WorldWideScience

Sample records for deformed u-u collisions

  1. Anisotropic flow and jet quenching in ultrarelativistic U+U collisions

    CERN Document Server

    Heinz, Ulrich

    2005-01-01

    Full-overlap U + U collisions provide significantly larger initial energy densities at comparable spatial deformation, and significantly larger deformation and volume at comparable energy density, than semicentral Au + Au collisions. We show quantitatively that this provides a long lever arm for studying the hydrodynamic behavior of elliptic flow in much larger and denser collision systems and the predicted nonlinear path-length dependence of radiative parton energy loss. copy 2005 The American Physical Society.

  2. Study of charged particle production in U-U collisions in the wounded quark model

    Science.gov (United States)

    Chaturvedi, O. S. K.; Srivastava, P. K.; Kumar, Ashwini; Singh, B. K.

    2017-10-01

    Recently, there has been a growing interest in the study of deformed uranium-uranium (U-U) collisions in its various geometrical configurations due to their usefulness in understanding the different aspects of quantum chromodynamics (QCD). In this paper we have studied the particle production in deformed U-U collisions at √{s_{NN}} = 193 GeV using the modified wounded quark model (WQM). At first, we have shown the variation of quark-nucleus inelastic scattering cross-section ( σ_{qA}^{in} with respect to centralities for various geometrical orientations of U-U collisions in WQM. After that we have calculated the pseudorapidity density ( dn_{ch}/d η within WQM using a two-component prescription. Further we have calculated the transverse energy density distribution ( dET/d η along with the ratio of transverse energy to charged hadron multiplicity ( ET/N_{ch} for U-U collisions and compared them with the corresponding experimental data. We have shown the scaling behavior of dn_{ch}/d η and dET/d η for different initial geometry of U-U collision with respect to p - p data at √{s_{NN}}= 200 GeV. Furthermore we have shown the Bjorken energy density achieved in U-U collisions for various configurations and compared them with experimental data of Au-Au at 200GeV. We observe that the present model suitably describes the experimental data for minimum bias geometrical configuration of U-U collisions. An estimate for various observables in different initial geometries of U-U collisions is also presented which will be tested in future by experimental data.

  3. Azimuthal Anisotropy in U +U and Au +Au Collisions at RHIC

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Alford, J.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Averichev, G. S.; Banerjee, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandin, A. V.; Bunzarov, I.; Burton, T. P.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Cervantes, M. C.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; di Ruzza, B.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, S.; Gupta, A.; Guryn, W.; Hamad, A.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Hofman, D. J.; Horvat, S.; Huang, H. Z.; Huang, B.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jang, H.; Jiang, K.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z. H.; Kikola, D. P.; Kisel, I.; Kisiel, A.; Koetke, D. D.; Kollegger, T.; Kosarzewski, L. K.; Kotchenda, L.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulakov, I.; Kumar, L.; Kycia, R. A.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, W.; Li, Y.; Li, C.; Li, Z. M.; Li, X.; Li, X.; Lisa, M. A.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Ma, L.; Ma, R.; Ma, Y. G.; Ma, G. L.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Masui, H.; Matis, H. S.; McDonald, D.; Meehan, K.; Minaev, N. G.; Mioduszewski, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Nogach, L. V.; Noh, S. Y.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V.; Olvitt, D. L.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Peterson, A.; Pile, P.; Planinic, M.; Pluta, J.; Poljak, N.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Raniwala, S.; Raniwala, R.; Ray, R. L.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roy, A.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, B.; Sharma, M. K.; Shen, W. Q.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sumbera, M.; Summa, B. J.; Sun, X.; Sun, X. M.; Sun, Z.; Sun, Y.; Surrow, B.; Svirida, D. N.; Szelezniak, M. A.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A. N.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Vandenbroucke, M.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbaek, F.; Viyogi, Y. P.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, F.; Wang, Y.; Wang, H.; Wang, J. S.; Wang, Y.; Wang, G.; Webb, G.; Webb, J. C.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y. F.; Xiao, Z.; Xie, W.; Xin, K.; Xu, Y. F.; Xu, N.; Xu, Z.; Xu, Q. H.; Xu, H.; Yang, Y.; Yang, Y.; Yang, C.; Yang, S.; Yang, Q.; Ye, Z.; Yepes, P.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, X. P.; Zhang, J. B.; Zhang, J.; Zhang, Z.; Zhang, S.; Zhang, Y.; Zhang, J. L.; Zhao, F.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2015-11-01

    Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, v2{2 } and v2{4 }, for charged hadrons from U +U collisions at √{sNN }=193 GeV and Au +Au collisions at √{sNN}=200 GeV . Nearly fully overlapping collisions are selected based on the energy deposited by spectators in zero degree calorimeters (ZDCs). Within this sample, the observed dependence of v2{2 } on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U +U collisions. We also show that v2 vs multiplicity can be better described by models, such as gluon saturation or quark participant models, that eliminate the dependence of the multiplicity on the number of binary nucleon-nucleon collisions.

  4. Azimuthal Anisotropy in U+U and Au+Au Collisions at RHIC.

    Science.gov (United States)

    Adamczyk, L; Adkins, J K; Agakishiev, G; Aggarwal, M M; Ahammed, Z; Alekseev, I; Alford, J; Aparin, A; Arkhipkin, D; Aschenauer, E C; Averichev, G S; Banerjee, A; Bellwied, R; Bhasin, A; Bhati, A K; Bhattarai, P; Bielcik, J; Bielcikova, J; Bland, L C; Bordyuzhin, I G; Bouchet, J; Brandin, A V; Bunzarov, I; Burton, T P; Butterworth, J; Caines, H; Calderón de la Barca Sánchez, M; Campbell, J M; Cebra, D; Cervantes, M C; Chakaberia, I; Chaloupka, P; Chang, Z; Chattopadhyay, S; Chen, J H; Chen, X; Cheng, J; Cherney, M; Christie, W; Contin, G; Crawford, H J; Das, S; De Silva, L C; Debbe, R R; Dedovich, T G; Deng, J; Derevschikov, A A; di Ruzza, B; Didenko, L; Dilks, C; Dong, X; Drachenberg, J L; Draper, J E; Du, C M; Dunkelberger, L E; Dunlop, J C; Efimov, L G; Engelage, J; Eppley, G; Esha, R; Evdokimov, O; Eyser, O; Fatemi, R; Fazio, S; Federic, P; Fedorisin, J; Feng, Z; Filip, P; Fisyak, Y; Flores, C E; Fulek, L; Gagliardi, C A; Garand, D; Geurts, F; Gibson, A; Girard, M; Greiner, L; Grosnick, D; Gunarathne, D S; Guo, Y; Gupta, S; Gupta, A; Guryn, W; Hamad, A; Hamed, A; Haque, R; Harris, J W; He, L; Heppelmann, S; Heppelmann, S; Hirsch, A; Hoffmann, G W; Hofman, D J; Horvat, S; Huang, H Z; Huang, B; Huang, X; Huck, P; Humanic, T J; Igo, G; Jacobs, W W; Jang, H; Jiang, K; Judd, E G; Kabana, S; Kalinkin, D; Kang, K; Kauder, K; Ke, H W; Keane, D; Kechechyan, A; Khan, Z H; Kikola, D P; Kisel, I; Kisiel, A; Koetke, D D; Kollegger, T; Kosarzewski, L K; Kotchenda, L; Kraishan, A F; Kravtsov, P; Krueger, K; Kulakov, I; Kumar, L; Kycia, R A; Lamont, M A C; Landgraf, J M; Landry, K D; Lauret, J; Lebedev, A; Lednicky, R; Lee, J H; Li, W; Li, Y; Li, C; Li, Z M; Li, X; Li, X; Lisa, M A; Liu, F; Ljubicic, T; Llope, W J; Lomnitz, M; Longacre, R S; Luo, X; Ma, L; Ma, R; Ma, Y G; Ma, G L; Magdy, N; Majka, R; Manion, A; Margetis, S; Markert, C; Masui, H; Matis, H S; McDonald, D; Meehan, K; Minaev, N G; Mioduszewski, S; Mohanty, B; Mondal, M M; Morozov, D A; Mustafa, M K; Nandi, B K; Nasim, Md; Nayak, T K; Nigmatkulov, G; Nogach, L V; Noh, S Y; Novak, J; Nurushev, S B; Odyniec, G; Ogawa, A; Oh, K; Okorokov, V; Olvitt, D L; Page, B S; Pak, R; Pan, Y X; Pandit, Y; Panebratsev, Y; Pawlik, B; Pei, H; Perkins, C; Peterson, A; Pile, P; Planinic, M; Pluta, J; Poljak, N; Poniatowska, K; Porter, J; Posik, M; Poskanzer, A M; Pruthi, N K; Putschke, J; Qiu, H; Quintero, A; Ramachandran, S; Raniwala, S; Raniwala, R; Ray, R L; Ritter, H G; Roberts, J B; Rogachevskiy, O V; Romero, J L; Roy, A; Ruan, L; Rusnak, J; Rusnakova, O; Sahoo, N R; Sahu, P K; Sakrejda, I; Salur, S; Sandweiss, J; Sarkar, A; Schambach, J; Scharenberg, R P; Schmah, A M; Schmidke, W B; Schmitz, N; Seger, J; Seyboth, P; Shah, N; Shahaliev, E; Shanmuganathan, P V; Shao, M; Sharma, B; Sharma, M K; Shen, W Q; Shi, S S; Shou, Q Y; Sichtermann, E P; Sikora, R; Simko, M; Skoby, M J; Smirnov, D; Smirnov, N; Song, L; Sorensen, P; Spinka, H M; Srivastava, B; Stanislaus, T D S; Stepanov, M; Stock, R; Strikhanov, M; Stringfellow, B; Sumbera, M; Summa, B J; Sun, X; Sun, X M; Sun, Z; Sun, Y; Surrow, B; Svirida, D N; Szelezniak, M A; Tang, Z; Tang, A H; Tarnowsky, T; Tawfik, A N; Thomas, J H; Timmins, A R; Tlusty, D; Tokarev, M; Trentalange, S; Tribble, R E; Tribedy, P; Tripathy, S K; Trzeciak, B A; Tsai, O D; Ullrich, T; Underwood, D G; Upsal, I; Van Buren, G; van Nieuwenhuizen, G; Vandenbroucke, M; Varma, R; Vasiliev, A N; Vertesi, R; Videbaek, F; Viyogi, Y P; Vokal, S; Voloshin, S A; Vossen, A; Wang, F; Wang, Y; Wang, H; Wang, J S; Wang, Y; Wang, G; Webb, G; Webb, J C; Wen, L; Westfall, G D; Wieman, H; Wissink, S W; Witt, R; Wu, Y F; Xiao, Z; Xie, W; Xin, K; Xu, Y F; Xu, N; Xu, Z; Xu, Q H; Xu, H; Yang, Y; Yang, Y; Yang, C; Yang, S; Yang, Q; Ye, Z; Yepes, P; Yi, L; Yip, K; Yoo, I-K; Yu, N; Zbroszczyk, H; Zha, W; Zhang, X P; Zhang, J B; Zhang, J; Zhang, Z; Zhang, S; Zhang, Y; Zhang, J L; Zhao, F; Zhao, J; Zhong, C; Zhou, L; Zhu, X; Zoulkarneeva, Y; Zyzak, M

    2015-11-27

    Collisions between prolate uranium nuclei are used to study how particle production and azimuthal anisotropies depend on initial geometry in heavy-ion collisions. We report the two- and four-particle cumulants, v_{2}{2} and v_{2}{4}, for charged hadrons from U+U collisions at sqrt[s_{NN}]=193  GeV and Au+Au collisions at sqrt[s_{NN}]=200  GeV. Nearly fully overlapping collisions are selected based on the energy deposited by spectators in zero degree calorimeters (ZDCs). Within this sample, the observed dependence of v_{2}{2} on multiplicity demonstrates that ZDC information combined with multiplicity can preferentially select different overlap configurations in U+U collisions. We also show that v_{2} vs multiplicity can be better described by models, such as gluon saturation or quark participant models, that eliminate the dependence of the multiplicity on the number of binary nucleon-nucleon collisions.

  5. $\\Upsilon$ production in U + U collisions at $\\sqrt{s_{NN}}$=193 GeV measured with the STAR experiment

    CERN Document Server

    Adamczyk, L.

    2016-12-15

    We present a measurement of the inclusive production of Upsilon mesons in U+U collisions at 193 GeV at mid-rapidity (|y| < 1). Previous studies in central Au+Au collisions at 200 GeV show a suppression of Upsilon(1S+2S+3S) production relative to expectations from the Upsilon yield in p+p collisions scaled by the number of binary nucleon-nucleon collisions (Ncoll), with an indication that the Upsilon(1S) state is also suppressed. The present measurement extends the number of participant nucleons in the collision (Npart) by 20% compared to Au+Au collisions, and allows us to study a system with higher energy density. We observe a suppression in both the Upsilon(1S+2S+3S) and Upsilon(1S) yields in central U+U data, which consolidates and extends the previously observed suppression trend in Au+Au collisions.

  6. Azimuthal anisotropy of strange hadrons in U+U collisions at √SNN = 193 GeV at RHIC

    Science.gov (United States)

    Bairathi, Vipul

    2018-02-01

    We present the measurement of the azimuthal anisotropy of strange hadrons (K0s, ϕ and Λ) at mid-rapidity (|y| n = 2, 3, 4. A strong centrality dependence of υ2 is observed for the particles K0s, ϕ and Λ in U+U collisions at = 193 GeV similar to Au+Au collisions at = 200 GeV. We studied the number of constituent quark scaling (NCQ) of the flow coefficients. The NCQ scaling of the flow coefficients holds within uncertainties for the particles studied in the U+U collisions. We also present the comparison of the results to the AMPT transport model.

  7. Ternary fission of 184466,476X formed in U + U collisions

    International Nuclear Information System (INIS)

    Karthikraj, C.; Subramanian, S.; Selvaraj, S.

    2016-01-01

    Recently, the very rare process of nuclear ternary fission has been of great interest in nuclear dynamics. Based on the statistical theory of fission, we discuss here the ternary-fission mass distribution of 184 466,476 X formed in low-energy U + U collisions for different heavy third fragments at T = 1 and 2 MeV. The expected ternary configurations 208 Pb + 208 Pb + 50 Ca and 204 Hg + 204 Hg + 58 Cr are obtained from the ternary fission of 184 466 X at T = 2 MeV. In addition, for both the systems, various possible ternary modes are listed for different heavy third fragments. Our results clearly indicate that the favored ternary configurations have either proton and/or neutron shell closure nucleus as one of their partners. (orig.)

  8. Υ production in U + U collisions at √{sN N}=193 GeV measured with the STAR experiment

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Bunzarov, I.; Butterworth, J.; Caines, H.; Calderón de la Barca Sánchez, M.; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chatterjee, A.; Chattopadhyay, S.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; De Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Du, C. M.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Greiner, L.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Haque, R.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, H. Z.; Huang, B.; Huang, T.; Huang, X.; Huck, P.; Humanic, T. J.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Koetke, D. D.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kumar, L.; Lamont, M. A. C.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, Y.; Li, C.; Li, X.; Li, W.; Li, X.; Lin, T.; Lisa, M. A.; Liu, F.; Liu, Y.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, X.; Luo, S.; Ma, G. L.; Ma, R.; Ma, L.; Ma, Y. G.; Magdy, N.; Majka, R.; Manion, A.; Margetis, S.; Markert, C.; Matis, H. S.; McDonald, D.; McKinzie, S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nandi, B. K.; Nasim, Md.; Nayak, T. K.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Novak, J.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pan, Y. X.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Sakrejda, I.; Salur, S.; Sandweiss, J.; Sarkar, A.; Schambach, J.; Scharenberg, R. P.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Seger, J.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, M. K.; Sharma, A.; Sharma, B.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, D.; Smirnov, N.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Stepanov, M.; Stock, R.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, Z.; Sun, X. M.; Surrow, B.; Svirida, D. N.; Tang, Z.; Tang, A. H.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; Van Buren, G.; van Nieuwenhuizen, G.; Varma, R.; Vasiliev, A. N.; Vertesi, R.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, J. S.; Wang, F.; Wang, Y.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, G.; Xie, W.; Xin, K.; Xu, Z.; Xu, H.; Xu, N.; Xu, J.; Xu, Y. F.; Xu, Q. H.; Yang, Y.; Yang, Y.; Yang, S.; Yang, Q.; Yang, Y.; Yang, C.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, J.; Zhang, Z.; Zhang, J.; Zhang, S.; Zhang, X. P.; Zhang, J. B.; Zhang, Y.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhu, X.; Zoulkarneeva, Y.; Zyzak, M.; STAR Collaboration

    2016-12-01

    We present a measurement of the inclusive production of Υ mesons in U+U collisions at √{sN N}=193 GeV at midrapidity (|y |<1 ). Previous studies in central Au+Au collisions at √{sN N}=200 GeV show a suppression of Υ (1S+2S+3S) production relative to expectations from the Υ yield in p+p collisions scaled by the number of binary nucleon-nucleon collisions (Ncoll), with an indication that the Υ (1S) state is also suppressed. The present measurement extends the number of participant nucleons in the collision (Npart) by 20% compared to Au+Au collisions, and allows us to study a system with higher energy density. We observe a suppression in both the Υ (1 S +2 S +3 S ) and Υ (1 S ) yields in central U+U data, which consolidates and extends the previously observed suppression trend in Au+Au collisions.

  9. Aspects of collision tectonics and intraplate deformation

    Energy Technology Data Exchange (ETDEWEB)

    Coward, M.P.

    1988-08-01

    Alpine collisional tectonics occurred episodically over the past 100 m.y., closing various small Tethyan basins and causing ripples of basin contraction and tectonic inversion across western Europe. Both at the Tethyan margin and in the smaller basins, deformation styles were controlled by existing fault geometries, in particular, (1) the position, dip, and detachment levels of the important bounding normal faults, (2) the locations of northwest-southwest trending lateral ramps/tear faults, which compartmentalize and tram-line the deformation, and (3) the distribution and thickness of Mesozoic postrift sediments. Collision began in the middle Cretaceous, with the closure of Ligurian and Valais basins and the associated reactivation of northwest-southeast strike-slip faults and small basins as far away as the Atlantic margin. This movement was associated with the earliest orogenic flysch deposits, the subduction of Tethyan ophiolites, and local A-type subduction and high-pressure metamorphism close to the Tethyan continental margins. Major crustal shortening occurred in southern Europe (Spain and southern France) in the Late Cretaceous-Paleogene associated with closure of Pyrenean basins, but in the Alps, the major shortening continued throughout the Neogene. Section restorations based on regional studies, linked to commercial and deep seismic data, indicate well over 100 km of crustal shortening in the western and central Alps, with subduction of lower European crust and lithospheric mantle beneath the southern Alps and the Po plain.

  10. Collision-Induced Melting in Collisions of Water Ice Nanograins: Strong Deformations and Prevention of Bouncing

    Science.gov (United States)

    Nietiadi, Maureen L.; Umstätter, Philipp; Alabd Alhafez, Iyad; Rosandi, Yudi; Bringa, Eduardo M.; Urbassek, Herbert M.

    2017-11-01

    Collisions between ice grains are ubiquitous in the outer solar system. The mechanics of such collisions is traditionally described by the elastic contact theory of adhesive spheres. Here we use molecular dynamics simulations to study collisions between nanometer-sized amorphous water ice grains. We demonstrate that the collision-induced heating leads to grain melting in the interface of the colliding grains. The large lateral deformations and grain sticking induced considerably modify available macroscopic collision models. We report on systematic increases of the contact radius, strong grain deformations, and the prevention of grain bouncing.

  11. The Effects of Aseismic Ridge Collision on Upper Plate Deformation: Cocos Ridge Collision and Deformation of the Western Caribbean

    Science.gov (United States)

    La Femina, P. C.; Govers, R. M. A.; Ruiz, G.; Geirsson, H.; Camacho, E.; Mora-Paez, H.

    2015-12-01

    The collision of the Panamanian isthmus with northwestern South America is thought to have initiated as early as Oligocene - Miocene time (23-25 Ma) based on geologic and geophysical data and paleogeographic reconstructions. This collision was driven by eastward-directed subduction beneath northwestern South America. Cocos - Caribbean convergence along the Middle America Trench, and Nazca - Caribbean oblique convergence along the South Panama Deformed Belt have resulted in complex deformation of the southwestern Caribbean since Miocene - Pliocene time. Subduction and collision of the aseismic Cocos Ridge is thought to have initiated migration of the volcanic arc toward the back-arc in Costa Rica; 3) Quaternary to present deformation within the Central Costa Rica Deformed Belt; 4) Quaternary to present shortening across the fore-arc Fila Costeña fold and thrust belt and back-arc North Panama Deformed Belt (NPDB); 5) Quaternary to present outer fore-arc uplift of Nicoya Peninsula above the seamount domain, and the Osa and Burica peninsulas above the ridge; and 6) Pleistocene to present northwestward motion of the Central American Fore Arc (CAFA) and northeastward motion of the Panama Region. We investigate the geodynamic effects of Cocos Ridge collision on motion of the Panama Region with a new geodynamic model. The model is compared to a new 1993-2015 GPS-derived three-dimensional velocity field for the western Caribbean and northwestern South America. Specifically, we test the hypotheses that the Cocos Ridge is the main driver for upper plate deformation in the western Caribbean. Our models indicate that Cocos Ridge collision drives northwest-directed motion of the CAFA and the northeast-directed motion of the Panama Region. The Panama Region is driven into the Caribbean across the NPDB and into northwestern South America, which is also converging with the Panama Region, pushing it toward the west-northwest. Therefore, recent (South America is driven by Cocos

  12. Collisions of deformed nuclei and superheavy-element production

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Moeller, P.; Univ. of Aizu, Fukushima; P. Moller Scientific Computing and Graphics, Inc., Los Alamos, NM; Los Alamos National Lab., NM; Nix, J.R.; Sagawa, Hiroyuki, Sagawa

    1995-01-01

    A detailed understanding of complete fusion cross sections in heavy-ion collisions requires a consideration of the effects of the deformation of the projectile and target. The aim here is to show that deformation and orientation of the colliding nuclei have a very significant effect on the fusion-barrier height and on the compactness of the touching configuration. To facilitate discussions of fusion configurations of deformed nuclei, the authors develop a classification scheme and introduce a notation convention for these configurations. They discuss particular deformations and orientations that lead to compact touching configurations and to fusion-barrier heights that correspond to fairly low excitation energies of the compound systems. Such configurations should be the most favorable for producing superheavy elements. They analyze a few projectile-target combinations whose deformations allow favorable entrance-channel configurations and whose proton and neutron numbers lead to compound systems in a part of the superheavy region where a half-lives are calculated to be observable, that is, longer than 1 micros

  13. Rapid collision detection for deformable objects using inclusion-fields applied to cloth simulation

    Directory of Open Access Journals (Sweden)

    Asma A. ElBadrawy

    2012-07-01

    Full Text Available We introduce an inclusion-field technique for fast detection of collisions between a highly deformable object and another object with limited deformations. We mainly target the cloth simulation application where cloth (highly deformable collides with deforming skin of a moving human model (has limited deformation as skin stretches and compacts within finite spacial and temporal limits specified by the bending angle and speed. Our technique intermixes concepts from space voxelization and distance fields to make use of the limited deformation nature of human skin. The technique works by discretizing the space containing the object into cells, and giving each cell an inclusion property. This property specifies whether this cell lies inside, outside, or on the surface of the deforming object. As the object deforms, the cells’ inclusion properties are updated to maintain the correctness of the collision detection process. We tested our technique on a generally deforming Bezier surface, and on cloth simulation to detect collisions between cloth and several articulated and deforming human body parts. Results showed that the inclusion field allows real-time collision detection between cloth and limited deformable objects on a standard PC. The technique is simple and easy to implement.

  14. Fore-arc deformation at the transition between collision and subduction: insights from 3D thermo-mechanical laboratory experiments.

    OpenAIRE

    D. Boutelier; Onno Oncken; A. Cruden

    2012-01-01

    Three-dimensional thermomechanical laboratory experiments of arc-continent collision investigate the deformation of the fore arc at the transition between collision and subduction. The deformation of the plates in the collision area propagates into the subduction-collision transition zone via along-strike coupling of the neighboring segments of the plate boundary. In our experiments, the largest along-strike gradient of trench-perpendicular compression does not produce sufficiently localized ...

  15. Mechanical controls on collision related compressional intraplate deformation.

    NARCIS (Netherlands)

    Ziegler, P.A.; van Wees, J.D.A.M.; Cloetingh, S.A.P.L.

    1998-01-01

    Intraplate compressional features, such as inverted extensional basins, upthrust basement blocks and whole lithospheric folds, play an important role in the structural framework of many cratons. Although compressional intraplate deformation can occur in a number of dynamic settings, stresses related

  16. Cocos Ridge Collision as a Driver for Plate Boundary Deformation in the Western Caribbean

    Science.gov (United States)

    La Femina, P. C.; Govers, R. M.; Geirsson, H.; Kobayashi, D.

    2011-12-01

    The subduction and collision of bathymetric highs can result in geodynamic changes along convergent plate boundaries, including intense upper plate deformation, increases in mechanical coupling and seismicity, migration and or cessation of volcanism and formation of forearc terranes. But how extensive can the deformation associated with these features be and what are the implications for the long-term formation and evolution of plate boundary zones? Plate boundary evolution and upper plate deformation in southern Central America associated with Cocos Ridge collision is well studied and indicates, 1) migration of the volcanic arc toward the backarc northwest of and cessation of volcanism directly inboard the ridge, 2) uplift of the Cordillera de Talamanca inboard the ridge, 3) shortening across the forearc Fila Costena fold and thrust belt, and 4) outer forearc uplift above and flanking the ridge. Recent geodynamical modeling of Cocos Ridge collision, combined with the results of kinematic block models for the Central American margin, suggests the ridge drives northwest-directed forearc motion from central Costa Rica northwest to the Cocos - Caribbean (Central American forearc block) - North America triple junction, greatly increasing the spatial scale of deformation. Upperplate deformation of the Central American margin to the southeast of the Cocos Ridge in Panama was not investigated in these models. We investigate the dynamics of Cocos Ridge collision along the entire Central American margin and the implications on plate boundary evolution with a new geodynamic model of ridge collision. Our model results are compared to a new GPS derived horizontal velocity field for Central America and preliminary results indicate that the Cocos Ridge drives the Panamanian isthmus into northern South America (i.e., the North Andes block).

  17. Fore-arc deformation at the transition between collision and subduction: Insights from 3-D thermomechanical laboratory experiments

    Science.gov (United States)

    Boutelier, D.; Oncken, O.; Cruden, A.

    2012-04-01

    Three-dimensional thermomechanical laboratory experiments of arc-continent collision investigate the deformation of the fore arc at the transition between collision and subduction. The deformation of the plates in the collision area propagates into the subduction-collision transition zone via along-strike coupling of the neighboring segments of the plate boundary. In our experiments, the largest along-strike gradient of trench-perpendicular compression does not produce sufficiently localized shear strain in the transition zone to form a strike-slip system because of the fast propagation of arc lithosphere failure. Deformation is continuous along-strike, but the deformation mechanism is three-dimensional. Progressive along-strike structural variations arise because coupling between neighboring segments induces either advanced or delayed failure of the arc lithosphere and passive margin. The modeling results suggest that orogenic belts should experience deeper subduction of continental crust and hence higher-pressure metamorphism where the two plates first collided than elsewhere along the plate boundary where collision subsequently propagated. Furthermore, during the initial stage of collision the accretionary wedge is partially subducted, which leads to lubrication of the interplate zone and a reduction of shear traction. Therefore, a large convergence obliquity angle does not produce a migrating fore-arc sliver. Rather, the pressure force generated by subduction of the buoyant continental crust causes fore-arc motion. It follows that convergence obliquity during collision does not yield trench-parallel deformation of the fore arc and its influence on the collision process is limited. However, convergence obliquity may control the geometry of the active margin during the oceanic subduction stage prior to collision, and inherited structures may influence the propagation mechanism.

  18. Seismic evidence for central Taiwan magnetic low and deep-crustal deformation caused by plate collision

    Science.gov (United States)

    Cheng, Win-Bin

    2018-01-01

    Crustal seismic velocity structure was determined for the northern Taiwan using seismic travel-time data to investigate the northeastern extension of the northern South China Sea's high-magnetic belt. In order to increase the model resolution, a joint analysis of gravity anomaly and seismic travel-time data have been conducted. A total of 3385 events had been used in the inversion that was collected by the Central Weather Bureau Seismological Network from 1990 to 2015. The main features of the obtained three-dimensional velocity model are: (1) a relatively high Vp zone with velocity greater than 6.5 km/s is observed in the middle to lower crust, (2) the high Vp zone generally parallels to the north-south structural trending of the Chuchih fault and Hsuehshan Range, (3) at 25 km depth-slice, the high Vp zone shows structural trends change from northeastward to northward in central Taiwan, where the values of high-magnetic anomalies are rapidly decreasing to low values. A combination of seismic, GPS, and structural interpretations suggests that the entire crust has been deformed and demagnetized in consequence of the collision between the Philippine Sea plate and the Asian continental margin. We suggest that the feature of sharp bending of the high Vp zone would migrate southwestward and cause further crustal deformation of the Peikang High in the future.

  19. Numerical simulation of the collision between Indian and Eurasian Plates and the deformations of the present Chinese continent

    Science.gov (United States)

    Fu, Rong-Shan; Huang, Jian-Hua; Xu, Yao-Min; Li, Li-Gang; Chang, Xiao-Hua

    2000-01-01

    In this paper the continental lithosphere of the East Asia is regarded as a continuum in a power law rheology. It lays on a relative soft upper mantle and limited in a trapezoid geological frame. The movement of the Indian Plate at the rate of 5 cm/a is assumed to be the main driving force for the Tibet Plateau’s uplift and the lithosphere deformation of the Chinese continent. The numerical simulation shows that the predicted horizontal deformation model of the Chinese continent is comparable with the results of the GPS observation. It implicates that the collision and compression between India and Eurasia Plates is the main driving force of the horizontal deformations of the Chinese continent. It is also shows that the patterns of the continental deformation are controlled by many factors such as the dynamical parameters of the lithosphere and the boundary conditions as well.

  20. Magnetostratigraphy of the Fenghuoshan Group in the Hoh Xil Basin and its tectonic implications for India-Eurasia collision and Tibetan Plateau deformation

    Science.gov (United States)

    Jin, Chunsheng; Liu, Qingsong; Liang, Wentian; Roberts, Andrew P.; Sun, Jimin; Hu, Pengxiang; Zhao, Xiangyu; Su, Youliang; Jiang, Zhaoxia; Liu, Zhifeng; Duan, Zongqi; Yang, Huihui; Yuan, Sihua

    2018-03-01

    Early Cenozoic plate collision of India and Eurasia was a significant geological event, which resulted in Tibetan Plateau (TP) uplift and altered regional and global atmospheric circulations. However, the timing of initial collision is debated. It also remains unclear whether the TP was deformed either progressively northward, or synchronously as a whole. As the largest basin in the hinterland of the TP, evolution of the Hoh Xil Basin (HXB) and its structural relationship with development of the Tanggula Thrust System (TTS) have important implications for unraveling the formation mechanism and deformation history of the TP. In this study, we present results from a long sedimentary sequence from the HXB that dates the Fenghuoshan Group to ∼72-51 Ma based on magnetostratigraphy and radiometric ages of a volcanic tuff layer within the group. Three depositional phases reflect different stages of tectonic movement on the TTS, which was initialized at 71.9 Ma prior to the India-Eurasia collision. An abrupt sediment accumulation rate increase from 53.9 Ma is a likely response to tectonic deformation in the plateau hinterland, and indicates that initial India-Eurasia collision occurred at no later than that time. This remote HXB tectonosedimentary response implies that compressional deformation caused by India-Eurasia collision likely propagated to the central TP shortly after the collision, which supports the synchronous deformation model for TP.

  1. Stress state reconstruction of oblique collision and evolution of deformation partitioning in W-Zagros (Iran, Kermanshah)

    Science.gov (United States)

    Navabpour, Payman; Angelier, Jacques; Barrier, Eric

    2008-11-01

    The W-Zagros of Iran is characterized by a deformation partitioning pattern with a right-lateral strike-slip motion along the Main Recent Fault and a shortening component across the Zagros Simple Fold Belt under the late Cenozoic N-S oblique collision between the Arabian and Iranian continental plates. In this study, we examined the brittle structures that developed during the mountain building process in the High Zagros Belt of Kermanshah Province, which is structurally located between the two partitioned components of deformation, to decipher the history of polyphase deformation and variations in stress fields within the sedimentary cover since the onset of collision. The earthquake focal mechanisms of W-Zagros were analysed to evaluate the recent stress fields within the basement. Analytic inversion techniques enabled us to determine and separate different brittle tectonic regimes in terms of stress tensors. Brittle tectonic analyses were carried out to reconstruct possible geometrical relationships between different structures and to establish relative chronologies of the corresponding stress tensor, with reference to folding. Our stress reconstruction indicates a major change in stress state from a Miocene-Pliocene syn-folding compressional regime to a Pliocene-Recent post-folding strike-slip system, with a significant anticlockwise reorientation of the horizontal σ1 stress axis from NE-SW to N-S. The results of the recent stress states indicate that the stress trends are similar throughout the basement and sedimentary cover. The differences between stress and strain axes suggest different possible degrees in partitioning of seismic and aseismic deformation, as revealed by earthquake focal mechanisms in the basement and geodetic surveys at the surface of the sedimentary cover. The integrated palaeostress results on the regional tectonic framework suggest that the late Cenozoic brittle tectonic evolution of the W-Zagros was achieved through the transition from

  2. Interseismic Deformation due to Oblique India-Sunda Collision: Implications for the Arakan Sleeping Giant

    Science.gov (United States)

    Mallick, R.; Lindsey, E. O.; Feng, L.; Hubbard, J.; Hill, E.

    2017-12-01

    The northern extent of the collision of the Indian and Sunda plates occurs along the Arakan megathrust. This collision is oblique, and at least two large strike-slip faults, the Sagaing Fault and the Churachandpur-Mao Fault (CMF) accommodate part of this obliquity. The megathrust is conspicuous in its lack of notable interplate earthquakes in the instrumental catalogue; it has even been called aseismic by some authors and suggested not to accumulate any elastic strain. Nevertheless, geological evidence from the great 1762 Arakan earthquake suggests that the megathrust is capable of producing M 8 and possibly tsunamigenic events that can adversely affect the lives of many millions of people living in the region. We present for the first time a new dataset of GPS rates from the MIBB (Myanmar-India-Bangladesh-Bhutan) cGPS network (2011-present), which consists of region-wide east-west and north-south profiles. We use a Bayesian framework to explore the fault geometry (locking depth and fault dip) and relative plate motion that can reproduce the pattern of east-west convergence in both previously published and our own GPS data. We explore the individual contributions of the megathrust, CMF, Sagaing Fault, and block rotation to dextral shearing across the Indo-Burman ranges and further east. Our results suggest that the total convergence rate across the foldbelt is 14-18 mm/yr, while the total dextral shearing rate is 40 mm/yr. Rotation of the crustal sliver between the two major plates may explain some of this dextral motion, while reducing the strike-slip rates on the intervening faults. We show that given the current network geometry we are most sensitive to the location of maximum strain, i.e., the depth and distance from the trench below which the megathrust slides freely. Our results show that the megathrust is stably sliding below a depth of 30 km, but the seismogenic potential of the shallow megathrust and splay faults that possibly sole into the same system

  3. Continent-continent collision at the Pacific/Australian plate boundary: Lithospheric deformation, mountain building, and subsequent scientific endeavors

    Science.gov (United States)

    Okaya, D. A.; Stern, T. A.; Davey, F. J.

    2012-12-01

    Continental collision occurs at strike-slip plate boundaries where transform motion and oblique convergence create processes of surficial mountain building and deformation within the deeper crust and lithospheric mantle. The Pacific/Australian transform plate boundary in South Island, New Zealand, is characterized by active oblique continent-continent collision with an associated Southern Alps orogen that exhibits both high exhumation rates and rapid strike-slip movement. Beginning in the 1990s, this system was the focus of a decade-long collaborative USA-New Zealand multi-disciplinary study to understand lithospheric structure and processes involved in this transpression. Funded primarily by the NSF Continental Dynamics program and the New Zealand Science Foundation, this project known as SIGHT (South Island Geophysical Transect) with its companion SAPSE (Southern Alps Passive Seismic Experiment) included the following disciplines that involved substantial field observation experiments: seismic reflection, explosion refraction, onshore-offshore wide-angle reflection/refraction, regional and teleseismic passive seismology, magnetotellurics, laboratory petrophysics, gravity, regional geological investigations, and rheological analyses. More than fifty scientists and students from both nations participated in the combined set of studies that have led to over forty-five journal publications, an AGU Monograph, and a dozen graduate theses. Primary results of the project indicate the Pacific-Australian strike-slip plate boundary (Alpine fault) is not vertical but is eastward dipping and rheologically weak based on diverse geophysical data. Most deformation is within the Pacific plate that hosts the Southern Alps orogen. High mantle seismic velocities vertically disposed beneath the orogen suggest Pacific and perhaps Australian mantle lithosphere contribute to a zone of plate-boundary-parallel distributed mantle shortening. The crustal root of the overlying Southern Alps

  4. New constraints on the timing of flexural deformation along the northern Australian margin: Implications for arc-continent collision and the development of the Timor Trough

    Science.gov (United States)

    Saqab, Muhammad Mudasar; Bourget, Julien; Trotter, Julie; Keep, Myra

    2017-01-01

    Numerous extensional faults offset the passive margin strata of the northern Bonaparte Basin. This extensional deformation has been attributed to lithospheric flexure of the descending Australian Plate, in an overall convergence setting. Here we use an extensive 2D and 3D seismic dataset calibrated with well biostratigraphy and strontium (Sr) isotope age data to constrain the timing of deformation along the northern Australian margin during the Neogene. Analysis of fault throw and differential thickness variations give new insights on the propagation and slip history of the faults. Along-dip throw profiles exhibit 'D' shape distributions, skewed towards the top. Positive throw gradients above the throw maxima, coinciding with intervals of growth strata, indicate multiphase fault activity. Results indicate that post-rift extensional deformation initiated during the latest Miocene (ca. 6 Ma). The development of the modern Timor Trough (as a foreland basin) and Cartier Trough also commenced during this period. A second episode of increased tectonic activity occurred around the Pliocene-Quaternary boundary (ca. 3 Ma), and the deformation continued intermittently to the present-day. These new results are in agreement with the timing of initiation of collision between the Australian Plate and the Banda Arc and uplift of the Timor Island, recently derived from stratigraphic analysis in Timor. These regional tectonic events have profoundly affected the paleogeography of the Timor Sea and may explain major changes in oceanic circulation and climate during the Neogene.

  5. Deformation History of the Haymana Basin: Structural Records of Closure-Collision and Subsequent Convergence (Indentation) Events at the North-Central Neotethys (Central Anatolia, Turkey)

    Science.gov (United States)

    Gülyüz, Erhan; Özkaptan, Murat; Kaymakcı, Nuretdin

    2016-04-01

    Gondwana- (Tauride Platfrom and Kırşehir Block) and Eurasia (Pontides) - derived continental blocks bound the Haymana basin, in the south and north, respectively. Boundaries between these blocks are signed by İzmir-Ankara-Erzincan and debatable Intra-Tauride Suture zones which are straddled by the Haymana Basin in the region. In this regard, deformation recorded in the upper Cretaceous to middle Eocene deposits of the basin is mainly controlled by the relative movements of these blocks. Therefore, understanding the structural evolution of the Haymana Basin in a spatio-temporal concept is crucial to shed some light on some debatable issues such as ; (1) timing of late stage subduction histories of various branches of Neotethys and subsequent collision events, (2) effects of post-collisional tectonic activity in the Haymana region. Fault kinematic analyses (based on 623 fault-slip data from 73 stations) indicate that the basin was subjected to initially N-S to NNE-SSW extension until middle Paleocene and then N-S- to NNE-SSW- directed continuous compression and coeval E-W to ESE-WNW extension up to middle Miocene. These different deformation phases correspond to the fore-arc (closure) and foreland (collision and further convergence) stages of the basin. Additionally, fold analyses (based on 1017 bedding attitudes) and structural mapping studies show that development of folds and major faults are coeval and they can be explained by principle stress orientations of the second deformation phase. The Haymana basin is, based on the trends of E-W- and WNW-ESE- directed structures at the south-eastern and the north-western parts of the basin, respectively, divided into two structural segments. The balanced cross-sections also indicate ~4% and ~25% shortening at the north-western and south-eastern segments, respectively. The differences in amounts of shortenings are explained by reduce in effectiveness zone of basin-bounding thrust faults towards west. On the other hand

  6. Asymptotic behavior of positive solutions of the nonlinear differential equation t^2u''=u^n

    Directory of Open Access Journals (Sweden)

    Meng-Rong Li

    2013-11-01

    Full Text Available In this article we study properties of positive solutions of the ordinary differential equation $t^2u''=u^n$ for $1

  7. Lithospheric-scale analogue modelling of collision zones with a pre-existing weak zone, in "Deformation Mechanisms, Rheology and Tectonics: from Minerals to the Lithosphere"

    NARCIS (Netherlands)

    Willingshofer, E.; Sokoutis, D.; Burg, J.P.

    2005-01-01

    Lithospheric-scale analogue experiments have been conducted to investigate the influence of strength heterogeneities on the distribution and mode of crustal-scale deformation, on the resulting geometry of the deformed area, and on its topographic expression. Strength heterogeneities were

  8. Paléocontraintes et déformations syn- et post-collision Afrique Europe identifiées dans la couverture mésozoïque et cénozoïque du Haut Atlas occidental (Maroc)Syn- and post-collision Africa Europe palaeostresses and deformations identified in the West High-Atlas Mesozoic and Cenozoic cover (Morocco)

    Science.gov (United States)

    Amrhar, Mostafa

    Palaeostresses and deformation axis reconstruction related to the intracontinental High-Atlas uplift evidences two shortening phases from Upper Cretaceous to Quaternary. The first compression is oriented N20-30°E and is Maastrichtian to Oligocene age; the second one, oriented N120-160°E, is syn-Mio-Pliocene. Tectonic inversion of the lateral to compressive Jurassic regime is contemporaneous with the beginning of Africa and Europe collision. Rotation of the Mio-Pliocene shortening orientation could be linked to the change of the convergence direction between the Africa and Europe plates. To cite this article: M. Amrhar, C. R. Geoscience 334 (2002) 279-285.

  9. Dynamical effects and time scale in fission processes in nuclear collisions in the fermi energy range

    International Nuclear Information System (INIS)

    Colin, J.; Bocage, F.; Louvel, M.; Bellaize, N.; Bougault, R.; Brou, R.; Cussol, D.; Durand, D.; Genouin-Duhamel, E.; Lecolley, J.F.; Le Neindre, N.; Lopez, O.; Nguyen, A.D.; Peter, J.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Brun, C. le; Genoux-Lubain, A.

    1999-01-01

    Recent experimental results concerning heavy systems (Pb+Au, Pb+Ag, Pb+Al, Gd+U, Gd+C, Ta+Au, U+U, U+C, Xe+Sn... o btained at Ganil by the Indra and Nautilus collaborations will be presented. A study of reaction mechanisms has shown the dominant binary and highly dissipative character of the process. The two heavy and excited fragments produced after the first stage of the interaction can experience various decay modes: evaporation, fission, multifragmentation. However, deviations from this simple picture have been found by analysing angular and velocity distributions of light charge particles, IMF's (Intermediate Mass Fragment) and fragments. Indeed, there is an amount of matter in excess emitted in-between the two primary sources suggesting either the existence of a mid-rapidity source similar to the one observed in the relativistic regime (participants) or a strong deformation induced by the dynamics of the collision (neck instability). This last scenario is explored by analysing in details the angular distributions of the fission fragments. More precisely, authors observed two components: The first one is isotropic and consistent with the predictions of a statistical model, the second is aligned along the velocity direction of the fissioning nuclei and has to be compared with the predictions of dynamical calculations. In this talk, authors present the probability associated to each component as a function of the system size, the charge asymmetry of the fission fragments, the incident energy and the impact parameter. From the statistical component authors extract the temperature, the charge and the angular momentum of the fissioning nuclei. From the second component authors propose a scenario to explain such process and authors discuss the physical parameters which can be extracted

  10. Dynamical effects and time scale in fission processes in nuclear collisions in the Fermi energy range

    International Nuclear Information System (INIS)

    Colin, J.; Bocage, F.; Louvel, M.

    1999-10-01

    Recent experimental results concerning heavy systems (Pb+Au, Pb+Ag, Pb+Al, Gd+U, Gd+C, Ta+Au, U+U, U+C, Xe+Sn...) obtained at Ganil by the Indra and Nautilus collaborations will be presented. A study of reaction mechanisms has shown the dominant binary and highly dissipative character of the process. The two heavy and excited fragments produced after the first stage of the interaction can experience various decay modes: evaporation, fission, multifragmentation. However, deviations from this simple picture have been found by analysing angular and velocity distribution of light charge particles, IMF's (Intermediate Mass Fragment) and fragments. Indeed, there is an amount of matter in excess emitted in-between the two primary sources suggesting either the existence of a mi-rapidity source similar to the one observed in the relativistic regime (participants) or a strong deformation induced by the dynamics of the collision (neck instability). This last scenario is explored by analysing in details the angular distributions of the fission fragments. More precisely, we observed two components: the first one is isotropic and consistent with the predictions of a statistical model, the second is aligned along the velocity direction of the fissioning nuclei and has to be compared with the predictions of dynamical calculations. In this talk, we present the probability associated to each component as a function of the system size, the charge asymmetry of the fission fragments, the incident energy and the impact parameter. From the statistical component we extract the temperature, the charge and the angular momentum of the fissioning nuclei. From the second component we propose a scenario to explain such process and we discuss the physical parameters which can be extracted. (authors)

  11. Collision thrills

    DEFF Research Database (Denmark)

    Larsen, Lasse Juel

    2016-01-01

    . The working hypothesis is that the aesthetics of action and the affinities between medias centre on collision. It will be suggested that collisions produce thrills ranging from the pleasure of destruction to the experience of spatial disorientation. Following will the aesthetics of action be coined ‘collision...

  12. Duration of an Elastic Collision

    Science.gov (United States)

    de Izarra, Charles

    2012-01-01

    With a pedagogical goal, this paper deals with a study of the duration of an elastic collision of an inflatable spherical ball on a planar surface suitable for undergraduate studies. First, the force generated by the deformed spherical ball is obtained under assumptions that are discussed. The study of the motion of the spherical ball colliding…

  13. Collision tectonics

    Energy Technology Data Exchange (ETDEWEB)

    Coward, M.P.; Ries, A.C.

    1985-01-01

    The motions of lithospheric plates have produced most existing mountain ranges, but structures produced as a result of, and following the collision of continental plates need to be distinguished from those produced before by subduction. If subduction is normally only stopped when collision occurs, then most geologically ancient fold belts must be collisional, so it is essential to recognize and understand the effects of the collision process. This book consists of papers that review collision tectonics, covering tectonics, structure, geochemistry, paleomagnetism, metamorphism, and magmatism.

  14. Stability and dynamics of fluid flow past deformable solid media

    Indian Academy of Sciences (India)

    A new instability in viscoelastic flow past a deformable wall. Summary and outlook. ... Rigid walls: shear modulus of steel ¢ гджез Pa ..... Mode 2d. Mode 1u. Mode 2u. W = 2, H = 1, k = 1, Re << 1. 10. -4. 10. -3. 10. -2. 10. -1. 10. 0. 10. 1. Re. 10. -2. 10. -1. 10. 0. 10. 1. Γ. Mode 3d. Mode 3u. W = 5, H = 1, k = 1: Mode 3. U. U. S.

  15. Collision Mechanics

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Servis, D.P.; Zhang, Shengming

    1999-01-01

    The first section of the present report describes the procedures that are being programmed at DTU for evaluation of the external collision dynamics. Then follows a detailed description of a comprehensive finite element analysis of one collision scenario for MS Dextra carried out at NTUA. The last...

  16. Two-gluon correlations in heavy–light ion collisions

    International Nuclear Information System (INIS)

    Wertepny, Douglas E.

    2014-01-01

    We derive the cross-section for two-gluon production in heavy–light ion collisions in the saturation/Color Glass Condensate framework. This calculation includes saturation effects to all orders in one of the nuclei (heavy ion) along with a single saturation correction in the projectile (light ion). The calculation of the correlation function predicts (qualitatively) two identical ridge-like correlations, near- and away-side. This prediction was later supported by experimental findings in p + A collisions at the LHC. Concentrating on the energy and geometry dependence of the correlation functions we find that the correlation function is nearly center-of-mass energy independent. The geometry dependence of the correlation function leads to an enhancement of near- and away-side correlations for the tip-on-tip U + U collisions when compared with side-on-side U + U collisions, an exactly opposite behavior from the correlations generated by the elliptic flow of the quark–gluon plasma

  17. Collisions engineering theory and applications

    CERN Document Server

    Frémond, Michel

    2017-01-01

    This book investigates collisions occurring in the motion of solids, in the motion of fluids but also in the motion of pedestrians in crowds. The duration of these presented collisions is short compared to the whole duration of the motion: they are assumed instantaneous. The innovative concept demonstrated in this book is that a system made of two solids, is deformable because their relative position changes. The definition of the velocities of deformation of the system introduced in the classical developments of mechanics, the principle of the virtual work and the laws of thermodynamics, allows a large range of applications such as crowd motions, debris flow motions, and shape memory alloys motions. The set of the applications is even larger: social sciences and mechanics are unified to predict the motion of crowds with application to transport management and to evacuation of theaters management.

  18. Collisions engineering. Theory and applications

    International Nuclear Information System (INIS)

    Fremond, Michel; Univ.

    2017-01-01

    This book investigates collisions occurring in the motion of solids, in the motion of fluids but also in the motion of pedestrians in crowds. The duration of these presented collisions is short compared to the whole duration of the motion: they are assumed instantaneous. The innovative concept demonstrated in this book is that a system made of two solids, is deformable because their relative position changes. The definition of the velocities of deformation of the system introduced in the classical developments of mechanics, the principle of the virtual work and the laws of thermodynamics, allows a large range of applications such as crowd motions, debris flow motions, and shape memory alloys motions. The set of the applications is even larger: social sciences and mechanics are unified to predict the motion of crowds with application to transport management and to evacuation of theaters management.

  19. Collisions engineering. Theory and applications

    Energy Technology Data Exchange (ETDEWEB)

    Fremond, Michel [Rome ' ' Tor Vergata' ' Univ. (Italy). Dept. of Civil Engineering and Computer Science

    2017-02-01

    This book investigates collisions occurring in the motion of solids, in the motion of fluids but also in the motion of pedestrians in crowds. The duration of these presented collisions is short compared to the whole duration of the motion: they are assumed instantaneous. The innovative concept demonstrated in this book is that a system made of two solids, is deformable because their relative position changes. The definition of the velocities of deformation of the system introduced in the classical developments of mechanics, the principle of the virtual work and the laws of thermodynamics, allows a large range of applications such as crowd motions, debris flow motions, and shape memory alloys motions. The set of the applications is even larger: social sciences and mechanics are unified to predict the motion of crowds with application to transport management and to evacuation of theaters management.

