tool is applied to three geometries: a hybrid blended wing body, delta wing UAS, the ONERA M6 wing, and a modified ONERA M6 wing. First, the optimization problem is presented with the objective function, constraints, and design vector. Next, the tool's architecture and the analysis tools that are utilized are described. Finally, various optimizations are described and their results analyzed for all test subjects. Results show that less computationally expensive inviscid optimizations yield positive performance improvements using planform, airfoil, and three-dimensional degrees of freedom. From the results obtained through a series of optimizations, it is concluded that the newly developed tool is both effective at improving performance and serves as a platform ready to receive additional performance modules, further improving its computational design support potential.

  20. Wake Measurement Downstream of a Hybrid Wing Body Model with Blown Flaps

    Science.gov (United States)

    Lin, John C.; Jones, Gregory S.; Allan, Brian G.; Westra, Bryan W.; Collins, Scott W.; Zeune, Cale H.

    2010-01-01

    Flow-field measurements were obtained in the wake of a full-span Hybrid Wing Body model with internally blown flaps. The test was performed at the NASA Langley 14 x 22 Foot Subsonic Tunnel at low speeds. Off-body measurements were obtained with a 7-hole probe rake survey system. Three model configurations were investigated. At 0deg angle of attack the surveys were completed with 0deg and 60deg flap deflections. At 10deg angle of attack the wake surveys were completed with a slat and a 60deg flap deflection. The 7-hole probe results further quantified two known swirling regions (downstream of the outboard flap edge and the inboard/outboard flap juncture) for the 60deg flap cases with blowing. Flowfield results and the general trends are very similar for the two blowing cases at nozzle pressure ratios of 1.37 and 1.56. High downwash velocities correlated with the enhanced lift for the 60deg flap cases with blowing. Jet-induced effects are the largest at the most inboard station for all (three) velocity components due in part to the larger inboard slot height. The experimental data are being used to improve computational tools for high-lift wings with integrated powered-lift technologies.

  1. Vortex Breakdown over Slender Delta Wings (Eclatement tourbillonnaire sur les ailes delta effil es)

    Science.gov (United States)

    2009-11-01

    computations have been obtained using the CFD code FlOWer, which was compiled for the NEC-SX5 architecture in sequential mode. The software has been...and tunnel speeds of 3 to 23 m/s. Both still and high speed cinema photography were used to record the flow visualization results. A combination... cinema photography to capture the dynamic processes involved in vortex breakdown. Still photographs from individual frames are documented and

  2. Delta hedging strategies comparison

    DEFF Research Database (Denmark)

    De Giovanni, Domenico; Ortobelli, S.; Rachev, S.T.

    2008-01-01

    In this paper we implement dynamic delta hedging strategies based on several option pricing models. We analyze different subordinated option pricing models and we examine delta hedging costs using ex-post daily prices of S&P 500. Furthermore, we compare the performance of each subordinated model...

  3. Connectivity in river deltas

    Science.gov (United States)

    Passalacqua, P.; Hiatt, M. R.; Sendrowski, A.

    2016-12-01

    Deltas host approximately half a billion people and are rich in ecosystem diversity and economic resources. However, human-induced activities and climatic shifts are significantly impacting deltas around the world; anthropogenic disturbance, natural subsidence, and eustatic sea-level rise are major causes of threat to deltas and in many cases have compromised their safety and sustainability, putting at risk the people that live on them. In this presentation, I will introduce a framework called Delta Connectome for studying connectivity in river deltas based on different representations of a delta as a network. Here connectivity indicates both physical connectivity (how different portions of the system interact with each other) as well as conceptual (pathways of process coupling). I will explore several network representations and show how quantifying connectivity can advance our understanding of system functioning and can be used to inform coastal management and restoration. From connectivity considerations, the delta emerges as a leaky network that evolves over time and is characterized by continuous exchanges of fluxes of matter, energy, and information. I will discuss the implications of connectivity on delta functioning, land growth, and potential for nutrient removal.

  4. Bacillus subtilis Two-Component System Sensory Kinase DegS Is Regulated by Serine Phosphorylation in Its Input Domain

    DEFF Research Database (Denmark)

    Jers, Carsten; Kobir, Ahasanul; Søndergaard, Elsebeth Oline

    2011-01-01

    Bacillus subtilis two-component system DegS/U is well known for the complexity of its regulation. The cytosolic sensory kinase DegS does not receive a single predominant input signal like most two-component kinases, instead it integrates a wide array of metabolic inputs that modulate its activity......S phosphorylation can be carried out by at least two B. subtilis Hanks-type kinases in vitro, and this stimulates the phosphate transfer towards DegU. The consequences of this process were studied in vivo, using phosphomimetic (Ser76Asp) and non-phosphorylatable (Ser76Ala) mutants of DegS. In a number...

  5. Compensated-power differential calorimeter -196 deg. C/400 deg. C

    International Nuclear Information System (INIS)

    Bonjour, E.; Pierre, J.; Agagliate, S.; Bertrand, P.; Faivre, J.; Lagnier, R.

    1967-06-01

    A differential calorimetric device of original design is described. Its allows direct measurements of thermal effects (adsorption or release) during a linear rise of temperature. The self compensated power method which is applied by means of a very sensitive control system, gives a direct value of the different heat capacity between the sample and a dummy of it. The detection threshold is about ± 100 micro-watts to ± 250 micro-watts. Applications: - Generally measurements of enthalpy changes of massive or powdered samples. - Measurement of Wigner energy after low temperature irradiation (77 deg. K). - Measurements of energy release in low temperature (77 deg. K) cold worked metals. (authors) [fr

  6. Wind tunnel investigation of the interaction and breakdown characteristics of slender wing vortices at subsonic, transonic, and supersonic speeds

    Science.gov (United States)

    Erickson, Gary E.

    1991-01-01

    The vortex dominated aerodynamic characteristics of a generic 65 degree cropped delta wing model were studied in a wind tunnel at subsonic through supersonic speeds. The lee-side flow fields over the wing-alone configuration and the wing with leading edge extension (LEX) added were observed at M (infinity) equals 0.40 to 1.60 using a laser vapor screen technique. These results were correlated with surface streamline patterns, upper surface static pressure distributions, and six-component forces and moments. The wing-alone exhibited vortex breakdown and asymmetry of the breakdown location at the subsonic and transonic speeds. An earlier onset of vortex breakdown over the wing occurred at transonic speeds due to the interaction of the leading edge vortex with the normal shock wave. The development of a shock wave between the vortex and wing surface caused an early separation of the secondary boundary layer. With the LEX installed, wing vortex breakdown asymmetry did not occur up to the maximum angle of attack in the present test of 24 degrees. The favorable interaction of the LEX vortex with the wing flow field reduced the effects of shock waves on the wing primary and secondary vortical flows. The direct interaction of the wing and LEX vortex cores diminished with increasing Mach number. The maximum attainable vortex-induced pressure signatures were constrained by the vacuum pressure limit at the transonic and supersonic speeds.

  7. Nitrogen dioxide column content measurements made from an aircraft between 5 deg and 82 deg N

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, W A

    1984-01-01

    In the first two weeks of May 1981, the research jet of the German Aerospace Research Estlablishment (DFVLR) was charted to fly a meridional section between 5 deg and 82 deg N. A scanning filter photometer, developed at the Max-Planck-Institut fuer Aeronomie to measure column content values of atmospheric ozone and nitrogen dioxide, using ultraviolet and visible absorption techniques, constituted part of the experimental payload for this campaign that was called SIMOC. The vertical NO2 column content above the aircraft, flying at approximately 10 km, was found to decrease rapidly from 6.9 x 10 to the 15th molecules/sq cm to 2.5 x 10 to the 15th molecules/sq cm around 50 deg N and then to increase again north of 75 deg N. A sharp rise in the NO2 content was observed south of the subtropical jet but this could possibly be due to the increased depth of the troposphere above the aircraft in these regions. 8 references.

  8. Flexible wings in flapping flight

    Science.gov (United States)

    Moret, Lionel; Thiria, Benjamin; Zhang, Jun

    2007-11-01

    We study the effect of passive pitching and flexible deflection of wings on the forward flapping flight. The wings are flapped vertically in water and are allowed to move freely horizontally. The forward speed is chosen by the flapping wing itself by balance of drag and thrust. We show, that by allowing the wing to passively pitch or by adding a flexible extension at its trailing edge, the forward speed is significantly increased. Detailed measurements of wing deflection and passive pitching, together with flow visualization, are used to explain our observations. The advantage of having a wing with finite rigidity/flexibility is discussed as we compare the current results with our biological inspirations such as birds and fish.

  9. The Niger Delta Crisis

    African Journals Online (AJOL)

    chifaou.amzat

    2013-09-28

    Sep 28, 2013 ... Department of History & International Studies, Delta State University, Abraka,. Nigeria. .... democracy implies popular power. That is ... Okonta (2006:5) draws attention to Anna Zalik's treatise called 'Petro-Vio- lence' and ...

  10. Delta agent (Hepatitis D)

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/000216.htm Hepatitis D (Delta agent) To use the sharing features on this page, please enable JavaScript. Hepatitis D is a viral infection caused by the ...

  11. Delta 2.0

    DEFF Research Database (Denmark)

    Skott, Jeppe; Skott, Charlotte Krog; Jess, Kristine

    DELTA 2.0 er en ny og helt opdateret udgave af Delta, der i ti år været brugt i matematiklærernes grund-, efter- og videreuddannelse. DELTA 2.0 er seriens almene fagdidaktik. Der er også fagdidaktiske overvejelser i de øvrige bøger i serien, men de er knyttet til specifikt matematisk indhold. DELTA...... 2.0 behandler mere generelle matematikdidaktiske problemstillinger såsom læringsteoretiske overvejelser i forbindelse med matematik, centrale aspekter af det at undervise i matematik og digitale teknologier som værktøj til at støtte elevers faglige læring af matematik....

  12. The Keenan and Wing bands in S stars

    International Nuclear Information System (INIS)

    Lambert, D.L.; Clegg, R.E.S.

    1980-01-01

    New observations of the near infrared spectra of S stars are presented as part of a survey of the unidentified Keenan and Wing bands. Bandhead wavelengths accurate to 0.5 A are presented. A new band is found at 9014 A. The bands are not present in normal M giants and dwarfs. Laboratory spectroscopy of heavy element oxides is reported. Several new identifications are proposed. The 10 300 A Wing band is identified with the Δv = - 1 sequence of the ZrO 9300 A Δv = 0 bands. The ZrO B 1 PI-A 1 Δ (Δv = 0) system may be responsible for either the 9736 A or the 10 515 A Wing bands. Two new bands in the near infrared at 8219 and 8235 A are provided by CeO. A new band with heads at 7503 and 7509 A in a spectrum of R And is tentatively attributed to YS. A band at 8268 A in M stars is the TiO delta(2-1) head. The 8610 A Keenan band is not due to CrH. Potential carriers of the Keenan and Wing bands are reviewed. It is suggested that the heavy element sulphides and, perhaps, chlorides are leading candidates. Identification of YS in R And may provide the first evidence for these sulphides. ZrS is a leading candidate for which laboratory spectroscopy is needed. (author)

  13. Hot deformation behavior of delta-processed superalloy 718

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Y., E-mail: wangyanhit@yahoo.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083 (China); School of Aeronautics and Astronautics, Central South University, Changsha 410083 (China); Shao, W.Z.; Zhen, L.; Zhang, B.Y. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2011-03-25

    Research highlights: {yields} The peak stress for hot deformation can be described by the Z parameter. {yields} The grain size of DRX was inversely proportional to the Z parameter. {yields} The dissolution of {delta} phases was greatly accelerated under hot deformation. {yields}The {delta} phase stimulated nucleation can serve as the main DRX mechanism. - Abstract: Flow stress behavior and microstructures during hot compression of delta-processed superalloy 718 at temperatures from 950 to 1100 deg. C with strain rates of 10{sup -3} to 1 s{sup -1} were investigated by optical microscopy (OM), electron backscatter diffraction (EBSD) technique and transmission electron microscopy (TEM). The relationship between the peak stress and the deformation conditions can be expressed by a hyperbolic-sine type equation. The activation energy for the delta-processed superalloy 718 is determined to be 467 kJ/mol. The change of the dominant deformation mechanisms leads to the decrease of stress exponent and the increase of activation energy with increasing temperature. The dynamically recrystallized grain size is inversely proportional to the Zener-Hollomon (Z) parameter. It is found that the dissolution rate of {delta} phases under hot deformation conditions is much faster than that under static conditions. Dislocation, vacancy and curvature play important roles in the dissolution of {delta} phases. The main nucleation mechanisms of dynamic recrystallization (DRX) for the delta-processed superalloy 718 include the bulging of original grain boundaries and the {delta} phase stimulated DRX nucleation, which is closely related to the dissolution behavior of {delta} phases under certain deformation conditions.

  14. Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available

    Science.gov (United States)

    Artemieva, Irina

    2014-05-01

    This presentation reports a 1 deg ×1 deg global thermal model for the continental lithosphere (TC1). The model is digitally available from the author's web-site: www.lithosphere.info. Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliable data on borehole heat flow measurements (Artemieva and Mooney, 2001), checked with the original publications for data quality, and corrected for paleo-temperature effects where needed. These data are supplemented by cratonic geotherms based on xenolith data. Since heat flow measurements cover not more than half of the continents, the remaining areas (ca. 60% of the continents) are filled by the statistical numbers derived from the thermal model constrained by borehole data. Continental geotherms are statistically analyzed as a function of age and are used to estimate lithospheric temperatures in continental regions with no or low quality heat flow data. This analysis requires knowledge of lithosphere age globally. A compilation of tectono-thermal ages of lithospheric terranes on a 1 deg × 1 deg grid forms the basis for the statistical analysis. It shows that, statistically, lithospheric thermal thickness z (in km) depends on tectono-thermal age t (in Ma) as: z=0.04t+93.6. This relationship formed the basis for a global thermal model of the continental lithosphere (TC1). Statistical analysis of continental geotherms also reveals that this relationship holds for the Archean cratons in general, but not in detail. Particularly, thick (more than 250 km) lithosphere is restricted solely to young Archean terranes (3.0-2.6 Ga), while in old Archean cratons (3.6-3.0 Ga) lithospheric roots do not extend deeper than 200-220 km. The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continental upper mantle. The strongest lateral temperature variations (as large as 800 deg C) are typical of the shallow mantle (depth less than 100 km). A map of the

  15. Longitudinal Aerodynamic Characteristics and Wing Pressure Distributions of a Blended-Wing-Body Configuration at Low and High Reynolds Numbers

    Science.gov (United States)

    Re, Richard J.

    2005-01-01

    Force balance and wing pressure data were obtained on a 0.017-Scale Model of a blended-wing-body configuration (without a simulated propulsion system installation) to validate the capability of computational fluid dynamic codes to predict the performance of such thick sectioned subsonic transport configurations. The tests were conducted in the National Transonic Facility of the Langley Research Center at Reynolds numbers from 3.5 to 25.0 million at Mach numbers from 0.25 to 0.86. Data were obtained in the pitch plane only at angles of attack from -1 to 8 deg at Mach numbers greater than 0.25. A configuration with winglets was tested at a Reynolds number of 25.0 million at Mach numbers from 0.83 to 0.86.

  16. Educazione linguistica e bisogni degli alunni (stranieri.

    Directory of Open Access Journals (Sweden)

    Marina Chini

    2009-12-01

    Full Text Available Normal 0 14 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabella normale"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman";} L’articolo focalizza l’attenzione sui bisogni linguistici e comunicativi specifici degli allievi nativi e immigrati, al fine di evidenziare alcuni suggerimenti che è possibile trarne sul piano dell’educazione linguistica, intesa nel senso dell’insegnamento rivolto allo sviluppo e al potenziamento delle abilità linguistico-comunicative, ma anche metalinguistiche, svolto trasversalmente dai docenti di discipline linguistiche e non.  Tenendo conto di principi e suggerimenti emersi dalla riflessione glottodidattica e linguistica degli ultimi decenni si forniscono criteri in base ai quali i docenti possono rilevare i bisogni linguistici dei loro allievi, bisogni che si correlano a valenze di carattere comunicativo, pragmatico, espressivo e culturale-matetico, ma che sono anche di natura sociale, relazionale e affettiva, identitaria e psicologica oltre che cognitiva.  Normal 0 14 MicrosoftInternetExplorer4 /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Tabella normale"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin:0cm; mso-para-margin-bottom:.0001pt; mso-pagination:widow-orphan; font-size:10.0pt; font-family:"Times New Roman";} The article focuses on the specific linguistic and communicative needs of native and immigrant pupils, in order to draw attention to inspiration  that can be gained for general linguistic education, seen as teaching that aims to develop and strengthen linguistic-communicative abilities but also meta-linguistic ones – teaching that is carried

  17. Aeroelastic Wing Shaping Using Distributed Propulsion

    Science.gov (United States)

    Nguyen, Nhan T. (Inventor); Reynolds, Kevin Wayne (Inventor); Ting, Eric B. (Inventor)

    2017-01-01

    An aircraft has wings configured to twist during flight. Inboard and outboard propulsion devices, such as turbofans or other propulsors, are connected to each wing, and are spaced along the wing span. A flight controller independently controls thrust of the inboard and outboard propulsion devices to significantly change flight dynamics, including changing thrust of outboard propulsion devices to twist the wing, and to differentially apply thrust on each wing to change yaw and other aspects of the aircraft during various stages of a flight mission. One or more generators can be positioned upon the wing to provide power for propulsion devices on the same wing, and on an opposite wing.

  18. Butterflies regulate wing temperatures using radiative cooling

    Science.gov (United States)

    Tsai, Cheng-Chia; Shi, Norman Nan; Ren, Crystal; Pelaez, Julianne; Bernard, Gary D.; Yu, Nanfang; Pierce, Naomi

    2017-09-01

    Butterfly wings are live organs embedded with multiple sensory neurons and, in some species, with pheromoneproducing cells. The proper function of butterfly wings demands a suitable temperature range, but the wings can overheat quickly in the sun due to their small thermal capacity. We developed an infrared technique to map butterfly wing temperatures and discovered that despite the wings' diverse visible colors, regions of wings that contain live cells are the coolest, resulting from the thickness of the wings and scale nanostructures. We also demonstrated that butterflies use behavioral traits to prevent overheating of their wings.

  19. Il movimento degli scioperi nel XX secolo

    Directory of Open Access Journals (Sweden)

    Maria Theresa Schorer Petrone

    1983-06-01

    Full Text Available Cella, Gian Primo (organizador. Il movimento degli scioperi nel XX secolo. Bologna, Società Editrice Mulino, 1979. (primeiro parágrado do texto "O movimento das greves no século XX" constitui o resultado de laboriosa pesquisa realizada por um grupo de sociólogos— Guido 13oglioni, Lorenzo Bordogna, Gian Primo Cella, Pietro Kemeny, Giancarlo Provasi, Guido Romagnoli e Gian Enrico Rusconi — ligados às universidades de Turim, Parma, Trento e Cagliari.  Analisando com técnicas de quantificação, os mais variados aspectos das greves ocorridas desde o início deste século até 1970 na Grã Bretanha, Alemanha, Itália, França e nos Estados Unidos, e considerando esses niovimentos' os indicadores mais significativos da ação operária enquanto Manifestação sindical e reinvindicativa, acreditavam que poderiam de-teCtar as relações entre ação operária e as 'mudanças sociais.  O livro em questão é o resultado da primeira fase desta pesquisa em que se procurou reconstruir os movimentos grevistas e suas formas, chegando-se a construir modelos explicativos .

  20. Stiffness of desiccating insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Mittal, R

    2011-01-01

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 μN mm -1 h -1 . For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm -1 . (communication)

  1. Stiffness of desiccating insect wings

    Energy Technology Data Exchange (ETDEWEB)

    Mengesha, T E; Vallance, R R [Department of Mechanical Engineering, The George Washington University, 738 Phillips Hall, 801 22nd St NW, Washington, DC 20052 (United States); Mittal, R, E-mail: vallance@gwu.edu [Department of Mechanical Engineering, Johns Hopkins University, 126 Latrobe Hall, 3400 N Charles Street, Baltimore, MD 21218 (United States)

    2011-03-15

    The stiffness of insect wings is typically determined through experimental measurements. Such experiments are performed on wings removed from insects. However, the wings are subject to desiccation which typically leads to an increase in their stiffness. Although this effect of desiccation is well known, a comprehensive study of the rate of change in stiffness of desiccating insect wings would be a significant aid in planning experiments as well as interpreting data from such experiments. This communication presents a comprehensive experimental analysis of the change in mass and stiffness of gradually desiccating forewings of Painted Lady butterflies (Vanessa cardui). Mass and stiffness of the forewings of five butterflies were simultaneously measured every 10 min over a 24 h period. The averaged results show that wing mass declined exponentially by 21.1% over this time period with a time constant of 9.8 h, while wing stiffness increased linearly by 46.2% at a rate of 23.4 {mu}N mm{sup -1} h{sup -1}. For the forewings of a single butterfly, the experiment was performed over a period of 1 week, and the results show that wing mass declined exponentially by 52.2% with a time constant of 30.2 h until it reached a steady-state level of 2.00 mg, while wing stiffness increased exponentially by 90.7% until it reached a steady-state level of 1.70 mN mm{sup -1}. (communication)

  2. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 deg to 90 deg. 2: Influence of horizontal tail location for Model D

    Science.gov (United States)

    Barnhart, B.

    1982-01-01

    The influence of horizontal tail location on the rotational flow aerodynamics is discussed for a 1/6-scale general aviation airplane model. The model was tested using various horizontal tail positions, with both a high and a low-wing location and for each of two body lengths. Data were measured, using a rotary balance, over an angle-of-attack range of 8 to 90 deg, and for clockwise and counter-clockwise rotations covering an Omega b/2V range of 0 to 0.9.

  3. An experimental investigation into the deployment of 3-D, finned wing and shape memory alloy vortex generators in a forced air convection heat pipe fin stack

    International Nuclear Information System (INIS)

    Aris, M.S.; McGlen, R.; Owen, I.; Sutcliffe, C.J.

    2011-01-01

    Forced air convection heat pipe cooling systems play an essential role in the thermal management of electronic and power electronic devices such as microprocessors and IGBT's (Integrated Gate Bipolar Transistors). With increasing heat dissipation from these devices, novel methods of improving the thermal performance of fin stacks attached to the heat pipe condenser section are required. The current work investigates the use of a wing type surface protrusions in the form of 3-D delta wing tabs adhered to the fin surface, thin wings punched-out of the fin material and TiNi shape memory alloy delta wings which changed their angles of attack based on the fin surface temperature. The longitudinal vortices generated from the wing designs induce secondary mixing of the cooler free stream air entering the fin stack with the warmer fluid close to the fin surfaces. The change in angle of the attack of the active delta wings provide heat transfer enhancement while managing flow pressure losses across the fin stack. A heat transfer enhancement of 37% compared to a plain fin stack was obtained from the 3-D tabs in a staggered arrangement. The punched-out delta wings in the staggered and inline arrangements provided enhancements of 30% and 26% respectively. Enhancements from the active delta wings were lower at 16%. However, as these devices reduce the pressure drop through the fin stack by approximately 19% in the de-activate position, over the activated position, a reduction in fan operating cost may be achieved for systems operating with inlet air temperatures below the maximum inlet temperature specification for the device. CFD analysis was also carried out to provide additional detail of the local heat transfer enhancement effects. The CFD results corresponded well with previously published reports and were consistent with the experimental findings. - Highlights: → Heat transfer enhancements of heat pipe fin stacks was successfully achieved using fixed and active delta

  4. Beetle wings are inflatable origami

    Science.gov (United States)

    Chen, Rui; Ren, Jing; Ge, Siqin; Hu, David

    2015-11-01

    Beetles keep their wings folded and protected under a hard shell. In times of danger, they must unfold them rapidly in order for them to fly to escape. Moreover, they must do so across a range of body mass, from 1 mg to 10 grams. How can they unfold their wings so quickly? We use high-speed videography to record wing unfolding times, which we relate to the geometry of the network of blood vessels in the wing. Larger beetles have longer unfolding times. Modeling of the flow of blood through the veins successfully accounts for the wing unfolding speed of large beetles. However, smaller beetles have anomalously short unfolding times, suggesting they have lower blood viscosity or higher driving pressure. The use of hydraulics to unfold complex objects may have implications in the design of micro-flying air vehicles.

  5. AERODYNAMICS OF WING TIP SAILS

    Directory of Open Access Journals (Sweden)

    MUSHTAK AL-ATABI

    2006-06-01

    Full Text Available Observers have always been fascinated by soaring birds. An interesting feature of these birds is the existence of few feathers extending from the tip of the wing. In this paper, small lifting surfaces were fitted to the tip of a NACA0012 wing in a fashion similar to that of wing tip feathers. Experimental measurements of induced drag, longitudinal static stability and trailing vortex structure were obtained.The tests showed that adding wing tip surfaces (sails decreased the induced drag factor and increased the longitudinal static stability. Results identified two discrete appositely rotated tip vortices and showed the ability of wing tip surfaces to break them down and to diffuse them.

  6. Delta Flow Modulator

    NARCIS (Netherlands)

    Stamhuis, Eize; Lengkeek, W

    2015-01-01

    A support structure (2) is installed in or near a water (50). The support structure is holding a deltalike-wing (3) under an angle of incidence relative to an incoming flow (54), caused by at least a prevailing current in the water, thus generating a vortex (77). The action of the vortex is

  7. Isotopic variations ({delta}{sup 13} C and {delta}{sup 18} O) in Siderastrea stellata (Cnidaria-Anthozoa), Itamaraca island, State of Pernambuco, Northeastern Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Valderez P.; Sial, Alcides N. [Pernambuco Univ., Recife, PE (Brazil). Dept. de Geologia. Lab. de Isotopos Estaveis; Mayeal, Elga M.; Exner, Marco Antonio [Pernambuco Univ., Recife, PE (Brazil). Dept. de Zoologia. Lab. de Macro e Megabentos

    1998-12-01

    Isotopic determinations for O and C were performed in coral skeletons collected in beach rocks from two localities (Orange and Catuama), Itamaraca Island, north littoral of the State of pernambuco, northeastern Brazil. Large variations of {delta}{sup 18} O and {delta}{sup 13} C in corals from both localities are found, the largest ones being observed at the Orange locality {delta}{sup 13} C in this locality varies from -0.8 to +1.8% PDB and {delta}{sup 1.8} O from -5.3 to -1.8% PDB, while at the Catuama locality, they vary from -1.8 to 0.1% PDB and -3.8 to -2.7% PDB, respectively. Large variations in {delta}{sup 18} O (up to 2.5%) coupled with weakly defined positive correlation between {delta}{sup 18} O and {delta}{sup 13} C, can be attributed to temperature variations as consequence of climatic perturbations. Temperature estimates, calculated from {delta}{sup 18} O values, assuming isotopic equilibrium with seawater, yield values between 24.9 deg C and 43.1 deg C at Orange, and from 28.4 deg C to 35 deg C at Catuama, all of them (expect one growth band from one sample) are high enough for the full development of the coral colony. Temperature average is 31.4 deg C at Orange, which is a little bit higher than that at Catuama, but both of them indicate thermal stress conditions. In all analyzed specimens, expect for one, at Orange, T increases was accompanied by decreasing in the organic activity, as suggested by corresponding negative {delta}{sup 13} C anomaly. Therefore, the observed bleaching is possibly related to thermal stress and the high T may be related to the El Nino-Southern Oscillation (ENSO) warning event. On the other hand, anthropogenic action at Orange, local of intense tourism throughout the year, coupled with high rate of sedimentation in the region, may contribute to the observed coral bleaching. (author)

  8. A Comparison of Flight-test Results on a Scout-Bomber Airplane with 4.7 deg and with 10 deg Dihedral in the Wing Outer Panels

    Science.gov (United States)

    1947-08-01

    Calibrated airspeed as used herein is the remling that would.be .. given ly a standsrd Army-Navy airppeed meter ~ou”cted to,a pitot -. .4 static system...Anon.: Specification for Stabillty and Control Characteristics of Airpl=es.SR-l19A, Bur. Aero., April 7, 1$?45. _~--- 4. Pearson, Henry A., and Jones

  9. Neutron damage of silicon detectors at 20 deg C

    International Nuclear Information System (INIS)

    Bardos, R.; Gorfine, G.; Guy, L.; Moorhead, G.; Taylor, G.; Tovey, S.

    1992-01-01

    This contribution reports new data on the damage of silicon detectors by low energy (1 MeV) neutrons. The data were taken at the end of 1991. Three exposures of UA2 Inner Silicon detectors were made: at +20 deg C, -15 deg C and -95 deg C. A high neutron flux enabled the required fluences to be achieved in relatively short times. This increases the sensitivity of the experiment to damage types with shorter self-annealing time constants. This note discusses the new data taken at +20 deg C. Analysis of the low temperature exposures is in progress. 5 refs., 15 figs

  10. An efficient coordinate transformation technique for unsteady, transonic aerodynamic analysis of low aspect-ratio wings

    Science.gov (United States)

    Guruswamy, G. P.; Goorjian, P. M.

    1984-01-01

    An efficient coordinate transformation technique is presented for constructing grids for unsteady, transonic aerodynamic computations for delta-type wings. The original shearing transformation yielded computations that were numerically unstable and this paper discusses the sources of those instabilities. The new shearing transformation yields computations that are stable, fast, and accurate. Comparisons of those two methods are shown for the flow over the F5 wing that demonstrate the new stability. Also, comparisons are made with experimental data that demonstrate the accuracy of the new method. The computations were made by using a time-accurate, finite-difference, alternating-direction-implicit (ADI) algorithm for the transonic small-disturbance potential equation.

  11. Rotary balance data for a typical single-engine general aviation design for an angle-of-attack range of 8 degrees to 35 degrees, 3. Effect of wing leading-edge modifications, model A

    Science.gov (United States)

    Bihrle, W., Jr.; Mulcay, W.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/5 scale, single-engine, low-wing, general aviation airplane model. The configurations tested included the basic airplane, sixteen wing leading-edge modifications and lateral-directional control settings. Data are presented for all configurations without analysis for an angle of attack range of 8 deg to 35 deg and clockwise and counter-clockwise rotations covering an Omega b/2v range from 0 to 0.85. Also, data are presented above 35 deg of attack for some configurations.

  12. Structural Analysis of a Dragonfly Wing

    NARCIS (Netherlands)

    Jongerius, S.R.; Lentink, D.

    2010-01-01

    Dragonfly wings are highly corrugated, which increases the stiffness and strength of the wing significantly, and results in a lightweight structure with good aerodynamic performance. How insect wings carry aerodynamic and inertial loads, and how the resonant frequency of the flapping wings is tuned

  13. Mechanisms of Wing Beat Sound in Flapping Wings of Beetles

    Science.gov (United States)

    Allen, John

    2017-11-01

    While the aerodynamic aspects of insect flight have received recent attention, the mechanisms of sound production by flapping wings is not well understood. Though the harmonic structure of wing beat frequency modulation has been reported with respect to biological implications, few studies have rigorously quantified it with respect directionality, phase coupling and vortex tip scattering. Moreover, the acoustic detection and classification of invasive species is both of practical as well scientific interest. In this study, the acoustics of the tethered flight of the Coconut Rhinoceros Beetle (Oryctes rhinoceros) is investigated with four element microphone array in conjunction with complementary optical sensors and high speed video. The different experimental methods for wing beat determination are compared in both the time and frequency domain. Flow visualization is used to examine the vortex and sound generation due to the torsional mode of the wing rotation. Results are compared with related experimental studies of the Oriental Flower Beetle. USDA, State of Hawaii.

  14. Effect of outer wing separation on lift and thrust generation in a flapping wing system

    International Nuclear Information System (INIS)

    Mahardika, Nanang; Viet, Nguyen Quoc; Park, Hoon Cheol

    2011-01-01

    We explore the implementation of wing feather separation and lead-lagging motion to a flapping wing. A biomimetic flapping wing system with separated outer wings is designed and demonstrated. The artificial wing feather separation is implemented in the biomimetic wing by dividing the wing into inner and outer wings. The features of flapping, lead-lagging, and outer wing separation of the flapping wing system are captured by a high-speed camera for evaluation. The performance of the flapping wing system with separated outer wings is compared to that of a flapping wing system with closed outer wings in terms of forward force and downward force production. For a low flapping frequency ranging from 2.47 to 3.90 Hz, the proposed biomimetic flapping wing system shows a higher thrust and lift generation capability as demonstrated by a series of experiments. For 1.6 V application (lower frequency operation), the flapping wing system with separated wings could generate about 56% higher forward force and about 61% less downward force compared to that with closed wings, which is enough to demonstrate larger thrust and lift production capability of the separated outer wings. The experiments show that the outer parts of the separated wings are able to deform, resulting in a smaller amount of drag production during the upstroke, while still producing relatively greater lift and thrust during the downstroke.

  15. Women of Niger Delta

    African Journals Online (AJOL)

    Religion Dept

    The Indispensability of Women in Conflict Resolution in the Niger Delta ... The situation leads to a shift in gender roles with a dramatic increase in the number of women .... organization is to work in partnership with the Nigerian Government and the .... that “women are the impartial arbitrators in family or clan disputes or.

  16. Conservative Delta Hedging

    Science.gov (United States)

    1997-09-01

    an exact method for converting such intervals into arbitrage based prices of financial derivatives or industrial or contractual options. We call this...procedure conservative delta hedging . As existing procedures are of an ad hoc nature, the proposed approach will permit an institution’s man agement a greater oversight of its exposure to risk.

  17. Research of Morphing Wing Efficiency

    National Research Council Canada - National Science Library

    Komarov, Valery

    2004-01-01

    This report results from a contract tasking Samara State Aerospace University (SSAU) as follows: The contractor will develop and investigate aerodynamic and structural weight theories associated with morphing wing technology...

  18. Drag Performance of Twist Morphing MAV Wing

    Directory of Open Access Journals (Sweden)

    Ismail N.I.

    2016-01-01

    Full Text Available Morphing wing is one of latest evolution found on MAV wing. However, due to few design problems such as limited MAV wing size and complicated morphing mechanism, the understanding of its aerodynamic behaviour was not fully explored. In fact, the basic drag distribution induced by a morphing MAV wing is still remained unknown. Thus, present work is carried out to compare the drag performance between a twist morphing wing with membrane and rigid MAV wing design. A quasi-static aeroelastic analysis by using the Ansys-Fluid Structure Interaction (FSI method is utilized in current works to predict the drag performance a twist morphing MAV wing design. Based on the drag pattern study, the results exhibits that the morphing wing has a partial similarities in overall drag pattern with the baseline (membrane and rigid wing. However, based CD analysis, it shows that TM wing induced higher CD magnitude (between 25% to 82% higher than to the baseline wing. In fact, TM wing also induced the largest CD increment (about 20% to 27% among the wings. The visualization on vortex structure revealed that TM wing also produce larger tip vortex structure (compared to baseline wings which presume to promote higher induce drag component and subsequently induce its higher CD performance.

  19. Mystery of the delta(980)

    International Nuclear Information System (INIS)

    Cahn, R.N.; Landshoff, P.V.

    1986-01-01

    The apparent conflict between the dominance of the decay delta->etaπ in D->deltaπ and its absence in iota->deltaπ is analyzed. Explicit models are presented in which the nearby Kanti K threshold plays an important role in resolving the conflict. (orig.)

  20. Analysis of Asymmetric Aircraft Aerodynamics Due to an Experimental Wing Glove

    Science.gov (United States)

    Hartshorn, Fletcher

    2011-01-01

    Aerodynamic analysis on a business jet with a wing glove attached to one wing is presented and discussed. If a wing glove is placed over a portion of one wing, there will be asymmetries in the aircraft as well as overall changes in the forces and moments acting on the aircraft. These changes, referred to as deltas, need to be determined and quantified to make sure the wing glove does not have a drastic effect on the aircraft flight characteristics. TRANAIR, a non-linear full potential solver was used to analyze a full aircraft, with and without a glove, at a variety of flight conditions and angles of attack and sideslip. Changes in the aircraft lift, drag and side force, along with roll, pitch and yawing moment are presented. Span lift and moment distributions are also presented for a more detailed look at the effects of the glove on the aircraft. Aerodynamic flow phenomena due to the addition of the glove and its fairing are discussed. Results show that the glove used here does not present a drastic change in forces and moments on the aircraft, but an added torsional moment around the quarter-chord of the wing may be a cause for some structural concerns.

  1. WINGS Data Release

    DEFF Research Database (Denmark)

    Moretti, A.; Poggianti, B. M.; Fasano, G.

    2014-01-01

    . We provide the scientific community with the entire set of wide-field images. Furthermore, the published database contains photometry of 759 024 objects and surface brightness analysis for 42 275 and 41 463 galaxies in the V and B band, respectively. The completeness depends on the image quality......, and on the cluster redshift, reaching on average 90% at V ≲ 21.7. Near-infrared photometric catalogs for 26 (in K) and 19 (in J) clusters are part of the database and the number of sources is 962 344 in K and 628 813 in J. Here again the completeness depends on the data quality, but it is on average higher than 90......Context. To effectively investigate galaxy formation and evolution, it is of paramount importance to exploit homogeneous data for large samples of galaxies in different environments. Aims. The WIde-field Nearby Galaxy-cluster Survey (WINGS) project aim is to evaluate physical properties of galaxies...

  2. VizieR Online Data Catalog: Butterfly diagram wings (Leussu+, 2017)

    Science.gov (United States)

    Leussu, R.; Usoskin, I. G.; Senthamizh Pavai, V.; Diercke, A.; Arlt, R.; Mursula, K.

    2016-11-01

    fig1data.dat contains the separated wings in a butterfly diagram for sunspot groups from three different origins: Sunspot observations by S.H. Schwabe and G. Spoerer, and the RGO/SOON compilation. The latitudes for sunspot groups from the Schwabe and Spoerer data are given as size-weighted averages from sunspots belonging to each group. Latitudes for the RGO compilation are given as they are stated in the original data. The columns report the year, month, day, date [yr], latitude [deg], cycle, hemisphere, and data set tag. Northern hemisphere wings are tagged with "1" and southern hemisphere wings with "2". The data set tag is "1" for Schwabe data, "2" for Spoerer data and "3" for RGO data. (1 data file).

  3. DELTAS: A new Global Delta Sustainability Initiative (Invited)

    Science.gov (United States)

    Foufoula-Georgiou, E.

    2013-12-01

    Deltas are economic and environmental hotspots, food baskets for many nations, home to a large part of the world population, and hosts of exceptional biodiversity and rich ecosystems. Deltas, being at the land-water interface, are international, regional, and local transport hubs, thus providing the basis for intense economic activities. Yet, deltas are deteriorating at an alarming rate as 'victims' of human actions (e.g. water and sediment reduction due to upstream basin development), climatic impacts (e.g. sea level rise and flooding from rivers and intense tropical storms), and local exploration (e.g. sand or aggregates, groundwater and hydrocarbon extraction). Although many efforts exist on individual deltas around the world, a comprehensive global delta sustainability initiative that promotes awareness, science integration, data and knowledge sharing, and development of decision support tools for an effective dialogue between scientists, managers and policy makers is lacking. Recently, the international scientific community proposed to establish the International Year of Deltas (IYD) to serve as the beginning of such a Global Delta Sustainability Initiative. The IYD was proposed as a year to: (1) increase awareness and attention to the value and vulnerability of deltas worldwide; (2) promote and enhance international and regional cooperation at the scientific, policy, and stakeholder level; and (3) serve as a launching pad for a 10-year committed effort to understand deltas as complex socio-ecological systems and ensure preparedness in protecting and restoring them in a rapidly changing environment. In this talk, the vision for such an international coordinated effort on delta sustainability will be presented as developed by a large number of international experts and recently funded through the Belmont Forum International Opportunities Fund. Participating countries include: U.S., France, Germany, U.K., India, Japan, Netherlands, Norway, Brazil, Bangladesh

  4. Conceptual Study of Rotary-Wing Microrobotics

    National Research Council Canada - National Science Library

    Chabak, Kelson D

    2008-01-01

    This thesis presents a novel rotary-wing micro-electro-mechanical systems (MEMS) robot design. Two MEMS wing designs were designed, fabricated and tested including one that possesses features conducive to insect level aerodynamics...

  5. Experimental alteration of R7T7 glass in salt brines at 90 deg C and 150 deg C

    International Nuclear Information System (INIS)

    Godon, N.; Vernaz, E.; Gin, S.; Beaufort, D.; Thomassin, J.H.

    1991-01-01

    Static experiments have been developed to investigate the R7T7 glass corrosion in four natural salt brines (brines 1 and 3: pure halite, brines 2 and 4: high Mg, K fluid inclusions rich halite), at 90 deg C and 150 deg C with 0.7 cm -1 S/V ratio and at 11 different running times. Analysis of brines after alteration (pHmeter and ICP) added to a detailed study of the crystalline phases developed at the interface glass-brine (XRD,SEM and Microprobe), showed that the influence of the compositional difference is more important on the nature of the secondary phases formed than on the corrosion rate of the glass. After 91 days of alteration at 150 deg C stady states to be reached (after 40 days at 90 deg C). A long term experiment (1 year) is necessary to confirm this hypothesis. 7 refs., 7 figs., 2 tabs

  6. Toxicokinetics of diethylene glycol (DEG) in the rat.

    Science.gov (United States)

    Heilmair, R; Lenk, W; Löhr, D

    1993-01-01

    Oral doses of 1 and 5 ml/kg 14C-diethylene glycol (DEG) given to rats were rapidly and almost completely absorbed, the invasion constants being 2.95 h-1 and 4.24 h-1. The kinetics of invasion were determined with the method of residuals (Rowland and Tozer 1989) and by reconstruction of the invasion curves according to Kübler (1970). 14C-DEG was rapidly distributed from the blood into the organs and tissues in the order kidneys > brain > spleen > liver > muscle > fat, i.e. the same order as the blood flow. The relative volume of distribution, app. VD, was determined at 298 ml, indicating distribution over the whole body. After oral doses of 1, 5, and 10 ml 14C-DEG/kg 64, 87, and 91% of 14C activity in rat blood disappeared in 12-16 h with a half-life of 3.4 h and the remaining 9, 5, and 4% with half-lives of 39 h, 45 h, and 49 h. A total of 73-96% of 14C activity in blood was excreted with the urine and 0.7-2.2% with the faeces. From the cumulative urinary excretion kinetics half-lives of 6 h were determined for doses of 1 and 5 ml/kg and 10 h for the dose of 10 ml/kg. After doses of 5 ml/kg and 10 ml/kg 14C-DEG semi-logarithmic plots of elimination rate versus time were constant for 5 and 9 h, respectively, indicating that DEG accelerated its renal elimination by inducing osmotic diuresis. Thereafter urinary excretion followed first order kinetics with elimination half-lives of 3.6 h. After oral doses of 5 ml/kg 14C-DEG given to rats of 336 g body weight with an app. VD of 297 ml, the total clearance of 14C activity was determined at 63 ml/h, and the renal clearance of unmetabolized DEG was 66 ml/h. The ratio of ClDEG to Cl(inulin) = 0.64 indicated that DEG and its metabolite 2-hydroxyethoxyacetate (2-HEAA) were reabsorbed from the tubuli into the blood capillaries. DEG produced metabolic acidosis, which was completely balanced after doses of 1 and 5 ml/kg, but doses greater than 10 ml/kg produced non-compensated metabolic acidosis, hydropic degeneration of the

  7. Microcalorimetric studies on lithium thionyl chloride cells: temperature effects between 25deg C and -40deg C

    Energy Technology Data Exchange (ETDEWEB)

    Hill, I.R.; Sibbald, A.M.; Donepudi, V.S.; Adams, W.A. (Ottawa Univ., ON (Canada). Electrochemical Science and Technology Centre); Donaldson, G.J. (Dept. of National Defence, Ottawa, ON (Canada))

    1992-06-01

    Microcalorimetry studies were performed on commercial lithium/thionyl chloride cells to investigate whether there was a change in reaction mechanisms in the temperature range between 25deg C and -40deg C. The entropy change associated with cell discharge was calculated from the calorimetry data and was also determined from the temperature dependence of the open-circuit potential. The entropy changes determined by the two methods are compared and discussed in terms of the electrolyte composition variable. (orig.).

  8. Free tropospheric measurements of CS2 over a 45 deg N to 45 deg S latitude range

    Science.gov (United States)

    Tucker, B. J.; Maroulis, P. J.; Bandy, A. R.

    1985-01-01

    The mean value obtained from 52 free tropospheric measurements of CS2 over the 45 deg N-45 deg S latitude range was 5.7 pptv, with standard deviation and standard error of 1.9 and 0.3 pptv, respectively. Large fluctuations in the CS2 concentration are observed which reflect the apparent short atmospheric residence time and inhomogeneities in the surface sources of CS2. The amounts of CS2 in the Northern and Southern Hemispheres are statistically equal.

  9. Low Aspect-Ratio Wings for Wing-Ships

    DEFF Research Database (Denmark)

    Filippone, Antonino; Selig, M.

    1998-01-01

    Flying on ground poses technical and aerodynamical challenges. The requirements for compactness, efficiency, manouverability, off-design operation,open new areas of investigations in the fieldof aerodynamic analysis and design. A review ofthe characteristics of low-aspect ratio wings, in- and out...

