WorldWideScience

Sample records for deformed shape predictions

  1. Shape-correlated deformation statistics for respiratory motion prediction in 4D lung

    Science.gov (United States)

    Liu, Xiaoxiao; Oguz, Ipek; Pizer, Stephen M.; Mageras, Gig S.

    2010-02-01

    4D image-guided radiation therapy (IGRT) for free-breathing lungs is challenging due to the complicated respiratory dynamics. Effective modeling of respiratory motion is crucial to account for the motion affects on the dose to tumors. We propose a shape-correlated statistical model on dense image deformations for patient-specic respiratory motion estimation in 4D lung IGRT. Using the shape deformations of the high-contrast lungs as the surrogate, the statistical model trained from the planning CTs can be used to predict the image deformation during delivery verication time, with the assumption that the respiratory motion at both times are similar for the same patient. Dense image deformation fields obtained by diffeomorphic image registrations characterize the respiratory motion within one breathing cycle. A point-based particle optimization algorithm is used to obtain the shape models of lungs with group-wise surface correspondences. Canonical correlation analysis (CCA) is adopted in training to maximize the linear correlation between the shape variations of the lungs and the corresponding dense image deformations. Both intra- and inter-session CT studies are carried out on a small group of lung cancer patients and evaluated in terms of the tumor location accuracies. The results suggest potential applications using the proposed method.

  2. Computational studies of a strain-based deformation shape prediction algorithm for control and monitoring applications

    Science.gov (United States)

    Derkevorkian, Armen; Alvarenga, Jessica; Masri, Sami F.; Boussalis, Helen; Richards, W. Lance

    2012-04-01

    A modal approach is investigated for real-time deformation shape prediction of lightweight unmanned flying aerospace structures, for the purposes of Structural Health Monitoring (SHM) and condition assessment. The deformation prediction algorithm depends on the modal properties of the structure and uses high-resolution fiber-optic sensors to obtain strain data from a representative aerospace structure (e.g., flying wing) in order to predict the associated real-time deflection shape. The method is based on the use of fiber-optic sensors such as optical Fiber Bragg Gratings (FBGs) which are known for their accuracy and light weight. In this study, the modal method is examined through computational models involving Finite-Element Analysis (FEA). Furthermore, sensitivity analyses are performed to investigate the effects of several external factors such as sensor locations and noise pollution on the performance of the algorithm. This work analyzes the numerous complications and difficulties that might potentially arise from combining the state-of-the-art advancements in sensing technology, deformation shape prediction, and structural health monitoring, to achieve a robust way of monitoring ultra lightweight flying wings or next-generation commercial airplanes.

  3. A Regression Model for Predicting Shape Deformation after Breast Conserving Surgery

    Directory of Open Access Journals (Sweden)

    Hooshiar Zolfagharnasab

    2018-01-01

    Full Text Available Breast cancer treatments can have a negative impact on breast aesthetics, in case when surgery is intended to intersect tumor. For many years mastectomy was the only surgical option, but more recently breast conserving surgery (BCS has been promoted as a liable alternative to treat cancer while preserving most part of the breast. However, there is still a significant number of BCS intervened patients who are unpleasant with the result of the treatment, which leads to self-image issues and emotional overloads. Surgeons recognize the value of a tool to predict the breast shape after BCS to facilitate surgeon/patient communication and allow more educated decisions; however, no such tool is available that is suited for clinical usage. These tools could serve as a way of visually sensing the aesthetic consequences of the treatment. In this research, it is intended to propose a methodology for predict the deformation after BCS by using machine learning techniques. Nonetheless, there is no appropriate dataset containing breast data before and after surgery in order to train a learning model. Therefore, an in-house semi-synthetic dataset is proposed to fulfill the requirement of this research. Using the proposed dataset, several learning methodologies were investigated, and promising outcomes are obtained.

  4. A Regression Model for Predicting Shape Deformation after Breast Conserving Surgery

    Science.gov (United States)

    Zolfagharnasab, Hooshiar; Bessa, Sílvia; Oliveira, Sara P.; Faria, Pedro; Teixeira, João F.; Cardoso, Jaime S.

    2018-01-01

    Breast cancer treatments can have a negative impact on breast aesthetics, in case when surgery is intended to intersect tumor. For many years mastectomy was the only surgical option, but more recently breast conserving surgery (BCS) has been promoted as a liable alternative to treat cancer while preserving most part of the breast. However, there is still a significant number of BCS intervened patients who are unpleasant with the result of the treatment, which leads to self-image issues and emotional overloads. Surgeons recognize the value of a tool to predict the breast shape after BCS to facilitate surgeon/patient communication and allow more educated decisions; however, no such tool is available that is suited for clinical usage. These tools could serve as a way of visually sensing the aesthetic consequences of the treatment. In this research, it is intended to propose a methodology for predict the deformation after BCS by using machine learning techniques. Nonetheless, there is no appropriate dataset containing breast data before and after surgery in order to train a learning model. Therefore, an in-house semi-synthetic dataset is proposed to fulfill the requirement of this research. Using the proposed dataset, several learning methodologies were investigated, and promising outcomes are obtained. PMID:29315279

  5. Extension of Ko Straight-Beam Displacement Theory to Deformed Shape Predictions of Slender Curved Structures

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran

    2011-01-01

    The Ko displacement theory originally developed for shape predictions of straight beams is extended to shape predictions of curved beams. The surface strains needed for shape predictions were analytically generated from finite-element nodal stress outputs. With the aid of finite-element displacement outputs, mathematical functional forms for curvature-effect correction terms are established and incorporated into straight-beam deflection equations for shape predictions of both cantilever and two-point supported curved beams. The newly established deflection equations for cantilever curved beams could provide quite accurate shape predictions for different cantilever curved beams, including the quarter-circle cantilever beam. Furthermore, the newly formulated deflection equations for two-point supported curved beams could provide accurate shape predictions for a range of two-point supported curved beams, including the full-circular ring. Accuracy of the newly developed curved-beam deflection equations is validated through shape prediction analysis of curved beams embedded in the windward shallow spherical shell of a generic crew exploration vehicle. A single-point collocation method for optimization of shape predictions is discussed in detail

  6. Shape Deformations in Atomic Nuclei

    OpenAIRE

    Hamamoto, Ikuko; Mottelson, Ben R.

    2011-01-01

    The ground states of some nuclei are described by densities and mean fields that are spherical, while others are deformed. The existence of non-spherical shape in nuclei represents a spontaneous symmetry breaking.

  7. Deformation Based Curved Shape Representation.

    Science.gov (United States)

    Demisse, Girum G; Aouada, Djamila; Ottersten, Bjorn

    2017-06-02

    In this paper, we introduce a deformation based representation space for curved shapes in Rn. Given an ordered set of points sampled from a curved shape, the proposed method represents the set as an element of a finite dimensional matrix Lie group. Variation due to scale and location are filtered in a preprocessing stage, while shapes that vary only in rotation are identified by an equivalence relationship. The use of a finite dimensional matrix Lie group leads to a similarity metric with an explicit geodesic solution. Subsequently, we discuss some of the properties of the metric and its relationship with a deformation by least action. Furthermore, invariance to reparametrization or estimation of point correspondence between shapes is formulated as an estimation of sampling function. Thereafter, two possible approaches are presented to solve the point correspondence estimation problem. Finally, we propose an adaptation of k-means clustering for shape analysis in the proposed representation space. Experimental results show that the proposed representation is robust to uninformative cues, e.g. local shape perturbation and displacement. In comparison to state of the art methods, it achieves a high precision on the Swedish and the Flavia leaf datasets and a comparable result on MPEG-7, Kimia99 and Kimia216 datasets.

  8. Vesta: its shape and deformed equatorial belt predicted by the wave planetology

    Science.gov (United States)

    Kochemasov, G. G.

    2012-09-01

    At EPSC2011 we stated: "Expected detailed images of Vesta sent by DAWN spacecraft certainly will show a prominent tectonic (must be also compositional) dichotomy of this large asteroid. The assuredness is based on some mainly the HST photos and the wave planetology fundamental conception: Theorem 1 - " Ce lestial bodies are dichotomous""[1]. Now a convexo-concave shape of Vesta is well known but the huge deep depression of the south hemisphere is assigned to two random large impacts almost at one place [2, 3]. This supposition has a very small probability, besides the largest asteroid Ceres also has a large depression at one side (the Piazzi basin). The theorem 1 of the wave planetology explains that all celestial bodies (not only small ones) are subjected to a warping action of the fundamental wave1 uplifting one side and subsiding (pressing in) the opposite one. This is a manifestation of the orbital energy acting in any body moving in keplerian noncircular orbit with changing acceleration (a). Arising inertia-gravity force F= (a1 - a2) x m is very important because of large planetary masses (m) and large cosmic speeds. Increase and decrease of accelerations were much larger in the beginning of planetary formation when orbits were more elliptical. Thus, pressing in of the subsiding hemisphere-segment is so strong that it often squeezes out some mantle material appearing as elevation-mound (compare to the Hawaii in the Pacific basin and look at Hyperion with a large basin and a mound at its center, Fig, 1, 2). Vesta's prominent subsiding equatorial belt with graben systems [4] (Fig. 4, 5) is a manifestation of another general planetary rule : " Rotating celestial body tends to even angular momenta of tropics and extra-tropics by regulating mass distribution and distance to the rotation axis " [5-7]. Often observed a sensible difference in appearance and structure between tropical and extra-tropical zones of various heavenly bodies including rocky and gas planets

  9. Deformation Prediction Using Linear Polynomial Functions ...

    African Journals Online (AJOL)

    By Deformation, we mean change of shape of any structure from its original shape and by monitoring over time using Geodetic means, the change in shape, size and the overall structural dynamics behaviors of structure can be detected. Prediction is therefor based on the epochs measurement obtained during monitoring, ...

  10. Deformable segmentation via sparse shape representation.

    Science.gov (United States)

    Zhang, Shaoting; Zhan, Yiqiang; Dewan, Maneesh; Huang, Junzhou; Metaxas, Dimitris N; Zhou, Xiang Sean

    2011-01-01

    Appearance and shape are two key elements exploited in medical image segmentation. However, in some medical image analysis tasks, appearance cues are weak/misleading due to disease/artifacts and often lead to erroneous segmentation. In this paper, a novel deformable model is proposed for robust segmentation in the presence of weak/misleading appearance cues. Owing to the less trustable appearance information, this method focuses on the effective shape modeling with two contributions. First, a shape composition method is designed to incorporate shape prior on-the-fly. Based on two sparsity observations, this method is robust to false appearance information and adaptive to statistically insignificant shape modes. Second, shape priors are modeled and used in a hierarchical fashion. More specifically, by using affinity propagation method, our deformable surface is divided into multiple partitions, on which local shape models are built independently. This scheme facilitates a more compact shape prior modeling and hence a more robust and efficient segmentation. Our deformable model is applied on two very diverse segmentation problems, liver segmentation in PET-CT images and rodent brain segmentation in MR images. Compared to state-of-art methods, our method achieves better performance in both studies.

  11. Analysis of acoustic resonator with shape deformation using finite ...

    Indian Academy of Sciences (India)

    An acoustic resonator with shape deformation has been analysed using the finite element method. The shape deformation issuch that the volume of the resonator remains constant. The effect of deformation on the resonant frequencies is studied. Deformation splits the degenerate frequencies.

  12. Robust brain ROI segmentation by deformation regression and deformable shape model.

    Science.gov (United States)

    Wu, Zhengwang; Guo, Yanrong; Park, Sang Hyun; Gao, Yaozong; Dong, Pei; Lee, Seong-Whan; Shen, Dinggang

    2018-01-01

    We propose a robust and efficient learning-based deformable model for segmenting regions of interest (ROIs) from structural MR brain images. Different from the conventional deformable-model-based methods that deform a shape model locally around the initialization location, we learn an image-based regressor to guide the deformable model to fit for the target ROI. Specifically, given any voxel in a new image, the image-based regressor can predict the displacement vector from this voxel towards the boundary of target ROI, which can be used to guide the deformable segmentation. By predicting the displacement vector maps for the whole image, our deformable model is able to use multiple non-boundary predictions to jointly determine and iteratively converge the initial shape model to the target ROI boundary, which is more robust to the local prediction error and initialization. In addition, by introducing the prior shape model, our segmentation avoids the isolated segmentations as often occurred in the previous multi-atlas-based methods. In order to learn an image-based regressor for displacement vector prediction, we adopt the following novel strategies in the learning procedure: (1) a joint classification and regression random forest is proposed to learn an image-based regressor together with an ROI classifier in a multi-task manner; (2) high-level context features are extracted from intermediate (estimated) displacement vector and classification maps to enforce the relationship between predicted displacement vectors at neighboring voxels. To validate our method, we compare it with the state-of-the-art multi-atlas-based methods and other learning-based methods on three public brain MR datasets. The results consistently show that our method is better in terms of both segmentation accuracy and computational efficiency. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Active Beam Shaping System and Method Using Sequential Deformable Mirrors

    Science.gov (United States)

    Norman, Colin A. (Inventor); Pueyo, Laurent A. (Inventor)

    2015-01-01

    An active optical beam shaping system includes a first deformable mirror arranged to at least partially intercept an entrance beam of light and to provide a first reflected beam of light, a second deformable mirror arranged to at least partially intercept the first reflected beam of light from the first deformable mirror and to provide a second reflected beam of light, and a signal processing and control system configured to communicate with the first and second deformable mirrors. The first deformable mirror, the second deformable mirror and the signal processing and control system together provide a large amplitude light modulation range to provide an actively shaped optical beam.

  14. Prediction of deformity in spinal tuberculosis

    NARCIS (Netherlands)

    Jutte, Paul; Wuite, Sander; The, Bertram; van Altena, Richard; Veldhuizen, Albert

    Tuberculosis of the spine may cause kyphosis, which may in turn cause late paraplegia, respiratory compromise, and unsightly deformity. Surgical correction therefore may be considered for large or progressive deformities. We retrospectively analyzed clinical and radiographic parameters to predict

  15. Fundamental geodesic deformations in spaces of treelike shapes

    DEFF Research Database (Denmark)

    Feragen, Aasa; Lauze, Francois Bernard; Nielsen, Mads

    2010-01-01

    is a quotient of a normed vector space with a metric inherited from the vector space norm. We give examples of geodesic paths in tree-space corresponding to fundamental deformations of small trees, and discuss how these deformations are key building blocks for understanding deformations between larger trees.......This paper presents a new geometric framework for analysis of planar treelike shapes for applications such as shape matching, recognition and morphology, using the geometry of the space of treelike shapes. Mathematically, the shape space is given the structure of a stratified set which...

  16. Measurement of shape and deformation of insect wing

    Science.gov (United States)

    Yin, Duo; Wei, Zhen; Wang, Zeyu; Zhou, Changqiu

    2018-01-01

    To measure the shape and deformation of an insect wing, a scanning setup adopting laser triangulation and image matching was developed. Only one industry camera with two light sources was employed to scan the transparent insect wings. 3D shape and point to point full field deformation of the wings could be obtained even when the wingspan is less than 3 mm. The venation and corrugation could be significantly identified from the results. The deformation of the wing under pin loading could be seen clearly from the results as well. Calibration shows that the shape and deformation measurement accuracies are no lower than 0.01 mm. Laser triangulation and image matching were combined dexterously to adapt wings' complex shape, size, and transparency. It is suitable for insect flight research or flapping wing micro-air vehicle development.

  17. Recent Progress on Modeling Slip Deformation in Shape Memory Alloys

    Science.gov (United States)

    Sehitoglu, H.; Alkan, S.

    2018-03-01

    This paper presents an overview of slip deformation in shape memory alloys. The performance of shape memory alloys depends on their slip resistance often quantified through the Critical Resolved Shear Stress (CRSS) or the flow stress. We highlight previous studies that identify the active slip systems and then proceed to show how non-Schmid effects can be dominant in shape memory slip behavior. The work is mostly derived from our recent studies while we highlight key earlier works on slip deformation. We finally discuss the implications of understanding the role of slip on curtailing the transformation strains and also the temperature range over which superelasticity prevails.

  18. Deformation Prediction Using Linear Polynomial Functions ...

    African Journals Online (AJOL)

    The predictions are compared with measured data reported in literature and the results are discussed. The computational aspects of implementation of the model are also discussed briefly. Keywords: Linear Polynomial, Structural Deformation, Prediction Journal of the Nigerian Association of Mathematical Physics, Volume ...

  19. Ground state shape and crossing of near spherical and deformed bands in 182Hg

    International Nuclear Information System (INIS)

    Ma, W.C.; Ramayya, A.V.; Hamilton, J.H.; Robinson, S.J.; Barclay, M.E.; Zhao, K.; Cole, J.D.; Zganjar, E.F.; Spejewski, E.H.

    1983-01-01

    The energy levels of 182 Hg have been identified for the first time through comparison of in-beam studies of the reactions 156 154 Gd( 32 S,4n) 184 182 Hg. Levels up to 12 + in 182 Hg were established from γ-γ coincidence and singles measurement. The data establish that the ground state shape is near spherical, and that the ground band is crossed by a well deformed band at 4 + . In contrast to IBA model predictions that the deformed band will rise in energy in 182 Hg compared to 184 Hg, the energies of the deformed levels in 182 Hg continue to drop. 7 references

  20. Parametric Deformation of Discrete Geometry for Aerodynamic Shape Design

    Science.gov (United States)

    Anderson, George R.; Aftosmis, Michael J.; Nemec, Marian

    2012-01-01

    We present a versatile discrete geometry manipulation platform for aerospace vehicle shape optimization. The platform is based on the geometry kernel of an open-source modeling tool called Blender and offers access to four parametric deformation techniques: lattice, cage-based, skeletal, and direct manipulation. Custom deformation methods are implemented as plugins, and the kernel is controlled through a scripting interface. Surface sensitivities are provided to support gradient-based optimization. The platform architecture allows the use of geometry pipelines, where multiple modelers are used in sequence, enabling manipulation difficult or impossible to achieve with a constructive modeler or deformer alone. We implement an intuitive custom deformation method in which a set of surface points serve as the design variables and user-specified constraints are intrinsically satisfied. We test our geometry platform on several design examples using an aerodynamic design framework based on Cartesian grids. We examine inverse airfoil design and shape matching and perform lift-constrained drag minimization on an airfoil with thickness constraints. A transport wing-fuselage integration problem demonstrates the approach in 3D. In a final example, our platform is pipelined with a constructive modeler to parabolically sweep a wingtip while applying a 1-G loading deformation across the wingspan. This work is an important first step towards the larger goal of leveraging the investment of the graphics industry to improve the state-of-the-art in aerospace geometry tools.

  1. Contextual predictability shapes signal autonomy.

    Science.gov (United States)

    Winters, James; Kirby, Simon; Smith, Kenny

    2018-03-10

    Aligning on a shared system of communication requires senders and receivers reach a balance between simplicity, where there is a pressure for compressed representations, and informativeness, where there is a pressure to be communicatively functional. We investigate the extent to which these two pressures are governed by contextual predictability: the amount of contextual information that a sender can estimate, and therefore exploit, in conveying their intended meaning. In particular, we test the claim that contextual predictability is causally related to signal autonomy: the degree to which a signal can be interpreted in isolation, without recourse to contextual information. Using an asymmetric communication game, where senders and receivers are assigned fixed roles, we manipulate two aspects of the referential context: (i) whether or not a sender shares access to the immediate contextual information used by the receiver in interpreting their utterance; (ii) the extent to which the relevant solution in the immediate referential context is generalisable to the aggregate set of contexts. Our results demonstrate that contextual predictability shapes the degree of signal autonomy: when the context is highly predictable (i.e., the sender has access to the context in which their utterances will be interpreted, and the semantic dimension which discriminates between meanings in context is consistent across communicative episodes), languages develop which rely heavily on the context to reduce uncertainty about the intended meaning. When the context is less predictable, senders favour systems composed of autonomous signals, where all potentially relevant semantic dimensions are explicitly encoded. Taken together, these results suggest that our pragmatic faculty, and how it integrates information from the context in reducing uncertainty, plays a central role in shaping language structure. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Role of shape and quadrupole deformation of parents in the cluster emission of rare earth nuclei

    International Nuclear Information System (INIS)

    Girija, K.K.; Joseph, Antony

    2014-01-01

    The nuclear structure effects on α decay and cluster emission are investigated in the case of even–even rare earth nuclei 150–160 Dy, 150–160 Er, 150–160 Yb, 158,162,166–176 Hf, 160,164–178 W and 162,166,170–180 Os. The role of shape and deformation of parent nuclei in the decay rate is studied by taking the Coulomb and proximity potentials as the interacting barrier for the post scission configuration. The quadrupole deformation of parent nuclei causes a slight change in the half-life of α emissions, but it affects the rate of heavy cluster emissions significantly. Prolate deformation of parents enhances cluster emission, while an oblate deformation slows down the decay. Shape and deformation of parent nuclei causes change in the branching ratio also. A prolate deformation increases the branching ratio, whereas an oblate deformation reduces it. Highest branching ratio is predicted at N ∼ 90. (author)

  3. Analysis of stress and deformation fields of shape complex beams

    Directory of Open Access Journals (Sweden)

    Pástor Miroslav

    2018-01-01

    Full Text Available In this paper is investigated the analysis of stress and deformation fields of shape complex beams. The shape complex beams are made from load-bearing sheet (trapezoidal sheet circumferentially connected with strips of sheet metal, these beams are a substitute for more complex and heavier beams. The numerical analysis with static load are performed for these beams. The effect of three different types of connections between load-bearing sheet and strips of sheet metal is investigated. The first type of connection is represented by the trapezoidal sheet perfectly welded to the strips of sheet metal, the second type of connection is represented by the trapezoidal sheet welded to the strips of sheet metal only on the base sides of the trapezoidal sheet. The third one is represented by point welds. The stress and deformation fields for all types of the connections are compared and the suitable variant is chosen.

  4. Simulation of the plastic deformation of shape-memory alloys

    International Nuclear Information System (INIS)

    Likhachev, V.A.; Puschtschajenko, O.V.

    1997-01-01

    On the basis of the structural analytical theory of durability a mathematical model is developed which describes mechanical properties of shape memory metals. The influence of dislocation glide on martensitic nonelasticity is investigated. Results of numerical modeling show, that within the framework of the model such shape memory phenomena, as pseudo-elasticity in martensite and austenite, deformation cycles (also in a incomplete temperature interval) or the two-way effect can be well described. The two-way effect was simulated assuming inheritence of the effective fields strain in martensite and austenite. (orig.)

  5. Deformation and shape coexistence in medium mass nuclei

    International Nuclear Information System (INIS)

    Meyer, R.A.

    1985-01-01

    Emerging evidence for deformed structures in medium mass nuclei is reviewed. Included in this review are both nuclei that are ground state symmetric rotors and vibrational nuclei where there are deformed structures at excited energies (shape coexistence). For the first time, Nilsson configurations in odd-odd nuclei within the region of deformation are identified. Shape coexistence in nuclei that abut the medium mass region of deformation is also examined. Recent establishment of a four-particle, four-hole intruder band in the double subshell closure nucleus 96 Zr 56 is presented and its relation to the nuclear vibron model is discussed. Special attention is given to the N=59 nuclei where new data have led to the reanalysis of 97 Sr and 99 Zr and the presence of the [404 9/2] hole intruder state as isomers in these nuclei. The low energy levels of the N=59 nuclei from Z=38 to 50 are compared with recent quadrupole-phonon model calculations that can describe their transition from near-rotational to single closed shell nuclei. The odd-odd N=59 nuclei are discussed in the context of coexisting shape isomers based on the (p[303 5/2]n[404 9/2])2 - configuration. Ongoing in-beam (t,p conversion-electron) multiparameter measurements that have led to the determination of monopole matrix elements for even-even 42 Mo nuclei are presented, and these are compared with initial estimates using IBA-2 calculations that allow mixing of normal and cross subshell excitations. Lastly, evidence for the neutron-proton 3 S 1 force's influence on the level structure of these nuclei is discussed within the context of recent quadrupole-phonon model calculations. (Auth.)

  6. Analysis of intelligent hinged shell structures: deployable deformation and shape memory effect

    International Nuclear Information System (INIS)

    Shi, Guang-Hui; Yang, Qing-Sheng; He, X Q

    2013-01-01

    Shape memory polymers (SMPs) are a class of intelligent materials with the ability to recover their initial shape from a temporarily fixable state when subjected to external stimuli. In this work, the thermo-mechanical behavior of a deployable SMP-based hinged structure is modeled by the finite element method using a 3D constitutive model with shape memory effect. The influences of hinge structure parameters on the nonlinear loading process are investigated. The total shape memory of the processes the hinged structure goes through, including loading at high temperature, decreasing temperature with load carrying, unloading at low temperature and recovering the initial shape with increasing temperature, are illustrated. Numerical results show that the present constitutive theory and the finite element method can effectively predict the complicated thermo-mechanical deformation behavior and shape memory effect of SMP-based hinged shell structures. (paper)

  7. Modeling Permanent Deformations of Superelastic and Shape Memory Materials.

    Science.gov (United States)

    Urbano, Marco Fabrizio; Auricchio, Ferdinando

    2015-06-11

    In this paper we propose a modification of the polycrystalline shape memory alloy constitutive model originally proposed by Souza. By introducing a transformation strain energy with two different hardening coefficients, we are able to take into account the effect of the martensitic transformation of unfavorably oriented grains occurring after the main plateau. By choosing a proper second hardening coefficient, it is possible to reproduce the correct stress strain behavior of the material after the plateau without the need of introducing a much smaller Young modulus for martensite. The proposed modification is introduced in the model comprising permanent deformation effects. Model results for uniaxial stress tests are compared to experimental results showing good agreement.

  8. Deformed shapes in odd-odd nuclei near Z = 82

    International Nuclear Information System (INIS)

    Mukherjee, G.; Pai, H.; Bhattacharya, S.; Bhattacharya, C.; Bhattacharyya, S.; Bhattacharjee, T.; Basu, S.K.; Kundu, S.; Ghosh, T.K.; Bannerjee, K.; Rana, T.K.; Meena, J.K.; Chanda, S.; Bhowmik, R.K.; Singh, R.P.; Muralithar, S.; Garg, R.

    2009-01-01

    The neutron deficient nuclei in the vicinity of the Z = 82 region are known for interesting structural phenomena arising due to different shape driving effects of the proton and neutron orbitals near the Fermi surface. It has been found that the heavier bismuth and thallium nuclei with A > 200 are spherical and the lighter nuclei with A < 194 have rotational bands indicating deformation. We report here our recent experimental investigation of γ-ray spectroscopy of odd-odd Bi and Tl nuclei in mass region A = 190

  9. Deformation of the UI-14at%Nb shape memory alloy: experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Field, Robert D [Los Alamos National Laboratory; Tome, Carlos N [Los Alamos National Laboratory; Mc Cabe, Rodney J [Los Alamos National Laboratory; Clarke, Amy J [Los Alamos National Laboratory; Brown, Donald W [Los Alamos National Laboratory; Tupper, Catherine N [Los Alamos National Laboratory

    2010-12-22

    U-14at%Nb is a shape memory effect (SME) alloy that undergoes deformation by the motion of complex twins and twin related lath boundaries up to the limit of SME deformation ({approx}7%). All of the twins present in the as-transformed martensite and active during SME deformation are derived from those of the orthorhombic alpha-U phase, modified for the monoclinic distortion of the alpha martensite phase. In the SME regime a simple Bain strain model qualitatively predicts variant selection, texture development in polycrystalline samples, and stress-strain behavior as a function of parent phase orientation in single crystal micropillars. In the post-SME regime, unrecoverable deformation occurs by a combination of slip and twinning, with the first few percent of strain in tension apparently governed by a twin species specifically associated with the monoclinic distortion (i.e. not present in the orthorhombic alpha-U phase). The situation in compression is more complicated, with a combination of slip and twinning systems believed responsible for deformation. A review of the Bain strain model for SME deformation will be presented in conjunction with experimental data. In addition, results from modeling of post-SME behavior using the Visco-Plastic Self-Consistent (VPSC) model will be compared to experimental texture measurements.

  10. Modeling Permanent Deformations of Superelastic and Shape Memory Materials

    Directory of Open Access Journals (Sweden)

    Marco Fabrizio Urbano

    2015-06-01

    Full Text Available In this paper we propose a modification of the polycrystalline shape memory alloy constitutive model originally proposed by Souza. By introducing a transformation strain energy with two different hardening coefficients, we are able to take into account the effect of the martensitic transformation of unfavorably oriented grains occurring after the main plateau. By choosing a proper second hardening coefficient, it is possible to reproduce the correct stress strain behavior of the material after the plateau without the need of introducing a much smaller Young modulus for martensite. The proposed modification is introduced in the model comprising permanent deformation effects. Model results for uniaxial stress tests are compared to experimental results showing good agreement.

  11. Deformation and Failure Mechanisms of Shape Memory Alloys

    Energy Technology Data Exchange (ETDEWEB)

    Daly, Samantha Hayes [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-04-15

    The goal of this research was to understand the fundamental mechanics that drive the deformation and failure of shape memory alloys (SMAs). SMAs are difficult materials to characterize because of the complex phase transformations that give rise to their unique properties, including shape memory and superelasticity. These phase transformations occur across multiple length scales (one example being the martensite-austenite twinning that underlies macroscopic strain localization) and result in a large hysteresis. In order to optimize the use of this hysteretic behavior in energy storage and damping applications, we must first have a quantitative understanding of this transformation behavior. Prior results on shape memory alloys have been largely qualitative (i.e., mapping phase transformations through cracked oxide coatings or surface morphology). The PI developed and utilized new approaches to provide a quantitative, full-field characterization of phase transformation, conducting a comprehensive suite of experiments across multiple length scales and tying these results to theoretical and computational analysis. The research funded by this award utilized new combinations of scanning electron microscopy, diffraction, digital image correlation, and custom testing equipment and procedures to study phase transformation processes at a wide range of length scales, with a focus at small length scales with spatial resolution on the order of 1 nanometer. These experiments probe the basic connections between length scales during phase transformation. In addition to the insights gained on the fundamental mechanisms driving transformations in shape memory alloys, the unique experimental methodologies developed under this award are applicable to a wide range of solid-to-solid phase transformations and other strain localization mechanisms.

  12. Analysis of the finite deformation response of shape memory polymers: I. Thermomechanical characterization

    International Nuclear Information System (INIS)

    Volk, Brent L; Lagoudas, Dimitris C; Chen, Yi-Chao; Whitley, Karen S

    2010-01-01

    This study presents the analysis of the finite deformation response of a shape memory polymer (SMP). This two-part paper addresses the thermomechanical characterization of SMPs, the derivation of material parameters for a finite deformation phenomenological model, the numerical implementation of such a model, and the predictions from the model with comparisons to experimental data. Part I of this work presents the thermomechanical characterization of the material behavior of a shape memory polymer. In this experimental investigation, the vision image correlation system, a visual–photographic apparatus, was used to measure displacements in the gauge area. A series of tensile tests, which included nominal values of the extension of 10%, 25%, 50%, and 100%, were performed on SMP specimens. The effects on the free recovery behavior of increasing the value of the applied deformation and temperature rate were considered. The stress–extension relationship was observed to be nonlinear for increasing values of the extension, and the shape recovery was observed to occur at higher temperatures upon increasing the temperature rate. The experimental results, aided by the advanced experimental apparatus, present components of the material behavior which are critical for the development and calibration of models to describe the response of SMPs

  13. Predictions of total deformations in Jebba main dam by finite ...

    African Journals Online (AJOL)

    This paper examined the deformations of the Jebba Main Dam, Jebba Nigeria using the finite element method. The study also evaluated the predicted deformations and compared them with the actual deformations in the dam to identify possible causes of the observed longitudinal crack at the dam crest. The Jebba dam is a ...

  14. A Novel Anisotropic Hydrogel with Integrated Self-Deformation and Controllable Shape Memory Effect.

    Science.gov (United States)

    Le, Xiao-Xia; Zhang, Yu-Chong; Lu, Wei; Wang, Li; Zheng, Jing; Ali, Israt; Zhang, Jia-Wei; Huang, You-Ju; Serpe, Michael J; Yang, Xi-Tao; Fan, Xin-Dong; Chen, Tao

    2018-03-13

    Although shape memory polymers have been highlighted widely and developed rapidly, it is still a challenging task to realize complex temporary shapes automatically in practical applications. Herein, a novel shape memory hydrogel with the ability of self-deformation is presented. Through constructing an anisotropic poly(acrylic acid)-polyacrylamide (PAAc-PAAm) structure, the obtained hydrogel exhibits stable self-deformation behavior in response to pH stimulus, and the shapes that formed automatically can be fixed by the coordination between carboxylic groups and Fe 3+ ; therefore, self-deformation and shape memory behaviors are integrated in one system. Moreover, the magnitude of auto-deformation and shape memory could be adjusted with the concentration of corresponding ions, leading to programmable shape memory and shape recovery processes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Influence of hexadecapole deformations of the nuclear shape of subbarrier fusion reactions

    International Nuclear Information System (INIS)

    Fernandez Niello, J.

    1989-01-01

    A systematic study of the contribution of hexadecapole deformations to the enhancement of subbarrier fusion cross reactions is carried out. The analysis is based on calculations that cover the full range of values of hexadecapole deformations found in actual nuclear systems. The interplay of this shape degree of freedom with the presence of prolate quadrupole deformations is also contemplated. (Author) [es

  16. The new method of prediction on mining subsidence and deformation

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Y.; Zhang, Y.; Song, Z.; Sroka, A.; Tian, M. [Shandong University of Science and Technology, Ti' an (China)

    2001-06-01

    A new probability density function of mining overlying strata and subsidence is put forward that has a general statistical significance based on the ideal stochastic medium displacement model. It establishes a new system of prediction on horizontal mining subsidence and deformation, which gives a new method for prediction of mining subsidence and deformation. 7 refs., 5 figs., 1 tab.

  17. Prediction of dementia by hippocampal shape analysis

    DEFF Research Database (Denmark)

    Achterberg, Hakim C.; van der Lijn, Fedde; den Heijer, Tom

    2010-01-01

    This work investigates the possibility of predicting future onset of dementia in subjects who are cognitively normal, using hippocampal shape and volume information extracted from MRI scans. A group of 47 subjects who were non-demented normal at the time of the MRI acquisition, but were diagnosed...... with dementia during a 9 year follow-up period, was selected from a large population based cohort study. 47 Age and gender matched subjects who stayed cognitively intact were selected from the same cohort study as a control group. The hippocampi were automatically segmented and all segmentations were inspected...... and, if necessary, manually corrected by a trained observer. From this data a statistical model of hippocampal shape was constructed, using an entropy-based particle system. This shape model provided the input for a Support Vector Machine classifier to predict dementia. Cross validation experiments...

  18. A study of the influence of coarse aggregate shape characteristics on permanent deformation of asphalt mixes

    CSIR Research Space (South Africa)

    Mabuse, MM

    2013-07-01

    Full Text Available on the permanent deformation. A modern three-dimensional (3-D) laser scanning device available at the Council for Scientific and Industrial Research (CSIR) in South Africa was used to directly obtained shape properties of the aggregates. Permanent deformation tests...

  19. Slope Deformation Prediction Based on Support Vector Machine

    Directory of Open Access Journals (Sweden)

    Lei JIA

    2013-07-01

    Full Text Available This paper principally studies the prediction of slope deformation based on Support Vector Machine (SVM. In the prediction process,explore how to reconstruct the phase space. The geological body’s displacement data obtained from chaotic time series are used as SVM’s training samples. Slope displacement caused by multivariable coupling is predicted by means of single variable. Results show that this model is of high fitting accuracy and generalization, and provides reference for deformation prediction in slope engineering.

  20. Parameter studies on the effect of pulse shape on the dynamic plastic deformation of a hexagon

    International Nuclear Information System (INIS)

    Youngdahl, C.K.

    1973-10-01

    Results of a parameter study on the dynamic plastic response of a hexagonal subassembly duct subjected to an internal pressure pulse of arbitrary shape are presented. Plastic distortion of the cross section and large-deformation geometric effects that result in redistribution of the internal forces between bending and membrane stresses in the hexagon wall are included in the analytical model. Correlation procedures are established for relating permanent plastic deformation to simple properties of the pressure pulse, for both the small- and large-deformation ranges. Characteristic response times are determined, and the dynamic load factor for large-deformation plastic response is computed

  1. Crystallographic Fabrics, Grain Boundary Microstructure and Shape Preferred Orientation of Deformed Banded Iron Formations and their Significance for Deformation Interpretation

    Science.gov (United States)

    Ávila, Carlos Fernando; Graça, Leonardo; Lagoeiro, Leonardo; Ferreira, Filippe

    2016-04-01

    The characterization of grain boundaries and shapes along with crystallographic preferred orientations (CPOs) are a key aspect of investigations of rock microstructures for their correlation with deformation mechanisms. Rapid developments have occurred in the studying rock microstructures due to recent improvements in analytical techniques such as Electron Backscatter Diffraction (EBSD). EBSD technique allows quick automated microtextural characteritzation. The deformed banded iron formations (BIFs) occurring in the Quadrilátero Ferrífero (QF) province in Brazil have been studied extensively with EBSD. All studies have focused mainly in CPOs. The general agreement is that dislocation creep was the dominant process of deformation, for the strong c-axis fabric of hematite crystals. This idea is substantiated by viscoplastic self-consistent models for deformation of hematite. However there are limitations to analyzing natural CPOs alone, or those generated by deformation models. The strong c-axis fabric could be taken as equally powerful an evidence for other known deformation mechanisms. Some grain boundary types in BIFs of the QF are irregular and comprise equant grains in granoblastic texture (Figure 1a). CPOs for this kind are strong and consistent with a predominance of dislocation creep. Others are very regular and long parallel to basal planes of hematites forming large elongated crystals (lepidoblastic texture, Figure 1b). Such crystals are called specularite, and their formation has been previously attributed to dislocation creep. This is erroneous because of the high strains which would be required. Their shape must be due to anisotropic grain growth. Other types lie between the above end-textures. Both types of grain shape microstructures have the same core deformation mechanism. Describing their genetic differences is crucial, since specularite owe its shape to anisotropic grain growth. It is not possible yet to confirm that dislocation creep was the

  2. Transport-related mylonitic ductile deformation and shape change of alluvial gold, southern New Zealand

    Science.gov (United States)

    Kerr, Gemma; Falconer, Donna; Reith, Frank; Craw, Dave

    2017-11-01

    Gold is a malleable metal, and detrital gold particles deform via internal distortion. The shapes of gold particles are commonly used to estimate transport distances from sources, but the mechanisms of internal gold deformation leading to shape changes are poorly understood because of subsequent recrystallisation of the gold in situ in placer deposits, which creates a rim zone around the particles, with undeformed > 10 μm grains. This paper describes samples from southern New Zealand in which grain size reduction (to submicrometer scale) and mylonitic textures have resulted from internal ductile deformation. These textures have been preserved without subsequent recrystallisation after deposition in late Pleistocene-Holocene alluvial fan placers. These mylonitic textures were imposed by transport-related deformation on recrystallised rims that were derived from previous stages of fluvial transportation and deposition. This latest stage of fluvial transport and deformation has produced numerous elongated gold smears that are typically 100 μm long and 10-20 μm wide. These smears are the principal agents for transport-induced changes in particle shape in the studied placers. Focused ion beam (FIB) sectioning through these deformed zones combined with scanning electron microscopic (SEM) imaging show that the interior of the gold particles has undergone grain size reduction (to 500 nm) and extensive folding with development of a ductile deformation fabric that resembles textures typical of mylonites in silicate rocks. Relict pods of the pre-existing recrystallised rim zone are floating in this ductile deformation zone and these pods are irregular in shape and discontinuous in three dimensions. Micrometer scale biologically-mediated deposition from groundwater of overgrowth gold on particle surfaces occurs at all stages of placer formation, and some of this overgrowth gold has been incorporated into deformation zones. These examples provide a rare view into the nature

  3. Actuating and memorizing bilayer hydrogels for a self-deformed shape memory function.

    Science.gov (United States)

    Wang, Li; Jian, Yukun; Le, Xiaoxia; Lu, Wei; Ma, Chunxin; Zhang, Jiawei; Huang, Youju; Huang, Chih-Feng; Chen, Tao

    2018-01-31

    A general strategy for fabricating a double layer self-deformed shape memory hydrogel which includes a thermo-responsive actuating layer and a pH-responsive memorizing layer is presented. Compared with traditional shape memory polymer systems, the temporary shape of the hydrogel could be generated by a thermo-responsive actuating layer upon the trigger of heat without the need for an external force, which could be further memorized by the pH-responsive memorizing layer.

  4. Deformation and shape transitions in hot rotating neutron deficient Te isotopes

    International Nuclear Information System (INIS)

    Aggarwal, Mamta; Mazumdar, I.

    2009-01-01

    Evolution of the nuclear shapes and deformations under the influence of temperature and rotation is investigated in Te isotopes with neutron number ranging from the proton drip line to the stability valley. Spin dependent critical temperatures for the shape transitions in Te nuclei are computed. Shape transitions from prolate at low temperature and spin to oblate via triaxiality are seen with increasing neutron number and spin.

  5. X-ray beam-shaping via deformable mirrors: Analytical computation of the required mirror profile

    Energy Technology Data Exchange (ETDEWEB)

    Spiga, Daniele, E-mail: daniele.spiga@brera.inaf.it [INAF/Osservatorio Astronomico di Brera, Via E. Bianchi 46, I-23807, Merate (Italy); Raimondi, Lorenzo; Svetina, Cristian [Sincrotrone Trieste ScpA, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste (Italy); Zangrando, Marco [Sincrotrone Trieste ScpA, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste (Italy); IOM-CNR, S.S. 14 km 163.5 in Area Science Park, 34149 Trieste (Italy)

    2013-05-11

    X-ray mirrors with high focusing performances are in use in both mirror modules for X-ray telescopes and in synchrotron and FEL (Free Electron Laser) beamlines. A degradation of the focus sharpness arises in general from geometrical deformations and surface roughness, the former usually described by geometrical optics and the latter by physical optics. In general, technological developments are aimed at a very tight focusing, which requires the mirror profile to comply with the nominal shape as much as possible and to keep the roughness at a negligible level. However, a deliberate deformation of the mirror can be made to endow the focus with a desired size and distribution, via piezo actuators as done at the EIS-TIMEX beamline of FERMI@Elettra. The resulting profile can be characterized with a Long Trace Profilometer and correlated with the expected optical quality via a wavefront propagation code. However, if the roughness contribution can be neglected, the computation can be performed via a ray-tracing routine, and, under opportune assumptions, the focal spot profile (the Point Spread Function, PSF) can even be predicted analytically. The advantage of this approach is that the analytical relation can be reversed; i.e., from the desired PSF the required mirror profile can be computed easily, thereby avoiding the use of complex and time-consuming numerical codes. The method can also be suited in the case of spatially inhomogeneous beam intensities, as commonly experienced at synchrotrons and FELs. In this work we expose the analytical method and the application to the beam shaping problem.

  6. X-ray beam-shaping via deformable mirrors: Analytical computation of the required mirror profile

    International Nuclear Information System (INIS)

    Spiga, Daniele; Raimondi, Lorenzo; Svetina, Cristian; Zangrando, Marco

    2013-01-01

    X-ray mirrors with high focusing performances are in use in both mirror modules for X-ray telescopes and in synchrotron and FEL (Free Electron Laser) beamlines. A degradation of the focus sharpness arises in general from geometrical deformations and surface roughness, the former usually described by geometrical optics and the latter by physical optics. In general, technological developments are aimed at a very tight focusing, which requires the mirror profile to comply with the nominal shape as much as possible and to keep the roughness at a negligible level. However, a deliberate deformation of the mirror can be made to endow the focus with a desired size and distribution, via piezo actuators as done at the EIS-TIMEX beamline of FERMI@Elettra. The resulting profile can be characterized with a Long Trace Profilometer and correlated with the expected optical quality via a wavefront propagation code. However, if the roughness contribution can be neglected, the computation can be performed via a ray-tracing routine, and, under opportune assumptions, the focal spot profile (the Point Spread Function, PSF) can even be predicted analytically. The advantage of this approach is that the analytical relation can be reversed; i.e., from the desired PSF the required mirror profile can be computed easily, thereby avoiding the use of complex and time-consuming numerical codes. The method can also be suited in the case of spatially inhomogeneous beam intensities, as commonly experienced at synchrotrons and FELs. In this work we expose the analytical method and the application to the beam shaping problem

  7. Natural Frequencies and Mode Shapes of Statically Deformed Inclined Risers

    KAUST Repository

    Alfosail, Feras

    2016-10-15

    We investigate numerically the linear vibrations of inclined risers using the Galerkin approach. The riser is modeled as an Euler-Bernoulli beam accounting for the nonlinear mid-plane stretching and self-weight. After solving for the initial deflection of the riser due to self-weight, we use a Galerkin expansion employing 15 axially loaded beam mode shapes to solve the eigenvalue problem of the riser around the static equilibrium configuration. This yields the riser natural frequencies and corresponding exact mode shapes for various values of inclination angles and tension. The obtained results are validated against a boundary-layer analytical solution and are found to be in good agreement. This constitutes a basis to study the nonlinear forced vibrations of inclined risers.

  8. A deformable finite element model of the breast for predicting mechanical deformations under external perturbations.

    Science.gov (United States)

    Azar, F S; Metaxas, D N; Schnall, M D

    2001-10-01

    Live guidance during needle breast procedures is not currently possible with high-field-strength (1.5-T), superconducting magnetic resonance (MR) imaging. The physician can calculate only the approximate location and extent of a tumor in the compressed patient breast before inserting the needle, and the tissue specimen removed at biopsy may not actually belong to the lesion of interest. The authors developed a virtual reality system for guiding breast biopsy with MR imaging, which uses a deformable finite element model of the breast. The geometry of the model is constructed from MR data, and its mechanical properties are modeled by using a nonlinear material model. This method allows the breast to be imaged with or without mild compression before the procedure. The breast is then compressed, and the finite element model is used to predict the position of the tumor during the procedure. Three breasts of patients with cancer were imaged with and without compression. Deformable models of these breasts were built, virtually compressed, and used to predict tumor positions in the real compressed breasts. The models were also used to register MR data sets of the same patient breast imaged with different amounts of compression. The model is shown to predict reasonably well the displacement by plate compression of breast lesions 5 mm or larger. A deformable model of the breast based on finite elements with nonlinear material properties can help in modeling and predicting breast deformation. The entire procedure lasts less than half an hour, making it clinically practical.

  9. Thermomechanical treatment and deformation behavior of iron based shape memory alloys

    International Nuclear Information System (INIS)

    Shakoor, R.A.; Khalid, F.A.; Draper, P.H.

    2007-01-01

    The thermomechanical treatment (training) and deformation behavior of iron based shape memory alloys have been studied. The thermomechanical treatment results in improvement of shape memory effect. This improvement in shape memory effect can be attributed to the formation of lamellar structure of (lambda)/(epsilon) and to an increase in the volume fraction of epsilon martensite (epsilon). It is also found that excessive training may result in the nucleation of bcc martensite (alpha) along with epsilon martensite (epsilon) which degrades the shape memory effect. Also the shape memory effect decreases with the increase in amount of strain, which presumably can be regarded as the effect of increasing tendency of deformation to occur through slip and formation of (alpha) which reduces the reversibility of (epsilon) into (lambda). (author)

  10. 3D Segmentation of Rodent Brain Structures Using Hierarchical Shape Priors and Deformable Models

    Science.gov (United States)

    Zhang, Shaoting; Huang, Junzhou; Uzunbas, Mustafa; Shen, Tian; Delis, Foteini; Huang, Xiaolei; Volkow, Nora; Thanos, Panayotis; Metaxas, Dimitris N.

    2016-01-01

    In this paper, we propose a method to segment multiple rodent brain structures simultaneously. This method combines deformable models and hierarchical shape priors within one framework. The deformation module employs both gradient and appearance information to generate image forces to deform the shape. The shape prior module uses Principal Component Analysis to hierarchically model the multiple structures at both global and local levels. At the global level, the statistics of relative positions among different structures are modeled. At the local level, the shape statistics within each structure is learned from training samples. Our segmentation method adaptively employs both priors to constrain the intermediate deformation result. This prior constraint improves the robustness of the model and benefits the segmentation accuracy. Another merit of our prior module is that the size of the training data can be small, because the shape prior module models each structure individually and combines them using global statistics. This scheme can preserve shape details better than directly applying PCA on all structures. We use this method to segment rodent brain structures, such as the cerebellum, the left and right striatum, and the left and right hippocampus. The experiments show that our method works effectively and this hierarchical prior improves the segmentation performance. PMID:22003750

  11. Shape and deformation measurements of 3D objects using volume speckle field and phase retrieval

    DEFF Research Database (Denmark)

    Anand, A; Chhaniwal, VK; Almoro, Percival

    2009-01-01

    Shape and deformation measurement of diffusely reflecting 3D objects are very important in many application areas, including quality control, nondestructive testing, and design. When rough objects are exposed to coherent beams, the scattered light produces speckle fields. A method to measure the ......-sized deformation induced on a metal sheet was obtained upon subtraction of the phase, corresponding to unloaded and loaded states. Results from computer simulations confirm the experiments. (C) 2009 Optical Society of America....

  12. Medial-based deformable models in nonconvex shape-spaces for medical image segmentation.

    Science.gov (United States)

    McIntosh, Chris; Hamarneh, Ghassan

    2012-01-01

    We explore the application of genetic algorithms (GA) to deformable models through the proposition of a novel method for medical image segmentation that combines GA with nonconvex, localized, medial-based shape statistics. We replace the more typical gradient descent optimizer used in deformable models with GA, and the convex, implicit, global shape statistics with nonconvex, explicit, localized ones. Specifically, we propose GA to reduce typical deformable model weaknesses pertaining to model initialization, pose estimation and local minima, through the simultaneous evolution of a large number of models. Furthermore, we constrain the evolution, and thus reduce the size of the search-space, by using statistically-based deformable models whose deformations are intuitive (stretch, bulge, bend) and are driven in terms of localized principal modes of variation, instead of modes of variation across the entire shape that often fail to capture localized shape changes. Although GA are not guaranteed to achieve the global optima, our method compares favorably to the prevalent optimization techniques, convex/nonconvex gradient-based optimizers and to globally optimal graph-theoretic combinatorial optimization techniques, when applied to the task of corpus callosum segmentation in 50 mid-sagittal brain magnetic resonance images.

  13. Influence of cold working on deformation behavior and shape memory effect of Ti-Ni-Nb

    International Nuclear Information System (INIS)

    Okita, K.; Semba, H.; Okabe, N.; Sakuma, T.; Mihara, Y.

    2005-01-01

    In this study, the influence of cold working on the deformation behavior and the transformation characteristics was investigated on the Ti-Ni-Nb shape memory alloy (SMA). Both the tensile test and the shape recovery test were performed for the wire specimens of 1mm in the diameter with some different rates of cold working. The shape recovery tests were performed for the wire specimens of different cold working rates until the various levels of maximum applied strain, and the reverse-transformation characteristics on the process of heating after unloading were studied. It is clarified that the higher cold-working rate improves the shape memory properties of the alloy. (orig.)

  14. Deformation of Brillouin gain spectrum shape caused by strain varying linearly with respect to time

    Science.gov (United States)

    Naruse, Hiroshi; Komatsu, Ayako; Tateda, Mitsuhiro

    2015-09-01

    The shape of the Brillouin gain spectrum (BGS) that is produced in an optical fiber undergoing strain varying linearly with respect to time, which is a typical example of temporally non-uniform strain, is theoretically derived through an analysis similar to that by which the BGS under spatially non-uniform strain would be derived. The BGS shape that is theoretically derived agrees well with the shape experimentally observed. The characteristics of the BGS deformation and strain measurement error under the temporally linear strain are discussed based on their similarity to the BGS shape derived under spatially linear strain.

  15. Simultaneous shape and deformation measurements in a blood vessel model by two wavelength interferometry

    Science.gov (United States)

    Andrés, Nieves; Pinto, Cristina; Lobera, Julia; Palero, Virginia; Arroyo, M. Pilar

    2017-06-01

    Holographic techniques have been used to measure the shape and the radial deformation of a blood vessel model and a real sheep aorta. Measurements are obtained from several holograms recorded for different object states. For each object state, two holograms with two different wavelengths are multiplexed in the same digital recording. Thus both holograms are simultaneously recorded but the information from each of them is separately obtained. The shape analysis gives a wrapped phase map whose fringes are related to a synthetic wavelength. After a filtering and unwrapping process, the 3D shape can be obtained. The shape data for each line are fitted to a circumference in order to determine the local vessel radius and center. The deformation analysis also results in a wrapped phase map, but the fringes are related to the laser wavelength used in the corresponding hologram. After the filtering and unwrapping process, a 2D map of the deformation in an out-of-plane direction is reconstructed. The radial deformation is then calculated by using the shape information.

  16. Influence of mechanically-induced dilatation on the shape memory behavior of amorphous polymers at large deformation

    Science.gov (United States)

    Hanzon, Drew W.; Lu, Haibao; Yakacki, Christopher M.; Yu, Kai

    2018-01-01

    In this study, we explore the influence of mechanically-induced dilatation on the thermomechanical and shape memory behavior of amorphous shape memory polymers (SMPs) at large deformation. The uniaxial tension, glass transition, stress relaxation and free recovery behaviors are examined with different strain levels (up to 340% engineering strain). A multi-branched constitutive model that incorporates dilatational effects on the polymer relaxation time is established and applied to assist in discussions and understand the nonlinear viscoelastic behaviors of SMPs. It is shown that the volumetric dilatation results in an SMP network with lower viscosity, faster relaxation, and lower Tg. The influence of the dilatational effect on the thermomechanical behaviors is significant when the polymers are subject to large deformation or in a high viscosity state. The dilation also increases the free recovery rate of SMP at a given recovery temperature. Even though the tested SMPs are far beyond their linear viscoelastic region when a large programming strain is applied, the free recovery behavior still follows the time-temperature superposition (TTSP) if the dilatational effect is considered during the transformation of time scales; however, if the programming strain is different, TTSP fails in predicting the recovery behavior of SMPs because the network has different entropy state and driving force during shape recovery. Since most soft active polymers are subject to large deformation in practice, this study provides a theoretical basis to better understand their nonlinear viscoelastic behaviors, and optimize their performance in engineering applications.

  17. Effect of static shape deformation on aerodynamics and aerothermodynamics of hypersonic inflatable aerodynamic decelerator

    Science.gov (United States)

    Guo, Jinghui; Lin, Guiping; Bu, Xueqin; Fu, Shiming; Chao, Yanmeng

    2017-07-01

    The inflatable aerodynamic decelerator (IAD), which allows heavier and larger payloads and offers flexibility in landing site selection at higher altitudes, possesses potential superiority in next generation space transport system. However, due to the flexibilities of material and structure assembly, IAD inevitably experiences surface deformation during atmospheric entry, which in turn alters the flowfield around the vehicle and leads to the variations of aerodynamics and aerothermodynamics. In the current study, the effect of the static shape deformation on the hypersonic aerodynamics and aerothermodynamics of a stacked tori Hypersonic Inflatable Aerodynamic Decelerator (HIAD) is demonstrated and analyzed in detail by solving compressible Navier-Stokes equations with Menter's shear stress transport (SST) turbulence model. The deformed shape is obtained by structural modeling in the presence of maximum aerodynamic pressure during entry. The numerical results show that the undulating shape deformation makes significant difference to flow structure. In particular, the more curved outboard forebody surface results in local flow separations and reattachments in valleys, which consequently yields remarkable fluctuations of surface conditions with pressure rising in valleys yet dropping on crests while shear stress and heat flux falling in valleys yet rising on crests. Accordingly, compared with the initial (undeformed) shape, the corresponding differences of surface conditions get more striking outboard, with maximum augmentations of 379 pa, 2224 pa, and 19.0 W/cm2, i.e., 9.8%, 305.9%, and 101.6% for the pressure, shear stress and heat flux respectively. Moreover, it is found that, with the increase of angle of attack, the aerodynamic characters and surface heating vary and the aeroheating disparities are evident between the deformed and initial shape. For the deformable HIAD model investigated in this study, the more intense surface conditions and changed flight

  18. Fuzzy model for predicting the number of deformed wheels

    Directory of Open Access Journals (Sweden)

    Ž. Đorđević

    2015-10-01

    Full Text Available Deformation of the wheels damage cars and rails and affect on vehicle stability and safety. Repair and replacement cause high costs and lack of wagons. Planning of maintenance of wagons can not be done without estimates of the number of wheels that will be replaced due to wear and deformation in a given period of time. There are many influencing factors, the most important are: weather conditions, quality of materials, operating conditions, and distance between the two replacements. The fuzzy logic model uses the collected data as input variables to predict the output variable - number of deformed wheels for a certain type of vehicle in the defined period at a particular section of the railway.

  19. CPM : A Deformable Model for Shape Recovery and Segmentation Based on Charged Particles

    NARCIS (Netherlands)

    Jalba, Andrei C.; Wilkinson, Michael H.F.; Roerdink, Jos B.T.M.

    2004-01-01

    A novel, physically motivated deformable model for shape recovery and segmentation is presented. The model, referred to as the charged-particle model (CPM), is inspired by classical electrodynamics and is based on a simulation of charged particles moving in an electrostatic field. The charges are

  20. A deformed shape monitoring model for building structures based on a 2D laser scanner.

    Science.gov (United States)

    Choi, Se Woon; Kim, Bub Ryur; Lee, Hong Min; Kim, Yousok; Park, Hyo Seon

    2013-05-21

    High-rise buildings subjected to lateral loads such as wind and earthquake loads must be checked not to exceed the limits on the maximum lateral displacement or the maximum inter-story drift ratios. In this paper, a sensing model for deformed shapes of a building structure in motion is presented. The deformed shape sensing model based on a 2D scanner consists of five modules: (1) module for acquiring coordinate information of a point in a building; (2) module for coordinate transformation and data arrangement for generation of time history of the point; (3) module for smoothing by adjacent averaging technique; (4) module for generation of the displacement history for each story and deformed shape of a building, and (5) module for evaluation of the serviceability of a building. The feasibility of the sensing model based on a 2D laser scanner is tested through free vibration tests of a three-story steel frame structure with a relatively high slenderness ratio of 5.0. Free vibration responses measured from both laser displacement sensors and a 2D laser scanner are compared. In the experimentation, the deformed shapes were obtained from three different methods: the model based on the 2D laser scanner, the direct measurement based on laser displacement sensors, and the numerical method using acceleration data and the displacements from GPS. As a result, it is confirmed that the deformed shape measurement model based on a 2D laser scanner can be a promising alternative for high-rise buildings where installation of laser displacement sensors is impossible.

  1. Effect of Nb content on deformation behavior and shape memory properties of Ti–Nb alloys

    International Nuclear Information System (INIS)

    Tobe, H.; Kim, H.Y.; Inamura, T.; Hosoda, H.; Nam, T.H.; Miyazaki, S.

    2013-01-01

    Highlights: ► Reorientation of martensite variants occurred by the deformation of the {1 1 1} type I and 〈2 1 1〉 type II twins. ► Magnitude of twinning shear in Ti–20Nb is larger than that in Ti–23Nb. ► Ti–20Nb exhibited a higher stress for the reorientation of martensite variants when compared with Ti–23Nb. -- Abstract: Deformation behavior and shape memory properties of Ti–(20, 23) at.% Nb alloys in a single α″ martensite state were investigated. The Ti–20Nb alloy exhibited a higher stress for the reorientation of martensite variants when compared with the Ti–23Nb alloy. The recovery strain due to the shape memory effect in the Ti–20Nb alloy was smaller than that in the Ti–23Nb alloy. Transmission electron microscope (TEM) observation revealed that the reorientation of martensite variants occurred by the deformation of {1 1 1} type I and 〈2 1 1〉 type II twins. The Nb content dependence of the deformation behavior and shape memory properties was discussed considering the magnitude of twinning shear of the twins

  2. Fracture controlled feldspar shape fabrics in deformed quartzo-feldspathic rocks

    Science.gov (United States)

    Andrews, J. R.

    The behaviour of feldspar in the brittle-ductile transition region has often been discussed in models dominated by mechanisms of extension fracturing. In this example, a small Caledonian granitic pluton from NW Ireland, feldspar shape changes are primarily accomplished by small displacements upon numerous shear fractures. These fractures developed as Riedel and anti-Riedel shears as the granite was synkinematically deformed in a regional shear zone. The deformation took place under greenschist facies conditions at strain rates estimated between 10 -13 and 10 -14 s -1.

  3. Intrinsic excitations in deformed nuclei: characteristic predictions of the IBA

    International Nuclear Information System (INIS)

    Casten, R.F.

    1982-01-01

    Deformed nuclei represent perhaps the largest and best studied class of nuclear level schemes. The Interacting Boson Approximation (IBA) model is devised so as to provide a general framework for the description of low lying collective states in nuclei spanning vibrational, rotational (i.e., deformed) and axially asymmetric types as well as the transitional species intermediate between these limiting cases. The juxtaposition of these two statements makes it all the more surprising that until recently there had been no thorough test of the model in such nuclei. Partly, the explanation for this lies in the type of data required for an adequate test. Since the IBA predicts a broad range of collective states it requires a correspondingly thorough empirical test. Moreover, in deformed nuclei, though the characteristic predictions that distinguish the IBA from the traditional, familiar collective model of harmonic β and γ vibrations are important, their clearest manifestation occurs in very weak, hard-to-detect low energy transitions between excited vibrational bands (in particular between β and γ bands), that had not heretofore been systematically observed. The present brief summary will begin with a review of the properties of the (n,γ) reaction that render it a useful empirical tool for such studies, and follow this with a description of the results of the 168 Er study and the application of the IBA model to the resultant level scheme. The discussion will then be generalized to other deformed nuclei and to the inherent systematic predictions that must characterize the IBA for such nuclei. Many of these ideas will be related to the role of finite boson number in the IBA

  4. New design strategy for reversible plasticity shape memory polymers with deformable glassy aggregates.

    Science.gov (United States)

    Lin, Tengfei; Tang, Zhenghai; Guo, Baochun

    2014-12-10

    Reversible plasticity shape memory (RPSM) is a new concept in the study of shape memory performance behavior and describes a phenomenon in which shape memory polymers (SMPs) can undergo a large plastic deformation at room temperature and subsequently recover their original shape upon heating. To date, RPSM behavior has been demonstrated in only a few polymers. In the present study, we implement a new design strategy, in which deformable glassy hindered phenol (AO-80) aggregates are incorporated into an amorphous network of epoxidized natural rubber (ENR) cured with zinc diacrylate (ZDA), in order to achieve RPSM properties. We propose that AO-80 continuously tunes the glass transition temperature (Tg) and improves the chain mobility of the SMP, providing traction and anchoring the ENR chains by intermolecular hydrogen bonding interactions. The RPSM behavior of the amorphous SMPs is characterized, and the results demonstrate good fixity at large deformations (up to 300%) and excellent recovery upon heating. Large energy storage capacities at Td in these RPSM materials are demonstrated compared with those achieved at elevated temperature in traditional SMPs. Interestingly, the further revealed self-healing properties of these materials are closely related to their RPSM behavior.

  5. DSP: a protein shape string and its profile prediction server.

    Science.gov (United States)

    Sun, Jiangming; Tang, Shengnan; Xiong, Wenwei; Cong, Peisheng; Li, Tonghua

    2012-07-01

    Many studies have demonstrated that shape string is an extremely important structure representation, since it is more complete than the classical secondary structure. The shape string provides detailed information also in the regions denoted random coil. But few services are provided for systematic analysis of protein shape string. To fill this gap, we have developed an accurate shape string predictor based on two innovative technologies: a knowledge-driven sequence alignment and a sequence shape string profile method. The performance on blind test data demonstrates that the proposed method can be used for accurate prediction of protein shape string. The DSP server provides both predicted shape string and sequence shape string profile for each query sequence. Using this information, the users can compare protein structure or display protein evolution in shape string space. The DSP server is available at both http://cheminfo.tongji.edu.cn/dsp/ and its main mirror http://chemcenter.tongji.edu.cn/dsp/.