  20. Minijet Deformation and Charge-independent Two-particle Correlations on Momentum Subspace (eta,phi) In Au-Au Collisions at sqrt(sNN) = 130 GeV

    International Nuclear Information System (INIS)

    Adams, J.; Aggarwal, M.M.; Ahammed, Z.; Amonett, J.; Anderson, B.D.; Arkhipkin, D.; Averichev, G.S.; Badyal, S.K.; Bai, Y.; Balewski, J.; Barannikova, O.; Barnby, L.S.; Baudot, J.; Bekele, S.; Belaga, V.V.; Bellwied, R.; Berger, J.; Bezverkhny, B.I.; Bharadwaj, S.; Bhasin, A.; Bhati, A.K.; Bhatia, V.S; Bichsel, H.; Billmeier, A.; Bland, L.C.; Blyth, C.O.; Bonner, B.E.; Botje, M.; Boucham, A.; Brandin, A.V.; Bravar, A.; Bystersky, M.; Cadman, R.V.; Cai, X.Z.; Caines, H.; Calderon de la BarcaSanchez, M.; Carroll, J.; Castillo, J.; Cebra, D.; Chajecki, Z.; Chaloupka, P.; Chattopadhyay, S.; Chen, H.F.; Chen, Y.; Cheng, J.; Cherney, M.; Chikanian, A.; Christie, W.; Coffin, J.P.; Cormier, T.M.; Cramer, J.G.; Crawford, H.J.; Das, D.; Das, S.; de Moura, M.M.; Derevschikov, A.A.; Didenko, L.; Dietel, T.; Dogra, S.M.; Dong, W.J.; Dong, X.; Draper, J.E.; Du, F.; Dubey, A.K.; Dunin, V.B.; Dunlop, J.C.; Dutta Mazumdar, M.R.; Eckardt, V.; Edwards, W.R.; Efimov, L.G.; Emelianov, V.; Engelage, J.; Eppley, G.; Erazmus, B.; Estienne, M.; Fachini, P.; Faivre, J.; Fatemi, R.; Fedorisin, J.; Filimonov, K.; Filip, P.; Finch, E.; Fine, V.; Fisyak, Y.; Foley, K.J.; Fomenko, K.; Fu, J.; Gagliardi, C.A.; Gans, J.; Ganti, M.S.; Gaudichet, L.; Geurts, F.; Ghazikhanian, V.; Ghosh, P.; Gonzalez, J.E.; Grachov, O.; Grebenyuk, O.; Grosnick, D.; Guertin, S.M.; Guo, Y.; Gupta, A.; Gutierrez, T.D.; Hallman, T.J.; Hamed, A.; Hardtke, D.; Harris, J.W.; Heinz, M.; Henry, T.W.; Hepplemann, S.; Hippolyte, B.; Hirsch, A.; Hjort, E.; Hoffmann, G.W.; Horsley, M.; Huang, H.Z.; Huang, S.L.; Hughes, E.W.; Humanic, T.J.; Igo, G.; Ishihara, A.; Jacobs, P.; Jacobs, W.W.; Janik, M.; Jiang, H.; Jones, P.G.; Judd, E.G.; Kabana, S.; Kang, K.; Kaplan, M.; Keane, D.; Khodyrev, V.Yu.; Kiryluk, J.; Kisiel, A.; Kislov, E.M.; Klay, J.; Klein, S.R.; Klyachko, A.; Koetke, D.D.; Kollegger, T.; Kopytine, M.; Kotchenda, L.; Kramer, M.; Kravtsov, P.; Kravtsov, V.I.; Krueger, K.; Kuhn, C.

    2004-01-01

    We present first measurements of charge-independent correlations on momentum-space difference variables η 1 -η 2 (pseudorapidity) and φ 1 -φ 2 (azimuth) for charged primary hadrons with transverse momentum within 0.15 (le) p t (le) 2 GeV/c and |η| (le) 1.3 from Au-Au collisions at √s NN = 130 GeV. We observe strong charge-independent correlations associated with minijets and elliptic flow. The width of the minijet peak on η 1 -η 2 increases by a factor 2.3 from peripheral to central collisions, suggesting strong coupling of partons to a longitudinally-expanding colored medium. New methods of jet analysis introduced here reveal nonperturbative medium effects in heavy ion collisions

  1. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...

  2. Emission of fragments in heavy ion-collisions at Fermi energy; Modes de production des fragments dans les collisions d'ions lourds aux energies intermediaires

    Energy Technology Data Exchange (ETDEWEB)

    Normand, J

    2001-10-01

    The study of reaction mechanisms in Fermi energy domain has shown the dominant binary character of the process. The two heavy sources produced after the first stage of the interaction (the quasi-projectile QP and the quasi-target QT) can experience various decay modes from evaporation to multifragmentation. However, the presence of light fragments at mid rapidity cannot be explained by the standard decay of the QP and the QT. To understand the mechanisms producing such a contribution, the break-up of the QP has been studied on the following systems: Xe+Sn from 25 to 50 MeV/A, Ta+Au and Ta+U at 33, 39.6 MeV/A and U+U at 24 MeV/A. The experiment has been performed at GANIL with the INDRA multidetector. The particular behaviour of the heaviest fragment and the correlation between the charge and the velocity of the fragments suggest a shape deformation followed by the rupture of a neck formed in between the two partners of the collision. The heaviest fragment could be the reminiscence of the projectile. A method based on the angular distribution of the heaviest fragment has allowed to separate the statistical break-up of the QP and the non equilibrated break-up. The statistical break-up ranges from 30 % to 75 % of the break-ups. The comparison of the statistical component with a statistical model gives information about the charge, the angular momentum and the temperature of the QP. The comparison of the non equilibrated component with dynamical models could give information about the parameters of the nuclear interaction in medium. (author)

  3. Collision Risk and Damage after Collision

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Hansen, Peter Friis; Nielsen, Lars Peter

    1996-01-01

    The paper presents a new and complete procedure for calculation of ship-ship collision rates on specific routes and the hull damage caused by such collisions.The procedure is applied to analysis of collision risks for Ro-Ro pasenger vessels. Given a collision the spatial probability distribution...

  4. Periodic deformation of oceanic crust in the central Indian Ocean

    Digital Repository Service at National Institute of Oceanography (India)

    Krishna, K.S.; Ramana, M.V.; Rao, D.G.; Murthy, K.S.R.; Rao, M.M.M.; Subrahmanyam, V.; Sarma, K.V.L.N.S.

    deformational unconformity are mostly present in the area north of 1~'S. It is surmised that the compressional stresses built up since the hard collision of India with Eurasia may have released for a short period prior to the early Miocene time and deformed...

  5. ( ) ( ) 0 ( )u ( )u

    African Journals Online (AJOL)

    MICHAEL

    ABSTRACT: In this work we use the finite element method to analyze the distribution of velocity in a viscous incompressible fluid flow using Lagrange interpolation function. The results obtained are highly accurate and converge fast to the exact solution as the number of elements increase. @JASEM. A fluid is basically any ...

  6. Puck collisions

    Science.gov (United States)

    Hauge, E. H.

    2012-09-01

    Collisions between two ice hockey pucks sliding on frictionless ice are studied, with both inelasticity and frictional contact between the colliding surfaces of the two pucks taken into account. The latter couples translational and rotational motion. The full solution depends on the sign and magnitude of the initial mismatch between the surface velocities at the point of contact. The initial state defines two physically distinct regimes for the friction coefficient. To illustrate the complexities, we discuss at length the typical situation (well known from curling) when puck number 1 is initially at rest, and is hit by puck number 2 with an arbitrary impact parameter, velocity and angular velocity. We find that the total outgoing angle between the pucks exceeds \\frac{1}{2}\\pi if and only if the collision leads to a net increase in the translational part of the kinetic energy. The conditions for this to happen are scrutinized, and the results are presented both analytically and numerically by a set of representative curves. This paper is written with an ambitious undergraduate, and her teacher, in mind.

  7. Direct photons in heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Baeuchle, Bjoern

    2010-12-13

    Direct photon emission from heavy-ion collisions has been calculated and compared to available experimental data. Three different models have been combined to extract direct photons from different environments in a heavy-ion collision: Thermal photons from partonic and hadronic matter have been extracted from relativistic, non-viscous 3+1-dimensional hydrodynamic calculations. Thermal and non-thermal photons from hadronic interactions have been calculated from relativistic transport theory. The impact of different physics assumptions about the thermalized matter has been studied. The models used for the determination of photons from both hydrodynamic and transport calculations have been elucidated and their numerical properties tested. The origin of direct photons, itemised by emission stage, emission time, channel and baryon number density, has been investigated for various systems, as have the transverse momentum spectra and elliptic flow patterns of direct photons. Taking into account the full (vacuum) spectral function of the rho-meson decreases the direct photon emission by approximately 10% at low photon transverse momentum. In all systems that have been considered -- heavy-ion collisions at E{sub lab}=35 AGeV and 158 AGeV, (s{sub NN}){sup 1/2}=62.4 GeV, 130 GeV and 200 GeV -- thermal emission from a system with partonic degrees of freedom is greatly enhanced over that from hadronic systems, while the difference between the direct photon yields from a viscous and a non-viscous hadronic system (transport vs. hydrodynamics) is found to be very small. Predictions for direct photon emission in central U+U-collisions at 35 AGeV have been made. (orig.)

  8. Collision avoidance

    Energy Technology Data Exchange (ETDEWEB)

    Glynn, P.

    2008-04-01

    A suite of new collision avoidance systems (CAS 1,2,3, and 4) for heavy vehicles particularly mine haul trucks, is presented for vehicles whose structure and size necessarily impeded driver visibility. The systems use probe radar systems, continuous wave Doppler radar, ultrasonic Doppler, radio frequency tagging and laser scanning technology. The main goal of the ACARP/CSIRO funded projects is to determine the appropriate use and adaptation of commercially available technologies, and where possible, produce a low cost variant suitable for use in proximity detection on large mining industry haul trucks. CAS variants produced were subjected to a field demonstration and linked to the output from the earlier CAS 1 project. The research concentrated on large mine haul trucks operating in open cut coal mines. While the results are especially applicable to the Queensland and New South Wales coal industries, they are also applicable worldwide. 1 tab.

  9. GEOPHYSICS. Layered deformation in the Taiwan orogen.

    Science.gov (United States)

    Huang, T-Y; Gung, Y; Kuo, B-Y; Chiao, L-Y; Chen, Y-N

    2015-08-14

    The underthrusting of continental crust during mountain building is an issue of debate for orogens at convergent continental margins. We report three-dimensional seismic anisotropic tomography of Taiwan that shows a nearly 90° rotation of anisotropic fabrics across a 10- to 20-kilometer depth, consistent with the presence of two layers of deformation. The upper crust is dominated by collision-related compressional deformation, whereas the lower crust of Taiwan, mostly the crust of the subducted Eurasian plate, is dominated by convergence-parallel shear deformation. We interpret this lower crustal shearing as driven by the continuous sinking of the Eurasian mantle lithosphere when the surface of the subducted plate is coupled with the orogen. The two-layer deformation clearly defines the role of subduction in the formation of the Taiwan mountain belt. Copyright © 2015, American Association for the Advancement of Science.

  10. Cut Locus Construction using Deformable Simplicial Complexes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof; Bærentzen, Jakob Andreas; Anton, François

    2011-01-01

    In this paper we present a method for appproximating cut loci for a given point p on Riemannian 2D manifolds, closely related to the notion of Voronoi diagrams. Our method finds the cut locus by advecting a front of points equally distant from p along the geodesics originating at p and finding...... the lines of self-intersections of the front in the parametric space. This becomes possible by using the deformable simplicial complexes (DSC, [1]) method for deformable interface tracking. DSC provide a simple collision detection mechanism, allows for interface topology control, and does not require...

  11. Nuclear pressure and energy loss in deep inelastic collisions

    International Nuclear Information System (INIS)

    Rajasekaran, M.

    1979-01-01

    The energy loss due to flux exchange between colliding nuclei is calculated using the concept of nuclear pressure. The energy loss due to friction, viscosity and shape deformations when added to the energy loss due to flux exchange is found to account for almost the net loss of energy in the collision. The characteristic features observed in heavy ion deep inelastic collisions are enumerated. (A.K.)

  12. Structural Design and Response in Collision and Grounding

    DEFF Research Database (Denmark)

    Brown, Alan; Tikka, Kirsi; Daidola, John C.

    2000-01-01

    on Collision and Grounding of Ships, to be held in Copenhagen, July 1-3,2001, will also present and discuss many of the results of this panel and other related research. The paper discusses four primary areas of panel work: collision and grounding models, data, accident scenarios and design applications....... A probabilistic framework for assessing the crashworthiness of ships is presented. Results obtained from various grounding and collision models are compared to validating cases and to each other. Data necessary for proper model validation and probabilistic accident scenario development are identified. Deformable...

  13. Neuromorphic UAS Collision Avoidance

    Data.gov (United States)

    National Aeronautics and Space Administration — Collision avoidance for unmanned aerial systems (UAS) traveling at high relative speeds is a challenging task. It requires both the detection of a possible collision...

  14. Collision Repair Campaign

    Science.gov (United States)

    The Collision Repair Campaign targets meaningful risk reduction in the Collision Repair source category to reduce air toxic emissions in their communities. The Campaign also helps shops to work towards early compliance with the Auto Body Rule.

  15. Crashworthiness Simulation of Front Bumper Model of MOROLIPI V2 During Head-on Collision

    Directory of Open Access Journals (Sweden)

    Nugraha Aditya Sukma

    2016-01-01

    Full Text Available It is necessary to conduct an impact test for bumper collision. The use of bumper as a protective components of a vehicle during collision. On this Paper, a crashworthiness simulation of front bumper model with correspond to the size of MOROLIPI V2 is conducted. The purpose of this study was to obtain simulation result used as a reference to predict mechanical behaviour of bumper due to collision. The Simulation result can be predicted deformation after collision, von misses stress criteria after collision with static dummy load. To simulate impact on bumper, ANSYS Explicit Dynamics is used. Simulations were run at three values of mobile robot speeds (5, 10 and 20 m/s. The simulation results also show contact force due to the collision, deformation, stress and internal energy of the bumper beam. It was known that the speed of the vehicle is the dominant parameter determine the results of the crashworthiness simulation.

  16. Modeling Vehicle Collision Angle in Traffic Crashes Based on Three-Dimensional Laser Scanning Data

    Directory of Open Access Journals (Sweden)

    Nengchao Lyu

    2017-02-01

    Full Text Available In road traffic accidents, the analysis of a vehicle’s collision angle plays a key role in identifying a traffic accident’s form and cause. However, because accurate estimation of vehicle collision angle involves many factors, it is difficult to accurately determine it in cases in which less physical evidence is available and there is a lack of monitoring. This paper establishes the mathematical relation model between collision angle, deformation, and normal vector in the collision region according to the equations of particle deformation and force in Hooke’s law of classical mechanics. At the same time, the surface reconstruction method suitable for a normal vector solution is studied. Finally, the estimation model of vehicle collision angle is presented. In order to verify the correctness of the model, verification of multi-angle collision experiments and sensitivity analysis of laser scanning precision for the angle have been carried out using three-dimensional (3D data obtained by a 3D laser scanner in the collision deformation zone. Under the conditions with which the model has been defined, validation results show that the collision angle is a result of the weighted synthesis of the normal vector of the collision point and the weight value is the deformation of the collision point corresponding to normal vectors. These conclusions prove the applicability of the model. The collision angle model proposed in this paper can be used as the theoretical basis for traffic accident identification and cause analysis. It can also be used as a theoretical reference for the study of the impact deformation of elastic materials.

  17. Collision dynamics of two 238U atomic nuclei.

    Science.gov (United States)

    Golabek, Cédric; Simenel, Cédric

    2009-07-24

    Collisions of actinide nuclei form, during very short times of few 10;{-21} s, the heaviest ensembles of interacting nucleons available on Earth. Such collisions have been proposed as an alternative way to produce heavy and superheavy elements. They are also used to produce superstrong electric fields by the huge number of interacting protons to test spontaneous positron-electron (e;{+}e;{-}) pair emission predicted by the quantum electrodynamics theory. The time-dependent Hartree-Fock theory is used to study collision dynamics of two 238U atomic nuclei. In particular, the role of nuclear deformation on collision time and on reaction mechanisms such as nucleon transfer is emphasized. The highest collision times (approximately 4 x 10;{-21} s at 1200 MeV) should allow experimental signature of spontaneous e;{+}e;{-} emission in case of bare uranium ions. Surprisingly, we also observe ternary fission due to purely dynamical effects.

  18. Studying heavy-ion collisions with FAUST-QTS

    Directory of Open Access Journals (Sweden)

    Cammarata P.

    2015-01-01

    Full Text Available Heavy-ion collisions at lower energies provide a rich environment for investigating reaction dynamics. Recent theory has suggested a sensitivity to the symmetry energy and the equation of state via deformations of the reaction system and ternary breaking of the deformed reaction partners into three heavy fragments. A new detection system has been commissioned at Texas A&M University in an attempt to investigate some of the observables sensitive to the nuclear equation of state.

  19. Impact mechanics of ship collisions and validations with experimental results

    DEFF Research Database (Denmark)

    Zhang, Shengming; Villavicencio, R.; Zhu, L.

    2017-01-01

    Closed-form analytical solutions for the energy released for deforming and crushing ofstructures and the impact impulse during ship collisions were developed and published inMarine Structures in 1998 [1]. The proposed mathematical models have been used bymany engineers and researchers although...

  20. Improved Multibody Dynamics for Investigating Energy Dissipation in Train Collisions Based on Scaling Laws

    Directory of Open Access Journals (Sweden)

    Heng Shao

    2016-01-01

    Full Text Available This study aimed to investigate energy dissipation in train collisions. A 1/8 scaled train model, about one-dimensional in longitudinal direction, was used to carry out a scaled train collision test. Corresponding multibody dynamic simulations were conducted using traditional and improved method model (IMM in ADAMS. In IMM, the connection between two adjacent cars was expressed by a nonlinear spring and energy absorbing structures were equivalently represented by separate forces, instead of one force. IMM was able to simulate the motion of each car and displayed the deformation of structures at both ends of the cars. IMM showed larger deformations and energy absorption of structures in moving cars than those in stationary cars. Moreover, the asymmetry in deformation proportion in main energy absorbing structures decreased with increasing collision speed. The asymmetry decreased from 11.69% to 3.60% when the collision speed increased from 10 km/h to 36 km/h.

  1. Hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Strugalski, Z.

    1981-01-01

    Qualitative picture of high energy hadron-nucleus collision process, emerging from the analysis of experimental data, is presented. Appropriate description procedure giving a possibility of reproducing various characteristics of this process in terms of the data on elementary hadron-nucleon interaction is proposed. Formula reproducing hadron-nucleus collision cross sections is derived. Inelastic collision cross sections for pion-nucleus and proton-nucleus reactions at wide energy interval are calculated for Pb, Ag, and Al targets. A-dependence of cross sections for pion-nucleus and proton-nucleus collisions at nearly 50 GeV/c momentum were calculated and compared with existing experimental data. Energy dependence of cross sections for hadron-nucleus collisions is determined simply by energy dependence of corresponding cross sections for hadron-nucleon collisions; A-dependence is determined simply by nuclear sizes and nucleon density distributions in nuclei

  2. LEXUS heavy ion collisions

    CERN Document Server

    Sang Yong Jeon

    1997-01-01

    We use a Glauber-like approach to describe very energetic nucleus- nucleus collisions as a sequence of binary nucleon-nucleon collisions. No free parameters are needed: all the information comes from simple parametrizations of nucleon-nucleon collision data. Produced mesons are assumed not to interact with each other or with the original baryons. Comparisons are made to published experimental measurements of baryon rapidity and transverse momentum distributions, negative hadron rapidity and transverse momentum distributions, average multiplicities of pions, kaons, hyperons, and antihyperons, and zero degree energy distributions for sulfur-sulfur collisions at 200 GeV/c per nucleon and for lead-lead collisions at 158 GeV/c per nucleon. Good agreement is found except that the number of strange particles produced, especially antihyperons, is too small compared with experiment. We call this model LEXUS: Linear EXtrapolation of Ultrarelativistic nucleon-nucleon Scattering to heavy ion collisions. (11 refs).

  3. Offshore Deformation Front in Miaoli Area

    Science.gov (United States)

    Chiang, P.; Gwo-shyn, S.

    2015-12-01

    Taiwan is located at the junction of the Eurasian Plate and the Philippine Sea Plate. It's because arc-continent collision occurs in the western Taiwan, resulting in the orogeny has formed a fold-and-thrust belt, developing a series of thrusts aligned in north-south direction. The thrust faults, locating in the central island, are the oldest and have almost inactive. Westward to the island, the faults become younger, dipping angles are smaller, and motions were stronger. On the west side, the foot of the Taiwan Western Foothill is considered the youngest thrust faults located along west Taiwan. Scholars recognized them as so-called the deformation front, and they also believed that the deformation front is located in between the compressive terrain uplifted area and the extensional subsidence area. Therefore, this front line is on the boundary of two different tectonic zones. This study investigates the trace of the deformation front in Miaoli area. Previous studies suggested that the west side of Miaoli collision zone should be fault-bounded, and is located in the seabed. However, in the geological map, there is no geologic evidence that appears on land and so-called active faults related with this deformation front. In the near coast seafloor, according to the reflection earthquakes data from the Institute of Oceanography of NTU, we can only see the offshore strata have been uplifted, and the data also shows that seabed is only covered by thin layer of sediments. This study indicates that in offshore place within three kilometers, shallow formations show a special layer of slime which was extruded to be corrugated transversely. Accordingly, we believe that this slime layer should be pressurized and filled with muddy water. Such features should be further investigated with other geological and geophysical survey data to check if they belong to the structural product of the deformation front.

  4. Numerical simulation of binary collisions using a modified surface tension model with particle method

    International Nuclear Information System (INIS)

    Sun Zhongguo; Xi Guang; Chen Xi

    2009-01-01

    The binary collision of liquid droplets is of both practical importance and fundamental value in computational fluid mechanics. We present a modified surface tension model within the moving particle semi-implicit (MPS) method, and carry out two-dimensional simulations to investigate the mechanisms of coalescence and separation of the droplets during binary collision. The modified surface tension model improves accuracy and convergence. A mechanism map is established for various possible deformation pathways encountered during binary collision, as the impact speed is varied; a new pathway is reported when the collision speed is critical. In addition, eccentric collisions are simulated and the effect of the rotation of coalesced particle is explored. The results qualitatively agree with experiments and the numerical protocol may find applications in studying free surface flows and interface deformation

  5. Ball Collision Experiments

    Science.gov (United States)

    Cross, R.

    2015-01-01

    Experiments are described on collisions between two billiard balls and between a bat and a ball. The experiments are designed to extend a student's understanding of collision events and could be used either as a classroom demonstration or for a student project.

  6. The Cocos Ridge drives collision of Panama with northwestern South America

    Science.gov (United States)

    LaFemina, Peter; Govers, Rob; Mora-Paez, Hector; Geirsson, Halldor; Cmacho, Eduardo

    2015-04-01

    The collision of the Panamanian isthmus with northwestern South America is thought to have initiated as early as Oligocene - Miocene time (23-25 Ma) based on geologic and geophysical data and paleogeographic reconstructions. This collision was driven by eastward-directed subduction beneath northwestern South America. Cocos - Caribbean convergence along the Middle America Trench, and Nazca - Caribbean oblique convergence along the South Panama Deformed Belt have resulted in complex deformation of the southwestern Caribbean since Miocene - Pliocene time. Subduction and collision of the aseismic Cocos Ridge is thought to have initiated migration of the volcanic arc toward the back-arc; 3) Quaternary to present deformation within the Central Costa Rica Deformed Belt; 4) Quaternary to present shortening across the fore-arc Fila Costeña fold and thrust belt and back-arc North Panama Deformed Belt (NPDB); 5) Quaternary to present outer fore-arc uplift of Nicoya Peninsula above the seamount domain, and the Osa and Burica peninsulas above the ridge; and 6) Pleistocene to present northwestward motion of the Central American Fore Arc (CAFA) and northeastward motion of the Panama Region. We investigate the geodynamic effects of Cocos Ridge collision on motion of the Panama Region with a new geodynamic model. The model is compared to a new 1993-2015 GPS-derived three-dimensional velocity field for the western Caribbean and northwestern South America. Specifically, we test the hypotheses that the Cocos Ridge is the main driver for upper plate deformation in the western Caribbean. Our models indicate that Cocos Ridge collision drives northwest-directed motion of the CAFA and the northeast-directed motion of the Panama Region. The Panama Region is driven into the Caribbean across the NPDB and into northwestern South America, which is also converging with the Panama Region, pushing it toward the west-northwest. Therefore, modern collision of Panama with northwestern South America

  7. Deformations of superconformal theories

    International Nuclear Information System (INIS)

    Córdova, Clay; Dumitrescu, Thomas T.; Intriligator, Kenneth

    2016-01-01

    We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d≥3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.

  8. Mechanics of deformable bodies

    CERN Document Server

    Sommerfeld, Arnold Johannes Wilhelm

    1950-01-01

    Mechanics of Deformable Bodies: Lectures on Theoretical Physics, Volume II covers topics on the mechanics of deformable bodies. The book discusses the kinematics, statics, and dynamics of deformable bodies; the vortex theory; as well as the theory of waves. The text also describes the flow with given boundaries. Supplementary notes on selected hydrodynamic problems and supplements to the theory of elasticity are provided. Physicists, mathematicians, and students taking related courses will find the book useful.

  9. Diffeomorphic Statistical Deformation Models

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Hansen, Mads/Fogtman; Larsen, Rasmus

    2007-01-01

    In this paper we present a new method for constructing diffeomorphic statistical deformation models in arbitrary dimensional images with a nonlinear generative model and a linear parameter space. Our deformation model is a modified version of the diffeomorphic model introduced by Cootes et al....... The modifications ensure that no boundary restriction has to be enforced on the parameter space to prevent folds or tears in the deformation field. For straightforward statistical analysis, principal component analysis and sparse methods, we assume that the parameters for a class of deformations lie on a linear...

  10. Deformed Open Quantum Systems

    Science.gov (United States)

    Isar, A.

    2004-09-01

    A master equation for the deformed quantum harmonic oscillator interacting with a dissipative environment, in particular with a thermal bath, is obtained in the microscopic model, using perturbation theory. The coefficients of the master equation depend on the deformation function. The steady state solution of the equation for the density matrix in the number representation is derived and the equilibrium energy of the deformed harmonic oscillator is calculated in the approximation of small deformation. Note from Publisher: This article contains the abstract and references only.

  11. Electron-molecule collisions

    CERN Document Server

    Takayanagi, Kazuo

    1984-01-01

    Scattering phenomena play an important role in modern physics. Many significant discoveries have been made through collision experiments. Amongst diverse kinds of collision systems, this book sheds light on the collision of an electron with a molecule. The electron-molecule collision provides a basic scattering problem. It is scattering by a nonspherical, multicentered composite particle with its centers having degrees of freedom of motion. The molecule can even disintegrate, Le., dissociate or ionize into fragments, some or all of which may also be molecules. Although it is a difficult problem, the recent theoretical, experimental, and computational progress has been so significant as to warrant publication of a book that specializes in this field. The progress owes partly to technical develop­ ments in measurements and computations. No less important has been the great and continuing stimulus from such fields of application as astrophysics, the physics of the earth's upper atmosphere, laser physics, radiat...

  12. Mechanics of train collision

    Science.gov (United States)

    1976-04-30

    A simple and a more detailed mathematical model for the simulation of train collisions are presented. The study presents considerable insight as to the causes and consequences of train motions on impact. Comparison of model predictions with two full ...

  13. Photon-photon collisions

    International Nuclear Information System (INIS)

    Haissinski, J.

    1986-06-01

    The discussions presented in this paper deal with the following points: distinctive features of gamma-gamma collisions; related processes; photon-photon elastic scattering in the continuum and γγ →gg; total cross section; γγ → V 1 V 2 (V=vector meson); radiative width measurements and light meson spectroscopy; exclusive channels at large /t/; jets and inclusive particle distribution in γγ collisions; and, the photon structure function F γ 2

  14. Photon-photon collisions

    International Nuclear Information System (INIS)

    Burke, D.L.

    1982-10-01

    Studies of photon-photon collisions are reviewed with particular emphasis on new results reported to this conference. These include results on light meson spectroscopy and deep inelastic e#betta# scattering. Considerable work has now been accumulated on resonance production by #betta##betta# collisions. Preliminary high statistics studies of the photon structure function F 2 /sup #betta#/(x,Q 2 ) are given and comments are made on the problems that remain to be solved

  15. Intracrystalline deformation of calcite

    NARCIS (Netherlands)

    Bresser, J.H.P. de

    1991-01-01

    It is well established from observations on natural calcite tectonites that intracrystalline plastic mechanisms are important during the deformation of calcite rocks in nature. In this thesis, new data are presented on fundamental aspects of deformation behaviour of calcite under conditions where

  16. Energy dissipation in head-on collisions of spheres

    International Nuclear Information System (INIS)

    Krijt, S; Tielens, A G G M; Güttler, C; Heißelmann, D; Dominik, C

    2013-01-01

    Collisions between spheres are a common ingredient in a variety of scientific problems, and the coefficient of restitution (COR) is a key parameter to describe their outcome. We present a new collision model that treats adhesion and viscoelasticity self-consistently, while energy losses arising from plastic deformation are assumed to be additive. Results show that viscoelasticity can significantly increase the energy that is dissipated in a collision, enhancing the sticking velocity. Furthermore, collisions well above the sticking velocity remain dissipative. We systemically compare the model to a large and unbiased set of published laboratory experiments to show its general applicability. The model is well capable of reproducing the important relation between impact velocity and COR as measured in the experiments, covering a wide range of materials, particle sizes, and collision velocities. Furthermore, the fitting parameters from those curves provide physical parameters such as the surface energy, yield strength, and characteristic viscous relaxation time. Our results show that all three aspects—adhesion, viscoelastic dissipation and plastic deformation—are required for a proper description of the kinetic energy losses in sphere collisions. (paper)

  17. Deformation mechanisms in experimentally deformed Boom Clay

    Science.gov (United States)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  18. Collision risk analysis based train collision early warning strategy.

    Science.gov (United States)

    Li, Si-Hui; Cai, Bai-Gen; Liu, Jiang; Wang, Jian

    2018-03-01

    A Train Collision Early Warning System (TCEWS) has been developed for collision avoidance. However, there are few studies regarding how to evaluate the collision risk and provide an early warning concerning a preceding train on the railway. In this paper, we have found that the time for collision avoidance is constrained by the timing of events, such as wireless communication latency, driver reaction, safety protection distance and deceleration rate. Considering these timing components, the time to avoid a collision is calculated accurately. To evaluate the potential collision severity when the following train approaches, the collision risk is defined based on the time to avoid a collision. The train collision early warning signal is divided into a four-tier color-coded system based on the collision risk, with red representing the most severe collision risk, followed by orange, yellow and blue. A field test of the train collision early warning strategy on the Hankou-Yichang Railway is analysed. It is demonstrated that the strategy has sufficient capability to indicate a potential collision and warn the following train. Copyright © 2017. Published by Elsevier Ltd.

  19. Section of Atomic Collisions

    International Nuclear Information System (INIS)

    Berenyi, D.; Biri, S.; Gulyas, L.; Juhasz, Z.; Kover, A.; Orban, A.; Palinkas, J.; Papp, T.; Racz, R.; Ricz, S.

    2009-01-01

    The Section of Atomic Collisions is a research unit with extended activity in the field of atomic and molecular physics. Starting from the study of atomic processes at the beamlines of nuclear physics accelerators in the seventies, our research community became one of the centers of fundamental research in Atomki. We also have a strong connection to materials sciences especially along the line of electron and ion spectroscopy methods. Our present activity covers a wide range of topics from atomic collision mechanisms of fundamental interest, to the complex interactions of electrons, ions, photons and antiparticles with atoms, molecules, surfaces, and specific nanostructures. In the last few years, an increasing fraction of our present topics has become relevant for applications, e.g., molecular collision studies for the radiation therapy methods of tumors, or ion-nanostructure interactions for the future construction of small ion-focusing elements. Our section belongs to the Division of Atomic Physics. The other unit of the Division is the Section of Electron Spectroscopy and Materials Sciences. There are traditionally good connections and a strong collaboration between the groups of the two sections in many fields. From the very beginning of our research work in atomic collisions, external collaborations were of vital importance for us. We regularly organize international workshops in the field of fast ion-atom collisions and related small conferences in Debrecen from 1981. Recently, we organized the Conference on Radiation Damage in Biomolecular Systems (RADAM 2008, Debrecen), and coorganized the Conference on Elementary Processes in Atomic Systems (CEPAS 2008, Cluj). We have access to several large scale facilities in Europe within the framework of formal and informal collaborations. The next themes are in this article: Forward electron emission from energetic atomic collisions; Positron-atom collisions; Photon-atom interactions; Interference effects in electron

  20. Crushing of ship bows in head-on collision

    DEFF Research Database (Denmark)

    Ocakli, H.; Zhang, S.; Pedersen, Preben Terndrup

    2004-01-01

    . The approach developed can be used easily to determine the crushing resistance and damage extent of the ship bow when ship length and collision speed are known. The method can be used in probabilistic analysis of damage extents in ship collisions where a large number of calculations are generally required.......Semi-analytical methods for analysis of plate crushing and ship bow damage in head-on collisions are developed in this paper. Existing experimental and theoretical studies for crushing analysis of plated structures are summarized and compared. Simple formulae for determining the crushing force......, force-deformation curve and damge extent of a ship bow, expressed in terms of ship principal particulars, are derived for longitudinally stiffened oil tankers and bulk carriers with length of 150 meters and above. The methods are compared with published results and good agreement is achieved...

  1. Calcaneo-valgus deformity.

    Science.gov (United States)

    Evans, D

    1975-08-01

    A discussion of the essential deformity in calcaneo-valgus feet develops a theme originally put forward in 1961 on the relapsed club foot (Evans 1961). Whereas in the normal foot the medial and lateral columns are about equal in length, in talipes equino-varus the lateral column is longer and in calcaneo-valgus shorter than the medial column. The suggestion is that in the treatment of both deformities the length of the columns be made equal. A method is described of treating calcaneo-valgus deformity by inserting cortical bone grafts taken from the tibia to elongate the anterior end of the calcaneus.

  2. Estimation of electric conductivity of the quark gluon plasma via asymmetric heavy-ion collisions

    OpenAIRE

    Hirono, Yuji; Hongo, Masaru; Hirano, Tetsufumi

    2012-01-01

    We show that in asymmetric heavy-ion collisions, especially off-central Cu+Au collisions, a sizable strength of electric field directed from Au nucleus to Cu nucleus is generated in the overlapping region, because of the difference in the number of electric charges between the two nuclei. This electric field would induce an electric current in the matter created after the collision, which result in a dipole deformation of the charge distribution. The directed flow parameters $v_1^{\\pm}$ of ch...

  3. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  4. Vibrations in deformed nuclei

    International Nuclear Information System (INIS)

    Aprahamian, A.

    1992-01-01

    Quadrupole oscillations around a deformed shape give rise to vibrations in deformed nuclei. Single phonon vibrations of K = 0 (β) and K = 2 (γ) are a systematic feature in deformed nuclei, but the existence of multi-phonon vibrations had remained an open question until the recently reported results in 168 Er. In this nucleus, a two-phonon K = 4(γγ) band was observed at approximately 2.5 times the energy of the single γ vibration. The authors have studied several deformed rare-earth nuclei using the ( 4 He,2n) reaction in order to map out the systematic behavior of these multi-phonon vibrations. Recently, they have identified a similar K = 4 band in 154 Gd

  5. About the Collision Repair Campaign

    Science.gov (United States)

    EPA developed the Collision Repair Campaign to focus on meaningful risk reduction in the Collision Repair source sector to complement ongoing community air toxics work and attain reductions at a faster rate.

  6. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...... a single central section of the object. We use maximum-likelihood-based inference for this purpose and demonstrate the suggested methods on real data....

  7. Consumers’ Collision Insurance Decisions

    DEFF Research Database (Denmark)

    Austin, Laurel; Fischhoff, Baruch

    Using interviews with 74 drivers, we elicit and analyse how people think about collision coverage and, more generally, about insurance decisions. We compare the judgments and behaviours of these decision makers to the predictions of a range of theoretical models: (a) A model developed by Lee (2007...... a cognitive model based on budgeting. Our findings emphasize the importance of budget constraints, which lead consumers to budget their income across consumption categories. We find also that a simple heuristic accounts for many collision coverage decisions: purchase coverage for cars worth more than some...

  8. Vocal Fold Collision Modeling

    DEFF Research Database (Denmark)

    Granados, Alba; Brunskog, Jonas; Misztal, M. K.

    2015-01-01

    When vocal folds vibrate at normal speaking frequencies, collisions occurs. The numerics and formulations behind a position-based continuum model of contact is an active field of research in the contact mechanics community. In this paper, a frictionless three-dimensional finite element model...... of the vocal fold collision is proposed, which incorporates different procedures used in contact mechanics and mathematical optimization theories. The penalty approach and the Lagrange multiplier method are investigated. The contact force solution obtained by the penalty formulation is highly dependent...

  9. Ice particle collisions

    Science.gov (United States)

    Sampara, Naresh; Turnbull, Barbara; Hill, Richard; Swift, Michael

    2017-04-01

    Granular interactions of ice occur in a range of geophysical, astrophysical and industrial applications. For example, Saturn's Rings are composed of icy particles from micrometers to kilometres in size - inertial and yet too small to interact gravitationally. In clouds, ice crystals are smashed to pieces before they re-aggregate to for snow floccules in a process that is very much open to interpretation. In a granular flow of ice particles, the energy spent in collisions can lead to localized surface changes and wetting, which in turn can promote aggregation. To understand the induced wetting and its effects, we present two novel experimental methods which provide snippets of insight into the collisional behaviour of macroscopic ice particles. Experiment 1: Microgravity experiments provide minute details of the contact between the ice particles during the collision. A diamagnetic levitation technique, as alternative to the parabolic flight or falling tower experiments, was used to understand the collisional behaviour of individual macroscopic icy bodies. A refrigerated cylinder, that can control ambient conditions, was inserted into the bore of an 18 Tesla superconducting magnet and cooled to -10°C. Initial binary collisions were created, where one 4 mm ice particle was levitated in the magnet bore whilst another particle was dropped vertically from the top of the bore. The trajectories of both particles were captured by high speed video to provide the three-dimensional particle velocities and track the collision outcome. Introducing complexity, multiple particles were levitated in the bore and an azimuthal turbulent air flow introduced, allowing the particles to collide with other particles within a coherent fluid structure (mimicking Saturn's rings, or an eddy in a cloud). In these experiments, a sequence of collisions occur, each one different to the previous one due to the changes in surface characteristics created by the collisions themselves. Aggregation

  10. Moment-tensor inversion for offshore earthquakes east of Taiwan and their implications to regional collision

    Science.gov (United States)

    Kao, Honn; Jian, Pei-Ru; Ma, Kuo-Fong; Huang, Bor-Shouh; Liu, Chun-Chi

    Reliable determination of source parameters for offshore earthquakes east of Taiwan with mbstep procedure to select best velocity models for individual epicenter-station paths. Our results are consistent with the overall patterns of regional collision and indicate that the resulting compressive stress has caused significant intraplate deformation within the Philippine Sea plate. Simulation of the region's geological evolution and orogenic processes should take this factor into account and allow the Philippine Sea plate to deform internally.

  11. El Rol de las Instituciones sobre la Vida de una Estudiante Mexicana de Postgrado en una Ciudad de la Región Norte-Centro de los E.E.U.U.

    Directory of Open Access Journals (Sweden)

    Susana B. Vidrio Barón

    2010-12-01

    Full Text Available El objetivo de este artículo es describir el rol que diversas instituciones asumieron dentro del proceso de aculturación e integración de una ciudadana mexicana dentro de una sociedad estadounidense conservadora, blanca y de la región norte-centro (Midwestern/Midwest. Se pone especial énfasis en la identificación de elementos clave que deben ser considerados cuando se viaja a cualquiera de los estados que integran esta región de los E.E.U.U. y que se caracterizan por tener climas, marcos legales, valores académicos, tradiciones y construcciones sociales muy diferentes a los de la participante: una mujer, mexicana, educada que busca obtener el Doctorado mientras vive en los E.E.U.U.

  12. Solution of ODE u + p(u)(u')2 + q(u) = 0 and Applications to Classifications of All Single Travelling Wave Solutions to Some Nonlinear Mathematical Physics Equations

    International Nuclear Information System (INIS)

    Liu Chengshi

    2008-01-01

    Under the travelling wave transformation, some nonlinear partial differential equations such as Camassa-Holm equation, High-order KdV equation, etc, are reduced to an integrable ODE expressed by u + p(u)(u') 2 + q(u) = 0 whose general solution can be given. Furthermore, combining complete discrimination system for polynomial, the classifications of all single travelling wave solutions to these equations are obtained. The equation u + p(u)(u') 2 + q(u) = 0 includes the equation (u') 2 = f(u) as a special case, so the proposed method can be also applied to a large number of nonlinear equations. These complete results cannot be obtained by any indirect method.

  13. Shell structure of octupole deformation

    International Nuclear Information System (INIS)

    Zhang Xizhen; Dong Baoguo

    1992-01-01

    A convenient definition of intrinsic frame of an octupole deformed shape was proposed recently. The octupole deformation potential was expanded on the bases of irreducible representations of group O h . Based on the parameterization given in previous paper, the shell structures of octupole deformation which cover all possible octupole deformed shapes were studied

  14. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1988-07-01

    Highlights of the VIIIth International Workshop on Photon-Photon Collisions are reviewed. New experimental and theoretical results were reported in virtually every area of ..gamma gamma.. physics, particularly in exotic resonance production and tests of quantum chromodynamics where asymptotic freedom and factorization theorems provide predictions for both inclusive and exclusive ..gamma gamma.. reactions at high momentum transfer. 73 refs., 12 figs.

  15. Protons in collision

    International Nuclear Information System (INIS)

    Albrow, M.

    1983-01-01

    The article is concerned with the Intersecting Storage Rings (ISR), sited at CERN, which produces the world's highest energy collisions between protons, but is due to be dismantled soon. The ISR has contributed to major advances in physics, during the past 13 years, particularly in quantum chromodynamics. (U.K.)

  16. Collision Probability Analysis

    DEFF Research Database (Denmark)

    Hansen, Peter Friis; Pedersen, Preben Terndrup

    1998-01-01

    It is the purpose of this report to apply a rational model for prediction of ship-ship collision probabilities as function of the ship and the crew characteristics and the navigational environment for MS Dextra sailing on a route between Cadiz and the Canary Islands.The most important ship and crew...

  17. High energy nuclear collisions

    Indian Academy of Sciences (India)

    We review some basic concepts of relativistic heavy-ion physics and discuss our understanding of some key results from the experimental program at the relativistic heavy-ion collider (RHIC). We focus in particular on the early time dynamics of nuclear collisions, some result from lattice QCD, hard probes and photons.

  18. CMS SEES FIRST COLLISIONS

    CERN Multimedia

      A very special moment.  On 23rd November, 19:40 we recorded our first collisions with 450GeV beams well centred in CMS.   If you have any comments / suggestions please contact Karl Aaron GILL (Editor)

  19. Collisions in soccer kicking

    DEFF Research Database (Denmark)

    Andersen, Thomas Bull; Dörge, Henrik C.; Thomsen, Franz Ib

    1999-01-01

    An equation to describe the velocity of the soccer ball after the collision with a foot was derived. On the basis of experimental results it was possible to exclude certain factors and only describe the angular momentum of the system, consisting of the shank, the foot and the ball, leading...

  20. Ultrarelativistic oscillon collisions

    NARCIS (Netherlands)

    Amin, M.A.; Banik, I.; Negreanu, C.; Yang, I.S.

    2014-01-01

    In this short paper we investigate the ultrarelativistic collisions of small amplitude oscillons in 1+1 dimensions. Using the amplitude of the oscillons and the inverse relativistic boost factor γ−1 as the perturbation variables, we analytically calculate the leading order spatial and temporal phase

  1. Measurements of electrons from semi-leptonic heavy flavor decays in p+p and Au+Au collisions at √{sNN } = 200 GeV at STAR

    Science.gov (United States)

    Wang, Yaping; STAR Collaboration

    2017-08-01

    In these proceedings, we present recent results on electrons from semi-leptonic decays of open heavy-flavor hadrons (eHF) with the STAR detector at the Relativistic Heavy Ion Collider. We report the updated measurements of eHF production in p+p collisions at √{ s } = 200 GeV with significantly improved precision and wider kinematic coverage than previous measurements. With this new p+p reference, we obtain the nuclear modification factor (RAA) for eHF in Au+Au collisions at √{sNN } = 200 GeV using 2010 data. The RAA shows significant suppression at high pT in most central Au+Au collisions, while the suppression reduces gradually towards more peripheral collisions. We compare eHFRAA in central Au+Au collisions to that in central U+U collisions at √{sNN } = 193 GeV and find that they are consistent within uncertainties. We also show the results of B-hadron contribution to eHF extracted from azimuthal correlations between eHF and charged hadrons in p+p collisions. Finally we report the measurements of eHF from open bottom hadron decays and discuss the prospect of measuring eHF from open bottom and charm hadron decays separately utilizing the Heavy Flavor Tracker in Au+Au collisions.

  2. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  3. Packings of deformable spheres

    Science.gov (United States)

    Mukhopadhyay, Shomeek; Peixinho, Jorge

    2011-07-01

    We present an experimental study of disordered packings of deformable spheres. Fluorescent hydrogel spheres immersed in water together with a tomography technique enabled the imaging of the three-dimensional arrangement. The mechanical behavior of single spheres subjected to compression is first examined. Then the properties of packings of a randomized collection of deformable spheres in a box with a moving lid are tested. The transition to a state where the packing withstands finite stresses before yielding is observed. Starting from random packed states, the power law dependence of the normal force versus packing fraction or strain at different velocities is quantified. Furthermore, a compression-decompression sequence at low velocities resulted in rearrangements of the spheres. At larger packing fractions, a saturation of the mean coordination number took place, indicating the deformation and faceting of the spheres.

  4. Reactive Collision Avoidance Algorithm

    Science.gov (United States)

    Scharf, Daniel; Acikmese, Behcet; Ploen, Scott; Hadaegh, Fred

    2010-01-01

    The reactive collision avoidance (RCA) algorithm allows a spacecraft to find a fuel-optimal trajectory for avoiding an arbitrary number of colliding spacecraft in real time while accounting for acceleration limits. In addition to spacecraft, the technology can be used for vehicles that can accelerate in any direction, such as helicopters and submersibles. In contrast to existing, passive algorithms that simultaneously design trajectories for a cluster of vehicles working to achieve a common goal, RCA is implemented onboard spacecraft only when an imminent collision is detected, and then plans a collision avoidance maneuver for only that host vehicle, thus preventing a collision in an off-nominal situation for which passive algorithms cannot. An example scenario for such a situation might be when a spacecraft in the cluster is approaching another one, but enters safe mode and begins to drift. Functionally, the RCA detects colliding spacecraft, plans an evasion trajectory by solving the Evasion Trajectory Problem (ETP), and then recovers after the collision is avoided. A direct optimization approach was used to develop the algorithm so it can run in real time. In this innovation, a parameterized class of avoidance trajectories is specified, and then the optimal trajectory is found by searching over the parameters. The class of trajectories is selected as bang-off-bang as motivated by optimal control theory. That is, an avoiding spacecraft first applies full acceleration in a constant direction, then coasts, and finally applies full acceleration to stop. The parameter optimization problem can be solved offline and stored as a look-up table of values. Using a look-up table allows the algorithm to run in real time. Given a colliding spacecraft, the properties of the collision geometry serve as indices of the look-up table that gives the optimal trajectory. For multiple colliding spacecraft, the set of trajectories that avoid all spacecraft is rapidly searched on

  5. Nanolaminate deformable mirrors

    Science.gov (United States)

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  6. Collision physics going west

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    The centroid of proton-antiproton physics is moving west across the Atlantic concluded Luigi Di Leila of CERN in his summary talk at the Topical Workshop on Proton-Antiproton Collider Physics, held at Fermilab in June. Previous meetings in this series had been dominated by results from CERN's big proton-antiproton collider, dating back to 1981. However last year saw the first physics run at Fermilab's collider, and although the number of collisions in the big CDF detector was only about one thirtieth of the score so far at CERN, the increased collision energy at Fermilab of 1.8 TeV (1800 GeV, compared to the routine 630 GeV at CERN) is already paying dividends

  7. Marginally Deformed Starobinsky Gravity

    DEFF Research Database (Denmark)

    Codello, A.; Joergensen, J.; Sannino, Francesco

    2015-01-01

    We show that quantum-induced marginal deformations of the Starobinsky gravitational action of the form $R^{2(1 -\\alpha)}$, with $R$ the Ricci scalar and $\\alpha$ a positive parameter, smaller than one half, can account for the recent experimental observations by BICEP2 of primordial tensor modes....

  8. Formation and subdivision of deformation structures during plastic deformation

    DEFF Research Database (Denmark)

    Jakobsen, B.; Poulsen, H.F.; Lienert, U.

    2006-01-01

    of individual, deeply embedded dislocation structures. During tensile deformation of pure copper, dislocation-free regions were identified. They showed an unexpected intermittent dynamics, for example, appearing and disappearing with proceeding deformation and even displaying transient splitting behavior....... Insight into these processes is relevant for an understanding of the strength and work-hardening of deformed materials....

  9. Postural deformities in Parkinson's disease

    NARCIS (Netherlands)

    Doherty, K.M.; Warrenburg, B.P.C. van de; Peralta, M.C.; Silveira-Moriyama, L.; Azulay, J.P.; Gershanik, O.S.; Bloem, B.R.

    2011-01-01

    Postural deformities are frequent and disabling complications of Parkinson's disease (PD) and atypical parkinsonism. These deformities include camptocormia, antecollis, Pisa syndrome, and scoliosis. Recognition of specific postural syndromes might have differential diagnostic value in patients

  10. Ship Collision and Grounding Analysis

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    2010-01-01

    It is the purpose of the paper to present a review of prediction and analysis tools for collision and grounding analyses and to outline a probabilistic procedure whereby these tools can be used by the maritime industry to develop performance based rules to reduce the risk associated with human......, environmental and economic costs of collision and grounding events. The main goal of collision and grounding research should be to identify the most economic risk control options associated with prevention and mitigation of collision and grounding events...

  11. Road rage and collision involvement.

    Science.gov (United States)

    Mann, Robert E; Zhao, Jinhui; Stoduto, Gina; Adlaf, Edward M; Smart, Reginald G; Donovan, John E

    2007-01-01

    To assess the contribution of road rage victimization and perpetration to collision involvement. The relationship between self-reported collision involvement and road rage victimization and perpetration was examined, based on telephone interviews with a representative sample of 4897 Ontario adult drivers interviewed between 2002 and 2004. Perpetrators and victims of both any road rage and serious road rage had a significantly higher risk of collision involvement than did those without road rage experience. This study provides epidemiological evidence that both victims and perpetrators of road rage experience increased collision risk. More detailed studies of the contribution of road rage to traffic crashes are needed.

  12. Topics in atomic collision theory

    CERN Document Server

    Geltman, Sydney; Brueckner, Keith A

    1969-01-01

    Topics in Atomic Collision Theory originated in a course of graduate lectures given at the University of Colorado and at University College in London. It is recommended for students in physics and related fields who are interested in the application of quantum scattering theory to low-energy atomic collision phenomena. No attention is given to the electromagnetic, nuclear, or elementary particle domains. The book is organized into three parts: static field scattering, electron-atom collisions, and atom-atom collisions. These are in the order of increasing physical complexity and hence necessar

  13. Cosmetic and Functional Nasal Deformities

    Science.gov (United States)

    ... nasal complaints. Nasal deformity can be categorized as “cosmetic” or “functional.” Cosmetic deformity of the nose results in a less ... taste , nose bleeds and/or recurrent sinusitis . A cosmetic or functional nasal deformity may occur secondary to ...

