WorldWideScience

Sample records for deformed neutron-rich nuclei

  1. Neutron rich nuclei

    International Nuclear Information System (INIS)

    Foucher, R.

    1979-01-01

    If some β - emitters are particularly interesting to study in light, medium, and heavy nuclei, another (and also) difficult problem is to know systematically the properties of these neutron rich nuclei far from the stability line. A review of some of their characteristics is presented. How far is it possible to be objective in the interpretation of data is questioned and implications are discussed

  2. Shape of 44Ar: Onset of deformation in neutron-rich nuclei near 48Ca

    International Nuclear Information System (INIS)

    Zielinska, M.; Goergen, A.; Clement, E.; Korten, W.; Dossat, C.; Ljungvall, J.; Obertelli, A.; Theisen, Ch.; Delaroche, J.-P.; Girod, M.; Buerger, A.; Catford, W.; Iwanicki, J.; Napiorkowski, P. J.; Srebrny, J.; Wrzosek, K.; Libert, J.; PiePtak, D.; Rodriguez-Guzman, R.; Sletten, G.

    2009-01-01

    The development of deformation and shape coexistence in the vicinity of doubly magic 48 Ca, related to the weakening of the N=28 shell closure, was addressed in a low-energy Coulomb excitation experiment using a radioactive 44 Ar beam from the SPIRAL facility at GANIL. The 2 1 + and 2 2 + states in 44 Ar were excited on 208 Pb and 109 Ag targets at two different beam energies. B(E2) values between all observed states and the spectroscopic quadrupole moment of the 2 1 + state were extracted from the differential Coulomb excitation cross sections, indicating a prolate shape of the 44 Ar nucleus and giving evidence of an onset of deformation already two protons and two neutrons away from doubly magic 48 Ca. New Hartree-Fock-Bogoliubov based configuration mixing calculations have been performed with the Gogny D1S interaction for 44 Ar and neighboring nuclei using two different approaches: the angular momentum projected generator coordinate method considering axial quadrupole deformations and a five-dimensional approach including the triaxial degree of freedom. The experimental values and new calculations are furthermore compared to shell-model calculations and to relativistic mean-field calculations. The new results give insight into the weakening of the N=28 shell closure and the development of deformation in this neutron-rich region of the nuclear chart.

  3. Neutron rich nuclei around 132Sn

    International Nuclear Information System (INIS)

    Bhattacharya, Sarmishtha

    2016-01-01

    The neutron rich nuclei with few particles or holes in 132 Sn have various experimental and theoretical interest to understand the evolution of nuclear structure around the doubly magic shell closure Z=50 and N=82. Some of the exotic neutron rich nuclei in this mass region are situated near waiting points in the r-process path and are of special astrophysical interest. Neutron rich nuclei near 132 Sn have been studied using fission fragment spectroscopy. The lifetime of low lying isomeric states have been precisely measured and the beta decay from the ground and isomeric states have been characterized using gamma-ray spectroscopy

  4. Structure of Light Neutron-rich Nuclei

    International Nuclear Information System (INIS)

    Dlouhy, Zdenek

    2007-01-01

    In this contribution we searched for irregularities in various separation energies in the frame of mass measurement of neutron-rich nuclei at GANIL. On this basis we can summarize that the new doubly magic nuclei are 8 He, 22 O and 24 O. They are characterized by extra stability and, except 24 O, they cannot accept and bind additional neutrons. However, if we add to these nuclei a proton we obtain 9 Li and 25 F which are the core for two-neutron halo nucleus 11 Li and enables that fluorine can bound even 6 more neutrons, respectively. In that aspect the doubly magic nuclei in the neutron-rich region can form the basis either for neutron halo or very neutron-rich nuclei. (Author)

  5. Structure of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Nazarewicz, W.; Oak Ridge National Lab., TN; Warsaw Univ.

    1997-11-01

    One of the frontiers of today's nuclear science is the ''journey to the limits'': of atomic charge and nuclear mass, of neutron-to-proton ratio, and of angular momentum. The new data on exotic nuclei are expected to bring qualitatively new information about the fundamental properties of the nucleonic many-body system, the nature of the nuclear interaction, and nucleonic correlations at various energy-distance scales. In this talk, current developments in nuclear structure of neutron-rich nuclei are discussed from a theoretical perspective

  6. Modeling a neutron rich nuclei source

    Energy Technology Data Exchange (ETDEWEB)

    Mirea, M.; Bajeat, O.; Clapier, F.; Ibrahim, F.; Mueller, A.C.; Pauwels, N.; Proust, J. [Institut de Physique Nucleaire, IN2P3/CNRS, 91 - Orsay (France); Mirea, M. [Institute of Physics and Nuclear Engineering, Tandem Lab., Bucharest (Romania)

    2000-07-01

    The deuteron break-up process in a suitable converter gives rise to intense neutron beams. A source of neutron rich nuclei based on the neutron induced fission can be realised using these beams. A theoretical optimization of such a facility as a function of the incident deuteron energy is reported. The model used to determine the fission products takes into account the excitation energy of the target nucleus and the evaporation of prompt neutrons. Results are presented in connection with a converter-target specific geometry. (author000.

  7. Modeling a neutron rich nuclei source

    International Nuclear Information System (INIS)

    Mirea, M.; Bajeat, O.; Clapier, F.; Ibrahim, F.; Mueller, A.C.; Pauwels, N.; Proust, J.; Mirea, M.

    2000-01-01

    The deuteron break-up process in a suitable converter gives rise to intense neutron beams. A source of neutron rich nuclei based on the neutron induced fission can be realised using these beams. A theoretical optimization of such a facility as a function of the incident deuteron energy is reported. The model used to determine the fission products takes into account the excitation energy of the target nucleus and the evaporation of prompt neutrons. Results are presented in connection with a converter-target specific geometry. (authors)

  8. Structure of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    2000-01-01

    Complete text of publication follows. The uncharted regions of the (N,Z) plane contain information that can answer many questions of fundamental importance for science: How many protons and neutrons can be clustered together by the strong interaction to form a bound nucleus? What are the proton and neutron magic numbers of the exotic nuclei? What are the properties of very short-lived exotic nuclei with extreme neutron-to-proton ratios? What is the effective nucleon-nucleon interaction in a nucleus that has a very large neutron excess? Nuclear life far from stability is different from that around the stability line; the promised access to completely new combinations of proton and neutron numbers offers prospects for new structural phenomena. The main objective of this talk is to discuss some of the challenges and opportunities of research with exotic nuclei. The covered topics will include: Theoretical challenges; Skins and halos in heavy nuclei; Shape coexistence in exotic nuclei; Beta-decays of neutron-rich nuclei. (author)

  9. Relativistic mean field calculations in neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gangopadhyay, G.; Bhattacharya, Madhubrata [Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 700 009 (India); Roy, Subinit [Saha Institute of Nuclear Physics, Block AF, Sector 1, Kolkata- 700 064 (India)

    2014-08-14

    Relativistic mean field calculations have been employed to study neutron rich nuclei. The Lagrange's equations have been solved in the co-ordinate space. The effect of the continuum has been effectively taken into account through the method of resonant continuum. It is found that BCS approximation performs as well as a more involved Relativistic Continuum Hartree Bogoliubov approach. Calculations reveal the possibility of modification of magic numbers in neutron rich nuclei. Calculation for low energy proton scattering cross sections shows that the present approach reproduces the density in very light neutron rich nuclei.

  10. Two-proton knockout on neutron-rich nuclei

    International Nuclear Information System (INIS)

    Bazin, D.; Brown, B.A.; Campbell, C.M.; Church, J.A.; Dinca, D.C.; Enders, J.; Gade, A.; Glasmacher, T.; Hansen, P.G.; Mueller, W.F.; Olliver, H.; Perry, B.C.; Sherrill, B.M.; Terry, J.R.; Tostevin, J.A.

    2004-01-01

    Two-proton knockout reactions on neutron-rich nuclei [Phys. Rev. Lett. 91 (2003) 012501] have been studied in inverse kinematics at intermediate energy. Strong evidence that the two-proton removal from a neutron-rich system proceeds as a direct reaction is presented, together with a preliminary theoretical discussion of the partial cross sections based on eikonal reaction theory and the many-body shell model. They show that this reaction can be used to characterize the wave functions of the projectiles and holds great promise for the study of neutron-rich nuclei

  11. Deep inelastic reactions and isomers in neutron-rich nuclei across the perimeter of the A = 180 - 190 deformed region

    International Nuclear Information System (INIS)

    Dracoulis, G.D.; Lane, G.J.; Byrne, A.P.; Watanabe, H.; Hughes, R.O.; Kondev, F.G.; Carpenter, M.P.; Janssens, R.V.F.; Lauritsen, T.; Lister, C.J.; Seweryniak, D.; Zhu, S.; Chowdhury, P.; Shi, Y.; Xu, F.R.

    2014-01-01

    Recent results on high-spin isomers populated in deep-inelastic reactions in the transitional tungsten-osmium region are outlined with a focus on 190 Os, 192 Os and 194 Os. As well as the characterization of several two-quasineutron isomers, the 12 + and 20 + isomers in 192 Os are interpreted as manifestations of maximal rotation alignment within the neutron i(13/2) and possibly proton h(11/2) shells at oblate deformation. (authors)

  12. Calculation of the radii of neutron rich light exotic nuclei

    International Nuclear Information System (INIS)

    Charagi, S.K.; Gupta, S.K.

    1991-01-01

    The interaction cross section of a few unstable neutron rich nuclei have been measured using exotic isotope beams produced through the projectile fragmentation process in high energy heavy-ion collisions. Interaction cross section of He, Li, Be and B isotope projectiles with Be, C and Al targets have thus been measured at 790 MeV/nucleon. We have made a comprehensive analysis of the data on the interaction cross section, to extract the radii of these neutron rich light nuclei. 7 refs., 1 fig., 3 tabs

  13. Haloes and clustering in light, neutron-rich nuclei

    International Nuclear Information System (INIS)

    Orr, N.A.

    2001-10-01

    Clustering is a relatively widespread phenomenon which takes on many guises across the nuclear landscape. Selected topics concerning the study of halo systems and clustering in light, neutron-rich nuclei are discussed here through illustrative examples taken from the Be isotopic chain. (author)

  14. Lifetime measurement in neutron-rich A ∝ 100 nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ansari, Saba; Jolie, Jan; Regis, Jean-Marc; Saed-Samii, Nima; Warr, Nigel [Institute for Nuclear Physics, University of Cologne, Cologne (Germany); Collaboration: EXILL-FATIMA-Collaboration

    2016-07-01

    Rapid shape changes are observed in the region of neutron rich nuclei with a mass around A=100. Precise lifetime measurements are a key ingredient in the systematic study of the evolution of nuclear deformation and the degree of collectivity in this region. Nuclear lifetimes of excited states can be obtained using the fast-timing technique with LaBr{sub 3}(Ce)-scintillators. We used neutron induced fission of {sup 241}Pu in order to study lifetimes of excited states of fission fragments in the A∝100 region. The EXILL-FATIMA array located at the PF1B cold neutron beam line at the Institut Laue-Langevin comprises of 8 BGO-shielded EXOGAM clover detectors and 16 very fast LaBr{sub 3}(Ce)-scintillator detectors, which were installed around the fission target. We have studied the lifetimes of low lying states for the nuclei {sup 98}Zr, {sup 100}Zr and {sup 102}Zr by applying the generalized centroid difference method. In this contribution we report on the used fast-timing setup and present preliminary results for the studied isotopes.

  15. Maris polarization in neutron-rich nuclei

    Science.gov (United States)

    Shubhchintak; Bertulani, C. A.; Aumann, T.

    2018-03-01

    We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon-nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p) reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  16. Maris polarization in neutron-rich nuclei

    Directory of Open Access Journals (Sweden)

    Shubhchintak

    2018-03-01

    Full Text Available We present a theoretical study of the Maris polarization effect and its application in quasi-free reactions to assess information on the structure of exotic nuclei. In particular, we explore the dependence of the polarization effect on neutron excess and neutron-skin thickness. We discuss the uncertainties in the calculations of triple differential cross sections and of analyzing powers due the choices of various nucleon–nucleon interactions and optical potentials and the limitations of the method. Our study implies that polarization variables in (p, 2p reactions in inverse kinematics can be an effective probe of single-particle structure of nuclei in radioactive-beam facilities.

  17. Reactions with fast radioactive beams of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Aumann, T. [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany)

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like {sup 11}Li and {sup 12}Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  18. Reactions with fast radioactive beams of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Aumann, T.

    2005-11-01

    The neutron dripline has presently been reached only for the lightest nuclei up to the element oxygen. In this region of light neutron-rich nuclei, scattering experiments are feasible even for dripline nuclei by utilizing high-energy secondary beams produced by fragmentation. In the present article, reactions of high-energy radioactive beams will be exemplified using recent experimental results mainly derived from measurements of breakup reactions performed at the LAND and FRS facilities at GSI and at the S800 spectrometer at the NSCL. Nuclear and electromagnetically induced reactions allow probing different aspects of nuclear structure at the limits of stability related to the neutron-proton asymmetry and the weak binding close to the dripline. Properties of the valence-neutron wave functions are studied in the one-neutron knockout reaction, revealing the changes of shell structure when going from the beta-stability line to more asymmetric loosely bound neutron-rich systems. The vanishing of the N=8 shell gap for neutron-rich systems like 11 Li and 12 Be, or the new closed N=14, 16 shells for the oxygen isotopes are examples. The continuum of weakly bound nuclei and halo states can be studied by inelastic scattering. The dipole response, for instance, is found to change dramatically when going away from the valley of stability. A redistribution of the dipole strength towards lower excitation energies is observed for neutron-rich nuclei, which partly might be due to a new collective excitation mode related to the neutron-proton asymmetry. Halo nuclei in particular show strong dipole transitions to the continuum at the threshold, being directly related to the ground-state properties of the projectile. Finally, an outlook on future experimental prospects is given. (orig.)

  19. Isospin Conservation in Neutron Rich Systems of Heavy Nuclei

    Science.gov (United States)

    Jain, Ashok Kumar; Garg, Swati

    2018-05-01

    It is generally believed that isospin would diminish in its importance as we go towards heavy mass region due to isospin mixing caused by the growing Coulomb forces. However, it was realized quite early that isospin could become an important and useful quantum number for all nuclei including heavy nuclei due to neutron richness of the systems [1]. Lane and Soper [2] also showed in a theoretical calculation that isospin indeed remains quite good in heavy mass neutron rich systems. In this paper, we present isospin based calculations [3, 4] for the fission fragment distributions obtained from heavy-ion fusion fission reactions. We discuss in detail the procedure adopted to assign the isospin values and the role of neutron multiplicity data in obtaining the total fission fragment distributions. We show that the observed fragment distributions can be reproduced rather reasonably well by the calculations based on the idea of conservation of isospin. This is a direct experimental evidence of the validity of isospin in heavy nuclei, which arises largely due to the neutron-rich nature of heavy nuclei and their fragments. This result may eventually become useful for the theories of nuclear fission and also in other practical applications.

  20. Shell gap reduction in neutron-rich N=17 nuclei

    International Nuclear Information System (INIS)

    Obertelli, A.; Gillibert, A.; Alamanos, N.; Alvarez, M.; Auger, F.; Dayras, R.; Drouart, A.; France, G. de; Jurado, B.; Keeley, N.; Lapoux, V.; Mittig, W.; Mougeot, X.; Nalpas, L.; Pakou, A.; Patronis, N.; Pollacco, E.C.; Rejmund, F.; Rejmund, M.; Roussel-Chomaz, P.; Savajols, H.; Skaza, F.; Theisen, Ch.

    2006-01-01

    The spectroscopy of 27 Ne has been investigated through the one-neutron transfer reaction 26 Ne(d,p) 27 Ne in inverse kinematics at 9.7 MeV/nucleon. The results strongly support the existence of a low-lying negative parity state in 27 Ne, which is a signature of a reduced sd-fp shell gap in the N=16 neutron-rich region, at variance with stable nuclei

  1. Beta decay rates of neutron-rich nuclei

    Science.gov (United States)

    Marketin, Tomislav; Huther, Lutz; Petković, Jelena; Paar, Nils; Martínez-Pinedo, Gabriel

    2016-06-01

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei. Aside from the astrophysical applications, the results of this calculation can also be employed in the modeling of the electron and antineutrino spectra from nuclear reactors.

  2. Beta decay rates of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Marketin, Tomislav; Petković, Jelena; Paar, Nils; Huther, Lutz; Martínez-Pinedo, Gabriel

    2016-01-01

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei. Aside from the astrophysical applications, the results of this calculation can also be employed in the modeling of the electron and antineutrino spectra from nuclear reactors.

  3. Beta decay rates of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Marketin, Tomislav, E-mail: marketin@phy.hr; Petković, Jelena; Paar, Nils [Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia); Huther, Lutz [Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, 64289 Darmstadt (Germany); Martínez-Pinedo, Gabriel [Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, 64289 Darmstadt (Germany); GSI Helmholtzzentrum für Schwerioneneforschung, Planckstraße 1, 64291 Darmstadt (Germany)

    2016-06-21

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei. Aside from the astrophysical applications, the results of this calculation can also be employed in the modeling of the electron and antineutrino spectra from nuclear reactors.

  4. Beta decay rates of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Marketin, Tomislav; Huther, Lutz; Martínez-Pinedo, Gabriel

    2015-01-01

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. Currently, a single large-scale calculation is available based on a QRPA calculation with a schematic interaction on top of the Finite Range Droplet Model. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei

  5. Beta decay rates of neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Marketin, Tomislav, E-mail: marketin@phy.hr [Department of Physics, Faculty of Science, University of Zagreb, 10000 Zagreb (Croatia); Huther, Lutz [Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, 64289 Darmstadt (Germany); Martínez-Pinedo, Gabriel [Institut für Kernphysik (Theoriezentrum), Technische Universität Darmstadt, 64289 Darmstadt (Germany); GSI Helmholtzzentrum für Schwerioneneforschung, Planckstraße 1, 64291 Darmstadt (Germany)

    2015-10-15

    Heavy element nucleosynthesis models involve various properties of thousands of nuclei in order to simulate the intricate details of the process. By necessity, as most of these nuclei cannot be studied in a controlled environment, these models must rely on the nuclear structure models for input. Of all the properties, the beta-decay half-lives are one of the most important ones due to their direct impact on the resulting abundance distributions. Currently, a single large-scale calculation is available based on a QRPA calculation with a schematic interaction on top of the Finite Range Droplet Model. In this study we present the results of a large-scale calculation based on the relativistic nuclear energy density functional, where both the allowed and the first-forbidden transitions are studied in more than 5000 neutron-rich nuclei.

  6. Shape evolution in neutron-rich A ~ 140 nuclei beyond the doubly-magic nucleus 132Sn

    Science.gov (United States)

    Odahara, Atsuko; Eurica Collaboration

    2014-09-01

    Study for the shape evolution enables us to disentangle competition between spherical (single-particle like) shape and deformed (collective-like) shape as a function of neutron number. Neutron-rich nuclei in the northeast region of the doubly-magic 132Sn locates in one of the best mass region where a variety of collective modes, not only prolate deformation but also octupole collectivity, are expected to appear. These neutron-rich A ~140 nuclei were produced by using in-flight fission reaction of the 345 MeV/u 238U86+ beam at RIKEN RI Beam Factory. This experiment was performed in the framework of the EURICA (EUroball RIken Cluster Array) project based on the highly-efficient β- and isomer-decay spectroscopy methods. Around 20 extremely neutron-rich nuclei with Z=51--55 have been studied in this work. New isomers with half lives of longer than hundreds ns were found in some nuclei, such as the neutron-rich Cs isotopes. Also, preliminary results for the β decay of neutron-rich I and Xe isotopes have been obtained. Systematic change of the shape evolution for these neutron-rich isotopes will be discussed.

  7. Nuclear transition moment measurements of neutron rich nuclei

    Science.gov (United States)

    Starosta, Krzysztof

    2009-10-01

    The Recoil Distance Method (RDM) and related Doppler Shift Attenuation Method (DSAM) are well-established tools for lifetime measurements following nuclear reactions near the Coulomb barrier. Recently, the RDM was implemented at National Superconducting Cyclotron Laboratory (NSCL) at Michigan State University using NSCL/K"oln plunger device and a unique combination of the state-of-the-art instruments available there. Doppler-shift lifetime measurements following Coulomb excitation, knock-out, and fragmentation at intermediate energies of ˜100 MeV/u hold the promise of providing lifetime information for excited states in a wide range of unstable nuclei. So far, the method was used to investigate the collectivity of the neutron-rich ^16,18,20C, ^62,64,66Fe, ^70,72Ni, ^110,114Pd isotopes and also of the neutron-deficient N=Z ^64Ge. A significant fraction of these experiments was performed using NSCL's Segmented Germanium Array instrumented with the Digital Data Acquisition System which enables gamma-ray tracking. The impact of GRETINA and gamma-ray tracking on RDM and DSAM studies of neutron-rich nuclei will be discussed.

  8. Properties of neutron-rich nuclei studied by fission product nuclear chemistry

    International Nuclear Information System (INIS)

    Meyer, R.A.; Henry, E.A.; Griffin, H.C.; Lien, O.G. III; Lane, S.M.; Stevenson, P.C.; Yaffe, R.P.; Skarnemark, G.

    1979-09-01

    A review is given of the properties of neutron-rich nuclei studied by fission product nuclear chemistry and includes the techniques used in elemental isolation and current research on the structure of nuclei near 132 Sn, particle emission, and coexisting structure in both neutron-poor and neutron-rich nuclei. 35 references

  9. Evolution of collectivity in neutron-rich nuclei in the 132Sn region

    International Nuclear Information System (INIS)

    Kshetri, Ritesh; Sarkar, M. Saha; Sarkar, S.

    2006-01-01

    Motivated by the observed regularity in the energy spectra and the structure of the shell model wave functions for the levels of 137 Te and 137 I, a few weakly and moderately deformed neutron-rich odd-A nuclei above the doubly magic nucleus 132 Sn were studied using the particle rotor model (PRM). The calculated energy spectra and branching ratios agree reasonably well with the most recent experimental data. In a few cases ambiguity in level ordering was resolved and spin-parities were assigned to the levels. Observed octupole correlation in some of these nuclei is discussed in the light of the present results

  10. The pygmy dipole resonance in neutron-rich nuclei

    International Nuclear Information System (INIS)

    Hung, Nguyen Quang; Kiet, Hoang Anh Tuan; Duc, Huynh Ngoc; Chuong, Nguyen Thi

    2016-01-01

    The pygmy dipole resonance (PDR), which has been observed via the enhancement of the electric dipole strength E 1 of atomic nuclei, is studied within a microscopic collective model. The latter employs the Hartree-Fock (HF) method with effective nucleon-nucleon interactions of the Skyrme types plus the random-phase approximation (RPA). The results of the calculations obtained for various even-even nuclei such as "1"6"-"2"8O, "4"0"-"5"8Ca, "1"0"0"-"1"2"0Sn, and "1"8"2"-"2"1"8Pb show that the PDR is significantly enhanced when the number of neutrons outside the stable core of the nucleus is increased, that is, in the neutron-rich nuclei. As the result, the relative ratio between the energy weighted sum of the strength of the PDR and that of the GDR (giant dipole resonance) does not exceed 4%. The collectivity of the PDR and GDR states will be also discussed. (paper)

  11. Spectroscopy on neutron-rich nuclei at RIKEN. Present and future

    International Nuclear Information System (INIS)

    Sakurai, H.

    2003-01-01

    Recent studies on nuclear structure by using radioactive isotope beams available at the RIKEN projectile-fragment separator (RIPS) are introduced. Special emphasis is given to experiments selected from the recent programs that highlight studies at N=20-28; on the large deformation of 30 Ne and 34 Mg via the in-beam gamma spectroscopy, and on the particle stability of very neutron-rich nuclei, 34 Ne, 37 Na and 43 Si. The RI Beam Factory (RIBF) project is illustrated through review of such present research activities at RIPS. (author)

  12. Production and identification of new, neutron-rich nuclei in the {sup 208}Pb region

    Energy Technology Data Exchange (ETDEWEB)

    Rykaczewski, K. [Oak Ridge National Lab., TN (United States). Physics Div.]|[ISOLDE-CERN, Geneva (Switzerland)]|[Univ. of Warsaw (Poland); Kurpeta, J.; Plochocki, A. [Univ. of Warsaw (Poland)] [and others

    1998-11-01

    The recently developed methods allowing the experimental studies on new neutron-rich nuclei beyond doubly-magic {sup 208}Pb are briefly described. An identification of new neutron-rich isotopes {sup 215}Pb and {sup 217}Bi, and new decay properties of {sup 216}Bi studied by means of a pulsed release element selective technique at PS Booster-ISOLDE are reported.

  13. Production and identification of new, neutron-rich nuclei in the 208Pb region

    International Nuclear Information System (INIS)

    Rykaczewski, K.; Kurpeta, J.; Plochocki, A.; Karny, M.; Szerypo, J.; Evensen, A.-H.; Kugler, E.; Lettry, J.; Ravn, H.; Duppen, P. van; Andreyev, A.; Huyse, M.; Woehr, A.; Jokinen, A.; Aeystoe, J.; Nieminen, A.; Huhta, M.; Ramdhane, M.; Walter, G.; Hoff, P.

    1998-01-01

    The recently developed methods allowing the experimental studies on new neutron-rich nuclei beyond doubly-magic 208 Pb are briefly described. An identification of new neutron-rich isotopes 215 Pb and 217 Bi, and new decay properties of 216 Bi studied by means of a pulsed release element selective technique at PS Booster-ISOLDE are reported

  14. Fusion enhancement in the reactions of neutron-rich nuclei

    International Nuclear Information System (INIS)

    Bian Baoan; Zhang Fengshou; Zhou Hongyu

    2009-01-01

    The neutron-rich fusion reactions are investigated systematically using the improved isospin dependent quantum molecular dynamics model. By studying the systematic dependence of fusion barrier on neuron excess, we find the enhancement of the fusion cross sections for neutron-rich nuclear reactions that give the lowered static Coulomb barriers. The calculated fusion cross sections agree quantitatively with the experimental data. We further discuss the mechanism of the fusion enhancement of the cross sections for neutron-rich nuclear reactions by analyzing the dynamical lowering of the Coulomb barrier that is attributed to the enhancement of the N/Z ratio at the neck region.

  15. Coulomb Excitation of Neutron-Rich $A\\approx$140 Nuclei

    CERN Multimedia

    Van duppen, P L E

    2002-01-01

    Investigating the isospin dependence of the product between the B( E2; 0$_{1}^{+} \\rightarrow 2_{1}^{+}$)-value and the 2$_{1}^{+}$-excitation energy E$_{2^{+}}$ in even-even nuclei around $A\\!\\approx$140 one observes a rather smooth trend close to the valley of stability but clear indication for a reduction from the extrapolated B(E2)-values by one order of magnitude for some very neutron-rich nuclei. While close to the valley of stability the strong neutron-proton interaction results in an equilibration of the neutron and proton deformations with a predominate isoscalar character of the collective 2$^{+}$ excitation, it is conceivable that more loosely bound neutrons cannot polarize a close-to-magic proton core that well any more. This might result in a decoupling of the shape of the outer neutrons from the core and in a strong isovector admixture to the lowest lying 2$^{+}$ level. In this way the 2$^{+}$ -energies could be further lowered in neutron-rich nuclei, while the quadrupole moments of the proton c...

  16. Low-lying dipole strength of neutron-rich 'island of inversion' nuclei around n ∼ 20

    International Nuclear Information System (INIS)

    Datta Pramanik, U.; Chakraborty, S.; Ray, I.

    2009-01-01

    Magic numbers are the basic building blocks of nuclear structure since last fifty years. Recently, through various experimental results using Radioactive Ion Beam (RIB) facilities, it has been observed that those long cherished magic numbers are not valid anymore in the neutron rich nuclei like 32 Mg etc. The breakdown of magic number was hinted in the late 1980 's by Thibault et. al. in sodium nuclei ( 31,32 Na). Motobayashi et. al. showed large deformation for 32 Mg which leads to the failure of magic number at N = 20. Exploration into the cause of this breakdown shows the filling of higher pf orbitals rather than the pure lower sd orbitals in the ground state of the neutron-rich nuclei like Ne, Na, Mg in the region N∼20. Thus there is obviously an inversion in nuclear orbitals and hence the so called name 'island of inversion'. This year, we have performed an experiment at GSI, Darmstadt. The measurement of dipole threshold strength of neutron-rich nucleus (N∼20) through electromagnetic excitation was done using LAND-FRS setup. Through this dipole strength, we would like to probe directly the quantum numbers of the valence neutrons in neutron rich nuclei like 31-33 Mg, 33-35 Al, 29-30 Na, 25-27 Ne, 24 F etc.

  17. Symmetry energy and surface properties of neutron-rich exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gaidarov, M. K.; Antonov, A. N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Sarriguren, P. [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006 Madrid (Spain); Moya de Guerra, E. [Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2014-07-23

    The symmetry energy, the neutron pressure and the asymmetric compressibility of spherical Ni, Sn, and Pb and deformed Kr and Sm neutron-rich even-even nuclei are calculated within the coherent density fluctuation model using the symmetry energy as a function of density within the Brueckner energy-density functional. The correlation between the thickness of the neutron skin and the characteristics related with the density dependence of the nuclear symmetry energy is investigated for isotopic chains of these nuclei in the framework of the deformed self-consistent mean-field Skyrme HF+BCS method. The mass dependence of the nuclear symmetry energy and the neutron skin thickness are also studied together with the role of the neutron-proton asymmetry. The studied correlations reveal a smoother behavior in the case of spherical nuclei than for deformed ones. We also notice that the neutron skin thickness obtained for {sup 208}Pb with SLy4 force is found to be in a good agreement with the recent data. In addition to the interest that this study may have by itself, we give some numerical arguments in proof of the existence of peculiarities of the studied quantities in Ni and Sn isotopic chains that are not present in the Pb chain.

  18. Study of very neutron-rich nuclei produced by means of a 48Ca beam

    International Nuclear Information System (INIS)

    Lewitowicz, M.; Artukh, A.G.

    1991-01-01

    The results of experiments with a 48 Ca beam performed at GANIL are presented and discussed. More than 30 very neutron-rich isotopes were identified or studied for the first time. The evidence for particle-unstable character of the 26 O isotope is reported. Half-life measurements for light neutron rich nuclei are compared with different theoretical predictions. (author) 14 refs.; 6 figs.; 1 tab

  19. Nucleosynthesis of neutron-rich heavy nuclei during explosive helium burning in massive stars

    International Nuclear Information System (INIS)

    Blake, J.B.; Woosley, S.E.; Weaver, T.A.; Schramm, D.N.

    1981-01-01

    The production of heavy nuclei during explosive helium burning has been calculated using a hydrodynamical model of a 15 M/sub sun/ (Type II) supernovae and a n-process nuclear reaction network. The resulting neutron-rich heavy nuclei are not produced in the relative abundances of solar-system r-process material, especially in the vicinity of Pt, nor are any actinides produced. These deficiencies reflect an inadequate supply of neutrons. However, some neutron-rich isotopes, normally associated with the r-process, are produced which may be significant for the production of isotopic anomalies in meteorites

  20. Study of subshell gap around N = 70 for neutron-rich nuclei

    International Nuclear Information System (INIS)

    Hemalatha, M.

    2011-01-01

    The study and search for new regions of shell closure for nuclei away from stability is a topic of current interest both experimentally and theoretically. There have been few studies predicting a weak spherical subshell gap of 110 Zr (N = 70), for example. This is supported by a recent study indicating that the spherical N = 70 shell gap may not have a large effect at N = 68 for Zr isotopes. It would be, therefore, interesting to know whether there is a subshell closure at N = 70 in the neutron rich region and also for the very neutron-rich nuclei, 110 Zr

  1. SU(3) symmetries in exotic neutron-rich nuclei

    International Nuclear Information System (INIS)

    Hayes, A.C.

    1991-01-01

    We examine the structure of the exotic neutron-rich nucleus 11 Li with an emphasis on understanding the origin of the soft E1 resonance and the neuron halo. The similarities and differences between shell model and di-neutron cluster model descriptions of the system are displayed using the Hecht expansion techniques. We find that the ground state 11 Li as described in large shell model calculations is well approximated by the di-neutron cluster state. In contrast to the ground state, the soft E1 model of 11 Li appears to have a more complicated structure and the E1 strength of this resonance is very sensitive to cancellations between p→s and p→d contributions to the dipole matrix elements. 12 refs., 6 figs., 3 tabs

  2. Dipole polarizability of neutron rich nuclei and the symmetry energy

    Energy Technology Data Exchange (ETDEWEB)

    Horvat, Andrea; Johansen, Jacob; Miki, Kenjiro; Schindler, Fabia; Schrock, Philipp [IKP, TU Darmstadt (Germany); Aumann, Thomas [IKP, TU Darmstadt (Germany); GSI, Darmstadt (Germany); Boretzky, Konstanze [GSI, Darmstadt (Germany); Collaboration: R3B-Collaboration

    2015-07-01

    As a part of a systematic investigation of the dipole response of stable up to very neutron rich tin isotopes, nuclear and electromagnetic excitation of {sup 124}Sn-{sup 134}Sn has been investigated at relativistic energies in inverse kinematics induced by carbon and lead targets at the LAND-R3B setup at GSI in Darmstadt. The electric dipole response and the nuclear reaction cross section, total and charge-changing, are obtained from the kinematically complete determination of momenta of all particles on an event by event basis. The dipole polarizability is extracted from the Coulomb excitation interaction channel, in order to make use of relevant correlations of this observable with nuclear matter properties such as the symmetry energy at saturation density (J) and it's slope (L). The systematics of the low-lying ''pygmy'' dipole strength, the giant dipole resonance (GDR) and the neutron skin thickness are determined with respect to increasing isospin asymmetry. This talk also discusses the correlations and sensitivities of these variables and observables obtained within the framework of nuclear energy density functional theory.

  3. Evidence for a smooth onset of deformation in the neutron-rich Kr isotopes

    CERN Document Server

    Albers, M; Nomura, K; Blazhev, A; Jolie, J; Mucher, D; Bastin, B; Bauer, C; Bernards, C; Bettermann, L; Bildstein, V; Butterworth, J; Cappellazzo, M; Cederkall, J; Cline, D; Darby, I; Das Gupta, S; Daugas, J M; Davinson, T; De Witte, H; Diriken, J; Filipescu, D; Fiori, E; Fransen, C; Gaffney, L P; Georgiev, G; Gernhauser, R; Hackstein, M; Heinze, S; Hess, H; Huyse, M; Jenkins, D; Konki, J; Kowalczyk, M; Kroll, T; Krucken, R; Litzinger, J; Lutter, R; Marginean, N; Mihai, C; Moschner, K; Napiorkowski, P; Nara Singh, B S; Nowak, K; Otsuka, T; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Rigby, S; Robledo, L M; Rodriguez-Guzman, R; Rudigier, M; Sarriguren, P; Scheck, M; Seidlitz, M; Siebeck, B; Simpson, G; Thole, P; Thomas, T; Van de Walle, J; Van Duppen, P; Vermeulen, M; Voulot, D; Wadsworth, R; Wenander, F; Wimmer, K; Zell, K O; Zielinska, M

    2012-01-01

    The neutron-rich nuclei $^{94,96}$Kr were studied via projectile Coulomb excitation at the REX-ISOLDE facility at CERN. Level energies of the first excited 2$^{+}$ states and their absolute $E2$ transition strengths to the ground state are determined and discussed in the context of the $E(2^{+}_{1})$ and $B(E2;2^{+}_{1} \\rightarrow 0^{+}_{1})$ systematics of the krypton chain. Contrary to previously published results no sudden onset of deformation is observed. This experimental result is supported by a new proton-neutron interacting boson model calculation based on the constrained Hartree-Fock-Bogoliubov approach using the microscopic Gogny-D1M energy density functional.

  4. Measurement of total reaction cross sections of exotic neutron rich nuclei

    International Nuclear Information System (INIS)

    Mittig, W.; Chouvel, J.M.; Wen Long, Z.

    1987-01-01

    Total reaction cross-sections of neutron rich nuclei from C to Mg in a thick Si-target have been measured using the detection of the associated γ-rays in a 4Π-geometry. This cross-section strongly increases with neutron excess, indicating an increase of as much as 15% of the reduced strong absorption radius with respect to stable nuclei

  5. Direct mass measurements of light neutron-rich nuclei using fast recoil spectrometers

    International Nuclear Information System (INIS)

    Vieira, D.J.; Wouters, J.M.

    1987-01-01

    Extensive new mass measurement capabilities have evolved with the development of recoil spectrometers. In the Z = 3 to 9 neutron-rich region alone, 12 neutron-rich nuclei have been determined for the first time by the fast-recoil direct mass measurement method. A recent experiment using the TOFI spectrometer illustrates this technique. A systematic investigation of nuclei that lie along or near the neutron-drip line has provided a valuable first glimpse into the nuclear structure of such nuclei. No evidence for a large single-particle energy gap at N = 14 is observed; however, a change in the two-neutron separation model calculations, and is interpreted in terms of the smaller 1s/sub 1/2/ - 1s/sub 1/2/ interaction compared to that of the 0d/sub 5/2/ - 0d/sub 5/2/ neutron-neutron interaction. 18 refs., 7 figs., 1 tab

  6. GALS – setup for production and study of heavy neutron rich nuclei

    Directory of Open Access Journals (Sweden)

    Zemlyanoy Sergey

    2015-01-01

    Full Text Available The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126 below 208Pb is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. This area of the nuclear map can be reached neither in fusion–fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be significantly high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of 136Xe with 208Pb. A new setup is proposed to produce and study heavy neutron-rich nuclei located along the neutron closed shell N=126.

  7. GALS – setup for production and study of heavy neutron rich nuclei

    CERN Document Server

    Zemlyanoy, Sergey; Kozulin, Eduard; Kudryavtsev, Yury; Fedosseev, Valentin; Bark, Robert; Janas, Zenon; Othman, Hosam

    2015-01-01

    The present limits of the upper part of the nuclear map are very close to stability while the unexplored area of heavy neutron-rich nuclides along the neutron closed shell N = 126 below ^208Pb is extremely important for nuclear astrophysics investigations and, in particular, for the understanding of the r-process of astrophysical nucleosynthesis. This area of the nuclear map can be reached neither in fusion-fission reactions nor in fragmentation processes widely used nowadays for the production of exotic nuclei. A new way was recently proposed for the production of these nuclei via low-energy multi-nucleon transfer reactions. The estimated yields of neutron-rich nuclei are found to be significantly high in such reactions and several tens of new nuclides can be produced, for example, in the near-barrier collision of ^136Xe with ^208Pb. A new setup is proposed to produce and study heavy neutron-rich nuclei located along the neutron closed shell N=126.

  8. Fifth International Conference on Fission and Properties of Neutron-Rich Nuclei

    CERN Document Server

    Ramayya, A V; ICFN5

    2014-01-01

    These proceedings are the fifth in the series of International Conferences covering fission and properties of neutron-rich nuclei, which are at the forefront of nuclear research. The time interval of 5 years between each conference allows for significant new results to be achieved. Recently, world leaders in theory and experiments in research and the development of new facilities for research presented their latest results in areas such as synthesis of superheavy elements, new facilities for and recent results with radioactive ion beams, structure of neutron-rich nuclei, nuclear fission process, fission yields and nuclear astrophysics. This book is a major source of the latest research in these areas and plans for the future. The conference brought together a unique group of over 100 speakers including leaders from the major nuclear laboratories in Canada, China, France, Finland, Germany, Italy, Japan, Russia, Switerzland and the US along with leading research scientists from around the world.

  9. Investigation of correlations in light neutron-rich nuclei

    International Nuclear Information System (INIS)

    Normand, G.

    2004-10-01

    Correlations play a crucial role in understanding the structure of light nuclei at and beyond the neutron drip-line. In this context, the two-neutron halo nucleus He 6 and the unbound systems H 5 , He 7,9 and Li 10 have been studied via measurements of the breakup of beams of He 6 and Be 11,12 . The CHARISSA and DEMON detector arrays were employed. The interpretation was facilitated by a simulation code (SILLAGE) which provided for the setup. In the case of He 7 , the existence of an excited state with E r ∼ 1 MeV and gamma ∼ 0.75 MeV was confirmed. The virtual character of the s-wave ground state of Li 10 was also confirmed and a scattering length of as ∼ -16 fm deduced. The results obtained for He 9 suggest that a virtual s-wave state may exist just above threshold. The study of the three-body breakup of He 6 found that the decay of the first 2+ state is essentially direct, while the decay of the remaining continuum strength is sequential - passage via He 5 . Using the technique of intensity interferometry an rms separation between the halo neutrons of 7.7 +- 0.8 fm was derived. This result was confirmed by a complementary method utilizing Dalitz plots. In the case of H 5 , the invariant mass spectrum was found to exhibit a broad (gamma ∼ 2 MeV) structure some 1.8 MeV above threshold. Comparison with recent three-body model calculations suggest that this corresponds to the predicted 1/2+ ground state. An rms valence neutron separation of some 5.5 fm was estimated. A search was also carried out for the 4n system using the Be 12* (2 alpha + Xn decay channel). No signal was observed beyond that expected on the basis of the known background processes. (author)

  10. Structure of neutron-rich nuclei around the N = 50 shell-gap closure

    Science.gov (United States)

    Faul, T.; Duchêne, G.; Thomas, J.-C.; Nowacki, F.; Huyse, M.; Van Duppen, P.

    2010-04-01

    The structure of neutron-rich nuclei in the vicinity of 78Ni have been investigated via the β-decay of 71,73,75Cu isotopes (ISOLDE, CERN). Experimental results have been compared with shell-model calculations performed with the ANTOINE code using a large (2p3/21f5/22p1/21g9/2) valence space and a 56/28Ni28 core.

  11. Evolution of deformation in neutron-rich Ba isotopes up to A =150

    Science.gov (United States)

    Licǎ, R.; Benzoni, G.; Rodríguez, T. R.; Borge, M. J. G.; Fraile, L. M.; Mach, H.; Morales, A. I.; Madurga, M.; Sotty, C. O.; Vedia, V.; De Witte, H.; Benito, J.; Bernard, R. N.; Berry, T.; Bracco, A.; Camera, F.; Ceruti, S.; Charviakova, V.; Cieplicka-Oryńczak, N.; Costache, C.; Crespi, F. C. L.; Creswell, J.; Fernandez-Martínez, G.; Fynbo, H.; Greenlees, P. T.; Homm, I.; Huyse, M.; Jolie, J.; Karayonchev, V.; Köster, U.; Konki, J.; Kröll, T.; Kurcewicz, J.; Kurtukian-Nieto, T.; Lazarus, I.; Lund, M. V.; Mǎrginean, N.; Mǎrginean, R.; Mihai, C.; Mihai, R. E.; Negret, A.; Orduz, A.; Patyk, Z.; Pascu, S.; Pucknell, V.; Rahkila, P.; Rapisarda, E.; Regis, J. M.; Robledo, L. M.; Rotaru, F.; Saed-Samii, N.; Sánchez-Tembleque, V.; Stanoiu, M.; Tengblad, O.; Thuerauf, M.; Turturica, A.; Van Duppen, P.; Warr, N.; IDS Collaboration

    2018-02-01

    The occurrence of octupolar shapes in the Ba isotopic chain was recently established experimentally up to N =90 . To further extend the systematics, the evolution of shapes in the most neutron-rich members of the Z =56 isotopic chain accessible at present, Ba,150148, has been studied via β decay at the ISOLDE Decay Station. This paper reports on the first measurement of the positive- and negative-parity low-spin excited states of 150Ba and presents an extension of the β -decay scheme of 148Cs. Employing the fast timing technique, half-lives for the 21+ level in both nuclei have been determined, resulting in T1 /2=1.51 (1 ) ns for 148Ba and T1 /2=3.4 (2 ) ns for 150Ba. The systematics of low-spin states, together with the experimental determination of the B (E 2 :2+→0+) transition probabilities, indicate an increasing collectivity in Ba-150148, towards prolate deformed shapes. The experimental data are compared to symmetry conserving configuration mixing (SCCM) calculations, confirming an evolution of increasingly quadrupole deformed shapes with a definite octupolar character.