  10. The development of a capability for aerodynamic testing of large-scale wing sections in a simulated natural rain environment

    Science.gov (United States)

    Bezos, Gaudy M.; Cambell, Bryan A.; Melson, W. Edward

    1989-01-01

    A research technique to obtain large-scale aerodynamic data in a simulated natural rain environment has been developed. A 10-ft chord NACA 64-210 wing section wing section equipped with leading-edge and trailing-edge high-lift devices was tested as part of a program to determine the effect of highly-concentrated, short-duration rainfall on airplane performance. Preliminary dry aerodynamic data are presented for the high-lift configuration at a velocity of 100 knots and an angle of attack of 18 deg. Also, data are presented on rainfield uniformity and rainfall concentration intensity levels obtained during the calibration of the rain simulation system.

  11. Thermostatted delta f

    International Nuclear Information System (INIS)

    Krommes, J.A.

    2000-01-01

    The delta f simulation method is revisited. Statistical coarse-graining is used to rigorously derive the equation for the fluctuation delta f in the particle distribution. It is argued that completely collisionless simulation is incompatible with the achievement of true statistically steady states with nonzero turbulent fluxes because the variance of the particle weights w grows with time. To ensure such steady states, it is shown that for dynamically collisionless situations a generalized thermostat or W-stat may be used in lieu of a full collision operator to absorb the flow of entropy to unresolved fine scales in velocity space. The simplest W-stat can be implemented as a self-consistently determined, time-dependent damping applied to w. A precise kinematic analogy to thermostatted nonequilibrium molecular dynamics (NEMD) is pointed out, and the justification of W-stats for simulations of turbulence is discussed. An extrapolation procedure is proposed such that the long-time, steady-state, collisionless flux can be deduced from several short W-statted runs with large effective collisionality, and a numerical demonstration is given

  12. People of the Delta

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, L.

    2007-09-15

    The potential impacts of both global warming and the $16 billion Mackenzie pipeline project on communities in the Mackenzie Delta were discussed. A consortium of oil and gas developers is now planning to exploit the natural gas reserves located near the mouth of the Delta, whose largest town is Inuvik. The project is expected to place a significant burden on the resources and infrastructure of the town, which currently has a population of 6000. The community, comprised of a diverse international population and an Inuit majority, is largely in favour of the pipeline project. The Inuvialuit people have invested a significant amount of time to ensure that the project, which was stalled due to land claims in 1977, benefits their communities. Public hearings are now being held to consider the potential environmental and socio-economic impacts of the project. Separate hearings are also being held to consider the project's design. The pipeline project includes 3 natural gas production facilities, a gas-processing facility, a pipeline gathering system, a 480 km natural gas liquids pipeline to the Northwest Territories, and a 1220 km natural gas pipeline to northern Alberta. The pipeline will be buried to minimize environmental impacts. The project is expected to create 8200 jobs at the height of its construction. However, communities located near the site of the natural gas reserves, such as the town of Tuktoyaktuk are now threatened by soil erosion that has been attributed to global warming. 21 figs.

  13. Wings: Women Entrepreneurs Take Flight.

    Science.gov (United States)

    Baldwin, Fred D.

    1997-01-01

    Women's Initiative Networking Groups (WINGS) provides low- and moderate-income women in Appalachian Kentucky with training in business skills, contacts, and other resources they need to succeed as entrepreneurs. The women form informal networks to share business know-how and support for small business startup and operations. The program plans to…

  14. Phenotypic expressions of CCR5-Delta 32/Delta 32 homozygosity

    NARCIS (Netherlands)

    Nguyen, GT; Carrington, M; Beeler, JA; Dean, M; Aledort, LM; Blatt, PM; Cohen, AR; DiMichele, D; Eyster, ME; Kessler, CM; Konkle, B; Leissinger, C; Luban, N; O'Brien, SJ; Goedert, JJ; O'Brien, TR

    1999-01-01

    Objective: As blockade of CC-chemokine receptor 5 (CCR5) has been proposed as therapy for HIV-1, we examined whether the CCR5-Delta 32/Delta 32 homozygous genotype has phenotypic expressions other than those related to HIV-1. Design: Study subjects were white homosexual men or men with hemophilia

  15. Peat compaction in deltas : implications for Holocene delta evolution

    NARCIS (Netherlands)

    van Asselen, S.

    2010-01-01

    Many deltas contain substantial amounts of peat, which is the most compressible soil type. Therefore, peat compaction potentially leads to high amounts of subsidence in deltas. The main objective of this research was to quantify subsidence due to peat compaction in Holocene fluvial-deltaic settings

  16. Nitrogen implantation into silicon at 700-1100 deg C

    International Nuclear Information System (INIS)

    Kachurin, G.A.; Tyschenko, I.E.; Popov, V.P.; Tijs, S.A.; Plotnikov, A.E.

    1989-01-01

    Nitrogen ions 130-140 kW potential accelerated were implanted in silicon heated up to Ti=700-1100 deg C. Densities of ion current were 1-5 mcA/cm 2 , doses did not exceed 5x10 17 cm -2 . Initial stages of nitride formation in buried layers are investigated by means of Rutherford backscattering, layer-by-layer Augerspctroscopy and electron microscopy. It is determind, that Ti growth from 700 up to 900 deg C is accompanied by essential reduction of defectiveness of silicon near-the-surface layer at nitrogen retention within the limits of the calculation profile of ion ranges. At Ti=900 deg C nitrogen is rather mobile and at ∼5x10 16 cm -2 dose it is drown to α-Si 3 N 4 crystalling extraction in R p range. Beginning from Ti ≅1000 deg C nitrogen is not retained in the furied layer and diffuses to the surface. No essenstial losses of nitrogen due to evaporation or inside diffusion are observed. It is noted, that critical Ti, when nitrogen is accumulated in the buried layer, correspond to critical temperatures, when light ions introduce essential structure distortions. Conclusion is made, that irradition-introduced distortions of structure represent centres of initiation and growth of nitride phase. At 1150 deg C additional annaling during 3 hs nitrogen, occurring outside the stable extraction, is redistributed between th surface and furied layers, sintering in narrow concentration peaks

  17. Body-surface pressure data on two monoplane-wing missile configurations with elliptical cross sections at Mach 2.50

    Science.gov (United States)

    Allen, J. M.; Hernandez, G.; Lamb, M.

    1983-01-01

    Tabulated body surface pressure data for two monoplane-wing missile configurations are presented and analyzed. Body pressure data are presented for body-alone, body-tail, and body-wing-tail combinations. For the lost combination, data are presented for tail-fin deflection angles of 0 deg and 30 deg to simulate pitch, yaw, and roll control for both configurations. The data cover angles of attack from -5 deg to 25 deg and angles of roll from 0 deg to 90 deg at a Mach number of 2.50 and a Reynolds number of 6.56 x 1,000,000 per meter. Very consistent, systematic trends with angle of attack and angle of roll were observed in the data, and very good symmetry was found at a roll angle of 0 deg. Body pressures depended strongly on the local body cross-section shape, with very little dependence on the upstream shape. Undeflected fins had only a small influence on the pressures on the aft end of the body; however, tail-fin deflections caused large changes in the pressures.

  18. Review Results on Wing-Body Interference

    Directory of Open Access Journals (Sweden)

    Frolov Vladimir

    2016-01-01

    Full Text Available The paper presents an overview of results for wing-body interference, obtained by the author for varied wing-body combinations. The lift-curve slopes of the wing-body combinations are considered. In this paper a discrete vortices method (DVM and 2D potential model for cross-flow around fuselage are used. The circular and elliptical cross-sections of the fuselage and flat wings of various forms are considered. Calculations showed that the value of the lift-curve slopes of the wing-body combinations may exceed the same value for an isolated wing. This result confirms an experimental data obtained by other authors earlier. Within a framework of the used mathematical models the investigations to optimize the wing-body combination were carried. The present results of the optimization problem for the wing-body combination allowed to select the optimal geometric characteristics for configuration to maximize the values of the lift-curve slopes of the wing-body combination. It was revealed that maximums of the lift-curve slopes for the optimal mid-wing configuration with elliptical cross-section body had a sufficiently large relative width of the body (more than 30% of the span wing.

  19. Challenges, Approaches and Experiences from Asian Deltas and the Rhine-Meuse Delta : Regional Training Workshop on Delta Planning and Management

    NARCIS (Netherlands)

    Wosten, J.H.M.; Douven, W.; Long Phi, H.; Fida Abdullah Khan, M.

    2013-01-01

    River delta's, like the Mekong Delta (Vietnam), Ganges-Brahmaputra Delta (Bangladesh), Ayeyarwady Delta (Myanmar), Nile (Egypt) and Ciliwung Delta (Indonesia) are developing rapidly and are characterised by large-scale urbanisation and industrialization processes. They are facing serious planning

  20. Mida pakub Delta? / Teele Kurm

    Index Scriptorium Estoniae

    Kurm, Teele

    2011-01-01

    Politsei- ja Piirivalveamet võtab kasutusele ühise Siseministeeriumi infotehnoloogia- ja arenduskeskuse ning Webmedia AS koostööna loodud dokumendihaldussüsteemi Delta. Kust sai Delta oma nime? Projekti "Dokumendihaldussüsteemi juurutamine Siseministeeriumi haldusalas" eesmärgid

  1. Delta isobars in neutron stars

    Directory of Open Access Journals (Sweden)

    Pagliara Giuseppe

    2015-01-01

    Full Text Available The appearance of delta isobars in beta-stable matter is regulated by the behavior of the symmetry energy at densities larger than saturation density. We show that by taking into account recent constraints on the density derivative of the symmetry energy and the theoretical and experimental results on the excitations of delta isobars in nuclei, delta isobars are necessary ingredients for the equations of state used for studying neutron stars. We analyze the effect of the appearance of deltas on the structure of neutron stars: as in the case of hyperons, matter containing delta is too soft for allowing the existence of 2M⊙ neutron stars. Quark stars on the other hand, could reach very massive configurations and they could form from a process of conversion of hadronic stars in which an initial seed of strangeness appears through hyperons.

  2. DELTA 3D PRINTER

    Directory of Open Access Journals (Sweden)

    ȘOVĂILĂ Florin

    2016-07-01

    Full Text Available 3D printing is a very used process in industry, the generic name being “rapid prototyping”. The essential advantage of a 3D printer is that it allows the designers to produce a prototype in a very short time, which is tested and quickly remodeled, considerably reducing the required time to get from the prototype phase to the final product. At the same time, through this technique we can achieve components with very precise forms, complex pieces that, through classical methods, could have been accomplished only in a large amount of time. In this paper, there are presented the stages of a 3D model execution, also the physical achievement after of a Delta 3D printer after the model.

  3. AFM study of structure influence on butterfly wings coloration

    OpenAIRE

    Dallaeva, Dinara; Tománek, Pavel

    2012-01-01

    This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM) can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body,...

  4. Low Temperature (320 deg C and 340 deg C) Creep Crack Growth in Low Alloy Reactor Pressure Vessel Steel

    International Nuclear Information System (INIS)

    Rui Wu; Sandstroem, Rolf; Seitisleam, Facredin

    2004-02-01

    Uni-axial creep and creep crack growth (CCG) tests at 320 deg C and 340 deg C as well as post test metallography have been carried out in a low alloy reactor pressure vessel steel (ASTM A508 class 2) having simulated coarse grained heat affected zone microstructure. The CCG behaviour is studied in terms of steady crack growth rate, creep fracture parameter C*, stress intensity factor and reference stress at given testing conditions. It has been found that CCG does occur at both tested temperatures. The lifetimes for the CCG tests are considerably shorter than those for the uni-axial creep tests. This is more pronounced at longer lifetimes or lower stresses. Increasing temperature from 320 deg C to 340 deg C causes a reduction of lifetime by approximately a factor of five and a corresponding increase of steady crack growth rate. For the CCG tests, there are three regions when the crack length is plotted against time. After incubation, the crack grows steadily until it accelerates when rupture is approached. Notable crack growth takes place at later stage of the tests. No creep cavitation is observed and transgranular fracture is dominant for the uni-axial creep specimens. In the CT specimens the cracks propagate intergranularly, independent of temperature and time. Some relations between time to failure, reference stress and steady crack growth rate are found for the CCG tests. A linear extrapolation based on the stress-time results indicates that the reference stress causing failure due to CCG at a given lifetime of 350,000 hours at 320 deg C is clearly lower than both yield and tensile strengths, on which the design stress may have based. Therefore, caution must be taken to prevent premature failure due to low temperature CCG. Both uni-axial and CCG tests on real welded joint at 320 deg C, study of creep damage zone at crack tip as well as numerical simulation are recommended for future work

  5. Reaction π-p→X deg n, X deg → 2γ at momenta 15 and 40 GeV/c

    International Nuclear Information System (INIS)

    Apel, W.D.; Bertolucci, E; Donskov, S.V.

    1974-01-01

    The cross sections for reaction π - p→X deg n with X deg → 2γ decay have been measured at momenta 15 and 40 GeV/c. About 500 events have been detected. A hodoscope spectrometer with the computer on-line was used to detect photon pairs. t-dependence of differential cross section has been obtained similar to that of reaction π - p→eta deg n. From the ratio of differential cross section for X deg and eta deg production at t=0 an angle of the singlet-octet mixing of pseudoscalar mesons has been found to be equal to β=-19 deg

  6. La valutazione degli investimenti finanziati tramite equity crowdfunding

    OpenAIRE

    Zanetti, Laura

    2015-01-01

    Evoluzione e dimensione del crowdfunding, La valutazione e strutturazione dell’investimento tramite equity crowdfunding, Valutazioni implicite nelle raccolte fondi in equity crowdfunding, Peculiarità specifiche dell’equity crowdfunding, Un confronto con la bolla valutativa delle aziende internet degli anni 2000

  7. Keeping warming within the 2 deg. C limit after Copenhagen

    International Nuclear Information System (INIS)

    Macintosh, Andrew

    2010-01-01

    The object of the United Nations Climate Change Conference in Copenhagen in December 2009 was to reach an agreement on a new international legal architecture for addressing anthropogenic climate change post-2012. It failed in this endeavour, producing a political agreement in the form of the Copenhagen Accord. The Accord sets an ambitious goal of holding the increase in the global average surface temperature to below 2 deg. C. This paper describes 45 CO 2 -only mitigation scenarios that provide an indication of what would need to be done to stay within the 2 deg. C limit if the international climate negotiations stay on their current path. The results suggest that if developed countries adopt a combined target for 2020 of ≤20% below 1990 levels, global CO 2 emissions would probably have to be reduced by ≥5%/yr, and possibly ≥10%/yr, post-2030 (after a decade transitional period) in order to keep warming to 2 deg. C. If aggressive abatement commitments for 2020 are not forthcoming from all the major emitting countries, the likelihood of warming being kept within the 2 deg. C limit is diminutive.

  8. Low-speed tests of a high-aspect-ratio, supercritical-wing transport model equipped with a high-lift flap system in the Langley 4- by 7-meter and Ames 12-foot pressure tunnels

    Science.gov (United States)

    Morgan, H. L., Jr.; Kjelgaard, S. O.

    1983-01-01

    The Ames 12-Foot Pressure Tunnel was used to determine the effects of Reynolds number on the static longitudinal aerodynamic characteristics of an advanced, high-aspect-ratio, supercritical wing transport model equipped with a full span, leading edge slat and part span, double slotted, trailing edge flaps. The model had a wing span of 7.5 ft and was tested through a free stream Reynolds number range from 1.3 to 6.0 x 10 to 6th power per foot at a Mach number of 0.20. Prior to the Ames tests, an investigation was also conducted in the Langley 4 by 7 Meter Tunnel at a Reynolds number of 1.3 x 10 to 6th power per foot with the model mounted on an Ames strut support system and on the Langley sting support system to determine strut interference corrections. The data obtained from the Langley tests were also used to compare the aerodynamic charactertistics of the rather stiff, 7.5-ft-span steel wing model tested during this investigation and the larger, and rather flexible, 12-ft-span aluminum-wing model tested during a previous investigation. During the tests in both the Langley and Ames tunnels, the model was tested with six basic wing configurations: (1) cruise; (2) climb (slats only extended); (3) 15 deg take-off flaps; (4) 30 deg take-off flaps; (5) 45 deg landing flaps; and (6) 60 deg landing flaps.

  9. A Drosophila wing spot test

    International Nuclear Information System (INIS)

    Ayaki, Toshikazu; Yoshikawa, Isao; Niikawa, Norio; Hoshi, Masaharu.

    1986-01-01

    A Drosophila wing spot test system was used to investigate the effects of low doses of X-rays, gamma rays, and both 2.3 and 14.1 MeV neutrons on somatic chromosome mutation (SCM) induction. The incidence of SCM was significantly increased with any type of radiation, with evident linear dose-response relationship within the range of 3 to 20 cGy. It was estimated that relative biological effectiveness value for SCM induction of 2.3 MeV neutrons to X-rays and gamma rays is much higher than that of 14.1 MeV neutrons to those photons (2.4 vs 8.0). The Drosophila wing spot test system seems to become a promising in vivo experimental method for higher animals in terms of the lack of necessity for a marvelously large number of materials required in conventional test system. (Namekawa, K.)

  10. Measurements of anisotropy in the cosmic microwave background radiation at 0.5 deg angular scales near the star gamma ursae minoris

    Science.gov (United States)

    Devlin, M. J.; Clapp, A. C.; Gundersen, J. O.; Hagmann, C. A.; Hristov, V. V.; Lange, A. E.; Lim, M. A.; Lubin, P. M.; Mauskopf, P. D.; Meinhold, P. R.

    1994-01-01

    We present results from a four-frequency observation of a 6 deg x 0.6 deg strip of the sky centered near the star Gamma Ursae Minoris (GUM) during the fourth flight of the Millimeter-wave Anistropy experiment(MAX). The observation was made with a 1.4 deg peak-to-peak sinusoidal chop in all bands. The FWHM beam sizes were 0.55 deg +/- 0.05 deg at 3.5 per cm and 0.75 deg +/- 0.05 deg at 6, 9, and 14 per cm. During this observation significant correlated structure was observed at 3.5, 6 and 9 per cm with amplitudes similar to those observed in the GUM region during the second and third fligts of MAX. The frequency spectrum is consistent with cosmic microwave background (CMB) and inconsistent with thermal emission from interstellar dust. The extrapolated amplitudes of synchrotron and free-free emission are too small to account for the amplitude of the observed structure, If all of the structure is attributed to CMB anisotropy with a Gaussian autocorrelation function and a coherence angle of 25 min, then the most probable values of delta T/T(sub CMB) in the 3.5, 6 and 9 per cm bads are (4.3 +2.7/-1.6) x 10(exp -5), 2.8 (+4.3/-1/1) x 10(exp -5), and 3.5 (+3.0/-1.6) x 10(exp -5) (95% confidence upper and lower limits), respectively.

  11. Effects of wing locations on wing rock induced by forebody vortices

    Directory of Open Access Journals (Sweden)

    Ma Baofeng

    2016-10-01

    Full Text Available Previous studies have shown that asymmetric vortex wakes over slender bodies exhibit a multi-vortex structure with an alternate arrangement along a body axis at high angle of attack. In this investigation, the effects of wing locations along a body axis on wing rock induced by forebody vortices was studied experimentally at a subcritical Reynolds number based on a body diameter. An artificial perturbation was added onto the nose tip to fix the orientations of forebody vortices. Particle image velocimetry was used to identify flow patterns of forebody vortices in static situations, and time histories of wing rock were obtained using a free-to-roll rig. The results show that the wing locations can affect significantly the motion patterns of wing rock owing to the variation of multi-vortex patterns of forebody vortices. As the wing locations make the forebody vortices a two-vortex pattern, the wing body exhibits regularly divergence and fixed-point motion with azimuthal variations of the tip perturbation. If a three-vortex pattern exists over the wing, however, the wing-rock patterns depend on the impact of the highest vortex and newborn vortex. As the three vortices together influence the wing flow, wing-rock patterns exhibit regularly fixed-points and limit-cycled oscillations. With the wing moving backwards, the newborn vortex becomes stronger, and wing-rock patterns become fixed-points, chaotic oscillations, and limit-cycled oscillations. With further backward movement of wings, the vortices are far away from the upper surface of wings, and the motions exhibit divergence, limit-cycled oscillations and fixed-points. For the rearmost location of the wing, the wing body exhibits stochastic oscillations and fixed-points.

  12. Artificial insect wings of diverse morphology for flapping-wing micro air vehicles

    International Nuclear Information System (INIS)

    Shang, J K; Finio, B M; Wood, R J; Combes, S A

    2009-01-01

    The development of flapping-wing micro air vehicles (MAVs) demands a systematic exploration of the available design space to identify ways in which the unsteady mechanisms governing flapping-wing flight can best be utilized for producing optimal thrust or maneuverability. Mimicking the wing kinematics of biological flight requires examining the potential effects of wing morphology on flight performance, as wings may be specially adapted for flapping flight. For example, insect wings passively deform during flight, leading to instantaneous and potentially unpredictable changes in aerodynamic behavior. Previous studies have postulated various explanations for insect wing complexity, but there lacks a systematic approach for experimentally examining the functional significance of components of wing morphology, and for determining whether or not natural design principles can or should be used for MAVs. In this work, a novel fabrication process to create centimeter-scale wings of great complexity is introduced; via this process, a wing can be fabricated with a large range of desired mechanical and geometric characteristics. We demonstrate the versatility of the process through the creation of planar, insect-like wings with biomimetic venation patterns that approximate the mechanical properties of their natural counterparts under static loads. This process will provide a platform for studies investigating the effects of wing morphology on flight dynamics, which may lead to the design of highly maneuverable and efficient MAVs and insight into the functional morphology of natural wings.

  13. Role of wing morphing in thrust generation

    Directory of Open Access Journals (Sweden)

    Mehdi Ghommem

    2014-01-01

    Full Text Available In this paper, we investigate the role of morphing on flight dynamics of two birds by simulating the flow over rigid and morphing wings that have the characteristics of two different birds, namely the Giant Petrel and Dove Prion. The simulation of a flapping rigid wing shows that the root of the wing should be placed at a specific angle of attack in order to generate enough lift to balance the weight of the bird. However, in this case the generated thrust is either very small, or even negative, depending on the wing shape. Further, results show that morphing of the wing enables a significant increase in the thrust and propulsive efficiency. This indicates that the birds actually utilize some sort of active wing twisting and bending to produce enough thrust. This study should facilitate better guidance for the design of flapping air vehicles.

  14. Fast delta Hadamard transform

    International Nuclear Information System (INIS)

    Fenimore, E.E.; Weston, G.S.

    1981-01-01

    In many fields (e.g., spectroscopy, imaging spectroscopy, photoacoustic imaging, coded aperture imaging) binary bit patterns known as m sequences are used to encode (by multiplexing) a series of measurements in order to obtain a larger throughput. The observed measurements must be decoded to obtain the desired spectrum (or image in the case of coded aperture imaging). Decoding in the past has used a technique called the fast Hadamard transform (FHT) whose chief advantage is that it can reduce the computational effort from N 2 multiplies of N log 2 N additions or subtractions. However, the FHT has the disadvantage that it does not readily allow one to sample more finely than the number of bits used in the m sequence. This can limit the obtainable resolution and cause confusion near the sample boundaries (phasing errors). Both 1-D and 2-D methods (called fast delta Hadamard transforms, FDHT) have been developed which overcome both of the above limitations. Applications of the FDHT are discussed in the context of Hadamard spectroscopy and coded aperture imaging with uniformly redundant arrays. Special emphasis has been placed on how the FDHT can unite techniques used by both of these fields into the same mathematical basis

  15. Problem of Vortex Turbulence behind Wings (II),

    Science.gov (United States)

    1980-09-23

    these winglets would give a resultant aerodynamic force directed towards the front which would decrease the wing drag. Such winglets will affect the...Fig. 30 Whitcomb winglets Pig. 31 Set of winglets for wake dissipation Surfaces on wing tips, winglets (Fig. 30), proposed by Whitcomb to diminish...anyway - to decrease the induced drag of the wing by putting some winglets at a certain angle in different planes, as shown in Fig. 31. The total

  16. Energy deposition by delta rays

    International Nuclear Information System (INIS)

    Weigand, F.C.; Braby, L.A.

    1983-01-01

    Monte Carlo calculations for proton tracks were extended to projectile with more complex electronic structures which add additional delta ray production processes. An experimental apparatus was used to detect gas gain and resolution for H 2+ and 3 He ++

  17. Super-delta: a new differential gene expression analysis procedure with robust data normalization.

    Science.gov (United States)

    Liu, Yuhang; Zhang, Jinfeng; Qiu, Xing

    2017-12-21

    Normalization is an important data preparation step in gene expression analyses, designed to remove various systematic noise. Sample variance is greatly reduced after normalization, hence the power of subsequent statistical analyses is likely to increase. On the other hand, variance reduction is made possible by borrowing information across all genes, including differentially expressed genes (DEGs) and outliers, which will inevitably introduce some bias. This bias typically inflates type I error; and can reduce statistical power in certain situations. In this study we propose a new differential expression analysis pipeline, dubbed as super-delta, that consists of a multivariate extension of the global normalization and a modified t-test. A robust procedure is designed to minimize the bias introduced by DEGs in the normalization step. The modified t-test is derived based on asymptotic theory for hypothesis testing that suitably pairs with the proposed robust normalization. We first compared super-delta with four commonly used normalization methods: global, median-IQR, quantile, and cyclic loess normalization in simulation studies. Super-delta was shown to have better statistical power with tighter control of type I error rate than its competitors. In many cases, the performance of super-delta is close to that of an oracle test in which datasets without technical noise were used. We then applied all methods to a collection of gene expression datasets on breast cancer patients who received neoadjuvant chemotherapy. While there is a substantial overlap of the DEGs identified by all of them, super-delta were able to identify comparatively more DEGs than its competitors. Downstream gene set enrichment analysis confirmed that all these methods selected largely consistent pathways. Detailed investigations on the relatively small differences showed that pathways identified by super-delta have better connections to breast cancer than other methods. As a new pipeline, super-delta

  18. Topological structures of vortex flow on a flying wing aircraft, controlled by a nanosecond pulse discharge plasma actuator

    Science.gov (United States)

    Du, Hai; Shi, Zhiwei; Cheng, Keming; Wei, Dechen; Li, Zheng; Zhou, Danjie; He, Haibo; Yao, Junkai; He, Chengjun

    2016-06-01

    Vortex control is a thriving research area, particularly in relation to flying wing or delta wing aircraft. This paper presents the topological structures of vortex flow on a flying wing aircraft controlled by a nanosecond plasma dielectric barrier discharge actuator. Experiments, including oil flow visualization and two-dimensional particle image velocimetry (PIV), were conducted in a wind tunnel with a Reynolds number of 0.5 × 106. Both oil and PIV results show that the vortex can be controlled. Oil topological structures on the aircraft surface coincide with spatial PIV flow structures. Both indicate vortex convergence and enhancement when the plasma discharge is switched on, leading to a reduced region of separated flow.

  19. Veins improve fracture toughness of insect wings.

    Directory of Open Access Journals (Sweden)

    Jan-Henning Dirks

    Full Text Available During the lifetime of a flying insect, its wings are subjected to mechanical forces and deformations for millions of cycles. Defects in the micrometre thin membranes or veins may reduce the insect's flight performance. How do insects prevent crack related material failure in their wings and what role does the characteristic vein pattern play? Fracture toughness is a parameter, which characterises a material's resistance to crack propagation. Our results show that, compared to other body parts, the hind wing membrane of the migratory locust S. gregaria itself is not exceptionally tough (1.04±0.25 MPa√m. However, the cross veins increase the wing's toughness by 50% by acting as barriers to crack propagation. Using fracture mechanics, we show that the morphological spacing of most wing veins matches the critical crack length of the material (1132 µm. This finding directly demonstrates how the biomechanical properties and the morphology of locust wings are functionally correlated in locusts, providing a mechanically 'optimal' solution with high toughness and low weight. The vein pattern found in insect wings thus might inspire the design of more durable and lightweight artificial 'venous' wings for micro-air-vehicles. Using the vein spacing as indicator, our approach might also provide a basis to estimate the wing properties of endangered or extinct insect species.

  20. Subtractive Structural Modification of Morpho Butterfly Wings.

    Science.gov (United States)

    Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen

    2015-11-11

    Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Analysis of bat wings for morphing

    Science.gov (United States)

    Leylek, Emily A.; Manzo, Justin E.; Garcia, Ephrahim

    2008-03-01

    The morphing of wings from three different bat species is studied using an extension of the Weissinger method. To understand how camber affects performance factors such as lift and lift to drag ratio, XFOIL is used to study thin (3% thickness to chord ratio) airfoils at a low Reynolds number of 100,000. The maximum camber of 9% yielded the largest lift coefficient, and a mid-range camber of 7% yielded the largest lift to drag ratio. Correlations between bat wing morphology and flight characteristics are covered, and the three bat wing planforms chosen represent various combinations of morphological components and different flight modes. The wings are studied using the extended Weissinger method in an "unmorphed" configuration using a thin, symmetric airfoil across the span of the wing through angles of attack of 0°-15°. The wings are then run in the Weissinger method at angles of attack of -2° to 12° in a "morphed" configuration modeled after bat wings seen in flight, where the camber of the airfoils comprising the wings is varied along the span and a twist distribution along the span is introduced. The morphed wing configurations increase the lift coefficient over 1000% from the unmorphed configuration and increase the lift to drag ratio over 175%. The results of the three different species correlate well with their flight in nature.

  2. Niger Delta Development Commission and Sustainable ...

    African Journals Online (AJOL)

    Niger Delta Development Commission and Sustainable Development of Niger Delta Region of Nigeria: The Case of Rivers State. Goddey Wilson. Abstract. The study is on Niger Delta Development Commission and sustainable development of Niger Delta region of Nigeria, the case of Rivers State. The main objective of the ...

  3. Quad-thopter: Tailless Flapping Wing Robot with 4 Pairs of Wings

    NARCIS (Netherlands)

    de Wagter, C.; Karasek, M.; de Croon, G.C.H.E.; J.-M. Moschetta G. Hattenberger, H. de Plinval

    2017-01-01

    We present a novel design of a tailless flapping wing Micro Air Vehicle (MAV), which uses four independently driven pairs of flapping wings in order to fly and perform agile maneuvers. The wing pairs are arranged such that differential thrust generates the desired roll and pitch moments, similar to

  4. Tirocinio e videomentoring: il punto di vista degli studenti

    Directory of Open Access Journals (Sweden)

    Carla Maltinti

    2015-12-01

    Full Text Available Il presente contributo analizza i commenti espressi dagli studenti del Corso di Studi in Scienze della Formazione Primaria dell’Università di Firenze dopo aver partecipato al primo anno di un nuovo percorso di tirocinio integrato da videomentoring.I feedback forniti dai tirocinanti sono stati esaminati con un duplice scopo: (i acquisire i giudizi, le percezioni, le emozioni degli studenti in rapporto all’esperienza effettuata; (ii ricavarne indicazioni per migliorare la proposta formativa.I dati raccolti, analizzati attraverso una content analysis, toccano aspetti fondamentali della formazione iniziale degli insegnanti, quali il modellamento, l’importanza del rapporto con il tutor, la riflessività, l’imbarazzo dei tirocinanti nel vedersi in azione.

  5. Quantitative-genetic analysis of wing form and bilateral asymmetry ...

    Indian Academy of Sciences (India)

    Unknown

    lines; Procrustes analysis; wing shape; wing size. ... Models of stochastic gene expression pre- dict that intrinsic noise ... Quantitative parameters of wing size and shape asymmetries ..... the residuals of a regression on centroid size produced.

  6. $\\delta$-Expansion at Finite Temperature

    OpenAIRE

    Ramos, Rudnei O.

    1996-01-01

    We apply the $\\delta$-expansion perturbation scheme to the $\\lambda \\phi^{4}$ self-interacting scalar field theory in 3+1 D at finite temperature. In the $\\delta$-expansion the interaction term is written as $\\lambda (\\phi^{2})^{ 1 + \\delta}$ and $\\delta$ is considered as the perturbation parameter. We compute within this perturbative approach the renormalized mass at finite temperature at a finite order in $\\delta$. The results are compared with the usual loop-expansion at finite temperature.

  7. Adaptive wing : Investigations of passive wing technologies for loads reduction in the cleansky smart fixed wing aircraft (SFWA) project

    NARCIS (Netherlands)

    Kruger, W.R.; Dillinger, J; De Breuker, R.; Reyes, M.; Haydn, K.

    2016-01-01

    In the work package “Adaptive Wing” in the Clean-Sky “Smart Fixed Wing Aircraft” (SFWA) project, design processes and solutions for aircraft wings have been created, giving optimal response with respect to loads, comfort and performance by the introduction of passive and active concepts. Central

  8. Book review. La forma degli animali. Adolf Portmann

    Directory of Open Access Journals (Sweden)

    Manuel Graziani

    2013-09-01

    Full Text Available Nel 1931 il biologo Adolf Portmann era già talmente noto a livello internazionale per le sue ricerche da guadagnarsi la cattedra in zoologia nell'università della sua città natale, Basilea, all'età di appena 34 anni. All'attività di docente universitario ha sempre affiancato un'originale riflessione sul significato delle scienze della vita, imponendosi come una delle figure chiave nel dibattito tra biologia teoretica, estetica e antropologia filosofica. La forma degli animali, la sua opera più celebre, si pone al confine tra varie discipline e conserva un grande interesse ancora oggi che il dialogo tra estetica e biologia si è fatto nuovamente intenso. Pubblicata nel 1948 e in forma ampliata nel 1960 (da cui deriva questa prima edizione italiana a cura di Pietro Conte l'opera rappresenta il frutto più maturo delle sue ricerche "interdisciplinari".Un saggio che nasce dall'insoddisfazione nei confronti dei paradigmi scientifici consolidati e che ripropone l'idea morfologica in biologia sulla scorta del pensiero di J. W. Goethe il quale affermava che "tutto ciò che è deve anche dar cenno di sé e mostrarsi". Adolf Portmann è un convinto sostenitore che dalla forma si possano dedurne le complessive caratteristiche interne ed esterne degli animali. Secondo questa prospettiva la peculiare fisionomia dell'organismo dipende dalla congiunzione delle sue parti e dalle loro reciproche funzioni. Tuttavia l'autore non vede nello studio della forma l'alternativa al funzionalismo quanto, piuttosto, il suo necessario bilanciamento come dichiara nell'introduzione: "… per giungere alla conoscenza della vita animale di strade ce ne sono molte, e tutte possono contribuire ad arricchire la nostra esperienza. Questo lavoro si occupa della forma degli animali e si propone di mettere in luce la peculiare natura dell'aspetto visibile. Ci sono persone che si dedicano allo studio degli animali, conoscono moltissime specie, hanno imparato centinaia di nomi e

  9. The influence of delta ferrite in the AISI 416 stainless steel hot workability

    International Nuclear Information System (INIS)

    Cardoso, P.H.S.; Kwietniewski, C.; Porto, J.P.; Reguly, A.; Strohaecker, T.R.

    2003-01-01

    Delta ferrite in martensitic stainless steels may have an adverse effect on the mechanical properties of these materials at high temperature. The occurrence of such phase is determined by the material chemical composition (mainly Cr and C), as-received microstructure condition and hot working temperature. The aim of this investigation is to assess the influence of delta ferrite on the hot workability of the martensitic AISI 416 stainless steel. Hence, different heats of this material (differing in chemical composition and as-received microstructure) were submitted to heating tests in order to observe the microstructural transformations that take place at high temperature and then examine the influence of these transformations on the mechanical behaviour. Phase characterisation and quantification were carried out using scanning electron microscopy/energy-dispersive X-ray microanalysis and image analysis. The heating tests were performed in the temperature range of 1100-1350 deg. C and hot workability in two heats with different delta ferrite content was assessed by hot torsion tests in the temperature range of 1000-1250 deg. C. The results have indicated that chemical composition and as-received microstructure strongly affect delta ferrite formation, which in turn deteriorates hot workability of the martensitic AISI 416 stainless steel

  10. Anaerobic Transformation of Furfural by Methanococcus deltae (Delta)LH

    Science.gov (United States)

    Belay, N.; Boopathy, R.; Voskuilen, G.

    1997-01-01

    Methanococcus deltae (Delta)LH was grown on H(inf2)-CO(inf2) in the presence of various concentrations of furfural. Furfural at higher concentrations, namely, 20 and 25 mM, inhibited growth of this organism. At concentration of 5 and 10 mM, no inhibition of growth was observed. The other methanogens in this study were not inhibited by 10 mM furfural. Among the methanogens tested, M. deltae was capable of transforming furfural, whereas Methanobacterium thermoautotrophicum Marburg, Methanosarcina barkeri 227, Methanococcus thermolithotrophicus, and Methanobrevibacter ruminantium lacked this capability. One hundred percent removal of furfural was observed within 48 h of incubation in M. deltae cultures. The end product observed during furfural metabolism was furfuryl alcohol. An almost stoichiometric amount of furfuryl alcohol was produced by M. deltae. This transformation is likely to be of value in the detoxification of furfural and in its ultimate conversion to methane and CO(inf2) by anaerobic digestion. PMID:16535618

  11. Equilibrium state of delta-phase with tellurium in the Sb-Bi-Te system

    International Nuclear Information System (INIS)

    Gajgukova, V.S.; Dudkin, L.D.; Erofeev, R.S.; Musaelyan, V.V.; Nadzhip, A.Eh.; Sokolov, O.B.

    1978-01-01

    A research has been carried out with a view to establish the equilibrium state of delta-phase of the composition (Sbsub(1-x)Bisub(x)) 2 Te 3 with tellurium, depending on x and temperature. The Hall effect, the thermoelectromotive force, and the electric conductivity of the samples of Sb-Bi-Te alloys have been measured, the samples being annealed at various temperatures (550 to 250 deg C). The measurement results have shown that as the Bi 2 Te 3 content in the solid solutions increases and temperature decreases, the delta-phase-Te boundary monotonously approaches the stoichiometric composition. Using the research carrid out as the basis, the general character of the equilibrium delta-phase with tellurium boundary has been rendered more precise in Sb-Bi-Te system, depending on the temperature and Bi content (up to 25 at.%)

  12. The hydrolysis of iron(III) and iron(ll) ions between 25 deg C and 375 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, Derek

    1971-11-15

    Some data on the stabilities of the known iron (III) and iron (II) ions are presented, that have been obtained in a theoretical study of the iron-water system at temperatures up to the critical temperature. In this study, estimates of the stability constants of the various ions in dilute solution have been made by a method based on the equations of classical thermodynamics and empirical equations for the change with temperature of ionic heat capacity. The data indicate that hydrolysis increases so rapidly with temperature that the Fe+3 - ion is practically non-existent above about 150 deg C and, except in very acid solutions, the Fe+2 - ion is a relatively minor constituent above about 250 deg C. The most stable of the ions over a wide range of conditions are probably Fe(OH){sub 2}+ , Fe(OH)+ and HFeO{sub 2}-

  13. Novel four-wing and eight-wing attractors using coupled chaotic Lorenz systems

    International Nuclear Information System (INIS)

    Grassi, Giuseppe

    2008-01-01

    This paper presents the problem of generating four-wing (eight-wing) chaotic attractors. The adopted method consists in suitably coupling two (three) identical Lorenz systems. In analogy with the original Lorenz system, where the two wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four wings (eight wings) of these novel attractors are located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues. (general)

  14. Precipitate evolution in underaged Al-Mg-Si alloy during thermal cycling between 25 deg. C and 65 deg. C

    International Nuclear Information System (INIS)

    Uan, J.-Y.; Cho, C.-Y.; Chen, Z.-M.; Lin, J.-K.

    2006-01-01

    The evolution of metastable precipitates and the aging response in underaged Al-Mg-Si alloy during environmental temperature cycling was investigated using transmission electron microscopy (TEM) and hardness tests. After the alloy underwent thermal cycling between 25 deg. C and 65 deg. C, the hardness tests revealed that hardness decreased slightly, rather than following a concave downward curve, with the cycle times. Needle-shaped G.P. zones transformed during the environmental thermal cycling. The fraction of the zones declined sharply from almost 100% to only approximately 10% after 90 cycles, accompanied by an increase in the fraction of lath-shaped precipitates and the formation of β'' precipitates in the matrix. The precipitate developed with the 25-65 deg. C cycling time as follows: needle-shaped G.P. zones → lath-shaped ppt + β'' ppt + needle-shaped G.P. zones → lath-shaped ppt + β'' ppt + rod-shaped ppt + needle-shaped G.P. zones. Therefore, three or four precipitates coexisted in the underaged alloy following prolonged cycling. The formation of a limited number of β'' precipitates and the presence of a rod-shaped phase in the alloy during environmental temperature cycling reduced the hardness as the cycle time increases

  15. Nonlinear Dynamics of Wind Turbine Wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther

    , large wind turbines become increasingly flexible and dynamically sensitive. This project focuses on the structural analysis of highly flexible wind turbine wings, and the aerodynamic loading of wind turbine wings under large changes in flow field due to elastic deformations and changing wind conditions....

  16. Effects of Sweep Angle on the Boundary-Layer Stability Characteristics of an Untapered Wing at Low Speeds

    Science.gov (United States)

    Boltz, Frederick W.; Kenyon, George C.; Allen, Clyde Q.

    1960-01-01

    An investigation was conducted in the Ames 12-Foot Low-Turbulence Pressure Tunnel to determine the effects of sweep on the boundary-layer stability characteristics of an untapered variable-sweep wing having an NACA 64(2)A015 section normal to the leading edge. Pressure distribution and transition were measured on the wing at low speeds at sweep angles of 0, 10, 20, 30, 40, and 50 deg. and at angles of attack from -3 to 3 deg. The investigation also included flow-visualization studies on the surface at sweep angles from 0 to 50 deg. and total pressure surveys in the boundary layer at a sweep angle of 30 deg. for angles of attack from -12 to 0 deg. It was found that sweep caused premature transition on the wing under certain conditions. This effect resulted from the formation of vortices in the boundary layer when a critical combination of sweep angle, pressure gradient, and stream Reynolds number was attained. A useful parameter in indicating the combined effect of these flow variables on vortex formation and on beginning transition is the crossflow Reynolds number. The critical values of crossflow Reynolds number for vortex formation found in this investigation range from about 135 to 190 and are in good agreement with those reported in previous investigations. The values of crossflow Reynolds number for beginning transitions were found to be between 190 and 260. For each condition (i.e., development of vortices and initiation of transition at a given location) the lower values in the specified ranges were obtained with a light coating of flow-visualization material on the surface. A method is presented for the rapid computation of crossflow Reynolds number on any swept surface for which the pressure distribution is known. From calculations based on this method, it was found that the maximum values of crossflow Reynolds number are attained under conditions of a strong pressure gradient and at a sweep angle of about 50 deg. Due to the primary dependence on pressure

  17. The Codice digitale degli archivi veronesi. A research instrument

    Directory of Open Access Journals (Sweden)

    Andrea Brugnoli

    2014-04-01

    Full Text Available The Codice digitale degli archivi veronesi (Verona’s archives digital code ‹http://cdavr.dtesis.univr.it› makes available online the digital reproductions of the documents produced by corporate bodies and family of Verona between the eighth and twelfth century. The framework of the site reflects the current organisation of the archives. A brief description of the circumstances around the creation of each archive, the corporate body or individual responsible for it and its structure is provided. Each archival unit is identified by its key elements: chronological date, name and qualification of the notary, original/copy, main editions.

  18. Deformation behaviour of type 316 steel at 400 deg. C

    International Nuclear Information System (INIS)

    Wood, D.S.; Williamson, K.

    A variety of type 316 steel deformation tests at 400 deg. C involving a study of strain rate, stress increment, stress cycling and strain cycling effects are reported. It is concluded that very small ratchet strains may occur, but these are unlikely to be of engineering significance. It is also shown that in the absence of reversed plasticity the upper stress bound is represented by the monotonic stress-strain curve. Under reversed plasticity, significant cyclic hardening can occur and in this case the upper bound may be represented by the cyclic stress-strain curve

  19. Islam, rappresentanza degli interessi religiosi e diritto comune europeo *

    Directory of Open Access Journals (Sweden)

    Gianfranco Macrì

    2011-03-01

    Full Text Available Contributo destinato alla pubblicazione negli Atti del Convegno: Europa e Islam. Ridiscutere i fondamenti per la disciplina delle libertà religiose, svoltosi a Salerno il 3 dicembre 2007. SOMMARIO: Premessa - 1. La società «reticolare» europea: sistema di governance e valori unificanti - 2. Europa e fenomeno religioso - 3. La sostanza del Trattato di Lisbona e il ruolo delle organizzazioni religiose - 4. Il dibattito interno all’Islam europeo - 5. La Carta dei musulmani d’Europa - 6. La rappresentanza degli interessi religiosi dell’Islam in Europa - Conclusioni.