  6. Prediction of microstructure, residual stress, and deformation in laser powder bed fusion process

    Science.gov (United States)

    Yang, Y. P.; Jamshidinia, M.; Boulware, P.; Kelly, S. M.

    2017-12-01

    Laser powder bed fusion (L-PBF) process has been investigated significantly to build production parts with a complex shape. Modeling tools, which can be used in a part level, are essential to allow engineers to fine tune the shape design and process parameters for additive manufacturing. This study focuses on developing modeling methods to predict microstructure, hardness, residual stress, and deformation in large L-PBF built parts. A transient sequentially coupled thermal and metallurgical analysis method was developed to predict microstructure and hardness on L-PBF built high-strength, low-alloy steel parts. A moving heat-source model was used in this analysis to accurately predict the temperature history. A kinetics based model which was developed to predict microstructure in the heat-affected zone of a welded joint was extended to predict the microstructure and hardness in an L-PBF build by inputting the predicted temperature history. The tempering effect resulting from the following built layers on the current-layer microstructural phases were modeled, which is the key to predict the final hardness correctly. It was also found that the top layers of a build part have higher hardness because of the lack of the tempering effect. A sequentially coupled thermal and mechanical analysis method was developed to predict residual stress and deformation for an L-PBF build part. It was found that a line-heating model is not suitable for analyzing a large L-PBF built part. The layer heating method is a potential method for analyzing a large L-PBF built part. The experiment was conducted to validate the model predictions.

  7. Folding and shear deformation in quartzites, inferred from crystallographic preferred orientation and shape fabrics

    Science.gov (United States)

    Stünitz, Holger

    Folding and simple shear deformation frequently occur together on all scales. The kinematic information from crystallographic preferred orientation (CPO) and microstructural information from shape fabrics are used to investigate the relationships of simple shear and folding in small-scale folds. Three fold samples were analysed: sample 1 with the fold axis perpendicular; sample 2 oblique; and sample 3 essentially parallel to the shear direction. All folds have formed by buckling in a simple shear deformation regime. The principal kinematic directions for each sample lie in a single plane normal to the fold axial plane and at variable angles to the fold axis. The CPOs allow a distinction to be identified between coaxial and simple shear deformation components in different parts of each fold. The shear senses determined by CPOs and shape fabrics indicate that the shear deformation and the buckling of the layers occurred approximately simultaneously in all samples. CPO analysis of the flexural-slip components of the folding suggests that the fold axes have not rotated substantially towards the extension direction since their initiation. The variable orientations of the fold axes are explained by variable original orientations of the anisotropy with respect to the shear direction.

  8. Shape of 44Ar: Onset of deformation in neutron-rich nuclei near 48Ca

    International Nuclear Information System (INIS)

    Zielinska, M.; Goergen, A.; Clement, E.; Korten, W.; Dossat, C.; Ljungvall, J.; Obertelli, A.; Theisen, Ch.; Delaroche, J.-P.; Girod, M.; Buerger, A.; Catford, W.; Iwanicki, J.; Napiorkowski, P. J.; Srebrny, J.; Wrzosek, K.; Libert, J.; PiePtak, D.; Rodriguez-Guzman, R.; Sletten, G.

    2009-01-01

    The development of deformation and shape coexistence in the vicinity of doubly magic 48 Ca, related to the weakening of the N=28 shell closure, was addressed in a low-energy Coulomb excitation experiment using a radioactive 44 Ar beam from the SPIRAL facility at GANIL. The 2 1 + and 2 2 + states in 44 Ar were excited on 208 Pb and 109 Ag targets at two different beam energies. B(E2) values between all observed states and the spectroscopic quadrupole moment of the 2 1 + state were extracted from the differential Coulomb excitation cross sections, indicating a prolate shape of the 44 Ar nucleus and giving evidence of an onset of deformation already two protons and two neutrons away from doubly magic 48 Ca. New Hartree-Fock-Bogoliubov based configuration mixing calculations have been performed with the Gogny D1S interaction for 44 Ar and neighboring nuclei using two different approaches: the angular momentum projected generator coordinate method considering axial quadrupole deformations and a five-dimensional approach including the triaxial degree of freedom. The experimental values and new calculations are furthermore compared to shell-model calculations and to relativistic mean-field calculations. The new results give insight into the weakening of the N=28 shell closure and the development of deformation in this neutron-rich region of the nuclear chart.

  9. Nonlinear tension-bending deformation of a shape memory alloy rod

    International Nuclear Information System (INIS)

    Shang, Zejin; Wang, Zhongmin

    2012-01-01

    Based on the measured shape memory alloy (SMA) stress–strain curve and the nonlinear large deformation theory of extensible beams (or rods), the first-order nonlinear governing equations of a SMA cantilever straight rod are established. They consist of a boundary-value problem of ordinary differential equations with a strong nonlinearity, in which seven unknown functions are contained and the arc length of the deformed axis is considered as one of the basic unknown functions. The shooting method combining with the Newton–Raphson iteration method is applied to solve the equations numerically. For a SMA cantilever rod subjected to a transverse uniformly distributed force, the deformation characteristics curves, the maximum strain and the maximum stress distribution curves along the longitudinal direction of rod, and the relation curves between deformation characteristic parameters and transverse uniformly force under different slenderness ratios are obtained. The effects of material nonlinearity, geometrical nonlinearity and slenderness ratio on the tension-bending deformation of the SMA cantilever rod are investigated. The numerical simulation results are in good agreement with the experimental data from the literature, verifying the soundness of the entire numerical simulation scheme. (paper)

  10. Right Atrial Deformation in Predicting Outcomes in Pediatric Pulmonary Hypertension.

    Science.gov (United States)

    Jone, Pei-Ni; Schäfer, Michal; Li, Ling; Craft, Mary; Ivy, D Dunbar; Kutty, Shelby

    2017-12-01

    Elevated right atrial (RA) pressure is a risk factor for mortality, and RA size is prognostic of adverse outcomes in pulmonary hypertension (PH). There is limited data on phasic RA function (reservoir, conduit, and pump) in pediatric PH. We sought to evaluate (1) the RA function in pediatric PH patients compared with controls, (2) compare the RA deformation indices with Doppler indices of diastolic dysfunction, functional capacity, biomarkers, invasive hemodynamics, and right ventricular functional indices, and (3) evaluate the potential of RA deformation indices to predict clinical outcomes. Sixty-six PH patients (mean age 7.9±4.7 years) were compared with 36 controls (7.7±4.4 years). RA and right ventricular deformation indices were obtained using 2-dimensional speckle tracking (2DCPA; TomTec, Germany). RA strain, strain rates, emptying fraction, and right ventricular longitudinal strain were measured. RA function was impaired in PH patients versus controls ( P right ventricular diastolic dysfunction. RA reservoir function, pump function, the rate of atrial filling, and atrial minimum volume emerged as outcome predictors in pediatric PH. © 2017 American Heart Association, Inc.

  11. Fusion analysis of first episode depression: Where brain shape deformations meet local composition of tissue

    Directory of Open Access Journals (Sweden)

    Mahdi Ramezani

    2015-01-01

    Full Text Available Computational neuroanatomical techniques that are used to evaluate the structural correlates of disorders in the brain typically measure regional differences in gray matter or white matter, or measure regional differences in the deformation fields required to warp individual datasets to a standard space. Our aim in this study was to combine measurements of regional tissue composition and of deformations in order to characterize a particular brain disorder (here, major depressive disorder. We use structural Magnetic Resonance Imaging (MRI data from young adults in a first episode of depression, and from an age- and sex-matched group of non-depressed individuals, and create population gray matter (GM and white matter (WM tissue average templates using DARTEL groupwise registration. We obtained GM and WM tissue maps in the template space, along with the deformation fields required to co-register the DARTEL template and the GM and WM maps in the population. These three features, reflecting tissue composition and shape of the brain, were used within a joint independent-components analysis (jICA to extract spatially independent joint sources and their corresponding modulation profiles. Coefficients of the modulation profiles were used to capture differences between depressed and non-depressed groups. The combination of hippocampal shape deformations and local composition of tissue (but neither shape nor local composition of tissue alone was shown to discriminate reliably between individuals in a first episode of depression and healthy controls, suggesting that brain structural differences between depressed and non-depressed individuals do not simply reflect chronicity of the disorder but are there from the very outset.

  12. Deciphering the shape and deformation of secondary structures through local conformation analysis

    Directory of Open Access Journals (Sweden)

    Camproux Anne-Claude

    2011-02-01

    Full Text Available Abstract Background Protein deformation has been extensively analysed through global methods based on RMSD, torsion angles and Principal Components Analysis calculations. Here we use a local approach, able to distinguish among the different backbone conformations within loops, α-helices and β-strands, to address the question of secondary structures' shape variation within proteins and deformation at interface upon complexation. Results Using a structural alphabet, we translated the 3 D structures of large sets of protein-protein complexes into sequences of structural letters. The shape of the secondary structures can be assessed by the structural letters that modeled them in the structural sequences. The distribution analysis of the structural letters in the three protein compartments (surface, core and interface reveals that secondary structures tend to adopt preferential conformations that differ among the compartments. The local description of secondary structures highlights that curved conformations are preferred on the surface while straight ones are preferred in the core. Interfaces display a mixture of local conformations either preferred in core or surface. The analysis of the structural letters transition occurring between protein-bound and unbound conformations shows that the deformation of secondary structure is tightly linked to the compartment preference of the local conformations. Conclusion The conformation of secondary structures can be further analysed and detailed thanks to a structural alphabet which allows a better description of protein surface, core and interface in terms of secondary structures' shape and deformation. Induced-fit modification tendencies described here should be valuable information to identify and characterize regions under strong structural constraints for functional reasons.

  13. Determination of deformation and strength characteristics of artificial geomaterial having step-shaped discontinuities under uniaxial compression

    Science.gov (United States)

    Tsoy, PA

    2018-03-01

    In order to determine the empirical relationship between the linear dimensions of step-shaped macrocracks in geomaterials as well as deformation and strength characteristics of geomaterials (ultimate strength, modulus of deformation) under uniaxial compression, the artificial flat alabaster specimens with the through discontinuities have been manufactured and subjected to a series of the related physical tests.

  14. A Method to Evaluate the Field-Shape Multipoles Induced by Coil Deformations

    CERN Document Server

    Ferracin, P; Todesco, Ezio; Tropea, P

    1999-01-01

    A semi-analytical method to evaluate the effect of coil de-formations on the field-shape imperfections of the LHC dipole is presented. The deformation induced by the collaring procedure and by the thermal stresses is evaluated numerically with a finite element code. The vector field of mechanical displacements is approximated with truncated Taylor and Fourier series. The fitting function agrees with the numerical data to within less that 10 mm. The decom-position in modes of the truncated series permits identification of displacements which are dangerous for the multi-polar content and how they could be cured. An application to compare two designs of the LHC dipole is given.

  15. Capsular Contraction with S‐Shaped Deformity of Nonlength‐Expanding Inflatable Penile Prosthesis Cylinders: Management and Prevention Strategies

    OpenAIRE

    Karpman, Edward; Henry, Gerard

    2013-01-01

    Introduction Capsular contraction (CC) occurring with inflatable penile prosthesis (IPP) reservoirs has been reported by urologists as a cause of autoinflation. The concept of CC occurring around IPP cylinders has not been studied. Aims Herein we report a case of CC occurring with nonlength-expanding IPP cylinders, resulting in an S-shaped deformity. Main Outcome Measures We sought to report a novel cause of S-shaped deformity in patients after IPP surgery. Methods We reviewed a recent clinic...

  16. Nuclear Phase Transition from Spherical to Axially Symmetric Deformed Shapes Using Interacting Boson Model

    Directory of Open Access Journals (Sweden)

    Khalaf A. M.

    2015-04-01

    Full Text Available The interacting boson model (sd-IBM1 with intrinsic coherent state is used to study the shape phase transitions from spherical U(5 to prolate deformed SU(3 shapes in Nd- Sm isotopic chains. The Hamiltonian is written in the creation and annihilation form with one and two body terms.For each nucleus a fitting procedure is adopted to get the best model parameters by fitting selected experimental energy levels, B(E2 transi- tion rates and two-neutron separation energies with the calculated ones.The U(5-SU(3 IBM potential energy surfaces (PES’s are analyzed and the critical phase transition points are identified in the space of model parameters.In Nd-Sm isotopic chains nuclei evolve from spherical to deformed shapes by increasing the boson number. The nuclei 150 Nd and 152 Sm have been found to be close to critical points.We have also studied the energy ratios and the B(E2 values for yrast band at the critical points.

  17. An improved model to predict nonuniform deformation of Zr-2.5 Nb pressure tubes

    International Nuclear Information System (INIS)

    Lei, Q.M.; Fan, H.Z.

    1997-01-01

    Present circular pressure-tube ballooning models in most fuel channel codes assume that the pressure tube remains circular during ballooning. This model provides adequate predictions of pressure-tube ballooning behaviour when the pressure tube (PT) and the calandria tube (CT) are concentric and when a small (<100 degrees C) top-to-bottom circumferential temperature gradient is present on the pressure tube. However, nonconcentric ballooning is expected to occur under certain postulated CANDU (CANada Deuterium Uranium) accident conditions. This circular geometry assumption prevents the model from accurately predicting nonuniform pressure-tube straining and local PT/CT contact when the pressure tube is subjected to a large circumferential temperature gradient and consequently deforms in a noncircular pattern. This paper describes an improved model that predicts noncircular pressure-tube deformation. Use of this model (once fully validated) will reduce uncertainties in the prediction of pressure-tube ballooning during a postulated loss-of-coolant accident (LOCA) in a CANDU reactor. The noncircular deformation model considers a ring or cross-section of a pressure tube with unit axial length to calculate deformation in the radial and circumferential directions. The model keeps track of the thinning of the pressure-tube wall as well as the shape deviation from a reference circle. Such deviation is expressed in a cosine Fourier series for the lateral symmetry case. The coefficients of the series for the first m terms are calculated by solving a set of algebraic equations at each time step. The model also takes into account the effects of pressure-tube sag or bow on ballooning, using an input value of the offset distance between the centre of the calandria tube and the initial centre of the pressure tube for determining the position radius of the pressure tube. One significant improvement realized in using the noncircular deformation model is a more accurate prediction in

  18. Martensitic transformation in nanostructured TiNi shape memory alloy formed via severe plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Tsuchiya, K. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan)]. E-mail: tsuchiya@pse.tut.ac.jp; Inuzuka, M. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Tomus, D. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Hosokawa, A. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Nakayama, H. [Department of Mechanical Engineering, University of Washington (United States); Morii, K. [Research and Development Laboratory, Daido Steel, Co., Ltd. (Japan); Todaka, Y. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan); Umemoto, M. [Department of Production Systems Engineering, Toyohashi University of Technology (Japan)

    2006-11-25

    Martensitic transformation and mechanical behavior was investigated on TiNi shape memory alloy subjected to severe plastic deformation by cold rolling. Transmission electron microscopy revealed the sample to be a mixture of nanocrystalline and amorphous material after 40% cold rolling. Diffrential scaning calorimetry measurements and X-ray diffractometry suggested that the martensitic transformation was suppressed when the thickness reduction was over 25%. The pseudoelastic stress-strain curves of nanocrystalline/amorphous TiNi are characterized by the absence of a stress-plateau and by small hysteresis.

  19. PREDICTION OF THE EXTREMAL SHAPE FACTOR OF SPHEROIDAL PARTICLES

    Directory of Open Access Journals (Sweden)

    Daniel Hlubinka

    2011-05-01

    Full Text Available In the stereological unfolding problem for spheroidal particles the extremal shape factor is predicted. The theory of extreme values has been used to show that extremes of the planar shape factor of particle sections tend to the same limit distribution as extremes of the original shape factor for both the conditional and marginal distribution. Attention is then paid to the extreme shape factor conditioned by the particle size. Normalizing constants are evaluated for a parametric model and the numerical procedure is tested on real data from metallography.

  20. Predicting 3D lip shapes using facial surface EMG

    NARCIS (Netherlands)

    Eskes, Merijn; van Alphen, Maarten J. A.; Balm, Alfons J. M.; Smeele, Ludi E.; Brandsma, Dieta; van der Heijden, Ferdinand

    2017-01-01

    Aim The aim of this study is to prove that facial surface electromyography (sEMG) conveys sufficient information to predict 3D lip shapes. High sEMG predictive accuracy implies we could train a neural control model for activation of biomechanical models by simultaneously recording sEMG signals and

  1. Pre-deformation Analysis on Construction of Special-shaped Thin-walled Concrete Acoustic Wind Tunnel Structure

    Directory of Open Access Journals (Sweden)

    Li Boping

    2015-01-01

    Full Text Available Structural deformation of special-shaped thin-walled concrete acoustic wind tunnel under self-weight effect can not cater for requirements of high flatness and smoothness of moulding surface. Therefore pre-deformation analysis is carried out on construction of wind tunnel structure. Threshold is utilized to choose equivalent cross-section for the plane needing pre-deformation construction to do analysis. Analysis results show that design specifications of reinforced concrete is feasible for pre-deformation analysis on equivalent plane model under self-weight effect. Present construction on pre-camber wind tunnel according to deflection under self-weight effect also achieves the desired design requirements. Construction technology of arc-shaped erection template which controls mid-span pre-camber value keeps features of simple construction and high accuracy

  2. Deformation and Phase Transformation Processes in Polycrystalline NiTi and NiTiHf High Temperature Shape Memory Alloys

    Science.gov (United States)

    Benafan, Othmane

    2012-01-01

    The deformation and transformation mechanisms of polycrystalline Ni49.9Ti50.1 and Ni50.3Ti29.7Hf20 (in at.%) shape memory alloys were investigated by combined experimental and modeling efforts aided by an in situ neutron diffraction technique at stress and temperature. The thermomechanical response of the low temperature martensite, the high temperature austenite phases, and changes between these two states during thermomechanical cycling were probed and reported. In the cubic austenite phase, stress-induced martensite, deformation twinning and slip processes were observed which helped in constructing a deformation map that contained the limits over which each of the identified mechanisms was dominant. Deformation of the monoclinic martensitic phase was also investigated where the microstructural changes (texture, lattice strains, and phase fractions) during room-temperature deformation and subsequent thermal cycling were compared to the bulk macroscopic response. When cycling between these two phases, the evolution of inelastic strains, along with the shape setting procedures were examined and used for the optimization of the transformation properties as a function of deformation levels and temperatures. Finally, this work was extended to the development of multiaxial capabilities at elevated temperatures for the in situ neutron diffraction measurements of shape memory alloys on the VULCAN Diffractometer at Oak Ridge National Laboratory.

  3. Shape: automatic conformation prediction of carbohydrates using a genetic algorithm

    Directory of Open Access Journals (Sweden)

    Rosen Jimmy

    2009-09-01

    Full Text Available Abstract Background Detailed experimental three dimensional structures of carbohydrates are often difficult to acquire. Molecular modelling and computational conformation prediction are therefore commonly used tools for three dimensional structure studies. Modelling procedures generally require significant training and computing resources, which is often impractical for most experimental chemists and biologists. Shape has been developed to improve the availability of modelling in this field. Results The Shape software package has been developed for simplicity of use and conformation prediction performance. A trivial user interface coupled to an efficient genetic algorithm conformation search makes it a powerful tool for automated modelling. Carbohydrates up to a few hundred atoms in size can be investigated on common computer hardware. It has been shown to perform well for the prediction of over four hundred bioactive oligosaccharides, as well as compare favourably with previously published studies on carbohydrate conformation prediction. Conclusion The Shape fully automated conformation prediction can be used by scientists who lack significant modelling training, and performs well on computing hardware such as laptops and desktops. It can also be deployed on computer clusters for increased capacity. The prediction accuracy under the default settings is good, as it agrees well with experimental data and previously published conformation prediction studies. This software is available both as open source and under commercial licenses.

  4. A chest-shape target automatic detection method based on Deformable Part Models

    Science.gov (United States)

    Zhang, Mo; Jin, Weiqi; Li, Li

    2016-10-01

    Automatic weapon platform is one of the important research directions at domestic and overseas, it needs to accomplish fast searching for the object to be shot under complex background. Therefore, fast detection for given target is the foundation of further task. Considering that chest-shape target is common target of shoot practice, this paper treats chestshape target as the target and studies target automatic detection method based on Deformable Part Models. The algorithm computes Histograms of Oriented Gradient(HOG) features of the target and trains a model using Latent variable Support Vector Machine(SVM); In this model, target image is divided into several parts then we can obtain foot filter and part filters; Finally, the algorithm detects the target at the HOG features pyramid with method of sliding window. The running time of extracting HOG pyramid with lookup table can be shorten by 36%. The result indicates that this algorithm can detect the chest-shape target in natural environments indoors or outdoors. The true positive rate of detection reaches 76% with many hard samples, and the false positive rate approaches 0. Running on a PC (Intel(R)Core(TM) i5-4200H CPU) with C++ language, the detection time of images with the resolution of 640 × 480 is 2.093s. According to TI company run library about image pyramid and convolution for DM642 and other hardware, our detection algorithm is expected to be implemented on hardware platform, and it has application prospect in actual system.

  5. Deformation and mixing of co-existing shapes in the neutron-deficient polonium isotopes

    CERN Document Server

    AUTHOR|(CDS)2078559; Huyse, Mark

    The neutron-deficient polonium isotopes, with only 2 protons outside the Z = 82 shell closure, are situated in an interesting region of the nuclear chart. In the neighboring lead (Z = 82) and mercury (Z = 80) isotopes, experimental and theoretical efforts identified evidence of shape coexistence. Shape coexistence is the remarkable phenomenon in which two or more distinct types of deformation occur in states of the same angular momentum and similar excitation energy in a nucleus. The neutron-deficient polonium isotopes have also been studied intensively, experimentally as well as theoretically. The closed neutron-shell nucleus 210Po (N = 126) manifests itself as a two-particle nucleus where most of the excited states can be explained by considering the degrees of freedom of the two valence protons outside of 208Pb. The near-constant behavior of the yrast 2+1 and 4+1 states in the isotopes with mass 200 ≤ A ≤ 208 can be explained by coupling the two valence protons to a vibrating lead core. 200Po seems to ...

  6. 3D shape, deformation, and vibration measurements using infrared Kinect sensors and digital image correlation.

    Science.gov (United States)

    Nguyen, Hieu; Wang, Zhaoyang; Jones, Patrick; Zhao, Bing

    2017-11-10

    Consumer-grade red-green-blue and depth (RGB-D) sensors, such as the Microsoft Kinect and the Asus Xtion, are attractive devices due to their low cost and robustness for real-time sensing of depth information. These devices provide the depth information by detecting the correspondences between the captured infrared (IR) image and the initial image sent to the IR projector, and their essential limitation is the low accuracy of 3D shape reconstruction. In this paper, an effective technique that employs the Kinect sensors for accurate 3D shape, deformation, and vibration measurements is introduced. The technique involves using the RGB-D sensors, an accurate camera calibration scheme, and area- and feature-based image-matching algorithms. The IR speckle pattern projected from the Kinect projector considerably facilitates the digital image correlation analysis in the regions of interest with enhanced accuracy. A number of experiments have been carried out to demonstrate the validity and effectiveness of the proposed technique and approach. It is shown that the technique can yield measurement accuracy at the 10 μm level for a typical field of view. The real-time capturing speed of 30 frames per second makes the proposed technique suitable for certain motion and vibration measurements, such as non-contact monitoring of respiration and heartbeat rates.

  7. A novel method for shape analysis: deformation of bubbles during wire drawing in doped tungsten

    International Nuclear Information System (INIS)

    Harmat, P.; Bartha, L.; Grosz, T.; Rosta, L.

    2001-01-01

    A novel technique has been developed for monitoring shape and size of microscopic pores, bubbles, second phase particles in deformed PM materials. The anisotropic small angle neutron scattering (ASANS) measurement provides direct visualization of the shape of second phase objects after rolling, swaging, wire drawing. Also in case of mixture of different objects e. g. uniformly elongated bubbles and spherical ones they can be separated and their morphological parameters like relative number density, diameter, aspect ratio can be obtained from the quantitative analysis of ASANS data. Rods and wires from K-AI-Si doped tungsten containing residual porosity and K filled bubbles were studied from 6 mm to 0.2 mm in diameter. The increase of the average aspect ratio (∼1/d) was found to be much slower than expected from the usual theory (∼1/d 3 ). Instead of 'constant volume' assumption, the 'constant length' seems to be reliable. The ASANS investigation revealed also the occurrence of a small amount of spherical bubbles after several steps of wire drawing. (author)

  8. Predicting Nanocrystal Shape through Consideration of Surface-Ligand Interactions

    KAUST Repository

    Bealing, Clive R.

    2012-03-27

    Density functional calculations for the binding energy of oleic acid-based ligands on Pb-rich {100} and {111} facets of PbSe nanocrystals determine the surface energies as a function of ligand coverage. Oleic acid is expected to bind to the nanocrystal surface in the form of lead oleate. The Wulff construction predicts the thermodynamic equilibrium shape of the PbSe nanocrystals. The equilibrium shape is a function of the ligand surface coverage, which can be controlled by changing the concentration of oleic acid during synthesis. The different binding energy of the ligand on the {100} and {111} facets results in different equilibrium ligand coverages on the facets, and a transition in the equilibrium shape from octahedral to cubic is predicted when increasing the ligand concentration during synthesis. © 2012 American Chemical Society.

  9. X-ray beam-shaping via deformable mirrors: surface profile and point spread function computation for Gaussian beams using physical optics.

    Science.gov (United States)

    Spiga, D

    2018-01-01

    X-ray mirrors with high focusing performances are commonly used in different sectors of science, such as X-ray astronomy, medical imaging and synchrotron/free-electron laser beamlines. While deformations of the mirror profile may cause degradation of the focus sharpness, a deliberate deformation of the mirror can be made to endow the focus with a desired size and distribution, via piezo actuators. The resulting profile can be characterized with suitable metrology tools and correlated with the expected optical quality via a wavefront propagation code or, sometimes, predicted using geometric optics. In the latter case and for the special class of profile deformations with monotonically increasing derivative, i.e. concave upwards, the point spread function (PSF) can even be predicted analytically. Moreover, under these assumptions, the relation can also be reversed: from the desired PSF the required profile deformation can be computed analytically, avoiding the use of trial-and-error search codes. However, the computation has been so far limited to geometric optics, which entailed some limitations: for example, mirror diffraction effects and the size of the coherent X-ray source were not considered. In this paper, the beam-shaping formalism in the framework of physical optics is reviewed, in the limit of small light wavelengths and in the case of Gaussian intensity wavefronts. Some examples of shaped profiles are also shown, aiming at turning a Gaussian intensity distribution into a top-hat one, and checks of the shaping performances computing the at-wavelength PSF by means of the WISE code are made.

  10. The role of inelastic deformations in the mechanical response of endovascular shape memory alloy devices.

    Science.gov (United States)

    Petrini, Lorenza; Bertini, Alessandro; Berti, Francesca; Pennati, Giancarlo; Migliavacca, Francesco

    2017-05-01

    Nickel-titanium alloys are commonly adopted for producing cardiovascular minimally invasive devices such as self-expandable stents, aortic valves and stent-grafts. These devices are subjected to cyclic loads (due to blood pulsatility, leg or heart movements), that can induce fatigue fracture, and may also be subjected to very large deformations (due to crimping procedure, a tortuous physiological path or overloads), that can induce material yield. Recently, the authors developed a new constitutive model that considers inelastic strains due to not-completed reverse phase transformation (not all the stress-induced martensite turns back to austenite) or/and plasticity and their accumulation during cyclic loads. In this article, the model is implemented in the finite element code ABAQUS/Standard and it is used to investigate the effects of inelastic strain accumulation on endovascular nickel-titanium devices. In particular, the behavior of a transcatheter aortic valve is studied considering the following steps: (1) crimping, (2) expansion in a tube resembling a durability test chamber and (3) cyclic loads due to pressure variation applied on the inner surface of the tube. The analyses are performed twice, activating and not activating that part of the new model which describes the development of irreversible strain. From the results, it is interesting to note that plasticity has a very significant effect on the local material response, inducing stress modification from compression to tension. However, permanent deformations are concentrated in few zones of the stent frame and their presence does not affect the global behavior of the device that maintains its capability of recovering the original shape. In conclusion, this work suggests that at least for cardiovascular devices where the crimping is high (local strain may reach values of 8%-9%), taking into account inelastic effects due to plasticity and not-completed reverse phase transformation can be important, and

  11. Three-dimensional modeling for deformation of austenitic NiTi shape memory alloys under high strain rate

    Science.gov (United States)

    Yu, Hao; Young, Marcus L.

    2018-01-01

    A three-dimensional model for phase transformation of shape memory alloys (SMAs) during high strain rate deformation is developed and is then calibrated based on experimental results from an austenitic NiTi SMA. Stress, strain, and martensitic volume fraction distribution during high strain rate deformation are simulated using finite element analysis software ABAQUS/standard. For the first time, this paper presents a theoretical study of the microscopic band structure during high strain rate compressive deformation. The microscopic transformation band is generated by the phase front and leads to minor fluctuations in sample deformation. The strain rate effect on phase transformation is studied using the model. Both the starting stress for transformation and the slope of the stress-strain curve during phase transformation increase with increasing strain rate.

  12. Predicting 3D lip shapes using facial surface EMG.

    Directory of Open Access Journals (Sweden)

    Merijn Eskes

    Full Text Available The aim of this study is to prove that facial surface electromyography (sEMG conveys sufficient information to predict 3D lip shapes. High sEMG predictive accuracy implies we could train a neural control model for activation of biomechanical models by simultaneously recording sEMG signals and their associated motions.With a stereo camera set-up, we recorded 3D lip shapes and simultaneously performed sEMG measurements of the facial muscles, applying principal component analysis (PCA and a modified general regression neural network (GRNN to link the sEMG measurements to 3D lip shapes. To test reproducibility, we conducted our experiment on five volunteers, evaluating several sEMG features and window lengths in unipolar and bipolar configurations in search of the optimal settings for facial sEMG.The errors of the two methods were comparable. We managed to predict 3D lip shapes with a mean accuracy of 2.76 mm when using the PCA method and 2.78 mm when using modified GRNN. Whereas performance improved with shorter window lengths, feature type and configuration had little influence.

  13. Time dependent deformation in prestressed concrete girder: Measurement and prediction

    Science.gov (United States)

    Sokal, Y. J.; Tyrer, P.

    1981-11-01

    Prestressed concrete girders which are intended for composite construction in bridges and other similar structures are often stored unloaded for some time before being placed in their final positions where top deck is being poured over. During that free storage the girders are subjected to creep and shrinkage which manifests itself through increased upward deformation usually defined as camber. The analytical estimation of this deformation is important as it controls the minimum thickness of the top deck. An attempt was made to correlate on site measurements with continuous computer modeling of the time-dependent behavior using data from recently adopted international standard for concrete structures.

  14. Predicting deformation and stress as a function of additive manufacturing process parameters for Europa drill

    Data.gov (United States)

    National Aeronautics and Space Administration — We will combine part-level FEM model of residual stresses with phase-field transformation model to predict deformation and cracking due to thermal stresses from the...

  15. Characterizing Cracking and Permanent Deformation; An Attempt for Predicting the End of the Structural Pavement Life

    NARCIS (Netherlands)

    Pramesti, F.P.; Molenaar, A.A.A.; van de Ven, M.F.C.

    2017-01-01

    Durable, therefore sustainable, road needs to attain specific characteristics, among others, resistance to permanent deformation and cracking. Determining the development of both characteristics are important to be able to predict pavement life and performance. In this research, permanent

  16. A voxel-based finite element model for the prediction of bladder deformation

    International Nuclear Information System (INIS)

    Chai Xiangfei; Herk, Marcel van; Hulshof, Maarten C. C. M.; Bel, Arjan

    2012-01-01

    Purpose: A finite element (FE) bladder model was previously developed to predict bladder deformation caused by bladder filling change. However, two factors prevent a wide application of FE models: (1) the labor required to construct a FE model with high quality mesh and (2) long computation time needed to construct the FE model and solve the FE equations. In this work, we address these issues by constructing a low-resolution voxel-based FE bladder model directly from the binary segmentation images and compare the accuracy and computational efficiency of the voxel-based model used to simulate bladder deformation with those of a classical FE model with a tetrahedral mesh. Methods: For ten healthy volunteers, a series of MRI scans of the pelvic region was recorded at regular intervals of 10 min over 1 h. For this series of scans, the bladder volume gradually increased while rectal volume remained constant. All pelvic structures were defined from a reference image for each volunteer, including bladder wall, small bowel, prostate (male), uterus (female), rectum, pelvic bone, spine, and the rest of the body. Four separate FE models were constructed from these structures: one with a tetrahedral mesh (used in previous study), one with a uniform hexahedral mesh, one with a nonuniform hexahedral mesh, and one with a low-resolution nonuniform hexahedral mesh. Appropriate material properties were assigned to all structures and uniform pressure was applied to the inner bladder wall to simulate bladder deformation from urine inflow. Performance of the hexahedral meshes was evaluated against the performance of the standard tetrahedral mesh by comparing the accuracy of bladder shape prediction and computational efficiency. Results: FE model with a hexahedral mesh can be quickly and automatically constructed. No substantial differences were observed between the simulation results of the tetrahedral mesh and hexahedral meshes (<1% difference in mean dice similarity coefficient to

  17. Deformation behavior of carbon-fiber reinforced shape-memory-polymer composites used for deployable structures (Conference Presentation)

    Science.gov (United States)

    Lan, Xin; Liu, Liwu; Li, Fengfeng; Pan, Chengtong; Liu, Yanju; Leng, Jinsong

    2017-04-01

    Shape memory polymers (SMPs) are a new type of smart material, they perform large reversible deformation with a certain external stimulus (e.g., heat and electricity). The properties (e.g., stiffness, strength and other mechanically static or quasi-static load-bearing capacity) are primarily considered for conventional resin-based composite materials which are mainly used for structural materials. By contrast, the mechanical actuating performance with finite deformation is considered for the shape memory polymers and their composites which can be used for both structural materials and functional materials. For shape memory polymers and their composites, the performance of active deformation is expected to further promote the development in smart active deformation structures, such as deployable space structures and morphing wing aircraft. The shape memory polymer composites (SMPCs) are also one type of High Strain Composite (HSC). The space deployable structures based on carbon fiber reinforced shape memory polymer composites (SMPCs) show great prospects. Considering the problems that SMPCs are difficult to meet the practical applications in space deployable structures in the recent ten years, this paper aims to research the mechanics of deformation, actuation and failure of SMPCs. In the overall view of the shape memory polymer material's nonlinearity (nonlinearity and stress softening in the process of pre-deformation and recovery, relaxation in storage process, irreversible deformation), by the multiple verifications among theory, finite element and experiments, one obtains the deformation and actuation mechanism for the process of "pre-deformation, energy storage and actuation" and its non-fracture constraint domain. Then, the parameters of SMPCs will be optimized. Theoretical analysis is realized by the strain energy function, additionally considering the interaction strain energy between the fiber and the matrix. For the common resin-based or soft

  18. Influence of deformation temperature on structural variation and shape-memory effect of a thermoplastic semi-crystalline multiblock copolymer

    Directory of Open Access Journals (Sweden)

    W. Yan

    2015-07-01

    Full Text Available A multiblock copolymer termed as PCL-PIBMD, consisting of crystallizable poly(ε-caprolactone (PCL segments and crystallizable poly(3S-isobutyl-morpholine-2,5-dione (PIBMD segments, has been reported as a material showing a thermally-induced shape-memory effect. While PIBMD crystalline domains act as netpoints to determine the permanent shape, both PCL crystalline domains and PIBMD amorphous domains, which have similar transition temperatures (Ttrans can act as switching domains. In this work, the influence of the deformation temperature (Tdeform = 50 or 20°C, which was above or below Ttrans, on the structural changes of PCL-PIBMD during uniaxial deformation and the shapememory properties were investigated. Furthermore, the relative contribution of crystalline PCL and PIBMD amorphous phases to the fixation of the temporary shape were distinguished by a toluene vapor treatment approach. The results indicated that at 50°C, both PCL and PIBMD amorphous phases can be orientated during deformation, resulting in thermallyinduced crystals of PCL domains and joint contribution to the switching domains. In contrast at 20°C, the temporary shape was mainly fixed by PCL crystals generated via strain-induced crystallization.

  19. Numerical Prediction of Springback Shape of Severely Bent Sheet Metal

    International Nuclear Information System (INIS)

    Iwata, Noritoshi; Murata, Atsunobu; Yogo, Yasuhiro; Tsutamori, Hideo; Niihara, Masatomo; Ishikura, Hiroshi; Umezu, Yasuyoshi

    2007-01-01

    In the sheet metal forming simulation, the shell element widely used is assumed as a plane stress state based on the Mindlin-Reissner theory. Numerical prediction with the conventional shell element is not accurate when the bending radius is small compared to the sheet thickness. The main reason is because the strain and stress formulation of the conventional shell element does not fit the actual phenomenon. In order to predict precisely the springback of a bent sheet with a severe bend, a measurement method for through-thickness strain has been proposed. The strain was formulated based on measurement results and calculation results from solid element. Through-thickness stress distribution was formulated based on the equilibrium. The proposed shell element based on the formulations was newly introduced into the FEM code. The accuracy of this method's prediction of the springback shape of two bent processes has been confirmed. As a result, it was found that the springback shape even in severe bending can be predicted with high accuracy. Moreover, the calculation time in the proposed shell element is about twice that in the conventional shell element, and has been shortened to about 1/20 compared to a solid element

  20. Numerical predictions of deformation processes and the behaviour of real materials

    International Nuclear Information System (INIS)

    Andersen, S.I.; Bilde-Soerensen, J.B.; Lorentzen, T.; Pedersen, O.B.; Soerensen, N.J.

    1994-01-01

    Numerical prediction of deformation processes is a central issue in mechanical and materials engineering. During the last decade there has been a tremendous development within this area and we now deal with numerical modelling of deformation processes at a very high level of complexity. At the same time there has been a complementary increase in the efficiency in the collection of experimental data comparison with the numerical predictions. This applies to mechanical testing and, in particular, to microstructural investigations. These proceedings address the current advances in the two lines of research with an emphasis on comparisons between numerical predictions and experimental observations. The theme of the symposium is covered by 12 invited review papers and 64 contributed papers giving an up-to-date account of advances in numerical modelling of deformation processes. The deformation modes examined include uni- or multiaxial monotonic or cyclic deformation and creep, as well as industrial thermomechanical processing. The models and experimental observations refer to many aspects of deformation, such as the development of microstructures, textures and residual stresses, static and dynamic recrystallization, strain localization and failure. The deformation processes are modelled on scales ranging from that of individual dislocations to those of the microstructural and macroscopic patterns of plastic flow. (au)

  1. Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model

    Directory of Open Access Journals (Sweden)

    Jingzhou Xin

    2018-01-01

    Full Text Available Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mining and to accurately evaluate the time-varying characteristics of bridge structure performance evolution, this paper proposes a new method for bridge structure deformation prediction, which integrates the Kalman filter, autoregressive integrated moving average model (ARIMA, and generalized autoregressive conditional heteroskedasticity (GARCH. Firstly, the raw deformation data is directly pre-processed using the Kalman filter to reduce the noise. After that, the linear recursive ARIMA model is established to analyze and predict the structure deformation. Finally, the nonlinear recursive GARCH model is introduced to further improve the accuracy of the prediction. Simulation results based on measured sensor data from the Global Navigation Satellite System (GNSS deformation monitoring system demonstrated that: (1 the Kalman filter is capable of denoising the bridge deformation monitoring data; (2 the prediction accuracy of the proposed Kalman-ARIMA-GARCH model is satisfactory, where the mean absolute error increases only from 3.402 mm to 5.847 mm with the increment of the prediction step; and (3 in comparision to the Kalman-ARIMA model, the Kalman-ARIMA-GARCH model results in superior prediction accuracy as it includes partial nonlinear characteristics (heteroscedasticity; the mean absolute error of five-step prediction using the proposed model is improved by 10.12%. This paper provides a new way for structural behavior prediction based on data processing, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data

  2. Bridge Structure Deformation Prediction Based on GNSS Data Using Kalman-ARIMA-GARCH Model.

    Science.gov (United States)

    Xin, Jingzhou; Zhou, Jianting; Yang, Simon X; Li, Xiaoqing; Wang, Yu

    2018-01-19

    Bridges are an essential part of the ground transportation system. Health monitoring is fundamentally important for the safety and service life of bridges. A large amount of structural information is obtained from various sensors using sensing technology, and the data processing has become a challenging issue. To improve the prediction accuracy of bridge structure deformation based on data mining and to accurately evaluate the time-varying characteristics of bridge structure performance evolution, this paper proposes a new method for bridge structure deformation prediction, which integrates the Kalman filter, autoregressive integrated moving average model (ARIMA), and generalized autoregressive conditional heteroskedasticity (GARCH). Firstly, the raw deformation data is directly pre-processed using the Kalman filter to reduce the noise. After that, the linear recursive ARIMA model is established to analyze and predict the structure deformation. Finally, the nonlinear recursive GARCH model is introduced to further improve the accuracy of the prediction. Simulation results based on measured sensor data from the Global Navigation Satellite System (GNSS) deformation monitoring system demonstrated that: (1) the Kalman filter is capable of denoising the bridge deformation monitoring data; (2) the prediction accuracy of the proposed Kalman-ARIMA-GARCH model is satisfactory, where the mean absolute error increases only from 3.402 mm to 5.847 mm with the increment of the prediction step; and (3) in comparision to the Kalman-ARIMA model, the Kalman-ARIMA-GARCH model results in superior prediction accuracy as it includes partial nonlinear characteristics (heteroscedasticity); the mean absolute error of five-step prediction using the proposed model is improved by 10.12%. This paper provides a new way for structural behavior prediction based on data processing, which can lay a foundation for the early warning of bridge health monitoring system based on sensor data using sensing

  3. Incremental kernel ridge regression for the prediction of soft tissue deformations.

    Science.gov (United States)

    Pan, Binbin; Xia, James J; Yuan, Peng; Gateno, Jaime; Ip, Horace H S; He, Qizhen; Lee, Philip K M; Chow, Ben; Zhou, Xiaobo

    2012-01-01

    This paper proposes a nonlinear regression model to predict soft tissue deformation after maxillofacial surgery. The feature which served as input in the model is extracted with finite element model (FEM). The output in the model is the facial deformation calculated from the preoperative and postoperative 3D data. After finding the relevance between feature and facial deformation by using the regression model, we establish a general relationship which can be applied to all the patients. As a new patient comes, we predict his/her facial deformation by combining the general relationship and the new patient's biomechanical properties. Thus, our model is biomechanical relevant and statistical relevant. Validation on eleven patients demonstrates the effectiveness and efficiency of our method.

  4. Shape effect related to crystallographic orientation of deformation behavior in copper crystals

    International Nuclear Information System (INIS)

    Kim, K.H.; Chang, C.H.; Koo, Y.M.; MacDowell, A.A.

    1999-01-01

    The deformation behavior of pure copper single crystals has been investigated by scanning electron microscopy and synchrotron radiation using the in situ reflection Laue method. Two types of samples with the same orientation of tensile axes, but with different crystallographic orientations in the directions of the width and thickness of the samples, have been studied. They showed different characteristics of deformation behavior, such as the activated slip systems, the movement of the tensile axis, and the mode of fracture

  5. Prediction model and experimental validation for the thermal deformation of motorized spindle

    Science.gov (United States)

    Zhang, Lixiu; Li, Jinpeng; Wu, Yuhou; Zhang, Ke; Wang, Yawen

    2018-02-01

    The thermal deformation of motorized spindle has a great influence on the precision of numerical control (NC) machine tools. Thus, it is crucial to predict the thermal deformation in the design and operation control phase by numerical simulation and improve the precision of NC machine tools. In order to achieve this, an accurate thermal deformation prediction model for motorized spindle is required. In this paper, a model for predicting the thermal error of motorized spindle based on finite element method and parameter optimization is proposed. Levenberg-Marquardt (LM) method is applied to optimize the heat transfer coefficient of motorized spindle by using surface temperature data measured. The optimized heat transfer coefficient is then taken as one of the boundary condition of the finite element model. The boundary conditions about heat of the finite element model are obtained by energy loss experiment. The proposed model is validated by experimental results, and the results have shown well correlation.

  6. Prediction of Permanent Earthquake-Induced Deformation in Earth Dams and Embankments Using Artificial Neural Networks

    Directory of Open Access Journals (Sweden)

    Kazem Barkhordari

    2015-12-01

    Full Text Available This research intends to develop a method based on the Artificial Neural Network (ANN to predict permanent earthquake-induced deformation of the earth dams and embankments. For this purpose, data sets of observations from 152 published case histories on the performance of the earth dams and embankments, during the past earthquakes, was used. In order to predict earthquake-induced deformation of the earth dams and embankments a Multi-Layer Perceptron (MLP analysis was used. A four-layer, feed-forward, back-propagation neural network, with a topology of 7-9-7-1 was found to be optimum. The results showed that an appropriately trained neural network could reliably predict permanent earthquake-induced deformation of the earth dams and embankments.

  7. Prediction of Welding Deformation and Residual Stress of Stiffened Plates Based on Experiments

    Science.gov (United States)

    Bai, R. X.; Guo, Z. F.; Lei, Z. K.

    2017-12-01

    Thermo-elastic-plastic (TEP) method is a method that can accurately predict welding deformation and residual stresses, but the premise is to select the appropriate heat source parameters. Aiming at the two welded joints in the stiffened plate studied in this paper, the welding experiments of simple components were carried out respectively, and the corresponding welding deformation and residual stresses were measured. Based on the welding experiment, the corresponding TEP model was established, and the corresponding heat source parameters were obtained according to the experimental data. The comparison between the experimental results and the numerical results shows that the obtained heat source parameters can well predict the welding deformation and residual stress of the welded structure. And then, the obtained heat source parameters were applied to the TEP model of the stiffened plate. The prediction results show that the T-type fillet welds of the stiffened plate can reduce the angular deformation caused by the butt welds to a certain extent. In addition, we can also find that the heat of the subsequent welds can reduce the residual stresses at the completed welds. This method not only can save a lot of experimental costs and time, but also can accurately predict the welding deformation and residual stresses.

  8. Prediction of deformations during gas-tungsten-arc stationary welds

    International Nuclear Information System (INIS)

    Duncan, D.B.; Giedt, W.H.

    1980-10-01

    Local temperature measurements on the heated and unheated surfaces, and strain measurements on the unheated surfaces of unrestrained circular weld specimens of annealed and cold-rolled Nitronic 40 stainless steel during stationary welding, are compared with values predicted from finite-element programs for temperature and strain variations. Experimental and predicted temperature histories agree within 10%. Predicted and measured hoop strain profiles (using a moire fringe technique), for the unheated surface are compared, showing significant deviations near the central region. Transient deflection measurements of the unheated specimen surfaces show good agreement with theory during the period the arc is operating. Close agreement in deflection behavior was observed during the cooling portion of the weld cycle for the annealed specimen, whereas substantial deviations occurred for the cold-rolled specimens

  9. Creep Rupture Life Prediction Based on Analysis of Large Creep Deformation

    Directory of Open Access Journals (Sweden)

    YE Wenming

    2016-08-01

    Full Text Available A creep rupture life prediction method for high temperature component was proposed. The method was based on a true stress-strain elastoplastic creep constitutive model and the large deformation finite element analysis method. This method firstly used the high-temperature tensile stress-strain curve expressed by true stress and strain and the creep curve to build materials' elastoplastic and creep constitutive model respectively, then used the large deformation finite element method to calculate the deformation response of high temperature component under a given load curve, finally the creep rupture life was determined according to the change trend of the responsive curve.The method was verified by durable test of TC11 titanium alloy notched specimens under 500 ℃, and was compared with the three creep rupture life prediction methods based on the small deformation analysis. Results show that the proposed method can accurately predict the high temperature creep response and long-term life of TC11 notched specimens, and the accuracy is better than that of the methods based on the average effective stress of notch ligament, the bone point stress and the fracture strain of the key point, which are all based on small deformation finite element analysis.

  10. Prediction of soft tissue deformations after CMF surgery with incremental kernel ridge regression.

    Science.gov (United States)

    Pan, Binbin; Zhang, Guangming; Xia, James J; Yuan, Peng; Ip, Horace H S; He, Qizhen; Lee, Philip K M; Chow, Ben; Zhou, Xiaobo

    2016-08-01

    Facial soft tissue deformation following osteotomy is associated with the corresponding biomechanical characteristics of bone and soft tissues. However, none of the methods devised to predict soft tissue deformation after osteotomy incorporates population-based statistical data. The aim of this study is to establish a statistical model to describe the relationship between biomechanical characteristics and soft tissue deformation after osteotomy. We proposed an incremental kernel ridge regression (IKRR) model to accomplish this goal. The input of the model is the biomechanical information computed by the Finite Element Method (FEM). The output is the soft tissue deformation generated from the paired pre-operative and post-operative 3D images. The model is adjusted incrementally with each new patient's biomechanical information. Therefore, the IKRR model enables us to predict potential soft tissue deformations for new patient by using both biomechanical and statistical information. The integration of these two types of data is critically important for accurate simulations of soft-tissue changes after surgery. The proposed method was evaluated by leave-one-out cross-validation using data from 11 patients. The average prediction error of our model (0.9103mm) was lower than some state-of-the-art algorithms. This model is promising as a reliable way to prevent the risk of facial distortion after craniomaxillofacial surgery. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Phase and amplitude beam shaping with two deformable mirrors implementing input plane and Fourier plane phase modifications.

    Science.gov (United States)

    Wu, Chensheng; Ko, Jonathan; Rzasa, John R; Paulson, Daniel A; Davis, Christopher C

    2018-03-20

    We find that ideas in optical image encryption can be very useful for adaptive optics in achieving simultaneous phase and amplitude shaping of a laser beam. An adaptive optics system with simultaneous phase and amplitude shaping ability is very desirable for atmospheric turbulence compensation. Atmospheric turbulence-induced beam distortions can jeopardize the effectiveness of optical power delivery for directed-energy systems and optical information delivery for free-space optical communication systems. In this paper, a prototype adaptive optics system is proposed based on a famous image encryption structure. The major change is to replace the two random phase plates at the input plane and Fourier plane of the encryption system, respectively, with two deformable mirrors that perform on-demand phase modulations. A Gaussian beam is used as an input to replace the conventional image input. We show through theory, simulation, and experiments that the slightly modified image encryption system can be used to achieve arbitrary phase and amplitude beam shaping within the limits of stroke range and influence function of the deformable mirrors. In application, the proposed technique can be used to perform mode conversion between optical beams, generate structured light signals for imaging and scanning, and compensate atmospheric turbulence-induced phase and amplitude beam distortions.

  12. Deformation and fatigue behaviors of carburized automotive gear steel and predictions

    Directory of Open Access Journals (Sweden)

    Bonglae Jo

    2016-07-01

    Full Text Available The fatigue behavior of carburized components such as automotive transmission gears is very complex due to hardness and microstructure difference, residual stresses and multi-axial stress states developed between the case and the core. In addition, automotive gears in service, commonly used in helical type, are actually subjected to complex stress conditions such as bending, torsion, and contact stress states. This study presents experimental and analytical results on deformation behavior of carburized steels, widely used in automotive gears, under cyclic stress conditions including axial and torsion loadings. Axial fatigue tests and rotating bending fatigue tests are also included. Predictions of cyclic deformation and fatigue behaviors of the carburized steel with two-layer model are compared with experimental results. The carburized steel investigated in this study exhibited cyclic softening under both axial loading and torsional loading. Predicted results with simple two-layer model for the cyclic deformation and fatigue behaviors were comparatively similar to the experimental data.

  13. Recent Methodologies for Creep Deformation Analysis and Its Life Prediction

    International Nuclear Information System (INIS)

    Kim, Woo-Gon; Park, Jae-Young; Iung

    2016-01-01

    To design the high-temperature creeping materials, various creep data are needed for codification, as follows: i) stress vs. creep rupture time for base metals and weldments (average and minimum), ii) stress vs. time to 1% total strain (average), iii) stress vs. time to onset of tertiary creep (minimum), and iv) constitutive eqns. for conducting time- and temperature- dependent stress-strain (average), and v) isochronous stress-strain curves (average). Also, elevated temperature components such as those used in modern power generation plant are designed using allowable stress under creep conditions. The allowable stress is usually estimated on the basis of up to 10 5 h creep rupture strength at the operating temperature. The master curve of the “sinh” function was found to have a wider acceptance with good flexibility in the low stress ranges beyond the experimental data. The proposed multi-C method in the LM parameter revealed better life prediction than a single-C method. These improved methodologies can be utilized to accurately predict the long-term creep life or strength of Gen-IV nuclear materials which are designed for life span of 60 years

  14. Study of the onset of deformation and shape coexistence in $^{46}$Ar via the inverse kinematics ($t,p$) reaction

    CERN Multimedia

    Reiter, P; Blazhev, A A; Nardelli, S; Stora, T; Tengborn, E A; Kruecken, R; Voulot, D; Korten, W; Srebrny, J; Clement, E; Lo bianco, G; Sorlin, O H; Habs, D; Fraile prieto, L M; Chapman, R; Nilsson, T; Diriken, J V J; Jenkins, D G; Wady, P T; Kroell, T; Patronis, N; Angus, L J; Iwanicki, J S

    We plan to study states in $^{46}$ Ar via the (t,p) two-neutron transfer reaction in inverse kinematics in order to identify and characterize excited states and to gain insights into the onset of deformation and the possible occurrence of shape-coexistence in this region where the N = 28 shell closure may be weakening. The experiment will be performed using accelerated beams from REX-ISOLDE and the T-REX particle detector set-up inside MINIBALL. We request a total of 30 shifts + 3 shifts for beam commissioning.

  15. Statistical shape model reconstruction with sparse anomalous deformations: Application to intervertebral disc herniation.

    Science.gov (United States)

    Neubert, Aleš; Fripp, Jurgen; Engstrom, Craig; Schwarz, Daniel; Weber, Marc-André; Crozier, Stuart

    2015-12-01

    Many medical image processing techniques rely on accurate shape modeling of anatomical features. The presence of shape abnormalities challenges traditional processing algorithms based on strong morphological priors. In this work, a sparse shape reconstruction from a statistical shape model is presented. It combines the advantages of traditional statistical shape models (defining a 'normal' shape space) and previously presented sparse shape composition (providing localized descriptors of anomalies). The algorithm was incorporated into our image segmentation and classification software. Evaluation was performed on simulated and clinical MRI data from 22 sciatica patients with intervertebral disc herniation, containing 35 herniated and 97 normal discs. Moderate to high correlation (R=0.73) was achieved between simulated and detected herniations. The sparse reconstruction provided novel quantitative features describing the herniation morphology and MRI signal appearance in three dimensions (3D). The proposed descriptors of local disc morphology resulted to the 3D segmentation accuracy of 1.07±1.00mm (mean absolute vertex-to-vertex mesh distance over the posterior disc region), and improved the intervertebral disc classification from 0.888 to 0.931 (area under receiver operating curve). The results show that the sparse shape reconstruction may improve computer-aided diagnosis of pathological conditions presenting local morphological alterations, as seen in intervertebral disc herniation. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.

  16. Prediction method of seismic residual deformation of caisson quay wall in liquefied foundation

    Science.gov (United States)

    Wang, Li-Yan; Liu, Han-Long; Jiang, Peng-Ming; Chen, Xiang-Xiang

    2011-03-01

    The multi-spring shear mechanism plastic model in this paper is defined in strain space to simulate pore pressure generation and development in sands under cyclic loading and undrained conditions, and the rotation of principal stresses can also be simulated by the model with cyclic behavior of anisotropic consolidated sands. Seismic residual deformations of typical caisson quay walls under different engineering situations are analyzed in detail by the plastic model, and then an index of liquefaction extent is applied to describe the regularity of seismic residual deformation of caisson quay wall top under different engineering situations. Some correlated prediction formulas are derived from the results of regression analysis between seismic residual deformation of quay wall top and extent of liquefaction in the relative safety backfill sand site. Finally, the rationality and the reliability of the prediction methods are validated by test results of a 120 g-centrifuge shaking table, and the comparisons show that some reliable seismic residual deformation of caisson quay can be predicted by appropriate prediction formulas and appropriate index of liquefaction extent.

  17. Shape Recovery of Elastic Red Blood Cells from Shear Flow Induced Deformation in Three Dimensions

    Science.gov (United States)

    Peng, Yan; Gounley, John

    2015-11-01

    Red blood cells undergo substantial shape changes in vivo. Modeled as an elastic capsule, the shape recovery of a three dimensional biconcave capsule from shear flow is studied for different preferred elastic and bending configuration. The fluid-structure interaction is modeled using the multiple-relaxation time lattice Boltzmann (LBM) and immersed boundary (IBM) methods. Based on the studies of the limited shape memory observed in three dimensions, the shape recovery is caused by the preferred elastic configuration, at least when paired with a constant spontaneous curvature. For these capsules, the incompleteness of the shape recovery observed precludes any conjecture about whether a single or multiple phase(s) are necessary to describe the recovery process. Longer simulations and a more stable methodology will be necessary. Y. Peng acknowledges support from Old Dominion University Research Foundation Grant #503921 and National Science Foundation Grant DMS-1319078.

  18. Droplet Deformation Prediction with the Droplet Deormation and Break Up Model (DDB)

    Science.gov (United States)

    Vargas, Mario

    2012-01-01

    The Droplet Deformation and Breakup Model was used to predict deformation of droplets approaching the leading edge stagnation line of an airfoil. The quasi-steady model was solved for each position along the droplet path. A program was developed to solve the non-linear, second order, ordinary differential equation that governs the model. A fourth order Runge-Kutta method was used to solve the equation. Experimental slip velocities from droplet breakup studies were used as input to the model which required slip velocity along the particle path. The center of mass displacement predictions were compared to the experimental measurements from the droplet breakup studies for droplets with radii in the range of 200 to 700 mm approaching the airfoil at 50 and 90 m/sec. The model predictions were good for the displacement of the center of mass for small and medium sized droplets. For larger droplets the model predictions did not agree with the experimental results.

  19. A novel laser air puff and shape profile method for predicting tenderness of broiler breast meat.

    Science.gov (United States)

    Lee, Y S; Owens, C M; Meullenet, J F

    2008-07-01

    The potential application of a new laser air puff system to assess poultry meat tenderness was investigated. Ninety broilers were deboned at either 1.25, 4, or 24 h postmortem. The raw breast fillets were scanned on a conveyor belt longitudinally by a laser distance sensor to obtain overall shape profiles and scanned again with a pressurized source of air (206.8 kPa). The 2 resulting profiles were superimposed to quantify the amount of deformation caused by the application of pressurized air. Five parameters including a height and length of each fillet were calculated and used to establish a model to predict tenderness. Tenderness of cooked fillets was determined instrumentally with the Meullenet-Owens razor shear, Blunt-Meullenet-Owens razor shear, and with sensory analysis. Hardness, Meullenet-Owens razor shear energy, and Blunt-Meullenet-Owens razor shear energy were modeled with the parameters extracted from the air puff system. Predicted values obtained from the models and observed values of individual fillets were subjected to logistic regression to classify fillets into tenderness levels. Tender fillets in the air puff predicted tender group represented 82, 81, and 88% based on hardness, Meullenet-Owens razor shear energy, and Blunt-Meullenet-Owens razor shear energy, respectively. The use of this tool resulted in more than a 20% improvement in the number of tender fillets after classification. The results suggested that this new system could potentially be implemented as an online tool for sorting poultry breast fillets by tenderness levels.

  20. Field-shape imperfections of the CERN-LHC dipole arising from mechanical deformations and component tolerances

    CERN Document Server

    AUTHOR|(CDS)2107593; Ferracin, P; Fessia, P; Todesco, Ezio

    1998-01-01

    The stability of the geometry of the superconducting coils is essential to the field homogeneity of the LHC dipole magnets. Mechanical stresses during coil assembly, thermal stresses during cool-down and electromagnetic stresses during operation are the source of deformations of the coil geometry. Additional sources of field-shape errors are the dimensional tolerances of the magnet components and of the manufacturing and assembly tooling. To provide a realistic evaluation of the field-shape imperfections of the LHC dipoles arising from the above effects, appropriate finite-element computations were carried out to model the dipole cross-section in presence of stresses and a first statistical simulation of the effect of the manufacturing tolerances was performed as well.

  1. Genomic prediction of biological shape: elliptic Fourier analysis and kernel partial least squares (PLS regression applied to grain shape prediction in rice (Oryza sativa L..

    Directory of Open Access Journals (Sweden)

    Hiroyoshi Iwata

    Full Text Available Shape is an important morphological characteristic both in animals and plants. In the present study, we examined a method for predicting biological contour shapes based on genome-wide marker polymorphisms. The method is expected to contribute to the acceleration of genetic improvement of biological shape via genomic selection. Grain shape variation observed in rice (Oryza sativa L. germplasms was delineated using elliptic Fourier descriptors (EFDs, and was predicted based on genome-wide single nucleotide polymorphism (SNP genotypes. We applied four methods including kernel PLS (KPLS regression for building a prediction model of grain shape, and compared the accuracy of the methods via cross-validation. We analyzed multiple datasets that differed in marker density and sample size. Datasets with larger sample size and higher marker density showed higher accuracy. Among the four methods, KPLS showed the highest accuracy. Although KPLS and ridge regression (RR had equivalent accuracy in a single dataset, the result suggested the potential of KPLS for the prediction of high-dimensional EFDs. Ordinary PLS, however, was less accurate than RR in all datasets, suggesting that the use of a non-linear kernel was necessary for accurate prediction using the PLS method. Rice grain shape can be predicted accurately based on genome-wide SNP genotypes. The proposed method is expected to be useful for genomic selection in biological shape.

  2. Predicting the Feasibility of Correcting Mechanical Axis in Large Varus Deformities With Unicompartmental Knee Arthroplasty.

    Science.gov (United States)

    Kleeblad, Laura J; van der List, Jelle P; Pearle, Andrew D; Fragomen, Austin T; Rozbruch, S Robert

    2018-02-01

    Due to disappointing historical outcomes of unicompartmental knee arthroplasty (UKA), Kozinn and Scott proposed strict selection criteria, including preoperative varus alignment of ≤15°, to improve the outcomes of UKA. No studies to date, however, have assessed the feasibility of correcting large preoperative varus deformities with UKA surgery. The study goals were therefore to (1) assess to what extent patients with large varus deformities could be corrected and (2) determine radiographic parameters to predict sufficient correction. In 200 consecutive robotic-arm assisted medial UKA patients with large preoperative varus deformities (≥7°), the mechanical axis angle (MAA) and joint line convergence angle (JLCA) were measured on hip-knee-ankle radiographs. It was assessed what number of patients were corrected to optimal (≤4°) and acceptable (5°-7°) alignment, and whether the feasibility of this correction could be predicted using an estimated MAA (eMAA, preoperative MAA-JLCA) using regression analyses. Mean preoperative MAA was 10° of varus (range, 7°-18°), JLCA was 5° (1°-12°), postoperative MAA was 4° of varus (-3° to 8°), and correction was 6° (1°-14°). Postoperative optimal alignment was achieved in 62% and acceptable alignment in 36%. The eMAA was a significant predictor for optimal postoperative alignment, when corrected for age and gender (P varus deformities (7°-18°) could be considered candidates for medial UKA, as 98% was corrected to optimal or acceptable alignment, although cautious approach is needed in deformities >15°. Furthermore, it was noted that the feasibility of achieving optimal alignment could be predicted using the preoperative MAA, JLCA, and age. Published by Elsevier Inc.

  3. All you need is shape: Predicting shear banding in sand with LS-DEM

    Science.gov (United States)

    Kawamoto, Reid; Andò, Edward; Viggiani, Gioacchino; Andrade, José E.