  12. Covariant description of shape evolution and shape coexistence in neutron-rich nuclei at N≈60

    International Nuclear Information System (INIS)

    Xiang, J.; Li, Z.P.; Li, Z.X.; Yao, J.M.; Meng, J.

    2012-01-01

    The shape evolution and shape coexistence phenomena in neutron-rich nuclei at N≈60, including Kr, Sr, Zr, and Mo isotopes, are studied in the covariant density functional theory (DFT) with the new parameter set PC-PK1. Pairing correlations are treated using the BCS approximation with a separable pairing force. Sharp rising in the charge radii of Sr and Zr isotopes at N=60 is observed and shown to be related to the rapid changing in nuclear shapes. The shape evolution is moderate in neighboring Kr and Mo isotopes. Similar as the results of previous Hartree–Fock–Bogoliubov (HFB) calculations with the Gogny force, triaxiality is observed in Mo isotopes and shown to be essential to reproduce quantitatively the corresponding charge radii. In addition, the coexistence of prolate and oblate shapes is found in both 98 Sr and 100 Zr. The observed oblate and prolate minima are related to the low single-particle energy level density around the Fermi surfaces of neutron and proton respectively. Furthermore, the 5-dimensional (5D) collective Hamiltonian determined by the calculations of the PC-PK1 energy functional is solved for 98 Sr and 100 Zr. The resultant excitation energy of 0 2 + state and E0 transition strength ρ 2 (E0;0 2 + →0 1 + ) are in rather good agreement with the data. It is found that the lower barrier height separating the two competing minima along the γ deformation in 100 Zr gives rise to the larger ρ 2 (E0;0 2 + →0 1 + ) than that in 98 Sr.

  13. Simulation of neutron rich nuclei production through 239U fission at intermediates energies

    International Nuclear Information System (INIS)

    Mirea, M.; Clapier, F.; Pauwels, N.; Proust, J.

    1997-01-01

    The theoretical part and some results obtained from a model realised for fission processes in wide range of mass-asymmetries are presented. The fission barriers are computed in a tridimensional configuration space using the Yukawa - plus - exponential macroscopic energies corrected within the Strutinsky procedure. It is assumed that channel probabilities are proportional with Gamow penetrabilities. The model is applied for the disintegration of the 239 U in order to determine the relative yields for the production of neutron rich nuclei at diverse intermediate energies. (author)

  14. Collective excitations in neutron-rich nuclei within the model of a Fermi liquid drop

    International Nuclear Information System (INIS)

    Kolomietz, V.M.; Magner, A.G.

    2000-01-01

    We discuss a new mechanism of splitting of giant multipole resonances (GMR) in spherical neutron-rich nuclei. This mechanism is associated with the basic properties of an asymmetric drop of nuclear Fermi liquid. In addition to well-known isospin shell-model predictions, our approach can be used to describe the GMR splitting phenomenon in the wide nuclear-mass region A ∼ 40-240. For the dipole isovector modes, the splitting energy, the relative strength of resonance peaks, and the contribution to the energy-weighted sum rules are in agreement with experimental data for the integrated cross sections for photonuclear (γ, n) and (γ, p) reactions

  15. Decay spectroscopy of neutron-rich nuclei with the CAITEN detector

    Energy Technology Data Exchange (ETDEWEB)

    Steiger, Konrad [Physik-Department E12, Technische Universitaet Muenchen (Germany); Collaboration: CAITEN-Collaboration

    2012-07-01

    An experiment in fall 2010 at the RIBF (Radioactive Ion Beam Factory at RIKEN, Japan) investigated the neutron-rich nuclei in the neighborhood of {sup 30}Ne and {sup 36}Mg. These nuclei were produced by relativistic projectile fragmentation of a 345 AMeV {sup 48}Ca primary beam which was delivered from the superconducting ring cyclotron SRC with an average intensity of 70 pnA. The secondary cocktail beam was separated and identified with the BigRIPS fragment separator and the ZeroDegree spectrometer. The unambiguous particle identification was achieved by measuring the energy loss, time of flight and magnetic rigidity event-by-event. The identified fragments were implanted in the CAITEN detector (Cylindrical Active Implantation Target for Efficient Nuclear-decay study). The main part of this detector is a 4 x 10{sup 4}-fold segmented plastic scintillator with the shape of a hollow cylinder. To reduce background events the scintillator was moved continuously in axial and vertical direction (similar to a tape-transporting system). Implantations and decays were correlated in time and space. {gamma}-rays were detected with three germanium clover detectors. For the first time {beta}-delayed gammas were measured in the neutron-rich isotopes {sup 36-38}Si. The status of the analysis and preliminary results including new half-life values and tentative level schemes for these very exotic nuclei are presented.

  16. Cluster-transfer reactions with radioactive beams: a spectroscopic tool for neutron-rich nuclei

    CERN Document Server

    AUTHOR|(CDS)2086156; Raabe, Riccardo; Bracco, Angela

    In this thesis work, an exploratory experiment to investigate cluster-transfer reactions with radioactive beams in inverse kinematics is presented. The aim of the experiment was to test the potential of cluster-transfer reactions at the Coulomb barrier, as a possible mean to perform $\\gamma$ spectroscopy studies of exotic neutron-rich nuclei at medium-high energies and spins. The experiment was performed at ISOLDE (CERN), employing the heavy-ion reaction $^{98}$Rb + $^{7}$Li at 2.85 MeV/A. Cluster-transfer reaction channels were studied through particle-$\\gamma$ coincidence measurements, using the MINIBALL Ge array coupled to the charged particle Si detectors T-REX. Sr, Y and Zr neutron-rich nuclei with A $\\approx$ 100 were populated by either triton- or $\\alpha$ transfer from $^{7}$Li to the beam nuclei and the emitted complementary charged fragment was detected in coincidence with the $\\gamma$ cascade of the residues, after few neutrons evaporation. The measured $\\gamma$ spectra were studied in detail and t...

  17. Magicity of neutron-rich nuclei within relativistic self-consistent approaches

    Directory of Open Access Journals (Sweden)

    Jia Jie Li

    2016-02-01

    Full Text Available The formation of new shell gaps in intermediate mass neutron-rich nuclei is investigated within the relativistic Hartree–Fock–Bogoliubov theory, and the role of the Lorentz pseudo-vector and tensor interactions is analyzed. Based on the Foldy–Wouthuysen transformation, we discuss in detail the role played by the different terms of the Lorentz pseudo-vector and tensor interactions in the appearing of the N=16, 32 and 34 shell gaps. The nuclei 24O, 48Si and 52,54Ca are predicted with a large shell gap and zero (24O, 52Ca or almost zero (48Si, 54Ca pairing gap, making them candidates for new magic numbers in exotic nuclei. We find from our analysis that the Lorentz pseudo-vector and tensor interactions induce very specific evolutions of single-particle energies, which could clearly sign their presence and reveal the need for relativistic approaches with exchange interactions.

  18. Neutron halo in deformed nuclei

    International Nuclear Information System (INIS)

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-01-01

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  19. Coulomb excitation of neutron-rich nuclei between the N=40 and N=50 shell gaps using REX-ISOLDE and the Ge MINIBALL array

    CERN Multimedia

    2002-01-01

    We propose to perform Coulomb excitation experiments of neutron-rich nuclei in the vicinity of $^{68}$Ni towards $^{78}$Ni using the REX-ISOLDE facility coupled with the highly efficient MINIBALL array. Major changes in the structure of the atomic nucleus are expected around the N = 40 subshell closure. Recent B(E2) measurements suggested that $^{68}$Ni behaves like a doubly magic nucleus while neutron-rich Zn isotopes with N>38 exhibit a sudden increase of B(E2) values which may be the signature of deformation. We would like to check and test these predictions for neutron-rich nuclei in the vicinity of N = 40 and N = 50 shell closures like $^{72}$Zn, $^{74}$Zn, $^{76}$Zn, $^{68}$Ni, $^{70}$Ni. Our calculations show that an energy upgrade from 2.2 to 3 MeV/nucleon will be of crucial importance for a part of our study while some nuclei can still be very efficiently studied at an energy of 2.2 MeV/nucleon. Therefore, to perform our experiment in an efficient way, we request 21 shifts of beam time before the ene...

  20. Half-lives of cluster decay of neutron rich nuclei in trans-tin region

    International Nuclear Information System (INIS)

    Swamy, G.S.; Umesh, T.K.

    2011-01-01

    In this work, the logarithmic half-life [log 10 (T 1/2 )] values have been reported for the exotic decay of some neutron rich even–even parent nuclei (56≤Z≤64) accompanied by the emission of alpha-like and non-alpha-like clusters in the trans-tin region. These values were calculated by using the single line of universal curve (UNIV) for alpha and cluster radioactive decay as well as the universal decay law (UDL). The half-life values were also separately calculated by considering the interacting nuclear potential barrier as the sum of Coulomb and proximity potentials. The half-life values based on the three calculations mentioned above, were found to agree with one another within a few orders of magnitude. Possible conclusions are drawn based on the present study. (author)

  1. Fusion reaction around the Coulomb barrier with neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Atsushi [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-07-01

    Two fusion reactions with neutron-rich nuclei are reported in this work. On the first reaction: {sup 9,10,11}Be+{sup 209}Bi, the fusion cross sections around the coulomb barrier were measured by determing {alpha} disintegration from compound nucleus Fr. In the field of 10-100 mb, the same total fusion cross sections were obtained. The phenomenon {sup 11}Be(neutron halo nucleus) alone increased and decreased was not observed. The fusion cross sections of {sup 27,29,31}Al+{sup 197}Au system were determined by using 130 kcps and 30 kcps of beam strength of {sup 29,31}Al, respectively. The value of {sup 27}Al was reproduced by calculation, but that of {sup 29}Al increased around barrier which could not be explained by CCDEF calculation. (S.Y.)

  2. Nuclear shell effects in neutron-rich nuclei around N=20 and N=32,34

    International Nuclear Information System (INIS)

    Seidlitz, Michael

    2012-01-01

    Nuclear shell effects in neutron-rich nuclei around N=20 and N=32,34 were studied by means of reduced transition probabilities, i.e. B(E2) and B(M1) values. To this end a series of Coulomb-excitation experiments, employing radioactive 31 Mg and 29,30 Na beams, as well as a precise lifetime experiment of excited states in 56 Cr were performed. The collective properties of excited states of 31 Mg were the subject of a Coulomb-excitation experiment at REX-ISOLDE, CERN, employing a radioactive 31 Mg beam at a beam energy of 3.0 MeV/u. The beam intensity amounted to 3000 ions/s on average. The highly efficient MINIBALL setup was employed, consisting of eight HPGe cluster detectors for γ-ray detection and a segmented Si-detector for coincident particle detection. The level scheme of 31 Mg was extended. Spin and parity assignment of the observed 945 keV state yielded 5/2 + and its de-excitation is dominated by a strong collective M1 transition. Comparison of the transition probabilities of 30,31,32 Mg establishes that for the N=19 magnesium isotope not only the ground state but also excited states are largely dominated by a deformed pf intruder configuration. This implies that 31 Mg is part of the so-called ''island of inversion''. Coulomb-excitation experiments of radioactive 29,30 Na were carried out at REX-ISOLDE, CERN, at a final beam energy of 2.85 MeV/u. De-excitation γ rays were detected by the MINIBALL γ-ray spectrometer in coincidence with scattered particles in a segmented Si-detector. Despite rather low beam intensities transition probabilities to the first excited states were deduced. Results of very recently published experiments at MSU and TRIUMF could be largely confirmed and extended. The measured B(E2) values agree well with shell-model predictions, supporting the idea that in the sodium isotopic chain the ground-state wave function contains a significant intruder admixture already at N=18, with N=19 having an almost pure 2p2h deformed ground

  3. Decay spectroscopy of neutron-rich nuclei around {sup 37,38}Al

    Energy Technology Data Exchange (ETDEWEB)

    Steiger, Konrad [Physik-Department E12, Technische Universitaet Muenchen (Germany); Collaboration: CAITEN-Collaboration

    2013-07-01

    An experiment at RIBF (Radioactive Isotope Beam Factory at RIKEN, Japan) investigated N=20 nuclei above {sup 29}F and the midshell region around {sup 37}Al. These nuclei were produced by relativistic projectile fragmentation of a 345 AMeV {sup 48}Ca primary beam from the superconducting ring cyclotron SRC with an average intensity of 70 pnA. The secondary cocktail beam was separated and identified with the BigRIPS fragment separator and the ZeroDegree spectrometer. The identified fragments were implanted in the CAITEN detector (Cylindrical Active Implantation Target for Efficient Nuclear-decay study). The main part of this detector is a highly segmented plastic scintillator with the shape of a hollow cylinder. To reduce background decay events the scintillator was moved axially and vertically similar to a tape-transport system. Implantations and decays were correlated in time and space. For the first time β-delayed γ-rays were measured in the neutron-rich isotopes {sup 37,38}Si (with three germanium clover detectors). From β-γ-γ coincidences partial level schemes could be constructed. The results were compared to shell model calculations and a tentative assignment for spins and parities of the experimental level schemes was possible. Significantly more precise half-lives for the implanted nuclei were measured.

  4. New mass analysis and results for neutron rich nuclei performed with isochronous mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Diwisch, Marcel [Justus-Liebig-Universitaet Giessen, Giessen (Germany); Knoebel, Ronja; Geissel, Hans; Plass, Wolfgang; Scheidenberger, Christoph [Justus-Liebig-Universitaet Giessen, Giessen (Germany); GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Patyk, Zygmunt [Soltan Institute for Nuclear Studies, Warsaw (Poland); Weick, Helmut [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2015-07-01

    The Isochronous Mass Spectrometry (IMS) allows to measure masses of rare exotic nuclei in a storage ring in a timescale of tens of μs. The ring is operated in an isochronous mode, i.e. such that particles with different velocities but same mass-to-charge ratio (m/q) travel different paths in the ring arcs (faster ions travel longer paths whereas slower ions travel shorter paths). This means that for each m/q a fix revolution time exists and can be measured by a time-of-flight (TOF) detector which then yields the masses of the nuclei for known charge states. A new analysis approach of IMS data with a correlation matrix method allowed combining data with different quality. The latest production run was using an additional determination of the magnetic rigidity which increased the resolving power of the experiment. Combining this experiment with previous experiments one can increase the statistics and accuracy of the overall mass determination. It was possible to deduce mass values of neutron rich isotopes which have not been measured before. One of those isotopes is {sup 130}Cd which is a very important nuclei involved in the r-process. Those mass values and a comparison to theoretical predictions will be presented in the poster.

  5. Direct mass and lifetime measurements of neutron-rich nuclei up to A∼100 using the TOFI spectrometer at LAMPF

    International Nuclear Information System (INIS)

    Lind, V.G.

    1993-01-01

    This project was directed toward the study of neutron-rich nuclei using the experimental facilities at LAMPF, which is a part of LANL. The principal results of the investigation include the discovery of many new isotopes along with a measurement of their masses and in particular those nuclides in the Z = 7--19 and 14 --26 regions of the chart of the nuclides.Thirty-four new nuclides were detected and studied with their masses being measured with relatively high accuracy, and an additional twenty-six that were previously known and measured were remeasured to an improved accuracy. Besides providing new information about the mass surface in new and extended redons of the chart of the nuclides, this investigation enabled properties and previously unknown structure of some of the nuclei to be determined such as nuclear deformation among some of the nuclides. Also a study of the neutron pairing gaps and the proton pairing gaps among these nuclides was made. Other developments also achieved included instrument (TOFI) improvements and upgrades and theoretical investigations into the masses of the hadrons

  6. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    Directory of Open Access Journals (Sweden)

    Leoni S.

    2016-01-01

    Full Text Available The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets, with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic “hybrid” model is introduced: it is based on the coupling between core excitations (both collective and non-collective of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  7. Interplay between collective and single particle excitations around neutron-rich doubly-magic nuclei

    Science.gov (United States)

    Leoni, S.

    2016-05-01

    The excitation spectra of nuclei with one or two particles outside a doubly-magic core are expected to be dominated, at low energy, by the couplings between phonon excitations of the core and valence particles. A survey of the experimental situation is given for some nuclei lying in close proximity of neutron-rich doubly-magic systems, such as 47,49Ca, 133Sb and 210Bi. Data are obtained with various types of reactions (multinucleon transfer with heavy ions, cold neutron capture and neutron induced fission of 235U and 241Pu targets), with the employment of complex detection systems based on HPGe arrays. A comparison with theoretical calculations is also presented, in terms of large shell model calculations and of a phenomenological particle-phonon model. In the case of 133Sb, a new microscopic "hybrid" model is introduced: it is based on the coupling between core excitations (both collective and non-collective) of the doubly-magic core and the valence nucleon, using the Skyrme effective interaction in a consistent way.

  8. Antisymmetrized molecular dynamics studies for exotic clustering phenomena in neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, M. [Hokkaido University, Department of Physics, Sapporo (Japan); Hokkaido University, Nuclear Reaction Data Centre, Faculty of Science, Sapporo (Japan); Suhara, T. [Matsue College of Technology, Matsue (Japan); Kanada-En' yo, Y. [Kyoto University, Department of Physics, Kyoto (Japan)

    2016-12-15

    We present a review of recent works on clustering phenomena in unstable nuclei studied by antisymmetrized molecular dynamics (AMD). The AMD studies in these decades have uncovered novel types of clustering phenomena brought about by the excess neutrons. Among them, this review focuses on the molecule-like structure of unstable nuclei. One of the earliest discussions on the clustering in unstable nuclei was made for neutron-rich Be and B isotopes. AMD calculations predicted that the ground state clustering is enhanced or reduced depending on the number of excess neutrons. Today, the experiments are confirming this prediction as the change of the proton radii. Behind this enhancement and reduction of the clustering, there are underlying shell effects called molecular and atomic orbits. These orbits form covalent and ionic bonding of the clusters analogous to the atomic molecules. It was found that this ''molecular-orbit picture'' reasonably explains the low-lying spectra of Be isotopes. The molecular-orbit picture is extended to other systems having parity asymmetric cluster cores and to the three cluster systems. O and Ne isotopes are the candidates of the former, while the 3α linear chains in C isotopes are the latter. For both subjects, many intensive studies are now in progress. We also pay a special attention to the observables which are the fingerprint of the clustering. In particular, we focus on the monopole and dipole transitions which are recently regarded as good probe for the clustering. We discuss how they have and will reveal the exotic clustering. (orig.)

  9. Nuclear shell effects in neutron-rich nuclei around N=20 and N=32,34

    CERN Document Server

    Seidlitz, M

    Nuclear shell effects in neutron-rich nuclei around N=20 and N=32,34 were studied by means of reduced transition probabilities, i.e. B(E2) and B(M1) values. To this end a series of Coulomb-excitation experiments, employing radioactive 31Mg and 29,30Na beams, as well as a precise lifetime experiment of excited states in 56Cr were performed. The collective properties of excited states of 31Mg were the subject of a Coulomb-excitation experiment at REX-ISOLDE, CERN, employing a radioactive 31Mg beam at a beam energy of 3.0 MeV/u. The beam intensity amounted to 3000 ions/s on average. The highly efficient MINIBALL setup was employed, consisting of eight HPGe cluster detectors for gamma-ray detection and a segmented Si-detector for coincident particle detection. The level scheme of 31Mg was extended. Spin and parity assignment of the observed 945 keV state yielded 5/2+ and its de-excitation is dominated by a strong collective M1 transition. Comparison of the transition probabilities of 30,31,32Mg establishes that f...

  10. New experimental investigation of cluster structures in 10 Be and 16 C neutron-rich nuclei

    Science.gov (United States)

    Dell'Aquila, L.; Acosta, D.; Auditore, L.; Cardella, G.; De Filippo, E.; De Luca, S.; Francalanza, L.; Gnoffo, B.; Lanzalone, G.; Lombardo, I.; Martorana, N. S.; Norella, S.; Pagano, A.; Pagano, E. V.; Papa, M.; Pirrone, S.; Politi, G.; Quattrocchi, L.; Rizzo, F.; Russotto, P.; Trifirò, A.; Trimarchi, M.; Verde, G.; Vigilante, M.

    2017-11-01

    The existence of cluster structures in ^{10} Be and ^{16} C neutron-rich isotopes is investigated via projectile break-up reactions induced on polyethylene (CH _2 target. We used a fragmentation beam constituted by 55MeV/u ^{10} Be and 49MeV/u ^{16} C beams provided by the FRIBs facility at INFN-LNS. Invariant mass spectra of 4{He}+ 6 He and 6{He} + ^{10} Be breakup fragments are reconstructed by means of the CHIMERA 4π detector to investigate the presence of excited states of projectile nuclei characterized by cluster structure. In the first case, we suggest the presence of a new state in ^{10} Be at 13.5MeV. A non-vanishing yield corresponding to 20.6MeV excitation energy of ^{16} C was observed in the 6{He} + ^{10} Be cluster decay channel. To improve the results of the present analysis, a new experiment has been performed recently, taking advantage of the coupling of CHIMERA and FARCOS. In the paper we describe the data reduction process of the new experiment together with preliminary results.

  11. New approach to the nuclear in beam γ spectroscopy of neutron rich nuclei at N=20 using projectile fragmentation

    International Nuclear Information System (INIS)

    Lopez-Jimenez, M.J.; Saint-Laurent, M.G.; Achouri, L.; Daugas, J.M.; Belleguic, M.; Azaiez, F.; Bourgeois, C.; Angelique, J.C.

    1999-01-01

    The structure of nuclei far from stability around 32 Mg have been recently investigated by means of a novel method. In-beam γ-decay spectroscopy of a large number of exotic neutron-rich nuclei produced by projectile fragmentation of a 36 S projectile has been performed, using coincidences between the recoil fragments collected at the focal plane of SPEG spectrometer and γ-rays emitted at the target location. Preliminary results on both the population mechanism and the decay of excited states in nuclei around 32 Mg are presented. (author)

  12. Quasifree (p ,p N ) scattering of light neutron-rich nuclei near N =14

    Science.gov (United States)

    Díaz Fernández, P.; Alvarez-Pol, H.; Crespo, R.; Cravo, E.; Atar, L.; Deltuva, A.; Aumann, T.; Avdeichikov, V.; Beceiro-Novo, S.; Bemmerer, D.; Benlliure, J.; Bertulani, C. A.; Boillos, J. M.; Boretzky, K.; Borge, M. J. G.; Caamaño, M.; Cabanelas, P.; Caesar, C.; Casarejos, E.; Catford, W.; Cederkäll, J.; Chartier, M.; Chulkov, L. V.; Cortina-Gil, D.; Datta Pramanik, U.; Dillmann, I.; Elekes, Z.; Enders, J.; Ershova, O.; Estradé, A.; Farinon, F.; Fernández-Domínguez, B.; Fraile, L. M.; Freer, M.; Galaviz, D.; Geissel, H.; Gernhäuser, R.; Golubev, P.; Göbel, K.; Hagdahl, J.; Heftrich, T.; Heil, M.; Heine, M.; Heinz, A.; Henriques, A.; Holl, M.; Hufnagel, A.; Ignatov, A.; Johansson, H. T.; Jonson, B.; Jurčiukonis, D.; Kalantar-Nayestanaki, N.; Kanungo, R.; Kelic-Heil, A.; Knyazev, A.; Kröll, T.; Kurz, N.; Labiche, M.; Langer, C.; Le Bleis, T.; Lemmon, R.; Lindberg, S.; Machado, J.; Marganiec, J.; Moro, A. M.; Movsesyan, A.; Nacher, E.; Najafi, A.; Nikolskii, E.; Nilsson, T.; Nociforo, C.; Panin, V.; Paschalis, S.; Perea, A.; Petri, M.; Pietras, B.; Pietri, S.; Plag, R.; Reifarth, R.; Ribeiro, G.; Rigollet, C.; Rossi, D.; Röder, M.; Savran, D.; Scheit, H.; Simon, H.; Sorlin, O.; Syndikus, I.; Taylor, J. T.; Tengblad, O.; Thies, R.; Togano, Y.; Vandebrouck, M.; Velho, P.; Volkov, V.; Wagner, A.; Wamers, F.; Weick, H.; Wheldon, C.; Wilson, G.; Winfield, J. S.; Woods, P.; Yakorev, D.; Zhukov, M.; Zilges, A.; Zuber, K.; R3B Collaboration

    2018-02-01

    Background: For many years, quasifree scattering reactions in direct kinematics have been extensively used to study the structure of stable nuclei, demonstrating the potential of this approach. The R 3B collaboration has performed a pilot experiment to study quasifree scattering reactions in inverse kinematics for a stable 12C beam. The results from that experiment constitute the first quasifree scattering results in inverse and complete kinematics. This technique has lately been extended to exotic beams to investigate the evolution of shell structure, which has attracted much interest due to changes in shell structure if the number of protons or neutrons is varied. Purpose: In this work we investigate for the first time the quasifree scattering reactions (p ,p n ) and (p ,2 p ) simultaneously for the same projectile in inverse and complete kinematics for radioactive beams with the aim to study the evolution of single-particle properties from N =14 to N =15 . Method: The structure of the projectiles 23O, 22O, and 21N has been studied simultaneously via (p ,p n ) and (p ,2 p ) quasifree knockout reactions in complete inverse kinematics, allowing the investigation of proton and neutron structure at the same time. The experimental data were collected at the R3B -LAND setup at GSI at beam energies of around 400 MeV/u. Two key observables have been studied to shed light on the structure of those nuclei: the inclusive cross sections and the corresponding momentum distributions. Conclusions: The knockout reactions (p ,p n ) and (p ,2 p ) with radioactive beams in inverse kinematics have provided important and complementary information for the study of shell evolution and structure. For the (p ,p n ) channels, indications of a change in the structure of these nuclei moving from N =14 to N =15 have been observed, i.e., from the 0 d5 /2 shell to the 1 s1 /2 . This supports previous observations of a subshell closure at N =14 for neutron-rich oxygen isotopes and its weakening

  13. Statistical properties of warm nuclei: Investigating the low-energy enhancement in the $\\gamma$- strength function of neutron-rich nuclei

    CERN Multimedia

    We propose to start a program to study the $\\gamma$-ray strength function of neutron rich nuclei in inverse kinematics with radioactive beams at HIE-ISOLDE. An unexpected increase in the $\\gamma$-strength function at low energy has been observed in several stable nuclei using the Oslo method. This year these results were confirmed with a different experimental technique and model independent analysis developed by iThemba/Livermore. If this enhancement of the $\\gamma$-strength function is also present in neutron-rich nuclei, it will strongly affect the neutron capture cross sections, which are important input in stellar models of synthesis of heavier elements in stars. We propose to start with an experiment using a $^{66}$Ni beam of 5.5 MeV /u, where the data will be analyzed using both methods independently, and we are sure to get enough statistics, before moving to more neutron-rich nuclei. When/if neutron-rich Ti, Fe or Mo beams will be available at ISOLDE, we will submit additional proposals.

  14. Neutron-rich isotopes around the r-process 'waiting-point' nuclei 2979Cu50 and 3080Zn50

    International Nuclear Information System (INIS)

    Kratz, K.L.; Gabelmann, H.; Pfeiffer, B.; Woehr, A.

    1991-01-01

    Beta-decay half-lives (T 1/2 ) and delayed-neutron emission probabilities (P n ) of very neutron-rich Cu to As nuclei have been measured, among them the new isotopes 77 Cu 48 , 79 Cu 50 , 81 Zn 51 and 84 Ga 53 . With the T 1/2 and P n -values of now four N≅50 'waiting-point' nuclei known, our hypothesis that the r-process has attained a local β-flow equilibrium around A≅80 is further strengthened. (orig.)

  15. Effects of momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei

    International Nuclear Information System (INIS)

    Li Baoan; Das, Champak B.; Das Gupta, Subal; Gale, Charles

    2004-01-01

    Using an isospin- and momentum-dependent transport model we study effects of the momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei. It is found that symmetry potentials with and without the momentum-dependence but corresponding to the same density-dependent symmetry energy E sym (ρ) lead to significantly different predictions on several E sym (ρ)-sensitive experimental observables especially for energetic nucleons. The momentum- and density-dependence of the symmetry potential have to be determined simultaneously in order to extract the E sym (ρ) accurately. The isospin asymmetry of midrapidity nucleons at high transverse momenta is particularly sensitive to the momentum-dependence of the symmetry potential. It is thus very useful for investigating accurately the equation of state of dense neutron-rich matter

  16. Detection of the weak γ activities from new neutron-rich nuclei

    International Nuclear Information System (INIS)

    Zhang Li; Wang Jicheng; Zhao Jinhua; Yang Yongfeng; Zheng Jiwen; Hu Qingyuan; Guo Tianrui

    2003-01-01

    Energic signals of γ rays detected by a HPGe γ detector were coincided with γ-ray, energy-loss signals detected by a 4πΔEβ detector. Then the coinciding β-ray spectra was anticoincided with timing logical signals of 511 keV γ ray created in positron annihilate, detected by a large BGO detector. This special coincidence-anticoincidence system has played an important role in the first observation of the new neutron-rich nuclide 209 Hg. It is shown that this is an effective method to detecting very weak γ-ray activities of neutron-rich isotope in an element-separation sample

  17. Investigation of neutron-rich rare-earth nuclei including the new isotopes 177Tm and 184Lu

    International Nuclear Information System (INIS)

    Rykaczewski, K.; Gippert, K.L.; Runte, E.; Schmidt-Ott, W.D.; Tidemand-Petersson, P.; Kurcewicz, W.; Nazarewicz, W.

    1989-01-01

    Decays of neutron-rich isotopes in the rare-earth region were studied by means of on-line mass separation and β-γ spectroscopy using multinucleon-transfer reactions between beams of 136 Xe (9 and 11.7 MeV/u), 186 W (11.7 and 15 MeV/u) and 238 U (11.4 MeV/u) and targets of nat W and Ta. The higher beam energies appear to be advantageous for the production of such isotopes. Two new isotopes were identified: 177 Tm with a half-life T 1/2 = 85±10/15 s, and 184 Lu with T 1/2 ≅ 18 s. A new 47 s-activity found at A = 171 is tentatively assigned to the decay of the new isotope 171 Ho. The properties of the ground and excited states of neutron-rich lanthanide isotopes are interpreted within the shell model using the deformed Woods-Saxon potential. A change of the ground-state configuration for odd-mass neutron-rich lutetium isotopes from π 7/2 + [404] to π 9/2 - [514] is suggested, this change being due to the influence of a large hexadecapole deformation. The role of a possible isometric state in 180 Lu for the nucleosynthesis of 180m Ta is discussed. (orig.)

  18. Beta spectroscopy on neutron-rich nuclei of mass 93<=A<=100

    International Nuclear Information System (INIS)

    Pahlmann, B.

    1982-01-01

    In the present thesis for the first time measurements of the Qsub(β) value of the neutron-rich fission products sup(99,100)Sr and 99 Rb were performed. Preliminary results could be obtained on the beta decays of the nuclides 100 Rb and 100 Y. (orig./HSI) [de

  19. Production of neutron-rich nuclei at 200 MeV/nucleon

    International Nuclear Information System (INIS)

    Symons, T.J.M.

    1979-01-01

    Ways that heavy ion accelerators have been used to produce neutron rich isotopes are discussed. These include: fusion-evaporation reactions; transfer reactions; deep-inelastic scattering; and heavy ion fragmentation. Experiments using beams of 40 Ar and 48 Ca at 205 MeV/nucleon and 212 MeV/nucleon respectively, are described

  20. Spectroscopy of neutron rich nuclei using cold neutron induced fission of actinide targets at the ILL: the EXILL campaign

    Directory of Open Access Journals (Sweden)

    de France G.

    2014-03-01

    Full Text Available A combination of germanium detectors has been installed at the PF1B neutron guide of the ILL to perform the prompt spectroscopy of neutron-rich nuclei produced in the neutron-capture induced-fission of 235U and 241Pu. In addition LaBr3 detectors from the FATIMA collaboration have been installed in complement with the EXOGAM clovers to measure lifetimes of low-lying excited states. The measured characteristics and online spectra indicate very good performances of the overall setup.

  1. Saturation of Deformation and Identical Bands in Very-Neutron Rich Sr Isotopes

    CERN Multimedia

    2002-01-01

    The present proposal aims at establishing nuclear properties in an isotopic chain showing unique features. These features include the saturation of ground state deformation at its onset and the existence of ground state identical bands in neighbouring nuclei with the same deformation. The measurements should help to elucidate the role played by the proton-neutron residual interaction between orbitals with large spatial overlap, i.e. $\\pi g _{9/2} \

  2. Microscopic description of quadrupole collectivity in neutron-rich nuclei across the N = 126 shell closure

    Science.gov (United States)

    Rodríguez-Guzmán, R.; Robledo, L. M.; Sharma, M. M.

    2015-06-01

    The quadrupole collectivity in Nd, Sm, Gd, Dy, Er, Yb, Hf and W nuclei with neutron numbers 122 ≤ N ≤ 156 is studied, both at the mean field level and beyond, using the Gogny energy density functional. Besides the robustness of the N = 126 neutron shell closure, it is shown that the onset of static deformations in those isotopic chains with increasing neutron number leads to an enhanced stability and further extends the corresponding two-neutron drip lines far beyond what could be expected from spherical calculations. Independence of the mean-field predictions with respect to the particular version of the Gogny energy density functional employed is demonstrated by comparing results based on the D1S and D1M parameter sets. Correlations beyond mean field are taken into account in the framework of the angular momentum projected generator coordinate method calculation. It is shown that N = 126 remains a robust neutron magic number when dynamical effects are included. The analysis of the collective wave functions, average deformations and excitation energies indicate that, with increasing neutron number, the zero-point quantum corrections lead to dominant prolate configurations in the 0{1/+}, 0{2/+}, 2{1/+} and 2{2/+} states of the studied nuclei. Moreover, those dynamical deformation effects provide an enhanced stability that further supports the mean-field predictions, corroborating a shift of the r-process path to higher neutron numbers. Beyond mean-field calculations provide a smaller shell gap at N = 126 than the mean-field one in good agreement with previous theoretical studies. However, the shell gap still remains strong enough in the two-neutron drip lines.

  3. Identification of new neutron-rich rare-earth nuclei produced in /sup 252/Cf spontaneous fission

    CERN Document Server

    Greenwood, R C; Gehrke, R J; Meikrantz, D H

    1981-01-01

    A program of systematic study of the decay properties of neutron-rich rare-earth nuclei with 30 sneutron-rich rare-earth isotopes including /sup 155/Pm (t/sub 1/2/=48+or-4 s) and /sup 163/Gd (t/sub 1 /2/=68+or-3 s), in addition to 5.51 min /sup 158/Sm which was identified in an earlier series of experiments. (11 refs).

  4. Synthesis of neutron-rich transuranic nuclei in fissile spallation targets

    Energy Technology Data Exchange (ETDEWEB)

    Mishustin, Igor, E-mail: mishustin@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); “Kurchatov Institute”, National Research Center, 123182 Moscow (Russian Federation); Malyshkin, Yury, E-mail: malyshkin@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow (Russian Federation); Pshenichnov, Igor, E-mail: pshenich@fias.uni-frankfurt.de [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany); Institute for Nuclear Research, Russian Academy of Sciences, 117312 Moscow (Russian Federation); Greiner, Walter [Frankfurt Institute for Advanced Studies, J.-W. Goethe University, 60438 Frankfurt am Main (Germany)

    2015-04-15

    A possibility of synthesizing neutron-rich superheavy elements in spallation targets of Accelerator Driven Systems (ADS) is considered. A dedicated software called Nuclide Composition Dynamics (NuCoD) was developed to model the evolution of isotope composition in the targets during a long-time irradiation by intense proton and deuteron beams. Simulation results show that transuranic elements up to {sup 249}Bk can be produced in multiple neutron capture reactions in macroscopic quantities. However, the neutron flux achievable in a spallation target is still insufficient to overcome the so-called fermium gap. Further optimization of the target design, in particular, by including moderating material and covering it by a reflector could turn ADS into an alternative source of transuranic elements in addition to nuclear fission reactors.

  5. Shape transitions in neutron rich 110-112Ru nuclei and empirical relations

    International Nuclear Information System (INIS)

    Bihari, Chhail; Singh, Yuvraj; Gupta, K.K.; Varshney, A.K.; Singh, M.; Gupta, D.K.

    2010-01-01

    In the study of even even neutron rich Ru isotopes, the electromagnetic properties of the γ-vibrational bands are well described by a rigid triaxial rotor for lower spin state and by the rotation vibration collective model for the higher spin states. Thus interpretation in further suggested by the observation of nearly identical moment of inertia, the rotational frequency below the first band crossing, between the ground state and the γ-structural bands for both 110 Ru and 112 Ru which conclude a weak pairing, a more likely suitable explanation of observations. In the present work, the soft rotor energy formula is undertaken suggested by Brentano et al. for yrast band, may be employed to calculate the perturbed energies of the anomalous rotational band (γ-band) generated by rotation of the rigid asymmetric atomic nucleus and the two parameter formula (TPF) of Gupta et al.

  6. Dipole resonances in light neutron-rich nuclei studied with time-dependent calculations of antisymmetrized molecular dynamics

    International Nuclear Information System (INIS)

    Kanada-En'yo, Y.; Kimura, M.

    2005-01-01

    To study isovector dipole responses of neutron-rich nuclei, we applied a time-dependent method of antisymmetrized molecular dynamics. The dipole resonances in Be, B, and C isotopes were investigated. In 10 Be, 15 B, and 16 C, collective modes of the vibration between a core and valence neutrons cause soft resonances at the excitation energy E x =10-15 MeV below the giant dipole resonance (GDR). In 16 C, we found that a remarkable peak at E x =14 MeV corresponds to the coherent motion of four valence neutrons against a 12 C core, whereas the GDR arises in the E x >20 MeV region because of vibration within the core. In 17 B and 18 C, the dipole strengths in the low-energy region decline compared with those in 15 B and 16 C. We also discuss the energy-weighted sum rule for the E1 transitions

  7. Mass-measurements far from stability of neutron rich light nuclei

    International Nuclear Information System (INIS)

    Mittig, W.; Gregoire, C.; Schutz, Y.

    1987-07-01

    The study of nuclei far from stability is a verification of nuclear models that generally have been established using the properties of stable nuclei. The direct measurement of the mass has considerable advantages for nuclei very far from stability. This implies a high resolution measurement device, reasonable production rates of the nuclei of interest, and very low systematic errors. This is discussed here. Some of the results have been published recently. They are compared to different classes of models. Region presented is Z=9-15 region

  8. Exploratory analysis of a neutron-rich nuclei source based on photo-fission

    CERN Document Server

    Mirea, M; Clapier, F; Essabaa, S; Groza, L; Ibrahim, F; Kandri-Rody, S; Müller, A C; Pauwels, N; Proust, J

    2003-01-01

    A source of neutron rich ions can be conceived through the photo-fission process. An exploratory study of such a source is realized. A survey of the radiative electron energy loss theory is reported in order to estimate numerically the bremsstrahlung production of thick targets. The resulted bremsstrahlung angular and energy theoretical distributions delivered from W and UCx thick converters are presented and compared with previous results. Some quantities as the number of fission events produced in the fissionable source and the energy loss in the converters are also reported as function of the geometry of the combination and the incident electron energy. An attempt of comparison with experimental data shows a quantitative agreement. This study is focussed on initial kinetic energies of the electron beam included in the range 30-60 MeV, suitable for the production of large radiative gamma-ray yields able to induce the $^{238}$U fission through the giant dipole resonance. A confrontation with the number of fi...

  9. Structure of neutron rich nuclei of Germanium and Gallium beyond N equals 50 at Alto

    International Nuclear Information System (INIS)

    Lebois, M.

    2008-09-01

    The gamma rays following the beta decay of the following very neutron-rich isotopes: 82,83,84 Ga produced by photo-fission, have been studied at the newly built ISOL facility in Orsay: ALTO. In ALTO the interaction of an electron beam with U 238 target generates a continuous spectra of Bremsstrahlung gamma radiation that triggers U 238 fission. The fission fragments are then ionized, extracted and mass-separated. The analysis of the data has shown the existence of an isomer in 31 84 Ga 53 and has enabled us to confirm known results on 32 83 Ge 51 energy levels including the gamma transition between the 1/2+ state at 247,7 KeV and the fundamental state. We have also proposed the first energy level scheme for 33 84 As 51 . In order to understand the structure of the nucleus we have used the Thankappan and True model that gives a description of the coupling between the pair-pair core (half-magical) and the single nucleon. This model applied to the N=51 chain ( 38 89 Sr 51 , 36 87 Kr 51 , 34 85 Se 51 , 32 83 Ge 51 and 30 81 Zn 51 ) has allowed us to see the main features of odd isotope structure. We have also confirmed previous results concerning the nature of the states in the following decay 31 83 Ga 52 → 32 83 Ge 51

  10. Alpha decay and cluster decay of some neutron-rich actinide nuclei

    Indian Academy of Sciences (India)

    2017-02-09

    Feb 9, 2017 ... Abstract. Nuclei in the actinide region are good in exhibiting cluster radioactivity. In the present work, the half-lives of α-decay and heavy cluster emission from certain actinide nuclei have been calculated using cubic plus Yukawa plus exponential model (CYEM). Our model has a cubic potential for the ...

  11. I. Surface properties of neutron-rich nuclei. II. Pion condensation at finite temperature

    International Nuclear Information System (INIS)

    Kolehmainen, K.A.

    1983-01-01

    In part I, the energy density formalism, the Thomas-Fermi approximation, and Skyrme-type interactions were used to describe the energy density of a semi-infinite slab of neturon-rich nuclear matter at zero temperature. The existence of a drip phase at low proton fractions is allowed in addition to the more dense nuclear phase, and various bulk properties of both phases are found when the system is in equilibrium. The usual definition of the surface energy is extended to apply to the case where drip is present. Assuming a Fermi function type density profile, a constrained variational calculation is performed to determine the neutron and proton surface diffuseness parameters, the thickness of the neutron skin, and the surface energy. Results are obtained for proton fractions reanging from 0.5 (symmetric nuclear matter) to zero (pure neutron matter) for most Skyrme-type interactions in common use. The results are in close agreement with the predictions of the droplet model, as well as with the results of more exact calculations in those cases where the more exact results exist (only for symmetric or nearly symmetric matter in most cases). Significantly different asymmetry dependences for different interactions are found. In part II, several simple but increasingly complex models are used to calculate the threshold for charged pion condensation in neutron-rich nuclear matter at finite temperature. Unlike in mean field theory descriptions of pion condensation, the effects of thermal excitations of the pion field are included. The thermal pion excitations have two important effects: first, to modify the phase diagram qualitatively from that predicted by mean field theory, and second, to make the phase transition to a spatially nonuniform condensed state at finite temperature always first, rather than second, order

  12. Transfer involving deformed nuclei

    International Nuclear Information System (INIS)

    Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.

    1985-03-01

    Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs

  13. The structure of neutron-rich nuclei explored via in-beam gamma-ray spectroscopy of fast beams

    International Nuclear Information System (INIS)

    Glasmacher, T.; Campbell, C.M.; Church, J.A.; Dinca, D.C.; Hansen, P.G.; Olliver, H.; Perry, B.C.; Sherrill, B.M.; Terry, J.R.; Bazin, D.; Enders, J.; Gade, A.; Hu, Z.; Mueller, W.F.