  20. A thermodynamic data base for Tc to calculate equilibrium solubilities at temperatures up to 300 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Puigdomenech, I [Studsvik AB, Nykoeping (Sweden); Bruno, J [Intera Information Technologies SL, Cerdanyola (Spain)

    1995-04-01

    Thermodynamic data has been selected for solids and aqueous species of technetium. Equilibrium constants have been calculated in the temperature range 0 to 300 deg C at a pressure of 1 bar for T<100 deg C and at the steam saturated pressure at higher temperatures. For aqueous species, the revised Helgeson-Kirkham-Flowers model is used for temperature extrapolations. The data base contains a large amount of estimated data, and the methods used for these estimations are described in detail. A new equation is presented that allows the estimation of {Delta}{sub r}Cdeg{sub pm} values for mononuclear hydrolysis reactions. The formation constants for chloro complexes of Tc(V) and Tc(IV), whose existence is well established, have been estimated. The majority of entropy and heat capacity values in the data base have also been estimated, and therefore temperature extrapolations are largely based on estimations. The uncertainties derived from these calculations are described. Using the data base developed in this work, technetium solubilities have been calculated as a function of temperature for different chemical conditions. The implications for the mobility of Tc under nuclear repository conditions are discussed. 70 refs.

  1. Study of interaction of a pair of longitudinal vortices with a horseshoe vortex around a wing. 2nd Report. Behavior of the interacting flow field controlled passively; Tsubasa mawari no bateikei uzu to tateuzu no kansho ni kansuru kenkyu. 2. Judo seigyosareta nagareba no kyodo

    Energy Technology Data Exchange (ETDEWEB)

    Hara, H. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Shizawa, T.; Honami, S. [Science University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1999-12-25

    This paper presents the behavior of a passively controlled horseshoe vortex at the root of NACA0024 wing which is established on a turbulent boundary layer, A pair of vortex generators of half delta wing is installed upstream of the wing. The flow field of the optimally controlled horseshoe vortex both in case of Common Flow Up (CFUC) and Common Flow Down Configuration (CFDC) is carefully investigated by an X-array hot-wire. In case of CFUC, the horseshoe vortex is not shifted from the wing, because the longitudinal vortex is restrained. The interacted vortex presents a circular profile, in a optimally controlled case. In case of CFDC, the interacted vortex that has strong vorticity by the pairing process is shifted away from the wing. Then, the high momentum fluid flow penetrates between the wing and the vortex. (author)

  2. Four new Delta Scuti stars

    Science.gov (United States)

    Schutt, R. L.

    1991-01-01

    Four new Delta Scuti stars are reported. Power, modified into amplitude, spectra, and light curves are used to determine periodicities. A complete frequency analysis is not performed due to the lack of a sufficient time base in the data. These new variables help verify the many predictions that Delta Scuti stars probably exist in prolific numbers as small amplitude variables. Two of these stars, HR 4344 and HD 107513, are possibly Am stars. If so, they are among the minority of variable stars which are also Am stars.

  3. Hovering hummingbird wing aerodynamics during the annual cycle. II. Implications of wing feather moult

    Science.gov (United States)

    Sapir, Nir; Elimelech, Yossef

    2018-01-01

    Birds usually moult their feathers in a particular sequence which may incur aerodynamic, physiological and behavioural implications. Among birds, hummingbirds are unique species in their sustained hovering flight. Because hummingbirds frequently hover-feed, they must maintain sufficiently high flight capacities even when moulting their flight feathers. A hummingbird wing consists of 10 primary flight feathers whose absence during moult may strongly affect wing performance. Using dynamic similarity rules, we compared time-accurate aerodynamic loads and flow field measurements over several wing geometries that follow the natural feather moult sequence of Calypte anna, a common hummingbird species in western North America. Our results suggest a drop of more than 20% in lift production during the early stages of the moult sequence in which mid-wing flight feathers are moulted. We also found that the wing's ability to generate lift strongly depended on the morphological integrity of the outer primaries and leading-edge. These findings may explain the evolution of wing morphology and moult attributes. Specifically, the high overlap between adjacent wing feathers, especially at the wing tip, and the slow sequential replacement of the wing feathers result in a relatively small reduction in wing surface area during moult with limited aerodynamic implications. We present power and efficiency analyses for hover flight during moult under several plausible scenarios, suggesting that body mass reduction could be a compensatory mechanism that preserves the energetic costs of hover flight. PMID:29515884

  4. Performance of MHD coatings in flowing Li at 700 deg

    International Nuclear Information System (INIS)

    Pint, B.; Pawel, S.J.; Howell, M.; Moser, J.L.; Garner, G.W.; Santella, M.L.; Tortorelli, P.F.; Di Stefano, J.R.

    2007-01-01

    Full text of publication follows: A thermal convection loop was constructed from V-4Cr-4Ti tubing and operated in vacuum at a maximum Li temperature of 700 deg. C for ∼1000 h.. Due to slow Li flow (∼1 cm/s) in the loop, the temperature gradient was ∼340 deg. C. Specimens in the hot and cold legs of the loop included V-4Cr-4Ti spacers, tensile specimens (SS-3 type) and coupons coated by physical vapor deposition with yttria and over coated with unalloyed vanadium. Based on prior work, the multi-layer electrically-insulating coatings were developed to reduce the magneto hydrodynamic (MHD) force expected in the first wall of a lithium cooled blanket in a magnetic confinement fusion reactor. Characterization of the specimens after exposure will include: (1) mass change and chemistry change as a function of location in the temperature gradient, (2) the effect of Li exposure on the tensile properties of V-4Cr-4Ti and (3) characterization of the properties and microstructure of the coatings after exposure. Of particular interest will be the coating resistivity after exposure and any degradation of the thin (∼10 μm) vanadium overlayer. Chemistry of the Li before and after the experiment will be compared in order to assess any mass transfer effects. (authors)

  5. The 480 deg. C and 405 deg. C isothermal sections of the phase diagram of Fe-Zn-Si ternary system

    Energy Technology Data Exchange (ETDEWEB)

    Wang Jianhua [Institute of Materials Research, School of Mechanical Engineering, Xiangtan University, Hunan 411105 (China)]. E-mail: super_wang111@hotmail.com; Su Xuping [Institute of Materials Research, School of Mechanical Engineering, Xiangtan University, Hunan 411105 (China); Yin Fucheng [Institute of Materials Research, School of Mechanical Engineering, Xiangtan University, Hunan 411105 (China); Li Zhi [Institute of Materials Research, School of Mechanical Engineering, Xiangtan University, Hunan 411105 (China); Zhao Manxiu [Institute of Materials Research, School of Mechanical Engineering, Xiangtan University, Hunan 411105 (China)

    2005-08-16

    The 480 deg. C and 405 deg. C isothermal sections of the Fe-Zn-Si ternary phase diagram have been determined experimentally using scanning electron microscopy (SEM) coupled with energy dispersive X-ray spectroscopy (EDS) and X-ray diffractometry. The research of the work has concentrated on the Zn-rich corner, which is relevant to general galvanizing. The present studies have confirmed the existence of equilibrium state between the liquid, the {zeta} phase and the FeSi phase at the 480 deg. C isothermal section. There exist some changes in the phase relationships compared with the isothermal section at 450 deg. C. Experimental results indicate that Si solubility in all four Zn-Fe compounds is also limited at 480 deg. C and 405 deg. C.

  6. A DegU-P and DegQ-Dependent Regulatory Pathway for the K-state in Bacillus subtilis

    Directory of Open Access Journals (Sweden)

    Mathieu Miras

    2016-11-01

    Full Text Available The K-state in the model bacterium Bacillus subtilis is associated with transformability (competence as well as with growth arrest and tolerance for antibiotics. Entry into the K-state is determined by the stochastic activation of the transcription factor ComK and occurs in about ~15% of the population in domesticated strains. Although the upstream mechanisms that regulate the K-state have been intensively studied and are well understood, it has remained unexplained why undomesticated isolates of B. subtilis are poorly transformable compared to their domesticated counterparts. We show here that this is because fewer cells enter the K-state, suggesting that a regulatory pathway limiting entry to the K-state is missing in domesticated strains. We find that loss of this limitation is largely due to an inactivating point mutation in the promoter of degQ. The resulting low level of DegQ decreases the concentration of phosphorylated DegU, which leads to the de-repression of the srfA operon and ultimately to the stabilization of ComK. As a result, more cells reach the threshold concentration of ComK needed to activate the auto-regulatory loop at the comK promoter. In addition, we demonstrate that the activation of srfA transcription in undomesticated strains is transient, turning off abruptly as cells enter the stationary phase. Thus, the K-state and transformability are more transient and less frequently expressed in the undomesticated strains. This limitation is more extreme than appreciated from studies of domesticated strains. Selection has apparently limited both the frequency and the duration of the bistably expressed K-state in wild strains, likely because of the high cost of growth arrest associated with the K-state. Future modeling of K-state regulation and of the fitness advantages and costs of the K-state must take these features into account.

  7. Semi-automated quantitative Drosophila wings measurements.

    Science.gov (United States)

    Loh, Sheng Yang Michael; Ogawa, Yoshitaka; Kawana, Sara; Tamura, Koichiro; Lee, Hwee Kuan

    2017-06-28

    Drosophila melanogaster is an important organism used in many fields of biological research such as genetics and developmental biology. Drosophila wings have been widely used to study the genetics of development, morphometrics and evolution. Therefore there is much interest in quantifying wing structures of Drosophila. Advancement in technology has increased the ease in which images of Drosophila can be acquired. However such studies have been limited by the slow and tedious process of acquiring phenotypic data. We have developed a system that automatically detects and measures key points and vein segments on a Drosophila wing. Key points are detected by performing image transformations and template matching on Drosophila wing images while vein segments are detected using an Active Contour algorithm. The accuracy of our key point detection was compared against key point annotations of users. We also performed key point detection using different training data sets of Drosophila wing images. We compared our software with an existing automated image analysis system for Drosophila wings and showed that our system performs better than the state of the art. Vein segments were manually measured and compared against the measurements obtained from our system. Our system was able to detect specific key points and vein segments from Drosophila wing images with high accuracy.

  8. Insect Wing Displacement Measurement Using Digital Holography

    International Nuclear Information System (INIS)

    Aguayo, Daniel D.; Mendoza Santoyo, Fernando; Torre I, Manuel H. de la; Caloca Mendez, Cristian I.

    2008-01-01

    Insects in flight have been studied with optical non destructive techniques with the purpose of using meaningful results in aerodynamics. With the availability of high resolution and large dynamic range CCD sensors the so called interferometric digital holographic technique was used to measure the surface displacement of in flight insect wings, such as butterflies. The wings were illuminated with a continuous wave Verdi laser at 532 nm, and observed with a CCD Pixelfly camera that acquire images at a rate of 11.5 frames per second at a resolution of 1392x1024 pixels and 12 Bit dynamic range. At this frame rate digital holograms of the wings were captured and processed in the usual manner, namely, each individual hologram is Fourier processed in order to find the amplitude and phase corresponding to the digital hologram. The wings displacement is obtained when subtraction between two digital holograms is performed for two different wings position, a feature applied to all consecutive frames recorded. The result of subtracting is seen as a wrapped phase fringe pattern directly related to the wing displacement. The experimental data for different butterfly flying conditions and exposure times are shown as wire mesh plots in a movie of the wings displacement

  9. In the wings of physics

    CERN Document Server

    Jacob, Maurice René Michel

    1995-01-01

    In physics research, many activities occur backstage or to continue the theatrical metaphor, in the wings of physics. This book focuses on two such activities: the editing of physics journals and the operation of physical societies. The author was editor of Physics Letters B for particle physics and then of Physics Reports for a total of 18 years, as well as being president of the French Physical Society and later of the European Physical Society. This book puts together papers dealing with such activities which he has written at various times in his career. It takes the reader into the inner circles of scientific editing and of physical societies. Each introduced by a foreword, these papers can be read separately.

  10. Moveable Leading Edge Device for a Wing

    Science.gov (United States)

    Pitt, Dale M. (Inventor); Eckstein, Nicholas Stephen (Inventor)

    2013-01-01

    A method and apparatus for managing a flight control surface system. A leading edge section on a wing of an aircraft is extended into a deployed position. A deformable section connects the leading edge section to a trailing section. The deformable section changes from a deformed shape to an original shape when the leading edge section is moved into the deployed position. The leading edge section on the wing is moved from the deployed position to an undeployed position. The deformable section changes to the deformed shape inside of the wing.

  11. Generic Wing-Body Aerodynamics Data Base

    Science.gov (United States)

    Holst, Terry L.; Olsen, Thomas H.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    The wing-body aerodynamics data base consists of a series of CFD (Computational Fluid Dynamics) simulations about a generic wing body configuration consisting of a ogive-circular-cylinder fuselage and a simple symmetric wing mid-mounted on the fuselage. Solutions have been obtained for Nonlinear Potential (P), Euler (E) and Navier-Stokes (N) solvers over a range of subsonic and transonic Mach numbers and angles of attack. In addition, each solution has been computed on a series of grids, coarse, medium and fine to permit an assessment of grid refinement errors.

  12. Hydrological and Climatic Significance of Martian Deltas

    Science.gov (United States)

    Di Achille, G.; Vaz, D. A.

    2017-10-01

    We a) review the geomorphology, sedimentology, and mineralogy of the martian deltas record and b) present the results of a quantitative study of the hydrology and sedimentology of martian deltas using modified version of terrestrial model Sedflux.

  13. Adaptive delta management : Roots and branches

    NARCIS (Netherlands)

    Timmermans, J.S.; Haasnoot, M.; Hermans, L.M.; Kwakkel, J.H.; Rutten, M.M.; Thissen, W.A.H.

    2015-01-01

    Deltas are generally recognized as vulnerable to climate change and therefore a salient topic in adaptation science. Deltas are also highly dynamic systems viewed from physical (erosion, sedimentation, subsidence), social (demographic), economic (trade), infrastructures (transport, energy,

  14. Adaptive Delta Management : Roots and Branches

    NARCIS (Netherlands)

    Timmermans, Jos; Haasnoot, Marjolijn; Hermans, Leon; Kwakkel, Jan H.; Rutten, Maarten; Thissen, Wil A.H.; Mynett, Arthur

    2015-01-01

    Deltas are generally recognized as vulnerable to climate change and therefore a salient topic in adaptation science. Deltas are also highly dynamic systems viewed from physical (erosion, sedimentation, subsidence), social (demographic), economic (trade), infrastructures (transport, energy,

  15. Delta Vegetation and Land Use [ds292

    Data.gov (United States)

    California Natural Resource Agency — Vegetation and land use are mapped for the approximately 725,000 acres constituting the Legal Delta portion of the Sacramento and San Joaquin River Delta area....

  16. Delta Scuti variables. Lecture 6

    International Nuclear Information System (INIS)

    Cox, A.N.

    1983-01-01

    The class of variables near or on the upper main sequence, the delta Scuti variables, are not only the usual ones about the masses, radii, and luminosities, but also the age, rotation, element diffusion to change the surface layer composition, the occurance of convection and the presence of radial and nonradial pulsation modes

  17. about the Dirac Delta Function(?)

    Indian Academy of Sciences (India)

    V Balakrishnan is in the. Department of ... and sweet as befits this impatient age. It said (in its en- ... to get down to real work by shutting down the system and reverting to ... the Dirac delta function" - but do note the all-important question mark in ...

  18. Thin tailored composite wing for civil tiltrotor

    Science.gov (United States)

    Rais-Rohani, Masoud

    1994-01-01

    The tiltrotor aircraft is a flight vehicle which combines the efficient low speed (i.e., take-off, landing, and hover) characteristics of a helicopter with the efficient cruise speed of a turboprop airplane. A well-known example of such vehicle is the Bell-Boeing V-22 Osprey. The high cruise speed and range constraints placed on the civil tiltrotor require a relatively thin wing to increase the drag-divergence Mach number which translates into lower compressibility drag. It is required to reduce the wing maximum thickness-to-chord ratio t/c from 23% (i.e., V-22 wing) to 18%. While a reduction in wing thickness results in improved aerodynamic efficiency, it has an adverse effect on the wing structure and it tends to reduce structural stiffness. If ignored, the reduction in wing stiffness leads to susceptibility to aeroelastic and dynamic instabilities which may consequently cause a catastrophic failure. By taking advantage of the directional stiffness characteristics of composite materials the wing structure may be tailored to have the necessary stiffness, at a lower thickness, while keeping the weight low. The goal of this study is to design a wing structure for minimum weight subject to structural, dynamic and aeroelastic constraints. The structural constraints are in terms of strength and buckling allowables. The dynamic constraints are in terms of wing natural frequencies in vertical and horizontal bending and torsion. The aeroelastic constraints are in terms of frequency placement of the wing structure relative to those of the rotor system. The wing-rotor-pylon aeroelastic and dynamic interactions are limited in this design study by holding the cruise speed, rotor-pylon system, and wing geometric attributes fixed. To assure that the wing-rotor stability margins are maintained a more rigorous analysis based on a detailed model of the rotor system will need to ensue following the design study. The skin-stringer-rib type architecture is used for the wing

  19. AFM Study of Structure Influence on Butterfly Wings Coloration

    Directory of Open Access Journals (Sweden)

    Dinara Sultanovna Dallaeva

    2012-01-01

    Full Text Available This study describes the structural coloration of the butterfly Vanessa Atalanta wings and shows how the atomic force microscopy (AFM can be applied to the study of wings morphology and wings surface behavior under the temperature. The role of the wings morphology in colors was investigated. Different colors of wings have different topology and can be identified by them. AFM in semi-contact mode was used to study the wings surface. The wing surface area, which is close to the butterfly body, has shiny brown color and the peak of surface roughness is about 600 nm. The changing of morphology at different temperatures is shown.

  20. Environmental oil spill sensitivity atlas for the West Greenland (68 deg.-72 deg. N) coastal zone, 2nd revised edition

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, D.; Johansen, Kasper L.; Mosbech, A.; Boertmann, D.; Wegeberg, S.

    2012-12-15

    This oil spill sensitivity atlas covers the shoreline and the offshore areas of West Greenland between 68 deg. N and 72 deg. N. The coastal zone is divided into 199 shoreline segments and the offshore zone into 8 areas. A sensitivity index value is calculated for each segment/area, and each segment/area is subsequently ranked according to four degrees of sensitivity. Besides this general ranking a number of smaller areas are especially selected as they are of particular significance, they are especially vulnerable to oil spills and they have a size making oil spill response possible. The shoreline sensitivity ranking are shown on 37 maps (in scale 1:250,000), which also show the different elements included and the selected areas. Coast types, logistics and proposed response methods along the coasts are shown on another 37 maps. The sensitivities of the offshore zones are depicted on 4 maps, one for each season. Based on all the information, appropriate oil spill response methods have been assessed for each area. (Author)

  1. Variation in leaf water delta D and delta 18O values during the evapotranspiration process

    International Nuclear Information System (INIS)

    Leopoldo, P.R.; Foloni, L.L.

    1984-01-01

    A theoretical model was developed to evaluate leaf water delta D and delta 18 O variation in relation to: leaf temperature, relative humidity converted to leaf temperature and delta D and delta 18 O values of atmospheric water vapour and soil water. (M.A.C.) [pt

  2. An analytical framework for strategic delta planning

    NARCIS (Netherlands)

    Seijger, C.; Douven, W.; Halsema, van G.; Hermans, L.; Evers, J.; Phi, H.L.; Khan, M.F.; Brunner, J.; Pols, L.; Ligtvoet, W.; Koole, S.; Slager, K.; Vermoolen, M.S.; Hasan, S.; Thi Minh Hoang, Vo

    2017-01-01

    Sectoral planning on water, agriculture and urban development has not been able to prevent increased flood risks and environmental degradation in many deltas. Governments conceive strategic delta planning as a promising planning approach and develop strategic delta plans. Such plans are linked to

  3. Delta Semantics Defined By Petri Nets

    DEFF Research Database (Denmark)

    Jensen, Kurt; Kyng, Morten; Madsen, Ole Lehrmann

    and the possibility of using predicates to specify state changes. In this paper a formal semantics for Delta is defined and analysed using Petri nets. Petri nets was chosen because the ideas behind Petri nets and Delta concide on several points. A number of proposals for changes in Delta, which resulted from...

  4. Giant magnetic quadrupole resonance studied with 180 deg. electron scattering

    CERN Document Server

    Neumann-Cosel, P V

    1999-01-01

    The nuclei sup 4 sup 8 Ca and sup 9 sup 0 Zr were investigated in 180 deg. high-resolution inelastic electron scattering for momentum transfers q approx =0.35-0.8 fm sup - sup 1. Complete M2 strength distributions could be extracted in both nuclei up to excitation energies of about 15 MeV utilizing a fluctuation analysis technique. Second-RPA calculations successfully describe the experimentally observed strong fragmentation of the M2 mode. The quenching of the spin part is found to be comparable to the M1 case, contrary to previous claims suggesting a stronger reduction. A quantitative reproduction of the data requires the presence of appreciable orbital strength which can be interpreted as a torsional elastic vibration (the so-called twist mode).

  5. Evaluation of cartilage surface injuries using 3D-double echo steady state (3D-DESS): Effect of changing flip angle from 40 deg to 90 deg

    International Nuclear Information System (INIS)

    Moriya, Susumu; Yokobayashi, Tsuneo; Ishikawa, Mitsunori; Miki, Yukio; Kanagaki, Mitsunori; Yamamoto, Akira; Okudaira, Shuzo; Nakamura, Shinichiro

    2011-01-01

    Background. In magnetic resonance imaging (MRI) with 3D-double-echo steady-state (3D-DESS) sequences, the cartilage-synovial fluid contrast is reported to be better with a flip angle of 90 deg than with the conventional flip angle of 40 deg, and the detection rate of knee cartilage injury may be improved. Purpose. To compare the diagnostic performance and certainty of diagnosis with 3D-DESS images made using two flip angle settings, 40 deg and 90 deg, for knee cartilage surface lesions of Grade 2 or above confirmed by arthroscopy. Material and Methods. Images were obtained with 3D-DESS flip angles of 40 deg and 90 deg at 1.0T in 13 consecutive patients (2 men, 11 women, age range 18-68 years) evaluated for superficial cartilage injury by arthroscopy. Two radiologists classified the presence or absence of cartilage damage of ≥Grade 2 as 'positive (p)' or 'negative (n)', respectively. The rate of agreement with arthroscopic diagnosis was then examined, and the diagnostic performance compared. Diagnostic confidence was assessed scoring the presence or absence of cartilage damage into three categories: 3 = can diagnose with absolute confidence; 2 = can diagnose with a level of certainty as probably present or probably absent; and 1 = cannot make a diagnosis. Results. In a comparison of the rate of agreement between diagnosis by 3D-DESS images and arthroscopy, the rate of agreement was significantly higher and diagnostic performance was better in 90 deg images for the medial femoral condyle only. Diagnostic confidence was significantly better with 90 deg flip angle images than with 40 deg flip angle images for all six cartilage surfaces. Conclusion. In evaluating knee cartilage surface lesions with 3D-DESS sequences, a flip angle setting of 90 deg is more effective than the conventional setting of 40 deg

  6. Evaluation of cartilage surface injuries using 3D-double echo steady state (3D-DESS): Effect of changing flip angle from 40 deg to 90 deg

    Energy Technology Data Exchange (ETDEWEB)

    Moriya, Susumu; Yokobayashi, Tsuneo; Ishikawa, Mitsunori (Ishikawa Clinic, Kyoto (Japan)), email: smoyari@yahoo.co.jp; Miki, Yukio (Dept. of Radiology, Osaka City Univ. Graduate School of Medicine, Osaka (Japan)); Kanagaki, Mitsunori; Yamamoto, Akira (Dept. of Diagnostic Imaging and Nuclear Medicine, Kyoto Univ., Kyoto (Japan)); Okudaira, Shuzo (Dept. of Orthopaedics, Kyoto Police Hospital, Kyoto (Japan)); Nakamura, Shinichiro (Center for Musculoskeletal Research, Univ. of Tennessee, Knoxville, TN (United States))

    2011-12-15

    Background. In magnetic resonance imaging (MRI) with 3D-double-echo steady-state (3D-DESS) sequences, the cartilage-synovial fluid contrast is reported to be better with a flip angle of 90 deg than with the conventional flip angle of 40 deg, and the detection rate of knee cartilage injury may be improved. Purpose. To compare the diagnostic performance and certainty of diagnosis with 3D-DESS images made using two flip angle settings, 40 deg and 90 deg, for knee cartilage surface lesions of Grade 2 or above confirmed by arthroscopy. Material and Methods. Images were obtained with 3D-DESS flip angles of 40 deg and 90 deg at 1.0T in 13 consecutive patients (2 men, 11 women, age range 18-68 years) evaluated for superficial cartilage injury by arthroscopy. Two radiologists classified the presence or absence of cartilage damage of >=Grade 2 as 'positive (p)' or 'negative (n)', respectively. The rate of agreement with arthroscopic diagnosis was then examined, and the diagnostic performance compared. Diagnostic confidence was assessed scoring the presence or absence of cartilage damage into three categories: 3 = can diagnose with absolute confidence; 2 = can diagnose with a level of certainty as probably present or probably absent; and 1 = cannot make a diagnosis. Results. In a comparison of the rate of agreement between diagnosis by 3D-DESS images and arthroscopy, the rate of agreement was significantly higher and diagnostic performance was better in 90 deg images for the medial femoral condyle only. Diagnostic confidence was significantly better with 90 deg flip angle images than with 40 deg flip angle images for all six cartilage surfaces. Conclusion. In evaluating knee cartilage surface lesions with 3D-DESS sequences, a flip angle setting of 90 deg is more effective than the conventional setting of 40 deg

  7. Parametric structural modeling of insect wings

    International Nuclear Information System (INIS)

    Mengesha, T E; Vallance, R R; Barraja, M; Mittal, R

    2009-01-01

    Insects produce thrust and lift forces via coupled fluid-structure interactions that bend and twist their compliant wings during flapping cycles. Insight into this fluid-structure interaction is achieved with numerical modeling techniques such as coupled finite element analysis and computational fluid dynamics, but these methods require accurate and validated structural models of insect wings. Structural models of insect wings depend principally on the shape, dimensions and material properties of the veins and membrane cells. This paper describes a method for parametric modeling of wing geometry using digital images and demonstrates the use of the geometric models in constructing three-dimensional finite element (FE) models and simple reduced-order models. The FE models are more complete and accurate than previously reported models since they accurately represent the topology of the vein network, as well as the shape and dimensions of the veins and membrane cells. The methods are demonstrated by developing a parametric structural model of a cicada forewing.

  8. Left-Wing Extremism: The Current Threat

    Energy Technology Data Exchange (ETDEWEB)

    Karl A. Seger

    2001-04-30

    Left-wing extremism is ''alive and well'' both in the US and internationally. Although the current domestic terrorist threat within the U. S. is focused on right-wing extremists, left-wing extremists are also active and have several objectives. Leftist extremists also pose an espionage threat to U.S. interests. While the threat to the U.S. government from leftist extremists has decreased in the past decade, it has not disappeared. There are individuals and organizations within the U.S. who maintain the same ideology that resulted in the growth of left-wing terrorism in this country in the 1970s and 1980s. Some of the leaders from that era are still communicating from Cuba with their followers in the U.S., and new leaders and groups are emerging.

  9. HC-130 Wing Life Raft Replacement Study

    National Research Council Canada - National Science Library

    Scher, Bob

    1997-01-01

    The U.S. Coast Guard (USCG) uses HC-130 aircraft for search and rescue (SAR) and other missions. The aircraft are presently equipped with two to four 20 person inflatable life rafts, stowed in cells in the wings...

  10. Surface pressure model for simple delta wings at high angles of attack

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging) 1461 1996 Oct 15 13:05:22

    polynomial function approach, splines with limited support and neural network models are ... for thin streamlined bodies, the normal force and pitching moment .... eter, a simple point vortex over an infinite plate is used to derive some results.

  11. Plasma Control of Separated Flows on Delta Wings at High Angles of Attack

    Science.gov (United States)

    2009-03-18

    of Attack 5a. CONTRACT NUMBER ISTC Registration No: 3646 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Dr. Anatoly Alexandrovich...NUMBER(S) ISTC 06-7002 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 13. SUPPLEMENTARY...This work is supported financially by EOARD and performed under the agreement with the International Science and Technology Center ( ISTC ), Moscow

  12. Time Accurate Euler Calculations of Vortical Flow over a Delta Wing in Rolling Motion

    National Research Council Canada - National Science Library

    Fritz, W

    2003-01-01

    .... An important component of the program were the Common Exercises (CE), which promoted the exchange of knowledge between the participating nations and aided the development of computational methods to predict vortical flows...

  13. Butterfly wing color: A photonic crystal demonstration

    Science.gov (United States)

    Proietti Zaccaria, Remo

    2016-01-01

    We have theoretically modeled the optical behavior of a natural occurring photonic crystal, as defined by the geometrical characteristics of the Teinopalpus Imperialis butterfly. In particular, following a genetic algorithm approach, we demonstrate how its wings follow a triclinic crystal geometry with a tetrahedron unit base. By performing both photonic band analysis and transmission/reflection simulations, we are able to explain the characteristic colors emerging by the butterfly wings, thus confirming their crystal form.

  14. Butterflies: Photonic Crystals on the Wing

    Science.gov (United States)

    2007-03-22

    green hairstreak , Callophrys rubi, suggested that the scales have a 3D cubic network organization (Fig. 9). An extensive analysis of the scales of a...Fig. 9. a Ventral side of the wings of the green hairstreak , Callophrys rubi. b Transmission electron micrograph of a small area of a single...Report 3. DATES COVERED (From – To) 15 March 2006 - 08-Jun-07 4. TITLE AND SUBTITLE Butterflies : Photonic Crystals on the Wing 5a. CONTRACT

  15. Membrane wing aerodynamics for micro air vehicles

    Science.gov (United States)

    Lian, Yongsheng; Shyy, Wei; Viieru, Dragos; Zhang, Baoning

    2003-10-01

    The aerodynamic performance of a wing deteriorates considerably as the Reynolds number decreases from 10 6 to 10 4. In particular, flow separation can result in substantial change in effective airfoil shape and cause reduced aerodynamic performance. Lately, there has been growing interest in developing suitable techniques for sustained and robust flight of micro air vehicles (MAVs) with a wingspan of 15 cm or smaller, flight speed around 10 m/ s, and a corresponding Reynolds number of 10 4-10 5. This paper reviews the aerodynamics of membrane and corresponding rigid wings under the MAV flight conditions. The membrane wing is observed to yield desirable characteristics in delaying stall as well as adapting to the unsteady flight environment, which is intrinsic to the designated flight speed. Flow structures associated with the low Reynolds number and low aspect ratio wing, such as pressure distribution, separation bubble and tip vortex are reviewed. Structural dynamics in response to the surrounding flow field is presented to highlight the multiple time-scale phenomena. Based on the computational capabilities for treating moving boundary problems, wing shape optimization can be conducted in automated manners. To enhance the lift, the effect of endplates is evaluated. The proper orthogonal decomposition method is also discussed as an economic tool to describe the flow structure around a wing and to facilitate flow and vehicle control.

  16. Two distinct E3 ubiquitin ligases have complementary functions in the regulation of delta and serrate signaling in Drosophila.

    Directory of Open Access Journals (Sweden)

    Roland Le Borgne

    2005-04-01

    Full Text Available Signaling by the Notch ligands Delta (Dl and Serrate (Ser regulates a wide variety of essential cell-fate decisions during animal development. Two distinct E3 ubiquitin ligases, Neuralized (Neur and Mind bomb (Mib, have been shown to regulate Dl signaling in Drosophila melanogaster and Danio rerio, respectively. While the neur and mib genes are evolutionarily conserved, their respective roles in the context of a single organism have not yet been examined. We show here that the Drosophila mind bomb (D-mib gene regulates a subset of Notch signaling events, including wing margin specification, leg segmentation, and vein determination, that are distinct from those events requiring neur activity. D-mib also modulates lateral inhibition, a neur- and Dl-dependent signaling event, suggesting that D-mib regulates Dl signaling. During wing development, expression of D-mib in dorsal cells appears to be necessary and sufficient for wing margin specification, indicating that D-mib also regulates Ser signaling. Moreover, the activity of the D-mib gene is required for the endocytosis of Ser in wing imaginal disc cells. Finally, ectopic expression of neur in D-mib mutant larvae rescues the wing D-mib phenotype, indicating that Neur can compensate for the lack of D-mib activity. We conclude that D-mib and Neur are two structurally distinct proteins that have similar molecular activities but distinct developmental functions in Drosophila.

  17. Future Change to Tide-Influenced Deltas

    Science.gov (United States)

    Nienhuis, Jaap H.; Hoitink, A. J. F. (Ton); Törnqvist, Torbjörn E.

    2018-04-01

    Tides tend to widen deltaic channels and shape delta morphology. Here we present a predictive approach to assess a priori the effect of fluvial discharge and tides on deltaic channels. We show that downstream channel widening can be quantified by the ratio of the tide-driven discharge and the fluvial discharge, along with a second metric representing flow velocities. A test of our new theory on a selection of 72 deltas globally shows good correspondence to a wide range of environments, including wave-dominated deltas, river-dominated deltas, and alluvial estuaries. By quantitatively relating tides and fluvial discharge to delta morphology, we offer a first-order prediction of deltaic change that may be expected from altered delta hydrology. For example, we expect that reduced fluvial discharge in response to dam construction will lead to increased tidal intrusion followed by enhanced tide-driven sediment import into deltas, with implications for navigation and other human needs.

  18. Aeroelasticity of morphing wings using neural networks

    Science.gov (United States)

    Natarajan, Anand

    In this dissertation, neural networks are designed to effectively model static non-linear aeroelastic problems in adaptive structures and linear dynamic aeroelastic systems with time varying stiffness. The use of adaptive materials in aircraft wings allows for the change of the contour or the configuration of a wing (morphing) in flight. The use of smart materials, to accomplish these deformations, can imply that the stiffness of the wing with a morphing contour changes as the contour changes. For a rapidly oscillating body in a fluid field, continuously adapting structural parameters may render the wing to behave as a time variant system. Even the internal spars/ribs of the aircraft wing which define the wing stiffness can be made adaptive, that is, their stiffness can be made to vary with time. The immediate effect on the structural dynamics of the wing, is that, the wing motion is governed by a differential equation with time varying coefficients. The study of this concept of a time varying torsional stiffness, made possible by the use of active materials and adaptive spars, in the dynamic aeroelastic behavior of an adaptable airfoil is performed here. Another type of aeroelastic problem of an adaptive structure that is investigated here, is the shape control of an adaptive bump situated on the leading edge of an airfoil. Such a bump is useful in achieving flow separation control for lateral directional maneuverability of the aircraft. Since actuators are being used to create this bump on the wing surface, the energy required to do so needs to be minimized. The adverse pressure drag as a result of this bump needs to be controlled so that the loss in lift over the wing is made minimal. The design of such a "spoiler bump" on the surface of the airfoil is an optimization problem of maximizing pressure drag due to flow separation while minimizing the loss in lift and energy required to deform the bump. One neural network is trained using the CFD code FLUENT to

  19. Astrometric Observation of Delta Cepheus

    Science.gov (United States)

    Warren, Naomi; Wilson, Betsie; Estrada, Chris; Crisafi, Kim; King, Jackie; Jones, Stephany; Salam, Akash; Warren, Glenn; Collins, S. Jananne; Genet, Russell

    2012-04-01

    Members of a Cuesta College astronomy research seminar used a manually-controlled 10-inch Newtonian Reflector telescope to determine the separation and position angle of the binary star Delta Cepheus. It was observed on the night of Saturday, October 29, 2011, at Star Hill in Santa Margarita, California. Their values of 40.2 arc seconds and 192.4 degrees were similar to those reported in the WDS (1910).

  20. Hovering hummingbird wing aerodynamics during the annual cycle. I. Complete wing.

    Science.gov (United States)

    Achache, Yonathan; Sapir, Nir; Elimelech, Yossef

    2017-08-01

    The diverse hummingbird family (Trochilidae) has unique adaptations for nectarivory, among which is the ability to sustain hover-feeding. As hummingbirds mainly feed while hovering, it is crucial to maintain this ability throughout the annual cycle-especially during flight-feather moult, in which wing area is reduced. To quantify the aerodynamic characteristics and flow mechanisms of a hummingbird wing throughout the annual cycle, time-accurate aerodynamic loads and flow field measurements were correlated over a dynamically scaled wing model of Anna's hummingbird ( Calypte anna ). We present measurements recorded over a model of a complete wing to evaluate the baseline aerodynamic characteristics and flow mechanisms. We found that the vorticity concentration that had developed from the wing's leading-edge differs from the attached vorticity structure that was typically found over insects' wings; firstly, it is more elongated along the wing chord, and secondly, it encounters high levels of fluctuations rather than a steady vortex. Lift characteristics resemble those of insects; however, a 20% increase in the lift-to-torque ratio was obtained for the hummingbird wing model. Time-accurate aerodynamic loads were also used to evaluate the time-evolution of the specific power required from the flight muscles, and the overall wingbeat power requirements nicely matched previous studies.

  1. Populists in Parliament : Comparing Left-Wing and Right-Wing Populism in the Netherlands

    NARCIS (Netherlands)

    Otjes, Simon; Louwerse, Tom

    2015-01-01

    In parliament, populist parties express their positions almost every day through voting. There is great diversity among them, for instance between left-wing and right-wing populist parties. This gives rise to the question: is the parliamentary behaviour of populists motivated by their populism or by

  2. Reynolds number scalability of bristled wings performing clap and fling

    Science.gov (United States)

    Jacob, Skyler; Kasoju, Vishwa; Santhanakrishnan, Arvind

    2017-11-01

    Tiny flying insects such as thrips show a distinctive physical adaptation in the use of bristled wings. Thrips use wing-wing interaction kinematics for flapping, in which a pair of wings clap together at the end of upstroke and fling apart at the beginning of downstroke. Previous studies have shown that the use of bristled wings can reduce the forces needed for clap and fling at Reynolds number (Re) on the order of 10. This study examines if the fluid dynamic advantages of using bristled wings also extend to higher Re on the order of 100. A robotic clap and fling platform was used for this study, in which a pair of physical wing models were programmed to execute clap and fling kinematics. Force measurements were conducted on solid (non-bristled) and bristled wing pairs. The results show lift and drag forces were both lower for bristled wings when compared to solid wings for Re ranging from 1-10, effectively increasing peak lift to peak drag ratio of bristled wings. However, peak lift to peak drag ratio was lower for bristled wings at Re =120 as compared to solid wings, suggesting that bristled wings may be uniquely advantageous for Re on the orders of 1-10. Flow structures visualized using particle image velocimetry (PIV) and their impact on force production will be presented.

  3. LA FORMAZIONE DEGLI INSEGNANTI PER UNA EDUCAZIONE PLURILINGUE E INTERCULTURALE

    Directory of Open Access Journals (Sweden)

    Edoardo Lugarini

    2012-07-01

    Full Text Available Dalla la Guida per lo sviluppo e l’attuazione di curricoli per una educazione plurilingue e interculturale del Consiglio d’Europa è possibile trarre una serie di indicazioni per disegnare un profilo professionale e, di conseguenza, una serie di indicazioni per la formazione iniziale e in servizio dell’insegnate di lingua (L1, L2, LS. In questo intervento si suggeriscono, senza alcuna pretesa di esaustività, degli indicatori relativi alle competenze professionali che l’insegnante dovrebbe possedere per poter svolgere la sua attività nella scuola italiana di oggi in considerazione dei bisogni linguistici delle nuove generazioni e degli obiettivi linguistici proposti dal Consiglio d’Europa nell’ambito delle politiche educative orientate a favorire la mobilità, una più efficace comunicazione internazionale, il rispetto dell’identità e della diversità delle culture, a sviluppare l’educazione alla cittadinanza democratica ed europea. Dalle riflessioni condotte emerge la necessità di una formazione disciplinare e didattica articolata e complessa che renda l’insegnante “professionista riflessivo” e “ricercatore sperimentale”TRAINING TEACHERS FOR MULTILINGUISTIC, INTERCULTURAL EDUCATIONFrom the Council of Europe’s Guide for the development and implementation of curricula for multilingual and intercultural education, it is possible to draw a series of explicit or implicit characteristics for teachers, and consequently, a series of indications for initial and in-service language (L1, L2, FL teacher training. This paper offers a brief view of the professional competences teachers should possess in order to carry out their roles in Italian schools considering the linguistic needs of the young generations and the language objectives set out by the Council of Europe regarding education policies that promote mobility, more effective International communication and respect for cultural identity and diversity, in an effort to

  4. Wing Torsional Stiffness Tests of the Active Aeroelastic Wing F/A-18 Airplane

    Science.gov (United States)

    Lokos, William A.; Olney, Candida D.; Crawford, Natalie D.; Stauf, Rick; Reichenbach, Eric Y.

    2002-01-01

    The left wing of the Active Aeroelastic Wing (AAW) F/A-18 airplane has been ground-load-tested to quantify its torsional stiffness. The test has been performed at the NASA Dryden Flight Research Center in November 1996, and again in April 2001 after a wing skin modification was performed. The primary objectives of these tests were to characterize the wing behavior before the first flight, and provide a before-and-after measurement of the torsional stiffness. Two streamwise load couples have been applied. The wing skin modification is shown to have more torsional flexibility than the original configuration has. Additionally, structural hysteresis is shown to be reduced by the skin modification. Data comparisons show good repeatability between the tests.

  5. Migration in Deltas: An Integrated Analysis

    Science.gov (United States)

    Nicholls, Robert J.; Hutton, Craig W.; Lazar, Attila; Adger, W. Neil; Allan, Andrew; Arto, Inaki; Vincent, Katharine; Rahman, Munsur; Salehin, Mashfiqus; Sugata, Hazra; Ghosh, Tuhin; Codjoe, Sam; Appeaning-Addo, Kwasi

    2017-04-01

    Deltas and low-lying coastal regions have long been perceived as vulnerable to global sea-level rise, with the potential for mass displacement of exposed populations. The assumption of mass displacement of populations in deltas requires a comprehensive reassessment in the light of present and future migration in deltas, including the potential role of adaptation to influence these decisions. At present, deltas are subject to multiple drivers of environmental change and often have high population densities as they are accessible and productive ecosystems. Climate change, catchment management, subsidence and land cover change drive environmental change across all deltas. Populations in deltas are also highly mobile, with significant urbanization trends and the growth of large cities and mega-cities within or adjacent to deltas across Asia and Africa. Such migration is driven primarily by economic opportunity, yet environmental change in general, and climate change in particular, are likely to play an increasing direct and indirect role in future migration trends. The policy challenges centre on the role of migration within regional adaptation strategies to climate change; the protection of vulnerable populations; and the future of urban settlements within deltas. This paper reviews current knowledge on migration and adaptation to environmental change to discern specific issues pertinent to delta regions. It develops a new integrated methodology to assess present and future migration in deltas using the Volta delta in Ghana, Mahanadi delta in India and Ganges-Brahmaputra-Meghna delta across India and Bangladesh. The integrated method focuses on: biophysical changes and spatial distribution of vulnerability; demographic changes and migration decision-making using multiple methods and data; macro-economic trends and scenarios in the deltas; and the policies and governance structures that constrain and enable adaptation. The analysis is facilitated by a range of

  6. Tides Stabilize Deltas until Humans Interfere

    Science.gov (United States)

    Hoitink, T.; Zheng Bing, W.; Vermeulen, B.; Huismans, Y.; Kastner, K.

    2017-12-01

    Despite global concerns about river delta degradation caused by extraction of natural resources, sediment retention by reservoirs and sea-level rise, human activity in the world's largest deltas intensifies. In this review, we argue that tides tend to stabilize deltas until humans interfere. Under natural circumstances, delta channels subject to tides are more stable than their fluvial-dominated counterparts. The oscillatory tidal flow counteracts the processes responsible for bank erosion, which explains why unprotected tidal channels migrate only slowly. Peak river discharges attenuate the tides, which creates storage space to accommodate the extra river discharge during extreme events and as a consequence, reduce flood risk. With stronger tides, the river discharge is being distributed more evenly over the various branches in a delta, preventing silting up of smaller channels. Human interference in deltas is massive. Storm surge barriers are constructed, new land is being reclaimed and large-scale sand excavation takes place, to collect building material. Evidence from deltas around the globe shows that in human-controlled deltas the tidal motion often plays a destabilizing role. In channels of the Rhine-Meuse Delta, some 100 scour holes are identified, which relates to the altered tidal motion after completion of a storm surge barrier. Sand mining has led to widespread river bank failures in the tidally-influenced Mekong Delta. The catastrophic flood event in the Gauges-Brahmaputra Delta by Cyclone Aila, which caused the inundation of an embanked polder area for over two years, was preceded by river bank erosion at the mouths of formal tidal channels that were blocked by the embankment. Efforts to predict the developments of degrading deltas are few. Existing delta models are capable of reproducing expanding deltas, which is essentially a matter of simulating the transport of sediment from source in a catchment to the sink in a delta. Processes of soil

  7. Bulk Shielding Calculation for 90 .deg. Bending Section of RISP

    Energy Technology Data Exchange (ETDEWEB)

    Oh, J. H.; Jung, N. S.; Lee, H. S. [Pohang Accelerator Laboratory, Pohang (Korea, Republic of); Oranj, L. Mokhtari [POSTECH, Pohang (Korea, Republic of); Ko, S. K. [Univ. of Ulsan, Ulsan (Korea, Republic of)

    2014-10-15

    The charge state of {sup 238}U beams with maximum intensity was 79+ among multi-charge states of 70+ to 89+, which were estimated by using LISE++ code. The bending section consists of twenty four quadrupoles, two dipoles, two two-cell type superconducting RF cavities and eleven slits. The complicated radiation environment is caused by the beam losses occurred normally during the stripping process and when the produced {sup 238}U beams are transported along the beam line. Secondary radiations generated by {sup 238}U beams irradiation are very important for predicting the prompt and residual doses and the radiation damage at the component. The production characteristics of neutron and photon from thin carbon and thick iron were studied to set up the shielding strategy. The dose estimation was done to the pre-designed the tunnel structure. In these calculations, major Monte Carlo codes, PHITS and FLUKA, were used. The present study provided information of shielding analysis for the 90 .deg. bending section of RISP facility. The source term was evaluated to determine fundamental parameter of the shielding analysis using PHITS and FLUKA codes. And the distribution of the dose rate at the outside of thick shielding wall was presented.