  14. q-Deformed Kink solutions

    International Nuclear Information System (INIS)

    Lima, A.F. de

    2003-01-01

    The q-deformed kink of the λφ 4 -model is obtained via the normalisable ground state eigenfunction of a fluctuation operator associated with the q-deformed hyperbolic functions. The kink mass, the bosonic zero-mode and the q-deformed potential in 1+1 dimensions are found. (author)

  15. Udjel mlijeka i mliječnih proizvoda u strukturi društveno organiziranog obroka u učeničkim domovima na području grada Zagreba

    OpenAIRE

    Gajdoš, Jasenka; Kurtanjek, Želimir

    1999-01-01

    Zbog velikog udjela proteina, minerala i vitamina, mlijeko spada u skupinu vrlo važnih namirnica tijekom rasta i razvoja mladih. Osobito su važne prehrambene navike pojedinaca. Kako bi se dobio što bolji uvid u prehrambeni status izabrane skupine (djevojke i mladići od 14-18 godina) obavljena je analiza obroka u učeničkim domovima. Iz analiziranih obroka razvidno je što se može poboljšati u obrocima društvene prehrane. Analizom obroka te anketom, utvrđeno je da 62% djevojaka i 66% mladića kon...

  16. [Babies with cranial deformity].

    Science.gov (United States)

    Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J

    2009-01-01

    Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option.

  17. Deformation Theory ( Lecture Notes )

    Czech Academy of Sciences Publication Activity Database

    Doubek, M.; Markl, Martin; Zima, P.

    2007-01-01

    Roč. 43, č. 5 (2007), s. 333-371 ISSN 0044-8753. [Winter School Geometry and Physics/27./. Srní, 13.01.2007-20.01.2007] R&D Projects: GA ČR GA201/05/2117 Institutional research plan: CEZ:AV0Z10190503 Keywords : deformation * Mauerer-Cartan equation * strongly homotopy Lie algebra Subject RIV: BA - General Mathematics

  18. Deformations of fractured rock

    International Nuclear Information System (INIS)

    Stephansson, O.

    1977-09-01

    Results of the DBM and FEM analysis in this study indicate that a suitable rock mass for repository of radioactive waste should be moderately jointed (about 1 joint/m 2 ) and surrounded by shear zones of the first order. This allowes for a gentle and flexible deformation under tectonic stresses and prevent the development of large cross-cutting failures in the repository area. (author)

  19. Ship collision with iceberg database

    Energy Technology Data Exchange (ETDEWEB)

    Hill, B.T. [National Research Council of Canada, St. John' s, NL (Canada). Inst. for Ocean Technology

    2006-11-15

    Approximately 20 per cent of collisions between icebergs, steam ships and motor vessels since 1850 have resulted in sinkings. The available data indicates that most sinkings were due to some kind of indirect impact rather than a head on collision. This paper presented the newly augmented Microsoft Access Database of Ship Collisions with Icebergs that includes more than 670 events over 200 years, most of which occurred on the Grand Banks. Other collisions occurred further afield in the Arctic, off Greenland and in the fjords of Alaska. The operation, search categories and data fields of the database were described along with various trends of collisions, scope of damage and environmental factors involved. Based on an estimate of the number of voyages over the Grand Banks, a probability of collision was derived from the number of cargo ship collisions over the past several years. The Microsoft Access template was provided by the Canadian Hydraulic Centre which had been developed by them for their Ice Regime Database to describe sea ice and ship interactions. This template was adapted and modified for iceberg collisions. Where possible, the data base was augmented to include information about the nature of the damage, the weather and sea state, the ice conditions, iceberg size, the vessel route and location at the time of collision, and vessel characteristics. The purpose of the database is to provide operators and regulators with an assessment of the frequency of collisions and environmental factors that played a role at the time of the collision. The database provides a basis to undertake risk analysis for vessels entering a given area and provides a better understanding of conditions under which collisions are likely to occur. It was concluded that although the trend of collisions has improved over the years with better observation and detection techniques, collisions still occur. Reduced visibility by fog, precipitation or low light conditions were found to be

  20. Electron collisions with biomolecules

    International Nuclear Information System (INIS)

    McKoy, V; Winstead, C

    2008-01-01

    We report on results of recent studies of collisions of low-energy electrons with nucleobases and other DNA constituents. A particular focus of these studies has been the identification and characterization of resonances that play a role in electron attachment leading to strand breaks in DNA. Comparison of the calculated resonance positions with results of electron transmission measurements is quite encouraging. However, the higher-lying π* resonances of the nucleobases appear to be of mixed elastic and core-excited character. Such resonant channel coupling raises the interesting possibility that the higher π*resonances in the nucleobases may promote dissociation of DNA by providing doorway states to triplet excited states.

  1. Molecular collision theory

    CERN Document Server

    Child, M S

    2010-01-01

    This high-level monograph offers an excellent introduction to the theory required for interpretation of an increasingly sophisticated range of molecular scattering experiments. There are five helpful appendixes dealing with continuum wavefunctions, Green's functions, semi-classical connection formulae, curve-crossing in the momentum representation, and elements of classical mechanics.The contents of this volume have been chosen to emphasize the quantum mechanical and semi-classical nature of collision events, with little attention given to purely classical behavior. The treatment is essentiall

  2. Nanoscale Deformable Optics

    Science.gov (United States)

    Strauss, Karl F.; Sheldon, Douglas J.

    2011-01-01

    Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy. In this innovation, a layer of reflective material is deposited upon a wafer containing (perhaps in the millions) chalcogenic memory cells with the reflective material becoming the front surface of a mirror and the chalcogenic material becoming a means of selectively deforming the mirror by the application of heat to the chalcogenic material. By doing so, the mirror surface can deform anywhere from nil to nanometers in spots the size of a modern day memory cell, thereby permitting realtime tuning of mirror focus and reflectivity to mitigate aberrations caused elsewhere in the optical system. Modern foundry methods permit the design and manufacture of individual memory cells having an area of or equal to the Feature (F) size of the design (assume 65 nm). Fabrication rules and restraints generally require the instantiation of one memory cell to another no closer than 1.5 F, or, for this innovation, 90 nm from its neighbor in any direction. Chalcogenide is a semiconducting glass compound consisting of a combination of chalcogen ions, the ratios of which vary according to properties desired. It has been shown that the application of heat to cells of chalcogenic material cause a large alteration in resistance to the range of 4 orders of magnitude. It is this effect upon which chalcogenidebased commercial memories rely. Upon removal of the heat source, the chalcogenide rapidly cools and remains frozen in the excited state. It has also been shown that the chalcogenide expands in volume because of the applied heat, meaning that the coefficient of expansion of chalcogenic

  3. CONFERENCE: Photon-photon collisions

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    Despite being difficult to observe, photon-photon collisions have opened up a range of physics difficult, or even impossible, to access by other methods. The progress which has been made in this field was evident at the fifth international workshop on photon-photon collisions, held in Aachen from 13-16 April and attended by some 120 physicists

  4. Outer Dynamics of Ship Collisions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    1996-01-01

    The purpose is to present analysis procedures for the motion of ships during ship-ship collisions and for ship collisions with offshore structures. The aim is to estimate that part of the lost kinetic energy which will have to be absorbed by rupture and plastic damage of the colliding structures....

  5. Photon-photon collisions

    International Nuclear Information System (INIS)

    Field, J.H.

    1984-01-01

    The current status, both theoretical and experimental, of two photon collision physics is reviewed with special emphasis on recent experimental results from e + e - storage rings. After a complete presentation of the helicity amplitude formalism for the general process e + e - → Xe + e - , various approximations (transverse photon, Weisaecker Williams) are discussed. Beam polarisation effects and radiative corrections are also briefly considered. A number of specific processes, for which experimental results are now available, are then described. In each case existing theoretical prediction are confronted with experimental results. The processes described include single resonance production, lepton and hadron pair production, the structure functions of the photon, the production of high Psub(T) jets and the total photon photon cross section. In the last part of the review the current status of the subject is summarised and some comments are made on future prospects. These include both extrapolations of current research to higher energy machines (LEP, HERA) as well as a brief mention of both the technical realisation and the physics interest of the real γγ and eγ collisions which may be possible using linear electron colliders in the 1 TeV energy range

  6. Photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of ..cap alpha../sub s/ and ..lambda../sup ms/ from the ..gamma..*..gamma.. ..-->.. ..pi../sup 0/ form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from ..gamma gamma.. ..-->.. H anti H, reconstruction of sigma/sub ..gamma gamma../ from exclusive channels at low W/sub ..gamma gamma../, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z/sup 0/ and W/sup + -/ beams from e ..-->.. eZ/sup 0/ and e ..-->.. nu W will become important. 44 references.

  7. Photon-photon collisions

    International Nuclear Information System (INIS)

    Brodsky, S.J.

    1985-01-01

    The study of photon-photon collisions has progressed enormously, stimulated by new data and new calculational tools for QCD. In the future we can expect precise determinations of α/sub s/ and Λ/sup ms/ from the γ*γ → π 0 form factor and the photon structure function, as well as detailed checks of QCD, determination of the shape of the hadron distribution amplitudes from γγ → H anti H, reconstruction of sigma/sub γγ/ from exclusive channels at low W/sub γγ/, definitive studies of high p/sub T/ hadron and jet production, and studies of threshold production of charmed systems. Photon-photon collisions, along with radiative decays of the psi and UPSILON, are ideal for the study of multiquark and gluonic resonances. We have emphasized the potential for resonance formation near threshold in virtually every hadronic exclusive channel, including heavy quark states c anti c c anti c, c anti c u anti u, etc. At higher energies SLC, LEP, ...) parity-violating electroweak effects and Higgs production due to equivalent Z 0 and W +- beams from e → eZ 0 and e → nu W will become important. 44 references

  8. Collision in space

    Science.gov (United States)

    Ellis, S. R.

    2000-01-01

    On June 25, 1997, the Russian supply spacecraft Progress 234 collided with the Mir space station, rupturing Mir's pressure hull, throwing it into an uncontrolled attitude drift, and nearly forcing evacuation of the station. Like many high-profile accidents, this collision was the consequence of a chain of events leading to the final piloting errors that were its immediate cause. The discussion in this article does not resolve the relative contributions of the actions and decisions in this chain. Neither does it suggest corrective measures, many of which are straightforward and have already been implemented by the National Aeronautics and Space Administration (NASA) and the Russian Space Agency. Rather, its purpose is to identify the human factors that played a pervasive role in the incident. Workplace stress, fatigue, and sleep deprivation were identified by NASA as contributory factors in the Mir-Progress collision (Culbertson, 1997; NASA, forthcoming), but other contributing factors, such as requiring crew to perform difficult tasks for which their training is not current, could potentially become important factors in future situations.

  9. Collisions between Globular Clusters

    Science.gov (United States)

    Belloni, D. T.; Rocha-Pinto, H. J.

    2014-10-01

    The study of globular clusters (GC) plays an important role in our understanding of the Universe since these systems are true laboratories for theories of stellar dynamics and evolution. We are interested in studying a globular cluster formed by a collision between two different GC with NBODY6 (Aarseth, 2003). Firstly, in order to understand this code, we analyse how tidal streams form from a globular cluster in a circular orbit (on the disk) around the center of the Milky Way. In the next stage of this work we will study that collision. The stellar escape or capture from globular cluster can be understood with the Restricted Three Body Problem. These stars escape in a chaotic orbit, and in some cases may return (again in a chaotic orbit) to the cluster due to the Galactic potential. In most cases, such stars quickly alter their escape chaotic orbits to orbits that are similar to the parent cluster's orbit. Our results show an agglomeration of stars in a normal direction related to the direction towards the center of the Milky Way, forming thus a stream. We can explain this considering that a circular orbit around the dominant potential is the most likely orbit, since it requires minimum energy. In this coordinate systems, the tidal tails (or streams) rotates around the cluster center with the same mean motion associated to cluster around the Milky Way center.

  10. A Changing Wind Collision

    Science.gov (United States)

    Nazé, Yaël; Koenigsberger, Gloria; Pittard, Julian M.; Parkin, Elliot Ross; Rauw, Gregor; Corcoran, Michael F.; Hillier, D. John

    2018-02-01

    We report on the first detection of a global change in the X-ray emitting properties of a wind–wind collision, thanks to XMM-Newton observations of the massive Small Magellenic Cloud (SMC) system HD 5980. While its light curve had remained unchanged between 2000 and 2005, the X-ray flux has now increased by a factor of ∼2.5, and slightly hardened. The new observations also extend the observational coverage over the entire orbit, pinpointing the light-curve shape. It has not varied much despite the large overall brightening, and a tight correlation of fluxes with orbital separation is found without any hysteresis effect. Moreover, the absence of eclipses and of absorption effects related to orientation suggests a large size for the X-ray emitting region. Simple analytical models of the wind–wind collision, considering the varying wind properties of the eruptive component in HD 5980, are able to reproduce the recent hardening and the flux-separation relationship, at least qualitatively, but they predict a hardening at apastron and little change in mean flux, contrary to observations. The brightness change could then possibly be related to a recently theorized phenomenon linked to the varying strength of thin-shell instabilities in shocked wind regions. Based on XMM-Newton and Chandra data.

  11. Haptic Manipulation of Deformable Objects in Hybrid Bilateral Teleoperation System

    Directory of Open Access Journals (Sweden)

    Juan Manuel Ibarra-Zannatha

    2007-01-01

    Full Text Available The aim of this work is the integration of a virtual environment containing a deformable object, manipulated by an open kinematical chain virtual slave robot, to a bilateral teleoperation scheme based on a real haptic device. The virtual environment of this hybrid bilateral teleoperation system combines collision detection algorithms, dynamical, kinematical and geometrical models with a position–position and/or force–position bilateral control algorithm, to produce on the operator side the reflected forces corresponding to the virtual mechanical interactions, through a haptic device. Contact teleoperation task over the virtual environment with a flexible object is implemented and analysed.

  12. Sixteenth International Conference on the physics of electronic and atomic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B. (eds.)

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter.

  13. Sixteenth International Conference on the physics of electronic and atomic collisions

    International Nuclear Information System (INIS)

    Dalgarno, A.; Freund, R.S.; Lubell, M.S.; Lucatorto, T.B.

    1989-01-01

    This report contains abstracts of papers on the following topics: photons, electron-atom collisions; electron-molecule collisions; electron-ion collisions; collisions involving exotic species; ion- atom collisions, ion-molecule or atom-molecule collisions; atom-atom collisions; ion-ion collisions; collisions involving rydberg atoms; field assisted collisions; collisions involving clusters and collisions involving condensed matter

  14. Deformable Simplicial Complexes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof

    triangles/tetrahedra marked as outside from those marked as inside. Such an approach allows for robust topological adaptivity. Among other advantages of the deformable simplicial complexes there are: space adaptivity, ability to handle and preserve sharp features, possibility for topology control. We....... One particular advantage of DSC is the fact that as an alternative to topology adaptivity, topology control is also possible. This is exploited in the construction of cut loci on tori where a front expands from a single point on a torus and stops when it self-intersects....

  15. Design of a large deformable obstacle for railway crash simulations according to the applicable standard

    Directory of Open Access Journals (Sweden)

    Špirk S.

    2012-06-01

    Full Text Available This article discusses the design of a deformable obstacle to be used in simulated rail and road vehicle collisions as prescribed by scenario 3 specified by standard ČSN EN 15227. To approve a vehicle in accordance with this standard, it is necessary to carry out numeric simulations of its collision with a large obstacle, following the standard’s specification. A simulated impact of a rigid ball into the obstacle is used to calibrate the obstacle’s properties, and the standard specifies limit deformation characteristics for that collision. The closer are the deformation characteristics observed in the test to the limit characteristics prescribed by the standard, the more favorable results can be expected when using the obstacle in actual numeric simulations of frontal impacts of rail vehicles. There are multiple ways to design a FEM model of the obstacle; this article discusses one of those. It shows that given a suitable definition of material properties, this particular approach yields quite favorable deformation characteristics.

  16. Nuclear fuel deformation phenomena

    International Nuclear Information System (INIS)

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  17. Rotary deformity in degenerative spondylolisthesis

    International Nuclear Information System (INIS)

    Kang, Sung Gwon; Kim, Jeong; Kho, Hyen Sim; Yun, Sung Su; Oh, Jae Hee; Byen, Ju Nam; Kim, Young Chul

    1994-01-01

    We studied to determine whether the degenerative spondylolisthesis has rotary deformity in addition to forward displacement. We have made analysis of difference of rotary deformity between the 31 study groups of symptomatic degenerative spondylolisthesis and 31 control groups without any symptom, statistically. We also reviewed CT findings in 15 study groups. The mean rotary deformity in study groups was 6.1 degree(the standard deviation is 5.20), and the mean rotary deformity in control groups was 2.52 degree(the standard deviation is 2.16)(p < 0.01). The rotary deformity can be accompanied with degenerative spondylolisthesis. We may consider the rotary deformity as a cause of symptomatic degenerative spondylolisthesis in case that any other cause is not detected

  18. Rotary deformity in degenerative spondylolisthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Gwon; Kim, Jeong; Kho, Hyen Sim; Yun, Sung Su; Oh, Jae Hee; Byen, Ju Nam; Kim, Young Chul [Chosun University College of Medicine, Gwangju (Korea, Republic of)

    1994-05-15

    We studied to determine whether the degenerative spondylolisthesis has rotary deformity in addition to forward displacement. We have made analysis of difference of rotary deformity between the 31 study groups of symptomatic degenerative spondylolisthesis and 31 control groups without any symptom, statistically. We also reviewed CT findings in 15 study groups. The mean rotary deformity in study groups was 6.1 degree(the standard deviation is 5.20), and the mean rotary deformity in control groups was 2.52 degree(the standard deviation is 2.16)(p < 0.01). The rotary deformity can be accompanied with degenerative spondylolisthesis. We may consider the rotary deformity as a cause of symptomatic degenerative spondylolisthesis in case that any other cause is not detected.

  19. Neutron halo in deformed nuclei

    International Nuclear Information System (INIS)

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-01-01

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  20. Gyrokinetic linearized Landau collision operator

    DEFF Research Database (Denmark)

    Madsen, Jens

    2013-01-01

    , which is important in multiple ion-species plasmas. Second, the equilibrium operator describes drag and diffusion of the magnetic field aligned component of the vorticity associated with the E×B drift. Therefore, a correct description of collisional effects in turbulent plasmas requires the equilibrium......The full gyrokinetic electrostatic linearized Landau collision operator is calculated including the equilibrium operator, which represents the effect of collisions between gyrokinetic Maxwellian particles. First, the equilibrium operator describes energy exchange between different plasma species...... operator, even for like-particle collisions....

  1. Atomic collisions involving pulsed positrons

    DEFF Research Database (Denmark)

    Merrison, J. P.; Bluhme, H.; Field, D.

    2000-01-01

    Conventional slow positron beams have been widely and profitably used to study atomic collisions and have been instrumental in understanding the dynamics of ionization. The next generation of positron atomic collision studies are possible with the use of charged particle traps. Not only can large...... instantaneous intensities be achieved with in-beam accumulation, but more importantly many orders of magnitude improvement in energy and spatial resolution can be achieved using positron cooling. Atomic collisions can be studied on a new energy scale with unprecedented precion and control. The use...

  2. Radiologic evaluation of foot deformities

    International Nuclear Information System (INIS)

    Erlemann, R.; Fischedick, A.R.; Peters, P.E.

    1986-01-01

    In order to analyze foot deformities, the foot is divided into three compartments. Their normal and pathological positions are defined by the alignment of the bones' axes. The various foot deformities can be put down to a malalignment of the particular compartments. X-ray analysis of the malalignment allows a diagnosis to be made. The most important congenital and acquired foot deformities are discussed. (orig.) [de

  3. q-deformed Brownian motion

    CERN Document Server

    Man'ko, V I

    1993-01-01

    Brownian motion may be embedded in the Fock space of bosonic free field in one dimension.Extending this correspondence to a family of creation and annihilation operators satisfying a q-deformed algebra, the notion of q-deformation is carried from the algebra to the domain of stochastic processes.The properties of q-deformed Brownian motion, in particular its non-Gaussian nature and cumulant structure,are established.

  4. Systematic studies of positron production in heavy-ion collisions near the Coulomb barrier

    International Nuclear Information System (INIS)

    Tsertos, H.; Berdermann, E.; Bosch, F.; Kienle, P.; Koenig, W.; Kozhuharov, C.; Clemente, M.; Huchler, S.

    1991-04-01

    We present the results obtained from systematic studies of positron creation for a series of heavy-collision systems, with united charge Z u = Z 1 + Z 2 ranging from Z u = 164 (Pb+Pb) to Z u = 184 (U+U) at bombarding energies close to the Coulomb barrier, using the Orange-β-spectrometer at GSI. For each collision system studied, the dominating continuous distributions due to quasi-atomic and nuclear positron emission are determined accurately. This is essential in obtaining the characteristics of the still unexplained monoenergetic positron lines which appear in the energy range between 200 keV and 400 keV. Our results are compared with coupled-channels calculations for quasi-atomic positron creation. The latter describe quite well the global features of the measured spectra, but overestimate systematically their absolute values. From the comparison, a common normalization factor of f = 0.76 ± 0.04 can be established for the calculated spectra. In particular, the dependence on Z u of the measured emission probabilities was found to follow a power law; ∝ Z u 19.5±1 , in fair agreement with the theoretical predictions. (orig.)

  5. Deformable paper origami optoelectronic devices

    KAUST Repository

    He, Jr-Hau

    2017-01-19

    Deformable optoelectronic devices are provided, including photodetectors, photodiodes, and photovoltaic cells. The devices can be made on a variety of paper substrates, and can include a plurality of fold segments in the paper substrate creating a deformable pattern. Thin electrode layers and semiconductor nanowire layers can be attached to the substrate, creating the optoelectronic device. The devices can be highly deformable, e.g. capable of undergoing strains of 500% or more, bending angles of 25° or more, and/or twist angles of 270° or more. Methods of making the deformable optoelectronic devices and methods of using, e.g. as a photodetector, are also provided.

  6. q-deformed Minkowski space

    International Nuclear Information System (INIS)

    Ogievetsky, O.; Pillin, M.; Schmidke, W.B.; Wess, J.; Zumino, B.

    1993-01-01

    In this lecture I discuss the algebraic structure of a q-deformed four-vector space. It serves as a good example of quantizing Minkowski space. To give a physical interpretation of such a quantized Minkowski space we construct the Hilbert space representation and find that the relevant time and space operators have a discrete spectrum. Thus the q-deformed Minkowski space has a lattice structure. Nevertheless this lattice structure is compatible with the operation of q-deformed Lorentz transformations. The generators of the q-deformed Lorentz group can be represented as linear operators in the same Hilbert space. (orig.)

  7. Deformation behaviour of turbine foundations

    International Nuclear Information System (INIS)

    Koch, W.; Klitzing, R.; Pietzonka, R.; Wehr, J.

    1979-01-01

    The effects of foundation deformation on alignment in turbine generator sets have gained significance with the transition to modern units at the limit of design possibilities. It is therefore necessary to obtain clarification about the remaining operational variations of turbine foundations. Static measurement programmes, which cover both deformation processes as well as individual conditions of deformation are described in the paper. In order to explain the deformations measured structural engineering model calculations are being undertaken which indicate the effect of limiting factors. (orig.) [de

  8. Collision attack against Tav-128 hash function

    Science.gov (United States)

    Hariyanto, Fajar; Hayat Susanti, Bety

    2017-10-01

    Tav-128 is a hash function which is designed for Radio Frequency Identification (RFID) authentication protocol. Tav-128 is expected to be a cryptographically secure hash function which meets collision resistance properties. In this research, a collision attack is done to prove whether Tav-128 is a collision resistant hash function. The results show that collisions can be obtained in Tav-128 hash function which means in other word, Tav-128 is not a collision resistant hash function.

  9. MD Simulation on Collision Behavior Between Nano-Scale TiO₂ Particles During Vacuum Cold Spraying.

    Science.gov (United States)

    Yao, Hai-Long; Yang, Guan-Jun; Li, Chang-Jiu

    2018-04-01

    Particle collision behavior influences significantly inter-nano particle bonding formation during the nano-ceramic coating deposition by vacuum cold spraying (or aerosol deposition method). In order to illuminate the collision behavior between nano-scale ceramic particles, molecular dynamic simulation was applied to explore impact process between nano-scale TiO2 particles through controlling impact velocities. Results show that the recoil efficiency of the nano-scale TiO2 particle is decreased with the increase of the impact velocity. Nano-scale TiO2 particle exhibits localized plastic deformation during collision at low velocities, while it is intensively deformed by collision at high velocities. This intensive deformation promotes the nano-particle adhesion rather than rebounding off. A relationship between the adhesion energy and the rebound energy is established for the bonding formation of the nano-scale TiO2 particle. The adhesion energy required to the bonding formation between nano-scale ceramic particles can be produced by high velocity collision.

  10. Paleomagnetic Constraints From the Baoshan Area on the Deformation of the Qiangtang-Sibumasu Terrane Around the Eastern Himalayan Syntaxis

    NARCIS (Netherlands)

    Li, Shihu|info:eu-repo/dai/nl/411296248; van Hinsbergen, Douwe J.J.|info:eu-repo/dai/nl/269263624; Deng, Chenglong; Advokaat, Eldert L.; Zhu, Rixiang

    The Sibumasu Block in SE Asia represents the eastward continuation of the Qiangtang Block. Here we report a detailed rock magnetic and paleomagnetic study on the Middle Jurassic and Paleocene rocks from northern Sibumasu, to document the crustal deformation during the India-Asia collision since the

  11. Collision Technologies for Circular Colliders

    Science.gov (United States)

    Levichev, Eugene

    2015-02-01

    For several decades already, particle colliders have been essential tools for particle physics. From the very beginning, such accelerators have been among the most complicated scientific instruments ever built, including a number of innovative technological developments. Examples are ultrahigh vacuum systems, magnets with a very high magnetic field, and equipment for sub-ns synchronization and sub-mm precision alignment of equipment inside multi-km underground tunnels. Some key technologies are related to the focusing of the beam down to a scale of sub-μm at the collision point to obtain high luminosity. This review provides an overview of collision concepts and technologies for circular particle colliders, starting from the first ideas. In particular, it discusses such novel schemes and related technologies as crab waist collision and round beam collision.

  12. Collision Risk Analysis for HSC

    DEFF Research Database (Denmark)

    Urban, Jesper; Pedersen, Preben Terndrup; Simonsen, Bo Cerup

    1999-01-01

    conventional ships. To reach a documented level of safety, it is therefore not possible directly to transfer experience with conventional ships. The purpose of this paper is to present new rational scientific tools to assess and quantify the collision risk associated with HSC transportation. The paper...... analysis tools to quantify the effect of the high speed have been available. Instead nearly all research on ship accidents has been devoted to analysis of the consequences of given accident scenarios. The proposed collision analysis includes an analysis which determines the probability of a collision...... for a HSC on a given route, an analysis of the released energy during a collision, analytical closed form solutions for the absorbed energy in the structure and finally an assessment of the overall structural crushing behaviour of the vessel, including the level of acceleration and the size of the crushing...

  13. Collision region of the ISR

    CERN Multimedia

    1970-01-01

    This is a collision region from the world’s first proton collider, the Intersecting Storage Rings. The ISR was used at CERN from 1971-84 to study proton-proton collisions at the highest energy then available (60GeV). When operational, ISR collision regions were surrounded by detectors as shown in the photo. In 1972, the surprising discovery of fragments flying out sideways from head-on proton-proton collisions was the first evidence of quark-quark scattering inside the colliding protons . This was similar to Rutherford’s observation in 1911 of alpha particles scattering off the tiny nucleus inside atoms of gold. The ISR beamtubes had to be as empty as outer space, a vacuum 100 000 times better than other CERN machines at the time.

  14. collision zone of an ISR

    CERN Multimedia

    This is a collision region from the world’s first proton collider, the Intersecting Storage Rings. The ISR was used at CERN from 1971-84 to study proton-proton collisions at the highest energy then available (60GeV). When operational, ISR collision regions were surrounded by detectors as shown in the photo. In 1972, the surprising discovery of fragments flying out sideways from head-on proton-proton collisions was the first evidence of quark-quark scattering inside the colliding protons . This was similar to Rutherford’s observation in 1911 of alpha particles scattering off the tiny nucleus inside atoms of gold. The ISR beamtubes had to be as empty as outer space, a vacuum 100 000 times better than other CERN machines at the time.

  15. Deformations of surface singularities

    CERN Document Server

    Szilárd, ágnes

    2013-01-01

    The present publication contains a special collection of research and review articles on deformations of surface singularities, that put together serve as an introductory survey of results and methods of the theory, as well as open problems, important examples and connections to other areas of mathematics. The aim is to collect material that will help mathematicians already working or wishing to work in this area to deepen their insight and eliminate the technical barriers in this learning process. This also is supported by review articles providing some global picture and an abundance of examples. Additionally, we introduce some material which emphasizes the newly found relationship with the theory of Stein fillings and symplectic geometry.  This links two main theories of mathematics: low dimensional topology and algebraic geometry. The theory of normal surface singularities is a distinguished part of analytic or algebraic geometry with several important results, its own technical machinery, and several op...

  16. Radiations from atomic collision processes

    International Nuclear Information System (INIS)

    Bernyi, D.

    1994-01-01

    The physics of atomic collision phenomena in which only the Coulomb forces have a role is an actual field or the research of the present days. The impact energy range in these collisions is very broad,it extends from the eV or even lower region to the GeV region or higher,i.e. it spans the region of three branches of physics,namely that of the atomic,the nuclear and the particle physics.To describe and explain the collision processes themselves, different models (collision mechanisms) are used and they are surveyed in the presentation. Different electromagnetic radiations and particles are emitted from the collision processes.Their features are shown in details together with the most important methods in their detection and study.Examples are given based on the literature and on the investigations of the author and his coworkers. The applications of the radiation from atomic collisions in other scientific fields and in the solution of different practical problems are also surveyed shortly. 16 figs., 2 tabs., 76 refs. (author)

  17. Electron Loss from 1.4 MeV/u U4,6,10+ Ions Colliding with Ne, N2, and Ar Targets

    CERN Document Server

    Dubois, R D; Stöhlker, T; Bosch, F; Bräuning-Demian, A; Banas, D; Gumberidze, A; Hagmann, S; Kozhuharov, C; Mann, R; Orsic-Muthig, A; Spillmann, U; Tachenov, S; Bart, W; Dahl, L; Franzke, B; Glatz, J; Gröning, L; Richter, S; Wilms, D; Ullmann, K; Jagutzki, O

    2004-01-01

    Absolute, total, single, and multiple electron loss cross sections are measured for 1.4 MeV/u U4,6,10+ ions colliding with neon and argon atoms and nitrogen molecules. It is found that the cross sections all have the same dependence on the number of electrons lost and that multiplying the cross sections by the initial number of electrons in the 6s, 6p, and 5f shells yields good agreement between the different projectiles. By combining the present data with previous measurements made at the same velocity, it is shown that the scaled cross sections slowly decrease in magnitude for incoming charge states between 1 and 10 whereas the cross sections for higher charge state ions fall off much more rapidly.

  18. The Central Eurasia collision zone: insights from a neotectonic study

    Science.gov (United States)

    Tunini, Lavinia; Jiménez-Munt, Ivone; Fernandez, Manel; Vergés, Jaume

    2017-04-01

    In this study, we explore the neotectonic deformation in the whole Central Eurasia, including both the India-Eurasia and the Arabia-Eurasia collision zones, by using the thin-sheet approach in which the lithosphere strength is calculated from the lithosphere structure and thermal regime. We investigate the relative contributions of the lithospheric structure, rheology, boundary conditions, and friction coefficient on faults on the predicted velocity and stress fields. The resulting models have been evaluated by comparing the predictions with available data on seismic deformation, stress directions and GPS velocities. A first order approximation of the velocity and stress directions is obtained, reproducing the counter-clockwise rotation of Arabia and Iran, the westward escape of Anatolia, and the eastward extrusion of the northern Tibetan Plateau. To simulate the observed extensional faults within Tibet a weaker lithosphere is required, provided by a change in the rheological parameters or a reduction of the lithosphere thickness in NE-Tibet. The temperature increase generated by the lithospheric thinning below the Tibetan Plateau would also allow reconciling the model with the high heat flow and low mantle seismic velocities observed in the area. Besides the large scale, this study offers a coherent result in regions with little or no data coverage, as in the case of the Arabia-India inter-collision zone, over large areas of Pakistan and entire Afghanistan. The study is supported by MITE (CGL2014-59516-P) and WE-ME (PIE-CSIC-201330E111) projects.

  19. Fraktalnist deformational relief polycrystalline aluminum

    Directory of Open Access Journals (Sweden)

    М.В. Карускевич

    2006-02-01

    Full Text Available  The possibility of the fractal geometry method application for the analisys of surface deformation structures under cyclic loading is presented.It is shown, that deformation relief of the alclad aluminium alloyes meets the criteria of the fractality. For the fractal demention estimation the method of  “box-counting”can be applied.

  20. Plastic Deformation of Metal Surfaces

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2013-01-01

    Plastic deformation of metal surfaces by sliding and abrasion between moving parts can be detrimental. However, when the plastic deformation is controlled for example by applying different peening techniques hard surfaces can be produced which can increase the fracture resistance and fatigue life...

  1. Nuclear deformation at finite temperature.

    Science.gov (United States)

    Alhassid, Y; Gilbreth, C N; Bertsch, G F

    2014-12-31

    Deformation, a key concept in our understanding of heavy nuclei, is based on a mean-field description that breaks the rotational invariance of the nuclear many-body Hamiltonian. We present a method to analyze nuclear deformations at finite temperature in a framework that preserves rotational invariance. The auxiliary-field Monte Carlo method is used to generate a statistical ensemble and calculate the probability distribution associated with the quadrupole operator. Applying the technique to nuclei in the rare-earth region, we identify model-independent signatures of deformation and find that deformation effects persist to temperatures higher than the spherical-to-deformed shape phase-transition temperature of mean-field theory.

  2. Nuclear Deformation at Finite Temperature

    Science.gov (United States)

    Alhassid, Y.; Gilbreth, C. N.; Bertsch, G. F.

    2014-12-01

    Deformation, a key concept in our understanding of heavy nuclei, is based on a mean-field description that breaks the rotational invariance of the nuclear many-body Hamiltonian. We present a method to analyze nuclear deformations at finite temperature in a framework that preserves rotational invariance. The auxiliary-field Monte Carlo method is used to generate a statistical ensemble and calculate the probability distribution associated with the quadrupole operator. Applying the technique to nuclei in the rare-earth region, we identify model-independent signatures of deformation and find that deformation effects persist to temperatures higher than the spherical-to-deformed shape phase-transition temperature of mean-field theory.

  3. Deformation of Man Made Objects

    KAUST Repository

    Ibrahim, Mohamed

    2012-07-01

    We introduce a framework for 3D object deformation with primary focus on man-made objects. Our framework enables a user to deform a model while preserving its defining characteristics. Moreover, our framework enables a user to set constraints on a model to keep its most significant features intact after the deformation process. Our framework supports a semi-automatic constraint setting environment, where some constraints could be automatically set by the framework while others are left for the user to specify. Our framework has several advantages over some state of the art deformation techniques in that it enables a user to add new features to the deformed model while keeping its general look similar to the input model. In addition, our framework enables the rotation and extrusion of different parts of a model.

  4. A comparison of methods for evaluating structure during ship collisions

    International Nuclear Information System (INIS)

    Ammerman, D.J.; Daidola, J.C.

    1996-01-01

    A comparison is provided of the results of various methods for evaluating structure during a ship-to-ship collision. The baseline vessel utilized in the analyses is a 67.4 meter in length displacement hull struck by an identical vessel traveling at speeds ranging from 10 to 30 knots. The structural response of the struck vessel and motion of both the struck and striking vessels are assessed by finite element analysis. These same results are then compared to predictions utilizing the open-quotes Tanker Structural Analysis for Minor Collisionsclose quotes (TSAMC) Method, the Minorsky Method, the Haywood Collision Process, and comparison to full-scale tests. Consideration is given to the nature of structural deformation, absorbed energy, penetration, rigid body motion, and virtual mass affecting the hydrodynamic response. Insights are provided with regard to the calibration of the finite element model which was achievable through utilizing the more empirical analyses and the extent to which the finite element analysis is able to simulate the entire collision event. 7 refs., 8 figs., 4 tabs

  5. The Effect of Slight Deformation on Thermocapillary-Driven Droplet Coalescence and Growth.

    Science.gov (United States)

    Rother; Davis

    1999-06-15

    The collision efficiency of two slightly deformable drops in thermocapillary motion at small Reynolds and Marangoni numbers is determined by a trajectory analysis involving methodology from matched asymptotic expansions. The outer solution for two spherical drops which are nearly touching provides the contact force driving the inner solution. Accurate calculation of the contact force and near-contact motion is aided by new solutions for the mobility functions parallel and normal to the drops' line of centers that are valid at very small separations. Governed by a system of integro-differential equations coupling the flow inside the drops and that within the small gap, the inner solution allows demarcation of the regions of drop coalescence and separation. Apart from the driving force, the thin-film equations are unchanged to leading order from the buoyancy-driven case, since no additional singularity is introduced into the tangential stress by the presence of the finite temperature gradient. The interplay of small deformation, as measured by the capillary number (Ca), and attractive van der Waals forces controls the apparent contact motion. Results for the collision efficiency are mapped out for a range of five dimensionless parameters: Ca, size ratio, drop-to-medium viscosity ratio, drop-to-medium thermal conductivity ratio (&kcirc;), and a dimensionless Hamaker parameter. Since the only effect on the inner solution of an increase in the thermal conductivity ratio is an increase in the amount of time the drops spend in close approach, it is possible for the collision efficiency of two slightly deformable drops with higher &kcirc; to be greater than that for two similar drops with lower &kcirc;. This behavior differs from that of spherical drops, where an increase in thermal conductivity ratio always leads to a decrease in the collision efficiency, as a result of greater hydrodynamic interaction between the spherical drops due to the temperature gradient. In

  6. Replacement collision sequences in metals

    International Nuclear Information System (INIS)

    Blewitt, T.H.; Kirk, M.A.; Scott, T.L.

    1975-10-01

    The concept of radiation-induced defects traveling large distances by focussed collision sequences (focusons) without thermal activation has important consequences in radiation effect studies. The focussed collision sequences are of two types: (1) ''Silsbee focussing'' or momentum focussing which can cause defect pairs to form large distances from the primary knock-on and (2) focussed replacement collisions also called ''dynamic crowdions'' where mass transport causes a large separation between the vacancy and its interstitial. Direct experimental evidence for focussed collision sequences is in short supply and conflicting. The sputtering patterns associated with close packed crystalline directions from the backscattering of charged particles seemed to substantiate long-range focussed collisions until it was pointed out that collision chains need not be long to yield such patterns. More recently, transmission sputtering has been used with conflicting results. Ecker et al. found no evidence for focusons greater than 17 atom distances whereas preliminary results of Siedman et al. suggest several hundred atom distances. Keil and co-workers found evidence for replacement collision sequences of 100 atom distances by stereo electron microscopy of interstitial agglomerates interjected by low energy heavy ion bombardment. Experiments by Kirk et al. and Becker and co-workers on ordered alloys, are only sensitive to dynamic crowdions. Kirk and co-workers result on the changes in magnetic properties of Ni 3 Mn induced by thermal neutron bombardment strongly support long range focusons (greater than 30 atom distances) whereas Wollenberger found no evidence for focusons with 1 and 3 MeV electron irradiation. Theoretical treatments of Liebfried suggest a maximum length of 30 atom distances whereas Holmes' modified treatment suggests less than 10 atom distances. (10 fig, 23 references)

  7. Supersymmetric q-deformed quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Traikia, M. H.; Mebarki, N. [Laboratoire de Physique Mathematique et Subatomique, Mentouri University, Constantine (Algeria)

    2012-06-27

    A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.

  8. On infinitesimal conformai deformations of surfaces

    Directory of Open Access Journals (Sweden)

    Юлия Степановна Федченко

    2014-11-01

    Full Text Available A new form of basic equations for conformai deformations is found. The equations involve tensor fields of displacement vector only. Conditions for trivial deformations as well as infinitesimal conformai deformations are studied.

  9. PASSIVE SAFETY OF HIGH-SPEED PASSENGER TRAINS AT ACCIDENT COLLISIONS ON 1520 MM GAUGE RAILWAYS

    Directory of Open Access Journals (Sweden)

    Maryna SOBOLEVSKA

    2017-04-01

    Full Text Available The fundamental principles of the passive protection concept of high-speed passenger trains at accident collisions on 1520 mm gauge railways have been developed. The scientific methodology and mathematical models for the analysis of plastic deformation of cab frame elements and energy-absorbing devices (EAD at an impact have been developed. The cab frame and EAD for a new-generation locomotive have been designed. The EAD prototype crash test has been carried out.

  10. Numerical Simulation on Head-On Binary Collision of Gel Propellant Droplets

    Directory of Open Access Journals (Sweden)

    Zejun Liu

    2013-01-01

    Full Text Available Binary collision of droplets is a fundamental form of droplet interaction in the spraying flow field. In order to reveal the central collision mechanism of two gel droplets with equal diameters, an axi-symmetric form of the Navier-Stokes equations are firstly solved and the method of VOF (volume of fluid is utilized to track the evolution of the gas-liquid free interface. Then, the numerical computation model is validated with Qian’s experimental results on Newtonian liquids. Phenomena of rebound, coalescence and reflexive separation of droplets after collision are investigated, and structures of the complicated flow fields during the collision process are also analyzed in detail. Results show that the maximum shear rate will appear at the point where the flow is redirected and accelerated. Rebound of droplets is determined by the Weber number and viscosity of the fluid together. It can be concluded that the gel droplets are easier to rebound in comparison with the base fluid droplets. The results also show that the alternant appearance along with the deformation of droplets in the radial and axial direction is the main characteristic of the droplet coalescence process, and the deformation amplitude attenuates gradually. Moreover, the reflexive separation process of droplets can be divided into three distinctive stages including the radial expansion, the recovery of the spherical shape, and the axial extension and reflexive separation. The variation trend of the kinetic energy is opposite to that of the surface energy. The maximum deformation of droplets appears in the radial expansion stage; in the case of a low Weber number, the minimum central thickness of a droplet appears later than its maximum deformation, however, this result is on the contrary in the case of a high Weber number.

  11. Spacetimes for λ-deformations

    Energy Technology Data Exchange (ETDEWEB)

    Sfetsos, Konstadinos [Department of Nuclear and Particle Physics, Faculty of Physics, University of Athens,Athens 15784 (Greece); Thompson, Daniel C. [Theoretische Natuurkunde, Vrije Universiteit Brussel andThe International Solvay Institutes,Pleinlaan 2, B-1050, Brussels (Belgium)

    2014-12-29

    We examine a recently proposed class of integrable deformations to two-dimensional conformal field theories. These λ-deformations interpolate between a WZW model and the non-Abelian T-dual of a Principal Chiral Model on a group G or, between a G/H gauged WZW model and the non-Abelian T-dual of the geometric coset G/H. λ-deformations have been conjectured to represent quantum group q-deformations for the case where the deformation parameter is a root of unity. In this work we show how such deformations can be given an embedding as full string backgrounds whose target spaces satisfy the equations of type-II supergravity. One illustrative example is a deformation of the Sl(2,ℝ)/U(1) black-hole CFT. A further example interpolates between the ((SU(2)×SU(2))/(SU(2)))×((SL(2,ℝ)×SL(2,ℝ))/(SL(2,ℝ)))×U(1){sup 4} gauged WZW model and the non-Abelian T-dual of AdS{sub 3}×S{sup 3}×T{sup 4} supported with Ramond flux.

  12. Deforming tachyon kinks and tachyon potentials

    International Nuclear Information System (INIS)

    Afonso, Victor I.; Bazeia, Dionisio; Brito, Francisco A.

    2006-01-01

    In this paper we investigate deformation of tachyon potentials and tachyon kink solutions. We consider the deformation of a DBI type action with gauge and tachyon fields living on D1-brane and D3-brane world-volume. We deform tachyon potentials to get other consistent tachyon potentials by using properly a deformation function depending on the gauge field components. Resolutions of singular tachyon kinks via deformation and applications of deformed tachyon potentials to scalar cosmology scenario are discussed

  13. Deformation of Taiwan from Continuous GPS Monitoring

    Science.gov (United States)

    Wu, F. T.; Kuo, L.; Kuo-Chen, H.

    2007-12-01

    As of 2006 there are more than 290 continuously recording GPS stations(1,2) now in and around Taiwan and its surrounding islands. We have determined horizontal and vertical velocity vectors, the areal strain rate, the shear strain rate and the volume strain rate. Because of the rapid convergence of Eurasian plate with the Philippine Sea plate (PSP) near Taiwan the trend in the GPS displacement time series is large enough to derive the above- mentioned quantities on a yearly basis and thus track their changes as a function of time. In the following discussions we shall use the Penghu island station (S01R) as reference when relevant. The overall patterns of the velocity vectors in Taiwan reflect the geometry of the plate convergence that created Taiwan. In the mature collision zone of central Taiwan, situated on the Eurasian plate, the velocities are largest on the eastern side and decreases toward the west to very small values in the Coastal Plain. In the south the western side of the Hengchun Peninsula is still moving westward or southwestward at about 50 mm/yr, apparently as a part of the PSP. In general, in central and northern Taiwan, the velocity vectors are oriented WNW but north of about 24ON the velocities become very slow because the PSP has subducted toward the north near that latitude so the collision takes place at depth and the deformation on the surface becomes small. The areal strain rate patterns derived from the horizontal velocities show that although much of Taiwan is under compression, two areas consistently show dilatation: one along the high Central Range and the other one in the northeast coastal area south of Ilan. In the Central Range the dilatation is probably related to the building of the mountain range and in the northeast the subduction of the PSP leaves the top portion a "free boundary". Although the noise level of the vertical time series is about 3 times higher than the corresponding horizontal measurements the continuous data show

  14. Energy and centrality dependence of dN{sub ch}/dη and dE{sub T}/dη in heavy-ion collisions from √(s{sub NN}) = 7.7 GeV to 5.02 TeV

    Energy Technology Data Exchange (ETDEWEB)

    Nath Mishra, Aditya; Sahoo, Raghunath; Sahoo, Pragati; Pareek, Pooja; Behera, Nirbhay K. [Indian Institute of Technology Indore, Discipline of Physics, School of Basic Sciences, Indore (India); Nandi, Basanta K. [Indian Institute of Technology Bombay, Department of Physics, Mumbai (India)

    2016-10-15

    The centrality dependence of pseudorapidity density of charged particles and transverse energy is studied for a wide range of collision energies for heavy-ion collisions at midrapidity from 7.7 GeV to 5.02TeV. A two-component model approach has been adopted to quantify the soft and hard components of particle production, coming from nucleon participants and binary nucleon-nucleon collisions, respectively. Within experimental uncertainties, the hard component contributing to the particle production has been found not to show any clear collision energy dependence from RHIC to LHC. The effect of centrality and collision energy in particle production seems to factor out with some degree of dependency on the collision species. The collision of uranium-like deformed nuclei opens up new challenges in understanding the energy-centrality factorization, which is evident from the centrality dependence of transverse energy density, when compared to collision of symmetric nuclei. (orig.)

  15. Cenozoic intracontinental deformation of the Kopeh Dagh Belt, Northeastern Iran

    Science.gov (United States)

    Chu, Yang; Wan, Bo; Chen, Ling; Talebian, Morteza

    2016-04-01

    Compressional intracontinental orogens represent large tectonic zones far from plate boundaries. Since intracontinental mountain belts cannot be framed in the conventional plate tectonics theory, several hypotheses have been proposed to account for the formations of these mountain belts. The far-field effect of collision/subduction at plate margins is now well accepted for the origin and evolution of the intracontinental crust thickening, as exemplified by the Miocene tectonics of central Asia. In northern Iran, the Binalud-Alborz mountain belt witnessed the Triassic tectonothermal events (Cimmerian orogeny), which are interpreted as the result of the Paleotethys Ocean closure between the Eurasia and Central Iran blocks. The Kopeh Dagh Belt, located to the north of the Binalud-Alborz Belt, has experienced two significant tectonic phases: (1) Jurassic to Eocene rifting with more than 7 km of sediments; and (2) Late Eocene-Early Oligocene to Quaternary continuous compression. Due to the high seismicity, deformation associated with earthquakes has received more and more attention; however, the deformation pattern and architecture of this range remain poorly understood. Detailed field observations on the Cenozoic deformation indicate that the Kopeh Dagh Belt can be divided into a western zone and an eastern zone, separated by a series of dextral strike-slip faults, i.e. the Bakharden-Quchan Fault System. The eastern zone characterized by km-scale box-fold structures, associated with southwest-dipping reverse faults and top-to-the NE kinematics. In contrast, the western zone shows top-to-the SW kinematics, and the deformation intensifies from NE to SW. In the northern part of this zone, large-scale asymmetrical anticlines exhibit SW-directed vergence with subordinate thrusts and folds, whereas symmetrical anticlines are observed in the southern part. In regard to its tectonic feature, the Kopeh Dagh Belt is a typical Cenozoic intracontinental belt without ophiolites or

  16. Polarized Proton Collisions at RHIC

    CERN Document Server

    Bai, Mei; Alekseev, Igor G; Alessi, James; Beebe-Wang, Joanne; Blaskiewicz, Michael; Bravar, Alessandro; Brennan, Joseph M; Bruno, Donald; Bunce, Gerry; Butler, John J; Cameron, Peter; Connolly, Roger; De Long, Joseph; Drees, Angelika; Fischer, Wolfram; Ganetis, George; Gardner, Chris J; Glenn, Joseph; Hayes, Thomas; Hseuh Hsiao Chaun; Huang, Haixin; Ingrassia, Peter; Iriso, Ubaldo; Laster, Jonathan S; Lee, Roger C; Luccio, Alfredo U; Luo, Yun; MacKay, William W; Makdisi, Yousef; Marr, Gregory J; Marusic, Al; McIntyre, Gary; Michnoff, Robert; Montag, Christoph; Morris, John; Nicoletti, Tony; Oddo, Peter; Oerter, Brian; Osamu, Jinnouchi; Pilat, Fulvia Caterina; Ptitsyn, Vadim; Roser, Thomas; Satogata, Todd; Smith, Kevin T; Svirida, Dima; Tepikian, Steven; Tomas, Rogelio; Trbojevic, Dejan; Tsoupas, Nicholaos; Tuozzolo, Joseph; Vetter, Kurt; Wilinski, Michelle; Zaltsman, Alex; Zelenski, Anatoli; Zeno, Keith; Zhang, S Y

    2005-01-01

    The Relativistic Heavy Ion Collider~(RHIC) provides not only collisions of ions but also collisions of polarized protons. In a circular accelerator, the polarization of polarized proton beam can be partially or fully lost when a spin depolarizing resonance is encountered. To preserve the beam polarization during acceleration, two full Siberian snakes were employed in RHIC to avoid depolarizing resonances. In 2003, polarized proton beams were accelerated to 100~GeV and collided in RHIC. Beams were brought into collisions with longitudinal polarization at the experiments STAR and PHENIX by using spin rotators. RHIC polarized proton run experience demonstrates that optimizing polarization transmission efficiency and improving luminosity performance are significant challenges. Currently, the luminosity lifetime in RHIC is limited by the beam-beam effect. The current state of RHIC polarized proton program, including its dedicated physics run in 2005 and efforts to optimize luminosity production in beam-beam limite...

  17. Nucleus behavior in violent collisions

    International Nuclear Information System (INIS)

    Lefort, M.; Galin, J.; Guerreau, D.

    1985-01-01

    Thanks to new heavy ion beams (Argon, Krypton...) accelerated at Ganil and Sara to velocities of about 0.2 to 0.5 times the light one, very violent collisions, between complex nuclei can be made. During peripheral collisions, the projectile is strongly heated in '' wearing away'' the target and follows its way at high velocity in loosing nucleons. Resulting fragments can present themselves as nuclei very different from usual stable nuclei, often at existence limit. In more central collisions, the energy transferred is such that fusion of both leads to a new type of very hot nucleus near the immediate boiling. Another existence limit is reached by this way: where the bound nucleon system tend to become nucleon gas or a bulk of little fragments [fr

  18. Semiholography for heavy ion collisions

    CERN Document Server

    Mukhopadhyay, Ayan

    2017-01-01

    The formation of QGP in heavy ion collisions gives us a great opportunity for learning about nonperturbative dynamics of QCD. Semiholography provides a new consistent framework to combine perturbative and non-perturbative effects in a coherent way and can be applied to obtain an effective description for heavy ion collisions. In particular, it allows us to include nonperturbative effects in existing glasma effective theory and QCD kinetic theory for the weakly coupled saturated degrees of freedom liberated by the collisions in the initial stages in a consistent manner. We argue why the full framework should be able to confront experiments with only a few phenomenological parameters and present feasibility tests for the necessary numerical computations. Furthermore, we discuss that semiholography leads to a new description of collective flow in the form of a generalised non-Newtonian fluid. We discuss some open questions which we hope to answer in the near future.