    2003-01-01

    In-beam gamma-ray spectroscopy with fast exotic beams provides an efficient tool to study bound states in exotic neutron-rich nuclei. Specialized experimental techniques have been developed and explore different aspects of nuclear structure. Inelastic scattering experiments with γ-ray detection can measure the response of exotic nuclei to electromagnetic (Coulomb excitation with a heavy target) or hadronic probes (proton scattering with hydrogen target). In-beam fragmentation populates higher-lying bound states to establish levels. Single- and two-nucleon knockout reactions allow for detailed wavefunction spectroscopy of individual levels and for the measurement of spectroscopic factors. Experimental programs employing these techniques are now underway at all projectile-fragmentation facilities around the world. Here we report on several successful in-beam gamma-ray spectroscopy experiments that have been performed at the Coupled Cyclotron Facility at Michigan State University with an emphasis on elucidating the evolution of nuclear structure around neutron numbers N=16, N=20, and N=28 in the π(sd) shell. (orig.)

  14. Study of neutron-rich nuclei structure around the N=28 shell closure using the in-beam gamma spectroscopy technique

    International Nuclear Information System (INIS)

    Bastin, B.

    2007-10-01

    For a few years now, a loss of magicity in neutron-rich nuclei near the neutron drip-line at N=28 has been suggested and observed. Deformation in these nuclei has been observed. The deformation was explained in S isotopes as being due to a moderate reduction of the N=28 shell closure together with a proton induced collectivity originating from the near degeneracy of the proton d3/2 and s1/2 orbitals. As a consequence, the observed deformation seems to result from a subtle interplay between neutron and proton excitations. Since the proton configuration in the Si isotopes is expected to be more stable due to the Z=14 sub-shell gap, 42 Si was considered as a key nucleus in order to distinguish the different effects responsible for the structural changes observed at N=28. Even if it is at the limits of our technical possibilities, an in-beam gamma-spectroscopy experiment using two-step fragmentation and one or several nucleons knockout reaction mechanisms was performed at GANIL. The measurement of the energy of the first excited state in 42 Si, combined with the observation of 38,40 Si and the spectroscopy of 41,43 P, has given evidence for the loss of magicity at N=28 far from stability. Modifications of the effective interaction used in modern shell model calculations have been completed following this investigation, increasing its predictive character. This study confirms the role of the tensor force and the density dependence of the spin-orbit interaction in the collapse of the N=28 shell closure. (author)

  15. Nuclear symmetry energy and the neutron skin in neutron-rich nuclei

    NARCIS (Netherlands)

    Dieperink, AEL; Dewulf, Y; Van Neck, D; Waroquier, M; Rodin, [No Value

    2003-01-01

    The symmetry energy for nuclear matter and its relation to the neutron. skin in finite nuclei is discussed. The symmetry energy as a function of density obtained in a self-consistent Green function approach is presented and compared to the results of other recent theoretical approaches. A partial

  16. Study of Beta-Delayed Neutron Emission by Neutron-Rich Nuclei and Analysis of the Nuclear Reaction Mechanism responsible for the Yields of these Nuclei

    International Nuclear Information System (INIS)

    Bazin, D.

    1987-07-01

    Among the nuclear mechanisms used for the production of nuclei far from stability, the projectile fragmentation process has recently proved its efficiency. However, at Fermi energies, one has to take into account some collective and relaxation effects which drastically modify the production cross-sections. The spectroscopic study of very neutron-rich nuclei is very dependent of these production rates. A study of beta-delayed neutron emission which leads to new measurements of half-lives and neutron delayed emission probabilities is achieved with a liquid scintillator detector. The results which are then compared to different theories are of interest for the understanding of natural production of heavy elements (r processus) [fr

  17. Search for the neutron-rich nuclei in RIKEN-RIPS

    Energy Technology Data Exchange (ETDEWEB)

    Notani, Masahiro; Aoi, Nori; Fukuda, Naoki [Tokyo Univ. (Japan). Dept. of Physics] [and others

    1997-05-01

    {sup 64}Ni and {sup 181}Ta target were irradiated with {sup 48}Ca beam (70 AMeV) by R201N experiment in this paper. The production cross sections and yields of F, Ne, Na and Al isotopes were determined by particle identification of RIPS. New three nuclei, {sup 38}Mg and {sup 40},{sup 41}Al were found. Moreover, unstable nuclear isomer {sup 32m}Al was studied by measuring {gamma}-ray emission energy spectrum. The life and rate of isomer were determined. The rate of isomer was different from that of other systems. (S.Y.)

  18. Structures of the neutron-rich nuclei observed in fission of {sup 252}Cf

    Energy Technology Data Exchange (ETDEWEB)

    Ramayya, A. V.; Hamilton, J. H.; Goodin, C. J.; Brewer, N. T.; Hwang, J. K. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 (United States); Luo, Y. X. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 USA and Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Liu, S. H. [Department of Physics, Vanderbilt University, Nashville, Tennessee 37235 USA and UNRIB/Oak Ridge Associated Universities, Oak Ridge, Tennessee 37831 (United States); Rasmussen, J. O.; Lee, I. Y. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Stone, N. J. [Department of Physics, Oxford University, Oxford OX1 3PU (United Kingdom); Daniel, A. V. [Flerov Laboratory of Nuclear Reactions, JINR, Dubna (Russian Federation); Zhu, S. J. [Department of Physics, Tsinghua University, Beijing 100084 (China)

    2014-08-14

    Analysis of high statistics triple coincidence fission γ data from {sup 252}Cf at Gammasphere including angular correlations yielded well-expanded high-spin level schemes with more complete and reliable spin/parity assignments for {sup 82}Ge, {sup 118,120,122}Cd and {sup 114,115}Rh. Both the quasi-particle/hole couplings and quasi-rotational degrees of freedom are implied to play roles in these Cd isotopes. Evidence for triaxial shapes and octupole components in the Cd isotopes is presented. These Cd isotopes may have triaxial deformations. High-spin level schemes of {sup 114,115}Rh have been established for the first time. The existence of a relatively large signature splitting and an yrare band shows typical features of a triaxially deformed nucleus. Possible excited deformed rotational bands are observed, for the first time, in {sup 82}Ge. From the multipole mixing ratio measurement, the ground state configurations of {sup 109,111}Ru, as well as excited states in {sup 103,107}Mo and {sup 111}Ru were determined.

  19. Electric quadrupole moments of neutron-rich nuclei {sup 32}Al and {sup 31}Al

    Energy Technology Data Exchange (ETDEWEB)

    Kameda, D., E-mail: kameda@ribf.riken.jp; Ueno, H. [RIKEN Nishina Center (Japan); Asahi, K.; Nagae, D.; Takemura, M.; Shimada, K. [Tokyo Institute of Technology, Department of Physics (Japan); Yoshimi, A.; Nagatomo, T.; Sugimoto, T. [RIKEN Nishina Center (Japan); Uchida, M.; Arai, T.; Takase, K.; Suda, S.; Inoue, T. [Tokyo Institute of Technology, Department of Physics (Japan); Murata, J.; Kawamura, H. [Rikkyo University, Department of Physics (Japan); Watanabe, H. [Australian National University, Department of Nuclear Physics (Australia); Kobayashi, Y.; Ishihara, M. [RIKEN Nishina Center (Japan)

    2007-11-15

    The electric quadrupole moments for the ground states of {sup 32}Al and {sup 31}Al have been measured by the {beta} ray-detected nuclear quadrupole resonance method. Spin-polarized {sup 32}Al and {sup 31}Al nuclei were obtained from the fragmentation of {sup 40}Ar projectiles at E/A = 95 MeV/nucleon, and were implanted in a single crystal {alpha}-Al{sub 2}O{sub 3} stopper. The measured Q moment of {sup 32}Al, |Q({sup 32}Al)| = 24(2) mb, is in good agreement with a conventional shell-model calculation with a full sd model space and empirical effective charges, while that of {sup 31}Al is considerably smaller than the sd calculations.

  20. IBA in deformed nuclei

    International Nuclear Information System (INIS)

    Casten, R.F.; Warner, D.D.

    1982-01-01

    The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for 168 Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong β → γ transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the β → γ transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ΔK=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics

  1. Coulomb excitation of $^{94,96}$Kr beam Deformation in the neutron-rich krypton isotopes

    CERN Multimedia

    Hass, M; Cederkall, J A; Di julio, D D; Zamfir, N - V; Srebrny, J; Wadsworth, R; Siem, S; Marginean, R; Iwanicki, J S

    Recently the energy of the 2$_{1}^{+}$ state in the N=60 $^{96}$Kr nucleus was determinated to be 241 keV. This was the first experimental observation of an excited state in this highly exotic nucleus. The 2$_{1}^{+}$ state in $^{94}$Kr is located at 665.5 keV, i.e. E(2$_{1}^{+}$) drops by more than 400 keV at N=60. This lowering of the 2$_{1}^{+}$ energy indicates a sharp shape transition behavior which is somewhat similar to that discovered in the Sr and Zr isotopic chains at N=60. The deformation expected for the 2$_{1}^{+}$ state of $^{96}$Kr, as resulting from the E(2$_{1}^{+}$) energy based on the semi-empirical relation of Raman et al. is $\\beta_{2}$ = 0.31, which is, however, considerably smaller than that for Sr and Zr ($\\geq$0.40). The sudden decrease of E(2$_{1}^{+}$) from N=50 to N=60 does not fully agree with the more gradual change of deformation deduced from laser spectroscopy measurements of mean square charge radii, although for $^{96}$Kr, in particular, these are consistent with a $\\beta_{2}...

  2. Nuclear structure studies of neutron-rich heavy nuclei by mass measurements of francium and radium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Rosenbusch, Marco [Ernst-Moritz-Arndt-Universitaet, Institut fuer Physik, 17487 Greifswald (Germany); Collaboration: ISOLTRAP-Collaboration

    2013-07-01

    The mass is a unique property of an atomic nucleus reflecting its binding energy and thus the sum of all interactions at work. Precise measurements of nuclear masses especially of short-lived exotic nuclides provide important input for nuclear structure, nuclear astrophysics, tests of the Standard Model, and weak interaction studies. The Penning-trap mass spectrometer ISOLTRAP at the on-line isotope separator ISOLDE/CERN has been set up for precision mass measurements and continuously improved for accessing more exotic nuclides. The mass uncertainty is typically δm / m=10{sup -8} and the accessible half-life has been reduced to about 50 ms. In this contribution, the results of a measurement campaign of neutron-rich francium and radium isotopes will be presented, i.e. the masses of the isotopic chain of {sup 224-233}Fr and {sup 233,234}Ra, one of the most neutron-rich ensemble obtainable at ISOL facilities. The mass {sup 234}Ra denotes the heaviest mass ever measured with ISOLTRAP. Experimental data in the neutron-rich, heavy mass region is of great interest for studies of structural evolution far from stability, especially because the knowledge from nuclear mass models is scarce. The impact of the new data on the physics in this mass region as well as recent technical developments of ISOLTRAP are discussed.

  3. Decay of neutron-rich Mn nuclides and deformation of heavy Fe isotopes

    CERN Document Server

    Hannawald, M; Wöhr, A; Walters, W B; Kratz, K L; Fedosseev, V; Mishin, V I; Böhmer, W; Pfeiffer, B; Sebastian, V; Jading, Y; Köster, U; Lettry, Jacques; Ravn, H L

    1999-01-01

    The use of chemically selective laser ionization combined with beta-delayed neutron counting at CERN/ISOLDE has permitted identification and half-life measurements for 623-ms Mn-61 up through 14-ms Mn-69. The measured half-lives are found to be significantly longer near N=40 than the values calculated with a QRPA shell model using ground-state deformations from the FRDM and ETFSI models. Gamma-ray singles and coincidence spectroscopy has been performed for Mn-64 and Mn-66 decays to levels of Fe-64 and Fe-66, revealing a significant drop in the energy of the first 2+ state in these nuclides that suggests an unanticipated increase in collectivity near N=40.

  4. Problem of ''deformed'' superheavy nuclei

    International Nuclear Information System (INIS)

    Sobiczewski, A.; Patyk, Z.; Muntian, I.

    2000-08-01

    Problem of experimental confirmation of deformed shapes of superheavy nuclei situated in the neighbourhood of 270 Hs is discussed. Measurement of the energy E 2+ of the lowest 2+ state in even-even species of these nuclei is considered as a method for this confirmation. The energy is calculated in the cranking approximation for heavy and superheavy nuclei. The branching ratio p 2+ /p 0+ between α decay of a nucleus to this lowest 2+ state and to the ground state 0+ of its daughter is also calculated for these nuclei. The results indicate that a measurement of the energy E 2+ for some superheavy nuclei by electron or α spectroscopy is a promising method for the confirmation of their deformed shapes. (orig.)

  5. ZIRCONIUM—HAFNIUM ISOTOPE EVIDENCE FROM METEORITES FOR THE DECOUPLED SYNTHESIS OF LIGHT AND HEAVY NEUTRON-RICH NUCLEI

    Energy Technology Data Exchange (ETDEWEB)

    Akram, W.; Schönbächler, M. [School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Oxford Road, Manchester, M13 9PL (United Kingdom); Sprung, P. [Institut für Planetologie, Universität Münster, Wilhelm-Klemm-Strasse 10, D-48149 Münster (Germany); Vogel, N. [Institute for Geochemistry and Petrology, ETH, Clausiusstrasse 25, 8092 Zürich (Switzerland)

    2013-11-10

    Recent work based on analyses of meteorite and terrestrial whole-rock samples showed that the r- and s- process isotopes of Hf were homogeneously distributed throughout the inner solar system. We report new Hf isotope data for Calcium-Aluminum-rich inclusions (CAIs) of the CV3 carbonaceous chondrite Allende, and novel high-precision Zr isotope data for these CAIs and three carbonaceous chondrites (CM, CO, CK). Our Zr data reveal enrichments in the neutron-rich isotope {sup 96}Zr (≤1ε in {sup 96}Zr/{sup 90}Zr) for bulk chondrites and CAIs (∼2ε). Potential isotope effects due to incomplete sample dissolution, galactic and cosmic ray spallation, and the nuclear field shift are assessed and excluded, leading to the conclusion that the {sup 96}Zr isotope variations are of nucleosynthetic origin. The {sup 96}Zr enrichments are coupled with {sup 50}Ti excesses suggesting that both nuclides were produced in the same astrophysical environment. The same CAIs also exhibit deficits in r-process Hf isotopes, which provides strong evidence for a decoupling between the nucleosynthetic processes that produce the light (A ≤ 130) and heavy (A > 130) neutron-rich isotopes. We propose that the light neutron-capture isotopes largely formed in Type II supernovae (SNeII) with higher mass progenitors than the supernovae that produced the heavy r-process isotopes. In the context of our model, the light isotopes (e.g. {sup 96}Zr) are predominantly synthesized via charged-particle reactions in a high entropy wind environment, in which Hf isotopes are not produced. Collectively, our data indicates that CAIs sampled an excess of materials produced in a normal mass (12-25 M{sub ☉}) SNII.

  6. Neutron scattering on deformed nuclei

    International Nuclear Information System (INIS)

    Hansen, L.F.; Haight, R.C.; Pohl, B.A.; Wong, C.; Lagrange, C.

    1984-09-01

    Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9 Be, C, 181 Ta, 232 Th, 238 U and 239 Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonable good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP

  7. Production of neutron-rich nuclei in fission induced by neutrons generated by the p+ sup 1 sup 3 C reaction at 55 MeV

    CERN Document Server

    Stroe, L; Andrighetto, A; Tecchio, L B; Dendooven, P; Huikari, J; Pentillä, H; Peraejaervi, K; Wang, Y

    2003-01-01

    Cross-sections for the production of neutron-rich nuclei obtained by neutron-induced fission of natural uranium have been measured. The neutrons were generated by bombarding a sup 1 sup 3 C target with 55 MeV protons. The results, position of the maximum in the (Z, A)-plane, width and magnitude, are very comparable with those where the neutrons are generated by bombardment of natural sup 1 sup 2 C graphite with 50 MeV deuterons. Depending on the geometry of the converter/target assembly the isotope yields, however, are a factor of 2-3 lower due to less efficient production of neutrons per primary projectile, especially at small forward angles. (orig.)

  8. Study of fission barriers in neutron-rich nuclei using the (p,2p) reaction. Status of SAMURAI-experiment NP1306 SAMURAI14

    Energy Technology Data Exchange (ETDEWEB)

    Reichert, Sebastian [TU Munich (Germany); Collaboration: NP1306-SAMURAI14-Collaboration

    2015-07-01

    Violent stellar processes are currently assumed to be a major origin of the elements beyond iron and their abundances. The conditions during stellar explosions lead to the so called r-process in which the rapid capture of neutrons and subsequent β decays form heavier elements. This extension of the nuclei stops at the point when the repulsive Coulomb energy induces fission. Its recycling is one key aspect to describe the macroscopic structure of the r-process and the well known elemental abundance pattern. The RIBF at RIKEN is able to provide such neutron rich heavy element beams and a first test with the primary beam {sup 238}U was performed to understand the response of the SAMURAI spectrometer and detectors for heavy beams. The final goal is the definition of the fission barrier height with a resolution of 1 MeV (in σ) using the missing mass method using (p,2p) reactions in inverse kinematics.

  9. Coulomb excitation of neutron-rich$^{28,29,30}$Na nuclei with MINIBALL at REX-ISOLDE: Mapping the borders of the island of inversion

    CERN Multimedia

    Butler, P; Cederkall, J A; Reiter, P; Wiens, A; Blazhev, A A; Kruecken, R; Voulot, D; Kalkuehler, M; Wadsworth, R; Gernhaeuser, R A; Hess, H E; Holler, A; Finke, F; Leske, J; Huyse, M L; Seidlitz, M

    We propose to study the properties of neutron-rich nuclei $^{28,29,30}$Na via Coulomb excitation experiments using the REX-ISOLDE facility coupled with the highly efficient MINIBALL array. Reliable B(E2,0$^{+}$ $\\rightarrow$ 2$^{+}$) values for $^{30,32}$Mg were obtained at ISOLDE. Together with recent new results on $^{31}$Mg, collective and single particle properties are probed for Z=12 at the N=20 neutron closed shell, the 'island of inversion'. We would like to extend this knowledge to the neighbouring $^{28,29,30}$Na isotopes where a different transition from the usual filling of the neutron levels into the region with low lying 2p-2h cross shell configurations is predicted by theory. Detailed theoretical predictions on the transition strength in all three Na nuclei are awaiting experimental verification and are the subject of this proposal. At REX beam energies of 3.0 MeV /nucleon the cross-sections for Coulomb excitation are sufficient. Moreover the results from the close-by $^{30,31,32}$Mg nuclei de...

  10. Reaction cross section measurements of neutron-rich exotic nuclei in the vicinity of closed shells N=20 and N=28

    International Nuclear Information System (INIS)

    Khouaja, A.

    2003-12-01

    Using the direct method, the mean energy integrated reaction cross section was investigated for a wide range of neutron-rich nuclei (N → Ar) at GANIL. Using the parametrisation of S. Kox, 19 new radii measurements (reaction cross sections) were obtained. By the isotopic, isotonic and isospin dependence, the evolution of the strong reduced radius was studied according to the excess of neutrons. New halo effect is proposed to the nuclei of Mg 35 and S 44 . A quadratic parametrization is also proposed for the nuclear radius as a function of the isospin in the region of closed shells N=8 and N=28. In addition, we used a modified version of the Glauber model for studying the tail and matter distribution of nuclei. Indeed, using our new data the effects of the nuclear size (root mean square radii) and the matter distribution (diffusivity) were de-convoluted for each isotope. The root mean square radii of Na and Mg isotopes obtained so far were consistent with the ones from literature. (author)

  11. Phonon operators in deformed nuclei

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1981-01-01

    For the description of the excited states in deformed nuclei new phonon operators are introduced, which depend on the sign of the angular momentum projection onto the symmetry axis of a deformed nucleus. In the calculations with new phonons the Pauli principle is correctly taken into account in the two-phonon components of the wave functions. There is a difference in comparison with the calculation with phonons independent of the sign of the angular momentum projection. The new phonons should be used in deformed nuclei if the Pauli principle is consistently taken into account and in the calculations with the excited state wave functions having the components with more than one phonon operator [ru

  12. Phonon operators for deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.

    1982-01-01

    The mathematical formalism with the phonon operators independent of the signature of the angular momentum projection turns out to be inadequate for describing excited states of deformed nuclei. New phonon operators are introduced which depend on the signature of the angular momentum projection on the symmetry axis of a deformed nucleus. It is shown that the calculations with the new phonons take correctly into account the Pauli principle in two-phonon components of wave functions. The results obtained differ from those given by the phonons independent of the signature of the angular momentum projection. The new phonons must be used in deformed nuclei at taking systematically the Pauli principle into account and in calculations involving wave functions of excited states having components with more than one-phonon operator

  13. Synthesis and study of neutron-rich nuclides

    International Nuclear Information System (INIS)

    Luo Yixiao

    1995-01-01

    During the past few years our understanding of the decay properties and nuclear structure has been extended in a systematic fashion for the neutron-rich nuclei. This review will first sketch the production and identification of the neutron-rich nuclei throughout the whole mass region, and will then discuss the impressive progress in the studies of the exotic decay properties and nuclear structure of neutron-rich nuclei. Their astrophysical implications will also be outlined

  14. Z dependence of the N=152 deformed shell gap: In-beam γ-ray spectroscopy of neutron-rich 245,246Pu

    International Nuclear Information System (INIS)

    Makii, H.; Ishii, T.; Asai, M.; Tsukada, K.; Toyoshima, A.; Ichikawa, S.; Matsuda, M.; Makishima, A.; Kaneko, J.; Toume, H.; Shigematsu, S.; Kohno, T.; Ogawa, M.

    2007-01-01

    We have measured in-beam γ rays in the neutron-rich 246 Pu 152 and 245 Pu 151 nuclei by means of 244 Pu( 18 O, 16 O) 246 Pu and 244 Pu( 18 O, 17 O) 245 Pu neutron transfer reactions, respectively. The γ rays emitted from 246 Pu ( 245 Pu) were identified by selecting the kinetic energy of scattered 16 O ( 17 O) detected by Si ΔE-E detectors. The ground-state band of 246 Pu was established up to the 12 + state. We have found that the shell gap of N=152 is reduced in energy with decreasing atomic number by extending the systematics of the one-quasiparticle energies in N=151 nuclei into those in 245 Pu. This reduction of the shell gap clearly affects the 2 + energy of the ground-state band of 246 Pu

  15. Pairing in exotic neutron-rich nuclei near the drip line and in the crust of neutron stars

    Science.gov (United States)

    Pastore, A.; Margueron, J.; Schuck, P.; Viñas, X.

    2013-09-01

    Exotic and drip-line nuclei as well as nuclei immersed in a low-density gas of neutrons in the inner crust of neutron stars are systematically investigated with respect to their neutron pairing properties. This is done using Skyrme density-functional and different pairing forces such as a density-dependent contact interaction and a separable form of a finite-range Gogny interaction. Hartree-Fock-Bogoliubov (HFB) and Bardeen-Cooper-Schrieffer (BCS) theories are compared. It is found that neutron pairing is reduced towards the drip line while overcast by strong shell effects. Furthermore, resonances in the continuum can have an important effect counterbalancing the tendency of reduction and leading to a persistence of pairing at the drip line. It is also shown that in these systems the difference between HFB and BCS approaches can be quantitatively large.

  16. Projectile fragmentation of neutron-rich nuclei on light target (momentum distribution and nucleon-removal cross section)

    International Nuclear Information System (INIS)

    Kobayashi, T.; Tanihata, I.; Suzuki, T.

    1992-01-01

    Transverse momentum distributions of the projectile fragments from β-unstable nuclei have been measured with various projectile and target combinations. The momentum correlation of two neutrons in the neutron halo is extracted from the P c t distribution of 9 Li and hat of the neutrons. It is found that the two neutrons are moving in the same direction on average and thus strongly suggests the formation of a di-neutron in 11 Li. (Author)

  17. Microscopic description of the competition between spontaneous fission and α -decay in neutron-rich Ra, U and Pu nuclei

    International Nuclear Information System (INIS)

    Rodríguez-Guzmán, R; Robledo, L M

    2017-01-01

    Constrained mean-field calculations, based on the Gogny-D1M energy density functional, have been carried out to describe fission in Ra, U and Pu nuclei with neutron number 144 ≤ N ≤ 176. Fission paths, collective masses and zero-point quantum vibrational and rotational corrections are used to compute the spontaneous fission half-lives. We also pay attention to isomeric states along the considered fission paths. Alpha decay half-lives have also been computed using a parametrization of the Viola-Seaborg formula. Though there exists a strong variance of the predicted fission rates with respect to the details involved in their computation a robust trend is obtained indicating, that with increasing neutron number fission dominates over α -decay. Our results also suggest that a dynamical treatment of pairing correlations is required within the microscopic studies of the fission process in heavy nuclear systems. (paper)

  18. Investigation of correlations in light neutron-rich nuclei; Etude des correlations dans les noyaux legers riches en neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Normand, G

    2004-10-01

    Correlations play a crucial role in understanding the structure of light nuclei at and beyond the neutron drip-line. In this context, the two-neutron halo nucleus He{sup 6} and the unbound systems H{sup 5}, He{sup 7,9} and Li{sup 10} have been studied via measurements of the breakup of beams of He{sup 6} and Be{sup 11,12}. The CHARISSA and DEMON detector arrays were employed. The interpretation was facilitated by a simulation code (SILLAGE) which provided for the setup. In the case of He{sup 7}, the existence of an excited state with E{sub r} {approx} 1 MeV and gamma {approx} 0.75 MeV was confirmed. The virtual character of the s-wave ground state of Li{sup 10} was also confirmed and a scattering length of as {approx} -16 fm deduced. The results obtained for He{sup 9} suggest that a virtual s-wave state may exist just above threshold. The study of the three-body breakup of He{sup 6} found that the decay of the first 2+ state is essentially direct, while the decay of the remaining continuum strength is sequential - passage via He{sup 5}. Using the technique of intensity interferometry an rms separation between the halo neutrons of 7.7 +- 0.8 fm was derived. This result was confirmed by a complementary method utilizing Dalitz plots. In the case of H{sup 5}, the invariant mass spectrum was found to exhibit a broad (gamma {approx} 2 MeV) structure some 1.8 MeV above threshold. Comparison with recent three-body model calculations suggest that this corresponds to the predicted 1/2+ ground state. An rms valence neutron separation of some 5.5 fm was estimated. A search was also carried out for the 4n system using the Be{sup 12*} (2 alpha + Xn decay channel). No signal was observed beyond that expected on the basis of the known background processes. (author)

  19. Barriers in the energy of deformed nuclei

    Directory of Open Access Journals (Sweden)

    V. Yu. Denisov

    2014-06-01

    Full Text Available Interaction energy between two nuclei considering to their deformations is studied. Coulomb and nuclear in-teraction energies, as well as the deformation energies of both nuclei, are taken into account at evaluation of the interaction energy. It is shown that the barrier related to the interaction energy of two nuclei depends on the de-formations and the height of the minimal barrier is evaluated. It is obtained that the heavier nucleus-nucleus sys-tems have large deformation values at the lowest barrier. The difference between the barrier between spherical nuclei and the lowest barrier between deformed nuclei increases with the mass and the charge of the interacting nuclei.

  20. Collectivity of neutron rich Zn nuclei by lifetime measurement with the AGATA demonstrator. Development of a hydrogen target and physics at relativistic energies

    International Nuclear Information System (INIS)

    Louchart, C.

    2012-01-01

    Spectroscopy of exotic nuclei has allowed numerous discoveries in nuclear structure: the shell structure changes and the magic numbers are not persistent when moving toward the drip lines. The study of exotic nuclei requires experimental spectroscopic data which give information on the deformation and the nature of excited states of the studied nucleus. Around 68 Ni, which presents signs of shell closure at N=40 (high excitation energy of the 2 + 1 and low B(E2; 2 + →0 + ) exotic nuclei, like Cr, Fe, Zn and Ge, present deformation and recent experiments point to a rapid development of collectivity. The experiment done at LNL (Laboratori Nazionali di Legnaro) on 70,72,74 Zn isotopes concluded a surprisingly long life time for the 4 + states of 74 Zn, leading to a ratio of B(E2; 4 + → 2 + ) to B(E2; 2 + → 0 + ) very low, not explained by calculations beyond mean field or shell models. This experiment was one of the first with the AGATA demonstrator. Two types of direct reactions are used to extract spectroscopic factors: knockout and low energy transfer reactions. The experimental values are not consistent between the two case s for the removal of one deeply bound nucleon in the nuclei. This difference could come from an incorrect modeling of the reaction mechanism of knockout reactions. Calculations based on intra-nuclear cascade followed by an evaporation phase show weaknesses in the sudden approximation. (author) [fr

  1. Experiments with neutron-rich isomeric beams

    International Nuclear Information System (INIS)

    Rykaczewski, K.; Lewitowicz, M.; Pfuetzner, M.

    1998-01-01

    A review of experimental results obtained on microsecond-isomeric states in neutron-rich nuclei produced in fragmentation reactions and studied with SISSI-Alpha-LISE3 spectrometer system at GANIL Caen is given. The perspectives of experiments based on secondary reactions with isomeric beams are presented

  2. Measurement of beta decay energies of short-lived neutron rich atomic nuclei in the mass range 101 ≤ A ≤ 106 and A=109

    International Nuclear Information System (INIS)

    Weikard, H.

    1986-01-01

    At the mass separator LOHENGRIN of the Laue-Langevin institute in Grenoble for 18 nuclei (Zr, Nb, Mo, Tc, Ru, and Rh nuclides) with masses 101 ≤ A ≤ 106 and A=109 Q β values were determined from measurement of beta decay energies. From the study of the isomerism in 102 Nb resulted that the energetic distance of the two isomers is certainly smaller than 200 keV, that it is probably even smaller than 100 keV. The decay scheme for 102 Nb could be extended by one level which is depopulated by two gamma lines. For the decay of the 109 Ru the approach of a decay scheme is given: Five new levels are proposed. The diagrams of the two-particle separation energies which could be extended in this thesis confirm the continuation of the deformation in the considered region. A deformed subshell at N=62 however cannot yet be clearly detected. (orig./HSI) [de

  3. Evolution of the low-lying dipole strength in deformed nuclei with extreme neutron excess with the Relativistic QRPA

    International Nuclear Information System (INIS)

    Pena Arteaga, D.; Khan, E.; Ring, P.

    2009-01-01

    Covariant density functional theory, in the framework of self-consistent Relativistic Hartree Bogoliubov (HFB) and Relativistic Quasiparticle Random Phase approximation (RQRPA), is for the first time applied to axially deformed nuclei [1]. The fully self-consistent RHB+RQRPA equations are posed for the case of axial symmetry and different energy functionals, and solved with the help of a new parallel code. As a sample application, the El strength is systematically analyzed in very neutron-rich Sn nuclei, beyond 1 32S n until 1 66S n [2]. The great neutron excess favors the appearance of a deformed ground state for 1 42-162S n. The evolution of the low-lying strength in deformed nuclei is discussed, and in particular its dependence on the interplay of two major and competing factors, isospin asymmetry and deformation.(author)

  4. Electron form factors of deformable nuclei

    International Nuclear Information System (INIS)

    Tartakovskii, V.K.; Isupov, V.Yu.

    1988-01-01

    Using the smallness of the deformation parameter of the nucleus, we obtain simple explicit expressions for the form factors of electroexcitation of the low-lying rotation-vibration states of light, deformable, even-even nuclei. The expressions satisfactorily describe the experimental data on the excitation of collective nuclear states by the inelastic scattering of fast electrons

  5. {gamma} ray spectroscopy of neutron rich nuclei around N=20; Spectroscopie {gamma} des noyaux riches en neutrons autour de N=20

    Energy Technology Data Exchange (ETDEWEB)

    Gelin, M

    2007-09-15

    There is an island of inversion around {sup 32}Mg (12 protons, 20 neutrons) in contradiction with a shell closure N=20. It means a coexistence of spherical and deformed shapes. This work is devoted to the study of {gamma}-ray spectroscopy for nuclei in this region, based on an experiment done at GANIL with a composite secondary beam produced by fragmentation. The originality of the method used here lies in the possibility to study simultaneously several nuclei, and for each of them to explore several reaction channels. The VAMOS spectrometer was used for the identification of the ejectiles. The {gamma}-rays were detected with EXOGAM, a germanium clover array. The detectors used before and after the target allowed for a unique identification and a selection of the reaction channel: inelastic scattering, transfer and fragmentation reaction. In this thesis the following nuclei were studied: {sup 28}Ne, {sup 30-32}Mg {sup 31-34}Al, {sup 33-35}Si, {sup 35}P. New {gamma}-rays have been observed. The {gamma}-ray angular distributions and {gamma}-{gamma} angular correlations have been measured for some transitions. Assignment of spins and parities has been proposed for some states. In particular, in {sup 34}Si, the 3{sup -} assignment is confirmed and a new candidate for the second 0{sup +} has been proposed. In {sup 32}Mg, the state at 2.321 MeV, for which conflicting assignment existed, is deduced from the present data as a 4{sup +}, and a 6{sup +} state is proposed. (author)

  6. Mass measurement project by determination of Q{sub {beta}} for neutron-rich nuclei; Projet de mesure des masses par determination des Q{sub {beta}} pour des noyaux tres riches en neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Pautrat, M; Lagrange, J M; Petizon, L [Paris-11 Univ., 91 - Orsay (France). Inst. de Physique Nucleaire; Vanhorenbeeck, J; Duhamel, P [Brussels Univ. (Belgium). Inst. d` Astronomie et d` Astrophysique; Binon, F [Universite Libre de Bruxelles (Belgium)

    1994-12-31

    The aim of the project described hereafter is to collect new data on the exotic neutron rich nuclei of the Fe to Zn region, and in particular to determine their masses, for both nuclear physics and astrophysics purposes. These isotopes will be produced through projectile fragmentation at the GANIL facility and selected by the LISE3 spectrometer. Their half-lives will be measured as well as the energy of their main {gamma} rays; {gamma} - {gamma} coincidences will then allow to build a preliminary level scheme. The analysis of {beta} spectra and {beta} - {gamma} coincidences will finally provide the maximum {beta} decay energies of the studied nuclei leading to their masses. The difficulties arising from the low production rates, the {beta} detection, the data handling are discussed together with the solutions proposed to overcome them. (authors). 17 refs.

  7. Measurement of ground state properties of neutron-rich nuclei on the r-process path between the N=50 and N=82 shells

    CERN Multimedia

    2007-01-01

    The evolution of the unknown ground-state ${\\beta}$-decay properties of the neutron-rich $^{84-89}$Ge, $^{90-93}$Se and $^{102-104}$Sr isotopes near the r-process path is of high interest for the study of the abundance peaks around the N=50 and N=82 neutron shells. At ISOLDE, beams of certain elements with sufficient isotopic purity are produced as molecular sidebands rather than atomic beams. This applies e.g, to germanium, separated as GeS$^{+}$, selenium separated as SeCO$^{+}$ and strontium separated as SrF$^{+}$. However, in case of neutron-rich isotopes produced in actinide targets, new "isobaric" background of atomic ions appears on the mass of the molecular sideband. For this particular case, the ECR charge breeder, positioned in the experimental hall after ISOLDE first mass separation, can be advantageously used as a purification device, by breaking the molecules and removing the molecular contaminants. This proposal indicates our interest in the study of basic nuclear structure properties of neutron...

  8. ''Identical'' bands in normally-deformed nuclei

    International Nuclear Information System (INIS)

    Garrett, J.D.; Baktash, C.; Yu, C.H.

    1990-01-01

    Gamma-ray transitions energies in neighboring odd- and even-mass nuclei for normally-deformed nuclear configurations are analyzed in a manner similar to recent analyses for superdeformed states. The moment of inertia is shown to depend on pair correlations and the aligned angular momentum of the odd nucleon. The implications of this analysis for ''identical'' super-deformed bands are discussed. 26 refs., 9 figs

  9. Transmission coefficents in strongly deformed nuclei

    International Nuclear Information System (INIS)

    Aleshin, V.P.

    1996-01-01

    By using our semiclassical approach to particle evaporation from deformed nuclei developed earlier, we analyze here the heuristic methods of taking into account the effects of shape deformations on particle emission. These methods are based on the 'local' transmission coefficients in which the effective barrier depends on the angle with respect to the symmetry axis. The calculations revealed that the heuristic models are reasonable for particle energy spectra but fail, at large deformations, to describe the angular distributions. In A∼160 nuclei with axis ratio in the vicinity of 2:1 at temperatures of 2-3 MeV, the W (90 )/W(0 ) anisotropies of α particles with respect to the nuclear spin are 1.5 to 3 times larger than our approach predicts. The influence of spin alignment on particle energy spectra is discussed shortly. (orig.)

  10. Static and dynamic deformations of actinide nuclei

    International Nuclear Information System (INIS)

    Rozmej, P.

    1985-09-01

    The zero-point quadrupole-hexadecapole vibrations have been taken into account to calculate dynamical deformations for even-even actinide nuclei. The collective and intrinsic motions are separated according to the Born-Oppenheimer approximation. The collective Hamiltonian is constructed using the macroscopic-microscopic method in the potential energy part and the cranking model in the kinetic energy part. The BCS theory with a modified oscillator potential is applied to describe the intrinsic motion of nucleons. A new set of Nilsson potential parameters, which produces a much better description of the properties of light actinide nuclei, has also been found. (orig.)

  11. Neutron-rich isotopes of the lightest elements

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.; Penionzhkevich, Yu.Eh.; Kalpakchieva, R.

    1989-01-01

    A review is presented of the experimental investigations on the stability of very neutron-rich light nuclei carried out at the JINR Laboratory of Nuclear Reactions. Results on mass excess measurements are reported for 4 H, 5 H, 6 H, 7 H and for the superheavy helium isotope 9 He. Some results from the joint JINR-Ganil experiment on the search for and study of new neutron-rich light nuclei are also given. Analyzed are new possibilities for the investigation of multineutron decay of light nuclei. 14 refs.; 10 figs

  12. Structure of neutron-rich nuclei around the N = 126 closed shell; the yrast structure of {sup 205}Au{sub 126} up to spin-parity I{sup {pi}} = (19/2{sup +})

    Energy Technology Data Exchange (ETDEWEB)

    Podolyak, Zs.; Steer, S.J.; Pietri, S.; Regan, P.H.; Brandau, C.; Catford, W.N.; Cullen, I.J.; Gelletly, W.; Jones, G.A.; Liu, Z.; Walker, P.M. [University of Surrey, Department of Physics, Guildford (United Kingdom); Gorska, M.; Gerl, J.; Wollersheim, H.J.; Grawe, H.; Becker, F.; Geissel, H.; Kelic, A.; Kojouharov, I.; Kurz, N.; Montes, F.; Prokopowicz, W.; Saito, T.; Schaffner, H.; Tashenov, S.; Werner-Malento, E. [GSI, Darmstadt (Germany); Rudolph, D.; Hoischen, R. [Lund University, Department of Physics, Lund (Sweden); Garnsworthy, A.B. [University of Surrey, Department of Physics, Guildford (United Kingdom); Yale University, WNSL, New Haven, CT (United States); Maier, K.H. [Institute of Nuclear Physics, Krakow (Poland); University of the West of Scotland, Dept. of Physics, Paisley (United Kingdom); Bednarczyk, P.; Grebosz, J. [GSI, Darmstadt (Germany); Institute of Nuclear Physics, Krakow (Poland); Caceres, L. [GSI, Darmstadt (Germany); Universidad Autonoma de Madrid, Dept. de Fisica Teorica, Madrid (Spain); Doornenbal, P. [GSI, Darmstadt (Germany); Universitaet zu Koeln, IKP, Koeln (Germany); Heinz, A. [Yale University, WNSL, New Haven, CT (United States); Kurtukian-Nieto, T. [Universidad de Santiago de Compostela, Santiago de Campostela (Spain); Benzoni, G.; Wieland, O. [Universita degli Studi di Milano (Italy); INFN, Milano (Italy); Pfuetzner, M. [Warsaw University, IEP, Warsaw (Poland); Jungclaus, A. [Universidad Autonoma de Madrid, Dept. de Fisica Teorica, Madrid (Spain); Balabanski, D.L. [Bulgarian Academy of Sciences, INRNE, Sofia (Bulgaria); Brown, B.A. [Univ. of Surrey, Dept. of Physics, Guildford (United Kingdom); Michigan State Univ., NSCL, East Lansing, MI (United States); Bruce, A.M.; Lalkovski, S. [Univ. of Brighton, School of Environment and Technology, Brighton (United Kingdom); Dombradi, Zs. [Institute for Nuclear Research, Debrecen (Hungary); Estevez, M.E. [Instituto de Fisica Corpuscular, Valencia (Spain)] [and others

    2009-12-15

    Heavy neutron-rich nuclei have been populated through the relativistic fragmentation of a {sup 208}{sub 82} Pb beam at E/A = 1 GeV on a 2.5 g/cm{sup 2} thick Be target. The synthesised nuclei were selected and identified in-flight using the fragment separator at GSI. Approximately 300 ns after production, the selected nuclei were implanted in an {proportional_to}8 mm thick perspex stopper, positioned at the centre of the RISING {gamma} -ray detector spectrometer array. A previously unreported isomer with a half-life T{sub 1/2} = 163(5) ns has been observed in the N=126 closed-shell nucleus {sup 205}{sub 79} Au. Through {gamma}-ray singles and {gamma}-{gamma} coincidence analysis a level scheme was established. The comparison with a shell model calculation tentatively identifies the spin-parity of the excited states, including the isomer itself, which is found to be I{sup {pi}} = (19/2{sup +}). (orig.)

  13. Synthesis and study of neutron-rich nuclides

    International Nuclear Information System (INIS)

    Luo, Y.X.

    1995-01-01

    During the past few years our understanding of the decay properties and nuclear structure has been extended in a systematic fashion for the neutron-rich nuclei. This review will discuss the impressive progress in the studies of the exotic decay properties and nuclear structure of n-rich nuclei. Their astrophysical implications will also be outlined. ((orig.))

  14. Study of neutron-rich nuclei structure around the N=28 shell closure using the in-beam gamma spectroscopy technique; Etude de la structure des noyaux riches en neutrons autour de la fermeture de couches N=28 par spectroscopie gamma en ligne

    Energy Technology Data Exchange (ETDEWEB)

    Bastin, B

    2007-10-15

    For a few years now, a loss of magicity in neutron-rich nuclei near the neutron drip-line at N=28 has been suggested and observed. Deformation in these nuclei has been observed. The deformation was explained in S isotopes as being due to a moderate reduction of the N=28 shell closure together with a proton induced collectivity originating from the near degeneracy of the proton d3/2 and s1/2 orbitals. As a consequence, the observed deformation seems to result from a subtle interplay between neutron and proton excitations. Since the proton configuration in the Si isotopes is expected to be more stable due to the Z=14 sub-shell gap, {sup 42}Si was considered as a key nucleus in order to distinguish the different effects responsible for the structural changes observed at N=28. Even if it is at the limits of our technical possibilities, an in-beam gamma-spectroscopy experiment using two-step fragmentation and one or several nucleons knockout reaction mechanisms was performed at GANIL. The measurement of the energy of the first excited state in {sup 42}Si, combined with the observation of {sup 38,40}Si and the spectroscopy of {sup 41,43}P, has given evidence for the loss of magicity at N=28 far from stability. Modifications of the effective interaction used in modern shell model calculations have been completed following this investigation, increasing its predictive character. This study confirms the role of the tensor force and the density dependence of the spin-orbit interaction in the collapse of the N=28 shell closure. (author)

  15. IOP Shape coexistence in neutron-rich strontium isotopes at N = 60

    CERN Document Server

    Clément, Emmanuel

    2017-01-01

    The structure of neutron-rich $^{96,98}$ Sr nuclei was investigated by low-energy Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN, with the MINIBALL spectrometer. A rich set of transitional and diagonal E2 matrix elements has been extracted from the differential Coulomb-excitation cross sections. The results support the scenario of a shape transition at N=60, giving rise to the coexistence of a highly deformed prolate and a spherical configuration in $^{98}$ Sr with low configuration mixing.