    2018-02-01

    This paper presents discrete element method (DEM) simulations with experimental comparisons at multiple length scales-underscoring the crucial role of particle shape. The simulations build on technological advances in the DEM furnished by level sets (LS-DEM), which enable the mathematical representation of the surface of arbitrarily-shaped particles such as grains of sand. We show that this ability to model shape enables unprecedented capture of the mechanics of granular materials across scales ranging from macroscopic behavior to local behavior to particle behavior. Specifically, the model is able to predict the onset and evolution of shear banding in sands, replicating the most advanced high-fidelity experiments in triaxial compression equipped with sequential X-ray tomography imaging. We present comparisons of the model and experiment at an unprecedented level of quantitative agreement-building a one-to-one model where every particle in the more than 53,000-particle array has its own avatar or numerical twin. Furthermore, the boundary conditions of the experiment are faithfully captured by modeling the membrane effect as well as the platen displacement and tilting. The results show a computational tool that can give insight into the physics and mechanics of granular materials undergoing shear deformation and failure, with computational times comparable to those of the experiment. One quantitative measure that is extracted from the LS-DEM simulations that is currently not available experimentally is the evolution of three dimensional force chains inside and outside of the shear band. We show that the rotations on the force chains are correlated to the rotations in stress principal directions.

  4. A Difference Scheme with Autocontrol Artificial Viscosity to Predict Ablated Nosetip Shape

    Science.gov (United States)

    1989-09-29

    I FTD-ID(RS)T-0640-89 U) (0 FOREIGN TECHNOLOGY DIVISION A DIFFERENCE SCHEME WITH AUTOCONTROL ARTIFICIAL VISCOSITY TO PREDICT ABLATED NOSETIP SHAPE by...September 1989 MICROFICHE NR: FTD-89-C-000800 A DIFFERENCE SCHEME WITH AUTOCONTROL ARTIFICIAL VISCOSITY TO PREDICT ABLATED NOSETIP SHAPE By: Yang Maozhao...DIFFERENCE SCHEME WITH AUTOCONTROL ARTIFICIAL VISCOSITY TO PREDICT ABLATED NOSETIP SHAPE Yang Maozhao (China Aerodynamic Research and Development Centre

  5. Shape Signatures: New Descriptors for Predicting Cardiotoxicity In Silico

    OpenAIRE

    Chekmarev, Dmitriy S.; Kholodovych, Vladyslav; Balakin, Konstantin V.; Ivanenkov, Yan; Ekins, Sean; Welsh, William J.

    2008-01-01

    Shape Signatures is a new computational tool that is being evaluated for applications in computational toxicology and drug discovery. The method employs a customized ray-tracing algorithm to explore the volume enclosed by the surface of a molecule and then uses the output to construct compact histograms (i.e., signatures) that encode for molecular shape and polarity. In the present study, we extend the application of the Shape Signatures methodology to the domain of computational models for c...

  6. Asymmetric Deformation of Bubble Shape: Cause or Effect of Vortex-Shedding?

    Czech Academy of Sciences Publication Activity Database

    Wichterle, K.; Večeř, M.; Růžička, Marek

    2014-01-01

    Roč. 68, č. 1 (2014), s. 74-79 ISSN 0366-6352 R&D Projects: GA ČR GA104/07/1110 Grant - others:GA MŠMT(CZ) CZ.1.05/2.1.00/03.0082 Institutional support: RVO:67985858 Keywords : bubble * bubble shape * bubble velocity Subject RIV: CI - Industrial Chemistry , Chemical Engineering Impact factor: 1.468, year: 2014

  7. Predicting welding distortion in a panel structure with longitudinal stiffeners using inherent deformations obtained by inverse analysis method.

    Science.gov (United States)

    Liang, Wei; Murakawa, Hidekazu

    2014-01-01

    Welding-induced deformation not only negatively affects dimension accuracy but also degrades the performance of product. If welding deformation can be accurately predicted beforehand, the predictions will be helpful for finding effective methods to improve manufacturing accuracy. Till now, there are two kinds of finite element method (FEM) which can be used to simulate welding deformation. One is the thermal elastic plastic FEM and the other is elastic FEM based on inherent strain theory. The former only can be used to calculate welding deformation for small or medium scale welded structures due to the limitation of computing speed. On the other hand, the latter is an effective method to estimate the total welding distortion for large and complex welded structures even though it neglects the detailed welding process. When the elastic FEM is used to calculate the welding-induced deformation for a large structure, the inherent deformations in each typical joint should be obtained beforehand. In this paper, a new method based on inverse analysis was proposed to obtain the inherent deformations for weld joints. Through introducing the inherent deformations obtained by the proposed method into the elastic FEM based on inherent strain theory, we predicted the welding deformation of a panel structure with two longitudinal stiffeners. In addition, experiments were carried out to verify the simulation results.

  8. Regional Longitudinal Deformation Improves Prediction of Ventricular Tachyarrhythmias in Patients With Heart Failure With Reduced Ejection Fraction

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Knappe, Dorit; Pouleur, Anne-Catherine

    2017-01-01

    BACKGROUND: Left ventricular dysfunction is a known predictor of ventricular arrhythmias. We hypothesized that measures of regional longitudinal deformation by speckle-tracking echocardiography predict ventricular tachyarrhythmias and provide incremental prognostic information over clinical and c...

  9. Bayesian Methods for Predicting the Shape of Chinese Yam in Terms of Key Diameters

    Directory of Open Access Journals (Sweden)

    Mitsunori Kayano

    2017-01-01

    Full Text Available This paper proposes Bayesian methods for the shape estimation of Chinese yam (Dioscorea opposita using a few key diameters of yam. Shape prediction of yam is applicable to determining optimal cutoff positions of a yam for producing seed yams. Our Bayesian method, which is a combination of Bayesian estimation model and predictive model, enables automatic, rapid, and low-cost processing of yam. After the construction of the proposed models using a sample data set in Japan, the models provide whole shape prediction of yam based on only a few key diameters. The Bayesian method performed well on the shape prediction in terms of minimizing the mean squared error between measured shape and the prediction. In particular, a multiple regression method with key diameters at two fixed positions attained the highest performance for shape prediction. We have developed automatic, rapid, and low-cost yam-processing machines based on the Bayesian estimation model and predictive model. Development of such shape prediction approaches, including our Bayesian method, can be a valuable aid in reducing the cost and time in food processing.

  10. Evaluating the quality of SHAPE data simulated by k-mers for RNA structure prediction.

    Science.gov (United States)

    Montaseri, Soheila; Zare-Mirakabad, Fatemeh; Ganjtabesh, Mohammad

    2017-12-01

    Finding an effective measure to predict a more accurate RNA secondary structure is a challenging problem. In the last decade, an experimental method, known as selective [Formula: see text]-hydroxyl acylation analyzed by primer extension (SHAPE), was proposed to measure the tendency of forming a base pair for almost all nucleotides in an RNA sequence. These SHAPE reactivities are then utilized to improve the accuracy of RNA structure prediction. Due to a significant impact of SHAPE reactivity and in order to reduce the experimental costs, we propose a new model called HL-k-mer. This model simulates the SHAPE reactivity for each nucleotide in an RNA sequence. This is done by fetching the SHAPE reactivities for all sub-sequences of length k (k-mers) appearing in helix and loop regions. For evaluating the quality of simulated SHAPE data, ESD-Fold method is used based on the SHAPE data simulated by the HL-k-mer model ([Formula: see text]). Also, for further evaluation of simulated SHAPE data, three different methods are employed. We also extend this model to simulate the SHAPE data for the RNA pseudoknotted structure. The results indicate that the average accuracies of prediction using the SHAPE data simulated by our models (for [Formula: see text]) are higher compared to the experimental SHAPE data.

  11. Thermodynamics of pion gas using states predicted from {kappa}-deformed Poincare algebra

    Energy Technology Data Exchange (ETDEWEB)

    Cordeiro, Claudete E.; Delfino, Antonio; Dey, Jishnu

    1995-02-17

    K-deformed Poincare algebra, which preserves rotational and translational symmetries, can successfully predict the angular and radial excited states of the pion. At high temperature, T these states can be excited in the pion gas, in addition to the usual momentum excitation. We exploit this to look at pion free energy finding it increases linearly with T. The energy per particle and the entropy show evidence of a smooth phase transition after T=0.2 GeV. (author) 18 refs., 5 figs., 2 tabs.; e-mail: gfijdey at vmhpo.uff.br

  12. Spine Shape Predicts Vertebral Fractures in Postmenopausal Women

    DEFF Research Database (Denmark)

    de Bruijne, Marleen; Pettersen, P.C.; A. Ghosh

    2008-01-01

    and mid points of the vertebral end plates of each vertebra from L5 to T4 on digitized lateral radiographs taken at the baseline visit. These points together describe a combination of factors characterizing the spinal shape, including the shape and the size of individual vertebral bodies...... and intervertebral disks, alignment of vertebrae, and spinal curvature. The positions of the points were subsequently used as the input features to train a pattern classification system to discriminate between spines of women maintaining skeletal health and spines sustaining a fracture in the near future...... (regularized linear discriminant analysis). Applied to an annotated X-ray image of an unfractured spine, this classification model then provides a measure of the probability that the spine will develop a fracture. In a leave-one-out experiment, in which the classification models were constructed from...

  13. Fatigue crack shape prediction based on vertex singularity

    Czech Academy of Sciences Publication Activity Database

    Hutař, Pavel; Náhlík, Luboš

    2008-01-01

    Roč. 2, č. 1 (2008), s. 45-52 ISSN 1802-680X R&D Projects: GA ČR GA101/08/1623; GA ČR GP106/06/P239 Institutional research plan: CEZ:AV0Z20410507 Keywords : 3D vertex singularity * crack shape * fatigue crack propagation Subject RIV: JL - Materials Fatigue, Friction Mechanics

  14. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response

    Directory of Open Access Journals (Sweden)

    Li Hu

    2017-10-01

    Full Text Available Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM. Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process.

  15. Multiscale Modeling of Polycrystalline NiTi Shape Memory Alloy under Various Plastic Deformation Conditions by Coupling Microstructure Evolution and Macroscopic Mechanical Response.

    Science.gov (United States)

    Hu, Li; Jiang, Shuyong; Zhou, Tao; Tu, Jian; Shi, Laixin; Chen, Qiang; Yang, Mingbo

    2017-10-13

    Numerical modeling of microstructure evolution in various regions during uniaxial compression and canning compression of NiTi shape memory alloy (SMA) are studied through combined macroscopic and microscopic finite element simulation in order to investigate plastic deformation of NiTi SMA at 400 °C. In this approach, the macroscale material behavior is modeled with a relatively coarse finite element mesh, and then the corresponding deformation history in some selected regions in this mesh is extracted by the sub-model technique of finite element code ABAQUS and subsequently used as boundary conditions for the microscale simulation by means of crystal plasticity finite element method (CPFEM). Simulation results show that NiTi SMA exhibits an inhomogeneous plastic deformation at the microscale. Moreover, regions that suffered canning compression sustain more homogeneous plastic deformation by comparison with the corresponding regions subjected to uniaxial compression. The mitigation of inhomogeneous plastic deformation contributes to reducing the statistically stored dislocation (SSD) density in polycrystalline aggregation and also to reducing the difference of stress level in various regions of deformed NiTi SMA sample, and therefore sustaining large plastic deformation in the canning compression process.

  16. A Gradient-Based Multistart Algorithm for Multimodal Aerodynamic Shape Optimization Problems Based on Free-Form Deformation

    Science.gov (United States)

    Streuber, Gregg Mitchell

    Environmental and economic factors motivate the pursuit of more fuel-efficient aircraft designs. Aerodynamic shape optimization is a powerful tool in this effort, but is hampered by the presence of multimodality in many design spaces. Gradient-based multistart optimization uses a sampling algorithm and multiple parallel optimizations to reliably apply fast gradient-based optimization to moderately multimodal problems. Ensuring that the sampled geometries remain physically realizable requires manually developing specialized linear constraints for each class of problem. Utilizing free-form deformation geometry control allows these linear constraints to be written in a geometry-independent fashion, greatly easing the process of applying the algorithm to new problems. This algorithm was used to assess the presence of multimodality when optimizing a wing in subsonic and transonic flows, under inviscid and viscous conditions, and a blended wing-body under transonic, viscous conditions. Multimodality was present in every wing case, while the blended wing-body was found to be generally unimodal.

  17. RNA secondary structure prediction based on SHAPE data in helix regions.

    Science.gov (United States)

    Lotfi, Mohadeseh; Zare-Mirakabad, Fatemeh; Montaseri, Soheila

    2015-09-07

    RNA molecules play important and fundamental roles in biological processes. Frequently, the functional form of single-stranded RNA molecules requires a specific tertiary structure. Classically, RNA structure determination has mostly been accomplished by X-Ray crystallography or Nuclear Magnetic Resonance approaches. These experimental methods are time consuming and expensive. In the past two decades, some computational methods and algorithms have been developed for RNA secondary structure prediction. In these algorithms, minimum free energy is known as the best criterion. However, the results of algorithms show that minimum free energy is not a sufficient criterion to predict RNA secondary structure. These algorithms need some additional knowledge about the structure, which has to be added in the methods. Recently, the information obtained from some experimental data, called SHAPE, can greatly improve the consistency between the native and predicted RNA secondary structure. In this paper, we investigate the influence of SHAPE data on four types of RNA substructures, helices, loops, base pairs from the start and end of helices and two base pairs from the start and end of helices. The results show that SHAPE data in helix regions can improve the prediction. We represent a new method to apply SHAPE data in helix regions for finding RNA secondary structure. Finally, we compare the results of the method on a set of RNAs to predict minimum free energy structure based on considering all SHAPE data and only SHAPE data in helix regions as pseudo free energy and without SHAPE data (without any pseudo free energy). The results show that RNA secondary structure prediction based on considering only SHAPE data in helix regions is more successful than not considering SHAPE data and it provides competitive results in comparison with considering all SHAPE data. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Spine Shape Predicts Vertebral Fractures in Postmenopausal Women

    DEFF Research Database (Denmark)

    de Bruijne, Marleen; Pettersen, P.C.; A. Ghosh

    2008-01-01

    Early diagnosis and treatment of patients at high risk of developing fragility fractures is crucial in the management of osteoporosis. The purpose of this study was to investigate whether the shape of the spine as can be observed from lateral X-rays is indicative for the risk of future development...... of fragility fractures in the spine. The study included 568 elderly women of whom 455 maintained skeletal integrity during the mean observation period of 4.8 years and 113 sustained at least one vertebral fracture in the same period. At baseline, none of the women had experienced a previous osteoporotic...... fracture, and the two groups were not significantly different in terms of age (66.2 ± 0.2 vs. 66.1 ± 0.4), spine BMD (0.77 ± 0.004 vs. 0.76 ± 0.008), body weight (64.7 ± 0.4 vs. 64.6 ± 0.8), height (160.6 ± 0.3 vs. 161 ± 0.5), and number of years since menopause. A radiologist annotated the corner points...

  19. Evolutionary Algorithm for RNA Secondary Structure Prediction Based on Simulated SHAPE Data.

    Science.gov (United States)

    Montaseri, Soheila; Ganjtabesh, Mohammad; Zare-Mirakabad, Fatemeh

    2016-01-01

    Non-coding RNAs perform a wide range of functions inside the living cells that are related to their structures. Several algorithms have been proposed to predict RNA secondary structure based on minimum free energy. Low prediction accuracy of these algorithms indicates that free energy alone is not sufficient to predict the functional secondary structure. Recently, the obtained information from the SHAPE experiment greatly improves the accuracy of RNA secondary structure prediction by adding this information to the thermodynamic free energy as pseudo-free energy. In this paper, a new method is proposed to predict RNA secondary structure based on both free energy and SHAPE pseudo-free energy. For each RNA sequence, a population of secondary structures is constructed and their SHAPE data are simulated. Then, an evolutionary algorithm is used to improve each structure based on both free and pseudo-free energies. Finally, a structure with minimum summation of free and pseudo-free energies is considered as the predicted RNA secondary structure. Computationally simulating the SHAPE data for a given RNA sequence requires its secondary structure. Here, we overcome this limitation by employing a population of secondary structures. This helps us to simulate the SHAPE data for any RNA sequence and consequently improves the accuracy of RNA secondary structure prediction as it is confirmed by our experiments. The source code and web server of our proposed method are freely available at http://mostafa.ut.ac.ir/ESD-Fold/.

  20. Assessment of T-shape double fascia graft for lower lip deformity from facial paralysis: A questionnaire survey.

    Science.gov (United States)

    Hayashi, Ayato; Yoshizawa, Hidekazu; Natori, Yuhei; Suda, Shunichi; Mochizuki, Mariko; Nishimuta, Yuri; Tanaka, Rica; Mizuno, Hiroshi

    2016-03-01

    There are two main methods to treat lower-lip deformity (LLD) in facial paralysis. The first method is surgical intervention on the side of the paralysis, and the second involves denervating the depressor muscles on the healthy side. It is sometimes difficult for patients to ethically accept the denervating healthy tissue; therefore, we performed the T-shape double fascia graft (TSDFG), which reportedly restores symmetry. In this study, we report our experience with TSDFG and evaluation of the outcomes including the patient questionnaires. Two fascia strips from the thigh, 7 × 70 mm in size, were used; one was grafted horizontally at the lower lip to correct the static position, and the other was grafted obliquely at the lateral side by folding and crossing the horizontal fascia. A total of nine patients were treated by this procedure; three procedures were performed individually and six were performed in combination with another static or reanimation procedure. A questionnaire containing a five-point scoring system for facial appearance in multiple situations and other problems was sent to each patient at least 6 months after the surgery. From the physicians' point of view, all patients achieved an improvement in symmetry of the lower lip, particularly when opening of the mouth; however, assessments from the patients demonstrated much less satisfaction. The main reason for the dissatisfaction was the slight bulkiness of the red lip. There was one comment that noted that with more treatment, the expectations were higher, and, as a result, the patient could not admit satisfaction at the end. TSDFG is a simple and effective procedure for LLD; however, slight modifications may be required. In addition, there were some gaps in the perception of the results between the physicians and patients, and we need to consider these when planning to treat LLD. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All

  1. The shape of the vocabulary predicts the shape of the bias

    Directory of Open Access Journals (Sweden)

    Lynn K Perry

    2011-11-01

    Full Text Available Children acquire attentional biases that help them generalize novel words to novel objects. Researchers have proposed that these biases arise from regularities in the early noun vocabulary children learn and suggest that the specifics of the biases should be tied to the specifics of individual children’s vocabularies. However, evidence supporting this proposal to date comes from studies of group means. The current study examines the relations between the statistics of the nouns young children learn and the similarities and differences in the biases they demonstrate. We show that individual differences in vocabulary structure predict individual differences in novel noun generalization. Thus, these data support the proposal that word-learning biases emerge from the regularities present in individual children’s vocabularies and, importantly, that children’s online attention during an experiment is mediated by instances of past learning.

  2. A Continuum Damage Mechanics Model to Predict Kink-Band Propagation Using Deformation Gradient Tensor Decomposition

    Science.gov (United States)

    Bergan, Andrew C.; Leone, Frank A., Jr.

    2016-01-01

    A new model is proposed that represents the kinematics of kink-band formation and propagation within the framework of a mesoscale continuum damage mechanics (CDM) model. The model uses the recently proposed deformation gradient decomposition approach to represent a kink band as a displacement jump via a cohesive interface that is embedded in an elastic bulk material. The model is capable of representing the combination of matrix failure in the frame of a misaligned fiber and instability due to shear nonlinearity. In contrast to conventional linear or bilinear strain softening laws used in most mesoscale CDM models for longitudinal compression, the constitutive response of the proposed model includes features predicted by detailed micromechanical models. These features include: 1) the rotational kinematics of the kink band, 2) an instability when the peak load is reached, and 3) a nonzero plateau stress under large strains.

  3. Plastic deformation analysis and forming quality prediction of tube NC bending

    Directory of Open Access Journals (Sweden)

    Lu Shiqiang

    2016-10-01

    Full Text Available Plane strain assumption and exponent hardening law are used to investigate the plastic deformation in tube bending. Some theoretical formulae including stress, curvature radius of neutral layer, angle of neutral layer deviation, bending moment, wall thickness variation and cross-section distortion, are developed to explain the phenomena in tube bending and their magnitudes are also determined. During unloading process, the springback angle is deduced using the virtual work principle, and springback radius is also given according to the length of the neutral layer which remains unchanged before and after springback. The theoretical formulae are validated by the experimental results or the validated simulation results in literature, which can be used to quickly predict the forming quality of tube numerical control (NC bending.

  4. Prediction of Thermal and Elastic Properties of Honeycomb Sandwich Plate for Analysis of Thermal Deformation

    International Nuclear Information System (INIS)

    Hong, Seok Min; Lee, Jang Il; Byun, Jae Ki; Choi, Young Don

    2014-01-01

    Thermal problems that are directly related to the lifetime of an electronic device are becoming increasingly important owing to the miniaturization of electronic devices. To solve thermal problems, it is essential to study thermal stability through thermal diffusion and insulation. A honeycomb sandwich plate has anisotropic thermal conductivity. To analyze the thermal deformation and temperature distribution of a system that employs a honeycomb sandwich plate, the thermal and elastic properties need to be determined. In this study, the thermal and elastic properties of a honeycomb sandwich plate, such as thermal conductivity, coefficient of thermal expansion, elastic modulus, Poisson's ratio, and shear modulus, are predicted. The properties of a honeycomb sandwich plate vary according to the hexagon size, thickness, and material properties

  5. Experimental modeling of viscous inclusions in a circular high-strain shear rig: Implications for the interpretation of shape fabrics and deformed enclaves

    Science.gov (United States)

    Piazolo, Sandra; Passchier, Cees W.

    2002-10-01

    Deformation experiments with initially spherical and prolate viscous inclusions suspended in a viscous Newtonian matrix in a circular high strain annular shear rig provide insights on the shape development of inclusions in high strain shear zones during progressive deformation. Inclusions with a specific viscosity ratio with respect to the matrix material show distinct types of three-dimensional shape development. For instance, at a high viscosity ratio between matrix and inclusion a pulsating ellipsoid develops, which both continuously rotates and changes its shape from a sphere to an ellipsoid and back to a sphere. The experiments show that the shape of an inclusion that has a viscosity different to the matrix material cannot be taken as a reliable indicator for the magnitude or type of finite strain. In naturally formed shear zones, in which strain rates are heterogeneous from boundary to center, viscosity contrast and power law flow will result in a large number of different shape developments trends for inclusions such as mafic and microgranitic enclaves, pebbles or mineral aggregates.

  6. Formulae for predicting non-acoustical parameters of deformed fibrous porous materials.

    Science.gov (United States)

    Hirosawa, Kunikazu; Nakagawa, Hiroshi

    2017-06-01

    Formulae to predict non-acoustical parameters (i.e., flow resistivity, tortuosity, and viscous and thermal characteristic lengths) of deformed fibrous porous materials are proposed provided that the original values of these parameters are known in advance. These formulae are developed using numerical fluid analyses. The flow resistivity was calculated by using the finite element method for a two-dimensional incompressible viscous fluid approximated by Oseen flow. The tortuosity and characteristic lengths were calculated by using the complex variable boundary element method for a two-dimensional potential flow. These calculations showed that the flow resistivity was inversely proportional to the porosity multiplied by the three-halves power of the compression ratio, that the tortuosity can be represented by a linear expression of the porosity, and that both characteristic lengths changed in the same manner with respect to the porosity. These tendencies agreed well with measurements of real glass wools of various bulk densities. The proposed prediction formulae for the parameters were then derived from the tendencies obtained from the numerical analyses. The predicted parameter values were compared with the calculated parameters and good agreement was obtained, confirming the validity of the proposed formulae.

  7. Global cortical activity predicts shape of hand during grasping

    Science.gov (United States)

    Agashe, Harshavardhan A.; Paek, Andrew Y.; Zhang, Yuhang; Contreras-Vidal, José L.

    2015-01-01

    Recent studies show that the amplitude of cortical field potentials is modulated in the time domain by grasping kinematics. However, it is unknown if these low frequency modulations persist and contain enough information to decode grasp kinematics in macro-scale activity measured at the scalp via electroencephalography (EEG). Further, it is unclear as to whether joint angle velocities or movement synergies are the optimal kinematics spaces to decode. In this offline decoding study, we infer from human EEG, hand joint angular velocities as well as synergistic trajectories as subjects perform natural reach-to-grasp movements. Decoding accuracy, measured as the correlation coefficient (r) between the predicted and actual movement kinematics, was r = 0.49 ± 0.02 across 15 hand joints. Across the first three kinematic synergies, decoding accuracies were r = 0.59 ± 0.04, 0.47 ± 0.06, and 0.32 ± 0.05. The spatial-temporal pattern of EEG channel recruitment showed early involvement of contralateral frontal-central scalp areas followed by later activation of central electrodes over primary sensorimotor cortical areas. Information content in EEG about the grasp type peaked at 250 ms after movement onset. The high decoding accuracies in this study are significant not only as evidence for time-domain modulation in macro-scale brain activity, but for the field of brain-machine interfaces as well. Our decoding strategy, which harnesses the neural “symphony” as opposed to local members of the neural ensemble (as in intracranial approaches), may provide a means of extracting information about motor intent for grasping without the need for penetrating electrodes and suggests that it may be soon possible to develop non-invasive neural interfaces for the control of prosthetic limbs. PMID:25914616

  8. SU-E-I-21: Deformation Mapping and Shape Prediction with 3D Tumor Volume Morphing

    Energy Technology Data Exchange (ETDEWEB)

    Mao, S; Wu, H; Fang, S [Indiana University-Purdue University, Indianapolis, IN (United States); Lu, M [PerkinElmer Medical Imaging, Santa Clara, CA (United States)

    2014-06-01

    Purpose: To compare projection-based versus global correction that compensate for deadtime count loss in SPECT/CT images. Methods: SPECT/CT images of an IEC phantom (2.3GBq 99mTc) with ∼10% deadtime loss containing the 37mm (uptake 3), 28 and 22mm (uptake 6) spheres were acquired using a 2 detector SPECT/CT system with 64 projections/detector and 15 s/projection. The deadtime, Ti and the true count rate, Ni at each projection, i was calculated using the monitor-source method. Deadtime corrected SPECT were reconstructed twice: (1) with projections that were individually-corrected for deadtime-losses; and (2) with original projections with losses and then correcting the reconstructed SPECT images using a scaling factor equal to the inverse of the average fractional loss for 5 projections/detector. For both cases, the SPECT images were reconstructed using OSEM with attenuation and scatter corrections. The two SPECT datasets were assessed by comparing line profiles in xyplane and z-axis, evaluating the count recoveries, and comparing ROI statistics. Higher deadtime losses (up to 50%) were also simulated to the individually corrected projections by multiplying each projection i by exp(-a*Ni*Ti), where a is a scalar. Additionally, deadtime corrections in phantoms with different geometries and deadtime losses were also explored. The same two correction methods were carried for all these data sets. Results: Averaging the deadtime losses in 5 projections/detector suffices to recover >99% of the loss counts in most clinical cases. The line profiles (xyplane and z-axis) and the statistics in the ROIs drawn in the SPECT images corrected using both methods showed agreement within the statistical noise. The count-loss recoveries in the two methods also agree within >99%. Conclusion: The projection-based and the global correction yield visually indistinguishable SPECT images. The global correction based on sparse sampling of projections losses allows for accurate SPECT deadtime loss correction while keeping the study duration reasonable.

  9. Design and Fabrication of a Large-Stroke Deformable Mirror Using a Gear-Shape Ionic-Conductive Polymer Metal Composite

    Directory of Open Access Journals (Sweden)

    Guo-Dung John Su

    2012-08-01

    Full Text Available Conventional camera modules with image sensors manipulate the focus or zoom by moving lenses. Although motors, such as voice-coil motors, can move the lens sets precisely, large volume, high power consumption, and long moving time are critical issues for motor-type camera modules. A deformable mirror (DM provides a good opportunity to improve these issues. The DM is a reflective type optical component which can alter the optical power to focus the lights on the two dimensional optical image sensors. It can make the camera system operate rapidly. Ionic polymer metal composite (IPMC is a promising electro-actuated polymer material that can be used in micromachining devices because of its large deformation with low actuation voltage. We developed a convenient simulation model based on Young’s modulus and Poisson’s ratio. We divided an ion exchange polymer, also known as Nafion®, into two virtual layers in the simulation model: one was expansive and the other was contractive, caused by opposite constant surface forces on each surface of the elements. Therefore, the deformation for different IPMC shapes can be described more easily. A standard experiment of voltage vs. tip displacement was used to verify the proposed modeling. Finally, a gear shaped IPMC actuator was designed and tested. Optical power of the IPMC deformable mirror is experimentally demonstrated to be 17 diopters with two volts. The needed voltage was about two orders lower than conventional silicon deformable mirrors and about one order lower than the liquid lens.

  10. Early echocardiographic deformation analysis for the prediction of sudden cardiac death and life-threatening arrhythmias after myocardial infarction

    DEFF Research Database (Denmark)

    Ersbøll, Mads; Valeur, Nana; Andersen, Mads Jønsson

    2013-01-01

    This study sought to hypothesize that global longitudinal strain (GLS) as a measure of infarct size, and mechanical dispersion (MD) as a measure of myocardial deformation heterogeneity, would be of incremental importance for the prediction of sudden cardiac death (SCD) or malignant ventricular...

  11. Shape Memory Characteristics of Ti(sub 49.5)Ni(sub 25)Pd(sub 25)Sc(sub 0.5) High-Temperature Shape Memory Alloy After Severe Plastic Deformation

    Science.gov (United States)

    Atli, K. C.; Karaman, I.; Noebe, R. D.; Garg, A.; Chumlyakov, Y. I.; Kireeva, I. V.

    2011-01-01

    A Ti(49.5)Ni25Pd25Sc(0.5) high-temperature shape memory alloy is thermomechanically processed to obtain enhanced shape-memory characteristics: in particular, dimensional stability upon repeated thermal cycles under constant loads. This is accomplished using severe plastic deformation via equal channel angular extrusion (ECAE) and post-processing annealing heat treatments. The results of the thermomechanical experiments reveal that the processed materials display enhanced shape memory response, exhibiting higher recoverable transformation and reduced irrecoverable strain levels upon thermal cycling compared with the unprocessed material. This improvement is attributed to the increased strength and resistance of the material against defect generation upon phase transformation as a result of the microstructural refinement due to the ECAE process, as supported by the electron microscopy observations.

  12. Part I: $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with astatine beams; Part II: Delineating the island of deformation in the light gold isotopes by means of laser spectroscopy

    CERN Document Server

    Andreyev, Andrei

    2013-01-01

    Part I: $\\beta$-delayed fission, laser spectroscopy and shape-coexistence studies with astatine beams; Part II: Delineating the island of deformation in the light gold isotopes by means of laser spectroscopy

  13. Left ventricular deformation at rest predicts exercise-induced elevation in pulmonary artery wedge pressure in patients with unexplained dyspnoea

    DEFF Research Database (Denmark)

    Biering-Sørensen, Tor; Santos, Mário; Rivero, Jose

    2017-01-01

    AIMS: Impaired left ventricular (LV) deformation despite preserved LV ejection fraction (LVEF) is common and predicts outcomes in heart failure with preserved LVEF. We hypothesized that impaired LV deformation at rest is a marker of impaired cardiac systolic and diastolic reserve, and aimed...... referred for evaluation of dyspnoea. All patients underwent rest echocardiography followed by right heart catheterization and cardiopulmonary exercise testing with concomitant invasive haemodynamic monitoring. The LS, CS and CS/LS ratio were measured by two-dimensional speckle-tracking echocardiography...

  14. Microstructural investigation on marforming and conventional cold deformation in Ni-Ti-Fe-based shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Ritwik; Szpunar, Jerzy; Eskandari, Mostafa; Mohtadi-Bonab, M.A. [Univ. Saskatchewan, Dept. of Mechanical Engineering, Saskatoon (Canada)

    2015-08-15

    A hot-rolled Ni-Ti-Fe alloy was subjected to 50% cold rolling by laboratory rolling mill and was subsequently annealed at 800 C for 1.5 h. This sample was then deformed through another 10% reduction in thickness by two different routes (i) conventional cold rolling and (ii) marforming (rolling in liquid nitrogen) followed by annealing under identical conditions. The grain refinement during normal cold rolling was attributed to relatively large presence of dislocations in the ND // left angle 110 right angle grains in the starting microstructure. The regions of higher dislocation densities became gradually textured to ND // left angle 111 right angle orientation, with cold rolling. Marforming (deformation in liquid nitrogen following phase transformation) on the other hand led to more significant grain refinement and also change in the bulk texture. The objective of this study was to compare the grain refinement and microstructural modification produced through marforming with that obtained in conventional cold deformation.

  15. Prospective evaluation of shape similarity based pose prediction method in D3R Grand Challenge 2015.

    Science.gov (United States)

    Kumar, Ashutosh; Zhang, Kam Y J

    2016-09-01

    Evaluation of ligand three-dimensional (3D) shape similarity is one of the commonly used approaches to identify ligands similar to one or more known active compounds from a library of small molecules. Apart from using ligand shape similarity as a virtual screening tool, its role in pose prediction and pose scoring has also been reported. We have recently developed a method that utilizes ligand 3D shape similarity with known crystallographic ligands to predict binding poses of query ligands. Here, we report the prospective evaluation of our pose prediction method through the participation in drug design data resource (D3R) Grand Challenge 2015. Our pose prediction method was used to predict binding poses of heat shock protein 90 (HSP90) and mitogen activated protein kinase kinase kinase kinase (MAP4K4) ligands and it was able to predict the pose within 2 Å root mean square deviation (RMSD) either as the top pose or among the best of five poses in a majority of cases. Specifically for HSP90 protein, a median RMSD of 0.73 and 0.68 Å was obtained for the top and the best of five predictions respectively. For MAP4K4 target, although the median RMSD for our top prediction was only 2.87 Å but the median RMSD of 1.67 Å for the best of five predictions was well within the limit for successful prediction. Furthermore, the performance of our pose prediction method for HSP90 and MAP4K4 ligands was always among the top five groups. Particularly, for MAP4K4 protein our pose prediction method was ranked number one both in terms of mean and median RMSD when the best of five predictions were considered. Overall, our D3R Grand Challenge 2015 results demonstrated that ligand 3D shape similarity with the crystal ligand is sufficient to predict binding poses of new ligands with acceptable accuracy.

  16. A unified spray forming model for the prediction of billet shape geometry

    DEFF Research Database (Denmark)

    Hattel, Jesper; Pryds, Nini

    2004-01-01

    In the present work a unified model for simulating the spray forming process has been developed. Models for the atomization and the deposition processes have been coupled together in order to obtain a new unified description of the spray forming process. The model is able to predict the shape and...

  17. Wafer-shape based in-plane distortion predictions using superfast 4G metrology

    Science.gov (United States)

    van Dijk, Leon; Mileham, Jeffrey; Malakhovsky, Ilja; Laidler, David; Dekkers, Harold; Van Elshocht, Sven; Anberg, Doug; Owen, David M.; van Haren, Richard

    2017-03-01

    With the latest immersion scanners performing at the sub-2 nm overlay level, the non-lithography contributors to the OnProduct-Overlay budget become more and more dominant. Examples of these contributors are etching, thin film deposition, Chemical-Mechanical Planarization and thermal anneal. These processes can introduce stress or stress changes in the thin films on top of the silicon wafers, resulting in significant wafer grid distortions. High-order wafer alignment (HOWA) is the current ASML solution for correcting wafers with a high order grid distortion introduced by non-lithographic processes, especially when these distortions vary from wafer-to-wafer. These models are currently successfully applied in high volume production at several semiconductor device manufacturers. An important precondition is that the wafer distortions remain global as the polynomial-based HOWA models become less effective for very local distortions. Wafer-shape based feed forward overlay corrections can be a possible solution to overcome this challenge. Thin film stress typically has an impact on the unclamped, free-form shape of the wafers. When an accurate relationship between the wafer shape and in-plane distortion (IPD) after clamping is established then feedforward overlay control can be enabled. In this work we assess the capability of wafer-shape based IPD predictions via a controlled experiment. The processinduced IPDs are accurately measured on the ASML TWINSCANTM system using its SMASH alignment system and the wafer shapes are measured on the Superfast 4G inspection system. In order to relate the wafer shape to the IPD we have developed a prediction model beyond the standard Stoney approximation. The match between the predicted and measured IPD is excellent ( 1-nm), indicating the feasibility of using wafer shape for feed-forward overlay control.

  18. Development of a preoperative predictive model for major complications following adult spinal deformity surgery.

    Science.gov (United States)

    Scheer, Justin K; Smith, Justin S; Schwab, Frank; Lafage, Virginie; Shaffrey, Christopher I; Bess, Shay; Daniels, Alan H; Hart, Robert A; Protopsaltis, Themistocles S; Mundis, Gregory M; Sciubba, Daniel M; Ailon, Tamir; Burton, Douglas C; Klineberg, Eric; Ames, Christopher P

    2017-06-01

    OBJECTIVE The operative management of patients with adult spinal deformity (ASD) has a high complication rate and it remains unknown whether baseline patient characteristics and surgical variables can predict early complications (intraoperative and perioperative [within 6 weeks]). The development of an accurate preoperative predictive model can aid in patient counseling, shared decision making, and improved surgical planning. The purpose of this study was to develop a model based on baseline demographic, radiographic, and surgical factors that can predict if patients will sustain an intraoperative or perioperative major complication. METHODS This study was a retrospective analysis of a prospective, multicenter ASD database. The inclusion criteria were age ≥ 18 years and the presence of ASD. In total, 45 variables were used in the initial training of the model including demographic data, comorbidities, modifiable surgical variables, baseline health-related quality of life, and coronal and sagittal radiographic parameters. Patients were grouped as either having at least 1 major intraoperative or perioperative complication (COMP group) or not (NOCOMP group). An ensemble of decision trees was constructed utilizing the C5.0 algorithm with 5 different bootstrapped models. Internal validation was accomplished via a 70/30 data split for training and testing each model, respectively. Overall accuracy, the area under the receiver operating characteristic (AUROC) curve, and predictor importance were calculated. RESULTS Five hundred fifty-seven patients were included: 409 (73.4%) in the NOCOMP group, and 148 (26.6%) in the COMP group. The overall model accuracy was 87.6% correct with an AUROC curve of 0.89 indicating a very good model fit. Twenty variables were determined to be the top predictors (importance ≥ 0.90 as determined by the model) and included (in decreasing importance): age, leg pain, Oswestry Disability Index, number of decompression levels, number of

  19. The impact of model prediction error in designing geodetic networks for crustal deformation applications

    Science.gov (United States)

    Murray, J. R.

    2017-12-01

    Earth surface displacements measured at Global Navigation Satellite System (GNSS) sites record crustal deformation due, for example, to slip on faults underground. A primary objective in designing geodetic networks to study crustal deformation is to maximize the ability to recover parameters of interest like fault slip. Given Green's functions (GFs) relating observed displacement to motion on buried dislocations representing a fault, one can use various methods to estimate spatially variable slip. However, assumptions embodied in the GFs, e.g., use of a simplified elastic structure, introduce spatially correlated model prediction errors (MPE) not reflected in measurement uncertainties (Duputel et al., 2014). In theory, selection algorithms should incorporate inter-site correlations to identify measurement locations that give unique information. I assess the impact of MPE on site selection by expanding existing methods (Klein et al., 2017; Reeves and Zhe, 1999) to incorporate this effect. Reeves and Zhe's algorithm sequentially adds or removes a predetermined number of data according to a criterion that minimizes the sum of squared errors (SSE) on parameter estimates. Adapting this method to GNSS network design, Klein et al. select new sites that maximize model resolution, using trade-off curves to determine when additional resolution gain is small. Their analysis uses uncorrelated data errors and GFs for a uniform elastic half space. I compare results using GFs for spatially variable strike slip on a discretized dislocation in a uniform elastic half space, a layered elastic half space, and a layered half space with inclusion of MPE. I define an objective criterion to terminate the algorithm once the next site removal would increase SSE more than the expected incremental SSE increase if all sites had equal impact. Using a grid of candidate sites with 8 km spacing, I find the relative value of the selected sites (defined by the percent increase in SSE that further

  20. Prediction of bulk powder flow performance using comprehensive particle size and particle shape distributions.

    Science.gov (United States)

    Yu, Weili; Muteki, Koji; Zhang, Lin; Kim, Gloria

    2011-01-01

    The purpose of this study is to establish a modeling approach that can be used to predict bulk powder flowability of pharmaceutical materials from their particle size and shape distributions. To build and validate the model, 23 commonly used pharmaceutical excipients and 38 binary blends were fully characterized for their particle size and shape distributions. The particle size and shape of each sample was characterized by multiple descriptors to fully reflect their morphological characteristics. The flow properties of these materials were analyzed using the Schulze Ring Shear Tester at a fixed humidity condition. A partial least squares (PLS) approach was used to build the mathematical model. Several different modeling approaches were attempted and the best method was identified as using a combination of formulation composition and particle size and shape distributions of single-component powder systems. The PLS model was shown to provide excellent predictions of powder flow function coefficient (FFC) of up to approximately 20. The results also revealed that both particle size and shape play an important role in determining the powder flow behavior. Copyright © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  1. Event-related potentials during word mapping to object shape predict toddlers’ vocabulary size

    Directory of Open Access Journals (Sweden)

    Kristina eBorgström

    2015-02-01

    Full Text Available What role does attention to different object properties play in early vocabulary development? This longitudinal study using event-related potentials in combination with behavioral measures investigated 20- and 24-month-olds’ (n = 38; n = 34; overlapping n = 24 ability to use object shape and object part information in word-object mapping. The N400 component was used to measure semantic priming by images containing shape or detail information. At 20 months, the N400 to words primed by object shape varied in topography and amplitude depending on vocabulary size, and these differences predicted productive vocabulary size at 24 months. At 24 months, when most of the children had vocabularies of several hundred words, the relation between vocabulary size and the N400 effect in a shape context was weaker. Detached object parts did not function as word primes regardless of age or vocabulary size, although the part-objects were identified behaviorally. The behavioral measure, however, also showed relatively poor recognition of the part-objects compared to the shape-objects. These three findings provide new support for the link between shape recognition and early vocabulary development.

  2. Event-related potentials during word mapping to object shape predict toddlers' vocabulary size

    Science.gov (United States)

    Borgström, Kristina; Torkildsen, Janne von Koss; Lindgren, Magnus

    2015-01-01

    What role does attention to different object properties play in early vocabulary development? This longitudinal study using event-related potentials in combination with behavioral measures investigated 20- and 24-month-olds' (n = 38; n = 34; overlapping n = 24) ability to use object shape and object part information in word-object mapping. The N400 component was used to measure semantic priming by images containing shape or detail information. At 20 months, the N400 to words primed by object shape varied in topography and amplitude depending on vocabulary size, and these differences predicted productive vocabulary size at 24 months. At 24 months, when most of the children had vocabularies of several hundred words, the relation between vocabulary size and the N400 effect in a shape context was weaker. Detached object parts did not function as word primes regardless of age or vocabulary size, although the part-objects were identified behaviorally. The behavioral measure, however, also showed relatively poor recognition of the part-objects compared to the shape-objects. These three findings provide new support for the link between shape recognition and early vocabulary development. PMID:25762957

  3. Hippocampal shape is predictive for the development of dementia in a normal, elderly population

    DEFF Research Database (Denmark)

    Achterberg, Hakim C.; van der Lijn, Fedde; den Heijer, Tom

    2014-01-01

    assessed whether hippocampal shape provides additional predictive value independent of hippocampal volume. Five hundred eleven brain MRI scans from elderly nondemented participants of a prospective population-based imaging study were used. During the 10-year follow-up period, 52 of these subjects developed...... dementia. For training and evaluation independent of age and gender, a subset of 50 cases and 150 matched controls was selected. The hippocampus was segmented using an automated method. From the segmentation, the volume was determined and a statistical shape model was constructed. We trained a classifier...

  4. Shell structure of octupole deformation

    International Nuclear Information System (INIS)

    Zhang Xizhen; Dong Baoguo

    1992-01-01

    A convenient definition of intrinsic frame of an octupole deformed shape was proposed recently. The octupole deformation potential was expanded on the bases of irreducible representations of group O h . Based on the parameterization given in previous paper, the shell structures of octupole deformation which cover all possible octupole deformed shapes were studied

  5. Use of the Niyama criterion to predict porosity of the mushy zone with deformation

    Directory of Open Access Journals (Sweden)

    S. Polyakov

    2011-10-01

    Full Text Available The article presents new results on the use of the Niyama criterion to estimate porosity appearance in castings under hindered shrinkage. The effect of deformation of the mushy zone on filtration is shown. A new form of the Niyama criterion accounting for the hindered shrinkage and the range of deformation localization has been obtained. The results of this study are illustrated by the examp le of the Niyama criterion calculated for Al-Cu alloys under different diffusion conditions of solidification and rate of deformation in the mushy zone. Derived equations can be used in a mathematical model of the casting solidification as well as for interpretation of the simulation results of casting solidification under hindered shrinkage. The presented study resulted in a new procedure of using the Niyama criterion under mushy zone deformation.

  6. Effect of hydrogen on transformation characteristics and deformation behavior in a Ti-Ni shape memory alloy

    International Nuclear Information System (INIS)

    Hoshiya, Taiji; Ando, Hiroei; Den, Shoji; Katsuta, Hiroshi.

    1992-01-01

    Transformation characteristics and deformation behavior of hydrogenated Ti-50.5 at% Ni alloys, which were occluded in a low pressure range of hydrogen between 1.1 and 78.5 kPa, have been studied by electrical resistivity measurement, tensile test, X-ray diffraction analysis and microstructural observation. M S temperature of the Ti-Ni alloys decreased with an increase in hydrogen content. This corresponds to the stabilization of the parent phase during cooling, which was confirmed by X-ray diffraction: The suppression effect of hydrogen takes place on the martensitic transformation. Critical stress for slip deformation of hydrogenated Ti-Ni alloys changed with hydrogen content and thus hydrogen had a major influence on deformation behavior of those alloys. With hydrogen contents above 0.032 mol%, hardening was distinguished from softening which was pronounced in the contents from 0 to 0.032 mol% H. Hydrides were formed in hydrogen contents over 1.9 mol%. The hydride formation results in the reorientation in variants of the R phase and increase in the lattice strains of the parent phase. (author)

  7. A deformation analysis method of stepwise regression for bridge deflection prediction

    Science.gov (United States)

    Shen, Yueqian; Zeng, Ying; Zhu, Lei; Huang, Teng

    2015-12-01

    Large-scale bridges are among the most important infrastructures whose safe conditions concern people's daily activities and life safety. Monitoring of large-scale bridges is crucial since deformation might have occurred. How to obtain the deformation information and then judge the safe conditions are the key and difficult problems in bridge deformation monitoring field. Deflection is the important index for evaluation of bridge safety. This paper proposes a forecasting modeling of stepwise regression analysis. Based on the deflection monitoring data of Yangtze River Bridge, the main factors influenced deflection deformation is chiefly studied. Authors use the monitoring data to forecast the deformation value of a bridge deflection at different time from the perspective of non-bridge structure, and compared to the forecasting of gray relational analysis based on linear regression. The result show that the accuracy and reliability of stepwise regression analysis is high, which provides the scientific basis to the bridge operation management. And above all, the ideas of this research provide and effective method for bridge deformation analysis.

  8. Microstructural and superficial modification in a Cu-Al-Be shape memory alloy due to superficial severe plastic deformation under sliding wear conditions

    Science.gov (United States)

    Figueroa, C. G.; Garcia-Castillo, F. N.; Jacobo, V. H.; Cortés-Pérez, J.; Schouwenaars, R.

    2017-05-01

    Stress induced martensitic transformation in copper-based shape memory alloys has been studied mainly in monocrystals. This limits the use of such results for practical applications as most engineering applications use polycristals. In the present work, a coaxial tribometer developed by the authors was used to characterise the tribological behaviour of polycrystalline Cu-11.5%Al-0.5%Be shape memory alloy in contact with AISI 9840 steel under sliding wear conditions. The surface and microstructure characterization of the worn material was conducted by conventional scanning electron microscopy and atomic force microscopy, while the mechanical properties along the transversal section were measured by means of micro-hardness testing. The tribological behaviour of Cu-Al-Be showed to be optimal under sliding wear conditions since the surface only presented a slight damage consisting in some elongated flakes produced by strong plastic deformation. The combination of the plastically modified surface and the effects of mechanically induced martensitic transformation is well-suited for sliding wear conditions since the modified surface provides the necessary strength to avoid superficial damage while superelasticity associated to martensitic transformation is an additional mechanism which allows absorbing mechanical energy associated to wear phenomena as opposed to conventional ductile alloys where severe plastic deformation affects several tens of micrometres below the surface.

  9. Soft landing on an irregular shape asteroid using Multiple-Horizon Multiple-Model Predictive Control

    Science.gov (United States)

    AlandiHallaj, MohammadAmin; Assadian, Nima

    2017-11-01

    This study has introduced a predictive framework including a heuristic guidance law named Predictive Path Planning and Multiple-Horizon Multiple-Model Predictive Control as the control scheme for soft landing on an irregular-shaped asteroid. The dynamical model of spacecraft trajectory around an asteroid is introduced. The reference-landing trajectory is generated using Predictive Path Planning. Not only does the presented guidance law satisfy the collision avoidance constraint, but also guarantees the landing accuracy and vertical landing condition. Multiple-Horizon Multiple-Model Predictive Control is employed to make the spacecraft track the designed reference trajectory. The proposed control approach, which is a Model Predictive Control scheme, utilizes several prediction models instead of one. In this manner, it heritages the advantages of optimality and tackling external disturbances and model uncertainties from classical Model Predictive Control and at the same time has the advantage of lower computational burden than Model Predictive Control. Finally, numerical simulations are carried out to demonstrate the feasibility and effectiveness of the proposed control approach in achieving the desired conditions in presence of uncertainties and disturbances.

  10. Prediction of granule packing and flow behavior based on particle size and shape analysis.

    Science.gov (United States)

    Sandler, Niklas; Wilson, David

    2010-02-01

    Packing behavior and flowability of particulate material have long been acknowledged as important parameters for the processing of pharmaceutical materials. When properly understood, these properties can provide insight into weight uniformity, tableting performance and process design. The aim of this study was to measure particle size and shape distributions of different granular intermediates with a dynamic particle size image analyzer, and then use these distributions to predict packing efficiency and different metrics of flowability by employing partial least squares (PLS) modeling. From measurements of size and shape, a model was constructed that allowed for the prediction of flowability indices, bulk and tap densities with a high degree of accuracy for the granular materials used. In this study the use of size and shape distributions in the construction of a model providing both accurate flowability indices and bulk and tap density estimates has been demonstrated for example granular materials in which cohesive forces did not dominate powder behavior. It is believed that the continued application of the outlined experimental design would eventually lead to the fundamental understanding of how size and shape characteristics of materials influence particle behavior including downstream processibility. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.

  11. Methods for In-Flight Wing Shape Predictions of Highly Flexible Unmanned Aerial Vehicles: Formulation of Ko Displacement Theory

    Science.gov (United States)

    Ko, William L.; Fleischer, Van Tran

    2010-01-01

    The Ko displacement theory is formulated for a cantilever tubular wing spar under bending, torsion, and combined bending and torsion loading. The Ko displacement equations are expressed in terms of strains measured at multiple sensing stations equally spaced on the surface of the wing spar. The bending and distortion strain data can then be input to the displacement equations to calculate slopes, deflections, and cross-sectional twist angles of the wing spar at the strain-sensing stations for generating the deformed shapes of flexible aircraft wing spars. The displacement equations have been successfully validated for accuracy by finite-element analysis. The Ko displacement theory that has been formulated could also be applied to calculate the deformed shape of simple and tapered beams, plates, and tapered cantilever wing boxes. The Ko displacement theory and associated strain-sensing system (such as fiber optic sensors) form a powerful tool for in-flight deformation monitoring of flexible wings and tails, such as those often employed on unmanned aerial vehicles. Ultimately, the calculated displacement data can be visually displayed in real time to the ground-based pilot for monitoring the deformed shape of unmanned aerial vehicles during flight.

  12. Grain Nucleation and Growth in Deformed NiTi Shape Memory Alloys: An In Situ TEM Study

    Science.gov (United States)

    Burow, J.; Frenzel, J.; Somsen, C.; Prokofiev, E.; Valiev, R.; Eggeler, G.

    2017-12-01

    The present study investigates the evolution of nanocrystalline (NC) and ultrafine-grained (UFG) microstructures in plastically deformed NiTi. Two deformed NiTi alloys were subjected to in situ annealing in a transmission electron microscope (TEM) at 400 and 550 °C: an amorphous material state produced by high-pressure torsion (HPT) and a mostly martensitic partly amorphous alloy produced by wire drawing. In situ annealing experiments were performed to characterize the microstructural evolution from the initial nonequilibrium states toward energetically more favorable microstructures. In general, the formation and evolution of nanocrystalline microstructures are governed by the nucleation of new grains and their subsequent growth. Austenite nuclei which form in HPT and wire-drawn microstructures have sizes close to 10 nm. Grain coarsening occurs in a sporadic, nonuniform manner and depends on the physical and chemical features of the local environment. The mobility of grain boundaries in NiTi is governed by the local interaction of each grain with its microstructural environment. Nanograin growth in thin TEM foils seems to follow similar kinetic laws to those in bulk microstructures. The present study demonstrates the strength of in situ TEM analysis and also highlights aspects which need to be considered when interpreting the results.

  13. Crystalline cellulose elastic modulus predicted by atomistic models of uniform deformation and nanoscale indentation

    Science.gov (United States)

    Xiawa Wu; Robert J. Moon; Ashlie Martini

    2013-01-01

    The elastic modulus of cellulose Iß in the axial and transverse directions was obtained from atomistic simulations using both the standard uniform deformation approach and a complementary approach based on nanoscale indentation. This allowed comparisons between the methods and closer connectivity to experimental measurement techniques. A reactive...

  14. Development of Deflection Prediction Model for Concrete Block Pavement Considering the Block Shapes and Construction Patterns

    Directory of Open Access Journals (Sweden)

    Wuguang Lin

    2016-01-01

    Full Text Available Concrete block pavement (CBP is distinct from typical concrete or asphalt pavements. It is built by using individual blocks with unique construction patterns forming a discrete surface layer to bear traffic loadings. The surface structure of CBP varies depending on the block shapes and construction patterns, so it is hard to apply a general equivalent elastic modulus estimation method to define the surface structural strength. In this study, FEM analysis and dynamic loading test were carried out to develop a deflection prediction model for CBP considering the block shapes and construction patterns. Based on the analysis results, it was found that block shapes did not have much effect on load distribution, whereas construction patterns did. By applying the deflection prediction model to the rutting model for CBP proposed by Sun, the herringbone bond pattern showed the best performance comparing with stretcher bond or basket weave bond pattern. As the load repetition increased to 1.2 million, the rutting depth of CBP constructed by herringbone bond pattern was 2 mm smaller than those constructed by the other two patterns.

  15. Influence of Structure and Microstructure on Deformation Localization and Crack Growth in NiTi Shape Memory Alloys

    Science.gov (United States)

    Paul, Partha P.; Fortman, Margaret; Paranjape, Harshad M.; Anderson, Peter M.; Stebner, Aaron P.; Brinson, L. Catherine

    2018-04-01

    Porous NiTi shape memory alloys have applications in the biomedical and aerospace fields. Recent developments in metal additive manufacturing have made fabrication of near-net-shape porous products with complicated geometries feasible. There have also been developments in tailoring site-specific microstructures in metals using additive manufacturing. Inspired by these developments, we explore two related mechanistic phenomena in a simplified representation of porous shape memory alloys. First, we computationally elucidate the connection between pore geometry, stress concentration around pores, grain orientation, and strain-band formation during tensile loading of NiTi. Using this, we present a method to engineer local crystal orientations to mitigate the stress concentrations around the pores. Second, we experimentally document the growth of cracks around pores in a cyclically loaded superelastic NiTi specimen. In the areas of stress concentration around holes, cracks are seen to grow in large grains with [1 1 0] oriented along the tensile axis. This combined work shows the potential of local microstructural engineering in reducing stress concentration and increasing resistance to propagation of cracks in porous SMAs, potentially increasing the fatigue life of porous SMA components.

  16. Relativistic bound states in the presence of spherically ring-shaped q-deformed Woods–Saxon potential with arbitrary l-states

    International Nuclear Information System (INIS)

    Ikhdair, S.M.; Hamzavi, M.; Rajabi, A.A.

    2013-01-01

    Approximate bound-state solutions of the Dirac equation with q-deformed Woods–Saxon (WS) plus a new generalized ring-shaped (RS) potential are obtained for any arbitrary l-state. The energy eigenvalue equation and corresponding two-component wave functions are calculated by solving the radial and angular wave equations within a shortcut of the Nikiforov–Uvarov (NU) method. The solutions of the radial and polar angular parts of the wave function are expressed in terms of the Jacobi polynomials. A new approximation being expressed in terms of the potential parameters is carried out to deal with the strong singular centrifugal potential term l(l+1)r -2 . Under some limitations, we can obtain solution for the RS Hulthen potential and the standard usual spherical WS potential (q = 1). (author)

  17. A comprehensive energy approach to predict fatigue life in CuAlBe shape memory alloy

    Science.gov (United States)

    Sameallah, S.; Legrand, V.; Saint-Sulpice, L.; Kadkhodaei, M.; Arbab Chirani, S.

    2015-02-01

    Stabilized dissipated energy is an effective parameter on the fatigue life of shape memory alloys (SMAs). In this study, a formula is proposed to directly evaluate the stabilized dissipated energy for different values of the maximum and minimum applied stresses, as well as the loading frequency, under cyclic tensile loadings. To this aim, a one-dimensional fully coupled thermomechanical constitutive model and a cycle-dependent phase diagram are employed to predict the uniaxial stress-strain response of an SMA in a specified cycle, including the stabilized one, with no need of obtaining the responses of the previous cycles. An enhanced phase diagram in which different slopes are defined for the start and finish of a backward transformation strip is also proposed to enable the capture of gradual transformations in a CuAlBe shape memory alloy. It is shown that the present approach is capable of reproducing the experimental responses of CuAlBe specimens under cyclic tensile loadings. An explicit formula is further presented to predict the fatigue life of CuAlBe as a function of the maximum and minimum applied stresses as well as the loading frequency. Fatigue tests are also carried out, and this formula is verified against the empirically predicted number of cycles for failure.

  18. Prediction of Deformity Correction by Pedicle Screw Instrumentation in Thoracolumbar Scoliosis Surgery

    Science.gov (United States)

    Kiriyama, Yoshimori; Yamazaki, Nobutoshi; Nagura, Takeo; Matsumoto, Morio; Chiba, Kazuhiro; Toyama, Yoshiaki

    In segmental pedicle screw instrumentation, the relationship between the combinations of pedicle screw placements and the degree of deformity correction was investigated with a three-dimensional rigid body and spring model. The virtual thoracolumbar scoliosis (Cobb’s angle of 47 deg.) was corrected using six different combinations of pedicle-screw placements. As a result, better correction in the axial rotation was obtained with the pedicle screws placed at or close to the apical vertebra than with the screws placed close to the end vertebrae, while the correction in the frontal plane was better with the screws close to the end vertebrae than with those close to the apical vertebra. Additionally, two screws placed in the convex side above and below the apical vertebra provided better correction than two screws placed in the concave side. Effective deformity corrections of scoliosis were obtained with the proper combinations of pedicle screw placements.

  19. Predicting sintering deformation of ceramic film constrained by rigid substrate using anisotropic constitutive law

    International Nuclear Information System (INIS)

    Li Fan; Pan Jingzhe; Guillon, Olivier; Cocks, Alan

    2010-01-01

    Sintering of ceramic films on a solid substrate is an important technology for fabricating a range of products, including solid oxide fuel cells, micro-electronic PZT films and protective coatings. There is clear evidence that the constrained sintering process is anisotropic in nature. This paper presents a study of the constrained sintering deformation using an anisotropic constitutive law. The state of the material is described using the sintering strains rather than the relative density. In the limiting case of free sintering, the constitutive law reduces to a conventional isotropic constitutive law. The anisotropic constitutive law is used to calculate sintering deformation of a constrained film bonded to a rigid substrate and the compressive stress required in a sinter-forging experiment to achieve zero lateral shrinkage. The results are compared with experimental data in the literature. It is shown that the anisotropic constitutive law can capture the behaviour of the materials observed in the sintering experiments.

  20. Deformation analysis and prediction of bank protection structure with river level fluctuations

    Science.gov (United States)

    Hu, Rui; Xing, Yixuan

    2017-04-01

    Bank structure is an important barrier to maintain the safety of the embankment. The deformation of bank protection structure is not only affected by soil pressure caused by the excavation of the riverway, but also by the water pressure caused river water level fluctuations. Thus, it is necessary to establish a coupled soil-water model to analyze the deformation of bank structure. Based on Druck-Prager failure criteria and groundwater seepage theory, a numerical model of bank protection structure with consideration of the pore water pressure of soil mass is established. According to the measured river level data with seasonal fluctuating, numerical analysis of the deformation of bank protection structure is implemented. The simulation results show that the river water level fluctuation has clear influence on the maximum lateral displacement of the pile. Meanwhile, the distribution of plastic zone is related to the depth of groundwater level. Finally, according to the river water level data of the recent ten years, we analyze the deformation of the bank structure under extreme river level. The result shows that, compared with the scenario of extreme high river level, the horizontal displacement of bank protection structure is larger (up to 65mm) under extreme low river level, which is a potential risk to the embankment. Reference Schweiger H F. On the use of drucker-prager failure criteria for earth pressure problems[J]. Computers and Geotechnics, 1994, 16(3): 223-246. DING Yong-chun,CHENG Ze-kun. Numerical study on performance of waterfront excavation[J]. Chinese Journal of Geotechnical Engineering,2013,35(2):515-521. Wu L M, Wang Z Q. Three gorges reservoir water level fluctuation influents on the stability of the slope[J]. Advanced Materials Research. Trans Tech Publications, 2013, 739: 283-286.

  1. Large-strain time-temperature equivalence in high density polyethylene for prediction of extreme deformation and damage

    Directory of Open Access Journals (Sweden)

    Gray G.T.

    2012-08-01

    Full Text Available Time-temperature equivalence is a widely recognized property of many time-dependent material systems, where there is a clear predictive link relating the deformation response at a nominal temperature and a high strain-rate to an equivalent response at a depressed temperature and nominal strain-rate. It has been found that high-density polyethylene (HDPE obeys a linear empirical formulation relating test temperature and strain-rate. This observation was extended to continuous stress-strain curves, such that material response measured in a load frame at large strains and low strain-rates (at depressed temperatures could be translated into a temperature-dependent response at high strain-rates and validated against Taylor impact results. Time-temperature equivalence was used in conjuction with jump-rate compression tests to investigate isothermal response at high strain-rate while exluding adiabatic heating. The validated constitutive response was then applied to the analysis of Dynamic-Tensile-Extrusion of HDPE, a tensile analog to Taylor impact developed at LANL. The Dyn-Ten-Ext test results and FEA found that HDPE deformed smoothly after exiting the die, and after substantial drawing appeared to undergo a pressure-dependent shear damage mechanism at intermediate velocities, while it fragmented at high velocities. Dynamic-Tensile-Extrusion, properly coupled with a validated constitutive model, can successfully probe extreme tensile deformation and damage of polymers.

  2. Numerical predictions of misruns in development of near-net shape casting process

    OpenAIRE

    Jana, Santhanu Shakti Pada

    2015-01-01

    In this thesis, numerical investigations for development of a near net shape casting process for TiAl alloy are presented. The casting object used in this work is low pressure turbine (LPT) blade, which is characterized by extremely thin section areas that are prone to misruns. The work specifically focuses on predictions of misruns and developing strategies to avoid them. The numerical simulation methodology used in this work, is based on modelling all the three-phases i.e., gas, liquid and ...

  3. Three-dimensional deformation response of a NiTi shape memory helical-coil actuator during thermomechanical cycling: experimentally validated numerical model

    Science.gov (United States)

    Dhakal, B.; Nicholson, D. E.; Saleeb, A. F.; Padula, S. A., II; Vaidyanathan, R.