  8. Comportment of various magnesium alloys in carbon dioxide under pressure, between 400 and 600 deg; Compatibilite de divers alliages de magnesium avec le gaz carbonique sous pression entre 400 et 600 deg

    Energy Technology Data Exchange (ETDEWEB)

    Darras, R; Baque, P; Chevilliard, C [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The following materials were studied: nuclear magnesium, two Mg-Zr alloys, a 'Magnox' type alloy, a Mg-Mn alloy and a 'sintered magnesium oxide'. The samples, taken from drawn metals, are suitably polished and given two reproducible surface conditions for purposes of comparison. The tests were carried out in purified carbon dioxide, at pressures of 25 to 60 atmospheres and temperatures from 400 to 600, using special, externally heated stainless steel autoclaves. The duration of the tests is generally more than 1000 hours. The equations of the weight increase curves obtained are of the type: ({delta}p){sup n} = k.t (({delta}p in mg/cm{sup 2} and t in hours), the index n being around 2, at least up to 500 deg. C. Referring to results obtained previously in the case of certain of these materials exposed to carbon dioxide at atmospheric pressure and at 15 atmospheres, it appears that: 1) for given material: - at a given pressure, oxidation increases with temperature, - at a given temperature oxidation increases with pressure, - under the same temperature and pressure conditions, the results vary little according to the two surface states studied; 2) Mg-Zr alloys show better oxidation resistance than non-alloyed magnesium; 3) The alloy magnox shows up much less favourably in carbon dioxide than in air, compared with the other alloys. Generally speaking, the oxidation curves tending towards a threshold after a certain exposure time, all the alloys considered appear to show a satisfactory compatibility with carbon dioxide up to a temperature around 500 deg. C, under the working conditions defined here; above 500, under differences appear between various alloys, but the sublimation phenomena interfere with those of oxidation, with the result that a classification of the various materials can only be based on their resultant. (author) [French] Les materiaux etudies comprennent: le magnesium nucleaire, deux alliages Mg-Zr, un alliage du type 'Magnox', un alliage Mg-Mn et un

  9. Future Deltas Utrecht University research focus area: towards sustainable management of sinking deltas

    Science.gov (United States)

    Stouthamer, E.; van Asselen, S.

    2015-11-01

    Deltas are increasingly under pressure from human impact and climate change. To deal with these pressures that threat future delta functioning, we need to understand interactions between physical, biological, chemical and social processes in deltas. This requires an integrated approach, in which knowledge on natural system functioning is combined with knowledge on spatial planning, land and water governance and legislative frameworks. In the research focus area Future Deltas of Utrecht University an interdisciplinary team from different research groups therefore works together. This allows developing integrated sustainable and resilient delta management strategies, which is urgently needed to prevent loss of vital delta services.

  10. Tarawa Stable Isotope (delta 18O, delta 13C) and Mineralogy Data for 1959 to 1979

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site: Tarawa Atoll, Republic of Kiribati (1 deg N, 172 deg E). Water depth: 2-4m. Coral species Hydnophora microconos. Time span: 1959-79 at monthly resolution....

  11. Flow field of flexible flapping wings

    Science.gov (United States)

    Sallstrom, Erik

    The agility and maneuverability of natural fliers would be desirable to incorporate into engineered micro air vehicles (MAVs). However, there is still much for engineers to learn about flapping flight in order to understand how such vehicles can be built for efficient flying. The goal of this study is to develop a methodology for capturing high quality flow field data around flexible flapping wings in a hover environment and to interpret it to gain a better understanding of how aerodynamic forces are generated. The flow field data was captured using particle image velocimetry (PIV) and required that measurements be taken around a repeatable flapping motion to obtain phase-averaged data that could be studied throughout the flapping cycle. Therefore, the study includes the development of flapping devices with a simple repeatable single degree of freedom flapping motion. The acquired flow field data has been examined qualitatively and quantitatively to investigate the mechanisms behind force production in hovering flight and to relate it to observations in previous research. Specifically, the flow fields have been investigated around a rigid wing and several carbon fiber reinforced flexible membrane wings. Throughout the whole study the wings were actuated with either a sinusoidal or a semi-linear flapping motion. The semi-linear flapping motion holds the commanded angular velocity nearly constant through half of each half-stroke while the sinusoidal motion is always either accelerating or decelerating. The flow fields were investigated by examining vorticity and vortex structures, using the Q criterion as the definition for the latter, in two and three dimensions. The measurements were combined with wing deflection measurements to demonstrate some of the key links in how the fluid-structure interactions generated aerodynamic forces. The flow fields were also used to calculate the forces generated by the flapping wings using momentum balance methods which yielded

  12. [Wing 1 radiation survey and contamination report

    International Nuclear Information System (INIS)

    Olsen, K.

    1991-01-01

    We have completed the 5480.11 survey for Wing 1. All area(s)/item(s) requested by the 5480.11 committee have been thoroughly surveyed and documented. Decontamination/disposal of contaminated items has been accomplished. The wing 1 survey was started on 8/13/90 and completed 9/18/90. However, the follow-up surveys were not completed until 2/18/91. We received the final set of smear samples for wing 1 on 1/13/91. A total of 5,495 smears were taken from wing 1 and total of 465 smears were taken during the follow-up surveys. There were a total 122 items found to have fixed contamination and 4 items with smearable contamination in excess of the limits specified in DOE ORDER 5480.11 (AR 3-7). The following area(s)/item(s) were not included in the 5480.11 survey: Hallways, Access panels, Men's and women's change rooms, Janitor closets, Wall lockers and item(s) stored in wing 1 hallways and room 1116. If our contract is renewed, we will include those areas in our survey according to your request of April 15, 1991

  13. Performance, Stability, and Control Investigation at Mach Numbers from 0.4 to 0.9 of a Model of the "Swallow" with Outer Wing Panels Swept 25 degree with and without Power Simulation

    Science.gov (United States)

    Runckel, Jack F.; Schmeer, James W.; Cassetti, Marlowe D.

    1960-01-01

    An investigation of the performance, stability, and control characteristics of a variable-sweep arrow-wing model (the "Swallow") with the outer wing panels swept 25 deg has been conducted in the Langley 16-foot transonic tunnel. The wing was uncambered and untwisted and had RAE 102 airfoil sections with a thickness-to-chord ratio of 0.14 normal to the leading edge. Four outboard engines located above and below the wing provided propulsive thrust, and, by deflecting in the pitch direction and rotating in the lateral plane, also produced control forces. A pair of swept lateral fins and a single vertical fin were mounted on each engine nacelle to provide aerodynamic stability and control. Jets-off data were obtained with flow-through nacelles, stimulating the effects of inlet flow; jet thrust and hot-jet interference effects were obtained with faired-nose nacelles housing hydrogen peroxide gas generators. Six-component force and moment data were obtained through a Mach number range of 0.40 to 0.90 at angles of attack and angles of sideslip from 0 deg to 15 deg. Longitudinal, directional, and lateral control were obtained by deflecting the nacelle-fin combinations as elevators, rudders, and ailerons at several fixed angles for each control.

  14. Gliding swifts attain laminar flow over rough wings.

    Directory of Open Access Journals (Sweden)

    David Lentink

    Full Text Available Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1-2% of chord length on the upper surface--10,000 times rougher than sailplane wings. Sailplanes depend on extreme wing smoothness to increase the area of laminar flow on the wing surface and minimize drag for extended glides. To understand why the swift does not rely on smooth wings, we used a stethoscope to map laminar flow over preserved wings in a low-turbulence wind tunnel. By combining laminar area, lift, and drag measurements, we show that average area of laminar flow on swift wings is 69% (n = 3; std 13% of their total area during glides that maximize flight distance and duration--similar to high-performance sailplanes. Our aerodynamic analysis indicates that swifts attain laminar flow over their rough wings because their wing size is comparable to the distance the air travels (after a roughness-induced perturbation before it transitions from laminar to turbulent. To interpret the function of swift wing roughness, we simulated its effect on smooth model wings using physical models. This manipulation shows that laminar flow is reduced and drag increased at high speeds. At the speeds at which swifts cruise, however, swift-like roughness prolongs laminar flow and reduces drag. This feature gives small birds with rudimentary wings an edge during the evolution of glide performance.

  15. COMMD1 regulates the delta epithelial sodium channel ({delta}ENaC) through trafficking and ubiquitination

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Tina; Ke, Ying; Ly, Kevin [Department of Physiology, University of Otago, P.O. Box 913, Dunedin 9054 (New Zealand); McDonald, Fiona J., E-mail: fiona.mcdonald@otago.ac.nz [Department of Physiology, University of Otago, P.O. Box 913, Dunedin 9054 (New Zealand)

    2011-08-05

    Highlights: {yields} The COMM domain of COMMD1 mediates binding to {delta}ENaC. {yields} COMMD1 reduces the cell surface population of {delta}ENaC. {yields} COMMD1 increases the population of {delta}ENaC-ubiquitin. {yields} Both endogenous and transfected {delta}ENaC localize with COMMD1 and transferrin suggesting they are located in early/recycling endosomes. -- Abstract: The delta subunit of the epithelial sodium channel ({delta}ENaC) is a member of the ENaC/degenerin family of ion channels. {delta}ENaC is distinct from the related {alpha}-, {beta}- and {gamma}ENaC subunits, known for their role in sodium homeostasis and blood pressure control, as {delta}ENaC is expressed in brain neurons and activated by external protons. COMMD1 (copper metabolism Murr1 domain 1) was previously found to associate with and downregulate {delta}ENaC activity. Here, we show that COMMD1 interacts with {delta}ENaC through its COMM domain. Co-expression of {delta}ENaC with COMMD1 significantly reduced {delta}ENaC surface expression, and led to an increase in {delta}ENaC ubiquitination. Immunocytochemical and confocal microscopy studies show that COMMD1 promoted localization of {delta}ENaC to the early/recycling endosomal pool where the two proteins were localized together. These results suggest that COMMD1 downregulates {delta}ENaC activity by reducing {delta}ENaC surface expression through promoting internalization of surface {delta}ENaC to an intracellular recycling pool, possibly via enhanced ubiquitination.

  16. Study of interaction of a pair of longitudinal vortices with a horseshoe vortex around a wing. 1st Report. Potential for passive controlling by a pair of vortex generators; Tsubasa mawari no bateikei uzu to tateuzu no kansho ni kansuru kenkyu. 1. Ittsui no uzu hasseiki ni yoru judo seigyoho no teian

    Energy Technology Data Exchange (ETDEWEB)

    Hara, H.; Takahashi, M. [Mitsubishi Heavy Industries, Ltd., Tokyo (Japan); Ikeda, K. [Toshiba Corp., Tokyo (Japan); Shizawa, T.; Honami, S. [Science University of Tokyo, Tokyo (Japan). Faculty of Engineering

    1999-12-25

    This paper presents a potential for a passive control of a horseshoe vortex at the root of the wing. NACA0024 wing is established on a turbulent boundary layer. A pair of vortex generators of halt delta wing is installed upstream of the wing. The controlled horseshoe vortex is tested qualitatively by flow visualization technique. Also, the potential for controlling is quantitatively investigated by wall static pressure and total pressure. The horseshoe vortex is remarkably controlled in Common Flow Up Configuration (CFUC) of vortex generators. The distortion of the total pressure contours is diminished by 49% and the vortex is located closer to the wing. In case of Common Flow Down Configuration (CFDC), the mass flow averaged pressure loss is decreased by 29% compared with the case without a pair of vortex generators. (author)

  17. The Niger Delta Amnesty Program

    Directory of Open Access Journals (Sweden)

    Benjamin A. Okonofua

    2016-06-01

    Full Text Available The armed conflict between militias and government forces in Nigeria’s Niger Delta region has spanned for more than two decades, defying all solutions. A disarmament, demobilization, and reintegration (DDR program was established in August 2015 in effort to end the violence and has remained in place. It is a radically different approach from past approaches that displayed zero tolerance to all political challenges to oil production or the allocation of oil profits. The approach appeared to be immediately successful in that it forced a ceasefire, engaged militants in planned programs to rehabilitate and reintegrate them into civilian society, and opened up the oil wells (many of which had been shut due to the crisis with the effect of increasing government revenue, which depends 85% on oil exports. Yet, few studies have attempted to understand the dynamics within the country that are responsible for the design and implementation of this broad policy shift or to understand whether and how the current initiative is able to end the conflict and institute peace beyond the short term. This study, therefore, is important because it provides a critical perspective that anticipates and explains emerging issues with the Niger Delta Amnesty Program, which have implications for DDR adaptation and implementation all over the world. Ultimately, the research demonstrates how the DDR program both transforms the Niger Delta conflict and becomes embroiled in intense contestations not only about the mechanism for transforming the targeted population but also whether and how the program incorporates women who are being deprioritized by the program.

  18. Penelope Delta, recently discovered writer

    OpenAIRE

    MALAPANI A.

    2015-01-01

    The aim of this article is to present a Greek writer, Penelope Delta. This writer has recently come up in the field of the studies of the Greek literature and, although thereare neither many translations of her works in foreign languages nor many theses or dissertations, she was chosen for the great interest for her works. Her books have been read by many generations, so she is considered a classical writer of Modern Greek Literature. The way she uses the Greek language, the unique characters...

  19. Climate change and the Delta

    Science.gov (United States)

    Dettinger, Michael; Anderson, Jamie; Anderson, Michael L.; Brown, Larry R.; Cayan, Daniel; Maurer, Edwin P.

    2016-01-01

    Anthropogenic climate change amounts to a rapidly approaching, “new” stressor in the Sacramento–San Joaquin Delta system. In response to California’s extreme natural hydroclimatic variability, complex water-management systems have been developed, even as the Delta’s natural ecosystems have been largely devastated. Climate change is projected to challenge these management and ecological systems in different ways that are characterized by different levels of uncertainty. For example, there is high certainty that climate will warm by about 2°C more (than late-20th-century averages) by mid-century and about 4°C by end of century, if greenhouse-gas emissions continue their current rates of acceleration. Future precipitation changes are much less certain, with as many climate models projecting wetter conditions as drier. However, the same projections agree that precipitation will be more intense when storms do arrive, even as more dry days will separate storms. Warmer temperatures will likely enhance evaporative demands and raise water temperatures. Consequently, climate change is projected to yield both more extreme flood risks and greater drought risks. Sea level rise (SLR) during the 20th century was about 22cm, and is projected to increase by at least 3-fold this century. SLR together with land subsidence threatens the Delta with greater vulnerabilities to inundation and salinity intrusion. Effects on the Delta ecosystem that are traceable to warming include SLR, reduced snowpack, earlier snowmelt and larger storm-driven streamflows, warmer and longer summers, warmer summer water temperatures, and water-quality changes. These changes and their uncertainties will challenge the operations of water projects and uses throughout the Delta’s watershed and delivery areas. Although the effects of climate change on Delta ecosystems may be profound, the end results are difficult to predict, except that native species will fare worse than invaders. Successful

  20. Phosphorylation of DegU is essential for activation of amyE ...

    Indian Academy of Sciences (India)

    Gel filtration chromatography of DegU on Sephacryl. S100 (Methods). The native molecular weight of DegU was determined on a pre-calibrated Sephacryl S-100 ... Transferrin (80kDa), Alcohol Dehydrogenase (150 kDa). All the above markers were loaded individually. Purified DegU. (~1 mg), in a total volume of 1 mL was ...

  1. Fixed-Wing Micro Air Vehicles with Hovering Capabilities

    National Research Council Canada - National Science Library

    Bataille, Boris; Poinsot, Damien; Thipyopas, Chinnapat; Moschetta, Jean-Marc

    2007-01-01

    Fixed-wing micro air vehicles (MAV) are very attractive for outdoor surveillance missions since they generally offer better payload and endurance capabilities than rotorcraft or flapping-wing vehicles of equal size...

  2. Active Twist Control for a Compliant Wing Structure, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Blended wing body (BWB) aircraft provide an aerodynamically superior solution over traditional tube-and-wing designs for a number of mission profiles. These...

  3. From Natural to Design River Deltas

    Science.gov (United States)

    Giosan, Liviu

    2016-04-01

    Productive and biologically diverse, deltaic lowlands attracted humans since prehistory and may have spurred the emergence of the first urban civilizations. Deltas continued to be an important nexus for economic development across the world and are currently home for over half a billion people. But recently, under the double whammy of sea level rise and inland sediment capture behind dams, they have become the most threatened coastal landscape. Here I will address several deceptively simple questions to sketch some unexpected answers using example deltas from across the world from the Arctic to the Tropics, from the Danube to the Indus, Mississippi to Godavari and Krishna, Mackenzie to Yukon. What is a river delta? What is natural and what is not in a river delta? Are the geological and human histories of a delta important for its current management? Is maintaining a delta the same to building a new one? Can we design better deltas than Nature? These answers help us see clearly that survival of deltas in the next century depends on human intervention and is neither assured nor simple to address or universally applicable. Empirical observations on the hydrology, geology, biology and biochemistry of deltas are significantly lagging behind modeling capabilities endangering the applicability of numerical-based reconstruction solutions and need to be ramped up significantly and rapidly across the world.

  4. Stability and transition on swept wings

    Science.gov (United States)

    Stuckert, Greg; Herbert, Thorwald; Esfahanian, Vahid

    1993-01-01

    This paper describes the extension and application of the Parabolized Stability Equations (PSE) to the stability and transition of the supersonic three-dimensional laminar boundary layer on a swept wing. The problem formulation uses a general coordinate transformation for arbitrary curvilinear body-fitted computational grids. Some testing using these coordinates is briefly described to help validate the software used for the investigation. The disturbance amplitude ratios as a function of chord position for supersonic (Mach 1.5) boundary layers on untapered, untwisted wings of different sweep angles are then presented and compared with those obtained from local parallel analyses.

  5. Three-dimensional flow about penguin wings

    Science.gov (United States)

    Noca, Flavio; Sudki, Bassem; Lauria, Michel

    2012-11-01

    Penguins, contrary to airborne birds, do not need to compensate for gravity. Yet, the kinematics of their wings is highly three-dimensional and seems exceedingly complex for plain swimming. Is such kinematics the result of an evolutionary optimization or is it just a forced adaptation of an airborne flying apparatus to underwater swimming? Some answers will be provided based on flow dynamics around robotic penguin wings. Updates will also be presented on the development of a novel robotic arm intended to simulate penguin swimming and enable novel propulsion devices.

  6. Wing Leading Edge Concepts for Noise Reduction

    Science.gov (United States)

    Shmilovich, Arvin; Yadlin, Yoram; Pitera, David M.

    2010-01-01

    This study focuses on the development of wing leading edge concepts for noise reduction during high-lift operations, without compromising landing stall speeds, stall characteristics or cruise performance. High-lift geometries, which can be obtained by conventional mechanical systems or morphing structures have been considered. A systematic aerodynamic analysis procedure was used to arrive at several promising configurations. The aerodynamic design of new wing leading edge shapes is obtained from a robust Computational Fluid Dynamics procedure. Acoustic benefits are qualitatively established through the evaluation of the computed flow fields.

  7. An Experimental Investigation of the Effect of a Canard Control on the Lift, Drag, and Pitching Moment of an Aspect-Ratio 2.0 Triangular Wing Incorporating a Form of Conical Camber

    Science.gov (United States)

    Menees, Gene P.; Boyd, John W.

    1959-01-01

    The results of an experimental investigation to determine the effect of a canard control on the lift, drag, and pitching-moment characteristics of an aspect-ratio-2.0 triangular wing incorporating a form of conical camber are presented. The canard had a triangular plan form of aspect ratio 2.0 and was mounted in the extended chord plane of the wing. The ratio of the area of the exposed canard panels to the total wing area was 6.9 percent, and the ratio of the total areas was 12.9 percent. Data were obtained at Mach numbers from 0.70 to 2.22 through an angle-of-attack range from -6 deg to +18 deg with the canard on, and with the canard off. To provide a basis for comparison, the canard was also tested with a symmetrical wing having the same plan form, aspect ratio, and thickness distribution as the cambered wing. The results of the investigation showed that at the high subsonic speeds the gain in maximum lift-drag ratio achieved by camber was considerably reduced by the addition of a canard. At the supersonic speeds, the addition of the canard did not change the effect of camber on the maximum lift-drag ratios.

  8. Spanwise transition section for blended wing-body aircraft

    Science.gov (United States)

    Hawley, Arthur V. (Inventor)

    1999-01-01

    A blended wing-body aircraft includes a central body, a wing, and a transition section which interconnects the body and the wing on each side of the aircraft. The two transition sections are identical, and each has a variable chord length and thickness which varies in proportion to the chord length. This enables the transition section to connect the thin wing to the thicker body. Each transition section has a negative sweep angle.

  9. Ornithopter Type Flapping Wings for Autonomous Micro Air Vehicles

    OpenAIRE

    Sutthiphong Srigrarom; Woei-Leong Chan

    2015-01-01

    In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings a...

  10. An analytical framework for strategic delta planning : negotiating consent for long-term sustainable delta development

    NARCIS (Netherlands)

    Seijger, C.; Douven, W; Hermans, L.M.; Evers, J.; Phi, H. L.; Brunner, J.; Pols, L.; Ligtvoet, W.; Koole, S.; Slager, K.; Vermoolen, M.S.; Hasan, S.; Hoang, V. T M; van Halsema, G

    2016-01-01

    Sectoral planning on water, agriculture and urban development has not been able to prevent increased flood risks and environmental degradation in many deltas. Governments conceive strategic delta planning as a promising planning approach and develop strategic delta plans. Such plans are linked to

  11. Multidimensional analysis of Drosophila wing variation in Evolution ...

    Indian Academy of Sciences (India)

    2008-12-23

    Dec 23, 2008 ... the different components of phenotypic variation of a complex trait: the wing. ... of Drosophila wing variation in. Evolution Canyon. J. Genet. 87, 407–419]. Introduction ..... identify the effect of slope on wing shape (figure 2,c). All.

  12. Colors and pterin pigmentation of pierid butterfly wings

    NARCIS (Netherlands)

    Wijnen, B.; Leertouwer, H. L.; Stavenga, D. G.

    2007-01-01

    The reflectance of pierid butterfly wings is principally determined by the incoherent scattering of incident light and the absorption by pterin pigments in the scale structures. Coherent scattering causing iridescence is frequently encountered in the dorsal wings or wing tips of male pierids. We

  13. Spectral reflectance properties of iridescent pierid butterfly wings

    NARCIS (Netherlands)

    Wilts, Bodo D.; Pirih, Primoz; Stavenga, Doekele G.; Pirih, Primož

    The wings of most pierid butterflies exhibit a main, pigmentary colouration: white, yellow or orange. The males of many species have in restricted areas of the wing upper sides a distinct structural colouration, which is created by stacks of lamellae in the ridges of the wing scales, resulting in

  14. How swifts control their glide performance with morphing wings

    NARCIS (Netherlands)

    Lentink, D.; Muller, U. K.; Stamhuis, E. J.; de Kat, R.; van Gestel, W.; Veldhuis, L. L. M.; Henningsson, P.; Hedenstrom, A.; Videler, J. J.

    2007-01-01

    Gliding birds continually change the shape and size of their wings(1-6), presumably to exploit the profound effect of wing morphology on aerodynamic performance(7-9). That birds should adjust wing sweep to suit glide speed has been predicted qualitatively by analytical glide models(2,10), which

  15. L’esperienza poetica nell’Argentina degli anni Sessanta

    Directory of Open Access Journals (Sweden)

    S. Lafuente

    2012-08-01

    Full Text Available ENJuan Gelman, Leónidas Lamborghini, Francisco Urondo, César Ferández Moreno, among the most famous of the poetic generation in Argentina during the Sixties, take up the concept of critical verbal art that the Hispanic-American vanguard had proposed as a priority. They finished the work of their predecessors, especially that of the late Huidobro, who, after Altazor left the more external aspects of the play behind, and of César Vallejo, creating a poetic area where emotion and subjectivity coexist with linguistic experimentation, where the pleasure of construction and the subtleties of linguistic deformations are inexorably tied to sentiment.In obliterating the distance between I and You, their poetry abandons the passage between different textual practices and gives space to an inter-subjectivity that leads the reader to forget his passivity and become active in sensory production.Keywords: avant-garde, Argentine poetry, the Sixties, linguistic experimentationITJuan Gelman, Leónidas Lamborghini, Francisco Urondo, César Ferández Moreno, fra i nomi più noti della generazione poetica argentina degli anni Sessanta, riprendono la concezione di un’arte verbale critica che l’avanguardia ispanoamericana aveva proposto come prioritaria. Completano il lavoro dei suoi predecessori, soprattutto dell’ultimo Huidobro, che dopo Altazor abbandona gli aspetti più esterni del gioco, e di César Vallejo, creando uno spazio poetico dove l’emozione, la soggettività, coesistono con la sperimentazione del linguaggio, dove il piacere della costruzione, delle sottigliezze delle deformazioni linguistiche sono indissolubilmente legate al sentimento.La loro poesia, nell’abolire la distanza fra Io e Tu, lascia aperto il passaggio fra le pratiche testuali differenti e dà spazio a un’intersoggettività che induce il lettore ad abbandonare la sua passività e a diventare attivo nella produzione del senso.Parole chiave: avanguardia, poesia argentina

  16. Morphing Wing: Experimental Boundary Layer Transition Determination and Wing Vibrations Measurements and Analysis =

    Science.gov (United States)

    Tondji Chendjou, Yvan Wilfried

    This Master's thesis is written within the framework of the multidisciplinary international research project CRIAQ MDO-505. This global project consists of the design, manufacture and testing of a morphing wing box capable of changing the shape of the flexible upper skin of a wing using an actuator system installed inside the wing. This changing of the shape generates a delay in the occurrence of the laminar to turbulent transition area, which results in an improvement of the aerodynamic performances of the morphed wing. This thesis is focused on the technologies used to gather the pressure data during the wind tunnel tests, as well as on the post processing methodologies used to characterize the wing airflow. The vibration measurements of the wing and their real-time graphical representation are also presented. The vibration data acquisition system is detailed, and the vibration data analysis confirms the predictions of the flutter analysis performed on the wing prior to wind tunnel testing at the IAR-NRC. The pressure data was collected using 32 highly-sensitive piezoelectric sensors for sensing the pressure fluctuations up to 10 KHz. These sensors were installed along two wing chords, and were further connected to a National Instrument PXI real-time acquisition system. The acquired pressure data was high-pass filtered, analyzed and visualized using Fast Fourier Transform (FFT) and Standard Deviation (SD) approaches to quantify the pressure fluctuations in the wing airflow, as these allow the detection of the laminar to turbulent transition area. Around 30% of the cases tested in the IAR-NRC wind tunnel were optimized for drag reduction by the morphing wing procedure. The obtained pressure measurements results were compared with results obtained by infrared thermography visualization, and were used to validate the numerical simulations. Two analog accelerometers able to sense dynamic accelerations up to +/-16g were installed in both the wing and the aileron boxes

  17. Machine Learning for Flapping Wing Flight Control

    NARCIS (Netherlands)

    Goedhart, Menno; van Kampen, E.; Armanini, S.F.; de Visser, C.C.; Chu, Q.

    2018-01-01

    Flight control of Flapping Wing Micro Air Vehicles is challenging, because of their complex dynamics and variability due to manufacturing inconsistencies. Machine Learning algorithms can be used to tackle these challenges. A Policy Gradient algorithm is used to tune the gains of a

  18. Conceptual Study of Rotary-Wing Microrobotics

    Science.gov (United States)

    2008-03-27

    Low Frequency LIGA Lithographie Galvanoformung Abformung (German) LPCVD Low Pressure Chemical Vapor Deposition LRC Inductor- Resistor -Capacitor MAV...record MAV endurance flexible wing design first ever battery power MAV integrated sensor package piezo - electric unimorph actuators...capable of hovering piezo - electric actuators *Theoretical Value Only 2.5 Flying MEMS-Based Robots In 1993, Kubo, et al published a study on

  19. Can Wing Tip Vortices Be Accurately Simulated?

    Science.gov (United States)

    2011-07-01

    Aerodynamics , Flow Visualization, Numerical Investigation, Aero Suite 16. SECURITY CLASSIFICATION OF: Unclassified 17. LIMITATION OF ABSTRACT 18...additional tail buffeting.2 In commercial applications, winglets have been installed on passenger aircraft to minimize vortex formation and reduce lift...air. In military applications, wing tip In commercial applications, winglets have been installed on passenger aircraft to minimize increases with downstream distances.

  20. Oblique-Flying-Wing Supersonic Transport Airplane

    Science.gov (United States)

    Van Der Velden, Alexander J. M.

    1992-01-01

    Oblique-flying-wing supersonic airplane proposed as possible alternative to B747B (or equivalent). Tranports passengers and cargo as fast as twice speed of sound at same cost as current subsonic transports. Flies at same holding speeds as present supersonic transports but requires only half takeoff distance.

  1. Aerodynamic comparison of a butterfly-like flapping wing-body model and a revolving-wing model

    Science.gov (United States)

    Suzuki, Kosuke; Yoshino, Masato

    2017-06-01

    The aerodynamic performance of flapping- and revolving-wing models is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. As wing models, we use (i) a butterfly-like model with a body and flapping-rectangular wings and (ii) a revolving-wing model with the same wings as the flapping case. Firstly, we calculate aerodynamic performance factors such as the lift force, the power, and the power loading of the two models for Reynolds numbers in the range of 50-1000. For the flapping-wing model, the power loading is maximal for the maximum angle of attack of 90°, a flapping amplitude of roughly 45°, and a phase shift between the flapping angle and the angle of attack of roughly 90°. For the revolving-wing model, the power loading peaks for an angle of attack of roughly 45°. In addition, we examine the ground effect on the aerodynamic performance of the revolving-wing model. Secondly, we compare the aerodynamic performance of the flapping- and revolving-wing models at their respective maximal power loadings. It is found that the revolving-wing model is more efficient than the flapping-wing model both when the body of the latter is fixed and where it can move freely. Finally, we discuss the relative agilities of the flapping- and revolving-wing models.

  2. On the Distinct Effects of Left-Wing and Right-Wing Populism on Democratic Quality

    OpenAIRE

    Huber, Robert A.; Schimpf, Christian H.

    2017-01-01

    This study examines the differences and commonalities of how populist parties of the left and right relate to democracy. The focus is narrowed to the relationship between these parties and two aspects of democratic quality, minority rights and mutual constraints. Our argument is twofold: first, we contend that populist parties can exert distinct influences on minority rights, depending on whether they are left-wing or right-wing populist parties. Second, by contrast, we propose that the assoc...

  3. Entropy and optimality in river deltas

    Science.gov (United States)

    Tejedor, Alejandro; Longjas, Anthony; Edmonds, Douglas A.; Zaliapin, Ilya; Georgiou, Tryphon T.; Rinaldo, Andrea; Foufoula-Georgiou, Efi

    2017-10-01

    The form and function of river deltas is intricately linked to the evolving structure of their channel networks, which controls how effectively deltas are nourished with sediments and nutrients. Understanding the coevolution of deltaic channels and their flux organization is crucial for guiding maintenance strategies of these highly stressed systems from a range of anthropogenic activities. To date, however, a unified theory explaining how deltas self-organize to distribute water and sediment up to the shoreline remains elusive. Here, we provide evidence for an optimality principle underlying the self-organized partition of fluxes in delta channel networks. By introducing a suitable nonlocal entropy rate (nER) and by analyzing field and simulated deltas, we suggest that delta networks achieve configurations that maximize the diversity of water and sediment flux delivery to the shoreline. We thus suggest that prograding deltas attain dynamically accessible optima of flux distributions on their channel network topologies, thus effectively decoupling evolutionary time scales of geomorphology and hydrology. When interpreted in terms of delta resilience, high nER configurations reflect an increased ability to withstand perturbations. However, the distributive mechanism responsible for both diversifying flux delivery to the shoreline and dampening possible perturbations might lead to catastrophic events when those perturbations exceed certain intensity thresholds.

  4. A Modal Logic for Abstract Delta Modeling

    NARCIS (Netherlands)

    F.S. de Boer (Frank); M. Helvensteijn (Michiel); J. Winter (Joost)

    2012-01-01

    htmlabstractAbstract Delta Modeling is a technique for implementing (software) product lines. Deltas are put in a partial order which restricts their application and are then sequentially applied to a core product in order to form specific products in the product line. In this paper we explore the

  5. Tidal controls on river delta morphology

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Wang, Z.B.; Vermeulen, B.; Huismans, Y.; Kästner, K.

    2017-01-01

    River delta degradation has been caused by extraction of natural resources, sediment retention by reservoirs, and sea-level rise. Despite global concerns about these issues, human activity in the world's largest deltas intensifies. Harbour development, construction of flood defences, sand mining and

  6. Tidal controls on river delta morphology

    NARCIS (Netherlands)

    Hoitink, A.J.F.; Wang, Zhengbing; Vermeulen, B.; Huismans, Y; Kästner, K

    River delta degradation has been caused by extraction of natural resources, sediment retention by reservoirs, and sea-level rise. Despite global concerns about these issues, human activity in the world’s largest deltas intensifies. Harbour development, construction of flood defences, sand mining and

  7. Floating City IJmeer : Accelerator for Delta Technology

    NARCIS (Netherlands)

    De Graaf, R.; Fremouw, M.; Van Bueren, B.; Czapiewska, K.; Kuijper, M.

    2006-01-01

    Climate change, sea level rise, population growth and ongoing urbanization result in higher vulnerability of the Rhine delta because it will result in increased flooding frequency, increasing investments and increased use of water, energy and other resources. The Rhine Delta also faces strong

  8. Characterization of Toxoplasma DegP, a rhoptry serine protease crucial for lethal infection in mice.

    Directory of Open Access Journals (Sweden)

    Gaelle Lentini

    Full Text Available During the infection process, Apicomplexa discharge their secretory organelles called micronemes, rhoptries and dense granules to sustain host cell invasion, intracellular replication and to modulate host cell pathways and immune responses. Herein, we describe the Toxoplasma gondii Deg-like serine protein (TgDegP, a rhoptry protein homologous to High temperature requirement A (HtrA or Deg-like family of serine proteases. TgDegP undergoes processing in both types I and II strains as most of the rhoptries proteins. We show that genetic disruption of the degP gene does not impact the parasite lytic cycle in vitro but affects virulence in mice. While in a type I strain DegPI appears dispensable for the establishment of an infection, removal of DegPII in a type II strain dramatically impairs the virulence. Finally, we show that KO-DegPII parasites kill immunodeficient mice as efficiently as the wild-type strain indicating that the protease might be involved in the complex crosstalk that the parasite engaged with the host immune response. Thus, this study unravels a novel rhoptry protein in T. gondii important for the establishment of lethal infection.

  9. Proteolytic activity of recombinant DegP from Chromohalobacter salexigens BKL5

    Directory of Open Access Journals (Sweden)

    Dewi Fitriani

    2017-09-01

    Conclusions: Recombinant DegP from C. salexigens BKL5 showed proteolytic activity when β-casein was used as a substrate. In silico analysis indicated that recombinant DegP had characteristics similar to those of halophilic proteins depending on its amino acid composition.

  10. Molecular transformers in the cell: lessons learned from the DegP protease-chaperone.

    Science.gov (United States)

    Sawa, Justyna; Heuck, Alexander; Ehrmann, Michael; Clausen, Tim

    2010-04-01

    Structure-function analysis of DegP revealed a novel mechanism for protease and chaperone regulation. Binding of unfolded proteins induces the oligomer reassembly from the resting hexamer (DegP6) into the functional protease-chaperone DegP12/24. The newly formed cage exhibits the characteristics of a proteolytic folding chamber, shredding those proteins that are severely misfolded while stabilizing and protecting proteins present in their native state. Isolation of native DegP complexes with folded outer membrane proteins (OMPs) highlights the importance of DegP in OMP biogenesis. The encapsulated OMP beta-barrel is significantly stabilized in the hydrophobic chamber of DegP12/24 and thus DegP seems to employ a reciprocal mechanism to those chaperones assisting the folding of water soluble proteins via polar interactions. In addition, we discuss in this review similarities to other complex proteolytic machines that, like DegP, are under control of a substrate-induced or stress-induced oligomer conversion.

  11. Discrete-Roughness-Element-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers

    Science.gov (United States)

    Malik, Mujeeb; Liao, Wei; Li, Fei; Choudhari, Meelan

    2015-01-01

    Nonlinear parabolized stability equations and secondary-instability analyses are used to provide a computational assessment of the potential use of the discrete-roughness-element technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural-laminar-flow airfoil with a leading-edge sweep angle of 34.6 deg, freestream Mach number of 0.75, and chord Reynolds numbers of 17 × 10(exp 6), 24 × 10(exp 6), and 30 × 10(exp 6) suggest that discrete roughness elements could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small-wavelength stationary crossflow disturbances (i.e., discrete roughness element) also suppresses the growth of most amplified traveling crossflow disturbances.

  12. DRE-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers

    Science.gov (United States)

    Malik, Mujeeb; Liao, Wei; Li, Fe; Choudhari, Meelan

    2013-01-01

    Nonlinear parabolized stability equations and secondary instability analyses are used to provide a computational assessment of the potential use of the discrete roughness elements (DRE) technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural laminar flow airfoil with a leading-edge sweep angle of 34.6deg, free-stream Mach number of 0.75 and chord Reynolds numbers of 17 x 10(exp 6), 24 x 10(exp 6) and 30 x 10(exp 6) suggest that DRE could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small wavelength stationary crossflow disturbances (i.e., DRE) also suppresses the growth of most amplified traveling crossflow disturbances.

  13. Fabrication of the wing and vertical target dummy armour prototypes of the ITER divertor

    International Nuclear Information System (INIS)

    Grattarola, M.; Bet, M.; Biagiotti, B.; Gandini, G.; Merola, M.; Ottonello, G.B.; Riccardi, B.; Vieider, G.; Zacchia, F.

    2000-01-01

    The dummy armour prototypes are identical to the reference components in terms of geometry, cooling circuit and material except for the armour material, which is replaced by an equivalent thickness of copper alloy. The main objectives of the dummy armour prototypes are the demonstration of the overall engineering concept of the Divertor, the integration in a 3 deg. cassette together with components manufactured by the other ITER Home Teams and the successive thermo-hydraulic tests on the whole Divertor module. This paper describes the realization of both the wing and the vertical target dummy armour prototypes focusing on the critical aspects of the fabrication and their impact on a further industrialization of the components

  14. Fabrication of the wing and vertical target dummy armour prototypes of the ITER divertor

    Energy Technology Data Exchange (ETDEWEB)

    Grattarola, M. E-mail: gratta@ari.ansaldo.it; Bet, M.; Biagiotti, B.; Gandini, G.; Merola, M.; Ottonello, G.B.; Riccardi, B.; Vieider, G.; Zacchia, F

    2000-11-01

    The dummy armour prototypes are identical to the reference components in terms of geometry, cooling circuit and material except for the armour material, which is replaced by an equivalent thickness of copper alloy. The main objectives of the dummy armour prototypes are the demonstration of the overall engineering concept of the Divertor, the integration in a 3 deg. cassette together with components manufactured by the other ITER Home Teams and the successive thermo-hydraulic tests on the whole Divertor module. This paper describes the realization of both the wing and the vertical target dummy armour prototypes focusing on the critical aspects of the fabrication and their impact on a further industrialization of the components.

  15. Patologie sociali, resistenze e difese degli insegnanti nell’istituzione scolastica: Considerazioni cliniche e pedagogiche

    Directory of Open Access Journals (Sweden)

    Tommaso Fratini

    2014-12-01

    Full Text Available L’articolo prende in esame il tema di alcune resistenze e difese degli insegnanti all’interno dell’istituzione scolastica. Partendo dall’attuale condizione di emergenza della scuola italiana e rifacendosi al concetto di patologia sociale di Giuseppe Di Chiara, viene argomentato come tali resistenze coprano le angosce persecutorie degli insegnanti nel loro lavoro scolastico quotidiano nel rapporto con gli allievi. L’articolo, tra le varie forme di patologia istituzionale, affronta principalmente il tema di quelle che presiedono alle resistenze degli insegnanti al lavoro introspettivo con il proprio mondo interno, conseguenza e ulteriore cagione di sensi di colpa nel rapporto con gli allievi e di fenomeni di burnout lavorativo degli stessi insegnanti. Tali fenomeni vanno nella direzione del rinforzo sia di un atteggiamento di chiusura verso la collaborazione con professionisti esterni all’istituzione scolastica, sia di un atteggiamento di minore empatia e vicinanza emotiva con la realtà interna degli allievi.

  16. Entendiendo Delta desde las Humanidades

    Directory of Open Access Journals (Sweden)

    José Calvo Tello

    2016-05-01

    Full Text Available Stylometry is one of the research areas in greater development within Digital Humanities. However, few studies have worked until recently with texts in Spanish and even less so from Spanish-speaking countries. The aim of this paper is to present in Spanish, and without prior statistical knowledge from the reader, one of the main methods used in stylometry, the measure of textual distance Burrows’ Delta. This paper explains this measure using a very small corpus of proverbs and then checks the results in a corpus of Spanish novels. Both data and Python scripts are available to the community through GitHub, commented step by step so that you can play and visualize each step.

  17. EEHG at FLASH and DELTA

    Energy Technology Data Exchange (ETDEWEB)

    Molo, Robert; Hoener, Markus; Huck, Holger; Hacker, Kirsten; Khan, Shaukat; Schick, Andreas; Ungelenk, Peter; Zeinalzadeh, Maryam [Center for Synchrotron Radiation (DELTA), TU Dortmund University (Germany); Meulen, Peter van der; Salen, Peter [Stockholm University (Sweden); Angelova Hamberg, Gergana; Ziemann, Volker [Uppsala University (Sweden)

    2013-07-01

    The echo-enabled harmonic generation (EEHG) scheme utilizes two modulators with two magnetic chicanes in order to generate an electron density modulation with high harmonic content. In contrast to free-electron lasers (FEL) based on self-amplified spontaneous emission (SASE), the radiation of an EEHG FEL has better longitudinal coherence and is naturally synchronized with an external laser, which is advantageous for pump-probe applications. At the free-electron laser in Hamburg (FLASH), an EEHG experiment is currently under preparation. The short-pulse facility at DELTA (a 1.5-GeV synchrotron light source operated by the TU Dortmund University) based on coherent harmonic generation (CHG) will be upgraded using the EEHG technique in order to reach shorter wavelengths.

  18. Multiple cues for winged morph production in an aphid metacommunity.

    Directory of Open Access Journals (Sweden)

    Mohsen Mehrparvar

    Full Text Available Environmental factors can lead individuals down different developmental pathways giving rise to distinct phenotypes (phenotypic plasticity. The production of winged or unwinged morphs in aphids is an example of two alternative developmental pathways. Dispersal is paramount in aphids that often have a metapopulation structure, where local subpopulations frequently go extinct, such as the specialized aphids on tansy (Tanacetum vulgare. We conducted various experiments to further understand the cues involved in the production of winged dispersal morphs by the two dominant species of the tansy aphid metacommunity, Metopeurum fuscoviride and Macrosiphoniella tanacetaria. We found that the ant-tended M. fuscoviride produced winged individuals predominantly at the beginning of the season while the untended M. tanacetaria produced winged individuals throughout the season. Winged mothers of both species produced winged offspring, although in both species winged offspring were mainly produced by unwinged females. Crowding and the presence of predators, effects already known to influence wing production in other aphid species, increased the percentage of winged offspring in M. tanacetaria, but not in M. fuscoviride. We find there are also other factors (i.e. temporal effects inducing the production of winged offspring for natural aphid populations. Our results show that the responses of each aphid species are due to multiple wing induction cues.