  16. Geometry and dynamics of particle emission from strongly deformed nuclei

    International Nuclear Information System (INIS)

    Aleshin, V.P.

    1995-01-01

    By using our semiclassical approach to particle evaporation from deformed nuclei, we analyze the heuristic models of particle emission from deformed nuclei which are used in the codes GANES, ALICE, and EVAP. The calculations revealed that the heuristic models are reasonable for particle energy spectra but fail, at large deformations, to describe the angular distributions

  17. Neutron-rich nuclei produced at zero degrees in damped collisions induced by a beam of 18O on a 238U target

    Science.gov (United States)

    Stefan, I.; Fornal, B.; Leoni, S.; Azaiez, F.; Portail, C.; Thomas, J. C.; Karpov, A. V.; Ackermann, D.; Bednarczyk, P.; Blumenfeld, Y.; Calinescu, S.; Chbihi, A.; Ciemala, M.; Cieplicka-Oryńczak, N.; Crespi, F. C. L.; Franchoo, S.; Hammache, F.; Iskra, Ł. W.; Jacquot, B.; Janssens, R. V. F.; Kamalou, O.; Lauritsen, T.; Lewitowicz, M.; Olivier, L.; Lukyanov, S. M.; Maccormick, M.; Maj, A.; Marini, P.; Matea, I.; Naumenko, M. A.; de Oliveira Santos, F.; Petrone, C.; Penionzhkevich, Yu. E.; Rotaru, F.; Savajols, H.; Sorlin, O.; Stanoiu, M.; Szpak, B.; Tarasov, O. B.; Verney, D.

    2018-04-01

    Cross sections and corresponding momentum distributions have been measured for the first time at zero degrees for the exotic nuclei obtained from a beam of 18O at 8.5 MeV/A impinging on a 1 mg/cm2238U target. Sizable cross sections were found for the production of exotic species arising from the neutron transfer and proton removal from the projectile. Comparisons of experimental results with calculations based on deep-inelastic reaction models, taking into account the particle evaporation process, indicate that zero degree is a scattering angle at which the differential reaction cross section for production of exotic nuclei is at its maximum. This result is important in view of the new generation of zero degrees spectrometers under construction, such as the S3 separator at GANIL, for example.

  18. Total reaction cross sections and neutron-removal cross sections of neutron-rich light nuclei measured by the COMBAS fragment-separator

    Science.gov (United States)

    Hue, B. M.; Isataev, T.; Erdemchimeg, B.; Artukh, A. G.; Aznabaev, D.; Davaa, S.; Klygin, S. A.; Kononenko, G. A.; Khuukhenkhuu, G.; Kuterbekov, K.; Lukyanov, S. M.; Mikhailova, T. I.; Maslov, V. A.; Mendibaev, K.; Sereda, Yu M.; Penionzhkevich, Yu E.; Vorontsov, A. N.

    2017-12-01

    Preliminary results of measurements of the total reaction cross sections σR and neutron removal cross section σ-xn for weakly bound 6He, 8Li, 9Be and 10Be nuclei at energy range (20-35) A MeV with 28Si target is presented. The secondary beams of light nuclei were produced by bombardment of the 22Ne (35 A MeV) primary beam on Be target and separated by COMBAS fragment-separator. In dispersive focal plane a horizontal slit defined the momentum acceptance as 1% and a wedge degrader of 200 μm Al was installed. The Bρ of the second section of the fragment-separator was adjusted for measurements in energy range (20-35) A MeV. Two-neutron removal cross sections for 6He and 10Be and one -neutron removal cross sections 8Li and 9Be were measured.

  19. Low energy resonance in the neutron rich nucleus of 48Ca. New detectors for the study of unstable nuclei: MUST and CATS

    International Nuclear Information System (INIS)

    Ottini, St.

    1998-01-01

    Two new detectors have been developed to study reactions resulting from exotic beams. The first one, MUST, a set of Si strip detectors is devoted to light recoil particles detection between 500 eV and 120 MeV. The 40 Ar elastic and inelastic scattering analysis at 77 MeV per nucleon showed a non ambiguous identification of the particles in the detector, thanks the time and energy resolutions. The second one, CATs, is a set of beam detectors. These low pressure wire chambers allow each particle measurement of the exotic beams with an accuracy of 0,4 mm. A special interest is given to the halo nuclei low excitation energy spectra. A dipolar low energy resonance should be observed. The inelastic scattering at 60 MeV per nucleon on two targets ( 40 Ca and 48 Ca) has been studied with SPEG at Ganil (France), to search a low energy resonance. It is not possible to conclude on this low energy resonance existence. (A.L.B.)

  20. Isomer spectroscopy of neutron-rich 168 Tb 103

    Energy Technology Data Exchange (ETDEWEB)

    Gurgi, L. A.; Regan, P. H.; Söderström, P. -A.; Watanabe, H.; Walker, P. M.; Podolyák, Zs.; Nishimura, S.; Berry, T. A.; Doornenbal, P.; Lorusso, G.; Isobe, T.; Baba, H.; Xu, Z. Y.; Sakurai, H.; Sumikama, T.; Catford, W. N.; Bruce, A. M.; Browne, F.; Lane, G. J.; Kondev, F. G.; Odahara, A.; Wu, J.; Liu, H. L.; Xu, F. R.; Korkulu, Z.; Lee, P.; Liu, J. J.; Phong, V. H.; Yag, A.; Zhang, G. X.; Alharbi, T.; Carroll, R. J.; Chae, K. Y.; Dombradi, Zs.; Estrade, A.; Fukuda, N.; Griffin, C.; Ideguchi, E.; Inabe, N.; Kanaoka, H.; Kojouharov, I.; Kubo, T.; Kubono, S.; Kurz, N.; Kuti, I.; Lalkovski, S.; Lee, E. J.; Lee, C. S.; Lotay, G.; Moon, C. -B.; Nishizuka, I.; Nita, C. R.; Patel, Z.; Roberts, O. J.; Schaffner, H.; Shand, C. M.; Suzuki, H.; Takeda, H.; Terashima, S.; Vajta, Zs.; Yoshida, S.; Valiente-Dòbon, J. J.

    2017-11-01

    In-flight fission of a 345 MeV per nucleon 238U primary beam on a 2 mm thick 9Be target has been used to produce and study the decays of a range of neutron-rich nuclei centred around the doubly mid-shell nucleus 170Dy at the RIBF Facility, RIKEN, Japan. The produced secondary fragments of interest were identified event-by-event using the BigRIPS separator. The fragments were implanted into the WAS3ABI position sensitive silicon active stopper which allowed pixelated correlations between implants and their subsequent β-decay. Discrete γ-ray transitions emitted following decays from either metastable states or excited states populated following beta decay were identified using the 84 coaxial high-purity germanium (HPGe) detectors of the EURICA spectrometer, which was complemented by 18 additional cerium-doped lanthanum bromide (LaBr3) fast-timing scintillation detectors from the FATIMA collaboration. This paper presents the internal decay of a metastable isomeric excited state in the odd-odd nucleus 168Tb, which corresponds to a single proton-neutron hole configuration in the valence maximum nucleus 170Dy. These data represent the first information on excited states in this nucleus, which is the most neutron-rich odd-odd isotope of terbium (Z=65) studied to date. Nilsson configurations associated with an axially symmetric, prolate-deformed nucleus are proposed for the 168Tb ground state the observed isomeric state by comparison with Blocked BCS-Nilsson calculations.

  1. Effective field theory for triaxially deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.B. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Kaiser, N. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, Juelich Center for Hadron Physics and JARA-HPC, Forschungszentrum Juelich, Juelich (Germany); Meng, J. [Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); University of Stellenbosch, Department of Physics, Stellenbosch (South Africa)

    2017-10-15

    Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation. (orig.)

  2. Neutron-capture reactions by stable and unstable neutron-rich nuclei and their relevance for nucleosynthesis in hot and explosive astrophysical scenarios

    International Nuclear Information System (INIS)

    Hofinger, R.

    1997-10-01

    This thesis deals on the one hand with neutron-capture reactions by carbon-, nitrogen-, oxygen- and sulfur-isotopes, and on the other hand with the two-step processes 4 He(2n, γ) 6 He and 9 Li(2n, γ) 11 Li. Some of the involved carbon-, nitrogen- and oxygen-isotopes possess neutron-halos characterized by the unexpected large radial extension of the nuclear matter density distribution. Special attention is paid to the halo properties in the calculation of the direct neutron capture cross section. For the determination of the nuclear structure, models are used, when no experimental information is available. The results for the reaction rates are compared to previously used rates. The rates obtained in this work are partly orders of magnitude higher than the previously used reaction rates. The reaction rates for the two-step processes are on the one hand calculated assuming a two-step process, on the other hand from genuine three-body models for the process of photodisintegration of the nuclei 6 He and 11 Li. It turns out that the calculations assuming a trio-step process underestimate the reaction rates by orders of magnitude. The influence of the reaction rate for the reaction 4 He(2n, γ) 6 He and the formation of 12 C is examined in a nuclear reaction network under conditions which are typical for the α- process in supernovae of type II. It turns out that under these conditions the influence of the reaction 4 He(2n, γ) 6 He is negligible on the formation of 12 C. (author)

  3. Observation of the new neutron-rich nuclei 29F, 35,36Mg, 38,39Al, 40,41Si, 43,44P, 45,46,47S, 46,47,48,49Cl and 49,50,51Ar by means of a 55 MeV/u 48Ca beam

    International Nuclear Information System (INIS)

    Guillemaud-Mueller, D.; Anne, R.; Penionzhkevich, Yu.Eh.

    1988-01-01

    Using magnetic separation and identification through time of flight and ΔE,E measurements, the new neutron-rich nuclei, 29 F, 35,36 Mg, 38,39 Al, 40,41 Si, 43,44 P, 45,46,47 S, 46,47,48,49 Cl, 49,50,51 Ar have been observed from interactions of 48 Ca beam of 55 MeV/u with tantalum targets

  4. Decay analysis of compound nuclei formed in reactions with exotic neutron-rich 9Li projectile and the synthesis of 217At* within the dynamical cluster-decay model

    Science.gov (United States)

    Kaur, Arshdeep; Kaushal, Pooja; Hemdeep; Gupta, Raj K.

    2018-01-01

    The decay of various compound nuclei formed via exotic neutron-rich 9Li projectile is studied within the dynamical cluster-decay model (DCM). Following the earlier work of one of us (RKG) and collaborators (M. Kaur et al. (2015) [1]), for an empirically fixed neck-length parameter ΔRemp, the only parameter in the DCM, at a given incident laboratory energy ELab, we are able to fit almost exactly the (total) fusion cross section σfus =∑x=16σxn for 9Li projectile on 208Pb and other targets, with σfus depending strongly on the target mass of the most abundant isotope and its (magic) shell structure. This result shows the predictable nature of the DCM. The neck-length parameter ΔRemp is fixed empirically for the decay of 217At* formed in 9Li + 208Pb reaction at a fixed laboratory energy ELab, and then the total fusion cross section σfus calculated for all other reactions using 9Li as a projectile on different targets. Apparently, this procedure could be used to predict σfus for 9Li-induced reactions where experimental data are not available. Furthermore, optimum choice of "cold" target-projectile combinations, forming "hot" compact configurations, are predicted for the synthesis of compound nucleus 217At* with 8Li + 209Pb as one of the target-projectile combination, or another (t , p) combination 48Ca + 169Tb, with a doubly magic 48Ca, as the best possibility.

  5. Systematics of triaxial deformation in Xe, Ba, and Ce nuclei

    International Nuclear Information System (INIS)

    Yan, J.; Vogel, O.; von Brentano, P.; Gelberg, A.

    1993-01-01

    The (β,γ) deformation parameters of even-even Xe, Ba, and Ce nuclei have been calculated by using the triaxial rotor model. Deformation parameters calculated, on one hand, from decay properties and, on the other hand, from energies are in good agreement. The smooth dependence of the deformation parameters on Z and N is discussed. The results are compared with those extracted from properties of odd-A nuclei

  6. The neutrino opacity of neutron rich matter

    Energy Technology Data Exchange (ETDEWEB)

    Alcain, P.N., E-mail: pabloalcain@gmail.com [Departamento de Física, FCEyN, UBA and IFIBA, Conicet, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); IFIBA-CONICET (Argentina); Dorso, C.O. [Departamento de Física, FCEyN, UBA and IFIBA, Conicet, Pabellón 1, Ciudad Universitaria, 1428 Buenos Aires (Argentina); IFIBA-CONICET (Argentina)

    2017-05-15

    The study of neutron rich matter, present in neutron star, proto-neutron stars and core-collapse supernovae, can lead to further understanding of the behavior of nuclear matter in highly asymmetric nuclei. Heterogeneous structures are expected to exist in these systems, often referred to as nuclear pasta. We have carried out a systematic study of neutrino opacity for different thermodynamic conditions in order to assess the impact that the structure has on it. We studied the dynamics of the neutrino opacity of the heterogeneous matter at different thermodynamic conditions with semiclassical molecular dynamics model already used to study nuclear multifragmentation. For different densities, proton fractions and temperature, we calculate the very long range opacity and the cluster distribution. The neutrino opacity is of crucial importance for the evolution of the core-collapse supernovae and the neutrino scattering.

  7. Cold transfer between deformed, Coulomb excited nuclei

    International Nuclear Information System (INIS)

    Bauer, H.

    1998-01-01

    The scattering system 162 Dy → 116 Sn has been examined at energies in the vicinity of the Coulomb barrier using the Heidelberg-Darmstadt Crystal Ball spectrometer combined with 5 Germanium-CLUSTER detectors. In order to study pairing correlations as a function of angular momentum cold events were selected in the 2n stripping channel by identifying and suppressing the dominant hot part of the transfer with the Crystal Ball. The CLUSTER detectors with their high γ-efficiency were used to identify the transfer channel and to resolve individual final states. Cross sections for the population of individual yrast states in a cold transfer reaction have been measured for the first time indicating the strong influence of higher transfer multipolarities. At small surface distances Coulomb-nuclear interferences were found to be responsible for the stronger decline of the population of higher yrast states in the transfer channel as compared to the Coulex channel. As a preparatory study for 2n transfer measurements between high spin yrast states in the backbending region of deformed nuclei the Coulomb excitation process in the crossing region of two bands in 162 Dy has been analyzed. The gross properties of the measured population probabilities could be interpreted in a simple band mixing model. (orig.)

  8. Quadrupole deformation and clusterization in nuclei

    International Nuclear Information System (INIS)

    Cseh, J.; Algora, A.; Darai, J.; Hess, P.O.

    2004-01-01

    in the dinuclear system model, or in the local potential approach. On the other hand the treatment of the exclusion- principle has to be done microscopically, there- fore, apart from the light, or simplest heavy nuclei, it gives rise to very big computational difficulties. Due to this fact no systematic studies has been done, and many of the experimentally interesting systems are untouched from this viewpoint. The main point of our work is that we present a method for the approximative treatment of the exclusion principle, which can be applied both to binary and ternary (and even to multi) cluster-configurations, and we combine this microscopic approach with an empirical method of the calculation of the energetic preference. This latter quantity is obtained in a similar way as in the work with a straightforward generalisation for ternary clusterization. In this way both aspects of the clusterization (i.e. energy-minimum and exclusion principles) can be handled, therefore, their interrelation can be studied in specific problems. The exclusion-principle is taken into account by a selection rule, based on the real or effective U(3) symmetry for light and heavy nuclei, respectively. This symmetry-based consideration can also be very involved for heavy nuclei, nevertheless, it seems to be widely applicable. As specific examples we consider binary and ternary cluster-configurations in the ground, superdeformed and hyperdeformed states of the light 36 Ar and heavy 252 Cf nuclei. In case of 36 Ar the superdeformed state has been found experimentally, and a theoretical prediction is available for its hyperdeformed state. In case of 252 Cf the main motivation is provided by the spontaneous fission experiments from its ground state, which indicated several very exotic clusterizations. As for superdeformed and hyperdeformed states of this nucleus, we consider hypothetical states with appropriate deformations (ε = 0.6 and ε = 0.86 respectively). The main conclusions of our

  9. Surface energy of very neutron rich nuclei

    CERN Document Server

    Von Groote, H

    1976-01-01

    For a microscopic model calculation of the nuclear surface-energy coefficient sigma the surface energy is defined as the energy loss of an uncharged, semiinfinite (inhomogeneous) two-component system compared to an infinite (homogeneous) system with the same particle asymmetry delta . Using the Thomas-Fermi model the calculations are performed for a series of systems with increasing delta , starting from symmetric matter ( delta =0) and extending beyond the drip line of the neutrons, until the system undergoes a phase transition to a homogeneous system. The results for the surface energy as well as for the neutron skin and for the surface diffuseness are compared to the macroscopic approach of the Droplet Model (DM), which turns out to be a good approximation for small asymmetries typical for the region of the valley of beta -stability. For larger asymmetries, close to the drip lines, terms of higher order than contained in the DM approach are no longer negligible. Beyond the drip lines the pressure of the ou...

  10. Analysis of Orientation Relations Between Deformed Grains and Recrystallization Nuclei

    DEFF Research Database (Denmark)

    West, Stine S.; Winther, Grethe; Juul Jensen, Dorte

    2011-01-01

    Nucleation in 30 pct rolled high-purity aluminum samples was investigated by the electron backscattering pattern method before and after annealing. A total of 29 nuclei including two twins were observed, and approximately one third of these nuclei had orientations not detected in the deformed state....... Possible orientation relations between these nuclei and the deformed state were by 20 to 55 deg rotation around axes. These axes were compared with the active slip systems, and the crystallographic features of the deformation-induced dislocation boundaries. Good agreement was found between the rotation...

  11. Strong electric and magnetic dipole excitations in deformed nuclei

    International Nuclear Information System (INIS)

    Kneissl, U.

    1993-01-01

    Systematic nuclear resonance fluorescence (NRF) experiments have been performed at the bremsstrahlung facility of the Stutgart dynamitron to investigate the distribution of magnetic and electric dipole excitations in deformed nuclei

  12. Radiochemical search for neutron-rich isotopes of element 107

    International Nuclear Information System (INIS)

    Schaedel, M.

    1987-01-01

    Recent mass calculations have indicated that there is a region of deformed nuclei around neutron number N=162 that is especially stable against spontaneous fission. Barrier heights of about 5 MeV for Z = 107 nuclides can be extrapolated. To search for new, neutron-rich isotopes of element 107 in radiochemical experiments with 254 Es as a target an on-line chemical separation of element 107 (EKA-Rhenium), especially from the actinide elements is needed. An on-line gas-phase chemistry was developed with the homolog Re based on the volatility of the oxide which is transported in an O 2 containing atmosphere along a temperature gradient in a quartz tube and is condensed onto a thin Ta coated Ni-foil. The authors applied this technique in two series of experiments with their rotating wheel on-line gas-phase chemistry apparatus at the 88-inch cyclotron where they irradiated 254 Es as a target with 93 MeV and 96 MeV 16 O ions to search for 266 107. The assignment of the observed alpha events between 8 and 9 MeV to possibly (1) non actinide contaminants like 212 Po, (2) known isotopes of heavy elements like 261 105, or (3) a new isotope will be discussed

  13. Deformation and shape coexistence in medium mass nuclei

    International Nuclear Information System (INIS)

    Meyer, R.A.

    1985-01-01

    Emerging evidence for deformed structures in medium mass nuclei is reviewed. Included in this review are both nuclei that are ground state symmetric rotors and vibrational nuclei where there are deformed structures at excited energies (shape coexistence). For the first time, Nilsson configurations in odd-odd nuclei within the region of deformation are identified. Shape coexistence in nuclei that abut the medium mass region of deformation is also examined. Recent establishment of a four-particle, four-hole intruder band in the double subshell closure nucleus 96 Zr 56 is presented and its relation to the nuclear vibron model is discussed. Special attention is given to the N=59 nuclei where new data have led to the reanalysis of 97 Sr and 99 Zr and the presence of the [404 9/2] hole intruder state as isomers in these nuclei. The low energy levels of the N=59 nuclei from Z=38 to 50 are compared with recent quadrupole-phonon model calculations that can describe their transition from near-rotational to single closed shell nuclei. The odd-odd N=59 nuclei are discussed in the context of coexisting shape isomers based on the (p[303 5/2]n[404 9/2])2 - configuration. Ongoing in-beam (t,p conversion-electron) multiparameter measurements that have led to the determination of monopole matrix elements for even-even 42 Mo nuclei are presented, and these are compared with initial estimates using IBA-2 calculations that allow mixing of normal and cross subshell excitations. Lastly, evidence for the neutron-proton 3 S 1 force's influence on the level structure of these nuclei is discussed within the context of recent quadrupole-phonon model calculations. (Auth.)

  14. Study of shape transition in the neutron-rich Os isotopes

    Directory of Open Access Journals (Sweden)

    John P.R.

    2014-03-01

    Full Text Available The neutron-rich isotopes of tungsten, osmium and platinum have different shapes in their ground states and present also shape transitions phenomena. Spectroscopic information for these nuclei is scarce and often limited to the gamma rays from the decay of isomeric states. For the neutron-rich even-even osmium isotopes 194Os and 198Os, a shape transition between a slightly prolate deformed to an oblate deformed ground state was deduced from the observed level schemes. For the even-even nucleus lying in between, 196Os, no gamma ray transition is known. In order to elucidate the shape transition and to test the nuclear models describing it, this region was investigated through gamma-ray spectroscopy using the AGATA demonstrator and the large acceptance heavy-ion spectrometer PRISMA at LNL, Italy. A two-nucleon transfer from a 198Pt target to a stable 82Se beam was utilized to populate medium-high spin states of 196Os. The analysis method and preliminary results, including the first life-time measurement of isomeric states with AGATA, are presented.

  15. Study of Triaxial deformation variable γ in even - even nuclei

    International Nuclear Information System (INIS)

    Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Sharma, Aparna; Varshney, A.K.; Singh, M.; Gupta, D.K.; Varshney, Mani; Dhiman, S.K.

    2011-01-01

    The deformation parameters β and γ of the collective model are basic description of the nuclear equilibrium shape and structure, while values for these variables have been discussed for many nuclei. A systematic study in mass region A = 120-140 and A = 150 -180 can never be less revealing, such study has been presented, in A = 90 -120 for Mo, Ru and Pd nuclei where β and γ both vary strongly

  16. Description of deformed nuclei in the sdg boson model

    International Nuclear Information System (INIS)

    Li, S.C.; Kuyucak, S.

    1996-01-01

    We present a study of deformed nuclei in the framework of the sdg interacting boson model utilizing both numerical diagonalization and analytical 1/N expansion techniques. The focus is on the description of high-spin states which have recently become computationally accessible through the use of computer algebra in the 1/N expansion formalism. A systematic study is made of high-spin states in rare-earth and actinide nuclei. (orig.)

  17. Description of deformed nuclei in the sdg boson model

    Energy Technology Data Exchange (ETDEWEB)

    Li, S.C. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences; Kuyucak, S. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1996-07-15

    We present a study of deformed nuclei in the framework of the sdg interacting boson model utilizing both numerical diagonalization and analytical 1/N expansion techniques. The focus is on the description of high-spin states which have recently become computationally accessible through the use of computer algebra in the 1/N expansion formalism. A systematic study is made of high-spin states in rare-earth and actinide nuclei. (orig.).

  18. Description of deformed nuclei in the sdg boson model

    Science.gov (United States)

    Li, S. C.; Kuyucak, S.

    1996-02-01

    We present a study of deformed nuclei in the framework of the sdg interacting boson model utilizing both numerical diagonalization and analytical {1}/{N} expansion techniques. The focus is on the description of high-spin states which have recently become computationally accessible through the use of computer algebra in the {1}/{N} expansion formalism. A systematic study is made of high-spin states in rare-earth and actinide nuclei.

  19. Rotational states in deformed nuclei: An analytic approach

    International Nuclear Information System (INIS)

    Bentz, W.; Arima, A.; Enders, J.; Wambach, J.; Richter, A.

    2011-01-01

    The consequences of the spontaneous breaking of rotational symmetry are investigated in a field theory model for deformed nuclei, based on simple separable interactions. The crucial role of the Ward-Takahashi identities in describing the rotational states is emphasized. We show explicitly how the rotor picture emerges from the isoscalar Goldstone modes and how the two-rotor model emerges from the isovector scissors modes. As an application of the formalism, we discuss the M1 sum rules in deformed nuclei and make the connection to empirical information.

  20. Fine structure in deformed proton emitting nuclei

    International Nuclear Information System (INIS)

    Sonzogni, A. A.; Davids, C. N.; Woods, P. J.; Seweryniak, D.; Carpenter, M. P.; Ressler, J. J.; Schwartz, J.; Uusitalo, J.; Walters, W. B.

    1999-01-01

    In a recent experiment to study the proton radioactivity of the highly deformed 131 Eu nucleus, two proton lines were detected. The higher energy one was assigned to the ground-state to ground-state decay, while the lower energy, to the ground-state to the 2 + state decay. This constitutes the first observation of fine structure in proton radioactivity. With these four measured quantities, proton energies, half-life and branching ratio, it is possible to determine the Nilsson configuration of the ground state of the proton emitting nucleus as well as the 2 + energy and nuclear deformation of the daughter nucleus. These results will be presented and discussed

  1. Gamma band odd-even staggering in some deformed nuclei

    International Nuclear Information System (INIS)

    Khairy, M.K.; Talaat, SH.M.; Morsy, M.

    2005-01-01

    A complete investigation was carried out in studying the odd-even staggering (OES) of gamma bands energy levels in some deformed nuclei up to angular momentum L=13 . With the help of Minkov treatment in the framework of a collective Vector Boson Model (VBM) with broken SU (3) symmetry. The OES behavior of deformed isotopes 162 E r, 164 E r, 166 E r, 156 G d, 170 Y b and 232 T h was studied and discussed

  2. Dynamic deformation theory of spherical and deformed light and heavy nuclei with A = 12-240

    International Nuclear Information System (INIS)

    Kumar, Krishna.

    1979-01-01

    Deformation dependent wave functions are calculated for different types of even-even nuclei (spherical, transitional, deformed; light, medium, heavy) without any fitting parameters. These wave functions are employed for the energies, B(E2)'s, quadrupole and magnetic moments of selected nuclei with A = 12-240 (with special emphasis on 56 Fe, 154 Gd), and for neutron cross sections of 148 Sm, 152 Sm

  3. Coulomb excitation of neutron-rich odd-$A$ Cd isotopes

    CERN Multimedia

    Reiter, P; Kruecken, R; Gernhaeuser, R A; Kroell, T; Leske, J; Marginean, N M

    We propose to study excited states in the odd-${A}$ isotopes $^{123,125,127}$Cd by ${\\gamma}$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to determine the B(E2) values connecting excited states with the ground state as well as the long-lived (11/2$^{-}$) isomer. The proposed study profits from the unique capability of ISOLDE to produce beams containing Cd in the ground state or in the isomeric state. Our recent results on the neutron-rich even-A Cd nuclei appear to show that these nuclei may possess some collectivity beyond that calculated by modern shell-model predictions. Beyond-mean-field calculations also predict these nuclei to be weakly deformed. These facets are surprising considering their proximity to the doubly magic $^{132}$Sn. Coulomb-excitation studies of odd-${A}$ Cd isotopes may give a unique insight into the deformation-driving roles played by different orbits in this region. Such studies of the onset of collectivity become especially important in light of recent...

  4. Octupole Deformed Nuclei in the Actinide Region

    CERN Multimedia

    Thorsteinsen, T; Rubio barroso, B; Simpson, J; Gulda, K; Sanchez-vega, M; Cocks, J; Nybo, K; Garcia borge, M; Aas, A; Fogelberg, B; Honsi, J; Smith, G; Naumann, R; Grant, I

    2002-01-01

    The aim of the present study is to investigate the limits of the "island" of octupole deformation in the mass region A=225. It is of particular importance to demonstrate experimentally the sudden disappearance of the stable octupole deformation in the presence of a well developed quadrupole field. \\\\ \\\\In order to establish the upper border line the $\\beta$ -decay chains of $^{227}$Rn $\\rightarrow ^{227}$Fr $\\rightarrow ^{227}$Ra and $^{231}$Fr $\\rightarrow ^{231}$Ra $\\rightarrow ^{231}$Ac were studied at PSB-ISOLDE using advanced fast timing and $\\gamma$-ray spectroscopy techniques. The lifetimes of the excited states have been measured in the picosecond range using the time-delayed $\\beta\\gamma\\gamma$(t) method.

  5. E2 transitions in deformed nuclei and the IBA

    International Nuclear Information System (INIS)

    Warner, D.D.; Casten, R.F.

    1981-01-01

    The mechanism which determines the relative E2 strengths in the Interacting Boson Approximation is studied, and the structure of the E2 operator necessary to reproduce the empirical B(E2) values in deformed even-even nuclei in the rate earth region is investigated

  6. Relativistic mean field theory for deformed nuclei with pairing correlations

    International Nuclear Information System (INIS)

    Geng, Lisheng; Toki, Hiroshi; Sugimoto, Satoru; Meng, Jie

    2003-01-01

    We develop a relativistic mean field (RMF) description of deformed nuclei with pairing correlations in the BCS approximation. The treatment of the pairing correlations for nuclei whose Fermi surfaces are close to the threshold of unbound states needs special attention. With this in mind, we use a delta function interaction for the pairing interaction to pick up those states whose wave functions are concentrated in the nuclear region and employ the standard BCS approximation for the single-particle states obtained from the BMF theory with deformation. We apply the RMF + BCS method to the Zr isotopes and obtain a good description of the binding energies and the nuclear radii of nuclei from the proton drip line to the neutron drip line. (author)

  7. Some aspects of reflection asymmetric deformations in nuclei

    International Nuclear Information System (INIS)

    Olanders, P.

    1984-10-01

    The nuclear shape in the intrinsic frame is studied using the Strutinsky method. Various potentials (Nilsson, folded Yukawa and Woods-Saxon) are used for the microscopic part, and the macroscopic part is described as a liquid drop with either a sharp or a smooth surface. Special attention is paid to the possibility of octupole deformed ground states. The consequences of octupole deformations for the rotational behaviour are investigated using the cranking model. It is particularly shown that octupole deformation may supress the backbending in some nuclei. (author)

  8. Gamma-ray spectroscopy of the neutron-rich Ni region through heavy-ion deep-inelastic collisions

    International Nuclear Information System (INIS)

    Ishii, T.; Asai, M.; Matsuda, M.; Ichikawa, S.; Makishima, A.; Hossain, I.; Kleinheinz, P.; Ogawa, M.

    2002-01-01

    Nuclei in the neutron-rich Ni region have been studied by γ-ray spectroscopy. Gamma-rays emitted from isomers, with T 1/2 >1 ns, produced in heavy-ion deep-inelastic collisions were measured with an isomer-scope. The nuclear structure of the doubly magic 68 Ni and its neighbor 69,71 Cu is discussed on the basis of the shell model. Future experiments for more neutron-rich Ni nuclei are also viewed. (orig.)

  9. Gamma-ray spectroscopy of the neutron-rich Ni region through heavy-ion deep-inelastic collisions

    Science.gov (United States)

    Ishii, T.; Asai, M.; Makishima, A.; Hossain, I.; Kleinheinz, P.; Ogawa, M.; Matsuda, M.; Ichikawa, S.

    Nuclei in the neutron-rich Ni region have been studied by γ-ray spectroscopy. Gamma-rays emitted from isomers, with T1/2 > 1 ns, produced in heavy-ion deep-inelastic collisions were measured with an isomer-scope. The nuclear structure of the doubly magic 68Ni and its neighbor 69,71Cu is discussed on the basis of the shell model. Future experiments for more neutron-rich Ni nuclei are also viewed.

  10. Modeling level structures of odd-odd deformed nuclei

    International Nuclear Information System (INIS)

    Hoff, R.W.; Kern, J.; Piepenbring, R.; Boisson, J.P.

    1984-01-01

    A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei has been applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation were derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings were used. Calculated and experimental level structures for 238 Np, 244 Am, and 250 Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Corresponding average deviations for five rare-earth nuclei are 47 keV and 7%. Several applications of this modeling technique are discussed. 18 refs., 5 figs., 4 tabs

  11. Thermodynamics of neutron-rich nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    López, Jorge A., E-mail: jorgelopez@utep.edu [Department of Physics, University of Texas at El Paso, El Paso, Texas 79968, U.S.A (United States); Porras, Sergio Terrazas, E-mail: sterraza@uacj.mx; Gutiérrez, Araceli Rodríguez, E-mail: al104010@alumnos.uacj.mx [Universidad Autónoma de Ciudad Juárez, Ciudad Juárez, Chihuahua, México (Mexico)

    2016-07-07

    This manuscript presents methods to obtain properties of neutron-rich nuclear matter from classical molecular dynamics. Some of these are bulk properties of infinite nuclear matter, phase information, the Maxwell construction, spinodal lines and symmetry energy.

  12. Laser Spectroscopy Studies in the Neutron-Rich Sn Region

    CERN Multimedia

    Obert, J

    2002-01-01

    We propose to use the powerful laser spectroscopy method to determine the magnetic moment $\\mu$ and the variation of the mean square charge radius ($\\delta\\,\\langle$r$_{c}^{2}\\,\\rangle$) for ground and long-lived isomeric states of the Sn isotopes from A=125 to the doubly-magic $^{132}$Sn isotope and beyond. For these neutron-rich Sn nuclei, numerous $\\delta\\,\\langle$r$^{2}_{c}\\,\\rangle$ curves have already been calculated and the predictions depend upon the effective interactions used. Therefore, a study of the effect of the shell closure N=82 on the $\\delta\\,\\langle$r$^{2}_{c}\\,\\rangle$ values in the Z=50 magic nuclei is of great interest, especially because $^{132}$Sn is located far from the stability valley. It will help to improve the parameters of the effective interactions and make them more suitable to predict the properties of exotic nuclei. \\\\ \\\\The neutron-rich Sn isotopes produced with an uranium carbide target, are ionized using either a hot plasma ion source or the resonant ionization laser ion ...

  13. Weakly bound structures in neutron rich Si isotopes

    International Nuclear Information System (INIS)

    Singh, D.; Saxena, G.; Yadav, H.L.

    2009-01-01

    Production of radioactive beams have facilitated the nuclear structure studies away from the line of β-stability, especially for the neutron rich drip line nuclei. Theoretical investigations of these nuclei have been carried out by using various approaches viz. few body model or clusters, shell model and mean field theories, both nonrelativistic as well as relativistic mean field (RMF). The advantage of the RMF approach, however, is that in this treatment the spin-orbit interaction is included in a natural way. This is especially advantageous for the description of drip-line nuclei for which the spin-orbit interaction plays an important role. In this communication we report briefly the results of our calculations for the Si isotopes carried out within the framework of RMF + BCS approach

  14. Collisions of deformed nuclei and superheavy-element production

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Moeller, P.; Univ. of Aizu, Fukushima; P. Moller Scientific Computing and Graphics, Inc., Los Alamos, NM; Los Alamos National Lab., NM; Nix, J.R.; Sagawa, Hiroyuki, Sagawa

    1995-01-01

    A detailed understanding of complete fusion cross sections in heavy-ion collisions requires a consideration of the effects of the deformation of the projectile and target. The aim here is to show that deformation and orientation of the colliding nuclei have a very significant effect on the fusion-barrier height and on the compactness of the touching configuration. To facilitate discussions of fusion configurations of deformed nuclei, the authors develop a classification scheme and introduce a notation convention for these configurations. They discuss particular deformations and orientations that lead to compact touching configurations and to fusion-barrier heights that correspond to fairly low excitation energies of the compound systems. Such configurations should be the most favorable for producing superheavy elements. They analyze a few projectile-target combinations whose deformations allow favorable entrance-channel configurations and whose proton and neutron numbers lead to compound systems in a part of the superheavy region where a half-lives are calculated to be observable, that is, longer than 1 micros

  15. Experimental study of the lifetime and phase transition in neutron-rich Zr 98 ,100 ,102

    Science.gov (United States)

    Ansari, S.; Régis, J.-M.; Jolie, J.; Saed-Samii, N.; Warr, N.; Korten, W.; Zielińska, M.; Salsac, M.-D.; Blanc, A.; Jentschel, M.; Köster, U.; Mutti, P.; Soldner, T.; Simpson, G. S.; Drouet, F.; Vancraeyenest, A.; de France, G.; Clément, E.; Stezowski, O.; Ur, C. A.; Urban, W.; Regan, P. H.; Podolyák, Zs.; Larijani, C.; Townsley, C.; Carroll, R.; Wilson, E.; Mach, H.; Fraile, L. M.; Paziy, V.; Olaizola, B.; Vedia, V.; Bruce, A. M.; Roberts, O. J.; Smith, J. F.; Scheck, M.; Kröll, T.; Hartig, A.-L.; Ignatov, A.; Ilieva, S.; Lalkovski, S.; Mǎrginean, N.; Otsuka, T.; Shimizu, N.; Togashi, T.; Tsunoda, Y.

    2017-11-01

    Rapid shape changes are observed for neutron-rich nuclei with A around 100. In particular, a sudden onset of ground-state deformation is observed in the Zr and Sr isotopic chains at N = 60: Low-lying states in N ≤58 nuclei are nearly spherical, while those with N ≥60 have a rotational character. Nuclear lifetimes as short as a few picoseconds can be measured using fast-timing techniques with LaBr3(Ce) scintillators, yielding a key ingredient in the systematic study of the shape evolution in this region. We used neutron-induced fission of 241Pu and 235U to study lifetimes of excited states in fission fragments in the A ˜100 region with the EXILL-FATIMA array located at the PF1B cold neutron beam line at the Institut Laue-Langevin. In particular, we applied the generalized centroid difference method to deduce lifetimes of low-lying states for the nuclei 98Zr (N = 58), 100Zr, and 102Zr (N ≥60 ). The results are discussed in the context of the presumed phase transition in the Zr chain by comparing the experimental transition strengths with the theoretical calculations using the interacting boson model and the Monte Carlo shell model.

  16. Study of the structure of yrast bands of neutron-rich 114-124Pd isotopes

    Science.gov (United States)

    Chaudhary, Ritu; Devi, Rani; Khosa, S. K.

    2018-02-01

    The projected shell model calculations have been carried out in the neutron-rich 114-124Pd isotopic mass chain. The results have been obtained for the deformation systematics of E(2+1) and E(4+1)/E({2}+1) values, BCS subshell occupation numbers, yrast spectra, backbending phenomena, B( E2) transition probabilities and g-factors in these nuclei. The observed systematics of E(2+1) values and R_{42} ratios in the 114-124Pd isotopic mass chain indicate that there is a decrease of collectivity as the neutron number increases from 68 to 78. The occurrence of backbending in these nuclei as well as the changes in the calculated B( E2) transition probabilities and g -factors predict that there are changes in the structure of yrast bands in these nuclei. These changes occur at the spin where there is crossing of g-band by 2-qp bands. The predicted backbendings and predicted values of B( E2)s and g-factors in some of the isotopes need to be confirmed experimentally.

  17. Relativistic quasiparticle random phase approximation in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pena Arteaga, D.

    2007-06-25

    Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogolyubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of the Goldstone modes. This allows the microscopic investigation of Pygmy and scissor resonances in electric and magnetic dipole fields. Excellent agreement with recent experiments is found and new types of modes are predicted for deformed systems with large neutron excess. (orig.)

  18. Collective two-phonon states in deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Shirikova, N.Y.

    1982-01-01

    The Pauli principle in the two-phonon components of the wave functions is taken into account within the framework of the quasiparticle-phonon model of the nucleus with phonon operators depending on the sign of the projection of the angular momentum. The centroid energies of collective two-phonon states in even-even deformed nuclei are calculated and it is shown that the inclusion of the Pauli principle shifts them by 1--3 MeV to higher energies. The shifts of the three-phonon poles due to the inclusion of the Pauli principle in the three-phonon components of the wave functions are calculated. Strong fragmentation of collective two-phonon states whose energy centroids are 3--5 MeV should be expected. It is concluded that collective two-phonon states need not exist in deformed nuclei. The situation with the 168 Er nucleus and the Th and U isotopes is analyzed

  19. Situation with collective two-phonon states in deformed nuclei

    International Nuclear Information System (INIS)

    Soloviev, V.G.; Shirikova, N.Yu.

    1982-01-01

    Within the quasiparticle-phonon nuclear model with the operators of phonons depending on the sign of the angular momentum projection, the Pauli principle is taken into account in the two-phonon components of the wave functions. The centroid energies of the collective two-phonon states in even-even deformed nuclei are calculated. It is shown that the inclusion of the Pauli principle leads to their shift by 1-3 MeV towards high energies. The shifts of three-phonon poles due to the Pauli principle are calculated in the three-phonon components of the wave functions. The collective two-phonon states, the centroid energies of which are 3-5 MeV, are expected to be strongly fragmented. The conclusion is confirmed that the collective two-phonon states should not exist in deformed nuclei. The situation in 168 Er and in the 228 Th isotopes is analysed

  20. Ground state properties of exotic nuclei in deformed medium mass region

    International Nuclear Information System (INIS)

    Manju; Chatterjee, R.; Singh, Jagjit; Shubhchintak

    2017-01-01

    The dipole moment, size of the nucleus and other ground state properties of deformed nuclei 37 Mg and 31 Ne are presented. Furthermore with this deformed wave function the electric dipole strength distribution for deformed nuclei 37 Mg and 31 Ne is calculated. This will allow us to investigate the two dimensional scaling phenomenon with two parameters: quadrupole deformation and separation energy

  1. Spectroscopy of neutron-rich isotopes of nickel and iron

    International Nuclear Information System (INIS)

    Girod, M.; Dessagne, P.; Bernas, M.; Langevin, M.; Pougheon, F.; Roussel, P.