    2016-09-01

    Shape memory alloy (SMA) actuators often operate under a complex state of stress for an extended number of thermomechanical cycles in many aerospace and engineering applications. Hence, it becomes important to account for multi-axial stress states and deformation characteristics (which evolve with thermomechanical cycling) when calibrating any SMA model for implementation in large-scale simulation of actuators. To this end, the present work is focused on the experimental validation of an SMA model calibrated for the transient and cyclic evolutionary behavior of shape memory Ni49.9Ti50.1, for the actuation of axially loaded helical-coil springs. The approach requires both experimental and computational aspects to appropriately assess the thermomechanical response of these multi-dimensional structures. As such, an instrumented and controlled experimental setup was assembled to obtain temperature, torque, degree of twist and extension, while controlling end constraints during heating and cooling of an SMA spring under a constant externally applied axial load. The computational component assesses the capabilities of a general, multi-axial, SMA material-modeling framework, calibrated for Ni49.9Ti50.1 with regard to its usefulness in the simulation of SMA helical-coil spring actuators. Axial extension, being the primary response, was examined on an axially-loaded spring with multiple active coils. Two different conditions of end boundary constraint were investigated in both the numerical simulations as well as the validation experiments: Case (1) where the loading end is restrained against twist (and the resulting torque measured as the secondary response) and Case (2) where the loading end is free to twist (and the degree of twist measured as the secondary response). The present study focuses on the transient and evolutionary response associated with the initial isothermal loading and the subsequent thermal cycles under applied constant axial load. The experimental

  4. Shape shifting predicts ontogenetic changes in metabolic scaling in diverse aquatic invertebrates

    DEFF Research Database (Denmark)

    Glazier, Douglas S.; Hirst, Andrew G.; Atkinson, D.

    2016-01-01

    Metabolism fuels all biological activities, and thus understanding its variation is fundamentally important. Much of this variation is related to body size, which is commonly believed to follow a 3/4-power scaling law. However, during ontogeny, many kinds of animals and plants show marked shifts...... in metabolic scaling that deviate from 3/4-power scaling predicted by general models. Here, we show that in diverse aquatic invertebrates, ontogenetic shifts in the scaling of routine metabolic rate from near isometry (bR = scaling exponent approx. 1) to negative allometry (bR ..., are associated with significant changes in body shape (indexed by bL = the scaling exponent of the relationship between body mass and body length). The observed inverse correlations between bR and bL are predicted by metabolic scaling theory that emphasizes resource/waste fluxes across external body surfaces...

  5. Implicit attitudes predict drinking onset in adolescents: Shaping by social norms.

    Science.gov (United States)

    Payne, B Keith; Lee, Kent M; Giletta, Matteo; Prinstein, Mitchell J

    2016-08-01

    Implicit attitudes toward alcohol predict drinking among adults and adolescents. If implicit attitudes reflected associations learned through direct experience with drinking, then they would likely only predict drinking among individuals who have previously consumed alcohol. In contrast, if implicit attitudes reflected indirect experience through social messages, they might also then predict future drinking, even among individuals with no drinking experience. In this study, we tested whether implicit attitudes would predict initiation of drinking for the first time, and whether parents' and friends' norms toward alcohol would influence the development of implicit attitudes. For this study, we followed 868 adolescents between the ages of 12 and 15 years for 3 years. Implicit attitudes were measured using the affect misattribution procedure (Payne, Cheng, Govorun, & Stewart, 2005; Payne, Govorun, & Arbuckle, 2008). Explicit intentions to drink and the frequency of drinking and binge drinking were measured at each of 3 annual waves. Implicit attitudes toward alcohol predicted future drinking behavior 1 year later, and effects were similar for adolescents who had previously tried alcohol and for those who had not. To understand what factors might shape implicit attitudes among participants without drinking experience, we examined the role of parental norms and friends' norms toward drinking. Parental approval of drinking predicted the development of more positive implicit attitudes, which in turn predicted later drinking. Implicit attitudes toward alcohol can develop in advance of direct experience drinking alcohol. Results have implications for the implicit processes underpinning adolescent drinking, and the processes by which implicit associations are learned. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  6. Explicit Nonlinear Model Predictive Control for a Saucer-Shaped Unmanned Aerial Vehicle

    Directory of Open Access Journals (Sweden)

    Zhihui Xing

    2013-01-01

    Full Text Available A lifting body unmanned aerial vehicle (UAV generates lift by its body and shows many significant advantages due to the particular shape, such as huge loading space, small wetted area, high-strength fuselage structure, and large lifting area. However, designing the control law for a lifting body UAV is quite challenging because it has strong nonlinearity and coupling, and usually lacks it rudders. In this paper, an explicit nonlinear model predictive control (ENMPC strategy is employed to design a control law for a saucer-shaped UAV which can be adequately modeled with a rigid 6-degrees-of-freedom (DOF representation. In the ENMPC, control signal is calculated by approximation of the tracking error in the receding horizon by its Taylor-series expansion to any specified order. It enhances the advantages of the nonlinear model predictive control and eliminates the time-consuming online optimization. The simulation results show that ENMPC is a propriety strategy for controlling lifting body UAVs and can compensate the insufficient control surface area.

  7. Comparative Analysis of the Effects of Severe Plastic Deformation and Thermomechanical Training on the Functional Stability of Ti50.5Ni24.5Pd25 High-Temperature Shape Memory Alloy

    Science.gov (United States)

    Atli, K. C.; Karaman, I.; Noebe, R. D.; Maier, H. J.

    2010-01-01

    We compare the effectiveness of a conventional thermomechanical training procedure and severe plastic deformation via equal channel angular extrusion to achieve improved functional stability in a Ti50.5Ni24.5Pd25 high-temperature shape memory alloy. Thermomechanical testing indicates that both methods result in enhanced shape memory characteristics, such as reduced irrecoverable strain and thermal hysteresis. The mechanisms responsible for the improvements are discussed in light of microstructural findings from transmission electron microscopy.

  8. TH-CD-207A-05: Lung Surface Deformation Vector Fields Prediction by Monitoring Respiratory Surrogate Signals

    International Nuclear Information System (INIS)

    Nasehi Tehrani, J; Wang, J; McEwan, A

    2016-01-01

    Purpose: In this study, we developed and evaluated a method for predicting lung surface deformation vector fields (SDVFs) based on surrogate signals such as chest and abdomen motion at selected locations and spirometry measurements. Methods: A Patient-specific 3D triangular surface mesh of the lung region at end-expiration (EE) phase was obtained by threshold-based segmentation method. For each patient, a spirometer recorded the flow volume changes of the lungs; and 192 selected points at a regular spacing of 2cm X 2cm matrix points over a total area of 34cm X 24cm on the surface of chest and abdomen was used to detect chest wall motions. Preprocessing techniques such as QR factorization with column pivoting (QRCP) were employed to remove redundant observations of the chest and abdominal area. To create a statistical model between the lung surface and the corresponding surrogate signals, we developed a predictive model based on canonical ridge regression (CRR). Two unique weighting vectors were selected for each vertex on the surface of the lung, and they were optimized during the training process using the all other phases of 4D-CT except the end-inspiration (EI) phase. These parameters were employed to predict the vertices locations of a testing data set, which was the EI phase of 4D-CT. Results: For ten lung cancer patients, the deformation vector field of each vertex of lung surface mesh was estimated from the external motion at selected positions on the chest wall surface plus spirometry measurements. The average estimation of 98th percentile of error was less than 1 mm (AP= 0.85, RL= 0.61, and SI= 0.82). Conclusion: The developed predictive model provides a non-invasive approach to derive lung boundary condition. Together with personalized biomechanical respiration modelling, the proposed model can be used to derive the lung tumor motion during radiation therapy accurately from non-invasive measurements.

  9. TH-CD-207A-05: Lung Surface Deformation Vector Fields Prediction by Monitoring Respiratory Surrogate Signals

    Energy Technology Data Exchange (ETDEWEB)

    Nasehi Tehrani, J; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States); McEwan, A [The University of Sydney, Sydney, New South Wales (Australia)

    2016-06-15

    Purpose: In this study, we developed and evaluated a method for predicting lung surface deformation vector fields (SDVFs) based on surrogate signals such as chest and abdomen motion at selected locations and spirometry measurements. Methods: A Patient-specific 3D triangular surface mesh of the lung region at end-expiration (EE) phase was obtained by threshold-based segmentation method. For each patient, a spirometer recorded the flow volume changes of the lungs; and 192 selected points at a regular spacing of 2cm X 2cm matrix points over a total area of 34cm X 24cm on the surface of chest and abdomen was used to detect chest wall motions. Preprocessing techniques such as QR factorization with column pivoting (QRCP) were employed to remove redundant observations of the chest and abdominal area. To create a statistical model between the lung surface and the corresponding surrogate signals, we developed a predictive model based on canonical ridge regression (CRR). Two unique weighting vectors were selected for each vertex on the surface of the lung, and they were optimized during the training process using the all other phases of 4D-CT except the end-inspiration (EI) phase. These parameters were employed to predict the vertices locations of a testing data set, which was the EI phase of 4D-CT. Results: For ten lung cancer patients, the deformation vector field of each vertex of lung surface mesh was estimated from the external motion at selected positions on the chest wall surface plus spirometry measurements. The average estimation of 98th percentile of error was less than 1 mm (AP= 0.85, RL= 0.61, and SI= 0.82). Conclusion: The developed predictive model provides a non-invasive approach to derive lung boundary condition. Together with personalized biomechanical respiration modelling, the proposed model can be used to derive the lung tumor motion during radiation therapy accurately from non-invasive measurements.

  10. Historical precipitation predictably alters the shape and magnitude of microbial functional response to soil moisture.

    Science.gov (United States)

    Averill, Colin; Waring, Bonnie G; Hawkes, Christine V

    2016-05-01

    Soil moisture constrains the activity of decomposer soil microorganisms, and in turn the rate at which soil carbon returns to the atmosphere. While increases in soil moisture are generally associated with increased microbial activity, historical climate may constrain current microbial responses to moisture. However, it is not known if variation in the shape and magnitude of microbial functional responses to soil moisture can be predicted from historical climate at regional scales. To address this problem, we measured soil enzyme activity at 12 sites across a broad climate gradient spanning 442-887 mm mean annual precipitation. Measurements were made eight times over 21 months to maximize sampling during different moisture conditions. We then fit saturating functions of enzyme activity to soil moisture and extracted half saturation and maximum activity parameter values from model fits. We found that 50% of the variation in maximum activity parameters across sites could be predicted by 30-year mean annual precipitation, an indicator of historical climate, and that the effect is independent of variation in temperature, soil texture, or soil carbon concentration. Based on this finding, we suggest that variation in the shape and magnitude of soil microbial response to soil moisture due to historical climate may be remarkably predictable at regional scales, and this approach may extend to other systems. If historical contingencies on microbial activities prove to be persistent in the face of environmental change, this approach also provides a framework for incorporating historical climate effects into biogeochemical models simulating future global change scenarios. © 2016 John Wiley & Sons Ltd.

  11. Culture shapes whether the pursuit of happiness predicts higher or lower well-being.

    Science.gov (United States)

    Ford, Brett Q; Dmitrieva, Julia O; Heller, Daniel; Chentsova-Dutton, Yulia; Grossmann, Igor; Tamir, Maya; Uchida, Yukiko; Koopmann-Holm, Birgit; Floerke, Victoria A; Uhrig, Meike; Bokhan, Tatiana; Mauss, Iris B

    2015-12-01

    Pursuing happiness can paradoxically impair well-being. Here, the authors propose the potential downsides to pursuing happiness may be specific to individualistic cultures. In collectivistic (vs. individualistic) cultures, pursuing happiness may be more successful because happiness is viewed--and thus pursued--in relatively socially engaged ways. In 4 geographical regions that vary in level of collectivism (United States, Germany, Russia, East Asia), we assessed participants' well-being, motivation to pursue happiness, and to what extent they pursued happiness in socially engaged ways. Motivation to pursue happiness predicted lower well-being in the United States, did not predict well-being in Germany, and predicted higher well-being in Russia and in East Asia. These cultural differences in the link between motivation to pursue happiness and well-being were explained by cultural differences in the socially engaged pursuit of happiness. These findings suggest that culture shapes whether the pursuit of happiness is linked with better or worse well-being, perhaps via how people pursue happiness. (c) 2015 APA, all rights reserved).

  12. Shape up or ship out: migratory behaviour predicts morphology across spatial scale in a freshwater fish.

    Science.gov (United States)

    Chapman, Ben B; Hulthén, Kaj; Brönmark, Christer; Nilsson, P Anders; Skov, Christian; Hansson, Lars-Anders; Brodersen, Jakob

    2015-09-01

    1. Migration is a widespread phenomenon, with powerful ecological and evolutionary consequences. Morphological adaptations to reduce the energetic costs associated with migratory transport are commonly documented for migratory species. However, few studies have investigated whether variation in body morphology can be explained by variation in migratory strategy within a species. 2. We address this question in roach Rutilus rutilus, a partially migratory freshwater fish that migrates from lakes into streams during winter. We both compare body shape between populations that differ in migratory opportunity (open vs. closed lakes), and between individuals from a single population that vary in migratory propensity (migrants and residents from a partially migratory population). Following hydrodynamic theory, we posit that migrants should have a more shallow body depth, to reduce the costs associated with migrating into streams with higher flow conditions than the lakes the residents occupy all year round. 3. We find evidence both across and within populations to support our prediction, with individuals from open lakes and migrants from the partially migratory population having a more slender, shallow-bodied morphology than fish from closed lakes and all-year residents. 4. Our data suggest that a shallow body morphology is beneficial to migratory individuals and our study is one of the first to link migratory strategy and intraspecific variation in body shape. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  13. Shape up or ship out: Migratory behaviour predicts morphology across spatial scale in a freshwater fish

    DEFF Research Database (Denmark)

    Chapman, B.B.; Hulthén, K.; Brönmark, C.

    2015-01-01

    Migration is a widespread phenomenon, with powerful ecological and evolutionary consequences. Morphological adaptations to reduce the energetic costs associated with migratory transport are commonly documented for migratory species. However, few studies have investigated whether variation in body...... morphology can be explained by variation in migratory strategy within a species. We address this question in roach Rutilus rutilus, a partially migratory freshwater fish that migrates from lakes into streams during winter. We both compare body shape between populations that differ in migratory opportunity...... with migrating into streams with higher flow conditions than the lakes the residents occupy all year round. We find evidence both across and within populations to support our prediction, with individuals from open lakes and migrants from the partially migratory population having a more slender, shallow...

  14. Space-time extreme wind waves: Analysis and prediction of shape and height

    Science.gov (United States)

    Alvise, Benetazzo; Francesco, Barbariol; Filippo, Bergamasco; Sandro, Carniel; Mauro, Sclavo

    2017-05-01

    In this study, we present the analysis of the temporal profile and height of space-time (ST) extreme wind waves. Wave data were gathered from an observational ST sample of sea surface elevations collected during an active sea state, and they were examined to detect the highest waves (exceeding the rogue wave threshold) of specific 3D wave groups close to the apex of their development. Two different investigations are conducted. Firstly, local maximum elevations of the groups are examined within the framework of statistical models for ST extreme waves, and compared with observations and predictions of maxima derived by one-point time series of sea surface elevations. Secondly, the temporal profile near the maximum wave crests is analyzed and compared with the expectations of the linear and second-order nonlinear extension of the Quasi-Determinism (QD) theory. Our goal is to verify, with real sea data, to what extent, one can estimate the shape and the crest-to-trough height of near-focusing large 3D wave groups using the QD and ST extreme model results. From this study, it emerges that the elevations close to the crest apex are narrowly distributed around a mean profile, whilst a larger dispersion is observed away from the maximum elevation. Yet the QD model furnishes, on average, a fair prediction of the maximum wave heights, especially when nonlinearities are taken into account. Moreover, we discuss how the combination of ST extreme and QD model predictions allows establishing, for a given sea condition, the portrait of waves with very large crest height. Our results show that these theories have the potential to be implemented in a numerical spectral model for wave extreme prediction.

  15. The artificial periodic lattice phase analysis method applied to deformation evaluation of TiNi shape memory alloy in micro scale

    International Nuclear Information System (INIS)

    Liu, Z W; Huang, X F; Lou, X H; Xie, H M; Du, H

    2011-01-01

    The basic principle of the artificial periodic lattice phase analysis method on the basis of an artificial periodic lattice was thoroughly introduced in this investigation. The improved technique is intended to expand from nanoscale to micro- and macroscopic realms on the test field of experimental mechanics in combination with a submicron grid, which is produced by a focused ion beam (FIB). Phase information can be obtained from the filtered images after fast Fourier transform (FFT) and inverse FFT. Thus, the in-plane displacement fields as well as the local strain distributions related to the phase information will be evaluated. The application scope of the technique was obtained by the simulation experiment. The displacement fields as well as strain distributions of porous TiNi shape memory alloy were calculated by the technique after compressive loading in micro scale. The specimen grid was directly fabricated on the tested flat surface by employing a FIB. The evolution rule of shear zones in micro area near porous has been discovered. The obtained results indicate that the technique not only could be well applied to measuring full field deformation, but also, more significantly, is available to present mechanical properties in micro scale

  16. Microscopic residual stress evolution during deformation process of an Fe---Mn---Si---Cr shape memory alloy investigated using white X-ray microbeam diffraction

    International Nuclear Information System (INIS)

    Kwon, E.P.; Sato, S.; Fujieda, S.; Shinoda, K.; Kajiwara, K.; Sato, M.; Suzuki, S.

    2013-01-01

    Microscopic residual stress evolution in different austenite (γ) grains during shape memory process in an Fe---Mn---Si---Cr alloy was investigated using the white X-ray microbeam diffraction technique. The use of high-energy white X-ray microbeam with small beam size allowed us to measure the microscopic residual stress in coarse γ grains with specific orientation. After tensile deformation large compressive residual stress was evolved in γ grains due to the formation of stress-induced ε martensite, but upon recovery heating it almost disappeared as a result of reverse transformation of martensite. The magnitude of compressive residual stress was higher in grains with orientations close to 〈144〉 and 〈233〉 orientations than in a grain with near 〈001〉 orientation. Analysis of the microstructure of each grain using electron backscattering diffraction suggested that the difference in the magnitude of compressive residual stress could be attributed to different martensitic transformation characteristics in the grains

  17. An optimized toolchain for predicting directivity patterns from digital representations of biological shapes

    Science.gov (United States)

    Müller, Rolf

    2005-09-01

    Animals have evolved intricate shapes which diffract emitted or received sound and thereby generate a specific directivity pattern. Computer-tomographic methods can generate high-resolution digital representations of these morphological structures in the form of three-dimensional voxel arrays. However, predicting acoustic directivity patterns from these representations with numerical methods can incur high computational cost, e.g., for large structures with fine detail and/or high wave numbers (as in bats and dolphins). Here, the design of a toolchain is described which can handle all steps of deriving a directivity prediction from a voxel representation: generation of a finite-element mesh, assembly of the system matrix, computation of an approximate solution, forward projection into the far field. All individual operations are performed by self-contained tools, which communicate through files. This gives access to intermediate results and limits re-execution upon parameter changes to downstream steps. At each stage, optimizations can be made based on the specifics of the problem such as the regular structure of the voxel array and the distance independence of the directivity. Use of these optimizations has resulted in a highly efficient performance, which is documented by measures for execution speed, memory usage, and accuracy.

  18. Shape shifting predicts ontogenetic changes in metabolic scaling in diverse aquatic invertebrates.

    Science.gov (United States)

    Glazier, Douglas S; Hirst, Andrew G; Atkinson, David

    2015-03-07

    Metabolism fuels all biological activities, and thus understanding its variation is fundamentally important. Much of this variation is related to body size, which is commonly believed to follow a 3/4-power scaling law. However, during ontogeny, many kinds of animals and plants show marked shifts in metabolic scaling that deviate from 3/4-power scaling predicted by general models. Here, we show that in diverse aquatic invertebrates, ontogenetic shifts in the scaling of routine metabolic rate from near isometry (bR = scaling exponent approx. 1) to negative allometry (bR < 1), or the reverse, are associated with significant changes in body shape (indexed by bL = the scaling exponent of the relationship between body mass and body length). The observed inverse correlations between bR and bL are predicted by metabolic scaling theory that emphasizes resource/waste fluxes across external body surfaces, but contradict theory that emphasizes resource transport through internal networks. Geometric estimates of the scaling of surface area (SA) with body mass (bA) further show that ontogenetic shifts in bR and bA are positively correlated. These results support new metabolic scaling theory based on SA influences that may be applied to ontogenetic shifts in bR shown by many kinds of animals and plants. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  19. A high throughput screening system for predicting chemically-induced reproductive organ deformities

    NARCIS (Netherlands)

    Burg, B. van der; Pieterse, B.; Rorije, E.; Lewin, G.; Linden, S.C. van der; Man, H.Y.; Piersma, A.H.; Mangelsdorf, I.; Wolterbeek, A.P.M.; Kroese, E.D.; Vugt-Lussenburg, B.M.A. van

    2015-01-01

    There is a great need for alternative testing methods for reproductive toxicants that are practical, fast, cost-effective and easy to interpret. Previously we followed a pragmatic approach using readily available tests, which was successful in predicting reproductive toxicity of chemicals [13]. This

  20. Statistics-Based Prediction Analysis for Head and Neck Cancer Tumor Deformation

    Directory of Open Access Journals (Sweden)

    Maryam Azimi

    2012-01-01

    Full Text Available Most of the current radiation therapy planning systems, which are based on pre-treatment Computer Tomography (CT images, assume that the tumor geometry does not change during the course of treatment. However, tumor geometry is shown to be changing over time. We propose a methodology to monitor and predict daily size changes of head and neck cancer tumors during the entire radiation therapy period. Using collected patients' CT scan data, MATLAB routines are developed to quantify the progressive geometric changes occurring in patients during radiation therapy. Regression analysis is implemented to develop predictive models for tumor size changes through entire period. The generated models are validated using leave-one-out cross validation. The proposed method will increase the accuracy of therapy and improve patient's safety and quality of life by reducing the number of harmful unnecessary CT scans.

  1. Effect of internal architecture on microgel deformation in microfluidic constrictions.

    Science.gov (United States)

    Chen, Lynna; Wang, Kai Xi; Doyle, Patrick S

    2017-03-01

    The study of how soft particles deform to pass through narrow openings is important for understanding the transit of biological cells, as well as for designing deformable drug delivery carriers. In this work, we systematically explore how soft microparticles with various internal architectures deform during passage through microfluidic constrictions. We synthesize hydrogel particles with well-defined internal structure using lithography-based UV polymerization in microfluidic channels (stop-flow lithography). Using this in situ technique, we explore a range of 2D particle architectures and their effect on particle deformation. We observe that particles undergo buckling of internal supports and reorient at the constriction entrance in order to adopt preferred shapes that correspond to minimum energy configurations. Using finite element simulations of elastic deformation under compression, we accurately predict the optimal deformation configuration of these structured particles.

  2. Improvement of injury severity prediction (ISP) of AACN during on-site triage using vehicle deformation pattern for car-to-car (C2C) side impacts.

    Science.gov (United States)

    Pal, Chinmoy; Hirayama, Shigeru; Narahari, Sangolla; Jeyabharath, Manoharan; Prakash, Gopinath; Kulothungan, Vimalathithan; Combest, John

    2018-02-28

    The Advanced Automatic Crash Notification (AACN) system needs to predict injury accurately, to provide appropriate treatment for seriously injured occupants involved in motor vehicle crashes. This study investigates the possibility of improving the accuracy of the AACN system, using vehicle deformation parameters in car-to-car (C2C) side impacts. This study was based on car-to-car (C2C) crash data from NASS-CDS, CY 2004-2014. Variables from Kononen's algorithm (published in 2011) were used to build a "base model" for this study. Two additional variables, intrusion magnitude and max deformation location, are added to Kononen's algorithm variables (age, belt usage, number of events, and delta-v) to build a "proposed model." This proposed model operates in two stages: In the first stage, the AACN system uses Kononen's variables and predicts injury severity, based on which emergency medical services (EMS) is dispatched; in the second stage, the EMS team conveys deformation-related information, for accurate prediction of serious injury. Logistic regression analysis reveals that the vehicle deformation location and intrusion magnitude are significant parameters in predicting the level of injury. The percentage of serious injury decreases as the deformation location shifts away from the driver sitting position. The proposed model can improve the sensitivity (serious injury correctly predicted as serious) from 50% to 63%, and overall prediction accuracy increased from 83.5% to 85.9%. The proposed method can improve the accuracy of injury prediction in side-impact collisions. Similar opportunities exist for other crash modes also.

  3. Arbitrarily shaped motion prediction for depth video compression using arithmetic edge coding.

    Science.gov (United States)

    Daribo, Ismael; Florencio, Dinei; Cheung, Gene

    2014-11-01

    Depth image compression is important for compact representation of 3D visual data in texture-plus-depth format, where texture and depth maps from one or more viewpoints are encoded and transmitted. A decoder can then synthesize a freely chosen virtual view via depth-image-based rendering using nearby coded texture and depth maps as reference. Further, depth information can be used in other image processing applications beyond view synthesis, such as object identification, segmentation, and so on. In this paper, we leverage on the observation that neighboring pixels of similar depth have similar motion to efficiently encode depth video. Specifically, we divide a depth block containing two zones of distinct values (e.g., foreground and background) into two arbitrarily shaped regions (sub-blocks) along the dividing boundary before performing separate motion prediction (MP). While such arbitrarily shaped sub-block MP can lead to very small prediction residuals (resulting in few bits required for residual coding), it incurs an overhead to transmit the dividing boundaries for sub-block identification at decoder. To minimize this overhead, we first devise a scheme called arithmetic edge coding (AEC) to efficiently code boundaries that divide blocks into sub-blocks. Specifically, we propose to incorporate the boundary geometrical correlation in an adaptive arithmetic coder in the form of a statistical model. Then, we propose two optimization procedures to further improve the edge coding performance of AEC for a given depth image. The first procedure operates within a code block, and allows lossy compression of the detected block boundary to lower the cost of AEC, with an option to augment boundary depth pixel values matching the new boundary, given the augmented pixels do not adversely affect synthesized view distortion. The second procedure operates across code blocks, and systematically identifies blocks along an object contour that should be coded using sub-block MP via

  4. PREDICTION OF BLOOD FLOW VELOCITY AND LEAFLET DEFORMATION VIA 2D MITRAL VALVE MODEL

    Directory of Open Access Journals (Sweden)

    M.A.H. Mohd Adib

    2012-06-01

    Full Text Available In the mitral valve, regional variations in structure and material properties combine to affect the biomechanics of the entire valve. From previous studies, we know that the mitral valve leaflet tissue is highly extensible. A two-dimensional model of the mitral valve was generated using an Arbitrary Lagrangian-Eulerian (ALE mesh. A simple approximation of the heart geometry was used and the valve dimensions were based on actual measurements made. Valve opening and closure was simulated using contact equations. The objective of this study was to investigate and predict flow and leaflet phenomena via a simple 2D mitral valve model based on the critical parameter of blood. Two stages of mitral valves analysis were investigated: the systolic and diastolic stages. The results show a linear correlation between the mitral valve leaflet rigidity and the volume of backflow. Additionally, the simulation predicted mitral valve leaflet displacement during closure, which agreed with the results of our previous data analysis and the results for blood flow velocity during systole condition through the mitral valve outlet, as reported in the medical literature. In conclusion, these computational techniques are very useful in the study of both degenerative valve disease and failure of prostheses and will be further developed to investigate heart valve failure and subsequent surgical repair.

  5. Prediction of plastic deformation under contact condition by quasi-static and dynamic simulations using explicit finite element analysis

    Energy Technology Data Exchange (ETDEWEB)

    Siswanto, W. A.; Nagentrau, M.; Tobi, A. L. Mohd [Faculty of Mechanical and Manufacturing Engineering, Universiti Tun Hussein Onn Malaysia, Batu Pahat (Malaysia); Tamin, M. N. [Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru (Malaysia)

    2016-11-15

    We compared the quasi-static and dynamic simulation responses on elastic-plastic deformation of advanced alloys using Finite element (FE) method with an explicit numerical algorithm. A geometrical model consisting of a cylinder-on-flat surface contact under a normal load and sliding motion was examined. Two aeroengine materials, Ti-6Al-4V and Super CMV (Cr-Mo-V) alloy, were employed in the FE analysis. The FE model was validated by comparative magnitudes of the FE-predicted maximum contact pressure variation along the contact half-width length with the theoretical Hertzian contact solution. Results show that the (compressive) displacement of the initial contact surface steadily increases for the quasi-static load case, but accumulates at an increasing rate to the maximum level for the dynamic loading. However, the relatively higher stiffness and yield strength of the Super CMV alloy resulted in limited deformation and low plastic strain when compared to the Ti-6Al-4V alloy. The accumulated equivalent plastic strain of the material point at the initial contact position was nearly a thousand times higher for the dynamic load case (for example, 6.592 for Ti-6Al-4V, 1.0 kN) when compared to the quasi-static loading (only 0.0072). During the loading step, the von Mises stress increased with a decreasing and increasing rate for the quasi-static and dynamic load case, respectively. A sudden increase in the stress magnitude to the respective peak value was registered due to the additional constraint to overcome the static friction of the mating surfaces during the sliding step.

  6. Hydrodynamic properties of magnetic nanoparticles with tunable shape anisotropy: prediction and experimental verification.

    Science.gov (United States)

    Martchenko, Ilya; Dietsch, Hervé; Moitzi, Christian; Schurtenberger, Peter

    2011-12-15

    We describe the characterization of the hydrodynamic properties of anisotropic magnetic nanoparticles using a combination of transmission electron microscopy (TEM) and dynamic as well as depolarized dynamic light scattering (DLS/DDLS). The particles used are nearly monodisperse hematite spindles with an average length of 280 nm and a minor axis of 57 nm, coated with a layer of silica of variable thickness that allows us to tune the particle aspect ratio between 5 and 2. Their geometrical dimensions can thus be determined easily and quantitatively from TEM. Moreover, their size is ideal to employ DLS and DDLS to measure the translational and rotational diffusion coefficients D(T) and D(R), while the presence of a magnetic core opens a plethora of opportunities for future studies and applications. We demonstrate that we can successfully predict the hydrodynamic properties of the different particles based on a TEM characterization of their size distribution and using established theoretical models for the hydrodynamic properties of anisotropic particles. When compared with the theoretical predictions, our light scattering measurements are in quantitative agreement. This agreement between theory and experiment is achieved without having to invoke any adjustable free parameter, as the TEM results are used to calculate the corresponding diffusion coefficients on an absolute scale. We demonstrate that this is achieved due to a new and simple method for the statistical weighting of the TEM information, and the use of the correct hydrodynamic models for the observed particle shape. In addition, we also demonstrate an enhanced sensitivity of the rotational diffusion for the surface properties of ellipsoidal nanoparticles, and point out that this may serve as an ideal tool toward characterizing functionalized surfaces.

  7. Looking like a leader-facial shape predicts perceived height and leadership ability.

    Directory of Open Access Journals (Sweden)

    Daniel E Re

    Full Text Available Judgments of leadership ability from face images predict the outcomes of actual political elections and are correlated with leadership success in the corporate world. The specific facial cues that people use to judge leadership remain unclear, however. Physical height is also associated with political and organizational success, raising the possibility that facial cues of height contribute to leadership perceptions. Consequently, we assessed whether cues to height exist in the face and, if so, whether they are associated with perception of leadership ability. We found that facial cues to perceived height had a strong relationship with perceived leadership ability. Furthermore, when allowed to manually manipulate faces, participants increased facial cues associated with perceived height in order to maximize leadership perception. A morphometric analysis of face shape revealed that structural facial masculinity was not responsible for the relationship between perceived height and perceived leadership ability. Given the prominence of facial appearance in making social judgments, facial cues to perceived height may have a significant influence on leadership selection.

  8. Looking Like a Leader–Facial Shape Predicts Perceived Height and Leadership Ability

    Science.gov (United States)

    Re, Daniel E.; Hunter, David W.; Coetzee, Vinet; Tiddeman, Bernard P.; Xiao, Dengke; DeBruine, Lisa M.; Jones, Benedict C.; Perrett, David I.

    2013-01-01

    Judgments of leadership ability from face images predict the outcomes of actual political elections and are correlated with leadership success in the corporate world. The specific facial cues that people use to judge leadership remain unclear, however. Physical height is also associated with political and organizational success, raising the possibility that facial cues of height contribute to leadership perceptions. Consequently, we assessed whether cues to height exist in the face and, if so, whether they are associated with perception of leadership ability. We found that facial cues to perceived height had a strong relationship with perceived leadership ability. Furthermore, when allowed to manually manipulate faces, participants increased facial cues associated with perceived height in order to maximize leadership perception. A morphometric analysis of face shape revealed that structural facial masculinity was not responsible for the relationship between perceived height and perceived leadership ability. Given the prominence of facial appearance in making social judgments, facial cues to perceived height may have a significant influence on leadership selection. PMID:24324651

  9. The Application of Planned Behavior Theory to Predict the Consumption of Processed Body-Shaping Milk

    Directory of Open Access Journals (Sweden)

    F. S. Yulianti

    2012-08-01

    Full Text Available The research aims were to identify the influence of attitude, subjective norms and perceived behavioral control on intention to buy, and effect of intention to buy and perceive behavioral control over buying behavior on processed body-shapping milk which added by supplement for body shaping. Research was conducted in Sleman Regency and design used was survey. Sampling was taken by using judgmental sampling method with criteria that were female, aged 18-25 yr old and was categorized as normal to overweight appearance. Respondents used were 100 undergraduate female students. Questionnaire was used as an instrument in order for data collecting to measure research variable that had been tested on validity and reliability. Analyses used were single and multiple linier regression. The results showed that only attitude and perceived behavioral control influenced (P<0.05 intention to buy in normal-weight group, while in over-weight group attitude, subjective norm and perceived behavioral control affected (P<0.001 attitude. Then, attitude and perceived behavioral control influenced buying behavior significantly both in normal and overweight. Therefore, it can be concluded that prediction capability of planned behavior theory are better when product relevancy to respondents was closed.

  10. Predictive Modeling for Blood Transfusion Following Adult Spinal Deformity Surgery: A Tree-Based Machine Learning Approach.

    Science.gov (United States)

    Durand, Wesley M; DePasse, J Mason; Daniels, Alan H

    2017-12-05

    Retrospective cohort study. Blood transfusion is frequently necessary following adult spinal deformity (ASD) surgery. We sought to develop predictive models for blood transfusion following ASD surgery, utilizing both classification tree and random forest machine-learning approaches. Past models for transfusion risk among spine surgery patients are disadvantaged through use of single-institutional data, potentially limiting generalizability. This investigation was conducted utilizing the ACS NSQIP dataset years 2012-2015. Patients undergoing surgery for ASD were identified using primary-listed CPT codes. In total, 1,029 patients were analyzed. The primary outcome measure was intra-/post-operative blood transfusion. Patients were divided into training (n = 824) and validation (n = 205) datasets. Single classification tree and random forest models were developed. Both models were tested on the validation dataset using AUC, which was compared between models. Overall, 46.5% (n = 479) of patients received a transfusion intraoperatively or within 72 h postoperatively. The final classification tree model utilized operative duration, hematocrit, and weight, exhibiting AUC = 0.79 (95%CI 0.73-0.85) on the validation set. The most influential variables in the random forest model were operative duration, surgical invasiveness, hematocrit, weight, and age. The random forest model exhibited AUC = 0.85 (95%CI 0.80-0.90). The difference between the classification tree and random forest AUCs was non-significant at the validation cohort size of 205 patients (p = 0.1551). This investigation produced tree-based machine-learning models of blood transfusion risk following ASD surgery. The random forest model offered very good predictive capability as measured by AUC. Our single classification tree model offered superior ease of implementation, but a lower AUC as compared to the random forest approach, though this difference was not statistically significant at

  11. Precise predictions of H2O line shapes over a wide pressure range using simulations corrected by a single measurement

    Science.gov (United States)

    Ngo, N. H.; Nguyen, H. T.; Tran, H.

    2018-03-01

    In this work, we show that precise predictions of the shapes of H2O rovibrational lines broadened by N2, over a wide pressure range, can be made using simulations corrected by a single measurement. For that, we use the partially-correlated speed-dependent Keilson-Storer (pcsdKS) model whose parameters are deduced from molecular dynamics simulations and semi-classical calculations. This model takes into account the collision-induced velocity-changes effects, the speed dependences of the collisional line width and shift as well as the correlation between velocity and internal-state changes. For each considered transition, the model is corrected by using a parameter deduced from its broadening coefficient measured for a single pressure. The corrected-pcsdKS model is then used to simulate spectra for a wide pressure range. Direct comparisons of the corrected-pcsdKS calculated and measured spectra of 5 rovibrational lines of H2O for various pressures, from 0.1 to 1.2 atm, show very good agreements. Their maximum differences are in most cases well below 1%, much smaller than residuals obtained when fitting the measurements with the Voigt line shape. This shows that the present procedure can be used to predict H2O line shapes for various pressure conditions and thus the simulated spectra can be used to deduce the refined line-shape parameters to complete spectroscopic databases, in the absence of relevant experimental values.

  12. Implicit attitudes predict drinking onset in adolescents : Shaping by social norms

    NARCIS (Netherlands)

    Payne, B. Keith; Lee, Kent M.; Giletta, M.; Prinstein, Mitchell J.

    Objective: Implicit attitudes toward alcohol predict drinking among adults and adolescents. If implicit attitudes reflected associations learned through direct experience with drinking, then they would likely only predict drinking among individuals who have previously consumed alcohol. In contrast,

  13. Predicting transmission of shaped sonic booms into a residential house structure.

    Science.gov (United States)

    Sizov, Natalia V; Plotkin, Kenneth J; Hobbs, Christopher M

    2010-06-01

    Human perception of sonic booms is a major impediment to commercial supersonic flight. Shaping, which reduces the audible shock waves of a boom, can make outdoor perception of booms acceptable. Perception of sonic booms experienced indoors is of concern, and it is not yet established whether shaped booms offer benefit to indoor listeners. A better understanding of the transmission of shaped booms into building structures is needed. In the authors' earlier work the vibration response of house elements subjected to different sonic boom wave shapes was evaluated using a single degree of freedom model. This paper expands that approach with a modal analysis model. The acceleration of building elements and the resulting sound pressure inside a room are computed in the time and frequency domains. Analytical results are compared with experimental data measured by NASA during sonic boom tests conducted at Edwards Air Force Base in 2007. The effects of wave signature parameters on transmission are studied to evaluate the advantages of various kinds of minimized boom shapes.

  14. Chondrocyte deformations as a function of tibiofemoral joint loading predicted by a generalized high-throughput pipeline of multi-scale simulations.

    Directory of Open Access Journals (Sweden)

    Scott C Sibole

    Full Text Available Cells of the musculoskeletal system are known to respond to mechanical loading and chondrocytes within the cartilage are not an exception. However, understanding how joint level loads relate to cell level deformations, e.g. in the cartilage, is not a straightforward task. In this study, a multi-scale analysis pipeline was implemented to post-process the results of a macro-scale finite element (FE tibiofemoral joint model to provide joint mechanics based displacement boundary conditions to micro-scale cellular FE models of the cartilage, for the purpose of characterizing chondrocyte deformations in relation to tibiofemoral joint loading. It was possible to identify the load distribution within the knee among its tissue structures and ultimately within the cartilage among its extracellular matrix, pericellular environment and resident chondrocytes. Various cellular deformation metrics (aspect ratio change, volumetric strain, cellular effective strain and maximum shear strain were calculated. To illustrate further utility of this multi-scale modeling pipeline, two micro-scale cartilage constructs were considered: an idealized single cell at the centroid of a 100×100×100 μm block commonly used in past research studies, and an anatomically based (11 cell model of the same volume representation of the middle zone of tibiofemoral cartilage. In both cases, chondrocytes experienced amplified deformations compared to those at the macro-scale, predicted by simulating one body weight compressive loading on the tibiofemoral joint. In the 11 cell case, all cells experienced less deformation than the single cell case, and also exhibited a larger variance in deformation compared to other cells residing in the same block. The coupling method proved to be highly scalable due to micro-scale model independence that allowed for exploitation of distributed memory computing architecture. The method's generalized nature also allows for substitution of any macro

  15. Chondrocyte Deformations as a Function of Tibiofemoral Joint Loading Predicted by a Generalized High-Throughput Pipeline of Multi-Scale Simulations

    Science.gov (United States)

    Sibole, Scott C.; Erdemir, Ahmet

    2012-01-01

    Cells of the musculoskeletal system are known to respond to mechanical loading and chondrocytes within the cartilage are not an exception. However, understanding how joint level loads relate to cell level deformations, e.g. in the cartilage, is not a straightforward task. In this study, a multi-scale analysis pipeline was implemented to post-process the results of a macro-scale finite element (FE) tibiofemoral joint model to provide joint mechanics based displacement boundary conditions to micro-scale cellular FE models of the cartilage, for the purpose of characterizing chondrocyte deformations in relation to tibiofemoral joint loading. It was possible to identify the load distribution within the knee among its tissue structures and ultimately within the cartilage among its extracellular matrix, pericellular environment and resident chondrocytes. Various cellular deformation metrics (aspect ratio change, volumetric strain, cellular effective strain and maximum shear strain) were calculated. To illustrate further utility of this multi-scale modeling pipeline, two micro-scale cartilage constructs were considered: an idealized single cell at the centroid of a 100×100×100 μm block commonly used in past research studies, and an anatomically based (11 cell model of the same volume) representation of the middle zone of tibiofemoral cartilage. In both cases, chondrocytes experienced amplified deformations compared to those at the macro-scale, predicted by simulating one body weight compressive loading on the tibiofemoral joint. In the 11 cell case, all cells experienced less deformation than the single cell case, and also exhibited a larger variance in deformation compared to other cells residing in the same block. The coupling method proved to be highly scalable due to micro-scale model independence that allowed for exploitation of distributed memory computing architecture. The method’s generalized nature also allows for substitution of any macro-scale and/or micro

  16. Octupole deformation in neutron-rich actinides and superheavy nuclei and the role of nodal structure of single-particle wavefunctions in extremely deformed structures of light nuclei

    Science.gov (United States)

    Afanasjev, A. V.; Abusara, H.; Agbemava, S. E.

    2018-03-01

    Octupole deformed shapes in neutron-rich actinides and superheavy nuclei as well as extremely deformed shapes of the N∼ Z light nuclei have been investigated within the framework of covariant density functional theory. We confirmed the presence of new region of octupole deformation in neutron-rich actinides with the center around Z∼ 96,N∼ 196 but our calculations do not predict octupole deformation in the ground states of superheavy Z≥slant 108 nuclei. As exemplified by the study of 36Ar, the nodal structure of the wavefunction of occupied single-particle orbitals in extremely deformed structures allows to understand the formation of the α-clusters in very light nuclei, the suppression of the α-clusterization with the increase of mass number, the formation of ellipsoidal mean-field type structures and nuclear molecules.

  17. An integrated numerical model for the prediction of Gaussian and billet shapes

    DEFF Research Database (Denmark)

    Hattel, Jesper; Pryds, Nini; Pedersen, Trine Bjerre

    2004-01-01

    Separate models for the atomisation and the deposition stages were recently integrated by the authors to form a unified model describing the entire spray-forming process. In the present paper, the focus is on describing the shape of the deposited material during the spray-forming process, obtaine...

  18. Predicting outcomes in glioblastoma patients using computerized analysis of tumor shape: preliminary data

    Science.gov (United States)

    Mazurowski, Maciej A.; Czarnek, Nicholas M.; Collins, Leslie M.; Peters, Katherine B.; Clark, Kal

    2016-03-01

    Glioblastoma (GBM) is the most common primary brain tumor characterized by very poor survival. However, while some patients survive only a few months, some might live for multiple years. Accurate prognosis of survival and stratification of patients allows for making more personalized treatment decisions and moves treatment of GBM one step closer toward the paradigm of precision medicine. While some molecular biomarkers are being investigated, medical imaging remains significantly underutilized for prognostication in GBM. In this study, we investigated whether computer analysis of tumor shape can contribute toward accurate prognosis of outcomes. Specifically, we implemented applied computer algorithms to extract 5 shape features from magnetic resonance imaging (MRI) for 22 GBM patients. Then, we determined whether each one of the features can accurately distinguish between patients with good and poor outcomes. We found that that one of the 5 analyzed features showed prognostic value of survival. The prognostic feature describes how well the 3D tumor shape fills its minimum bounding ellipsoid. Specifically, for low values (less or equal than the median) the proportion of patients that survived more than a year was 27% while for high values (higher than median) the proportion of patients with survival of more than 1 year was 82%. The difference was statistically significant (p < 0.05) even though the number of patients analyzed in this pilot study was low. We concluded that computerized, 3D analysis of tumor shape in MRI may strongly contribute to accurate prognostication and stratification of patients for therapy in GBM.

  19. Focused and Steady-State Characteristics of Shaped Sonic Boom Signatures: Prediction and Analysis

    Science.gov (United States)

    Maglieri, Domenic J.; Bobbitt, Percy J.; Massey, Steven J.; Plotkin, Kenneth J.; Kandil, Osama A.; Zheng, Xudong

    2011-01-01

    The objective of this study is to examine the effect of flight, at off-design conditions, on the propagated sonic boom pressure signatures of a small "low-boom" supersonic aircraft. The amplification, or focusing, of the low magnitude "shaped" signatures produced by maneuvers such as the accelerations from transonic to supersonic speeds, climbs, turns, pull-up and pushovers is the concern. To analyze these effects, new and/or improved theoretical tools have been developed, in addition to the use of existing methodology. Several shaped signatures are considered in the application of these tools to the study of selected maneuvers and off-design conditions. The results of these applications are reported in this paper as well as the details of the new analytical tools. Finally, the magnitude of the focused boom problem for "low boom" supersonic aircraft designs has been more accurately quantified and potential "mitigations" suggested. In general, "shaped boom" signatures, designed for cruise flight, such as asymmetric and symmetric flat-top and initial-shock ramp waveforms retain their basic shape during transition flight. Complex and asymmetric and symmetric initial shock ramp waveforms provide lower magnitude focus boom levels than N-waves or asymmetric and symmetric flat-top signatures.

  20. Prediction of signal amplitude and shape for the ATLAS electromagnetic calorimeter

    CERN Document Server

    Collard, C; Henrot-Versillé, S; Serin, L

    2007-01-01

    A quantitative description of calibration pulses is made,using measured properties of detector cells,and preamplifiers and shaping amplifier characteristics.The calculations are compared to commissioning data taken with the electromagnetic liquid argon calorimeter installed in the Atlas pit.

  1. A multidimensional stability model for predicting shallow landslide size and shape across landscapes

    Science.gov (United States)

    David G. Milledge; Dino Bellugi; Jim A. McKean; Alexander L. Densmore; William E. Dietrich

    2014-01-01

    The size of a shallow landslide is a fundamental control on both its hazard and geomorphic importance. Existing models are either unable to predict landslide size or are computationally intensive such that they cannot practically be applied across landscapes. We derive a model appropriate for natural slopes that is capable of predicting shallow landslide size but...

  2. Prediction of effects of punch shapes on tableting failure by using a multi-functional single-punch tablet press

    Directory of Open Access Journals (Sweden)

    Takashi Osamura

    2017-09-01

    Full Text Available We previously determined “Tableting properties” by using a multi-functional single-punch tablet press (GTP-1. We proposed plotting “Compactability” on the x-axis against “Manufacturability” on the y-axis to allow visual evaluation of “Tableting properties”. Various types of tableting failure occur in commercial drug production and are influenced by the amount of lubricant used and the shape of the punch. We used the GTP-1 to measure “Tableting properties” with different amounts of lubricant and compared the results with those of tableting on a commercial rotary tableting machine. Tablets compressed with a small amount of lubricant showed bad “Manufacturability”, leading to sticking of powder on punches. We also tested various punch shapes. The GTP-1 correctly predicted the actual tableting results for all punch shapes. With punches that were more likely to cause tableting failure, our system predicted the effects of lubricant quantity in the tablet formulation and the occurrence of sticking in the rotary tableting machine.

  3. Prediction of process induced shape distortions and residual stresses in large fibre reinforced composite laminates

    DEFF Research Database (Denmark)

    Nielsen, Michael Wenani

    The present thesis is devoted to numerical modelling of thermomechanical phenomena occurring during curing in the manufacture of large fibre reinforced polymer matrix composites with thick laminate sections using vacuum assisted resin transfer moulding (VARTM). The main application of interest...... in this work is modelling manufacturing induced shape distortions and residual stresses in commercial wind turbine composite blades. Key mechanisms known to contribute to shape distortions and residual stress build-up are reviewed and the underlying theories used to model these mechanisms are presented....... The main mechanisms of thermal-, chemical- and mechanical origin are; (i) the thermal expansion mismatch of the constitutive composite materials, layer and tooling, (ii) chemical cure shrinkage of the composite matrix material and (iii) the tooling (i.e. the mould, inserts etc.) influence on the composite...

  4. Thermoviscoelastic shape memory behavior for epoxy-shape memory polymer

    International Nuclear Information System (INIS)

    Chen, Jianguo; Liu, Liwu; Liu, Yanju; Leng, Jinsong

    2014-01-01

    There are various applications for shape memory polymer (SMP) in the smart materials and structures field due to its large recoverable strain and controllable driving method. The mechanical shape memory deformation mechanism is so obscure that many samples and test schemes have to be tried in order to verify a final design proposal for a smart structure system. This paper proposes a simple and very useful method to unambiguously analyze the thermoviscoelastic shape memory behavior of SMP smart structures. First, experiments under different temperature and loading conditions are performed to characterize the large deformation and thermoviscoelastic behavior of epoxy-SMP. Then, a rheological constitutive model, which is composed of a revised standard linear solid (SLS) element and a thermal expansion element, is proposed for epoxy-SMP. The thermomechanical coupling effect and nonlinear viscous flowing rules are considered in the model. Then, the model is used to predict the measured rubbery and time-dependent response of the material, and different thermomechanical loading histories are adopted to verify the shape memory behavior of the model. The results of the calculation agree with experiments satisfactorily. The proposed shape memory model is practical for the design of SMP smart structures. (paper)

  5. Prediction Markets: A Review with an Experimentally Based Recommendation for Navy Force-shaping Application

    Science.gov (United States)

    2009-12-01

    78 2. Organizational / Cultural Barriers...................................................80 C. WHEN NOT TO USE PREDICTION...served as a panelist on the McKinsey prediction market roundtable. At the time, he was the Vice President and General Manager of Best Buy‘s Geek Squad...and cultural barriers by quickly aggregating information, and they can do so with high quality. However, there can be considerable cost and effort

  6. Demonstration of a multiscale modeling technique: prediction of the stress–strain response of light activated shape memory polymers

    International Nuclear Information System (INIS)

    Beblo, Richard V; Weiland, Lisa Mauck

    2010-01-01

    Presented is a multiscale modeling method applied to light activated shape memory polymers (LASMPs). LASMPs are a new class of shape memory polymer (SMPs) being developed for adaptive structures applications where a thermal stimulus is undesirable. LASMP developmental emphasis is placed on optical manipulation of Young's modulus. A multiscale modeling approach is employed to anticipate the soft and hard state moduli solely on the basis of a proposed molecular formulation. Employing such a model shows promise for expediting down-selection of favorable formulations for synthesis and testing, and subsequently accelerating LASMP development. An empirical adaptation of the model is also presented which has applications in system design once a formulation has been identified. The approach employs rotational isomeric state theory to build a molecular scale model of the polymer chain yielding a list of distances between the predicted crosslink locations, or r-values. The r-values are then fitted with Johnson probability density functions and used with Boltzmann statistical mechanics to predict stress as a function of the strain of the phantom polymer network. Empirical adaptation for design adds junction constraint theory to the modeling process. Junction constraint theory includes the effects of neighboring chain interactions. Empirical fitting results in numerically accurate Young's modulus predictions. The system is modular in nature and thus lends itself well to being adapted to other polymer systems and development applications

  7. Effect of ageing temperature after tensile pre deformation on shape memory effect and precipitation process of Cr23C6 carbide in a FeMnSiCrNiC alloy

    International Nuclear Information System (INIS)

    Yang, S.Z.; Li, N.; Wen, Y.H.; Peng, H.B.

    2011-01-01

    Highlights: → Precipitation process of Cr 23 C 6 particles depends on diffusion capacity of Cr atom. → Directional segregation of carbon atom can act as aligned Cr 23 C 6 in improving SME. → Ageing temperature and ageing time greatly affect precipitation process of Cr 23 C 6 . → NbC carbides in a FeMnSiCrNiNbC alloy are prone to dispersively precipitate. - Abstract: Researches showed that the shape memory effect (SME) of FeMnSiCrNiC alloys can be remarkably improved through aligned Cr 23 C 6 particles or carbon atom segregation inside grains. To further study on influencing factors in improving SME and aligned precipitation process of Cr 23 C 6 carbide in a FeMnSiCrNiC alloy, effect of ageing temperature after tensile pre deformation on shape memory effect and precipitation process of Cr 23 C 6 carbide in a FeMnSiCrNiC alloy was studied. The results showed that aligned precipitation of Cr 23 C 6 carbide in a FeMnSiCrNiC alloy mainly depends on diffusion capacity and directional segregation of carbon and chromium atoms, namely on ageing temperature, ageing time and the amount of tensile pre deformation.

  8. Computational Fluid Dynamics Prediction of a Modified Savonius Wind Turbine with Novel Blade Shapes

    Directory of Open Access Journals (Sweden)

    Wenlong Tian

    2015-07-01

    Full Text Available The Savonius wind turbine is a type of vertical axis wind turbine (VAWTs that is simply composed of two or three arc-type blades which can generate power even under poor wind conditions. A modified Savonius wind turbine with novel blade shapes is introduced with the aim of increasing the power coefficient of the turbine. The effect of blade fullness, which is a main shape parameter of the blade, on the power production of a two-bladed Savonius wind turbine is investigated using transient computational fluid dynamics (CFD. Simulations are based on the Reynolds Averaged Navier-Stokes (RANS equations with a renormalization group turbulent model. This numerical method is validated with existing experimental data and then utilized to quantify the performance of design variants. Results quantify the relationship between blade fullness and turbine performance with a blade fullness of 1 resulting in the highest coefficient of power, 0.2573. This power coefficient is 10.98% higher than a conventional Savonius turbine.

  9. Predicting survey responses: how and why semantics shape survey statistics on organizational behaviour.

    Directory of Open Access Journals (Sweden)

    Jan Ketil Arnulf

    Full Text Available Some disciplines in the social sciences rely heavily on collecting survey responses to detect empirical relationships among variables. We explored whether these relationships were a priori predictable from the semantic properties of the survey items, using language processing algorithms which are now available as new research methods. Language processing algorithms were used to calculate the semantic similarity among all items in state-of-the-art surveys from Organisational Behaviour research. These surveys covered areas such as transformational leadership, work motivation and work outcomes. This information was used to explain and predict the response patterns from real subjects. Semantic algorithms explained 60-86% of the variance in the response patterns and allowed remarkably precise prediction of survey responses from humans, except in a personality test. Even the relationships between independent and their purported dependent variables were accurately predicted. This raises concern about the empirical nature of data collected through some surveys if results are already given a priori through the way subjects are being asked. Survey response patterns seem heavily determined by semantics. Language algorithms may suggest these prior to administering a survey. This study suggests that semantic algorithms are becoming new tools for the social sciences, opening perspectives on survey responses that prevalent psychometric theory cannot explain.

  10. Predicting Survey Responses: How and Why Semantics Shape Survey Statistics on Organizational Behaviour

    Science.gov (United States)

    Arnulf, Jan Ketil; Larsen, Kai Rune; Martinsen, Øyvind Lund; Bong, Chih How

    2014-01-01

    Some disciplines in the social sciences rely heavily on collecting survey responses to detect empirical relationships among variables. We explored whether these relationships were a priori predictable from the semantic properties of the survey items, using language processing algorithms which are now available as new research methods. Language processing algorithms were used to calculate the semantic similarity among all items in state-of-the-art surveys from Organisational Behaviour research. These surveys covered areas such as transformational leadership, work motivation and work outcomes. This information was used to explain and predict the response patterns from real subjects. Semantic algorithms explained 60–86% of the variance in the response patterns and allowed remarkably precise prediction of survey responses from humans, except in a personality test. Even the relationships between independent and their purported dependent variables were accurately predicted. This raises concern about the empirical nature of data collected through some surveys if results are already given a priori through the way subjects are being asked. Survey response patterns seem heavily determined by semantics. Language algorithms may suggest these prior to administering a survey. This study suggests that semantic algorithms are becoming new tools for the social sciences, opening perspectives on survey responses that prevalent psychometric theory cannot explain. PMID:25184672

  11. A new body shape index predicts mortality hazard independently of body mass index.

    Directory of Open Access Journals (Sweden)

    Nir Y Krakauer

    Full Text Available Obesity, typically quantified in terms of Body Mass Index (BMI exceeding threshold values, is considered a leading cause of premature death worldwide. For given body size (BMI, it is recognized that risk is also affected by body shape, particularly as a marker of abdominal fat deposits. Waist circumference (WC is used as a risk indicator supplementary to BMI, but the high correlation of WC with BMI makes it hard to isolate the added value of WC.We considered a USA population sample of 14,105 non-pregnant adults (age ≥ 18 from the National Health and Nutrition Examination Survey (NHANES 1999-2004 with follow-up for mortality averaging 5 yr (828 deaths. We developed A Body Shape Index (ABSI based on WC adjusted for height and weight: ABSI ≡ WC/(BMI(2/3height(1/2. ABSI had little correlation with height, weight, or BMI. Death rates increased approximately exponentially with above average baseline ABSI (overall regression coefficient of +33% per standard deviation of ABSI [95% confidence interval: +20%-+48%, whereas elevated death rates were found for both high and low values of BMI and WC. 22% (8%-41% of the population mortality hazard was attributable to high ABSI, compared to 15% (3%-30% for BMI and 15% (4%-29% for WC. The association of death rate with ABSI held even when adjusted for other known risk factors including smoking, diabetes, blood pressure, and serum cholesterol. ABSI correlation with mortality hazard held across the range of age, sex, and BMI, and for both white and black ethnicities (but not for Mexican ethnicity, and was not weakened by excluding deaths from the first 3 yr of follow-up.Body shape, as measured by ABSI, appears to be a substantial risk factor for premature mortality in the general population derivable from basic clinical measurements. ABSI expresses the excess risk from high WC in a convenient form that is complementary to BMI and to other known risk factors.

  12. Changes in Right Ventricular Shape and Deformation Following Coronary Artery Bypass Surgery-Insights from Echocardiography with Strain Rate and Magnetic Resonance Imaging.

    Science.gov (United States)

    Rösner, Assami; Avenarius, Derk; Malm, Siri; Iqbal, Amjid; Schirmer, Henrik; Bijnens, Bart; Myrmel, Truls

    2015-12-01

    This study was designed to assess whether altered RV geometry and deformation parameters persisted well into the recovery period after presumably uncomplicated coronary artery bypass grafting (CABG). It was our hypothesis that the altered geometry of and load in the RV following pericardial opening would change both regional and global deformation indices for an extensive period postoperatively. Fifty-seven patients scheduled for CABG underwent preoperative and 8-10 months postoperative magnetic resonance imaging (MRI) for RV volume measurements, and resting echocardiography with assessment of geometry and RV mechanical function determined by tissue Doppler imaging (TDI) based longitudinal strain. Both MRI and echocardiography revealed postoperative dilatation of the RV apex, shortened longitudinal RV length but unchanged RV ejection fraction. Echocardiography parameters associated with filling of the right atrium showed signs of constraint with a reduced systolic filling fraction and increased right atrial size. Right ventricular segmental strain (-20 ± 13% vs. -29 ± 20% preoperatively; mean ±SD, P < 0.0001) was reduced postoperatively in parallel with TAPSE (1.3 ± 0.3 cm vs. 2.2 ± 0.4 cm; P < 0.0001). Post-CABG longitudinal motion of the RV lateral wall is reduced after uneventful CABG despite preserved RV ejection fraction and stroke volume. The discrepancy in various RV systolic performance indicators results from increased sphericity of the RV following opening the pericardium during surgery. Therefore, longitudinal functional parameters may underestimate RV systolic function for at least 8-10 months post-CABG. Changes in deformation parameters should thus always be interpreted in relation to changes in geometry. © 2015, Wiley Periodicals, Inc.

  13. Vibrations in deformed nuclei

    International Nuclear Information System (INIS)

    Aprahamian, A.

    1992-01-01

    Quadrupole oscillations around a deformed shape give rise to vibrations in deformed nuclei. Single phonon vibrations of K = 0 (β) and K = 2 (γ) are a systematic feature in deformed nuclei, but the existence of multi-phonon vibrations had remained an open question until the recently reported results in 168 Er. In this nucleus, a two-phonon K = 4(γγ) band was observed at approximately 2.5 times the energy of the single γ vibration. The authors have studied several deformed rare-earth nuclei using the ( 4 He,2n) reaction in order to map out the systematic behavior of these multi-phonon vibrations. Recently, they have identified a similar K = 4 band in 154 Gd

  14. Self-erecting shapes

    Science.gov (United States)

    Reading, Matthew W.

    2017-07-04

    Technologies for making self-erecting structures are described herein. An exemplary self-erecting structure comprises a plurality of shape-memory members that connect two or more hub components. When forces are applied to the self-erecting structure, the shape-memory members can deform, and when the forces are removed the shape-memory members can return to their original pre-deformation shape, allowing the self-erecting structure to return to its own original shape under its own power. A shape of the self-erecting structure depends on a spatial orientation of the hub components, and a relative orientation of the shape-memory members, which in turn depends on an orientation of joining of the shape-memory members with the hub components.

  15. Cholesterics of colloidal helices: predicting the macroscopic pitch from the particle shape and thermodynamic state.

    Science.gov (United States)

    Dussi, Simone; Belli, Simone; van Roij, René; Dijkstra, Marjolein

    2015-02-21

    Building a general theoretical framework to describe the microscopic origin of macroscopic chirality in (colloidal) liquid crystals is a long-standing challenge. Here, we combine classical density functional theory with Monte Carlo calculations of virial-type coefficients to obtain the equilibrium cholesteric pitch as a function of thermodynamic state and microscopic details. Applying the theory to hard helices, we observe both right- and left-handed cholesteric phases that depend on a subtle combination of particle geometry and system density. In particular, we find that entropy alone can even lead to a (double) inversion in the cholesteric sense of twist upon changing the packing fraction. We show how the competition between single-particle properties (shape) and thermodynamics (local alignment) dictates the macroscopic chiral behavior. Moreover, by expanding our free-energy functional, we are able to assess, quantitatively, Straley's theory of weak chirality, which is used in several earlier studies. Furthermore, by extending our theory to different lyotropic and thermotropic liquid-crystal models, we analyze the effect of an additional soft interaction on the chiral behavior of the helices. Finally, we provide some guidelines for the description of more complex chiral phases, like twist-bend nematics. Our results provide new insights into the role of entropy in the microscopic origin of this state of matter.

  16. Shape memory alloys

    International Nuclear Information System (INIS)

    Kaszuwara, W.