  19. QCD in heavy ion collisions

    CERN Document Server

    Iancu, Edmond

    2014-04-10

    These lectures provide a modern introduction to selected topics in the physics of ultrarelativistic heavy ion collisions which shed light on the fundamental theory of strong interactions, the Quantum Chromodynamics. The emphasis is on the partonic forms of QCD matter which exist in the early and intermediate stages of a collision -- the colour glass condensate, the glasma, and the quark-gluon plasma -- and on the effective theories that are used for their description. These theories provide qualitative and even quantitative insight into a wealth of remarkable phenomena observed in nucleus-nucleus or deuteron-nucleus collisions at RHIC and/or the LHC, like the suppression of particle production and of azimuthal correlations at forward rapidities, the energy and centrality dependence of the multiplicities, the ridge effect, the limiting fragmentation, the jet quenching, or the dijet asymmetry.

  20. Cold molecules, collisions and reactions

    Science.gov (United States)

    Hecker Denschlag, Johannes

    2016-05-01

    I will report on recent experiments of my group where we have been studying the formation of ultracold diatomic molecules and their subsequent inelastic/reactive collisions. For example, in one of these experiments we investigate collisions of triplet Rb2 molecules in the rovibrational ground state. We observe fast molecular loss and compare the measured loss rates to predictions based on universality. In another set of experiments we investigate the formation of (BaRb)+ molecules after three-body recombination of a single Ba+ ion with two Rb atoms in an ultracold gas of Rb atoms. Our investigations indicate that the formed (BaRb)+ molecules are weakly bound and that several secondary processes take place ranging from photodissociation of the (BaRb)+ molecule to reactive collisions with Rb atoms. I will explain how we can experimentally distinguish these processes and what the typical reaction rates are. Support from the German Research foundation DFG and the European Community is acknowledged.

  1. Chewing simulation with a physically accurate deformable model.

    Science.gov (United States)

    Pascale, Andra Maria; Ruge, Sebastian; Hauth, Steffen; Kordaß, Bernd; Linsen, Lars

    2015-01-01

    Nowadays, CAD/CAM software is being used to compute the optimal shape and position of a new tooth model meant for a patient. With this possible future application in mind, we present in this article an independent and stand-alone interactive application that simulates the human chewing process and the deformation it produces in the food substrate. Chewing motion sensors are used to produce an accurate representation of the jaw movement. The substrate is represented by a deformable elastic model based on the finite linear elements method, which preserves physical accuracy. Collision detection based on spatial partitioning is used to calculate the forces that are acting on the deformable model. Based on the calculated information, geometry elements are added to the scene to enhance the information available for the user. The goal of the simulation is to present a complete scene to the dentist, highlighting the points where the teeth came into contact with the substrate and giving information about how much force acted at these points, which therefore makes it possible to indicate whether the tooth is being used incorrectly in the mastication process. Real-time interactivity is desired and achieved within limits, depending on the complexity of the employed geometric models. The presented simulation is a first step towards the overall project goal of interactively optimizing tooth position and shape under the investigation of a virtual chewing process using real patient data (Fig 1).

  2. Outreach Materials for the Collision Repair Campaign

    Science.gov (United States)

    The Collision Repair Campaign offers outreach materials to help collision repair shops reduce toxic air exposure. Materials include a DVD, poster, training video, and materials in Spanish (materiales del outreach en español).

  3. Non-linear elastic deformations

    CERN Document Server

    Ogden, R W

    1997-01-01

    Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.

  4. Anisotropic Ripple Deformation in Phosphorene.

    Science.gov (United States)

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng

    2015-05-07

    Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  5. Axisymmetric finite deformation membrane problems

    Energy Technology Data Exchange (ETDEWEB)

    Feng, W.W.

    1980-12-12

    Many biomechanic problems involve the analysis of finite deformation axisymmetric membranes. This paper presents the general formulation for solving a class of axisymmetric membrane problems. The material nonlinearity, as well as the geometric nonlinearity, is considered. Two methods are presented to solve these problems. The first method is solving a set of differential equilibrium equations. The governing equations are reduced to three first-order ordinary-differential equations with explicit derivatives. The second method is the Ritz method where a general potential energy functional valid for all axisymmetric deformed positions is presented. The geometric admissible functions that govern the deformed configuration are written in terms of a series with unknown coefficients. These unknown coefficients are determined by the minimum potential energy principle that of all geometric admissible deformed configurations, the equilibrium configuration minimizes the potential energy. Some examples are presented. A comparison between these two methods is mentioned.

  6. Deterritorializing Drawing - transformation/deformation

    DEFF Research Database (Denmark)

    Brabrand, Helle

    2012-01-01

    and deformation as two very different categories. Moves of transformation produce new places or singularities in a series, making a Figure emerge that switches between force and form and between transformation and deformation. Deformation is acted out by sensation, passing from one ‘order’ to another. Bacon...... deformation, about painting the sensation, which is essentially rhythm, making Figure-rhythm relations appear as vibrations that flow through the body - making resonance. Deleuze, with Bergson, argues that art extracts ’a little time in a pure state’ from the everyday repetitions, and thereby opens...... the capacity of the body to be affected by change. The everyday and the ceremonial body, the ordinary and the aberrant movement – these poles generate a passage rather than a difference from the one to the other: from attitude or position to gesture or kinaesthetic twist. Known from without through perception...

  7. Shape Deformations in Atomic Nuclei

    OpenAIRE

    Hamamoto, Ikuko; Mottelson, Ben R.

    2011-01-01

    The ground states of some nuclei are described by densities and mean fields that are spherical, while others are deformed. The existence of non-spherical shape in nuclei represents a spontaneous symmetry breaking.

  8. Nonlinear Deformable-body Dynamics

    CERN Document Server

    Luo, Albert C J

    2010-01-01

    "Nonlinear Deformable-body Dynamics" mainly consists in a mathematical treatise of approximate theories for thin deformable bodies, including cables, beams, rods, webs, membranes, plates, and shells. The intent of the book is to stimulate more research in the area of nonlinear deformable-body dynamics not only because of the unsolved theoretical puzzles it presents but also because of its wide spectrum of applications. For instance, the theories for soft webs and rod-reinforced soft structures can be applied to biomechanics for DNA and living tissues, and the nonlinear theory of deformable bodies, based on the Kirchhoff assumptions, is a special case discussed. This book can serve as a reference work for researchers and a textbook for senior and postgraduate students in physics, mathematics, engineering and biophysics. Dr. Albert C.J. Luo is a Professor of Mechanical Engineering at Southern Illinois University, Edwardsville, IL, USA. Professor Luo is an internationally recognized scientist in the field of non...

  9. M theory on deformed superspace

    Science.gov (United States)

    Faizal, Mir

    2011-11-01

    In this paper we will analyze a noncommutative deformation of the Aharony-Bergman-Jafferis-Maldacena (ABJM) theory in N=1 superspace formalism. We will then analyze the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetries for this deformed ABJM theory, and its linear as well as nonlinear gauges. We will show that the sum of the gauge fixing term and the ghost term for this deformed ABJM theory can be expressed as a combination of the total BRST and the total anti-BRST variation, in Landau and nonlinear gauges. We will show that in Landau and Curci-Ferrari gauges deformed ABJM theory is invariant under an additional set of symmetry transformations. We will also discuss the effect that the addition of a bare mass term has on this theory.

  10. Spectroscopic studies of hydrogen collisions

    International Nuclear Information System (INIS)

    Kielkopf, J.

    1991-01-01

    Low energy collisions involving neutral excited states of hydrogen are being studied with vacuum ultraviolet spectroscopy. Atomic hydrogen is generated by focusing an energetic pulse of ArF, KrF, or YAG laser light into a cell of molecular hydrogen, where a plasma is created near the focal point. The H 2 molecules in and near this region are dissociated, and the cooling atomic hydrogen gas is examined with laser and dispersive optical spectroscopy. In related experiments, we are also investigating neutral H + O and H + metal - atom collisions in these laser-generated plasmas

  11. Polygonal deformation bands in sandstone

    Science.gov (United States)

    Antonellini, Marco; Nella Mollema, Pauline

    2017-04-01

    We report for the first time the occurrence of polygonal faults in sandstone, which is compelling given that layer-bound polygonal fault systems have been observed so far only in fine-grained sediments such as clay and chalk. The polygonal faults are dm-wide zones of shear deformation bands that developed under shallow burial conditions in the lower portion of the Jurassic Entrada Fm (Utah, USA). The edges of the polygons are 1 to 5 meters long. The shear deformation bands are organized as conjugate faults along each edge of the polygon and form characteristic horst-like structures. The individual deformation bands have slip magnitudes ranging from a few mm to 1.5 cm; the cumulative average slip magnitude in a zone is up to 10 cm. The deformation bands heaves, in aggregate form, accommodate a small isotropic horizontal extension (strain Crosscutting relationships are rare. The interactions of the deformation bands are similar to those of mode I opening fractures. Density inversion, that takes place where under-compacted and over-pressurized layers (Carmel Fm) lay below normally compacted sediments (Entrada Sandstone), may be an important process for polygonal deformation bands formation. The gravitational sliding and soft sediment structures typically observed within the Carmel Fm support this hypothesis. Soft sediment deformation may induce polygonal faulting in the section of the Entrada Sandstone just above the Carmel Fm. The permeability of the polygonal deformation bands is approximately 10-14 to 10-13 m2, which is less than the permeability of the host, Entrada Sandstone (range 10-12 to 10-11 m2). The documented fault networks have important implications for evaluating the geometry of km-scale polygonal fault systems in the subsurface, top seal integrity, as well as constraining paleo-tectonic stress regimes.

  12. Unitary deformations of counterdiabatic driving

    Science.gov (United States)

    Takahashi, Kazutaka

    2015-04-01

    We study a deformation of the counterdiabatic-driving Hamiltonian as a systematic strategy for an adiabatic control of quantum states. Using a unitary transformation, we design a convenient form of the driver Hamiltonian. We apply the method to a particle in a confining potential and discrete systems to find explicit forms of the Hamiltonian and discuss the general properties. The method is derived by using the quantum brachistochrone equation, which shows the existence of a nontrivial dynamical invariant in the deformed system.

  13. High-energy ion-atom collisions

    International Nuclear Information System (INIS)

    Berenyi, Denes.

    1987-01-01

    The progress in energetic ion-atom collision studies is shown briefly on the basis of the Workshop in the field above held in Debrecen. The 'hot topics', namely 'two-center' and electron correlation phenomena, collisions with antiprotons, recent results on alignment and orientation in energetic heavy-ion collisions, autoionization electron studies in the meV region and the utilization of heavy-ion storage rings in ion-atom collision experiments are treated. (author) 4 figs

  14. Distraction-related road traffic collisions

    African Journals Online (AJOL)

    Abstract. Objectives: We aimed to prospectively study distraction-related road traffic collision injuries, their contributory factors, severity, and outcome. Methods: Data were prospectively collected on all hospitalized road traffic collision trauma patients in Al-Ain City who were drivers at the collision time over one and half years ...

  15. Photoinitiated collisions between cold Cs Rydberg atoms

    International Nuclear Information System (INIS)

    Overstreet, K. Richard; Schwettmann, Arne; Tallant, Jonathan; Shaffer, James P.

    2007-01-01

    Experimental studies of a photoinitiated collision in an ultracold Cs Rydberg gas are presented. The process is characterized by measuring the laser intensity dependence of the absorption, the number of particles leaving each collision, and the recoil velocity of the collision fragments. The results of the experiment are compared to ab initio Rydberg pair interaction potentials

  16. NA49: lead-lead collision

    CERN Multimedia

    1996-01-01

    This is an image of an actual lead ion collision taken from tracking detectors on the NA49 experiment, part of the heavy ion project at CERN. These collisions produce a very complicated array of hadrons as the heavy ions break up. It is hoped that one of these collisions will eventually create a new state of matter known as quark-gluon plasma.

  17. Collision Analysis for MS DEXTRA

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1999-01-01

    and grounding events have to be analysed and assessed.The present paper outlines such a rational procedure for evaluation of the probabilistic distribution of damages caused by collisions against other ships for a specific ship on a specific route.The work described in the paper constitutes a step towards...

  18. Cern collisions light up Copenhagen

    CERN Multimedia

    Banks, Michael

    2010-01-01

    "Anyone passing by the Niels Bohr Institute in Copenhagen, Denmark, might be startled by some strange moving lights on the facade of the institute's main building. In fact, the dancing beams show, almost in real time, collisions form the Atlas experiment at Cern's Large Hadron Collider (LHC)" (1 paragraph)

  19. Perspective on relativistic nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Glendenning, N.K.

    1979-05-01

    The importance of experiments detecting more than one particle is pointed out. The production of nuclei far from stability in peripheral collisions and the expectations for the explosive disassembly of dense nuclear matter (nuclear fireball) and some evidence for it are related. Pion interferometry concerns the measurement of correlations in the momentum and energy of two identical pions; the subject is discussed in relation to incoherent production, coherent production, partially coherent production, final-state interactions, impact parameter average, and outlook. Much of the paper deals with an assessment of the possibility of determining the form of the hadronic spectrum in the high-mass region through nuclear collisions at ultrarelativistic energies. The subject is developed under the following topics: perspective, the initial fireball, isoergic equilibrium expansion of the fireball, quasi-dynamical expansion, quark matter, and the mass degree of freedom. The quasi-dynamical model obtained indicates that certain parameters, such as the ..pi../N and K/N ratios at high kinetic energy, will survive the collision; therefore, a determination of the asymptotic form of the hadron spectrum probably can be made by studying nuclear collisions at very high energies (10 GeV/nucleon in the center of mass). 16 figures. (RWR)

  20. in heavy-ion collisions

    Indian Academy of Sciences (India)

    2015-05-06

    May 6, 2015 ... the 'Big Bang', and has now been (re-)created as the hottest matter ever in laboratory by heavy-ion collisions ('Little Bang') at the Relativistic Heavy Ion Collider (RHIC) as well as at the Large Hadron Collider (LHC). To experimentally measure and theoretically understand the various properties of the QGP ...

  1. Outer Dynamics of Ship Collisions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    1996-01-01

    The purpose of these notes is to present analysis procedures for the motion of ships during ship-ship collisions and for ship collisons with offshore structures. The aim is to estimate that part of the lost kinetic energy which will have to be absorbed by rupture and plastic damage of the colliding...

  2. Deformed configurations, band structures and spectroscopic ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... The deformed configurations and rotational band structures in =50 Ge and Se nuclei are studied by deformed Hartree–Fock with quadrupole constraint and angular momentum projection. Apart from the `almost' spherical HF solution, a well-deformed configuration occurs at low excitation. A deformed ...

  3. Associative and Lie deformations of Poisson algebras

    OpenAIRE

    Remm, Elisabeth

    2011-01-01

    Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.

  4. Bilateral cleft lip nasal deformity

    Directory of Open Access Journals (Sweden)

    Singh Arun

    2009-01-01

    Full Text Available Bilateral cleft lip nose deformity is a multi-factorial and complex deformity which tends to aggravate with growth of the child, if not attended surgically. The goals of primary bilateral cleft lip nose surgery are, closure of the nasal floor and sill, lengthening of the columella, repositioning of the alar base, achieving nasal tip projection, repositioning of the lower lateral cartilages, and reorienting the nares from horizontal to oblique position. The multiplicity of procedures in the literature for correction of this deformity alludes to the fact that no single procedure is entirely effective. The timing for surgical intervention and its extent varies considerably. Early surgery on cartilage may adversely affect growth and development; at the same time, allowing the cartilage to grow in an abnormal position and contributing to aggravation of deformity. Some surgeons advocate correction of deformity at an early age. However, others like the cartilages to grow and mature before going in for surgery. With peer pressure also becoming an important consideration during the teens, the current trend is towards early intervention. There is no unanimity in the extent of nasal dissection to be done at the time of primary lip repair. While many perform limited nasal dissection for the fear of growth retardation, others opt for full cartilage correction at the time of primary surgery itself. The value of naso-alveolar moulding (NAM too is not universally accepted and has now more opponents than proponents. Also most centres in the developing world have neither the personnel nor the facilities for the same. The secondary cleft nasal deformity is variable and is affected by the extent of the original abnormality, any prior surgeries performed and alteration due to nasal growth. This article reviews the currently popular methods for correction of nasal deformity associated with bilateral cleft lip, it′s management both at the time of cleft lip repair

  5. Insight into collision zone dynamics from topography: numerical modelling results and observations

    Directory of Open Access Journals (Sweden)

    A. D. Bottrill

    2012-11-01

    Full Text Available Dynamic models of subduction and continental collision are used to predict dynamic topography changes on the overriding plate. The modelling results show a distinct evolution of topography on the overriding plate, during subduction, continental collision and slab break-off. A prominent topographic feature is a temporary (few Myrs basin on the overriding plate after initial collision. This "collisional mantle dynamic basin" (CMDB is caused by slab steepening drawing, material away from the base of the overriding plate. Also, during this initial collision phase, surface uplift is predicted on the overriding plate between the suture zone and the CMDB, due to the subduction of buoyant continental material and its isostatic compensation. After slab detachment, redistribution of stresses and underplating of the overriding plate cause the uplift to spread further into the overriding plate. This topographic evolution fits the stratigraphy found on the overriding plate of the Arabia-Eurasia collision zone in Iran and south east Turkey. The sedimentary record from the overriding plate contains Upper Oligocene-Lower Miocene marine carbonates deposited between terrestrial clastic sedimentary rocks, in units such as the Qom Formation and its lateral equivalents. This stratigraphy shows that during the Late Oligocene–Early Miocene the surface of the overriding plate sank below sea level before rising back above sea level, without major compressional deformation recorded in the same area. Our modelled topography changes fit well with this observed uplift and subsidence.

  6. Laser-assisted atom-atom collisions

    International Nuclear Information System (INIS)

    Roussel, F.

    1984-01-01

    The basic layer-assisted atom-atom collision processes are reviewed in order to get a simpler picture of the main physical facts. The processes can be separated into two groups: optical collisions where only one atom is changing state during the collision, the other acting as a spectator atom, and radiative collisions where the states of the two atoms are changing during the collision. All the processes can be interpreted in terms of photoexcitation of the quasimolecule formed during the collisional process. (author)

  7. Plastic deformation of indium nanostructures

    International Nuclear Information System (INIS)

    Lee, Gyuhyon; Kim, Ju-Young; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2011-01-01

    Highlights: → Indium nanopillars display two different deformation mechanisms. → ∼80% exhibited low flow stresses near that of bulk indium. → Low strength nanopillars have strain rate sensitivity similar to bulk indium. → ∼20% of compressed indium nanopillars deformed at nearly theoretical strengths. → Low-strength samples do not exhibit strength size effects. - Abstract: Mechanical properties and morphology of cylindrical indium nanopillars, fabricated by electron beam lithography and electroplating, are characterized in uniaxial compression. Time-dependent deformation and influence of size on nanoscale indium mechanical properties were investigated. The results show two fundamentally different deformation mechanisms which govern plasticity in these indium nanostructures. We observed that the majority of indium nanopillars deform at engineering stresses near the bulk values (Type I), with a small fraction sustaining flow stresses approaching the theoretical limit for indium (Type II). The results also show the strain rate sensitivity and flow stresses in Type I indium nanopillars are similar to bulk indium with no apparent size effects.

  8. Static response of deformable microchannels

    Science.gov (United States)

    Christov, Ivan C.; Sidhore, Tanmay C.

    2017-11-01

    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  9. Making Deformable Template Models Operational

    DEFF Research Database (Denmark)

    Fisker, Rune

    2000-01-01

    for estimation of the model parameters, which applies a combination of a maximum likelihood and minimum distance criterion. Another contribution is a very fast search based initialization algorithm using a filter interpretation of the likelihood model. These two methods can be applied to most deformable template......Deformable template models are a very popular and powerful tool within the field of image processing and computer vision. This thesis treats this type of models extensively with special focus on handling their common difficulties, i.e. model parameter selection, initialization and optimization....... A proper handling of the common difficulties is essential for making the models operational by a non-expert user, which is a requirement for intensifying and commercializing the use of deformable template models. The thesis is organized as a collection of the most important articles, which has been...

  10. Foam rheology at large deformation

    Science.gov (United States)

    Géminard, J.-C.; Pastenes, J. C.; Melo, F.

    2018-04-01

    Large deformations are prone to cause irreversible changes in materials structure, generally leading to either material hardening or softening. Aqueous foam is a metastable disordered structure of densely packed gas bubbles. We report on the mechanical response of a foam layer subjected to quasistatic periodic shear at large amplitude. We observe that, upon increasing shear, the shear stress follows a universal curve that is nearly exponential and tends to an asymptotic stress value interpreted as the critical yield stress at which the foam structure is completely remodeled. Relevant trends of the foam mechanical response to cycling are mathematically reproduced through a simple law accounting for the amount of plastic deformation upon increasing stress. This view provides a natural interpretation to stress hardening in foams, demonstrating that plastic effects are present in this material even for minute deformation.

  11. 3-D Numerical Modelling of Oblique Continental Collisions with ASPECT

    Science.gov (United States)

    Karatun, L.; Pysklywec, R.

    2017-12-01

    Among the fundamental types of tectonic plate boundaries, continent-continent collision is least well understood. Deformation of the upper and middle crustal layers can be inferred from surface structures and geophysical imaging, but the fate of lower crustal rocks and mantle lithosphere is not well resolved. Previous research suggests that shortening of mantle lithosphere generally may be occurring by either: 1) a distributed thickening with a formation of a Raleigh-Tailor (RT) type instability (possibly accompanied with lithospheric folding); or 2) plate-like subduction, which can be one- or two-sided, with or without delamination and slab break-off; a combination of both could be taking place too. 3-D features of the orogens such as along-trench material transfer, bounding subduction zones can influence the evolution of the collision zone significantly. The current study was inspired by South Island of New Zealand - a young collision system where a block of continental crust is being shortened by the relative Australian-Pacific plate motion. The collision segment of the plate boundary is relatively small ( 800 km), and is bounded by oppositely verging subduction zones to the North and South. Here, we present results of 3-D forward numerical modelling of continental collision to investigate some of these processes. To conduct the simulations, we used ASPECT - a highly parallel community-developed code based on the Finite Element method. Model setup for three different sets of models featured 2-D vertical across strike, 3-D with periodic front and back walls, and 3-D with open front and back walls, with velocities prescribed on the left and right faces. We explored the importance of values of convergent velocity, strike-slip velocity and their ratio, which defines the resulting velocity direction relative to the plate boundary (obliquity). We found that higher strike-slip motion promotes strain localization, weakens the lithosphere close to the plate boundary and

  12. Computing layouts with deformable templates

    KAUST Repository

    Peng, Chi-Han

    2014-07-22

    In this paper, we tackle the problem of tiling a domain with a set of deformable templates. A valid solution to this problem completely covers the domain with templates such that the templates do not overlap. We generalize existing specialized solutions and formulate a general layout problem by modeling important constraints and admissible template deformations. Our main idea is to break the layout algorithm into two steps: a discrete step to lay out the approximate template positions and a continuous step to refine the template shapes. Our approach is suitable for a large class of applications, including floorplans, urban layouts, and arts and design. Copyright © ACM.

  13. Head-on collision of drops: A numerical investigation

    Science.gov (United States)

    Nobari, M. R.; Jan, Y.-J.; Tryggvason, G.

    1993-01-01

    The head-on collision of equal sized drops is studied by full numerical simulations. The Navier-Stokes equations are solved for fluid motion both inside and outside the drops using a front tracking/finite difference technique. The drops are accelerated toward each other by a body force that is turned off before the drops collide. When the drops collide, the fluid between them is pushed outward leaving a thin later bounded by the drop surface. This layer gets progressively thinner as the drops continue to deform and in several of the calculations this double layer is artificially removed once it is thin enough, thus modeling rupture. If no rupture takes place, the drops always rebound, but if the film is ruptured the drops may coalesce permanently or coalesce temporarily and then split again.

  14. Hard probes in heavy ion collisions at the LHC: PDFs, shadowing and $pA$ collisions

    CERN Document Server

    Accardi, Alberto; Botje, M.; Brodsky, S.J.; Cole, B.; Eskola, K.J.; Fai, George I.; Frankfurt, L.; Fries, R.J.; Geist, Walter M.; Guzey, V.; Honkanen, H.; Kolhinen, V.J.; Kovchegov, Yu.V.; McDermott, M.; Morsch, A.; Qiu, Jian-wei; Salgado, C.A.; Strikman, M.; Takai, H.; Tapprogge, S.; Vogt, R.; Zhang, X.f.

    2003-01-01

    This manuscript is the outcome of the subgroup ``PDFs, shadowing and $pA$ collisions'' from the CERN workshop ``Hard Probes in Heavy Ion Collisions at the LHC''. In addition to the experimental parameters for $pA$ collisions at the LHC, the issues discussed are factorization in nuclear collisions, nuclear parton distributions (nPDFs), hard probes as the benchmark tests of factorization in $pA$ collisions at the LHC, and semi-hard probes as observables with potentially large nuclear effects. Also, novel QCD phenomena in $pA$ collisions at the LHC are considered. The importance of the $pA$ program at the LHC is emphasized.

  15. Polycrystal deformation and single crystal deformation: Dislocation structure and flow stress in copper

    DEFF Research Database (Denmark)

    Huang, X.; Borrego, A.; Pantleon, W.

    2001-01-01

    The relation between the polycrystal deformation and single crystal deformation has been studied for pure polycrystalline copper deformed in tension. The dislocation microstructure has been analyzed for grains of different orientation by transmission electron microscopy (TEM) and three types...

  16. Continental collision slowing due to viscous mantle lithosphere rather than topography.

    Science.gov (United States)

    Clark, Marin Kristen

    2012-02-29

    Because the inertia of tectonic plates is negligible, plate velocities result from the balance of forces acting at plate margins and along their base. Observations of past plate motion derived from marine magnetic anomalies provide evidence of how continental deformation may contribute to plate driving forces. A decrease in convergence rate at the inception of continental collision is expected because of the greater buoyancy of continental than oceanic lithosphere, but post-collisional rates are less well understood. Slowing of convergence has generally been attributed to the development of high topography that further resists convergent motion; however, the role of deforming continental mantle lithosphere on plate motions has not previously been considered. Here I show that the rate of India's penetration into Eurasia has decreased exponentially since their collision. The exponential decrease in convergence rate suggests that contractional strain across Tibet has been constant throughout the collision at a rate of 7.03 × 10(-16) s(-1), which matches the current rate. A constant bulk strain rate of the orogen suggests that convergent motion is resisted by constant average stress (constant force) applied to a relatively uniform layer or interface at depth. This finding follows new evidence that the mantle lithosphere beneath Tibet is intact, which supports the interpretation that the long-term strain history of Tibet reflects deformation of the mantle lithosphere. Under conditions of constant stress and strength, the deforming continental lithosphere creates a type of viscous resistance that affects plate motion irrespective of how topography evolved.

  17. Deformations of the Almheiri-Polchinski model

    Energy Technology Data Exchange (ETDEWEB)

    Kyono, Hideki; Okumura, Suguru; Yoshida, Kentaroh [Department of Physics, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan)

    2017-03-31

    We study deformations of the Almheiri-Polchinski (AP) model by employing the Yang-Baxter deformation technique. The general deformed AdS{sub 2} metric becomes a solution of a deformed AP model. In particular, the dilaton potential is deformed from a simple quadratic form to a hyperbolic function-type potential similarly to integrable deformations. A specific solution is a deformed black hole solution. Because the deformation makes the spacetime structure around the boundary change drastically and a new naked singularity appears, the holographic interpretation is far from trivial. The Hawking temperature is the same as the undeformed case but the Bekenstein-Hawking entropy is modified due to the deformation. This entropy can also be reproduced by evaluating the renormalized stress tensor with an appropriate counter-term on the regularized screen close to the singularity.

  18. Electron collisions in gas switches

    International Nuclear Information System (INIS)

    Christophorou, L.G.

    1989-01-01

    Many technologies rely on the conduction/insulation properties of gaseous matter for their successful operation. Many others (e.g., pulsed power technologies) rely on the rapid change (switching or modulation) of the properties of gaseous matter from an insulator to a conductor and vice versa. Studies of electron collision processes in gases aided the development of pulsed power gas switches, and in this paper we shall briefly illustrate the kind of knowledge on electron collision processes which is needed to optimize the performance of such switching devices. To this end, we shall refer to three types of gas switches: spark gap closing, self-sustained diffuse discharge closing, and externally-sustained diffuse discharge opening. 24 refs., 15 figs., 2 tabs

  19. Chirality in molecular collision dynamics

    Science.gov (United States)

    Lombardi, Andrea; Palazzetti, Federico

    2018-02-01

    Chirality is a phenomenon that permeates the natural world, with implications for atomic and molecular physics, for fundamental forces and for the mechanisms at the origin of the early evolution of life and biomolecular homochirality. The manifestations of chirality in chemistry and biochemistry are numerous, the striking ones being chiral recognition and asymmetric synthesis with important applications in molecular sciences and in industrial and pharmaceutical chemistry. Chiral discrimination phenomena, due to the existence of two enantiomeric forms, very well known in the case of interaction with light, but still nearly disregarded in molecular collision studies. Here we review some ideas and recent advances about the role of chirality in molecular collisions, designing and illustrating molecular beam experiments for the demonstration of chiral effects and suggesting a scenario for a stereo-directional origin of chiral selection.

  20. Electron collisions with ethylene oxide

    International Nuclear Information System (INIS)

    Freitas, T C; Bettega, M H F

    2009-01-01

    We present elastic cross sections for electron collisions with ethylene oxide. Our results compare well in shape with the experimental total cross section obtained by Szmytkowski et al.. We found a shape resonance at around 5 eV, which is in agreement with the observations of Allan and Andric and Szmytkowski et al.. Allan and Andric reported another low energy shape resonance which is not present in our results.

  1. Electron collisions with ethylene oxide

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, T C; Bettega, M H F, E-mail: tcf03@fisica.ufpr.b, E-mail: bettega@fisica.ufpr.b [Departamento de Fisica, Universidade Federal do Parana, CP 19044, 81531-990 Curitiba, Parana (Brazil)

    2009-11-01

    We present elastic cross sections for electron collisions with ethylene oxide. Our results compare well in shape with the experimental total cross section obtained by Szmytkowski et al.. We found a shape resonance at around 5 eV, which is in agreement with the observations of Allan and Andric and Szmytkowski et al.. Allan and Andric reported another low energy shape resonance which is not present in our results.

  2. Collision entropy and optimal uncertainty

    OpenAIRE

    Bosyk, G. M.; Portesi, M.; Plastino, A.

    2011-01-01

    We propose an alternative measure of quantum uncertainty for pairs of arbitrary observables in the 2-dimensional case, in terms of collision entropies. We derive the optimal lower bound for this entropic uncertainty relation, which results in an analytic function of the overlap of the corresponding eigenbases. Besides, we obtain the minimum uncertainty states. We compare our relation with other formulations of the uncertainty principle.

  3. QCD studies in ep collisions

    Energy Technology Data Exchange (ETDEWEB)

    Smith, W.H. [Univ. of Wisconsin, Madison, WI (United States). Physics Dept.

    1997-06-01

    These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F{sub 2}, which is used to determine the gluon momentum distribution. Both low and high Q{sup 2} regimes are discussed. The low Q{sup 2} transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure {alpha}{sub s}, and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs.

  4. QCD studies in ep collisions

    International Nuclear Information System (INIS)

    Smith, W.H.

    1997-01-01

    These lectures describe QCD physics studies over the period 1992--1996 from data taken with collisions of 27 GeV electrons and positrons with 820 GeV protons at the HERA collider at DESY by the two general-purpose detectors H1 and ZEUS. The focus of these lectures is on structure functions and jet production in deep inelastic scattering, photoproduction, and diffraction. The topics covered start with a general introduction to HERA and ep scattering. Structure functions are discussed. This includes the parton model, scaling violation, and the extraction of F 2 , which is used to determine the gluon momentum distribution. Both low and high Q 2 regimes are discussed. The low Q 2 transition from perturbative QCD to soft hadronic physics is examined. Jet production in deep inelastic scattering to measure α s , and in photoproduction to study resolved and direct photoproduction, is also presented. This is followed by a discussion of diffraction that begins with a general introduction to diffraction in hadronic collisions and its relation to ep collisions, and moves on to deep inelastic scattering, where the structure of diffractive exchange is studied, and in photoproduction, where dijet production provides insights into the structure of the Pomeron. 95 refs., 39 figs

  5. Micro pit formation by mercury-sphere collision

    International Nuclear Information System (INIS)

    Ishikura, Syuichi; Kogawa, Hiroyuki; Futakawa, Masatoshi; Kaminaga, Masanori; Hino, Ryutaro

    2004-01-01

    The development of a MW-class spallation neutron source facility is being carried out under the Japan Proton Accelerator Research Complex (J-PARC) Project promoted by JAERI and KEK. A mercury target working as the spallation neutron source will be subjected to pressure waves generated by rapid thermal expansion of mercury due to a pulsed proton beam injection. The pressure wave will impose dynamic stress on the vessel and deform the vessel, which would cause cavitation in mercury. To evaluate the effect of mercury micro jets, driven by cavitation bubble collapse, on the micro-pit formation, analyses on mercury sphere collision were carried out: single bubble dynamics and collision behavior on interface between liquid and solid, which take the nonlinearity due to shock wave in mercury and the strain rate dependency of yield stress in solid metal into account. Analytical results give a good explanation to understand relationship between the micro-pit formation and material properties: the pit size could decrease with increasing the yield strength of materials. (author)

  6. Spatiotemporal deformations of reflectionless potentials

    Science.gov (United States)

    Horsley, S. A. R.; Longhi, S.

    2017-08-01

    Reflectionless potentials for classical or matter waves represent an important class of scatteringless systems encountered in different areas of physics. Here we mathematically demonstrate that there is a family of non-Hermitian potentials that, in contrast to their Hermitian counterparts, remain reflectionless even when deformed in space or time. These are the profiles that satisfy the spatial Kramers-Kronig relations. We start by considering scattering of matter waves for the Schrödinger equation with an external field, where a moving potential is observed in the Kramers-Henneberger reference frame. We then generalize this result to the case of electromagnetic waves, by considering a slab of reflectionless material that both is scaled and has its center displaced as an arbitrary function of position. We analytically and numerically demonstrate that the backscattering from these profiles remains zero, even for extreme deformations. Our results indicate the supremacy of non-Hermitian Kramers-Kronig potentials over reflectionless Hermitian potentials in keeping their reflectionless property under deformation and could find applications to, e.g., reflectionless optical coatings of highly deformed surfaces based on perfect absorption.

  7. Deformable Models for Eye Tracking

    DEFF Research Database (Denmark)

    Vester-Christensen, Martin; Leimberg, Denis; Ersbøll, Bjarne Kjær

    2005-01-01

    A deformable template method for eye tracking on full face images is presented. The strengths of the method are that it is fast and retains accuracy independently of the resolution. We compare the me\\$\\backslash\\$-thod with a state of the art active contour approach, showing that the heuristic...

  8. Simulation of rock deformation behavior

    Directory of Open Access Journals (Sweden)

    Я. И. Рудаев

    2016-12-01

    Full Text Available A task of simulating the deformation behavior of geomaterials under compression with account of over-extreme branch has been addressed. The physical nature of rock properties variability as initially inhomogeneous material is explained by superposition of deformation and structural transformations of evolutionary type within open nonequilibrium systems. Due to this the description of deformation and failure of rock is related to hierarchy of instabilities within the system being far from thermodynamic equilibrium. It is generally recognized, that the energy function of the current stress-strain state is a superposition of potential component and disturbance, which includes the imperfection parameter accounting for defects not only existing in the initial state, but also appearing under load. The equation of state has been obtained by minimizing the energy function by the order parameter. The imperfection parameter is expressed through the strength deterioration, which is viewed as the internal parameter of state. The evolution of strength deterioration has been studied with the help of Fokker – Planck equation, which steady form corresponds to rock statical stressing. Here the diffusion coefficient is assumed to be constant, while the function reflecting internal sliding and loosening of the geomaterials is assumed as an antigradient of elementary integration catastrophe. Thus the equation of state is supplemented with a correlation establishing relationship between parameters of imperfection and strength deterioration. While deformation process is identified with the change of dissipative media, coupled with irreversible structural fluctuations. Theoretical studies are proven with experimental data obtained by subjecting certain rock specimens to compression.

  9. Cleft deformities (lip and palate)

    African Journals Online (AJOL)

    dell

    Background: Cleft deformities (lip and palate) have been reported to be the most common congenital craniofacial anomaly in several settings. In Uganda, though two previous studies were conducted to determine the incidence of cleft lip and palate, the estimates obtained from those studies may not be precise given the ...

  10. Deformations of topological open strings

    NARCIS (Netherlands)

    Hofman, C.; Ma, Whee Ky

    Deformations of topological open string theories are described, with an emphasis on their algebraic structure. They are encoded in the mixed bulk-boundary correlators. They constitute the Hochschild complex of the open string algebra - the complex of multilinear maps on the boundary Hilbert space.

  11. Electron capture in ion-molecule collisions at intermediate energy

    International Nuclear Information System (INIS)

    Kumura, M.

    1986-01-01

    Recent progress of theoretical charge transfer study in ion-molecule collisions at the intermediate energy is reviewed. Concept of close and distant collisions obtained from extensive ion-atom collision studies is identified so that it can be utilized to model two distinct collision processes. For a close collision, explicit representation of the whole collision complex is necessary to describe collision dynamics correctly, while a model potential approach for molecule is appropriate for a distant collision. It is shown that these two distinct models are indeed capable of reproducing experimental charge transfer cross sections. Some remarks for further theoretical study of ion-molecule collisions are also given. 21 refs., 8 figs

  12. Deformation mechanisms of nanotwinned Al

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinghang [Texas A & M Univ., College Station, TX (United States)

    2016-11-10

    The objective of this project is to investigate the role of different types of layer interfaces on the formation of high density stacking fault (SF) in Al in Al/fcc multilayers, and understand the corresponding deformation mechanisms of the films. Stacking faults or twins can be intentionally introduced (via growth) into certain fcc metals with low stacking fault energy (such as Cu, Ag and 330 stainless steels) to achieve high strength, high ductility, superior thermal stability and good electrical conductivity. However it is still a major challenge to synthesize these types of defects into metals with high stacking fault energy, such as Al. Although deformation twins have been observed in some nanocrystalline Al powders by low temperature, high strain rate cryomilling or in Al at the edge of crack tip or indentation (with the assistance of high stress intensity factor), these deformation techniques typically introduce twins sporadically and the control of deformation twin density in Al is still not feasible. This project is designed to test the following hypotheses: (1) Certain type of layer interfaces may assist the formation of SF in Al, (2) Al with high density SF may have deformation mechanisms drastically different from those of coarse-grained Al and nanotwinned Cu. To test these hypotheses, we have performed the following tasks: (i) Investigate the influence of layer interfaces, stresses and deposition parameters on the formation and density of SF in Al. (ii) Understand the role of SF on the deformation behavior of Al. In situ nanoindentation experiments will be performed to probe deformation mechanisms in Al. The major findings related to the formation mechanism of twins and mechanical behavior of nanotwinned metals include the followings: 1) Our studies show that nanotwins can be introduced into metals with high stacking fault energy, in drastic contrast to the general anticipation. 2) We show two strategies that can effectively introduce growth twins in

  13. Treatment of hallux valgus deformity.

    Science.gov (United States)

    Fraissler, Lukas; Konrads, Christian; Hoberg, Maik; Rudert, Maximilian; Walcher, Matthias

    2016-08-01

    Hallux valgus deformity is a very common pathological condition which commonly produces painful disability. It is characterised as a combined deformity with a malpositioning of the first metatarsophalangeal joint caused by a lateral deviation of the great toe and a medial deviation of the first metatarsal bone.Taking the patient's history and a thorough physical examination are important steps. Anteroposterior and lateral weight-bearing radiographs of the entire foot are crucial for adequate assessment in the treatment of hallux valgus.Non-operative treatment of the hallux valgus cannot correct the deformity. However, insoles and physiotherapy in combination with good footwear can help to control the symptoms.There are many operative techniques for hallux valgus correction. The decision on which surgical technique is used depends on the degree of deformity, the extent of degenerative changes of the first metatarsophalangeal joint and the shape and size of the metatarsal bone and phalangeal deviation. The role of stability of the first tarsometatarsal joint is controversial.Surgical techniques include the modified McBride procedure, distal metatarsal osteotomies, metatarsal shaft osteotomies, the Akin osteotomy, proximal metatarsal osteotomies, the modified Lapidus fusion and the hallux joint fusion. Recently, minimally invasive percutaneous techniques have gained importance and are currently being evaluated more scientifically.Hallux valgus correction is followed by corrective dressings of the great toe post-operatively. Depending on the procedure, partial or full weight-bearing in a post-operative shoe or cast immobilisation is advised. Post-operative radiographs are taken in regular intervals until osseous healing is achieved. Cite this article: Fraissler L, Konrads C, Hoberg M, Rudert M, Walcher M. Treatment of hallux valgus deformity. EFORT Open Rev 2016;1:295-302. DOI: 10.1302/2058-5241.1.000005.

  14. Thorax deformity, joint hypermobility and anxiety disorder

    International Nuclear Information System (INIS)

    Gulsun, M.; Dumlu, K.; Erbas, M.; Yilmaz, Mehmet B.; Pinar, M.; Tonbul, M.; Celik, C.; Ozdemir, B.

    2007-01-01

    Objective was to evaluate the association between thorax deformities, panic disorder and joint hypermobility. The study includes 52 males diagnosed with thorax deformity, and 40 healthy male controls without thorax deformity, in Tatvan Bitlis and Isparta, Turkey. The study was carried out from 2004 to 2006. The teleradiographic and thoracic lateral images of the subjects were evaluated to obtain the Beighton scores; subjects psychiatric conditions were evaluated using the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-1), and the Hamilton Anxiety Scale (HAM-A) was applied in order to determine the anxiety levels. Both the subjects and controls were compared in sociodemographic, anxiety levels and joint mobility levels. In addition, males with joint hypermobility and thorax deformity were compared to the group with thorax deformity without joint hypermobility. A significant difference in HAM-A scores was found between the groups with thorax deformity and without. In addition, 21 subjects with thorax deformity met the joint hypermobility criteria in the group with thorax deformity and 7 subjects without thorax deformity met the joint hypermobility criteria in the group without thorax deformity, according to Beighton scoring. The Beighton score of subjects with thorax deformity were significantly different from those of the group without deformity. Additionally, anxiety scores of the males with thorax deformity and joint hypermobility were found higher than males with thorax deformity without joint hypermobility. Anxiety disorders, particularly panic disorder, have a significantly higher distribution in males subjects with thorax deformity compared to the healthy control group. In addition, the anxiety level of males with thorax deformity and joint hypermobility is higher than males with thorax deformity without joint hypermobility. (author)

  15. The epidemiology of bicyclist's collision accidents

    DEFF Research Database (Denmark)

    Larsen, L. B.

    1994-01-01

    The number of bicyclists injured in the road traffic in collision accidents and treated at the emergency room at Odense University Hospital has increased 66% from 1980 to 1989. The aim of this study was to examine the epidemiology of bicyclist's collision accidents and identify risk groups...... of bicyclists and risk situations. The findings should make a basis for preventive programmes in order to decrease the number and severity of bicyclists collision accidents. Data from the emergency room in a 2 year period was combined with data from questionnaires. The study group consisted of 1021 bicyclists...... injured in collision accidents, and 1502 bicyclists injured in single accidents was used as a reference group. The young bicyclists 10-19 years of age had the highest incidence of injuries caused by collision accidents. The collision accidents had different characteristics according to counterpart. One...

  16. A Collective Collision Operator for DSMC

    International Nuclear Information System (INIS)

    Gallis, Michail A.; Torczynski, John R.

    2000-01-01

    A new scheme to simulate elastic collisions in particle simulation codes is presented. The new scheme aims at simulating the collisions in the highly collisional regime, in which particle simulation techniques typically become computationally expensive.The new scheme is based on the concept of a grid-based collision field. According to this scheme, the particles perform a single collision with the background grid during a time step. The properties of the background field are calculated from the moments of the distribution function accumulated on the grid. The collision operator is based on the Langevin equation. Based on comparisons with other methods, it is found that the Langevin method overestimates the collision frequency for dilute gases

  17. On Impact Mechanics in Ship Collisions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    The purpose of this paper is to present analytical, closed-form expressions for the energy released for crushing and the impact impulse during ship collisions. Ship-ship collisions, ship collisions with rigid walls and ship collisions with flexible offshore structures are considered. The derived...... mathematical models include friction at the contact point so that situation where the collision results in a sliding motion is included. Results obtained by application of the present procedure are compared with results obtained by time simulations and good agreement has been achieved. In addition, a number...... of illustrative examples are presented. The procedure presented in the paper is well suited for inclusion in a probabilistic calculation model for damage of ship structures due to collisions....

  18. On impact mechanics in ship collisions

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    The purpose of this paper is to present analytical, closed-form expressions for the energy released for crushing and the impact impulse during ship collisions. Ship–ship collisions, ship collisions with rigid walls and ship collisions with flexible offshore structures are considered. The derived...... mathematical models include friction at the contact point so that situation where the collision results in a sliding motion is included. Results obtained by application of the present procedure are compared with results obtained by time simulations and good agreement has been achieved. In addition, a number...... of illustrative examples are presented. The procedure presented in the paper is well suited for inclusion in a probabilistic calculation model for damage of ship structures due to collisions....

  19. Probability of Grounding and Collision Events

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    1996-01-01

    To quantify the risks involved in ship traffic, rational criteria for collision and grounding accidents are developed. This implies that probabilities as well as inherent consequences can be analysed and assessed. The presnt paper outlines a method for evaluation of the probability of ship......-ship collisions, ship-platform collisions, and ship groundings. The main benefit of the method is that it allows comparisons of various navigation routes....

  20. RNA polymerase II collision interrupts convergent transcription

    DEFF Research Database (Denmark)

    Hobson, David J; Wei, Wu; Steinmetz, Lars M

    2012-01-01

    and genetic approaches in yeast to show that polymerases transcribing opposite DNA strands cannot bypass each other. RNAPII stops but does not dissociate upon head-to-head collision in vitro, suggesting that opposing polymerases represent insurmountable obstacles for each other. Head-to-head collision in vivo...... genes. These results provide insight into fundamental mechanisms of gene traffic control and point to an unexplored effect of antisense transcription on gene regulation via polymerase collision....

  1. Highly deformable bones: unusual deformation mechanisms of seahorse armor.

    Science.gov (United States)

    Porter, Michael M; Novitskaya, Ekaterina; Castro-Ceseña, Ana Bertha; Meyers, Marc A; McKittrick, Joanna

    2013-06-01

    Multifunctional materials and devices found in nature serve as inspiration for advanced synthetic materials, structures and robotics. Here, we elucidate the architecture and unusual deformation mechanisms of seahorse tails that provide prehension as well as protection against predators. The seahorse tail is composed of subdermal bony plates arranged in articulating ring-like segments that overlap for controlled ventral bending and twisting. The bony plates are highly deformable materials designed to slide past one another and buckle when compressed. This complex plate and segment motion, along with the unique hardness distribution and structural hierarchy of each plate, provide seahorses with joint flexibility while shielding them against impact and crushing. Mimicking seahorse armor may lead to novel bio-inspired technologies, such as flexible armor, fracture-resistant structures or prehensile robotics. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  2. CubeSat Deformable Mirror Demonstration

    Data.gov (United States)

    National Aeronautics and Space Administration — The goal of the CubeSat Deformable Mirror Demonstration is to characterize the performance of a small deformable mirror over a year in low-Earth orbit. Small form...

  3. Prediction of deformity in spinal tuberculosis

    NARCIS (Netherlands)

    Jutte, Paul; Wuite, Sander; The, Bertram; van Altena, Richard; Veldhuizen, Albert

    Tuberculosis of the spine may cause kyphosis, which may in turn cause late paraplegia, respiratory compromise, and unsightly deformity. Surgical correction therefore may be considered for large or progressive deformities. We retrospectively analyzed clinical and radiographic parameters to predict

  4. Probability of Grounding and Collision Events

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup

    1996-01-01

    To quantify the risks involved in ship traffic, rational criteria for collision and grounding accidents have to be developed. This implies that probabilities as well as inherent consequences have to be analyzed and assessed.The present notes outline a method for evaluation of the probability...... of ship-ship collisions, ship-platform collisions, and ship groundings. The main benefit of the method is that it allows comparisons of various navigation routes and procedures by assessing the relative frequencies of collisions and groundings....

  5. Telerobotics with whole-arm collision avoidance

    Science.gov (United States)

    Wilhelmsen, Karl C.; Strenn, Stephen

    1993-12-01

    The complexity of telerobotic operations in a cluttered environment is exacerbated by the need to present collision information to the operator in an understandable fashion. In addition to preventing movements which will cause collisions, a system providing some form of virtual force reflection is desirable. With this goal in mind Lawrence Livermore National Laboratory (LLNL) has installed a kinetically similar master/slave system and developed a whole arm collision avoidance system which interacts directly with the telerobotic controller. LLNL has also provided a structure to allow for automated upgrades of workcell models and provide collision avoidance even in a dynamically changing workcell.

  6. Identification of exponent from load-deformation relation for soft materials from impact tests

    Science.gov (United States)

    Ciornei, F. C.; Alaci, S.; Romanu, I. C.; Ciornei, M. C.; Sopon, G.

    2018-01-01

    When two bodies are brought into contact, the magnitude of occurring reaction forces increase together with the amplitude of deformations. The load-deformation dependency of two contacting bodies is described by a function having the form F = Cxα . An accurate illustration of this relationship assumes finding the precise coefficient C and exponent α. This representation proved to be very useful in hardness tests, in dynamic systems modelling or in considerations upon the elastic-plastic ratio concerning a Hertzian contact. The classical method for identification of the exponent consists in finding it from quasi-static tests. The drawback of the method is the fact that the accurate estimation of the exponent supposes precise identification of the instant of contact initiation. To overcome this aspect, the following observation is exploited: during an impact process, the dissipated energy is converted into heat released by internal friction in the materials and energy for plastic deformations. The paper is based on the remark that for soft materials the hysteresis curves obtained for a static case are similar to the ones obtained for medium velocities. Furthermore, utilizing the fact that for the restitution phase the load-deformation dependency is elastic, a method for finding the α exponent for compression phase is proposed. The maximum depth of the plastic deformations obtained for a series of collisions, by launching, from different heights, a steel ball in free falling on an immobile prism made of soft material, is evaluated by laser profilometry method. The condition that the area of the hysteresis loop equals the variation of kinetical energy of the ball is imposed and two tests are required for finding the exponent. Five collisions from different launching heights of the ball were taken into account. For all the possible impact-pair cases, the values of the exponent were found and close values were obtained.