  19. Temperature dependent dynamics of DegP-trimer: A molecular dynamics study

    Directory of Open Access Journals (Sweden)

    Nivedita Rai

    2015-01-01

    Full Text Available DegP is a heat shock protein from high temperature requirement protease A family, which reacts to the environmental stress conditions in an ATP independent way. The objective of the present analysis emerged from the temperature dependent functional diversity of DegP between chaperonic and protease activities at temperatures below and above 28 °C, respectively. DegP is a multimeric protein and the minimal functional unit, DegP-trimer, is of great importance in understanding the DegP pathway. The structural aspects of DegP-trimer with respect to temperature variation have been studied using molecular dynamics simulations (for 100 ns and principal component analysis to highlight the temperature dependent dynamics facilitating its functional diversity. The DegP-trimer revealed a pronounced dynamics at both 280 and 320 K, when compared to the dynamics observed at 300 K. The LA loop is identified as the highly flexible region during dynamics and at extreme temperatures, the residues 46–80 of LA loop express a flip towards right (at 280 and left ( at 320 K with respect to the fixed β-sheet connecting the LA loop of protease for which Phe46 acts as one of the key residues. Such dynamics of LA loop facilitates inter-monomeric interaction with the PDZ1 domain of the neighbouring monomer and explains its active participation when DegP exists as trimer. Hence, the LA loop mediated dynamics of DegP-trimer is expected to provide further insight into the temperature dependent dynamics of DegP towards the understanding of its assembly and functional diversity in the presence of substrate.

  20. Growth laws for delta crevasses in the Mississippi River Delta: observations and modeling

    Science.gov (United States)

    Yocum, T. A.; Georgiou, I. Y.

    2016-02-01

    River deltas are accumulations of sedimentary deposits delivered by rivers via a network of distributary channels. Worldwide they are threatened by environmental changes, including subsidence, global sea level rise and a suite of other local factors. In the Mississippi River Delta (MRD) these impacts are exemplified, and have led to proposed solutions to build land that include sediment diversions, thereby reinitiating the delta cycle. While economically efficient, there are too few analogs of small deltas aside from laboratory studies, numerical modeling studies, theoretical approaches, and limited field driven observations. Anthropogenic crevasses in the modern delta are large enough to overcome limitations of laboratory deltas, and small enough to allow for "rapid" channel and wetland development, providing an ideal setting to investigate delta development mechanics. Crevasse metrics were obtained using a combination of geospatial tools, extracting key parameters (bifurcation length and width, channel order and depth) that were non-dimensionalized and compared to river-dominated delta networks previously studied. Analysis showed that most crevasses in the MRD appear to obey delta growth laws and delta allometry relationships, suggesting that crevasses do exhibit similar planform metrics to larger Deltas; the distance to mouth bar versus bifurcation order demonstrated to be a very reasonable first order estimate of delta-top footprint. However, some crevasses exhibited different growth metrics. To better understand the hydrodynamic and geomorphic controls governing crevasse evolution in the MRD, we assess delta dynamics via a suite of field observations and numerical modeling in both well-established and newly constructed crevasses. Our analysis suggests that delta development is affected by the relative influence of external (upstream and downstream) and internal controls on the hydrodynamic and sediment transport patterns in these systems.

  1. The biomechanical origin of extreme wing allometry in hummingbirds.

    Science.gov (United States)

    Skandalis, Dimitri A; Segre, Paolo S; Bahlman, Joseph W; Groom, Derrick J E; Welch, Kenneth C; Witt, Christopher C; McGuire, Jimmy A; Dudley, Robert; Lentink, David; Altshuler, Douglas L

    2017-10-19

    Flying animals of different masses vary widely in body proportions, but the functional implications of this variation are often unclear. We address this ambiguity by developing an integrative allometric approach, which we apply here to hummingbirds to examine how the physical environment, wing morphology and stroke kinematics have contributed to the evolution of their highly specialised flight. Surprisingly, hummingbirds maintain constant wing velocity despite an order of magnitude variation in body weight; increased weight is supported solely through disproportionate increases in wing area. Conversely, wing velocity increases with body weight within species, compensating for lower relative wing area in larger individuals. By comparing inter- and intraspecific allometries, we find that the extreme wing area allometry of hummingbirds is likely an adaptation to maintain constant burst flight capacity and induced power requirements with increasing weight. Selection for relatively large wings simultaneously maximises aerial performance and minimises flight costs, which are essential elements of humming bird life history.

  2. Phase transformation in delta-Pu alloys at low temperature: An in situ microstructural characterization using X-ray diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Ravat, B., E-mail: brice.ravat@cea.f [CEA, Valduc, F-21120 Is-sur-Tille (France); Platteau, C.; Texier, G.; Oudot, B.; Delaunay, F. [CEA, Valduc, F-21120 Is-sur-Tille (France)

    2009-09-15

    In order to investigate the martensitic transformation, an isothermal hold at -130 deg. C for 48 h was performed on a highly homogenized PuGa alloy. The modifications of the microstructure were characterized in situ thanks to a specific tool. This device was developed at the CEA-Valduc to analyze the crystalline structure of plutonium alloys as a function of temperature and more especially at low temperature using X-ray diffraction. The analysis of the recorded diffraction patterns highlighted that the martensitic transformation for this alloy is the result of a direct delta -> alpha' + delta phase transformation. Moreover, a significant Bragg's peaks broadening corresponding to the delta-phase was observed. A microstructural analysis was made to characterize anisotropic microstrain resulting from the stress induced by the unit cell volume difference between the delta and alpha' phases. The amount of alpha'-phase evolved was analyzed within the framework of the Avrami theory in order to characterize the nucleation process. The results suggested that the growth mechanism corresponded to a general mechanism where the nucleation sites were in the delta-grain edges and the alpha'-phase had a plate-like morphology.

  3. Influence of different organic fertilizers on quality parameters and the delta(15)N, delta(13)C, delta(2)H, delta(34)S, and delta(18)O values of orange fruit (Citrus sinensis L. Osbeck).

    Science.gov (United States)

    Rapisarda, Paolo; Camin, Federica; Fabroni, Simona; Perini, Matteo; Torrisi, Biagio; Intrigliolo, Francesco

    2010-03-24

    To investigate the influence of different types of fertilizers on quality parameters, N-containing compounds, and the delta(15)N, delta(13)C, delta(2)H, delta (34)S, and delta(18)O values of citrus fruit, a study was performed on the orange fruit cv. 'Valencia late' (Citrus sinensis L. Osbeck), which was harvested in four plots (three organic and one conventional) located on the same farm. The results demonstrated that different types of organic fertilizers containing the same amount of nitrogen did not effect important changes in orange fruit quality parameters. The levels of total N and N-containing compounds such as synephrine in fruit juice were not statistically different among the different treatments. The delta(15)N values of orange fruit grown under fertilizer derived from animal origin as well as from vegetable compost were statistically higher than those grown with mineral fertilizer. Therefore, delta(15)N values can be used as an indicator of citrus fertilization management (organic or conventional), because even when applied organic fertilizers are of different origins, the natural abundance of (15)N in organic citrus fruit remains higher than in conventional ones. These treatments also did not effect differences in the delta(13)C, delta(2)H, delta(34)S, and delta(18)O values of fruit.

  4. Oxidation of Alloy 82 in nominal PWR primary water at 340 deg. C and in hydrogenated steam at 400 deg. C

    International Nuclear Information System (INIS)

    Chaumun, Elizabeth; Guerre Catherine; Duhamel, Cecilie; Sennour, Mohamed; Curieres, Ian-de

    2012-09-01

    Nickel-base weld metals are susceptible to stress corrosion cracking (SCC) in Pressurized Water Reactor (PWR) primary water. As tests in laboratory need to last, in some cases, at least several thousand hours to get stress corrosion crack initiation or propagation in simulated primary water, pure hydrogenated steam at 400 deg. C was used to perform accelerated tests. To confirm that these conditions are still representative of primary water conditions, results of oxidation tests of coupons in hydrogenated steam at 400 deg. C and in primary water at 340 deg. C have been compared. Surface oxide layers have been characterized in order to discuss the influence of the temperature and of the media (water or steam). (authors)

  5. Effect of wing mass in free flight by a butterfly-like 3D flapping wing-body model

    Science.gov (United States)

    Suzuki, Kosuke; Okada, Iori; Yoshino, Masato

    2016-11-01

    The effect of wing mass in free flight of a flapping wing is investigated by numerical simulations based on an immersed boundary-lattice Boltzmann method. We consider a butterfly-like 3D flapping wing-model consisting of two square wings with uniform mass density connected by a rod-shaped body. We simulate free flights of the wing-body model with various mass ratios of the wing to the whole of the model. As a result, it is found that the lift and thrust forces decrease as the mass ratio increases, since the body with a large mass ratio experiences large vertical and horizontal oscillations in one period and consequently the wing tip speed relatively decreases. In addition, we find the critical mass ratio between upward flight and downward flight for various Reynolds numbers. This work was supported by JSPS KAKENHI Grant Number JP16K18012.

  6. Thermal conductivity of fully dense unirradiated UO2: A new formulation from experimental results between 100 deg. C and 2500 deg. C, and associated fundamental properties

    International Nuclear Information System (INIS)

    Delette, G.; Charles, M.

    1997-01-01

    The various contributions to the thermal conductivity of UO 2 are first reviewed: contribution from phonons is preponderant up to 1600 deg. C; radiative contribution is negligible in the case of a polycrystalline sample, and is unable to account for the increase in conductivity observed above 1600 deg. C; electronic contribution, which seems patently to be responsible for this increase, is efficient from 1400 deg. C (electron-hole pairs treated as small polarons). Given the lack of decisive arguments on their actual efficiency, it was decided that, for temperatures above 2400 deg. C, neither a possible decrease in the electronic contribution due to vacancies, nor an additional possible contribution from Frenkel pairs would be described. We do not go therefore beyond the above-mentioned electronic contribution. In the light of these considerations, the law established by CEA for the thermal conductivity of unirradiated UO 2 , on the basis of a homogeneous set of measurements between 100 deg. C and 2500 deg. C, has been revised. A least-square method applied to the above measurements was used to derive simultaneously the four adjustable constants of the law which is henceforth proposed: λ = 1/A + BT+C/T 2 exp(-W/kT). The values of A, B, C, and W obtained, have the advantage of giving a better account of the high temperature results compared to the Martin recommendations (which has, by the way, the same physical form as above). Furthermore, this new law allows an extrapolation towards the melting point which is better founded than the earlier CEA law, while still respecting the value of the integrated thermal conductivity up to melting. Finally, various burnup effects (impurities, stoichiometry, etc.) can be formulated in physical terms. Moreover, the values of various fundamental properties connected with the derived constants have been determined: Debye temperature, Grueneisen parameter, Mott-Hubbard energy, electrical conductivity. These values are discussed and

  7. Study of elementary mechanisms of creep in uranium as a function of temperature (150 deg. to 760 deg. C) by activation energy measurements

    International Nuclear Information System (INIS)

    Grenier, P.

    1966-06-01

    Creep tests were carried out on single crystals and polycrystalline specimens of uranium in both the α and β phases over the temperature range 150 - 760 deg. C. The determination of the activation energy for creep and the study of its variation with temperature made it possible to distinguish various temperature ranges in which one or more elementary mechanisms govern deformation. Micrographic observations after creep and the study of the variation of creep-rate with load support the conclusions. The creep behavior of single crystals is identical with that of polycrystalline material below 325 deg. C. From 325 deg. C to one upper limiting temperature whose value depends on the purity and previous history of the metal, the creep deformation of uranium is controlled by cross-slip. From this limiting temperature up to 520 deg. C, the creep of uranium involves two independent mechanisms operating simultaneously, the movement of screw dislocation by cross-slip and the climbing of edge dislocations out of their slip plane. Between 520 deg. C and the α - β transformation temperature creep in polycrystals is governed by the climb of edge dislocations out of their slip planes, by a pile up mechanism in the case of primary creep and by dipole annihilation in the case of secondary creep. In single crystals creep is dependent on the climb of edge dislocations into pre-existent sub-boundaries and their subsequent rearrangement within these boundaries. In the β phase the creep of polycrystals is governed by the diffusional climb of edge dislocations. Between 450 and 630 deg. C small alloy additions of molybdenum modify the creep characteristics of uranium although the deformation mechanisms involved are analogous to those in the pure metal. (author) [fr

  8. Tidal controls on river delta morphology

    Science.gov (United States)

    Hoitink, A. J. F.; Wang, Z. B.; Vermeulen, B.; Huismans, Y.; Kästner, K.

    2017-09-01

    River delta degradation has been caused by extraction of natural resources, sediment retention by reservoirs, and sea-level rise. Despite global concerns about these issues, human activity in the world’s largest deltas intensifies. Harbour development, construction of flood defences, sand mining and land reclamation emerge as key contemporary factors that exert an impact on delta morphology. Tides interacting with river discharge can play a crucial role in the morphodynamic development of deltas under pressure. Emerging insights into tidal controls on river delta morphology suggest that--despite the active morphodynamics in tidal channels and mouth bar regions--tidal motion acts to stabilize delta morphology at the landscape scale under the condition that sediment import during low flows largely balances sediment export during high flows. Distributary channels subject to tides show lower migration rates and are less easily flooded by the river because of opposing non-linear interactions between river discharge and the tide. These interactions lead to flow changes within channels, and a more uniform distribution of discharge across channels. Sediment depletion and rigorous human interventions in deltas, including storm surge defence works, disrupt the dynamic morphological equilibrium and can lead to erosion and severe scour at the channel bed, even decades after an intervention.

  9. Rise and Fall of one of World's largest deltas; the Mekong delta in Vietnam

    Science.gov (United States)

    Minderhoud, P. S. J.; Eslami Arab, S.; Pham, H. V.; Erkens, G.; van der Vegt, M.; Oude Essink, G.; Stouthamer, E.; Hoekstra, P.

    2017-12-01

    The Mekong delta is the third's largest delta in the world. It is home to almost 20 million people and an important region for the food security in South East Asia. As most deltas, the Mekong delta is the dynamic result of a balance of sediment supply, sea level rise and subsidence, hosting a system of fresh and salt water dynamics. Ongoing urbanization, industrialization and intensification of agricultural practices in the delta, during the past decades, resulted in growing domestic, agricultural and industrial demands, and have led to a dramatic increase of fresh water use. Since the year 2000, the amount of fresh groundwater extracted from the subsurface increased by 500%. This accelerated delta subsidence as the groundwater system compacts, with current sinking rates exceeding global sea level rise up to an order of magnitude. These high sinking rates have greatly altered the sediment budget of the delta and, with over 50% of the Mekong delta surface elevated less than 1 meter above sea level, greatly increase vulnerability to flooding and storm surges and ultimately, permanent inundation. Furthermore, as the increasingly larger extractions rapidly reduce the fresh groundwater reserves, groundwater salinization subsequently increases. On top of that, dry season low-flows by the Mekong river cause record salt water intrusion in the delta's estuarine system, creating major problems for rice irrigation. We present the work of three years research by the Dutch-Vietnamese `Rise and Fall' project on land subsidence and salinization in both groundwater and surface water in the Vietnamese Mekong delta.

  10. Breast compression and radiation dose in two different mammographic oblique projections: 45 and 60 deg

    International Nuclear Information System (INIS)

    Brnic, Zoran; Hebrang, Andrija

    2001-01-01

    Introduction: Standard mammography includes two views, craniocaudal and medio-lateral oblique. Depending on patient's body constitution, central beam angle in mediolateral oblique projection may vary, with 45 deg. being suitable for the majority of patients in routine daily practice. With continuous improvement in X-ray technology and radiographers' training, the risk of radiation induced cancerogenesis is considerably reduced and acceptable when compared to benefit. However, the risk still exists, being cumulative and directly related to absorbed glandular dose. There is no minimal dose of radiation which is absolutely harmless, and every effort to reduce the dose is welcome. In this retrospective study two different angles (45 vs. 60 deg.) of mediolateral oblique view were compared according to radiation dose and efficacy of breast compression. Patients and methods: In 52 women, additional 60 deg. oblique films were done after craniocaudal and mediolateral oblique 45 deg.-films, with the same kVp and positioning technique. Breast thickness, time-current products (mA s) and absorbed doses were compared between 45 deg. - and 60 deg.-films. Subgroups of women with large, small, prominent and pendulous breasts were analyzed separately, following the same methodology as for the whole group. Results: mA s were 11.5% lower and compression 7% better with an angle of 60 deg. than with 45 deg. In the subgroup of women with small breasts, mA s values were 13% lower and compression 9% better with 60 deg. than with 45 deg., while in the subgroup with large breasts, mA s were 9% lower and compression 5% better. In the subgroup of patients with pendulous breasts, mA s values were 12% lower and compression 10% better with 60 deg. than with 45 deg., while in the subgroup with prominent breasts, mA s values were 4% lower and compression 3% better. Absorbed glandular dose was estimated to be approximately 20% lower when an oblique mammogram was done with 60 deg. instead of 45 deg

  11. Using Paraffin with -10 deg C to 10 deg C Melting Point for Payload Thermal Energy Storage in SpaceX Dragon Trunk

    Science.gov (United States)

    Choi, Michael K.

    2013-01-01

    A concept of using paraffin wax phase change material (PCM) with a melting point between -10 deg C and 10 deg C for payload thermal energy storage in a Space Exploration Technologies (SpaceX) Dragon trunk is presented. It overcomes the problem of limited heater power available to a payload with significant radiators when the Dragon is berthed to the International Space Station (ISS). It stores adequate thermal energy to keep a payload warm without power for 6 hours during the transfer from the Dragon to an ExPRESS logistics carrier (ELC) on the ISS.

  12. The optimal design of UAV wing structure

    Science.gov (United States)

    Długosz, Adam; Klimek, Wiktor

    2018-01-01

    The paper presents an optimal design of UAV wing, made of composite materials. The aim of the optimization is to improve strength and stiffness together with reduction of the weight of the structure. Three different types of functionals, which depend on stress, stiffness and the total mass are defined. The paper presents an application of the in-house implementation of the evolutionary multi-objective algorithm in optimization of the UAV wing structure. Values of the functionals are calculated on the basis of results obtained from numerical simulations. Numerical FEM model, consisting of different composite materials is created. Adequacy of the numerical model is verified by results obtained from the experiment, performed on a tensile testing machine. Examples of multi-objective optimization by means of Pareto-optimal set of solutions are presented.

  13. Optimization of aerodynamic efficiency for twist morphing MAV wing

    Directory of Open Access Journals (Sweden)

    N.I. Ismail

    2014-06-01

    Full Text Available Twist morphing (TM is a practical control technique in micro air vehicle (MAV flight. However, TM wing has a lower aerodynamic efficiency (CL/CD compared to membrane and rigid wing. This is due to massive drag penalty created on TM wing, which had overwhelmed the successive increase in its lift generation. Therefore, further CL/CDmax optimization on TM wing is needed to obtain the optimal condition for the morphing wing configuration. In this paper, two-way fluid–structure interaction (FSI simulation and wind tunnel testing method are used to solve and study the basic wing aerodynamic performance over (non-optimal TM, membrane and rigid wings. Then, a multifidelity data metamodel based design optimization (MBDO process is adopted based on the Ansys-DesignXplorer frameworks. In the adaptive MBDO process, Kriging metamodel is used to construct the final multifidelity CL/CD responses by utilizing 23 multi-fidelity sample points from the FSI simulation and experimental data. The optimization results show that the optimal TM wing configuration is able to produce better CL/CDmax magnitude by at least 2% than the non-optimal TM wings. The flow structure formation reveals that low TV strength on the optimal TM wing induces low CD generation which in turn improves its overall CL/CDmax performance.

  14. Quantifying the dynamic wing morphing of hovering hummingbird.

    Science.gov (United States)

    Maeda, Masateru; Nakata, Toshiyuki; Kitamura, Ikuo; Tanaka, Hiroto; Liu, Hao

    2017-09-01

    Animal wings are lightweight and flexible; hence, during flapping flight their shapes change. It has been known that such dynamic wing morphing reduces aerodynamic cost in insects, but the consequences in vertebrate flyers, particularly birds, are not well understood. We have developed a method to reconstruct a three-dimensional wing model of a bird from the wing outline and the feather shafts (rachides). The morphological and kinematic parameters can be obtained using the wing model, and the numerical or mechanical simulations may also be carried out. To test the effectiveness of the method, we recorded the hovering flight of a hummingbird ( Amazilia amazilia ) using high-speed cameras and reconstructed the right wing. The wing shape varied substantially within a stroke cycle. Specifically, the maximum and minimum wing areas differed by 18%, presumably due to feather sliding; the wing was bent near the wrist joint, towards the upward direction and opposite to the stroke direction; positive upward camber and the 'washout' twist (monotonic decrease in the angle of incidence from the proximal to distal wing) were observed during both half-strokes; the spanwise distribution of the twist was uniform during downstroke, but an abrupt increase near the wrist joint was found during upstroke.

  15. Control and navigation system for a fixed-wing unmanned aerial vehicle

    Directory of Open Access Journals (Sweden)

    Ruiyong Zhai

    2014-02-01

    Full Text Available This paper presents a flight control and navigation system for a fixed-wing unmanned aerial vehicle (UAV with low-cost micro-electro-mechanical system (MEMS sensors. The system is designed under the inner loop and outer loop strategy. The trajectory tracking navigation loop is the outer loop of the attitude loop, while the attitude control loop is the outer loop of the stabilization loop. The proportional-integral-derivative (PID control was adopted for stabilization and attitude control. The three-dimensional (3D trajectory tracking control of a UAV could be approximately divided into lateral control and longitudinal control. The longitudinal control employs traditional linear PID feedback to achieve the desired altitude of the UAV, while the lateral control uses a non-linear control method to complete the desired trajectory. The non-linear controller can automatically adapt to ground velocity change, which is usually caused by gust disturbance, thus the UAV has good wind resistance characteristics. Flight tests and survey missions were carried out with our self-developed delta fixed-wing UAV and MEMS-based autopilot to confirm the effectiveness and practicality of the proposed navigation method.

  16. Frictional property of glass-like carbon heat-treated at 1000-3000 deg. C

    International Nuclear Information System (INIS)

    Nakamura, Kazumasa; Sano, Takanori; Shindo, Hitoshi

    2008-01-01

    Frictional coefficient 'f' was measured in the air and in water at glass-like carbon (GLC) surfaces heat-treated between 1000 and 3000 deg. C. GLCs heat-treated at higher temperature had smoother and more hydrophobic faces, and lower f. The f was smaller than 0.10 for GLCs heat-treated at and above 2000 deg. C, which indicates their applicability as a solid lubricant or a self-lubricating material. The f = 0.06 observed for GLC heat-treated at 3000 deg. C was nearly the same as that of pyrolytic graphite (PG). Slightly lower f's were obtained in water than in the air

  17. Strain ageing of the 15Kh2MFA steel at 500 and 550 deg C

    International Nuclear Information System (INIS)

    Maksimovich, G.G.; Azbukin, V.G.; Krylova, R.P.; Tretyak, I.Yu.; Bardachevskaya, T.V.

    1978-01-01

    The effect of ageing at high temperatures and under high stresses on strength and plasticity of the 15Kh2MFA steel has been studied. The steel was kept at 500 and at 550 deg C for 100, 1000 and 2500 hours without stress and under stress of 0.5 and 0.9 of the long-term strength limit (sigmasub(ls)). Ageing at 500 deg C without stress and under 0.5 sigmasub(ls) changed neither strength nor plasticity of the steel; under 0.9 sigmasub(ls) the strength somewhat decreased. Ageing at 550 deg C for 1000 hours resulted in an appreciable stress drop

  18. CFD Analysis of UAV Flying Wing

    Directory of Open Access Journals (Sweden)

    Vasile PRISACARIU

    2016-09-01

    Full Text Available Numerical methods for solving equations describing the evolution of 3D fluid experienced a significant development closely related to the progress of information systems. Today, especially in the field of fluid mechanics, numerical simulations allow the study of gas-thermodynamic confirmed by experimental techniques in wind tunnel conditions and actual flight tests for modeling complex aircraft. The article shows a case of numerical analysis of the lifting surface on the UAV type flying wing.

  19. Mother Nature inspires new wind turbine wing

    DEFF Research Database (Denmark)

    Sønderberg Petersen, L.

    2007-01-01

    The sight of a bird of prey hanging immobile in the air while its wings continuously adjust themselves slightly in relation to the wind in order to keep the bird in the same position in the air, is a sight that most of us have admired, including the windenergy scientists at Risø DTU. They have...... started transferring the principle to wind turbine blades to make them adaptive...

  20. Topology Optimization of an Aircraft Wing

    Science.gov (United States)

    2015-06-11

    which selected as the most prevalent independent structure in the wing. The tank location and shape was interpreted from the high material volume...Engineering Inc., 1820 E. Big Beaver Rd, Troy, MI 48083, Optistruct 12.0 User’s Guide, 2013. 126 10. T. Megson and H. Gordon, Aircraft structures for...software enhances the design of transportation,” Forbes Online, 2013. 13. Altair Engineering Inc., 1820 E. Big Beaver Rd, Troy, MI 48083, Hypermesh

  1. Tracing the evolution of avian wing digits.

    Science.gov (United States)

    Xu, Xing; Mackem, Susan

    2013-06-17

    It is widely accepted that birds are a subgroup of dinosaurs, but there is an apparent conflict: modern birds have been thought to possess only the middle three fingers (digits II-III-IV) of an idealized five-digit tetrapod hand based on embryological data, but their Mesozoic tetanuran dinosaur ancestors are considered to have the first three digits (I-II-III) based on fossil evidence. How could such an evolutionary quirk arise? Various hypotheses have been proposed to resolve this paradox. Adding to the confusion, some recent developmental studies support a I-II-III designation for avian wing digits whereas some recent paleontological data are consistent with a II-III-IV identification of the Mesozoic tetanuran digits. A comprehensive analysis of both paleontological and developmental data suggests that the evolution of the avian wing digits may have been driven by homeotic transformations of digit identity, which are more likely to have occurred in a partial and piecemeal manner. Additionally, recent genetic studies in mouse models showing plausible mechanisms for central digit loss invite consideration of new alternative possibilities (I-II-IV or I-III-IV) for the homologies of avian wing digits. While much progress has been made, some advances point to the complexity of the problem and a final resolution to this ongoing debate demands additional work from both paleontological and developmental perspectives, which will surely yield new insights on mechanisms of evolutionary adaptation. Copyright © 2013 Elsevier Ltd. All rights reserved.

  2. Unsteady fluid dynamics around a hovering wing

    Science.gov (United States)

    Krishna, Swathi; Green, Melissa; Mulleners, Karen

    2017-11-01

    The unsteady flow around a hovering flat plate wing has been investigated experimentally using particle image velocimetry and direct force measurements. The measurements are conducted on a wing that rotates symmetrically about the stroke reversal at a reduced frequency of k = 0.32 and Reynolds number of Re = 220 . The Lagrangian finite-time Lyapunov exponent method is used to analyse the unsteady flow fields by identifying dynamically relevant flow features such as the primary leading edge vortex (LEV), secondary vortices, and topological saddles, and their evolution within a flapping cycle. The flow evolution is divided into four stages that are characterised by the LEV (a)emergence, (b)growth, (c)lift-off, and (d)breakdown and decay. Tracking saddle points is shown to be helpful in defining the LEV lift-off which occurs at the maximum stroke velocity. The flow fields are correlated with the aerodynamic forces revealing that the maximum lift and drag are observed just before LEV lift-off. The end of wing rotation in the beginning of the stroke stimulates a change in the direction of the LEV growth and the start of rotation at the end of the stroke triggers the breakdown of the LEV.

  3. Delta Electroproduction in 12-C

    Energy Technology Data Exchange (ETDEWEB)

    McLauchlan, Steven [Univ. of Glasgow, Scotland (United Kingdom)

    2003-01-01

    The Δ-nucleus potential is a crucial element in the understanding of the nuclear system. Previous electroexcitation measurements in the delta region reported a Q2 dependence of the Δ mass indicating that this potential is dependent on the momentum of the Δ. Such a dependence is not observed for protons and neutrons in the nuclear medium. This thesis presents the experimental study of the electroexcitation of the Δ resonance in 12C, performed using the high energy electron beam at the Thomas Jefferson National Accelerator Facility, and the near 4π acceptance detector CLAS that enables the detection of the full reaction final state. Inclusive, semi inclusive, and exclusive cross sections were measured with an incident electron beam energy of 1.162GeV over the Q2 range 0.175-0.475 (GeV/c)2. A Q2 dependence of the Δ mass was only observed in the exclusive measurements indicating that the Δ-nucleus potential is affected by the momentum of the Δ.

  4. The LCF behaviour of SS AISI 304 in the temperature range between 450 deg. C and 850 deg. C in connection with life time predictions

    International Nuclear Information System (INIS)

    Bocek, M.; Petersen, C.; Schmitt, R.

    The lifetime in high amplitude strain cycling with tensional hold periods is analysed presuming that creep failure damage is life determining. The life fraction rule (LFR) is used to calculate the lifetime consumpted during the dwell period in strain controlled tests as well as during tensional hold time stress cycles. It follows from the present investigation that stress relaxation occurring during the strain hold periods has a dominant influence upon the lifetime. The damage in stress relaxation is calculated by means of the LFR and the results are compared to experiments conducted on Zircaloy-4 (T=600 deg. C) and the austenitic stainless steel Type AISI 304 (T=650 deg. C). From the very good agreement between both it is concluded that under the loading conditions considered, creep failure damage is the main life determining damage contribution. To investigate the contributions of creep and fatigue to failure damage stress controlled experiments were conducted on AISI 304 at 550 deg. C and 850 deg. C. Whereas at the lower temperature (T 0.6 Tsub(s)) the lifetime increased with decreasing R. Therefrom it is concluded that in the case considered for T>0.6 Tsub(s) fatigue damage is not lifetime determining. (author)

  5. Legal Delta Boundary, 2001, DWR [ds586

    Data.gov (United States)

    California Natural Resource Agency — The original topographic maps containing the drawn delta border were scanned from the Department of Water Resources. Images were registered to 1:24,000 USGS DRG's in...

  6. sheltered creeks in Niger Delta, Nigeria

    African Journals Online (AJOL)

    user

    2015-03-18

    Mar 18, 2015 ... 273 and 115,000 barrels, respectively, making the delta. *Corresponding author. .... content was transferred to savillex digestion bombs and concen- trated hydrochloric ... metals (Zn, Pb and Cu) by flame atomic absorption.

  7. South Local Government Area, Delta S

    African Journals Online (AJOL)

    ADOWIE PERE

    environs, Aniocha- South Local Government Area of Delta State, Nigeria was carried out with a view to determining the ... supply for physical industrial development to achieve maximum human .... the Schlumberger O' Neil software package.

  8. Delta-nucleus dynamics: proceedings of symposium

    Energy Technology Data Exchange (ETDEWEB)

    Lee, T.S.H.; Geesaman, D.F.; Schiffer, J.P. (eds.)

    1983-10-01

    The appreciation of the role in nuclear physics of the first excited state of the nucleon, the delta ..delta..(1232), has grown rapidly in the past decade. The delta resonance dominates nuclear reactions induced by intermediate energy pions, nucleons, and electromagnetic probes. It is also the most important non-nucleonic degree of freedom needed to resolve many fundamental problems encountered in the study of low-energy nuclear phenomena. Clearly, a new phase of nuclear physics has emerged and conventional thinking must be extended to account for this new dimension of nuclear dynamics. The most challenging problem we are facing is how a unified theory can be developed to describe ..delta..-nucleus dynamics at all energies. In exploring this new direction, it is important to have direct discussions among researchers with different viewpoints. Separate entries were prepared for the 49 papers presented. (WHK)

  9. Damped Oscillator with Delta-Kicked Frequency

    Science.gov (United States)

    Manko, O. V.

    1996-01-01

    Exact solutions of the Schrodinger equation for quantum damped oscillator subject to frequency delta-kick describing squeezed states are obtained. The cases of strong, intermediate, and weak damping are investigated.

  10. On the origin of delta spots

    International Nuclear Information System (INIS)

    Tang, F.

    1983-01-01

    Mount Wilson sunspot drawings from 1966 through 1980 were used in conjunction with Hα filtergrams from Big Bear Solar Observatory to examine the origin of delta spots, spots with bipolar umbrae within one penumbra. Of the six cases we studied, five were formed by the union of non-paired spots. They are either shoved into one another by two neighboring growing bipoles or by a new spot born piggy-back style on an existing spot of opposite polarity. Proper motions of the growing spots take on curvilinear paths around one another to avoid a collision. This is the shear motion observed in delta spots (Tanaka, 1979). In the remaining case, the delta spot was formed by spots that emerged as a pair. Our findings indicate no intrinsic differences in the formation or the behavior between delta spots of normal magnetic configuration. (orig.)

  11. 2016 Rose Ojowhoh Delta State Polytechnic, Ozoro

    African Journals Online (AJOL)

    OJOHWOH ROSE

    The study examined staff development and library services in academic libraries in Bayelsa and Delta States. ... academic libraries, whose responsibility will be to cater for the development of staff in all ramifications. ..... Human resource.

  12. AMNESTY IN THE NIGER DELTA: VERTICAL MOVEMENT ...

    African Journals Online (AJOL)

    OLAWUYI

    federal government, the Niger Delta communities claim that they are entitled to ... instability, macroeconomic challenges, inconsistent policy regimes to ..... continues they cannot threaten the stability of the country nor affect its continued.

  13. Astrobee Periodic Technical Review (PTR) Delta 3

    Science.gov (United States)

    Provencher, Christopher; Smith, Marion F.; Smith, Ernest Everett; Bualat, Maria Gabriele; Barlow, Jonathan Spencer

    2017-01-01

    Astrobee is a free flying robot for the inside of the International Space Station (ISS). The Periodic Technical Review (PTR) delta 3 is the final design review of the system presented to stakeholders.

  14. The wings of Bombyx mori develop from larval discs exhibiting an ...

    Indian Academy of Sciences (India)

    Unknown

    presumptive wing blade domains unlike in Drosophila, where it is confined to the hinge and the wing pouch. ... events are different and the wing discs behave like presumptive wing buds .... emerge with the fore- and the hind-wings (figure 1e, j) on ... phosis (compare c with d, and h with i) during the larval to pupal transition.

  15. Physics-based Morphology Analysis and Adjoint Optimization of Flexible Flapping Wings

    Science.gov (United States)

    2016-08-30

    production, power consumption , and efficiency. Novel tools for studying wing morphing during complicated flapping flights have been developed to...23 Figure 14. Transverse plane cut at mid-downstroke. (a) Cut through wing and body (b) Cut through the near wake (no wings...between wing surfaces and corresponding least square planes . The distances are normalized by wing mid chord length

  16. Migration in Vulnerable Deltas: A Research Strategy

    Science.gov (United States)

    Hutton, C.; Nicholls, R. J.; Allan, A.

    2015-12-01

    C. Hutton1, & R. J. Nicholls1, , 1 University of Southampton, University Road, Southampton, Hampshire, United Kingdom, SO17 1BJ. cwh@geodata. soton.ac.ukAbstractGlobally, deltas contain 500 million people and with rising sea levels often linked to large number of forced migrants are expected in the coming century. However, migration is already a major process in deltas, such as the growth of major cities such as Dhaka and Kolkata. Climate and environmental change interacts with a range of catchment and delta level drivers, which encompass a nexus of sea-level rise, storms, freshwater and sediment supply from the catchment, land degradation, subsidence, agricultural loss and socio-economic stresses. DECCMA (Deltas, Vulnerability and Climate Change: Migration and Adaptation/CARRIA) is investigating migration in the Ganges-Brahmaputra-Meghna (GBM), Mahanadi and Volta Deltas, including the influence of climate change. The research will explore migration from a range of perspectives including governance and stakeholder analysis, demographic analysis, household surveys of sending and receiving areas, macro-economic analysis, and hazards and hotspot analysis both historically and into the future. Migration under climate change will depend on other adaptation in the deltas and this will be examined. Collectively, integrated analysis will be developed to examine migration, other adaptation and development pathways with a particular focus on the implications for the poorest. This will require the development of input scenarios, including expert-derived exogenous scenarios (e.g., climate change) and endogenous scenarios of the delta developed in a participatory manner. This applied research will facilitate decision support methods for the development of deltas under climate change, with a focus on migration and other adaptation strategies.

  17. Distance and total column density to the periodic radio star LSI + 61 deg 303

    International Nuclear Information System (INIS)

    Frail, D.A.; Hjellming, R.M.

    1991-01-01

    New observations toward the periodic radio star LSI + 61 deg 303 in the lines of H I at 21 cm and CO-18 at 2.7 mm are reported. Using the kinematic method, H I observations are interpreted in terms of the two-armed spiral shock model of Roberts (1972) to derive a distance to LSI + 61 deg 303 of 2.0 + or - 0.2 kpc. The results clearly show the presence of the Perseus arm shock and locate LSI + 61 deg 303 between this shock and the more distant postshock gas. In addition, by using the H I and CO-18 data, the total neutral and molecular gas column density is derived along the line of sight toward LSI + 61 deg 303. 32 refs

  18. Measurement of shape and deformation of insect wing

    Science.gov (United States)

    Yin, Duo; Wei, Zhen; Wang, Zeyu; Zhou, Changqiu

    2018-01-01

    To measure the shape and deformation of an insect wing, a scanning setup adopting laser triangulation and image matching was developed. Only one industry camera with two light sources was employed to scan the transparent insect wings. 3D shape and point to point full field deformation of the wings could be obtained even when the wingspan is less than 3 mm. The venation and corrugation could be significantly identified from the results. The deformation of the wing under pin loading could be seen clearly from the results as well. Calibration shows that the shape and deformation measurement accuracies are no lower than 0.01 mm. Laser triangulation and image matching were combined dexterously to adapt wings' complex shape, size, and transparency. It is suitable for insect flight research or flapping wing micro-air vehicle development.

  19. Modeling and Optimization for Morphing Wing Concept Generation

    Science.gov (United States)

    Skillen, Michael D.; Crossley, William A.

    2007-01-01

    This report consists of two major parts: 1) the approach to develop morphing wing weight equations, and 2) the approach to size morphing aircraft. Combined, these techniques allow the morphing aircraft to be sized with estimates of the morphing wing weight that are more credible than estimates currently available; aircraft sizing results prior to this study incorporated morphing wing weight estimates based on general heuristics for fixed-wing flaps (a comparable "morphing" component) but, in general, these results were unsubstantiated. This report will show that the method of morphing wing weight prediction does, in fact, drive the aircraft sizing code to different results and that accurate morphing wing weight estimates are essential to credible aircraft sizing results.

  20. Multi-wing hyperchaotic attractors from coupled Lorenz systems

    International Nuclear Information System (INIS)

    Grassi, Giuseppe; Severance, Frank L.; Miller, Damon A.

    2009-01-01

    This paper illustrates an approach to generate multi-wing attractors in coupled Lorenz systems. In particular, novel four-wing (eight-wing) hyperchaotic attractors are generated by coupling two (three) identical Lorenz systems. The paper shows that the equilibria of the proposed systems have certain symmetries with respect to specific coordinate planes and the eigenvalues of the associated Jacobian matrices exhibit the property of similarity. In analogy with the original Lorenz system, where the two-wings of the butterfly attractor are located around the two equilibria with the unstable pair of complex-conjugate eigenvalues, this paper shows that the four-wings (eight-wings) of these attractors are located around the four (eight) equilibria with two (three) pairs of unstable complex-conjugate eigenvalues.

  1. Rotary balance data for a single-engine trainer design for an angle-of-attack range of 8 deg to 90 deg. [conducted in langely spin tunnel

    Science.gov (United States)

    Pantason, P.; Dickens, W.

    1979-01-01

    Aerodynamic characteristics obtained in a rotational flow environment utilizing a rotary balance located in the Langley spin tunnel are presented in plotted form for a 1/6 scale, single engine trainer airplane model. The configurations tested included the basic airplane, various wing leading edge devices, elevator, aileron and rudder control settings as well as airplane components. Data are presented without analysis for an angle of attack range of 8 to 90 degrees and clockwise and counter-clockwise rotations.

  2. Insight into DEG/ENaC channel gating from genetics and structure.

    Science.gov (United States)

    Eastwood, Amy L; Goodman, Miriam B

    2012-10-01

    The founding members of the superfamily of DEG/ENaC ion channel proteins are C. elegans proteins that form mechanosensitive channels in touch and pain receptors. For more than a decade, the research community has used mutagenesis to identify motifs that regulate gating. This review integrates insight derived from unbiased in vivo mutagenesis screens with recent crystal structures to develop new models for activation of mechanically gated DEGs.

  3. Radiolysis of cesium iodide solutions at 35 and 85 deg C

    International Nuclear Information System (INIS)

    Lucas, M.

    1981-09-01

    An aqueous solution of cesium iodide was irradiated by the gamma rays from a cobalt 60 source with a dose rate of 0.4 Mrad/hr. At 35 deg C the iodide I - is oxidized in molecular iodine I 2 but at 85 deg C the iodate IO 3 - is obtained. The aim of this work is the study of aerosols behaviour released in accidental situation of a PWR in presence of steam [fr

  4. Simplified 2DEG carrier concentration model for composite barrier AlGaN/GaN HEMT

    International Nuclear Information System (INIS)

    Das, Palash; Biswas, Dhrubes

    2014-01-01

    The self consistent solution of Schrodinger and Poisson equations is used along with the total charge depletion model and applied with a novel approach of composite AlGaN barrier based HEMT heterostructure. The solution leaded to a completely new analytical model for Fermi energy level vs. 2DEG carrier concentration. This was eventually used to demonstrate a new analytical model for the temperature dependent 2DEG carrier concentration in AlGaN/GaN HEMT

  5. Patterning of a compound eye on an extinct dipteran wing

    OpenAIRE

    Dinwiddie, April; Rachootin, Stan

    2010-01-01

    We have discovered unexpected similarities between a novel and characteristic wing organ in an extinct biting midge from Baltic amber, Eohelea petrunkevitchi, and the surface of a dipteran's compound eye. Scanning electron microscope images now reveal vestigial mechanoreceptors between the facets of the organ. We interpret Eohelea's wing organ as the blending of these two developmental systems: the formation and patterning of the cuticle in the eye and of the wing.

  6. Behavior of ferritic/martensitic steels after n-irradiation at 200 and 300 deg. C

    International Nuclear Information System (INIS)

    Matijasevic, M.; Lucon, E.; Almazouzi, A.

    2008-01-01

    High chromium ferritic/martensitic (F/M) steels are considered as the most promising structural materials for accelerator driven systems (ADS). One drawback that needs to be quantified is the significant hardening and embrittlement caused by neutron irradiation at low temperatures with production of spallation elements. In this paper irradiation effects on the mechanical properties of F/M steels have been studied and comparisons are provided between two ferritic/martensitic steels, namely T91 and EUROFER97. Both materials have been irradiated in the BR2 reactor of SCK-CEN/Mol at 300 deg. C up to doses ranging from 0.06 to 1.5 dpa. Tensile tests results obtained between -160 deg. C and 300 deg. C clearly show irradiation hardening (increase of yield and ultimate tensile strengths), as well as reduction of uniform and total elongation. Irradiation effects for EUROFER97 starting from 0.6 dpa are more pronounced compared to T91, showing a significant decrease in work hardening. The results are compared to our latest data that were obtained within a previous program (SPIRE), where T91 had also been irradiated in BR2 at 200 deg. C (up to 2.6 dpa), and tested between -170 deg. C and 300 deg. C. Irradiation effects at lower irradiation temperatures are more significant

  7. Ce2O3-SO3-H2O system at 150 and 200 deg C

    International Nuclear Information System (INIS)

    Belokoskov, V.I.; Trofimov, G.V.; Govorukhina, O.A.

    1978-01-01

    The solubility, solid phase composition and crystal characteristics in the Ce 2 O 3 -SO 3 -H 2 O system have been studied in a broad range of sulfuric acid concentrations (25 to 80% SO 3 ) at temperatures from 150 to 200 deg C. It has been established that in the system the equilibrium had been reached after 15 to 20 days. At 150 deg C, Ce 2 (SO 4 ) 3 x2H 2 O, Ce 2 (SO 4 ) 3 xH 2 O sulfates and Ce 2 (SO 4 ) 3 x3H 2 SO 4 acid salt crystallize in the system. At 200 deg C, the same sulfates crystallize in the system, except that the bisaturation points of the system are shifted, with respect to 150 deg C, into the region of higher SO 3 concentration and correspond to solutions with a SO 3 concentration of 57.8 and 65%. The solubility of cerium(3) at 150 deg C is about 0.5% Ce 2 O 3 . An increase in temperature up to 200 deg C leads to a slightly higher solubility of cerium sulfates

  8. A novel mouse PKC{delta} splice variant, PKC{delta}IX, inhibits etoposide-induced apoptosis

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jung D. [School of Biological Sciences, University of Ulsan, Ulsan (Korea, Republic of); Seo, Kwang W. [Department of Internal Medicines, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan (Korea, Republic of); Lee, Eun A.; Quang, Nguyen N. [School of Biological Sciences, University of Ulsan, Ulsan (Korea, Republic of); Cho, Hong R. [Department of Surgery, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan (Korea, Republic of); Biomedical Research Center, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan (Korea, Republic of); Kwon, Byungsuk, E-mail: bskwon@mail.ulsan.as.kr [School of Biological Sciences, University of Ulsan, Ulsan (Korea, Republic of); Biomedical Research Center, Ulsan University Hospital and School of Medicine, University of Ulsan, Ulsan (Korea, Republic of)

    2011-07-01

    Highlights: {yields} A novel PKC{delta} isoform, named PKC{delta}IX, that lacks the C1 domain and the ATP-binding site is ubiquitously expressed. {yields} PKC{delta}IX inhibits etoposide-induced apoptosis. {yields} PKC{delta}IX may function as an endogenous dominant negative isoform for PKC{delta}. -- Abstract: Protein kinase C (PKC) {delta} plays an important role in cellular proliferation and apoptosis. The catalytic fragment of PKC{delta} generated by caspase-dependent cleavage is essential for the initiation of etoposide-induced apoptosis. In this study, we identified a novel mouse PKC{delta} isoform named PKC{delta}IX (Genebank Accession No. (HQ840432)). PKC{delta}IX is generated by alternative splicing and is ubiquitously expressed, as seen in its full-length PKC{delta}. PKC{delta}IX lacks the C1 domain, the caspase 3 cleavage site, and the ATP binding site but preserves an almost intact c-terminal catalytic domain and a nuclear localization signal (NLS). The structural characteristics of PKC{delta}IX provided a possibility that this PKC{delta} isozyme functions as a novel dominant-negative form for PKC{delta} due to its lack of the ATP-binding domain that is required for the kinase activity of PKC{delta}. Indeed, overexpression of PKC{delta}IX significantly inhibited etoposide-induced apoptosis in NIH3T3 cells. In addition, an in vitro kinase assay showed that recombinant PKC{delta}IX protein could competitively inhibit the kinase activity of PKC{delta}. We conclude that PKC{delta}IX can function as a natural dominant-negative inhibitor of PKC{delta}in vivo.