    2004-01-01

    Shape memory alloys (SMA), when deformed, have the ability of returning, in certain circumstances, to their initial shape. Deformations related to this phenomenon are for polycrystals 1-8% and up to 15% for monocrystals. The deformation energy is in the range of 10 6 - 10 7 J/m 3 . The deformation is caused by martensitic transformation in the material. Shape memory alloys exhibit one directional or two directional shape memory effect as well as pseudoelastic effect. Shape change is activated by temperature change, which limits working frequency of SMA to 10 2 Hz. Other group of alloys exhibit magnetic shape memory effect. In these alloys martensitic transformation is triggered by magnetic field, thus their working frequency can be higher. Composites containing shape memory alloys can also be used as shape memory materials (applied in vibration damping devices). Another group of composite materials is called heterostructures, in which SMA alloys are incorporated in a form of thin layers The heterostructures can be used as microactuators in microelectromechanical systems (MEMS). Basic SMA comprise: Ni-Ti, Cu (Cu-Zn,Cu-Al, Cu-Sn) and Fe (Fe-Mn, Fe-Cr-Ni) alloys. Shape memory alloys find applications in such areas: automatics, safety and medical devices and many domestic appliances. Currently the most important appears to be research on magnetic shape memory materials and high temperature SMA. Vital from application point of view are composite materials especially those containing several intelligent materials. (author)

  17. Shape-matching soft mechanical metamaterials.

    Science.gov (United States)

    Mirzaali, M J; Janbaz, S; Strano, M; Vergani, L; Zadpoor, A A

    2018-01-17

    Architectured materials with rationally designed geometries could be used to create mechanical metamaterials with unprecedented or rare properties and functionalities. Here, we introduce "shape-matching" metamaterials where the geometry of cellular structures comprising auxetic and conventional unit cells is designed so as to achieve a pre-defined shape upon deformation. We used computational models to forward-map the space of planar shapes to the space of geometrical designs. The validity of the underlying computational models was first demonstrated by comparing their predictions with experimental observations on specimens fabricated with indirect additive manufacturing. The forward-maps were then used to devise the geometry of cellular structures that approximate the arbitrary shapes described by random Fourier's series. Finally, we show that the presented metamaterials could match the contours of three real objects including a scapula model, a pumpkin, and a Delft Blue pottery piece. Shape-matching materials have potential applications in soft robotics and wearable (medical) devices.

  18. Interfacial Stresses and the Anomalous Character of Thermoelastic-Deformation Curves of a Cu-Al-Ni Shape-Memory Alloy

    Science.gov (United States)

    Malygin, G. A.; Nikolaev, V. I.; Pulnev, S. A.; Chikiryaka, A. V.

    2017-12-01

    Thermoelastic-deformation curves of a single-crystalline Cu-13.5 wt % Al-4.0 wt % Ni shapememory (SM) alloy have been studied. Cyclic temperature variation in a 300-450 K interval revealed an anomalous character of thermoelastic hysteresis loops with regions of accelerated straining at both heating and cooling stages. The observed phenomenon can be used for increasing the response speed of SM-alloy based drive and sensor devices. Analysis of this phenomenon in the framework of the theory of diffuse martensitic transformations showed that the anomalous character of thermoelastic hysteresis loops may be related to the influence of interfacial stresses on the dynamics of martensitic transformations in these SM alloys.

  19. Prediction of the pre-morbid 3D anatomy of the proximal humerus based on statistical shape modelling.

    Science.gov (United States)

    Poltaretskyi, S; Chaoui, J; Mayya, M; Hamitouche, C; Bercik, M J; Boileau, P; Walch, G

    2017-07-01

    Restoring the pre-morbid anatomy of the proximal humerus is a goal of anatomical shoulder arthroplasty, but reliance is placed on the surgeon's experience and on anatomical estimations. The purpose of this study was to present a novel method, 'Statistical Shape Modelling', which accurately predicts the pre-morbid proximal humeral anatomy and calculates the 3D geometric parameters needed to restore normal anatomy in patients with severe degenerative osteoarthritis or a fracture of the proximal humerus. From a database of 57 humeral CT scans 3D humeral reconstructions were manually created. The reconstructions were used to construct a statistical shape model (SSM), which was then tested on a second set of 52 scans. For each humerus in the second set, 3D reconstructions of four diaphyseal segments of varying lengths were created. These reconstructions were chosen to mimic severe osteoarthritis, a fracture of the surgical neck of the humerus and a proximal humeral fracture with diaphyseal extension. The SSM was then applied to the diaphyseal segments to see how well it predicted proximal morphology, using the actual proximal humeral morphology for comparison. With the metaphysis included, mimicking osteoarthritis, the errors of prediction for retroversion, inclination, height, radius of curvature and posterior and medial offset of the head of the humerus were 2.9° (± 2.3°), 4.0° (± 3.3°), 1.0 mm (± 0.8 mm), 0.8 mm (± 0.6 mm), 0.7 mm (± 0.5 mm) and 1.0 mm (± 0.7 mm), respectively. With the metaphysis excluded, mimicking a fracture of the surgical neck, the errors of prediction for retroversion, inclination, height, radius of curvature and posterior and medial offset of the head of the humerus were 3.8° (± 2.9°), 3.9° (± 3.4°), 2.4 mm (± 1.9 mm), 1.3 mm (± 0.9 mm), 0.8 mm (± 0.5 mm) and 0.9 mm (± 0.6 mm), respectively. This study reports a novel, computerised method that accurately predicts the pre-morbid proximal humeral anatomy even in challenging

  20. Numerical Prediction for the Size and Shape of a Flare in a Cross–Wind

    Directory of Open Access Journals (Sweden)

    W. Vicente y Rodríguez

    2009-10-01

    Full Text Available A computational fluid–dynamics model is used to simulate the turbulent combustion in a flare exposed to a cross–wind. Our research is mostly focused on the cross flow velocity influence to flame aerodynamics. The flow simulation is performed as three dimensional along a Cartesian coordinates system. In order to simulate the combustion process, a fast–chemistry model with a 1–step global irreversible reaction to form CO2 and H2O is used. A radiation model is used to identify the mean flame trajectory. The simulated configuration consists in a propane discharge into an air stream, get ting oxygen supply from the cross–wind. The velocity of this cross–flow is increased from 0.8 m/s to 12 m/s. Comparative analysis of our predicted values with respect to available experimental results shows good agreement in terms of flame length as well as inclination angles.

  1. Predicting infant cortical surface development using a 4D varifold-based learning framework and local topography-based shape morphing.

    Science.gov (United States)

    Rekik, Islem; Li, Gang; Lin, Weili; Shen, Dinggang

    2016-02-01

    Longitudinal neuroimaging analysis methods have remarkably advanced our understanding of early postnatal brain development. However, learning predictive models to trace forth the evolution trajectories of both normal and abnormal cortical shapes remains broadly absent. To fill this critical gap, we pioneered the first prediction model for longitudinal developing cortical surfaces in infants using a spatiotemporal current-based learning framework solely from the baseline cortical surface. In this paper, we detail this prediction model and even further improve its performance by introducing two key variants. First, we use the varifold metric to overcome the limitations of the current metric for surface registration that was used in our preliminary study. We also extend the conventional varifold-based surface registration model for pairwise registration to a spatiotemporal surface regression model. Second, we propose a morphing process of the baseline surface using its topographic attributes such as normal direction and principal curvature sign. Specifically, our method learns from longitudinal data both the geometric (vertices positions) and dynamic (temporal evolution trajectories) features of the infant cortical surface, comprising a training stage and a prediction stage. In the training stage, we use the proposed varifold-based shape regression model to estimate geodesic cortical shape evolution trajectories for each training subject. We then build an empirical mean spatiotemporal surface atlas. In the prediction stage, given an infant, we select the best learnt features from training subjects to simultaneously predict the cortical surface shapes at all later timepoints, based on similarity metrics between this baseline surface and the learnt baseline population average surface atlas. We used a leave-one-out cross validation method to predict the inner cortical surface shape at 3, 6, 9 and 12 months of age from the baseline cortical surface shape at birth. Our

  2. Evaluation of CP shape correction for e-beam writing

    Science.gov (United States)

    Takizawa, Masahiro; Bunya, Keita; Isobe, Hideaki; Komami, Hideaki; Abe, Kenji; Kurokawa, Masaki; Yamada, Akio; Sakamoto, Kiichi; Nakamura, Takayuki; Kuwano, Kazusumi; Tateishi, Masahiro; Chau, Larry

    2012-11-01

    Character projection (CP) exposure has some advantages compared with variable shaped beam (VSB) system; (1) shot count reduction by printing complex patterns in one e-beam shot, (2) high pattern fidelity by using CP stencil. In this paper we address another advantage of CP exposure, namely the shape correction of CP stencil for cancelling the pattern deformation on the substrate. The deformation of CP printings is decomposed into some elements. They are CP stencil manufacturing error, proximity effect, beam blur of the e-beam writer and resist blur. The element caused by beam blur of e-beam writer can be predicted by measuring the total beam blur obtained from CD-dose curves. The pattern deformation was corrected by applying the shape correction software system of D2S. The corrected CP stencil of 22nm-node standard cell was manufactured and standard cell patterns were exposed. We confirmed that our shape correction method is the appropriate solution for correcting deformation issue of CP openings. The beam blur required for the 1X nm dimensions was predicted from the exposure results of standard cell patterns with applying shape correction and CD-dose curves. We simulated the optical system to realize the required beam blur. As a result, the next electron optics has the resolving capability of 1X nm dimension.

  3. Prediction of precipitate evolution and martensite transformation in Ti-Ni-Cu shape memory alloys by computational thermodynamics

    Science.gov (United States)

    Povoden-Karadeniz, A.; Cirstea, D. C.; Kozeschnik, E.

    2016-04-01

    Ti-50Ni to Ti-55Ni (at.%) can be termed as the pioneer of shape memory alloys (SMA). Intermetallic precipitates play an important role for strengthening. Their influence on the start temperature of the martensitic transformation is a crucial property for the shape memory effect. Efforts for increasing the martensite start temperature include replacement of a part of Ni atoms by Cu. The influence of Cu-addition to Ti-Ni SMA on T0- temperatures and the character of the austenite-martensite transformation is evaluated using a new thermodynamic database for the Ti-Ni-system extended by Cu. Trends of precipitation of intermetallic phases are simulated by combining the assessed thermodynamics of the Ti-Ni-Cu system with assessed diffusion mobility data and kinetic models, as implemented in the solid-state transformation software MatCalc and are presented in the form of time-temperature-precipitation diagrams. Thermodynamic equilibrium considerations, complemented by predictive thermo-kinetic precipitation simulation, facilitates SMA alloy design and definition of optimized aging conditions.

  4. Perfectionism, weight and shape concerns, and low self-esteem: Testing a model to predict bulimic symptoms.

    Science.gov (United States)

    La Mela, Carmelo; Maglietta, Marzio; Caini, Saverio; Casu, Giuliano P; Lucarelli, Stefano; Mori, Sara; Ruggiero, Giovanni Maria

    2015-12-01

    Previous studies have tested multivariate models of bulimia pathology development, documenting that a confluence of perfectionism, body dissatisfaction, and low self-esteem is predictive of disordered eating. However, attempts to replicate these results have yielded controversial findings. The objective of the present study was to test an interactive model of perfectionism, weight and shape concerns, and self-esteem in a sample of patients affected by Eating Disorder (ED). One-hundred-sixty-seven ED patients received the Structured Clinical Interview for DSM-IV Axis I (SCID-I), and they completed the Eating Disorder Examination Questionnaire (EDE-Q), the Rosenberg Self-Esteem Scale (RSES), and the Multidimensional Perfectionism Scale (MPS-F). Several mediation analysis models were fit to test whether causal effects of concern over weight and shape on the frequency of bulimic episodes were mediated by perfectionism and moderated by low levels of self-esteem. Contrary to our hypotheses, we found no evidence that the causal relationship investigated was mediated by any of the dimensions of perfectionism. As a secondary finding, the dimensions of perfectionism, perceived criticism and parental expectations, were significantly correlated with the presence of bulimic symptoms. The validity of the interactive model remains controversial, and may be limited by an inadequate conceptualization of the perfectionism construct.

  5. Prediction of the shape of inline wave force and free surface elevation using First Order Reliability Method (FORM)

    DEFF Research Database (Denmark)

    Ghadirian, Amin; Bredmose, Henrik; Schløer, Signe

    2017-01-01

    In design of substructures for offshore wind turbines, the extreme wave loads which are of interest in Ultimate Limit States are often estimated by choosing extreme events from linear random sea states and replacing them by either stream function wave theory or the NewWave theory of a certain...... as the free surface elevation time series. The discrepancies between the FORM results and the measurements is found to be a result of more nonlinearity in the selected events than second order and negligence of the drag forces above still water level in the present analysis. This paper is one step toward more...... precise prediction of extreme wave shape and loads. Ultimately such waves can be used in the design process of offshore structures. The approach can be generalized to fully nonlinear models....

  6. Fundamental measure theory for non-spherical hard particles: predicting liquid crystal properties from the particle shape.

    Science.gov (United States)

    Wittmann, René; Marechal, Matthieu; Mecke, Klaus

    2016-06-22

    Density functional theory (DFT) for hard bodies provides a theoretical description of the effect of particle shape on inhomogeneous fluids. We present improvements of the DFT framework fundamental measure theory (FMT) for hard bodies and validate these improvements for hard spherocylinders. To keep the paper self-contained, we first discuss the recent advances in FMT for hard bodies that lead to the introduction of fundamental mixed measure theory (FMMT) in our previous paper (2015 Europhys. Lett. 109 26003). Subsequently, we provide an efficient semi-empirical alternative to FMMT and show that the phase diagram for spherocylinders is described with similar accuracy in both versions of the theory. Finally, we present a semi-empirical modification of FMMT whose predictions for the phase diagram for spherocylinders are in excellent quantitative agreement with computer simulation results.

  7. Characterization of Shape Differences Among ICP Pulses Predicts Outcome of External Ventricular Drainage Weaning Trial.

    Science.gov (United States)

    Arroyo-Palacios, Jorge; Rudz, Maryna; Fidler, Richard; Smith, Wade; Ko, Nerissa; Park, Soojin; Bai, Yong; Hu, Xiao

    2016-12-01

    External ventricular drains (EVD) are widely used to manage intracranial pressure (ICP) and hydrocephalus for aneurysmal subarachnoid hemorrhage (aSAH) patients. After days of use, a decision is made to remove the EVD or replace it with a shunt, involving EVD weaning and CT imaging to observe ventricular size and clinical status. This practice may lead to prolonged hospital stay, extra radiation exposure, and neurological insult due to ICP elevation. This study aims to apply a validated morphological clustering analysis of ICP pulse (MOCAIP) algorithm to detect signatures from the pulse waveform to differentiate an intact CSF circulatory system from an abnormal one during EVD weaning. We performed a retrospective study with 50 aSAH patients with reported weaning trial admitted to our institution between 03/2013 and 08/2014. By reviewing clinical notes and pre/post-brain imaging results, 32 patients were determined as having passed the weaning trial and 18 patients as having failed the trial. MOCAIP algorithm was applied to ICP signals to form a series of artifact-free dominant pulses. Finally, pulses with similar mean ICP were identified, and amplitude, Euclidean, and geodesic inter-pulse distances were calculated in a 4-h moving window. While the traditional measure of mean ICP failed to differentiate the two groups of patients, the proposed amplitude and morphological inter-pulse measures presented significant differences (p ≤ 0.004). Moreover, receiver operating characteristic (ROC) analyses showed their usability to predict the outcome of the EVD weaning trial (AUC 0.85, p < 0.001). Patients with an impaired CSF system showed a larger mean and variability of inter-pulse distances, indicating frequent changes on the morphology of pulses. This technique may provide a method to rapidly determine if patients will need placement of a shunt or can simply have the EVD removed.

  8. Statistical models of shape optimisation and evaluation

    CERN Document Server

    Davies, Rhodri; Taylor, Chris

    2014-01-01

    Deformable shape models have wide application in computer vision and biomedical image analysis. This book addresses a key issue in shape modelling: establishment of a meaningful correspondence between a set of shapes. Full implementation details are provided.

  9. Filament networks attached to membranes: cytoskeletal pressure and local bilayer deformation

    Energy Technology Data Exchange (ETDEWEB)

    Auth, Thorsten [Department of Materials and Interfaces, Weizmann Institute of Science, PO Box 26, Rehovot 76100 (Israel); Safran, S A [Department of Materials and Interfaces, Weizmann Institute of Science, PO Box 26, Rehovot 76100 (Israel); Gov, Nir S [Department of Chemical Physics, Weizmann Institute of Science, PO Box 26, Rehovot 76100 (Israel)

    2007-11-15

    Several cell types, among them red blood cells, have a cortical, two-dimensional (2D) network of filaments sparsely attached to their lipid bilayer. In many mammalian cells, this 2D polymer network is connected to an underlying 3D, more rigid cytoskeleton. In this paper, we consider the pressure exerted by the thermally fluctuating, cortical network of filaments on the bilayer and predict the bilayer deformations that are induced by this pressure. We treat the filaments as flexible polymers and calculate the pressure that a network of such linear chains exerts on the bilayer; we then minimize the bilayer shape in order to predict the resulting local deformations. We compare our predictions with membrane deformations observed in electron micrographs of red blood cells. The polymer pressure along with the resulting membrane deformation can lead to compartmentalization, regulate in-plane diffusion and may influence protein sorting as well as transmit signals to the polymerization of the underlying 3D cytoskeleton.

  10. Filament networks attached to membranes: cytoskeletal pressure and local bilayer deformation

    International Nuclear Information System (INIS)

    Auth, Thorsten; Safran, S A; Gov, Nir S

    2007-01-01

    Several cell types, among them red blood cells, have a cortical, two-dimensional (2D) network of filaments sparsely attached to their lipid bilayer. In many mammalian cells, this 2D polymer network is connected to an underlying 3D, more rigid cytoskeleton. In this paper, we consider the pressure exerted by the thermally fluctuating, cortical network of filaments on the bilayer and predict the bilayer deformations that are induced by this pressure. We treat the filaments as flexible polymers and calculate the pressure that a network of such linear chains exerts on the bilayer; we then minimize the bilayer shape in order to predict the resulting local deformations. We compare our predictions with membrane deformations observed in electron micrographs of red blood cells. The polymer pressure along with the resulting membrane deformation can lead to compartmentalization, regulate in-plane diffusion and may influence protein sorting as well as transmit signals to the polymerization of the underlying 3D cytoskeleton

  11. Nanolaminate deformable mirrors

    Science.gov (United States)

    Papavasiliou, Alexandros P.; Olivier, Scot S.

    2009-04-14

    A deformable mirror formed out of two layers of a nanolaminate foil attached to a stiff substrate is introduced. Deformation is provided by an electrostatic force between two of the layers. The internal stiffness of the structure allows for high-spatial-frequency shapes. The nanolaminate foil of the present invention allows for a high-quality mirror surface. The device achieves high precision in the vertical direction by using foils with accurately controlled thicknesses, but does not require high precision in the lateral dimensions, allowing such mirrors to be fabricated using crude lithography techniques. Such techniques allow structures up to about the meter scale to be fabricated.

  12. Exotic octupole deformation in proton-rich Z=N nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Takami, Satoshi; Yabana, K. [Niigata Univ. (Japan); Matsuo, M.

    1998-03-01

    We study static non-axial octupole deformations in proton-rich Z=N nuclei, {sup 64}Ge, {sup 68}Se, {sup 72}Kr, {sup 76}Sr, {sup 80}Zr and {sup 84}Mo, by using the Skyrme Hartree-Fock plus BCS method with no restrictions on the nuclear shape. The calculation predicts that the oblate ground state in {sup 68}Se is extremely soft for the Y{sub 33} triangular deformation, and that in {sup 80}Zr the low-lying local minimum state coexisting with the prolate ground state has the Y{sub 32} tetrahedral deformation. (author)

  13. SVM prediction of ligand-binding sites in bacterial lipoproteins employing shape and physio-chemical descriptors.

    Science.gov (United States)

    Kadam, Kiran; Prabhakar, Prashant; Jayaraman, V K

    2012-11-01

    Bacterial lipoproteins play critical roles in various physiological processes including the maintenance of pathogenicity and numbers of them are being considered as potential candidates for generating novel vaccines. In this work, we put forth an algorithm to identify and predict ligand-binding sites in bacterial lipoproteins. The method uses three types of pocket descriptors, namely fpocket descriptors, 3D Zernike descriptors and shell descriptors, and combines them with Support Vector Machine (SVM) method for the classification. The three types of descriptors represent shape-based properties of the pocket as well as its local physio-chemical features. All three types of descriptors, along with their hybrid combinations are evaluated with SVM and to improve classification performance, WEKA-InfoGain feature selection is applied. Results obtained in the study show that the classifier successfully differentiates between ligand-binding and non-binding pockets. For the combination of three types of descriptors, 10 fold cross-validation accuracy of 86.83% is obtained for training while the selected model achieved test Matthews Correlation Coefficient (MCC) of 0.534. Individually or in combination with new and existing methods, our model can be a very useful tool for the prediction of potential ligand-binding sites in bacterial lipoproteins.

  14. Modelling and optimization of a deformable mirror for laser beam control

    CSIR Research Space (South Africa)

    Loveday, PW

    2008-03-01

    Full Text Available of orthogonal functions. The challenge is to design a device that can represent selected polynomials as accurately as possible with specified amplitude. Numerical modelling is required to predict the deformation shapes that can be achieved by a unimorph mirror...

  15. Very large deformation in hot 32S nucleus using GDR as a probe

    International Nuclear Information System (INIS)

    Pandit, Deepak; Mukhopadhyay, S.; Bhattacharya, Srijit; Pal, Surajit; Bhattacharya, S.; Bhattacharya, C.; Banerjee, K.; Kundu, S.; Rana, T.K.; Dey, A.; Gupta, D.; Mukherjee, G.; Ghosh, T.; Banerjee, S.R.; De, A.

    2008-01-01

    The high energy photons from excited 32 S nucleus have been measured at the Variable Energy Cyclotron Centre, Kolkata to study the nature of large deformation as predicted by the charge particle experiment directly via the splitting of the GDR line shapes

  16. Bending forces plastically deform growing bacterial cell walls

    Science.gov (United States)

    Amir, Ariel; Babaeipour, Farinaz; McIntosh, Dustin B.; Nelson, David R.; Jun, Suckjoon

    2014-01-01

    Cell walls define a cell’s shape in bacteria. The walls are rigid to resist large internal pressures, but remarkably plastic to adapt to a wide range of external forces and geometric constraints. Currently, it is unknown how bacteria maintain their shape. In this paper, we develop experimental and theoretical approaches and show that mechanical stresses regulate bacterial cell wall growth. By applying a precisely controllable hydrodynamic force to growing rod-shaped Escherichia coli and Bacillus subtilis cells, we demonstrate that the cells can exhibit two fundamentally different modes of deformation. The cells behave like elastic rods when subjected to transient forces, but deform plastically when significant cell wall synthesis occurs while the force is applied. The deformed cells always recover their shape. The experimental results are in quantitative agreement with the predictions of the theory of dislocation-mediated growth. In particular, we find that a single dimensionless parameter, which depends on a combination of independently measured physical properties of the cell, can describe the cell’s responses under various experimental conditions. These findings provide insight into how living cells robustly maintain their shape under varying physical environments. PMID:24711421

  17. Neutron halo in deformed nuclei

    International Nuclear Information System (INIS)

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-01-01

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  18. A Comparison of the Crustal Deformation Predicted by Glacial Isostatic Adjustment to Seismicity in the Baffin Region of Northern Canada

    Science.gov (United States)

    James, T. S.; Schamehorn, T.; Bent, A. L.; Allen, T. I.; Mulder, T.; Simon, K.

    2016-12-01

    The horizontal crustal strain-rates induced by glacial isostatic adjustment (GIA) in northern Canada and western Greenland region are compared to the spatial pattern of seismicity. For the comparison, an updated seismicity catalogue was created from the 2010 version of the NRCan Seismic Hazard Earthquake Epicentre File (SHEEF2010) catalogue and the Greenland Ice Sheet Monitoring Network (GLISN) catalogue of the Geological Survey of Denmark and Greenland (GEUS). Crustal motion rates were computed with the Innu/Laur16 ice-sheet history and the VM5a viscosity profile (Simon et al., 2015; 2016). This GIA model optimizes the fit to relative sea-level and vertical crustal motion measurements around Hudson Bay and in the Canadian Arctic Archipelago (CAA). A region in Baffin Bay with historically high seismicity, including the 1933 M 7.4 and the 1934 and 1945 M 6.5 earthquakes, features high predicted GIA strain-rates. Elsewhere, agreement is not strong, with zones of seismicity occurring where predicted horizontal crustal strain-rates are small and large crustal strain-rates predicted where earthquake occurrence is muted. For example, large compressional crustal strain-rates are predicted beneath seismically quiescent portions of the Greenland ice sheet. Similarly, large predicted extensional strain-rates occur around southern Hudson Bay and the Foxe Basin, which are also regions of relative seismic quiescence. Additional factors to be considered include the orientation of the background stress field, relative to the predicted stress changes, and potential pre-existing zones of lithospheric weakness.

  19. Joint modeling of cell and nuclear shape variation

    Science.gov (United States)

    Johnson, Gregory R.; Buck, Taraz E.; Sullivan, Devin P.; Rohde, Gustavo K.; Murphy, Robert F.

    2015-01-01

    Modeling cell shape variation is critical to our understanding of cell biology. Previous work has demonstrated the utility of nonrigid image registration methods for the construction of nonparametric nuclear shape models in which pairwise deformation distances are measured between all shapes and are embedded into a low-dimensional shape space. Using these methods, we explore the relationship between cell shape and nuclear shape. We find that these are frequently dependent on each other and use this as the motivation for the development of combined cell and nuclear shape space models, extending nonparametric cell representations to multiple-component three-dimensional cellular shapes and identifying modes of joint shape variation. We learn a first-order dynamics model to predict cell and nuclear shapes, given shapes at a previous time point. We use this to determine the effects of endogenous protein tags or drugs on the shape dynamics of cell lines and show that tagged C1QBP reduces the correlation between cell and nuclear shape. To reduce the computational cost of learning these models, we demonstrate the ability to reconstruct shape spaces using a fraction of computed pairwise distances. The open-source tools provide a powerful basis for future studies of the molecular basis of cell organization. PMID:26354424

  20. Simulation of Dislocation and Transformation Plasticity in Shape Memory Alloys

    National Research Council Canada - National Science Library

    Volkov, Alexander

    1999-01-01

    A model of deformation of shape memory alloys has been developed. It takes into account deformation due to the phase transformation and plastic deformation, produced by an external stress or by inter-phase stresses...

  1. Predicting soft tissue deformations for a maxillofacial surgery planning system: from computational strategies to a complete clinical validation.

    NARCIS (Netherlands)

    Mollemans, W.; Schutyser, F.A.C.; Nadjmi, N.; Maes, F.; Suetens, P.

    2007-01-01

    In the field of maxillofacial surgery, there is a huge demand from surgeons to be able to pre-operatively predict the new facial outlook after surgery. Besides the big interest for the surgeon during the planning, it is also an essential tool to improve the communication between the surgeon and his

  2. When Power Shapes Interpersonal Behavior: Low Relationship Power Predicts Men’s Aggressive Responses to Low Situational Power

    Science.gov (United States)

    Overall, Nickola C.; Hammond, Matthew D.; McNulty, James K.; Finkel, Eli J.

    2016-01-01

    When does power in intimate relationships shape important interpersonal behaviors, such as psychological aggression? Five studies tested whether possessing low relationship power was associated with aggressive responses, but (1) only within power-relevant relationship interactions when situational power was low, and (2) only by men because masculinity (but not femininity) involves the possession and demonstration of power. In Studies 1 and 2, men lower in relationship power exhibited greater aggressive communication during couples’ observed conflict discussions, but only when they experienced low situational power because they were unable to influence their partner. In Study 3, men lower in relationship power reported greater daily aggressive responses toward their partner, but only on days when they experienced low situational power because they were either (a) unable to influence their partner or (b) dependent on their partner for support. In Study 4, men who possessed lower relationship power exhibited greater aggressive responses during couples’ support-relevant discussions, but only when they had low situational power because they needed high levels of support. Study 5 provided evidence for the theoretical mechanism underlying men’s aggressive responses to low relationship power. Men who possessed lower relationship power felt less manly on days they faced low situational power because their partner was unwilling to change to resolve relationship problems, which in turn predicted greater aggressive responses to their partner. These results demonstrate that fully understanding when and why power is associated with interpersonal behavior requires differentiating between relationship and situational power. PMID:27442766

  3. Shape-based assessment of vertebral fracture risk in postmenopausal women using discriminative shape alignment

    DEFF Research Database (Denmark)

    Crimi, Alessandro; Loog, Marco; de Bruijne, Marleen

    2012-01-01

    but the result of a decaying process. To evaluate fracture risk, a shape-based classifier, identifying possible small prefracture deformities, may be constructed. MATERIALS AND METHODS: During a longitudinal case-control study, a large population of postmenopausal women, fracture free at baseline, were followed...... independently performed manual annotations of the vertebrae, and fracture prediction using shape features extracted from the baseline annotations was performed. This was implemented using posterior probabilities from a standard linear classifier. RESULTS: The classifier tested on the study population quantified...

  4. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...

  5. Ground and Structure Deformation 3d Modelling with a Tin Based Property Model

    Science.gov (United States)

    TIAN, T.; Zhang, J.; Jiang, W.

    2013-12-01

    With the development of 3D( three-dimensional) modeling and visualization, more and more 3D tectonics are used to assist the daily work in Engineering Survey, in which the prediction of deformation field in strata and structure induced by underground construction is an essential part. In this research we developed a TIN (Triangulated Irregular Network) based property model for the 3D (three dimensional) visualization of ground deformation filed. By record deformation vector for each nodes, the new model can express the deformation with geometric-deformation-style by drawing each node in its new position and deformation-attribute-distribution-style by drawing each node in the color correspond with its deformation attribute at the same time. Comparing with the volume model based property model, this new property model can provide a more precise geometrical shape for structure objects. Furthermore, by recording only the deformation data of the user-interested 3d surface- such as the ground surface or the underground digging surface, the new property model can save a lot of space, which makes it possible to build the deformation filed model of a much more large scale. To construct the models of deformation filed based on TIN model, the refinement of the network is needed to increase the nodes number, which is necessary to express the deformation filed with a certain resolution. The TIN model refinement is a process of sampling the 3D deformation field values on points on the TIN surface, for which we developed a self-adapting TIN refinement method. By set the parameter of the attribute resolution, this self-adapting method refines the input geometric-expressing TIN model by adding more vertexes and triangles where the 3D deformation filed changing faster. Comparing with the even refinement method, the self-adapting method can generate a refined TIN model with nodes counted less by two thirds. Efficiency Comparison between Self-adapting Refinement Method and Even

  6. A Mesoscopic Analytical Model to Predict the Onset of Wrinkling in Plain Woven Preforms under Bias Extension Shear Deformation

    Directory of Open Access Journals (Sweden)

    Abbas Hosseini

    2017-10-01

    Full Text Available A mesoscopic analytical model of wrinkling of Plain-Woven Composite Preforms (PWCPs under the bias extension test is presented, based on a new instability analysis. The analysis is aimed to facilitate a better understanding of the nature of wrinkle formation in woven fabrics caused by large in-plane shear, while it accounts for the effect of fabric and process parameters on the onset of wrinkling. To this end, the mechanism of wrinkle formation in PWCPs in mesoscale is simplified and an equivalent structure composed of bars and different types of springs is proposed, mimicking the behavior of a representative PWCP element at the post-locking state. The parameters of this equivalent structure are derived based on geometric and mechanical characteristics of the PWCP. The principle of minimum total potential energy is employed to formluate the model, and experimental validation is carried out to reveal the effectiveness of the derived wrinkling prediction equation.

  7. Nuclear deformation at finite temperature.

    Science.gov (United States)

    Alhassid, Y; Gilbreth, C N; Bertsch, G F

    2014-12-31

    Deformation, a key concept in our understanding of heavy nuclei, is based on a mean-field description that breaks the rotational invariance of the nuclear many-body Hamiltonian. We present a method to analyze nuclear deformations at finite temperature in a framework that preserves rotational invariance. The auxiliary-field Monte Carlo method is used to generate a statistical ensemble and calculate the probability distribution associated with the quadrupole operator. Applying the technique to nuclei in the rare-earth region, we identify model-independent signatures of deformation and find that deformation effects persist to temperatures higher than the spherical-to-deformed shape phase-transition temperature of mean-field theory.

  8. Nuclear Deformation at Finite Temperature

    Science.gov (United States)

    Alhassid, Y.; Gilbreth, C. N.; Bertsch, G. F.

    2014-12-01

    Deformation, a key concept in our understanding of heavy nuclei, is based on a mean-field description that breaks the rotational invariance of the nuclear many-body Hamiltonian. We present a method to analyze nuclear deformations at finite temperature in a framework that preserves rotational invariance. The auxiliary-field Monte Carlo method is used to generate a statistical ensemble and calculate the probability distribution associated with the quadrupole operator. Applying the technique to nuclei in the rare-earth region, we identify model-independent signatures of deformation and find that deformation effects persist to temperatures higher than the spherical-to-deformed shape phase-transition temperature of mean-field theory.

  9. [Values of the sperm deformity index, acrosome abnormity rate, and sperm DNA fragmentation index of optimized sperm in predicting IVF fertilization failure].

    Science.gov (United States)

    Jiang, Wei-jie; Jin, Fan; Zhou, Li-ming

    2016-02-01

    To investigate the values of the sperm deformity index (SDI), acrosome abnormity rate (AAR), and DNA fragmentation index (DFI) of optimized sperm in the prediction of fertilization failure (fertilization rate fertilization (IVF). We selected 695 cycles of conventional IVF for pure oviductal infertility in this study, including 603 cycles of normal fertilization and 92 cycles of fertilization failure. On the day of oocyte retrieval, we examined sperm morphology, acrosome morphology, and DNA fragmentation using the Diff-Quik, PSA-FITC and SCD methods. We established the joint predictor (JP) by logistic equation and analyzed the values of different parameters in predicting fertilization failure with the receiver operating characteristic (ROC) curve. The fertilization rate was negatively correlated with SDI (r = - 0.07; P = 0.03), AAR (r = -0.49; P fertilization group were 1.24 ± 0.20, (7.75 ± 2.28)%, and (7.87 ± 3.15)%, and those in the fertilization failure group were 1.42 ± 0.15, (12.02 ± 3.06)%, and (13.32 ± 4.13)%, respectively, all with statistically significant differences between the two groups (P fertilization failure ( OR = 2.68, 14.11, and 3.85; P = 0.01, fertilization failure were approximately 1.45, 10%, and 12%. The SDI, AAR and DFI of optimized sperm are closely associated with the fertilization rate, and all have the value for predicting fertilization failure in IVF. The AAR is more valuable than the other single predictors, but JP is more effective than the AAR.

  10. Hematoma shape, hematoma size, Glasgow coma scale score and ICH score: which predicts the 30-day mortality better for intracerebral hematoma?

    Directory of Open Access Journals (Sweden)

    Chih-Wei Wang

    Full Text Available To investigate the performance of hematoma shape, hematoma size, Glasgow coma scale (GCS score, and intracerebral hematoma (ICH score in predicting the 30-day mortality for ICH patients. To examine the influence of the estimation error of hematoma size on the prediction of 30-day mortality.This retrospective study, approved by a local institutional review board with written informed consent waived, recruited 106 patients diagnosed as ICH by non-enhanced computed tomography study. The hemorrhagic shape, hematoma size measured by computer-assisted volumetric analysis (CAVA and estimated by ABC/2 formula, ICH score and GCS score was examined. The predicting performance of 30-day mortality of the aforementioned variables was evaluated. Statistical analysis was performed using Kolmogorov-Smirnov tests, paired t test, nonparametric test, linear regression analysis, and binary logistic regression. The receiver operating characteristics curves were plotted and areas under curve (AUC were calculated for 30-day mortality. A P value less than 0.05 was considered as statistically significant.The overall 30-day mortality rate was 15.1% of ICH patients. The hematoma shape, hematoma size, ICH score, and GCS score all significantly predict the 30-day mortality for ICH patients, with an AUC of 0.692 (P = 0.0018, 0.715 (P = 0.0008 (by ABC/2 to 0.738 (P = 0.0002 (by CAVA, 0.877 (P<0.0001 (by ABC/2 to 0.882 (P<0.0001 (by CAVA, and 0.912 (P<0.0001, respectively.Our study shows that hematoma shape, hematoma size, ICH scores and GCS score all significantly predict the 30-day mortality in an increasing order of AUC. The effect of overestimation of hematoma size by ABC/2 formula in predicting the 30-day mortality could be remedied by using ICH score.

  11. Soft object deformation monitoring and learning for model-based robotic hand manipulation.

    Science.gov (United States)

    Cretu, Ana-Maria; Payeur, Pierre; Petriu, Emil M

    2012-06-01

    This paper discusses the design and implementation of a framework that automatically extracts and monitors the shape deformations of soft objects from a video sequence and maps them with force measurements with the goal of providing the necessary information to the controller of a robotic hand to ensure safe model-based deformable object manipulation. Measurements corresponding to the interaction force at the level of the fingertips and to the position of the fingertips of a three-finger robotic hand are associated with the contours of a deformed object tracked in a series of images using neural-network approaches. The resulting model captures the behavior of the object and is able to predict its behavior for previously unseen interactions without any assumption on the object's material. The availability of such models can contribute to the improvement of a robotic hand controller, therefore allowing more accurate and stable grasp while providing more elaborate manipulation capabilities for deformable objects. Experiments performed for different objects, made of various materials, reveal that the method accurately captures and predicts the object's shape deformation while the object is submitted to external forces applied by the robot fingers. The proposed method is also fast and insensitive to severe contour deformations, as well as to smooth changes in lighting, contrast, and background.

  12. Validation of a simple method for measuring cranial deformities (plagiocephalometry)

    NARCIS (Netherlands)

    van Adrichem, Léon N. A.; van Vlimmeren, Leo A.; Cadanová, Dominika; Helders, Paul J. M.; Engelbert, Raoul H. H.; van Neck, Han J. W.; Koning, Anton H. J.

    2008-01-01

    Craniofacial measuring is essential for diagnosis or evaluation of growth and therapies. Skull deformities in children are mainly caused by craniosynostosis or by external pressure in positional skull deformations. Traditional anthropometry does not sufficiently analyze craniofacial shape. In

  13. shape change in Hf, W and Os-isotopes: A non-relativistic Hartree ...

    Indian Academy of Sciences (India)

    Abstract. We have investigated the ground-state structures of even-even Hf, W and. Os isotopes within the framework of a deformed non-relativistic Hartree-Fock and a rela- tivistic mean field formalism. A majority of the nuclei are predicted to be prolate in shape in the relativistic calculations. On the other hand, contrary to the ...

  14. Shape of snack foods does not predict snack intake in a sample of preschoolers: a cross-over study

    OpenAIRE

    Boyer, Lauren E; Laurentz, Sara; McCabe, George P; Kranz, Sibylle

    2012-01-01

    Abstract Background In the past decade, the proportion snacking has increased. Snack foods consumed are predominantly not nutritious foods. One potential venue to increase children’s diet quality is to offer healthy snack foods and we explored if shaped snack foods would lead to increased consumption. Methods We investigated the consumption of high-fiber snacks (banana bread, pancakes, and sandwiches) served either in normal (round, square) or shaped (heart, hands, animals) form to preschoole...

  15. Pulse shaping using a spatial light modulator

    CSIR Research Space (South Africa)

    Botha, N

    2009-07-01

    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  16. Toward an individualized target motion management for IMRT of cervical cancer based on model-predicted cervix-uterus shape and position.

    Science.gov (United States)

    Bondar, Luiza; Hoogeman, Mischa; Mens, Jan Willem; Dhawtal, Glenn; de Pree, Ilse; Ahmad, Rozilawati; Quint, Sandra; Heijmen, Ben

    2011-05-01

    To design and evaluate a 3D patient-specific model to predict the cervix-uterus shape and position. For 13 patients lying in prone position, 10 variable bladder filling CT-scans were acquired, 5 at planning and 5 after 40Gy. The delineated cervix-uterus volumes in 2-5 pre-treatment CT-scans were used to generate patient-specific models that predict the cervix-uterus geometry by bladder volume. Model predictions were compared to delineations, excluding those used for model construction. The prediction error was quantified by the margin required around the predicted volumes to accommodate 95% of the delineated volume and by the predicted-to-delineated surface distance. The prediction margin was significantly smaller (average 50%) than the margin encompassing the cervix-uterus motion. The prediction margin could be decreased (from 7 to 5mm at planning and from 10 to 8mm after 40Gy) by increasing (from 2 to 5) the number of CT-scans used for the model construction. For most patients, even with a model based on only two CT-scans, the prediction error was well below the margin encompassing the cervix-uterus motion. The described approach could be used to create prior to treatment, an individualized treatment strategy. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  17. Toward an individualized target motion management for IMRT of cervical cancer based on model-predicted cervix-uterus shape and position

    International Nuclear Information System (INIS)

    Bondar, Luiza; Hoogeman, Mischa; Mens, Jan Willem; Dhawtal, Glenn; Pree, Ilse de; Ahmad, Rozilawati; Quint, Sandra; Heijmen, Ben

    2011-01-01

    Background and Purpose: To design and evaluate a 3D patient-specific model to predict the cervix-uterus shape and position. Methods and Materials: For 13 patients lying in prone position, 10 variable bladder filling CT-scans were acquired, 5 at planning and 5 after 40 Gy. The delineated cervix-uterus volumes in 2-5 pre-treatment CT-scans were used to generate patient-specific models that predict the cervix-uterus geometry by bladder volume. Model predictions were compared to delineations, excluding those used for model construction. The prediction error was quantified by the margin required around the predicted volumes to accommodate 95% of the delineated volume and by the predicted-to-delineated surface distance. Results: The prediction margin was significantly smaller (average 50%) than the margin encompassing the cervix-uterus motion. The prediction margin could be decreased (from 7 to 5 mm at planning and from 10 to 8 mm after 40 Gy) by increasing (from 2 to 5) the number of CT-scans used for the model construction. Conclusion: For most patients, even with a model based on only two CT-scans, the prediction error was well below the margin encompassing the cervix-uterus motion. The described approach could be used to create prior to treatment, an individualized treatment strategy.

  18. [Babies with cranial deformity].

    Science.gov (United States)

    Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J

    2009-01-01

    Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option.

  19. Shapeable sheet without plastic deformation

    Science.gov (United States)

    Oppenheimer, Naomi; Witten, Thomas A.

    2015-11-01

    Randomly crumpled sheets have shape memory. In order to understand the basis of this form of memory, we simulate triangular lattices of springs whose lengths are altered to create a topography with multiple potential energy minima. We then deform these lattices into different shapes and investigate their ability to retain the imposed shape when the energy is relaxed. The lattices are able to retain a range of curvatures. Under moderate forcing from a state of local equilibrium, the lattices deform by several percent but return to their retained shape when the forces are removed. By increasing the forcing until an irreversible motion occurs, we find that the transitions between remembered shapes show cooperativity among several springs. For fixed lattice structures, the shape memory tends to decrease as the lattice is enlarged; we propose ways to counter this decrease by modifying the lattice geometry. We survey the energy landscape by displacing individual nodes. An extensive fraction of these nodes proves to be bistable; they retain their displaced position when the energy is relaxed. Bending the lattice to a stable curved state alters the pattern of bistable nodes. We discuss this shapeability in the context of other forms of material memory and contrast it with the shapeability of plastic deformation. We outline the prospects for making real materials based on these principles.

  20. eF-seek: prediction of the functional sites of proteins by searching for similar electrostatic potential and molecular surface shape

    OpenAIRE

    Kinoshita, Kengo; Murakami, Yoichi; Nakamura, Haruki

    2007-01-01

    We have developed a method to predict ligand-binding sites in a new protein structure by searching for similar binding sites in the Protein Data Bank (PDB). The similarities are measured according to the shapes of the molecular surfaces and their electrostatic potentials. A new web server, eF-seek, provides an interface to our search method. It simply requires a coordinate file in the PDB format, and generates a prediction result as a virtual complex structure, with the putative ligands in a ...

  1. Perspectives in shape analysis

    CERN Document Server

    Bruckstein, Alfred; Maragos, Petros; Wuhrer, Stefanie

    2016-01-01

    This book presents recent advances in the field of shape analysis. Written by experts in the fields of continuous-scale shape analysis, discrete shape analysis and sparsity, and numerical computing who hail from different communities, it provides a unique view of the topic from a broad range of perspectives. Over the last decade, it has become increasingly affordable to digitize shape information at high resolution. Yet analyzing and processing this data remains challenging because of the large amount of data involved, and because modern applications such as human-computer interaction require real-time processing. Meeting these challenges requires interdisciplinary approaches that combine concepts from a variety of research areas, including numerical computing, differential geometry, deformable shape modeling, sparse data representation, and machine learning. On the algorithmic side, many shape analysis tasks are modeled using partial differential equations, which can be solved using tools from the field of n...

  2. SU-F-R-27: Use Local Shape Descriptor Based On Geodesic Distance to Predict Survival in Non-Small Cell Lung Cancer After Radiotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, H; Yan, L; Huang, K; Kong, F; Jin, J [Georgia Regents University, Augusta, GA (Georgia)

    2016-06-15

    Purpose: The shape of the Positron Emission Tomography (PET) image represents the heterogeneity of tumor growth in various directions, and thus could be associated with tumor malignancy. We have proposed a median geodesic distance (MGD) to represent the local complexity of the shape and use a normalized MGD (NMGD) to quantify the shape, and found a potential correlation of NMGD to survival in a 20-patient pilot study. This study was to verify the finding in a larger patient cohort. Methods: Geodesic distance of two vertices on a surface is defined as the shortest path on the surface connecting the two vertices. The MGD was calculated for each vertex on the surface to display the local complexity of the shape. The NMGD was determined as: NMGD = 100*standard deviation(MGDs)/mean(MGDs). We applied the NMGD to 40 NSCLC patients who were enrolled in prospective PET image protocols and received radiotherapy. Each patient had a pre-treatment PET scan with the resolution of 4mm*4mm*5mm. Tumors were contoured by a professional radiation oncologist and triangulation meshes were built up based on the contours. Results: The mean and standard deviation of NMGD was 6.4±3.0. The OS was 33.1±16.9 months for low NMGD group, and 15.4±15.6 months for the high NMGD group. The low NMGD group had significant better OS than the high NMGD group (p=0.0013). Conclusion: NMGD could be used as a shape biomarker to predict survival and the MGD could be combined with image texture in future to increase prediction accuracy. This study was supported by Award Number 1R01CA166948 from the NIH and National Cancer Institute.

  3. Shape of snack foods does not predict snack intake in a sample of preschoolers: a cross-over study

    Directory of Open Access Journals (Sweden)

    Boyer Lauren E

    2012-08-01

    Full Text Available Abstract Background In the past decade, the proportion snacking has increased. Snack foods consumed are predominantly not nutritious foods. One potential venue to increase children’s diet quality is to offer healthy snack foods and we explored if shaped snack foods would lead to increased consumption. Methods We investigated the consumption of high-fiber snacks (banana bread, pancakes, and sandwiches served either in normal (round, square or shaped (heart, hands, animals form to preschoolers 2–5 years old attending a local child care center (n = 21. The 9 weeks long, prospective, cross-over intervention study was designed to expose each child repeatedly to each snack in each shape (4 times per snack. Snacks were served as morning or afternoon snack and caretakers’ reports were used to account for the child’s consumption of a meal preceding the study snack (breakfast or lunch. Results There was no significant difference in snack consumption between the shaped and normal snacks. However, the mean energy intake from snacks was significantly greater for Caucasian children compared with Asian children. Further, Asian children consumed much less banana bread than the other two snacks. Overall, children who had not eaten breakfast or lunch prior to the morning or afternoon snack ate significantly more calories from the snacks (84.1 kcal, p-value  Conclusion Findings of this study confirm previous research that the shape of the foods does not affect snack consumption in children. However, we also report two unexpected findings: a the strong interaction between ethnicity and snack consumption and b that Asian children consumed much less banana bread than Caucasian children. The role of children’s ethnic background profoundly affects snack preference and must be considered in the study of children’s eating behaviors and in interventions to promote healthy eating habits.

  4. Design optimization of shape memory alloy structures

    NARCIS (Netherlands)

    Langelaar, M.

    2006-01-01

    This thesis explores the possibilities of design optimization techniques for designing shape memory alloy structures. Shape memory alloys are materials which, after deformation, can recover their initial shape when heated. This effect can be used for actuation. Emerging applications for shape memory

  5. Numerical modeling of the motion of deformable ellipsoidal objects in slow viscous flows

    Science.gov (United States)

    Jiang, Dazhi

    2007-03-01

    An algorithm for modeling the strain and rotation of deformable ellipsoidal objects in viscous flows based on Eshelby's (1957. Proceedings of the Royal Society of London A241, 376-396) theory is presented and is implemented in a fully graphic mathematics application (Mathcad ®, http://www.mathsoft.com). The algorithm resolves all singular cases encountered in modeling large finite deformations. The orientation of ellipsoidal objects is specified in terms of polar coordinate angles which are easily converted to the trend and plunge angles of the three principal axes rather than the Euler angles. With the Mathcad worksheets presented in the supplementary data associated with this paper, one can model the strain and rotation paths of individual deformable objects and the development of preferred orientation and shape fabrics for a population of deformable objects in any homogeneous viscous flow. The shape and preferred orientation fabrics for a population of deformable objects can be presented in both a three-dimensional form and a two-dimensional form, allowing easy comparison between field data and model predictions. The full graphic interface of Mathcad ® makes using the worksheets as easy as using a spreadsheet. The modeler can interact fully with the computation and customize the type and format of the output data to best fit the purpose of the investigation and to facilitate the comparison of model predictions with geological observations.

  6. Can skull form predict the shape of the temporomandibular joint? A study using geometric morphometrics on the skulls of wolves and domestic dogs.

    Science.gov (United States)

    Curth, Stefan; Fischer, Martin S; Kupczik, Kornelius

    2017-11-01

    The temporomandibular joint (TMJ) conducts and restrains masticatory movements between the mammalian cranium and the mandible. Through this functional integration, TMJ morphology in wild mammals is strongly correlated with diet, resulting in a wide range of TMJ variations. However, in artificially selected and closely related domestic dogs, dietary specialisations between breeds can be ruled out as a diversifying factor although they display an enormous variation in TMJ morphology. This raises the question of the origin of this variation. Here we hypothesise that, even in the face of reduced functional demands, TMJ shape in dogs can be predicted by skull form; i.e. that the TMJ is still highly integrated in the dog skull. If true, TMJ variation in the dog would be a plain by-product of the enormous cranial variation in dogs and its genetic causes. We addressed this hypothesis using geometric morphometry on a data set of 214 dog and 60 wolf skulls. We digitized 53 three-dimensional landmarks of the skull and the TMJ on CT-based segmentations and compared (1) the variation between domestic dog and wolf TMJs (via principal component analysis) and (2) the pattern of covariation of skull size, flexion and rostrum length with TMJ shape (via regression of centroid size on shape and partial least squares analyses). We show that the TMJ in domestic dogs is significantly more diverse than in wolves: its shape covaries significantly with skull size, flexion and rostrum proportions in patterns which resemble those observed in primates. Similar patterns in canids, which are carnivorous, and primates, which are mostly frugivorous imply the existence of basic TMJ integration patterns which are independent of dietary adaptations. However, only limited amounts of TMJ variation in dogs can be explained by simple covariation with overall skull geometry. This implies that the final TMJ shape is gained partially independently of the rest of the skull. Copyright © 2017 Elsevier Gmb

  7. Computing layouts with deformable templates

    KAUST Repository

    Peng, Chi-Han

    2014-07-22

    In this paper, we tackle the problem of tiling a domain with a set of deformable templates. A valid solution to this problem completely covers the domain with templates such that the templates do not overlap. We generalize existing specialized solutions and formulate a general layout problem by modeling important constraints and admissible template deformations. Our main idea is to break the layout algorithm into two steps: a discrete step to lay out the approximate template positions and a continuous step to refine the template shapes. Our approach is suitable for a large class of applications, including floorplans, urban layouts, and arts and design. Copyright © ACM.

  8. Multi-shape active composites by 3D printing of digital shape memory polymers.

    Science.gov (United States)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry

    2016-04-13

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  9. Combined Shape and Topology Optimization

    DEFF Research Database (Denmark)

    Christiansen, Asger Nyman

    Shape and topology optimization seeks to compute the optimal shape and topology of a structure such that one or more properties, for example stiffness, balance or volume, are improved. The goal of the thesis is to develop a method for shape and topology optimization which uses the Deformable...... Simplicial Complex (DSC) method. Consequently, we present a novel method which combines current shape and topology optimization methods. This method represents the surface of the structure explicitly and discretizes the structure into non-overlapping elements, i.e. a simplicial complex. An explicit surface...... representation usually limits the optimization to minor shape changes. However, the DSC method uses a single explicit representation and still allows for large shape and topology changes. It does so by constantly applying a set of mesh operations during deformations of the structure. Using an explicit instead...

  10. Nanoscale Deformable Optics

    Science.gov (United States)

    Strauss, Karl F.; Sheldon, Douglas J.

    2011-01-01

    Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy. In this innovation, a layer of reflective material is deposited upon a wafer containing (perhaps in the millions) chalcogenic memory cells with the reflective material becoming the front surface of a mirror and the chalcogenic material becoming a means of selectively deforming the mirror by the application of heat to the chalcogenic material. By doing so, the mirror surface can deform anywhere from nil to nanometers in spots the size of a modern day memory cell, thereby permitting realtime tuning of mirror focus and reflectivity to mitigate aberrations caused elsewhere in the optical system. Modern foundry methods permit the design and manufacture of individual memory cells having an area of or equal to the Feature (F) size of the design (assume 65 nm). Fabrication rules and restraints generally require the instantiation of one memory cell to another no closer than 1.5 F, or, for this innovation, 90 nm from its neighbor in any direction. Chalcogenide is a semiconducting glass compound consisting of a combination of chalcogen ions, the ratios of which vary according to properties desired. It has been shown that the application of heat to cells of chalcogenic material cause a large alteration in resistance to the range of 4 orders of magnitude. It is this effect upon which chalcogenidebased commercial memories rely. Upon removal of the heat source, the chalcogenide rapidly cools and remains frozen in the excited state. It has also been shown that the chalcogenide expands in volume because of the applied heat, meaning that the coefficient of expansion of chalcogenic

  11. Deformation Models Tracking, Animation and Applications

    CERN Document Server

    Torres, Arnau; Gómez, Javier

    2013-01-01

    The computational modelling of deformations has been actively studied for the last thirty years. This is mainly due to its large range of applications that include computer animation, medical imaging, shape estimation, face deformation as well as other parts of the human body, and object tracking. In addition, these advances have been supported by the evolution of computer processing capabilities, enabling realism in a more sophisticated way. This book encompasses relevant works of expert researchers in the field of deformation models and their applications.  The book is divided into two main parts. The first part presents recent object deformation techniques from the point of view of computer graphics and computer animation. The second part of this book presents six works that study deformations from a computer vision point of view with a common characteristic: deformations are applied in real world applications. The primary audience for this work are researchers from different multidisciplinary fields, s...

  12. Fission processes through compact and creviced shapes

    International Nuclear Information System (INIS)

    Royer, G.; Remaud, B.

    1984-01-01

    Using a one-parameter family of compact and creviced shapes the deformation energy of the liquid-drop model including the nuclear proximity energy has been calculated. The introduction of the proximity forces on such a shape sequence leads to the identification of fission and scission barriers since the rupture of the neck between the fragments is assumed before the barrier is crossed. The fission barrier heights are well reproduced and are much lower than those given by the liquid-drop model (without proximity) for the medium systems. It is shown that these low barriers are compatible with a strong enhancement of the critical angular momentum for cold fission. The translational kinetic energy of the fragments agrees with experimental data. Double-humped barriers are predicted for actinides; the inner barrier has essentially a microscopic origin while the outer one (which plays the role of a scission barrier) is governed mostly by the balance between Coulomb and nuclear forces. (author)

  13. Accurate particle speed prediction by improved particle speed measurement and 3-dimensional particle size and shape characterization technique

    DEFF Research Database (Denmark)

    Cernuschi, Federico; Rothleitner, Christian; Clausen, Sønnik

    2017-01-01

    methods, e.g. laser light scattering, and velocity by the double disk (DD) method. In this article we present two novel techniques, which allow a more accurate measurement of mass, velocity and shape, and we later compare the experimentally obtained flow velocities of particles with a simulation that also...... are compared with detailed 3-dimensional CT measurements and a low angle laser light scattering (LALLS) measurement system for six different samples of particles. It is shown that the particle volume or mass is usually overestimated by 16–22% when using 2-dimensional methods or LALLS. For CT allows...... additionally the surface-equivalent diameter to be calculated by using 2-dimensional projections of each particle, these results can be used to correct particle diameters measured with the particle imaging method using a pulsed LED....

  14. Fluorinated azobenzenes for shape-persistent liquid crystal polymer networks

    NARCIS (Netherlands)

    Iamsaard, S.; Anger, E.; Asshoff, Sarah; Depauw, Alexis; Fletcher, S.P.; Katsonis, Nathalie Hélène

    2016-01-01

    Liquid crystal polymer networks respond with an anisotropic deformation to a range of external stimuli. When doped with molecular photoswitches, these materials undergo complex shape modifications under illumination. As the deformations are reversed when irradiation stops, applications where the

  15. Instrumented Taylor anvil-on-rod impact tests for validating applicability of standard strength models to transient deformation states

    Science.gov (United States)

    Eakins, D. E.; Thadhani, N. N.

    2006-10-01

    Instrumented Taylor anvil-on-rod impact tests have been conducted on oxygen-free electronic copper to validate the accuracy of current strength models for predicting transient states during dynamic deformation events. The experiments coupled the use of high-speed digital photography to record the transient deformation states and laser interferometry to monitor the sample back (free surface) velocity as a measure of the elastic/plastic wave propagation through the sample length. Numerical continuum dynamics simulations of the impact and plastic wave propagation employing the Johnson-Cook [Proceedings of the Seventh International Symposium on Ballistics, 1983, The Netherlands (Am. Def. Prep. Assoc. (ADPA)), pp. 541-547], Zerilli-Armstrong [J. Appl. Phys. C1, 1816 (1987)], and Steinberg-Guinan [J. Appl. Phys. 51, 1498 (1980)] constitutive equations were used to generate transient deformation profiles and the free surface velocity traces. While these simulations showed good correlation with the measured free surface velocity traces and the final deformed sample shape, varying degrees of deviations were observed between the photographed and calculated specimen profiles at intermediate deformation states. The results illustrate the usefulness of the instrumented Taylor anvil-on-rod impact technique for validating constitutive equations that can describe the path-dependent deformation response and can therefore predict the transient and final deformation states.

  16. Numerical Study on Deformation and Interior Flow of a Droplet Suspended in Viscous Liquid under Steady Electric Fields

    Directory of Open Access Journals (Sweden)

    Zhentao Wang

    2014-07-01

    Full Text Available A model based on the volume of fluid (VOF method and leaky dielectric theory is established to predict the deformation and internal flow of the droplet suspended in another vicious fluid under the influence of the electric field. Through coupling with hydrodynamics and electrostatics, the rate of deformation and internal flow of the single droplet are simulated and obtained under the different operating parameters. The calculated results show that the direction of deformation and internal flow depends on the physical properties of fluids. The numerical results are compared with Taylor's theory and experimental results by Torza et al. When the rate of deformation is small, the numerical results are consistent with theory and experimental results, and when the rate is large the numerical results are consistent with experimental results but are different from Taylor's theory. In addition, fluid viscosity hardly affects the deformation rate and mainly dominates the deformation velocity. For high viscosity droplet spends more time to attain the steady state. The conductivity ratio and permittivity ratio of two different liquids affect the direction of deformation. When fluid electric properties change, the charge distribution at the interface is various, which leads to the droplet different deformation shapes.

  17. Nuclear fuel deformation phenomena

    International Nuclear Information System (INIS)

    Van Brutzel, L.; Dingreville, R.; Bartel, T.J.

    2015-01-01

    Nuclear fuel encounters severe thermomechanical environments. Its mechanical response is profoundly influenced by an underlying heterogeneous microstructure but also inherently dependent on the temperature and stress level histories. The ability to adequately simulate the response of such microstructures, to elucidate the associated macroscopic response in such extreme environments is crucial for predicting both performance and transient fuel mechanical responses. This chapter discusses key physical phenomena and the status of current modelling techniques to evaluate and predict fuel deformations: creep, swelling, cracking and pellet-clad interaction. This chapter only deals with nuclear fuel; deformations of cladding materials are discussed elsewhere. An obvious need for a multi-physics and multi-scale approach to develop a fundamental understanding of properties of complex nuclear fuel materials is presented. The development of such advanced multi-scale mechanistic frameworks should include either an explicit (domain decomposition, homogenisation, etc.) or implicit (scaling laws, hand-shaking,...) linkage between the different time and length scales involved, in order to accurately predict the fuel thermomechanical response for a wide range of operating conditions and fuel types (including Gen-IV and TRU). (authors)

  18. Bet hedging in a warming ocean: predictability of maternal environment shapes offspring size variation in marine sticklebacks.

    Science.gov (United States)

    Shama, Lisa N S

    2015-12-01

    Bet hedging at reproduction is expected to evolve when mothers are exposed to unpredictable cues for future environmental conditions, whereas transgenerational plasticity (TGP) should be favoured when cues reliably predict the environment offspring will experience. Since climate predictions forecast an increase in both temperature and climate variability, both TGP and bet hedging are likely to become important strategies to mediate climate change effects. Here, the potential to produce variably sized offspring in both warming and unpredictable environments was tested by investigating whether stickleback (Gasterosteus aculeatus) mothers adjusted mean offspring size and within-clutch variation in offspring size in response to experimental manipulation of maternal thermal environment and predictability (alternating between ambient and elevated water temperatures). Reproductive output traits of F1 females were influenced by both temperature and environmental predictability. Mothers that developed at ambient temperature (17 °C) produced larger, but fewer eggs than mothers that developed at elevated temperature (21 °C), implying selection for different-sized offspring in different environments. Mothers in unpredictable environments had smaller mean egg sizes and tended to have greater within-female egg size variability, especially at 21 °C, suggesting that mothers may have dynamically modified the variance in offspring size to spread the risk of incorrectly predicting future environmental conditions. Both TGP and diversification influenced F2 offspring body size. F2 offspring reared at 21 °C had larger mean body sizes if their mother developed at 21 °C, but this TGP benefit was not present for offspring of 17 °C mothers reared at 17 °C, indicating that maternal TGP will be highly relevant for ocean warming scenarios in this system. Offspring of variable environment mothers were smaller but more variable in size than offspring from constant environment

  19. Shapes and alignments at high spin in some rare-earth nuclei

    International Nuclear Information System (INIS)

    Deleplanque, M.A.; Diamond, R.M.; Stephens, F.S.; Macchiavelli, A.O.; Doessing, T.; Draper, J.E.; Dines, E.L.

    1985-01-01

    The structure of nuclei at high spins is dominated by an interplay between deformation and alignment effects. Cranking models predict various shapes but at the highest spins, there is a tendency towards large triaxial deformations and sometimes towards very large prolate deformations (superdeformations). Directly involved in the shape changes are aligned orbitals which come down to the Fermi level as the nucleus rotates more rapidly. At a certain frequency, they become populated and cause large alignments. The mechanism of these changes has been explored by looking at a series of rare earth quasirotational nuclei from Dy to W in the transition region around N = 90 neutrons. The continuum spectra, corrected for incomplete population (feeding) of the high spins, are directly proportional to dynamic effective moments of inertia which describe how much spin is generated at each rotational frequency

  20. Prediction of shape diameter undergoing coil embolization of saccular intracranial aneurysm treatment using a hybrid decision support system

    International Nuclear Information System (INIS)

    Owasirikul, Wiwat; Tantivatana, Jaturon; Gansawat, Duangrat; Auethavekiat, Supatana

    2013-01-01

    The purpose of the study was to design a hybrid decision support system (HDSS) that could simulate the embolized coil selection pattern of the radiologists in aneurysms treatment. As the longest available length of the coils should be used in most cases, therefore only the shape diameter (SD) selection was modeled and varied. Ninety-eight aneurysms successfully treated by a radiologist with coil embolization were divided into two groups (86 for training and 12 randomly selected for validating). Eight aneurysms treated by another radiologist were also used to cross validate the proposed HDSS. The HDSS was developed using the classification and the linear regression methods (LRM). The dome and the width of an aneurysm were used as the system inputs. The system outputs were the SDs of the first three coils indexed according to the insertion order. The HDSS that consisted of Bagging classification and LRM achieved the highest accuracy for all cases. The errors were within 1 mm for the SD selection of the first two coils. For the third coil, the SD selection within 1 mm bound had 80 % accuracy. The experimental results indicated the feasibility of using the HDSS as the guidance for selecting the SDs of the first two coils. The selection of the third coil required more training data for the rarely used SD. Moreover, the cross validation with another radiologist showed the feasibility of using the proposed HDSS as the guidance, however further validation with more data is recommended.