  7. Spatial evolution of Zagros collision zone in Kurdistan, NW Iran: constraints on Arabia-Eurasia oblique convergence

    Science.gov (United States)

    Sadeghi, Shahriar; Yassaghi, Ali

    2016-04-01

    Stratigraphy, detailed structural mapping and a crustal-scale cross section across the NW Zagros collision zone provide constraints on the spatial evolution of oblique convergence of the Arabian and Eurasian plates since the Late Cretaceous. The Zagros collision zone in NW Iran consists of the internal Sanandaj-Sirjan, Gaveh Rud and Ophiolite zones and the external Bisotoun, Radiolarite and High Zagros zones. The Main Zagros Thrust is the major structure of the Zagros suture zone. Two stages of oblique deformation are recognized in the external part of the NW Zagros in Iran. In the early stage, coexisting dextral strike-slip and reverse dominated domains in the Radiolarite zone developed in response to deformation partitioning due to oblique convergence. Dextral-reverse faults in the Bisotoun zone are also compatible with oblique convergence. In the late stage, deformation partitioning occurred during southeastward propagation of the Zagros orogeny towards its foreland resulting in synchronous development of orogen-parallel strike-slip and thrust faults. It is proposed that the first stage was related to Late Cretaceous oblique obduction, while the second stage resulted from Cenozoic collision. The Cenozoic orogen-parallel strike-slip component of Zagros oblique convergence is not confined to the Zagros suture zone (Main Recent Fault) but also occurred in the external part (Marekhil-Ravansar fault system). Thus, it is proposed that oblique convergence of Arabian and Eurasian plates in Zagros collision zone initiated with oblique obduction in the Late Cretaceous followed by oblique collision in the late Tertiary, consistent with global plate reconstructions.

  8. Quantum dynamics of deformed open systems

    CERN Document Server

    Isar, A

    2002-01-01

    A master equation for the deformed quantum harmonic oscillator interacting with a dissipative environment, in particular with a thermal bath, is derived in the microscopic model using perturbation theory . The coefficient of the master equation depend on the deformation function. The steady state solution of the equation for the density matrix in the number representation is obtained and the equilibrium energy of the deformed harmonic oscillator is calculated in the approximation of small deformation. (author)

  9. Mindoro: a rifted microcontinent in collision with the Philippines volcanic arc; basin evolution and hydrocarbon potential

    Science.gov (United States)

    Bird, P. R.; Quinton, N. A.; Beeson, M. N.; Bristow, C.

    The Mindoro area is the easternmost part of the Palawan-Mindoro microcontinent which rifted away from the South China margin during the Early Oligocene. Sea floor spreading carried it southwards until the Late Miocene, when collision with the Philippines Arc in the east, and other terranes to the south began. This paper considers the collision tectonics which operated at the eastern end of the microcontinent, which resulted in the inversion and thrusting of its rifted margin. These processes are documented by seismic data and field outcrop. The syn- and post-rift sedimentary sequences contain prospective source and reservoir intervals. Subsequent burial and deformation have resulted in the generation of hydrocarbons, as proved by the existence of several oil seeps on Mindoro Island, and by hydrocarbon shows recorded in offshore exploration wells. The structural history of the area since the Eocene is divided into four phases: Syn-Rift:Early Eocene-Mid-OligoceneDrift:Late Oligocene-Mid-MioceneCollision:Mid-Late Miocenetranspression:Latest Miocene-Present The unconformities which separate these stratigraphic sequences can be identified on seismic data. The sequences show characteristic differences in stratigraphy and structure, which control their prospectivity. The Syn-Rift Sequence consists of non-marine arkosic sandstones at the base, becoming marine towards the top and including platform and reefal limestones. The Drift Sequence records an overall regression, beginning with the deposition of marine shales, sandstones and detrital limestones and passes upwards into deltaic sands, shales and coals. This sequence contains reservoir quality sandstones and several potential source horizons. On Mindoro Island, the Collision/Transpression Sequence interval is dominated by coarse clastics derived from the uplifted collision zone. In offshore areas to the south and west, away from the collision zone with the arc, a more uniform blanket of parallel bedded shale and

  10. Fault-plane Solutions Determined by Waveform Modeling Confirm Tectonic Collision in the Eastern Adriatic

    Science.gov (United States)

    Louvari, E.; Kiratzi, A.; Papazachos, B.; Hatzidimitriou, P.

    - Source parameters for thirteen earthquakes in the SE Adriatic region have been determined using P and SH body-waveform inversion. The results of this modeling are combined with eleven other earthquakes with M>=5 whose focal mechanisms have been determined mainly by waveform modeling. The results confirm that movement on mainly low-angle reverse faults causes the deformation in coastal southern Yugoslavia through Albania up to the Lefkada Island in NW Greece. This zone of thrusting has a NW-SE trend (N34°W), follows the coastline, and dips towards the continent. The slip vectors of these events trend at N229° along the Dalmatian coasts, to N247° along Albania and NW Greece. The deformation is attributed to the continental collision between the Adriatic block to the west and Eurasia to the east. Along the mountain line in eastern Albania (Albanides Mts.) and in NW Greece (Hellenides Mts.), E-W extension is occurring. The E-W extension associated with the orogenic belt could be attributed to a variety of models such as: gravity, internal deformation of the thrust wedge, a probable down bulge of the dense lithosphere of the Adriatic block beneath the Eurasian lithospheric plate in combination with the compressional stresses applied along the collision belt.

  11. Shell effects in the nuclear deformation energy

    International Nuclear Information System (INIS)

    Ross, C.K.

    1973-01-01

    A new approach to shell effects in the Strutinsky method for calculating nuclear deformation energy is evaluated and the suggestion of non-conservation of angular momentum in the same method is resolved. Shell effects on the deformation energy in rotational bands of deformed nuclei are discussed. (B.F.G.)

  12. Deformed configurations, band structures and spectroscopic ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... Here, we study theoretically the low-lying as well as the excited deformed bands and their electromagnetic properties to search for various structures, spherical and deformed, of the exotic nuclei 82Ge and 84Se by employing the deformed Hartree–Fock (HF) and angular momentum (J) projection method ...

  13. Conformal deformation of Riemann space and torsion

    International Nuclear Information System (INIS)

    Pyzh, V.M.

    1981-01-01

    Method for investigating conformal deformations of Riemann spaces using torsion tensor, which permits to reduce the second ' order equations for Killing vectors to the system of the first order equations, is presented. The method is illustrated using conformal deformations of dimer sphere as an example. A possibility of its use when studying more complex deformations is discussed [ru

  14. Phase space deformations in phantom cosmology

    Science.gov (United States)

    López, J. L.; Sabido, M.; Yee-Romero, C.

    2018-03-01

    We discuss the physical consequences of general phase space deformations on the minisuperspace of phantom cosmology. Based on the principle of physically equivalent descriptions in the deformed theory, we investigate for what values of the deformation parameters the arising descriptions are physically equivalent. We also construct and solve the quantum model and derive the semiclassical dynamics.

  15. Relativistic description of deformed nuclei

    International Nuclear Information System (INIS)

    Price, C.E.

    1988-01-01

    The author has shown that relativistic Hartree calculations using parameters that have been fit to the properties of nuclear matter can provide a good description of both spherical and axially deformed nuclei. The quantitative agreement with experiment is equivalent to that which was obtained in non-relativistic calculations using Skyrme interactions. The equilibrium deformation is strongly correlated with the size of the spin-orbit splitting, and that parameter sets which give roughly the correct value for this splitting provide the best agreement with the quadrupole moments in the s-d shell. Finally, for closed shell +/- 1 nuclei, it was shown that the self-consistent calculations are able to reproduce the experimental magnetic moments. This was not possible in relativistic calculations which include only the effects of the valence orbital

  16. Nucleon deformation. A status report

    International Nuclear Information System (INIS)

    Papanicolas, C.N.

    2003-01-01

    The conjectured deformation of hadrons and its experimental verification offer a particularly fertile ground for understanding the intricate dynamics of their constituents and QCD at the confinement scale. The detailed study of the N→Δ transition is viewed as the preferred method of experimental investigation of this central issue in hadronic physics. A brief overview of the field is presented, followed by a presentation of the most recent results from Bates N→Δ program. The new Bates/OOPS data at Q 2 =0.127 GeV/c 2 yield R SM =(-6.27±0.32 stat+sys ±0.10 model )% and R EM =(-2.00±0.40 stat+sys ±0.27 model )% and they exclude a spherical nucleon and/or Δ. The magnitude and the origin of the deformation is the focus of the ongoing and planned investigations. (orig.)

  17. Hindfoot Arthrodesis for Neuropathic Deformity

    Directory of Open Access Journals (Sweden)

    Peng-Ju Huang

    2007-03-01

    Full Text Available Acquired neurologic disorders of the foot lead to arthrosis, deformities, instabilities, and functional disabilities. Hindfoot arthrodesis is the current option available for irreducible or nonbraceable deformities of neuropathic feet. However, the role of ankle arthrodesis in these patients has been questioned because of high nonunion and complication rates. From 1990 to 2001, 17 cases of acquired neuropathic foot deformities were treated by four tibiotalocalcaneal (TTC arthrodeses and 13 ankle arthrodeses. TTC arthrodesis was performed on cases with combined ankle and subtalar arthritis or cases whose deformities or instabilities could not be corrected by ankle fusion alone. There was no nonunion of TTC arthrodesis and seven ununited ankle arthrodeses were salvaged by two TTC-attempted arthrodeses and five revision ankle-attempted arthrodeses. Eventually in these cases, there was one nonunion in TTC arthrodesis and one nonunion in revision ankle arthrodesis. The final fusion rate was 88% (15 of 17 cases with average union time of 6.9 months (range, 2.5–18 months. The American Orthopaedic Foot and Ankle Society ankle hind-foot functional scores were evaluated: one was excellent (5.8%, seven were good (41%, eight were fair (53.3%, and one was poor (5.8% in terms of total functional outcome. We conclude that TTC arthrodesis is indicated for cases with ankle and subtalar involvement and ankle arthrodesis is an alternative for cases with intact subtalar joint. We recommend revision ankle arthrodesis if the ankle fails to fuse and the bone stock of the talus is adequate. TTC arthrodesis is reserved for ankles with poor bone stock of the talus with fragmentation.

  18. Deterritorializing Drawing - transformation/deformation

    DEFF Research Database (Denmark)

    Brabrand, Helle

    2012-01-01

    but also from within by sensations, body ‘images’ are different to all other images. Twisting these body images make a mode of operation of art. The paper will address the above issues discussing modes of operation and appearance of my actual project. Acting in the reality of drawing, the project confront...... the body, situated in real time and depth, with drawing transforming and deforming time and depth....

  19. Tertiary evolution of the Shimanto belt (Japan): A large-scale collision in Early Miocene

    Science.gov (United States)

    Raimbourg, Hugues; Famin, Vincent; Palazzin, Giulia; Yamaguchi, Asuka; Augier, Romain

    2017-07-01

    To decipher the Miocene evolution of the Shimanto belt of southwestern Japan, structural and paleothermal studies were carried out in the western area of Shikoku Island. All units constituting the belt, both in its Cretaceous and Tertiary domains, are in average strongly dipping to the NW or SE, while shortening directions deduced from fault kinematics are consistently orientated NNW-SSE. Peak paleotemperatures estimated with Raman spectra of organic matter increase strongly across the southern, Tertiary portion of the belt, in tandem with the development of a steeply dipping metamorphic cleavage. Near the southern tip of Ashizuri Peninsula, the unconformity between accreted strata and fore-arc basin, present along the whole belt, corresponds to a large paleotemperature gap, supporting the occurrence of a major collision in Early Miocene. This tectonic event occurred before the magmatic event that affected the whole belt at 15 Ma. The associated shortening was accommodated in two opposite modes, either localized on regional-scale faults such as the Nobeoka Tectonic Line in Kyushu or distributed through the whole belt as in Shikoku. The reappraisal of this collision leads to reinterpret large-scale seismic refraction profiles of the margins, where the unit underlying the modern accretionary prism is now attributed to an older package of deformed and accreted sedimentary units belonging to the Shimanto belt. When integrated into reconstructions of Philippine Sea Plate motion, the collision corresponds to the oblique collision of a paleo Izu-Bonin-Mariana Arc with Japan in Early Miocene.

  20. Performance assessment on a variety of double side structure during collision interaction with other ship

    Science.gov (United States)

    Prabowo, Aditya Rio; Sohn, Jung Min; Bae, Dong Myung; Cho, Joung Hyung

    2017-09-01

    The main goal of the present paper was to study the physical response of a double side skin (DSS) structure under impact load in a collision event between two ships. Collision energy and damage extent (size and location) during the collision process were observed together with damage patterns on side structure. The ships were modeled after a Ro-Ro passenger ship and cargo reefer which were involved in a ship collision on the Sunda Strait while the analyseswere performed using non-linear simulations FEMto produce virtual simulation data. Several caseswere proposed to be investigated in this work with involvement of parameters i.e. penetration location and ship materials which were embedded on the structure model. A series of material experiments and testing was conducted to obtain detailed material properties which were to be deployed in simulation. It was shown that, after penetration at the transition location, the striking ship was successfully deforming and forming tears to the inner skin. On the other hand, with identical structure and identical mass of construction, the use of high-strength low-alloy (HSLA) steel as the repair material offered considerably better capacity in absorbing the impact load than plain-carbon steel.

  1. Central collisions of heavy ions

    International Nuclear Information System (INIS)

    Fung, Sun-yiu.

    1991-10-01

    This report describes the activities of the Heavy Ion Physics Group at the University of California, Riverside from October 1, 1990 to September 30, 1991. During this period, our program focuses on particle production at AGS energies, and correlation studies at the Bevalac in nucleus central collisions. We participated in the preparation of letters of intent for two RHIC experiments -- the OASIS proposal and the Di-Muon proposal -- and worked on two RHIC R ampersand D efforts -- a silicon strip detector project and a muon-identifier project. A small fraction of time was also devoted to physics programs outside the realm of heavy ion reactions by several individuals

  2. Collisions in spherical stellar systems

    Energy Technology Data Exchange (ETDEWEB)

    Polyachenko, V.L.; Shukhman, I.G. (AN SSSR, Irkutsk. Sibirskij Inst. Zemnogo Magnetizma Ionosfery i Rasprostraneniya Radiovoln)

    From the set of the equations for the stellar distribution function and for the two-particle correlation in the action- angle variables, by averaging over fast finite motions the general expression for the collisional term of a finite stellar system with ''rare'' Coulomb collisions is obtained. In the case of a spherically symmetrical system with the distribution function f/sub 0/=f/sub 0/(E, L) (E, L being the energy and the angular momentum of a star), the kinetic equation is reduced to the standard form of the two-dimensional Fokker-Planck equations.

  3. Collision models in quantum optics

    Science.gov (United States)

    Ciccarello, Francesco

    2017-12-01

    Quantum collision models (CMs) provide advantageous case studies for investigating major issues in open quantum systems theory, and especially quantum non-Markovianity. After reviewing their general definition and distinctive features, we illustrate the emergence of a CM in a familiar quantum optics scenario. This task is carried out by highlighting the close connection between the well-known input-output formalism and CMs. Within this quantum optics framework, usual assumptions in the CMs' literature - such as considering a bath of noninteracting yet initially correlated ancillas - have a clear physical origin.

  4. Spatial evolution of Zagros collision zone in Kurdistan - NW Iran, constraints for Arabia-Eurasia oblique convergence

    Science.gov (United States)

    Sadeghi, S.; Yassaghi, A.

    2015-09-01

    Stratigraphy, detailed structural mapping and crustal scale cross section of the NW Zagros collision zone evolved during convergence of the Arabian and Eurasian plates were conducted to constrain the spatial evolution of the belt oblique convergence since Late Cretaceous. Zagros orogeny in NW Iran consists of the Sanandaj-Sirjan, Gaveh Rud and ophiolite zones as internal, and Bisotoun, Radiolarite and High Zagros zones as external parts. The Main Zagros Thrust is known as major structures of the Zagros suture zone. Two stages of deformation are recognized in the external parts of Zagros. In the early stage, presence of dextrally deformed domains beside the reversely deformed domains in the Radiolarite zone as well as dextral-reverse faults in both Bisotoun and Radiolarite zones demonstrates partitioning of the dextral transpression. In the late stage, southeastward propagation of the Zagros orogeny towards its foreland resulted in synchronous development of orogen-parallel strike-slip and pure thrust faults. It is proposed that the first stage related to the late Cretaceous oblique obduction, and the second stage is resulted from Cenozoic collision. Cenozoic orogen-parallel strike-slip component of Zagros oblique faulting is not confined to the Zagros suture zone (Main Recent) but also occurred in the more external part (Marekhil-Ravansar fault system). Thus, it is proposed that oblique convergence of Arabia-Eurasia plates occurred in Zagros collision zone since the Late Cretaceous.

  5. Shapeable sheet without plastic deformation

    Science.gov (United States)

    Oppenheimer, Naomi; Witten, Thomas A.

    2015-11-01

    Randomly crumpled sheets have shape memory. In order to understand the basis of this form of memory, we simulate triangular lattices of springs whose lengths are altered to create a topography with multiple potential energy minima. We then deform these lattices into different shapes and investigate their ability to retain the imposed shape when the energy is relaxed. The lattices are able to retain a range of curvatures. Under moderate forcing from a state of local equilibrium, the lattices deform by several percent but return to their retained shape when the forces are removed. By increasing the forcing until an irreversible motion occurs, we find that the transitions between remembered shapes show cooperativity among several springs. For fixed lattice structures, the shape memory tends to decrease as the lattice is enlarged; we propose ways to counter this decrease by modifying the lattice geometry. We survey the energy landscape by displacing individual nodes. An extensive fraction of these nodes proves to be bistable; they retain their displaced position when the energy is relaxed. Bending the lattice to a stable curved state alters the pattern of bistable nodes. We discuss this shapeability in the context of other forms of material memory and contrast it with the shapeability of plastic deformation. We outline the prospects for making real materials based on these principles.

  6. Faraday instability in deformable domains

    International Nuclear Information System (INIS)

    Pucci, G.

    2013-01-01

    Hydrodynamical instabilities are usually studied either in bounded regions or free to grow in space. In this article we review the experimental results of an intermediate situation, in which an instability develops in deformable domains. The Faraday instability, which consists in the formation of surface waves on a liquid experiencing a vertical forcing, is triggered in floating liquid lenses playing the role of deformable domains. Faraday waves deform the lenses from the initial circular shape and the mutual adaptation of instability patterns with the lens boundary is observed. Two archetypes of behaviour have been found. In the first archetype a stable elongated shape is reached, the wave vector being parallel to the direction of elongation. In the second archetype the waves exceed the response of the lens border and no equilibrium shape is reached. The lens stretches and eventually breaks into fragments that have a complex dynamics. The difference between the two archetypes is explained by the competition between the radiation pressure the waves exert on the lens border and its response due to surface tension.

  7. Evaluation of Internal Friction versus Plastic Deformations Effects in Impact Dynamics Problems of Robotic Elements

    Directory of Open Access Journals (Sweden)

    Stelian Alaci

    2014-06-01

    Full Text Available The dynamical behavior study of robotic systems is obtained using multibody dynamics method. The joints met in robots are modeled in different manners. In a robotic joint the energy is lost via hysteretic work and plastic deformation work. The paper presents a comparative study for the results obtained by integration of the equations defining two limit models which describe the impact between two robot parts, modeled by the centric collision between two spheres with loss of energy. The motion equations characteristic for the two models are integrated and for a tangible situation, are presented comparatively, for different values of the coefficient of restitution, the time dependencies of impacting force between the two bodies as well as the hysteresis loops. Finally, an evaluation of the lost work during impact, for the whole range of coefficients of restitution, is completed, together with characteristic parameters of collision: approaching period, complete contact time, maximum approaching and plastic imprint.

  8. Response reduction methods for base isolated buildings with collision to retaining walls

    Science.gov (United States)

    Kishida, Akiko; Nishimura, Nao; Yamashita, Yuki; Taga, Kenzo; Fujitani, Hideo; Mukai, Yoichi

    2017-04-01

    This paper proposes a new damper that can change the damping force depending on the response displacement and response velocity. The proposed damper reduces the damage of seismic-isolated structures which undergo excessive deformation during huge earthquakes, without lowering the performance of the seismic-isolation system during medium to small magnitude earthquakes. We investigate the effects of using the proposed attenuator on the responses of a superstructure model to seismic motion that causes collision with retaining walls. An experiment using a shaking table is conducted, and the results from the test are compared with those from numerical analyses. The test results agree approximately with the numerical analysis results except for the absolute acceleration results in collision cases.

  9. Simulation of Collision Contacts among Disjoined Soil-Structure Bodies Under Seismic Motions

    Science.gov (United States)

    Wang, Ching-Jong

    Structure bodies and surrounding soils in certain types of bridges and tunnels may be prone to collisions during earthquake. A dynamic system composed of discrete and finite elements is developed using explicit formulation for equations of motion, and nonlinearities in soils and at interfaces of disjoined regions are implemented. Time history solutions are carried out to examine the plastic deformation in soils as well as the integrity of structures. Two case studies are presented in which collisions among disjoined regions are anticipated in the event of extremely large earthquakes. Case one is based on a replica from a quake-stricken bridge, to illustrate that a backfill with moderate soil strength may be used as an energy-dissipating buffer to contain the shaken loose decks. The other case involves an underground subway station box with slurry walls alongside, to exemplify the seismic resistance of the dual-wall system.

  10. Statistical multifragmentation of non-spherical expanding sources in central heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Le Fevre, A. E-mail: a.lefevre@gsi.de; Ploszajczak, M.; Toneev, V.D.; Auger, G.; Begemann-Blaich, M.L.; Bellaize, N.; Bittiger, R.; Bocage, F.; Borderie, B.; Bougault, R.; Bouriquet, B.; Charvet, J.L.; Chbihi, A.; Dayras, R.; Durand, D.; Frankland, J.D.; Galichet, E.; Gourio, D.; Guinet, D.; Hudan, S.; Hurst, B.; Lautesse, P.; Lavaud, F.; Legrain, R.; Lopez, O.; Lukasik, J.; Lynen, U.; Mueller, W.F.J.; Nalpas, L.; Orth, H.; Plagnol, E.; Rosato, E.; Saija, A.; Schwarz, C.; Sfienti, C.; Tamain, B.; Trautmann, W.; Trzcinski, A.; Turzo, K.; Vient, E.; Vigilante, M.; Volant, C.; Zwieglinski, B.; Botvina, A.S

    2004-04-19

    We study the anisotropy effects measured with INDRA at GSI in central collisions of {sup 129}Xe+{sup nat}Sn at 50 A MeV and {sup 197}Au+{sup 197}Au at 60, 80, 100 A MeV incident energy. The microcanonical multifragmentation model with non-spherical sources is used to simulate an incomplete shape relaxation of the multifragmenting system. This model is employed to interpret observed anisotropic distributions in the fragment size and mean kinetic energy. The data can be well reproduced if an expanding prolate source aligned along the beam direction is assumed. An either non-Hubblean or non-isotropic radial expansion is required to describe the fragment kinetic energies and their anisotropy. The qualitative similarity of the results for the studied reactions suggests that the concept of a longitudinally elongated freeze-out configuration is generally applicable for central collisions of heavy systems. The deformation decreases slightly with increasing beam energy.

  11. Micromechanisms of deformation in shales

    Science.gov (United States)

    Bonnelye, A.; Gharbi, H.; Hallais, S.; Dimanov, A.; Bornert, M.; Picard, D.; Mezni, M.; Conil, N.

    2017-12-01

    One of the envisaged solutions for nuclear wastes disposal is underground repository in shales. For this purpose, the Callovo Oxfordian (Cox) argillaceous formation is extensively studied. The hydro-mechanical behavior of the argillaceous rock is complex, like the multiphase and multi-scale structured material itself. The argilaceous matrix is composed of interstratified illite-smectite particles, it contains detritic quartz and calcite, accessory pyrite, and the rock porosity ranges from micrometre to nanometre scales. Besides the bedding anisotropy, structural variabilities exist at all scales, from the decametric-metric scales of the geological formation to the respectively millimetric and micrometric scales of the aggregates of particles and clay particles Our study aims at understanding the complex mechanisms which are activated at the micro-scale and are involved in the macroscopic inelastic deformation of such a complex material. Two sets of experiments were performed, at two scales on three bedding orientations (90°, 45° and 0°). The first set was dedicated to uniaxial deformation followed with an optical set-up with a pixel resolution of 0.55µm. These experiments allowed us to see the fracture propagation with different patterns depending on the bedding orientation. For the second set of experiments, an experimental protocol was developed in order to perform uniaxial deformation experiment at controlled displacement rate, inside an environmental scanning electron microscope (ESEM), under controlled relative humidity, in order to preserve as much as possible the natural state of saturation of shales. We aimed at characterizing the mechanical anisotropy and the mechanisms involved in the deformation, with an image resolution below the micormeter. The observed sample surfaces were polished by broad ion beam in order to reveal the fine microstructures of the argillaceous matrix. In both cases, digital images were acquired at different loading stages during

  12. Mechanical Energy Changes in Perfectly Inelastic Collisions

    Science.gov (United States)

    Mungan, Carl E.

    2013-01-01

    Suppose a block of mass "m"[subscript 1] traveling at speed "v"[subscript 1] makes a one-dimensional perfectly inelastic collision with another block of mass "m"[subscript 2]. What else does one need to know to calculate the fraction of the mechanical energy that is dissipated in the collision? (Contains 1 figure.)

  13. GRACAT, Software for grounding and collision analysis

    DEFF Research Database (Denmark)

    Friis-Hansen, Peter; Simonsen, Bo Cerup

    2002-01-01

    From 1998 to 2001 an integrated software package for grounding and collision analysis was developed at the Technical University of Denmark within the ISESO project at the cost of six man years (0.75M US$). The software provides a toolbox for a multitude of analyses related to collision...

  14. Theory and Validation for the Collision Module

    DEFF Research Database (Denmark)

    Simonsen, Bo Cerup

    1999-01-01

    This report describes basic modelling principles, the theoretical background and validation examples for the Collision Module for the computer program DAMAGE.......This report describes basic modelling principles, the theoretical background and validation examples for the Collision Module for the computer program DAMAGE....

  15. Results from proton–lead collisions

    CERN Document Server

    Mischke, André

    2016-01-01

    This contribution summarises recent measurements in small collision systems at the Large Hadron Collider (LHC), presented at the 2016 edition of the Annual Large Hadron Collider Physics conference. Three main probes are discussed, namely light flavour (strangeness) production, az- imuthal angular correlations and jets, and open and hidden heavy-flavour production in proton- lead collisions.

  16. Phenomenology of photon-$e^{+-}$ collisions

    CERN Document Server

    Renard, F M

    1982-01-01

    The physical interest of gamma e/sup +or-/ collisions is examined. A basic formalism is established. Cross-sections are computed with general couplings and polarization states. Illustrations are given for QED tests, Z/sup 0/ and W/sup +or-/ production, various electro-weak processes including gamma gamma collisions and the search for new currents and particles.

  17. Successive combination jet algorithm for hadron collisions

    International Nuclear Information System (INIS)

    Ellis, S.D.; Soper, D.E.

    1993-01-01

    Jet finding algorithms, as they are used in e + e- and hadron collisions, are reviewed and compared. It is suggested that a successive combination style algorithm, similar to that used in e + e- physics, might be useful also in hadron collisions, where cone style algorithms have been used previously

  18. Reducing deaths in single vehicle collisions.

    NARCIS (Netherlands)

    Adminaite, D. Jost, G. Stipdonk, H. & Ward, H.

    2017-01-01

    A third of road deaths in the EU are caused by collisions that involve a single motorised vehicle where the driver, rider and/or passengers are killed but no other road users are involved. These single vehicle collisions (SVCs), and how to prevent them occurring, are the subject of this report.

  19. Electromagnetic processes in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Bertulani, C.A.; Rio de Janeiro Univ.

    1987-05-01

    A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and atomic collisions is presented. Very strong electromagnetic fields for a very short time are present in distant collisions with no nuclear contact. Such fields can also lead to interesting effects, which are discussed here. (orig.)

  20. Cultural Collisions in L2 Academic Writing.

    Science.gov (United States)

    Steinman, Linda

    2003-01-01

    Reviews research on writing and culture, focusing on the collisions of cultures when discourse practices second language writers are expected to reproduce clash with what they know, believe, and value in their first language writing. Describes collisions of culture in writing regarding voice, organization, reader/writer responsibility, topic, and…

  1. Charge exchange in ion-atom collisions

    International Nuclear Information System (INIS)

    Bransden, B.H.

    1990-01-01

    Charge exchange reactions in which electrons are transferred from one ion (or atom) to another during a collision have been studied both as interesting examples of rearrangement collisions and because of important applications in plasma physics. This article reviews the modern theory developed for use at non-relativistic energies, but excluding the thermal and very low energy region. (author)

  2. Laser-assisted electron-atom collisions

    International Nuclear Information System (INIS)

    Mason, N.J.

    1989-01-01

    New developments in our understanding of the electron-atom collision process have been made possible by combining the use of highly monochromatic electron beams and intense CO 2 lasers. This paper reviews such experiments and discusses possible future progress in what is a new field in atomic collision physics. (author)

  3. Averaging theorems in finite deformation plasticity

    CERN Document Server

    Nemat-Nasser, S C

    1999-01-01

    The transition from micro- to macro-variables of a representative volume element (RVE) of a finitely deformed aggregate (e.g., a composite or a polycrystal) is explored. A number of exact fundamental results on averaging techniques, $9 valid at finite deformations and rotations of any arbitrary heterogeneous continuum, are obtained. These results depend on the choice of suitable kinematic and dynamic variables. For finite deformations, the deformation gradient and $9 its rate, and the nominal stress and its rate, are optimally suited for the averaging purposes. A set of exact identities is presented in terms of these variables. An exact method for homogenization of an ellipsoidal inclusion in an $9 unbounded finitely deformed homogeneous solid is presented, generalizing Eshelby's method for application to finite deformation problems. In terms of the nominal stress rate and the rate of change of the deformation gradient, $9 measured relative to any arbitrary state, a general phase-transformation problem is con...

  4. Fixed Target Collisions at STAR

    Energy Technology Data Exchange (ETDEWEB)

    Meehan, Kathryn C.

    2016-12-15

    The RHIC Beam Energy Scan (BES) program was proposed to look for the turn-off of signatures of the quark gluon plasma (QGP), search for a possible QCD critical point, and study the nature of the phase transition between hadronic and partonic matter. Previous results have been used to claim that the onset of deconfinement occurs at a center-of-mass energy of 7 GeV. Data from lower energies are needed to test if this onset occurs. The goal of the STAR Fixed-Target Program is to extend the collision energy range in BES II to energies that are likely below the onset of deconfinement. Currently, STAR has inserted a gold target into the beam pipe and conducted test runs at center-of-mass energies of 3.9 and 4.5 GeV. Tests have been done with both Au and Al beams. First physics results from a Coulomb potential analysis of Au + Au fixed-target collisions are presented and are found to be consistent with results from previous experiments. Furthermore, the Coulomb potential, which is sensitive to the Z of the projectile and degree of baryonic stopping, will be compared to published results from the AGS.

  5. Simulating Collisions for Hydrokinetic Turbines

    Energy Technology Data Exchange (ETDEWEB)

    Richmond, Marshall C.; Romero Gomez, Pedro DJ; Rakowski, Cynthia L.

    2013-10-01

    Evaluations of blade-strike on an axial-flow Marine Hydrokinetic turbine were conducted using a conventional methodology as well as an alternative modeling approach proposed in the present document. The proposed methodology integrates the following components into a Computa- tional Fluid Dynamics (CFD) model: (i) advanced eddy-resolving flow simulations, (ii) ambient turbulence based on field data, (iii) moving turbine blades in highly transient flows, and (iv) Lagrangian particles to mimic the potential fish pathways. The sensitivity of blade-strike prob- ability to the following conditions was also evaluated: (i) to the turbulent environment, (ii) to fish size and (iii) to mean stream flow velocity. The proposed methodology provided fraction of collisions and offered the capability of analyzing the causal relationships between the flow envi- ronment and resulting strikes on rotating blades. Overall, the conventional methodology largely overestimates the probability of strike, and lacks the ability to produce potential fish and aquatic biota trajectories as they interact with the rotating turbine. By using a set of experimental corre- lations of exposure-response of living fish colliding on moving blades, the occurrence, frequency and intensity of the particle collisions was next used to calculate the survival rate of fish crossing the MHK turbine. This step indicated survival rates always greater than 98%. Although the proposed CFD framework is computationally more expensive, it provides the advantage of evaluating multiple mechanisms of stress and injury of hydrokinetic turbine devices on fish.

  6. Phenomenological approaches of dissipative heavy ion collisions

    International Nuclear Information System (INIS)

    Ngo, C.

    1983-09-01

    These lectures describe the properties of dissipative heavy ion collisions observed in low bombarding energy heavy ion reactions. These dissipative collisions are of two different types: fusion and deep inelastic reactions. Their main experimental properties are described on selected examples. It is shown how it is possible to give a simple interpretation to the data. A large number of phenomenological models have been developped to understand dissipative heavy ion collisions. The most important are those describing the collision by classical mechanics and friction forces, the diffusion models, and transport theories which merge both preceding approaches. A special emphasis has been done on two phenomena observed in dissipative heavy ion collisions: charge equilibratium for which we can show the existence of quantum fluctuations, and fast fission which appears as an intermediate mechanism between deep inelastic reactions and compound nucleus formation [fr

  7. Collision effects on the nuclear dynamics

    International Nuclear Information System (INIS)

    Gregoire, C.

    1987-01-01

    The lectures on the collision effects on the nuclear dynamics are reported. A kinetic equation, describing the nuclear dynamics in a microscopical way, is deduced. The Vlasov equation and methods, allowing the obtention of approached solutions, are indicated. Concerning one dimensional and spherical symmetric systems, these solutions applied to the matter slab collisions and to the expansion of the excited spherical cores, are discussed. Moreover, the phenomenology of the collision terms and their application on the heavy ions collisions, are considered. The respective parts of the mean field and the collision term in different cases, are indicated. A link with the transport theories is given by the calculations of dispersions and by means of the Landau-Vlasov equation [fr

  8. Examination of the collision force method for analyzing the responses of simple containment/deflection structures to impact by one engine rotor blade fragment

    Science.gov (United States)

    Zirin, R. M.; Witmer, E. A.

    1972-01-01

    An approximate collision analysis, termed the collision-force method, was developed for studying impact-interaction of an engine rotor blade fragment with an initially circular containment ring. This collision analysis utilizes basic mass, material property, geometry, and pre-impact velocity information for the fragment, together with any one of three postulated patterns of blade deformation behavior: (1) the elastic straight blade model, (2) the elastic-plastic straight shortening blade model, and (3) the elastic-plastic curling blade model. The collision-induced forces are used to predict the resulting motions of both the blade fragment and the containment ring. Containment ring transient responses are predicted by a finite element computer code which accommodates the large deformation, elastic-plastic planar deformation behavior of simple structures such as beams and/or rings. The effects of varying the values of certain parameters in each blade-behavior model were studied. Comparisons of predictions with experimental data indicate that of the three postulated blade-behavior models, the elastic-plastic curling blade model appears to be the most plausible and satisfactory for predicting the impact-induced motions of a ductile engine rotor blade and a containment ring against which the blade impacts.

  9. 3D numerical modeling of India-Asia-like collision

    Science.gov (United States)

    -Erika Püsök, Adina; Kaus, Boris; Popov, Anton

    2013-04-01

    One of the most striking features of plate tectonics and lithospheric deformation is the India-Asia collision zone, which formed when the Indian continent collided with Eurasia, around 50 million years ago. The rise of the abnormally thick Tibetan plateau, the deformation at its Eastern and Western syntaxes, the transition from subduction to collision and uplift and the interaction of tectonics and climate are processes not fully understood. Though various geophysical methods have been employed to shed light on the present structure of the Indian-Asian lithosphere, the driving mechanisms that uplifted the Tibetan plateau remain highly controversial and different hypotheses imply contradictory scenarios. Models for double crustal thickness include: wholescale underthrusting of Indian lithospheric mantle under Tibet (Argand model), distributed homogeneous shortening or the thin-sheet model (England and Houseman, 1986), slip-line field model to also explain extrusion of Eastern side of Tibet away from Indian indentor (Tapponier and Molnar, 1976) or lower crustal flow models for the exhumation of the Himalayan units and lateral spreading of the Tibetan plateau (Royden et al., 1998, Beaumont et al., 2004). The thin-sheet model has emerged as a more successful (or at least more widely used) model, but one of its major shortcomings is that it cannot simultaneously represent channel flow and gravitational collapse of the mantle lithosphere (Lechmann et al., 2011), since these mechanisms require the lithosphere to interact with the underlying mantle, or to have a vertically non-homogeneous rheology. Of those who favour a layered structure of the lithosphere beneath Tibet, some attribute the lack of substantial seismicity underneath the Moho as evidence that all the strength of the lithosphere resides in the upper crust and the mantle is weak - the crème brulée model (Jackson, 2002), while others point out that some processes can be well explained if the crust resides

  10. Three-dimensional motion and deformation estimation of deformable mesh

    Science.gov (United States)

    Deknuydt, Albert A.; Desmet, Stefaan; Cox, Kris; Van Eycken, Luc

    2000-04-01

    Recently real-time capture of dynamic 3D-objects has become feasible. The dynamic models obtained by various techniques, come in the form of separate highly detailed 3D-meshes with texture at video-rates. These represent such an amount of data, as to hamper manipulation, editing and rendering. Data- compression techniques can alleviate this problem. Independent decimation of the separate meshes, is an inferior solution for what is really time varying mesh. Firstly, it causes unnatural flickering, and secondly, it leaves the inter-mesh correlation unexploited. Therefore, a hybrid technique might be a better solution. It consists of an 'intra' compression scheme working on still mesh, a 3D motion estimator/predictor, and a coder for the prediction errors and side information (motion vectors and mesh segmentation). We describe a technique to segment a deforming mesh into regions with locally-uniform motion. We start by interpreting the motion as samples of a 3D vector field. In each point, we estimate the translation, rotation and divergence of the vector field. As human faces are rather incompressible, we ignore the divergence component. Then, we cluster the population with the criterion of similar translation and rotation. Results show that it allows to segment a deforming human face into approximately 200 regions of locally-uniform rigid motion, while keeping the motion prediction error under 5 percent. This is good enough for efficient compression.

  11. Deformation retracts of Stein spaces

    International Nuclear Information System (INIS)

    Hamm, H.; Mihalache, N.

    1995-01-01

    If X is an n-dimensional Stein space, it was proved that X has the homotopy type of a CW-complex of dimension≤n and in the algebraic case this was proved with the additional conclusion that the CW-complex is finite. In this paper the authors give an answer to the question if there exists a subset Q of X with the same topological properties as X, for instance Q is a strong deformation retract of X, and Q is a CW-complex of dimension≤n. 15 refs

  12. Inflationary Perturbations from Deformed CFT

    CERN Document Server

    Van der Schaar, J P

    2004-01-01

    We present a new method to calculate the spectrum of (slow-roll) inflationary perturbations, inspired by the conjectured dS/CFT correspondence. We show how the standard result for the spectrum of inflationary perturbations can be obtained from deformed CFT correlators, whose behavior is determined by the Callan-Symanzik equation. We discuss the possible advantages of this approach and end with some comments on the role of holography in dS/CFT and its relation to the universal nature of the spectrum of inflationary perturbations.

  13. Formation Flying and Deformable Instruments

    International Nuclear Information System (INIS)

    Rio, Yvon

    2009-01-01

    Astronomers have always attempted to build very stable instruments. They fight all that can cause mechanical deformation or image motion. This has led to well established technologies (autoguide, active optics, thermal control, tip/tilt correction), as well as observing methods based on the use of controlled motion (scanning, micro scanning, shift and add, chopping and nodding). Formation flying disturbs this practice. It is neither possible to reduce the relative motion to very small amplitudes, nor to control it at will. Some impacts on Simbol-X instrument design, and operation are presented.

  14. Deformable Mirrors Correct Optical Distortions

    Science.gov (United States)

    2010-01-01

    By combining the high sensitivity of space telescopes with revolutionary imaging technologies consisting primarily of adaptive optics, the Terrestrial Planet Finder is slated to have imaging power 100 times greater than the Hubble Space Telescope. To this end, Boston Micromachines Corporation, of Cambridge, Massachusetts, received Small Business Innovation Research (SBIR) contracts from the Jet Propulsion Laboratory for space-based adaptive optical technology. The work resulted in a microelectromechanical systems (MEMS) deformable mirror (DM) called the Kilo-DM. The company now offers a full line of MEMS DMs, which are being used in observatories across the world, in laser communication, and microscopy.

  15. A method of inferring collision ratio based on maneuverability of own ship under critical collision conditions

    Directory of Open Access Journals (Sweden)

    Youngjun You

    2013-06-01

    Full Text Available In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA and Time to the Closest Point of Approach (TCPA information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972 and collision avoidance rules (2001 are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.

  16. A method of inferring collision ratio based on maneuverability of own ship under critical collision conditions

    Science.gov (United States)

    You, Youngjun; Rhee, Key-Pyo; Ahn, Kyoungsoo

    2013-06-01

    In constructing a collision avoidance system, it is important to determine the time for starting collision avoidance maneuver. Many researchers have attempted to formulate various indices by applying a range of techniques. Among these indices, collision risk obtained by combining Distance to the Closest Point of Approach (DCPA) and Time to the Closest Point of Approach (TCPA) information with fuzzy theory is mostly used. However, the collision risk has a limit, in that membership functions of DCPA and TCPA are empirically determined. In addition, the collision risk is not able to consider several critical collision conditions where the target ship fails to take appropriate actions. It is therefore necessary to design a new concept based on logical approaches. In this paper, a collision ratio is proposed, which is the expected ratio of unavoidable paths to total paths under suitably characterized operation conditions. Total paths are determined by considering categories such as action space and methodology of avoidance. The International Regulations for Preventing Collisions at Sea (1972) and collision avoidance rules (2001) are considered to solve the slower ship's dilemma. Different methods which are based on a constant speed model and simulated speed model are used to calculate the relative positions between own ship and target ship. In the simulated speed model, fuzzy control is applied to determination of command rudder angle. At various encounter situations, the time histories of the collision ratio based on the simulated speed model are compared with those based on the constant speed model.

  17. Calculation of the Trubnikov and Nanbu Collision Kernels: Implications for Numerical Modeling of Coulomb Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Dimits, A M; Wang, C; Caflisch, R; Cohen, B I; Huang, Y

    2008-08-06

    We investigate the accuracy of and assumptions underlying the numerical binary Monte-Carlo collision operator due to Nanbu [K. Nanbu, Phys. Rev. E 55 (1997)]. The numerical experiments that resulted in the parameterization of the collision kernel used in Nanbu's operator are argued to be an approximate realization of the Coulomb-Lorentz pitch-angle scattering process, for which an analytical solution for the collision kernel is available. It is demonstrated empirically that Nanbu's collision operator quite accurately recovers the effects of Coulomb-Lorentz pitch-angle collisions, or processes that approximate these (such interspecies Coulomb collisions with very small mass ratio) even for very large values of the collisional time step. An investigation of the analytical solution shows that Nanbu's parameterized kernel is highly accurate for small values of the normalized collision time step, but loses some of its accuracy for larger values of the time step. Careful numerical and analytical investigations are presented, which show that the time dependence of the relaxation of a temperature anisotropy by Coulomb-Lorentz collisions has a richer structure than previously thought, and is not accurately represented by an exponential decay with a single decay rate. Finally, a practical collision algorithm is proposed that for small-mass-ratio interspecies Coulomb collisions improves on the accuracy of Nanbu's algorithm.

  18. Spatial and temporal characterization of progressive deformation during orogenic growth: Example from the Fuegian Andes, southern Argentina

    Science.gov (United States)

    Torres Carbonell, Pablo J.; Cao, Sebastián J.; Dimieri, Luis V.

    2017-06-01

    Superposed structural fabrics in the easternmost Fuegian Andes reveal two distinct, non-coaxial deformation phases across the transition from the orogenic core to the thrust-fold belt. Each phase is characterized by different metamorphic conditions and consistently different orientations, which allow the structural correlation between the orogenic core and the internal thrust-fold belt. The first deformation phase was coeval with regional metamorphism reaching upper greenschist facies, and featured simple shear deformation of the basement (Paleozoic and Jurassic) and cover (Cretaceous) in the top of the underthrusting South American plate. The second phase developed during collision of the orogenic wedge with the Río Chico Arch, a promontory in the underthrusting plate; this phase was characterized by thrust sheet emplacement and formation of a crustal duplex, with rock uplift and consequent low to very-low grade metamorphism. Buttressing against the Río Chico Arch is responsible for the change in shortening orientation that distinguishes both phases.

  19. Deformation-specific and deformation-invariant visual object recognition: pose vs identity recognition of people and deforming objects

    Directory of Open Access Journals (Sweden)

    Tristan J Webb

    2014-04-01

    Full Text Available When we see a human sitting down, standing up, or walking, we can recognise one of these poses independently of the individual, or we can recognise the individual person, independently of the pose. The same issues arise for deforming objects. For example, if we see a flag deformed by the wind, either blowing out or hanging languidly, we can usually recognise the flag, independently of its deformation; or we can recognise the deformation independently of the identity of the flag. We hypothesize that these types of recognition can be implemented by the primate visual system using temporo-spatial continuity as objects transform as a learning principle. In particular, we hypothesize that pose or deformation can be learned under conditions in which large numbers of different people are successively seen in the same pose, or objects in the same deformation. We also hypothesize that person-specific representations that are independent of pose, and object-specific representations that are independent of deformation and view, could be built, when individual people or objects are observed successively transforming from one pose or deformation and view to another. These hypotheses were tested in a simulation of the ventral visual system, VisNet, that uses temporal continuity, implemented in a synaptic learning rule with a short-term memory trace of previous neuronal activity, to learn invariant representations. It was found that depending on the statistics of the visual input, either pose-specific or deformation-specific representations could be built that were invariant with respect to individual and view; or that identity-specific representations could be built that were invariant with respect to pose or deformation and view. We propose that this is how pose-specific and pose-invariant, and deformation-specific and deformation-invariant, perceptual representations are built in the brain.

  20. Spinal pedicle screw planning using deformable atlas registration

    Science.gov (United States)

    Goerres, J.; Uneri, A.; De Silva, T.; Ketcha, M.; Reaungamornrat, S.; Jacobson, M.; Vogt, S.; Kleinszig, G.; Osgood, G.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2017-04-01

    Spinal screw placement is a challenging task due to small bone corridors and high risk of neurological or vascular complications, benefiting from precision guidance/navigation and quality assurance (QA). Implicit to both guidance and QA is the definition of a surgical plan—i.e. the desired trajectories and device selection for target vertebrae—conventionally requiring time-consuming manual annotations by a skilled surgeon. We propose automation of such planning by deriving the pedicle trajectory and device selection from a patient’s preoperative CT or MRI. An atlas of vertebrae surfaces was created to provide the underlying basis for automatic planning—in this work, comprising 40 exemplary vertebrae at three levels of the spine (T7, T8, and L3). The atlas was enriched with ideal trajectory annotations for 60 pedicles in total. To define trajectories for a given patient, sparse deformation fields from the atlas surfaces to the input (CT or MR image) are applied on the annotated trajectories. Mean value coordinates are used to interpolate dense deformation fields. The pose of a straight trajectory is optimized by image-based registration to an accumulated volume of the deformed annotations. For evaluation, input deformation fields were created using coherent point drift (CPD) to perform a leave-one-out analysis over the atlas surfaces. CPD registration demonstrated surface error of 0.89  ±  0.10 mm (median  ±  interquartile range) for T7/T8 and 1.29  ±  0.15 mm for L3. At the pedicle center, registered trajectories deviated from the expert reference by 0.56  ±  0.63 mm (T7/T8) and 1.12  ±  0.67 mm (L3). The predicted maximum screw diameter differed by 0.45  ±  0.62 mm (T7/T8), and 1.26  ±  1.19 mm (L3). The automated planning method avoided screw collisions in all cases and demonstrated close agreement overall with expert reference plans, offering a potentially valuable tool in support

  1. Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei

    Science.gov (United States)

    Hinde, D. J.; Jeung, D. Y.; Prasad, E.; Wakhle, A.; Dasgupta, M.; Evers, M.; Luong, D. H.; du Rietz, R.; Simenel, C.; Simpson, E. C.; Williams, E.

    2018-02-01

    Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission competition. In "cold" fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies significantly below the average capture barrier. In "hot" fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP=14 . For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP˜8 . Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely

  2. CHARACTERIZATION OF WILD PIG VEHICLE COLLISIONS

    Energy Technology Data Exchange (ETDEWEB)

    Mayer, J; Paul E. Johns, P

    2007-05-23

    Wild pig (Sus scrofa) collisions with vehicles are known to occur in the United States, but only minimal information describing these accidents has been reported. In an effort to better characterize these accidents, data were collected from 179 wild pig-vehicle collisions from a location in west central South Carolina. Data included accident parameters pertaining to the animals involved, time, location, and human impacts. The age structure of the animals involved was significantly older than that found in the population. Most collisions involved single animals; however, up to seven animals were involved in individual accidents. As the number of animals per collision increased, the age and body mass of the individuals involved decreased. The percentage of males was significantly higher in the single-animal accidents. Annual attrition due to vehicle collisions averaged 0.8 percent of the population. Wild pig-vehicle collisions occurred year-round and throughout the 24-hour daily time period. Most accidents were at night. The presence of lateral barriers was significantly more frequent at the collision locations. Human injuries were infrequent but potentially serious. The mean vehicle damage estimate was $1,173.

  3. Relativistic heavy-ion collisions

    CERN Document Server

    Bhalerao, Rajeev S.

    The field of relativistic heavy-ion collisions is introduced to the high-energy physics students with no prior knowledge in this area. The emphasis is on the two most important observables, namely the azimuthal collective flow and jet quenching, and on the role fluid dynamics plays in the interpretation of the data. Other important observables described briefly are constituent quark number scaling, ratios of particle abundances, strangeness enhancement, and sequential melting of heavy quarkonia. Comparison is made of some of the basic heavy-ion results obtained at LHC with those obtained at RHIC. Initial findings at LHC which seem to be in apparent conflict with the accumulated RHIC data are highlighted.

  4. Theory of low energy collisions

    International Nuclear Information System (INIS)

    Sparenberg, J.M.

    2007-01-01

    The basic notions of low-energy quantum scattering theory are introduced (cross sections, phase shifts, resonances,... ), in particular for positively-charged particles, in view of nuclear physics applications. An introduction to the reaction-matrix (or R-matrix) method is then proposed, as a tool to both solve the Schroedinger equation describing collisions and fit experimental data phenomenologically. Most results are established without proof but with a particular emphasis on their intuitive understanding and their possible analogs in classical mechanics. Several choices are made consequently: (i) the text starts with a detailed reminder of classical scattering theory, (ii) the concepts are first introduced in ideal theoretical cases before going to the more complicated formalism allowing the description of realistic experimental situations, (iii) a single example is used throughout nearly the whole text, (iv) all concepts are established for the elastic scattering of spinless particles, with only a brief mention of their multichannel generalization at the end of the text. (author)

  5. Deformation Characteristics of Composite Structures

    Directory of Open Access Journals (Sweden)

    Theddeus T. AKANO

    2016-08-01

    Full Text Available The composites provide design flexibility because many of them can be moulded into complex shapes. The carbon fibre-reinforced epoxy composites exhibit excellent fatigue tolerance and high specific strength and stiffness which have led to numerous advanced applications ranging from the military and civil aircraft structures to the consumer products. However, the modelling of the beams undergoing the arbitrarily large displacements and rotations, but small strains, is a common problem in the application of these engineering composite systems. This paper presents a nonlinear finite element model which is able to estimate the deformations of the fibre-reinforced epoxy composite beams. The governing equations are based on the Euler-Bernoulli beam theory (EBBT with a von Kármán type of kinematic nonlinearity. The anisotropic elasticity is employed for the material model of the composite material. Moreover, the characterization of the mechanical properties of the composite material is achieved through a tensile test, while a simple laboratory experiment is used to validate the model. The results reveal that the composite fibre orientation, the type of applied load and boundary condition, affect the deformation characteristics of the composite structures. The nonlinearity is an important factor that should be taken into consideration in the analysis of the fibre-reinforced epoxy composites.

  6. Deformable human body model development

    Energy Technology Data Exchange (ETDEWEB)

    Wray, W.O.; Aida, T.