  9. PEGIDA : fearful patriots or right-wing radicals?

    OpenAIRE

    Glasmeier, Ruth Katharina

    2016-01-01

    Right-wing movements have become more popular in recent years. This shows in the increase of right-wing populist or right-wing radical parties in different European governments. Despite this European wide trend, Germany did not have a successful right-wing movement. This changed with the creation of PEGIDA and the AfD. Since this type of movement is relatively new in Germany, this thesis aims to understand PEGIDA. The thesis aims to answer the question of Who are PEGIDA? To do so, it will...

  10. Functional Gustatory Role of Chemoreceptors in Drosophila Wings.

    Science.gov (United States)

    Raad, Hussein; Ferveur, Jean-François; Ledger, Neil; Capovilla, Maria; Robichon, Alain

    2016-05-17

    Neuroanatomical evidence argues for the presence of taste sensilla in Drosophila wings; however, the taste physiology of insect wings remains hypothetical, and a comprehensive link to mechanical functions, such as flight, wing flapping, and grooming, is lacking. Our data show that the sensilla of the Drosophila anterior wing margin respond to both sweet and bitter molecules through an increase in cytosolic Ca(2+) levels. Conversely, genetically modified flies presenting a wing-specific reduction in chemosensory cells show severe defects in both wing taste signaling and the exploratory guidance associated with chemodetection. In Drosophila, the chemodetection machinery includes mechanical grooming, which facilitates the contact between tastants and wing chemoreceptors, and the vibrations of flapping wings that nebulize volatile molecules as carboxylic acids. Together, these data demonstrate that the Drosophila wing chemosensory sensilla are a functional taste organ and that they may have a role in the exploration of ecological niches. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Delta infection evidenced by radioimmunoanalysis in selected collectives

    Energy Technology Data Exchange (ETDEWEB)

    Kselikova, M; Horejsi, J; Urbankova, J

    1987-01-01

    The presence of the Delta agent within the population was tested by means of the Delta-antibody radioimmunoassay using competitive kits of the firms ABBOTT (ABBOTT-ANTI-DELTA) and SORIN (AB-DELTAK). The Delta-antibody was found in 3.2% HBV patients, 5% HBsAg carriers, and in 20.8% of specific anti-Hbs-immunoglobulin. In hemophiliacs and blood donors no Delta-antibody was seen.

  12. Delta infection evidenced by radioimmunoanalysis in selected collectives

    International Nuclear Information System (INIS)

    Kselikova, M.; Horejsi, J.; Urbankova, J.

    1987-01-01

    The presence of the Delta agent within the population was tested by means of the Delta-antibody radioimmunoassay using competitive kits of the firms ABBOTT (ABBOTT-ANTI-DELTA) and SORIN (AB-DELTAK). The Delta-antibody was found in 3.2% HBV patients, 5% HBsAg carriers, and in 20.8% of specific anti-Hbs-immunoglobulin. In hemophiliacs and blood donors no Delta-antibody was seen. (author)

  13. Growth laws for sub-delta crevasses in the Mississippi River Delta

    Science.gov (United States)

    Yocum, T. A.; Georgiou, I. Y.; Straub, K. M.

    2017-12-01

    River deltas are threatened by environmental change, including subsidence, global sea level rise, reduced sediment inputs and other local factors. In the Mississippi River Delta (MRD) these impacts are exemplified, and have led to proposed solutions to build land that include sediment diversions to reinitiate the delta cycle. Deltas were studied extensively using numerical models, theoretical and conceptual frameworks, empirical scaling relationships, laboratory models and field observations. But predicting the future of deltas relies on field observations where for most deltas data are still lacking. Moreover, empirical and theoretical scaling laws may be influenced by the data used to develop them, while laboratory deltas may be influenced by scaling issues. Anthropogenic crevasses in the MRD are large enough to overcome limitations of laboratory deltas, and small enough to allow for rapid channel and wetland development, providing an ideal setting to investigate delta development mechanics. Here we assessed growth laws of sub-delta crevasses (SDC) in the MRD, in two experimental laboratory deltas (LD - weakly and strongly cohesive) and compared them to river dominated deltas worldwide. Channel and delta geometry metrics for each system were obtained using geospatial tools, bathymetric datasets, sediment size, and hydrodynamic observations. Results show that SDC follow growth laws similar to large river dominated deltas, with the exception of some that exhibit anomalous behavior with respect to the frequency and distance to a bifurcation and the fraction of wetted delta shoreline (allometry metrics). Most SDC exhibit a systematic decrease of non-dimensional channel geometries with increased bifurcation order, indicating that channels are adjusting to decreased flow after bifurcations occur, and exhibit linear trends for land allometry and width-depth ratio, although geometries decrease more rapidly per bifurcation order. Measured distance to bifurcations in SDC

  14. Thermal conductivity of fully dense unirradiated UO{sub 2}: A new formulation from experimental results between 100 deg. C and 2500 deg. C, and associated fundamental properties

    Energy Technology Data Exchange (ETDEWEB)

    Delette, G; Charles, M [Commissariat a l` Energie Atomique, Grenoble (France)

    1997-08-01

    The various contributions to the thermal conductivity of UO{sub 2} are first reviewed: contribution from phonons is preponderant up to 1600 deg. C; radiative contribution is negligible in the case of a polycrystalline sample, and is unable to account for the increase in conductivity observed above 1600 deg. C; electronic contribution, which seems patently to be responsible for this increase, is efficient from 1400 deg. C (electron-hole pairs treated as small polarons). Given the lack of decisive arguments on their actual efficiency, it was decided that, for temperatures above 2400 deg. C, neither a possible decrease in the electronic contribution due to vacancies, nor an additional possible contribution from Frenkel pairs would be described. We do not go therefore beyond the above-mentioned electronic contribution. In the light of these considerations, the law established by CEA for the thermal conductivity of unirradiated UO{sub 2}, on the basis of a homogeneous set of measurements between 100 deg. C and 2500 deg. C, has been revised. A least-square method applied to the above measurements was used to derive simultaneously the four adjustable constants of the law which is henceforth proposed: {lambda} = 1/A + BT+C/T{sup 2}exp(-W/kT). The values of A, B, C, and W obtained, have the advantage of giving a better account of the high temperature results compared to the Martin recommendations (which has, by the way, the same physical form as above). Furthermore, this new law allows an extrapolation towards the melting point which is better founded than the earlier CEA law, while still respecting the value of the integrated thermal conductivity up to melting. Finally, various burnup effects (impurities, stoichiometry, etc.) can be formulated in physical terms. Moreover, the values of various fundamental properties connected with the derived constants have been determined: Debye temperature, Grueneisen parameter, Mott-Hubbard energy, electrical conductivity. These values

  15. Wind Tunnel Investigation of Passive Vortex Control and Vortex-Tail Interactions on a Slender Wing at Subsonic and Transonic Speeds

    Science.gov (United States)

    Erickson, Gary E.

    2013-01-01

    A wind tunnel experiment was conducted in the NASA Langley 8-Foot Transonic Pressure Tunnel to determine the effects of passive porosity on vortex flow interactions about a slender wing configuration at subsonic and transonic speeds. Flow-through porosity was applied in several arrangements to a leading-edge extension, or LEX, mounted to a 65-degree cropped delta wing as a longitudinal instability mitigation technique. Test data were obtained with LEX on and off in the presence of a centerline vertical tail and twin, wing-mounted vertical fins to quantify the sensitivity of the aerodynamics to tail placement and orientation. A close-coupled canard was tested as an alternative to the LEX as a passive flow control device. Wing upper surface static pressure distributions and six-component forces and moments were obtained at Mach numbers of 0.50, 0.85, and 1.20, unit Reynolds number of 2.5 million, angles of attack up to approximately 30 degrees, and angles of sideslip to +/-8 degrees. The off-surface flow field was visualized in cross planes on selected configurations using a laser vapor screen flow visualization technique. Tunnel-to-tunnel data comparisons and a Reynolds number sensitivity assessment were also performed. 15.

  16. Demonstration of an in situ morphing hyperelliptical cambered span wing mechanism

    International Nuclear Information System (INIS)

    Manzo, Justin; Garcia, Ephrahim

    2010-01-01

    Research on efficient shore bird morphology inspired the hyperelliptical cambered span (HECS) wing, a crescent-shaped, aft-swept wing with vertically oriented wingtips. The wing reduces vorticity-induced circulation loss and outperforms an elliptical baseline when planar. Designed initially as a rigid wing, the HECS wing makes use of morphing to transition from a planar to a furled configuration, similar to that of a continuously curved winglet, in flight. A morphing wing concept mechanism is presented, employing shape memory alloy actuators to create a discretized curvature approximation. The aerodynamics for continuous wing shapes is validated quasi-statically through wind tunnel testing, showing enhanced planar HECS wing lift-to-drag performance over an elliptical wing, with the furled HECS wing showing minimal enhancements beyond this point. Wind tunnel tests of the active morphing wing prove the mechanism capable of overcoming realistic loading, while further testing may be required to establish aerodynamic merits of the HECS wing morphing maneuver

  17. Houtman Abrolhos Isotope (delta 18O, delta 13C) Data for 1795 to 1994

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — DESCRIPTION: VARIABLES AND UNITS: Column #1: core depth in mm Column #2: delta C-13 vs V-PDB Column #3: delta O-18 vs V-PDB Column #4: assigned date in years A.D....

  18. The Enabling Delta Life Initiative - Global Programme of Action on Deltas - Programme description

    NARCIS (Netherlands)

    Driel, van W.F.; Skyllerstedt, S.; Wosten, J.H.M.

    2014-01-01

    Being ‘hotspots’ of human activity with generally high population densities, deltas are vulnerable to changes induced by a range of driving forces, both natural and anthropogenic. In addition to already existing challenges, uncertainty of the possible impacts of climate change, low lying deltas

  19. Normal-Force and Hinge-Moment Characteristics at Transonic Speeds of Flap-Type Ailerons at Three Spanwise Locations on a 4-Percent-Thick Sweptback-Wing-Body Model and Pressure-Distribution Measurements on an Inboard Aileron

    Science.gov (United States)

    Runckel, Jack F.; Hieser, Gerald

    1961-01-01

    An investigation has been conducted at the Langley 16-foot transonic tunnel to determine the loading characteristics of flap-type ailerons located at inboard, midspan, and outboard positions on a 45 deg. sweptback-wing-body combination. Aileron normal-force and hinge-moment data have been obtained at Mach numbers from 0.80 t o 1.03, at angles of attack up to about 27 deg., and at aileron deflections between approximately -15 deg. and 15 deg. Results of the investigation indicate that the loading over the ailerons was established by the wing-flow characteristics, and the loading shapes were irregular in the transonic speed range. The spanwise location of the aileron had little effect on the values of the slope of the curves of hinge-moment coefficient against aileron deflection, but the inboard aileron had the greatest value of the slope of the curves of hinge-moment coefficient against angle of attack and the outboard aileron had the least. Hinge-moment and aileron normal-force data taken with strain-gage instrumentation are compared with data obtained with pressure measurements.

  20. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators

    International Nuclear Information System (INIS)

    Colorado, J; Barrientos, A; Rossi, C; Breuer, K S

    2012-01-01

    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance–motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s −1 . (paper)

  1. On the Distinct Effects of Left-Wing and Right-Wing Populism on Democratic Quality

    Directory of Open Access Journals (Sweden)

    Robert A. Huber

    2017-12-01

    Full Text Available This study examines the differences and commonalities of how populist parties of the left and right relate to democracy. The focus is narrowed to the relationship between these parties and two aspects of democratic quality, minority rights and mutual constraints. Our argument is twofold: first, we contend that populist parties can exert distinct influences on minority rights, depending on whether they are left-wing or right-wing populist parties. Second, by contrast, we propose that the association between populist parties and mutual constraints is a consequence of the populist element and thus, we expect no differences between the left-wing and right-wing parties. We test our expectations against data from 30 European countries between 1990 and 2012. Our empirical findings support the argument for the proposed differences regarding minority rights and, to a lesser extent, the proposed similarities regarding mutual constraints. Therefore we conclude that, when examining the relationship between populism and democracy, populism should not be considered in isolation from its host ideology.

  2. Biomechanics of smart wings in a bat robot: morphing wings using SMA actuators.

    Science.gov (United States)

    Colorado, J; Barrientos, A; Rossi, C; Bahlman, J W; Breuer, K S

    2012-09-01

    This paper presents the design of a bat-like micro aerial vehicle with actuated morphing wings. NiTi shape memory alloys (SMAs) acting as artificial biceps and triceps muscles are used for mimicking the morphing wing mechanism of the bat flight apparatus. Our objective is twofold. Firstly, we have implemented a control architecture that allows an accurate and fast SMA actuation. This control makes use of the electrical resistance measurements of SMAs to adjust morphing wing motions. Secondly, the feasibility of using SMA actuation technology is evaluated for the application at hand. To this purpose, experiments are conducted to analyze the control performance in terms of nominal and overloaded operation modes of the SMAs. This analysis includes: (i) inertial forces regarding the stretchable wing membrane and aerodynamic loads, and (ii) uncertainties due to impact of airflow conditions over the resistance-motion relationship of SMAs. With the proposed control, morphing actuation speed can be increased up to 2.5 Hz, being sufficient to generate lift forces at a cruising speed of 5 m s(-1).

  3. SUPERDENSE MASSIVE GALAXIES IN WINGS LOCAL CLUSTERS

    International Nuclear Information System (INIS)

    Valentinuzzi, T.; D'Onofrio, M.; Fritz, J.; Poggianti, B. M.; Bettoni, D.; Fasano, G.; Moretti, A.; Omizzolo, A.; Varela, J.; Cava, A.; Couch, W. J.; Dressler, A.; Moles, M.; Kjaergaard, P.; Vanzella, E.

    2010-01-01

    Massive quiescent galaxies at z > 1 have been found to have small physical sizes, and hence to be superdense. Several mechanisms, including minor mergers, have been proposed for increasing galaxy sizes from high- to low-z. We search for superdense massive galaxies in the WIde-field Nearby Galaxy-cluster Survey (WINGS) of X-ray selected galaxy clusters at 0.04 10 M sun , are mostly S0 galaxies, have a median effective radius (R e ) = 1.61 ± 0.29 kpc, a median Sersic index (n) = 3.0 ± 0.6, and very old stellar populations with a median mass-weighted age of 12.1 ± 1.3 Gyr. We calculate a number density of 2.9 x 10 -2 Mpc -3 for superdense galaxies in local clusters, and a hard lower limit of 1.3 x 10 -5 Mpc -3 in the whole comoving volume between z = 0.04 and z = 0.07. We find a relation between mass, effective radius, and luminosity-weighted age in our cluster galaxies, which can mimic the claimed evolution of the radius with redshift, if not properly taken into account. We compare our data with spectroscopic high-z surveys and find that-when stellar masses are considered-there is consistency with the local WINGS galaxy sizes out to z ∼ 2, while a discrepancy of a factor of 3 exists with the only spectroscopic z > 2 study. In contrast, there is strong evidence for a large evolution in radius for the most massive galaxies with M * > 4 x 10 11 M sun compared to similarly massive galaxies in WINGS, i.e., the brightest cluster galaxies.

  4. Optimization of composite tiltrotor wings with extensions and winglets

    Science.gov (United States)

    Kambampati, Sandilya

    Tiltrotors suffer from an aeroelastic instability during forward flight called whirl flutter. Whirl flutter is caused by the whirling motion of the rotor, characterized by highly coupled wing-rotor-pylon modes of vibration. Whirl flutter is a major obstacle for tiltrotors in achieving high-speed flight. The conventional approach to assure adequate whirl flutter stability margins for tiltrotors is to design the wings with high torsional stiffness, typically using 23% thickness-to-chord ratio wings. However, the large aerodynamic drag associated with these high thickness-to-chord ratio wings decreases aerodynamic efficiency and increases fuel consumption. Wingtip devices such as wing extensions and winglets have the potential to increase the whirl flutter characteristics and the aerodynamic efficiency of a tiltrotor. However, wing-tip devices can add more weight to the aircraft. In this study, multi-objective parametric and optimization methodologies for tiltrotor aircraft with wing extensions and winglets are investigated. The objectives are to maximize aircraft aerodynamic efficiency while minimizing weight penalty due to extensions and winglets, subject to whirl flutter constraints. An aeroelastic model that predicts the whirl flutter speed and a wing structural model that computes strength and weight of a composite wing are developed. An existing aerodynamic model (that predicts the aerodynamic efficiency) is merged with the developed structural and aeroelastic models for the purpose of conducting parametric and optimization studies. The variables of interest are the wing thickness and structural properties, and extension and winglet planform variables. The Bell XV-15 tiltrotor aircraft the chosen as the parent aircraft for this study. Parametric studies reveal that a wing extension of span 25% of the inboard wing increases the whirl flutter speed by 10% and also increases the aircraft aerodynamic efficiency by 8%. Structurally tapering the wing of a tiltrotor

  5. Folding in and out: passive morphing in flapping wings.

    Science.gov (United States)

    Stowers, Amanda K; Lentink, David

    2015-03-25

    We present a new mechanism for passive wing morphing of flapping wings inspired by bat and bird wing morphology. The mechanism consists of an unactuated hand wing connected to the arm wing with a wrist joint. Flapping motion generates centrifugal accelerations in the hand wing, forcing it to unfold passively. Using a robotic model in hover, we made kinematic measurements of unfolding kinematics as functions of the non-dimensional wingspan fold ratio (2-2.5) and flapping frequency (5-17 Hz) using stereo high-speed cameras. We find that the wings unfold passively within one to two flaps and remain unfolded with only small amplitude oscillations. To better understand the passive dynamics, we constructed a computer model of the unfolding process based on rigid body dynamics, contact models, and aerodynamic correlations. This model predicts the measured passive unfolding within about one flap and shows that unfolding is driven by centrifugal acceleration induced by flapping. The simulations also predict that relative unfolding time only weakly depends on flapping frequency and can be reduced to less than half a wingbeat by increasing flapping amplitude. Subsequent dimensional analysis shows that the time required to unfold passively is of the same order of magnitude as the flapping period. This suggests that centrifugal acceleration can drive passive unfolding within approximately one wingbeat in small and large wings. Finally, we show experimentally that passive unfolding wings can withstand impact with a branch, by first folding and then unfolding passively. This mechanism enables flapping robots to squeeze through clutter without sophisticated control. Passive unfolding also provides a new avenue in morphing wing design that makes future flapping morphing wings possibly more energy efficient and light-weight. Simultaneously these results point to possible inertia driven, and therefore metabolically efficient, control strategies in bats and birds to morph or recover

  6. Holocene evolution of a wave-dominated fan-delta: Godavari delta, India

    Science.gov (United States)

    Saito, Y.; Nageswara Rao, K.; Nagakumar, K.; Demudu, G.; Rajawat, A.; Kubo, S.; Li, Z.

    2013-12-01

    The Godavari delta is one of the world's largest wave-dominated deltas. The Godavari River arises in the Western Ghats near the west coast of India and drains an area of about 3.1x10^5 km^2, flowing about 1465 km southeast across the Indian peninsula to the Bay of Bengal. The Godavari delta consists of a gentle seaward slope from its apex (12 m elevation) at Rajahmundry and a coastal beach-ridge plain over a distance of about 75 km and covers ~5200 km^2 as a delta plain. The river splits into two major distributary channels, the Gautami and the Vasishta, at a barrage constructed in the mid-1800s. The coastal environment of the deltaic coast is microtidal (~1 m mean tidal range) and wave-dominated (~1.5 m mean wave height in the June-September SW monsoon season, ~0.8 m in the NE monsoon season). Models of the Holocene evolution of the Godavari delta have changed from a zonal progradation model (e.g. Nageswara Rao & Sadakata, 1993) to a truncated cuspate delta model (Nageswara Rao et al., 2005, 2012). Twelve borehole cores (340 m total length), taken in the coastal delta plain during 2010-2013, yielded more than 100 C-14 dates. Sediment facies and C-14 dates from these and previous cores and remote-sensing data support a new delta evolution model. The Holocene coastal delta plain is divided into two parts by a set of linear beach ridges 12-14 km landward from the present shoreline in the central part of the delta. The location of the main depocenter (lobe) has shifted during the Holocene from 1) the center to 2) the west, 3) east, 4) center, 5) west, and 6) east. The linear beach ridges separate the first three from the last three stages. These lobe shifts are controlled by river channel shifts near the apex. Just as the current linear shoreline of the central part of the delta and the concave-up nearshore topography are the result of coastal erosion of a cuspate delta, the linear beach ridges indicate a former eroded shoreline. An unconformity within the deltaic

  7. Video change detection for fixed wing UAVs

    Science.gov (United States)

    Bartelsen, Jan; Müller, Thomas; Ring, Jochen; Mück, Klaus; Brüstle, Stefan; Erdnüß, Bastian; Lutz, Bastian; Herbst, Theresa

    2017-10-01

    In this paper we proceed the work of Bartelsen et al.1 We present the draft of a process chain for an image based change detection which is designed for videos acquired by fixed wing unmanned aerial vehicles (UAVs). From our point of view, automatic video change detection for aerial images can be useful to recognize functional activities which are typically caused by the deployment of improvised explosive devices (IEDs), e.g. excavations, skid marks, footprints, left-behind tooling equipment, and marker stones. Furthermore, in case of natural disasters, like flooding, imminent danger can be recognized quickly. Due to the necessary flight range, we concentrate on fixed wing UAVs. Automatic change detection can be reduced to a comparatively simple photogrammetric problem when the perspective change between the "before" and "after" image sets is kept as small as possible. Therefore, the aerial image acquisition demands a mission planning with a clear purpose including flight path and sensor configuration. While the latter can be enabled simply by a fixed and meaningful adjustment of the camera, ensuring a small perspective change for "before" and "after" videos acquired by fixed wing UAVs is a challenging problem. Concerning this matter, we have performed tests with an advanced commercial off the shelf (COTS) system which comprises a differential GPS and autopilot system estimating the repetition accuracy of its trajectory. Although several similar approaches have been presented,23 as far as we are able to judge, the limits for this important issue are not estimated so far. Furthermore, we design a process chain to enable the practical utilization of video change detection. It consists of a front-end of a database to handle large amounts of video data, an image processing and change detection implementation, and the visualization of the results. We apply our process chain on the real video data acquired by the advanced COTS fixed wing UAV and synthetic data. For the

  8. Apparent and partial molar volumes of long-chain alkyldimethylbenzylammonium chlorides and bromides in aqueous solutions at T=15 deg. C and T=25 deg. C

    International Nuclear Information System (INIS)

    Gonzalez-Perez, A.; Ruso, J.M.; Nimo, J.; Rodriguez, J.R.

    2003-01-01

    Density measurements of dodecyl- (C 12 DBACl), tetradecyl- (C 14 DBACl), hexadecyldimethylbenzylammonium chloride (C 16 DBACl) and of decyl- (C 10 DBABr) and dodecyldimethylbenzylammonium bromide (C 12 DBABr) in aqueous solutions at T=15 deg. C and T=25 deg. C have been carried out. From these results, apparent and partial molar volumes were calculated. Positive deviations from the Debye-Hueckel limiting law provide evidence for limited association at concentrations below the critical micelle concentration. The change of the apparent molar volume upon micellization was calculated. The relevant parameters have been presented in function of the alkyl chain length. Apparent molar volumes of the present compounds in the micellar phase, V phi m , and the change upon micellization, ΔV phi m , have been discussed in terms of temperature and type of counterion

  9. Determination of the spiral Galaxy structure parameters based on neutral hydrogen radiowave radiation in 21 cm line. 2. Nonlinear theory. 30 deg <= |l| <= 60 deg

    International Nuclear Information System (INIS)

    Berman, V.G.; Mishurov, Yu.N.

    1980-01-01

    Gas flow and its density distribution in the Galaxy spiral arm gravitational potential is calculated by means of the nonlinear theory. Line profile of H I emission in 21 cm based on the Galaxy spiral structure models proposed by Lin and Marochnik are constructed for the galactic coordinates 30 deg < or approximately |l| < or approximately 60 deg. It is shown that the conclusion about the possibility of agreement of the Marochnik model with observations made by means of the linear theory is confirmed in the nonlinear theory. In the Marochnik model distributions with R H II regions, CO-clouds, γ-radiation, supernova remnants and so on may also be understood connecting them with variation of gas compression in galactic shock with H radius

  10. Irradiation creep of the martensitic steel no. 1.4914 between 400 deg C and 600 deg C (Mol 5B)

    International Nuclear Information System (INIS)

    Herschbach, K.; Doser, W.

    1983-01-01

    The irradiation induced creep of the martensitic steel DIN No. 1.4914 was investigated in the temperature range from 400 to 600 deg C for stresses up to 200 Mpa using the Mol 5B irradiation rig. The results point to a behavior quite different from that observed in the austenitic steels as will be discussed in detail. The creep is thermally activated and non-linearly dependent upon the applied stress. (author)

  11. How wing kinematics affect power requirements and aerodynamic force production in a robotic bat wing

    International Nuclear Information System (INIS)

    Bahlman, Joseph W; Swartz, Sharon M; Breuer, Kenneth S

    2014-01-01

    Bats display a wide variety of behaviors that require different amounts of aerodynamic force. To control and modulate aerodynamic force, bats change wing kinematics, which, in turn, may change the power required for wing motion. There are many kinematic mechanisms that bats, and other flapping animals, can use to increase aerodynamic force, e.g. increasing wingbeat frequency or amplitude. However, we do not know if there is a difference in energetic cost between these different kinematic mechanisms. To assess the relationship between mechanical power input and aerodynamic force output across different isolated kinematic parameters, we programmed a robotic bat wing to flap over a range of kinematic parameters and measured aerodynamic force and mechanical power. We systematically varied five kinematic parameters: wingbeat frequency, wingbeat amplitude, stroke plane angle, downstroke ratio, and wing folding. Kinematic values were based on observed values from free flying Cynopterus brachyotis, the species on which the robot was based. We describe how lift, thrust, and power change with increases in each kinematic variable. We compare the power costs associated with generating additional force through the four kinematic mechanisms controlled at the shoulder, and show that all four mechanisms require approximately the same power to generate a given force. This result suggests that no single parameter offers an energetic advantage over the others. Finally, we show that retracting the wing during upstroke reduces power requirements for flapping and increases net lift production, but decreases net thrust production. These results compare well with studies performed on C. brachyotis, offering insight into natural flight kinematics. (paper)

  12. Open source integrated modeling environment Delta Shell

    Science.gov (United States)

    Donchyts, G.; Baart, F.; Jagers, B.; van Putten, H.

    2012-04-01

    In the last decade, integrated modelling has become a very popular topic in environmental modelling since it helps solving problems, which is difficult to model using a single model. However, managing complexity of integrated models and minimizing time required for their setup remains a challenging task. The integrated modelling environment Delta Shell simplifies this task. The software components of Delta Shell are easy to reuse separately from each other as well as a part of integrated environment that can run in a command-line or a graphical user interface mode. The most components of the Delta Shell are developed using C# programming language and include libraries used to define, save and visualize various scientific data structures as well as coupled model configurations. Here we present two examples showing how Delta Shell simplifies process of setting up integrated models from the end user and developer perspectives. The first example shows coupling of a rainfall-runoff, a river flow and a run-time control models. The second example shows how coastal morphological database integrates with the coastal morphological model (XBeach) and a custom nourishment designer. Delta Shell is also available as open-source software released under LGPL license and accessible via http://oss.deltares.nl.

  13. QCD in the {delta}-regime

    Energy Technology Data Exchange (ETDEWEB)

    Bietenholz, W. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico). Inst. de Ciencias Nucleares; Cundy, N. [Seoul National Univ. (Korea, Republic of). Lattice Gauge Theory Research Center; Goeckeler, M. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Horsley, R.; Zanotti, J.M. [Edinburgh Univ. (United Kingdom). School of Physics; Nakamura, Y. [Tsukuba Univ., Ibaraki (Japan). Center for Computational Sciences; Pleiter, D. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2011-03-15

    The {delta}-regime of QCD is characterised by light quarks in a small spatial box, but a large extent in (Euclidean) time. In this setting a specific variant of chiral perturbation theory - the {delta}-expansion - applies, based on a quantum mechanical treatment of the quasi onedimensional system. In particular, for vanishing quark masses one obtains a residual pion mass M{sup R}{sub {pi}}, which has been computed to the third order in the {delta}-expansion. A comparison with numerical measurements of this residual mass allows for a new determination of some Low Energy Constants, which appear in the chiral Lagrangian. We first review the attempts to simulate 2-flavour QCD directly in the {delta}-regime. This is very tedious, but results compatible with the predictions for M{sup R}{sub {pi}} have been obtained. Then we show that an extrapolation of pion masses measured in a larger volume towards the {delta}-regime leads to good agreement with the theoretical predictions. From those results, we also extract a value for the (controversial) sub-leading Low Energy Constant anti l{sub 3}. (orig.)

  14. Variable Geometry Aircraft Wing Supported by Struts And/Or Trusses

    Science.gov (United States)

    Melton, John E. (Inventor); Dudley, Michael R. (Inventor)

    2016-01-01

    The present invention provides an aircraft having variable airframe geometry for accommodating efficient flight. The aircraft includes an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, and a brace operably connected between said oblique wing and said fuselage. The present invention also provides an aircraft having an elongated fuselage, an oblique wing pivotally connected with said fuselage, a wing pivoting mechanism connected with said oblique wing and said fuselage, a propulsion system pivotally connected with said oblique wing, and a brace operably connected between said propulsion system and said fuselage.

  15. Post-deposition thermal annealing studies of hydrogenated microcrystalline silicon deposited at 40 deg. C

    International Nuclear Information System (INIS)

    Bronsveld, P.C.P.; Wagt, H.J. van der; Rath, J.K.; Schropp, R.E.I.; Beyer, W.

    2007-01-01

    Post-deposition thermal annealing studies, including gas effusion measurements, measurements of infrared absorption versus annealing state, cross-sectional transmission electron microscopy (X-TEM) and atomic force microscopy (AFM), are used for structural characterization of hydrogenated amorphous and microcrystalline silicon films, prepared by very high frequency plasma enhanced chemical vapor deposition (VHF-PECVD) at low substrate temperature (T S ). Such films are of interest for application in thin semiconductor devices deposited on cheap plastics. For T S ∼ 40 deg. C, H-evolution shows rather complicated spectra for (near-) microcrystalline material, with hydrogen effusion maxima seen at ∼ 200-250 deg. C, 380 deg. C and ∼ 450-500 deg. C, while for the amorphous material typical spectra for good-quality dense material are found. Effusion experiments of implanted He demonstrate for the microcrystalline material the presence of a rather open (void-rich) structure. A similar tendency can be concluded from Ne effusion experiments. Fourier Transform infrared (FTIR) spectra of stepwise annealed samples show Si-H bond rupture already at annealing temperatures of 150 deg. C. Combined AFM/X-TEM studies reveal a columnar microstructure for all of these (near-) microcrystalline materials, of which the open structure is the most probable explanation of the shift of the H-effusion maximum in (near-) microcrystalline material to lower temperature

  16. Quantitative cine-left ventriculography - Superiority of 45 .deg. RAO view to straight AB view -

    International Nuclear Information System (INIS)

    Lim, Tae Hwan; Han, Man Chung

    1981-01-01

    The volumetry by cineangiocardiography is known to have the most diagnostic and prognostic value in the evaluation of various valvular heart diseases and ischemic heart diseases. Although many authors favor the area-length method for the volumetry of left ventricle, 45 .deg. RAO projection seems to be more simple, inexpensive and accurate technique, considering the positional relationship of cardiac valves and obliquity of the long axis of left ventricle within the chest cage. Authors present the anatomical, geometrical and radiological basis for the superiority of 45 .deg. RAO protection by analyzing 20 normal heart specimen and 115 cineangiocardiograms of valvular heart diseases, and the results as follows: 1. Blood flow and motility of the mitral and aortic valves can be more clearly demonstrated by 45 .deg. RAO projection than by AP view. 2. The long diameter of left ventricular silhouette made 45 .deg. RAO projection reflects 90% or more of real diameter. 3. In RAO 45 .deg. position, patient's left nipple is optimal and convenient level for the ruler offering accurate magnification coefficient of left ventricle. 4. Ejection fraction after the extrasystole is exaggerated regardless of the left ventricular function, so it is desirable to exclude the 2 or 3 beats after extrasystole

  17. DEG/ENaC ion channels involved in sensory transduction are modulated by cold temperature

    Science.gov (United States)

    Askwith, Candice C.; Benson, Christopher J.; Welsh, Michael J.; Snyder, Peter M.

    2001-01-01

    Several DEG/ENaC cation channel subunits are expressed in the tongue and in cutaneous sensory neurons, where they are postulated to function as receptors for salt and sour taste and for touch. Because these tissues are exposed to large temperature variations, we examined how temperature affects DEG/ENaC channel function. We found that cold temperature markedly increased the constitutively active Na+ currents generated by epithelial Na+ channels (ENaC). Half-maximal stimulation occurred at 25°C. Cold temperature did not induce current from other DEG/ENaC family members (BNC1, ASIC, and DRASIC). However, when these channels were activated by acid, cold temperature potentiated the currents by slowing the rate of desensitization. Potentiation was abolished by a “Deg” mutation that alters channel gating. Temperature changes in the physiologic range had prominent effects on current in cells heterologously expressing acid-gated DEG/ENaC channels, as well as in dorsal root ganglion sensory neurons. The finding that cold temperature modulates DEG/ENaC channel function may provide a molecular explanation for the widely recognized ability of temperature to modify taste sensation and mechanosensation. PMID:11353858

  18. Cold resistance and metabolic activity of lichens below 0 degC

    Science.gov (United States)

    Kappen, L.; Schroeter, B.; Scheidegger, C.; Sommerkorn, M.; Hestmark, G.

    Laboratory measurements show that lichens are extremely tolerant of freezing stress and of low-temperature exposure. Metabolic activity recovered quickly after severe and extended cold treatment. Experimental results demonstrate also that CO_2 exchange is already active at around -20 degC. The psychrophilic character of polar lichen species is demonstrated by optimum temperatures for net photosynthesis between 0 and 15 degC. In situ measurements show that lichens begin photosynthesizing below 0 degC if the dry thalli receive fresh snow. The lowest temperature measured in active lichens was -17 degC at a continental Antarctic site. The fine structure and the hydration state of photobiont and mycobiont cells were studied by low-temperature scanning electron microscopy (LTSEM) of frozen hydrated specimens. Water potentials of the frozen system are in the range of or even higher than those allowing dry lichens to start photosynthesis by water vapor uptake at +10 degC. The great success of lichens in polar and high alpine regions gives evidence of their physiological adaptation to low temperatures. In general lichens are able to persist through glacial periods, but extended snow cover and glaciation are limiting factors.

  19. Field-induced strain memory with non-180 .deg. domain-reorientation control

    International Nuclear Information System (INIS)

    Kadota, Yoichi; Hosaka, Hiroshi; Morita, Takeshi

    2010-01-01

    Using non-180 .deg. domain-reorientation control, we propose the strain memory effect in ferroelectric ceramics. Electric fields with asymmetric amplitudes were applied to soft-type lead zirconate titanate (PZT) ceramics, and the strain hysteresis and the polarization loop were measured. The butterfly curve became asymmetric under an electric field with a particular asymmetric amplitude. The asymmetric butterfly curve had two stable strain states at zero electric field. Thus, the strain memory effect was realized as the difference between the two stable strain states. An XRD analysis was carried out to verify the contribution of the non-180 .deg. domain reorientation to the strain memory effect. The non-180 .deg. domain reorientation was determined as the intensity ratio of the (002) to the (200) peak. The strain memory determined from macroscopic strain measurements had a linear relationship to the non-180 .deg. domain volume fraction. This result indicated the origin of the strain memory to be the non-180 .deg. domain reorientation.

  20. Measurement of Doppler effect up to 2000degC at FCA. 1

    International Nuclear Information System (INIS)

    Oigawa, Hiroyuki; Okajima, Shigeaki; Mukaiyama, Takehiko; Satoh, Kunio; Hishida, Makoto; Hayano, Mutsuhiko; Kudogh, Fumio; Kasahara, Yoshiyuki.

    1994-03-01

    A new experimental device for the measurement of 238 U Doppler effect up to 2000degC was developed for the Fast Critical Assembly (FCA) of Japan Atomic Energy Research Institute with the intention to improve the Doppler effect analysis at high temperature in fast reactors. The measurement method consists of two different techniques; one is the reactivity worth measurement with using a small sample heated up to 1500degC, the other is the reaction rate measurement with using a foil heated up to 2000degC. In the present work, the development and measurement for the former technique is described. The technique itself had been used in critical assemblies around the world, including FCA, for the measurement up to 800degC. The present new device was developed by improving the old device throughouly to extend the sample temperature up to 1500degC which is hot enough for us to evaluate the Doppler effect in the MOX-fuel fast reactor. (author)

  1. Phosphorylated DegU Manipulates Cell Fate Differentiation in the Bacillus subtilis Biofilm

    Science.gov (United States)

    Marlow, Victoria L.; Porter, Michael; Hobley, Laura; Kiley, Taryn B.; Swedlow, Jason R.; Davidson, Fordyce A.

    2014-01-01

    Cell differentiation is ubiquitous and facilitates division of labor and development. Bacteria are capable of multicellular behaviors that benefit the bacterial community as a whole. A striking example of bacterial differentiation occurs throughout the formation of a biofilm. During Bacillus subtilis biofilm formation, a subpopulation of cells differentiates into a specialized population that synthesizes the exopolysaccharide and the TasA amyloid components of the extracellular matrix. The differentiation process is indirectly controlled by the transcription factor Spo0A that facilitates transcription of the eps and tapA (tasA) operons. DegU is a transcription factor involved in regulating biofilm formation. Here, using a combination of genetics and live single-cell cytological techniques, we define the mechanism of biofilm inhibition at high levels of phosphorylated DegU (DegU∼P) by showing that transcription from the eps and tapA promoter regions is inhibited. Data demonstrating that this is not a direct regulatory event are presented. We demonstrate that DegU∼P controls the frequency with which cells activate transcription from the operons needed for matrix biosynthesis in favor of an off state. Subsequent experimental analysis led us to conclude that DegU∼P functions to increase the level of Spo0A∼P, driving cell fate differentiation toward the terminal developmental process of sporulation. PMID:24123822

  2. Control of growth mode in SrTiO3 homoepitaxy under 500 deg. C

    International Nuclear Information System (INIS)

    Li Yanrong; Li Jinlong; Zhang Ying; Wei Xianhua; Deng Xinwu; Liu Xingzhao

    2004-01-01

    Homoepitaxial SrTiO 3 thin films were grown by laser molecular beam epitaxy. The growth mode was determined by in-situ reflective high energy electron diffraction, and the surface of the films was studied by ex-situ atomic force microscopy. At the deposition rate of 0.16A ring /sec and the laser energy density of 6J/cm 2 , layer-by-layer growth was observed above 460 deg. C substrate temperature, while the Stranski-Krastanov growth mode, that is layer-by-layer growth plus island growth mode, prevailed between 460 deg. C and 410 deg. C. On further decreasing the substrate temperature, the island growth was determined under 410 deg. C. With the optimization of deposition process in terms of laser energy density and deposition rate, the lowest crystallization temperatures of SrTiO 3 films grown in layer-by-layer growth mode were obtained as low as 280 deg. C. The effects of laser energy density on growth temperature were studied

  3. Numerical simulation of X-wing type biplane flapping wings in 3D using the immersed boundary method

    International Nuclear Information System (INIS)

    Tay, W B; Van Oudheusden, B W; Bijl, H

    2014-01-01

    The numerical simulation of an insect-sized ‘X-wing’ type biplane flapping wing configuration is performed in 3D using an immersed boundary method solver at Reynolds numbers equal to 1000 (1 k) and 5 k, based on the wing's root chord length. This X-wing type flapping configuration draws its inspiration from Delfly, a bio-inspired ornithopter MAV which has two pairs of wings flapping in anti-phase in a biplane configuration. The objective of the present investigation is to assess the aerodynamic performance when the original Delfly flapping wing micro-aerial vehicle (FMAV) is reduced to the size of an insect. Results show that the X-wing configuration gives more than twice the average thrust compared with only flapping the upper pair of wings of the X-wing. However, the X-wing's average thrust is only 40% that of the upper wing flapping at twice the stroke angle. Despite this, the increased stability which results from the smaller lift and moment variation of the X-wing configuration makes it more suited for sharp image capture and recognition. These advantages make the X-wing configuration an attractive alternative design for insect-sized FMAVS compared to the single wing configuration. In the Reynolds number comparison, the vorticity iso-surface plot at a Reynolds number of 5 k revealed smaller, finer vortical structures compared to the simulation at 1 k, due to vortices’ breakup. In comparison, the force output difference is much smaller between Re = 1 k and 5 k. Increasing the body inclination angle generates a uniform leading edge vortex instead of a conical one along the wingspan, giving higher lift. Understanding the force variation as the body inclination angle increases will allow FMAV designers to optimize the thrust and lift ratio for higher efficiency under different operational requirements. Lastly, increasing the spanwise flexibility of the wings increases the thrust slightly but decreases the efficiency. The thrust result is similar

  4. Use of wing morphometry for the discrimination of some Cerceris ...

    African Journals Online (AJOL)

    The outline analysis, in which geometric and traditional morphometry potentials are insufficient, was performed by using the Fourier transformation. As a result of the comprehensive wing morphometry study, it was found that both Cerceris species can be distinguished according to their wing structures and the metric ...

  5. Unsteady Aerodynamics of Flapping Wing of a Bird

    Directory of Open Access Journals (Sweden)

    M. Agoes Moelyadi

    2013-04-01

    Full Text Available The unsteady flow behavior and time-dependent aerodynamic characteristics of the flapping motion of a bird’s wing were investigated using a computational method. During flapping, aerodynamic interactions between bird wing surfaces and surrounding flow may occur, generating local time-dependent flow changes in the flow field and aerodynamic load of birds. To study the effect of flapping speed on unsteady aerodynamic load, two kinds of computational simulations were carried out, namely a quasi-steady and an unsteady simulation. To mimic the movement of the down-stroke and the upstroke of a bird, the flapping path accorded to a sinus function, with the wing attitude changing in dihedral angle and time. The computations of time-dependent viscous flow were based on the solution of the Reynolds Averaged Navier-Stokes equations by applying the k-e turbulence model. In addition, the discretization for the computational domain around the model used multi-block structured grid to provide more accuracy in capturing viscous flow, especially in the vicinity of the wing and body surfaces, to obtain a proper wing-body geometry model. For this research, the seagull bird was chosen, which has high aspect ratio wings with pointed wing-tips and a high camber wing section. The results include mesh movement, velocity contours as well as aerodynamic coefficients of the flapping motion of the bird at various flapping frequencies.

  6. Closed-type wing for drones: positive and negative characteristics

    Directory of Open Access Journals (Sweden)

    Leonid I. Gretchihin

    2014-02-01

    Full Text Available The paper presents the aerodynamics of a wing of a closed oval ellipsoidal shape, designed with the use of the molecular-kinetic theory. The positive and negative characteristics of aircraft - drones with an oval wing are described. The theoretical calculations have been experimentally checked.

  7. Flapping-wing mechanical butterfly on a wheel

    Science.gov (United States)

    Godoy-Diana, Ramiro; Thiria, Benjamin; Pradal, Daniel

    2009-11-01

    We examine the propulsive performance of a flapping-wing device turning on a ``merry-go-round'' type base. The two-wing flapper is attached to a mast that is ball-bearing mounted to a central shaft in such a way that the thrust force produced by the wings makes the flapper turn around this shaft. The oscillating lift force produced by the flapping wings is aligned with the mast to avoid vibration of the system. A turning contact allows to power the motor that drives the wings. We measure power consumption and cruising speed as a function of flapping frequency and amplitude as well as wing flexibility. The design of the wings permits to change independently their flexibility in the span-wise and chord-wise directions and PIV measurements in various planes let us examine the vorticity field around the device. A complete study of the effect of wing flexibility on the propulsive performance of the system will be presented at the conference.