    1987-01-01

    Spectroscopy of neutron rich isotopes of 67 Ni, 68 Ni and 62 Fe is studied using the quasi-elastic transfer reactions ( 14 C, 16 O) and ( 14 C, 17 O) on mass separated targets of 70 Zn and of 64 Ni. The structure of these new nuclei is investigated through the Hartree-Fock-Bogoliubov (HFB) calculations, using the D1SA interaction. Inertial parameters are calculated in the cranking approximation. Collective excited states are obtained consistently by solving the Bohr Hamiltonian. Based on these results, quantum numbers are tentatively assigned to the observed states and angular distributions, measured and calculated from the DWBA, are used to check this assignment. The spectroscopy of more neutron rich nuclei, yet unknown, is anticipated. A sharper test of wave functions is provided by the monopole operator of the O 2 + → O 1 + transition in 68 Ni, which have been deduced from the halflife measurement performed in delayed coincidence experiments. An impressive agreement is obtained between the measured halflife and its value calculated using complete HFB wave functions

  2. Shape transition in the neutron rich sodium isotopes

    International Nuclear Information System (INIS)

    Campi, X.; Flocard, H.; Kerman, A.K.; Koonin, S.; Massachusetts Inst. of Tech., Cambridge

    1975-06-01

    Mass spectrometer measurements of the neutron rich sodium isotopes show a sudden increase at 31 Na in the values of the two neutron separation energies. The spherical shell model naturally predicts a sudden decrease at 32 Na after the N=20 shell closure. It is proposed that the explanation for this disagreement lies in the fact that sodium isotopes in this mass region are strongly deformed due to the filling of negative parity orbitals from the 1fsub(7/2) shell. Hartree-Fock calculations are presented in support of this conjecture [fr

  3. Shape coexistence in neutron-rich Sr isotopes : Coulomb excitation of $^{96}$Sr

    CERN Multimedia

    Clement, E; Siem, S; Czosnyka, T

    2007-01-01

    The nuclei in the mass region A $\\cong$ 100 around Sr and Zr show a dramatic change of the nuclear ground-state shape from near spherical for N $\\leq$ 58 to strongly deformed for N $\\geq$ 60. Theoretical calculations predict the coexistence of slightly oblate and strongly prolate deformed configurations in the transitional region. However, excited rotational structures based on the highly deformed configuration, which becomes the ground state at N = 60, are not firmly established in the lighter isotopes, and the earlier interpretation of a very abrupt change of shape has been challenged by recent experimental results in favor of a rather gradual change. We propose to study the electromagnetic properties of the neutron-rich nucleus $_{38}^{96}$Sr$_{58}$ by low-energy Coulomb excitation using the REX-ISOLDE facility and the MINIBALL detector array. Both transitional and diagonal matrix elements will be extracted, resulting in a complete description of the transition strengths and quadrupole moments of the low-l...

  4. Reaction cross section measurements of neutron-rich exotic nuclei in the vicinity of closed shells N=20 and N=28; Mesures de section efficace de reaction de noyaux exotiques riches en neutrons dans la zone de fermeture des couches N=20 et N=28

    Energy Technology Data Exchange (ETDEWEB)

    Khouaja, A

    2003-12-01

    Using the direct method, the mean energy integrated reaction cross section was investigated for a wide range of neutron-rich nuclei (N {yields} Ar) at GANIL. Using the parametrisation of S. Kox, 19 new radii measurements (reaction cross sections) were obtained. By the isotopic, isotonic and isospin dependence, the evolution of the strong reduced radius was studied according to the excess of neutrons. New halo effect is proposed to the nuclei of Mg{sup 35} and S{sup 44}. A quadratic parametrization is also proposed for the nuclear radius as a function of the isospin in the region of closed shells N=8 and N=28. In addition, we used a modified version of the Glauber model for studying the tail and matter distribution of nuclei. Indeed, using our new data the effects of the nuclear size (root mean square radii) and the matter distribution (diffusivity) were de-convoluted for each isotope. The root mean square radii of Na and Mg isotopes obtained so far were consistent with the ones from literature. (author)

  5. Examination of different strengths of octupole correlations in neutron-rich Pr and Pm isotopes

    Czech Academy of Sciences Publication Activity Database

    Thiamova, G.; Alexa, P.; Hons, Zdeněk; Simpson, G.S.

    2012-01-01

    Roč. 86, č. 4 (2012), 044334/1-044334/5 ISSN 0556-2813 R&D Projects: GA ČR GAP203/10/0310 Institutional support: RVO:61389005 Keywords : neutron rich nuclei * octupole correlations Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 3.715, year: 2012

  6. Semimicroscopic description of the giant quadrupole resonances in deformed nuclei

    International Nuclear Information System (INIS)

    Kurchev, G.; Malov, L.A.; Nesterenko, V.O.; Soloviev, V.G.

    1976-01-01

    The calculation results of the giant quadrupole isoscalar and isovector resonances performed within the random phase approximation are represented. The strength functions for E2-transitions are calculated for doubly even deformed nuclei in the regions 150 (<=) A < 190 and 228 (<=) A < 248 in the energy interval (0-40) MeV. The following integral characteristics of giant quadrupole resonances are obtained: the position, widths, the contribution to the energy weighted sum rule and the contribution to the total cross section of photoabsorption. The calculations have shown that giant quadrupole resonances are common for all the considered nuclei. The calculated characteristics of the isoscalar giant quadrupole resonance agree with the available experimental data. The calculations also show that the semimicroscopic theory can be successfully applied for the description of giant multipole resonances

  7. K isomerism and collectivity in neutron-rich rare-earth isotopes.

    OpenAIRE

    Patel, Zena

    2016-01-01

    Neutron-rich rare-earth isotopes were produced by in-flight fission of 238U ions at the Radioactive Isotope Beam Factory (RIBF), RIKEN, Japan. In-flight fission of a heavy, high-intensity beam of 238U ions on a light target provides the cleanest secondary beams of neutron-rich nuclei in the rare-earth region of isotopes. In-flight fission is advantageous over other methods of nuclear production, as it allows for a secondary beam to be extracted, from which the beam species can be separated an...

  8. Nuclear structure studies of the neutron-rich Rubidium isotopes using Coulomb excitation

    CERN Multimedia

    Reiter, P; Blazhev, A A; Voulot, D; Meot, V H; Simpson, G S; Georgiev, G P; Gaudefroy, L; Roig, O

    We propose to study the properties of odd-mass neutron-rich rubidium isotopes by the Coulomb-excitation technique, using the Miniball array coupled to the REX-ISOLDE facility. The results from similar measurements from the recent years (e.g. for the odd-mass and the odd-odd Cu isotopes, IS435) have shown the strong potential in such measurements for gaining information both for single-particle-like and collective states in exotic nuclei. Since there is practically no experimental information for excited states in the odd-mass Rb isotopes beyond $^{93}$Rb, the present study should be able to provide new data in a region of spherical ($^{93}$Rb and $^{95}$Rb) as well as well-deformed nuclei ($^{97}$Rb and $^{99}$Rb). Of particular interest is the rapid shape change that occurs when going from $^{95}$Rb (${\\varepsilon}_{2}$=0.06) to $^{97}$Rb (${\\varepsilon}_{2}$=0.3). These results should be of significant astrophysical interest as well, due to the close proximity of the r-process path.

  9. Evolution of nuclear structure in neutron-rich odd-Zn isotopes and isomers

    Directory of Open Access Journals (Sweden)

    C. Wraith

    2017-08-01

    Full Text Available Collinear laser spectroscopy was performed on Zn (Z=30 isotopes at ISOLDE, CERN. The study of hyperfine spectra of nuclei across the Zn isotopic chain, N=33–49, allowed the measurement of nuclear spins for the ground and isomeric states in odd-A neutron-rich nuclei up to N=50. Exactly one long-lived (>10 ms isomeric state has been established in each 69–79Zn isotope. The nuclear magnetic dipole moments and spectroscopic quadrupole moments are well reproduced by large-scale shell–model calculations in the f5pg9 and fpg9d5 model spaces, thus establishing the dominant term in their wave function. The magnetic moment of the intruder Iπ=1/2+ isomer in 79Zn is reproduced only if the νs1/2 orbital is added to the valence space, as realized in the recently developed PFSDG-U interaction. The spin and moments of the low-lying isomeric state in 73Zn suggest a strong onset of deformation at N=43, while the progression towards 79Zn points to the stability of the Z=28 and N=50 shell gaps, supporting the magicity of 78Ni.

  10. On the role of high multipolarity interactions in deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Sushkov, A.V.

    1989-01-01

    The influence of interactions with the multipolarity λ=5,6,7 and 9 is studied on the mixing of two-quasineutron and two-quasineutron states with large K in doubly even deformed nuclei. The mixing of the two-quasineutron and two-quasiproton states with the same values of K π , caused by a high multipolarity interaction, is shown to be large in the case of proximity of their energies. Qualitatively correct description of experimental data on the mixing of two-quasineutron and two-quasiproton configurations in 178,176 Hf, 174 Yb, 168 Er and 158 Gd is obtained. 20 refs.; 1 tab

  11. The splitting of giant multipole states of deformed nuclei

    International Nuclear Information System (INIS)

    Suzuki, T.; Rowe, D.J.

    1977-01-01

    A vibrating potential model is applied to deformed nuclei with a deformed harmonic oscillator potential in order to discuss the splitting of isoscalar giant quadrupole states. Eigenfrequencies of the collective states are estimated to be √2ω(1 - delta/3), √2ω(1 - delta/6) and √2ω(1 + delta/3) for K = 0 + ,1 + and 2 + modes, respectively. The splitting of isovector dipole and isovector quadrupole states is also studied according to a schematic model as proposed by Bohr and Mottelson. It is shown that isovector dipole states are split, as in a hydrodynamic model, while isovector quadrupole states with the same scaling factors as those of isocalar quadrupole modes. (Auth.)

  12. Low-lying level structure of the neutron-rich nucleus {sup 109}Nb: A possible oblate-shape isomer

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H., E-mail: hiroshi@ribf.riken.j [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Sumikama, T. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Nishimura, S. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yoshinaga, K. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Li, Z. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Miyashita, Y. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Yamaguchi, K. [Department of Physics, Osaka University, Machikaneyama-machi 1-1, Osaka 560-0043 Toyonaka (Japan); Baba, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Berryman, J.S. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Blasi, N. [INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Bracco, A.; Camera, F. [INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Dipartimento di Fisica, Universita di Milano, via Celoria 16, I-20133 Milano (Italy); Chiba, J. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Doornenbal, P. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Go, S.; Hashimoto, T.; Hayakawa, S. [Center for Nuclear Study, University of Tokyo, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Hinke, C. [Physik Department, Technische Universitaet Muenchen, D-85748 Garching (Germany); Ideguchi, E. [Center for Nuclear Study, University of Tokyo, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan); Isobe, T. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2011-01-31

    The neutron-rich nuclei {sup 109}Nb and {sup 109}Zr have been populated using in-flight fission of a {sup 238}U beam at 345 MeV/nucleon at the RIBF facility. A T{sub 1/2}=150(30) ns isomer at 313 keV has been identified in {sup 109}Nb for the first time. The low-lying levels in {sup 109}Nb have been also populated following the {beta}-decay of {sup 109}Zr. Based on the difference in feeding pattern between the isomeric and {beta} decays, the decay scheme from the isomeric state in {sup 109}Nb was established. The observed hindrances of the electromagnetic transitions deexciting the isomeric state are discussed in terms of possible shape coexistence. Potential energy surface calculations for single-proton configurations predict the presence of low-lying oblate-deformed states in {sup 109}Nb.

  13. Evolution of Single Particle and Collective properties in the Neutron-Rich Mg Isotopes

    CERN Multimedia

    Reiter, P; Wiens, A; Fitting, J; Lauer, M; Van duppen, P L E; Finke, F

    2002-01-01

    We propose to study the single particle and collective properties of the neutron-rich Mg isotopes in transfer reactions and Coulomb excitation using REX-ISOLDE and MINIBALL. From the Coulomb excitation measurement precise and largely model independent B( E2 ; 0$^{+}_{g.s.}\\rightarrow$ 2$^{+}_{1}$ ) will be determined for the even-even isotopes. For the odd isotopes the distribution of the E2 strength over a few low-lying states will be measured. The sign of the M1/E2 mixing ratio, extracted from angular distributions, is characteristic of the sign of the deformation, as is the resulting level scheme. The neutron-pickup channel in the transfer reactions will allow for a determination of the single particle properties (spin, parity, spectroscopic factors) of these nuclei. This information will give new insights in changes of nuclear structure in the vicinity of the island of deformation around $^{32}$Mg. A total of 24 shifts of REX beam time is requested.

  14. Physics with Heavy Neutron Rich Ribs at the Hribf

    Science.gov (United States)

    Radford, David

    2002-10-01

    The Holifield Radioactive Ion Beam Facility at the Oak Ridge National Laboratory has recently produced the world's first post-accelerated beams of heavy neutron-rich nuclei. B(E2;0^+ arrow 2^+) values for neutron-rich ^126,128Sn and ^132,134,136Te isotopes have been measured by Coulomb excitation of radioactive ion beams in inverse kinematics. The results for ^132Te and ^134Te (N=80,82) show excellent agreement with systematics of lighter Te isotopes, but the B(E2) value for ^136Te (N=84) is unexpectedly small. Single-neutron transfer reactions leading to ^135Te were identified using a ^134Te beam on ^natBe and ^13C targets at energies just above the Coulomb barrier. The use of the Be target provided an unambiguous signature for neutron transfer through the detection of two correlated α particles, arising from the breakup of unstable ^8Be. The results of these experiments will be discussed, togther with plans for future experiments with these heavy n-rich RIBs.

  15. Photon strength in spherical and deformed heavy nuclei

    International Nuclear Information System (INIS)

    Grosse, E.; Junghans, A.; Birgersson, E.; Massarczyk, R.; Schramm, G.; Becvar, F.

    2010-01-01

    Information on the photon strength in heavy nuclei with mass A>150 will be given and compared to respective data. The photon strength function is a very important ingredient for statistical model calculations - especially when these are used to describe neutron capture. Several schemes for a transmutation of radioactive waste favor nuclear reactions with fast neutrons and these also influence the performance of various reactor types proposed to deliver nuclear energy together with only small quantities of such waste. Reactions with fast neutrons are far less studied as compared to those induced by thermal neutrons. As they are not easily accessible experimentally, reference is often made to calculations using the statistical model. Photon emission probabilities are needed as input to such calculations aiming for predictions on fission to capture ratios. From the favorable comparison of our parameterization to the experimental data for photon induced as well radiative capture processes in nuclei with various shapes and level densities we conclude what follows. First, the giant dipole resonance has very much the same properties in all heavy nuclei when their deformation is properly accounted for and its spreading width varies only smoothly with the resonance energies E k and not with the photon energy E γ . The radiative neutron capture results presented confirm strength data found in the literature. We also learn that our parameterization is at least a good approximation for photon energies below 4 MeV that dominate this process

  16. The electric dipole response of neutron rich tin isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Horvat, Andrea; Aumann, Thomas; Rossi, Dominic; Schindler, Fabia [Institut fuer Kernphysik, TU Darmstadt (Germany); Boretzky, Konstanze [GSI Helmholzzentrum fuer Schwerionenforschung, Darmstadt (Germany); Johansen, Jacob [Aarhus University (Denmark); Schrock, Philipp [The University of Tokyo (Japan); Collaboration: R3B-Collaboration

    2016-07-01

    Studies of the dipole response in medium heavy and heavy neutron rich nuclei reveal valuable information about the isospin dependence of the nuclear equation of state. Therefore an experimental campaign investigating both the electric dipole response via Coulomb excitation and neutron removal along the tin isotope chain ({sup 124-134}Sn) has been carried out at the R3B (Reactions with Relativistic Radioactive Beams) setup at GSI (Helmholtzzentrum fuer Schwerionenforschung) for which the analysis is ongoing. The E1 response was induced via relativistic Coulomb scattering by a lead target in inverse kinematics, and calls for a kinematically complete determination of all reaction products in order to reconstruct the excitation energy by means of the invariant mass method. The goal is to obtain the Coulomb excitation cross section up to the adiabatic cut-off energy, covering the giant dipole resonance (GDR) range.

  17. Beta decay and magnetic moments as tools to probe nuclear structure. Study of neutron-rich nuclei around N=40; Decroissance beta et moments magnetiques comme outils pour sonder la structure nucleaire. Etude des noyaux riches en neutrons autour de N=40

    Energy Technology Data Exchange (ETDEWEB)

    Matea, I

    2003-12-01

    The evolution of nuclear structure in nuclei far from the {beta} stability line is one of the 'hot topics' in modern experimental and theoretical nuclear physics. The present thesis is devoted to the study of structure of neutron-rich nuclei around N=40. The evolution of the neutron g9/2 orbital with increasing number of neutrons is one of the key points defining the structure of these nuclei at low excitation energy. We used for this investigation as experimental tools the magnetic dipole moments measurements and the {beta} decay spectroscopy. For the measurement of the gyromagnetic factor of the 9/2{sup +} isomeric state in Fe{sup 61} we have applied the TDPAD method. This method (like most of measurements of nuclear moments) requires an oriented ensemble of nuclei. The orientation of Fe{sup 61m} was achieved via the fragmentation of Ni{sup 64} at 55 MeV/u and the selection of the fragment momentum with the LISE spectrometer at GANIL. The experimental device was specially conceived to preserve the alignment up to the implantation point. The measured value of the g factor was compared with large-scale shell model and Hartree-Fock-Bogoliubov model predictions. The nuclei studied via {beta} decay were produced by the fragmentation of Kr{sup 86} at 58 MeV/u. For the selection of reaction products we used for the first time the LISE2000 spectrometer and for the detection of {gamma} rays four EXOGAM clover detectors. We measured 5 new lifetimes and 4 lifetimes with a higher precision. From the prompt {beta}{gamma} coincidences we identified new states in the daughter nuclei, as it is the case of the first 2{sup +} excited states in Fe{sup 68} and Ni{sup 72}. The results were compared with the predictions of the large-scale shell model. Other transitions were observed for the first time in {beta}{gamma} decay of Ti{sup 60}, Fe{sup 70} and Co{sup 71,73}. (author)

  18. Alpha Anisotropy Studies of Near-Spherical and Deformed Nuclei

    CERN Multimedia

    Van Duppen, P

    2002-01-01

    % IS329 \\\\ \\\\ Although it was the first decay mode to be discovered, the process of $\\alpha$-particle emission is still poorly understood. A few years ago the first systematic study of anisotropic $\\alpha$-decay triggered renewed theoretical interest. Nevertheless, today the theories are still not adequate enough and more experimental data are urgently needed. We therefore measure the $\\alpha$-anisotropies of the favoured transitions of a number of near-spherical Rn and At isotopes, and of deformed nuclei near A=220. As the different models yield contradictory predictions for the transitions that are investigated, the measurements will allow to discern on their validity. They will at the same time provide the necessary basis for further theoretical developments.

  19. Tunneling from super- to normal-deformed minima in nuclei

    International Nuclear Information System (INIS)

    Khoo, T. L.

    1998-01-01

    An excited minimum, or false vacuum, gives rise to a highly elongated superdeformed (SD) nucleus. A brief review of superdeformation is given, with emphasis on the tunneling from the false to the true vacuum, which occurs in the feeding and decay of SD bands. During the feeding process the tunneling is between hot states, while in the decay it is from a cold to a hot state. The γ spectra connecting SD and normal-deformed (ND) states provide information on several physics issues: the decay mechanism; the spin/parity quantum numbers, energies and microscopic structures of SD bands; the origin of identical SD bands; the quenching of pairing with excitation energy; and the chaoticity of excited ND states at 2.5-5 MeV. Other examples of tunneling in nuclei, which are briefly described, include the possible role of tunneling in ΔI = 4 bifurcation in SD bands, sub-barrier fusion and proton emitters

  20. Tunneling from super- to normal-deformed minima in nuclei.

    Energy Technology Data Exchange (ETDEWEB)

    Khoo, T. L.

    1998-01-08

    An excited minimum, or false vacuum, gives rise to a highly elongated superdeformed (SD) nucleus. A brief review of superdeformation is given, with emphasis on the tunneling from the false to the true vacuum, which occurs in the feeding and decay of SD bands. During the feeding process the tunneling is between hot states, while in the decay it is from a cold to a hot state. The {gamma} spectra connecting SD and normal-deformed (ND) states provide information on several physics issues: the decay mechanism; the spin/parity quantum numbers, energies and microscopic structures of SD bands; the origin of identical SD bands; the quenching of pairing with excitation energy; and the chaoticity of excited ND states at 2.5-5 MeV. Other examples of tunneling in nuclei, which are briefly described, include the possible role of tunneling in {Delta}I = 4 bifurcation in SD bands, sub-barrier fusion and proton emitters.

  1. Giant monopole resonance in transitional and deformed nuclei

    International Nuclear Information System (INIS)

    Garg, U.; Bogucki, P.; Bronson, J.D.; Lui, Y.; Youngblood, D.H.

    1984-01-01

    Small-angle inelastic α-scattering measurements have been made at E/sub α/ = 129 MeV on /sup 144,148/Sm and /sup 142,146,150/Nd to investigate the giant monopole resonance in transitional and deformed nuclei. The experimental data reveal a mixing of L = 0 and L = 2 modes in 148 Sm resulting in almost identical angular distributions for the two components of the giant resonance peaks in the angular range 2 0 --6 0 . A ''splitting'' of the giant monopole resonance is observed in 150 Nd; the extent of this splitting is smaller than that reported for 154 Sm. Comparison is made with the predictions of various theoretical models

  2. Fragmentation of single-particle states in deformed nuclei

    International Nuclear Information System (INIS)

    Malov, L.A.; Soloviev, V.G.

    1975-01-01

    Fragmentation of single-particle states on levels of deformed nuclei is studied on the example of 239 U and 169 Er nuclei in the framework of the model taking into consideration the interaction of quasiparticles with phonons. The dependence of fragmentation on the Fermi surface is considered from the viewpoint of single-particle levels. It is shown that in the distribution of single-particle strength functions a second maximum appears together with the large asymmetry maximum at high-energy excitation, and the distribution has a long ''tail''. A semimicroscopic approach is proposed for calculating the neutron strength functions. The following values of the strength functions are obtained: for sub(239)U-Ssub(0)sup(cal)=1.2x10sup(-4), Ssub(1)sup(cal)=2.7x10sub(-4) and for sub(169)Er-Ssub(0)sup(cal)=1.10sup(-4), Ssub(1)sup(cal)=1.2x10sup(-4)

  3. Study of the N=28 shell closure by one neutron transfer reaction: astrophysical application and {beta}-{gamma} spectroscopy of neutron rich nuclei around N=32/34 and N=40; Etude de la fermeture de couche N=28 autour du noyau {sub 18}{sup 46}Ar{sub 28} par reaction de transfert d'un neutron: application a l'astrophysique et Spectroscopie {beta}-{gamma} de noyaux riches en neutrons de N=32/34 et N=40

    Energy Technology Data Exchange (ETDEWEB)

    Gaudefroy, L

    2005-09-15

    The study of the N=28 shell closure has been presented as well as its astrophysical implications. Moreover the structure of neutron rich nuclei around N=32/34 and 40 was studied. The N=28 shell closure has been studied trough the one neutron transfer reaction on {sup 44,46}Ar nuclei. Excitation energies of states in {sup 45,47}Ar nuclei have been obtained, as well as their angular momenta and spectroscopic factors. These results were used to show that N=28 is still a good magic number in the argon isotopic chain. We interpreted the evolution of the spin-orbit partner gaps in terms of the tensor monopolar proton-neutron interaction. Thanks to this latter, we showed it is not necessary to summon up a reduction of the intensity of the spin-orbit force in order to explain this evolution in N=29 isotopes from calcium to argon chains. The neutron capture rates on {sup 44,46}Ar have been determined thanks to the results of the transfer reaction. Their influence on the nucleosynthesis of {sup 46,48}Ca was studied. We proposed stellar conditions to account for the abnormal isotopic ratio observed in the Allende meteorite concerning {sup 46,48}Ca isotopes. The beta decay and gamma spectroscopy of neutron rich nuclei in the scandium to cobalt region has been studied. We showed that beta decay process is dominated by the {nu}f{sub 5/2} {yields} {pi}f{sub 7/2} Gamow-Teller transition. Moreover, we demonstrated that the {nu}g{sub 9/2} hinders this process in the studied nuclei, and influences their structure, by implying the existence of isomers. Our results show that N=34 is not a magic number in the titanium chain and the superior ones. (author)

  4. Study of shell closures N=40 and N=50 in neutron-rich nuclei; Etude des fermetures de couches N=40 et N=50 dans les noyaux riches en neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Perru, O

    2004-12-01

    For this thesis I have studied 2 neutron shell closures: N=40 and N=50. On N=50, an experiment was done in February 2001 on the ISOL line PARRNe, the issue was to measure the first excited states of {sup 83}Ge (Z=32, N=51) by studying the beta decay of {sup 83}Ga produced by fission of {sup 238}U.The extreme precision of the experimental device, with the operation of hot plasma ion sources made it possible to reach spectroscopic information of the Ge isotopes beyond the magic gap N=50. Two transitions have been attributed to {sup 83}Ge: at 867 keV and at 1238 keV. The level scheme of {sup 83}Ge could be interpreted in terms of weak coupling: the excited states of this nucleus are due to the couplings between the single neutron beyond N=50 and the remaining nucleons.On N=40, we wanted to determine the transition probability between ground state and first excited state, called B(E2), in {sup 70}Ni (N=42) and {sup 74}Zn (N=44) from Coulomb excitation. These exotic nuclei are produced by fragmentation of a primary beam of {sup 76}Ge on a target of {sup 58}Ni, selected by the spectrometer LISE, then interact with a secondary {sup 208}Pb target to induce the Coulomb excitation. At the end of this analysis, the following values have been obtained: B(E2,{sup 70}Ni)=860(170) e{sup 2}fm{sup 4}, B(E2,{sup 74}Zn)=1960(140) e{sup 2}fm{sup 4}. These values have been compared on the one hand to variational calculations which I have realised, on the other hand to published shell model calculations.These calculations point out the complex aspect of the Ni nuclei, which do not seem to have a typical behaviour of semi magic nuclei although they are located on a closed shell in protons (Z=28). (author)

  5. Study of neutron rich nuclei by delayed neutron decay using the Tonnerre multidetector; Etude de la decroissance par neutrons retardes de noyaux legers riches en neutrons avec le multidetecteur tonnerre

    Energy Technology Data Exchange (ETDEWEB)

    Timis, C.N

    2001-07-01

    A new detection array for beta delayed neutrons was built. It includes up to 32 plastic scintillation counters 180 cm long located at 120 cm from the target. Neutron energy spectra are measured by time-of-flight in the 300 keV-15 MeV range with good energy resolution. The device was tested with several known nuclei. Its performances are discussed in comparison with Monte Carlo simulations. They very high overall detection efficiency on the TONNERRE array made it possible to study one and two neutron emission of {sup 11}Li. A complete decay scheme was obtained. The {sup 33}Mg and {sup 35}Al beta decays were investigated for the first time by neutron and gamma spectroscopy. Complete decay schemes were established and compared to large scale shell-model calculations. (authors)

  6. Nuclear quadrupole-quadrupole interaction in the inelastic scattering of aligned deuterons from deformed nuclei

    International Nuclear Information System (INIS)

    Clement, H.; Frick, R.; Graw, G.; Schiemenz, P.; Seichert, N.

    1983-01-01

    The 2 1 + -excitation of deformed nuclei by tensor polarized deuterons provides an alignment of both nuclei and thus a means to study specifically the quadrupole-quadrupole interaction between both nuclei. The tensor analyzing power Asub(xz)(theta) has been measured for the elastic and inelastic scattering on 24 Mg and 28 Si. The coupled channel analysis including a deformed tensor potential reveals a clear signature of the quadrupole-quadrupole part of the nuclear projectile-target interaction. (orig.)

  7. Study on rotational bands in odd-odd nuclei 102,l04Nb by using PSM

    International Nuclear Information System (INIS)

    Dong Yongsheng; Hu Wentao; Feng Youliang; Wang Jinbao; Yu Shaoying; Shen Caiwan

    2012-01-01

    The Projected Shell Model (PSM) is used to study the low energy scheme of the neutron-rich normal-deformed isotopes of odd-odd nuclei 102,104 Nb. The quasiparticle configuration is assigned. The theoretical calculations of the energy band of 102,104 Nb could well reproduce the experimental data. It is shown that PSM is a valid method for studying the low energy scheme of heavy nuclei. (authors)

  8. Investigation of the core-halo structure of the neutron-rich nuclei 6He and 8He by intermediate-energy elastic proton scattering at high momentum transfer

    International Nuclear Information System (INIS)

    Aksouh, F.

    2002-12-01

    The elastic proton scattering from the halo nuclei 6 He and 8 He was investigated in inverse kinematics at energies around 700 MeV/u with the aim to deduce the differential cross sections for the region of high momentum transfer, covering the first diffraction minimum. For this purpose, a liquid-hydrogen target was specially developed and used for the first time allowing to obtain low-background data as compared to commonly used targets made from C-H compounds. Previous data taken in the region of small momentum transfer were sensitive to the size and the peripheral shape of the total nuclear matter density distribution but not to the inner part. The present data allow for a more detailed insight in the structure of the alike core in 6,8 He through a better determination of the matter density distributions. Several density distributions calculated from different microscopic models were used to derive elastic scattering cross sections which are compared with the obtained data. (author)

  9. Study of the neutron-rich nuclei with N=21, sup 3 sup 5 Si and sup 3 sup 3 Mg, by beta decay of sup 3 sup 5 Al and sup 3 sup 3 Na

    CERN Document Server

    Nummela, S; Caurier, E; Courtin, S; Dessagne, P; Holmlund, E; Jokinen, A; Knipper, A; Le Scornet, G; Mieh, C; Nowacki, F; Lyapin, L G; Oinonen, M; Poirier, E; Radivojevic, Z; Ramdhane, M; Trzaska, W H; Walter, G; Äystö, J

    2002-01-01

    The first information on the level structure of the N=21 nuclei, sup 3 sup 5 Si and sup 3 sup 3 Mg, has been obtained by the beta decay study of sup 3 sup 5 Al and sup 3 sup 3 Na, produced by fragmentation of an UC target with 1.4 GeV protons at CERN/ISOLDE. The experimental technique involved beta-gamma, beta-gamma-gamma, and beta-n-gamma coincidences, neutron spectra being obtained by time of flight measurements. Gamma detection was made either using large Ge counters or small BaF sub 2 scintillators (for lifetime measurements). In the case of the sup 3 sup 5 Al decay, (T sub 1 sub / sub 2 =41.6(2.2) ms), a simple structure has been found for the level scheme of sup 3 sup 5 Si (Z=14, N=21) which has been interpreted with the level sequence : 7/2 sup - , 3/2 sup - and 3/2 sup + corresponding respectively to the ground state and the states at 910 and 974 keV. The life-time of the 974 keV [T sub 1 sub / sub 2 =5.9(6) ns] is found consistent with the proposed level scheme and multipolarities. The investigation ...

  10. Equilibrium deformations of single-particle states of odd nuclei of rare earth region

    International Nuclear Information System (INIS)

    Alikov, B.A.; Tsoj, E.G.; Zuber, K.; Pashkevich, V.V.

    1983-01-01

    In terms of the Strutinsky shell-correction method using the Woods-Saxon non-spherical potential the energies, quadrupole, and hexadecapole momenta of the ground and excited states of odd-proton nuclei with 61 6 deformation on atomic nuclei non-rotation states energies is discussed. It is shown that account of deformation of α 6 type slightly influences on the quadrupole and hexadecapole deformation value

  11. Reaction cross-sections and reduced strong absorption radii of nuclei in the vicinity of closed shells N=20 and N=28

    Czech Academy of Sciences Publication Activity Database

    Khouaja, A.; Villari, A.; Baiborodin, Dmitri; Dlouhý, Zdeněk; Savajols, H.

    2005-01-01

    Roč. 25, - (2005), s. 223-226 ISSN 1434-6001 R&D Projects: GA ČR GA202/04/0791 Institutional research plan: CEZ:AV0Z1048901 Keywords : neutron-rich nuclei * deformation * isotopes Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 1.659, year: 2005

  12. Relativistic extension of the complex scaled Green's function method for resonances in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Min [Anhui University, School of Physics and Materials Science, Hefei (China); RIKEN Nishina Center, Wako (Japan); Shi, Xin-Xing; Guo, Jian-You [Anhui University, School of Physics and Materials Science, Hefei (China); Niu, Zhong-Ming [Anhui University, School of Physics and Materials Science, Hefei (China); Interdisciplinary Theoretical Science Research Group, RIKEN, Wako (Japan); Sun, Ting-Ting [Zhengzhou University, School of Physics and Engineering, Zhengzhou (China)

    2017-03-15

    We have extended the complex scaled Green's function method to the relativistic framework describing deformed nuclei with the theoretical formalism presented in detail. We have checked the applicability and validity of the present formalism for exploration of the resonances in deformed nuclei. Furthermore, we have studied the dependences of resonances on nuclear deformations and the shape of potential, which are helpful to recognize the evolution of resonant levels from stable nuclei to exotic nuclei with axially quadruple deformations. (orig.)

  13. K isomerism and collectivity in neutron-rich rare-earth isotopes

    Science.gov (United States)

    Patel, Zena

    Neutron-rich rare-earth isotopes were produced by in-flight fission of 238U ions at the Radioactive Isotope Beam Factory (RIBF), RIKEN, Japan. In-flight fission of a heavy, high-intensity beam of 238U ions on a light target provides the cleanest secondary beams of neutron-rich nuclei in the rare-earth region of isotopes. In-flight fission is advantageous over other methods of nuclear production, as it allows for a secondary beam to be extracted, from which the beam species can be separated and identified. The excited states of nuclei are studied by delayed isomeric or beta-delayed gamma-ray spectroscopy. New K isomers were found in Sm (Z=62), Eu (Z=63), and Gd (Z=64) isotopes. The key results are discussed here. Excited states in the N=102 isotones 166Gd and 164Sm have been observed following isomeric decay for the first time. The K-isomeric states in 166Gd and 164Sm are due to 2-quasiparticle configurations. Based on the decay patterns and potential energy surface calculations, including beta6 deformation, both isomers are assigned a (6-) spin-parity. The half-lives of the isomeric states have been measured to be 950(60)ns and 600(140)ns for 166Gd and 164Sm respectively. Collective observables are discussed in light of the systematics of the region, giving insight into nuclear shape evolution. The decrease in the ground state band energies of 166Gd and 164Sm (N=102) compared to 164Gd and 162Sm (N=100) respectively, presents evidence for the predicted deformed shell closure at N=100. A 4-quasiparticle isomeric state has been discovered in 160Sm: the lightest deformed nucleus with a 4-quasiparticle isomer to date. The isomeric state is assigned an (11+) spin-parity with a measured half-life of 1.8(4)us. The (11+) isomeric state decays into a rotational band structure, based on a (6-) v5/2-[523] ⊗ v7/2+[633] bandhead, determined from the extracted gK-gR values. Potential energy surface and blocked BCS calculations were performed in the deformed midshell region

  14. Two-neutron transfer reactions with heavy-deformed nuclei

    International Nuclear Information System (INIS)

    Price, C.; Landowne, S.; Esbensen, H.

    1988-01-01

    In a recent communication we pointed out that one can combine the macroscopic model for two-particle transfer reactions on deformed nuclei with the sudden limit approximation for rotational excitation, and thereby obtain a practical method for calculating transfer reactions leading to high-spin states. As an example, we presented results for the reaction 162 Dy( 58 Ni, 60 Ni) 160 Dy populating the ground-state rotational band up to the spin I = 14 + state. We have also tested the validity of the sudden limit for the inelastic excitation of high spin states and we have noted how the macroscopic model may be modified to allow for more microscopic nuclear structure effects in an application to diabolic pair-transfer processes. This paper describes our subsequent work in which we investigated the systematic features of pair-transfer reactions within the macroscopic model by using heavier projectiles to generate higher spins and by decomposing the cross sections according to the multipolarity of the transfer interaction. Particular attention is paid to characteristic structures in the angular distributions for the lower spin states and how they depend on the angular momentum carried by the transferred particles. 11 refs., 3 figs

  15. nuclei

    Directory of Open Access Journals (Sweden)

    Minkov N.

    2016-01-01

    Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.

  16. Cluster structures in light nuclei

    International Nuclear Information System (INIS)

    Horiuchi, H.

    2000-01-01

    Complete text of publication follows. Clustering in neutron-rich nuclei is discussed. To understand the novel features (1,2,3) of the clustering in neutron-rich nuclei, the basic features of the clustering in stable nuclei (4) are briefly reviewed. In neutron-rich nuclei, the requirement of the stability of clusters is questioned and the threshold rule is no more obeyed. Examples of clustering in Be and B isotopes (4,5) are discussed in some detail. Possible existence of novel type of clustering near neutron dripline is suggested (1). (author)

  17. Nucleus spectroscopy: extreme masses and deformations

    International Nuclear Information System (INIS)

    Theisen, Ch.

    2009-12-01

    The author proposes a synthesis of research activities performed since 1995 in the field of experimental nuclear physics, and more particularly in the investigation of two nucleus extreme states: deformation on the one hand, heavy and very heavy nuclei on the other hand. After a presentation of the context of investigations on deformation, rotation, and heavy nuclei, he gives an overview of developments regarding instruments (gamma spectrometers, detection of fission fragments, and detection at the focal plane of spectrometers or separators) and analysis techniques. Experiments and results are then reported and discussed, concerning super-deformed states with a high angular moment, spectroscopy of neutron-rich nuclei, very heavy nuclei close to nucleus map borders. He finally draws perspectives for middle and long term studies on the heaviest nuclei

  18. Polarized electric dipole moment of well-deformed reflection asymmetric nuclei

    International Nuclear Information System (INIS)

    Denisov, V.Yu.

    2012-01-01

    The expression for polarized electric dipole moment of well-deformed reflection asymmetric nuclei is obtained in the framework of liquid-drop model in the case of geometrically similar proton and neutron surfaces. The expression for polarized electric dipole moment consists of the first and second orders terms. It is shown that the second-order correction terms of the polarized electric dipole moment are important for well-deformed nuclei

  19. New estimates of quadrupole deformation β of some nearly spherical even Mo nuclei

    International Nuclear Information System (INIS)

    Singh, Y.; Gupta, K.K.; Singh, M.; Bihari, Chhail; Varshney, A.K.; Gupta, D.K.

    2013-01-01

    The deformation parameter β and γ of the collective model of Bohr and Mottelson are basic descriptors of the nuclear equilibrium shape and structure. In recent past the sets of deformation parameters (β, γ) have been extracted from both level energies and E2 transition rates in even Xe, Ba and Ce nuclei and Hf, W, Os, Pt and Hg nuclei using rigid triaxial rotor model of Davydov – Filippov

  20. {Delta}I = 2 energy staggering in normal deformed dysprosium nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Riley, M.A.; Brown, T.B.; Archer, D.E. [Florida State Univ., Tallahassee, FL (United States)] [and others

    1996-12-31

    Very high spin states (I{ge}50{Dirac_h}) have been observed in {sup 155,156,157}Dy. The long regular band sequences, free from sharp backbending effects, observed in these dysprosium nuclei offer the possibility of investigating the occurence of any {Delta}I = 2 staggering in normal deformed nuclei. Employing the same analysis techniques as used in superdeformed nuclei, certain bands do indeed demonstrate an apparent staggering and this is discussed.

  1. Decay Studies of Very Neutron Rich Nuclei near 78Ni

    International Nuclear Information System (INIS)

    Winger, J. A.; Ilyushkin, S.; Korgul, A.; Gross, Carl J; Rykaczewski, Krzysztof Piotr; Batchelder, J. C.; Goodin, C.; Grzywacz, R.; Hamilton, J. H.; Krolas, W.; Liddick, Sean; Mazzocchi, C.; Nelson, C.; Padgett, Stephen; Piechaczek, A.; Rajabali, M. M.; Shapira, Dan; Zganjar, E. F.

    2008-01-01

    The properties of beta-gamma and beta-delayed neutron emission from 76-79 Cu and 83-85 Ga were measured at the Holifield Radioactive Ion Beam Facility (HRIBF) at Oak Ridge National Laboratory. Selected results on the decay properties of copper isotopes are briefly presented and discussed

  2. Single-Particle Structure of Neutron-Rich Nuclei

    International Nuclear Information System (INIS)

    Cizewski, Jolie; Jones, K.L.; Thomas, J.S.; Bardayan, Daniel W.; Blackmon, Jeff C.; Gross, Carl J.; Liang, J. Felix; Shapira, Dan; Smith, Michael Scott; Stracener, Daniel W.; Kozub, R.L.; Nesaraja, Caroline D.; Greife, U.; Livesay, Jake; Ma, Zhanwen

    2004-01-01

    Neutron transfer (d,p) reactions have been measured with rare isotope beams of 132Sn, 130Sn and 134Te accelerated to ∼4.5 MeV/u interacting with CD2 targets. Reaction protons were detected in an early implementation of the ORRUBA array of position-sensitive silicon strip detectors. Neutron excitations in the 2f7/2, 3p3/2, 3p1/2 and 2f5/2 orbitals were populated.

  3. Structure of light neutron-rich nuclei through Coulomb dissociation

    Indian Academy of Sciences (India)

    The data analysis for Coulomb breakup of. ½ .... C (605 MeV/u) breaking up into a neutron and a .... direct break up model delivers a cross section of 107 mb for a ... separation energy for the last neutron in the even isotopes = 20 to 24 is 7 to 8 ...

  4. Beta decay of neutron-rich transuranic nuclei

    International Nuclear Information System (INIS)

    Hoff, R.W.

    1986-01-01

    Allowance is made for beta-delayed fission in the calculation of the mass yield of underground thermonuclear explosions. This allowance is made by calculating a correction factor by four different methods. These correction factors are applied to a simple model of product yield and the accuracy and potential usefulness of the results are discussed. 19 refs., 3 figs., 1 tab

  5. Nuclear reactions of neutron-rich Sn isotopes investigated at relativistic energies at R{sup 3}B

    Energy Technology Data Exchange (ETDEWEB)

    Schindler, Fabia; Aumann, Thomas; Horvat, Andrea [TU Darmstadt (Germany); Boretzky, Konstanze [GSI Helmholtzzentrum (Germany); Schrock, Philipp [CNS, University of Tokyo (Japan); Johansen, Jacob [Aarhus University (Denmark); Collaboration: R3B-Collaboration

    2016-07-01

    Nuclei with a large neutron excess are expected to form a neutron-rich surface layer which is often referred to as the neutron skin. The investigation of this phenomenon is of great interest in nuclear-structure physics and offers a possibility to constrain the equation-of-state of neutron-rich matter. Assuming a geometrical description of reaction processes as in the eikonal approximation, nuclear-induced reactions are a good tool to probe the neutron skin. Measured reaction cross sections can be used to constrain the density distributions of protons and neutrons in the nucleus and therefore the neutron-skin thickness. For this purpose, reactions of neutron-rich tin isotopes in the A=124-134 mass range have been measured on a carbon target at the R{sup 3}B-setup at GSI in inverse kinematics in a kinematically complete manner. Preliminary results for the reaction cross sections of {sup 124}Sn are presented.

  6. Delayed Particle Study of Neutron Rich Lithium Isotopes

    CERN Multimedia

    Marechal, F; Perrot, F

    2002-01-01

    We propose to make a systematic complete coincidence study of $\\beta$-delayed particles from the decay of neutron-rich lithium isotopes. The lithium isotopes with A=9,10,11 have proven to contain a vast information on nuclear structure and especially on the formation of halo nuclei. A mapping of the $\\beta$-strength at high energies in the daughter nucleus will make possible a detailed test of our understanding of their structure. An essential step is the comparison of $\\beta$-strength patterns in $^{11}$Li and the core nucleus $^{9}$Li, another is the full characterization of the break-up processes following the $\\beta$-decay. To enable such a measurement of the full decay process we will use a highly segmented detection system where energy and emission angles of both charged and neutral particles are detected in coincidence and with high efficiency and accuracy. We ask for a total of 30 shifts (21 shifts for $^{11}$Li, 9 shifts $^{9}$Li adding 5 shifts for setting up with stable beam) using a Ta-foil target...