    1998-11-01

    This is the final report of a three-year, Laboratory Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). A Deformable Human Body Model (DHBM) capable of simulating a wide variety of deformation interactions between man and his environment has been developed. The model was intended to have applications in automobile safety analysis, soldier survivability studies and assistive technology development for the disabled. To date, we have demonstrated the utility of the DHBM in automobile safety analysis and are currently engaged in discussions with the U.S. military involving two additional applications. More specifically, the DHBM has been incorporated into a Virtual Safety Lab (VSL) for automobile design under contract to General Motors Corporation. Furthermore, we have won $1.8M in funding from the U.S. Army Medical Research and Material Command for development of a noninvasive intracranial pressure measurement system. The proposed research makes use of the detailed head model that is a component of the DHBM; the project duration is three years. In addition, we have been contacted by the Air Force Armstrong Aerospace Medical Research Laboratory concerning possible use of the DHBM in analyzing the loads and injury potential to pilots upon ejection from military aircraft. Current discussions with Armstrong involve possible LANL participation in a comparison between DHBM and the Air Force Articulated Total Body (ATB) model that is the current military standard.

  7. Deformation Based Curved Shape Representation.

    Science.gov (United States)

    Demisse, Girum G; Aouada, Djamila; Ottersten, Bjorn

    2017-06-02

    In this paper, we introduce a deformation based representation space for curved shapes in Rn. Given an ordered set of points sampled from a curved shape, the proposed method represents the set as an element of a finite dimensional matrix Lie group. Variation due to scale and location are filtered in a preprocessing stage, while shapes that vary only in rotation are identified by an equivalence relationship. The use of a finite dimensional matrix Lie group leads to a similarity metric with an explicit geodesic solution. Subsequently, we discuss some of the properties of the metric and its relationship with a deformation by least action. Furthermore, invariance to reparametrization or estimation of point correspondence between shapes is formulated as an estimation of sampling function. Thereafter, two possible approaches are presented to solve the point correspondence estimation problem. Finally, we propose an adaptation of k-means clustering for shape analysis in the proposed representation space. Experimental results show that the proposed representation is robust to uninformative cues, e.g. local shape perturbation and displacement. In comparison to state of the art methods, it achieves a high precision on the Swedish and the Flavia leaf datasets and a comparable result on MPEG-7, Kimia99 and Kimia216 datasets.

  8. CPU-GPU mixed implementation of virtual node method for real-time interactive cutting of deformable objects using OpenCL.

    Science.gov (United States)

    Jia, Shiyu; Zhang, Weizhong; Yu, Xiaokang; Pan, Zhenkuan

    2015-09-01

    Surgical simulators need to simulate interactive cutting of deformable objects in real time. The goal of this work was to design an interactive cutting algorithm that eliminates traditional cutting state classification and can work simultaneously with real-time GPU-accelerated deformation without affecting its numerical stability. A modified virtual node method for cutting is proposed. Deformable object is modeled as a real tetrahedral mesh embedded in a virtual tetrahedral mesh, and the former is used for graphics rendering and collision, while the latter is used for deformation. Cutting algorithm first subdivides real tetrahedrons to eliminate all face and edge intersections, then splits faces, edges and vertices along cutting tool trajectory to form cut surfaces. Next virtual tetrahedrons containing more than one connected real tetrahedral fragments are duplicated, and connectivity between virtual tetrahedrons is updated. Finally, embedding relationship between real and virtual tetrahedral meshes is updated. Co-rotational linear finite element method is used for deformation. Cutting and collision are processed by CPU, while deformation is carried out by GPU using OpenCL. Efficiency of GPU-accelerated deformation algorithm was tested using block models with varying numbers of tetrahedrons. Effectiveness of our cutting algorithm under multiple cuts and self-intersecting cuts was tested using a block model and a cylinder model. Cutting of a more complex liver model was performed, and detailed performance characteristics of cutting, deformation and collision were measured and analyzed. Our cutting algorithm can produce continuous cut surfaces when traditional minimal element creation algorithm fails. Our GPU-accelerated deformation algorithm remains stable with constant time step under multiple arbitrary cuts and works on both NVIDIA and AMD GPUs. GPU-CPU speed ratio can be as high as 10 for models with 80,000 tetrahedrons. Forty to sixty percent real

  9. Deformation Models Tracking, Animation and Applications

    CERN Document Server

    Torres, Arnau; Gómez, Javier

    2013-01-01

    The computational modelling of deformations has been actively studied for the last thirty years. This is mainly due to its large range of applications that include computer animation, medical imaging, shape estimation, face deformation as well as other parts of the human body, and object tracking. In addition, these advances have been supported by the evolution of computer processing capabilities, enabling realism in a more sophisticated way. This book encompasses relevant works of expert researchers in the field of deformation models and their applications.  The book is divided into two main parts. The first part presents recent object deformation techniques from the point of view of computer graphics and computer animation. The second part of this book presents six works that study deformations from a computer vision point of view with a common characteristic: deformations are applied in real world applications. The primary audience for this work are researchers from different multidisciplinary fields, s...

  10. Microstructural evolution during tensile deformation of polypropylenes

    International Nuclear Information System (INIS)

    Dasari, A.; Rohrmann, J.; Misra, R.D.K.

    2003-01-01

    Tensile deformation processes occurring at varying strain rates in high and low crystallinity polypropylenes and ethylene-propylene di-block copolymers have been investigated by scanning electron microscopy. This is examined for both long and short chain polymeric materials. The deformation processes in different polymeric materials show striking dissimilarities in spite of the common propylene matrix. Additionally, the deformation behavior of long and their respective short chain polymers was different. Deformation mechanisms include crazing/tearing, wedging, ductile ploughing, fibrillation, and brittle fracture. The different modes of deformation are depicted in the form of strain rate-strain diagrams. At a constant strain rate, the strain to fracture follows the sequence: high crystallinity polypropylenes< low crystallinity polypropylenes< ethylene-propylene di-block copolymers, indicative of the trend in resistance to plastic deformation

  11. Nonlinear continuum mechanics and large inelastic deformations

    CERN Document Server

    Dimitrienko, Yuriy I

    2010-01-01

    This book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics - kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead t...

  12. Deformable mirrors development program at ESO

    Science.gov (United States)

    Stroebele, Stefan; Vernet, Elise; Brinkmann, Martin; Jakob, Gerd; Lilley, Paul; Casali, Mark; Madec, Pierre-Yves; Kasper, Markus

    2016-07-01

    Over the last decade, adaptive optics has become essential in different fields of research including medicine and industrial applications. With this new need, the market of deformable mirrors has expanded a lot allowing new technologies and actuation principles to be developed. Several E-ELT instruments have identified the need for post focal deformable mirrors but with the increasing size of the telescopes the requirements on the deformable mirrors become more demanding. A simple scaling up of existing technologies from few hundred actuators to thousands of actuators will not be sufficient to satisfy the future needs of ESO. To bridge the gap between available deformable mirrors and the future needs for the E-ELT, ESO started a development program for deformable mirror technologies. The requirements and the path to get the deformable mirrors for post focal adaptive optics systems for the E-ELT is presented.

  13. The theory of relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    1993-07-01

    This program began in January 1993. Its primary goals are studies of highly excited matter and its production in nuclear collisions at very high energies. After a general orientation on the project, abstracts describing the contents of completed papers and providing some details of current projects are given. Principal topics of interest are the following: the dynamics of nuclear collisions at very high energies (RHIC and LHC), the dynamics of nuclear collisions at AGS energies, high-temperature QCD and the physics of the quark-gluon plasma, and the production of strangelets and other rare objects

  14. Wireless vehicular networks for car collision avoidance

    CERN Document Server

    2013-01-01

    Wireless Vehicular Networks for Car Collision Avoidance focuses on the development of the ITS (Intelligent Transportation Systems) in order to minimize vehicular accidents. The book presents and analyses a range of concrete accident scenarios while examining the causes of vehicular collision and proposing countermeasures based on wireless vehicular networks. The book also describes the vehicular network standards and quality of service mechanisms focusing on improving critical dissemination of safety information. With recommendations on techniques and protocols to consider when improving road safety policies in order to minimize crashes and collision risks.

  15. Relativistic collisions of structured atomic particles

    International Nuclear Information System (INIS)

    Voitkiv, A.; Ullrich, J.

    2008-01-01

    The book reviews the progress achieved over the last decade in the study of collisions between an ion and an atom in which both the atomic particles carry electrons and can undergo transitions between their internal states - including continua. It presents the detailed considerations of different theoretical approaches, that can be used to describe collisions of structured atomic particles for the very broad interval of impact energies ranging from 0.5-1 MeV/u till extreme relativistic energies where the collision velocity very closely approaches the speed of light. (orig.)

  16. Thermal equilibrium in strongly damped collisions

    International Nuclear Information System (INIS)

    Samaddar, S.K.; De, J.N.; Krishan, K.

    1985-01-01

    Energy division between colliding nuclei in damped collisions is studied in the statistical nucleon exchange model. The reactions 56 Fe+ 165 Ho and 56 Fe+ 238 U at incident energy of 465 MeV are considered for this purpose. It is found that the excitation energy is approximately equally shared between the nuclei for the peripheral collisions and the systems slowly approach equilibrium for more central collisions. This is in conformity with the recent experimental observations. The calculated variances of the charge distributions are found to depend appreciably on the temperature and are in very good agreement with the experimental data

  17. Chiral magnetic effect in isobaric collisions

    Science.gov (United States)

    Huang, Xu-Guang; Deng, Wei-Tian; Ma, Guo-Liang; Wang, Gang

    2017-11-01

    We give a numerical simulation of the generation of the magnetic field and the charge-separation signal due to the chiral magnetic effect (CME) - the induction of an electric current by the magnetic field in a parity-odd matter - in the collisions of isobaric nuclei, 9644Ru + 9644Ru and 9640Zr + 9640Zr, at √{sNN} = 200 GeV. We show that such collisions provide an ideal tool to disentangle the CME signal from the possible elliptic-flow driven background effects. We also discuss some other effects that can be tested by using the isobaric collisions.

  18. Structural refinement and coarsening in deformed metals

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Xing, Q.

    2005-01-01

    The microstructural refinement by plastic deformation is analysed in terms of key parameters, the spacing between and the misorientation angle across the boundaries subdividing the structure. Coarsening of such structures by annealing is also characterised. For both deformed and annealed structur......, good agreement has been found between experimental measurements of the flow stress and calculated values. Commercial purity aluminium is used as an example and deformed by cold rolling and by accumulative roll bonding....

  19. 3D geodetic monitoring slope deformations

    Directory of Open Access Journals (Sweden)

    Weiss Gabriel

    1996-06-01

    Full Text Available For plenty of slope failures that can be found in Slovakia is necessary and very important their geodetic monitoring (because of their activity, reactivisations, checks. The paper gives new methodologies for these works, using 3D terrestrial survey technologies for measurements in convenient deformation networks. The design of an optimal type of deformation model for various kinds of landslides and their exact processing with an efficient testing procedure to determine the kinematics of the slope deformations are presented too.

  20. Thermodynamic analysis of elastic-plastic deformation

    International Nuclear Information System (INIS)

    Lubarda, V.

    1981-01-01

    The complete set of constitutive equations which fully describes the behaviour of material in elastic-plastic deformation is derived on the basis of thermodynamic analysis of the deformation process. The analysis is done after the matrix decomposition of the deformation gradient is introduced into the structure of thermodynamics with internal state variables. The free energy function, is decomposed. Derive the expressions for the stress response, entropy and heat flux, and establish the evolution equation. Finally, we establish the thermodynamic restrictions of the deformation process. (Author) [pt

  1. Deformation effect on spectral statistics of nuclei

    Science.gov (United States)

    Sabri, H.; Jalili Majarshin, A.

    2018-02-01

    In this study, we tried to get significant relations between the spectral statistics of atomic nuclei and their different degrees of deformations. To this aim, the empirical energy levels of 109 even-even nuclei in the 22 ≤ A ≤ 196 mass region are classified as their experimental and calculated quadrupole, octupole, hexadecapole and hexacontatetrapole deformations values and analyzed by random matrix theory. Our results show an obvious relation between the regularity of nuclei and strong quadrupole, hexadecapole and hexacontatetrapole deformations and but for nuclei that their octupole deformations are nonzero, we have observed a GOE-like statistics.

  2. Deformation and fracture mechanics of engineering materials

    National Research Council Canada - National Science Library

    Hertzberg, Richard W; Vinci, Richard Paul; Hertzberg, Jason L

    2012-01-01

    "Hertzberg's 5th edition of Deformation & Fracture Mechanics of Engineering Materials offers several new features including a greater number and variety of homework problems using more computational software...

  3. Origami-enabled deformable silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Tu, Hongen; Xu, Yong [Electrical and Computer Engineering, Wayne State University, 5050 Anthony Wayne Dr., Detroit, Michigan 48202 (United States); Song, Zeming; Jiang, Hanqing, E-mail: hanqing.jiang@asu.edu [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Yu, Hongyu, E-mail: hongyu.yu@asu.edu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States)

    2014-02-24

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

  4. Origami-enabled deformable silicon solar cells

    International Nuclear Information System (INIS)

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing; Tu, Hongen; Xu, Yong; Song, Zeming; Jiang, Hanqing; Yu, Hongyu

    2014-01-01

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics

  5. Localization effects in heavy ion collisions

    International Nuclear Information System (INIS)

    Donangelo, R.J.

    1984-01-01

    Radial and angular localization in heavy ion reactions on deformed nuclei is discussed. A theoretical method appropriate to study these localization effects is briefly described and then applied to the determination of deformed heavy ion potentials from inclastic scattering data. It is argued that one-and two-nucleon transfer reactions on deformed nuclei can provide a probe of nuclear structure in high angular momentum states and be at least qualitatively analyzed in the light of these localization concepts. (Author) [pt

  6. Novel efficient hybrid‐DEM collision integration scheme

    OpenAIRE

    Buist, Kay A.; Seelen, Luuk J.H.; Deen, Niels G.; Padding, Johan T.; Kuipers, Hans J.A.M.

    2017-01-01

    A hybrid collision integration scheme is introduced, benefiting from the efficient handling of binary collisions in the hard sphere scheme and the robust time scaling of the soft sphere scheme. In typical dynamic dense granular flow, simulated with the soft sphere scheme, the amount of collisions involving more than two particles are limited, and necessarily so because of loss of energy decay otherwise. Because most collisions are binary, these collisions can be handled within one time step w...

  7. Heavy ion collisions at intermediate energy

    International Nuclear Information System (INIS)

    Bertsch, G.; Amsden, A.A.

    1978-01-01

    Two types of measurement are proposed for the analysis of heavy ion collisions in the range of energy of 20--200 MeV/A. First, measurement of the longitudinal component of the kinetic energy of the collision products characterizes the impact parameter of the collision. The distribution in this quantity allows the dissipation in the theoretical models to be determined. A second kind of measurement is that of the coefficients of a spherical harmonic expansion of the angular distribution of the products. Besides giving independent information on the impact parameter and reaction dynamics, measurement of these coefficients offers the possibility of measuring the stiffness of the equation of state of nuclear matter. These ideas are explored in the context of a hydrodynamic model for the collision. In the purely hydrodynamic model there is a large measurable asymmetry in the angular distribution, but the dependence on the equation of state is small

  8. Multiple nucleon transfer in damped nuclear collisions

    International Nuclear Information System (INIS)

    Randrup, J.

    1979-07-01

    This lecture discusses a theory for the transport of mass, charge, linear, and angular momentum and energy in damped nuclear collisions, as induced by multiple transfer of individual nucleons. 11 references

  9. VT Vehicle-Animal Collisions - 2006

    Data.gov (United States)

    Vermont Center for Geographic Information — (Link to Metadata) This data (ROADKILL06) describes the locations of vehicle-animal collisions. This shapefile is a collection of collsion information collected by...

  10. Particle production in relativistic heavy ion collisions

    International Nuclear Information System (INIS)

    Vary, J.P.

    1978-01-01

    Within the framework of multiple scattering theory we present and contrast both the conventional limiting case of independent multiple collisions of nucleons and the multiple scattering of collective degrees of freedom. Dramatically different predictions may be obtained for particle production in relativistic nucleon-nucleus and nucleus-nucleus collisions. We first study the pion multiplicity distributions to uncover evidence for a coherent-collective mechanism. Attention is then focused on potentially more conclusive tests - subthreshold (in the nucleon-nucleon kinematics) production of massive particles anti p, K - , PSI/J and W, as examples. Evidence for a collective mechanism is found by examining subthreshold anti p production data in particle-nucleus collisions and contrasting with results from the IMC model including realistic Fermi motion. As perhaps the leading candidate for a coherent-collective mechanism we specifically adopt the Coherent Tube Model to explain these data since it has been successful in high energy particle-nucleus collisions. (orig.) [de

  11. LHC: Collisions on course for 2007

    CERN Multimedia

    2006-01-01

    In the LHC tunnel and caverns, a particle accelerator and detectors are rapidly taking shape. At last week's Council meeting, delegates took stock of the year's progress towards first collisions in 2007.

  12. Collision Detection for Underwater ROV Manipulator Systems.

    Science.gov (United States)

    Sivčev, Satja; Rossi, Matija; Coleman, Joseph; Omerdić, Edin; Dooly, Gerard; Toal, Daniel

    2018-04-06

    Work-class ROVs equipped with robotic manipulators are extensively used for subsea intervention operations. Manipulators are teleoperated by human pilots relying on visual feedback from the worksite. Operating in a remote environment, with limited pilot perception and poor visibility, manipulator collisions which may cause significant damage are likely to happen. This paper presents a real-time collision detection algorithm for marine robotic manipulation. The proposed collision detection mechanism is developed, integrated into a commercial ROV manipulator control system, and successfully evaluated in simulations and experimental setup using a real industry standard underwater manipulator. The presented collision sensing solution has a potential to be a useful pilot assisting tool that can reduce the task load, operational time, and costs of subsea inspection, repair, and maintenance operations.

  13. Resonance formation in photon-photon collisions

    Energy Technology Data Exchange (ETDEWEB)

    Gidal, G.

    1988-08-01

    Recent experimental progress on resonance formation in photon-photon collisions is reviewed with particular emphasis on the pseudoscalar and tensor nonents and on the ..gamma gamma..* production of spin-one resonances. 37 refs., 17 figs., 5 tabs.

  14. Directional Collision Avoidance in Ad Hoc Networks

    National Research Council Canada - National Science Library

    Wang, Yu; Garcia-Luna-Aceves, J. J

    2004-01-01

    This paper analyzes the performance of directional collision avoidance schemes, in which antenna systems are used to direct the transmission and reception of control and data packets in channel access...

  15. Evidence for collective phenomena in pp collisions

    CERN Document Server

    Chen, Zhenyu

    2017-01-01

    Observation of long-range ridge-like correlations in high-multiplicity pp collisions opened up new opportunities for exploring novel QCD dynamics in small collision systems. Based on data collected in 2015 and 2016 with the CMS detector at the LHC, the second-order ($v_{2}$) and third-order ($v_{3}$) azimuthal anisotropy harmonics of $K_{s}^{0}$, $\\Lambda$ and inclusive charged particles are extracted from long-range two-particle correlations as functions of particle multiplicity and transverse momentum. For the first time in pp collisions, the $v_{2}$ signals are also extracted from multi-particle correlations, providing direct evidence of the collective nature of observed particle correlations. These results provide new insights on the origin of observed long-range correlations in pp collisions, and may shed light on how quantum fluctuations affect the proton structure at a very short time scale.

  16. Novel energy sharing collisions of multicomponent solitons

    Indian Academy of Sciences (India)

    2015-10-21

    Oct 21, 2015 ... Abstract. In this paper, we discuss the fascinating energy sharing collisions of multicomponent solitons in certain incoherently coupled and coherently coupled nonlinear Schrödinger-type equations arising in the context of nonlinear optics.

  17. Typhoon-Induced Ground Deformation

    Science.gov (United States)

    Mouyen, M.; Canitano, A.; Chao, B. F.; Hsu, Y.-J.; Steer, P.; Longuevergne, L.; Boy, J.-P.

    2017-11-01

    Geodetic instruments now offer compelling sensitivity, allowing to investigate how solid Earth and surface processes interact. By combining surface air pressure data, nontidal sea level variations model, and rainfall data, we systematically analyze the volumetric deformation of the shallow crust at seven borehole strainmeters in Taiwan induced by 31 tropical cyclones (typhoons) that made landfall to the island from 2004 to 2013. The typhoon's signature consists in a ground dilatation due to air pressure drop, generally followed by a larger ground compression. We show that this compression phase can be mostly explained by the mass loading of rainwater that falls on the ground and concentrates in the valleys towards the strainmeter sensitivity zone. Further, our analysis shows that borehole strainmeters can help quantifying the amount of rainwater accumulating and flowing over a watershed during heavy rainfalls, which is a useful constraint for building hydrological models.

  18. Precise object tracking under deformation

    International Nuclear Information System (INIS)

    Saad, M.H

    2010-01-01

    The precise object tracking is an essential issue in several serious applications such as; robot vision, automated surveillance (civil and military), inspection, biomedical image analysis, video coding, motion segmentation, human-machine interface, visualization, medical imaging, traffic systems, satellite imaging etc. This frame-work focuses on the precise object tracking under deformation such as scaling , rotation, noise, blurring and change of illumination. This research is a trail to solve these serious problems in visual object tracking by which the quality of the overall system will be improved. Developing a three dimensional (3D) geometrical model to determine the current pose of an object and predict its future location based on FIR model learned by the OLS. This framework presents a robust ranging technique to track a visual target instead of the traditional expensive ranging sensors. The presented research work is applied to real video stream and achieved high precession results.

  19. DEA deformed stretchable patch antenna

    International Nuclear Information System (INIS)

    Jiang, X-J; Jalali Mazlouman, S; Menon, C; Mahanfar, A; Vaughan, R G

    2012-01-01

    A stretchable patch antenna (SPA) whose frequency is tuned by a planar dielectric elastomer actuator (DEA) is presented in this paper. This mechanically reconfigurable antenna system has a configuration resembling a pre-stretched silicone belt. Part of the belt is embedded with a layer of conductive liquid metal to form the patch antenna. Part of the belt is sandwiched between conductive electrodes to form the DEA. Electrical activation of the DEA results in a contraction of the patch antenna, and as a result, in a variation of its resonance frequency. Design and fabrication steps of this system are presented. Measurement results for deformation, resonance frequency variation and efficiency of the patch antenna are also presented. (paper)

  20. Deterritorializing Drawing - transformation/deformation

    DEFF Research Database (Denmark)

    Brabrand, Helle

    2012-01-01

    the capacity of the body to be affected by change. The everyday and the ceremonial body, the ordinary and the aberrant movement – these poles generate a passage rather than a difference from the one to the other: from attitude or position to gesture or kinaesthetic twist. Known from without through perception...... but also from within by sensations, body ‘images’ are different to all other images. Twisting these body images make a mode of operation of art. The paper will address the above issues discussing modes of operation and appearance of my actual project. Acting in the reality of drawing, the project confront...... criticises figurative as well as abstract painting as passing through the brain and not acting directly upon the senses. Figurative and abstract painting both fail to liberate the Figure, implementing transformation of form, but not attaining deformations of bodies. Bacon, then, is concerned about...

  1. Deformation quantization: Twenty years after

    International Nuclear Information System (INIS)

    Sternheimer, Daniel

    1998-01-01

    We first review the historical developments, both in physics and in mathematics, that preceded (and in some sense provided the background of) deformation quantization. Then we describe the birth of the latter theory and its evolution in the past twenty years, insisting on the main conceptual developments and keeping here as much as possible on the physical side. For the physical part the accent is put on its relations to, and relevance for, 'conventional' physics. For the mathematical part we concentrate on the questions of existence and equivalence, including most recent developments for general Poisson manifolds; we touch also noncommutative geometry and index theorems, and relations with group theory, including quantum groups. An extensive (though very incomplete) bibliography is appended and includes background mathematical literature

  2. Modelling Coulomb Collisions in Anisotropic Plasmas

    Science.gov (United States)

    Hellinger, P.; Travnicek, P. M.

    2009-12-01

    Collisional transport in anisotropic plasmas is investigated comparing the theoretical transport coefficients (Hellinger and Travnicek, 2009) for anisotropic particles with the results of the corresponding Langevin equation, obtained as a generalization of Manheimer et al. (1997). References: Hellinger, P., and P. M. Travnicek (2009), On Coulomb collisions in bi-Maxwellian plasmas, Phys. Plasmas, 16, 054501. Manheimer, W. M., M. Lampe and G. Joyce (1997), Langevin representation of Coulomb collisions in PIC simulations, J. Comput. Phys., 138, 563-584.

  3. Updated Vertical Extent of Collision Damage

    DEFF Research Database (Denmark)

    Tagg, R.; Bartzis, P.; Papanikolaou, P.

    2002-01-01

    The probabilistic distribution of the vertical extent of collision damage is an important and somewhat controversial component of the proposed IMO harmonized damage stability regulations for cargo and passenger ships. The only pre-existing vertical distribution, currently used in the international...... cargo ship regulations, was based on a very simplified presumption of bow heights. This paper investigates the development of this damage extent distribution based on three independent methodologies; actual casualty measurements, world fleet bow height statistics, and collision simulation modeling...

  4. Perspectives in high energy nuclear collisions

    International Nuclear Information System (INIS)

    Rafelski, J.

    1983-08-01

    This report gives an overview of some aspects of hadronic physics relevant for the conception of a research facility devoted to the study of high energy nuclear collisions. Several concepts to be studied in nuclear collisions are selected, with emphasis placed on the properties and nature of the quark-gluon plasma, the formation of the plasma state in the central region and its anticipated lifetime, and the observability, through strangeness content of this new form of nuclear matter. (orig.)

  5. Global Λ hyperon polarization in nuclear collisions

    Science.gov (United States)

    Adamczyk, L.; Adkins, J. K.; Agakishiev, G.; Aggarwal, M. M.; Ahammed, Z.; Ajitanand, N. N.; Alekseev, I.; Anderson, D. M.; Aoyama, R.; Aparin, A.; Arkhipkin, D.; Aschenauer, E. C.; Ashraf, M. U.; Attri, A.; Averichev, G. S.; Bai, X.; Bairathi, V.; Behera, A.; Bellwied, R.; Bhasin, A.; Bhati, A. K.; Bhattarai, P.; Bielcik, J.; Bielcikova, J.; Bland, L. C.; Bordyuzhin, I. G.; Bouchet, J.; Brandenburg, J. D.; Brandin, A. V.; Brown, D.; Bunzarov, I.; Butterworth, J.; Caines, H.; de La Barca Sánchez, M. Calderón; Campbell, J. M.; Cebra, D.; Chakaberia, I.; Chaloupka, P.; Chang, Z.; Chankova-Bunzarova, N.; Chatterjee, A.; Chattopadhyay, S.; Chen, X.; Chen, J. H.; Chen, X.; Cheng, J.; Cherney, M.; Christie, W.; Contin, G.; Crawford, H. J.; Das, S.; de Silva, L. C.; Debbe, R. R.; Dedovich, T. G.; Deng, J.; Derevschikov, A. A.; Didenko, L.; Dilks, C.; Dong, X.; Drachenberg, J. L.; Draper, J. E.; Dunkelberger, L. E.; Dunlop, J. C.; Efimov, L. G.; Elsey, N.; Engelage, J.; Eppley, G.; Esha, R.; Esumi, S.; Evdokimov, O.; Ewigleben, J.; Eyser, O.; Fatemi, R.; Fazio, S.; Federic, P.; Federicova, P.; Fedorisin, J.; Feng, Z.; Filip, P.; Finch, E.; Fisyak, Y.; Flores, C. E.; Fulek, L.; Gagliardi, C. A.; Garand, D.; Geurts, F.; Gibson, A.; Girard, M.; Grosnick, D.; Gunarathne, D. S.; Guo, Y.; Gupta, A.; Gupta, S.; Guryn, W.; Hamad, A. I.; Hamed, A.; Harlenderova, A.; Harris, J. W.; He, L.; Heppelmann, S.; Heppelmann, S.; Hirsch, A.; Hoffmann, G. W.; Horvat, S.; Huang, T.; Huang, B.; Huang, X.; Huang, H. Z.; Humanic, T. J.; Huo, P.; Igo, G.; Jacobs, W. W.; Jentsch, A.; Jia, J.; Jiang, K.; Jowzaee, S.; Judd, E. G.; Kabana, S.; Kalinkin, D.; Kang, K.; Kauder, K.; Ke, H. W.; Keane, D.; Kechechyan, A.; Khan, Z.; Kikoła, D. P.; Kisel, I.; Kisiel, A.; Kochenda, L.; Kocmanek, M.; Kollegger, T.; Kosarzewski, L. K.; Kraishan, A. F.; Kravtsov, P.; Krueger, K.; Kulathunga, N.; Kumar, L.; Kvapil, J.; Kwasizur, J. H.; Lacey, R.; Landgraf, J. M.; Landry, K. D.; Lauret, J.; Lebedev, A.; Lednicky, R.; Lee, J. H.; Li, X.; Li, C.; Li, W.; Li, Y.; Lidrych, J.; Lin, T.; Lisa, M. A.; Liu, H.; Liu, P.; Liu, Y.; Liu, F.; Ljubicic, T.; Llope, W. J.; Lomnitz, M.; Longacre, R. S.; Luo, S.; Luo, X.; Ma, G. L.; Ma, L.; Ma, Y. G.; Ma, R.; Magdy, N.; Majka, R.; Mallick, D.; Margetis, S.; Markert, C.; Matis, H. S.; Meehan, K.; Mei, J. C.; Miller, Z. W.; Minaev, N. G.; Mioduszewski, S.; Mishra, D.; Mizuno, S.; Mohanty, B.; Mondal, M. M.; Morozov, D. A.; Mustafa, M. K.; Nasim, Md.; Nayak, T. K.; Nelson, J. M.; Nie, M.; Nigmatkulov, G.; Niida, T.; Nogach, L. V.; Nonaka, T.; Nurushev, S. B.; Odyniec, G.; Ogawa, A.; Oh, K.; Okorokov, V. A.; Olvitt, D.; Page, B. S.; Pak, R.; Pandit, Y.; Panebratsev, Y.; Pawlik, B.; Pei, H.; Perkins, C.; Pile, P.; Pluta, J.; Poniatowska, K.; Porter, J.; Posik, M.; Poskanzer, A. M.; Pruthi, N. K.; Przybycien, M.; Putschke, J.; Qiu, H.; Quintero, A.; Ramachandran, S.; Ray, R. L.; Reed, R.; Rehbein, M. J.; Ritter, H. G.; Roberts, J. B.; Rogachevskiy, O. V.; Romero, J. L.; Roth, J. D.; Ruan, L.; Rusnak, J.; Rusnakova, O.; Sahoo, N. R.; Sahu, P. K.; Salur, S.; Sandweiss, J.; Saur, M.; Schambach, J.; Schmah, A. M.; Schmidke, W. B.; Schmitz, N.; Schweid, B. R.; Seger, J.; Sergeeva, M.; Seyboth, P.; Shah, N.; Shahaliev, E.; Shanmuganathan, P. V.; Shao, M.; Sharma, A.; Sharma, M. K.; Shen, W. Q.; Shi, Z.; Shi, S. S.; Shou, Q. Y.; Sichtermann, E. P.; Sikora, R.; Simko, M.; Singha, S.; Skoby, M. J.; Smirnov, N.; Smirnov, D.; Solyst, W.; Song, L.; Sorensen, P.; Spinka, H. M.; Srivastava, B.; Stanislaus, T. D. S.; Strikhanov, M.; Stringfellow, B.; Sugiura, T.; Sumbera, M.; Summa, B.; Sun, Y.; Sun, X. M.; Sun, X.; Surrow, B.; Svirida, D. N.; Tang, A. H.; Tang, Z.; Taranenko, A.; Tarnowsky, T.; Tawfik, A.; Thäder, J.; Thomas, J. H.; Timmins, A. R.; Tlusty, D.; Todoroki, T.; Tokarev, M.; Trentalange, S.; Tribble, R. E.; Tribedy, P.; Tripathy, S. K.; Trzeciak, B. A.; Tsai, O. D.; Ullrich, T.; Underwood, D. G.; Upsal, I.; van Buren, G.; van Nieuwenhuizen, G.; Vasiliev, A. N.; Videbæk, F.; Vokal, S.; Voloshin, S. A.; Vossen, A.; Wang, G.; Wang, Y.; Wang, F.; Wang, Y.; Webb, J. C.; Webb, G.; Wen, L.; Westfall, G. D.; Wieman, H.; Wissink, S. W.; Witt, R.; Wu, Y.; Xiao, Z. G.; Xie, W.; Xie, G.; Xu, J.; Xu, N.; Xu, Q. H.; Xu, Y. F.; Xu, Z.; Yang, Y.; Yang, Q.; Yang, C.; Yang, S.; Ye, Z.; Ye, Z.; Yi, L.; Yip, K.; Yoo, I.-K.; Yu, N.; Zbroszczyk, H.; Zha, W.; Zhang, Z.; Zhang, X. P.; Zhang, J. B.; Zhang, S.; Zhang, J.; Zhang, Y.; Zhang, J.; Zhang, S.; Zhao, J.; Zhong, C.; Zhou, L.; Zhou, C.; Zhu, X.; Zhu, Z.; Zyzak, M.

    2017-08-01

    The extreme energy densities generated by ultra-relativistic collisions between heavy atomic nuclei produce a state of matter that behaves surprisingly like a fluid, with exceptionally high temperature and low viscosity. Non-central collisions have angular momenta of the order of 1,000ћ, and the resulting fluid may have a strong vortical structure that must be understood to describe the fluid properly. The vortical structure is also of particular interest because the restoration of fundamental symmetries of quantum chromodynamics is expected to produce novel physical effects in the presence of strong vorticity. However, no experimental indications of fluid vorticity in heavy ion collisions have yet been found. Since vorticity represents a local rotational structure of the fluid, spin-orbit coupling can lead to preferential orientation of particle spins along the direction of rotation. Here we present measurements of an alignment between the global angular momentum of a non-central collision and the spin of emitted particles (in this case the collision occurs between gold nuclei and produces Λ baryons), revealing that the fluid produced in heavy ion collisions is the most vortical system so far observed. (At high energies, this fluid is a quark-gluon plasma.) We find that Λ and hyperons show a positive polarization of the order of a few per cent, consistent with some hydrodynamic predictions. (A hyperon is a particle composed of three quarks, at least one of which is a strange quark; the remainder are up and down quarks, found in protons and neutrons.) A previous measurement that reported a null result, that is, zero polarization, at higher collision energies is seen to be consistent with the trend of our observations, though with larger statistical uncertainties. These data provide experimental access to the vortical structure of the nearly ideal liquid created in a heavy ion collision and should prove valuable in the development of hydrodynamic models that

  6. ALICE: Simulated lead-lead collision

    CERN Document Server

    2003-01-01

    This track is an example of simulated data modelled for the ALICE detector on the Large Hadron Collider (LHC) at CERN, which will begin taking data in 2008. ALICE will focus on the study of collisions between nuclei of lead, a heavy element that produces many different particles when collided. It is hoped that these collisions will produce a new state of matter known as the quark-gluon plasma, which existed billionths of a second after the Big Bang.

  7. COMMISSIONING OF RHIC DEUTERON - GOLD COLLISIONS.

    Energy Technology Data Exchange (ETDEWEB)

    SATOGATA,T.AHRENS,L.BAI,M.BEEBE-WANG,J.

    2003-05-12

    Deuteron and gold beams have been accelerated to a collision energy of {radical}s = 200 GeV/u in the Relativistic Heavy Ion Collider (RHIC), providing the first asymmetric-species collisions of this complex. Necessary changes for this mode of operation include new ramping software and asymmetric crossing angle geometries. This paper reviews machine performance, problem encountered and their solutions, and accomplishments during the 16 weeks of ramp-up and operations.

  8. Jet production in heavy ion collisions

    CERN Document Server

    Calucci, G

    2000-01-01

    We discuss the production of jets in heavy ion collisions at LHC. The process allows one to determine to a good accuracy the value of the impact parameter of the nuclear collision in each single inelastic event. The knowledge of the geometry is a powerful tool for a detailed analysis of the process, making it possible to test the various different elements which, in accordance with present theoretical ideas, take part to the production mechanism. (8 refs).

  9. Nuclear collisions at the Future Circular Collider

    Energy Technology Data Exchange (ETDEWEB)

    Armesto, N., E-mail: nestor.armesto@usc.es [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia-Spain (Spain); Dainese, A. [INFN – Sezione di Padova, 35131 Padova (Italy); D' Enterria, D. [Physics Department, CERN, CH-1211 Genéve 23 (Switzerland); Masciocchi, S. [EMMI and GSI Helmholtzzentrum fuer Schwerionenforschung GmbH, Darmstadt (Germany); Roland, C. [Massachusetts Institute of Technology, Cambridge, MA 02139-4307 (United States); Salgado, C.A. [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, 15706 Santiago de Compostela, Galicia-Spain (Spain); Leeuwen, M. van [Nikhef, National Institute for Subatomic Physics, Amsterdam (Netherlands); Institute for Subatomic Physics of Utrecht University, Utrecht (Netherlands); Wiedemann, U.A. [Physics Department, CERN, CH-1211 Genéve 23 (Switzerland)

    2016-12-15

    The Future Circular Collider is a new proposed collider at CERN with centre-of-mass energies around 100 TeV in the pp mode. Ongoing studies aim at assessing its physics potential and technical feasibility. Here we focus on updates in physics opportunities accessible in pA and AA collisions not covered in previous Quark Matter contributions, including Quark-Gluon Plasma and gluon saturation studies, novel hard probes of QCD matter, and photon-induced collisions.

  10. Nuclear collisions at the Future Circular Collider

    CERN Document Server

    Armesto, N.; d'Enterria, D.; Masciocchi, S.; Roland, C.; Salgado, C.A.; van Leeuwen, M.; Wiedemann, U.A.

    2016-01-01

    The Future Circular Collider is a new proposed collider at CERN with centre-of-mass energies around 100 TeV in the pp mode. Ongoing studies aim at assessing its physics potential and technical feasibility. Here we focus on updates in physics opportunities accessible in pA and AA collisions not covered in previous Quark Matter contributions, including Quark-Gluon Plasma and gluon saturation studies, novel hard probes of QCD matter, and photon-induced collisions.

  11. High energy nuclear collisions: Theory overview

    Indian Academy of Sciences (India)

    1012 K, were deconfined and existed as a quark gluon plasma (QGP). These ideas can be tested in collisions of nuclei at ultra-relativistic energies. At the relativistic heavy-ion collider (RHIC), nuclei as heavy as gold are accelerated to an energy of 100 GeV per nucleon. A total energy of 40 TeV is available in the collision of.

  12. Developing a Virtual Rock Deformation Laboratory

    Science.gov (United States)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  13. Precise Object Tracking under Deformation

    International Nuclear Information System (INIS)

    Saad, M.H.

    2010-01-01

    The precise object tracking is an essential issue in several serious applications such as; robot vision, automated surveillance (civil and military), inspection, biomedical image analysis, video coding, motion segmentation, human-machine interface, visualization, medical imaging, traffic systems, satellite imaging etc. This framework focuses on the precise object tracking under deformation such as scaling, rotation, noise, blurring and change of illumination. This research is a trail to solve these serious problems in visual object tracking by which the quality of the overall system will be improved. Developing a three dimensional (3D) geometrical model to determine the current pose of an object and predict its future location based on FIR model learned by the OLS. This framework presents a robust ranging technique to track a visual target instead of the traditional expensive ranging sensors. The presented research work is applied to real video stream and achieved high precession results. xiiiThe precise object tracking is an essential issue in several serious applications such as; robot vision, automated surveillance (civil and military), inspection, biomedical image analysis, video coding, motion segmentation, human-machine interface, visualization, medical imaging, traffic systems, satellite imaging etc. This framework focuses on the precise object tracking under deformation such as scaling, rotation, noise, blurring and change of illumination. This research is a trail to solve these serious problems in visual object tracking by which the quality of the overall system will be improved. Developing a three dimensional (3D) geometrical model to determine the current pose of an object and predict its future location based on FIR model learned by the OLS. This framework presents a robust ranging technique to track a visual target instead of the traditional expensive ranging sensors. The presented research work is applied to real video stream and achieved high

  14. Soliton like excitations on a deformable spin model

    International Nuclear Information System (INIS)

    Nguenang, Jean-Pierre; Kenfack, Aurelien J.; Kofane, Timoleon C.

    2003-07-01

    We study numerically non-linear excitations on a one-dimensional deformable discrete classical ferromagnetic chain. In the continuum limits the equations of motion are reduced to a Klein-Gordon equation with a Remoissenet - Peyrard substrate potential. From a numerical computation of the discrete system with a suitable choice of the deformability parameters, the solitons solutions are shown to exist and move both with a monotonic oscillating (i.e. nanopteron) and a monotonic non- oscillating tails and also with a non- oscillating tails but with a splitting propagating shape. The stability of all these various solitons shape is confirmed numerically in a greater range of the reduced magnetic field 0≤b≤0.61 compared to the case of a rigid magnetic chain i.e. 0≤b≤0.33. From a kink- antikink and a kink-kink colliding simulation, we found various effects including a bound state of a kink and an antikink as well as a moving kink profile with higher topological charge that appears to be the bound state of two kinks. We also observed a three particles interaction that also arises from a kink-kink collision. The breather that intercalates between the two kinks has length that varies from its minimal value to the maximal one as far as the alternation between an attractive and a repulsive phenomenon is produced. From our results it appears that the value of the shape parameter of the substrate potential or the modified Zeeman energy is a factor of outmost importance when modelling magnetic chains. (author)

  15. Grain orientation dependence of deformation twinning in pure Cu subjected to dynamic plastic deformation

    DEFF Research Database (Denmark)

    Hong, C.S.; Tao, N.R.; Lu, K.

    2009-01-01

    A clear grain orientation dependence of deformation twinning has been identified in coarse-grained copper subjected to dynamic plastic deformation. Deformation twins tend to occur in grains with orientations near the [0 0 1] corner but not in grains near the [1 0 1] corner, which can be explained...

  16. Estimating collision efficiencies from contact freezing experiments

    Science.gov (United States)

    Nagare, B.; Marcolli, C.; Stetzer, O.; Lohmann, U.

    2015-04-01

    Interactions of atmospheric aerosols with clouds influence cloud properties and modify the aerosol life cycle. Aerosol particles act as cloud condensation nuclei and ice nucleating particles or become incorporated into cloud droplets by scavenging. For an accurate description of aerosol scavenging and ice nucleation in contact mode, collision efficiency between droplets and aerosol particles needs to be known. This study derives the collision rate from experimental contact freezing data obtained with the ETH Collision Ice Nucleation Chamber CLINCH. Freely falling 80 μm water droplets are exposed to an aerosol consisting of 200 nm diameter silver iodide particles of concentrations from 500-5000 cm-3, which act as ice nucleating particles in contact mode. The chamber is kept at ice saturation in the temperature range from 236-261 K leading to slow evaporation of water droplets giving rise to thermophoresis and diffusiophoresis. Droplets and particles bear charges inducing electrophoresis. The experimentally derived collision efficiency of 0.13 is around one order of magnitude higher than theoretical formulations which include Brownian diffusion, impaction, interception, thermophoretic, diffusiophoretic and electric forces. This discrepancy is most probably due to uncertainties and inaccuracies in the description of thermophoretic and diffusiophoretic processes acting together. This is to the authors knowledge the first dataset of collision efficiencies acquired below 273 K. More such experiments with different droplet and particle diameters are needed to improve our understanding of collision processes acting together.

  17. Instability of compensated beam-beam collisions

    International Nuclear Information System (INIS)

    Rosenzweig, J.B.; Autin, B.; Chen, Pisin.

    1989-01-01

    The beam-beam disruption phenomena in linear colliders are increasingly seen as a source of serious problems for these machines. A plasma compensation scheme, in which the motion of the plasma electrons in the presence of the colliding beams provides neutralizing charge and current densities, has been proposed and studied. But natural alternative to this scheme is to consider the overlapping of nearly identical high energy e + and e/sup /minus// bunches, and the collision of two such pairs - in other words, collision of two opposing relativistic positronium plasmas. It should be noticed that while the luminosity for all collisions is increased by a factor of four in this scheme, the event rate for e + e/sup /minus// collisions is only increased by a factor of two. The other factor of two corresponds to the addition of e + e + and e/sup /minus//e/sup /minus// collisions to the interaction point. This beam compensation scheme, which has been examined through computer simulation by Balakin and Solyak in the Soviet Union, promises full neutralization of beam charges and currents. These numerical investigations have shown that plasma instabilities exist in this nominally neutral system. Although the implementation of this idea seems technically daunting, the potential benefits (beamstrahlung and disruption suppression, relaxation of final focus system constraints) are such that we should consider the physics of these collisions further. In the remainder of this paper, we theoretically analyze the issues of stability and bunch parameter tolerances in this scheme. 11 refs

  18. Distraction-related road traffic collisions.

    Science.gov (United States)

    Eid, Hani O; Abu-Zidan, Fikri M

    2017-06-01

    We aimed to prospectively study distraction-related road traffic collision injuries, their contributory factors, severity, and outcome. Data were prospectively collected on all hospitalized road traffic collision trauma patients in Al-Ain City who were drivers at the collision time over one and half years. Driver's inattentive behaviors preceding the collision were collected by interviewing the admitted drivers. There were 444 drivers, 330 of them were fully oriented patients, out of them only 44 (13%) were distracted. Nineteen (5.8%) drivers were distracted by using mobile phones, 12 (3.6%) were pre-occupied with deep thinking, six (1.8%) were talking with other passengers, four (1.2%) were picking things in the vehicle, and three (0.9%) were using entertainment systems. The maximum distraction occurred during the time of 6 am - 12 noon when the traffic was crowded. There were no significant differences between distracted and non-distracted drivers in demographical and physiological factors, injured regions, and outcomes. Distraction of alert drivers causes 13% of road traffic collisions in Al-Ain city. About 40 percent of the distracted drivers involved in road traffic collisions (RTC) were using mobile phones. Our study supports the ban of use of cell phones while driving.

  19. Nuclear deformation: a proton-neutron effect

    International Nuclear Information System (INIS)

    Dobaczewski, J.

    1988-01-01

    The Hartree-Fock plus BCS method with the Skyrme interaction is used to analyse the equilibrium deformations of nuclei in the A≅100 region. It is shown that the theoretical results are consistent with the N n N p classification scheme. Relations between the nuclear deformation effects and the neutron-proton interaction are discussed

  20. Exactly marginal deformations from exceptional generalised geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ashmore, Anthony [Merton College, University of Oxford,Merton Street, Oxford, OX1 4JD (United Kingdom); Mathematical Institute, University of Oxford,Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG (United Kingdom); Gabella, Maxime [Institute for Advanced Study,Einstein Drive, Princeton, NJ 08540 (United States); Graña, Mariana [Institut de Physique Théorique, CEA/Saclay,91191 Gif-sur-Yvette (France); Petrini, Michela [Sorbonne Université, UPMC Paris 05, UMR 7589, LPTHE,75005 Paris (France); Waldram, Daniel [Department of Physics, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2017-01-27

    We apply exceptional generalised geometry to the study of exactly marginal deformations of N=1 SCFTs that are dual to generic AdS{sub 5} flux backgrounds in type IIB or eleven-dimensional supergravity. In the gauge theory, marginal deformations are parametrised by the space of chiral primary operators of conformal dimension three, while exactly marginal deformations correspond to quotienting this space by the complexified global symmetry group. We show how the supergravity analysis gives a geometric interpretation of the gauge theory results. The marginal deformations arise from deformations of generalised structures that solve moment maps for the generalised diffeomorphism group and have the correct charge under the generalised Reeb vector, generating the R-symmetry. If this is the only symmetry of the background, all marginal deformations are exactly marginal. If the background possesses extra isometries, there are obstructions that come from fixed points of the moment maps. The exactly marginal deformations are then given by a further quotient by these extra isometries. Our analysis holds for any N=2 AdS{sub 5} flux background. Focussing on the particular case of type IIB Sasaki-Einstein backgrounds we recover the result that marginal deformations correspond to perturbing the solution by three-form flux at first order. In various explicit examples, we show that our expression for the three-form flux matches those in the literature and the obstruction conditions match the one-loop beta functions of the dual SCFT.

  1. Cyclic Plastic Deformation and Welding Simulation

    NARCIS (Netherlands)

    Ten Horn, C.H.L.J.

    2003-01-01

    One of the concerns of a fitness for purpose analysis is the quantification of the relevant material properties. It is known from experiments that the mechanical properties of a material can change due to a monotonic plastic deformation or a cyclic plastic deformation. For a fitness for purpose

  2. Deformed metals - structure, recrystallisation and strength

    DEFF Research Database (Denmark)

    Hansen, Niels; Juul Jensen, Dorte

    2011-01-01

    It is shown how new discoveries and advanced experimental techniques in the last 25 years have led to paradigm shifts in the analysis of deformation and annealing structures of metals and in the way the strength of deformed samples is related to structural parameters. This is described in three...... sections: structural evolution by grain subdivision, recovery and recrystallisation and strength-structure relationships....

  3. Thermally assisted deformation of structural superplastics and ...

    Indian Academy of Sciences (India)

    Optimal structural superplasticity and the deformation of nanostructured materials in the thermally activated region are regarded as being caused by the same physical process. In this analysis, grain/interphase boundary sliding controls the rate of deformation at the level of atomistics. Boundary sliding develops to a ...

  4. Seismic subsidence deformation of moisturised loess

    OpenAIRE

    RASULOV RUSTAM KHAYATOVICH

    2016-01-01

    The results of experimental studies the influence of seismic subsidence on deformation of loess at different accelerations are being described by the author. The methods of laboratory and field studies on soil’s seismic subsidence are provided. The factors affecting the seismic subsidence of the soil deformation are identified.

  5. Einstein-Riemann Gravity on Deformed Spaces

    Directory of Open Access Journals (Sweden)

    Julius Wess

    2006-12-01

    Full Text Available A differential calculus, differential geometry and the E-R Gravity theory are studied on noncommutative spaces. Noncommutativity is formulated in the star product formalism. The basis for the gravity theory is the infinitesimal algebra of diffeomorphisms. Considering the corresponding Hopf algebra we find that the deformed gravity is based on a deformation of the Hopf algebra.

  6. Structural refinement and coarsening in deformed metals

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Xing, Q.

    2005-01-01

    The microstructural refinement by plastic deformation is analysed in terms of key parameters, the spacing between and the misorientation angle across the boundaries subdividing the structure. Coarsening of such structures by annealing is also characterised. For both deformed and annealed structures...

  7. Exactly marginal deformations from exceptional generalised geometry

    International Nuclear Information System (INIS)

    Ashmore, Anthony; Gabella, Maxime; Graña, Mariana; Petrini, Michela; Waldram, Daniel

    2017-01-01

    We apply exceptional generalised geometry to the study of exactly marginal deformations of N=1 SCFTs that are dual to generic AdS 5 flux backgrounds in type IIB or eleven-dimensional supergravity. In the gauge theory, marginal deformations are parametrised by the space of chiral primary operators of conformal dimension three, while exactly marginal deformations correspond to quotienting this space by the complexified global symmetry group. We show how the supergravity analysis gives a geometric interpretation of the gauge theory results. The marginal deformations arise from deformations of generalised structures that solve moment maps for the generalised diffeomorphism group and have the correct charge under the generalised Reeb vector, generating the R-symmetry. If this is the only symmetry of the background, all marginal deformations are exactly marginal. If the background possesses extra isometries, there are obstructions that come from fixed points of the moment maps. The exactly marginal deformations are then given by a further quotient by these extra isometries. Our analysis holds for any N=2 AdS 5 flux background. Focussing on the particular case of type IIB Sasaki-Einstein backgrounds we recover the result that marginal deformations correspond to perturbing the solution by three-form flux at first order. In various explicit examples, we show that our expression for the three-form flux matches those in the literature and the obstruction conditions match the one-loop beta functions of the dual SCFT.

  8. Deliberate deformation of concrete after casting

    NARCIS (Netherlands)

    Grunewald, S.; Janssen, B.; Schipper, H.R.; Vollers, K.J.; Walraven, J.C.