  1. Modeling deformation and chaining of flexible shells in a nematic solvent with finite elements on an adaptive moving mesh

    Science.gov (United States)

    DeBenedictis, Andrew; Atherton, Timothy J.; Rodarte, Andrea L.; Hirst, Linda S.

    2018-03-01

    A micrometer-scale elastic shell immersed in a nematic liquid crystal may be deformed by the host if the cost of deformation is comparable to the cost of elastic deformation of the nematic. Moreover, such inclusions interact and form chains due to quadrupolar distortions induced in the host. A continuum theory model using finite elements is developed for this system, using mesh regularization and dynamic refinement to ensure quality of the numerical representation even for large deformations. From this model, we determine the influence of the shell elasticity, nematic elasticity, and anchoring condition on the shape of the shell and hence extract parameter values from an experimental realization. Extending the model to multibody interactions, we predict the alignment angle of the chain with respect to the host nematic as a function of aspect ratio, which is found to be in excellent agreement with experiments.

  2. Deformed potential energy of $^{263}Db$ in a generalized liquid drop model

    CERN Document Server

    Chen Bao Qiu; Zhao Yao Lin; 10.1088/0256-307X/20/11/009

    2003-01-01

    The macroscopic deformed potential energy for super-heavy nuclei /sup 263/Db, which governs the entrance and alpha decay channels, is determined within a generalized liquid drop model (GLDM). A quasi- molecular shape is assumed in the GLDM, which includes volume-, surface-, and Coulomb-energies, proximity effects, mass asymmetry, and an accurate nuclear radius. The microscopic single particle energies derived from a shell model in an axially deformed Woods- Saxon potential with a quasi-molecular shape. The shell correction is calculated by the Strutinsky method. The total deformed potential energy of a nucleus can be calculated by the macro-microscopic method as the summation of the liquid-drop energy and the Strutinsky shell correction. The theory is applied to predict the deformed potential energy of the experiment /sup 22/Ne+/sup 241/Am to /sup 263/Db* to /sup 259/Db+4 n, which was performed on the Heavy Ion Accelerator in Lanzhou. It is found that the neck in the quasi-molecular shape is responsible for t...

  3. Study of shape evolution and electromagnetic properties in neutron-rich Zr and Sr isotopes

    Science.gov (United States)

    Chaudhary, R.; Devi, R.; Khosa, S. K.

    2018-03-01

    The projected shell model calculations have been carried out in neutron-rich 100-108Zr and 98-102Sr isotopes. The shape evolution and electromagnetic properties have been examined in neutron-rich Zr and Sr isotopes around N = 60. The structure of yrast states, backbending phenomena, g-factors and B( E2) transition probabilities are calculated and compared with corresponding observable quantities. The present calculations predict the occurrence of coexistence of prolate-oblate shapes at 0+ state in 100,102Zr and 98,100Sr. Nuclei beyond N = 62 are predicted to have prolate deformation in the ground-state.

  4. Faraday instability in deformable domains

    International Nuclear Information System (INIS)

    Pucci, G.

    2013-01-01

    Hydrodynamical instabilities are usually studied either in bounded regions or free to grow in space. In this article we review the experimental results of an intermediate situation, in which an instability develops in deformable domains. The Faraday instability, which consists in the formation of surface waves on a liquid experiencing a vertical forcing, is triggered in floating liquid lenses playing the role of deformable domains. Faraday waves deform the lenses from the initial circular shape and the mutual adaptation of instability patterns with the lens boundary is observed. Two archetypes of behaviour have been found. In the first archetype a stable elongated shape is reached, the wave vector being parallel to the direction of elongation. In the second archetype the waves exceed the response of the lens border and no equilibrium shape is reached. The lens stretches and eventually breaks into fragments that have a complex dynamics. The difference between the two archetypes is explained by the competition between the radiation pressure the waves exert on the lens border and its response due to surface tension.

  5. General quadrupole nuclear shapes. An algebraic perspective

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A. (Los Alamos National Lab. (LANL), NM (USA). Theoretical Div.); Shao Bin (Yale Univ., New Haven, CT (USA). Sloane Physics Lab.)

    1990-07-05

    Spherical, axial and non-axial quadrupole shapes are investigated within the algebraic interacting boson model. For each shape the hamiltonian is resolved into intrinsic and collective parts, normal modes are identified and intrinsic states are constructed. Special emphasis is paid to new features (e.g. rigid triaxiality and coexisting deformed shapes) that emerge in the presence of three-body interactions. (orig.).

  6. General quadrupole nuclear shapes. An algebraic perspective

    International Nuclear Information System (INIS)

    Leviatan, A.; Shao Bin

    1990-01-01

    Spherical, axial and non-axial quadrupole shapes are investigated within the algebraic interacting boson model. For each shape the hamiltonian is resolved into intrinsic and collective parts, normal modes are identified and intrinsic states are constructed. Special emphasis is paid to new features (e.g. rigid triaxiality and coexisting deformed shapes) that emerge in the presence of three-body interactions. (orig.)

  7. An Approach for Predicting the Shape and Size of a Buried Basic Object on Surface Ground Penetrating Radar System

    Directory of Open Access Journals (Sweden)

    Nana Rachmana Syambas

    2012-01-01

    Full Text Available Surface ground-penetrating radar (GPR is one of the radar technology that is widely used in many applications. It is nondestructive remote sensing method to detect underground buried objects. However, the output target is only hyperbolic representation. This research develops a system to identify a buried object on surface GPR based on decision tree method. GPR data of many basic objects (with circular, triangular, and rectangular cross-section are classified and extracted to generate data training model as a unique template for each type of basic object. The pattern of object under test will be known by comparing its data with the training data using a decision tree method. A simple powerful algorithm to extract feature parameters of object which is based on linear extrapolation is proposed. The result showed that tested buried basic objects can be correctly predicted and the developed system works properly.

  8. The effects of material property assumptions on predicted meltpool shape for laser powder bed fusion based additive manufacturing

    International Nuclear Information System (INIS)

    Teng, Chong; Ashby, Kathryn; Pal, Deepankar; Stucker, Brent; Phan, Nam

    2016-01-01

    The objective of this study was to provide guidance on material specifications for powders used in laser powder bed fusion based additive manufacturing (AM) processes. The methodology was to investigate how different material property assumptions in a simulation affect meltpool prediction and by corrolary how different material properties affect meltpool formation in AM processes. The sensitvity of meltpool variations to each material property can be used as a guide to help drive future research and to help prioritize material specifications in requirements documents. By identifying which material properties have the greatest affect on outcomes, metrology can be tailored to focus on those properties which matter most; thus reducing costs by eliminating unnecessary testing and property charaterizations. Futhermore, this sensitivity study provides insight into which properties require more accurate measurements, thus motivating development of new metrology methods to measure those properties accurately. (paper)

  9. Automatic shape model building based on principal geodesic analysis bootstrapping

    DEFF Research Database (Denmark)

    Dam, Erik B; Fletcher, P Thomas; Pizer, Stephen M

    2008-01-01

    shape representation is deformed into the training shapes followed by computation of the shape mean and modes of shape variation. In the first iteration, a generic shape model is used as starting point - in the following iterations in the bootstrap method, the resulting mean and modes from the previous...

  10. Shape analysis in medical image analysis

    CERN Document Server

    Tavares, João

    2014-01-01

    This book contains thirteen contributions from invited experts of international recognition addressing important issues in shape analysis in medical image analysis, including techniques for image segmentation, registration, modelling and classification, and applications in biology, as well as in cardiac, brain, spine, chest, lung and clinical practice. This volume treats topics such as, anatomic and functional shape representation and matching; shape-based medical image segmentation; shape registration; statistical shape analysis; shape deformation; shape-based abnormity detection; shape tracking and longitudinal shape analysis; machine learning for shape modeling and analysis; shape-based computer-aided-diagnosis; shape-based medical navigation; benchmark and validation of shape representation, analysis and modeling algorithms. This work will be of interest to researchers, students, and manufacturers in the fields of artificial intelligence, bioengineering, biomechanics, computational mechanics, computationa...

  11. Modeling the shape memory effect of shape memory polymer

    Science.gov (United States)

    Zhou, Bo; Liu, Yanju; Wang, Zhenqing; Leng, Jin-Song

    2009-07-01

    Dynamic mechanical analysis (DMA) tests are conducted on the styrene-based shape memory polymer (SMP) to investigate its state transition behaviors. Tensile tests at various constant temperatures are carried out to reveal the stressstrain- temperature relationship of the styrene-based SMP. A new mechanical constitutive equation is developed to describe the stress-strain-temperature relationship of the styrene-based SMP. Numerical calculations illustrate the proposed theory well describes the thermo-mechanical cycle of shape memory of styrene-based SMP, such as deformation at high temperature, shape fixity, unloading at low temperature and shape recovery.

  12. A macroscopic multi-mechanism based constitutive model for the thermo-mechanical cyclic degeneration of shape memory effect of NiTi shape memory alloy

    Science.gov (United States)

    Yu, Chao; Kang, Guozheng; Kan, Qianhua

    2017-06-01

    A macroscopic based multi-mechanism constitutive model is constructed in the framework of irreversible thermodynamics to describe the degeneration of shape memory effect occurring in the thermo-mechanical cyclic deformation of NiTi shape memory alloys (SMAs). Three phases, austenite A, twinned martensite Mt and detwinned martensite Md, as well as the phase transitions occurring between each pair of phases (A→ M t, Mt→ A, A→ M d, Md→ A, and Mt→ M d) are considered in the proposed model. Meanwhile, two kinds of inelastic deformation mechanisms, martensite transformation-induced plasticity and reorientation-induced plasticity, are used to explain the degeneration of shape memory effects of NiTi SMAs. The evolution equations of internal variables are proposed by attributing the degeneration of shape memory effect to the interaction between the three phases ( A, Mt, and Md) and plastic deformation. Finally, the capability of the proposed model is verified by comparing the predictions with the experimental results of NiTi SMAs. It is shown that the degeneration of shape memory effect and its dependence on the loading level can be reasonably described by the proposed model.

  13. Effects of the use of a flat wire electrode in gas metal arc welding and fuzzy logic model for the prediction of weldment shape profile

    Energy Technology Data Exchange (ETDEWEB)

    Karuthapandi, Sripriyan; Thyla, P. R. [PSG College of Technology, Coimbatore (India); Ramu, Murugan [Amrita University, Ettimadai (India)

    2017-05-15

    This paper describes the relationships between the macrostructural characteristics of weld beads and the welding parameters in Gas metal arc welding (GMAW) using a flat wire electrode. Bead-on-plate welds were produced with a flat wire electrode and different combinations of input parameters (i.e., welding current, welding speed, and flat wire electrode orientation). The macrostructural characteristics of the weld beads, namely, deposition, bead width, total bead width, reinforcement height, penetration depth, and depth of HAZ were investigated. A mapping technique was employed to measure these characteristics in various segments of the weldment zones. Results show that the use of a flat wire electrode improves the depth-to-width (D/W) ratio by 16.5 % on average compared with the D/W ratio when a regular electrode is used in GMAW. Furthermore, a fuzzy logic model was established to predict the effects of the use of a flat electrode on the weldment shape profile with varying input parameters. The predictions of the model were compared with the experimental results.

  14. Hypoxia-dependent sequestration of an oxygen sensor by a widespread structural motif can shape the hypoxic response - a predictive kinetic model

    Directory of Open Access Journals (Sweden)

    Novák Béla

    2010-10-01

    Full Text Available Abstract Background The activity of the heterodimeric transcription factor hypoxia inducible factor (HIF is regulated by the post-translational, oxygen-dependent hydroxylation of its α-subunit by members of the prolyl hydroxylase domain (PHD or EGLN-family and by factor inhibiting HIF (FIH. PHD-dependent hydroxylation targets HIFα for rapid proteasomal degradation; FIH-catalysed asparaginyl-hydroxylation of the C-terminal transactivation domain (CAD of HIFα suppresses the CAD-dependent subset of the extensive transcriptional responses induced by HIF. FIH can also hydroxylate ankyrin-repeat domain (ARD proteins, a large group of proteins which are functionally unrelated but share common structural features. Competition by ARD proteins for FIH is hypothesised to affect FIH activity towards HIFα; however the extent of this competition and its effect on the HIF-dependent hypoxic response are unknown. Results To analyse if and in which way the FIH/ARD protein interaction affects HIF-activity, we created a rate equation model. Our model predicts that an oxygen-regulated sequestration of FIH by ARD proteins significantly shapes the input/output characteristics of the HIF system. The FIH/ARD protein interaction is predicted to create an oxygen threshold for HIFα CAD-hydroxylation and to significantly sharpen the signal/response curves, which not only focuses HIFα CAD-hydroxylation into a defined range of oxygen tensions, but also makes the response ultrasensitive to varying oxygen tensions. Our model further suggests that the hydroxylation status of the ARD protein pool can encode the strength and the duration of a hypoxic episode, which may allow cells to memorise these features for a certain time period after reoxygenation. Conclusions The FIH/ARD protein interaction has the potential to contribute to oxygen-range finding, can sensitise the response to changes in oxygen levels, and can provide a memory of the strength and the duration of a

  15. A General Polygon-based Deformable Model for Object Recognition

    DEFF Research Database (Denmark)

    Jensen, Rune Fisker; Carstensen, Jens Michael

    1999-01-01

    We propose a general scheme for object localization and recognition based on a deformable model. The model combines shape and image properties by warping a arbitrary prototype intensity template according to the deformation in shape. The shape deformations are constrained by a probabilistic...... distribution, which combined with a match of the warped intensity template and the image form the final criteria used for localization and recognition of a given object. The chosen representation gives the model an ability to model an almost arbitrary object. Beside the actual model a full general scheme...

  16. Shape changes in 101Pd

    International Nuclear Information System (INIS)

    Dinesh, S.; Carmel Vigila Bai, G.M.; Santhosh Kumar, S.; Anusha, B.

    2001-01-01

    In heavy ion collision compound nuclei can be formed with high excitation energies and with very high angular momenta. Most of these emphasize and discuss the structure effects, yrast traps etc. The spin degree of freedom inherently involves deformation and structural or shape changes. The shape of a nucleus should be very sensitive to the increase of its temperature. The increasing temperature affects the occupations of the single particle levels near the Fermi energy are investigated

  17. Evolution of triaxial shapes at large isospin: Rh isotopes

    Science.gov (United States)

    Navin, A.; Rejmund, M.; Bhattacharyya, S.; Palit, R.; Bhat, G. H.; Sheikh, J. A.; Lemasson, A.; Bhattacharya, S.; Caamaño, M.; Clément, E.; Delaune, O.; Farget, F.; de France, G.; Jacquot, B.

    2017-04-01

    The rotational response as a function of neutron-proton asymmetry for the very neutron-rich isotopes of Rh (116-119Rh) has been obtained from the measurement of prompt γ rays from isotopically identified fragments, produced in fission reactions at energies around the Coulomb barrier. The measured energy ;signature; splitting of the yrast bands, when compared with the Triaxial Projected Shell Model (TPSM) calculations, shows the need for large, nearly constant, triaxial deformations. The present results are compared with global predictions for the existence of non axial shapes in the periodic table in the case of very neutron-rich nuclei Rh isotopes. The predicted trend of a second local maximum for a triaxial shape around N ∼ 74 is not found.

  18. Evolution of triaxial shapes at large isospin: Rh isotopes

    Directory of Open Access Journals (Sweden)

    A. Navin

    2017-04-01

    Full Text Available The rotational response as a function of neutron–proton asymmetry for the very neutron-rich isotopes of Rh (116–119Rh has been obtained from the measurement of prompt γ rays from isotopically identified fragments, produced in fission reactions at energies around the Coulomb barrier. The measured energy “signature” splitting of the yrast bands, when compared with the Triaxial Projected Shell Model (TPSM calculations, shows the need for large, nearly constant, triaxial deformations. The present results are compared with global predictions for the existence of non axial shapes in the periodic table in the case of very neutron-rich nuclei Rh isotopes. The predicted trend of a second local maximum for a triaxial shape around N∼74 is not found.

  19. Shape coexistence from lifetime and branching-ratio measurements in 68,70Ni

    Directory of Open Access Journals (Sweden)

    B.P. Crider

    2016-12-01

    Full Text Available Shape coexistence near closed-shell nuclei, whereby states associated with deformed shapes appear at relatively low excitation energy alongside spherical ones, is indicative of the rapid change in structure that can occur with the addition or removal of a few protons or neutrons. Near 68Ni (Z=28, N=40, the identification of shape coexistence hinges on hitherto undetermined transition rates to and from low-energy 0+ states. In 68,70Ni, new lifetimes and branching ratios have been measured. These data enable quantitative descriptions of the 0+ states through the deduced transition rates and serve as sensitive probes for characterizing their nuclear wave functions. The results are compared to, and consistent with, large-scale shell-model calculations which predict shape coexistence. With the firm identification of this phenomenon near 68Ni, shape coexistence is now observed in all currently accessible regions of the nuclear chart with closed proton shells and mid-shell neutrons.

  20. Coexistence of symmetric and asymmetric shapes in $^{145}$/Ba, $^{145}$/La

    CERN Document Server

    Hamilton, J H; Jones, E F; Ramayya, A V; Hwang, J K; Gore, P M; Wang, M G; Cole, J D; Collins, W E; Peker, L K

    2000-01-01

    A new region of stable octupole deformation was predicted to occur with its center around the reinforcing shell gaps for beta /sub 3 /~0.15 at Z=56, N=88, and with /sub 56//sup 145/Ba/sub 89/ was predicted to be a prime candidate for stable octupole deformation. Evidence for stable octupole deformation was found in /sup 144/Ba, /sup 146/Ce and expanded to include odd-A /sup 143/Ba and other neighboring isotopes but was not observed in /sup 145/Ba. Recently we found evidence for the rotational enhancement of stable octupole deformation in /sup 145,147/La. In a reinvestigation of /sup 145/Ba, two new bands were discovered that are connected by enhanced, intertwined E1 transitions to two different previously known bands in /sup 145/Ba. These new data support the predicted presence of octupole deformation in /sup 145/Ba, which is rotation-enhanced above about spin 19/2. In both /sup 145/La and /sup 145/Ba, the low spin ground bands are built on a symmetric rotor shape and at intermediate spins there are shifts to...

  1. AN EFFECTIVE HYBRID SUPPORT VECTOR REGRESSION WITH CHAOS-EMBEDDED BIOGEOGRAPHY-BASED OPTIMIZATION STRATEGY FOR PREDICTION OF EARTHQUAKE-TRIGGERED SLOPE DEFORMATIONS

    Directory of Open Access Journals (Sweden)

    A. A. Heidari

    2015-12-01

    Full Text Available Earthquake can pose earth-shattering health hazards to the natural slops and land infrastructures. One of the chief consequences of the earthquakes can be land sliding, which is instigated by durable shaking. In this research, an efficient procedure is proposed to assist the prediction of earthquake-originated slope displacements (EIDS. New hybrid SVM-CBBO strategy is implemented to predict the EIDS. For this purpose, first, chaos paradigm is combined with initialization of BBO to enhance the diversification and intensification capacity of the conventional BBO optimizer. Then, chaotic BBO is developed as the searching scheme to investigate the best values of SVR parameters. In this paper, it will be confirmed that how the new computing approach is effective in prediction of EIDS. The outcomes affirm that the SVR-BBO strategy with chaos can be employed effectively as a predicting tool for evaluating the EIDS.

  2. RHEOLOGICAL DEFORMATION BEHAVIOR MODEL OF SUGAR DOUGH IN THE CONDITIONS OF MONOAXIAL COMPRESSION

    Directory of Open Access Journals (Sweden)

    G. O. Magomedov

    2014-01-01

    Full Text Available Summary. The knowledge of regularities of deformation behavior of the processed confectionery masses with certain rheological properties allows to calculate parameters of shaping process and to select processing equipment for its carrying out. The article studies the obtaining of the rheological equation of deformation behavior of sugar dough in the conditions of monoaxial compression which is realized in sugar cookies dough pieces formation processes. The results of the pilot studies confirming adequacy of the offered rheological equation are presented. The behavior of an elastic-, viscous- and plastic body in the conditions of quasistatic test for creeping during which the set size is tension, and the measured one is relative deformation is considered. The main rheological properties of sugar dough received experimentally are given. Values of rheological constants are received and it is revealed that at 95% confidential probability, the rheological equation for the general deformation of an elastic-, viscous- and plastic body adequately describes experimental data. The maximum fault thus makes 2,3%. It is established that dough pieces shaping processes from the sugar dough possessing visco- and plastic properties should be realized at an external tension (power impact from the forming body which exceeds a limit of fluidity of the dough formed. The level of external tension, as well as the duration of its influence (that is formation duration should be chosen taking into account the residual deformations in the processed mass which guarantee giving of a certain geometrical form and drawing on a surface of dough pieces. The rheological model of sugar dough allows to predict its deformation behavior in the formation conditions, and to calculate the parameters of sugar dough formation process.

  3. Corrugated Membrane Nonlinear Deformation Process Calculation

    Directory of Open Access Journals (Sweden)

    A. S. Nikolaeva

    2015-01-01

    developed by N.V. Valishvili. The principle of the method of changing the subspace of control parameters is piecewise smooth parameter marching process. In each smooth section a numerical analysis is reduced to the one-parameter problem.The problem is solved by two-stage predictor-corrector scheme. The predictor stage uses extrapolation to predict initial values of unknown on the basis of historical data. At the corrector stage a modified method of Newton - Raphson is used to specify initial approximation solutions.As a result of the programme, the following results were obtained: elastic characteristic of the corrugated membrane and deformed shapes of a corrugated shell meridian in appropriate points of the elastic characteristic.The paper has considered a phenomenon of local buckling. It has shown the elastic characteristic obtained and a deformed shape of the corrugated membrane meridian. The method to have an isolated solution by changing a subspace of control parameters has been proposed. The proposed algorithm enables efficient investigation of membrane behaviour during nonlinear deformation.

  4. Quadrupole and hexadecapole deformations in the actinide nuclei

    International Nuclear Information System (INIS)

    Milner, W.T.; Bemis, C.E. Jr.; McGowan, F.K.

    1977-01-01

    Model-dependent deformation parameters, β 20 and β 40 , are extracted from measured E2 and E4 transition moments for a distribution of nuclear charge represented by a three-parameter deformed Fermi distribution with a parabolic center depression. For the thorium and uranium nuclei this shape of the charge distribution reduces the extracted values of β 20 by 5--10 % and β 40 by 10--15 % from the values obtained with a two-parameter deformed Fermi distribution

  5. Treatment of hallux valgus deformity.

    Science.gov (United States)

    Fraissler, Lukas; Konrads, Christian; Hoberg, Maik; Rudert, Maximilian; Walcher, Matthias

    2016-08-01

    Hallux valgus deformity is a very common pathological condition which commonly produces painful disability. It is characterised as a combined deformity with a malpositioning of the first metatarsophalangeal joint caused by a lateral deviation of the great toe and a medial deviation of the first metatarsal bone.Taking the patient's history and a thorough physical examination are important steps. Anteroposterior and lateral weight-bearing radiographs of the entire foot are crucial for adequate assessment in the treatment of hallux valgus.Non-operative treatment of the hallux valgus cannot correct the deformity. However, insoles and physiotherapy in combination with good footwear can help to control the symptoms.There are many operative techniques for hallux valgus correction. The decision on which surgical technique is used depends on the degree of deformity, the extent of degenerative changes of the first metatarsophalangeal joint and the shape and size of the metatarsal bone and phalangeal deviation. The role of stability of the first tarsometatarsal joint is controversial.Surgical techniques include the modified McBride procedure, distal metatarsal osteotomies, metatarsal shaft osteotomies, the Akin osteotomy, proximal metatarsal osteotomies, the modified Lapidus fusion and the hallux joint fusion. Recently, minimally invasive percutaneous techniques have gained importance and are currently being evaluated more scientifically.Hallux valgus correction is followed by corrective dressings of the great toe post-operatively. Depending on the procedure, partial or full weight-bearing in a post-operative shoe or cast immobilisation is advised. Post-operative radiographs are taken in regular intervals until osseous healing is achieved. Cite this article: Fraissler L, Konrads C, Hoberg M, Rudert M, Walcher M. Treatment of hallux valgus deformity. EFORT Open Rev 2016;1:295-302. DOI: 10.1302/2058-5241.1.000005.

  6. An Efficient Virtual Trachea Deformation Model

    Directory of Open Access Journals (Sweden)

    Cui Tong

    2016-01-01

    Full Text Available In this paper, we present a virtual tactile model with the physically based skeleton to simulate force and deformation between a rigid tool and the soft organ. When the virtual trachea is handled, a skeleton model suitable for interactive environments is established, which consists of ligament layers, cartilage rings and muscular bars. In this skeleton, the contact force goes through the ligament layer, and produces the load effects of the joints , which are connecting the ligament layer and cartilage rings. Due to the nonlinear shape deformation inside the local neighbourhood of a contact region, the RBF method is applied to modify the result of linear global shape deformation by adding the nonlinear effect inside. Users are able to handle the virtual trachea, and the results from the examples with the mechanical properties of the human trachea are given to demonstrate the effectiveness of the approach.

  7. Deformable nematic droplets in a magnetic field

    NARCIS (Netherlands)

    Otten, R.H.J.; van der Schoot, P. P. A. M.

    2012-01-01

    We present a Frank-Oseen elasticity theory for the shape and structure of deformable nematic droplets with homeotropic surface anchoring in the presence of a magnetic field. Inspired by recent experimental observations, we focus on the case where the magnetic susceptibility is negative, and find

  8. Numerical predictions of heat transfer and pressure tube/calandria tube deformation during Calandria-tube Strain Contact Boiling (CSCB) tests

    Energy Technology Data Exchange (ETDEWEB)

    Tanase, A.; Szymanski, J.; El-Hawary, M.; Delja, A., E-mail: aurelian.tanase@cnsc-ccsn.gc.ca [Canadian Nuclear Safety Commission, Ottawa, ON (Canada)

    2015-07-01

    The assessment of fuel channel integrity during large break LOCA requires adequate prediction of the thermal-mechanical behaviour of the fuel channel following pressure tube ballooning into contact with the calandria tube. Analytical models developed for this purpose need to be calibrated and validated against experimental data. A new series of contact boiling tests was initiated by CNSC to provide additional data on calandria tube straining behaviour after PT/CT contact. This paper presents selected results of the first of these tests and their comparisons with predictions using analytical methodology developed by CNSC staff. (author)

  9. Effect of vorticity on polycrystalline ice deformation

    Science.gov (United States)

    Llorens, Maria-Gema; Griera, Albert; Steinbach, Florian; Bons, Paul D.; Gomez-Rivas, Enrique; Jansen, Daniela; Lebensohn, Ricardo A.; Weikusat, Ilka

    2017-04-01

    Understanding ice sheet dynamics requires a good knowledge of how dynamic recrystallisation controls ice microstructures and rheology at different boundary conditions. In polar ice sheets, pure shear flattening typically occurs at the top of the sheets, while simple shearing dominates near their base. We present a series of two-dimensional microdynamic numerical simulations that couple ice deformation with dynamic recrystallisation of various intensities, paying special attention to the effect of boundary conditions. The viscoplastic full-field numerical modelling approach (VPFFT) (Lebensohn, 2001) is used to calculate the response of a polycrystalline aggregate that deforms purely by dislocation glide. This code is coupled with the ELLE microstructural modelling platform that includes recrystallisation in the aggregate by intracrystalline recovery, nucleation by polygonisation, as well as grain boundary migration driven by the reduction of surface and strain energies (Llorens et al., 2016a, 2016b, 2017). The results reveal that regardless the amount of DRX and ice flow a single c-axes maximum develops all simulations. This maximum is oriented approximately parallel to the maximum finite shortening direction and rotates in simple shear towards the normal to the shear plane. This leads to a distinctly different behaviour in pure and simple shear. In pure shear, the lattice preferred orientation (LPO) and shape-preferred orientation (SPO) are increasingly unfavourable for deformation, leading to hardening and an increased activity of non-basal slip. The opposite happens in simple shear, where the imposed vorticity causes rotation of the LPO and SPO to a favourable orientation, leading to strain softening. An increase of recrystallisation enhances the activity of the non-basal slip, due to the reduction of deformation localisation. In pure shear conditions, the pyramidal slip activity is thus even more enhanced and can become higher than the basal-slip activity. Our

  10. Deformation Analysis of Fixed Bearing Inclined Plane Thrust Bearing

    Directory of Open Access Journals (Sweden)

    LI Yong--hai

    2017-02-01

    Full Text Available According to the theory of lubrication,Numerical simulation of the deformation of the thrust bearing of the fixed inclined plane was carried out,by finite element numerical analysis method and using the ANSYS software. The mathematical model of the oil film shape control equations about of the deformation and bearing is established. Analytical result showed that the force caused the tile surface generating concave deformation,and convex deformation increased with the height and the size of the load and bearing;Tile surface temperature generated convex deformation and increased with the height and the size of the temperature of bearing bush;The actual deformation of the tile surface is the superposition of the force and the thermal deformation. This conclusion can provide reference for the design and the application of thrust bearing,to reduce the tile surface,which is not conducive to the carrying capacity of the concave deformation.

  11. Flow characteristics around a deformable stenosis under pulsatile flow condition

    Science.gov (United States)

    Choi, Woorak; Park, Jun Hong; Byeon, Hyeokjun; Lee, Sang Joon

    2018-01-01

    A specific portion of a vulnerable stenosis is deformed periodically under a pulsatile blood flow condition. Detailed analysis of such deformable stenosis is important because stenotic deformation can increase the likelihood of rupture, which may lead to sudden cardiac death or stroke. Various diagnostic indices have been developed for a nondeformable stenosis by using flow characteristics and resultant pressure drop across the stenosis. However, the effects of the stenotic deformation on the flow characteristics remain poorly understood. In this study, the flows around a deformable stenosis model and two different rigid stenosis models were investigated under a pulsatile flow condition. Particle image velocimetry was employed to measure flow structures around the three stenosis models. The deformable stenosis model was deformed to achieve high geometrical slope and height when the flow rate was increased. The deformation of the stenotic shape enhanced jet deflection toward the opposite vessel wall of the stenosis. The jet deflection in the deformable model increased the rate of jet velocity and turbulent kinetic energy (TKE) production as compared with those in the rigid models. The effect of stenotic deformation on the pulsating waveform related with the pressure drop was analyzed using the TKE production rate. The deformable stenosis model exhibited a phase delay of the peak point in the waveform. These results revealed the potential use of pressure drop waveform as a diagnostic index for deformable stenosis.

  12. Shape memory polyurethane nanocomposites

    Science.gov (United States)

    Cao, Feina

    Shape memory polymers are smart materials which can remember their original shapes. However, the low recovery stress and low mechanical strength limit the commercial applications of shape memory polymers. In this study, nanoclays were introduced to shape memory polyurethanes (SMPU) to augment these properties by enhance the network of SMPU. Several factors which influence the shape recovery stress were evaluated, including the nature of polymer chain by using different monomers, type of clay particles, extent of filler dispersion, clay content and deformation conditions. It was found that only reactive clay particles were well dispersed into polyurethane matrix by the tethering between --CH2CH 2OH functional groups in clay surfactants and polyurethane chains. Two different shape memory polyurethanes (Systems I & II) prepared by bulk polymerization were compared. The shape memory effect of System I was triggered by melting of the soft segment crystals, while that of System II was by glass transition of the soft segments. It was seen that the reactive clay particles dispersed well in both polyurethane matrices and augmented the recovery stress, e.g., 20% increase with 1 wt % nanoclay in System I and 40% increase with 5 wt % nanoclay in System II were observed. In System I, clay particles interfered with soft segment crystallization, and promoted phase mixing between the hard and soft segments, thus affecting the fixity and recovery ratio. Nevertheless, the soft segment crystallinity was still enough and in some cases increased due to stretching to exhibit excellent shape fixity and shape recovery ratio. The higher loading of clay particles accelerated the stress relaxation, resulting in reduction of recovery stress. In System II, no significant effect of clay particles in phase separation was observed, so there was no influence of clay on shape fixity and recovery ratio. The recovery stress increased with reactive nanoclay content. It was also found that the recovery

  13. Schapiro Shapes

    Science.gov (United States)

    O'Connell, Emily

    2009-01-01

    This article describes a lesson on Schapiro Shapes. Schapiro Shapes is based on the art of Miriam Schapiro, who created a number of works of figures in action. Using the basic concepts of this project, students learn to create their own figures and styles. (Contains 1 online resource.)

  14. Extreme nuclear shapes examined via giant dipole resonance lineshapes in hot light-mass systems

    International Nuclear Information System (INIS)

    Pandit, Deepak; Mukhopadhyay, S.; Pal, Surajit; Bhattacharya, S.; Bhattacharya, C.; Banerjee, K.; Kundu, S.; Rana, T. K.; Dey, A.; Mukherjee, G.; Ghosh, T.; Banerjee, S. R.; Bhattacharya, Srijit; De, A.; Gupta, D.

    2010-01-01

    The influence of α clustering on nuclear reaction dynamics is investigated using the giant dipole resonance (GDR) lineshape studies in the reactions 20 Ne (E lab =145,160 MeV) + 12 C and 20 Ne (E lab =160 MeV) + 27 Al, populating 32 S and 47 V, respectively. The GDR lineshapes from the two systems are remarkably different from each other. Whereas, the non-α-like 47 V undergoes Jacobi shape transition and matches exceptionally well with the theoretical GDR lineshape estimated under the framework rotating liquid drop model (RLDM) and thermal shape fluctuation model (TSFM) signifying shape equilibration, for the α cluster 32 S an extended prolate kind of shape is observed. This unusual deformation, seen directly via γ decay for the first time, is predicted to be due to the formation of orbiting dinuclear configuration or molecular structure of 16 O + 16 O in the 32 S superdeformed band.

  15. Exploration of continuous variability in collections of 3D shapes

    KAUST Repository

    Ovsjanikov, Maks

    2011-07-01

    As large public repositories of 3D shapes continue to grow, the amount of shape variability in such collections also increases, both in terms of the number of different classes of shapes, as well as the geometric variability of shapes within each class. While this gives users more choice for shape selection, it can be difficult to explore large collections and understand the range of variations amongst the shapes. Exploration is particularly challenging for public shape repositories, which are often only loosely tagged and contain neither point-based nor part-based correspondences. In this paper, we present a method for discovering and exploring continuous variability in a collection of 3D shapes without correspondences. Our method is based on a novel navigation interface that allows users to explore a collection of related shapes by deforming a base template shape through a set of intuitive deformation controls. We also help the user to select the most meaningful deformations using a novel technique for learning shape variability in terms of deformations of the template. Our technique assumes that the set of shapes lies near a low-dimensional manifold in a certain descriptor space, which allows us to avoid establishing correspondences between shapes, while being rotation and scaling invariant. We present results on several shape collections taken directly from public repositories. © 2011 ACM.

  16. Thermomechanical macroscopic model of shape memory alloys

    International Nuclear Information System (INIS)

    Volkov, A.E.; Sakharov, V.Yu.

    2003-01-01

    The phenomenological macroscopic model of the mechanical behaviour of the titanium nickelide-type shape memory alloys is proposed. The model contains as a parameter the average phase shear deformation accompanying the martensite formation. It makes i possible to describe correctly a number of functional properties of the shape memory alloys, in particular, the pseudoelasticity ferroplasticity, plasticity transformation and shape memory effects in the stressed and unstressed samples [ru

  17. Deformations of superconformal theories

    International Nuclear Information System (INIS)

    Córdova, Clay; Dumitrescu, Thomas T.; Intriligator, Kenneth

    2016-01-01

    We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d≥3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.

  18. Placing and shaping liposomes with reconfigurable DNA nanocages

    Science.gov (United States)

    Zhang, Zhao; Yang, Yang; Pincet, Frederic; C. Llaguno, Marc; Lin, Chenxiang

    2017-07-01

    The diverse structure and regulated deformation of lipid bilayer membranes are among a cell's most fascinating features. Artificial membrane-bound vesicles, known as liposomes, are versatile tools for modelling biological membranes and delivering foreign objects to cells. To fully mimic the complexity of cell membranes and optimize the efficiency of delivery vesicles, controlling liposome shape (both statically and dynamically) is of utmost importance. Here we report the assembly, arrangement and remodelling of liposomes with designer geometry: all of which are exquisitely controlled by a set of modular, reconfigurable DNA nanocages. Tubular and toroid shapes, among others, are transcribed from DNA cages to liposomes with high fidelity, giving rise to membrane curvatures present in cells yet previously difficult to construct in vitro. Moreover, the conformational changes of DNA cages drive membrane fusion and bending with predictable outcomes, opening up opportunities for the systematic study of membrane mechanics.

  19. The ‘Sticky Elastica’: delamination blisters beyond small deformations

    KAUST Repository

    Wagner, Till J. W.

    2013-01-01

    We consider the form of an elastic loop adhered to a rigid substrate: the \\'Sticky Elastica\\'. In contrast to previous studies of the shape of delamination \\'blisters\\', the theory developed accounts for deflections with large slope (i.e. geometrically nonlinear). Starting from the classical Euler Elastica we provide numerical results for the dimensions of such blisters for a variety of end-end confinements and develop asymptotic expressions that reproduce these results well, even up to the point of self-contact. Interestingly, we find that the width of such blisters does not grow monotonically with increased confinement. Our theoretical predictions are confirmed by simple desktop experiments and suggest a new method for the measurement of the elastocapillary length for deformations that cannot be considered small. We discuss the implications of our results for applications such as flexible electronics. © 2013 The Royal Society of Chemistry.

  20. Simple shear of deformable square objects

    Science.gov (United States)

    Treagus, Susan H.; Lan, Labao

    2003-12-01

    Finite element models of square objects in a contrasting matrix in simple shear show that the objects deform to a variety of shapes. For a range of viscosity contrasts, we catalogue the changing shapes and orientations of objects in progressive simple shear. At moderate simple shear ( γ=1.5), the shapes are virtually indistinguishable from those in equivalent pure shear models with the same bulk strain ( RS=4), examined in a previous study. In theory, differences would be expected, especially for very stiff objects or at very large strain. In all our simple shear models, relatively competent square objects become asymmetric barrel shapes with concave shortened edges, similar to some types of boudin. Incompetent objects develop shapes surprisingly similar to mica fish described in mylonites.

  1. On the role of deformed Coulomb potential in fusion using energy ...

    Indian Academy of Sciences (India)

    Abstract. Using the Skyrme energy density formalism, the effect of deformed Coulomb potential on fusion barriers and fusion cross-sections is studied. Our detailed study reveals that the fusion barriers as well as fusion probabilities depend on the shape deformation (due to deformed Coulomb potential) of the colliding nuclei ...

  2. Shape Memory of Human Red Blood Cells

    OpenAIRE

    Fischer, Thomas M.

    2004-01-01

    The human red cell can be deformed by external forces but returns to the biconcave resting shape after removal of the forces. If after such shape excursions the rim is always formed by the same part of the membrane, the cell is said to have a memory of its biconcave shape. If the rim can form anywhere on the membrane, the cell would have no shape memory. The shape memory was probed by an experiment called go-and-stop. Locations on the membrane were marked by spontaneously adhering latex spher...

  3. On the shape memory of red blood cells

    Science.gov (United States)

    Cordasco, Daniel; Bagchi, Prosenjit

    2017-04-01

    Red blood cells (RBCs) undergo remarkably large deformations when subjected to external forces but return to their biconcave discoid resting shape as the forces are withdrawn. In many experiments, such as when RBCs are subjected to a shear flow and undergo the tank-treading motion, the membrane elements are also displaced from their original (resting) locations along the cell surface with respect to the cell axis, in addition to the cell being deformed. A shape memory is said to exist if after the flow is stopped the RBC regains its biconcave shape and the membrane elements also return to their original locations. The shape memory of RBCs was demonstrated by Fischer ["Shape memory of human red blood cells," Biophys. J. 86, 3304-3313 (2004)] using shear flow go-and-stop experiments. Optical tweezer and micropipette based stretch-relaxation experiments do not reveal the complete shape memory because while the RBC may be deformed, the membrane elements are not significantly displaced from their original locations with respect to the cell axis. Here we present the first three-dimensional computational study predicting the complete shape memory of RBCs using shear flow go-and-stop simulations. The influence of different parameters, namely, membrane shear elasticity and bending rigidity, membrane viscosity, cytoplasmic and suspending fluid viscosity, as well as different stress-free states of the RBC is studied. For all cases, the RBCs always exhibit shape memory. The complete recovery of the RBC in shear flow go-and-stop simulations occurs over a time that is orders of magnitude longer than that for optical tweezer and micropipette based relaxations. The response is also observed to be more complex and composed of widely disparate time scales as opposed to only one time scale that characterizes the optical tweezer and micropipette based relaxations. We observe that the recovery occurs in three phases: a rapid compression of the RBC immediately after the flow is stopped

  4. Mechanics of deformable bodies

    CERN Document Server

    Sommerfeld, Arnold Johannes Wilhelm

    1950-01-01

    Mechanics of Deformable Bodies: Lectures on Theoretical Physics, Volume II covers topics on the mechanics of deformable bodies. The book discusses the kinematics, statics, and dynamics of deformable bodies; the vortex theory; as well as the theory of waves. The text also describes the flow with given boundaries. Supplementary notes on selected hydrodynamic problems and supplements to the theory of elasticity are provided. Physicists, mathematicians, and students taking related courses will find the book useful.

  5. Diffeomorphic Statistical Deformation Models

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Hansen, Mads/Fogtman; Larsen, Rasmus

    2007-01-01

    In this paper we present a new method for constructing diffeomorphic statistical deformation models in arbitrary dimensional images with a nonlinear generative model and a linear parameter space. Our deformation model is a modified version of the diffeomorphic model introduced by Cootes et al....... The modifications ensure that no boundary restriction has to be enforced on the parameter space to prevent folds or tears in the deformation field. For straightforward statistical analysis, principal component analysis and sparse methods, we assume that the parameters for a class of deformations lie on a linear...

  6. Deformed Open Quantum Systems

    Science.gov (United States)

    Isar, A.

    2004-09-01

    A master equation for the deformed quantum harmonic oscillator interacting with a dissipative environment, in particular with a thermal bath, is obtained in the microscopic model, using perturbation theory. The coefficients of the master equation depend on the deformation function. The steady state solution of the equation for the density matrix in the number representation is derived and the equilibrium energy of the deformed harmonic oscillator is calculated in the approximation of small deformation. Note from Publisher: This article contains the abstract and references only.

  7. Women in Shape Modeling Workshop

    CERN Document Server

    Tari, Sibel

    2015-01-01

    Presenting the latest research from the growing field of mathematical shape analysis, this volume is comprised of the collaborations of participants of the Women in Shape Modeling (WiSh) workshop, held at UCLA's Institute for Pure and Applied Mathematics in July 2013. Topics include: Simultaneous spectral and spatial analysis of shape Dimensionality reduction and visualization of data in tree-spaces, such as classes of anatomical trees like airways and blood vessels Geometric shape segmentation, exploring shape segmentation from a Gestalt perspective, using information from the Blum medial axis of edge fragments in an image Representing and editing self-similar details on 3D shapes, studying shape deformation and editing techniques Several chapters in the book directly address the problem of continuous measures of context-dependent nearness and right shape models. Medical and biological applications have been a major source of motivation in shape research, and key topics are examined here in detail. All...

  8. An Explicit Approach Toward Modeling Thermo-Coupled Deformation Behaviors of SMPs

    Directory of Open Access Journals (Sweden)

    Hao Li

    2017-03-01

    Full Text Available A new elastoplastic J 2 -flow models with thermal effects is proposed toward simulating thermo-coupled finite deformation behaviors of shape memory polymers. In this new model, an elastic potential evolving with development of plastic flow is incorporated to characterize the stress-softening effect at unloading and, moreover, thermo-induced plastic flow is introduced to represent the strain recovery effect at heating. It is shown that any given test data for both effects may be accurately simulated by means of direct and explicit procedures. Numerical examples for model predictions compare well with test data in literature.

  9. Shape memory alloy engine

    International Nuclear Information System (INIS)

    Tanaka, M.

    1992-01-01

    This paper discusses a shape memory alloy engine, developed for the purpose of extracting the mechanical energy from a small difference in temperature. The engine is mainly composed of two pulleys (high temperature and low temperature) and single belt made of the nickel titanium shape memory alloy. The alloy memorizes a shape arcing in the direction opposite to the direction of the belt arc around the pulleys. When the temperature of the belt which is in contact with the high temperature pulley rises above the transformation temperature, a return to the memorized shape generates a force which rotates the pulleys. To make the heat transfer more effective, the engine was designed so that the lower part of the two pulleys are embedded in hot and cold water, respectively. To predict the performance of the shape memory alloy engine, the stress change of the shape memory alloy caused by temperature change has been also investigated with the bending stress test, and a torque loss of the engine system was measured. The predicted results were coincident with the output power experiment

  10. Shock-induced deformation twinning in tantalum

    International Nuclear Information System (INIS)

    Murr, L.E.; Niou, C.S.; Pappu, S.; Kennedy, C.; Meyers, M.A.; Chen, Y.J.

    1997-01-01

    Shock-wave deformation of tantalum to a pressure of 45 GPa and duration of 1.8 micros generates profuse twinning. The post-shock mechanical response is significantly affected, with shock hardening exceeding the expected hardening due to the transient shock strain ε s = (4/3)ln(V/V 0 ); this enhanced hardening, and other alterations in response, are attributed to the barriers presented to plastic deformation by the deformation twins. A constitutive model is proposed that predicts the threshold shock stress for mechanical twinning; it is based on the application of the Swegle-Grady relationship between shock stress and strain rate to constitute equations describing the critical stress for slip and twinning. This constitutive model incorporates grain-size effects and predicts a threshold twinning stress that is a function of temperature and grain size; predictions of the model are in qualitative agreement with experimental results

  11. Mechanically programmed shape change in laminated elastomeric composites.

    Science.gov (United States)

    Robertson, Jaimee M; Torbati, Amir H; Rodriguez, Erika D; Mao, Yiqi; Baker, Richard M; Qi, H Jerry; Mather, Patrick T

    2015-07-28

    Soft, anisotropic materials, such as myocardium in the heart and the extracellular matrix surrounding cells, are commonly found in nature. This anisotropy leads to specialized responses and is imperative to material functionality, yet few soft materials exhibiting similar anisotropy have been developed. Our group introduced an anisotropic shape memory elastomeric composite (A-SMEC) composed of non-woven, aligned polymer fibers embedded in an elastomeric matrix. The composite exhibited shape memory (SM) behavior with significant anisotropy in room-temperature shape fixing. Here, we exploit this anisotropy by bonding together laminates with oblique anisotropy such that tensile deformation at room temperature - mechanical programming - results in coiling. This response is a breakthrough in mechanical programming, since non-affine shape change is achieved by simply stretching the layered A-SMECs at room temperature. We will show that pitch and curvature of curled geometries depend on fiber orientations and the degree of strain programmed into the material. To validate experimental results, a model was developed that captures the viscoplastic response of A-SMECs. Theoretical results correlated well with experimental data, supporting our conclusions and ensuring attainability of predictable curling geometries. We envision these smart, soft, shape changing materials will have aerospace and medical applications.

  12. Correction of sagittal plane deformity and predictive factors for a favourable radiological outcome following multilevel posterior lumbar interbody fusion for mild degenerative scoliosis.

    Science.gov (United States)

    Sabou, Silviu; Tseng, Tzu-Heng Jason; Stephenson, John; Siddique, Irfan; Verma, Rajat; Mohammad, Saeed

    2016-08-01

    Limited data is available in the literature on the radiographic results of multilevel posterior lumbar interbody fusion (MPLIF) in the treatment of degenerative scoliosis. The objective of our study was to evaluate the segmental and global correction achieved with MPLIF in the treatment of degenerative scoliosis. Between 2009 and 2014, 42 patients underwent correction of degenerative scoliosis with MPLIF. Several radiological parameters were measured pre- and post-operatively by two independent observers. A statistical analysis was performed to assess the inter-observer reliability of the measurements and to determine the degree of segmental correction achieved at each intervertebral disc. Using sagittal vertical axis (SVA) less than 47 mm; lumbar lordosis (LL) within 11° of pelvic incidence (PI); and pelvic tilt (PT) no more than 22° as radiological criteria for procedural acceptability, we determined predictive factors for a favourable radiological outcome. Forty-two patients (34 female) were included in our study. The average amount of correction per segment was 6.2°. The overall correction achieved with MPLIF was 16.6°. Twenty-six of the 42 patients (61.9 %) had post-operative SVA values less than 47 mm. Nineteen of the 42 patients (45.2 %) had average post-operative LL within 11° of the PI. Sixteen of the 42 patients (38.1 %) had PT less than 22°. Younger age, female gender and a low pre-operative PT were significantly associated with the attainment of a satisfactory sagittal alignment. Our results demonstrate that a satisfactory correction can be achieved in degenerative scoliosis with MPLIF. In addition, our results show that it is significantly more likely to achieve a satisfactory radiological outcome in younger, female patients with low pre-operative PT.

  13. Size-dependent plastic deformation of twinned nanopillars in body-centered cubic tungsten

    Science.gov (United States)

    Xu, Shuozhi; Startt, Jacob K.; Payne, Thomas G.; Deo, Chaitanya S.; McDowell, David L.

    2017-05-01

    Compared with face-centered cubic metals, twinned nanopillars in body-centered cubic (BCC) systems are much less explored partly due to the more complicated plastic deformation behavior and a lack of reliable interatomic potentials for the latter. In this paper, the fault energies predicted by two semi-empirical interatomic potentials in BCC tungsten (W) are first benchmarked against density functional theory calculations. Then, the more accurate potential is employed in large scale molecular dynamics simulations of tensile and compressive loading of twinned nanopillars in BCC W with different cross sectional shapes and sizes. A single crystal, a twinned crystal, and single crystalline nanopillars are also studied as references. Analyses of the stress-strain response and defect nucleation reveal a strong tension-compression asymmetry and a weak pillar size dependence in the yield strength. Under both tensile and compressive loading, plastic deformation in the twinned nanopillars is dominated by dislocation slip on {110} planes that are nucleated from the intersections between the twin boundary and the pillar surface. It is also found that the cross sectional shape of nanopillars affects the strength and the initial site of defect nucleation but not the overall stress-strain response and plastic deformation behavior.

  14. Morphing-Based Shape Optimization in Computational Fluid Dynamics

    Science.gov (United States)

    Rousseau, Yannick; Men'Shov, Igor; Nakamura, Yoshiaki

    In this paper, a Morphing-based Shape Optimization (MbSO) technique is presented for solving Optimum-Shape Design (OSD) problems in Computational Fluid Dynamics (CFD). The proposed method couples Free-Form Deformation (FFD) and Evolutionary Computation, and, as its name suggests, relies on the morphing of shape and computational domain, rather than direct shape parameterization. Advantages of the FFD approach compared to traditional parameterization are first discussed. Then, examples of shape and grid deformations by FFD are presented. Finally, the MbSO approach is illustrated and applied through an example: the design of an airfoil for a future Mars exploration airplane.

  15. Intracrystalline deformation of calcite

    NARCIS (Netherlands)

    Bresser, J.H.P. de

    1991-01-01

    It is well established from observations on natural calcite tectonites that intracrystalline plastic mechanisms are important during the deformation of calcite rocks in nature. In this thesis, new data are presented on fundamental aspects of deformation behaviour of calcite under conditions where

  16. Shape morphing Kirigami mechanical metamaterials.

    Science.gov (United States)

    Neville, Robin M; Scarpa, Fabrizio; Pirrera, Alberto

    2016-08-05

    Mechanical metamaterials exhibit unusual properties through the shape and movement of their engineered subunits. This work presents a new investigation of the Poisson's ratios of a family of cellular metamaterials based on Kirigami design principles. Kirigami is the art of cutting and folding paper to obtain 3D shapes. This technique allows us to create cellular structures with engineered cuts and folds that produce large shape and volume changes, and with extremely directional, tuneable mechanical properties. We demonstrate how to produce these structures from flat sheets of composite materials. By a combination of analytical models and numerical simulations we show how these Kirigami cellular metamaterials can change their deformation characteristics. We also demonstrate the potential of using these classes of mechanical metamaterials for shape change applications like morphing structures.

  17. Nanoscale deformation of a liquid surface.

    Science.gov (United States)

    Ledesma-Alonso, Rene; Legendre, Dominique; Tordjeman, Philippe

    2012-03-09

    We study the interaction between a solid particle and a liquid interface. A semianalytical solution of the nonlinear equation that describes the interface deformation points out the existence of a bifurcation behavior for the apex deformation as a function of the distance. We show that the apex curvature obeys a simple power-law dependency on the deformation. Relationships between physical parameters disclose the threshold distance at which the particle can approach the liquid before capillarity provokes a "jump to contact." A prediction of the interface original position before deformation takes place, as well as the attraction force measured by an approaching probe, are produced. The results of our analysis agree with the force curves obtained from atomic force microscopy experiments over a liquid puddle.

  18. Deformation mechanisms in experimentally deformed Boom Clay

    Science.gov (United States)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  19. New World cranial deformation practices: historical implications for pathophysiology of cognitive impairment in deformational plagiocephaly.

    Science.gov (United States)

    Lekovic, Gregory P; Baker, Brenda; Lekovic, Jill M; Preul, Mark C

    2007-06-01

    Throughout history, prehistoric and even some contemporary civilizations have practiced various forms of intentional and unintentional cranial deformation. Plagiocephaly can be the result of craniosynostosis, infant positioning, or other unintentional or intentional deformation. We reviewed the medical and anthropological literature and the anthropological collections of Arizona State University and the San Diego Museum of Man for evidence of cranial deformation and its possible physiological and cognitive side effects. Evidence of cranial shaping was also sought among art or stone work from representative cultures. The anthropological record and literature attest to the presence of much more severe forms of deformation than that seen as a result of contemporary infant positioning. Despite this evidence, there is no anthropological evidence as to the possible cognitive effects that such deformation may have, although some evidence is reviewed that suggests a possible physiological mechanism for the same. Because we can only view these cultures through the relics of time, any conclusions one might draw from the anthropological and historical record regarding the cognitive effects of head deformation can only be inferred through generalized observations and are tenuous. Nevertheless, there does not seem to be any evidence of negative effect on the societies that have practiced even very severe forms of intentional cranial deformation (e.g., the Olmec and Maya). On the other hand, the physical anthropology and the contemporary developmental literature suggest possible mechanisms for such an effect.

  20. A constrained maximization formulation to analyze deformation of fiber reinforced elastomeric actuators

    Science.gov (United States)

    Singh, Gaurav; Krishnan, Girish

    2017-06-01

    Fiber reinforced elastomeric enclosures (FREEs) are soft and smart pneumatic actuators that deform in a predetermined fashion upon inflation. This paper analyzes the deformation behavior of FREEs by formulating a simple calculus of variations problem that involves constrained maximization of the enclosed volume. The model accurately captures the deformed shape for FREEs with any general fiber angle orientation, and its relation with actuation pressure, material properties and applied load. First, the accuracy of the model is verified with existing literature and experiments for the popular McKibben pneumatic artificial muscle actuator with two equal and opposite families of helically wrapped fibers. Then, the model is used to predict and experimentally validate the deformation behavior of novel rotating-contracting FREEs, for which no prior literature exist. The generality of the model enables conceptualization of novel FREEs whose fiber orientations vary arbitrarily along the geometry. Furthermore, the model is deemed to be useful in the design synthesis of fiber reinforced elastomeric actuators for general axisymmetric desired motion and output force requirement.

  1. Simulating Thermal Cycling and Isothermal Deformation Response of Polycrystalline NiTi

    Science.gov (United States)

    Manchiraju, Sivom; Gaydosh, Darrell J.; Noebe, Ronald D.; Anderson, Peter M.

    2011-01-01

    A microstructure-based FEM model that couples crystal plasticity, crystallographic descriptions of the B2-B19' martensitic phase transformation, and anisotropic elasticity is used to simulate thermal cycling and isothermal deformation in polycrystalline NiTi (49.9at% Ni). The model inputs include anisotropic elastic properties, polycrystalline texture, DSC data, and a subset of isothermal deformation and load-biased thermal cycling data. A key experimental trend is captured.namely, the transformation strain during thermal cycling is predicted to reach a peak with increasing bias stress, due to the onset of plasticity at larger bias stress. Plasticity induces internal stress that affects both thermal cycling and isothermal deformation responses. Affected thermal cycling features include hysteretic width, two-way shape memory effect, and evolution of texture with increasing bias stress. Affected isothermal deformation features include increased hardening during loading and retained martensite after unloading. These trends are not captured by microstructural models that lack plasticity, nor are they all captured in a robust manner by phenomenological approaches. Despite this advance in microstructural modeling, quantitative differences exist, such as underprediction of open loop strain during thermal cycling.

  2. Shape recovery in a thermoset shape memory polymer and its fabric-reinforced composites

    Directory of Open Access Journals (Sweden)

    2011-03-01

    Full Text Available A shape memory polymer (SMP can be deformed from a permanent to a temporary shape above their transformation temperature. Upon reheating, the SMP spontaneously returns to the permanent shape. SMP’s show high deformability, but the recovery stresses are very low, thus limiting the size of the components. This paper presents the first results of an ongoing research to develop large sized components based on SMP. To achieve higher recovery stresses, asymmetric fibre reinforced shape memory composites were produced (SMPC using resin transfer moulding. The results show a 30-fold increase in recovery stress, compared to the neat SMP resin. The recovery stress is independent of the deformation temperature, but is strongly affected by the degree of deformation. At higher deformation levels, crazing occurs. Even though the visible effects of the crazing disappear during reheating, it does influence the recovery stress. This indicates that the ability to recover the permanent shape might change in cyclic loading. All composites tested show complete recovery upon reheating. The rate of shape recovery is higher when the fibre reinforcement is loaded in compression.

  3. Implementation of a finite element analysis procedure for structural analysis of shape memory behaviour of fibre reinforced shape memory polymer composites

    Science.gov (United States)

    Azzawi, Wessam Al; Epaarachchi, J. A.; Islam, Mainul; Leng, Jinsong

    2017-12-01

    Shape memory polymers (SMPs) offer a unique ability to undergo a substantial shape deformation and subsequently recover the original shape when exposed to a particular external stimulus. Comparatively low mechanical properties being the major drawback for extended use of SMPs in engineering applications. However the inclusion of reinforcing fibres in to SMPs improves mechanical properties significantly while retaining intrinsic shape memory effects. The implementation of shape memory polymer composites (SMPCs) in any engineering application is a unique task which requires profound materials and design optimization. However currently available analytical tools have critical limitations to undertake accurate analysis/simulations of SMPC structures and slower derestrict transformation of breakthrough research outcomes to real-life applications. Many finite element (FE) models have been presented. But majority of them require a complicated user-subroutines to integrate with standard FE software packages. Furthermore, those subroutines are problem specific and difficult to use for a wider range of SMPC materials and related structures. This paper presents a FE simulation technique to model the thermomechanical behaviour of the SMPCs using commercial FE software ABAQUS. Proposed technique incorporates material time-dependent viscoelastic behaviour. The ability of the proposed technique to predict the shape fixity and shape recovery was evaluated by experimental data acquired by a bending of a SMPC cantilever beam. The excellent correlation between the experimental and FE simulation results has confirmed the robustness of the proposed technique.

  4. 3D active shape modeling for cardiac MR and CT image segmentation

    NARCIS (Netherlands)

    Assen, Hans Christiaan van

    2006-01-01

    3D Active Shape Modeling is a technique to capture shape information from a training set containing characteristic shapes of, e.g., a heart. The description contains a mean shape, and shape variations (e.g. eigen deformations and eigen values). Many models based on these statistics, and used for

  5. Statical Experiments of Tire as Complex Long-Fibre Composite for Obtaining Material Parameters and Deformation Characteristics

    Directory of Open Access Journals (Sweden)

    Jan Krmela

    2012-05-01

    Full Text Available The article deals with the statical experiments of tires for obtaining material parameters and deformation characteristics by tensile testing machine and also special statical testing tire machine. The tires consist of polymer matrix – rubber and long-filament reinforcement – cords, hence the tires are fall within as very complex long-fibre composite with specific deformation characteristics. These tire deformation characteristics have given geometry shape of tire and material parameters of component parts of tire-casing. Nowadays the computational modeling is used for tire solutions and experiments are subsidiary only. But the combination of computational modeling with experimental approach is necessary to use for prediction real states of tires. For computational modeling of tires the material parameters of each component part of tire-casing are necessary as material input data for computational models. These material parameters can be obtained by tensile test by statical testing machine. The geometry parameters of multi-layer test specimens of steel-cord belt with conditions of tensile tests are designed. The data from statical deformation characteristics are necessary for comparison of computational outputs with experimental data. The special testing tire machine called statical adhesor is used to obtain deformation characteristics and information about contact patches with pressure distribution in contact patches. The experimental results of chosen radial tire 245/40 R18 for passenger car are presented in this article. In this paper a new formula for calculating of value of radial stiffness is designed too.

  6. A multiscale Cauchy-Born meshfree model for deformability of red blood cells parasitized by Plasmodium falciparum

    Science.gov (United States)

    Zhang, L. W.; Ademiloye, A. S.; Liew, K. M.

    In normal physiological and healthy conditions, red blood cells (RBCs) deform readily as they pass through the microcapillaries and the spleen, however, upon invasion by the malaria parasite, the host RBC membrane begins to lose their deformability. In spite of the progress in understanding malaria pathogenesis, the primary mechanism responsible for the loss of deformability remains unclear. In this paper, we examine the effects of Plasmodium falciparum infection and maturation on the deformability of parasitized or infected red blood cells (iRBCs) by means of a three-dimensional (3D) multiscale red blood cell (RBC) framework. This multiscale framework is developed based on the Cauchy-Born rule and the meshfree IMLS-Ritz method. The atomistic scale strain energy density function of the RBC membrane was computed using a selected representative cell based on the membrane spectrin network. The results obtained from our numerical simulations affirm that the presence of malaria infection significantly increases the rigidity of RBC membrane. It was observed that in the trophozoite and schizont infection stages, biconcave cell geometry leads to better prediction than nearly spherical geometry in comparison with experimental studies. Furthermore, we confirm that increase in temperature also results to increased stiffening of the cell membrane. Lastly, the observed decrease in the deformability of iRBC membrane may be primarily due to the structural remodeling and changes in the microstructure of the membrane rather than the change in cell shape.

  7. Calcaneo-valgus deformity.

    Science.gov (United States)

    Evans, D

    1975-08-01

    A discussion of the essential deformity in calcaneo-valgus feet develops a theme originally put forward in 1961 on the relapsed club foot (Evans 1961). Whereas in the normal foot the medial and lateral columns are about equal in length, in talipes equino-varus the lateral column is longer and in calcaneo-valgus shorter than the medial column. The suggestion is that in the treatment of both deformities the length of the columns be made equal. A method is described of treating calcaneo-valgus deformity by inserting cortical bone grafts taken from the tibia to elongate the anterior end of the calcaneus.

  8. Role of obesity and abdominal shape morphometric features to predict postoperative complications and quality of lymph node dissection of gastrectomy for gastric cancer.

    Science.gov (United States)

    HasbahcecI, M; MehdI, E; Malya, F U; Kunduz, E; MemmI, N; YIgman, S; Akcakaya, A

    2017-01-01

    Obesity and abdominal shape morphometric features have been thought to be independent risk factors for surgical outcomes after gastrectomy.A total of 113 patients undergoing surgery for primary gastric adenocarcinoma from June 2011 to January 2015 were retrospectively included. Body mass index, visceral fatty area, anterior-posterior abdominal and transverse diameters and depth ratio at levels of the umbilicus, the gastroesophageal junction and the root of the celiac artery were measured or calculated. Patients were grouped according to body mass index (parameters. Surgical outcomes including postoperative complications, total and metastatic lymph node numbers and their ratio were compared.There was a significant association between body mass index and abdominal shape indexes. Body mass index and abdominal shape indexes showed no statistical significance on development of complications. But, lymph node numbers and their ratio were negatively affected by depth ratio at the root of the celiac artery.Our findings showed that gastrectomy with curative intent can be performed safely in patients with higher body mass index and abdominal shape indexes. Therefore, there is no need to perform any change in surgical strategy according to these measurements and calculations.