  8. Stable structural color patterns displayed on transparent insect wings.

    Science.gov (United States)

    Shevtsova, Ekaterina; Hansson, Christer; Janzen, Daniel H; Kjærandsen, Jostein

    2011-01-11

    Color patterns play central roles in the behavior of insects, and are important traits for taxonomic studies. Here we report striking and stable structural color patterns--wing interference patterns (WIPs)--in the transparent wings of small Hymenoptera and Diptera, patterns that have been largely overlooked by biologists. These extremely thin wings reflect vivid color patterns caused by thin film interference. The visibility of these patterns is affected by the way the insects display their wings against various backgrounds with different light properties. The specific color sequence displayed lacks pure red and matches the color vision of most insects, strongly suggesting that the biological significance of WIPs lies in visual signaling. Taxon-specific color patterns are formed by uneven membrane thickness, pigmentation, venation, and hair placement. The optically refracted pattern is also stabilized by microstructures of the wing such as membrane corrugations and spherical cell structures that reinforce the pattern and make it essentially noniridescent over a large range of light incidences. WIPs can be applied to map the micromorphology of wings through direct observation and are useful in several fields of biology. We demonstrate their usefulness as identification patterns to solve cases of cryptic species complexes in tiny parasitic wasps, and indicate their potentials for research on the genetic control of wing development through direct links between the transregulatory wing landscape and interference patterns we observe in Drosophila model species. Some species display sexually dimorphic WIPs, suggesting sexual selection as one of the driving forces for their evolution.

  9. Gliding Swifts Attain Laminar Flow over Rough Wings

    NARCIS (Netherlands)

    Lentink, D.; Kat, de R.

    2014-01-01

    Swifts are among the most aerodynamically refined gliding birds. However, the overlapping vanes and protruding shafts of their primary feathers make swift wings remarkably rough for their size. Wing roughness height is 1–2% of chord length on the upper surface—10,000 times rougher than sailplane

  10. Non-linear dynamics of wind turbine wings

    DEFF Research Database (Denmark)

    Larsen, Jesper Winther; Nielsen, Søren R.K.

    2006-01-01

    The paper deals with the formulation of non-linear vibrations of a wind turbine wing described in a wing fixed moving coordinate system. The considered structural model is a Bernoulli-Euler beam with due consideration to axial twist. The theory includes geometrical non-linearities induced...

  11. Energy-based Aeroelastic Analysis and Optimisation of Morphing Wings

    NARCIS (Netherlands)

    De Breuker, R.

    2011-01-01

    Morphing aircraft can change their shape radically when confronted with a variety of conflicting flight conditions throughout their mission. For instance the F-14 Tomcat fighter aircraft, known from the movie Top Gun, was able to sweep its wings from a straight wing configuration to a highly swept

  12. Aerodynamic tailoring of the Learjet Model 60 wing

    Science.gov (United States)

    Chandrasekharan, Reuben M.; Hawke, Veronica M.; Hinson, Michael L.; Kennelly, Robert A., Jr.; Madson, Michael D.

    1993-01-01

    The wing of the Learjet Model 60 was tailored for improved aerodynamic characteristics using the TRANAIR transonic full-potential computational fluid dynamics (CFD) code. A root leading edge glove and wing tip fairing were shaped to reduce shock strength, improve cruise drag and extend the buffet limit. The aerodynamic design was validated by wind tunnel test and flight test data.

  13. Wing flexibility effects in clap-and-fling

    NARCIS (Netherlands)

    Percin, M.; Hu, Y.; Van Oudheusden, B.W.; Remes, B.; Scarano, F.

    2011-01-01

    The work explores the use of time-resolved tomographic PIV measurements to study a flapping-wing model, the related vortex generation mechanisms and the effect of wing flexibility on the clap-and-fling movement in particular. An experimental setup is designed and realized in a water tank by use of a

  14. Vortex coupling in trailing vortex-wing interactions

    Science.gov (United States)

    Chen, C.; Wang, Z.; Gursul, I.

    2018-03-01

    The interaction of trailing vortices of an upstream wing with rigid and flexible downstream wings has been investigated experimentally in a wind tunnel, using particle image velocimetry, hot-wire, force, and deformation measurements. Counter-rotating upstream vortices exhibit increased meandering when they are close to the tip of the downstream wing. The upstream vortex forms a pair with the vortex shed from the downstream wing and then exhibits large displacements around the wing tip. This coupled motion of the pair has been found to cause large lift fluctuations on the downstream wing. The meandering of the vortex pair occurs at the natural meandering frequency of the isolated vortex, with a low Strouhal number, and is not affected by the frequency of the large-amplitude wing oscillations if the downstream wing is flexible. The displacement of the leading vortex is larger than that of the trailing vortex; however, it causes highly correlated variations of the core radius, core vorticity, and circulation of the trailing vortex with the coupled meandering motion. In contrast, co-rotating vortices do not exhibit any increased meandering.

  15. El plan del delta - Holanda

    Directory of Open Access Journals (Sweden)

    Editorial, Equipo

    1963-09-01

    Full Text Available Holland is very poor in land resources. Hence its development has been directed towards intensive industrialization and maximum agricultural exploitation. The western part of the country is below sea level and is occupied by 65 percent of the population. Originally the coast consisted of a number of islands, estuaries and slight elevations. Man has transformed this coastline, first making a number of artificial lakes, or polders, and then converting these into fertile districts. These projects protect the soil by means of dykes, which require careful conservation, but even so violent floods are not infrequent. One of the difficult problems involved in this vast enterprise is the complex system of water supply, lines of communication and flow of the rivers into the sea along the estuary zone. This zone is on the south west, and to protect it a National Commission has been set up. After careful study, it was decided that the best defense against the violence of the sea would consist in closing off the inroads of the sea into the continental coastline. The set of hydraulic projects which constitutes this plan for the improvement of the sea defences will take 25 years to fulfil. The general project is highly ambitious and includes both maritime, road and structural works, in which there is a variety of stonework constructions. This paper describes, in brief outline, the main contents of the 11 headings into which the general construction project has been subdivided. In addition, this is supplemented with information on the projects which are already initiated and on the constructional procedure that is being adopted. Of these latter projects, the Nabla bridge is of particular interest. It is situated on the delta. It is made in prestressed concrete, and consists of 17 spans, of 60 length each. This enormous structure, in addition to its great length, and supporting a 22.8 ms wide roadway, is subjected to the tremendous forces 11» of the sea on one

  16. Mixed ice accretion on aircraft wings

    Science.gov (United States)

    Janjua, Zaid A.; Turnbull, Barbara; Hibberd, Stephen; Choi, Kwing-So

    2018-02-01

    Ice accretion is a problematic natural phenomenon that affects a wide range of engineering applications including power cables, radio masts, and wind turbines. Accretion on aircraft wings occurs when supercooled water droplets freeze instantaneously on impact to form rime ice or runback as water along the wing to form glaze ice. Most models to date have ignored the accretion of mixed ice, which is a combination of rime and glaze. A parameter we term the "freezing fraction" is defined as the fraction of a supercooled droplet that freezes on impact with the top surface of the accretion ice to explore the concept of mixed ice accretion. Additionally we consider different "packing densities" of rime ice, mimicking the different bulk rime densities observed in nature. Ice accretion is considered in four stages: rime, primary mixed, secondary mixed, and glaze ice. Predictions match with existing models and experimental data in the limiting rime and glaze cases. The mixed ice formulation however provides additional insight into the composition of the overall ice structure, which ultimately influences adhesion and ice thickness, and shows that for similar atmospheric parameter ranges, this simple mixed ice description leads to very different accretion rates. A simple one-dimensional energy balance was solved to show how this freezing fraction parameter increases with decrease in atmospheric temperature, with lower freezing fraction promoting glaze ice accretion.

  17. New aeroelastic studies for a morphing wing

    Directory of Open Access Journals (Sweden)

    Ruxandra Mihaela BOTEZ*

    2012-06-01

    Full Text Available For this study, the upper surface of a rectangular finite aspect ratio wing, with a laminar airfoil cross-section, was made of a carbon-Kevlar composite material flexible skin. This flexible skin was morphed by use of Shape Memory Alloy actuators for 35 test cases characterized by combinations of Mach numbers, Reynolds numbers and angles of attack. The Mach numbers varied from 0.2 to 0.3 and the angles of attack ranged between -1° and 2°. The optimized airfoils were determined by use of the CFD XFoil code. The purpose of this aeroelastic study was to determine the flutter conditions to be avoided during wind tunnel tests. These studies show that aeroelastic instabilities for the morphing configurations considered appeared at Mach number 0.55, which was higher than the wind tunnel Mach number limit speed of 0.3. The wind tunnel tests could thus be performed safely in the 6’×9’ wind tunnel at the Institute for Aerospace Research at the National Research Council Canada (IAR/NRC, where the new aeroelastic studies, applied on morphing wings, were validated.

  18. Patterning of a compound eye on an extinct dipteran wing.

    Science.gov (United States)

    Dinwiddie, April; Rachootin, Stan

    2011-04-23

    We have discovered unexpected similarities between a novel and characteristic wing organ in an extinct biting midge from Baltic amber, Eohelea petrunkevitchi, and the surface of a dipteran's compound eye. Scanning electron microscope images now reveal vestigial mechanoreceptors between the facets of the organ. We interpret Eohelea's wing organ as the blending of these two developmental systems: the formation and patterning of the cuticle in the eye and of the wing. Typically, only females in the genus carry this distinctive, highly organized structure. Two species were studied (E. petrunkevitchi and E. sinuosa), and the structure differs in form between them. We examine Eohelea's wing structures for modes of fabrication, material properties and biological functions, and the effective ecological environment in which these midges lived. We argue that the current view of the wing organ's function in stridulation has been misconstrued since it was described half a century ago.

  19. Static aeroelastic behavior of an adaptive laminated piezoelectric composite wing

    Science.gov (United States)

    Weisshaar, T. A.; Ehlers, S. M.

    1990-01-01

    The effect of using an adaptive material to modify the static aeroelastic behavior of a uniform wing is examined. The wing structure is idealized as a laminated sandwich structure with piezoelectric layers in the upper and lower skins. A feedback system that senses the wing root loads applies a constant electric field to the piezoelectric actuator. Modification of pure torsional deformaton behavior and pure bending deformation are investigated, as is the case of an anisotropic composite swept wing. The use of piezoelectric actuators to create an adaptive structure is found to alter static aeroelastic behavior in that the proper choice of the feedback gain can increase or decrease the aeroelastic divergence speed. This concept also may be used to actively change the lift effectiveness of a wing. The ability to modify static aeroelastic behavior is limited by physical limitations of the piezoelectric material and the manner in which it is integrated into the parent structure.

  20. Experimental Investigation of a Wing-in-Ground Effect Craft

    Directory of Open Access Journals (Sweden)

    M. Mobassher Tofa

    2014-01-01

    Full Text Available The aerodynamic characteristics of the wing-in-ground effect (WIG craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  1. Experimental investigation of a wing-in-ground effect craft.

    Science.gov (United States)

    Tofa, M Mobassher; Maimun, Adi; Ahmed, Yasser M; Jamei, Saeed; Priyanto, Agoes; Rahimuddin

    2014-01-01

    The aerodynamic characteristics of the wing-in-ground effect (WIG) craft model that has a noble configuration of a compound wing was experimentally investigated and Universiti Teknologi Malaysia (UTM) wind tunnel with and without endplates. Lift and drag forces, pitching moment coefficients, and the centre of pressure were measured with respect to the ground clearance and the wing angle of attack. The ground effect and the existence of the endplates increase the wing lift-to-drag ratio at low ground clearance. The results of this research work show new proposed design of the WIG craft with compound wing and endplates, which can clearly increase the aerodynamic efficiency without compromising the longitudinal stability. The use of WIG craft is representing an ambitious technology that will help in reducing time, effort, and money of the conventional marine transportation in the future.

  2. Formation of broad Balmer wings in symbiotic stars

    International Nuclear Information System (INIS)

    Chang, Seok-Jun; Heo, Jeong-Eun; Hong, Chae-Lin; Lee, Hee-Won

    2016-01-01

    Symbiotic stars are binary systems composed of a hot white dwarf and a mass losing giant. In addition to many prominent emission lines symbiotic stars exhibit Raman scattered O VI features at 6825 and 7088 Å. Another notable feature present in the spectra of many symbiotics is the broad wings around Balmer lines. Astrophysical mechanisms that can produce broad wings include Thomson scattering by free electrons and Raman scattering of Ly,β and higher series by neutral hydrogen. In this poster presentation we produce broad wings around Hα and H,β adopting a Monte Carlo techinique in order to make a quantitative comparison of these two mechanisms. Thomson wings are characterized by the exponential cutoff given by the termal width whereas the Raman wings are dependent on the column density and continuum shape in the far UV region. A brief discussion is provided. (paper)

  3. Experimental formation of cronstedtite from Cox argillite-iron interaction at decreasing temperature in the 90 deg. C-40 deg. C range

    International Nuclear Information System (INIS)

    Pignatelli, Isabella; Mosser-Ruck, Regine; Rozsypal, Christophe; Truche, Laurent; Randi, Aurelien; Bartier, Daniele; Cathelineau, Michel; Ghanbaja, Jaafar; Mouton, Ludovic; Michau, Nicolas

    2012-01-01

    Document available in extended abstract form only. Cronstedtite crystals experimentally formed during a cooling experiment (90 deg.C-40 deg. C) simulating the time-temperature evolution of the iron-clay system around the steel overpacks in nuclear waste disposal, were characterized by XRD, SEM and TEM study. Cronstedtite is a T-O phyllosilicate with general formula (Fe 2+ 3-x Fe 3+ x )(Si 2-x Fe 3+ x )O 5 (OH) 4 , with 0 2 ), Callovo-Oxfordian argillite (COx) of the Paris Basin (with a solution/COx mass ratio of 10) and metal iron (powder and plates, with an iron powder/COx mass ratio of 0.5). This system was put in Teflon-line autoclaves heated at (90±2) deg. C for 6 months; then the temperature was decreased every month by step of 10 deg. C until 40 deg. C. The XRD results on run products clearly show that the T-O phyllosilicates crystallize and replace the predominant clay in the starting argillite, e.g. illite-smectite mixed-layer clays when the experimental temperature decreases. The reflections at 7.1 Angstrom, 4.76 Angstrom, 3.55 Angstrom and 2.73 Angstrom indicate that the T-O phyllosilicate formed is cronstedtite, but this technique is not efficient to determine its polytype. The SEM analyses confirm the presence of cronstedtite and show the morphological evolution of crystals with the temperature. At 90 deg. C three morphologies are recognized: trigonal pyramids and cones with hexagonal or rounded cross-section (Fig. 1), these crystals coexist with hairy berthierine-like minerals, as described by [10] and [12] The three cronstedtite shapes are observed until 70 deg. C and at lower temperatures the pyramidal morphology is dominant. From the energy dispersive X-ray analyses, structural formula of cronstedtite were calculated. The Fe II / Fe III ratio was adjusted to fix the octahedron to 3 in the calculation of the structural formula. Slight differences in the chemical compositions of cronstedtites are noticed: the pyramidal crystals have more Fe 2+ in the

  4. Study of elementary mechanisms of creep in uranium as a function of temperature (150 deg. to 760 deg. C) by activation energy measurements; Etude des mecanismes elementaires de deformation par fluage de l'uranium en fonction de la temperature (de 150 deg. a 760 deg. C) par la mesure des energies d'activation

    Energy Technology Data Exchange (ETDEWEB)

    Grenier, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1967-07-01

    Creep tests were carried out on single crystals and polycrystalline specimens of uranium in both the {alpha} and {beta} phases over the temperature range 150 - 760 deg. C. The determination of the activation energy for creep and the study of its variation with temperature made it possible to distinguish various temperature ranges in which one or more elementary mechanisms govern deformation. Micrographic observations after creep and the study of the variation of creep-rate with load support the conclusions. The creep behavior of single crystals is identical with that of polycrystalline material below 325 deg. C. From 325 deg. C to one upper limiting temperature whose value depends on the purity and previous history of the metal, the creep deformation of uranium is controlled by cross-slip. From this limiting temperature up to 520 deg. C, the creep of uranium involves two independent mechanisms operating simultaneously, the movement of screw dislocation by cross-slip and the climbing of edge dislocations out of their slip plane. Between 520 deg. C and the {alpha} - {beta} transformation temperature creep in polycrystals is governed by the climb of edge dislocations out of their slip planes, by a pile up mechanism in the case of primary creep and by dipole annihilation in the case of secondary creep. In single crystals creep is dependent on the climb of edge dislocations into pre-existent sub-boundaries and their subsequent rearrangement within these boundaries. In the {beta} phase the creep of polycrystals is governed by the diffusional climb of edge dislocations. Between 450 and 630 deg. C small alloy additions of molybdenum modify the creep characteristics of uranium although the deformation mechanisms involved are analogous to those in the pure metal. (author) [French] Des essais de fluage a diverses temperatures comprises entre 150 et 760 deg. C ont ete effectues sur des polycristaux et des monocristaux d'uranium, en phase {alpha} et en phase {beta}. La

  5. Giovanni Degli Alessandri: i primi anni del direttorato agli Uffizi fra nuovi e vecchi ruoli

    Directory of Open Access Journals (Sweden)

    Chiara Pasquinelli

    2011-11-01

    Full Text Available La figura di Giovanni Degli Alessandri (1765-1830, presidente dell’Accademia di Belle Arti di Firenze e direttore degli Uffizi tra gli anni napoleonici e la Restaurazione di Ferdinando III d’Asburgo-Lorena, è quella di un personaggio chiave nella politica artistica fiorentina, e toscana più in generale. Nel saggio si esaminano i primi anni del suo direttorato alla Galleria, i rapporti con Antonio Canova, il suo ruolo all’interno dell’entourage di Elisa Baciocchi Bonaparte, oltre a considerare alcuni spunti legati al rinnovamento degli Uffizi, nonché la delicata vicenda del passaggio in città di Dominique-Vivant Denon, direttore del Louvre. L’obbiettivo è quello di introdurre elementi di approfondimento relativamente a una figura molto nota ma poco studiata.

  6. Ge films grown on Si substrates by molecular-beam epitaxy below 450 deg. C

    International Nuclear Information System (INIS)

    Liu, J.; Kim, H.J.; Hul'ko, O.; Xie, Y.H.; Sahni, S.; Bandaru, P.; Yablonovitch, E.

    2004-01-01

    Ge thin films are grown on Si(001) substrates by molecular-beam epitaxy at 370 deg. C. The low-temperature epitaxial growth is compatible with the back-end thermal budget of current generation complementary metal-oxide-semiconductor technology, which is restricted to less than 450 deg. C. Reflection high-energy electron diffraction shows that single-crystal Ge thin films with smooth surfaces could be achieved below 450 deg. C. Double-axis x-ray θ/2θ scans also show that the epitaxial Ge films are almost fully strain-relaxed. As expected, cross-sectional transmission electron microscopy shows a network of dislocations at the interface. Hydrogen and oxide desorption techniques are proved to be necessary for improving the quality of the Ge films, which is reflected in improved minority carrier diffusion lengths and exceptionally low leakage currents

  7. Effect of temperatures up to 130 deg C on the responses of TLD 700

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, J A; Binns, P J [UKAEA Atomic Energy Research Establishment, Harwell. Environmental and Medical Sciences Div.

    1984-01-01

    The need to measure doses at temperatures up to 130 deg C led to an investigation into the effect of exposure and storage at these temperatures on the response of TLD 700 before and after UV phototransfer. As a preliminary, the delays required during the UV re-estimation process were optimised. The effects of storage and exposure were compared. This was followed by a detailed examination of the effects of storage at temperatures up to 130 deg C. Glow curves were analysed to investigate the rates of growth and decay of the different peaks. The findings for peaks 6 and 7 are compatible with previously reported effects at lower temperatures on peaks 3, 4 and 5. Storage at temperatures of 130 deg C or below for periods up to 28 days does not affect the UV photo-transfer response.

  8. Phase relationship in AL-Cu-Sc alloys at 450-500 deg C

    International Nuclear Information System (INIS)

    Kharakterova, M.L.

    1991-01-01

    Al-Cu-Sc alloys containing up to 40% Cu and up to 6% Sc at 450 deg C and 500 deg C are studied using light microscopy, X-ray-spectral microanalysis, X-ray diffraction analysis, scanning electron microscopy, measurement of microhardness and electric resistance. It is determined, that in equilibrium with aluminium solid solution under the given temperature ther are Al 3 Sc, CuAl 2 phases of the respective binary systems and W (ScCu 6.6-4 Al 5.4-8 ) ternary phase. Isothermal cross sections of Al-Cu-Sc system at 450 and 500 deg C are plotted. Microhardness of equilibrium phases is measured. Combined solubility of copper and scandium in aluminium is determined

  9. Solubility of ammonium metavanadate in ammonium carbonate and sodium bicarbonate solutions at 25 deg C

    International Nuclear Information System (INIS)

    Fedorov, P.I.; Andreev, V.K.; Slotvinskij-Sidak, N.P.

    1978-01-01

    Solubility at 25 deg C has been studied in the system ammonium metavanadate - sodium bicarbonate - water which is a stable section of the corresponding quaternary mutual system. In the eutonic point the content of ammonium metavanadate is 4.95% and of sodium bicarbonate 12.1%. The crystallization branch of ammonium metavanadate has been studied in the system ammonium metavanadate - ammonium carbonate - water at 25 deg C. Metavanadate solubility attains minimum (0.14%) at ammonium carbonate concentration 2.6%. Three sections have been studied of the quaternary system ammonium - metavanadate - ammonium carbonate - sodium bicarbonate-water at 25 deg C in the crystallization region of ammonium metavanadate at a ratio of sodium bicarbonate to ammonium carbonate 3:1, 1:1, and 1:3. A region of minimum solubility of ammonium metavanadate has been detected (0.1%)

  10. Preliminary development of a wing in ground effect vehicle

    Science.gov (United States)

    Abidin, Razali; Ahamat, Mohamad Asmidzam; Ahmad, Tarmizi; Saad, Mohd Rasdan; Hafizi, Ezzat

    2018-02-01

    Wing in ground vehicle is one of the mode of transportation that allows high speed movement over water by travelling few meters above the water level. Through this manouver strategy, a cushion of compressed air exists between the wing in ground vehicle wings and water. This significantly increase the lift force, thus reducing the necessity in having a long wing span. Our project deals with the development of wing in ground vehicle with the capability of transporting four people. The total weight of this wing in ground vehicle was estimated at 5.4 kN to enable the prediction on required wing area, minimum takeoff velocity, drag force and engine power requirement. The required takeoff velocity is decreases as the lift coefficient increases, and our current mathematical model shows the takeoff velocity at 50 m/s avoid the significant increase in lift coefficient for the wing area of 5 m2. At the velocity of 50 m/s, the drag force created by this wing in ground vehicle is well below 1 kN, which required a 100-120 kW of engine power if the propeller has the efficiency of 0.7. Assessment on the stresses and deflection of the hull structural indicate the capability of plywood to withstand the expected load. However, excessive deflection was expected in the rear section which requires a minor structural modification. In the near future, we expect that the wind tunnel tests of this wing in ground vehicle model would enable more definite prediction on the important parameters related to its performance.

  11. Large old trees influence patterns of delta13C and delta15N in forests.

    Science.gov (United States)

    Weber, Pascale; Bol, Roland; Dixon, Liz; Bardgett, Richard D

    2008-06-01

    Large old trees are the dominant primary producers of native pine forest, but their influence on spatial patterns of soil properties and potential feedback to tree regeneration in their neighbourhood is poorly understood. We measured stable isotopes of carbon (delta(13)C) and nitrogen (delta(15)N) in soil and litter taken from three zones of influence (inner, middle and outer zone) around the trunk of freestanding old Scots pine (Pinus sylvestris L.) trees, to determine the trees' influence on below-ground properties. We also measured delta(15)N and delta(13)C in wood cores extracted from the old trees and from regenerating trees growing within their three zones of influence. We found a significant and positive gradient in soil delta(15)N from the inner zone, nearest to the tree centre, to the outer zone beyond the tree crown. This was probably caused by the higher input of (15)N-depleted litter below the tree crown. In contrast, the soil delta(13)C did not change along the gradient of tree influence. Distance-related trends, although weak, were visible in the wood delta(15)N and delta(13)C of regenerating trees. Moreover, the wood delta(15)N of small trees showed a weak negative relationship with soil N content in the relevant zone of influence. Our results indicate that large old trees control below-ground conditions in their immediate surroundings, and that stable isotopes might act as markers for the spatial and temporal extent of these below-ground effects. John Wiley & Sons, Ltd

  12. Hepatitis delta genotypes in chronic delta infection in the northeast of Spain (Catalonia).

    Science.gov (United States)

    Cotrina, M; Buti, M; Jardi, R; Quer, J; Rodriguez, F; Pascual, C; Esteban, R; Guardia, J

    1998-06-01

    Based on genetic analysis of variants obtained around the world, three genotypes of the hepatitis delta virus have been defined. Hepatitis delta virus variants have been associated with different disease patterns and geographic distributions. To determine the prevalence of hepatitis delta virus genotypes in the northeast of Spain (Catalonia) and the correlation with transmission routes and clinical disease, we studied the nucleotide divergence of the consensus sequence of HDV RNA obtained from 33 patients with chronic delta hepatitis (24 were intravenous drug users and nine had no risk factors), and four patients with acute self-limited delta infection. Serum HDV RNA was amplified by the polymerase chain reaction technique and a fragment of 350 nucleotides (nt 910 to 1259) was directly sequenced. Genetic analysis of the nucleotide consensus sequence obtained showed a high degree of conservation among sequences (93% of mean). Comparison of these sequences with those derived from different geographic areas and pertaining to genotypes I, II and III, showed a mean sequence identity of 92% with genotype I, 73% with genotype II and 61% with genotype III. At the amino acid level (aa 115 to 214), the mean identity was 87% with genotype I, 63% with genotype II and 56% with genotype III. Conserved regions included the RNA editing domain, the carboxyl terminal 19 amino acids of the hepatitis delta antigen and the polyadenylation signal of the viral mRNA. Hepatitis delta virus isolates in the northeast of Spain are exclusively genotype I, independently of the transmission route and the type of infection. No hepatitis delta virus subgenotypes were found, suggesting that the origin of hepatitis delta virus infection in our geographical area is homogeneous.

  13. Abraham Reef Stable Isotope Data (delta 13C, delta 18O, delta 14C) for 1635-1957

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Site: Abraham Reef, 22ó 06'S, 153ó 00'E, Porites australiensus, Radiocarbon (delta 14C) and Stable Isotope (del 18O and del 13C) results from bi-annual samples from...

  14. Reclutamento e formazione dei poliziotti: il caso degli ufficiali della gendarmeria francese

    Directory of Open Access Journals (Sweden)

    François Dieu

    2007-04-01

    Full Text Available Partendo dal caso degli ufficiali della gendarmeria francese, questo articolo illustra il modo in cui il reclutamento e la formazione possono contribuire, informalmente, alla ripartizione del potere nelle organizzazioni di polizia. Tramite la diversità delle vie di reclutamento si costituisce, di fatto, un vero e proprio sistema di "caste", con una stratificazione degli ufficiali in tre livelli gerarchici, che produce, al di là dei principi meritocratici, delle ineguaglianze manifeste nella ripartizione del potere nell'organizzazione della gendarmeria.

  15. Degradation of PsbO by the Deg Protease HhoA Is Thioredoxin Dependent

    OpenAIRE

    Roberts, Irma N.; Lam, Xuan Tam; Miranda, Helder; Kieselbach, Thomas; Funk, Christiane

    2012-01-01

    The widely distributed members of the Deg/HtrA protease family play an important role in the proteolysis of misfolded and damaged proteins. Here we show that the Deg protease rHhoA is able to degrade PsbO, the extrinsic protein of the Photosystem II (PSII) oxygen-evolving complex in Synechocystis sp. PCC 6803 and in spinach. PsbO is known to be stable in its oxidized form, but after reduction by thioredoxin it became a substrate for recombinant HhoA (rHhoA). rHhoA cleaved reduced eukaryotic (...

  16. Temperature dependence of the surface energy of mercury from 0 to 250 deg. C

    CERN Document Server

    Halas, S

    2002-01-01

    The surface energy (SE) for mercury was calculated on the basis of the free electron model in which the electron density parameter, r sub s , for bulk electrons was calculated from the density of mercury while the electron density parameter for surface electrons, r sub s sub s , was assumed to be higher by a factor that is linearly dependent on temperature. Ideal agreement of calculated SE values with experimental data was attained for the temperatures 0-250 deg. C assuming that r sub s sub s = r sub s x 1.0021 sup T sup / sup 1 sup 0 sup 0 deg. C. (letter to the editor)

  17. Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach.

    Science.gov (United States)

    Nakata, Toshiyuki; Liu, Hao

    2012-02-22

    Insect wings are deformable structures that change shape passively and dynamically owing to inertial and aerodynamic forces during flight. It is still unclear how the three-dimensional and passive change of wing kinematics owing to inherent wing flexibility contributes to unsteady aerodynamics and energetics in insect flapping flight. Here, we perform a systematic fluid-structure interaction based analysis on the aerodynamic performance of a hovering hawkmoth, Manduca, with an integrated computational model of a hovering insect with rigid and flexible wings. Aerodynamic performance of flapping wings with passive deformation or prescribed deformation is evaluated in terms of aerodynamic force, power and efficiency. Our results reveal that wing flexibility can increase downwash in wake and hence aerodynamic force: first, a dynamic wing bending is observed, which delays the breakdown of leading edge vortex near the wing tip, responsible for augmenting the aerodynamic force-production; second, a combination of the dynamic change of wing bending and twist favourably modifies the wing kinematics in the distal area, which leads to the aerodynamic force enhancement immediately before stroke reversal. Moreover, an increase in hovering efficiency of the flexible wing is achieved as a result of the wing twist. An extensive study of wing stiffness effect on aerodynamic performance is further conducted through a tuning of Young's modulus and thickness, indicating that insect wing structures may be optimized not only in terms of aerodynamic performance but also dependent on many factors, such as the wing strength, the circulation capability of wing veins and the control of wing movements.

  18. Deltas on the move. Making deltas cope with the effects of climate change

    International Nuclear Information System (INIS)

    Reker, J.; Van Winden, A.; Braakhekke, W.; Vermaat, J.; Eleveld, M.; Janssen, R.; De Reus, N.; Omzigt, N.

    2006-01-01

    This scoping study is the first phase of a study aimed at: (a) providing knowledge on the potential of a system-based approach to deal with the effects of climate change as an alternative for the more traditional technical measures such as dams, dikes and surge barriers. This should be shown for both rich and poor countries and should address hydrological, ecological as well as socio-economic aspects; and (b) identifying the potential to market these results worldwide. To reach these objectives four research steps are defined: (1) to make an inventory of deltas: their vulnerability to the effects of climate change; (2) development of indicators for successful use of a system-based approach; (3) to provide an overview of the potential of soft measures for these deltas; (4) to select a number of deltas with potential for marketing system-based measures and the development of strategies to link economic and ecological objectives. This scoping study addresses step 1 only. The results from step 1 will be used as a starting point for steps 2 and 3. The outputs of this scoping study are threefold: a background report (this report); a flyer with a brief description of the findings; a website with information on delta's and how these may be affected by climate change. The scoping study will roughly outline which deltas are still functioning in a more or less natural manner - or could be (re)developed in that direction - and thus would be good candidates for a system-based approach. Chapter 2 gives a description of the geomorphological and ecological processes in a delta. In addition, those aspects of climate change that can have an effect on deltas are described. The third chapter deals with human interventions in deltas and whether or not they fit within a system-based approach. In a system-based approach, as presented in Chapter 4, natural processes are given free reign where possible. Chapter 5 shows how available data on deltas could be used in such a system

  19. Aircraft Wing for Over-The-Wing Mounting of Engine Nacelle

    Science.gov (United States)

    Hahn, Andrew S. (Inventor); Kinney, David J. (Inventor)

    2011-01-01

    An aircraft wing has an inboard section and an outboard section. The inboard section is attached (i) on one side thereof to the aircraft's fuselage, and (ii) on an opposing side thereof to an inboard side of a turbofan engine nacelle in an over-the-wing mounting position. The outboard section's leading edge has a sweep of at least 20 degrees. The inboard section's leading edge has a sweep between -15 and +15 degrees, and extends from the fuselage to an attachment position on the nacelle that is forward of an index position defined as an imaginary intersection between the sweep of the outboard section's leading edge and the inboard side of the nacelle. In an alternate embodiment, the turbofan engine nacelle is replaced with an open rotor engine nacelle.

  20. Characterization of DegQVh, a serine protease and a protective immunogen from a pathogenic Vibrio harveyi strain.

    Science.gov (United States)

    Zhang, Wei-wei; Sun, Kun; Cheng, Shuang; Sun, Li

    2008-10-01

    Vibrio harveyi is an important marine pathogen that can infect a number of aquaculture species. V. harveyi degQ (degQ(Vh)), the gene encoding a DegQ homologue, was cloned from T4, a pathogenic V. harveyi strain isolated from diseased fish. DegQ(Vh) was closely related to the HtrA family members identified in other Vibrio species and could complement the temperature-sensitive phenotype of an Escherichia coli strain defective in degP. Expression of degQ(Vh) in T4 was modulated by temperature, possibly through the sigma(E)-like factor. Enzymatic analyses demonstrated that the recombinant DegQ(Vh) protein expressed in and purified from E. coli was an active serine protease whose activity required the integrity of the catalytic site and the PDZ domains. The optimal temperature and pH of the recombinant DegQ(Vh) protein were 50 degrees C and pH 8.0. A vaccination study indicated that the purified recombinant DegQ(Vh) was a protective immunogen that could confer protection upon fish against infection by V. harveyi. In order to improve the efficiency of DegQ(Vh) as a vaccine, a genetic construct in the form of the plasmid pAQ1 was built, in which the DNA encoding the processed DegQ(Vh) protein was fused with the DNA encoding the secretion region of AgaV, an extracellular beta-agarase. The E. coli strain harboring pAQ1 could express and secrete the chimeric DegQ(Vh) protein into the culture supernatant. Vaccination of fish with viable E. coli expressing chimeric degQ(Vh) significantly (P < 0.001) enhanced the survival of fish against V. harveyi challenge, which was possibly due to the relatively prolonged exposure of the immune system to the recombinant antigen produced constitutively, albeit at a gradually decreasing level, by the carrier strain.

  1. Synthesis, structural and physico-chemical studies of the monocrystal superconductor oxides Hg Ba{sub 2} Ca{sub n-1} Cu{sub n} O{sub 2n+2+{delta}}; Synthese, etudes structurales et physico-chimiques de monocristaux d`oxydes supraconducteurs Hg Ba{sub 2} Ca{sub n-1} Cu{sub n} O{sub 2n+2+{delta}}

    Energy Technology Data Exchange (ETDEWEB)

    Viallet-Guillen, Virginie [Dept. de Recherche sur l` Etat Condense, CEA Centre d` Etudes de Saclay, 91 - Gif-sur-Yvette (France)

    1998-01-01

    The thesis presents the synthesis and the structural and physico-chemical properties of the mercury-based monocrystal superconductor oxides. The results reported in the first chapter refer to the first three members of the mercury cuprate series Hg-1201, Hg-1212 and Hg-1223. In the second chapter detailed results concerning the structure of these compounds are given highlighting the features common to all cuprates and pointing out the peculiarities of mercury phases. The third chapter presents the phase diagrams ({delta}, T, p(O{sub 2})) of the compounds HgBa{sub 2}CuO{sub 4+{delta}} and HgBa{sub 2}Ca{sub 2}Cu{sub 3}O{sub 8+{delta}} obtained by thermogravimetry under controlled atmosphere between 150 deg.C and 500 deg.C and thermodynamic equilibrium conditions. In the case of Hg-1201, the critical temperature shows a variation close to a parabolic law, with an optimal Tc of 96 K ({delta}{approx_equal}0.10) while in Hg-1223 the Tc increases linearly with the O content up to the optimal Tc of 135 K ({delta}{approx_equal}0.19) and decreases only by 2 K in the over-doped regime. Finally, in the fourth chapter different physical properties are reviewed. The obtained monocrystals allowed studying the resistive transitory anisotropy, the torque, the specific heat, the nuclear magnetic resonance and the Raman diffusion 212 refs., 106 figs., 30 tabs.

  2. The Economic Dimensions of the Niger Delta Ethnic Conflicts (Pp ...

    African Journals Online (AJOL)

    User

    1970, the price of international oil stepped upwards following the Middle. Eastern Yom Kippur .... Over the years, the pleas of the Niger Delta people for accommodation are ignored or .... In a labour surplus region like the Niger Delta, budget.

  3. Conceptualizing delta forms and processes in Arctic coastal environments

    DEFF Research Database (Denmark)

    Bendixen, Mette; Kroon, Aart

    2017-01-01

    Climate warming in the Arctic directly causes two opposite changes in Arctic coastal systems: increased melt-water discharge through rivers induces extra influx of sediments and extended open water season increases wave impact which reworks and erodes the shores. A shoreline change analysis along...... and popped up as hotspots. The Tuapaat delta and Skansen delta showed large progradation rates (1.5 and 7m/yr) and migration of the adjacent barriers and spits. The dynamic behavior at the delta mouths was mainly caused by classic delta channel lobe switching at one delta (Tuapaat), and by a breach...... of the fringing spit at the other delta (Skansen). The longshore and cross-shore transports are responsible for reworking the sediment with a result of migrating delta mouths and adjacent subaqueous mouth bars. Seaward progradation of the deltas is limited due to the steep nature of the bathymetry in Disko Bay...

  4. Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures.

    Science.gov (United States)

    Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C

    2017-03-01

    We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.

  5. Repeatable Manufacture of Wings for Flapping Wing Micro Air Vehicles Using Microelectromechanical System (MEMS) Fabrication Techniques

    Science.gov (United States)

    2011-03-01

    51 Figure 29: Original SU8 -on-titanium crude test moth wing and its ink-on-transparency mask...out of what materials the researchers could find, normally carbon fiber spars with a polymer membrane. Testing, while well-planned, was improvised...photoresist polymers from a controlled UV light exposure, in order to control which portions of the substrate remain masked from a given etchant

  6. Binding energies of two deltas bound states

    International Nuclear Information System (INIS)

    Sato, Hiroshi; Saito, Koichi.

    1982-06-01

    Bound states of the two-deltas system are investigated by employing the realistic one boson exchange potential. It is found that there exist many bound states in each isospin channel and also found that the tensor interaction plays important role in producing these bound states. Relationship between these bound states and dibaryon resonances is discussed. (J.P.N.)

  7. Applications of Dirac's Delta Function in Statistics

    Science.gov (United States)

    Khuri, Andre

    2004-01-01

    The Dirac delta function has been used successfully in mathematical physics for many years. The purpose of this article is to bring attention to several useful applications of this function in mathematical statistics. Some of these applications include a unified representation of the distribution of a function (or functions) of one or several…

  8. Managing flood risks in the Mekong Delta

    NARCIS (Netherlands)

    Hoang, Long Phi; Biesbroek, Robbert; Tri, Van Pham Dang; Kummu, Matti; Vliet, van Michelle T.H.; Leemans, Rik; Kabat, Pavel; Ludwig, Fulco

    2018-01-01

    Climate change and accelerating socioeconomic developments increasingly challenge flood-risk management in the Vietnamese Mekong River Delta—a typical large, economically dynamic and highly vulnerable delta. This study identifies and addresses the emerging challenges for flood-risk management.

  9. Bioluminescent hydrocarbonclastic bacteria of the Niger Delta ...

    African Journals Online (AJOL)

    Utilization of three petroleum hydrocarbons (Mobil SAE 40 Engine Oil, Diesel and Bonny light Crude Oil) by four bioluminescent bacteria (Vibrio harveyi, V. fisheri, Photobacterium leiognathi and P. Phosphoreum isolated from the Bonny estuary in the Niger Delta, Nigeria was investigated. Microbial utilization was monitored ...

  10. The Delta Team: Empowering Adolescent Girls.

    Science.gov (United States)

    Hood, Marian White

    1994-01-01

    In response to adolescent girls' concerns about teen violence, rumors, grooming, careers, and equity, four women teachers and a woman administrator at a Maryland middle school developed the Delta Program. The program provides positive learning experiences, teaches social skills and conflict management techniques, empowers girls through mentoring…

  11. delta. -isobars and photodisintegration at intermediate energies

    Energy Technology Data Exchange (ETDEWEB)

    Suzumura, Jun-ichi; Futami, Yasuhiko [Science Univ. of Tokyo, Noda, Chiba (Japan). Faculty of Science and Technology

    1982-12-01

    The dynamics of the peak considered to be due to the two-nucleon process in the reaction /sup 9/Be(gamma, p) anything is investigated with the quasi-deuteron model. We show that the process is dominated by a two-nucleon mechanism with pion and rho-meson exchange through virtual delta-isobar formation (author).

  12. Ornithopter Type Flapping Wings for Autonomous Micro Air Vehicles

    Directory of Open Access Journals (Sweden)

    Sutthiphong Srigrarom

    2015-05-01

    Full Text Available In this paper, an ornithopter prototype that mimics the flapping motion of bird flight is developed, and the lift and thrust generation characteristics of different wing designs are evaluated. This project focused on the spar arrangement and material used for the wings that could achieves improved performance. Various lift and thrust measurement techniques are explored and evaluated. Various wings of insects and birds were evaluated to understand how these natural flyers with flapping wings are able to produce sufficient lift to fly. The differences in the flapping aerodynamics were also detailed. Experiments on different wing designs and materials were conducted and a paramount wing was built for a test flight. The first prototype has a length of 46.5 cm, wing span of 88 cm, and weighs 161 g. A mechanism which produced a flapping motion was fabricated and designed to create flapping flight. The flapping flight was produced by using a single motor and a flexible and light wing structure. A force balance made of load cell was then designed to measure the thrust and lift force of the ornithopter. Three sets of wings varying flexibility were fabricated, therefore lift and thrust measurements were acquired from each different set of wings. The lift will be measured in ten cycles computing the average lift and frequency in three different speeds or frequencies (slow, medium and fast. The thrust measurement was measure likewise but in two cycles only. Several observations were made regarding the behavior of flexible flapping wings that should aid in the design of future flexible flapping wing vehicles. The wings angle or phase characteristic were analyze too and studied. The final ornithopter prototype weighs only 160 g, has a wing span of 88.5 cm, that could flap at a maximum flapping frequency of 3.869 Hz, and produce a maximum thrust and lift of about 0.719 and 0.264 N respectively. Next, we proposed resonance type flapping wing utilizes the near

  13. Achieving bioinspired flapping wing hovering flight solutions on Mars via wing scaling.

    Science.gov (United States)

    Bluman, James E; Pohly, Jeremy; Sridhar, Madhu; Kang, Chang-Kwon; Landrum, David Brian; Fahimi, Farbod; Aono, Hikaru

    2018-05-29

    Achieving atmospheric flight on Mars is challenging due to the low density of the Martian atmosphere. Aerodynamic forces are proportional to the atmospheric density, which limits the use of conventional aircraft designs on Mars. Here, we show using numerical simulations that a flapping wing robot can fly on Mars via bioinspired dynamic scaling. Trimmed, hovering flight is possible in a simulated Martian environment when dynamic similarity with insects on earth is achieved by preserving the relevant dimensionless parameters while scaling up the wings three to four times its normal size. The analysis is performed using a well-validated two-dimensional Navier-Stokes equation solver, coupled to a three-dimensional flight dynamics model to simulate free flight. The majority of power required is due to the inertia of the wing because of the ultra-low density. The inertial flap power can be substantially reduced through the use of a torsional spring. The minimum total power consumption is 188 W/kg when the torsional spring is driven at its natural frequency. © 2018 IOP Publishing Ltd.

  14. Flapping and flexible wings for biological and micro air vehicles

    Science.gov (United States)

    Shyy, Wei; Berg, Mats; Ljungqvist, Daniel

    1999-07-01

    Micro air vehicles (MAVs) with wing spans of 15 cm or less, and flight speed of 30-60 kph are of interest for military and civilian applications. There are two prominent features of MAV flight: (i) low Reynolds number (10 4-10 5), resulting in unfavorable aerodynamic conditions to support controlled flight, and (ii) small physical dimensions, resulting in certain favorable scaling characteristics including structural strength, reduced stall speed, and low inertia. Based on observations of biological flight vehicles, it appears that wing motion and flexible airfoils are two key attributes for flight at low Reynolds number. The small size of MAVs corresponds in nature to small birds, which do not glide like large birds, but instead flap with considerable change of wing shape during a single flapping cycle. With flapping and flexible wings, birds overcome the deteriorating aerodynamic performance under steady flow conditions by employing unsteady mechanisms. In this article, we review both biological and aeronautical literatures to present salient features relevant to MAVs. We first summarize scaling laws of biological and micro air vehicles involving wing span, wing loading, vehicle mass, cruising speed, flapping frequency, and power. Next we discuss kinematics of flapping wings and aerodynamic models for analyzing lift, drag and power. Then we present issues related to low Reynolds number flows and airfoil shape selection. Recent work on flexible structures capable of adjusting the airfoil shape in response to freestream variations is also discussed.