  7. Theoretical study on production of heavy neutron-rich isotopes around the N=126 shell closure in radioactive beam induced transfer reactions

    Directory of Open Access Journals (Sweden)

    Long Zhu

    2017-04-01

    Full Text Available In order to produce more unknown neutron-rich nuclei around N=126, the transfer reactions 136Xe + 198Pt, 136–144Xe + 208Pb, and 132Sn + 208Pb are investigated within the framework of the dinuclear system (DNS model. The influence of neutron excess of projectile on production cross sections of target-like products is studied through the reactions 136,144Xe + 208Pb. We find that the radioactive projectile 144Xe with much larger neutron excess is favorable to produce neutron-rich nuclei with charge number less than the target rather than produce transtarget nuclei. The incident energy dependence of yield distributions of fragments in the reaction 132Sn + 208Pb are also studied. The production cross sections of neutron-rich nuclei with Z=72–77 are predicted in the reactions 136–144Xe + 208Pb and 132Sn + 208Pb. It is noticed that the production cross sections of unknown neutron-rich nuclei in the reaction 144Xe + 208Pb are at least two orders of magnitude larger than those in the reaction 136Xe + 208Pb. The radioactive beam induced transfer reactions 139,144Xe + 208Pb, considering beam intensities proposed in SPIRAL2 (Production System of Radioactive Ion and Acceleration On-Line project as well, for production of neutron-rich nuclei around the N=126 shell closure are investigated for the first time. It is found that, in comparison to the stable beam 136Xe, the radioactive beam 144Xe shows great advantages for producing neutron-rich nuclei with N=126 and the advantages get more obvious for producing nuclei with less charge number.

  8. Real and complex boson expansions in even-even deformed nuclei

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Piepenbring, R.

    1977-01-01

    Analysis of real and complex boson expansions of the Kishimoto-Tamura type is performed in a deformed basis in order to allow a further study of the anharmonicities of vibrations in deformed nuclei. It is shown that complex solutions cannot be found in the cases where no real one exists. (Auth.)

  9. Study of ^{14}C Cluster Decay Half-Lives of Heavy Deformed Nuclei

    Science.gov (United States)

    Shamami, S. Rahimi; Pahlavani, M. R.

    2018-01-01

    A theoretical model based on deformed Woods-Saxon, Coulomb and centrifugal terms are constructed to evaluate the half-lives for the cluster radioactivity of various super heavy nuclei. Deformation have been applied on all parts of their potential containing nuclear barrier for cluster decay. Also, both parent and daughter nuclei are considered to be deformed. The calculated results of ^{14}C cluster radioactivity half-lives are compared with available experimental data. A satisfactory agreement between theoretical and measured data is achieved. Also, obtained half-lives for each decay family is agreed with Geiger-Nuttall law.

  10. Role of shape and quadrupole deformation of parents in the cluster emission of rare earth nuclei

    International Nuclear Information System (INIS)

    Girija, K.K.; Joseph, Antony

    2014-01-01

    The nuclear structure effects on α decay and cluster emission are investigated in the case of even–even rare earth nuclei 150–160 Dy, 150–160 Er, 150–160 Yb, 158,162,166–176 Hf, 160,164–178 W and 162,166,170–180 Os. The role of shape and deformation of parent nuclei in the decay rate is studied by taking the Coulomb and proximity potentials as the interacting barrier for the post scission configuration. The quadrupole deformation of parent nuclei causes a slight change in the half-life of α emissions, but it affects the rate of heavy cluster emissions significantly. Prolate deformation of parents enhances cluster emission, while an oblate deformation slows down the decay. Shape and deformation of parent nuclei causes change in the branching ratio also. A prolate deformation increases the branching ratio, whereas an oblate deformation reduces it. Highest branching ratio is predicted at N ∼ 90. (author)

  11. Investigation of the single Particle Structure of the neutron-rich Sodium Isotopes $^{27-31}\\!$Na

    CERN Document Server

    2002-01-01

    We propose to study the single particle structure of the neutron-rich isotopes $^{27-31}\\!$Na. These isotopes will be investigated via neutron pickup reactions in inverse kinematics on a deuterium and a beryllium target. Scattered beam particles and transfer products are detected in a position sensitive detector located around 0$^\\circ$. De-excitation $\\gamma$-rays emitted after an excited state has been populated will be registered by the MINIBALL Germanium array. The results will shed new light on the structure of the neutron-rich sodium isotopes and especially on the region of strong deformation around the N=20 nucleus $^{31}\\!$Na.

  12. Collective states of nonspherical deformable even--even nuclei

    International Nuclear Information System (INIS)

    Tartakovskii, V.K.

    1989-01-01

    A more correct method, as compared with some earlier studies, of finding the wave functions and corresponding energies of longitudinal quadrupole vibrations of nonspherical even--even nuclei is proposed. The wave functions and energies of collective motions in nuclei have been obtained in explicit form for a number of dependences of the potential energy of longitudinal vibrations V(β), including the dependence V(β), not previously used, of the most general form. Explicit dependences of the potential energy of transverse vibrations and the corresponding wave functions and eigenvalues for nuclear states with zero spins are proposed

  13. Effects of high-order deformation on high-K isomers in superheavy nuclei

    International Nuclear Information System (INIS)

    Liu, H. L.; Bertulani, C. A.; Xu, F. R.; Walker, P. M.

    2011-01-01

    Using, for the first time, configuration-constrained potential-energy-surface calculations with the inclusion of β 6 deformation, we find remarkable effects of the high-order deformation on the high-K isomers in 254 No, the focus of recent spectroscopy experiments on superheavy nuclei. For shapes with multipolarity six, the isomers are more tightly bound and, microscopically, have enhanced deformed shell gaps at N=152 and Z=100. The inclusion of β 6 deformation significantly improves the description of the very heavy high-K isomers.

  14. Single particle Schroedinger fluid and moments of inertia of deformed nuclei

    International Nuclear Information System (INIS)

    Doma, S.B.

    2002-01-01

    The authors have applied the theory of the single-particle Schroedinger fluid to the nuclear collective motion of axially deformed nuclei. A counter example of an arbitrary number of independent nucleons in the anisotropic harmonic oscillator potential at the equilibrium deformation has been also given. Moreover, the ground states of the doubly even nuclei in the s-d shell 20 Ne, 24 Mg, 28 Si, 32 S and 36 Ar are constructed by filling the single-particle states corresponding to the possible values of the number of quanta of excitations n x , n y and n z . Accordingly, the cranking-model, the rigid-body model and the equilibrium-model moments of inertia of these nuclei are calculated as functions of the oscillator parameters ℎω x , ℎω y and ℎω z which are given in terms of the non deformed value ℎω 0 0 , depending on the mass number A, the number of neutrons N, the number of protons Z, and the deformation parameter β. The calculated values of the cranking-model moments of inertia of these nuclei are in good agreement with the corresponding experiential values and show that the considered axially deformed nuclei may have oblate as well as prolate shapes and that the nucleus 24 Mg is the only one which is highly deformed. The rigid-body model and the equilibrium-model moments of inertia of the two nuclei 20 Ne and 24 Mg are also in good agreement with the corresponding experimental values

  15. β decay and isomeric properties of neutron-rich Ca and Sc isotopes

    International Nuclear Information System (INIS)

    Crawford, H. L.; Mantica, P. F.; Berryman, J. S.; Stoker, J. B.; Janssens, R. V. F.; Carpenter, M. P.; Kay, B. P.; Lauritsen, T.; Zhu, S.; Broda, R.; Cieplicka, N.; Fornal, B.; Grinyer, G. F.; Minamisono, K.; Hoteling, N.; Stefanescu, I.; Walters, W. B.

    2010-01-01

    The isomeric and β-decay properties of neutron-rich 53-57 Sc and 53,54 Ca nuclei near neutron number N=32 are reported, and the low-energy level schemes of 53,54,56 Sc and 53-57 Ti are presented. The low-energy level structures of the 21 Sc isotopes are discussed in terms of the coupling of the valence 1f 7/2 proton to states in the corresponding 20 Ca cores. Implications with respect to the robustness of the N=32 subshell closure are discussed, as well as the repercussions for a possible N=34 subshell closure.

  16. Study of neutron-rich $^{51−53}$ Ca isotopes via $\\beta$-decay

    CERN Multimedia

    The high Q$_\\beta$ values in certain neutron-rich regions of the chart of nuclides opens up the possibility to study states in the daughter nuclei which lie at high excitation energy, above the neutron separation threshold. We propose to perform spectroscopy of the $\\beta$-delayed neutron emission of the $^{51-53}$K isotopes to study the population of single-particle or particle-hole states both below and above the neutron separation threshold. The VANDLE neutron detector will be used in combination with the IDS tape station setup and Ge detectors.

  17. The CARDS array for neutron-rich decay spectroscopy at HRIBF

    CERN Document Server

    Batchelder, J C; Bingham, C R; Carter, H K; Cole, J D; Fong, D; Garrett, P E; Grzywacz, R; Hamilton, J H; Hartley, D J; Hwang, J K; Krolas, W; Kulp, D C; Larochelle, Y; Piechaczek, A; Ramayya, A V; Rykaczewski, K; Spejewski, E H; Stracener, D W; Tantawy, M N; Winger, J A; Wood, J; Zganjar, E F

    2003-01-01

    An array for decay studies of neutron-rich nuclei has been commissioned for use at the UNISOR separator at Holifield Radioactive Ion Beam Facility. This array consists of three segmented clover Ge detectors, plastic scintillators, and a high-resolution (approx 1 keV) Si conversion electron spectrometer. These detectors are mounted on a support that surrounds a moving tape collector. This system has been named clover array for radioactive decay studies. The detectors have been outfitted with digital flash ADCs (XIA DGFs) that fit the preamp signals, with built-in pileup rejection.

  18. The CARDS array for neutron-rich decay spectroscopy at HRIBF

    International Nuclear Information System (INIS)

    Batchelder, J.C.; Bilheux, J.-C.; Bingham, C.R.; Carter, H.K.; Cole, J.D.; Fong, D.; Garrett, P.E.; Grzywacz, R.; Hamilton, J.H.; Hartley, D.J.; Hwang, J.K.; Krolas, W.; Kulp, D.; Larochelle, Y.; Piechaczek, A.; Ramayya, A.V.; Rykaczewski, K.P.; Spejewski, E.H.; Stracener, D.W.; Tantawy, M.N.; Winger, J.A.; Wood, J.; Zganjar, E.F.

    2003-01-01

    An array for decay studies of neutron-rich nuclei has been commissioned for use at the UNISOR separator at Holifield Radioactive Ion Beam Facility. This array consists of three segmented clover Ge detectors, plastic scintillators, and a high-resolution (∼1 keV) Si conversion electron spectrometer. These detectors are mounted on a support that surrounds a moving tape collector. This system has been named clover array for radioactive decay studies. The detectors have been outfitted with digital flash ADCs (XIA DGFs) that fit the preamp signals, with built-in pileup rejection

  19. Anisotropy of favoured alpha transitions producing even-even deformed nuclei

    International Nuclear Information System (INIS)

    Tavares, O.A.P.

    1997-05-01

    The anisotropy in favoured alpha transitions which produce even-even deformed nuclei is discussed. A simple, Gamow's-like model which takes into account the quadrupole deformation of the product nucleus has been formulated to calculate the alpha decay half-life. It is assumed that before tunneling into a purely Coulomb potential barrier the two-body system oscillated isotropically, thus giving rise to an equivalent, average preferential polar direction θ 0 (referred to the symmetry axis of the ellipsoidal shape of the product nucleus) for alpha emission in favoured alpha transitions of even-even nuclei. (author)

  20. Effects of deformations and orientations on neutron-halo structure of light-halo nuclei

    International Nuclear Information System (INIS)

    Sawhney, Gudveen; Gupta, Raj K.; Sharma, Manoj K.

    2013-01-01

    The availability of radioactive nuclear beams have enabled to study the structure of nuclei far from the stability line, which in turn led to the discovery of neutron-halo nuclei. These nuclei, located near the neutron drip-line exhibit a high probability of presence of one or two loosely bound neutrons at a large distance from the rest of nucleons. The fragmentation behavior is studied for 13 cases of 1n-halo nuclei, which include 11 Be, 14 B, 15 C, 17 C, 19 C, 22 N, 22 O, 23 O, 24 O, 24 F, 26 F, 29 Ne and 31 Ne, using the cluster-core model (CCM) extended to include the deformations and orientations of nuclei

  1. The multiphonon method as a dynamical approach to octupole correlations in deformed nuclei

    International Nuclear Information System (INIS)

    Piepenbring, R.

    1986-09-01

    The octupole correlations in nuclei are studied within the framework of the multiphonon method which is mainly the exact diagonalization of the total Hamiltonian in the space spanned by collective phonons. This treatment takes properly into account the Pauli principle. It is a microscopic approach based on a reflection symmetry of the potential. The spectroscopic properties of double even and odd-mass nuclei are nicely reproduced. The multiphonon method appears as a dynamical approach to octupole correlations in nuclei which can be compared to other models based on stable octupole deformation. 66 refs

  2. Magnetic dipole moments of deformed odd-A nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Garg, V P; Sharma, S D; Mahesh, P S [Punjabi Univ., Patiala (India). Dept. of Physics

    1976-12-01

    Using an extended version of A S Davydov and G F Filippov's model (1958), B E Chi and J P Davidson have calculated magnetic moments of odd-A nuclei in 2s-ld shell, diagonalizing the state matrices for a set of parameters giving the best fit for nuclear spectra (1966). To study the failure of this model in case of nuclear moments, instead of diagonalizing an attempt has been made to simplify the expression for magnetic dipole moment for single nucleonic states without configuration mixing. The model takes care of the proper sign of spin projections. On replacing the total angular momentum j of odd particle (proton or neutron) by its projection ..cap omega.., the expression reduces to that of Mottelson and Nilsson for spin-up nuclei. The Coriolis coupling calculations also have been performed for those odd-A nuclei with K = 1/2. The results are found in better agreement with experimental report in comparison with those of other models.

  3. Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei

    Science.gov (United States)

    Hinde, D. J.; Jeung, D. Y.; Prasad, E.; Wakhle, A.; Dasgupta, M.; Evers, M.; Luong, D. H.; du Rietz, R.; Simenel, C.; Simpson, E. C.; Williams, E.

    2018-02-01

    Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission competition. In "cold" fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies significantly below the average capture barrier. In "hot" fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP=14 . For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP˜8 . Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely

  4. Surface thickness effects and splitting of multipole excitations in deformed nuclei. [Sum rule, hydrodynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Christillin, P [Scuola Normale Superiore, Pisa (Italy); Lipparini, E; Stringari, S [Dipartimento Matematica e Fisica, Trento, Italy

    1978-09-25

    A sum-rule approach is used to study the influence of surface thickness upon the splitting of dipole and isoscalar quadrupole energies in deformed nuclei. It is shown that hydrodynamic model results are recovered in the case of a deformed skin thickness. A constant skin thickness leads in the dipole case to slightly different predictions which seem in better agreement with experiments. The splitting of the isoscalar quadrupole mode is not sensitive to the surface thickness shape.

  5. Effect of the Pauli principle on the nonrotational states in odd-A deformed nuclei

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Nesterenko, V.O.; Soloviev, V.G.

    1982-01-01

    The commutation relations between the quasiparticle and phonon operators are used to obtain the equations allowing a correct accounting of the Pauli principle for the description of the states of odd-A deformed nuclei. It is shown, that if in the quasiparticle plus phonon component the Pauli principle is not violated or is slightly violated, then a relevant vibrational state may exist in an odd-A deformed nucleus

  6. Production of neutron-rich nuclides in the vicinity of N = 126 shell closure in multinucleon transfer reactions

    Directory of Open Access Journals (Sweden)

    Karpov Alexander

    2017-01-01

    Full Text Available Multinucleon transfer in low-energy nucleus-nucleus collisions is widely discussed as a method of production of yet-unknown neutron-rich nuclei hardly accessible (or inaccessible by other methods. Modeling of complicated dynamics of nuclear reactions induced by heavy ions is done within a multidimensional dynamical model of nucleus-nucleus collisions based on the Langevin equations. The model gives a continuous description of the system evolution starting from the well-separated target and projectile in the entrance channel of the reaction up to the formation of final reaction products. In this paper, rather recent sets of experimental data for the 136Xe+198Pt,208Pb reactions are analyzed together with the production cross sections for neutron-rich nuclei in the vicinity of the N = 126 magic shell.

  7. Precision mass measurements on neutron-rich Zn isotopes and their consequences on the astrophysical r-process

    Energy Technology Data Exchange (ETDEWEB)

    Baruah, Sudarshan

    2008-07-15

    The rapid neutron-capture or the r-process is responsible for the origin of about half of the neutron-rich atomic nuclei in the universe heavier than iron. For the calculation of the abundances of those nuclei, atomic masses are required as one of the input parameters with very high precision. In the present work, the masses of the neutron rich Zn isotopes (A=71 to 81) lying in the r-process path have been measured in the ISOLTRAP experiment at ISOLDE/CERN. The mass of {sup 81}Zn has been measured directly for the rst time. The half-lives of the nuclides ranged from 46.5 h ({sup 72}Zn) down to 290 ms ({sup 81}Zn). In case of all the nuclides, the relative mass uncertainty ({delta}m=m) achieved was in the order of 10{sup -8} corresponding to a 100-fold improvement in precision over previous measurements. (orig.)

  8. Precision mass measurements on neutron-rich Zn isotopes and their consequences on the astrophysical r-process

    International Nuclear Information System (INIS)

    Baruah, Sudarshan

    2008-07-01

    The rapid neutron-capture or the r-process is responsible for the origin of about half of the neutron-rich atomic nuclei in the universe heavier than iron. For the calculation of the abundances of those nuclei, atomic masses are required as one of the input parameters with very high precision. In the present work, the masses of the neutron rich Zn isotopes (A=71 to 81) lying in the r-process path have been measured in the ISOLTRAP experiment at ISOLDE/CERN. The mass of 81 Zn has been measured directly for the rst time. The half-lives of the nuclides ranged from 46.5 h ( 72 Zn) down to 290 ms ( 81 Zn). In case of all the nuclides, the relative mass uncertainty (Δm=m) achieved was in the order of 10 -8 corresponding to a 100-fold improvement in precision over previous measurements. (orig.)

  9. An approximate method for calculating the deformation of rotating nuclei

    International Nuclear Information System (INIS)

    Lind, P.

    1988-01-01

    The author presents as a collective model where the potential surface at spin I=0 is calculated in the Nilsson-Strutinsky model, an analytical expression for the moment of inertia is used which depends on the deformation and the pairing gaps for protons and neutrons, and the energy is minimized with respect to these gaps. Calculations in this model are performed for 16 Oyb. (HSI)

  10. Study of Neutron-Rich $^{124,126,128}$Cd Isotopes; Excursion from Symmetries to Shell-Model Picture

    CERN Multimedia

    Nieminen, A M; Reponen, M

    2002-01-01

    A short outline is given on a number of topics that are present in the long series of even-even Cd nuclei and therefore, may turn out to constitute an ideal test bench in order to verify a number of theoretical ideas on how collective motion, near closed shells, builds up taking into account both the valence and core nucleons when studying the nucleon correlations. Moreover, these experiments can reveal new challenges when moving towards very neutron-rich systems.

  11. Heavy ion interactions of deformed nuclei. Progress report, May 1, 1984-December 31, 1984

    International Nuclear Information System (INIS)

    Oberacker, V.E.

    1984-11-01

    This progress report describes the main topics that were investigated during the reporting period: (a) a new microscopic approach to the calculation of heavy ion interaction potentials; (b) the dynamical orientation of deformed heavy nuclei near the distance of closest approach; and (c) the theory of Coulomb fission (project finished in Sept.)

  12. The decay from the two-quasiparticle regime in even-even deformed rare earth nuclei

    International Nuclear Information System (INIS)

    Henriques, A.; Thorstensen, T.F.; Hammaren, E.

    1983-06-01

    A bump at 1 MeV has been identified in coincidence gamma-ray spectra from the ( 3 He, 4 He) reaction in deformed rare earth nuclei. Particle/gamma-ray angular correlation indicates a dipole character. It is suggested that this bump corresponds to transitions from two-quasiparticle states to the ground state band

  13. g-factors in deformed nuclei: Annual report, September 1, 1983-August 31, 1984

    International Nuclear Information System (INIS)

    Krane, K.S.

    1984-01-01

    This report describes work performed for the period September 1, 1983 to August 31, 1984 under the contract DE-AT06-83ER40109, /open quotes/g-Factors in Deformed Nuclei./close quotes/ The literature survey has been completed and the first stage of the raw data analysis has been accomplished. A preliminary data summary prepared for publication is attached

  14. Pauli principle role in the description of collective non-rotational states of deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Shirikova, N.Yu.; Serdyukova, S.I.; Meliev, F.; Nesterenko, V.O.

    1981-01-01

    The Pauli principle role account for one-phonon and two- phonon states of even-even deformed nuclei sup(160, 164)Dy, sup(230, 232)Th, 154 Gd, 240 Pu, 238 U is performed. With account of isoscalar part of multipole-multipole interaction hamiltonian of a model and basic equations for energy and wave functions of one-phonon and two-phonon states are obtained. The results of calculations of centroids of energies of two-phonon states of the (lambda 1 μ 1 i 1 lambda 2 μ 2 i 2 ) type with and without the Pauli principle are tabulated. The calculations performed have shown that the energy centroids shift of collective two-phonon states with the Pauli-principle account is characteristic for all even-even deformed nuclei. In the authors opinion additional experimental investigations of 154 Cd, 164 Dy, 240 Pu two-phonon nuclei states to confirm theoretical results are necessary [ru

  15. Mass coefficient systematics in triaxially deformed Xe and Ba nuclei

    International Nuclear Information System (INIS)

    Singh, Yuvraj; Bihari, Chhail; Singh, M.; Varshney, A.K.; Gupta, K.K.; Gupta, D.K.

    2009-01-01

    In A ∼ 120-140 region where transition occurs from vibrator like stretching around the neutron closed shell (N = 82) to a region with more rotational character (N = 66) energies and B(E2) values of the low lying states change slowly and smoothly with N and Z indicating the collective nature of the levels. The systematic investigation of such nuclei within an isotopic chain undergoing shape or phase transitions is of particular current interest in nuclear structure physics. Rotation is one of the specific collective motions in finite body systems. When the angular momentum increase, one can observe how the energies of the quantum state change due to the effect of the coriolis and centrifugal forces. Thus in the transition to excited states the axial symmetry of the nucleus is violated even if it existed in the ground state

  16. Exotic octupole deformation in proton-rich Z=N nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Takami, Satoshi; Yabana, K [Niigata Univ. (Japan); Matsuo, M

    1998-03-01

    We study static non-axial octupole deformations in proton-rich Z=N nuclei, {sup 64}Ge, {sup 68}Se, {sup 72}Kr, {sup 76}Sr, {sup 80}Zr and {sup 84}Mo, by using the Skyrme Hartree-Fock plus BCS method with no restrictions on the nuclear shape. The calculation predicts that the oblate ground state in {sup 68}Se is extremely soft for the Y{sub 33} triangular deformation, and that in {sup 80}Zr the low-lying local minimum state coexisting with the prolate ground state has the Y{sub 32} tetrahedral deformation. (author)

  17. On connection of rotation and internal motion in deformed nuclei

    International Nuclear Information System (INIS)

    Krutov, V.A.

    1979-01-01

    In the semiphenomenological nuclear madel (SPNM) the problem of ''overestimate of Coriolis interaction'' is shown to be easily solved. The rotation and internal motion coupling operator H(rot/in) is used. Overdetermination of the operator H(rot/in) has been generalized and extended into schemes of strong and weak coupling. In this case both schemes of coupling are transformed from approximate into precise ones and become applicable for any nuclear deformation. As examples of application of the theory considered are the matrix elements of the E2-transitions and inertia parameters of a 235 U nucleus

  18. Vibrational states in deformed nuclei. Chaos, order and individual nature of nuclei

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1993-01-01

    General properties of the vibrational states in doubly-even well-deformed are formulated. The large many-quasiparticle components of the wave functions of the neutron resonance state are responsible for enhance E1- and M1-transitions rates from the neutron resonances states to the levels lying 1-2 MeV below them. 44 refs.; 4 tabs

  19. Results and simulations on γ-spectroscopy of deformed nuclei: cases of isomers and tetrahedral nuclei

    International Nuclear Information System (INIS)

    Vancraeyenest, A.

    2010-10-01

    The major part of this work is about the realization and complete analysis of an experiment for studying isomeric states in 138,139,140 Nd nuclei. This was performed at Jyvaeskylae laboratory (Finland) using a fusion-evaporation reaction with 48 Ca beam on a thin 96 Zr target. Experimental setup consisted in the target position gamma ray detector Jurogam II which was coupled with the RITU recoil separator and the GREAT focal plane detector array. This particularly well adapted setup permit to manage γ spectroscopy of the interest nuclei around isomeric states. Indeed, we used prompt-delayed matrices to separate rays that come onto isomeric states and these who decay from them. Then, the correlations between the two components permit to establish feeding transitions of isomeric states. Thanks to this experiment, a new isomeric state was also highlighted in 139 Nd with spin 23/2+, which was predicted and interpreted in Cranked-Nilsson-Strutinsky calculation. Finally, very clean time spectra allow to determine precisely life-time of four states in four nuclei. This Ph.d. is also made of a part of the analysis of the first experimental search for fingerprints of tetrahedral symmetry in 156 Gd using high fold gamma ray spectroscopy. Thanks to a large number of triple coincidence events, we managed a detailed spectroscopy of this nucleus. Particularly, we found out 13 new transitions in positive parity bands. As a complement of this work, we have done GEANT4 simulations about the detection limits of low intensity transitions by Agata multidetector. Indeed, tetrahedral symmetry predicts vanishing of E2 transitions at lower spin states and simulations permit to determine observation limit of these transitions with different version of Agata. (author)

  20. Properties of neutron-rich hafnium high-spin isomers

    CERN Multimedia

    Tungate, G; Walker, P M; Neyens, G; Billowes, J; Flanagan, K; Koester, U H; Litvinov, Y

    It is proposed to study highly-excited multi-quasiparticle isomers in neutron-rich hafnium (Z=72) isotopes. Long half-lives have already been measured for such isomers in the storage ring at GSI, ensuring their accessibility with ISOL production. The present proposal focuses on:\\\\ (i) an on-line experiment to measure isomer properties in $^{183}$Hf and $^{184}$Hf, and\\\\ (ii) an off-line molecular breakup test using REXTRAP, to provide Hf$^{+}$ beams for future laser spectroscopy and greater sensitivity for the future study of more neutron-rich isotopes.

  1. High spin study and lifetime measurements of neutron rich Co isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Regan, P H; Arrison, J W; Huttmeier, U J; Balamuth, D P [Pennsylvania Univ., Philadelphia, PA (United States). Dept. of Physics

    1992-08-01

    The neutron rich nuclei {sup 61,63}Co have been studied using the reactions {sup 16}O({sup 48}Ca,p2n){sup 61}Co at 110 MeV and {sup 18}O({sup 48}Ca,p2n){sup 63}Co at 110 MeV respectively. Discrete lines from the channels of interest were investigated using pre-scaled {gamma} singles, charged-particle-{gamma}, neutron-charged-particle-{gamma} and charged particle-{gamma}-{gamma} data. Decay schemes, with level spins deduced from angular distribution data are presented together with preliminary information on the lifetimes of some higher excitation states. These data represent the first study on the medium to high spin states in these nuclei. (author). 9 refs., 1 tab., 4 figs.

  2. Photo-neutron cross sections for unstable neutron-rich oxygen isotopes

    International Nuclear Information System (INIS)

    Leistenschneider, A.; Aumann, T.; Boretzky, K.

    2001-05-01

    The dipole response of stable and unstable neutron-rich oxygen nuclei of masses A = 17 to A = 22 has been investigated experimentally utilizing electromagnetic excitation in heavy-ion collisions at beam energies around 600 MeV/nucleon. A kinematically complete measurement of the neutron decay channel in inelastic scattering of the secondary beam projectiles from a Pb target was performed. Differential electromagnetic excitation cross sections dσ/dE were derived up to 30 MeV excitation energy. In contrast to stable nuclei, the deduced dipole strength distribution appears to be strongly fragmented and systematically exhibits a considerable fraction of low-lying strength, exhausting up to 12% of the energy-weighted dipole sum rule at excitation energies below 15 MeV. (orig.)

  3. Deformed model Sp(4) model for studying pairing correlations in atomic nuclei

    CERN Document Server

    Georgieva, A I; Sviratcheva, K

    2002-01-01

    A fermion representation of the compact symplectic sp(4) algebra introduces a theoretical framework for describing pairing correlations in atomic nuclei. The important non-deformed and deformed subalgebras of sp sub ( sub q sub ) (4) and the corresponding reduction chains are explored for the multiple orbit problem. One realization of the u sub ( sub q sub ) (2) subalgebra is associated with the valence isospin, other reductions describe coupling between identical nucleons or proton-neutron pairs. Microscopic non-deformed and deformed Hamiltonians are expressed in terms of the generators of the sp(4) and sp sub q (4) algebras. In both cases eigenvalues of the isospin breaking Hamiltonian are fit to experimental ground state energies. The theory can be used to investigate the origin of the deformation and predict binding energies of nuclei in proton-rich regions. The q-deformation parameter changes the pairing strength and in so doing introduces a non-linear coupling into the collective degree of freedom

  4. Influence of fragment deformation and orientation on compact configuration of odd-Z superheavy nuclei

    International Nuclear Information System (INIS)

    Gurjit Kaur; Sandhu, Kirandeep; Sharma, Manoj K.

    2016-01-01

    The synthesis of heavy and superheavy nuclei is generally carried out by using hot and cold fusion reaction mechanisms. It has been noticed that, the cold fusion reactions occur at relatively low excitation energies (E*_C_N ∼ 10-20 MeV) whereas, the hot fusion reactions occur at excitation energies of E*_C_N ∼ 30- 50 MeV. The fusion mechanism is quite different in both the processes. In the cold fusion process, the interaction of spherical targets (Pb and Bi) with deformed light mass projectiles occurs. On the other hand, the fusion of deformed actinide targets with spherical "4"8Ca projectile characterize the hot interaction processes. Hence the deformations and orientations of targets and projectiles play extremely important role in the superheavy fusion process. The present analysis is carried out to aggrandize the work of which illustrate the role of deformations and orientations on even superheavy nuclei. Here, we extend this analysis for odd superheavy nuclei. It is relevant to note that the temperature and angular momentum effects are not included in the present analysis

  5. High-spin structure of neutron-rich Dy isotopes

    Indian Academy of Sciences (India)

    Neutron-rich Dy isotopes; high-spin states; g-factors; cranked HFB theory. ... for 164Dy marking a clear separation in the behaviour as a function of neutron ... cipal x-axis as the cranking axis) in this mass region we have planned to make a sys-.

  6. Fission decay properties of ultra neutron-rich uranium isotopes

    Indian Academy of Sciences (India)

    in the chain of neutron-rich uranium isotopes is examined here. The neutron ... mean field theory, this nucleus is shown to undergo exotic decay mode of thermal neu- .... For 250U with a fission barrier of 4.3 MeV [5], we obtain the value of.

  7. Recent results on neutron rich tin isotopes by laser spectroscopy

    CERN Document Server

    Roussière, B; Crawford, J E; Essabaa, S; Fedosseev, V; Geithner, W; Genevey, J; Girod, M; Huber, G; Horn, R; Kappertz, S; Lassen, J; Le Blanc, F; Lee, J K P; Le Scornet, G; Lettry, Jacques; Mishin, V I; Neugart, R; Obert, J; Oms, J; Ouchrif, A; Peru, S; Pinard, J; Ravn, H L; Sauvage, J; Verney, D

    2001-01-01

    Laser spectroscopy measurements have been performed on neutron rich tin isotopes using the COMPLIS experimental setup. The nuclear charge radii of the even-even isotopes from A=108 to 132 are compared to the results of macroscopic and microscopic calculations. The improvements and optimizations needed to perform the isotope shift measurement on $^{134}$Sn are presented.

  8. $\\beta$-decay study of neutron-rich Tl, Pb, and Bi by means of the pulsed-release technique and resonant laser ionisation

    CERN Multimedia

    Lettry, J

    2002-01-01

    It is proposed to study new neutron-rich nuclei around the Z = 82 magic shell closure, with major relevance for understanding the evolution of nuclear structure at extreme isospin values. Following the IS354 experiment, $\\beta$-decay studies of neutron-rich thallium, lead and bismuth isotopes will be performed for 215 $\\leqslant$ A $\\leqslant$ 219. To this purpose the pulsed-release technique, which was pioneered at ISOLDE, will be optimised. It will be complemented with the higher element selectivity that can be obtained by the unique features of resonant laser ionisation, available at ISOLDE from the RILIS source.

  9. Octupole correlations in neutron-rich {sup 143,145}Ba and a type of superdeformed band in {sup 145}Ba

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, S.J.; Wang, M.G.; Long, G.L.; Zhu, L.Y.; Gan, C.Y.; Yang, L.M.; Sakhaee, M.; Li, M.; Deng, J.K. [Physics Department, Tsinghua University, Beijing 100084, Peoples Republic of (China); Zhu, S.J.; Hamilton, J.H.; Ramayya, A.V.; Jones, E.F.; Hwang, J.K.; Zhang, X.Q.; Gore, P.M.; Peker, L.K.; Drafta, G.; Babu, B.R.; Deng, J.K.; Ginter, T.N.; Beyer, C.J.; Kormicki, J.; Ter-Akopian, G.M.; Daniel, A.V. [Physics Department, Vanderbilt University, Nashville, Tennessee 37235 (United States); Zhu, S.J.; Ter-Akopian, G.M.; Daniel, A.V. [Joint Institute for Heavy Ion Research, Oak Ridge, Tennessee 37831 (United States); Ma, W.C. [Physics Department, Mississippi State University, Mississippi 39762 (United States); Cole, J.D.; Aryaeinejad, R.; Drigert, M.W. [Idaho National Engineering Laboratory, Idaho Falls, Idaho 83415 (United States); Rasmussen, J.O.; Asztalos, S.; Lee, I.Y.; Macchiavelli, A.O.; Chu, S.Y.; Gregorich, K.E.; Mohar, M.F. [Lawrence Berkeley National Laboratory, Berkeley, California 94720 (United States); Ter-Akopian, G.M.; Daniel, A.V.; Oganessian, Y.T.; Kliman, J. [Flerov Laboratory for Nuclear Reactions, Joint Institute for Nuclear Research, Dubna (Russia); Donangelo, R. [Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RG (Brazil); Stoyer, M.A.; Lougheed, R.W.; Moody, K.J.; Wild, J.F. [Lawrence Livermore National Laboratory, Livermore, California 94550 (United States); Prussin, S.G. [Nuclear Engineering Department, University of California at Berkeley, Berkeley, California 94720 (United States); Kliman, J. [Institute of Physics, SASc, Dubravskacesta 9, 84228 Bratislava (Slovakia); Griffin, H.C. [University of Michigan, Ann Arbor, Michigan 48104 (United States)

    1999-11-01

    High spin states in neutron-rich odd-{ital Z} {sup 143,145}Ba nuclei have been investigated from the study of prompt {gamma} rays in the spontaneous fission of {sup 252}Cf by using {gamma}-{gamma}- and {gamma}-{gamma}-{gamma}- coincidence techniques. Alternating parity bands are identified for the first time in {sup 145}Ba and extended in {sup 143}Ba. A new side band, with equal, constant dynamic, and kinetic moments of inertia equal to the rigid body value, as found in superdeformed bands, is discovered in {sup 145}Ba. Enhanced E1 transitions between the negative- and positive-parity bands in these nuclei give evidence for strong octupole deformation in {sup 143}Ba and in {sup 145}Ba. These collective bands show competition and coexistence between symmetric and asymmetric shapes in {sup 145}Ba. Evidence is found for crossing M1 and E1 transitions between the s=+i and s={minus}i doublets in {sup 143}Ba. {copyright} {ital 1999} {ital The American Physical Society}

  10. Process of diffractive scattering and disintegration of complex particles by nonspherical deformed nuclei

    International Nuclear Information System (INIS)

    Evlanov, M.V.

    1989-01-01

    The differential and integral cross sections of diffractive elastic and inelastic scattering and of the disintegration of complex particles by axial and nonaxial deformed nuclei are investigated depending on the shape, deformability and diffuseness of nuclear boundary as well as on the structure of the incident particles and of the rescattering processes. It is shown that the complicated coincidence experiments and experimnts on inelastic scattering with excitation of the target nucleus collective states are satisfactorily described taking simultaneously into account all factors mentioned above and the final-state interaction between the disintegration products of the incident particle

  11. Hartree-Fock calculations for strongly deformed and highly excited nuclei using the Skyrme force

    International Nuclear Information System (INIS)

    Zint, P.G.

    1975-01-01

    It has been shown that in CHF-calculations the Skyrme-force is usefull to describe strongly deformed nuclei with even proton and neutron number till separation. Thereby the eigenfunctions of the two-centre Hamiltonian form an adequate basis. With this procedure, we obtain the correct deformation of the 32 S-system. Induding the spurious energy of relative motion between the 16 O-fragments, the energy curve is a good approximation for the real potential, extracted form scattering experiments. (orig./WL) [de

  12. Improving the Calculation of The Potential Between Spherical and Deformed Nuclei

    International Nuclear Information System (INIS)

    Ismail, M.; Ramadan, Kh.A.

    2000-01-01

    The Heavy Ion (HI) interaction potential between spherical and deformed nuclei is improved by calculating its exchange part using finite range nucleon-nucleon (NN) force. We considered U 238 as a target nucleus and seven projectile nuclei to show the dependence of the HI potential on both the energy and orientation of the deformed target nucleus. The effect of finite range NN force has been found to produce significant changes in the HI potential. The variation of the barrier height V B , its thickness and its position R B due to the use of finite range NN force are significant. Such variation enhance the fusion cross-section at energy values just below the Coulomb barrier by a factor increasing with the mass number of projectile nucleus. (author)

  13. Effective field theory of emergent symmetry breaking in deformed atomic nuclei

    International Nuclear Information System (INIS)

    Papenbrock, T; Weidenmüller, H A

    2015-01-01

    Spontaneous symmetry breaking in non-relativistic quantum systems has previously been addressed in the framework of effective field theory. Low-lying excitations are constructed from Nambu–Goldstone modes using symmetry arguments only. We extend that approach to finite systems. The approach is very general. To be specific, however, we consider atomic nuclei with intrinsically deformed ground states. The emergent symmetry breaking in such systems requires the introduction of additional degrees of freedom on top of the Nambu–Goldstone modes. Symmetry arguments suffice to construct the low-lying states of the system. In deformed nuclei these are vibrational modes each of which serves as band head of a rotational band. (paper)

  14. Macroscopic-microscopic energy of rotating nuclei in the fusion-like deformation valley

    International Nuclear Information System (INIS)

    Gherghescu, R.A.; Royer, Guy

    2000-01-01

    The energy of rotating nuclei in the fusion-like deformation valley has been determined within a liquid drop model including the proximity energy, the two-center shell model and the Strutinsky method. The potential barriers of the 84 Zr, 132 Ce, 152 Dy and 192 Hg nuclei have been determined. A first minimum having a microscopic origin and lodging the normally deformed states disappears with increasing angular momenta. The microscopic and macroscopic energies contribute to generate a second minimum where superdeformed states may survive. It becomes progressively the lowest one at intermediate spins. At higher angular momenta, the minimum moves towards the foot of the external fission barrier leading to hyperdeformed quasi-molecular states. (author)

  15. Systematics of Absolute Gamma Ray Transition Probabilities in Deformed Odd-A Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Malmskog, S G

    1965-11-15

    All known experimentally determined absolute gamma ray transition probabilities between different intrinsic states of deformed odd-A nuclei in the rare earth, region (153 < A < 181) and in the actinide region (A {>=} 227) are compared with transition probabilities (Weisskopf and Nilsson estimate). Systematic deviations from the theoretical values are found. Possible explanations for these deviations are given. This discussion includes Coriolis coupling, {delta}K ={+-}2 band-mixing effects and pairing interaction.

  16. Odd-even parity splittings and octupole correlations in neutron-rich Ba isotopes

    Science.gov (United States)

    Fu, Y.; Wang, H.; Wang, L.-J.; Yao, J. M.

    2018-02-01

    The odd-even parity splittings in low-lying parity-doublet states of atomic nuclei with octupole correlations have usually been interpreted as rotational excitations on top of octupole vibration in the language of collective models. In this paper, we report a deep analysis of the odd-even parity splittings in the parity-doublet states of neutron-rich Ba isotopes around neutron number N =88 within a full microscopic framework of beyond-mean-field multireference covariant energy density functional theory. The dynamical correlations related to symmetry restoration and quadrupole-octupole shape fluctuation are taken into account with a generator coordinate method combined with parity, particle-number, and angular-momentum projections. We show that the behavior of odd-even parity splittings is governed by the interplay of rotation, quantum tunneling, and shape evolution. Similar to 224Ra, a picture of rotation-induced octupole shape stabilization in the positive-parity states is exhibited in the neutron-rich Ba isotopes.

  17. Light neutron-rich hypernuclei from the importance-truncated no-core shell model

    Directory of Open Access Journals (Sweden)

    Roland Wirth

    2018-04-01

    Full Text Available We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains — from HeΛ5 to HeΛ11 and from LiΛ7 to LiΛ12 — in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon–nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon. Keywords: Hypernuclei, Ab-initio methods, Neutron-rich nuclei, Neutron separation energies, Neutron drip line

  18. Development of axial asymmetry in the neutron-rich nucleus {sup 110}Mo

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, H., E-mail: hiroshi@ribf.riken.jp [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yamaguchi, K.; Odahara, A. [Department of Physics, Osaka University, Machikaneyama-machi 1-1, Osaka 560-0043 Toyonaka (Japan); Sumikama, T. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Nishimura, S. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yoshinaga, K. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Li, Z. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Miyashita, Y. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Sato, K. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Prochniak, L. [Institute of Physics, Maria Curie-Sklodowska University, pl. M. Curie-Sklodowskiej 1, 20-031 Lublin (Poland); Baba, H. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Berryman, J.S. [Nuclear Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Blasi, N. [INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Bracco, A.; Camera, F. [INFN, Sezione di Milano, via Celoria 16, I-20133 Milano (Italy); Dipartimento di Fisica, Universita di Milano, via Celoria 16, I-20133 Milano (Italy); Chiba, J. [Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba (Japan); Doornenbal, P. [RIKEN Nishina Center, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Go, S.; Hashimoto, T.; Hayakawa, S. [Center for Nuclear Study, University of Tokyo, Hirosawa 2-1, Wako, Saitama 351-0198 (Japan)

    2011-10-19

    The neutron-rich nucleus {sup 110}Mo has been investigated by means of {gamma}-ray spectroscopy following the {beta}-decay of {sup 110}Nb, produced using in-flight fission of a {sup 238}U beam at 345 MeV/nucleon at the RIBF facility. In addition to the ground-band members reported previously, spectroscopic information on the low-lying levels of the quasi-{gamma} band built on the second 2{sup +} state at 494 keV has been obtained for the first time. The experimental finding of the second 2{sup +} state being lower than the yrast 4{sup +} level suggests that axially-asymmetric {gamma} softness is substantially enhanced in this nucleus. The experimental results are compared with model calculations based on the general Bohr Hamiltonian method. The systematics of the low-lying levels in even-even A{approx}110 nuclei is discussed in comparison with that in the neutron-rich A{approx}190 region, by introducing the quantity E{sub S}/E(2{sub 1}{sup +}), E{sub S}=E(2{sub 2}{sup +})-E(4{sub 1}{sup +}), as a global signature of the structural evolution involving axial asymmetry.

  19. New neutron-rich isotope production in 154Sm+160Gd

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2016-09-01

    Full Text Available Deep inelastic scattering in 154Sm+160Gd at energies above the Bass barrier is for the first time investigated with two different microscopic dynamics approaches: improved quantum molecular dynamics (ImQMD model and time dependent Hartree–Fock (TDHF theory. No fusion is observed from both models. The capture pocket disappears for this reaction due to strong Coulomb repulsion and the contact time of the di-nuclear system formed in head-on collisions is about 700 fm/c at an incident energy of 440 MeV. The isotope distribution of fragments in the deep inelastic scattering process is predicted with the simulations of the latest ImQMD-v2.2 model together with a statistical code (GEMINI for describing the secondary decay of fragments. More than 40 extremely neutron-rich unmeasured nuclei with 58≤Z≤76 are observed and the production cross sections are at the order of μb to mb. The multi-nucleon transfer reaction of Sm+Gd could be an alternative way to synthesize new neutron-rich lanthanides which are difficult to be produced with traditional fusion reactions or fission of actinides.