  9. Does morphology predict trophic niche differentiation? Relationship between feeding habits and body shape in four co-occurring juvenile species (Pisces: Perciformes, Sparidae)

    Science.gov (United States)

    Ventura, Daniele; Bonhomme, Vincent; Colangelo, Paolo; Bonifazi, Andrea; Jona Lasinio, Giovanna; Ardizzone, Giandomenico

    2017-05-01

    Feeding habits, diet overlap and morphological correlates of four juvenile species of the genus Diplodus were investigated during their settlement periods, along the Tyrrhenian coast. Stomach content analysis showed that the diets of D. sargus and D. puntazzo mainly comprised benthic prey such as harpacticoid copepods, amphipods and polychaetes. On the other hand, D. vulgaris and D. annularis fed mainly on planktonic prey such as ciclopoids, calanoids copepods and fish larvae. A biologically significant diet overlap, calculated using the Schoener index, was recorded between D. sargus and D. puntazzo and between D. vulgaris and D. annularis. Morphological characters related to feeding such as gape height and gut length with their relative growth patterns suggested that different trophic preferences have led to a morphological diversification of feeding structures. Therefore, a geometric morphometric outline method, namely Elliptic Fourier Analysis (EFA) was used to examine shape modification of the head and body regions. The multivariate analyses performed on shape descriptors demonstrated that the four species were morphologically distinct due to different feeding habits: the two species which feed mainly on benthic prey presented a discoidal shape, with broad profiles and rounded head; by contrast, the other two species which relied mostly on planktonic prey, presented a streamlined and more elongated body shape.

  10. Shape of the self-concept clarity change during group psychotherapy predicts the outcome: an empirical validation of the theoretical model of the self-concept change.

    Science.gov (United States)

    Styła, Rafał

    2015-01-01

    Self-Concept Clarity (SCC) describes the extent to which the schemas of the self are internally integrated, well defined, and temporally stable. This article presents a theoretical model that describes how different shapes of SCC change (especially stable increase and "V" shape) observed in the course of psychotherapy are related to the therapy outcome. Linking the concept of Jean Piaget and the dynamic systems theory, the study postulates that a stable SCC increase is needed for the participants with a rather healthy personality structure, while SCC change characterized by a "V" shape or fluctuations is optimal for more disturbed patients. Correlational study in a naturalistic setting with repeated measurements (M = 5.8) was conducted on the sample of 85 patients diagnosed with neurosis and personality disorders receiving intensive eclectic group psychotherapy under routine inpatient conditions. Participants filled in the Self-Concept Clarity Scale (SCCS), Symptoms' Questionnaire KS-II, and Neurotic Personality Questionnaire KON-2006 at the beginning and at the end of the course of psychotherapy. The SCCS was also administered every 2 weeks during psychotherapy. As hypothesized, among the relatively healthiest group of patients the stable SCC increase was related to positive treatment outcome, while more disturbed patients benefited from the fluctuations and "V" shape of SCC change. The findings support the idea that for different personality dispositions either a monotonic increase or transient destabilization of SCC is a sign of a good treatment prognosis.

  11. Shape of the self-concept clarity change during group psychotherapy predicts the outcome: an empirical validation of the theoretical model of the self-concept change

    Science.gov (United States)

    Styła, Rafał

    2015-01-01

    Background: Self-Concept Clarity (SCC) describes the extent to which the schemas of the self are internally integrated, well defined, and temporally stable. This article presents a theoretical model that describes how different shapes of SCC change (especially stable increase and “V” shape) observed in the course of psychotherapy are related to the therapy outcome. Linking the concept of Jean Piaget and the dynamic systems theory, the study postulates that a stable SCC increase is needed for the participants with a rather healthy personality structure, while SCC change characterized by a “V” shape or fluctuations is optimal for more disturbed patients. Method: Correlational study in a naturalistic setting with repeated measurements (M = 5.8) was conducted on the sample of 85 patients diagnosed with neurosis and personality disorders receiving intensive eclectic group psychotherapy under routine inpatient conditions. Participants filled in the Self-Concept Clarity Scale (SCCS), Symptoms' Questionnaire KS-II, and Neurotic Personality Questionnaire KON-2006 at the beginning and at the end of the course of psychotherapy. The SCCS was also administered every 2 weeks during psychotherapy. Results: As hypothesized, among the relatively healthiest group of patients the stable SCC increase was related to positive treatment outcome, while more disturbed patients benefited from the fluctuations and “V” shape of SCC change. Conclusions: The findings support the idea that for different personality dispositions either a monotonic increase or transient destabilization of SCC is a sign of a good treatment prognosis. PMID:26579001

  12. Shape transition with temperature of the pear-shaped nuclei in covariant density functional theory

    Science.gov (United States)

    Zhang, W.; Niu, Y. F.

    2017-11-01

    The shape evolutions of the pear-shaped nuclei 224Ra and even-even Ba-154144 with temperature are investigated by the finite-temperature relativistic mean field theory with the treatment of pairing correlations by the BCS approach. The free energy surfaces as well as the bulk properties including deformations, pairing gaps, excitation energy, and specific heat for the global minimum are studied. For 224Ra, three discontinuities found in the specific heat curve indicate the pairing transition at temperature 0.4 MeV and two shape transitions at temperatures 0.9 and 1.0 MeV, namely one from quadrupole-octupole deformed to quadrupole deformed, and the other from quadrupole deformed to spherical. Furthermore, the gaps at N =136 and Z =88 are responsible for stabilizing the octupole-deformed global minimum at low temperatures. Similar pairing transition at T ˜0.5 MeV and shape transitions at T =0.5 -2.2 MeV are found for even-even Ba-154144. The transition temperatures are roughly proportional to the corresponding deformations at the ground states.

  13. Three-dimensional motion and deformation estimation of deformable mesh

    Science.gov (United States)

    Deknuydt, Albert A.; Desmet, Stefaan; Cox, Kris; Van Eycken, Luc

    2000-04-01

    Recently real-time capture of dynamic 3D-objects has become feasible. The dynamic models obtained by various techniques, come in the form of separate highly detailed 3D-meshes with texture at video-rates. These represent such an amount of data, as to hamper manipulation, editing and rendering. Data- compression techniques can alleviate this problem. Independent decimation of the separate meshes, is an inferior solution for what is really time varying mesh. Firstly, it causes unnatural flickering, and secondly, it leaves the inter-mesh correlation unexploited. Therefore, a hybrid technique might be a better solution. It consists of an 'intra' compression scheme working on still mesh, a 3D motion estimator/predictor, and a coder for the prediction errors and side information (motion vectors and mesh segmentation). We describe a technique to segment a deforming mesh into regions with locally-uniform motion. We start by interpreting the motion as samples of a 3D vector field. In each point, we estimate the translation, rotation and divergence of the vector field. As human faces are rather incompressible, we ignore the divergence component. Then, we cluster the population with the criterion of similar translation and rotation. Results show that it allows to segment a deforming human face into approximately 200 regions of locally-uniform rigid motion, while keeping the motion prediction error under 5 percent. This is good enough for efficient compression.

  14. Application of TOPEX Altimetry for Solid Earth Deformation Studies

    Directory of Open Access Journals (Sweden)

    Hyongki Lee

    2008-01-01

    Full Text Available This study demonstrates the use of satellite radar altimetry to detect solid Earth deformation signals such as Glacial Isostatic Adjustment (GIA. Our study region covers moderately flat land surfaces seasonally covered by snow/ice/vegetation. The maximum solid Earth uplift of ~10 mm yr-1 is primarily due to the incomplete glacial isostatic rebound that occurs around Hudson Bay, North America. We use decadal (1992 - 2002 surface height measurements from TOPEX/POSEIDON radar altimetry to generate height changes time series for 12 selected locations in the study region. Due to the seasonally varying surface characteristics, we first perform radar waveform shape classification and have found that most of the waveforms are quasi-diffuse during winter/spring and specular during summer/fall. As a result, we used the NASA £]-retracker for the quasi-diffuse waveforms and the Offset Center of Gravity or the threshold retracker for the specular waveforms, to generate the surface height time series. The TOPEX height change time series exhibit coherent seasonal signals (higher amplitude during the winter and lower amplitude during the summer, and the estimated deformation rates agree qualitatively well with GPS vertical velocities, and with altimeter/tide gauge combined vertical velocities around the Great Lakes. The TOPEX observations also agree well with various GIA model predictions, especially with the ICE-5G (VM2 model with differences at 0.2 ¡_ 1.4 mm yr-1, indicating that TOPEX has indeed observed solid Earth deformation signals manifested as crustal uplift over the former Laurentide Ice Sheet region.

  15. Deformation Characteristics of Composite Structures

    Directory of Open Access Journals (Sweden)

    Theddeus T. AKANO

    2016-08-01

    Full Text Available The composites provide design flexibility because many of them can be moulded into complex shapes. The carbon fibre-reinforced epoxy composites exhibit excellent fatigue tolerance and high specific strength and stiffness which have led to numerous advanced applications ranging from the military and civil aircraft structures to the consumer products. However, the modelling of the beams undergoing the arbitrarily large displacements and rotations, but small strains, is a common problem in the application of these engineering composite systems. This paper presents a nonlinear finite element model which is able to estimate the deformations of the fibre-reinforced epoxy composite beams. The governing equations are based on the Euler-Bernoulli beam theory (EBBT with a von Kármán type of kinematic nonlinearity. The anisotropic elasticity is employed for the material model of the composite material. Moreover, the characterization of the mechanical properties of the composite material is achieved through a tensile test, while a simple laboratory experiment is used to validate the model. The results reveal that the composite fibre orientation, the type of applied load and boundary condition, affect the deformation characteristics of the composite structures. The nonlinearity is an important factor that should be taken into consideration in the analysis of the fibre-reinforced epoxy composites.

  16. Shape memory heat engines

    Science.gov (United States)

    Salzbrenner, R.

    1984-06-01

    The mechanical shape memory effect associated with a thermoelastic martensitic transformation can be used to convert heat directly into mechanical work. Laboratory simulation of two types of heat engine cycles (Stirling and Ericsson) has been performed to measure the amount of work available/cycle in a Ni-45 at. pct Ti alloy. Tensile deformations at ambient temperature induced martensite, while a subsequent increase in temperature caused a reversion to the parent phase during which a load was carried through the strain recovery (i.e., work was accomplished). The amount of heat necessary to carry the engines through a cycle was estimated from calorimeter measurements and the work performed/cycle. The measured efficiency of the system tested reached a maximum of 1.4 percent, which was well below the theoretical (Carnot) maximum efficiency of 35.6 percent.

  17. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  18. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...... a single central section of the object. We use maximum-likelihood-based inference for this purpose and demonstrate the suggested methods on real data....

  19. Fingerprinting Molecular Relaxation in Deformed Polymers

    Science.gov (United States)

    Wang, Zhe; Lam, Christopher N.; Chen, Wei-Ren; Wang, Weiyu; Liu, Jianning; Liu, Yun; Porcar, Lionel; Stanley, Christopher B.; Zhao, Zhichen; Hong, Kunlun; Wang, Yangyang

    2017-07-01

    The flow and deformation of macromolecules is ubiquitous in nature and industry, and an understanding of this phenomenon at both macroscopic and microscopic length scales is of fundamental and practical importance. Here, we present the formulation of a general mathematical framework, which could be used to extract, from scattering experiments, the molecular relaxation of deformed polymers. By combining and modestly extending several key conceptual ingredients in the literature, we show how the anisotropic single-chain structure factor can be decomposed by spherical harmonics and experimentally reconstructed from its cross sections on the scattering planes. The resulting wave-number-dependent expansion coefficients constitute a characteristic fingerprint of the macromolecular deformation, permitting detailed examinations of polymer dynamics at the microscopic level. We apply this approach to survey a long-standing problem in polymer physics regarding the molecular relaxation in entangled polymers after a large step deformation. The classical tube theory of Doi and Edwards predicts a fast chain retraction process immediately after the deformation, followed by a slow orientation relaxation through the reptation mechanism. This chain retraction hypothesis, which is the keystone of the tube theory for macromolecular flow and deformation, is critically examined by analyzing the fine features of the two-dimensional anisotropic spectra from small-angle neutron scattering by entangled polystyrenes. We show that the unique scattering patterns associated with the chain retraction mechanism are not experimentally observed. This result calls for a fundamental revision of the current theoretical picture for nonlinear rheological behavior of entangled polymeric liquids.

  20. Fingerprinting Molecular Relaxation in Deformed Polymers

    Directory of Open Access Journals (Sweden)

    Zhe Wang

    2017-07-01

    Full Text Available The flow and deformation of macromolecules is ubiquitous in nature and industry, and an understanding of this phenomenon at both macroscopic and microscopic length scales is of fundamental and practical importance. Here, we present the formulation of a general mathematical framework, which could be used to extract, from scattering experiments, the molecular relaxation of deformed polymers. By combining and modestly extending several key conceptual ingredients in the literature, we show how the anisotropic single-chain structure factor can be decomposed by spherical harmonics and experimentally reconstructed from its cross sections on the scattering planes. The resulting wave-number-dependent expansion coefficients constitute a characteristic fingerprint of the macromolecular deformation, permitting detailed examinations of polymer dynamics at the microscopic level. We apply this approach to survey a long-standing problem in polymer physics regarding the molecular relaxation in entangled polymers after a large step deformation. The classical tube theory of Doi and Edwards predicts a fast chain retraction process immediately after the deformation, followed by a slow orientation relaxation through the reptation mechanism. This chain retraction hypothesis, which is the keystone of the tube theory for macromolecular flow and deformation, is critically examined by analyzing the fine features of the two-dimensional anisotropic spectra from small-angle neutron scattering by entangled polystyrenes. We show that the unique scattering patterns associated with the chain retraction mechanism are not experimentally observed. This result calls for a fundamental revision of the current theoretical picture for nonlinear rheological behavior of entangled polymeric liquids.

  1. Stability of fluid flow through deformable tubes and channels: An ...

    Indian Academy of Sciences (India)

    S¯adhan¯a Vol. 40, Part 3, May 2015, pp. 925–943. c Indian Academy of Sciences. Stability of fluid flow through deformable tubes and channels: An overview ... tic solid models. All these studies predict several types of instabilities in flow past deformable surfaces. This paper will attempt to place the various theoretical ...

  2. Post Deformation at Room and Cryogenic Temperature Cooling Media on Severely Deformed 1050-Aluminum

    Science.gov (United States)

    Khorrami, M. Sarkari; Kazeminezhad, M.

    2018-02-01

    The annealed 1050-aluminum sheets were initially subjected to the severe plastic deformation through two passes of constrained groove pressing (CGP) process. The obtained specimens were post-deformed by friction stir processing at room and cryogenic temperature cooling media. The microstructure evolutions during mentioned processes in terms of grain structure, misorientation distribution, and grain orientation spread (GOS) were characterized using electron backscattered diffraction. The annealed sample contained a large number of "recrystallized" grains and relatively large fraction (78%) of high-angle grain boundaries (HAGBs). When CGP process was applied on the annealed specimen, the elongated grains with interior substructure were developed, which was responsible for the formation of 80% low-angle grain boundaries. The GOS map of the severely deformed specimen manifested the formation of 43% "distorted" and 51% "substructured" grains. The post deformation of severely deformed aluminum at room temperature led to the increase in the fraction of HAGBs from 20 to 60%. Also, it gave rise to the formation of "recrystallized" grains with the average size of 13 μm, which were coarser than the grains predicted by Zener-Hollomon parameter. This was attributed to the occurrence of appreciable grain growth during post deformation. In the case of post deformation at cryogenic temperature cooling medium, the grain size was decreased, which was in well agreement with the predicted grain size. The cumulative distribution of misorientation was the same for both processing routes. Mechanical properties characterizations in terms of nano-indentation and tensile tests revealed that the post deformation process led to the reduction in hardness, yield stress, and ultimate tensile strength of the severely deformed aluminum.

  3. Prediction of etching-shape anomaly due to distortion of ion sheath around a large-scale three-dimensional structure by means of on-wafer monitoring technique and computer simulation

    International Nuclear Information System (INIS)

    Kubota, Tomohiro; Ohtake, Hiroto; Araki, Ryosuke; Yanagisawa, Yuuki; Samukawa, Seiji; Iwasaki, Takuya; Ono, Kohei; Miwa, Kazuhiro

    2013-01-01

    A system for predicting distortion of a profile during plasma etching was developed. The system consists of a combination of measurement and simulation. An ‘on-wafer sheath-shape sensor’ for measuring the plasma-sheath parameters (sheath potential and thickness) on the stage of the plasma etcher was developed. The sensor has numerous small electrodes for measuring sheath potential and saturation ion-current density, from which sheath thickness can be calculated. The results of the measurement show reasonable dependence on source power, bias power and pressure. Based on self-consistent calculation of potential distribution and ion- and electron-density distributions, simulation of the sheath potential distribution around an arbitrary 3D structure and the trajectory of incident ions from the plasma to the structure was developed. To confirm the validity of the distortion prediction by comparing it with experimentally measured distortion, silicon trench etching under chlorine inductively coupled plasma (ICP) was performed using a sample with a vertical step. It was found that the etched trench was distorted when the distance from the step was several millimetres or less. The distortion angle was about 20° at maximum. Measurement was performed using the on-wafer sheath-shape sensor in the same plasma condition as the etching. The ion incident angle, calculated as a function of distance from the step, successfully reproduced the experimentally measured angle, indicating that the combination of measurement by the on-wafer sheath-shape sensor and simulation can predict distortion of an etched structure. This prediction system will be useful for designing devices with large-scale 3D structures (such as those in MEMS) and determining the optimum etching conditions to obtain the desired profiles. (paper)

  4. Jet Shapes at CMS

    CERN Document Server

    Kurt, Pelin

    2008-01-01

    The CMS (Compact Muon Solenoid) detector will observe high transverse momentum jets produced in the final state of proton-proton collisions at the center of mass energy of 14 TeV. These data will allow us to measure jet shapes, defined as the fractional transverse momentum distribution as a function of the distance from the jet axis. Since jet shapes are sensitive to parton showering processes they provide a good test of Monte Carlo event simulation programs. In this note we present a study of jet shapes reconstructed using calorimeter energies. We compare the predictions of the Monte Carlo generators PYTHIA and HERWIG++. Presented results are expected for $pp$ collisions at 14 TeV assuming an integrated luminosity of 10 pb$^{-1}$.

  5. [The rheumatoid foot. Origin of deformations].

    Science.gov (United States)

    Simon, L; Claustre, J; Allieu, Y

    1980-02-01

    Deformations of the foot are a logical and predictable function of the biomechanics of the foot and the constraints undergone by the articulations of the foot, that are unstabilized by the inflammatory process. They result from the combination of three factors : anevolutive teno-articular synovitis, predictible forces (the weight of the extrinsic muscle, the anti-physiological foot), and the congenital morphotype of the foot. Typical deformations (peroneal " coup de vent " of the toes, triangular metatarsus), differ on the clinical level in keeping with the morphotype but respond to the same mechanism. The " coup de vent peronier " remains the most characteristic deformation and is furthered by the excentric action of the extrinsic muscles, and in particular the foot muscle. The common denomination of deformations of the back part of the foot is represented by the valgus calcanean, linked to the action of the weight on the orsion forces that is more or less modified. A better knowledge of the cause of these deformations would make it possible to avoid, if not their apparition, at least their worsening.

  6. Deformable segmentation via sparse representation and dictionary learning.

    Science.gov (United States)

    Zhang, Shaoting; Zhan, Yiqiang; Metaxas, Dimitris N

    2012-10-01

    "Shape" and "appearance", the two pillars of a deformable model, complement each other in object segmentation. In many medical imaging applications, while the low-level appearance information is weak or mis-leading, shape priors play a more important role to guide a correct segmentation, thanks to the strong shape characteristics of biological structures. Recently a novel shape prior modeling method has been proposed based on sparse learning theory. Instead of learning a generative shape model, shape priors are incorporated on-the-fly through the sparse shape composition (SSC). SSC is robust to non-Gaussian errors and still preserves individual shape characteristics even when such characteristics is not statistically significant. Although it seems straightforward to incorporate SSC into a deformable segmentation framework as shape priors, the large-scale sparse optimization of SSC has low runtime efficiency, which cannot satisfy clinical requirements. In this paper, we design two strategies to decrease the computational complexity of SSC, making a robust, accurate and efficient deformable segmentation system. (1) When the shape repository contains a large number of instances, which is often the case in 2D problems, K-SVD is used to learn a more compact but still informative shape dictionary. (2) If the derived shape instance has a large number of vertices, which often appears in 3D problems, an affinity propagation method is used to partition the surface into small sub-regions, on which the sparse shape composition is performed locally. Both strategies dramatically decrease the scale of the sparse optimization problem and hence speed up the algorithm. Our method is applied on a diverse set of biomedical image analysis problems. Compared to the original SSC, these two newly-proposed modules not only significant reduce the computational complexity, but also improve the overall accuracy. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Shape of the self-concept clarity change during group psychotherapy predicts the outcome: An empirical validation of the theoretical model of the self-concept change

    Directory of Open Access Journals (Sweden)

    Rafał eStyła

    2015-10-01

    Full Text Available Background: Self-concept clarity describes the extent to which the schemas of the self are internally integrated, well defined, and temporally stable. This article presents a theoretical model that describes how different shapes of self-concept clarity change (especially stable increase and V shape observed in the course of psychotherapy are related to the therapy outcome. Linking the concept of Jean Piaget and the dynamic systems theory, the study postulates that a stable self-concept clarity increase is needed for the participants with a rather healthy personality structure, while self-concept clarity change characterized by a V shape or fluctuations is optimal for more disturbed patients. Method: Correlational study in a naturalistic setting with repeated measurements (M=5.8 was conducted on the sample of 85 patients diagnosed with neurosis and personality disorders receiving intensive eclectic group psychotherapy under routine inpatient conditions. Participants filled in the Self-Concept Clarity Scale, Symptoms’ Questionnaire KS-II, and Neurotic Personality Questionnaire KON-2006 at the beginning and at the end of the course of psychotherapy. The Self-Concept Clarity Scale was also administered every two weeks during psychotherapy. Results: As hypothesized, among the relatively healthiest group of patients the stable self-concept clarity increase was related to positive treatment outcome, while more disturbed patients benefited from the fluctuations and V shape of self-concept clarity change. Conclusions: The findings support the idea that for different personality dispositions either a monotonic increase or transient destabilization of self-concept clarity is a sign of a good treatment prognosis.

  8. Magnetic Shape Memory Alloy Actuator for Instrument Applications

    Data.gov (United States)

    National Aeronautics and Space Administration — This project will develop a simple actuator based on magnetic shape memory alloy (MSMA), a novel new family of crystalline materials which exhibit strain deformation...

  9. From the secrets of nuclear shapes into quantum nuclear phyics

    International Nuclear Information System (INIS)

    Dudek, J.

    1988-01-01

    After a few 'historical remarks' related to the evolution of our knowledge on nuclear shape effects, recent events in super-deformation studies are commented from the point of view of their general importance for nuclear physics. 12 refs

  10. Deformation Behavior of Human Dentin under Uniaxial Compression

    Directory of Open Access Journals (Sweden)

    Dmitry Zaytsev

    2012-01-01

    Full Text Available Deformation behavior of a human dentin under compression including size and rate effects is studied. No difference between mechanical properties of crown and root dentin is found. It is mechanically isotropic high elastic and strong hard tissue, which demonstrates considerable plasticity and ability to suppress a crack growth. Mechanical properties of dentin depend on a shape of samples and a deformation rate.

  11. Shape memory of human red blood cells.

    Science.gov (United States)

    Fischer, Thomas M

    2004-05-01

    The human red cell can be deformed by external forces but returns to the biconcave resting shape after removal of the forces. If after such shape excursions the rim is always formed by the same part of the membrane, the cell is said to have a memory of its biconcave shape. If the rim can form anywhere on the membrane, the cell would have no shape memory. The shape memory was probed by an experiment called go-and-stop. Locations on the membrane were marked by spontaneously adhering latex spheres. Shape excursions were induced by shear flow. In virtually all red cells, a shape memory was found. After stop of flow and during the return of the latex spheres to the original location, the red cell shape was biconcave. The return occurred by a tank-tread motion of the membrane. The memory could not be eliminated by deforming the red cells in shear flow up to 4 h at room temperature as well as at 37 degrees C. It is suggested that 1). the characteristic time of stress relaxation is >80 min and 2). red cells in vivo also have a shape memory.

  12. A jumping shape memory alloy under heat.

    Science.gov (United States)

    Yang, Shuiyuan; Omori, Toshihiro; Wang, Cuiping; Liu, Yong; Nagasako, Makoto; Ruan, Jingjing; Kainuma, Ryosuke; Ishida, Kiyohito; Liu, Xingjun

    2016-02-16

    Shape memory alloys are typical temperature-sensitive metallic functional materials due to superelasticity and shape recovery characteristics. The conventional shape memory effect involves the formation and deformation of thermally induced martensite and its reverse transformation. The shape recovery process usually takes place over a temperature range, showing relatively low temperature-sensitivity. Here we report novel Cu-Al-Fe-Mn shape memory alloys. Their stress-strain and shape recovery behaviors are clearly different from the conventional shape memory alloys. In this study, although the Cu-12.2Al-4.3Fe-6.6Mn and Cu-12.9Al-3.8Fe-5.6Mn alloys possess predominantly L2(1) parent before deformation, the 2H martensite stress-induced from L2(1) parent could be retained after unloading. Furthermore, their shape recovery response is extremely temperature-sensitive, in which a giant residual strain of about 9% recovers instantly and completely during heating. At the same time, the phenomenon of the jumping of the sample occurs. It is originated from the instantaneous completion of the reverse transformation of the stabilized 2H martensite. This novel Cu-Al-Fe-Mn shape memory alloys have great potentials as new temperature-sensitive functional materials.

  13. Nanoreinforced shape memory polyurethane

    Science.gov (United States)

    Richardson, Tara Beth

    Shape memory polymers (SMPs) are functional materials, which find applications in a broad range of temperature sensing elements and biological micro-electro-mechanical systems (MEMS). These polymers are capable of fixing a transient shape and recovering to their original shape after a series of thermo-mechanical treatments. Generally, these materials are thermoplastic segmented polyurethanes composed of soft segments, usually formed by a polyether macroglycol, and hard segments formed from the reaction of a diisocyanate with a low molecular mass diol. The hard segment content is a key parameter to control the final properties of the polymer, such as rubbery plateau modulus, melting point, hardness, and tensile strength. The long flexible soft segment largely controls the low temperature properties, solvent resistance, and weather resistance properties. The morphology and properties of polyurethanes (PU) are greatly influenced by the ratio of hard and soft block components and the average block lengths. However, in some applications, SMPs may not generate enough recovery force to be useful. The reinforcement of SMPs using nanofillers represents a novel approach of enhancing the performance of these materials. The incorporation of these fillers into SMPs can produce performance enhancements (particularly elastic modulus) at small nanoparticle loadings (˜1-2 wt %). An optimal performance of nanofiller-polymer nanocomposites requires uniform dispersion of filler in polymers and good interfacial adhesion. The addition of nanofillers like cellulose nanofibers (CNF), conductive cellulose nanofibers (C-CNF), and carbon nanotubes (CNTs) allows for the production of stiffer materials with deformation capacity comparable to that of the unfilled polymer. Additionally, the use of conductive nanoreinforcements such as C-CNF and CNTs leads to new pathways for actuation of the shape memory effect. During this work, thermoplastic shape memory polyurethanes were synthesized with

  14. Modeling of Sensor Placement Strategy for Shape Sensing and Structural Health Monitoring of a Wing-Shaped Sandwich Panel Using Inverse Finite Element Method

    Directory of Open Access Journals (Sweden)

    Adnan Kefal

    2017-11-01

    Full Text Available This paper investigated the effect of sensor density and alignment for three-dimensional shape sensing of an airplane-wing-shaped thick panel subjected to three different loading conditions, i.e., bending, torsion, and membrane loads. For shape sensing analysis of the panel, the Inverse Finite Element Method (iFEM was used together with the Refined Zigzag Theory (RZT, in order to enable accurate predictions for transverse deflection and through-the-thickness variation of interfacial displacements. In this study, the iFEM-RZT algorithm is implemented by utilizing a novel three-node C°-continuous inverse-shell element, known as i3-RZT. The discrete strain data is generated numerically through performing a high-fidelity finite element analysis on the wing-shaped panel. This numerical strain data represents experimental strain readings obtained from surface patched strain gauges or embedded fiber Bragg grating (FBG sensors. Three different sensor placement configurations with varying density and alignment of strain data were examined and their corresponding displacement contours were compared with those of reference solutions. The results indicate that a sparse distribution of FBG sensors (uniaxial strain measurements, aligned in only the longitudinal direction, is sufficient for predicting accurate full-field membrane and bending responses (deformed shapes of the panel, including a true zigzag representation of interfacial displacements. On the other hand, a sparse deployment of strain rosettes (triaxial strain measurements is essentially enough to produce torsion shapes that are as accurate as those of predicted by a dense sensor placement configuration. Hence, the potential applicability and practical aspects of i3-RZT/iFEM methodology is proven for three-dimensional shape-sensing of future aerospace structures.

  15. Modeling of Sensor Placement Strategy for Shape Sensing and Structural Health Monitoring of a Wing-Shaped Sandwich Panel Using Inverse Finite Element Method.

    Science.gov (United States)

    Kefal, Adnan; Yildiz, Mehmet

    2017-11-30

    This paper investigated the effect of sensor density and alignment for three-dimensional shape sensing of an airplane-wing-shaped thick panel subjected to three different loading conditions, i.e., bending, torsion, and membrane loads. For shape sensing analysis of the panel, the Inverse Finite Element Method (iFEM) was used together with the Refined Zigzag Theory (RZT), in order to enable accurate predictions for transverse deflection and through-the-thickness variation of interfacial displacements. In this study, the iFEM-RZT algorithm is implemented by utilizing a novel three-node C°-continuous inverse-shell element, known as i3-RZT. The discrete strain data is generated numerically through performing a high-fidelity finite element analysis on the wing-shaped panel. This numerical strain data represents experimental strain readings obtained from surface patched strain gauges or embedded fiber Bragg grating (FBG) sensors. Three different sensor placement configurations with varying density and alignment of strain data were examined and their corresponding displacement contours were compared with those of reference solutions. The results indicate that a sparse distribution of FBG sensors (uniaxial strain measurements), aligned in only the longitudinal direction, is sufficient for predicting accurate full-field membrane and bending responses (deformed shapes) of the panel, including a true zigzag representation of interfacial displacements. On the other hand, a sparse deployment of strain rosettes (triaxial strain measurements) is essentially enough to produce torsion shapes that are as accurate as those of predicted by a dense sensor placement configuration. Hence, the potential applicability and practical aspects of i3-RZT/iFEM methodology is proven for three-dimensional shape-sensing of future aerospace structures.

  16. Determination of shell energies. Nuclear deformations and fission barriers

    International Nuclear Information System (INIS)

    Koura, Hiroyuki; Tachibana, Takahiro; Uno, Masahiro; Yamada, Masami.

    1996-01-01

    We have been studying a method of determining nuclear shell energies and incorporating them into a mass formula. The main feature of this method lies in estimating shell energies of deformed nuclei from spherical shell energies. We adopt three assumptions, from which the shell energy of a deformed nucleus is deduced to be a weighted sum of spherical shell energies of its neighboring nuclei. This shell energy should be called intrinsic shell energy since the average deformation energy also acts as an effective shell energy. The ground-state shell energy of a deformed nucleus and its equilibrium shape can be obtained by minimizing the sum of these two energies with respect to variation of deformation parameters. In addition, we investigate the existence of fission isomers for heavy nuclei with use of the obtained shell energies. (author)

  17. Dynamics of Deformable Active Particles under External Flow Field

    Science.gov (United States)

    Tarama, Mitsusuke

    2017-10-01

    In most practical situations, active particles are affected by their environment, for example, by a chemical concentration gradient, light intensity, gravity, or confinement. In particular, the effect of an external flow field is important for particles swimming in a solvent fluid. For deformable active particles such as self-propelled liquid droplets and active vesicles, as well as microorganisms such as euglenas and neutrophils, a general description has been developed by focusing on shape deformation. In this review, we present our recent studies concerning the dynamics of a single active deformable particle under an external flow field. First, a set of model equations of active deformable particles including the effect of a general external flow is introduced. Then, the dynamics under two specific flow profiles is discussed: a linear shear flow, as the simplest example, and a swirl flow. In the latter case, the scattering dynamics of the active deformable particles by the swirl flow is also considered.

  18. Deformation Behavior of Polymeric Materials by Taylor Impact

    Science.gov (United States)

    Shin, Hyung-Seop; Park, Sung-Taek; Kim, See-Jo; Choi, Joon-Hong; Kim, Jeong-Tae

    The deformation of polymers under high loading-rate conditions will be a governing factor to be considered in their impact-resistant applications such as protective shields and armors. In this study, the deformation and fracture behaviors of polymeric materials such as PE, PC and PEEK have been investigated by Taylor cylinder impact tests with the high speed photography. A 20 mm air gun was used to perform the impact experiments. Cylindrical projectiles have been impacted onto a hardened steel anvil at a velocity ranging from 120 to 320 m/s. After impact experiments, the shape of projectiles was examined and compared with high speed photographic images to distinguish the elastic deformation component from the deformation measured instantaneously. Each adopted material showed different deformation and fracture behaviors. As compared with the quasi-static cases all polymers showed a significant strain rate hardening when the strain rate used was over 6 × 103 s-1. This appeared most significant in PE.

  19. A method for predicting errors when interacting with finite state systems. How implicit learning shapes the user's knowledge of a system

    International Nuclear Information System (INIS)

    Javaux, Denis

    2002-01-01

    This paper describes a method for predicting the errors that may appear when human operators or users interact with systems behaving as finite state systems. The method is a generalization of a method used for predicting errors when interacting with autopilot modes on modern, highly computerized airliners [Proc 17th Digital Avionics Sys Conf (DASC) (1998); Proc 10th Int Symp Aviat Psychol (1999)]. A cognitive model based on spreading activation networks is used for predicting the user's model of the system and its impact on the production of errors. The model strongly posits the importance of implicit learning in user-system interaction and its possible detrimental influence on users' knowledge of the system. An experiment conducted with Airbus Industrie and a major European airline on pilots' knowledge of autopilot behavior on the A340-200/300 confirms the model predictions, and in particular the impact of the frequencies with which specific state transitions and contexts are experienced

  20. Effect of initial void shape on ductile failure in a shear field

    DEFF Research Database (Denmark)

    Tvergaard, Viggo

    2015-01-01

    For voids in a shear field unit cell model analyses have been used to show that ductile failure is predicted even though the stress triaxiality is low or perhaps negative, so that the void volume fraction does not grow during deformation. Here, the effect of the void shape is studied by analyzing...... materials where the voids have initially ellipsoidal shapes. The cell models are in plane strain, so that the voids are modeled as cylindrical holes. Periodic boundary conditions are used to represent a material with a periodic distribution of voids having different spacings in the two in-plane coordinate...... with circular cross-section, i.e. the voids in shear flatten out to micro-cracks, which rotate and elongate until interaction with neighboring micro-cracks gives coalescence. Even though the mechanism of ductile failure is the same, the load carrying capacity predicted, for the same initial void volume fraction...

  1. Deformed Brueckner-Hartree-Fock calculations.

    Science.gov (United States)

    Ford, W. F.; Braley, R. C.; Becker, R. L.; Patterson, M. R.

    1972-01-01

    The renormalized Brueckner-Hartree-Fock (RBHF) theory for many-body nuclear systems has been generalized to permit calculations for intrinsic states having permanent deformation. Both Hartree-Fock and Brueckner self-consistencies are satisfied, and details of the numerical techniques are discussed. The Hamada-Johnston interaction is used in a study of deformations, binding, size, and separation energies for several nuclei. Electromagnetic transition rates, moments, and electron scattering form factors are calculated using nuclear wave functions obtained by angular momentum projection. Comparison is made to experiment as well as to predictions of ordinary and density-dependent Hartree-Fock theory.

  2. Analysis of acoustic resonator with shape deformation using finite ...

    Indian Academy of Sciences (India)

    Acoustic resonators are mainly used to obtain information regarding the reflection and transmission coefficients of acoustic filters. We can use them to analyse the resonance in fuel tanks and musical instruments. Resonators are also used to determine the absorption coefficient of sound in different gases and liquids.

  3. Analysis of acoustic resonator with shape deformation using finite ...

    Indian Academy of Sciences (India)

    1987), the eigenvalues i.e. K2 and eigenvectors, i.e. nodal values can be obtained. 5. Numerical calculations. Consider a cubical resonator with each side equal to unity. It is divided into 48 hexahedral elements with 20 nodes. Quadratic mapping functions are used. This is an undeformed resonator and the eigenvalues and ...

  4. Deformation behaviour of a natural-shaped bone scaffold

    Czech Academy of Sciences Publication Activity Database

    Kytýř, Daniel; Doktor, Tomáš; Jiroušek, O.; Fíla, Tomáš; Koudelka_ml., Petr; Zlámal, Petr

    2016-01-01

    Roč. 50, č. 3 (2016), s. 301-305 ISSN 1580-2949 Institutional support: RVO:68378297 Keywords : bone scaffold * polylactic acid * additive manufacturing * compression loading * microtomography Subject RIV: JJ - Other Materials Impact factor: 0.436, year: 2016 http://mit.imt.si/Revija/izvodi/mit163/kytyr.pdf

  5. Shape and Deformation Analysis of the Human Ear Canal

    DEFF Research Database (Denmark)

    Darkner, Sune

    This thesis presents work on the analysis of the dynamic behavior of the human ear canal. The work is based on two studies designed during the project, a pilot study with 30 normal hearing subjects and a main study with 42 hearing impaired subjects, all hearing-aid users. The main focus...

  6. Stresses related to the shape memory effect in Fe-Mn-Si-based shape memory alloys

    International Nuclear Information System (INIS)

    Caenegem, N. van; Duprez, L.; Verbeken, K.; Segers, D.; Houbaert, Y.

    2008-01-01

    The shape memory behaviour of two Fe-Mn-Si-based alloys has been investigated. Two compositions were studied, i.e. Fe29Mn7Si and Fe29Mn7Si5Cr (numbers indicate mass%). Characterizations of the martensitic transformation and the different structural constituents were performed using optical microscopy and X-ray diffraction methods. Transformation temperatures were determined by thermodilatometry on undeformed and deformed samples. The shape recovery was quantified by means of bending tests and dilatometry experiments on compressed samples. A procedure was designed to measure the recovery stresses caused by the dimensional changes of the sample due to the shape memory effect. The recovery stress is defined as the stress that is generated when the recovery of deformation is impeded under constraint. The mechanical results are discussed on the basis of the underlying transformation and deformation processes

  7. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  8. Packings of deformable spheres

    Science.gov (United States)

    Mukhopadhyay, Shomeek; Peixinho, Jorge

    2011-07-01

    We present an experimental study of disordered packings of deformable spheres. Fluorescent hydrogel spheres immersed in water together with a tomography technique enabled the imaging of the three-dimensional arrangement. The mechanical behavior of single spheres subjected to compression is first examined. Then the properties of packings of a randomized collection of deformable spheres in a box with a moving lid are tested. The transition to a state where the packing withstands finite stresses before yielding is observed. Starting from random packed states, the power law dependence of the normal force versus packing fraction or strain at different velocities is quantified. Furthermore, a compression-decompression sequence at low velocities resulted in rearrangements of the spheres. At larger packing fractions, a saturation of the mean coordination number took place, indicating the deformation and faceting of the spheres.

  9. Deformation energy of a toroidal nucleus and plane fragmentation barriers

    International Nuclear Information System (INIS)

    Fauchard, C.; Royer, G.

    1996-01-01

    The path leading to pumpkin-like configurations and toroidal shapes is investigated using a one-parameter shape sequence. The deformation energy is determined within the analytical expressions obtained for the various shape-dependent functions and the generalized rotating liquid drop model taking into account the proximity energy and the temperature. With increasing mass and angular momentum, a potential well appears in the toroidal shape path. For the heaviest systems, the pocket is large and locally favourable with respect to the plane fragmentation barriers which might allow the formation of evanescent toroidal systems which would rapidly decay in several fragments to minimize the surface tension. (orig.)

  10. Fluid-structure interaction analysis of deformation of sail of 30-foot yacht

    Directory of Open Access Journals (Sweden)

    Sera Bak

    2013-06-01

    Full Text Available Most yacht sails are made of thin fabric, and they have a cambered shape to generate lift force; however, their shape can be easily deformed by wind pressure. Deformation of the sail shape changes the flow characteristics over the sail, which in turn further deforms the sail shape. Therefore, fluid-structure interaction (FSI analysis is applied for the precise evaluation or optimization of the sail design. In this study, fluid flow analyses are performed for the main sail of a 30-foot yacht, and the results are applied to loading conditions for structural analyses. By applying the supporting forces from the rig, such as the mast and boom-end outhaul, as boundary conditions for structural analysis, the deformed sail shape is identified. Both the flow analyses and the structural analyses are iteratively carried out for the deformed sail shape. A comparison of the flow characteristics and surface pressures over the deformed sail shape with those over the initial shape shows that a considerable difference exists between the two and that FSI analysis is suitable for application to sail design.

  11. Cusp-Shaped Elastic Creases and Furrows

    Science.gov (United States)

    Karpitschka, S.; Eggers, J.; Pandey, A.; Snoeijer, J. H.

    2017-11-01

    The surfaces of growing biological tissues, swelling gels, and compressed rubbers do not remain smooth, but frequently exhibit highly localized inward folds. We reveal the morphology of this surface folding in a novel experimental setup, which permits us to deform the surface of a soft gel in a controlled fashion. The interface first forms a sharp furrow, whose tip size decreases rapidly with deformation. Above a critical deformation, the furrow bifurcates to an inward folded crease of vanishing tip size. We show experimentally and numerically that both creases and furrows exhibit a universal cusp shape, whose width scales like y3 /2 at a distance y from the tip. We provide a similarity theory that captures the singular profiles before and after the self-folding bifurcation, and derive the length of the fold from finite deformation elasticity.

  12. Size-dependent bending, buckling and vibration of higher-order shear deformable magneto-electro-thermo-elastic rectangular nanoplates

    Science.gov (United States)

    Gholami, Raheb; Ansari, Reza; Gholami, Yousef

    2017-06-01

    The aim of the present study is to propose a unified size-dependent higher-order shear deformable plate model for magneto-electro-thermo-elastic (METE) rectangular nanoplates by adopting the nonlocal elasticity theory to capture the size effect, and by utilizing a generalized shape function to consider the effects of transverse shear deformation and rotary inertia. By considering various shape functions, the proposed plate model can be reduced to the nonlocal plate model based upon the Kirchhoff, Mindlin and Reddy plate theories, as well as the parabolic, trigonometric, hyperbolic and exponential shear deformation plate theories. The governing equations of motion and corresponding boundary conditions of METE nanoplates subjected to external in-plane, transverse loads as well as magnetic, electric and thermal loadings, are obtained using Hamilton’s principle. Then, as in some case studies, the static bending, buckling, and free vibration characteristics of simply-supported METE rectangular nanoplates are investigated based upon the Navier solution approach. Numerical results are provided in order to investigate the influences of various parameters including the nondimensional nonlocal parameter, type of transverse loading, temperature change, applied voltage, and external magnetic potential on the mechanical behaviors of METE nanoplates. Furthermore, comparisons are made between the results predicted by different nonlocal plate models by utilizing the developed unified nonlocal plate model and selecting the associated shape functions. It is illustrated that by using the presented unified nonlocal plate model, the development of a nonlocal plate model based upon any existing higher-order shear deformable plate theory is a simple task.

  13. A case study of interior low-frequency noise from box-shaped bridge girders induced by running trains: Its mechanism, prediction and countermeasures

    Science.gov (United States)

    Zhang, Xun; Li, Xiaozhen; Hao, Hong; Wang, Dangxiong; Li, Yadong

    2016-04-01

    A side effect of high-speed railway and urban rail transit systems is the associated vibration and noise. Since the use of concrete viaducts is predominant in railway construction due to scarce land resources, low-frequency (20-200 Hz) structure-radiated noise from concrete bridges is a principal concern. Although it is the most commonly used bridge type, the mechanism of noise emission from box-shaped bridge girders when subjected to impact forces from moving trains, which sounds like beating a drum, has not been well studied. In this study, a field measurement was first made on a simply-supported box-shaped bridge to record the acceleration of the slabs and the associated sound pressures induced by running trains. These data indicated that a significant beat-wave noise occurred in the box-shaped cavity when the train speed was around 340 km/h, which arose from the interference between two sound waves of 75.0 Hz and 78.8 Hz. The noise leakage from the bridge expansion joint was serious and resulted in obvious noise pollution near the bridge once the beat-wave noise was generated in the cavity. The dominant frequency of the interior noise at 75.0 Hz was confirmed from the spectrum of the data and the modal analysis results, and originated from the peak vibration of the top slab due to resonance and the first-order vertical acoustic mode, which led to cavity resonance, amplifying the corresponding noise. The three-dimensional acoustic modes and local vibration modes of the slab were calculated by using the finite element method. A simplified vehicle-track-bridge coupling vibration model was then developed to calculate the wheel-rail interaction force in a frequency range of 20-200 Hz. Numerical simulations using the boundary element method confirmed the cavity resonance effect and the numerical results agreed well with the data. Based on the calibrated numerical model, three noise reduction measures, i.e., adding a horizontal baffle in the interior cavity, narrowing

  14. Surface Deformation and Direct Field Observation to Constrain Conceptual Models of Hydraulic Fracture Growth and Form

    Science.gov (United States)

    Slack, W.; Murdoch, L.

    2016-12-01

    Hydraulic fractures can be created in shallow soil or bedrock to promote processes that destroy or remove chemical contaminants. The form of the fracture plays an important role in how it is used in such applications. We created more than 4500 environmental hydraulic fractures at approximately 300 sites since 1990, and we measured surface deformation at many. Several of these sites subsequently were excavated to evaluate fracture form in detail. In one recent example, six hydraulic fractures were created at 1.5m depth while we measured upward displacement and tilt at 15 overlying locations. We excavated in the vicinities of two of the fractures and mapped the exposed fractures. Tilt vectors were initially symmetric about the borehole but radiated from a point that moved southwest with time. Upward displacement of as much as 2.5 cm covered a region 5m to 6m across. The maximum displacement was roughly at the center of the deformed region but was 2m southwest of the borehole, consistent with the tilt data. Excavation revealed an oblong, proppant-filled fracture over 4.2 m in length with a maximum thickness of 1 cm, so the proppant covers a region that is smaller than the uplifted area and the proppant thickness is roughly half of the uplift. The fracture was shaped like a shallow saucer with maximum dips of approximately 15o at the southwestern end. The pattern of tilt and uplift generally reflect the aperture of the underlying pressurized fracture, but the deformation extends beyond the extent of the sand proppant so a quantitative interpretation requires inversion. Inversion of the tilt data using a simple double dislocation model under-estimates the extent but correctly predicts the depth, orientation, and off-centered location. Inversion of uplift using a model that assumes the overburden deforms like a plate over-estimates the extent. Neither can characterize the curved shape. A forward model using FEM analysis capable of representing 3D shapes is capable of

  15. A simplified four-unknown shear and normal deformations theory for ...

    Indian Academy of Sciences (India)

    Ferreira & Roque (2011) have used a higher-order shear deformation theory and a radial basis function collocation technique for predicting the static deformations and free vibration behaviour of thick plates. Neves et al (2012a, b) have presented an original hyperbolic sine shear deformation theory for the bending and free ...

  16. Aeroelastic deformation of a perforated strip

    Science.gov (United States)

    Guttag, M.; Karimi, H. H.; Falcón, C.; Reis, P. M.

    2018-01-01

    We perform a combined experimental and numerical investigation into the static deformation of perforated elastic strips under uniform aerodynamic loading at high-Reynolds-number conditions. The static shape of the porous strips, clamped either horizontally or vertically, is quantified as they are deformed by wind loading, induced by a horizontal flow. The experimental profiles are compared to numerical simulations using a reduced model that takes into account the normal drag force on the deformed surface. For both configurations (vertical and horizontal clamping), we compute the drag coefficient of the strip, by fitting the experimental data to the model, and find that it decreases as a function of porosity. Surprisingly, we find that, for every value of porosity, the drag coefficients for the horizontal configuration are larger than those of the vertical configuration. For all data in both configurations, with the exception of the continuous strip clamped vertically, a linear relation is found between the porosity and drag. Making use of this linearity, we can rescale the drag coefficient in a way that it becomes constant as a function of the Cauchy number, which relates the force due to fluid loading on the elastic strip to its bending rigidity, independently of the material properties and porosity of the strip and the flow speed. Our findings on flexible strips are contrasted to previous work on rigid perforated plates. These results highlight some open questions regarding the usage of reduced models to describe the deformation of flexible structures subjected to aerodynamic loading.

  17. Deformation analysis of shallow penetration in clay

    Science.gov (United States)

    Sagaseta, C.; Whittle, A. J.; Santagata, M.

    1997-10-01

    A new method of analysis is described for estimating the deformations and strains caused by shallow undrained penetration of piles and caissons in clay. The formulation combines previous analyses for steady, deep penetration, with methods used to compute soil deformations due to near-surface ground loss, and is referred to as the Shallow Strain Path Method (SSPM). Complete analytical solutions for the velocity and strain rates are given for a planar wall, an axisymmetric, closed-ended pile and unplugged, open-ended pile geometries. In these examples, the analyses consider a single source penetrating through the soil at a constant rate, generating a family of penetrometers with rounded tips, referred to as simple wall, pile and tube geometries. Soil deformations and strains are obtained by integrating the velocity and strain rates along the particle paths.The transition from shallow to deep penetration is analysed in detail. Shallow penetration causes heave at the ground surface, while settlements occur only in a thin veneer of material adjacent to the shaft and in a bulb-shaped region around the tip. The size of this region increases with the embedment depth. Deformations inside an open-ended pile/caisson are affected significantly by details of the simple tube wall geometry.

  18. About deformation and rigidity in relativity

    International Nuclear Information System (INIS)

    Coll, Bartolome

    2007-01-01

    The notion of deformation involves that of rigidity. In relativity, starting from Born's early definition of rigidity, some other ones have been proposed, offering more or less interesting aspects but also accompanied of undesired or even pathological properties. In order to clarify the origin of these difficulties presented by the notion of rigidity in relativity, we analyze with some detail significant aspects of the unambiguous classical, Newtonian, notion. In particular, the relative character of its kinetic definition is pointed out, allowing to predict and to understand the limitations imposed by Herglotz-Noether theorem. Also, its equivalent dynamic definition is obtained and, in contrast, its absolute character is shown. But in spite of this absolute character, the dynamic definition is shown to be not extensible to relativity. The metric deformation of Minkowski space by the presence of a gravitational field is interpreted as a universal deformation, and it is shown that, under natural conditions, only a simple deformation law is possible, relating locally, but in an one-to-one way, gravitational fields and gauge classes of two-forms. We argue that fields of unit vectors associated to the internal gauge class of two-forms of every space-time (and, in particular, of Minkowski space-time) are the relativistic analogues of the classical accelerated observers, i.e. of the classical rigid motions. Some other consequences of the universal law of gravitational deformation are commented

  19. Biomedical Applications of Thermally Activated Shape Memory Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Small IV, W; Singhal, P; Wilson, T S; Maitland, D J

    2009-04-10

    Shape memory polymers (SMPs) are smart materials that can remember a primary shape and can return to this primary shape from a deformed secondary shape when given an appropriate stimulus. This property allows them to be delivered in a compact form via minimally invasive surgeries in humans, and deployed to achieve complex final shapes. Here we review the various biomedical applications of SMPs and the challenges they face with respect to actuation and biocompatibility. While shape memory behavior has been demonstrated with heat, light and chemical environment, here we focus our discussion on thermally stimulated SMPs.

  20. Marginally Deformed Starobinsky Gravity

    DEFF Research Database (Denmark)

    Codello, A.; Joergensen, J.; Sannino, Francesco

    2015-01-01

    We show that quantum-induced marginal deformations of the Starobinsky gravitational action of the form $R^{2(1 -\\alpha)}$, with $R$ the Ricci scalar and $\\alpha$ a positive parameter, smaller than one half, can account for the recent experimental observations by BICEP2 of primordial tensor modes....

  1. Distributed force simulation for arbitrarily shaped IPMC actuators

    International Nuclear Information System (INIS)

    Martinez, M; Lumia, R

    2013-01-01

    This paper presents a simulation model that predicts the force output of arbitrarily shaped ionic polymer–metal composite (IPMC) actuators. Theoretical and experimental force measurements are compared for a triangular IPMC actuator with a tip length of 11 mm. The results show that the simulated tip force is within 80% of the experimentally determined value. Simulated electrical results for an artificial shark pectoral fin and a 7 mm × 17 mm actuator are also presented. In each case, the voltage is shown to decrease exponentially from the input point. The results of an ion migration simulation for a 180 μm cubic element of Nafion are presented for both a constant 2 V input and a 2 V 0.25 Hz sine signal. Finally, the simulated deformation of an IPMC shark fin is shown. (paper)

  2. Shape coexistence in neutron-rich Sr isotopes : Coulomb excitation of $^{96}$Sr

    CERN Document Server

    Clement, E; Siem, S; Czosnyka, T

    2007-01-01

    The nuclei in the mass region A $\\cong$ 100 around Sr and Zr show a dramatic change of the nuclear ground-state shape from near spherical for N $\\leq$ 58 to strongly deformed for N $\\geq$ 60. Theoretical calculations predict the coexistence of slightly oblate and strongly prolate deformed configurations in the transitional region. However, excited rotational structures based on the highly deformed configuration, which becomes the ground state at N = 60, are not firmly established in the lighter isotopes, and the earlier interpretation of a very abrupt change of shape has been challenged by recent experimental results in favor of a rather gradual change. We propose to study the electromagnetic properties of the neutron-rich nucleus $_{38}^{96}$Sr$_{58}$ by low-energy Coulomb excitation using the REX-ISOLDE facility and the MINIBALL detector array. Both transitional and diagonal matrix elements will be extracted, resulting in a complete description of the transition strengths and quadrupole moments of the low-l...

  3. Evaluation of an automated deformable image matching method for quantifying lung motion in respiration-correlated CT images

    International Nuclear Information System (INIS)

    Pevsner, A.; Davis, B.; Joshi, S.; Hertanto, A.; Mechalakos, J.; Yorke, E.; Rosenzweig, K.; Nehmeh, S.; Erdi, Y.E.; Humm, J.L.; Larson, S.; Ling, C.C.; Mageras, G.S.

    2006-01-01

    We have evaluated an automated registration procedure for predicting tumor and lung deformation based on CT images of the thorax obtained at different respiration phases. The method uses a viscous fluid model of tissue deformation to map voxels from one CT dataset to another. To validate the deformable matching algorithm we used a respiration-correlated CT protocol to acquire images at different phases of the respiratory cycle for six patients with nonsmall cell lung carcinoma. The position and shape of the deformable gross tumor volumes (GTV) at the end-inhale (EI) phase predicted by the algorithm was compared to those drawn by four observers. To minimize interobserver differences, all observers used the contours drawn by a single observer at end-exhale (EE) phase as a guideline to outline GTV contours at EI. The differences between model-predicted and observer-drawn GTV surfaces at EI, as well as differences between structures delineated by observers at EI (interobserver variations) were evaluated using a contour comparison algorithm written for this purpose, which determined the distance between the two surfaces along different directions. The mean and 90% confidence interval for model-predicted versus observer-drawn GTV surface differences over all patients and all directions were 2.6 and 5.1 mm, respectively, whereas the mean and 90% confidence interval for interobserver differences were 2.1 and 3.7 mm. We have also evaluated the algorithm's ability to predict normal tissue deformations by examining the three-dimensional (3-D) vector displacement of 41 landmarks placed by each observer at bronchial and vascular branch points in the lung between the EE and EI image sets (mean and 90% confidence interval displacements of 11.7 and 25.1 mm, respectively). The mean and 90% confidence interval discrepancy between model-predicted and observer-determined landmark displacements over all patients were 2.9 and 7.3 mm, whereas interobserver discrepancies were 2.8 and 6

  4. Perceiving animacy from shape.

    Science.gov (United States)

    Schmidt, Filipp; Hegele, Mathias; Fleming, Roland W

    2017-09-01

    Superordinate visual classification-for example, identifying an image as "animal," "plant," or "mineral"-is computationally challenging because radically different items (e.g., "octopus," "dog") must be grouped into a common class ("animal"). It is plausible that learning superordinate categories teaches us not only the membership of particular (familiar) items, but also general features that are shared across class members, aiding us in classifying novel (unfamiliar) items. Here, we investigated visual shape features associated with animate and inanimate classes. One group of participants viewed images of 75 unfamiliar and atypical items and provided separate ratings of how much each image looked like an animal, plant, and mineral. Results show systematic tradeoffs between the ratings, indicating a class-like organization of items. A second group rated each image in terms of 22 midlevel shape features (e.g., "symmetrical," "curved"). The results confirm that superordinate classes are associated with particular shape features (e.g., "animals" generally have high "symmetry" ratings). Moreover, linear discriminant analysis based on the 22-D feature vectors predicts the perceived classes approximately as well as the ground truth classification. This suggests that a generic set of midlevel visual shape features forms the basis for superordinate classification of novel objects along the animacy continuum.

  5. Precise object tracking under deformation

    International Nuclear Information System (INIS)

    Saad, M.H

    2010-01-01

    The precise object tracking is an essential issue in several serious applications such as; robot vision, automated surveillance (civil and military), inspection, biomedical image analysis, video coding, motion segmentation, human-machine interface, visualization, medical imaging, traffic systems, satellite imaging etc. This frame-work focuses on the precise object tracking under deformation such as scaling , rotation, noise, blurring and change of illumination. This research is a trail to solve these serious problems in visual object tracking by which the quality of the overall system will be improved. Developing a three dimensional (3D) geometrical model to determine the current pose of an object and predict its future location based on FIR model learned by the OLS. This framework presents a robust ranging technique to track a visual target instead of the traditional expensive ranging sensors. The presented research work is applied to real video stream and achieved high precession results.

  6. Numerical Analysis of the Soil Deformation Caused by Tunneling under Vehicle Loads in the Coastal Reclamation Area

    Directory of Open Access Journals (Sweden)

    Baoping Zou

    2015-01-01

    Full Text Available Prediction of tunneling induced soil deformation is an important issue in the design of tunnels constructed in the densely populated urban areas. In this paper, commercial FEM software 3D ABAQUS is adopted to simulate the behavior of soil caused by tunneling under vehicle loads in the coastal reclamation area. A field case study was also carried out to verify the accuracy of the proposed model. A good agreement was achieved. It is also found from the studies that the areas affected by soil deformation can be classified into four zones: the key disturbed zone, the secondary disturbed zone, the general disturbed zone, and minor-disturbed zone. The maximum soil deformation occurs on side of the longitudinal medial axis of the tunnel. The shape of the settlement curve is almost the same as that of the normal distribution curve. The soil deformation in the action zone of vehicle load is greater than that of the nonaction zone of vehicle load.

  7. Surface tension and deformation in soft adhesion

    Science.gov (United States)

    Jensen, Katharine

    Modern contact mechanics was originally developed to account for the competition between adhesion and elasticity for relatively stiff deformable materials like rubber, but much softer sticky materials are ubiquitous in biology, engineering, and everyday consumer products. In such soft materials, the solid surface tension can also play an important role in resisting shape change, and significantly modify the physics of contact with soft matter. We report indentation and pull-off experiments that bring small, rigid spheres into adhesive contact with compliant silicone gel substrates, varying both the surface functionalization of the spheres and the bulk elastic properties of the gels. We map the resulting deformation profiles using optical microscopy and image analysis. We examine the substrate geometry in light of capillary and elastic theories in order to explore the interplay of surface tension and bulk elasticity in governing soft adhesion.

  8. Precise Object Tracking under Deformation

    International Nuclear Information System (INIS)

    Saad, M.H.

    2010-01-01

    The precise object tracking is an essential issue in several serious applications such as; robot vision, automated surveillance (civil and military), inspection, biomedical image analysis, video coding, motion segmentation, human-machine interface, visualization, medical imaging, traffic systems, satellite imaging etc. This framework focuses on the precise object tracking under deformation such as scaling, rotation, noise, blurring and change of illumination. This research is a trail to solve these serious problems in visual object tracking by which the quality of the overall system will be improved. Developing a three dimensional (3D) geometrical model to determine the current pose of an object and predict its future location based on FIR model learned by the OLS. This framework presents a robust ranging technique to track a visual target instead of the traditional expensive ranging sensors. The presented research work is applied to real video stream and achieved high precession results. xiiiThe precise object tracking is an essential issue in several serious applications such as; robot vision, automated surveillance (civil and military), inspection, biomedical image analysis, video coding, motion segmentation, human-machine interface, visualization, medical imaging, traffic systems, satellite imaging etc. This framework focuses on the precise object tracking under deformation such as scaling, rotation, noise, blurring and change of illumination. This research is a trail to solve these serious problems in visual object tracking by which the quality of the overall system will be improved. Developing a three dimensional (3D) geometrical model to determine the current pose of an object and predict its future location based on FIR model learned by the OLS. This framework presents a robust ranging technique to track a visual target instead of the traditional expensive ranging sensors. The presented research work is applied to real video stream and achieved high

  9. Formation and subdivision of deformation structures during plastic deformation

    DEFF Research Database (Denmark)

    Jakobsen, B.; Poulsen, H.F.; Lienert, U.

    2006-01-01

    of individual, deeply embedded dislocation structures. During tensile deformation of pure copper, dislocation-free regions were identified. They showed an unexpected intermittent dynamics, for example, appearing and disappearing with proceeding deformation and even displaying transient splitting behavior....... Insight into these processes is relevant for an understanding of the strength and work-hardening of deformed materials....

  10. Plastic deformation-induced phosphorus segregation to ferrite grain boundaries in an interstitial free steel

    International Nuclear Information System (INIS)

    Chen, X.-M.; Song, S.-H.

    2010-01-01

    Research highlights: → Plastic deformation causes non-equilibrium grain boundary phosphorus segregation. → Deformation induced segregation increases with increasing deformation rate. → Non-equilibrium segregation is induced by supersaturated vacancy-phosphorus complex. → Model predictions show a reasonable agreement with the observations. - Abstract: Grain boundary concentration of phosphorus in an interstitial free steel is observed by virtue of Auger electron spectroscopy after the alloy is plastically deformed to different strains under different strain rates at a high temperature in the ferrite region. The results reveal that phosphorus segregates at grain boundaries during plastic deformation. The segregation increases with increasing deformation until reaching a steady value, and at the same deformation amount it increases with increasing strain rate. Model predictions are made, which shows a reasonable agreement between the predictions and the observations.

  11. Modelling and simulations in hot deformation of steels

    International Nuclear Information System (INIS)

    Cabrera, J.M.