  15. Recent progress in the analysis of iced airfoils and wings

    Science.gov (United States)

    Cebeci, Tuncer; Chen, Hsun H.; Kaups, Kalle; Schimke, Sue

    1992-01-01

    Recent work on the analysis of iced airfoils and wings is described. Ice shapes for multielement airfoils and wings are computed using an extension of the LEWICE code that was developed for single airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The newly developed LEWICE multielement code is amplified to a high-lift configuration to calculate the ice shapes on the slat and on the main airfoil and on a four-element airfoil. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered iced wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.

  16. Ecdysone signaling underlies the pea aphid transgenerational wing polyphenism.

    Science.gov (United States)

    Vellichirammal, Neetha Nanoth; Gupta, Purba; Hall, Tannice A; Brisson, Jennifer A

    2017-02-07

    The wing polyphenism of pea aphids is a compelling laboratory model with which to study the molecular mechanisms underlying phenotypic plasticity. In this polyphenism, environmental stressors such as high aphid density cause asexual, viviparous adult female aphids to alter the developmental fate of their embryos from wingless to winged morphs. This polyphenism is transgenerational, in that the pea aphid mother experiences the environmental signals, but it is her offspring that are affected. Previous research suggested that the steroid hormone ecdysone may play a role in this polyphenism. Here, we analyzed ecdysone-related gene expression patterns and found that they were consistent with a down-regulation of the ecdysone pathway being involved in the production of winged offspring. We therefore predicted that reduced ecdysone signaling would result in more winged offspring. Experimental injections of ecdysone or its analog resulted in a decreased production of winged offspring. Conversely, interfering with ecdysone signaling using an ecdysone receptor antagonist or knocking down the ecdysone receptor gene with RNAi resulted in an increased production of winged offspring. Our results are therefore consistent with the idea that ecdysone plays a causative role in the regulation of the proportion of winged offspring produced in response to crowding in this polyphenism. Our results also show that an environmentally regulated maternal hormone can mediate phenotype production in the next generation, as well as provide significant insight into the molecular mechanisms underlying the functioning of transgenerational phenotypic plasticity.

  17. Computational Optimization of a Natural Laminar Flow Experimental Wing Glove

    Science.gov (United States)

    Hartshom, Fletcher

    2012-01-01

    Computational optimization of a natural laminar flow experimental wing glove that is mounted on a business jet is presented and discussed. The process of designing a laminar flow wing glove starts with creating a two-dimensional optimized airfoil and then lofting it into a three-dimensional wing glove section. The airfoil design process does not consider the three dimensional flow effects such as cross flow due wing sweep as well as engine and body interference. Therefore, once an initial glove geometry is created from the airfoil, the three dimensional wing glove has to be optimized to ensure that the desired extent of laminar flow is maintained over the entire glove. TRANAIR, a non-linear full potential solver with a coupled boundary layer code was used as the main tool in the design and optimization process of the three-dimensional glove shape. The optimization process uses the Class-Shape-Transformation method to perturb the geometry with geometric constraints that allow for a 2-in clearance from the main wing. The three-dimensional glove shape was optimized with the objective of having a spanwise uniform pressure distribution that matches the optimized two-dimensional pressure distribution as closely as possible. Results show that with the appropriate inputs, the optimizer is able to match the two dimensional pressure distributions practically across the entire span of the wing glove. This allows for the experiment to have a much higher probability of having a large extent of natural laminar flow in flight.

  18. Prostate carcinoma mimicking a sphenoid wing meningioma.

    Science.gov (United States)

    Bradley, Lucas H; Burton, Matthew; Gokden, Murat; Serletis, Demitre

    2015-01-01

    We report here on a rare case of a large, lateral sphenoid wing tumor with radiographic and intraoperative findings highly suggestive of meningioma, yet pathology was in fact consistent with metastatic prostate adenocarcinoma. An 81 year-old male presented with expressive dysphasia, right-sided weakness and headaches. Imaging revealed a heterogeneously-enhancing lesion based on the left lateral sphenoid wing. The presumed diagnosis was strongly in favor of meningioma, and the patient underwent complete resection of the dural-based lesion. Final pathology confirmed the unexpected finding of a metastatic prostate adenocarcinoma. Although he tolerated surgery well, the patient was subsequently referred for palliative therapy given findings of widespread systemic disease. Intracranial metastases may involve the dura, at times presenting with rare radiographic features highly suggestive for meningioma, as in our case here. This makes differentiation, at least based on imaging, a challenge. Elderly patients presenting with neurological deficits secondary to a newly-diagnosed, dural-based lesion should thus be considered for metastasis, prompting additional imaging studies (including body CT, MRI or PET) to rule out a primary lesion elsewhere. In some cases, this may affect the overall decision to proceed with surgical resection, or alternatively, to proceed directly to palliative therapy (the latter decision made in the context of widespread metastatic disease). We conclude that dural-based metastatic lesions may mimic meningiomas, warranting thorough pre-operative work-up to exclude the possibility of metastasis. In certain cases, identification of widespread disease might preclude surgery and favor palliation, instead. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  19. Electronic structure of Pu-Ce(-Ga) and Pu-Am(-Ga) alloys, stabilized in the {delta} phase; Structure electronique d'alliages Pu-Ce(-Ga) et Pu-Am(-Ga) stabilises en phase {delta}

    Energy Technology Data Exchange (ETDEWEB)

    Dormeval, M

    2001-09-01

    The behaviour of {delta}-plutonium, stable between 319 and 451 deg C, exhibits numerous singularities which are still a mystery for both physicists and metallurgists. This is due to its complex electronic structure, and in particular to the 5f electrons, which are at the edge between localization and delocalization. The stability domain of the {delta} phase can be extended down to room temperature by alloying with so called 'deltagen atoms' such as gallium (Ga), aluminum (A1), cerium (Ce) or americium (Am). The present work deals, one the one hand, with the influence of cerium and americium solutes regarding the localization of the 5f electrons of {delta}-plutonium, in binary Pu-Ce and Pu-Am alloys. On the other hand, the effect of two different deltagen solutes, simultaneously present, on the stability of the {delta} phase has been studied in ternary Pu-Am-Ga and Pu-Ce-Ga alloys. The electronic structure being strongly related to the crystalline organization, characterization methods such as X-Ray diffraction and EXAFS measurements were used together with electrical resistivity and magnetic susceptibility experiments. These showed that the roles of cerium and americium, supposed to be similar at the beginning of this investigation, are actually very different. Moreover, the additive effect of cerium and gallium, and, americium and gallium, has been demonstrated. Studying plutonium alloys, which are radioactive, also means following their evolution in time. The characteristics of the alloys have then been followed which allowed to detect, in Pu-Ce(-Ga) alloys, a destabilization of the {delta} phase and, to observe, in Pu-Am(-Ga) alloys, the influence of self-irradiation defects on the magnetic response. (author)

  20. Electronic structure of Pu-Ce(-Ga) and Pu-Am(-Ga) alloys, stabilized in the {delta} phase; Structure electronique d'alliages Pu-Ce(-Ga) et Pu-Am(-Ga) stabilises en phase {delta}

    Energy Technology Data Exchange (ETDEWEB)

    Dormeval, M

    2001-09-01

    The behaviour of {delta}-plutonium, stable between 319 and 451 deg C, exhibits numerous singularities which are still a mystery for both physicists and metallurgists. This is due to its complex electronic structure, and in particular to the 5f electrons, which are at the edge between localization and delocalization. The stability domain of the {delta} phase can be extended down to room temperature by alloying with so called 'deltagen atoms' such as gallium (Ga), aluminum (A1), cerium (Ce) or americium (Am). The present work deals, one the one hand, with the influence of cerium and americium solutes regarding the localization of the 5f electrons of {delta}-plutonium, in binary Pu-Ce and Pu-Am alloys. On the other hand, the effect of two different deltagen solutes, simultaneously present, on the stability of the {delta} phase has been studied in ternary Pu-Am-Ga and Pu-Ce-Ga alloys. The electronic structure being strongly related to the crystalline organization, characterization methods such as X-Ray diffraction and EXAFS measurements were used together with electrical resistivity and magnetic susceptibility experiments. These showed that the roles of cerium and americium, supposed to be similar at the beginning of this investigation, are actually very different. Moreover, the additive effect of cerium and gallium, and, americium and gallium, has been demonstrated. Studying plutonium alloys, which are radioactive, also means following their evolution in time. The characteristics of the alloys have then been followed which allowed to detect, in Pu-Ce(-Ga) alloys, a destabilization of the {delta} phase and, to observe, in Pu-Am(-Ga) alloys, the influence of self-irradiation defects on the magnetic response. (author)

  1. Butterfly wing coloration studied with a novel imaging scatterometer

    Science.gov (United States)

    Stavenga, Doekele

    2010-03-01

    Animal coloration functions for display or camouflage. Notably insects provide numerous examples of a rich variety of the applied optical mechanisms. For instance, many butterflies feature a distinct dichromatism, that is, the wing coloration of the male and the female differ substantially. The male Brimstone, Gonepteryx rhamni, has yellow wings that are strongly UV iridescent, but the female has white wings with low reflectance in the UV and a high reflectance in the visible wavelength range. In the Small White cabbage butterfly, Pieris rapae crucivora, the wing reflectance of the male is low in the UV and high at visible wavelengths, whereas the wing reflectance of the female is higher in the UV and lower in the visible. Pierid butterflies apply nanosized, strongly scattering beads to achieve their bright coloration. The male Pipevine Swallowtail butterfly, Battus philenor, has dorsal wings with scales functioning as thin film gratings that exhibit polarized iridescence; the dorsal wings of the female are matte black. The polarized iridescence probably functions in intraspecific, sexual signaling, as has been demonstrated in Heliconius butterflies. An example of camouflage is the Green Hairstreak butterfly, Callophrys rubi, where photonic crystal domains exist in the ventral wing scales, resulting in a matte green color that well matches the color of plant leaves. The spectral reflection and polarization characteristics of biological tissues can be rapidly and with unprecedented detail assessed with a novel imaging scatterometer-spectrophotometer, built around an elliptical mirror [1]. Examples of butterfly and damselfly wings, bird feathers, and beetle cuticle will be presented. [4pt] [1] D.G. Stavenga, H.L. Leertouwer, P. Pirih, M.F. Wehling, Optics Express 17, 193-202 (2009)

  2. Surface protection of a chromia forming alloy at 1300deg C

    International Nuclear Information System (INIS)

    Lobb, R.C.; Bennett, M.J.

    1990-01-01

    Under postulated abnormal (fault) reactor conditions, a rapid temperature transient could occur such that for a short time ( 2 /1-2% CO/300 vpm H 2 O/300 vpm CH 4 , at 1.300deg C has been studied. (orig./MM)

  3. Complete dipole response in 208Pb from high-resolution polarized proton scattering at 0 deg

    International Nuclear Information System (INIS)

    Neumann-Cosel, P. von; Kalmykov, Y.; Poltoratska, I.; Ponomarev, V. Yu.; Richter, A.; Wambach, J.; Adachi, T.; Fujita, Y.; Matsubara, H.; Sakemi, Y.; Shimizu, Y.; Tameshige, Y.; Yosoi, M.; Bertulani, C. A.; Carter, J.; Fujita, H.; Dozono, M.; Fujita, K.; Hashimoto, H.; Hatanaka, K.

    2009-01-01

    The structure of electric and magnetic dipole modes in 208 Pb is investigated in a high-resolution measurement of the (p-vector,p-vector') reaction under 0 deg. First results on the E1 strength in the region of the pygmy dipole resonance are reported.

  4. A Byzantine chant collection from Sicily: a collaboration between Copenhagen and Piana degli Albanesi (Palermo)

    DEFF Research Database (Denmark)

    Sanfratello, Giuseppe

    2016-01-01

    The aim of this paper is to give an account of the collaboration between a collector of the Byzantine chant tradition of Piana degli Albanesi (Palermo) in Sicily, namely fr. Bartolomeo Di Salvo, and the editorial board of the Monumenta Musicae Byzantinae, i.e. an institution under the aegis...

  5. Gas sensing with AlGaN/GaN 2DEG channels

    NARCIS (Netherlands)

    Offermans, P.; Vitushinsky, R.; Crego-Calama, M.; Brongersma, S.H.

    2011-01-01

    AlGaN/GaN shows great promise as a generic platform for (bio-)chemical sensing because of its robustness and intrinsic sensitivity to surface charge or dipoles. Here, we employ the two-dimensional electron gas (2DEG) formed at the interface of AlGaN/GaN layers grown on Si substrates for the

  6. Comment on: "Current-voltage characteristics and zero-resistance state in 2DEG"

    OpenAIRE

    Cheremisin, M. V.

    2003-01-01

    We demonstrate that N(S)-shape current-voltage characteristics proposed to explain zero-resistance state in Corbino(Hall bar) geometry 2DEG (cond-mat/0302063, cond-mat/0303530) cannot account essential features of radiation-induced magnetoresistance oscillations experiments.

  7. Boric acid - trilon B (glycine, acetylurea) - water systems at 25 deg C

    International Nuclear Information System (INIS)

    Skvortsov, V.G.; Rodionov, N.S.; Molodkin, A.K.; Fedorov, Yu.A.; Tsekhanskij, R.S.

    1985-01-01

    Boric acid-trilon B (glycine, acetylurea)-water systems are studied at 25 deg C by the methods of isothermal solubility densi- and refractometry. It is ascertained that all of them are of a simple eutonic type with a small salting-out effect of organic components on boric acid

  8. Systems of amonium polyborates - monoammonium phosphate -water at 25 deg C

    International Nuclear Information System (INIS)

    Skvortsov, V.G.; Sadetdinov, Sh.V.; Polenov, A.D.; Mikhajlov, V.I.

    1992-01-01

    It is established by solubility and refractometry methods at 25 deg C that systems of ammonium tetraborate (pentaborate) monoammonium phosphate-water refer to sumple eutonic type. The ammonium borates and monoammoniumphosphate exert salting effect over each other. It is found that phosphate borate compositions on the basis of ammonium salts are characterized by lower inhibitor properties as compared to sodium salts

  9. Boric acid - trilon B (glycine, acetylurea) - water systems at 25 deg C

    Energy Technology Data Exchange (ETDEWEB)

    Skvortsov, V G; Rodionov, N S; Molodkin, A K; Fedorov, Yu A; Tsekhanskij, R S

    1985-07-01

    Boric acid-trilon B (glycine, acetylurea)-water systems are studied at 25 deg C by the methods of isothermal solubility densi- and refractometry. It is ascertained that all of them are of a simple eutonic type with a small salting-out effect of organic components on boric acid.

  10. 'Candidatus Phytoplasma sudamericanum' a novel taxon from diseased passion fruit (Passiflora edulis f. flavicarpa Deg.)

    Science.gov (United States)

    Symptoms of abnormal proliferation of shoots resulting in formation of witches’ broom growths were observed in diseased plants of passion fruit (Passiflora edulis f. flavicarpa Deg.) in Brazil. RFLP analysis of 16S rRNA gene sequences amplified in polymerase chain reactions containing template DNAs...

  11. Spectrophotometric study of holmium complexation in KOH solutions at 25 Deg C

    International Nuclear Information System (INIS)

    Stepanchikova, S.A.; Bitejkina, R.P.

    2006-01-01

    Complexation of Ho 3+ in solutions of HoCl 3 and KOH at 25 Deg C is studied by indicator spectrophotometric method. Within the range of pH 9.25-10.10 and μ≤4 x 10 -4 stability constants of Ho 3+ hydroxocomplexes are measured and are extrapolated on zero ion strength [ru

  12. Exploring a possible origin of a 14 deg y-normal spin tilt at RHIC polarimeter

    Energy Technology Data Exchange (ETDEWEB)

    Meot, F. [Brookhaven National Lab. (BNL), Upton, NY (United States); Huang, H. [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-06-15

    A possible origin of a 14 deg y-normal spin n0 tilt at the polarimeter is in snake angle defects. This possible cause is investigated by scanning the snake axis angle µ, and the spin rotation angle at the snake, φ, in the vicinity of their nominal values.

  13. The air oxidation behavior of lanthanum ion implanted zirconium at 500 deg. C

    CERN Document Server

    Peng, D Q; Chen, X W; Zhou, Q G

    2003-01-01

    The beneficial effect of lanthanum ion implantation on the oxidation behavior of zirconium at 500 deg. C has been studied. Zirconium specimens were implanted by lanthanum ions using a MEVVA source at energy of 40 keV with a fluence range from 1x10 sup 1 sup 6 to 1x10 sup 1 sup 7 ions/cm sup 2 at maximum temperature of 130 deg. C, The weight gain curves were measured after being oxidized in air at 500 deg. C for 100 min, which showed that a significant improvement was achieved in the oxidation behavior of zirconium ion implanted with lanthanum compared with that of the as-received zirconium. The valence of the oxides in the scale was analyzed by X-ray photoemission spectroscopy; and then the depth distributions of the elements in the surface of the samples were obtained by Auger electron spectroscopy. Glancing angle X-ray diffraction at 0.3 deg. incident angles was employed to examine the modification of its phase transformation because of the lanthanum ion implantation in the oxide films. It was obviously fou...

  14. A study of non-ideal focus properties of 30deg parallel plate energy analyzers

    International Nuclear Information System (INIS)

    Fujisawa, A.; Iguchi, H.; Hamada, Y.

    1993-12-01

    A succinct model is proposed to describe non-ideal characteristics owing to electric field penetration into the drift region in actual parallel plate energy analyzers. A good agreement has been obtained between the theoretically expected and experimentally observed focus properties of the 30deg parallel plate analyzer. (author)

  15. The isothermal section at 500 deg. C of the Gd-Tb-Ga ternary system

    International Nuclear Information System (INIS)

    Li, J.Q.; Jian, Y.X.; Ao, W.Q.; Zhuang, Y.H.; He, W.

    2006-01-01

    Phase equilibria in the Gd-Tb-Ga ternary system at 500 deg. C were investigated by X-ray powder diffraction and differential scanning calorimetry. The binary compounds, Gd 5 Ga 3 , Gd 3 Ga 2 , GdGa, GdGa 2 , Tb 5 Ga 3 , TbGa, TbGa 2 and TbGa 3 have been confirmed at 500 deg. C. No ternary compound was found in this system. The isothermal section of this system at 500 deg. C was constructed. It is composed of 7 single-phase regions, 8 two-phase regions and 2 three-phase regions. Four ternary continuous solid solutions (Gd, Tb), (Gd, Tb) 5 Ga 3 , (Gd, Tb)Ga, (Gd, Tb)Ga 2 were formed in this isothermal section. The maximum solid solubilities of Ga in (Gd, Tb) at 500 deg. C is 5.0 at.%. The homogeneity range of (Gd, Tb)Ga 2 is from 20 to 33.3 at.% Ga in Gd-Ga side but limited in Tb-Ga side. The solid solubilities of Ga in the other phases cannot be detected. The Curie temperatures of the Gd 0.6 Tb 0.4-x Ga x alloys increase from 270 to 298 K as x increases from 0 to 0.03

  16. Fluctuations in the cosmic microwave background on a 2.3 deg angular scale

    International Nuclear Information System (INIS)

    Calzolari, P.; Cortiglioni, S.; Mandolesi, N.

    1982-01-01

    The study of fluctuations in the temperature of the cosmic microwave background may provide important information on the origin of the large scale structures in the Universe. An experiment is in operation at Medicina (Bologna) for studying such temperature fluctuations on a 2 deg 3 angular scale at lambda=2.8 cm. Preliminary results seem to indicate ΔT/T -4

  17. Acetanilide interaction with hydriodic acid in aqueous solutions at 20 and 40 deg C

    International Nuclear Information System (INIS)

    Erkasov, R.Sh.; Nurakhmetov, N.I.

    1990-01-01

    Isothermal method was used to study acetanilide solubility in aqueous solutions of hydriodic acid at 20 and 40 deg C. formation of two new anhydrous compounds of 2:1 and 1:1 compositions (anilide: acid molar ratio) was established. Temperature and concentration boundaries of solid phase formation were established for these compounds. Their IR spectroscopic investigation was conducted

  18. Turn down the heat: why a 4 deg. C warmer world must be avoided

    International Nuclear Information System (INIS)

    Schellnhuber, Hans Joachim; Hare, William; Serdeczny, Olivia; Adams, Sophie; Coumou, Dim; Frieler, Katja; Martin, Maria; Otto, Ilona M.; Perrette, Mahe; Robinson, Alexander; Rocha, Marcia; Schaeffer, Michiel; Schewe, Jacob; Wang, Xiaoxi; Warszawski, Lila; Durand, Francis

    2012-11-01

    This paper summarizes in French the content of a Report for the World Bank made by the Potsdam Institute for Climate Impact Research and Climate Analytics. This report provides a snapshot of recent scientific literature (about 190 papers) and new analyses of likely impacts and risks that would be associated with a 4 deg. Celsius warming within this century. It is a rigorous attempt to outline a range of risks, focusing on developing countries and especially the poor. A 4 deg. C world would be one of unprecedented heat waves, severe drought, and major floods in many regions, with serious impacts on ecosystems and associated services. But with action, a 4 deg. C world can be avoided and we can likely hold warming below 2 deg. C. This report is not a comprehensive scientific assessment, as will be forthcoming from the Intergovernmental Panel on Climate Change (IPCC) in 2013-14 in its fifth assessment report. It is focused on developing countries, while recognizing that developed countries are also vulnerable and at serious risk of major damages from climate change. A series of recent extreme events worldwide continue to highlight the vulnerability of not only the developing world but even wealthy industrialized countries. No nation will be immune to the impacts of climate change. However, the distribution of impacts is likely to be inherently unequal and tilted against many of the world's poorest regions, which have the least economic, institutional, scientific, and technical capacity to cope and adapt

  19. Low cycle fatigue behaviour of neutron irradiated copper alloys at 250 and 350 deg. C

    DEFF Research Database (Denmark)

    Singh, B.N.; Stubbins, J.F.; Toft, P.

    2000-01-01

    V) to influence levels of 1.0 - 1.5 x 1024 n/m2 (E> 1 MeV) at 250 and 350 deg. C. These irradiations were carried out in temperature controlled rigs where the irradiation temperature was monitored and controlledcontinuously throughout the whole irradiation experiment. Both unirradiated and irradiated speciments...

  20. Creep properties of EB welded copper overpack at 125-175 deg C

    International Nuclear Information System (INIS)

    Holmstroem, S.; Salonen, J.; Kinnunen, T.

    2012-01-01

    Electron Beam welds (EBW) chosen as primary sealing method by Posiva welding the over-pack canister lids of oxygen-free phosphorus micro-alloyed copper (OFP) have been tested for material properties relevant to long term creep life prediction. Creep rupture results are presented for the ruptured 175 deg C tests and for the ongoing long term tests at 150 deg C and 125 deg C. The current status (test time, creep strain and strain rate) of the ongoing tests are reported. The initial (175 deg C) results indicate that the EB welds are weaker than the parent material and that both round bar and spark eroded square test specimens produce weld strengths of about 0.75 at tests durations of 5000 h. The downward trend is however expected to continue for the longer test durations. The creep ductility shows decrease for the longer tests. Life estimates for the EB weld have been calculated at 100 deg C for both 50 and 80 MPa with the so far lowest measured EB weld strength factor (WSF=0.77). The state-of-the-art model on the available data give estimated lives of 21000 and 3000 years correspondingly. However, simulated to the expected temperature profile of the repository service the life fraction reached after 10000 years of service is 1 % and 7 % for the same stress levels. It is though important to remembered that the 80 MPa assumption is very conservative in nature and that the predictions do not take into account relaxation of stresses, further decline of the WSF or anisotropy of the weld and are therefore still to be considered indicative only. It is also to be remembered that there is only limited data in the long term regime for the weldments and that the estimates are based on the few EB data available in the public domain added with the Posiva data of this project. Improvement of the models and predictions are expected from the ongoing 125 deg C and 150 deg C long term tests. (orig.)

  1. Retrieving SW fluxes from geostationary narrowband radiances for the NASA-CERES SYN1deg product

    Science.gov (United States)

    Wrenn, F. J., IV; Doelling, D. R.; Liang, L.

    2017-12-01

    The CERES mission was designed to measure the natural variability of the net TOA flux over long time scales relevant to climate monitoring. To achieve this goal, CERES provides the level-3 SSF1deg, SYN1deg, and EBAF monthly 1° by 1° regional TOA flux. The single satellite (Terra or Aqua) SSF1deg 24-hour shortwave flux is based on one daytime measurements and assumes constant meteorology to model the diurnal change in albedo. To accurately describe regions with a prominent diurnal signal, the SYN1deg Edition4 dataset employs hourly geostationary (GEO) measurements. This improves upon Edition3, which used 3-hourly GEO measurements and with temporal interpolation. The EBAF product combines the temporal stability of the SSF1deg product with the diurnal information from SYN1deg and removes the CERES instrument calibration bias by constraining the net flux balance to the ocean heat storage term. The SYN-1deg product retrieves hourly SW fluxes from GEO measurements. Over regions with large diurnal cycles, such as maritime stratus and land afternoon convective locations, the GEO derived SW fluxes will capture the diurnal flux not observed with Terra or Aqua sun-synchronous satellites. Obtaining fluxes from geostationary satellite radiance is a multistep process. First, most GEO visible imagers lack calibration and must be calibrated to MODIS and VIIRS. Second, the GEO imager visible channel radiances are converted to broadband radiances using empirical and theoretical models. The lack of coincident, collocated, and co-angled GEO and CERES measurements makes building an empirical model difficult. The narrowband to broadband models are a function of surface and cloud conditions, which are difficult to identify due to the inconsistent cloud retrievals between the 16 GEO imagers used in the CERES record. Third, the GEO derived broadband radiances are passed through the CERES angular distribution model (ADM) to convert the radiances to fluxes. Lastly, the GEO derived

  2. Morphodynamics of a cyclic prograding delta: the Red River, Vietnam

    NARCIS (Netherlands)

    Maren, D.S. van

    2004-01-01

    River deltas are inhabited by over 60% of the world population, and are, consequently, of paramount agricultural and economical importance. They constitute unique wetland envi ronments which gives river deltas ecological importance as well. Additionally, many deltas contain large accumulations of

  3. Environmental challenges in Nigeria's Delta Region and Agriculture ...

    African Journals Online (AJOL)

    The paper discussed the environmental challenges in the Niger-Delta region of Nigeria with emphasis on the impacts on agricultural production. It thus discussed the concepts of Niger-Delta, Environmental pollution, Niger-Delta crises and Agriculture. The paper posits that there are positive relationships between these ...

  4. Winging of scapula due to serratus anterior tear

    Directory of Open Access Journals (Sweden)

    Varun Singh Kumar

    2014-10-01

    Full Text Available 【Abstract】Winging of scapula occurs most commonly due to injury to long thoracic nerve supplying serratus anterior muscle. Traumatic injury to serratus anterior muscle itself is very rare. We reported a case of traumatic winging of scapula due to tear of serratus anterior muscle in a 19-year-old male. Winging was present in neutral position and in extension of right shoulder joint but not on "push on wall" test. Patient was managed conservatively and achieved satisfactory result. Key words: Serratus anterior tear; Scapula; Wounds and injuries

  5. Optimisation of the Sekwa blended-wing-Body research UAV

    CSIR Research Space (South Africa)

    Broughton, BA

    2008-10-01

    Full Text Available qualities constraints during the aerodynamic design process. NOMENCLATURE g2009g2868g3013 zero-lift angle of attack AoA α, angle of attack AR aspect ratio BWB blended-wing-body g1829g3005,g2868 zero-lift drag coefficient g1829g3005,g3036 induced drag... coefficient g1829g3005,g3047 total drag coefficient g1829g3040,g2868 zero-lift pitching moment coefficient CG centre of gravity F objective function to be minimised g1845actual actual wing area g1845 reference wing area, as projected into xy-plane 1...

  6. Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge

    Science.gov (United States)

    Yap, Keng C.

    2010-01-01

    This viewgraph presentation reviews Structural Health Monitoring Analysis for the Orbiter Wing Leading Edge. The Wing Leading Edge Impact Detection System (WLE IDS) and the Impact Analysis Process are also described to monitor WLE debris threats. The contents include: 1) Risk Management via SHM; 2) Hardware Overview; 3) Instrumentation; 4) Sensor Configuration; 5) Debris Hazard Monitoring; 6) Ascent Response Summary; 7) Response Signal; 8) Distribution of Flight Indications; 9) Probabilistic Risk Analysis (PRA); 10) Model Correlation; 11) Impact Tests; 12) Wing Leading Edge Modeling; 13) Ascent Debris PRA Results; and 14) MM/OD PRA Results.

  7. Dynamics and control of robotic aircraft with articulated wings

    Science.gov (United States)

    Paranjape, Aditya Avinash

    There is a considerable interest in developing robotic aircraft, inspired by birds, for a variety of missions covering reconnaissance and surveillance. Flapping wing aircraft concepts have been put forth in light of the efficiency of flapping flight at small scales. These aircraft are naturally equipped with the ability to rotate their wings about the root, a form of wing articulation. This thesis covers some problems concerning the performance, stability and control of robotic aircraft with articulated wings in gliding flight. Specifically, we are interested in aircraft without a vertical tail, which would then use wing articulation for longitudinal as well as lateral-directional control. Although the dynamics and control of articulated wing aircraft share several common features with conventional fixed wing aircraft, the presence of wing articulation presents several unique benefits as well as limitations from the perspective of performance and control. One of the objective of this thesis is to understand these features using a combination of theoretical and numerical tools. The aircraft concept envisioned in this thesis uses the wing dihedral angles for longitudinal and lateral-directional control. Aircraft with flexible articulated wings are also investigated. We derive a complete nonlinear model of the flight dynamics incorporating dynamic CG location and the changing moment of inertia. We show that symmetric dihedral configuration, along with a conventional horizontal tail, can be used to control flight speed and flight path angle independently of each other. This characteristic is very useful for initiating an efficient perching maneuver. It is shown that wing dihedral angles alone can effectively regulate sideslip during rapid turns and generate a wide range of equilibrium turn rates while maintaining a constant flight speed and regulating sideslip. We compute the turning performance limitations that arise due to the use of wing dihedral for yaw control

  8. Solubility of nickel ferrite (NiFe2O4) from 100 to 200 deg. C

    International Nuclear Information System (INIS)

    Bellefleur, Alexandre; Bachet, Martin; Benezeth, Pascale; Schott, Jacques

    2012-09-01

    The solubility of nickel ferrite was measured in a Hydrogen-Electrode Concentration Cell (HECC) at temperatures of 100 deg. C, 150 deg. C and 200 deg. C and pH between 4 and 5.25. The experimental solution was composed of HCl and NaCl (0.1 mol.L -1 ). Based on other studies ([1,2]), pure nickel ferrite was experimentally synthesized by calcination of a mixture of hematite Fe 2 O 3 and bunsenite NiO in molten salts at 1000 deg. C for 15 hours in air. The so obtained powder was fully characterized. The Hydrogen-Electrode Concentration cell has been described in [3]. It allowed us to run solubility experiments up to 250 deg. C with an in-situ pH measurement. To avoid reduction of the solid phase to metallic nickel, a hydrogen/argon mixture was used instead of pure hydrogen. Consequently, the equilibration time for the electrodes was longer than with pure hydrogen. Eight samples were taken on a 70 days period. After the experiments, the powder showed no significant XRD evidence of Ni (II) reduction. Nickel concentration was measured by atomic absorption spectroscopy and iron concentration was measured by UV spectroscopy. The protocol has been designed to be able to measure both dissolved Fe (II) and total iron. The nickel solubility of nickel ferrite was slightly lower than the solubility of nickel oxide in close experimental conditions [3]. Dissolved iron was mainly ferrous and the solution was under-saturated relative to both hematite and magnetite. The nickel/iron ratio indicated a non-stoichiometric dissolution. The solubility measurements were compared with equilibrium calculations using the MULTEQ database. [1] Hayashi et al (1980) J. Materials Sci. 15, 1491-1497. [2] Ziemniak et al (2007) J. Physics and Chem. of Solids. 68,10-21. [3] EPRI Report 1003155 (2002). (authors)

  9. A Model for Selection of Eyespots on Butterfly Wings.

    Science.gov (United States)

    Sekimura, Toshio; Venkataraman, Chandrasekhar; Madzvamuse, Anotida

    2015-01-01

    The development of eyespots on the wing surface of butterflies of the family Nympalidae is one of the most studied examples of biological pattern formation.However, little is known about the mechanism that determines the number and precise locations of eyespots on the wing. Eyespots develop around signaling centers, called foci, that are located equidistant from wing veins along the midline of a wing cell (an area bounded by veins). A fundamental question that remains unsolved is, why a certain wing cell develops an eyespot, while other wing cells do not. We illustrate that the key to understanding focus point selection may be in the venation system of the wing disc. Our main hypothesis is that changes in morphogen concentration along the proximal boundary veins of wing cells govern focus point selection. Based on previous studies, we focus on a spatially two-dimensional reaction-diffusion system model posed in the interior of each wing cell that describes the formation of focus points. Using finite element based numerical simulations, we demonstrate that variation in the proximal boundary condition is sufficient to robustly select whether an eyespot focus point forms in otherwise identical wing cells. We also illustrate that this behavior is robust to small perturbations in the parameters and geometry and moderate levels of noise. Hence, we suggest that an anterior-posterior pattern of morphogen concentration along the proximal vein may be the main determinant of the distribution of focus points on the wing surface. In order to complete our model, we propose a two stage reaction-diffusion system model, in which an one-dimensional surface reaction-diffusion system, posed on the proximal vein, generates the morphogen concentrations that act as non-homogeneous Dirichlet (i.e., fixed) boundary conditions for the two-dimensional reaction-diffusion model posed in the wing cells. The two-stage model appears capable of generating focus point distributions observed in

  10. A Model for Selection of Eyespots on Butterfly Wings.

    Directory of Open Access Journals (Sweden)

    Toshio Sekimura

    Full Text Available The development of eyespots on the wing surface of butterflies of the family Nympalidae is one of the most studied examples of biological pattern formation.However, little is known about the mechanism that determines the number and precise locations of eyespots on the wing. Eyespots develop around signaling centers, called foci, that are located equidistant from wing veins along the midline of a wing cell (an area bounded by veins. A fundamental question that remains unsolved is, why a certain wing cell develops an eyespot, while other wing cells do not.We illustrate that the key to understanding focus point selection may be in the venation system of the wing disc. Our main hypothesis is that changes in morphogen concentration along the proximal boundary veins of wing cells govern focus point selection. Based on previous studies, we focus on a spatially two-dimensional reaction-diffusion system model posed in the interior of each wing cell that describes the formation of focus points. Using finite element based numerical simulations, we demonstrate that variation in the proximal boundary condition is sufficient to robustly select whether an eyespot focus point forms in otherwise identical wing cells. We also illustrate that this behavior is robust to small perturbations in the parameters and geometry and moderate levels of noise. Hence, we suggest that an anterior-posterior pattern of morphogen concentration along the proximal vein may be the main determinant of the distribution of focus points on the wing surface. In order to complete our model, we propose a two stage reaction-diffusion system model, in which an one-dimensional surface reaction-diffusion system, posed on the proximal vein, generates the morphogen concentrations that act as non-homogeneous Dirichlet (i.e., fixed boundary conditions for the two-dimensional reaction-diffusion model posed in the wing cells. The two-stage model appears capable of generating focus point distributions

  11. Elucidating of the microstructure of ZrO2 ceramics with additions of 1200 deg. C heat treated ultrafine MgO powders: Aging at 1420 deg. C

    International Nuclear Information System (INIS)

    Brito-Chaparro, J.A.; Reyes-Rojas, A.; Bocanegra-Bernal, M.H.; Aguilar-Elguezabal, A.; Echeberria, J.

    2007-01-01

    The microstructure and phase transformations in the pressureless sintered composite ZrO 2 with additions of 3.11 wt% high purity and ultrafine MgO powder (9.25 mol% Mg-PSZ) heat treated at 1200 deg. C were investigated by using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction, before and after of eutectoid aging treatment at 1420 deg. C during 4 h. The phases in the as-sintered ceramics were t, c, and m, and was not evident under the experimental conditions of this work, the formation of typical disk-like shape tetragonal precipitates aligned at right angles, meanwhile the microstructure resulting in aged samples was majority monoclinic stable phase showing a banded structure which appear to be twin related. When is used MgO previously heat treated as stabilizer of ZrO 2 , strong differences in SEM microstructures compared to the shown by other investigators in very similar compositions have been found

  12. Isothermal cross-sections of Hf-Sc-Ga(800 deg C) and Hf-Ti-Ga (750 deg C) phase diagrams

    International Nuclear Information System (INIS)

    Markiv, V.Ya.; Belyavina, N.N.

    1981-01-01

    Isothermal cross sections of Hf-Sc-Ga (800 deg C) and Hf-Ti-Ga (750 deg C) state diagrams are plotted. The existence of two ternary Hfsub(0.1-0.8)Scsub(0.9)-sub(0.2)Ga and Hfsub(0.8)Scsub(0.2)Gasub(3) phases is stated in the Hf-Sc-Ga system. The crystal structure of these compounds investigated by the powder method belongs to the structural α-MoB and ZrAl 3 types respectively. Continuous rows of (Hf, Sc 5 Ga 5 , (Hf, Ti)Ga 3 and (Hf, Ti)Ga 2 solid solutions are formed in the investigated systems. Essential quantity of the third component dissolve binary Sc 5 Ga 4 , Sc 2 Ga 3 (15 and 30 at % Hf respectively), Hf 5 Ga 4 , HfGa 2 (20, 10 at. % Sc), Hf 5 Ga 4 , HfGa, Hf 5 Ga 3 , Hf 2 Ga 3 (48, 30, 46, 20 at. % Ti) gallides [ru

  13. AN XMM-NEWTON SURVEY OF THE SOFT X-RAY BACKGROUND. I. THE O VII AND O VIII LINES BETWEEN l = 120 DEG. AND l = 240 DEG

    International Nuclear Information System (INIS)

    Henley, David B.; Shelton, Robin L.

    2010-01-01

    We present measurements of the soft X-ray background (SXRB) O VII and O VIII intensity between l = 120 deg. and l = 240 deg., the first results of a survey of the SXRB using archival XMM-Newton observations. We do not restrict ourselves to blank-sky observations, but instead use as many observations as possible, removing bright or extended sources by hand if necessary. In an attempt to minimize contamination from near-Earth solar wind charge exchange (SWCX) emission, we remove times of high solar wind proton flux from the data. Without this filtering we are able to extract measurements from 586 XMM-Newton observations. With this filtering, ∼1/2 of the observations are rendered unusable, and we are able to extract measurements from 303 observations. The oxygen intensities are typically ∼0.5-10 photons cm -2 s -1 sr -1 (line units, L.U.) for O VII and ∼0-5 L.U. for O VIII. The proton flux filtering does not systematically reduce the oxygen intensities measured from a given observation. However, the filtering does preferentially remove the observations with higher oxygen intensities. Our data set includes 69 directions with multiple observations, whose oxygen intensity variations can be used to constrain SWCX models. One observation exhibits an O VII enhancement of ∼25 L.U. over two other observations of the same direction, although most SWCX enhancements are ∼ 6 K, in good agreement with previous studies.

  14. deltaPlotR: An R Package for Di?erential Item Functioning Analysis with Ango? s Delta Plot

    OpenAIRE

    David Magis; Bruno Facon

    2014-01-01

    Angoff's delta plot is a straightforward and not computationally intensive method to identify differential item functioning (DIF) among dichotomously scored items. This approach was recently improved by proposing an optimal threshold selection and by considering several item purification processes. Moreover, to support practical DIF analyses with the delta plot and these improvements, the R package deltaPlotR was also developed. The purpose of this paper is twofold: to outline the delta plot ...

  15. Pitch, roll, and yaw moment generator for insect-like tailless flapping-wing MAV

    Science.gov (United States)

    Phan, Hoang Vu; Park, Hoon Cheol

    2016-04-01

    In this work, we proposed a control moment generator, which is called Trailing Edge Change (TEC) mechanism, for attitudes change in hovering insect-like tailless flapping-wing MAV. The control moment generator was installed to the flapping-wing mechanism to manipulate the wing kinematics by adjusting the wing roots location symmetrically or asymmetrically. As a result, the mean aerodynamic force center of each wing is relocated and control moments are generated. The three-dimensional wing kinematics captured by three synchronized high-speed cameras showed that the flapping-wing MAV can properly modify the wing kinematics. In addition, a series of experiments were performed using a multi-axis load cell to evaluate the forces and moments generation. The measurement demonstrated that the TEC mechanism produced reasonable amounts of pitch, roll and yaw moments by shifting position of the trailing edges at the wing roots of the flapping-wing MAV.

  16. Waiting in the wings: what can we learn about gene co-option from the diversification of butterfly wing patterns?

    Science.gov (United States)

    Jiggins, Chris D; Wallbank, Richard W R; Hanly, Joseph J

    2017-02-05

    A major challenge is to understand how conserved gene regulatory networks control the wonderful diversity of form that we see among animals and plants. Butterfly wing patterns are an excellent example of this diversity. Butterfly wings form as imaginal discs in the caterpillar and are constructed by a gene regulatory network, much of which is conserved across the holometabolous insects. Recent work in Heliconius butterflies takes advantage of genomic approaches and offers insights into how the diversification of wing patterns is overlaid onto this conserved network. WntA is a patterning morphogen that alters spatial information in the wing. Optix is a transcription factor that acts later in development to paint specific wing regions red. Both of these loci fit the paradigm of conserved protein-coding loci with diverse regulatory elements and developmental roles that have taken on novel derived functions in patterning wings. These discoveries offer insights into the 'Nymphalid Ground Plan', which offers a unifying hypothesis for pattern formation across nymphalid butterflies. These loci also represent 'hotspots' for morphological change that have been targeted repeatedly during evolution. Both convergent and divergent evolution of a great diversity of patterns is controlled by complex alleles at just a few genes. We suggest that evolutionary change has become focused on one or a few genetic loci for two reasons. First, pre-existing complex cis-regulatory loci that already interact with potentially relevant transcription factors are more likely to acquire novel functions in wing patterning. Second, the shape of wing regulatory networks may constrain evolutionary change to one or a few loci. Overall, genomic approaches that have identified wing patterning loci in these butterflies offer broad insight into how gene regulatory networks evolve to produce diversity.This article is part of the themed issue 'Evo-devo in the genomics era, and the origins of morphological

  17. Solution of Poisson equations for 3-dimensional grid generations. [computations of a flow field over a thin delta wing

    Science.gov (United States)

    Fujii, K.

    1983-01-01

    A method for generating three dimensional, finite difference grids about complicated geometries by using Poisson equations is developed. The inhomogenous terms are automatically chosen such that orthogonality and spacing restrictions at the body surface are satisfied. Spherical variables are used to avoid the axis singularity, and an alternating-direction-implicit (ADI) solution scheme is used to accelerate the computations. Computed results are presented that show the capability of the method. Since most of the results presented have been used as grids for flow-field computations, this is indicative that the method is a useful tool for generating three-dimensional grids about complicated geometries.

  18. Performance Comparison of the Optimized Inverted Joined Wing Airplane Concept and Classical Configuration Airplanes

    OpenAIRE

    Sieradzki Adam; Dziubiński Adam; Galiński Cezary

    2016-01-01

    The joined wing concept is an unconventional airplane configuration, known since the mid-twenties of the last century. It has several possible advantages, like reduction of the induced drag and weight due to the closed wing concept. The inverted joined wing variant is its rarely considered version, with the front wing being situated above the aft wing. The following paper presents a performance prediction of the recently optimized configuration of this airplane. Flight characteristics obtaine...

  19. Variable camber wing based on pneumatic artificial muscles

    Science.gov (United States)

    Yin, Weilong; Liu, Libo; Chen, Yijin; Leng, Jinsong

    2009-07-01

    As a novel bionic actuator, pneumatic artificial muscle has high power to weight ratio. In this paper, a variable camber wing with the pneumatic artificial muscle is developed. Firstly, the experimental setup to measure the static output force of pneumatic artificial muscle is designed. The relationship between the static output force and the air pressure is investigated. Experimental result shows the static output force of pneumatic artificial muscle decreases nonlinearly with increasing contraction ratio. Secondly, the finite element model of the variable camber wing is developed. Numerical results show that the tip displacement of the trailing-edge increases linearly with increasing external load and limited with the maximum static output force of pneumatic artificial muscles. Finally, the variable camber wing model is manufactured to validate the variable camber concept. Experimental result shows that the wing camber increases with increasing air pressure and that it compare very well with the FEM result.

  20. Silent and Efficient Supersonic Bi-Directional Flying Wing

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a Phase I study for a novel concept of a supersonic bi-directional (SBiDir) flying wing (FW) that has the potential to revolutionize supersonic flight...