    2012-01-01

    This paper discusses the effect of intentional deformation of a flexible formwork after casting of the concrete and the influence of the characteristics of concrete in the fresh state on the quality of a concrete element. This deformation is intended to bring the concrete element in its desired

  9. Deformed configurations, band structures and spectroscopic ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... nuclei, e.g., in 16O (Z = N = 8) [12,13] and 56Ni (Z = N = 28) [14–16], coexisting with the spherical ground configuration. Recently, Hwang et al [2] have observed deformed rotational bands in 82Ge. To our knowledge, these deformed rotational bands have not been studied theoretically so far though there ...

  10. Massless quark wavefunction in the deformed bag

    International Nuclear Information System (INIS)

    Min, D.P.; Park, B.Y.; Koh, Y.S.

    1984-01-01

    The quark wavefunctions inside the deformed bag are obtained using a modified linear boundary condition stemming from the MIT bag Lagrangian with an additional term. We propose an exact method to obtain the quark wavefunction even for a spheroidally deformed bag. (Author)

  11. Experimental force modeling for deformation machining stretching ...

    Indian Academy of Sciences (India)

    ARSHPREET SINGH

    Deformation machining is a hybrid process that combines two manufacturing processes—thin structure machining and ... structures and geometries, which would be rather difficult or sometimes impossible to manufacture. A com- prehensive ... sheet metal is deformed locally into plastic stage, enabling creation of complex ...

  12. LHC Report: First collisions soon

    CERN Multimedia

    Jan Uythoven for the LHC team

    2012-01-01

    On the evening of Friday 16 March beams were accelerated in the LHC at 4 TeV for the first time: a new world record! According to the schedule for the machine restart it will take another three weeks before the stable beams mode – the requirement for the detectors to start taking data – is achieved.   During the beam commissioning period the equipment teams make sure that their systems – beam instrumentation, radio frequency, beam interlock, feedback on orbit and tune, etc. – are working flawlessly with beam. Confidence in the correct functioning of all the magnets, their settings and their alignment is obtained by detailed measurements of the optics and the physical aperture. The optics measurements include the beta* of the squeezed beam at the centre of the experiments where the collisions will soon take place. This year the aim is to have a smaller beta* of 60 cm for the ATLAS and CMS experiments. As a reminder, smaller values of beta* mean thinner and m...

  13. Constitutional collisions of criminal law

    Directory of Open Access Journals (Sweden)

    Sergey M. Inshakov

    2016-12-01

    Full Text Available Objective to identify and resolve conflicts between the norms of constitutional and criminal law which regulate the issue of legal liability of senior officials of the state. Methods formallogical systematic comparativelegal. Results the article analyzes the embodiment of the principle of citizensrsquo equality under the law regarding the criminal responsibility of the President of the Russian Federation as one of the segments of the elite right other criminal and legal conflicts are considered associated with the creation of conditions for derogation from the principle of equality. Basing on this analysis the means of overcoming collisions between the norms of constitutional and criminal law are formulated. Scientific novelty in the article for the first time it has been shown that in the Russian criminal law there are exceptions to the principle of citizensrsquo equality under the law relating to the President of the Russian Federation the conflicts are identified between the norms of constitutional and criminal law regulating the issue of legal liability of senior officials of the state ways of overcoming conflicts are suggested. Practical significance the main provisions and conclusions of the article can be used in research and teaching in the consideration of issues of senior state officialsrsquo criminal liability.

  14. Barriers in the energy of deformed nuclei

    Directory of Open Access Journals (Sweden)

    V. Yu. Denisov

    2014-06-01

    Full Text Available Interaction energy between two nuclei considering to their deformations is studied. Coulomb and nuclear in-teraction energies, as well as the deformation energies of both nuclei, are taken into account at evaluation of the interaction energy. It is shown that the barrier related to the interaction energy of two nuclei depends on the de-formations and the height of the minimal barrier is evaluated. It is obtained that the heavier nucleus-nucleus sys-tems have large deformation values at the lowest barrier. The difference between the barrier between spherical nuclei and the lowest barrier between deformed nuclei increases with the mass and the charge of the interacting nuclei.

  15. Deformation mechanisms in cyclic creep and fatigue

    International Nuclear Information System (INIS)

    Laird, C.

    1979-01-01

    Service conditions in which static and cyclic loading occur in conjunction are numerous. It is argued that an understanding of cyclic creep and cyclic deformation are necessary both for design and for understanding creep-fatigue fracture. Accordingly a brief, and selective, review of cyclic creep and cyclic deformation at both low and high strain amplitudes is provided. Cyclic loading in conjunction with static loading can lead to creep retardation if cyclic hardening occurs, or creep acceleration if softening occurs. Low strain amplitude cyclic deformation is understood in terms of dislocation loop patch and persistent slip band behavior, high strain deformation in terms of dislocation cell-shuttling models. While interesting advances in these fields have been made in the last few years, the deformation mechanisms are generally poorly understood

  16. Collision prediction software for radiotherapy treatments

    Energy Technology Data Exchange (ETDEWEB)

    Padilla, Laura [Virginia Commonwealth University Medical Center, Richmond, Virginia 23298 (United States); Pearson, Erik A. [Techna Institute and the Princess Margaret Cancer Center, University Health Network, Toronto, Ontario M5G 2M9 (Canada); Pelizzari, Charles A., E-mail: c-pelizzari@uchicago.edu [Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637 (United States)

    2015-11-15

    Purpose: This work presents a method of collision predictions for external beam radiotherapy using surface imaging. The present methodology focuses on collision prediction during treatment simulation to evaluate the clearance of a patient’s treatment position and allow for its modification if necessary. Methods: A Kinect camera (Microsoft, Redmond, WA) is used to scan the patient and immobilization devices in the treatment position at the simulator. The surface is reconstructed using the SKANECT software (Occipital, Inc., San Francisco, CA). The treatment isocenter is marked using simulated orthogonal lasers projected on the surface scan. The point cloud of this surface is then shifted to isocenter and converted from Cartesian to cylindrical coordinates. A slab models the treatment couch. A cylinder with a radius equal to the normal distance from isocenter to the collimator plate, and a height defined by the collimator diameter is used to estimate collisions. Points within the cylinder clear through a full gantry rotation with the treatment couch at 0° , while points outside of it collide. The angles of collision are reported. This methodology was experimentally verified using a mannequin positioned in an alpha cradle with both arms up. A planning CT scan of the mannequin was performed, two isocenters were marked in PINNACLE, and this information was exported to AlignRT (VisionRT, London, UK)—a surface imaging system for patient positioning. This was used to ensure accurate positioning of the mannequin in the treatment room, when available. Collision calculations were performed for the two treatment isocenters and the results compared to the collisions detected the room. The accuracy of the Kinect-Skanect surface was evaluated by comparing it to the external surface of the planning CT scan. Results: Experimental verification results showed that the predicted angles of collision matched those recorded in the room within 0.5°, in most cases (largest deviation

  17. The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation

    Energy Technology Data Exchange (ETDEWEB)

    Deta, U. A., E-mail: utamaalan@yahoo.co.id, E-mail: utamadeta@unesa.ac.id [Department of Physics, the State University of Surabaya (Unesa), Jl. Ketintang, Surabaya 60231 (Indonesia); Suparmi [Departmet of Physics, Sebelas Maret University, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126 (Indonesia)

    2015-09-30

    Quantum deformation has been studied due to its relation with applications in nuclear physics, conformal field theory, and statistical-quantum theory. The q-deformation of hyperbolic function was introduced by Arai. The application of q-deformed functions has been widely used in quantum mechanics. The properties of this two kinds of system explained in this paper including their derivative. The graph of q-deformed functions presented using Matlab. The special case is given for modified Poschl-Teller plus q-deformed Scarf II trigonometry potentials.

  18. Low-energy collisions of helium clusters with size-selected cobalt cluster ions

    Science.gov (United States)

    Odaka, Hideho; Ichihashi, Masahiko

    2017-04-01

    Collisions of helium clusters with size-selected cobalt cluster ions, Com+ (m ≤ 5), were studied experimentally by using a merging beam technique. The product ions, Com+Hen (cluster complexes), were mass-analyzed, and this result indicates that more than 20 helium atoms can be attached onto Com+ at the relative velocities of 103 m/s. The measured size distributions of the cluster complexes indicate that there are relatively stable complexes: Co2+Hen (n = 2, 4, 6, and 12), Co3+Hen (n = 3, 6), Co4+He4, and Co5+Hen (n = 3, 6, 8, and 10). These stabilities are explained in terms of their geometric structures. The yields of the cluster complexes were also measured as a function of the relative velocity (1 × 102-4 × 103 m/s), and this result demonstrates that the main interaction in the collision process changes with the increase of the collision energy from the electrostatic interaction, which includes the induced deformation of HeN, to the hard-sphere interaction. Supplementary material in the form of one pdf file available from the Journal web page at http://https://doi.org/10.1140/epjd/e2017-80015-0

  19. Design of Deformation Monitoring System for Volcano Mitigation

    International Nuclear Information System (INIS)

    Islamy, M R F; Salam, R A; Khairurrijal; Munir, M M; Irsyam, M

    2016-01-01

    Indonesia has many active volcanoes that are potentially disastrous. It needs good mitigation systems to prevent victims and to reduce casualties from potential disaster caused by volcanoes eruption. Therefore, the system to monitor the deformation of volcano was built. This system employed telemetry with the combination of Radio Frequency (RF) communications of XBEE and General Packet Radio Service (GPRS) communication of SIM900. There are two types of modules in this system, first is the coordinator as a parent and second is the node as a child. Each node was connected to coordinator forming a Wireless Sensor Network (WSN) with a star topology and it has an inclinometer based sensor, a Global Positioning System (GPS), and an XBEE module. The coordinator collects data to each node, one a time, to prevent collision data between nodes, save data to SD Card and transmit data to web server via GPRS. Inclinometer was calibrated with self-built in calibrator and tested in high temperature environment to check the durability. The GPS was tested by displaying its position in web server via Google Map Application Protocol Interface (API v.3). It was shown that the coordinator can receive and transmit data from every node to web server very well and the system works well in a high temperature environment. (paper)

  20. Design of Deformation Monitoring System for Volcano Mitigation

    Science.gov (United States)

    Islamy, M. R. F.; Salam, R. A.; Munir, M. M.; Irsyam, M.; Khairurrijal

    2016-08-01

    Indonesia has many active volcanoes that are potentially disastrous. It needs good mitigation systems to prevent victims and to reduce casualties from potential disaster caused by volcanoes eruption. Therefore, the system to monitor the deformation of volcano was built. This system employed telemetry with the combination of Radio Frequency (RF) communications of XBEE and General Packet Radio Service (GPRS) communication of SIM900. There are two types of modules in this system, first is the coordinator as a parent and second is the node as a child. Each node was connected to coordinator forming a Wireless Sensor Network (WSN) with a star topology and it has an inclinometer based sensor, a Global Positioning System (GPS), and an XBEE module. The coordinator collects data to each node, one a time, to prevent collision data between nodes, save data to SD Card and transmit data to web server via GPRS. Inclinometer was calibrated with self-built in calibrator and tested in high temperature environment to check the durability. The GPS was tested by displaying its position in web server via Google Map Application Protocol Interface (API v.3). It was shown that the coordinator can receive and transmit data from every node to web server very well and the system works well in a high temperature environment.

  1. Holography for Heavy Ions Collisions at LHC and NICA

    Science.gov (United States)

    Aref'eva, Irina

    2017-12-01

    This is a contribution for the Proceedings of 5th International Conference on New Frontiers in Physics (ICNFP 2016), held at Crete, 6-14 July 2016. Our goal is to obtain phenomenologically reliable insights for the physics of the quark-gluon plasma (QGP) from the holography. I briefly review how in the holographical setup one can describe the QGP formation in heavy ion collisions and how to get quantitatively the main characteristics of the QGP formation - the total multiplicity and the thermalization time. To fit the experimental form of dependence of total multiplicity on energy, obtained at LHC, we have to deal with a special anisotropic holographic model, related with the Lifshitz-type background. Our conjecture is that this Lifshitz-type background with non-zero chemical potential can be used to describe future data expected from NICA. In particular, we present the results of calculations the holographic confinement/deconfinement phase transition in the (µ, T) (chemical potential, temperature) plane in this anizotropic background and show the dependence of the transition line on the orientation of the quark pair. This dependence leads to a non-sharp character of physical confinement/deconfinement phase in the (µ, T)-plane. We use the bottom-up soft wall approach incorporating quark confinement deforming factor and vector field providing the non-zero chemical potential. In this model we also estimate the holographic photon production.

  2. Weak associativity and deformation quantization

    Science.gov (United States)

    Kupriyanov, V. G.

    2016-09-01

    Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev-Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.

  3. Weak associativity and deformation quantization

    International Nuclear Information System (INIS)

    Kupriyanov, V.G.

    2016-01-01

    Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev–Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.

  4. Deformed soft matter under constraints

    Science.gov (United States)

    Bertrand, Martin

    In the last few decades, an increasing number of physicists specialized in soft matter, including polymers, have turned their attention to biologically relevant materials. The properties of various molecules and fibres, such as DNA, RNA, proteins, and filaments of all sorts, are studied to better understand their behaviours and functions. Self-assembled biological membranes, or lipid bilayers, are also the focus of much attention as many life processes depend on these. Small lipid bilayers vesicles dubbed liposomes are also frequently used in the pharmaceutical and cosmetic industries. In this thesis, work is presented on both the elastic properties of polymers and the response of lipid bilayer vesicles to extrusion in narrow-channels. These two areas of research may seem disconnected but they both concern deformed soft materials. The thesis contains four articles: the first presenting a fundamental study of the entropic elasticity of circular chains; the second, a simple universal description of the effect of sequence on the elasticity of linear polymers such as DNA; the third, a model of the symmetric thermophoretic stretch of a nano-confined polymer; the fourth, a model that predicts the final sizes of vesicles obtained by pressure extrusion. These articles are preceded by an extensive introduction that covers all of the essential concepts and theories necessary to understand the work that has been done.

  5. Weak associativity and deformation quantization

    Directory of Open Access Journals (Sweden)

    V.G. Kupriyanov

    2016-09-01

    Full Text Available Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev–Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.

  6. Weak associativity and deformation quantization

    Energy Technology Data Exchange (ETDEWEB)

    Kupriyanov, V.G., E-mail: vladislav.kupriyanov@gmail.com [CMCC-Universidade Federal do ABC, Santo André, SP (Brazil); Tomsk State University, Tomsk (Russian Federation)

    2016-09-15

    Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev–Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.

  7. Capillary Deformations of Bendable Films

    KAUST Repository

    Schroll, R. D.

    2013-07-01

    We address the partial wetting of liquid drops on ultrathin solid sheets resting on a deformable foundation. Considering the membrane limit of sheets that can relax compression through wrinkling at negligible energetic cost, we revisit the classical theory for the contact of liquid drops on solids. Our calculations and experiments show that the liquid-solid-vapor contact angle is modified from the Young angle, even though the elastic bulk modulus (E) of the sheet is so large that the ratio between the surface tension γ and E is of molecular size. This finding indicates a new elastocapillary phenomenon that stems from the high bendability of very thin elastic sheets rather than from material softness. We also show that the size of the wrinkle pattern that emerges in the sheet is fully predictable, thus resolving a puzzle in modeling "drop-on-a-floating-sheet" experiments and enabling a quantitative, calibration-free use of this setup for the metrology of ultrathin films. © 2013 American Physical Society.

  8. Passive sorting of capsules by deformability

    Science.gov (United States)

    Haener, Edgar; Juel, Anne

    We study passive sorting according to deformability of liquid-filled ovalbumin-alginate capsules. We present results for two sorting geometries: a straight channel with a half-cylindrical obstruction and a pinched flow fractioning device (PFF) adapted for use with capsules. In the half-cylinder device, the capsules deform as they encounter the obstruction, and travel around the half-cylinder. The distance from the capsule's centre of mass to the surface of the half-cylinder depends on deformability, and separation between capsules of different deformability is amplified by diverging streamlines in the channel expansion downstream of the obstruction. We show experimentally that capsules can be sorted according to deformability with their downstream position depending on capillary number only, and we establish the sensitivity of the device to experimental variability. In the PFF device, particles are compressed against a wall using a strong pinching flow. We show that capsule deformation increases with the intensity of the pinching flow, but that the downstream capsule position is not set by deformation in the device. However, when using the PFF device like a T-Junction, we achieve improved sorting resolution compared to the half-cylinder device.

  9. The deformation of 'Gum Metal' in nanoindentation

    International Nuclear Information System (INIS)

    Withey, E.; Jin, M.; Minor, A.; Kuramoto, S.; Chrzan, D.C.; Morris, J.W.

    2008-01-01

    'Gum Metal' describes a newly developed set of alloys with nominal composition Ti-24(Nb + V + Ta)-(Zr,Hf)-O. In the cold-worked condition these alloys have exceptional elastic elongation and high-strength; the available evidence suggests that they do not yield until the applied stress approaches the ideal strength of the alloy, and then deform by mechanisms that do not involve conventional crystal dislocations. The present paper reports research on the nanoindentation of this material in both the cold-worked and annealed conditions. Nanoindentation tests were conducted in situ in a transmission electron microscope (TEM) stage that allows the deformation process to be observed in real time, and ex situ in a Hysitron nanoindenter, with samples subsequently extracted for high-resolution TEM study. The results reveal unusual deformation patterns beneath the nanoindenter that are, to our knowledge, unique to this material. In the cold-worked alloy deformation is confined to the immediate neighborhood of the indentation, with no evidence of dislocation, twin or fault propagation into the bulk. The deformed volume is highly inhomogeneous; the deformation is accomplished by a series of incremental rotations that are ordinarily resolved into discrete nanodomains. The annealed material deforms in a similar way within the nanoindentation pit, but dislocations emanate from the pit boundary. These are pinned by microstructural barriers only a few nanometers apart, a condition that recent theory suggests is necessary for the material to achieve ideal strength

  10. Craniofacial neurofibromatosis: treatment of the midface deformity.

    Science.gov (United States)

    Singhal, Dhruv; Chen, Yi-Chieh; Tsai, Yueh-Ju; Yu, Chung-Chih; Chen, Hung Chang; Chen, Yu-Ray; Chen, Philip Kuo-Ting

    2014-07-01

    Craniofacial Neurofibromatosis is a benign but devastating disease. While the most common location of facial involvement is the orbito-temporal region, patients often present with significant mid-face deformities. We reviewed our experience with Craniofacial Neurofibromatosis from June 1981 to June 2011 and included patients with midface soft tissue deformities defined as gross alteration of nasal or upper lip symmetry. Data reviewed included the medical records and photobank. Over 30 years, 52 patients presented to and underwent surgical management for Craniofacial Neurofibromatosis at the Chang Gung Craniofacial Center. 23 patients (43%) demonstrated gross mid-facial deformities at initial evaluation. 55% of patients with lip deformities and 28% of patients with nasal deformities demonstrated no direct tumour involvement. The respective deformity was solely due to secondary gravitational effects from neurofibromas of the cheek subunit. Primary tumour infiltration of the nasal and/or labial subunits was treated with excision followed by various methods of reconstruction including lower lateral cartilage repositioning, forehead flaps, free flaps, and/or oral commissure suspension. Soft tissue deformities of the midface are very common in patients with Craniofacial Neurofibromatosis and profoundly affect overall aesthetic outcomes. Distinguishing primary from secondary involvement of the midface assists in surgical decision making. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  11. Time-slice maps showing age, distribution, and style of deformation in Alaska north of 60° N.

    Science.gov (United States)

    Moore, Thomas E.; Box, Stephen E.

    2016-08-29

    Fork orogeny), Early and Late Jurassic deformation in the Peninsular-Wrangellia terranes, and Early Cretaceous deformation in northern Alaska (early Brookian orogeny) show that within-terrane amalgamation events occurred prior to assembly of Alaska. Widespread episodes of deformation in the Late Cretaceous and early Cenozoic, in contrast, affected multiple terranes, indicating they occurred during or following the time of assembly of most of Alaska.The primary deformational event in northern Alaska was the Late Jurassic and Early Cretaceous (early) Brookian orogeny, which affected most terranes north and west of the early Cenozoic Tintina, Victoria Creek, Kaltag, and Poorman dextral-slip faults in central Alaska. In southern Alaska, formation of the southern Alaska accretionary complex (Chugach, Prince William, Yakutat terranes) and associated magmatism in the Peninsular-Wrangellia terrane began near the Triassic-Jurassic boundary and continued episodically throughout the remainder of the Mesozoic and the Cenozoic. The collision of these terranes with the Farewell and Yukon Composite terranes in central Alaska is recorded by contractional deformation that emanated from the intervening basins in the Late Cretaceous. The boundary between northern and central Alaska is constrained to late Early Cretaceous but is enigmatic and not obviously marked by contractional deformation. Early Cenozoic shortening and transpressional deformation is the most widespread event recorded in Alaska and produced the widespread late Brookian orogenic event in northern Alaska. Middle and late Cenozoic shortening and transpression is significant in southern Alaska inboard of the underthrusting Yakutat terrane at the Pacific margin subduction zone as well as in northeastern Alaska.

  12. Fluid mechanics calculations in physics of droplets – IV: Head-on and off-center numerical collisions of unequal-size drops

    Directory of Open Access Journals (Sweden)

    Alejandro Acevedo-Malavé

    2016-09-01

    Full Text Available In this study, the finite volume method is employed to simulate the coalescence collision between water drops immersed in a continuous phase (n-heptane. For that purpose, it is chosen a range of values for the velocity of collisions for the finite volume calculations may yield different possible outcomes of the collision process. It can be seen for head-on collisions that when the velocity of collision is 0.2 m/s and 3.5 m/s, the little drop induces the formation of a hole in the bigger drop, until the surface tension forces to restore the circular form of the resulting drop. For a velocity of collision of 16.0 m/s, the little drop deforms the bigger one, and the system is converted into a thin ligament with the evolution of the dynamics. In this case, a little mass of n-heptane is trapped between the two drops, but at the end of the dynamics it drains to the continuous phase. For off-center collisions, two different values for the velocity of collisions were chosen, and the drops exhibit a lot of waves on the droplets’ surface. The streamlines are calculated for the process of coalescence of drops. These streamlines allow the understanding of the dynamics of the droplets immersed on the n-heptane phase. The effect of the interfacial tension it is showed due to the oscillations that the droplet exhibits. When the coalescence has begun, the streamlines form circular patterns at the zone of contact between the drops which explain the increment of the thickness of the bridge structure of the fluid between the two drops. At the end of the dynamics, when the velocity is of 0.2 m/s, the bigger drop reaches a circular form approximately, but when the velocity is of 3.5 m/s the drop reaches an elongated form.

  13. SPINAL DEFORMITIES AFTER SELECTIVE DORSAL RHIZOTOMY

    Directory of Open Access Journals (Sweden)

    PATRICIO PABLO MANZONE

    Full Text Available ABSTRACT Objective: Selective dorsal rhizotomy (SDR used for spasticity treatment could worsen or develop spinal deformities. Our goal is to describe spinal deformities seen in patients with cerebral palsy (CP after being treated by SDR. Methods: Retrospective study of patients operated on (SDR between January/1999 and June/2012. Inclusion criteria: spinal Rx before SDR surgery, spinography, and assessment at follow-up. We evaluated several factors emphasizing level and type of SDR approach, spinal deformity and its treatment, final Risser, and follow-up duration. Results: We found 7 patients (6 males: mean age at SDR 7.56 years (4.08-11.16. Mean follow-up: 6.64 years (2.16-13, final age: 14.32 years (7.5-19. No patient had previous deformity. GMFCS: 2 patients level IV, 2 level III, 3 level II. Initial walking status: 2 community walkers, 2 household walkers, 2 functional walkers, 1 not ambulant, at the follow-up, 3 patients improved, and 4 kept their status. We found 4 TL/L laminotomies, 2 L/LS laminectomies, and 1 thoracic laminectomy. Six spinal deformities were observed: 2 sagittal, 3 mixed, and 1 scoliosis. There was no association among the type of deformity, final gait status, topographic type, GMFCS, age, or SDR approach. Three patients had surgery indication for spinal deformity at skeletal maturity, while those patients with smaller deformities were still immature (Risser 0 to 2/3 although with progressive curves. Conclusions: After SDR, patients should be periodically evaluated until they reach Risser 5. The development of a deformity does not compromise functional results but adds morbidity because it may require surgical treatment.

  14. Ship Collision Avoidance by Distributed Tabu Search

    Directory of Open Access Journals (Sweden)

    Dong-Gyun Kim

    2015-03-01

    Full Text Available More than 90% of world trade is transported by sea. The size and speed of ships is rapidly increasing in order to boost economic efficiency. If ships collide, the damage and cost can be astronomical. It is very difficult for officers to ascertain routes that will avoid collisions, especially when multiple ships travel the same waters. There are several ways to prevent ship collisions, such as lookouts, radar, and VHF radio. More advanced methodologies, such as ship domain, fuzzy theory, and genetic algorithm, have been proposed. These methods work well in one-on-one situations, but are more difficult to apply in multiple-ship situations. Therefore, we proposed the Distributed Local Search Algorithm (DLSA to avoid ship collisions as a precedent study. DLSA is a distributed algorithm in which multiple ships communicate with each other within a certain area. DLSA computes collision risk based on the information received from neighboring ships. However, DLSA suffers from Quasi-Local Minimum (QLM, which prevents a ship from changing course even when a collision risk arises. In our study, we developed the Distributed Tabu Search Algorithm (DTSA. DTSA uses a tabu list to escape from QLM that also exploits a modified cost function and enlarged domain of next-intended courses to increase its efficiency. We conducted experiments to compare the performance of DLSA and DTSA. The results showed that DTSA outperformed DLSA.

  15. Collision detection and avoidance during treatment planning

    International Nuclear Information System (INIS)

    Humm, John L.; Pizzuto, Domenico; Fleischman, Eric; Mohan, Radhe

    1995-01-01

    Purpose: To develop computer software that assists the planner avoid potential gantry collisions with the patient or patient support assembly during the treatment planning process. Methods and Materials: The approach uses a simulation of the therapy room with a scale model of the treatment machine. Because the dimensions of the machine and patient are known, one can calculate a priori whether any desired therapy field is possible or will result in a collision. To assist the planner, we have developed a graphical interface enabling the accurate visualization of each treatment field configuration with a 'room's eye view' treatment planning window. This enables the planner to be aware of, and alleviate any potential collision hazards. To circumvent blind spots in the graphic representation, an analytical software module precomputes whether each update of the gantry or turntable position is safe. Results: If a collision is detected, the module alerts the planner and suggests collision evasive actions such as either an extended distance treatment or the gantry angle of closest approach. Conclusions: The model enables the planner to experiment with unconventional noncoplanar treatment fields, and immediately test their feasibility

  16. Atomic collisions research with excited atomic species

    International Nuclear Information System (INIS)

    Hoogerland, M.D.; Gulley, R.J.; Colla, M.; Lu, W.; Milic, D.; Baldwin, K.G.H.; Buckman, S.J.

    1999-01-01

    Measurements and calculations of fundamental atomic collision and spectroscopic properties such as collision cross sections, reaction rates, transition probabilities etc. underpin the understanding and operation of many plasma and gas-discharge-based devices and phenomena, for example plasma processing and deposition. In almost all cases the complex series of reactions which sustains the discharge or plasma, or produces the reactive species of interest, has a precursor electron impact excitation, attachment, dissociation or ionisation event. These processes have been extensively studied in a wide range of atomic and molecular species and an impressive data base of collision cross sections and reaction rates now exists. However, most of these measurements are for collisions with stable atomic or molecular species which are initially in their ground electronic state. Relatively little information is available for scattering from excited states or for scattering from unstable molecular radicals. Examples of such species would be metastable excited rare gases, which are often used as buffer gases, or CF 2 radicals formed by electron impact dissociation in a CF 4 plasma processing discharge. We are interested in developing experimental techniques which will enable the quantitative study of such exotic atomic and molecular species. In this talk I would like to outline one such facility which is being used for studies of collisions with metastable He(2 3 S) atoms

  17. Arc-parallel extrusion of the Timor sector of the Banda arc-continent collision

    Science.gov (United States)

    Duffy, Brendan; Quigley, Mark; Harris, Ron; Ring, Uwe

    2013-06-01

    studies of synorogenic basins in Timor using field and remote sensing techniques provide new structural and geomorphic evidence for syn-collisional extension in the converging plate boundary zone between the Australian Plate and Banda Arc. Fault mapping and kinematic analysis at scales ranging from outcrop (Timor ( 100 km2) identify a predominance of NW-SE oriented dextral-normal faults and NE-SW oriented sinistral-normal faults that collectively bound large (5-20 km2) bedrock massifs throughout the island. These fault systems intersect at non-Andersonian conjugate angles of approximately 120° and accommodate an estimated 20 km of NE-directed extension across the Timor orogen based on reconstructions of fault-dismembered massifs. Major orogen-parallel ENE-oriented faults on the northern and southern sides of Timor exhibit normal-sinistral and normal-dextral kinematics, respectively. The overall pattern of deformation is one of lateral crustal extrusion sub-parallel to the Banda Arc. Stratigraphic relationships suggest that extrusion began prior to 5.5 Ma, before pronounced rapid uplift of the orogen. We link this to progressive coupling of the fore-arc to an underthrust plateau on the Australian Plate and subduction of its ocean crust. Our results enable us to track the structural evolution of the upper crust during dramatic plate-boundary reorganizations accompanying the transition from subduction to collision. The deformation structures that we document suggest that both upper and lower plate deformation during incipient island arc-continent collision was largely controlled by the geometry and topography of the lower plate.

  18. Deformation of the Songshugou ophiolite in the Qinling orogen

    Science.gov (United States)

    Sun, Shengsi; Dong, Yunpeng

    2017-04-01

    The Qinling orogen, middle part of the China Central Orogenic Belt, is well documented that was constructed by multiple convergences and subsequent collisions between the North China and South China Blocks mainly based on geochemistry and geochronology of ophiolites, magmatic rocks as well as sedimentary reconstruction. However, this model is lack of constraints from deformation of subduction/collision. The Songshugou ophiolite outcropped to the north of the Shangdan suture zone represents fragments of oceanic crust and upper mantle. Previous works have revealed that the ophiolite was formed at an ocean ridge and then emplaced in the northern Qinling belt. Hence, deformation of the ophiolite would provide constraints for the rifting and subduction processes. The ophiolite consists chiefly of metamorphosed mafic and ultramafic rocks. The ultramafic rocks contain coarse dunite, dunitic mylonite and harzburgite, with minor diopsidite veins. The mafic rocks are mainly amphibolite, garnet amphibolite and amphibole schist, which are considered to be eclogite facies and retrograde metamorphosed oceanic crust. Amphibole grains in the mafic rocks exhibit a strong shape-preferred orientation parallel to the foliation, which is also parallel to the lithologic contacts between mafic and ultramafic rocks. Electron backscattered diffraction (EBSD) analyses show strong olivine crystallographic preferred orientations (CPO) in dunite including A-, B-, and C-types formed by (010)[100], (010)[001] and (100)[001] dislocation slip systems, respectively. A-type CPO suggests high temperature plastic deformation in the upper mantle. In comparison, B-type may be restricted to regions with significantly high water content and high differential stress, and C-type may also be formed in wet condition with lower differential stress. Additionally, the dunite evolved into amphibolite facies metamorphism with mineral assemblages of olivine + talc + anthophyllite. Assuming a pressure of 1.5 GPa

  19. Deformations of spacetime and internal symmetries

    Directory of Open Access Journals (Sweden)

    Gresnigt Niels G.

    2017-01-01

    Full Text Available Algebraic deformations provide a systematic approach to generalizing the symmetries of a physical theory through the introduction of new fundamental constants. The applications of deformations of Lie algebras and Hopf algebras to both spacetime and internal symmetries are discussed. As a specific example we demonstrate how deforming the classical flavor group S U(3 to the quantum group S Uq(3 ≡ U q (su(3 (a Hopf algebra and taking into account electromagnetic mass splitting within isospin multiplets leads to new and exceptionally accurate baryon mass sum rules that agree perfectly with experimental data.

  20. Mounting with compliant cylinders for deformable mirrors.

    Science.gov (United States)

    Reinlein, Claudia; Goy, Matthias; Lange, Nicolas; Appelfelder, Michael

    2015-04-01

    A method is presented to mount large aperture unimorph deformable mirrors by compliant cylinders (CC). The CCs are manufactured from a soft silicone, and shear testing is performed in order to evaluate the Young's modulus. A scale mirror model is assembled to evaluate mount-induced change of piezoelectric deformation, and its applicability for tightly focusing mirrors. Experiments do not show any decrease of piezoelectric stroke. Further it is shown that the changes of surface fidelity by the attachment of the deformable mirror to its mount are neglectable.

  1. Isothermal deformation of gamma titanium aluminide

    International Nuclear Information System (INIS)

    Srinivasan, R.; Singh, J.P.; Tuval, E.; Weiss, I.

    1996-01-01

    Gamma titanium aluminide has received considerable attention in recent years from the automotive industry as a potential material for making rotating and reciprocating components to produce a quieter and more efficient engine. The objectives of this study were to identify processing routes for the manufacture of automobile valves from gamma titanium aluminide. The issues considered were microstructure and composition of the material, and processing parameters such as deformation rates, temperatures, and total deformation. This paper examines isothermal deformation of gamma titanium aluminide in order to develop a processing window for this type of material

  2. A q-deformed Lorentz algebra

    International Nuclear Information System (INIS)

    Schmidke, W.B.; Wess, J.; Muenchen Univ.; Zumino, B.; Lawrence Berkeley Lab., CA

    1991-01-01

    We derive a q-deformed version of the Lorentz algebra by deformating the algebra SL(2, C). The method is based on linear representations of the algebra on the complex quantum spinor space. We find that the generators usually identified with SL q (2, C) generate SU q (2) only. Four additional generators are added which generate Lorentz boosts. The full algebra of all seven generators and their coproduct is presented. We show that in the limit q→1 the generators are those of the classical Lorentz algebra plus an additional U(1). Thus we have a deformation of SL(2, C)xU(1). (orig.)

  3. Apatite fission-track analysis of the tectonic effects of the Arabia-Eurasia collision

    Science.gov (United States)

    Albino, I.; Cavazza, W.; Zattin, M.; Okay, A. I.; Adamia, S.; Sadradze, N.

    2012-04-01

    The Oligo-Miocene collision between Arabia and Eurasia led to the development of (i) the Bitlis-Zagros orogenic belt, (ii) the North and East Anatolian fault systems, (iii) the structural inversion of the Caucasian basins, and (iv) widespread deformation in the Turkish-Armenian-Iranian plateau. Despite the importance of the event, the exact age of the collision is poorly constrained. The integration of new apatite fission-track (AFT) data from the eastern Pontides, the Lesser Caucasus (Adjara-Trialeti zone), and the eastern part of the Anatolian plateau with preexisting data from the Bitlis suture has provided insights on the syn-and post-collisional evolution not only of eastern Anatolia but also of the entire Eastern Mediterranean area. The AFT samples have a wide spatial distribution and include different types of rocks: Paleogene sandstones and magmatic rocks with Cretaceous-to-Eocene intrusion ages. Despite the disparate lithologies and large distance, apatite fission-track ages from the easternmost Pontides, the Georgian Lesser Caucasus, the eastern Anatolian Plateau, and the Bitlis collision zone show a distinct geographic pattern. Exhumation along the Black Sea coast occurred in the Middle Miocene, mirroring the age of collision between the Eurasian and Arabian plates along the 2,400-km long Bitlis-Zagros suture zone some 200 km to the south. Exhumation in the Anatolian Plateau occurred in the Paleogene (with a cluster of ages in the Middle-Late Eocene), coevally with the development of the Izmir-Ankara-Erzincan suture. Successive development of the Anatolian Plateau did not exhume a new partial annealing zone and thus is not recorded by the apatite fission tracks.

  4. Age, distribution and style of deformation in Alaska north of 60°N: Implications for assembly of Alaska

    Science.gov (United States)

    Moore, Thomas E.; Box, Stephen E.

    2016-11-01

    The structural architecture of Alaska is the product of a complex history of deformation along both the Cordilleran and Arctic margins of North America involving oceanic plates, subduction zones and strike-slip faults and with continental elements of Laurentia, Baltica, and Siberia. We use geological constraints to assign regions of deformation to 14 time intervals and to map their distributions in Alaska. Alaska can be divided into three domains with differing deformational histories. Each domain includes a crustal fragment that originated near Early Paleozoic Baltica. The Northern domain experienced the Early Cretaceous Brookian orogeny, an oceanic arc-continent collision, followed by mid-Cretaceous extension. Early Cretaceous opening of the oceanic Canada Basin rifted the orogen from the Canadian Arctic margin, producing the bent trends of the orogen. The second (Southern) domain consists of Neoproterozoic and younger crust of the amalgamated Peninsular-Wrangellia-Alexander arc terrane and its paired Mesozoic accretionary prism facing the Pacific Ocean basin. The third (Interior) domain, situated between the first two domains and roughly bounded by the Cenozoic dextral Denali and Tintina faults, includes the large continental Yukon Composite and Farewell terranes having different Permian deformational episodes. Although a shared deformation that might mark their juxtaposition by collisional processes is unrecognized, sedimentary linkage between the two terranes and depositional overlap of the boundary with the Northern domain occurred by early Late Cretaceous. Late Late Cretaceous deformation is the first deformation shared by all three domains and correlates temporally with emplacement of the Southern domain against the remainder of Alaska. Early Cenozoic shortening is mild across interior Alaska but is significant in the Brooks Range, and correlates in time with dextral faulting, ridge subduction and counter-clockwise rotation of southern Alaska. Late Cenozoic

  5. Electromagnetically induced absorption via incoherent collisions

    International Nuclear Information System (INIS)

    Yang Xihua; Sheng Jiteng; Xiao Min

    2011-01-01

    We conduct theoretical studies on electromagnetically induced absorption via incoherent collisions in an inhomogeneously broadened ladder-type three-level system with the density-matrix approach. The effects of the collision-induced coherence decay rates as well as the probe laser field intensity on the probe field absorption are examined. It is shown that with the increase of the collisional decay rates in a moderate range, a narrow dip due to electromagnetically induced transparency superimposed on the Doppler-broadened absorption background can be turned into a narrow peak under the conditions that the probe field intensity is not very weak as compared to the pump field, which results from the enhancement of constructive interference and suppression of destructive interference between one-photon and multiphoton transition pathways. The physical origin of the collision-assisted electromagnetically induced absorption is analyzed with a power-series solution of the density-matrix equations.

  6. Application of hydrodynamics to heavy ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Felsberger, Lukas

    2014-12-02

    The Bjorken model is a simple tool for making rough predictions of the hydrodynamic evolution of the thermalized matter created in a heavy ion collision. The advantage of the model clearly lies in its simplicity, rather than accuracy. As it is still used for making rough estimations 'by hand', in this thesis, I investigate in which cases the Bjorken model gives useful results and in which it is not recommended. For central collisions, I show which critical size the nuclei should have so that the Bjorken model can be applied. For non-central collisions, I demonstrate that using Glauber initial conditions combined with the Bjorken evolution, leads to reasonable results up to large impact parameters. Finally, I study the case of a non-ideal (viscous) description of the thermalized matter which leads to strongly differing results if first- or second-order hydrodynamics is applied.

  7. Physics of Ultra-Peripheral Nuclear Collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bertulani, Carlos A.; Klein, Spencer R.; Nystrand, Joakim

    2005-02-02

    Moving highly-charged ions carry strong electromagnetic fields which act as a field of photons. In collisions at large impact parameters, hadronic interactions are not possible, and the ions interact through photon-ion and photon-photon collisions known as ultra-peripheral collisions (UPC). Hadron colliders like the Relativistic Heavy Ion Collider (RHIC), the Tevatron and the Large Hadron Collider (LHC) produce photonuclear and two-photon interactions at luminosities and energies beyond that accessible elsewhere; the LHC will reach a {gamma}p energy ten times that of the Hadron-Electron Ring Accelerator (HERA). Reactions as diverse as the production of anti-hydrogen, photoproduction of the {rho}{sup 0}, transmutation of lead into bismuth and excitation of collective nuclear resonances have already been studied. At the LHC, UPCs can study many types of ''new physics''.

  8. The binary collision approximation: Background and introduction

    International Nuclear Information System (INIS)

    Robinson, M.T.

    1992-08-01

    The binary collision approximation (BCA) has long been used in computer simulations of the interactions of energetic atoms with solid targets, as well as being the basis of most analytical theory in this area. While mainly a high-energy approximation, the BCA retains qualitative significance at low energies and, with proper formulation, gives useful quantitative information as well. Moreover, computer simulations based on the BCA can achieve good statistics in many situations where those based on full classical dynamical models require the most advanced computer hardware or are even impracticable. The foundations of the BCA in classical scattering are reviewed, including methods of evaluating the scattering integrals, interaction potentials, and electron excitation effects. The explicit evaluation of time at significant points on particle trajectories is discussed, as are scheduling algorithms for ordering the collisions in a developing cascade. An approximate treatment of nearly simultaneous collisions is outlined and the searching algorithms used in MARLOWE are presented

  9. The asteroids as outcomes of catastrophic collisions

    Energy Technology Data Exchange (ETDEWEB)

    Farinella, P. (Osservatorio Astronomico di Brera, Merate, Italy); Paolicchi, P.

    1982-12-01

    The role of catastrophic collisions in the evoloution of the asteroids is discussed in detail, employing extrapolations of experimental results on the outcome of high velocity-impacts. The probability of impacts with a given projectile-to-target mass ratio for asteroids of different sizes is derived, taking into account different mass distributions of the asteroid population at the beginning of the collision process. The extrapolations show that collisional breakup against solid-state cohesions must be a widespread process for asteroids. The influence of self-gravitation and transfer of angular momentum during collision is shown to depend strongly on the traget size, resulting in a variety of possible outcomes in the intermediate size range. Comparason of the theoretical results with observations of asteroid rotations and shapes yields favorable results.

  10. Collisions of antiprotons with hydrogen molecular ions

    DEFF Research Database (Denmark)

    Lühr, Armin Christian; Saenz, Alejandro

    2009-01-01

    Time-dependent close-coupling calculations of the ionization and excitation cross section for antiproton collisions with molecular hydrogen ions are performed in an impact energy range from 0.5 keV to 10 MeV. The Born-Oppenheimer and Franck-Condon approximations as well as the impact parameter...... method are applied in order to describe the target molecule and the collision process. It is shown that three perpendicular orientations of the molecular axis with respect to the trajectory are sufficient to accurately reproduce the ionization cross section calculated by Sakimoto [Phys. Rev. A 71, 062704...... (2005)] reducing the numerical effort drastically. The independent-event model is employed to approximate the cross section for double ionization and H+ production in antiproton collisions with H2....

  11. Distortion of He(2l2l`) Fano lineshapes by strong post-collision interaction in H{sup +}-He collisions

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P.; Benhenni, M.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A. [Toulouse-3 Univ., 31 (France)

    1996-05-28

    The three-body post-collisional interaction (PCI) between the scattered proton, recoil target ion and emitted electron has been investigated by electron spectrometry near the 2l2l` helium resonances, in the 20-100 keV energy range (V{sub p} 0.9-2 au). Particular attention has been paid to the PCI deformations of the Fano lineshapes when V-vector``{sub p} {approx_equal} V-vector {sub e}(2l2l`). Their angle and collision velocity dependences have been studied for the first time experimentally. A large variety of lineshapes have been observed, all of them successfully described by a single formula. At the lowest proton velocities the rescattering effect (also called Coulomb two-path scattering) is seen. (Author).

  12. Zagros Geodynamics, From Subduction to Collision: The Fate of the Neotethys

    Science.gov (United States)

    Omrani, J.; Agard, P.; Jolivet, L.; Whitechurch, H.; Monié, P.

    2008-12-01

    during the period c. 10-5 Ma. This period also significantly coincides with the intensification of collision in Zagros, as witnessed by deformation and progressive unconformities in the Arabian foreland.

  13. Cinematic and deformative analysis of the metagabbro of Rio Olivares NNW Sector of Manizales (Caldas)

    International Nuclear Information System (INIS)

    Toro Toro, Luz Mary; Hincapie Jaramillo, Gustavo; Ossa Meza, Cesar Augusto

    2010-01-01

    Metagabbro of Rio Olivares (Toro et al., 2010), is a lithological unit located on the Rio Olivares shore, NNW Sector of the Manizales city. The primary minerals belonging to this unit are calcic plagioclase and clinopiroxene. This unit has ductile shear zones in which mylonites series are formed, brittle shear zones with development of rocks of the cataclasites series are superimposed to the previous one. In the mylonites there are pyroxene, and plagioclases porphyroclasts, with asymmetrical tails that indicate dextral shear. Also, pseudotachylites veins are developed, that indicate paleo earthquakes. Plagioclases have microstructures of ductile deformation such as flexed twinned crystals, sweeping undulatory extinction, core mantle structures and dynamic recrystallization by grain boundary migration. This mineral also has brittle microstructures such as micro fractures, micro fault sand deformation twins. The clinopyroxenes show patches and sweeping undulatory extinction like ductile microstructures and micro fractures as fragile microstructures. Mesoscopic and microscopic dextral movements and the shape of the shear zones indicate partitioning of the deformation. The above could be explained by a dextral oblique collision of plates.

  14. Atomic collisions in fusion plasmas involving multiply charged ions

    International Nuclear Information System (INIS)

    Salzborn, E.

    1980-01-01

    A short survey is given on atomic collisions involving multiply charged ions. The basic features of charge transfer processes in ion-ion and ion-atom collisions relevant to fusion plasmas are discussed. (author)

  15. Driver ASICs for Advanced Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The program leverages on our extensive expertise in developing high-performance driver ASICs for deformable mirror systems and seeks to expand the capacities of the...

  16. Strong crystal size effect on deformation twinning

    DEFF Research Database (Denmark)

    Yu, Qian; Shan, Zhi-Wei; Li, Ju

    2010-01-01

    find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation...... plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium’s ideal strength9, 10. We develop a ‘stimulated slip’ model to explain the strong size dependence of deformation twinning....... The sample size in transition is relatively large and easily accessible in experiments, making our understanding of size dependence11, 12, 13, 14, 15, 16, 17 relevant for applications....

  17. 2D vector-cyclic deformable templates

    DEFF Research Database (Denmark)

    Schultz, Nette; Conradsen, Knut

    1998-01-01

    In this paper the theory of deformable templates is a vector cycle in 2D is described. The deformable template model originated in (Grenander, 1983) and was further investigated in (Grenander et al., 1991). A template vector distribution is induced by parameter distribution from transformation...... matrices applied to the vector cycle. An approximation in the parameter distribution is introduced. The main advantage by using the deformable template model is the ability to simulate a wide range of objects trained by e.g. their biological variations, and thereby improve restoration, segmentation...... and probabillity measurement. The case study concerns estimation of meat percent in pork carcasses. Given two cross-sectional images - one at the front and one near the ham of the carcass - the areas of lean and fat and a muscle in the lean area are measured automatically by the deformable templates....

  18. Nanoscale deformation of a liquid surface.

    Science.gov (United States)

    Ledesma-Alonso, Rene; Legendre, Dominique; Tordjeman, Philippe

    2012-03-09

    We study the interaction between a solid particle and a liquid interface. A semianalytical solution of the nonlinear equation that describes the interface deformation points out the existence of a bifurcation behavior for the apex deformation as a function of the distance. We show that the apex curvature obeys a simple power-law dependency on the deformation. Relationships between physical parameters disclose the threshold distance at which the particle can approach the liquid before capillarity provokes a "jump to contact." A prediction of the interface original position before deformation takes place, as well as the attraction force measured by an approaching probe, are produced. The results of our analysis agree with the force curves obtained from atomic force microscopy experiments over a liquid puddle.

  19. Cardiac fluid dynamics meets deformation imaging.

    Science.gov (United States)

    Dal Ferro, Matteo; Stolfo, Davide; De Paris, Valerio; Lesizza, Pierluigi; Korcova, Renata; Collia, Dario; Tonti, Giovanni; Sinagra, Gianfranco; Pedrizzetti, Gianni

    2018-02-20

    Cardiac function is about creating and sustaining blood in motion. This is achieved through a proper sequence of myocardial deformation whose final goal is that of creating flow. Deformation imaging provided valuable contributions to understanding cardiac mechanics; more recently, several studies evidenced the existence of an intimate relationship between cardiac function and intra-ventricular fluid dynamics. This paper summarizes the recent advances in cardiac flow evaluations, highlighting its relationship with heart wall mechanics assessed through the newest techniques of deformation imaging and finally providing an opinion of the most promising clinical perspectives of this emerging field. It will be shown how fluid dynamics can integrate volumetric and deformation assessments to provide a further level of knowledge of cardiac mechanics.

  20. Measurements and calculations of nuclear deformations

    International Nuclear Information System (INIS)

    Quentin, P.

    1975-01-01

    Main sources of experimental data pertaining to equilibrium deformation properties are shortly reviewed. Different approximations and methods relevant to their systematical calculations are discussed and compared. Finally, a rapid survey of some open problems is undertaken [fr

  1. Fabrication Process Development for Light Deformable Mirrors

    Data.gov (United States)

    National Aeronautics and Space Administration — The project objective is to develop robust, reproductibble fabrication processes to realize functional deformable membrane mirrors (DM) for a space mission in which...

  2. Quantum deformation of the affine transformation algebra

    International Nuclear Information System (INIS)

    Aizawa, N.; Sato, Haru-Tada

    1994-01-01

    We discuss a quantum deformation of the affine transformation algebra in one-dimensional space. It is shown that the quantum algebra has a non-cocommutative Hopf algebra structure, simple realizations and quantum tensor operators. (orig.)

  3. Wind sock deformity in rectal atresia

    International Nuclear Information System (INIS)

    Hosseini, Seyed M V; Ghahramani, Farhad; Shamsaeefar, Alireza; Razmi, Tannaz; Zarenezhad, Mohammad

    2009-01-01

    Rectal atresia is a rare anorectal deformity. It usually presents with neonatal obstruction and it is often a complete membrane or severe stenosis. Windsock deformity has not been reported in rectal atresia especially, having been missed for 2 years. A 2-year-old girl reported only a severe constipation despite having a 1.5-cm anal canal in rectal examination with scanty discharge. She underwent loop colostomy and loopogram, which showed a wind sock deformity of rectum with mega colon. The patient underwent abdominoperineal pull-through with good result and follow-up. This is the first case of the wind sock deformity in rectal atresia being reported after 2 years of age. (author)

  4. High Resolution Silicon Deformable Mirrors, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal we describe a plan to build a deformable mirror suitable for space-based operation in systems for high-resolution imaging. The prototype DM will be...

  5. High Resolution Silicon Deformable Mirrors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes a plan to build a prototype small stroke, high precision deformable mirror suitable for space-based operation in systems for high-resolution...

  6. Physics with relativistic heavy-ion collisions

    Directory of Open Access Journals (Sweden)

    Dönigus Benjamin

    2015-01-01

    Full Text Available An overview is given on the experimental study of physics with relativistic heavy-ion collisions, with emphasis on recent measurements at the Large Hadron Collider (LHC and the Relativistic Heavy Ion Collider (RHIC. The focus here is laid on p–Pb collisions at the LHC and the corresponding d–Au measurements at RHIC. The topics touched are “collectivity and approach to equilibrium”, “high pT and jets”, “heavy flavour and electroweak bosons” and “search for exotic objects”.