    2002-01-01

    Traditionally, hot forming has been employed to provide shape to metals. Nowadays, however, hot working not only produces the desired geometry, but also the mechanical characteristics required. An understanding of the thermomechanical behaviour of metals, and particularly steels, is essential in the simulation and control of the hot forming operations. Moreover, a right prediction of the final properties needs from accurate descriptions of the microstructural features occurring during the shaping step. For this purpose, the determination of constitutive equations describing the stress σ - strain ε relationships at a given strain rate ε, temperature T and initial microstructure, is a useful task. In this sense, computer simulations of hot working processes proportionate a benchmark to engineers and researchers and allow decreasing the cost of developing products and processes. With regard to the prediction of the final microstructure, the simulation of the hot plastic deformation usually gives unsatisfactory results. This is due to the inadequate constitutive equations employed by the conventional and commercial software available to describe the hot flow behaviour. There are scarce models which couple the typical hot working variables (temperature, strain and strain rate) with microstructural characteristics such as grain size. In this review work is presented how the latter limitation can be overcome by using physical-based constitutive equations, some of which have been partially developed by the present authors, where account of the interaction between microstructure and processing variables is taken. Moreover, a practical derivation of the latter expressions on an AISI-304 steel is presented. To conclude, some examples of industrial applications of the latter approach are also presented. Copyright (2002) AD-TECH - International Foundation for the Advancement of Technology Ltd

  12. Two-dimensional simulation of red blood cell deformation and lateral migration in microvessels.

    Science.gov (United States)

    Secomb, Timothy W; Styp-Rekowska, Beata; Pries, Axel R

    2007-05-01

    A theoretical method is used to simulate the motion and deformation of mammalian red blood cells (RBCs) in microvessels, based on knowledge of the mechanical characteristics of RBCs. Each RBC is represented as a set of interconnected viscoelastic elements in two dimensions. The motion and deformation of the cell and the motion of the surrounding fluid are computed using a finite-element numerical method. Simulations of RBC motion in simple shear flow of a high-viscosity fluid show "tank-treading'' motion of the membrane around the cell perimeter, as observed experimentally. With appropriate choice of the parameters representing RBC mechanical properties, the tank-treading frequency and cell elongation agree closely with observations over a range of shear rates. In simulations of RBC motion in capillary-sized channels, initially circular cell shapes rapidly approach shapes typical of those seen experimentally in capillaries, convex in front and concave at the rear. An isolated RBC entering an 8-mum capillary close to the wall is predicted to migrate in the lateral direction as it traverses the capillary, achieving a position near the center-line after traveling a distance of about 60 mum. Cell trajectories agree closely with those observed in microvessels of the rat mesentery.

  13. Deformation of products cut on AWJ x-y tables and its suppression

    Science.gov (United States)

    Hlaváč, L. M.; Hlaváčová, I. M.; Plančár, Š.; Krenický, T.; Geryk, V.

    2018-02-01

    The aim of this study is namely investigation of the abrasive water jet (AWJ) cutting of column pieces on commercial x-y cutting machines with AWJ. The shape deformation in curved and/or stepped parts of cutting trajectories caused by both the trailback (declination angle) and the taper (inclination of cut walls) can be calculated from submitted analytical model. Some of the results were compared with data measured on samples cut on two types of commercial tables. The main motivation of this investigation is determination of the percentage difference between predicted and real distortion of cutting product, i.e. accuracy of prepared analytical model. Subsequently, the possibility of reduction of the distortion can be studied through implementation of the theoretical model into the control systems of the cutting machines with the system for cutting head tilting. Despite some limitations of the used AWJ machines the comparison of calculated dimensions with the real ones shows very good correlation of model and experimental data lying within the range of measurement uncertainty. Results on special device demonstrated that the shape deformation in curved parts of the cutting trajectory can be substantially reduced through tilting of the cutting head.

  14. Postural deformities in Parkinson's disease

    NARCIS (Netherlands)

    Doherty, K.M.; Warrenburg, B.P.C. van de; Peralta, M.C.; Silveira-Moriyama, L.; Azulay, J.P.; Gershanik, O.S.; Bloem, B.R.

    2011-01-01

    Postural deformities are frequent and disabling complications of Parkinson's disease (PD) and atypical parkinsonism. These deformities include camptocormia, antecollis, Pisa syndrome, and scoliosis. Recognition of specific postural syndromes might have differential diagnostic value in patients

  15. On the rise velocity discontinuity of a deformable bubble in unbounded viscoelastic solutions

    Science.gov (United States)

    Tsamopoulos, John; Fraggedakis, Dimitris; Dimakopoulos, Yiannis

    2014-11-01

    It is well-documented experimentally, but not well-understood that a bubble steadily rising in a viscoelastic solution exhibits a negative wake and a jump discontinuity in its rise velocity, when its radius exceeds a critical value. In all experiments, the bubble shape forms a cusp in its back side and in some experiments it loses axial symmetry forming a wedge. Some authors have related the velocity jump with the existence of the negative wake or even the wedge formation. We have undertaken a computational study to explore the mechanisms behind these phenomena. To this end, we have used the ePTT model and determined its rheological parameters by fitting it to experiments. Then we developed an FE code (using elliptic grid generation and the SUPG and EVSS methods) and calculated the bubble rise and deformation as its radius increases. This simultaneously affects all parameters: Bond, Archimedes and Deborah numbers. Our predictions reproduce very accurately bubble shapes and the results up to the velocity jump or, in certain cases, beyond it using arc-length continuation. The discontinuity is attributed to a hysteresis loop, but does not require the presence of a wedge in the bubble shape and the negative wake is predicted even before this jump. Supported financially by the General Secretariat of Research & Technology of Greece through the program ``Thalis'' (Grant titled ``COVISCO'') co-funded by the ESF and National resources.

  16. Shape of Te isotopes in mean-field formalism

    Indian Academy of Sciences (India)

    Te isotopes, it has been suggested that 124Te nucleus may hold E(5) symmetry. Keywords. Hartree–Fock–Bogoliubov method; shape evolution; quantum phase transition; potential energy curves. PACS Nos 21.10.Dr; 21.10.Ky; 21.60.Jz. 1. Introduction. Spherical vibrator, rotational ellipsoid, and other deformed shapes are ...

  17. Mathematical modeling of deformation during hot rolling

    Energy Technology Data Exchange (ETDEWEB)

    Jin, D.; Stachowiak, R.G.; Samarasekera, I.V.; Brimacombe, J.K. [Univ. of British Columbia, Vancouver, British Columbia (Canada). Centre for Metallurgical Processing Engineering

    1994-12-31

    The deformation that occurs in the roll bite during the hot rolling of steel, particularly the strain-rate and strain distribution, has been mathematically modeled using finite-element analysis. In this paper three different finite-element models are compared with one another and with industrial measurements. The first model is an Eulerian analysis based on the flow formulation method, while the second utilizes an Updated Lagrangian approach. The third model is based on a commercially available program DEFORM which also utilizes a Lagrangian reference frame. Model predictions of strain and strain-rate distribution, particularly near the surface of the slab, are strongly influenced by the treatment of friction at the boundary and the magnitude of the friction coefficient or shear factor. Roll forces predicted by the model have been compared with industrial rolling loads from a seven-stand hot-strip mill.

  18. Cosmetic and Functional Nasal Deformities

    Science.gov (United States)

    ... nasal complaints. Nasal deformity can be categorized as “cosmetic” or “functional.” Cosmetic deformity of the nose results in a less ... taste , nose bleeds and/or recurrent sinusitis . A cosmetic or functional nasal deformity may occur secondary to ...

  19. q-Deformed Kink solutions

    International Nuclear Information System (INIS)

    Lima, A.F. de

    2003-01-01

    The q-deformed kink of the λφ 4 -model is obtained via the normalisable ground state eigenfunction of a fluctuation operator associated with the q-deformed hyperbolic functions. The kink mass, the bosonic zero-mode and the q-deformed potential in 1+1 dimensions are found. (author)

  20. Logjam Deformation: Experimental analogs with variable flow

    Science.gov (United States)

    Deshpande, N.; Crosby, B. T.

    2017-12-01

    Observed deformation of a massive, channel-spanning logjam in Big Creek, Idaho inspired a suite of physical experiments exploring logjam kinematics in a simplified but controlled setting. Using chopsticks as surrogates for logs, we conducted experiments in a 6 m long and 1.22 m wide channel with a semi-circular, textured bed. Nails driven into the bed restrain the chopsticks and initialize logjam formation. We conducted 24 hour experiments hours under two discharge conditions: (A) constant base discharge and (B) alternating discharge between the base flow and a doubled flow. After initial stabilization, we use high-resolution down-looking photographs at one-minute intervals to construct time-lapse videos and for Particle Image Velocimetry. Despite identical experimental protocols during stabilization, the starting configuration of chopsticks is markedly different for each run. In Experiment A, the orientations and packing of chopsticks is visibly less ordered than Experiment B. However, deformation in both experiments is accomplished by the same three mechanisms: rigid blocks that propagate downstream as v-shaped fronts bounded by shear planes, logjam-wide adjustments in response to the change in position of a key member, and independent logs whose trajectories either travel underneath the logjam or adjust unbounded in the backwater. Total compression is 46% and 80% for experiment A and B, respectively. Time-series of incremental displacements for both experiments decrease noisily over time, but zero displacement is never reached. Despite very different hydrologic forcings, cumulative rates of deformation for both experiments are similar, suggesting that the progressive deformation of disordered, elongate particles (chopsticks and logs) within a larger ensemble leads to denser packing, and that this mechanism best describes logjam deformation.

  1. Theory and measurement of properties of two-phase materials in the plastic-viscous deformation range

    International Nuclear Information System (INIS)

    Saeltzer, W.D.

    1983-08-01

    An extensive literature survey shows, that theoretical equations available are inadequate to predict the viscosity of suspensions without limitation of the concentration of the dispersed phase, the shape and orientation of the suspended particles. Based on physically derived and experimentally verified equations for the theoretical prediction of transport and/or field properties of solid two-phase materials with penetration structure, an attempt has been made to predict the viscosity of suspensions and the high temperature creep of two-phase solid materials with the aid of so-called structure parameters. The justification for the treatment of the problem in such a way is given by the consideration of the viscocity as a transport property and by the existing analogies between viscous and viscoplastic deformation. (orig./RW) [de

  2. Improved image registration by sparse patch-based deformation estimation.

    Science.gov (United States)

    Kim, Minjeong; Wu, Guorong; Wang, Qian; Lee, Seong-Whan; Shen, Dinggang

    2015-01-15

    Despite intensive efforts for decades, deformable image registration is still a challenging problem due to the potential large anatomical differences across individual images, which limits the registration performance. Fortunately, this issue could be alleviated if a good initial deformation can be provided for the two images under registration, which are often termed as the moving subject and the fixed template, respectively. In this work, we present a novel patch-based initial deformation prediction framework for improving the performance of existing registration algorithms. Our main idea is to estimate the initial deformation between subject and template in a patch-wise fashion by using the sparse representation technique. We argue that two image patches should follow the same deformation toward the template image if their patch-wise appearance patterns are similar. To this end, our framework consists of two stages, i.e., the training stage and the application stage. In the training stage, we register all training images to the pre-selected template, such that the deformation of each training image with respect to the template is known. In the application stage, we apply the following four steps to efficiently calculate the initial deformation field for the new test subject: (1) We pick a small number of key points in the distinctive regions of the test subject; (2) for each key point, we extract a local patch and form a coupled appearance-deformation dictionary from training images where each dictionary atom consists of the image intensity patch as well as their respective local deformations; (3) a small set of training image patches in the coupled dictionary are selected to represent the image patch of each subject key point by sparse representation. Then, we can predict the initial deformation for each subject key point by propagating the pre-estimated deformations on the selected training patches with the same sparse representation coefficients; and (4) we

  3. Shape analysis with subspace symmetries

    KAUST Repository

    Berner, Alexander

    2011-04-01

    We address the problem of partial symmetry detection, i.e., the identification of building blocks a complex shape is composed of. Previous techniques identify parts that relate to each other by simple rigid mappings, similarity transforms, or, more recently, intrinsic isometries. Our approach generalizes the notion of partial symmetries to more general deformations. We introduce subspace symmetries whereby we characterize similarity by requiring the set of symmetric parts to form a low dimensional shape space. We present an algorithm to discover subspace symmetries based on detecting linearly correlated correspondences among graphs of invariant features. We evaluate our technique on various data sets. We show that for models with pronounced surface features, subspace symmetries can be found fully automatically. For complicated cases, a small amount of user input is used to resolve ambiguities. Our technique computes dense correspondences that can subsequently be used in various applications, such as model repair and denoising. © 2010 The Author(s).

  4. Shapes and dynamics from the time-dependent mean field

    International Nuclear Information System (INIS)

    Stevenson, P.D.; Goddard, P.M.; Rios, A.

    2015-01-01

    Explaining observed properties in terms of underlying shape degrees of freedom is a well-established prism with which to understand atomic nuclei. Self-consistent mean-field models provide one tool to understand nuclear shapes, and their link to other nuclear properties and observables. We present examples of how the time-dependent extension of the mean-field approach can be used in particular to shed light on nuclear shape properties, particularly looking at the giant resonances built on deformed nuclear ground states, and at dynamics in highly-deformed fission isomers. Example calculations are shown of 28 Si in the first case, and 240 Pu in the latter case

  5. Hadron wave functions and the issue of nucleon deformation

    CERN Document Server

    Alexandrou, C; Tsapalis, A; Forcrand, Ph. de

    2003-01-01

    Using gauge invariant hadronic two- and three- density correlators we extract information on the spatial distributions of quarks in hadrons, and on hadron shape and multipole moments within quenched lattice QCD. Combined with the calculation of N to Delta transition amplitudes the issue of nucleon deformation can be addressed.

  6. Polyphase deformation and garnet growth in pelitic schists of Sausar ...

    Indian Academy of Sciences (India)

    In the case of non-coaxial deformation producing strong monoclinic shape symmetry in the rock, sections normal to the vorticity vector (rotation axis of porphyroblasts, if any) will give the maxi- mum amount of information. Some workers, how- ever, prefer serial sectioning at different angles to identify the foliation intersection ...

  7. Zuigelingen met een scheef hoofd [Babies with cranial deformity

    NARCIS (Netherlands)

    Feijen, M.M.; Claessens, E.A.; Dovens, A.J.; Vles, J.S.; van der Hulst, R.R.

    2009-01-01

    Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet

  8. A stochastic large deformation model for computational anatomy

    DEFF Research Database (Denmark)

    Arnaudon, Alexis; Holm, Darryl D.; Pai, Akshay Sadananda Uppinakudru

    2017-01-01

    In the study of shapes of human organs using computational anatomy, variations are found to arise from inter-subject anatomical differences, disease-specific effects, and measurement noise. This paper introduces a stochastic model for incorporating random variations into the Large Deformation...

  9. A Physically-Motivated Deformable Model Based on Fluid Dynamics

    NARCIS (Netherlands)

    Jalba, Andrei C.; Roerdink, Jos B.T.M.; Leonardis, A; Bischof, H; Pinz, A

    2006-01-01

    A novel deformable model for image segmentation and shape recovery is presented. The model is inspired by fluid dynamics and is based on a flooding simulation similar to the watershed paradigm. Unlike most watershed methods, our model has a continuous formulation, being described by two partial

  10. Ultra-high aspect ratio replaceable AFM tips using deformation-suppressed focused ion beam milling

    DEFF Research Database (Denmark)

    Savenko, Alexey; Yildiz, Izzet; Petersen, Dirch Hjorth

    2013-01-01

    in terms of defining the shape and size of the tip. Due to beam-induced deformation, it has so far not been possible to define HAR structures using lateral FIB milling. In this work we obtain aspect ratios of up to 45, with tip diameters down to 9 nm, by a deformation-suppressing writing strategy. Several...

  11. Shape Memory as a Process: Optimizing Polymer Design for Shape Recovery

    Science.gov (United States)

    Vaia, Richard; Koerner, Hilmar; Lee, Kyungmin; Strong, Robert; Smith, Mattew; Wang, Huabin; White, Tim; Tan, Loon-Seng

    2012-02-01

    Shape memory is a process that enables the reversible storage and recovery of mechanical energy through a change in shape. Polymers provide a unique alternative to kinematic designs and other materials (e.g. metallic alloys) for applications requiring large deformation and novel control options. The effect control of storage and relaxation of strain energy associated with chain deformation depends on the nonlinear visco-elasitc behavior and glassy dynamics of the polymer network. Considering the molecular understanding of rubbery elasticity, chain entanglements in concentrated polymer liquids, affine deformation of networks, and glass fragility, heuristic guidelines can be formulated to optimize the molecular design of a polymer for shape memory. These are applied to the development of a polymer system for shape memory processes at high-temperature (200^oC). The low-crosslink density polyimide exhibits very rapid shape recovery, excellent fixity, high creep resistance, and good cyclability. Furthermore, the molecular design affords a very narrow temperature range for programming and triggering shape change that can also be accessed by photo-isomerization of the cross-link nodes.

  12. Deformation Theory ( Lecture Notes )

    Czech Academy of Sciences Publication Activity Database

    Doubek, M.; Markl, Martin; Zima, P.

    2007-01-01

    Roč. 43, č. 5 (2007), s. 333-371 ISSN 0044-8753. [Winter School Geometry and Physics/27./. Srní, 13.01.2007-20.01.2007] R&D Projects: GA ČR GA201/05/2117 Institutional research plan: CEZ:AV0Z10190503 Keywords : deformation * Mauerer-Cartan equation * strongly homotopy Lie algebra Subject RIV: BA - General Mathematics

  13. Deformations of fractured rock

    International Nuclear Information System (INIS)

    Stephansson, O.

    1977-09-01

    Results of the DBM and FEM analysis in this study indicate that a suitable rock mass for repository of radioactive waste should be moderately jointed (about 1 joint/m 2 ) and surrounded by shear zones of the first order. This allowes for a gentle and flexible deformation under tectonic stresses and prevent the development of large cross-cutting failures in the repository area. (author)

  14. Hybrid natural element method for large deformation elastoplasticity problems

    Science.gov (United States)

    Ma, Yong-Qi; Zhou, Yan-Kai

    2015-03-01

    We present the hybrid natural element method (HNEM) for two-dimensional elastoplastic large deformation problems. Sibson interpolation is adopted to construct the shape functions of nodal incremental displacements and incremental stresses. The incremental form of Hellinger-Reissner variational principle for elastoplastic large deformation problems is deduced to obtain the equation system. The total Lagrangian formulation is used to describe the discrete equation system. Compared with the natural element method (NEM), the HNEM has higher computational precision and efficiency in solving elastoplastic large deformation problems. Some numerical examples are selected to demonstrate the advantage of the HNEM for large deformation elastoplasticity problems. Project supported by the Natural Science Foundation of Shanghai, China (Grant No. 13ZR1415900).

  15. Control of cooperative manipulators in holding deformable objects

    Science.gov (United States)

    Alkathiri, A. A.; Azlan, N. Z.

    2017-11-01

    This paper presents the implementation of a control system to control cooperative manipulators to hold deformable objects. The aim is to hold the deformable object without having information on the shape and stiffness of the deformable object beforehand. The prototype of a pair of manipulators has been designed and built to test the controller. A force sensor and a rotary encoder are used to give feedback to the controller, which controls the DC motor actuators accordingly. A position proportional-integral-derivative (PID) controller technique has been applied for one of the manipulators and a PID force control technique is applied to the other. Simulations and experimental tests have been conducted on models and the controller has been implemented on the real plant. Both simulation and test results prove that the implemented control technique has successfully provided the desired position and force to hold the deformable object with maximum experimental errors of 0.34mm and 50mN respectively.

  16. Deformations of soap bubbles in a uniform electric field

    Science.gov (United States)

    Mawet, Sebastien; Caps, Herve; Dorbolo, Stephane

    The study of the deformations undergone by a soap bubble submitted to an electrical force began with Taylor and Wilson and the observation of so-called Taylor's cones. Beyond this particular structure, few studies analyzed the bubble deformations. For example, what is the link between the deformations and the electrical force or how do charges move in the thin soap film formed by the bubble ? To answer those questions, we characterize the shape variations of the surface of the bubble immersed in the uniform electric field of a plan capacitor. In particular, our study focuses on hemispherical bubbles lying on the bottom electrode of a plane capacitor. This study allows us to observe some interesting phenomena like the appearance of a hysteresis cycle in the deformation amplitude.

  17. A novel methodology for 3D deformable dosimetry

    International Nuclear Information System (INIS)

    Yeo, U. J.; Taylor, M. L.; Dunn, L.; Kron, T.; Smith, R. L.; Franich, R. D.

    2012-01-01

    three dimensions occurring as a result of the change in shape of the target between irradiations, even for a relatively simple deformation. Discrepancies of up to 30% of the maximum dose were evident from dose difference maps for three orthogonal planes taken through the isocenter of a stereotactic field. Conclusions: This paper describes the first use of a tissue-equivalent, 3D dose-integrating deformable phantom that yields integrated or redistributed dosimetric information. The proposed methodology readily yields three-dimensional (3D) dosimetric data from radiation delivery to the DEFGEL phantom in deformed and undeformed states. The impacts of deformation on dose distributions were readily seen in the isodose contours and line profiles from the three arrangements. It is demonstrated that the system is potentially capable of reproducibly emulating the physical deformation of an organ, and therefore can be used to evaluate absorbed doses to deformable targets and organs at risk in three dimensions and to validate deformation algorithms applied to dose distributions.

  18. A novel methodology for 3D deformable dosimetry.

    Science.gov (United States)

    Yeo, U J; Taylor, M L; Dunn, L; Kron, T; Smith, R L; Franich, R D

    2012-04-01

    a result of the change in shape of the target between irradiations, even for a relatively simple deformation. Discrepancies of up to 30% of the maximum dose were evident from dose difference maps for three orthogonal planes taken through the isocenter of a stereotactic field. This paper describes the first use of a tissue-equivalent, 3D dose-integrating deformable phantom that yields integrated or redistributed dosimetric information. The proposed methodology readily yields three-dimensional (3D) dosimetric data from radiation delivery to the DEFGEL phantom in deformed and undeformed states. The impacts of deformation on dose distributions were readily seen in the isodose contours and line profiles from the three arrangements. It is demonstrated that the system is potentially capable of reproducibly emulating the physical deformation of an organ, and therefore can be used to evaluate absorbed doses to deformable targets and organs at risk in three dimensions and to validate deformation algorithms applied to dose distributions.

  19. Analysis of Severe Plastic Deformation by Large Strain Extrusion Machining

    Science.gov (United States)

    Sevier, M.; Yang, H. T. Y.; Moscoso, W.; Chandrasekar, S.

    2008-11-01

    Large strain extrusion machining (LSEM), a constrained chip formation process, is examined as a method of severe plastic deformation (SPD) at small deformation rates for production of ultra-fine-grained (UFG) materials. A finite element procedure is developed for prediction of deformation field parameters such as effective strain, strain rate, and their variation across the thickness of the chip for various cutting (extrusion) ratios. The cutting force (extrusion pressure) and hydrostatic pressures within the deformation zone are also analyzed. A consideration of the deformation occurring in chip formation suggests bounds on the extrusion ratios that can be realized. Implications of the results for production of bulk chip samples of controlled geometry and with an UFG microstructure are discussed.

  20. Linear shaped charge

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, David; Stofleth, Jerome H.; Saul, Venner W.

    2017-07-11

    Linear shaped charges are described herein. In a general embodiment, the linear shaped charge has an explosive with an elongated arrowhead-shaped profile. The linear shaped charge also has and an elongated v-shaped liner that is inset into a recess of the explosive. Another linear shaped charge includes an explosive that is shaped as a star-shaped prism. Liners are inset into crevices of the explosive, where the explosive acts as a tamper.

  1. A comparison of morphometric techniques for studying the shape of the corpus callosum in adolescent idiopathic scoliosis.

    Science.gov (United States)

    Wang, Defeng; Shi, Lin; Chu, Winnie C W; Paus, Tomás; Cheng, Jack C Y; Heng, Pheng Ann

    2009-04-15

    The purpose of this paper is to compare volume- and boundary-based morphometry methods by applying them in the statistical analysis of 2-D shapes. The methods discussed in the first category include voxel-, deformation-, and tensor-based morphometry. The active shape model is demonstrated as an example of the second category of methods. The test data are 2-D shapes of the corpus callosum (CC) obtained in patients with left-thoracic adolescent idiopathic scoliosis (AIS), as well as age and sex matched healthy participants. The features of both categories of methods and the complementarily of them are demonstrated, which may provide guidelines for their applications in medical-image analysis. The morphometric abnormality in the splenium of the CC cross-validated by different methods has potential value in the prognosis and curve prediction of the left-thoracic AIS.

  2. DEFORMATION WAVES AS A TRIGGER MECHANISM OF SEISMIC ACTIVITY IN SEISMIC ZONES OF THE CONTINENTAL LITHOSPHERE

    Directory of Open Access Journals (Sweden)

    S. I. Sherman

    2013-01-01

    Full Text Available Deformation waves as a trigger mechanism of seismic activity and migration of earthquake foci have been under discussion by researchers in seismology and geodynamics for over 50 years. Four sections of this article present available principal data on impacts of wave processes on seismicity and new data. The first section reviews analytical and experimental studies aimed at identification of relationships between wave processes in the lithosphere and seismic activity manifested as space-and-time migration of individual earthquake foci or clusters of earthquakes. It is concluded that with a systematic approach, instead of using a variety of terms to denote waves that trigger seismic process in the lithosphere, it is reasonable to apply the concise definition of ‘deformation waves’, which is most often used in fact.The second section contains a description of deformation waves considered as the trigger mechanism of seismic activity. It is concluded that a variety of methods are applied to identify deformation waves, and such methods are based on various research methods and concepts that naturally differ in sensitivity concerning detection of waves and/or impact of the waves on seismic process. Epicenters of strong earthquakes are grouped into specific linear or arc-shaped systems, which common criterion is the same time interval of the occurrence of events under analysis. On site the systems compose zones with similar time sequences, which correspond to the physical notion of moving waves (Fig. 9. Periods of manifestation of such waves are estimated as millions of years, and a direct consideration of the presence of waves and wave parameters is highly challenging. In the current state-of-the-art, geodynamics and seismology cannot provide any other solution yet.The third section presents a solution considering record of deformation waves in the lithosphere. With account of the fact that all the earthquakes with М≥3.0 are associated with

  3. Magnetization, shape memory and hysteresis behavior of single and polycrystalline FeNiCoTi

    International Nuclear Information System (INIS)

    Sehitoglu, H.; Efstathiou, C.; Maier, H.J.; Chumlyakov, Y.

    2005-01-01

    We report on the shape memory characteristics and magnetic behavior of polycrystalline and single crystalline FeNiCoTi. Predeforming the samples in the martensitic state and biasing of the martensite variants produced anisotropy in the magnetization behavior allowing the 'easy axis' to be identified as the 'a-axis' in the martensitic state. Based on these results, we provide an estimate of the magnetic anisotropy energy as 8.34x10 5 ergs/cm 3 . The results confirm the different magnetization behavior in the martensitic and austenitic states, and the shift in transformation temperatures upon application of a magnetic field. Shape memory strains near 2.5% are demonstrated under constant stress temperature cycling and upon heating at zero stress after deformation. We present a thermodynamics based theory that explains the origin of the hysteresis in this class of alloys emanating from the dissipation of energy due to plastic deformation. We predict the thermal hysteresis (135 K), and the shift in transformation temperature (14 K) with applied magnetic fields in agreement with the experimental results. The possibility of utilizing these classes of alloys as magnetic shape memory alloys is discussed

  4. Generating shaped femtosecond pulses in the far infrared using a spatial light modulator and difference frequency generation

    CSIR Research Space (South Africa)

    Botha, N

    2010-08-31

    Full Text Available Femtosecond pulse shaping can be done by different kinds of pulse shapers, such as liquid crystal spatial light modulators (LC SLM), acousto optic modulators (AOM) and deformable and movable mirrors. A few applications where pulse shaping...

  5. DEFORMATION MONITORING OF MOTORWAY UNDERPASSES USING LASER SCANNING DATA

    Directory of Open Access Journals (Sweden)

    I. Puente

    2012-07-01

    point of the voussoirs ranging between 1 mm and 5 mm. These deformations are under the tolerances predicted by the structure and confirm the success in the construction works developed. The laser scanning and the post-processing algorithms here developed appear as an easy methodology to make deformation monitoring of underpass structures and guarantee the load capacity of the structure.

  6. Shape language - How people describe shapes and shape operations

    NARCIS (Netherlands)

    Wiegers, T.; Langeveld, L.H.; Vergeest, J.S.M.

    2001-01-01

    Many designers do not use CAD tools for shape ideation. They consider CAD systems not appropriate for the ideation phase. This research investigates how designers ideate shape, in particular which terms they use to exteriorize shape. The goal is to be able to propose digital tools that are useful

  7. Understanding the Shape-Memory Alloys Used in Orthodontics

    OpenAIRE

    Fernandes, Daniel J.; Peres, Rafael V.; Mendes, Alvaro M.; Elias, Carlos N.

    2011-01-01

    Nickel-titanium (NiTi) shape-memory alloys (SMAs) have been used in the manufacture of orthodontic wires due to their shape memory properties, super-elasticity, high ductility, and resistance to corrosion. SMAs have greater strength and lower modulus of elasticity when compared with stainless steel alloys. The pseudoelastic behavior of NiTi wires means that on unloading they return to their original shape by delivering light continuous forces over a wider range of deformation which is claimed...

  8. General quadrupole shapes in the Interacting Boson Model

    International Nuclear Information System (INIS)

    Leviatan, A.

    1990-01-01

    Characteristic attributes of nuclear quadrupole shapes are investigated within the algebraic framework of the Interacting Boson Model. For each shape the Hamiltonian is resolved into intrinsic and collective parts, normal modes are identified and intrinsic states are constructed and used to estimate transition matrix elements. Special emphasis is paid to new features (e.g. rigid triaxiality and coexisting deformed shapes) that emerge in the presence of the three-body interactions. 27 refs

  9. General quadrupole shapes in the Interacting Boson Model

    Energy Technology Data Exchange (ETDEWEB)

    Leviatan, A.

    1990-01-01

    Characteristic attributes of nuclear quadrupole shapes are investigated within the algebraic framework of the Interacting Boson Model. For each shape the Hamiltonian is resolved into intrinsic and collective parts, normal modes are identified and intrinsic states are constructed and used to estimate transition matrix elements. Special emphasis is paid to new features (e.g. rigid triaxiality and coexisting deformed shapes) that emerge in the presence of the three-body interactions. 27 refs.

  10. A review on shape memory alloys with applications to morphing aircraft

    OpenAIRE

    Barbarino, S; Saavedra Flores, E I; Ajaj, R M; Dayyani, I; Friswell, M I

    2014-01-01

    Shape memory alloys (SMAs) are a unique class of metallic materials with the ability to recover their original shape at certain characteristic temperatures (shape memory effect), even under high applied loads and large inelastic deformations, or to undergo large strains without plastic deformation or failure (super-elasticity). In this review, we describe the main features of SMAs, their constitutive models and their properties. We also review the fatigue behavior of SMAs and some methods ado...

  11. Formation of the soft-sediment deformation structures and its constraints on dinosaur fossil burial of the Cretaceous in Zhucheng, Shandong province, East China

    Science.gov (United States)

    He, Bizhu; Qiao, Xiufu; Cai, Zhihui; Tian, Hongshui; Chen, Shuqing

    2013-04-01

    The triangular-shaped Zhucheng depression is located in the southwestern part of the Jiaolai basin, Jiaodong peninsula, East China. Various soft-sediment deformation structures are recognized in the southern Zhucheng depression, which have behaviour are plastic and/or brittle. Soft-sediment deformation structures mainly include undulate fold, mound and sag, diapir, convolute deformation and seismic-unconformity in the Lower Cretaceous, which are composed of fine-grained sediments in lacustrine environment, while load structure, ball and pillow structure, plunged sediment mixtures structure, fault-graded occurred in the Upper Cretaceous, which formed in a conglomeratic or coarse arenaceous alluvial fan and flood-plain setting. These soft-sediment deformation structures are proposed triggered by paleoearthquake. The deformed layers and undeformed layers developed in intervals, suggesting frequent seismic activities. In studied area, numerous giant hadrosaurid skeleton fossils have been found in the Upper Cretaceous Wangshi Group science 1958, and unusual and abundant dinosaur track fossils have been discovered in the Lower Cretaceous Yangzhuang Formation of Laiyang Group. The widespread identified soft-sediment deformation structures are proximately underlying or overlying these dinosaur fossil bearing strata. The depositional setting changed while multiple paleo-seismic events and tectonic activity happened. In the Early Cretaceous, after the occurrence of paleo-earthquakes and environmental changes, dinosaurs migrated and a lot of tracks with similar orientation on lacustrine offshore were preserved. In the Late Cretaceous, a large-scale dinosaur fossil layers and paleo-earthquake records occurred in intervals, indicating that the dinosaur fossils may be associated with large-scale debris flow and frequent earthquake events. Based on regional tectonic setting, distribution of soft-sediment deformation structures and predicted magnitude of paleo-earthquakes, the

  12. Steady State Droplet Deformation and Orientation during Bulk and Confined Shear Flow in Blends with One Viscoelastic Component: Experiments, Modeling and Simulations

    Science.gov (United States)

    Verhulst, Kristof; Cardinaels, Ruth; Renardy, Yuriko; Moldenaers, Paula

    2008-07-01

    The steady deformation and orientation of droplets in shear flow, both under bulk and confined conditions, is microscopically studied for blends with one viscoelastic phase and a viscosity ratio of 1.5. The experiments are performed with a Linkam shearing cell and a counter rotating setup, based on a Paar Physica MCR300. For bulk shear flow, it is shown that matrix viscoelasticity suppresses droplet deformation and promotes droplet orientation towards the flow direction. Interestingly, these effects saturate at Deborah numbers above 2. For ellipsoidal droplets, viscoelasticity of the droplet fluid hardly affects the droplet deformation and droplet orientation, even up to Deborah numbers as high as 16. When the droplet is confined between two plates, the droplet deformation and the orientation towards the flow direction increase with confinement ratio, as in fully Newtonian systems. At a Deborah number of 1, the effect of component viscoelasticity under confined conditions remains qualitatively the same as under bulk conditions, at least up to a confinement ratio 2R/H of 0.6. The experiments under bulk conditions are compared with the predictions of phenomenological models, such as the Maffettone-Minale model, for droplet deformation. The Shapira-Haber model, which analytically describes the effects of the walls on the droplet deformation for fully Newtonian systems, is used to describe the experimental results under confinement. Here, this model is combined with the bulk phenomenological models to include bulk viscoelasticity effects. Under the present conditions, the adapted Shapira-Haber model describes the steady droplet deformation under confinement rather well. Finally, the experimentally obtained droplet shapes are compared with the results of 3D simulations, performed with a volume-of-fluid algorithm.

  13. Evolution of nuclear shapes at high spins

    International Nuclear Information System (INIS)

    Johnson, N.R.

    1985-01-01

    The dynamic electric quadrupole (E2) moments are a direct reflection of the collective aspects of the nuclear wave functions. For this, Doppler-shift lifetime measurements have been done utilizing primarily the recoil-distance technique. The nuclei with neutron number N approx. 90 possess many interesting properties. These nuclei have very shallow minima in their potential energy surfaces, and thus, are very susceptible to deformation driving influences. It is the evolution of nuclear shapes as a function of spin or rotational frequency for these nuclei that has commanded much interest in the lifetime measurements discussed here. There is growing evidence that many deformed nuclei which have prolate shapes in their ground states conform to triaxial or oblate shapes at higher spins. Since the E2 matrix elements along the yrast line are sensitive indicators of deformation changes, measurements of lifetimes of these states to provide the matrix elements has become the major avenue for tracing the evolving shape of a nucleus at high spin. Of the several nuclei we have studied with N approx. 90, those to be discussed here are /sup 160,161/Yb and 158 Er. In addition, the preliminary, but interesting and surprising results from our recent investigation of the N = 98 nucleus, 172 W are briefly discussed. 14 refs., 5 figs

  14. Shape memory of polyurethanes with silver nanoparticles

    International Nuclear Information System (INIS)

    Monteiro, Fernanda M.A.; Souza, Patterson P. de; Pereira, Iaci M.; Silva, Livio B.J. da; Orefice, Rodrigo L.

    2011-01-01

    Biodegradable polyurethane nano composites were synthesized in an aqueous environment and have their shape memory properties investigated. The matrix based in isopharane diisocyanate and poly(caprolactone diol) (Mn=1250, 2000 g.mol -1 ) was prepared by the prepolymer mixing process. The silver nanoparticles were produced by mixing AgNO 3 and tannic acid. The shape memory properties were measured using universal testing machine (DL3000, EMIC). The shape memory cycle consisted of the following steps: samples were deformed at room temperature; the mechanical constraints on the polymers were removed; samples were cooled down to 0 deg C and to retain the deformed shape; three processes were tested to recover the shape: (a) samples were heated up to 80 deg C in an oven, (b) immersed in pH 4.0 and (c) immersed in pH 7.0. To study the shape memory effect on the nanostructure, small angle X-ray scattering, wide angle X-ray scattering, infrared spectroscopy experiments were carried on. (author)

  15. Shape evolution of Ne isotopes and Ne hypernuclei: The interplay of pairing and tensor interactions

    Directory of Open Access Journals (Sweden)

    Li A.

    2014-03-01

    Full Text Available We study tensor and pairing effects on the quadruple deformation of neon isotopes based on a deformed Skyrme-Hartree-Fock model with BCS approximation for the pairing channel. We extend the Skyrme-Hartree-Fock formalism for the description of hypernuclei adopting the recently-proposed ESC08b hyperon-nucleon interaction. It is found that the interplay of pairing and tensor interactions is crucial to derive the deformations in several neon isotopes. Especially, the shapes of 26,30Ne are studied in details in comparisons with experimentally observed shapes. Furthermore the deformations of the hypernuclei are compared with the corresponding neon isotopic cores in the presence of tensor force. We find the same shapes with somewhat smaller deformations for single Λ-hypernuclei compared with their core deformations.

  16. Constrains on the Rheology of the Lithosphere Inferred from Nano-Forsterite Deformation Experiments

    Science.gov (United States)

    Gasc, J.; Demouchy, S. A.; Barou, F.; Koizumi, S.

    2017-12-01

    The rheology of the lithospheric mantle is usually inferred from experiments performed at temperatures and strain rates greater than in the Earth. In these conditions, deformation occurs via dislocation creep and the flow laws obtained experimentally are then extrapolated to natural conditions. Despite the difficulty of achieving steady-state flow at low temperatures (role of the various defects at play at the microscopic scale, we used a high-pressure high-temperature gas medium deformation apparatus (aka. Paterson press) to deform pre-sintered nano-forsterite aggregates. The fine-grained nature of the samples allows us to probe the deformation mechanisms at play when dislocation creep is limited. Experiments were performed at 300 MPa, 900-1200°C, and constant displacement yielding strain rates around 10-5 s-1. The samples were analyzed using state-of-the-art microscopy techniques. EBSD analysis did not reveal crystal preferred orientation. However, grain plasticity was evidenced and takes place almost exclusively via subgrain formation with rotation around the c-axis, a condition that does not allow sustainable plastic flow. Further investigations are ongoing to identify if other defects, such as disclinations are present. Grain rotation was also evidenced by a shape preferred orientation. Regardless of the mechanisms involved, rheology data show that the samples are stronger (from 0.5-2 GPa) than their iron-bearing olivine counterparts, due to a combined effect of grain size and composition (Fe has a softening effect on olivine). The temperature dependence is weaker than predicted by high temperature data in the dislocation creep regime, but remains greater than reported from experiments and models in the same conditions for olivine, which has important implications regarding the strength of the lithospheric mantle.

  17. SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries.

    Science.gov (United States)

    Polwaththe-Gallage, Hasitha-Nayanajith; Saha, Suvash C; Sauret, Emilie; Flower, Robert; Senadeera, Wijitha; Gu, YuanTong

    2016-12-28

    Blood continuously flows through the blood vessels in the human body. When blood flows through the smallest blood vessels, red blood cells (RBCs) in the blood exhibit various types of motion and deformed shapes. Computational modelling techniques can be used to successfully predict the behaviour of the RBCs in capillaries. In this study, we report the application of a meshfree particle approach to model and predict the motion and deformation of three-dimensional RBCs in capillaries. An elastic spring network based on the discrete element method (DEM) is employed to model the three-dimensional RBC membrane. The haemoglobin in the RBC and the plasma in the blood are modelled as smoothed particle hydrodynamics (SPH) particles. For validation purposes, the behaviour of a single RBC in a simple shear flow is examined and compared against experimental results. Then simulations are carried out to predict the behaviour of RBCs in a capillary; (i) the motion of five identical RBCs in a uniform capillary, (ii) the motion of five identical RBCs with different bending stiffness (K b ) values in a stenosed capillary, (iii) the motion of three RBCs in a narrow capillary. Finally five identical RBCs are employed to determine the critical diameter of a stenosed capillary. Validation results showed a good agreement with less than 10% difference. From the above simulations, the following results are obtained; (i) RBCs exhibit different deformation behaviours due to the hydrodynamic interaction between them. (ii) Asymmetrical deformation behaviours of the RBCs are clearly observed when the bending stiffness (K b ) of the RBCs is changed. (iii) The model predicts the ability of the RBCs to squeeze through smaller blood vessels. Finally, from the simulations, the critical diameter of the stenosed section to stop the motion of blood flow is predicted. A three-dimensional spring network model based on DEM in combination with the SPH method is successfully used to model the motion and

  18. Three-dimensional simulation of nanoindentation response of viral capsids. Shape and size effects.

    Science.gov (United States)

    Ahadi, Aylin; Colomo, Josep; Evilevitch, Alex

    2009-03-19

    The nanoindentation response of empty viral capsids is modeled using three-dimensional finite element analysis. Simulation with two different geometries, spherical and icosahedral, is performed using the finite element code Abaqus. The capsids are modeled as nonlinear Hookean elastic, and both small and large deformation analysis is performed. The Young's modulus is determined by calibrating the force-indentation curve to data from atomic force microscopy (AFM) experiments. Force-indentation curves for three different viral capsids are directly compared to experimental data. Predictions are made for two additional viral capsids. The results from the simulation showed a good agreement with AFM data. The paper demonstrates that over the entire range of virus sizes (or Foppl-von Karman numbers) spherical and icosahedral models yield different force responses. In particular, it is shown that capsids with dominantly spherical shape (for low Foppl-von Karman numbers) exhibit nearly linear relationship between force and indentation, which has been experimentally observed on the viral shell studies so far. However, we predict that capsids with significant faceting (for large Foppl-von Karman numbers) and thus more pronounced icosahedral shape will exhibit rather nonlinear deformation behavior.

  19. Numerical study of suspensions of deformable particles.

    Science.gov (United States)

    Brandt, Luca; Rosti, Marco Edoardo

    2017-11-01

    We consider a model non-Newtonian fluid consisting of a suspension of deformable particles in a Newtonian solvent. Einstein showed in his pioneering work that the relative increase in effective viscosity is a linear function of the particle volume fraction for dilute suspensions of rigid particles. Inertia has been shown to introduce deviations from the behaviour predicted by the different empirical fits, an effect that can be related to an increase of the effective volume fraction. We here focus on the effect of elasticity, i.e. visco-elastic deformable particles. To tackle the problem at hand, we perform three-dimensional Direct Numerical Simulation of a plane Couette flow with a suspension of neutrally buoyant deformable viscous hyper-elastic particles. We show that elasticity produces a shear-thinning effect in elastic suspensions (in comparison to rigid ones) and that it can be understood in terms of a reduction of the effective volume fraction of the suspension. The deformation modifies the particle motion reducing the level of mutual interaction. Normal stress differences will also be considered. European Research Council, Grant No. ERC-2013-CoG- 616186, TRITOS; SNIC (the Swedish National Infrastructure for Computing).

  20. Postseismic surface deformations due to lithospheric and asthenospheric viscoelasticity

    Science.gov (United States)

    Cohen, S. C.

    1979-01-01

    This paper proposes a model for postseismic surface deformations by attributing them to lithospheric and asthenospheric viscoelasticity. The model predicts that the deformations due to lithospheric viscoelasticity depend on the decrease in the effective shear modulus acting long after the lithospheric relaxation compared to that acting immediately following the earthquake. While such deformations are generally smaller than those associated with asthenospheric viscoelasticity, they occur on a shorter time scale and may be in opposite direction to both the motion occurring at the time of the earthquake and that occurring as the asthenospheric relaxation occurs.

  1. Investigation of interfacial shear stresses, shape fixity, and actuation strain in composites incorporating shape memory polymers and shape memory alloys

    Science.gov (United States)

    Park, Jungkyu; Headings, Leon; Dapino, Marcelo; Baur, Jeffery; Tandon, Gyaneshwar

    2015-03-01

    Shape memory composites (SMCs) based on shape memory alloys (SMAs) and shape memory polymers (SMPs) allow many design possibilities due to their controllable temperature-dependent mechanical properties. The complementary characteristics of SMAs and SMPs can be utilized in systems with shape recovery created by the SMA and shape fixity provided by the SMP. In this research, three SMC operating regimes are identified and the behavior of SMC structures is analyzed by focusing on composite shape fixity and interfacial stresses. Analytical models show that SMPs can be used to adequately fix the shape of SMA actuators and springs. COMSOL finite element simulations are in agreement with analytical expressions for shape fixity and interfacial stresses. Analytical models are developed for an end-coupled linear SMP-SMA two-way actuator and the predicted strain is shown to be in good agreement with experimental test results.

  2. Deformable Simplicial Complexes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof

    triangles/tetrahedra marked as outside from those marked as inside. Such an approach allows for robust topological adaptivity. Among other advantages of the deformable simplicial complexes there are: space adaptivity, ability to handle and preserve sharp features, possibility for topology control. We....... One particular advantage of DSC is the fact that as an alternative to topology adaptivity, topology control is also possible. This is exploited in the construction of cut loci on tori where a front expands from a single point on a torus and stops when it self-intersects....

  3. Deformation and failure mechanism of slope in three dimensions

    Directory of Open Access Journals (Sweden)

    Yingfa Lu

    2015-04-01

    Full Text Available Understanding three-dimensional (3D slope deformation and failure mechanism and corresponding stability analyses are crucially important issues in geotechnical engineering. In this paper, the mechanisms of progressive failure with thrust-type and pull-type landslides are described in detail. It is considered that the post-failure stress state and the pre-peak stress state may occur at different regions of a landslide body with deformation development, and a critical stress state element (or the soil slice block exists between the post-failure stress state and the pre-peak stress state regions. In this regard, two sorts of failure modes are suggested for the thrust-type and three sorts for pull-type landslides, based on the characteristics of shear stress and strain (or tensile stress and strain. Accordingly, a new joint constitutive model (JCM is proposed based on the current stability analytical theories, and it can be used to describe the mechanical behaviors of geo-materials with softening properties. Five methods, i.e. CSRM (comprehensive sliding resistance method, MTM (main thrust method, CDM (comprehensive displacement method, SDM (surplus displacement method, and MPM (main pull method, for slope stability calculation are proposed. The S-shaped curve of monitored displacement vs. time is presented for different points on the sliding surface during progressive failure process of landslide, and the relationship between the displacement of different points on the sliding surface and height of landslide body is regarded as the parabolic curve. The comparisons between the predicted and observed load–displacement and displacement–time relations of the points on the sliding surface are conducted. The classification of stable/unstable displacement–time curves is proposed. The definition of the main sliding direction of a landslide is also suggested in such a way that the failure body of landslide (simplified as “collapse body” is only

  4. Dynamics of Brownian motors in deformable medium

    Science.gov (United States)

    Woulaché, Rosalie Laure; Kepnang Pebeu, Fabrice Maxime; Kofané, Timoléon C.

    2016-10-01

    The directed transport in a one-dimensional overdamped, Brownian motor subjected to a travelling wave potential with variable shape and exposed to an external bias is studied numerically. We focus our attention on the class of Remoissenet-Peyrard parametrized on-site potentials with slight modification, whose shape can be varied as a function of a parameter s, recovering the sine-Gordon shape as the special case. We demonstrate that in the presence of the travelling wave potential the observed dynamical properties of the Brownian motor which crucially depends on the travelling wave speed, the intensity of the noise and the external load is significantly influenced also by the geometry of the system. In particular, we notice that systems with sharp wells and broad barriers favour the transport under the influence of an applied load. The efficiency of transport of Brownian motors in deformable systems remains equal to 1 (in the absence of an applied load) up to a critical value of the travelling wave speed greater than that of the pure sine-Gordon shape.

  5. Shape-morphing nanocomposite origami.

    Science.gov (United States)

    Andres, Christine M; Zhu, Jian; Shyu, Terry; Flynn, Connor; Kotov, Nicholas A

    2014-05-20

    Nature provides a vast array of solid materials that repeatedly and reversibly transform in shape in response to environmental variations. This property is essential, for example, for new energy-saving technologies, efficient collection of solar radiation, and thermal management. Here we report a similar shape-morphing mechanism using differential swelling of hydrophilic polyelectrolyte multilayer inkjets deposited on an LBL carbon nanotube (CNT) composite. The out-of-plane deflection can be precisely controlled, as predicted by theoretical analysis. We also demonstrate a controlled and stimuli-responsive twisting motion on a spiral-shaped LBL nanocomposite. By mimicking the motions achieved in nature, this method offers new opportunities for the design and fabrication of functional stimuli-responsive shape-morphing nanoscale and microscale structures for a variety of applications.

  6. Effects of high-order deformation on high-K isomers in superheavy nuclei

    International Nuclear Information System (INIS)

    Liu, H. L.; Bertulani, C. A.; Xu, F. R.; Walker, P. M.

    2011-01-01

    Using, for the first time, configuration-constrained potential-energy-surface calculations with the inclusion of β 6 deformation, we find remarkable effects of the high-order deformation on the high-K isomers in 254 No, the focus of recent spectroscopy experiments on superheavy nuclei. For shapes with multipolarity six, the isomers are more tightly bound and, microscopically, have enhanced deformed shell gaps at N=152 and Z=100. The inclusion of β 6 deformation significantly improves the description of the very heavy high-K isomers.

  7. Deformation Detection in Piping Installations Using Profiling Techniques

    Science.gov (United States)

    Mapurisa, W. T.; Sithole, G.

    2012-07-01

    As-Built surveys of buildings and installations have received greater attention in recent years. An example is the 3D digital reconstruction of existing piping installations at chemical plants for plant maintenance, upgrades and safety standard concerns. This paper is directed at the reconstruction of piping installations with particular emphasis on the detection of deformities in pipes. Reconstruction begins with the automatic detection of individual piping elements which requires a prior segmentation. For segmentation, the profile intersection technique is used. Surfaces are considered as a network of intersecting curves as opposed to surface patches. Recreating such curves on a point set, and intersecting them, segments are identified. The entire scan is partitioned into a series of scan planes referred to as profiles. Points are then connected in each profile based on the surface they represent forming line segments. The line segments, which represent curves, are then intersected to identify segments. For pipes, line segments are elliptical. The centre of an ellipse lies on the pipes' axis and the semi minor axis is equivalent to the radius of the pipe. Therefore together the centres and semi minor axis are used to describe the position, orientation, size and radius of a pipe. For deformed pipes, the line segments deviate from the elliptical shape. By identifying deviations of the line segments from the elliptical shape deformations are identified. The algorithm allows for cylinders, spheres, cones and tori to be detected including deformities in their shape. Experimental results show the effectiveness of the algorithm.

  8. DEFORMATION DETECTION IN PIPING INSTALLATIONS USING PROFILING TECHNIQUES

    Directory of Open Access Journals (Sweden)

    W. T. Mapurisa

    2012-07-01

    Full Text Available As-Built surveys of buildings and installations have received greater attention in recent years. An example is the 3D digital reconstruction of existing piping installations at chemical plants for plant maintenance, upgrades and safety standard concerns. This paper is directed at the reconstruction of piping installations with particular emphasis on the detection of deformities in pipes. Reconstruction begins with the automatic detection of individual piping elements which requires a prior segmentation. For segmentation, the profile intersection technique is used. Surfaces are considered as a network of intersecting curves as opposed to surface patches. Recreating such curves on a point set, and intersecting them, segments are identified. The entire scan is partitioned into a series of scan planes referred to as profiles. Points are then connected in each profile based on the surface they represent forming line segments. The line segments, which represent curves, are then intersected to identify segments. For pipes, line segments are elliptical. The centre of an ellipse lies on the pipes’ axis and the semi minor axis is equivalent to the radius of the pipe. Therefore together the centres and semi minor axis are used to describe the position, orientation, size and radius of a pipe. For deformed pipes, the line segments deviate from the elliptical shape. By identifying deviations of the line segments from the elliptical shape deformations are identified. The algorithm allows for cylinders, spheres, cones and tori to be detected including deformities in their shape. Experimental results show the effectiveness of the algorithm.

  9. AC electric field induced droplet deformation in a microfluidic T-junction.

    Science.gov (United States)

    Xi, Heng-Dong; Guo, Wei; Leniart, Michael; Chong, Zhuang Zhi; Tan, Say Hwa

    2016-08-02

    We present for the first time an experimental study on the droplet deformation induced by an AC electric field in droplet-based microfluidics. It is found that the deformation of the droplets becomes stronger with increasing electric field intensity and frequency. The measured electric field intensity dependence of the droplet deformation is consistent with an early theoretical prediction for stationary droplets. We also proposed a simple equivalent circuit model to account for the frequency dependence of the droplet deformation. The model well explains our experimental observations. In addition, we found that the droplets can be deformed repeatedly by applying an amplitude modulation (AM) signal.

  10. Rotary deformity in degenerative spondylolisthesis

    International Nuclear Information System (INIS)

    Kang, Sung Gwon; Kim, Jeong; Kho, Hyen Sim; Yun, Sung Su; Oh, Jae Hee; Byen, Ju Nam; Kim, Young Chul

    1994-01-01

    We studied to determine whether the degenerative spondylolisthesis has rotary deformity in addition to forward displacement. We have made analysis of difference of rotary deformity between the 31 study groups of symptomatic degenerative spondylolisthesis and 31 control groups without any symptom, statistically. We also reviewed CT findings in 15 study groups. The mean rotary deformity in study groups was 6.1 degree(the standard deviation is 5.20), and the mean rotary deformity in control groups was 2.52 degree(the standard deviation is 2.16)(p < 0.01). The rotary deformity can be accompanied with degenerative spondylolisthesis. We may consider the rotary deformity as a cause of symptomatic degenerative spondylolisthesis in case that any other cause is not detected

  11. Rotary deformity in degenerative spondylolisthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Gwon; Kim, Jeong; Kho, Hyen Sim; Yun, Sung Su; Oh, Jae Hee; Byen, Ju Nam; Kim, Young Chul [Chosun University College of Medicine, Gwangju (Korea, Republic of)

    1994-05-15

    We studied to determine whether the degenerative spondylolisthesis has rotary deformity in addition to forward displacement. We have made analysis of difference of rotary deformity between the 31 study groups of symptomatic degenerative spondylolisthesis and 31 control groups without any symptom, statistically. We also reviewed CT findings in 15 study groups. The mean rotary deformity in study groups was 6.1 degree(the standard deviation is 5.20), and the mean rotary deformity in control groups was 2.52 degree(the standard deviation is 2.16)(p < 0.01). The rotary deformity can be accompanied with degenerative spondylolisthesis. We may consider the rotary deformity as a cause of symptomatic degenerative spondylolisthesis in case that any other cause is not detected.

  12. Deformation Monitoring of Motorway Underpasses Using Laser Scanning Data

    Science.gov (United States)

    Puente, I.; González-Jorge, H.; Riveiro, B.; Arias, P.

    2012-07-01

    The motorway Ourense - Celanova will become the next years in one of the main roads of inland Galicia (northwest region of Spain) that will connect quickly with the cities of Northern Portugal. This highway is projected as a public - private partnership between the regional government of Xunta de Galicia and the construction companies Copasa SA and Extraco SA. There are currently under construction the 19 km of this road and presents a number of structures as viaducts, overpasses and underpasses. The viaducts are part of the main road, allowing passage of the vehicles at conventional speed. Overpasses are mainly used in the connection of the highway with secondary roads. Moreover, the underpasses are better suited for the passage of wildlife animals, persons or agricultural machinery. The underpass arch-shape structures used for this project consist of two reinforced concrete voussoirs placed on two small concrete walls. For each set of voussoirs there are three joining points, two between the walls and the voussoirs and one between the both voussoirs at the top of the structure. These underpasses suffer significant mechanical stress during construction, because during the backfilling process asymmetric loads are applied to both sides. Thus, it is very important the monitoring of the structure using geodetic techniques as total stations, levels or laser scanners The underpass selected for this study is located at the kilometric point 4.9 of the highway, with a total length of 50.38 m, maximum span of 13.30 m and rise of 7.23 m. Voussoirs has a thickness of 0.35 m and a length of 2.52 m. The small lateral walls exhibit a height of 2.35 m and thickness of 0.85 m. The underpass presents a slope of approximately 4 % and the maximum height of the backfill over the top of the structure is 3.80 m. The foundation consists of a concrete slab arch-shape (curvature opposite the main arch) with a thickness of 0.7 m. The geodetic technology used for the deformation monitoring

  13. Deformability analysis of sickle blood using ektacytometry.

    Science.gov (United States)

    Rabai, Miklos; Detterich, Jon A; Wenby, Rosalinda B; Hernandez, Tatiana M; Toth, Kalman; Meiselman, Herbert J; Wood, John C

    2014-01-01

    Sickle cell disease (SCD) is characterized by decreased erythrocyte deformability, microvessel occlusion and severe painful infarctions of different organs. Ektacytometry of SCD red blood cells (RBC) is made difficult by the presence of rigid, poorly-deformable irreversibly sickled cells (ISC) that do not align with the fluid shear field and distort the elliptical diffraction pattern seen with normal RBC. In operation, the computer software fits an outline to the diffraction pattern, then reports an elongation index (EI) at each shear stress based on the length and width of the fitted ellipse: EI=(length-width)/(length+width). Using a commercial ektacytometer (LORCA, Mechatronics Instruments, The Netherlands) we have approached the problem of ellipse fitting in two ways: (1) altering the height of the diffraction image on a computer monitor using an aperture within the camera lens; (2) altering the light intensity level (gray level) used by the software to fit the image to an elliptical shape. Neither of these methods affected deformability results (elongation index-shear stress relations) for normal RBC but did markedly affect results for SCD erythrocytes: (1) decreasing image height by 15% and 30% increased EI at moderate to high stresses; (2) progressively increasing the light level increased EI over a wide range of stresses. Fitting data obtained at different image heights using the Lineweaver-Burke routine yielded percentage ISC results in good agreement with microscopic cell counting. We suggest that these two relatively simple approaches allow minimizing artifacts due to the presence of rigid discs or ISC and also suggest the need for additional studies to evaluate the physiological relevance of deformability data obtained via these methods.

  14. Time-dependent solution for reorientation of rotating tidally deformed visco-elastic bodies

    Science.gov (United States)

    Hu, Haiyang; van der Wal, Wouter; Vermeersen, Bert

    2017-04-01

    Many icy satellites or planets contain features which suggest a (past) reorientation of the body, such as the tiger stripes on Enceladus and the heart-shaped Sputnik Planum on Pluto. Most of these icy bodies are tidally locked and this creates a large tidal bulge which is about three times of its centrifugal (equatorial) bulge. To study the reorientation of such rotating tidally deformed body is complicated and most previous studies apply the so-called fluid limit method. The fluid limit approach ignores the viscous response of the body and assumes that it immediately reaches its fluid limit when simulating the reorientation due to a changing load. As a result, this method can only simulate cases when the change in the load is much slower than the dominant viscous modes of the body. For other kinds of load, for instance, a Heaviside load due to an impact which creates an instant relocation of mass, it does not give us a prediction of how the reorientation is accomplished (e.g. How fast? Along which path?). We establish a new method which can give an accurate time-dependent solution for reorientation of rotating tidally deformed bodies. Our method can be applied both semi-analytically or numerically (with finite element method) to include features such as lateral heterogeneity or non-linear material. We also present an extension of our method to simulate the effect of a fossil bulge. With our method, we show that reorientation of a tidally deformed body driven by a positive mass anomaly near the poles has a preference for rotating around the tidal axis instead of towards it, contrary to predictions in previous studies. References Hu, H., W. van der Wal and L.L.A. Vermeersen (2017). A numerical method for reorientation of rotating tidally deformed visco-elastic bodies. Journal of Geophysical Research: Planets, doi:10.1002/2016JE005114, 2016JE005114. Matsuyama, I. and Nimmo, F. (2007). Rotational stability of tidally deformed planetary bodies. Journal of Geophysical

  15. Radiologic evaluation of foot deformities

    International Nuclear Information System (INIS)

    Erlemann, R.; Fischedick, A.R.; Peters, P.E.

    1986-01-01

    In order to analyze foot deformities, the foot is divided into three compartments. Their normal and pathological positions are defined by the alignment of the bones' axes. The various foot deformities can be put down to a malalignment of the particular compartments. X-ray analysis of the malalignment allows a diagnosis to be made. The most important congenital and acquired foot deformities are discussed. (orig.) [de

  16. q-deformed Brownian motion

    CERN Document Server

    Man'ko, V I

    1993-01-01

    Brownian motion may be embedded in the Fock space of bosonic free field in one dimension.Extending this correspondence to a family of creation and annihilation operators satisfying a q-deformed algebra, the notion of q-deformation is carried from the algebra to the domain of stochastic processes.The properties of q-deformed Brownian motion, in particular its non-Gaussian nature and cumulant structure,are established.

  17. Shape fabric development in rigid clast populations under pure shear: The influence of no-slip versus slip boundary conditions

    Science.gov (United States)

    Mulchrone, Kieran F.; Meere, Patrick A.

    2015-09-01

    Shape fabrics of elliptical objects in rocks are usually assumed to develop by passive behavior of inclusions with respect to the surrounding material leading to shape-based strain analysis methods belonging to the Rf/ϕ family. A probability density function is derived for the orientational characteristics of populations of rigid ellipses deforming in a pure shear 2D deformation with both no-slip and slip boundary conditions. Using maximum likelihood a numerical method is developed for estimating finite strain in natural populations deforming for both mechanisms. Application to a natural example indicates the importance of the slip mechanism in explaining clast shape fabrics in deformed sediments.

  18. Shape oscillations of a viscoelastic drop

    International Nuclear Information System (INIS)

    Khismatullin, Damir B.; Nadim, Ali

    2001-01-01

    Small-amplitude axisymmetric shape deformations of a viscoelastic liquid drop in microgravity are theoretically analyzed. Using the Jeffreys constitutive equation for linear viscoelasticity, the characteristic equation for the frequency and decay factor of the shape oscillations is derived. Asymptotic analysis of this equation is performed in the low- and high-viscosity limits and for the cases of small, moderate, and large elasticities. Elastic effects are shown to give rise to a type of shape oscillation that does not depend on the surface tension. The existence of such oscillations is confirmed by numerical solution of the characteristic equation in various regimes. A method for determining the viscoelastic properties of highly viscous liquids based upon experimental measurements of the frequency and damping rate of such shape oscillations is suggested

  19. Apple Shape Classification Method Based on Wavelet Moment

    Directory of Open Access Journals (Sweden)

    Jiangsheng Gui

    2014-09-01

    Full Text Available Shape is not only an important indicator for assessing the grade of the apple, but also the important factors for increasing the value of the apple. In order to improve the apple shape classification accuracy rate, an approach for apple shape sorting based on wavelet moments was proposed, the image was first subjected to a normalization process using its regular moments to obtain scale and translation invariance, the rotation invariant wavelet moment features were then extracted from the scale and translation normalized images and the method of cluster analysis was used for finished the shape classification. This method performs better than traditional approaches such as Fourier descriptors and Zernike moments, because of that Wavelet moments can provide time-domain and frequency domain window, which was verified by experiments. The normal fruit shape, mild deformity and severe deformity classification accuracy is 86.21 %, 85.82 %, 90.81 % by our method.

  20. Shape memory epoxy: a systematic study of their performance

    Science.gov (United States)

    Rousseau, Ingrid A.; Xie, Tao

    2009-03-01

    Seven epoxy-amine polymers showing shape memory (SM) properties were synthesized. Tunable thermal and mechanical properties with glass transition temperatures ranging from 44 to 93 °C were obtained by varying the molecular structures. The epoxy showed excellent SM properties with shape fixity and shape recovery reaching completeness above about 5% strains. The instantaneous SM behavior was found to be independent of materials structure or properties; however, more stringent experimental conditions were found to be detrimental to SM properties for the networks with lower crosslink density and/or higher molecular flexibility/mobility. Indeed, the impact of the shape memory cycling conditions on the SM behavior was investigated. Specifically, the deformation load, the recovery heating rate, the number of SM cycles, and the holding time in the deformed or temporary shape were varied. The mechanical and SM properties of the materials were characterized using dynamic mechanical analysis in tensile mode.