  20. On the Orientation Barrier Distribution of the interacting spherical- Deformed Nuclei

    International Nuclear Information System (INIS)

    Ismail, M.; Seif, W.M.

    2009-01-01

    The effect of different multipole deformations on the Coulomb barrier distribution in the orientation degrees of freedom is studied. The demonstrated Coulomb barriers are calculated microscopically using the double folding model which is based on realistic density dependent nucleon nucleon interaction. A simple straight forward method, presented in recent work, has been used to predict the distribution of barriers at arbitrary orientations in presence of different deformations far away the complicated numerical calculations. The proposed interpretation is related to the half density radius change of the deformed nucleus involved in interaction where the orientation Coulomb barrier parameters distributions show similar patterns to that of orientation deformed nucleus one. The orientation Coulomb barrier radius distribution follows the same variation of the deformed nucleus radius, while the barrier height distribution is directly proportional to it. This correlation allows a simple evaluation of the orientation barrier distribution which greatly helps us to estimate when the barrier parameters will increase or decrease and at which orientations they will be independent of the deformation. It helps also to estimate the optimum orientations for hot and cold fusion of colliding nuclei.

  1. Influence Of The Neutron Richness On Binary Decays

    Directory of Open Access Journals (Sweden)

    Roy R.

    2010-03-01

    Full Text Available The influence of the neutron richness on binary decays is investigated in 78,82Kr+ 40Ca reactions at 5.5 MeV/A incident energy. Kinetic energy distributions and angular distributions of fragments with atomic number 6 ≤ Z ≤ 28 were measured using the 4π-INDRA array. Global features are compatible with an emission from a long-lived system. The yields around the symmetric splitting are about 30The persistence of strong structural effects is evidenced from elemental cross-sections of the light fragments. The cross-sections for odd-Z fragments are higher for the neutron rich CN while cross-sections for even-Z fragments are higher for the neutron poor CN. Calculations assuming two different potential energy surfaces are presented.

  2. On the study of level density parameters for some deformed light nuclei

    International Nuclear Information System (INIS)

    Sonmezoglu, S.

    2005-01-01

    The nuclear level density, which is the number of energy levels/MeV at an excitation energy Ex , is a characteristic property of every nucleus. Total level densities are among the key quantities in statistical calculations in many fields, such as nuclear physics, astrophysics, spallation s neutrons measurements, and studies of intermediate-energy heavy-ion collisions. The nuclear level density is an important physical quantity both from the fundamental point of view as well as in understanding the particle and gamma ray emission in various reactions. In light and heavy deformed nucleus, the gamma-ray energies drop with decreasing spin in a very regular fashion. The nuclear level density parameters have been usually used in investigation of the nuclear level density. This parameter itself changes with excitation energy depending on both shell effect in the single particle model and different excitation modes in the collective models. In this study, the energy level density parameters of some deformed light nucleus (40 C a, 47 T i, 59 N i, 79 S e, 80 B r) are determined by using energy spectrum of the interest nucleus for different band. In calculation of energy-level density parameters dependent upon excitation energy of nuclei studied, a model was considered which relies on the fact that energy levels of deformed light nuclei, just like those of deformed heavy nuclei, are equidistant and which relies on collective motions of their nucleons. The present calculation results have been compared with the corresponding experimental and theoretical results. The obtained results are in good agreement with the experimental results

  3. Decay properties of some neutron-rich praseodymium isotopes

    International Nuclear Information System (INIS)

    Skarnemark, G.; Aronsson, P.O.; Stender, E.; Trautmann, N.; Kaffrell, N.; Bjoernstad, T.; Kvale, E.; Skarestad, M.

    1976-01-01

    Neutron-rich Pr isotopes produced in the thermal neutron-induced fission of 235 U have been investigated by means of γ-γ coincidence experiments. The nuclides have been separated from the fission product mixture, using the fast chemical separation system SISAK in connection with a gas jet recoil transport system. The results include assignments of several new γ-ray energies and partial decay schemes for 147 Pr, 148 Pr, 149 Pr and 150 Pr. (orig.) [de

  4. Shape Evolution in Neutron-Rich Krypton Isotopes Beyond N=60: First Spectroscopy of ^{98,100}Kr.

    Science.gov (United States)

    Flavigny, F; Doornenbal, P; Obertelli, A; Delaroche, J-P; Girod, M; Libert, J; Rodriguez, T R; Authelet, G; Baba, H; Calvet, D; Château, F; Chen, S; Corsi, A; Delbart, A; Gheller, J-M; Giganon, A; Gillibert, A; Lapoux, V; Motobayashi, T; Niikura, M; Paul, N; Roussé, J-Y; Sakurai, H; Santamaria, C; Steppenbeck, D; Taniuchi, R; Uesaka, T; Ando, T; Arici, T; Blazhev, A; Browne, F; Bruce, A; Carroll, R; Chung, L X; Cortés, M L; Dewald, M; Ding, B; Franchoo, S; Górska, M; Gottardo, A; Jungclaus, A; Lee, J; Lettmann, M; Linh, B D; Liu, J; Liu, Z; Lizarazo, C; Momiyama, S; Moschner, K; Nagamine, S; Nakatsuka, N; Nita, C; Nobs, C R; Olivier, L; Orlandi, R; Patel, Z; Podolyák, Zs; Rudigier, M; Saito, T; Shand, C; Söderström, P A; Stefan, I; Vaquero, V; Werner, V; Wimmer, K; Xu, Z

    2017-06-16

    We report on the first γ-ray spectroscopy of low-lying states in neutron-rich ^{98,100}Kr isotopes obtained from ^{99,101}Rb(p,2p) reactions at ∼220  MeV/nucleon. A reduction of the 2_{1}^{+} state energies beyond N=60 demonstrates a significant increase of deformation, shifted in neutron number compared to the sharper transition observed in strontium and zirconium isotopes. State-of-the-art beyond-mean-field calculations using the Gogny D1S interaction predict level energies in good agreement with experimental results. The identification of a low-lying (0_{2}^{+}, 2_{2}^{+}) state in ^{98}Kr provides the first experimental evidence of a competing configuration at low energy in neutron-rich krypton isotopes consistent with the oblate-prolate shape coexistence picture suggested by theory.

  5. Neutrino-'pasta' scattering: The opacity of nonuniform neutron-rich matter

    International Nuclear Information System (INIS)

    Horowitz, C.J.; Perez-Garcia, M.A.; Piekarewicz, J.

    2004-01-01

    Neutron-rich matter at subnuclear densities may involve complex structures displaying a variety of shapes, such as spherical, slablike, and/or rodlike shapes. These phases of the nuclear pasta are expected to exist in the crust of neutron stars and in core-collapse supernovae. The dynamics of core-collapse supernovae is very sensitive to the interactions between neutrinos and nucleons/nuclei. Indeed, neutrino excitation of the low-energy modes of the pasta may allow for a significant energy transfer to the nuclear medium, thereby reviving the stalled supernovae shock. The linear response of the nuclear pasta to neutrinos is modeled via a simple semiclassical simulation. The transport mean free path for μ and τ neutrinos (and antineutrinos) is expressed in terms of the static structure factor of the pasta, which is evaluated using Metropolis Monte Carlo simulations

  6. Impact of triaxiality on the rotational structure of neutron-rich rhenium isotopes

    Directory of Open Access Journals (Sweden)

    M.W. Reed

    2016-01-01

    Full Text Available A number of 3-quasiparticle isomers have been found and characterised in the odd-mass, neutron-rich, 187Re, 189Re and 191Re nuclei, the latter being four neutrons beyond stability. The decay of the isomers populates states in the rotational bands built upon the 9/2−[514] Nilsson orbital. These bands exhibit a degree of signature splitting that increases with neutron number. This splitting taken together with measurements of the M1/E2 mixing ratios and with the changes observed in the energy of the gamma-vibrational band coupled to the 9/2−[514] state, suggests an increase in triaxiality, with γ values of 5°, 18° and 25° deduced in the framework of a particle-rotor model.

  7. Determination of spin, magnetic moment and isotopic shift of neutron rich 205Hg by optical pumping

    International Nuclear Information System (INIS)

    Rodriguez, J.; Bonn, J.; Huber, G.; Kluge, H.J.; Otten, E.W.; European Organisation for Nuclear Research, Geneva

    1975-01-01

    Neutron rich 205 Hg(Tsub(1/2) = 5.2 min) was produced and on-line mass separated at the ISOLDE facility at CERN. The polarization achieved by optical pumping via the atomic line (6s 21 S 0 - 6s6p 3 P 1 , lambda = 2,537 A) was monitored by the β decay asymmetry. Hyperfine structure and isotopic shift of the 205 Hg absorption line was determined by Zeeman scanning. In addition a magnetic resoncance was performed on the polarized 205 Hg nuclei in the atomic ground state. The results are: I( 205 Hg) = 1/2 (confirmed); μ(I, 205 Hg) = 0.5915(1)μ(N) (uncorrected for diamagnetism); isotopic shift deltaν(204/205) = ν( 205 Hg) - ν( 204 Hg) = -1.8(1)GHz. μ(I) and IS are discussed briefly in the frame of current literature. (orig.) [de

  8. Observation of isoscalar and isovector dipole excitations in neutron-rich 20O

    Directory of Open Access Journals (Sweden)

    N. Nakatsuka

    2017-05-01

    Full Text Available The isospin characters of low-energy dipole excitations in neutron-rich unstable nucleus 20O were investigated, for the first time in unstable nuclei. Two spectra obtained from a dominant isovector probe (O20+Au and a dominant isoscalar probe (O20+α were compared and analyzed by the distorted-wave Born approximation to extract independently the isovector and isoscalar dipole strengths. Two known 1− states with large isovector dipole strengths at energies of 5.36(5 MeV (11− and 6.84(7 MeV (12− were also excited by the isoscalar probe. These two states were found to have different isoscalar dipole strengths, 2.70(32% (11− and 0.67(12% (12−, respectively, in exhaustion of the isoscalar dipole-energy-weighted sum rule. The difference in isoscalar strength indicated that they have different underlying structures.

  9. Excited-state lifetimes in neutron-rich Ce isotopes from EXILL and FATIMA

    Energy Technology Data Exchange (ETDEWEB)

    Koseoglou, P.; Pietralla, N.; Stoyanka, I.; Kroell, T. [IKP, TU-Darmstadt, Darmstadt (Germany); Werner, V. [IKP, TU-Darmstadt, Darmstadt (Germany); Yale University (United States); Bernards, C.; Cooper, N. [Yale University (United States); Blanc, A.; Jentschel, M.; Koester, U.; Mutti, P.; Soldner, T.; Urban, W. [ILL Grenoble (France); Bruce, A.M.; Roberts, O.J. [University of Brighton (United Kingdom); Cakirli, R.B. [MPIK Heidelberg (Germany); France, G. de [GANIL Caen (France); Humby, P.; Patel, Z.; Podolyak, Zs.; Regan, P.H.; Wilson, E. [University of Surrey (United Kingdom); Jolie, J.; Regis, J.-M.; Saed-Samii, N.; Wilmsen, D. [KP, University of Cologne (Germany); Paziy, V. [Universidad Complutense (Spain); Simpson, G.S. [PSC Grenoble (France); Ur, C.A. [INFN Legnaro (Italy)

    2016-07-01

    {sup 235}U and {sup 241}Pu fission fragments were measured by a mixed spectrometer consisting of high-resolution Ge and fast LaBr{sub 3}(Ce)-scintillator detectors at the high-flux reactor of the ILL. Prompt γ-ray cascades from the nuclei of interest are selected via Ge-Ge-LaBr{sub 3}-LaBr{sub 3} coincidences. The good energy resolution of the Ge allow precise gates to be set, selecting the cascade, hence, the nucleus of interest. The excellent timing performance of the LaBr{sub 3} detectors in combination with the General Centroid Difference method allows the measurement of lifetimes in the ps range in preparation for the FATIMA experiment at FAIR. The first results on neutron-rich Ce isotopes are presented.

  10. $\\beta$-decay study of neutron-rich Tl and Pb isotopes

    CERN Multimedia

    It is proposed to study the structure of neutron-rich nuclei beyond $^{208}$Pb. The one-proton hole $^{211-215}$Tl and the semi magic $^{213}$Pb will be produced and studied via nuclear and atomic spectroscopy searching for long-lived isomers and investigating the $\\beta$-delayed $\\gamma$- emission to build level schemes. Information on the single particle structure in $^{211-215}$Pb, especially the position of the g$_{9/2}$ and i$_{11/2}$ neutron orbitals, will be extracted along with lifetimes. The $\\beta$-decay will be complemented with the higher spin selectivity that can be obtained by resonant laser ionization to single-out the decay properties of long-living isomers in $^{211,213}$Tl and $^{213}$Pb.

  11. Program package for calculation of cross sections of neutron scattering on deformed nuclei by the coupled-channel method

    International Nuclear Information System (INIS)

    Kloss, Yu.Yu.

    1985-01-01

    Program package and numerical solution of the problem for a system of coupled equations used in optical model to solve a problem on low and mean energy neutron scattering on deformed nuclei, is considered. With these programs differnet scattering cross sections depending on the incident neutron energy on even-even and even-odd nuclei were obtained. The programm permits to obtain different scattering cross sections (elastic, inelastic), excitation cross sections of the first three energy levels of rotational band depending on the energy, angular distributions and neutron polarizations including excited channels. In the program there is possibility for accounting even-even nuclei octupole deformation

  12. Onset of collectivity in neutron-rich Sr and Kr isotopes: Prompt spectroscopy after Coulomb excitation at REX-ISOLDE, CERN

    Directory of Open Access Journals (Sweden)

    Clément E.

    2013-12-01

    Full Text Available A rapid onset of quadrupole deformation is known to occur around the neutron number 60 in the neutron-rich Zr and Sr isotopes. This shape change has made the neutron-rich A = 100 region an active area of experimental and theoretical studies for many decades now. We report in this contribution new experimental results in the neutron rich 96,98Sr investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility, CERN. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross section supporting the scenario of shape coexistence/change at N = 60. Future perspectives are presented including the recent experimental campaign performed at ILL-Grenoble.

  13. Relativistic deformed mean-field calculation of binding energy differences of mirror nuclei

    International Nuclear Information System (INIS)

    Koepf, W.; Barreiro, L.A.

    1996-01-01

    Binding energy differences of mirror nuclei for A=15, 17, 27, 29, 31, 33, 39 and 41 are calculated in the framework of relativistic deformed mean-field theory. The spatial components of the vector meson fields and the photon are fully taken into account in a self-consistent manner. The calculated binding energy differences are systematically smaller than the experimental values and lend support to the existence of the Okamoto-Nolen-Schiffer anomaly found decades ago in nonrelativistic calculations. For the majority of the nuclei studied, however, the results are such that the anomaly is significantly smaller than the one obtained within state-of-the-art nonrelativistic calculations. (author). 35 refs

  14. Generalized vibrating potential model for collective excitations in spherical, deformed and superdeformed systems: (1) atomic nuclei, (2) metal clusters

    International Nuclear Information System (INIS)

    Nesterenko, V.O.; Kleinig, W.

    1995-01-01

    The self-consistent vibrating potential model (VPM) is extended for description of Eλ collective excitations in atomic nuclei and metal clusters with practically any kind of static deformation. The model is convenient for a qualitative analysis and provides the RPA accuracy of numerical calculations. The VPM is applied to study Eλ giant resonances in spherical metal clusters and deformed and superdeformed nuclei. It is shown that the deformation splitting of superdeformed nuclei results in a very complicated (''jungle-like'') structure of the resonances, which makes the experimental observation of E2 and E3 giant resonances in superdeformed nuclei quite problematic. Calculations of E1 giant resonance in spherical sodium clusters Na 8 , Na 20 and Na 40 are presented, as a test of the VPM in this field. The results are in qualitative agreement with the experimental data. (orig.)

  15. Diffraction scattering and disintegration of complex particles by nonspherical deformable nuclei

    International Nuclear Information System (INIS)

    Evlanov, M.V.; Isupov, V.Y.; Tartakovskii, V.K.

    1989-01-01

    We study the dependence of the differential and integrated cross sections for diffraction scattering and disintegration of complex particles by axially symmetric and non-axially-symmetric nuclei on the shape, deformability, and diffuseness of the nuclear surface, and also on the structure of the incident particles and rescattering processes. It is shown that when all of these factors are taken into account, as well as the interaction in the final state between the disintegration products of the incident particle, a satisfactory description of complicated coincidence experiments can be obtained, and also inelastic scattering experiments with excitation of collective states of the target nucleus

  16. One-phonon states in deformed nuclei for isoscalar and isovector interactions

    International Nuclear Information System (INIS)

    Malov, L.A.; Nesterenko, V.O.; Solov'ev, V.G.

    1977-01-01

    Extension of the formulas describing the one-phonon states of compound even-even deformed nuclei to the case when the isoscalar and isovector multipole-multipole forces are taken into account, is given. The formalism presented makes it possible to obtain an unified description of the low-lying states and gigantic multipole resonances. Procedure is developed which makes it possible to write down the reduced probability and energetically weighted sum rule in the form of force functions averaged over certain interval of energies. The procedure simplifies the calculations significantly and makes it possible to avoid solving the secular equation for energies of one-phonon states

  17. Generalized Michailov plot analysis of inband E2 transitions of deformed nuclei

    International Nuclear Information System (INIS)

    Long, G.L.; Zhang, W.L.; Ji, H.Y.; Gao, J.F.

    1998-01-01

    Intraband E2 transitions of some 30 deformed nuclei are analysed using a generalized Michailov plot, based on an E2 transition formula in the SU(3) limit of the sdg interacting boson model. The general E2 transition formula in the sdg-IBM has an L(L+3) term in addition to the usual SU(3) model result. It is found that the general E2 formula can describe the inband transitions well. Comparisons with other models are made. The implications of the results are also discussed. (author)

  18. Global set of quadrupole deformation parameters for even-even nuclei

    International Nuclear Information System (INIS)

    Raman, S.; Nestor, C.W. Jr.

    1986-01-01

    A compilation of experimental results has been completed for the reduced electric quadrupole transition probability [B(E2)up arrow] between the 0 + ground state and the first 2 + state in even-even nuclei. This compilation together with certain simple relationships noted by other authors can be used to make reasonable predictions of unmeasured B(E2)up arrow values. The quadrupole deformation parameter β 2 immediately follows, because β 2 is proportional to [B(E2)up arrow]/sup 1/2/. 8 refs., 7 figs

  19. Low-energy E1 transitions and octupole softness in odd-A deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, G B [Niels Bohr Inst., Copenhagen (Denmark); Hamamoto, I [Lund Univ. (Sweden). Dept. of Mathematical Physics; Kownacki, J; Satula, W [Warsaw Univ. (Poland)

    1992-08-01

    It is found that B(E1) values for yrast spectroscopy of deformed odd-A rare-earth nuclei calculated by using a model in which one quasiparticle is coupled to a rotor are more than an order of magnitude too small. Therefore, measured B(E1) values for {sup 169}Lu were analyzed by introducing parameters which effectively took octupole softness into account. Some preliminary results of the theoretical analysis which are presented in this paper still give do not agree completely with experiment. 4 refs., 1 tab., 5 figs.

  20. Woods-Saxon potential parametrization at large deformations for odd-plutonium nuclei

    International Nuclear Information System (INIS)

    Garcia, F.; Yoneama, M.L.; Arruda Neto, J.D.T.; Mesa, J.; Bringas, F.; Dias, J.F.; Likhachev, V.P.

    1997-01-01

    The structure of the the single-particle levels in the secondary minima of 237,239,241 Pu fissioning nuclei is analysed with the help of an axially-deformed Woods-Saxon potential. The nuclear shape was parametrized in terms of the Cassinian ovaloids. The parametrization of the spin-orbit part of the potential in the region corresponding to large deformations (second minimum), which depends only on the nuclear surface area, B s , was obtained. With this relation we were able to reproduce successfully the spin (parity) and the energies of the rotational band built on the 8μs isomeric rate in 239 Pu and also to make a spin assignment for both isomer states in 237 Pu and 241 Pu. (author)

  1. Charge-exchange QRPA with the Gogny Force for Axially-symmetric Deformed Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Martini, M., E-mail: martini.marco@gmail.com [Institut d' Astronomie et d' Astrophysique, Université Libre de Bruxelles, CP-226, 1050 Brussels (Belgium); CEA, DAM, DIF, F-91297 Arpajon (France); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Université Libre de Bruxelles, CP-226, 1050 Brussels (Belgium); Péru, S. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-06-15

    In recent years fully consistent quasiparticle random-phase approximation (QRPA) calculations using finite range Gogny force have been performed to study electromagnetic excitations of several axially-symmetric deformed nuclei up to the {sup 238}U. Here we present the extension of this approach to the charge-exchange nuclear excitations (pnQRPA). In particular we focus on the Isobaric Analog and Gamow-Teller resonances. A comparison of the predicted GT strength distribution with existing experimental data is presented. The role of nuclear deformation is shown. Special attention is paid to β-decay half-lives calculations for which experimental data exist and for specific isotone chains of relevance for the r-process nucleosynthesis.

  2. An optical potential for the statically deformed actinide nuclei derived from a global spherical potential

    Science.gov (United States)

    Al-Rawashdeh, S. M.; Jaghoub, M. I.

    2018-04-01

    In this work we test the hypothesis that a properly deformed spherical optical potential, used within a channel-coupling scheme, provides a good description for the scattering data corresponding to neutron induced reactions on the heavy, statically deformed actinides and other lighter deformed nuclei. To accomplish our goal, we have deformed the Koning-Delaroche spherical global potential and then used it in a channel-coupling scheme. The ground-state is coupled to a sufficient number of inelastic rotational channels belonging to the ground-state band to ensure convergence. The predicted total cross sections, elastic and inelastic angular distributions are in good agreement with the experimental data. As a further test, we compare our results to those obtained by a global channel-coupled optical model whose parameters were obtained by fitting elastic and inelastic angular distributions in addition to total cross sections. Our results compare quite well with those obtained by the fitted, channel-coupled optical model. Below neutron incident energies of about 1MeV, our results show that scattering into the rotational excited states of the ground-state band plays a significant role in the scattering process and must be explicitly accounted for using a channel-coupling scheme.

  3. Direct mass measurements in the light neutron-rich region using a combined energy and time-of-flight technique

    International Nuclear Information System (INIS)

    Pillai, C.; Swenson, L.W.; Vieira, D.J.; Butler, G.W.; Wouters, J.M.; Rokni, S.H.; Vaziri, K.; Remsberg, L.P.

    1985-01-01

    This experiment has demonstrated that direct mass measurements can be performed (albeit of low precision in this first attempt) using the M proportional to ET 2 method. This technique has the advantage that many particle-bound nuclei, produced in fragmentation reactions can be measured simultaneously, independent of their N or Z. The main disadvantage of this approach is that both energy and time-of-flight must be measured precisely on an absolute scale. Although some mass walk with N and Z was observed in this experiment, these uncertainties were largely removed by extrapolating the smooth dependence observed for known nuclei which lie closer to the valley of β-stability. Mass measurements for several neutron-rich light nuclei ranging from 17 C to 26 Ne have been performed. In all cases these measurements agree with the latest mass compilation of Wapstra and Audi. The masses of 20 N and 24 F have been determined for the first time

  4. Rare-earth nuclei: Radii, isotope-shifts and deformation properties in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Lalazissis, G.A.; Ring, P.

    1996-01-01

    A systematic study of the ground-state properties of even-even rare earth nuclei has been performed in the framework of the Relativistic Mean-Field (RMF) theory using the parameter set NL-SH. Nuclear radii, isotope shifts and deformation properties of the heavier rare-earth nuclei have been obtained, which encompass atomic numbers ranging from Z=60 to Z=70 and include a large range of isospin. It is shown that RMF theory is able to provide a good and comprehensive description of the empirical binding energies of the isotopic chains. At the same time the quadrupole deformations β 2 obtained in the RMF theory are found to be in good agreement with the available empirical values. The theory predicts a shape transition from prolate to oblate for nuclei at neutron number N=78 in all the chains. A further addition of neutrons up to the magic number 82 brings about the spherical shape. For nuclei above N=82, the RMF theory predicts the well-known onset of prolate deformation at about N=88, which saturates at about N=102. The deformation properties display an identical behaviour for all the nuclear chains. A good description of the above deformation transitions in the RMF theory in all the isotopic chains leads to a successful reproduction of the anomalous behaviour of the empirical isotopic shifts of the rare-earth nuclei. The RMF theory exhibits a remarkable success in providing a unified and microscopic description of various empirical data. (orig.)

  5. γ-spectroscopy and radioactive beams: search for highly deformed exotic nuclei

    International Nuclear Information System (INIS)

    Rosse, B.

    2006-07-01

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A ∼ 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr 76 radioactive beam (T1/2 = 14.8 h). γ-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first γ transition was observed in the very exotic odd-odd Pm 130 nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  6. γ-spectroscopy and radioactive beams: search for highly deformed exotic nuclei

    International Nuclear Information System (INIS)

    Rosse, Bertrand

    2006-01-01

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A∼130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient 76 Kr radioactive beam (T 1/2 = 14.8 h). γ-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first γ transition was observed in the very exotic odd-odd 130 Pm nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  7. Fragmentation of two-phonon {gamma}-vibrational strength in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.Y.; Cline, D. [Univ. of Rochester, NY (United States)

    1996-12-31

    Rotational and vibrational modes of collective motion. are very useful in classifying the low-lying excited states in deformed nuclei. The rotational mode of collective motion is characterized by rotational bands having correlated level energies and strongly-enhanced E2 matrix elements. The lowest intrinsic excitation with I,K{sup {pi}} = 2,2{sup +} in even-even deformed nuclei, typically occurring at {approx}1 MeV, is classified as a one-phonon {gamma}-vibration state. In a pure harmonic vibration limit, the expected two-phonon {gamma}-vibration states with I,K{sup {pi}} = 0,0{sup +} and 4,4{sup +} should have excitation energies at twice that of the I,K{sup {pi}} = 2,2{sup +} excitation, i.e. {approx}2 MeV, which usually is above the pairing gap leading to possible mixing with two-quasiparticle configurations. Therefore, the question of the localization of two-phonon {gamma}-vibration strength has been raised because mixing may lead to fragmentation of the two-phonon strength over a range of excitation energy. For several well-deformed nuclei, an assignment of I,K{sup {pi}}=4,4{sup +} states as being two-phonon vibrational excitations has been suggested based on the excitation energies and the predominant {gamma}-ray decay to the I,K{sup {pi}}=2,2{sup +} state. However, absolute B(E2) values connecting the presumed two- and one-phonon states are the only unambiguous measure of double phonon excitation. Such B(E2) data are available for {sup 156}Gd, {sup 160}Dy, {sup 168}Er, {sup 232}Th, and {sup 186,188,190,192}Os. Except for {sup 160}Dy, the measured B(E2) values range from 2-3 Weisskopf units in {sup 156}Gd to 10-20 Weisskopf units in osmium nuclei; enhancement that is consistent with collective modes of motion.

  8. Level structures of neutron-rich Xe isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Lister, C.J.; Morss, L.R. [and others

    1995-08-01

    The level structures of neutron-rich Xe isotopes were determined by observing prompt gamma-ray coincidences in {sup 248}Cm fission fragments. A 5-mg {sup 248}Cm, in the form of {sup 248}Cm-KCl pellet, was placed inside Eurogam array which consisted of 45 Compton-suppressed Ge detectors and 5 Low-Energy Photon Spectrometers. Transitions in Xe isotopes were identified by the appearance of new peaks in the {gamma}-ray spectra obtained by gating on the gamma peaks of the complementary Mo fragments.

  9. Schottky mass measurements of heavy neutron-rich nuclides in the element range $70\\leq Z\\leq 79$ at the ESR

    CERN Document Server

    Shubina, D; Litvinov, Yu A; Blaum, K; Brandau, C; Bosch, F; Carroll, J J; Casten, R F; Cullen, D M; Cullen, I J; Deo, A Y; Detwiler, B; Dimopoulou, C; Farinon, F; Geissel, H; Haettner, E; Heil, M; Kempley, R S; Kozhuharov, C; Knobel, R; Kurcewicz, J; Kuzminchuk, N; Litvinov, S A; Liu, Z; Mao, R; Nociforo, C; Nolden, F; Patyk, Z; Plass, W R; Prochazka, A; Reed, M W; Sanjari, M S; Scheidenberger, C; Steck, M; Stohlker, Th; Sun, B; Swan, T P D; Trees, G; Walker, P M; Weick, H; Winckler, N; Winkler, M; Woods, P J; Yamaguchi, T; Zhou, C

    2013-01-01

    Storage-ring mass spectrometry was applied to neutron-rich $^{197}$Au projectile fragments. Masses of $^{181,183}$Lu, $^{185,186}$Hf, $^{187,188}$Ta, $^{191}$W, and $^{192,193}$Re nuclei were measured for the first time. The uncertainty of previously known masses of $^{189,190}$W and $^{195}$Os nuclei was improved. Observed irregularities on the smooth two-neutron separation energies for Hf and W isotopes are linked to the collectivity phenomena in the corresponding nuclei.

  10. Neutron rich matter, neutron stars, and their crusts

    International Nuclear Information System (INIS)

    Horowitz, C J

    2011-01-01

    Neutron rich matter is at the heart of many fundamental questions in Nuclear Physics and Astrophysics. What are the high density phases of QCD? Where did the chemical elements come from? What is the structure of many compact and energetic objects in the heavens, and what determines their electromagnetic, neutrino, and gravitational-wave radiations? Moreover, neutron rich matter is being studied with an extraordinary variety of new tools such as Facility for Rare Isotope Beams (FRIB) and the Laser Interferometer Gravitational Wave Observatory (LIGO). We describe the Lead Radius Experiment (PREX) that is using parity violation to measure the neutron radius in 208Pb. This has important implications for neutron stars and their crusts. Using large scale molecular dynamics, we model the formation of solids in both white dwarfs and neutron stars. We find neutron star crust to be the strongest material known, some 10 billion times stronger than steel. It can support mountains on rotating neutron stars large enough to generate detectable gravitational waves. Finally, we describe a new equation of state for supernova and neutron star merger simulations based on the Virial expansion at low densities, and large scale relativistic mean field calculations.

  11. Precision mass measurements for studies of nucleosynthesis via the rapid neutron-capture process. Penning-trap mass measurements of neutron-rich cadmium and caesium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Atanasov, Dinko

    2016-07-06

    Although the theory for the rapid neutron-capture process (r-process) was developed more than 55 years ago, the astrophysical site is still under a debate. Theoretical studies predict that the r-process path proceeds through very neutron-rich nuclei with very asymmetric proton-to-neutron ratios. Knowledge about the properties of neutron-rich isotopes found in similar regions of the nuclear chart and furthermore suitable for r-process studies is still little or even not existing. The basic nuclear properties such as binding energies, half-lives, neutron-induced or neutron-capture reaction cross-sections, play an important role in theoretical simulations and can vary or even drastically alternate results of these studies. Therefore, a considerable effort was put forward to access neutron-rich isotopes at radioactive ion-beam facilities like ISOLDE at CERN. The goal of this PhD thesis is to describe the experimental work done for the precision mass measurements of neutron-rich cadmium ({sup 129-131}Cd) and caesium ({sup 132,146-148}Cs) isotopes. Measurements were done at the on-line radioactive ion-beam facility ISOLDE by using the four-trap mass spectrometer ISOLTRAP. The cadmium isotopes are key nuclides for the synthesis of stable isotopes around the mass peak A = 130 in the Solar System abundance.

  12. Precision mass measurements for studies of nucleosynthesis via the rapid neutron-capture process Penning-trap mass measurements of neutron-rich cadmium and caesium isotopes

    CERN Document Server

    AUTHOR|(CDS)2085660; Litvinov, Yuri A.; Kreim, Susanne

    Although the theory for the rapid neutron-capture process (r-process) was developed more than 55 years ago, the astrophysical site is still under a debate. Theoretical studies predict that the r-process path proceeds through very neutron-rich nuclei with very asymmetric proton- to-neutron ratios. Knowledge about the properties of neutron-rich isotopes found in similar regions of the nuclear chart and furthermore suitable for r-process studies is still little or even not existing. The basic nuclear properties such as binding energies, half-lives, neutron-induced or neutron-capture reaction cross-sections, play an important role in theoretical simulations and can vary or even drastically alternate results of these studies. Therefore, a considerable effort was put forward to access neutron-rich isotopes at radioactive ion-beam facilities like ISOLDE at CERN. The goal of this PhD thesis is to describe the experimental work done for the precision mass measurements of neutron-rich cadmium (129−131 Cd) and caesium...

  13. Description of low-lying vibrational Kπ ≠ 0+ states of deformed nuclei in the quasiparticle-phonon nuclear model

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Shirikova, N.Yu.

    1989-01-01

    The QPNM equations are derived taking account of p-h and p-p interactions. The calculated quadrupole, octupole and hexadecapole vibrational states in 168 Er, 172 Yb and 178 Hf are found to be reasonale agreement with experimental data. It is shown that distribution of the Eλ strength in some deformed nuclei differs from the standard one. There are cases when for a given K π and Eλ strength is concentrated not on the first but on higher-lying states. The assertion made earlier about the absence of collective two-phonon states in deformed nuclei is confirmed. 44 refs.; 1 fig.; 6 tabs

  14. β-decay spectroscopy of neutron-rich 160,161,162Sm isotopes

    Directory of Open Access Journals (Sweden)

    Patel Z.

    2016-01-01

    Full Text Available Neutron-rich 160,161,162Sm isotopes have been populated at the RIBF, RIKEN via β first time. β-coincident γ rays were observed in all three isotopes including γ rays from the isomeric decay of 160Sm and 162Sm. The isomers in 160Sm and 162Sm have previously been observed but have been populated via β decay for the first time. The isomeric state in 162Sm is assigned a 4−v72+[ 633 ]⊗v12−[ 521 ]${4^ - }v{{7 \\over 2}^ + }\\left[ {633} \\right] \\otimes v{{1 \\over 2}^ - }\\left[ {521} \\right]$ configuration based on the decay pattern. The level schemes of 160Sm and 162Sm are presented. The ground states in the parent nuclei 160Pm and 162Pm are both assigned a 6−v72+[633]⊗π52−[532]${6^ - }v{{7 \\over 2}^ + }\\left[ {633} \\right] \\otimes \\pi {{5 \\over 2}^ - }\\left[ {532} \\right]$ configuration based on the population of states in the daughter nuclei. Blocked BCS calculations were performed to further investigate the spin-parities of the ground states in 160Pm, 161Pm, and 162Pm, and the isomeric state in 162Sm

  15. Neutron-rich polonium isotopes studied with in-source laser spectroscopy

    CERN Document Server

    Dexters, Wim; Cocolios, T E

    This work studies the unknown region of neutron rich polonium isotopes. The polonium isotopes, with Z=84, lie above the magic lead nuclei (Z=82). The motivation for this research can mainly be found in these lead nuclei. When looking at the changes in the mean square charge radii beyond the N=126 shell gap, a kink is observed. This kink is also found in the radon (Z=86) and radium (Z=88) isotopes. The observed effect cannot be reproduced with our current models. The polonium isotopes yield more information on the kink and they are also able to link the known charge radii in lead isotopes to those in radon and radium. Additionally, the nuclear moments of the odd-neutron isotope $^{211}$Po are investigated. This nucleus has two protons and one neutron more than the doubly magic nucleus $^{208}$Pb. Nuclear moments of isotopes close to this doubly magic nucleus are good tests for the theoretic models. Besides pushing the models to their limits, the nuclear moments of $^{211}$Po also yield new information on the f...

  16. Universal odd-even staggering in isotopic fragmentation and spallation cross sections of neutron-rich fragments

    Science.gov (United States)

    Mei, B.; Tu, X. L.; Wang, M.

    2018-04-01

    An evident odd-even staggering (OES) in fragment cross sections has been experimentally observed in many fragmentation and spallation reactions. However, quantitative comparisons of this OES effect in different reaction systems are still scarce for neutron-rich nuclei near the neutron drip line. By employing a third-order difference formula, the magnitudes of this OES in extensive experimental cross sections are systematically investigated for many neutron-rich nuclei with (N -Z ) from 1 to 23 over a broad range of atomic numbers (Z ≈3 -50 ). A comparison of these magnitude values extracted from fragment cross sections measured in different fragmentation and spallation reactions with a large variety of projectile-target combinations over a wide energy range reveals that the OES magnitude is almost independent of the projectile-target combinations and the projectile energy. The weighted average of these OES magnitudes derived from cross sections accurately measured in different reaction systems is adopted as the evaluation value of the OES magnitude. These evaluated OES magnitudes are recommended to be used in fragmentation and spallation models to improve their predictions for fragment cross sections.

  17. Mass measurements of neutron rich isotopes in the Fe region and electron capture processes in neutron star crusts

    International Nuclear Information System (INIS)

    Estrade, Alfredo; Matos, M.; Schatz, Hendrik; Amthor, A.M.; Beard, Mary; Brown, Edward; Bazin, D.; Becerril, A.; Elliot, T.; Gade, A.; Galaviz, D.; Gupta, Sanjib; Hix, William Raphael; Lau, Rita; Moeller, Peter; Pereira, J.; Portillo, M.; Rogers, A.M.; Shapira, Dan; Smith, E.; Stolz, A.; Wallace, M.; Wiescher, Michael

    2011-01-01

    Experimental knowledge of nuclear masses of exotic nuclei is important for understanding nuclear structure far from the valley of stability, and as a direct input into astrophysical models. Electron capture processes in the crust of accreting neutron stars have been proposed as a heat source that can affect the thermal structure of the star. Nuclear masses of very neutron-rich nuclides are necessary inputs to model the electron capture process. The time-of-flight (TOF) mass measurement technique allows measurements on very short-lived nuclei. It has been effectively applied using the fast fragment beams produced at the National Superconducting Cyclotron Lab (NSCL) to reach masses very far from stability. Measurements were performed for neutron-rich isotopes in the region of the N=32 and N=40 subshells, which coincides with the mass range of carbon superburst ashes. We discuss reaction network calculations performed to investigate the impact of our new measurements and to compare the effect of using different global mass models in the calculations. It is observed that the process is sensitive to the differences in the odd-even mass staggering predicted by the mass models, and our new result for 66Mn has a significant impact on the distribution of heat sources in the crust.

  18. Constraining the EOS of Neutron-Rich Nuclear Matter and Properties of Neutron Stars with Heavy-Ion Reactions

    International Nuclear Information System (INIS)

    Li Baoan; Worley, Aaron; Chen, L.-W.; Ko, Che Ming; Krastev, Plamen G.; Wen Dehua; Xiao Zhigang; Zhang Ming; Xu Jun; Yong Gaochan

    2009-01-01

    Heavy-ion reactions especially those induced by radioactive beams provide useful information about the density dependence of the nuclear symmetry energy, thus the Equation of State of neutron-rich nuclear matter, relevant for many astrophysical studies. The latest developments in constraining the symmetry energy at both sub- and supra-saturation densities from analyses of the isopsin diffusion and the π - /π + ratio in heavy-ion collisions using the IBUU04 transport model are discussed. Astrophysical ramifications of the partially constrained symmetry energy on properties of neutron star crusts, gravitational waves emitted by deformed pulsars and the w-mode oscillations of neutron stars are presented briefly.

  19. Calculation of ground state deformation of even-even rare-earth nuclei in sdg interacting boson model

    International Nuclear Information System (INIS)

    Wang Baolin

    1995-01-01

    The analytical calculation of the nuclear ground state deformation of the even-even isotopes in the rare-earth region is given by utilizing the intrinsic states of the sdg interacting boson model. It is compared systematically with the reported theoretical and experimental results. It is shown that the sdg interacting boson model is a reasonable scheme for the description of even-even nuclei deformation

  20. Effect of the Pauli principle on the excited states of doubly-even deformed nuclei

    International Nuclear Information System (INIS)

    Jolos, R.V.; Molina, J.L.; Soloviev, V.G.

    1980-01-01

    It is shown that the commutation relations between the quasiparticles forming phonons can correctly be taken into account within the quasiparticle-phonon nuclear model. The doubly-even deformed nuclei with the isoscalar and isovector multipole-multipole forces are studied. The exact and approximate secular equations are derived. It is shown that the two-phonon poles in the secular equation are shifted due to the Pauli principle. These shifts are large for the two identical collective phonons. In some cases pronounced shifts are found for the poles composed of a low-lying collective phonon and a collective phonon forming the giant resonance. In other cases the shifts are not large, as a rule. (orig.) 891 FKS/orig. 892 MB

  1. Scissors and unique-parity modes of M1 excitation in deformed nuclei

    International Nuclear Information System (INIS)

    Otsuka, T.

    1989-01-01

    In this paper the possible modes of M1 excitation in deformed even-even nuclei are studied in terms of the particle-number-conserved Nilsson + BCS formalism with the standard parameters. The spurious motion with respect to the rotation is removed. In addition to the Scissors mode, the Unique-Parity Spin and Normal-Parity Spin modes are suggested, although the latter may be fragmented to a large extent. The Scissors mode carries most of the orbital strength, while the others the spin strength. The proton Unique-Parity (i.e. Oh 11/12 ) Spin mode for 164 Dy is obtained just below Ex = 3 MeV with B(M1) ∼ 0.2 μ 2 N ) in the sum rule limit. This is in a good agreement to the recent experimental data

  2. One- and two-phonon excitations in strongly deformed triaxial nuclei

    International Nuclear Information System (INIS)

    Hagemann, G.B.

    2003-01-01

    The wobbling mode is uniquely related to triaxiality and introduces a series of bands with increasing wobbling phonon number, n ω , and a characteristic large Δ nω =1 E2 strength between the bands. The pattern of γ-transitions between the wobbling excitations will be influenced by the presence of an aligned particle. Evidence for the wobbling mode was obtained recently, and even a two-phonon wobbling excitation has now been identified in 163 Lu. The similarity of the data in 163 Lu to new strongly deformed triaxial bands and connecting transitions in the neighbouring nuclei, 165 Lu and 167 Lu, establishes wobbling as a more general phenomenon in this region. (author)

  3. E2 and M1 transition strengths in heavy deformed nuclei revisited

    International Nuclear Information System (INIS)

    Draayer, J.P.; Popa, G.; Hirsch, J.G.; Vargas, C.E.

    2003-01-01

    An update on the status of pseudo-SU(3) shell-model calculations in strongly deformed nuclei in the rare earth region is presented. Representative results for energy levels as well as E2 (quadrupole) and M1 (scissors) transitions strengths in 162 Dy (even-even) and 163 Dy (odd-mass) are given. The calculations use realistic single-particle energies and quadrupole-quadrupole and pairing interaction strengths fixed from systematics. The strengths of rotor-like terms included in the Hamiltonian- all small relative to the other terms in the interaction were adjusted to give an overall best fit to the energy spectra. The results present a paradox: for even-even nuclei (integer angular momentum) non-zero pseudo-spin configurations seems to be unimportant while for the odd-mass systems (half-integer angular momentum) pseudo-spin mixing is essential as spin-flip couplings appear to dominate the M1 transition strengths. (Author)

  4. Effect of deformations on the compactness of odd-Z superheavy nuclei formed in cold and hot fusion reactions

    Science.gov (United States)

    Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.