  7. Guide to the collision avoidance rules

    CERN Document Server

    Cockcroft, A N

    2004-01-01

    A Guide to the Collision Avoidance Rules is the essential reference to the safe operation of all vessels at sea. Published continuously since 1965, this respected and expert guide is the classic text for all who need to, practically and legally, understand and comply with the Rules. This sixth edition incorporates all of the amendments to the International Regulations for Preventing Collisions at Sea which came into force in November 2003.The books sets out all of the Rules with clear explanation of their meaning, and gives detailed examples of how the rules have been used in practice

  8. Spatial Analysis Methods of Road Traffic Collisions

    DEFF Research Database (Denmark)

    Loo, Becky P. Y.; Anderson, Tessa Kate

    outlines the key issues in identifying hazardous road locations (HRLs), considers current approaches used for reducing and preventing road traffic collisions, and outlines a strategy for improved road safety. The book covers spatial accuracy, validation, and other statistical issues, as well as link......Spatial Analysis Methods of Road Traffic Collisions centers on the geographical nature of road crashes, and uses spatial methods to provide a greater understanding of the patterns and processes that cause them. Written by internationally known experts in the field of transport geography, the book...

  9. Nonrelativistic theory of heavy-ion collisions

    International Nuclear Information System (INIS)

    Bertsch, G.

    1984-01-01

    A wide range of phenomena is observed in heavy-ion collisions, calling for a comprehensive theory based on fundamental principles of many-particle quantum mechanics. At low energies, the nuclear dynamics is controlled by the mean field, as we know from spectroscopic nuclear physics. We therefore expect the comprehensive theory of collisions to contain mean-field theory at low energies. The mean-field theory is the subject of the first lectures in this chapter. This theory can be studied quantum mechanically, in which form it is called TDHF (time-dependent Hartree-Fock), or classically, where the equation is called the Vlasov equation. 25 references, 14 figures

  10. Applied atomic and collision physics special topics

    CERN Document Server

    Massey, H S W; Bederson, Benjamin

    1982-01-01

    Applied Atomic Collision Physics, Volume 5: Special Topics deals with topics on applications of atomic collisions that were not covered in the first four volumes of the treatise. The book opens with a chapter on ultrasensitive chemical detectors. This is followed by separate chapters on lighting, magnetohydrodynamic electrical power generation, gas breakdown and high voltage insulating gases, thermionic energy converters, and charged particle detectors. Subsequent chapters deal with the operation of multiwire drift and proportional chambers and streamer chambers and their use in high energy p

  11. Conservative Bin-to-Bin Fractional Collisions

    Science.gov (United States)

    2016-06-28

    Combustion Chemistry Common Features in Spacecraft Collisions: Relevant Densities Spanning Many Orders of Magnitude — 6+ Transitions from Collisional to...Radiative Cooling/Ionization Combustion Chemistry Common Features in Spacecraft Collisions: Relevant Densities Spanning Many Orders of Magnitude — 6...Error’ Unknown without Analytical Solution or High Fidelity Simulation −0.5 0 0.5 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 Original−NTC Position, (m) T

  12. Fluctuations in high-energy particle collisions

    International Nuclear Information System (INIS)

    Gronqvist, Hanna

    2016-01-01

    We study fluctuations that are omnipresent in high-energy particle collisions. These fluctuations can be either of either classical or quantum origin and we will study both. Firstly, we consider the type of quantum fluctuations that arise in proton-proton collisions. These are computable perturbatively in quantum field theory and we will focus on a specific class of diagrams in this set-up. Secondly, we will consider the fluctuations that are present in collisions between nuclei that can be heavier than protons. These are the quantum laws of nature that describe the positions of nucleons within a nucleus, but also the hydrodynamic fluctuations of classical, thermal origin that affect the evolution of the medium produced in heavy-ion collisions. The fluctuations arising in proton-proton collisions can be computed analytically up to a certain order in perturbative quantum field theory. We will focus on one-loop diagrams of a fixed topology. Loop diagrams give rise to integrals that typically are hard to evaluate. We show how modern mathematical methods can be used to ease their computation. We will study the relations among unitarity cuts of a diagram, the discontinuity across the corresponding branch cut and the coproduct. We show how the original integral corresponding to a given diagram can be reconstructed from the information contained in the coproduct. We expect that these methods can be applied to solve more complicated topologies and help in the computation of new amplitudes in the future. Finally, we study the two types of fluctuations arising in heavy-ion collisions. These are related either to the initial state or the intermediate state of matter produced in such collisions. The initial state fluctuations are experimentally observed to give rise to non-Gaussianities in the final-state spectra. We show how these non-Gaussianities can be explained by the random position and interaction energy of 'sources' in the colliding nuclei. Furthermore, we

  13. Cold collisions in dissipative optical lattices

    International Nuclear Information System (INIS)

    Piilo, J; Suominen, K-A

    2005-01-01

    The invention of laser cooling methods for neutral atoms allows optical and magnetic trapping of cold atomic clouds in the temperature regime below 1 mK. In the past, light-assisted cold collisions between laser cooled atoms have been widely studied in magneto-optical atom traps (MOTs). We describe here theoretical studies of dynamical interactions, specifically cold collisions, between atoms trapped in near-resonant, dissipative optical lattices. The extension of collision studies to the regime of optical lattices introduces several complicating factors. For the lattice studies, one has to account for the internal substates of atoms, position-dependent matter-light coupling, and position-dependent couplings between the atoms, in addition to the spontaneous decay of electronically excited atomic states. The developed one-dimensional quantum-mechanical model combines atomic cooling and collision dynamics in a single framework. The model is based on Monte Carlo wavefunction simulations and is applied when the lattice-creating lasers have frequencies both below (red-detuned lattice) and above (blue-detuned lattice) the atomic resonance frequency. It turns out that the radiative heating mechanism affects the dynamics of atomic cloud in a red-detuned lattice in a way that is not directly expected from the MOT studies. The optical lattice and position-dependent light-matter coupling introduces selectivity of collision partners. The atoms which are most mobile and energetic are strongly favoured to participate in collisions, and are more often ejected from the lattice, than the slow ones in the laser parameter region selected for study. Consequently, the atoms remaining in the lattice have a smaller average kinetic energy per atom than in the case of non-interacting atoms. For blue-detuned lattices, we study how optical shielding emerges as a natural part of the lattice and look for ways to optimize the effect. We find that the cooling and shielding dynamics do not mix

  14. Plasmas applied atomic collision physics, v.2

    CERN Document Server

    Barnett, C F

    1984-01-01

    Applied Atomic Collision Physics, Volume 2: Plasmas covers topics on magnetically confined plasmas. The book starts by providing the history of fusion research and describing the various approaches in both magnetically and inertially confined plasmas. The text then gives a general discussion of the basic concepts and properties in confinement and heating of a plasma. The theory of atomic collisions that result in excited quantum states, particularly highly ionized impurity atoms; and diverse diagnostic topics such as emission spectra, laser scattering, electron cyclotron emission, particle bea

  15. A numerical 4D Collision Risk Model

    Science.gov (United States)

    Schmitt, Pal; Culloch, Ross; Lieber, Lilian; Kregting, Louise

    2017-04-01

    With the growing number of marine renewable energy (MRE) devices being installed across the world, some concern has been raised about the possibility of harming mobile, marine fauna by collision. Although physical contact between a MRE device and an organism has not been reported to date, these novel sub-sea structures pose a challenge for accurately estimating collision risks as part of environmental impact assessments. Even if the animal motion is simplified to linear translation, ignoring likely evasive behaviour, the mathematical problem of establishing an impact probability is not trivial. We present a numerical algorithm to obtain such probability distributions using transient, four-dimensional simulations of a novel marine renewable device concept, Deep Green, Minesto's power plant and hereafter referred to as the 'kite' that flies in a figure-of-eight configuration. Simulations were carried out altering several configurations including kite depth, kite speed and kite trajectory while keeping the speed of the moving object constant. Since the kite assembly is defined as two parts in the model, a tether (attached to the seabed) and the kite, collision risk of each part is reported independently. By comparing the number of collisions with the number of collision-free simulations, a probability of impact for each simulated position in the cross- section of the area is considered. Results suggest that close to the bottom, where the tether amplitude is small, the path is always blocked and the impact probability is 100% as expected. However, higher up in the water column, the collision probability is twice as high in the mid line, where the tether passes twice per period than at the extremes of its trajectory. The collision probability distribution is much more complex in the upper end of the water column, where the kite and tether can simultaneously collide with the object. Results demonstrate the viability of such models, which can also incorporate empirical

  16. High energy particle collisions near black holes

    Science.gov (United States)

    Zaslavskii, O. B.

    2016-10-01

    If two geodesic particles collide near a rotating black hole, their energy in the centre of mass frame Ec.m. can become unbound under certain conditions (the so-called BSW effect). The special role is played here by so-called critical geodesics when one of particles has fine-tuned energy and angular momentum. The nature of geodesics reveals itself also in fate of the debris after collisions. One of particles moving to a remote observer is necessarily near-critical. We discuss, when such a collision can give rise not only unboud Ec.m. but also unbound Killing energy E (so-called super-Penrose process).

  17. Nonrelativistic theory of heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bertsch, G.

    1984-07-17

    A wide range of phenomena is observed in heavy-ion collisions, calling for a comprehensive theory based on fundamental principles of many-particle quantum mechanics. At low energies, the nuclear dynamics is controlled by the mean field, as we know from spectroscopic nuclear physics. We therefore expect the comprehensive theory of collisions to contain mean-field theory at low energies. The mean-field theory is the subject of the first lectures in this chapter. This theory can be studied quantum mechanically, in which form it is called TDHF (time-dependent Hartree-Fock), or classically, where the equation is called the Vlasov equation. 25 references, 14 figures.

  18. Bremsstrahlung in atom-atom collisions

    International Nuclear Information System (INIS)

    Amus'ya, M.Y.; Kuchiev, M.Y.; Solov'ev, A.V.

    1985-01-01

    It is shown that in the collision of a fast atom with a target atom when the frequencies are on the order of the potentials or higher, there arises bremsstrahlung comparable in intensity with the bremsstrahlung emitted by an electron with the same velocity in the field of the target atom. The mechanism by which bremsstrahlung is produced in atom-atom collisions is elucidated. Results of specific calculations of the bremsstrahlung spectra are given for α particles and helium atoms colliding with xenon

  19. Estimation of a collision impact parameter

    International Nuclear Information System (INIS)

    Shmatov, S.V.; Zarubin, P.I.

    2001-01-01

    We demonstrate that the nuclear collision geometry (i.e. impact parameter) can be determined in an event-by-event analysis by measuring the transverse energy flow in the pseudorapidity region 3≤|η|≤5 with a minimal dependence on collision dynamics details at the LHC energy scale. Using the HIJING model we have illustrated our calculation by a simulation of events of nucleus-nucleus interactions at the c.m.s. energy from 1 up to 5.5 TeV per nucleon and various types of nuclei

  20. Automobile Collisions, Kinematics and Related Injury Patterns

    Science.gov (United States)

    Siegel, A. W.

    1972-01-01

    It has been determined clinically that fatalities and injury severity resulting from automobile collisions have decreased during the last five years for low impact speeds. This reduction is a direct result of the application of biomechanics and occupant kinematics, as well as changes in automobile design. The paper defines terminology used in the field of mechanics and develops examples and illustrations of the physical concepts of acceleration, force strength, magnitude duration, rate of onset and others, as they apply to collision phenomena and injury. The mechanism of injury pattern reduction through the use of restraint systems is illustrated. PMID:5059661

  1. Absorbed Energy in Ship Collisions and Grounding

    DEFF Research Database (Denmark)

    Pedersen, Preben Terndrup; Zhang, Shengming

    1998-01-01

    Minorsky's well-known empirical formula, which relates the absorbed energy to the destroyed material volume, has been widely used in analyses of high energy collision and grounding accidents for nearly 40 years. The advantage of the method is its apparent simplcity. Obviously, its drawback...... collisions and grounding. The developed expressions reflect the structural arrangement, the material properties and different damage patterns.The present method is validated against a large number of existing experimental results and detailed numerical simulation results. Applications to full-sale ship...

  2. Spatial Analysis Methods of Road Traffic Collisions

    DEFF Research Database (Denmark)

    Loo, Becky P. Y.; Anderson, Tessa Kate

    Spatial Analysis Methods of Road Traffic Collisions centers on the geographical nature of road crashes, and uses spatial methods to provide a greater understanding of the patterns and processes that cause them. Written by internationally known experts in the field of transport geography, the book...... outlines the key issues in identifying hazardous road locations (HRLs), considers current approaches used for reducing and preventing road traffic collisions, and outlines a strategy for improved road safety. The book covers spatial accuracy, validation, and other statistical issues, as well as link...

  3. Return to sports after surgery to correct adolescent idiopathic scoliosis: a survey of the Spinal Deformity Study Group.

    Science.gov (United States)

    Lehman, Ronald A; Kang, Daniel G; Lenke, Lawrence G; Sucato, Daniel J; Bevevino, Adam J

    2015-05-01

    There are no guidelines for when surgeons should allow patients to return to sports and athletic activities after spinal fusion for adolescent idiopathic scoliosis (AIS). Current recommendations are based on anecdotal reports and a survey performed more than a decade ago in the era of first/second-generation posterior implants. To identify current recommendations for return to sports and athletic activities after surgery for AIS. Questionnaire-based survey. Adolescent idiopathic scoliosis after corrective surgery. Type and time to return to sports. A survey was administered to members of the Spinal Deformity Study Group. The survey consisted of surgeon demographic information, six clinical case scenarios, three different construct types (hooks, pedicle screws, hybrid), and questions regarding the influence of lowest instrumented vertebra (LIV) and postoperative physical therapy. Twenty-three surgeons completed the survey, and respondents were all experienced expert deformity surgeons. Pedicle screw instrumentation allows earlier return to noncontact and contact sports, with most patients allowed to return to running by 3 months, both noncontact and contact sports by 6 months, and collision sports by 12 months postoperatively. For all construct types, approximately 20% never allow return to collision sports, whereas all surgeons allow eventual return to contact and noncontact sports regardless of construct type. In addition to construct type, we found progressively distal LIV resulted in more surgeons never allowing return to collision sports, with 12% for selective thoracic fusion to T12/L1 versus 33% for posterior spinal fusion to L4. Most respondents also did not recommend formal postoperative physical therapy (78%). Of all surgeons surveyed, there was only one reported instrumentation failure/pullout without neurologic deficit after a patient went snowboarding 2 weeks postoperatively. Modern posterior instrumentation allows surgeons to recommend earlier return

  4. Elasticity, viscosity, and deformation of orbital fat

    OpenAIRE

    Schoemaker, Ivo; Hoefnagel, Pepijn; Mastenbroek, Tom; Kolff, Cornelis; Schutte, Sander; Helm, Frans; Picken, Stephen; Gerritsen, Anton; Wielopolski, Piotr; Spekreijse, Henk; Simonsz, Huib

    2006-01-01

    textabstractPURPOSE. For development of a finite element analysis model of orbital mechanics, it was necessary to determine the material properties of orbital fat and its degree of deformation in eye rotation. METHODS. Elasticity and viscosity of orbital fat of eight orbits of four calves and two orbits of one rhesus monkey were measured with a parallel-plate rheometer. The degree of deformation of orbital fat was studied in two human subjects by magnetic resonance imaging (MRI) through the o...

  5. On the ambiguity in relativistic tidal deformability

    Science.gov (United States)

    Gralla, Samuel E.

    2018-04-01

    The LIGO collaboration recently reported the first gravitational-wave constraints on the tidal deformability of neutron stars. I discuss an inherent ambiguity in the notion of relativistic tidal deformability that, while too small to affect the present measurement, may become important in the future. I propose a new way to understand the ambiguity and discuss future prospects for reliably linking observed gravitational waveforms to compact object microphysics.

  6. Three dimensional characterization of regional lung deformation

    Science.gov (United States)

    Amelon, Ryan; Cao, Kunlin; Ding, Kai; Christensen, Gary E.; Reinhardt, Joseph M.; Raghavan, Madhavan L.

    2011-01-01

    The deformation of the lung during inspiration and expiration involves regional variations in volume change and orientational preferences. Studies have reported techniques for measuring the displacement field in the lung based on imaging or image registration. However, means of interpreting all the information in the displacement field in a physiologically relevant manner is lacking. We propose three indices of lung deformation that are determinable from the displacement field: the Jacobian – a measure of volume change, the anisotropic deformation index – a measure of the magnitude of directional preference in volume change, and a slab-rod index – a measure of the nature of directional preference in volume change. To demonstrate the utility of these indices, they were determined for six human subjects using deformable image registration on static CT images, registered from FRC to TLC. Volume change was elevated in the inferior-dorsal region as should be expected for breathing in the supine position. The anisotropic deformation index was elevated in the inferior region owing to proximity to the diaphragm and in the lobar fissures owing to sliding. Vessel regions in the lung had a significantly rod-like deformation compared to the whole lung. Compared to upper lobes, lower lobes exhibited significantly greater volume change (19.4% and 21.3% greater in the right and left lungs on average; p<0.005) and anisotropy in deformation (26.3% and 21.8% greater in the right and left lungs on average; p<0.05) with remarkable consistency across subjects. The developed deformation indices lend themselves to exhaustive and physiologically intuitive interpretations of the displacement fields in the lung determined through image-registration techniques or finite element simulations. PMID:21802086

  7. A q-deformed nonlinear map

    International Nuclear Information System (INIS)

    Jaganathan, Ramaswamy; Sinha, Sudeshna

    2005-01-01

    A scheme of q-deformation of nonlinear maps is introduced. As a specific example, a q-deformation procedure related to the Tsallis q-exponential function is applied to the logistic map. Compared to the canonical logistic map, the resulting family of q-logistic maps is shown to have a wider spectrum of interesting behaviours, including the co-existence of attractors-a phenomenon rare in one-dimensional maps

  8. Deformable fractional derivative and its applications

    Science.gov (United States)

    Ahuja, Priyanka; Zulfeqarr, Fahed; Ujlayan, Amit

    2017-10-01

    In this paper, we introduce an application of recently proposed deformable derivative which is equivalent to ordinary derivative in the sense that one implies other. The deformable derivative is defined using limit approach as ordinary derivative. Thus it could also be regarded as fractional derivative. The simple nature of this definition allows us for the extension of some classical theorems in calculus like the Rolles, Mean Value and Extended Mean Value theorems. As a theoritical application some fractional differentiable equations are solved.

  9. Deformed Fredkin spin chain with extensive entanglement

    Science.gov (United States)

    Salberger, Olof; Udagawa, Takuma; Zhang, Zhao; Katsura, Hosho; Klich, Israel; Korepin, Vladimir

    2017-06-01

    We introduce a new spin chain which is a deformation of the Fredkin spin chain and has a phase transition between bounded and extensive entanglement entropy scaling. In this chain, spins have a local interaction of three nearest neighbors. The Hamiltonian is frustration-free and its ground state can be described analytically as a weighted superposition of Dyck paths that depends on a deformation parameter t. In the purely spin 1/2 case, whenever t\

  10. Fingerprinting molecular relaxation in deformed polymers

    OpenAIRE

    Wang, Zhe; Lam, Christopher N.; Chen, Wei-Ren; Wang, Weiyu; Liu, Jianning; Liu, Yun; Porcar, Lionel; Stanley, Christopher B.; Zhao, Zhichen; Hong, Kunlun; Wang, Yangyang

    2017-01-01

    International audience; The flow and deformation of macromolecules is ubiquitous in nature and industry, and an understanding of this phenomenon at both macroscopic and microscopic length scales is of fundamental and practical importance. Here, we present the formulation of a general mathematical framework, which could be used to extract, from scattering experiments, the molecular relaxation of deformed polymers. By combining and modestly extending several key conceptual ingredients in the li...

  11. Thermoelastoplastic Deformation of a Multilayer Ball

    Science.gov (United States)

    Murashkin, E. V.; Dats, E. P.

    2017-09-01

    The problem of centrally symmetric deformation of a multilayer elastoplastic ball in the process of successive accretion of preheated layers to its outer surface is considered in the framework of small elastoplastic deformations. The problems of residual stress formation in the elastoplastic ball with an inclusion and a cavity are solved under various mechanical boundary conditions on the inner surface and for prescribed thermal compression distributions. The graphs of residual stress and displacement fields are constructed.

  12. Acquired flat foot deformity: postoperative imaging.

    Science.gov (United States)

    Dimmick, Simon; Chhabra, Avneesh; Grujic, Leslie; Linklater, James M

    2012-07-01

    Flat foot (pes planus) is a progressive and disabling pathology that is treated initially with conservative measures and often followed by a variety of surgeries. This article briefly reviews the pathology in acquired flat foot deformity, the classification of posterior tibial tendon dysfunction, discusses surgical techniques for the management of adult flat foot deformity, and reviews potential complications and their relevant imaging appearances. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  13. Thermal elastic deformations of the planet Mercury.

    Science.gov (United States)

    Liu, H.-S.

    1972-01-01

    The variation in solar heating due to the resonance rotation of Mercury produces periodic elastic deformations on the surface of the planet. The thermal stress and strain fields under Mercury's surface are calculated after certain simplifications. It is found that deformations penetrate to a greater depth than the variation of solar heating, and that the thermal strain on the surface of the planet pulsates with an amplitude of .004 and a period of 176 days.

  14. ''Identical'' bands in normally-deformed nuclei

    International Nuclear Information System (INIS)

    Garrett, J.D.; Baktash, C.; Yu, C.H.

    1990-01-01

    Gamma-ray transitions energies in neighboring odd- and even-mass nuclei for normally-deformed nuclear configurations are analyzed in a manner similar to recent analyses for superdeformed states. The moment of inertia is shown to depend on pair correlations and the aligned angular momentum of the odd nucleon. The implications of this analysis for ''identical'' super-deformed bands are discussed. 26 refs., 9 figs

  15. Adiabatically describing rare earths using microscopic deformations

    Science.gov (United States)

    Nobre, Gustavo; Dupuis, Marc; Herman, Michal; Brown, David

    2017-09-01

    Recent works showed that reactions on well-deformed nuclei in the rare-earth region are very well described by an adiabatic method. This assumes a spherical optical potential (OP) accounting for non-rotational degrees of freedom while the deformed configuration is described by couplings to states of the g.s. rotational band. This method has, apart from the global OP, only the deformation parameters as inputs, with no additional fit- ted variables. For this reason, it has only been applied to nuclei with well-measured deformations. With the new computational capabilities, microscopic large-scale calculations of deformation parameters within the HFB method based on the D1S Gogny force are available in the literature. We propose to use such microscopic deformations in our adi- abatic method, allowing us to reproduce the cross sections agreements observed in stable nuclei, and to reliably extend this description to nuclei far from stability, describing the whole rare-earth region. Since all cross sections, such as capture and charge exchange, strongly depend on the correct calculation of absorption from the incident channel (from direct reaction mechanisms), this approach significantly improves the accuracy of cross sections and transitions relevant to astrophysical studies. The work at BNL was sponsored by the Office of Nuclear Physics, Office of Science of the US Department of Energy, under Contract No. DE-AC02-98CH10886 with Brookhaven Science Associates, LLC.

  16. Fingerprinting Molecular Relaxation in Deformed Polymers

    Science.gov (United States)

    Wang, Zhe; Lam, Christopher N.; Chen, Wei-Ren; Wang, Weiyu; Liu, Jianning; Liu, Yun; Porcar, Lionel; Stanley, Christopher B.; Zhao, Zhichen; Hong, Kunlun; Wang, Yangyang

    2017-07-01

    The flow and deformation of macromolecules is ubiquitous in nature and industry, and an understanding of this phenomenon at both macroscopic and microscopic length scales is of fundamental and practical importance. Here, we present the formulation of a general mathematical framework, which could be used to extract, from scattering experiments, the molecular relaxation of deformed polymers. By combining and modestly extending several key conceptual ingredients in the literature, we show how the anisotropic single-chain structure factor can be decomposed by spherical harmonics and experimentally reconstructed from its cross sections on the scattering planes. The resulting wave-number-dependent expansion coefficients constitute a characteristic fingerprint of the macromolecular deformation, permitting detailed examinations of polymer dynamics at the microscopic level. We apply this approach to survey a long-standing problem in polymer physics regarding the molecular relaxation in entangled polymers after a large step deformation. The classical tube theory of Doi and Edwards predicts a fast chain retraction process immediately after the deformation, followed by a slow orientation relaxation through the reptation mechanism. This chain retraction hypothesis, which is the keystone of the tube theory for macromolecular flow and deformation, is critically examined by analyzing the fine features of the two-dimensional anisotropic spectra from small-angle neutron scattering by entangled polystyrenes. We show that the unique scattering patterns associated with the chain retraction mechanism are not experimentally observed. This result calls for a fundamental revision of the current theoretical picture for nonlinear rheological behavior of entangled polymeric liquids.

  17. Fingerprinting Molecular Relaxation in Deformed Polymers

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2017-07-01

    Full Text Available The flow and deformation of macromolecules is ubiquitous in nature and industry, and an understanding of this phenomenon at both macroscopic and microscopic length scales is of fundamental and practical importance. Here, we present the formulation of a general mathematical framework, which could be used to extract, from scattering experiments, the molecular relaxation of deformed polymers. By combining and modestly extending several key conceptual ingredients in the literature, we show how the anisotropic single-chain structure factor can be decomposed by spherical harmonics and experimentally reconstructed from its cross sections on the scattering planes. The resulting wave-number-dependent expansion coefficients constitute a characteristic fingerprint of the macromolecular deformation, permitting detailed examinations of polymer dynamics at the microscopic level. We apply this approach to survey a long-standing problem in polymer physics regarding the molecular relaxation in entangled polymers after a large step deformation. The classical tube theory of Doi and Edwards predicts a fast chain retraction process immediately after the deformation, followed by a slow orientation relaxation through the reptation mechanism. This chain retraction hypothesis, which is the keystone of the tube theory for macromolecular flow and deformation, is critically examined by analyzing the fine features of the two-dimensional anisotropic spectra from small-angle neutron scattering by entangled polystyrenes. We show that the unique scattering patterns associated with the chain retraction mechanism are not experimentally observed. This result calls for a fundamental revision of the current theoretical picture for nonlinear rheological behavior of entangled polymeric liquids.

  18. Plastic Deformation of Pressured Metallic Glass

    Directory of Open Access Journals (Sweden)

    Yun Cheng

    2017-11-01

    Full Text Available Although pressured metallic glass (MG has been reported in the literature; there are few studies focusing on pressure effects on the structure; dynamics and its plastic deformation. In this paper; we report on and characterize; via molecular dynamics simulation, the structure and dynamics heterogeneity of pressured MGs, and explore a causal link between local structures and plastic deformation mechanism of pressured glass. The results exhibit that the dynamical heterogeneity of metallic liquid is more pronounced at high pressure, while the MGs were less fragile after the release of external pressure, reflected by the non-Gaussian parameter (NGP. High pressure glass shows better plastic deformation; and the local strain zone distributed more uniformly than of in normal glass. Further research indicates that although the number of icosahedrons in pressured glass was much larger than that in normal glass, while the interpenetrating connections of icosahedra (ICOI exhibited spatial correlations were rather poor; In addition, the number of ‘fast’ atoms indexed by the atoms’ moving distance is larger than that in normal glass; leading to the sharp decreasing in number of icosahedrons during deformation. An uniform distribution of ‘fast’ atoms also contributed to better plastic deformation ability in the pressured glass. These findings may suggest a link between the deformation and destruction of icosahedra with short-range order.

  19. Distraction-related road traffic collisions | Eid | African Health Sciences

    African Journals Online (AJOL)

    Objectives: We aimed to prospectively study distraction-related road traffic collision injuries, their contributory factors, severity, and outcome. Methods: Data were prospectively collected on all hospitalized road traffic collision trauma patients in Al-Ain City who were drivers at the collision time over one and half years. Driver's ...

  20. 14 CFR 437.65 - Collision avoidance analysis.

    Science.gov (United States)

    2010-01-01

    ... analysis. (a) For a permitted flight with a planned maximum altitude greater than 150 kilometers, a permittee must obtain a collision avoidance analysis from United States Strategic Command. (b) The collision... 14 Aeronautics and Space 4 2010-01-01 2010-01-01 false Collision avoidance analysis. 437.65...

  1. Reconstruction of Northeast Asian Deformation Integrated with Western Pacific Plate Subduction since 200 Ma

    Science.gov (United States)

    Liu, S.; Gurnis, M.; Ma, P.; Zhang, B.

    2017-12-01

    The configuration and kinematics of continental deformation and its marginal plate tectonics on the Earth's surface are intrinsic manifestations of plate-mantle coupling. The complex interactions of plate boundary forces result in plate motions that are dominated by slab pull and ridge push forces and the effects of mantle drag; these interactions also result in continental deformation with a complex basin-mountain architecture and evolution. The kinematics and evolution of the western Pacific subduction and northeast Asian continental-margin deformation are a first-order tectonic process whose nature and chronology remains controversial. This paper implements a "deep-time" reconstruction of the western Pacific subduction, continental accretion or collision and basin-mountain deformation in northeast Asia since 200 Ma based on a newly revised global plate model. The results demonstrate a NW-SE-oriented shortening from 200-137 Ma, a NWW-SEE-oriented extension from 136-101 Ma, a nearly N-S-oriented extension and uplift with a short-term NWW-SEE-oriented compressional inversion in northeast China from 100-67 Ma, and a NW-SE- and nearly N-S-oriented extension from 66 Ma to the present day. The western Pacific oceanic plate subducted forward under East Asia along Mudanjiang-Honshu Island during the Jurassic, and the trenches retreated to the Sikhote-Alin, North Shimanto, and South Shimanto zones from ca. 137-128 Ma, ca. 130-90 Ma, and in ca. 60 Ma, respectively. Our time-dependent analysis of plate motion and continental deformation coupling suggests that the multi-plate convergent motion and ocean-continent convergent orogeny were induced by advance subduction during the Jurassic and earliest Cretaceous. Our analysis also indicates that the intra-continent rifting and back-arc extension were triggered by trench retreat during the Cretaceous and that the subduction of oceanic ridge and arc were triggered by trench retreat during the Cenozoic. Therefore, reconstructing

  2. Electronic stopping in ion-fullerene collisions

    NARCIS (Netherlands)

    Schlathölter, T.A.; Hadjar, O.; Hoekstra, R.A.; Morgenstern, R.W.H.

    The electronic friction experienced by a multiply charged ion interacting with the valence electrons of a single fullerene is an important aspect of the collision dynamics. It manifests itself in a considerable loss of projectile kinetic energy transferred to the target, resulting in excitation. The

  3. Probabilistic calculation for angular dependence collision

    International Nuclear Information System (INIS)

    Villarino, E.A.

    1990-01-01

    This collision probabilistic method is broadly used in cylindrical geometry (in one- or two-dimensions). It constitutes a powerful tool for the heterogeneous Response Method where, the coupling current is of the cosine type, that is, without angular dependence at azimuthal angle θ and proportional to μ (cosine of the θ polar angle). (Author) [es

  4. LHC Report: LHC smashes collision records

    CERN Multimedia

    Sarah Charley

    2016-01-01

    The Large Hadron Collider is now producing more than a billion proton-proton collisions per second.   The LHC is colliding protons at a faster rate than ever before: approximately 1 billion times per second. Since April 2016, the LHC has delivered more than 30 inverse femtobarns (fb-1) to both ATLAS and CMS. This means that around 2.4 quadrillion (2.4 million billion) collisions have been seen by each of the experiments this year. The inverse femtobarn is the unit of measurement for integrated luminosity, indicating the cumulative number of potential collisions. This compares with the total of 33.2 fb-1 produced between 2010 and 2015. The unprecedented performance this year is the result of both the incremental increases in collision rate and the sheer amount of time the LHC has been up and running. This comes after a slow start-up in 2015, when scientists and engineers still needed to learn how to operate the machine at a much higher energy. “With more energy, the machine is much more sen...

  5. Collision vulnerability of vultures at established windfarms

    African Journals Online (AJOL)

    Campbell Murn

    Vulture News 65. November 2013. Collision vulnerability of vultures at established windfarms. Warren Goodwin. 177 Fraser Road North, Canning vale, WA 6155, Australia. shikra_g@yahoo.com. Established wind farms are commonly situated on mountain ridges or hillsides, in order to make optimal use of prevailing winds,.

  6. Collision strengths for transitions in Ni XIX

    Indian Academy of Sciences (India)

    atomic data (namely energy levels, radiative rates, collision strengths, excitation rates, etc.) are required in order to estimate the power loss from the walls of the reactors. Furthermore, Ni XIX, a neon-like ion, is also very useful in lasing plas- mas. Similarly many transitions, particularly within the n = 3 configurations, have.

  7. Rear end collision: Causes and avoidance techniques

    NARCIS (Netherlands)

    Nekovee, Maziar; Bie, Jing; Naja, Rola

    2013-01-01

    Rear-end collision is one of the most frequent accidents occurring on roadways. This chapter investigates how vehicle’s local parameters in a platoon of cars (i.e., perception and information collection, vehicle speed, safe distance, braking parameters) affect the global behavior of the traffic

  8. Collision between two ortho-positronium (Ps)

    Indian Academy of Sciences (India)

    The elastic collision between two ortho-positronium (e.g. S = 1 ) atoms is studied using an {\\it ab-initio} static exchange model (SEM) in the centre of mass (CM) frame by considering the system as a four-body Coulomb problem where all the Coulomb interaction terms in the direct and exchange channels are treated exactly.

  9. Efficient Collision Detection in a Simulated Hydrocyclone

    NARCIS (Netherlands)

    van Eijkeren, D.F.; Krebs, T.; Hoeijmakers, Hendrik Willem Marie

    2015-01-01

    Hydrocyclones enhance oil–water separation efficiency compared to conventional separation methods. An efficient collision detection scheme with Np ln Np dependency on the number of particles is proposed. The scheme is developed to investigate the importance of particle–particle interaction for flow

  10. Multifragmentation and dynamics in heavy ion collisions

    Indian Academy of Sciences (India)

    The investigation of heavy-ion collision mechanisms at intermediate energies, around the nucleon Fermi energy, have set major understanding objectives to reach. For several years, such studies have been focusing on intermediate-mass fragment (IMF) production. More specifically, the probing of nuclear liquid-gas phase ...

  11. Vector boson production in hadron nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Walker, W.D. (Duke Univ., Durham, NC (USA)); Whitmore, J. (Pennsylvania State Univ., University Park, PA (USA). Lab. for Elementary Particle Science); Toothacker, W.S. (Pennsylvania State Univ., Mont Alto (USA)); Hill, J.C.; Neale, W.W. (Cambridge Univ. (UK)); Lucas, P.; Voyvodic, L. (Fermi National Accelerator Lab., Batavia, IL (USA)); Ammar, R.; Gress, J. (Kansas Univ., Lawrence (USA)); Bishop, J.M.; Biswas, N.N.; Cason, N.M.; Mattingly, M.C.K.; Ruchti, R.C.; Shephard, W.D. (Notre Dame Univ., IN (USA))

    1991-01-31

    We report a search for the production of light quark vector bosons in hadron-nucleus collisions at 100 GeV bombarding energy. We find surprisingly few of these resonances produced. The lack of these particles is though to be due to the absorption by the many modestly energetic nucleons and the few anti-nucleons in the final state. (orig.).

  12. Perspective of ultrarelativistic nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Specht, H.J.

    1985-01-01

    The paper concerns the lectures given at the International School of nuclear physics, Erice, 1985, which survey the expectations for the field of ultrarelativistic nucleus-nucleus collisions. The primary motivation for the field, the organization of the lectures, and a description of the NA 34 experiment, are all briefly given. (U.K.)

  13. Collision probabilities and response matrices: an overview

    International Nuclear Information System (INIS)

    Leonard, A.

    1975-01-01

    Generally the term collision probability method is applied to a technique that employs a discretization of the integral form of the transport equation. Relative to the discrete ordinates method, the collision probability technique has the advantages of dealing with fewer number of variables (no angular coordinates) and generally faster convergence. Significant disadvantages include dense coupling of the variables, expensive precalculation of collision probabilities, and difficulties in treating anisotropic scattering. Various techniques for circumventing these weaknesses are described. In the response matrix method the assembly or system to be analyzed is decomposed into a number of simple subunits. The approximate Green's functions or response matrices of each type of subunit are then precalculated. To the desired accuracy, these response matrices yield the outgoing neutron currents to any given input. Thus the unknowns are the interface currents, and the coefficient matrix contains all the response matrices. A wide variety of techniques can and have been used to generate response matrices--diffusion theory, S/sub n/ methods, Monte Carlo, collision probabilities, and even response matrices. Again the precalculations are expensive. On the other hand once a response matrix has been computed, it may be stored and used again. Thus response matrix methods appear to be particularly advantageous for burnup, optimization, and possibly many kinetics problems where the properties of many subunits do not change. (43 references) (U.S.)

  14. Ultrarelativistic heavy ion collisions Theoretical overview

    International Nuclear Information System (INIS)

    Blaizot, Jean-Paul

    2006-01-01

    This is a short review of some theoretical aspects of the physics of ultra-relativistic heavy ion collisions. I review the main properties of the QCD phase diagram and recent developments in the physics of high gluon densities in the hadronic wavefunctions at high energy. Then I comment salient results obtained at RHIC

  15. Quark fragmentation in e+e- collisions

    International Nuclear Information System (INIS)

    Oddone, P.

    1984-12-01

    This brief review of new results in quark and gluon fragmentation observed in e + e - collisions concentrates mostly on PEP results and, within PEP, mostly on TPC results. The new PETRA results have been reported at this conference by M. Davier. It is restricted to results on light quark fragmentation since the results on heavy quark fragmentation have been reported by J. Chapman

  16. Novel energy sharing collisions of multicomponent solitons

    Indian Academy of Sciences (India)

    2015-10-21

    Oct 21, 2015 ... In this paper, we discuss the fascinating energy sharing collisions of multicomponent solitons in certain incoherently coupled and coherently coupled ... Post Graduate and Research Department of Physics, Bishop Heber College, Tiruchirappalli 620 017, India; Department of Physics, Anna University, ...

  17. Particle production in heavy ion collisions

    International Nuclear Information System (INIS)

    Braun-Munzinger, P.; Redlich, K.; Wroclaw Univ.; Stachel, J.

    2003-04-01

    The status of thermal model descriptions of particle production in heavy ion collisions is presented. We discuss the formulation of statistical models with different implementation of the conservation laws and indicate their applicability in heavy ion and elementary particle collisions. We analyze experimental data on hadronic abundances obtained in ultra-relativistic heavy ion collisions, in a very broad energy range starting from RHIC/BNL (√(s) = 200 A GeV), SPS/CERN (√(s) ≅ 20 A GeV) up to AGS/BNL (√(s) ≅ 5 A GeV) and SIS/GSI (√(s) ≅ 2 A GeV) to test equilibration of the fireball created in the collision. We argue that the statistical approach provides a very satisfactory description of experimental data covering this wide energy range. Any deviations of the model predictions from the data are indicated. We discuss the unified description of particle chemical freeze-out and the excitation functions of different particle species. At SPS and RHIC energy the relation of freeze-out parameters with the QCD phase boundary is analyzed. Furthermore, the application of the extended statistical model to quantitative understanding of open and hidden charm hadron yields is considered. (orig.)

  18. Birthday Paradox for Multi-Collisions

    Science.gov (United States)

    Suzuki, Kazuhiro; Tonien, Dongvu; Kurosawa, Kaoru; Toyota, Koji

    In this paper, we study multi-collision probability. For a hash function H:D→R with |R|=n, it has been believed that we can find an s-collision by hashing Q=n(s-1)/s times. We first show that this probability is at most 1/s! for any s, which is very small for large s. (for example, s=n(s-1)/s) Thus the above folklore is wrong for large s. We next show that if s is small, so that we can assume Q-s≈Q, then this probability is at least 1/s!-1/2(s!)2, which is very high for small s (for example, s is a constant). Thus the above folklore is true for small s. Moreover, we show that by hashing (s!)1/s×Q+s-1(≤n) times, an s-collision is found with probability approximately 0.5 for any n and s such that (s!/n)1/s≈0. Note that if s=2, it coincides with the usual birthday paradox. Hence it is a generalization of the birthday paradox to multi-collisions.

  19. The way to collisions, step by step

    CERN Multimedia

    2009-01-01

    While the LHC sectors cool down and reach the cryogenic operating temperature, spirits are warming up as we all eagerly await the first collisions. No reason to hurry, though. Making particles collide involves the complex manoeuvring of thousands of delicate components. The experts will make it happen using a step-by-step approach.

  20. Fan Affinity Laws from a Collision Model

    Science.gov (United States)

    Bhattacharjee, Shayak

    2012-01-01

    The performance of a fan is usually estimated using hydrodynamical considerations. The calculations are long and involved and the results are expressed in terms of three affinity laws. In this paper we use kinetic theory to attack this problem. A hard sphere collision model is used, and subsequently a correction to account for the flow behaviour…

  1. High energy photon-photon collisions

    International Nuclear Information System (INIS)

    Brodsky, S.J.; Zerwas, P.M.

    1994-07-01

    The collisions of high energy photons produced at a electron-positron collider provide a comprehensive laboratory for testing QCD, electroweak interactions and extensions of the standard model. The luminosity and energy of the colliding photons produced by back-scattering laser beams is expected to be comparable to that of the primary e + e - collisions. In this overview, we shall focus on tests of electroweak theory in photon-photon annihilation, particularly γγ → W + W - , γγ → Higgs bosons, and higher-order loop processes, such as γγ → γγ, Zγ and ZZ. Since each photon can be resolved into a W + W minus pair, high energy photon-photon collisions can also provide a remarkably background-free laboratory for studying WW collisions and annihilation. We also review high energy γγ tests of quantum chromodynamics, such as the scaling of the photon structure function, t bar t production, mini-jet processes, and diffractive reactions

  2. Collision of Bose Condensate Dark Matter structures

    International Nuclear Information System (INIS)

    Guzman, F. S.

    2008-01-01

    The status of the scalar field or Bose condensate dark matter model is presented. Results about the solitonic behavior in collision of structures is presented as a possible explanation to the recent-possibly-solitonic behavior in the bullet cluster merger. Some estimates about the possibility to simulate the bullet cluster under the Bose Condensate dark matter model are indicated.

  3. Radio Frequency Electromagnetic Radiation From Streamer Collisions

    Science.gov (United States)

    Luque, Alejandro

    2017-10-01

    We present a full electromagnetic model of streamer propagation where the Maxwell equations are solved self-consistently together with electron transport and reactions including photoionization. We apply this model to the collision of counter-propagating streamers in gaps tens of centimeters wide and with large potential differences of hundreds of kilovolts. Our results show that streamer collisions emit electromagnetic pulses that, at atmospheric pressure, dominate the radio frequency spectrum of an extended corona in the range from about 100 MHz to a few gigahertz. We also investigate the fast penetration, after a collision, of electromagnetic fields into the streamer heads and show that these fields are capable of accelerating electrons up to about 100 keV. By substantiating the link between X-rays and high-frequency radio emissions and by describing a mechanism for the early acceleration of runaway electrons, our results support the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges.

  4. High energy nuclear collisions: Theory overview

    Indian Academy of Sciences (India)

    pp. 235–245. High energy nuclear collisions: Theory overview. R J FRIES. Cyclotron Institute and Department of Physics and Astronomy, Texas A&M University,. 3366 TAMU, College Station TX 77845, USA. Physics Department, RIKEN/BNL Research Center, Brookhaven National Laboratory,. Upton NY 11973-5000, USA.

  5. High energy nuclear collisions: Theory overview

    Indian Academy of Sciences (India)

    We review some basic concepts of relativistic heavy-ion physics and discuss our understanding of some key results from the experimental program at the relativistic heavy-ion collider (RHIC). We focus in particular on the early time dynamics of nuclear collisions, some result from lattice QCD, hard probes and photons.

  6. Novel energy sharing collisions of multicomponent solitons

    Indian Academy of Sciences (India)

    In this paper, we discuss the fascinating energy sharing collisions of multicompo- nent solitons in certain incoherently coupled and coherently coupled nonlinear Schrödinger-type equations arising in the context of nonlinear optics. Keywords. Coupled nonlinear Schrödinger equations; Hirota's bilinearization method; bright.

  7. Radio Frequency Electromagnetic Radiation From Streamer Collisions.

    Science.gov (United States)

    Luque, Alejandro

    2017-10-16

    We present a full electromagnetic model of streamer propagation where the Maxwell equations are solved self-consistently together with electron transport and reactions including photoionization. We apply this model to the collision of counter-propagating streamers in gaps tens of centimeters wide and with large potential differences of hundreds of kilovolts. Our results show that streamer collisions emit electromagnetic pulses that, at atmospheric pressure, dominate the radio frequency spectrum of an extended corona in the range from about 100 MHz to a few gigahertz. We also investigate the fast penetration, after a collision, of electromagnetic fields into the streamer heads and show that these fields are capable of accelerating electrons up to about 100 keV. By substantiating the link between X-rays and high-frequency radio emissions and by describing a mechanism for the early acceleration of runaway electrons, our results support the hypothesis that streamer collisions are essential precursors of high-energy processes in electric discharges.

  8. Novel energy sharing collisions of multicomponent solitons

    Indian Academy of Sciences (India)

    (say S2) experiences an opposite kind of energy switching due to the conservation law. ∫ ∞. −∞ |qj |2dt = constant,j = 1, 2. For the standard elastic collision property ascribed to the scalar solitons to occur here we need the magnitudes of the transition intensities to be unity which is possible for the specific choice (α. (1). 1 /α.

  9. High energy nuclear collisions: Theory overview

    Energy Technology Data Exchange (ETDEWEB)

    Fries, R.J.

    2010-08-01

    We review some basic concepts of relativistic heavy-ion physics and discuss our understanding of some key results from the experimental program at the relativistic heavy-ion collider (RHIC). We focus in particular on the early time dynamics of nuclear collisions, some result from lattice QCD, hard probes and photons.

  10. QCD in hadron-hadron collisions

    International Nuclear Information System (INIS)

    Albrow, M.

    1997-03-01

    Quantum Chromodynamics provides a good description of many aspects of high energy hadron-hadron collisions, and this will be described, along with some aspects that are not yet understood in QCD. Topics include high E T jet production, direct photon, W, Z and heavy flavor production, rapidity gaps and hard diffraction

  11. Embedding initial data for black hole collisions

    OpenAIRE

    Romano, Joseph D.; Price, Richard H.

    1994-01-01

    We discuss isometric embedding diagrams for the visualization of initial data for the problem of the head-on collision of two black holes. The problem of constructing the embedding diagrams is explicitly presented for the best studied initial data, the Misner geometry. We present a partial solution of the embedding diagrams and discuss issues related to completing the solution.

  12. Correlations in hadron-nucleus collisions

    International Nuclear Information System (INIS)

    Wosiek, B.

    1976-09-01

    The correlations between the particles produced in interactions of hadrons with emulsion nuclei were investigated. The data are in qualitative agreement with the models which describe the interactions with nuclei as subsequent collisions of the fast part of excited hadronic matter inside the nucleus. (author)

  13. QCD in hadron-hadron collisions

    Energy Technology Data Exchange (ETDEWEB)

    Albrow, M.

    1997-03-01

    Quantum Chromodynamics provides a good description of many aspects of high energy hadron-hadron collisions, and this will be described, along with some aspects that are not yet understood in QCD. Topics include high E{sub T} jet production, direct photon, W, Z and heavy flavor production, rapidity gaps and hard diffraction.

  14. Electron-Atom Collisions in Gases

    Science.gov (United States)

    Kraftmakher, Yaakov

    2013-01-01

    Electron-atom collisions in gases are an aspect of atomic physics. Three experiments in this field employing a thyratron are described: (i) the Ramsauer-Townsend effect, (ii) the excitation and ionization potentials of xenon and (iii) the ion-electron recombination after interrupting the electric discharge.

  15. Study of heavy ion collisions with TAPS

    NARCIS (Netherlands)

    Löhner, H.

    The photon spectrometer TAPS is a versatile instrument to measure nuclear bremsstrahlung and neutral mesons via their gamma decay. The formation and evolution of compressed nuclear matter is studied in heavy ion collisions at relativistic energies by analyzing the yield and spectral distribution of

  16. An improved evaluation of the seismic/geodetic deformation-rate ratio for the Zagros Fold-and-Thrust collisional belt

    Science.gov (United States)

    Palano, Mimmo; Imprescia, Paola; Agnon, Amotz; Gresta, Stefano

    2018-04-01

    We present an improved picture of the ongoing crustal deformation field for the Zagros Fold-and-Thrust Belt continental collision zone by using an extensive combination of both novel and published GPS observations. The main results define the significant amount of oblique Arabia-Eurasia convergence currently being absorbed within the Zagros: right-lateral shear along the NW trending Main Recent fault in NW Zagros and accommodated between fold-and-thrust structures and NS right-lateral strike-slip faults on Southern Zagros. In addition, taking into account the 1909-2016 instrumental seismic catalogue, we provide a statistical evaluation of the seismic/geodetic deformation-rate ratio for the area. On Northern Zagros and on the Turkish-Iranian Plateau, a moderate to large fraction (˜49 and >60 per cent, respectively) of the crustal deformation occurs seismically. On the Sanandaj-Sirjan zone, the seismic/geodetic deformation-rate ratio suggests that a small to moderate fraction (seismically; locally, the occurrence of large historic earthquakes (M ≥ 6) coupled with the high geodetic deformation, could indicate overdue M ≥ 6 earthquakes. On Southern Zagros, aseismic strain dominates crustal deformation (the ratio ranges in the 15-33 per cent interval). Such aseismic deformation is probably related to the presence of the weak evaporitic Hormuz Formation which allows the occurrence of large aseismic motion on both subhorizontal faults and surfaces of décollement. These results, framed into the seismotectonic framework of the investigated region, confirm that the fold-and-thrust-dominated deformation is driven by buoyancy forces; by contrast, the shear-dominated deformation is primary driven by plate stresses.

  17. Analysis of acoustic resonator with shape deformation using finite ...

    Indian Academy of Sciences (India)

    An acoustic resonator with shape deformation has been analysed using the finite element method. The shape deformation issuch that the volume of the resonator remains constant. The effect of deformation on the resonant frequencies is studied. Deformation splits the degenerate frequencies.

  18. Viscosity of a classical gas: The rare-collision versus the frequent-collision regime.

    Science.gov (United States)

    Magner, A G; Gorenstein, M I; Grygoriev, U V

    2017-05-01

    The shear viscosity η for a dilute classical gas of hard-sphere particles is calculated by solving the Boltzmann kinetic equation in terms of the weakly absorbed plane waves. For the rare-collision regime, the viscosity η as a function of the equilibrium gas parameters-temperature T, particle number density n, particle mass m, and hard-core particle diameter d-is quite different from that of the frequent-collision regime, e.g., from the well-known result of Chapman and Enskog. An important property of the rare-collision regime is the dependence of η on the external ("nonequilibrium") parameter ω, frequency of the sound plane wave, that is absent in the frequent-collision regime at leading order of the corresponding perturbation expansion. A transition from the frequent to the rare-collision regime takes place when the dimensionless parameter nd^{2}(T/m)^{1/2}ω^{-1} goes to zero. The scaled absorption coefficient for sound waves calculated in the rare and frequent-collision regimes is found to be in qualitative agreement with the experimental data.

  19. Modelling of the Internal Mechanics in Ship Collisions

    DEFF Research Database (Denmark)

    Paik, Jeom Kee; Pedersen, Preben Terndrup

    1996-01-01

    A method for analysis of the structural damage due to ship collisions is developed. The method is based on the idealized structural unit method (ISUM). Longitudinal/transverse webs which connect the outer and the inner hulls are modelled by rectangular plate units. The responses are determined......-skin plated structures in collision/grounding situations with the present solutions. As an illustrative example the procedure has been used for analyses of a side collision of a double-hull tanker. Several factors affecting ship collision response, namely the collision speed and the scantlings/ arrangements...

  20. Collisions damage assessment of ships and jack-up rigs

    DEFF Research Database (Denmark)

    Zhang, Shengming; Pedersen, P. Terndrup; Ocakli, Hasan

    2015-01-01

    Ship collision with offshore installations is one of the key concerns in design and assess of platforms performance and safety. This paper presents an analysis on collision energy and structural damage in ship and offshore platform collisions for various collision scenarios. The platform or rig...... is treated as either rigid or flexible and its sensitivity on collision energy and structural damage is studied. An application example where an ice-strengthened supply vessel collides against a jack-up rig is analysed and the crushing resistance of the involved thin-walled structures is evaluated....