    2018-03-01

    Using the extended fragmentation theory, the compactness of hot and cold fusion reactions is analyzed for odd-Z nuclei ranging Z = 105- 117. The calculations for the present work are carried out at T = 0MeV and ℓ = 0 ħ, as the temperature and angular momentum effects remain silent while addressing the orientation degree of freedom (i.e. compact angle configuration). In the hot fusion, 48Ca (spherical) + actinide (prolate) reaction, the non-equatorial compact (nec) shape is obtained for Z = 113 nucleus. On the other hand, Z > 113 nuclei favor equatorial compact (ec) configuration. The distribution of barrier height (VB) illustrate that the ec-shape is obtained when the magnitude of quadrupole deformation of the nucleus is higher than the hexadecupole deformation. In other words, negligible or small -ve β4-deformations support ec configurations. On the other hand, large (+ve) magnitude of the β4-deformation suggests that the configuration appears for compact angle θc < 90 °, leading to nec structure. Similar deformation effects are observed for Bi-induced reactions, in which not belly-to-belly compact (nbbc) configurations are seen at θc = 42 °. In addition to the effect of β2 and β4-deformations, the exclusive role of octupole deformations (β3) is also analyzed. The β3-deformations do not follow the reflection symmetry as that of β2 and β4, leading to the possible occurrence of compact configuration within 0° to 180° angular range.

  5. Study of Ground State Wave-function of the Neutron-rich 29,30Na Isotopes through Coulomb Breakup

    Directory of Open Access Journals (Sweden)

    Rahaman A.

    2014-03-01

    Full Text Available Coulomb breakup of unstable neutron rich nuclei 29,30Na around the ‘island of inversion’ has been studied at energy around 434 MeV/nucleon and 409 MeV/nucleon respectively. Four momentum vectors of fragments, decay neutron from excited projectile and γ-rays emitted from excited fragments after Coulomb breakup are measured in coincidence. For these nuclei, the low-lying dipole strength above one neutron threshold can be explained by direct breakup model. The analysis for Coulomb breakup of 29,30Na shows that large amount of the cross section yields the 28Na, 29Na core in ground state. The predominant ground-state configuration of 29,30Na is found to be 28Na(g.s⊗νs1/2 and 29Na(g.s⊗νs1/2,respectively.

  6. The quest for novel modes of excitation in exotic nuclei

    Science.gov (United States)

    Paar, N.

    2010-06-01

    This paper provides an insight into several open problems in the quest for novel modes of excitation in nuclei with isospin asymmetry, deformation and finite-temperature characteristics in stellar environments. Major unsolved problems include the nature of pygmy dipole resonances, the quest for various multipole and spin-isospin excitations both in neutron-rich and proton drip-line nuclei mainly driven by loosely bound nucleons, excitations in unstable deformed nuclei and evolution of their properties with the shape phase transition. Exotic modes of excitation in nuclei at finite temperatures characteristic of supernova evolution present open problems with a possible impact in modeling astrophysically relevant weak interaction rates. All these issues challenge self-consistent many-body theory frameworks at the frontiers of on-going research, including nuclear energy density functionals, both phenomenological and constrained by the strong interaction physics of QCD, models based on low-momentum two-nucleon interaction Vlow-k and correlated realistic nucleon-nucleon interaction VUCOM, supplemented by three-body force, as well as two-nucleon and three-nucleon interactions derived from the chiral effective field theory. Joined theoretical and experimental efforts, including research with radioactive isotope beams, are needed to provide insight into dynamical properties of nuclei away from the valley of stability, involving the interplay of isospin asymmetry, deformation and finite temperature.

  7. Studies of exotic nuclei

    International Nuclear Information System (INIS)

    Angelique, J.C.; Orr, N.A.

    1997-01-01

    The study of the nuclei far off stability valley is of much interest for testing the nuclear models established for the stable nuclei but also for astrophysics to understand the nucleosynthesis. Experiments aim to measure the mass and lifetime, to build the decay schemes and also to study the structure and the properties of these nuclei. The radioactive beam group focused its research on light neutron-rich nuclei having a halo neutron structure. Mass measurements in N ∼ Z nuclei namely in A ∼ 60-80 proton-rich nuclei, important for understanding the rp process, are mentioned, as well as in nuclei in the 100 Sn region. In the newly obtained 26 O and 28 O nuclei the lifetimes, the probabilities of emission of one for more neutrons were determined. The data analysis has permitted to determine also for the first time the lifetimes of 27,29 F and 30 Ne. Studies of nuclei in the 100 Sn region, near the proton drip line in the ground and isomeric states are now under way. The spectroscopy (energy levels, gamma emissions, etc.) of the neutron-rich nuclei produced by the 36 S fragmentation has been carried out in 31 Ne, 17 B and 29 F. Studies by Coulomb excitation of the 2 + excited states and associated probability B (E2) in O, Ne, Ni and Zn are now analysed

  8. Possibilities of production of neutron-rich Md isotopes in multi-nucleon transfer reactions

    Energy Technology Data Exchange (ETDEWEB)

    Mun, Myeong-Hwan; Lee, Young-Ouk [Korea Atomic Energy Research Institue, Daejeon (Korea, Republic of); Adamian, G.G.; Antonenko, N.V. [Joint Institute for Nuclear Research, Dubna (Russian Federation)

    2016-12-15

    The possibilities of production of yet unknown neutron-rich isotopes of Md are explored in several multi-nucleon transfer reactions with actinide targets and stable and radioactive beams. The projectile-target combinations and bombarding energies are suggested to produce new neutron-rich isotopes of Md in future experiments. (orig.)

  9. Microscopic multiphonon approach to spectroscopy in the neutron-rich oxygen region

    Science.gov (United States)

    De Gregorio, G.; Knapp, F.; Lo Iudice, N.; Veselý, P.

    2018-03-01

    Background: A fairly rich amount of experimental spectroscopic data have disclosed intriguing properties of the nuclei in the region of neutron rich oxygen isotopes up to the neutron dripline. They, therefore, represent a unique laboratory for studying the evolution of nuclear structure away from the stability line. Purpose: We intend to give an exhaustive microscopic description of low and high energy spectra, dipole response, weak, and electromagnetic properties of the even 22O and the odd 23O and 23F. Method: An equation of motion phonon method generates an orthonormal basis of correlated n -phonon states (n =0 ,1 ,2 ,⋯ ) built of constituent Tamm-Dancoff phonons. This basis is adopted to solve the full eigenvalue equations in even nuclei and to construct an orthonormal particle-core basis for the eigenvalue problem in odd nuclei. No approximations are involved and the Pauli principle is taken into full account. The method is adopted to perform self-consistent, parameter free, calculations using an optimized chiral nucleon-nucleon interaction in a space encompassing up to two-phonon basis states. Results: The computed spectra in 22O and 23O and the dipole cross section in 22O are in overall agreement with the experimental data. The calculation describes poorly the spectrum of 23F. Conclusions: The two-phonon configurations play a crucial role in the description of spectra and transitions. The large discrepancies concerning the spectra of 23F are ultimately traced back to the large separation between the Hartree-Fock levels belonging to different major shells. We suggest that a more compact single particle spectrum is needed and can be generated by a new chiral potential which includes explicitly the contribution of the three-body forces.

  10. The contour deformation method in momentum space and effective interactions for weakly bound nuclei

    International Nuclear Information System (INIS)

    Hagen, Gaute

    2005-01-01

    The main purpose of this thesis has been to investigate and develop methods suitable for study of resonance phenomena in nuclear and subatomic physics. Emphasis has been on the momentum space formulation of the Schrodinger equation. It has been shown; starting from the integral formulation of the Schrodinger equation, that an efficient way of obtaining a complete set of states including bound- antibound and resonant states is through the Contour Deformation Method. The strength of the Contour Deformation Method has been illustrated by studying a wide range of different cases in subatomic physics where resonance phenomena appear. These applications ranges from the case of a single-particle moving in a spherically symmetric field to the case of strong deformations of the field. Further, it has been studied how resonances may be solved for in complex potentials which models absorptive and emittive processes, using the Contour Deformation Method. The results obtained in these specific applications, strongly favour the Contour Deformation Method in comparison with other methods such as complex coordinate scaling and analytic continuation in the coupling strength. The most appealing feature of CD-NI is that not only does it give accurate results for resonances and anti-bound states, but in addition it provides us with a complete set of states which may be used in many different eigenfunction expansions. The only limitation of CDM is that the analytic structure of the potential has to be known, since the choice of contour is dictated by the singularity structure of the potential. The revival and study of CDM applied to nuclear physics, may be considered the main issue of the first part of this thesis, and is also the topic of Paper 1. In the second part of this thesis, the focus was directed towards the issue of how resonance phenomena may be understood in nuclei, when several valence particles are present. The newly developed Gamow Shell Model is a promising approach in

  11. Some considerations of the energy spectrum of odd-odd deformed nuclei; Quelqes considerations sur le spectre d'energie des noyaux impair-impair deformes

    Energy Technology Data Exchange (ETDEWEB)

    Alceanu-G, Pinho de; Picard, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The odd-odd deformed nuclei are described as a rotator plus two odd nucleons moving in orbitals {omega}{sub p} and {omega}{sub n} of the deformed potential. We investigate the energies and wave functions of the various states of the ({omega}{sub p}, {omega}{sub n}) configurations by calculating and numerically diagonalizing the Hamiltonian matrix (with R.P.C. and residual interactions). The Gallagher-Mosskowski coupling rules ana the abnormal K equals 0 rotational bands are discussed. (authors) [French] Les noyaux impair-impairs deformes sont decrits comme un rotateur plus deux nucleons non apparies dans les orbites {omega}{sub p} et {omega}{sub n} du potentiel deforme. Nous etudions le spectre d'energie et les fonctions d'onde des configurations ({omega}{sub p}, {omega}{sub n}) en tenant compte de l'interaction particule-rotation et de la force residuelle entre les deux nucleons celibataires.

  12. Nuclear-decay studies of neutron-rich rare-earth nuclides

    International Nuclear Information System (INIS)

    Chasteler, R.M.

    1990-01-01

    Neutron-rich rare-earth nuclei were produced in multinucleon transfer reactions of 170 Er and 176 Yb projectiles on nat W targets at the Lawrence Berkeley Laboratory SuperHILAC and their radioactive decays properties studied at the on-line mass separation facility OASIS. Two unknown isotopes, 169 Dy (t 1/2 = 39 ± 8 s) and 174 Er(t 1/2 = 3.3 ± 0.2 m) were discovered and their decay characteristics determined. The decay schemes for two previously identified isotopes, 168 Dy (t 1/2 = 8.8 ± 0.3 m) and 171 Ho (t 1/2 = 55 ± 3 s), were characterized. Evidence for a new isomer of 3.0 m 168 Ho g , 168 Ho m (t 1/2 = 132 ± 4 s) which decays by isomeric transition (IT) is presented. Beta particle endpoint energies were determined for the decay of 168 Ho g , 169 Dy, 171 Ho, and 174 Er, the resulting Qβ-values are: 2.93 ± 0.03, 3.2 ± 0.3, 3.2 ± 0.6, and 1.8 ± 0.2 MeV, respectively. These values were compared with values calculated using recent atomic mass formulae. Comparisons of various target/ion source geometries used in the OASIS mass separator facility for these multinucleon transfer reactions were performed. 73 refs., 40 figs., 11 tabs

  13. Gamma-ray spectroscopy of neutron-rich products of heavy-ion collisions

    Energy Technology Data Exchange (ETDEWEB)

    Carpenter, M.P.; Janssens, R.V.F.; Ahmad, I. [and others

    1995-08-01

    Thick-target {gamma}{gamma} coincidence techniques are being used to explore the spectroscopy of otherwise hard-to-reach neutron-rich products of deep-inelastic heavy ion reactions. Extensive {gamma}{gamma} coincidence measurements were performed at ATLAS using pulsed beams of {sup 80}Se, {sup 136}Xe, and {sup 238}U on lead-backed {sup 122,124}Sn targets with energies 10-15% above the Coulomb barrier. Gamma-ray coincidence intensities were used to map out yield distributions with A and Z for even-even product nuclei around the target and around the projectile. The main features of the yield patterns are understandable in terms of N/Z equilibration. We had the most success in studying the decays of yrast isomers. Thus far, more than thirty new {mu}s isomers in the Z = 50 region were found and characterized. Making isotopic assignments for previously unknown {gamma}-ray cascades proves to be one of the biggest problems. Our assignments were based (a) on rare overlaps with radioactivity data, (b) on the relative yields with different beams, and (c) on observed cross-coincidences between {gamma} rays from light and heavy reaction partners. However, the primary products of deep inelastic collisions often are sufficiently excited for subsequent neutron evaporation, so {gamma}{gamma} cross-coincidence results require careful interpretation.

  14. Investigation of reduced transition-strengths in neutron-rich chromium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Braunroth, Thomas; Dewald, Alfred; Fransen, Christoph; Litzinger, Julia [Institut fuer Kernphysik, Universitaet Koeln (Germany); Iwasaki, Hironori [National Superconducting Cyclotron Laboratory, MSU (United States); Lemasson, Antoine [GANIL, Laboratoire Commun DSM/CEA (France); Lenzi, Silvia [Department of Physics and Astronomy, University of Padova (Italy); INFN, Sezione di Padova (Italy)

    2015-07-01

    Neutron-rich nuclei close to N=40 are known for their rapid changes in nuclear structure. While {sup 68}Ni exhibits signatures of a shell closure, experimental data - e.g. excitation energies of the 2{sup +}{sub 1}-state and B(E2;2{sup +}{sub 1} → 0{sup +}{sub 1})-values - along the isotopic chains in even more exotic Fe and Cr-isotopes suggest a sudden rise in collective behaviour for N → 40. Lifetimes of low-lying yrast states in {sup 58,60,62}Cr were measured with the Recoil Distance Doppler-shift (RDDS) technique at NSCL, MSU (USA) to deduce model independent B(E2)-values. After fragmentation of a primary {sup 82}Se beam (E=140 AMeV) on a {sup 9}Be target and subsequent filtering with the A1900 fragment separator, high purity {sup 59,61,63}Mn-beams (E ∝ 95 AMeV) impinged on the {sup 9}Be plunger target, where excited states in the above mentioned Cr-isotopes were then populated in one proton knockout reactions. The S800 spectrograph allowed a clear recoil identification, which then lead to clean γ-spectra as measured by the Segmented Germanium Array (SeGA). Final results of this experiment will be shown and discussed in the context of state-of-the-art shell-model calculations.

  15. Mean-field models and exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bender, M; Buervenich, T; Maruhn, J A; Greiner, W [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); Rutz, K [Inst. fuer Theoretische Physik, Univ. Frankfurt (Germany); [Gesellschaft fuer Schwerionenforschung mbH, Darmstadt (Germany); Reinhard, P G [Inst. fuer Theoretische Physik, Univ. Erlangen (Germany)

    1998-06-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  16. Microscopic Cluster Theory for Exotic Nuclei

    International Nuclear Information System (INIS)

    Tomaselli, M; Kuehl, T; Ursescu, D; Fritzsche, S

    2006-01-01

    For a better understanding of the dynamics of complex exotic nuclei it is of crucial importance to develop a practical microscopic theory easy to be applied to a wide range of masses. In this paper we propose to calculate the structure of neutron-rich nuclei within a dynamic model based on the EoM theory

  17. Mean-field models and exotic nuclei

    International Nuclear Information System (INIS)

    Bender, M.; Buervenich, T.; Maruhn, J.A.; Greiner, W.; Rutz, K.; Reinhard, P.G.

    1998-01-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei. Test cases are superheavy nuclei and neutron-rich Sn isotopes. New information in this regime helps to fix hitherto loosely determined aspects of the models. (orig.)

  18. Transition probabilities in neutron-rich Se,8684

    Science.gov (United States)

    Litzinger, J.; Blazhev, A.; Dewald, A.; Didierjean, F.; Duchêne, G.; Fransen, C.; Lozeva, R.; Sieja, K.; Verney, D.; de Angelis, G.; Bazzacco, D.; Birkenbach, B.; Bottoni, S.; Bracco, A.; Braunroth, T.; Cederwall, B.; Corradi, L.; Crespi, F. C. L.; Désesquelles, P.; Eberth, J.; Ellinger, E.; Farnea, E.; Fioretto, E.; Gernhäuser, R.; Goasduff, A.; Görgen, A.; Gottardo, A.; Grebosz, J.; Hackstein, M.; Hess, H.; Ibrahim, F.; Jolie, J.; Jungclaus, A.; Kolos, K.; Korten, W.; Leoni, S.; Lunardi, S.; Maj, A.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Mijatovic, T.; Million, B.; Möller, O.; Modamio, V.; Montagnoli, G.; Montanari, D.; Morales, A. I.; Napoli, D. R.; Niikura, M.; Pollarolo, G.; Pullia, A.; Quintana, B.; Recchia, F.; Reiter, P.; Rosso, D.; Sahin, E.; Salsac, M. D.; Scarlassara, F.; Söderström, P.-A.; Stefanini, A. M.; Stezowski, O.; Szilner, S.; Theisen, Ch.; Valiente Dobón, J. J.; Vandone, V.; Vogt, A.

    2015-12-01

    Reduced quadrupole transition probabilities for low-lying transitions in neutron-rich Se,8684 are investigated with a recoil distance Doppler shift (RDDS) experiment. The experiment was performed at the Istituto Nazionale di Fisica Nucleare (INFN) Laboratori Nazionali di Legnaro using the Cologne Plunger device for the RDDS technique and the AGATA Demonstrator array for the γ -ray detection coupled to the PRISMA magnetic spectrometer for an event-by-event particle identification. In 86Se the level lifetime of the yrast 21+ state and an upper limit for the lifetime of the 41+ state are determined for the first time. The results of 86Se are in agreement with previously reported predictions of large-scale shell-model calculations using Ni78-I and Ni78-II effective interactions. In addition, intrinsic shape parameters of lowest yrast states in 86Se are calculated. In semimagic 84Se level lifetimes of the yrast 41+ and 61+ states are determined for the first time. Large-scale shell-model calculations using effective interactions Ni78-II, JUN45, jj4b, and jj4pna are performed. The calculations describe B (E 2 ;21+→01+) and B (E 2 ;61+→41+) fairly well and point out problems in reproducing the experimental B (E 2 ;41+→21+) .

  19. Unexpectedly large charge radii of neutron-rich calcium isotopes

    CERN Document Server

    Garcia Ruiz, R F; Blaum, K; Ekström, A; Frömmgen, N; Hagen, G; Hammen, M; Hebeler, K; Holt, J D; Jansen, G R; Kowalska, M; Kreim, K; Nazarewicz, W; Neugart, R; Neyens, G; Nörtershäuser, W; Papenbrock, T; Papuga, J; Schwenk, A; Simonis, J; Wendt, K A; Yordanov, D T

    2016-01-01

    Despite being a complex many-body system, the atomic nucleus exhibits simple structures for certain ‘magic’ numbers of protons and neutrons. The calcium chain in particular is both unique and puzzling: evidence of doubly magic features are known in 40,48Ca, and recently suggested in two radioactive isotopes, 52,54Ca. Although many properties of experimentally known calcium isotopes have been successfully described by nuclear theory, it is still a challenge to predict the evolution of their charge radii. Here we present the first measurements of the charge radii of 49,51,52Ca, obtained from laser spectroscopy experiments at ISOLDE, CERN. The experimental results are complemented by state-of-the-art theoretical calculations. The large and unexpected increase of the size of the neutron-rich calcium isotopes beyond N = 28 challenges the doubly magic nature of 52Ca and opens new intriguing questions on the evolution of nuclear sizes away from stability, which are of importance for our understanding of neutron-...

  20. Description of proton radioactivity using the Coulomb and proximity potential model for deformed nuclei

    Science.gov (United States)

    Santhosh, K. P.; Sukumaran, Indu

    2017-09-01

    Half-life predictions have been performed for the proton emitters with Z >50 in the ground state and isomeric state using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The agreement of the calculated values with the experimental data made it possible to predict some proton emissions that are not verified experimentally yet. For a comparison, the calculations also are performed using other theoretical models, such as the Gamow-like model of Zdeb et al. [Eur. Phys. J. A 52, 323 (2016), 10.1140/epja/i2016-16323-7], the semiempirical relation of Hatsukawa et al. [Phys. Rev. C 42, 674 (1990), 10.1103/PhysRevC.42.674], and the CPPM of Santhosh et al. [Pramana 58, 611 (2002)], 10.1007/s12043-002-0019-2. The Geiger-Nuttall law, originally observed for α decay, studied for proton radioactivity is found to work well provided it is plotted for the isotopes of a given proton emitter nuclide with the same ℓ value. The universal curve is found to be valid for proton radioactivity also as we obtained a single straight line for all proton emissions irrespective of the parents. Through the analysis of the experimentally measured half-lives of 44 proton emitters, the study revealed that the present systematic study lends support to a unified description for studying α decay, cluster radioactivity, and proton radioactivity.

  1. Calculation of gaint Elambda-resonances of high multipolarity in deformed nuclei

    International Nuclear Information System (INIS)

    Kiselev, M.A.; Malov, L.A.; Nesterenko, V.O.; Solov'ev, V.G.

    1978-01-01

    High-miltipole ( lambda=4-7 ) single-phonon states and strength functions of Elambda(0sup(+) → lambdasup(π))-transitions from the ground states to the excited Isup(π)K states with I=lambda in deformed nuclei are calculated. Possible existance of high-multipole ( lambda >= 4 ) giant Elambda-resonances is considered. Magnitudes of isoscalar and isovector constants of multipole-multipole interaction, required for a description of phonons as quasiparticles of the phonon model, are discussed. All the calculations have been carried out in the random-phase approximation of the general semimicroscopic approach. There is a tendency towards broadening resonances and shifting the maxima into the region of high excitation energies as lambda increases. Broad isoscalar resonances at energies of 10-17 MeV, 10-25 MeV, 15-25 MeV and 10-40 MeV for lambda=4, 5, 6 and 7 respectively. Isovector resonances at lambda=4, 5, 6 and 7 show up themselves as well sufficiently clearly

  2. Deformation and clustering in even-Z nuclei up to Mg studied using AMD with the Gogny force

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Masaaki; Sugawa, Yoshio; Horiuchi, Hisashi [Kyoto Univ. (Japan). Dept. of Physics

    2001-12-01

    Employing the Gogny force as an effective force, we study the ground state properties of light nuclei using antisymmetrized molecular dynamics (AMD). In a previous paper, we discussed the nuclear binding energies and nuclear radii of He, Be, C, O, Ne and Mg isotopes. In this paper, we mainly consider the deformation properties and the clustering nature of these isotopes. By comparing the calculated results with the AMD results by use of the Skyrme-III (SIII) force, we investigated the differences and similarities between the SIII force and the Gogny force. We find that the Gogny force yields rather better binding energy and larger deformation than the SIII force. We carry out the parity-projected calculations. Parity projection enhances the parity-violating deformation and the cluster structure of certain nuclei. Shape of the deformation energy surface is also changed by parity projection. This causes a competition between the mean-field-like structure and the cluster-like structure. A modified version of AMD, which employs deformed Gaussian wave packets instead of spherical ones, is shown to give large quadrupole moments in the case of Mg isotopes. (author)

  3. Deformation and clustering in even-Z nuclei up to Mg studied using AMD with the Gogny force

    International Nuclear Information System (INIS)

    Kimura, Masaaki; Sugawa, Yoshio; Horiuchi, Hisashi

    2001-01-01

    Employing the Gogny force as an effective force, we study the ground state properties of light nuclei using antisymmetrized molecular dynamics (AMD). In a previous paper, we discussed the nuclear binding energies and nuclear radii of He, Be, C, O, Ne and Mg isotopes. In this paper, we mainly consider the deformation properties and the clustering nature of these isotopes. By comparing the calculated results with the AMD results by use of the Skyrme-III (SIII) force, we investigated the differences and similarities between the SIII force and the Gogny force. We find that the Gogny force yields rather better binding energy and larger deformation than the SIII force. We carry out the parity-projected calculations. Parity projection enhances the parity-violating deformation and the cluster structure of certain nuclei. Shape of the deformation energy surface is also changed by parity projection. This causes a competition between the mean-field-like structure and the cluster-like structure. A modified version of AMD, which employs deformed Gaussian wave packets instead of spherical ones, is shown to give large quadrupole moments in the case of Mg isotopes. (author)

  4. Gamow-Teller strength in deformed nuclei within self-consistent pnQRPA with the Gogny force

    Directory of Open Access Journals (Sweden)

    Martini M.

    2014-03-01

    Full Text Available In recent years fully consistent quasiparticle random-phase approximation (QRPA calculations using finite range Gogny force have been performed to study electromagnetic excitations of several axially-symmetric deformed nuclei up to the 238U. Here we present the extension of this approach to the charge-exchange nuclear excitations (pn-QRPA. In particular we focus on the Gamow-Teller (GT excitations. A comparison of the predicted GT strength distribution with existing experimental data is presented The role of nuclear deformation is shown. Special attention is paid to β-decay half-lives calculations for which experimental data exist.

  5. Microscopic mechanism of moments of inertia and odd-even differences for well-deformed actinide nuclei

    International Nuclear Information System (INIS)

    Yu Lei; Liu Shuxin; Zeng Jinyan

    2004-01-01

    The microscopic mechanism of the variation with rotational frequency of moments of inertia and their odd-even differences for well-deformed actinide nuclei are analyzed by using the particle-number conserving (PNC) method for treating nuclear pairing interaction. The moments of inertia for bands building on high j intruder orbitals in odd-A nuclei, e.g., the 235 U (ν[743]7/2) band, are found to be much larger than those of ground-state bands in neighboring even-even nuclei. Moreover, there exist large odd-even differences in the ω variation of moments of inertia. All these experimental odd-even differences are reproduced quite well in the PNC calculation, in which the effective monopole and quadrupole pairing interaction strengths are determined by the experimental odd-even differences in binding energies and bandhead moments of inertia, and no free parameter is involved in the PNC calculation

  6. Contribution to the study of deformed heavy nuclei by means of nuclear reactions; Contribution a l'etude des noyaux lourds deformes au moyen de reactions nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Gastebois, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    The experimental results obtained in the study of the (d,p) reactions, at E{sub d} = 12 MeV, on the three even-even deformed nuclei {sup 170}Yb, {sup 172}Yb and {sup 174}Yb have been analysed in terms of DWBA calculations. The spectroscopic information relative to the odd final nuclei have been compared with the predictions of the collective model and of the Nilsson's model. The effect of various parameters used in the DWBA analysis (form factors, optical wave functions) has been carefully studied. The observed differences between the three final nuclei are qualitatively reproduced in the experimental study of resonances, seen in excitation functions of elastically and inelastically scattered protons on the same target nuclei, and corresponding to analogue states in the three nuclei {sup 171}Lu, {sup 173}Lu and {sup 175}Lu. (author) [French] Les resultats experimentaux de l'etude des reactions (d.p) a E{sub d} = 12 MeV, sur les noyaux deformes pairs-pairs {sup 170}Yb, {sup 172}Yb et {sup 174}Yb ont ete interpretes dans le cadre de l'approximation de Born des ondes deformees. Les informations spectroscopiques relatives aux noyaux impairs finals ont ete comparees aux predictions du modele collectif et du modele de Nilsson, apres avoir examine avec soin l'influence des differents parametres (facteurs de forme, fonctions d'onde 'optiques') utilises lors de l'analyse. Les differences observees entre les trois noyaux finals sont qualitativement reproduites par les resultats experimentaux de l'etude de resonances dans les fonctions d'excitation de diffusion elastique et inelastique de protons sur les memes noyaux-cibles, lors de la recherche d'etats analogues dans les noyaux {sup 171}Lu, {sup 173}Lu et {sup 175}Lu. (auteur)

  7. Isomer-delayed gamma-ray spectroscopy of neutron-rich 166Tb

    Directory of Open Access Journals (Sweden)

    Gurgi L.A.

    2017-01-01

    Full Text Available This short paper presents the identification of a metastable, isomeric-state decay in the neutron-rich odd-odd, prolate-deformed nucleus 166Tb. The nucleus of interest was formed using the in-flight fission of a 345 MeV per nucleon 238U primary beam at the RIBF facility, RIKEN, Japan. Gamma-ray transitions decaying from the observed isomeric states in 166Tb were identified using the EURICA gamma-ray spectrometer, positioned at the final focus of the BigRIPS fragments separator. The current work identifies a single discrete gamma-ray transition of energy 119 keV which de-excites an isomeric state in 166Tb with a measured half-life of 3.5(4 μs. The multipolarity assignment for this transition is an electric dipole and is made on the basis internal conversion and decay lifetime arguments. Possible two quasi-particle Nilsson configurations for the initial and final states which are linked by this transition in 166Tb are made on the basis of comparison with Blocked BCS Nilsson calculations, with the predicted ground state configuration for this nucleus arising from the coupling of the v(1-/2[521] and π(3+/2 Nilsson orbitals.

  8. Structure of the neutron-rich lithium isotopes in heavy-ion reactions

    International Nuclear Information System (INIS)

    Bespalova, O.V.; Galakhmatova, B.S.; Romanovskij, E.A.; Shitikova, K.V.; Burov, V.V.; Rzyanin, M.V.; Miller, H.G.; Yen, G.D.

    1993-01-01

    The structure properties, for factors, angular distributions and interaction cross sections of Li neutron-rich isotopes have been analyzed in the unified way. A good qualitative agreement with the experiment data was obtained. 20 refs.; 11 figs.; 1 tab

  9. Isomeric structures in neutron-rich odd-odd Pm (Z = 61) isotopes

    International Nuclear Information System (INIS)

    Sood, P.C.; Singh, B.; Jain, A.K.

    2008-01-01

    Each of the heavier odd-odd isotopes, namely, 152 Pm, 154 Pm and 156 Pm, have multiple low-lying isomers, almost all of them with undefined configuration and also undefined energy placement. Present investigations attempt credible characterization of the isomers using a simplified two-quasiparticle rotor model which has been widely employed for description of odd-odd deformed nuclei

  10. Neutron rich clusters and the dynamics of fission and fusion

    International Nuclear Information System (INIS)

    Armbruster, P.

    1988-07-01

    In this lecture I want to discuss experimental evidence for the appearance of cluster aspects in the dynamics of large rearrangement processes, as fusion and fission. Clusters in the sense as used in my lecture are the strongly bound doubly magic nuclei as 20 Ca 28 48 , 28 Ni 50 78 , 132 50 Sn 82 , and 208 82 Pb 126 and the superheavy nucleus 298 114 184 . Two of these nuclei, 78 Ni and 298 114 have not yet been identified. I discuss first the experimental findings from heavy element production. Then I cover the stability of cluster aspects to intrinsic excitation energy in fusion and fission. (orig./HSI)

  11. Structure and symmetries of odd-odd triaxial nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Palit, R. [Tata Institute of Fundamental Research, Department of Nuclear and Atomic Physics, Colaba, Mumbai (India); Bhat, G.H. [University of Kashmir, Department of Physics, Srinagar (India); Govt. Degree College Kulgam, Department of Physics, Kulgam (India); Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India); Cluster University of Srinagar, Srinagar, Jammu and Kashmir (India)

    2017-05-15

    Rotational spectra of odd-odd Rh and Ag isotopes are investigated with the primary motivation to search for the spontaneous chiral symmetry breaking phenomenon in these nuclei. The experimental results obtained on the degenerate dipole bands of some of these isotopes using a large array of gamma detectors are discussed and studied using the triaxial projected shell (TPSM) approach. It is shown that, first of all, to reproduce the odd-even staggering of the known yrast bands of these nuclei, large triaxial deformation is needed. This large triaxial deformation also gives rise to doublet band structures in many of these studied nuclei. The observed doublet bands in these isotopes are shown to be reproduced reasonably well by the TPSM calculations. Further, the TPSM calculations for neutron-rich nuclei indicate that the ideal manifestation of the chirality can be realised in {sup 106}Rh and {sup 112}Ag, where the doublet bands have similar electromagnetic properties along with small differences in excitation energies. (orig.)

  12. Velocity determination of neutron-rich projectile fragments with a ring-imaging Cherenkov detector

    International Nuclear Information System (INIS)

    Zeitelhack, K.

    1992-11-01

    For the velocity determination of relativistic heavy ions (A>100) in the energy range 300A.MeV ≤ E kin ≤ 2A.GeV a highly resolving, compact ring-imaging Cherenkov counter with large dynamical measurement range was developed. The Cherenkov light cone emitted in the flight of a relativistic heavy ion by a liquid layer (C 6 F 14 ) is focused on the entrance window of a one-dimensional position-resolving VUV-sensitive photon detector. This gas detector is operated at atmospheric pressure with a mixture of 90% methane and 10% isobutane with 0.04% TMAE as photosensitive admixture. For 725A.MeV 129 Xe ions a velocity resolution Δβ/β=1.8.10 -3 and a nuclear charge-number resolution ΔZ/Z=5.1.10 -2 was reached. The over the photon energy range 5.4 eV ≤ E γ ≤ 7.2 eV averaged detection efficiency of the detector system was determined to ε tot =2.8%>. At the 0deg magnet spectrometer Fragmentseparator of the GSI Darmstadt the RICH detector was for the first time applied for the identification of nuclear charge number and mass of heavy relativistic projectile fragments. In the experiment the production cross sections of very neutron-rich nuclei by fragmentation of 136 Xe projectiles in the reaction 76A.MeV 136 Xe on 27 Al were determined. From the measured production erates for the production of the double-magic nucleus 132 Zn in this reaction a cross section of σ=(0.4± 0.3 0.6 ) μbarn can be extrapolated. (orig./HSI) [de

  13. Symmetries of the nuclear average field hamiltonian and a search for possible exotic equilibrium deformations in superdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Li Xunjun; Dudek, J.; Romain, P. (Centre de Recherches Nucleaires, IN2P3-CNRS, Univ. Louis Pasteur, 67 - Strasbourg (France))

    1991-11-21

    Symmetry properties of the general average-field hamiltonian-matrix resulting from the geometrical symmetries of the hamiltonian itself are derived and discussed. The corresponding numerical algorithms are constructed. Total energy calculations for superdeformed nuclei are then extended to include the usually neglected deformation modes {alpha}{sub {lambda}=3{mu}{ne}0} in the expansion of the nuclear surface expression R({theta}, {phi}; {l brace}{alpha}{r brace})=c({l brace}{alpha}{r brace})R{sub 0}(1+{Sigma}{sub {lambda}} {Sigma}{sub {mu}=-{lambda}}{sup {lambda}} {alpha}{sub {lambda}{mu}}{sup *}{Upsilon}{sub {lambda}{mu}}({theta}, {phi})). The general trends in the shell-energy dependence on {alpha}{sub {lambda}=3{mu}} and the implied instabilities in the superdeformed configurations of the rare earth nuclei are studied using the Strutinsky formula with the macroscopic part taken in the form of the folded-Yukawa plus exponential interaction. A possibility of new (double superdeformed minimum) structures coexisting in some nuclei and resulting from the proton shell effects is predicted and illustrated. No significant neutron effects are found in the rare earth superdeformed nuclei considered. (orig.).

  14. Spectroscopical study of the yrast and yrare structure in far-from-stability nuclei; Etude spectroscopique de la structure yrast et yrare de noyaux loin de la stabilite

    Energy Technology Data Exchange (ETDEWEB)

    Hoellinger Fabien [Institut de Recherches Subatomiques, 23, Rue du Loess, BP 28, 67037 Strasbourg Cedex 2 (France)]|[Universite Louis Pasteur, 67 - Strasbourg (France)

    1999-01-13

    The nuclear structure study of neutron-rich nuclei was realized with the EUROGAM II array in two different experiments. The first study consisted in the analysis of the product of spontaneous fission of {sup 248}Cm. Three neutron-rich cerium isotopes {sup 147,149,151}Ce were analyzed. A level scheme for {sup 151}Ce is presented for the first time. The yrast structure of the three nuclei does not show alternative parity bands as expected in this region of octupole deformations. We studied the rotational structure of the bands and this leads to suggest Nilsson configurations to some of them. The aim of this second experiment was the study of the nuclei {sup 99}Mo, {sup 101}Tc, {sup 103}Ru. The three nuclei are situated on the neutron-rich side of the nuclear chart and are produced as fission fragments of a heavy-ion induced reaction. Some bands are extended to higher spins and some new bands are observed. The structure of the rotational bands is interpreted by means of the Hartree-Fock-Bogolyubov model. A last experiment intended to study the structure of the proton-rich nucleus {sup 223}Pa has been achieved with the JURO+RITU array located at Jyvaeskylae (Finland). In this proton-rich actinide region, the nuclei develop octupole features around Z{approx_equal}88, N{approx_equal}132. The analysis of this experiment leads to the first assignment of gamma transitions to the {sup 223}Pa. (author) 91 refs., 78 figs., 16 tabs.

  15. Simple description of odd-A nuclei around the critical point of the spherical to axially deformed shape phase transition

    International Nuclear Information System (INIS)

    Zhang Yu; Pan Feng; Liu Yuxin; Luo Yanan; Draayer, J. P.

    2011-01-01

    An analytically solvable model, X(3/2j+1), is proposed to describe odd-A nuclei near the X(3) critical point. The model is constructed based on a collective core described by the X(3) critical point symmetry coupled to a spin-j particle. A detailed analysis of the spectral patterns for cases j=1/2 and j=3/2 is provided to illustrate dynamical features of the model. By comparing theory with experimental data and results of other models, it is found that the X(3/2j+1) model can be taken as a simple yet very effective scheme to describe those odd-A nuclei with an even-even core at the critical point of the spherical to axially deformed shape phase transition.

  16. Nuclei at the limits of particle stability

    International Nuclear Information System (INIS)

    Mueller, A.C.

    1993-01-01

    The properties and synthesis of nuclei at the limits of particle stability are reviewed. Nuclear reactions were induced and studied by means of the 'exotic' nuclear beams, i.e. beams of radioactive drip-line nuclei. The beams are mostly generated in heavy-ion projectile fragmentation. The cases of both neutron-rich and proton-rich nuclei are discussed. (K.A.) 270 refs.; 13 figs.; 1 tab

  17. High-lying Gamow-Teller excited states in the deformed nuclei,76Ge,82Se and N = 20 nuclei in the island of inversion by the Deformed QRPA (DQRPA)

    Science.gov (United States)

    Cheoun, Myung-Ki; Ha, Eunja

    2013-07-01

    With the advent of high analysis technology in detecting the Gamow-Teller (GT) excited states beyond one nucleon emission threshold, the quenching of the GT strength to the Ikeda sum rule (ISR) seems to be recovered by the high-lying (HL) GT states. We address that these HL GT excited states result from the smearing of the Fermi surface by the increase of the chemical potential owing to the deformation within a framework of the deformed quasi-particle random phase approximation (DQRPA). Detailed mechanism leading to the smearing is discussed, and comparisons to the available experimental data on 76Ge,82Se and N = 20 nuclei are shown to explain the strong peaks on the HL GT excited states.

  18. High-lying Gamow-Teller excited states in the deformed nuclei,76Ge,82Se and N = 20 nuclei in the island of inversion by the Deformed QRPA (DQRPA)

    International Nuclear Information System (INIS)

    Cheoun, Myung-Ki; Ha, Eunja

    2013-01-01

    With the advent of high analysis technology in detecting the Gamow-Teller (GT) excited states beyond one nucleon emission threshold, the quenching of the GT strength to the Ikeda sum rule (ISR) seems to be recovered by the high-lying (HL) GT states. We address that these HL GT excited states result from the smearing of the Fermi surface by the increase of the chemical potential owing to the deformation within a framework of the deformed quasi-particle random phase approximation (DQRPA). Detailed mechanism leading to the smearing is discussed, and comparisons to the available experimental data on 76 Ge, 82 Se and N = 20 nuclei are shown to explain the strong peaks on the HL GT excited states

  19. Some considerations of the energy spectrum of odd-odd deformed nuclei; Quelqes considerations sur le spectre d'energie des noyaux impair-impair deformes

    Energy Technology Data Exchange (ETDEWEB)

    Alceanu-G, Pinho de; Picard, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The odd-odd deformed nuclei are described as a rotator plus two odd nucleons moving in orbitals {omega}{sub p} and {omega}{sub n} of the deformed potential. We investigate the energies and wave functions of the various states of the ({omega}{sub p}, {omega}{sub n}) configurations by calculating and numerically diagonalizing the Hamiltonian matrix (with R.P.C. and residual interactions). The Gallagher-Mosskowski coupling rules ana the abnormal K equals 0 rotational bands are discussed. (authors) [French] Les noyaux impair-impairs deformes sont decrits comme un rotateur plus deux nucleons non apparies dans les orbites {omega}{sub p} et {omega}{sub n} du potentiel deforme. Nous etudions le spectre d'energie et les fonctions d'onde des configurations ({omega}{sub p}, {omega}{sub n}) en tenant compte de l'interaction particule-rotation et de la force residuelle entre les deux nucleons celibataires.

  20. Rotational-vibrational states of nonaxial deformable even-even nuclei

    International Nuclear Information System (INIS)

    Porodzinskii, Yu.V.; Sukhovitskii, E.Sh.

    1991-01-01

    The rotational-vibrational excitations of nonaxial even-even nuclei are studied on the basis of a Hamiltonian operator with five dynamical variables. Explicit forms of the wave functions and energies of the rotational-vibrational excitations of such nuclei are obtained. The experimental energies of excited positive-parity states of the 238 U nucleus and those calculated in terms of the model discussed in the article are compared

  1. {gamma}-spectroscopy and radioactive beams: search for highly deformed exotic nuclei; Detection {gamma} et faisceaux radioactifs: recherche de noyaux exotiques tres deformes

    Energy Technology Data Exchange (ETDEWEB)

    Rosse, B

    2006-07-15

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A {approx} 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr{sup 76} radioactive beam (T1/2 = 14.8 h). {gamma}-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first {gamma} transition was observed in the very exotic odd-odd Pm{sup 130} nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  2. A systematic fast-timing study of even-even nuclei in the well deformed A 170-180 region

    Energy Technology Data Exchange (ETDEWEB)

    Jolie, J.; Regis, J.M.; Dannhoff, M.; Gerst, R.B.; Karayonchev, V.; Mueller-Gatermann, C.; Saed-Samii, N.; Stegemann, S.; Blazhev, A. [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Rudigier, M. [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Department of Physics, University of Surrey (United Kingdom)

    2016-07-01

    At the Cologne Tandem accelerator we are performing a systematic study of lifetimes in the ground state bands of well deformed even-even nuclei in order to increase the precision of the ns-ps lifetimes and to solve inconsistencies in the literature. The measurements are done using Orange spectrometers, LaBr{sub 3}(Ce) scintillators and Ge detectors. The data are analyzed using the slope and the generalized centroid difference method. The latter allows the measurement of lifetimes down to 5 ps. First results on Yb, Hf and W isotopes are presented.

  3. First and second-order corrections to the eikonal phase shifts for the interactions of two deformed nuclei

    International Nuclear Information System (INIS)

    Metawei, Z.

    2000-01-01

    We present the first and second - order corrections to the eikonal phase shifts for the interactions of two deformed nuclei. The elastic scattering differential cross-section has been calculated for both the interactions of I2 C- 12 C system (at energies 1016, 1449 and 2400 MeV) and 16 O- 12 C system (at energy 1503 MeV). The calculated results corrections seems to improve the agreement with the experimental data.The deflection function, the S-matrix,the near-side and the far-side decompositions of the scattering amplitude has been calculated using the same corrections

  4. In-beam γ-ray spectroscopy of the neutron rich 39Si

    International Nuclear Information System (INIS)

    Sohler, D.; Dombradi, Zs.; Achouri, N.L.; Angelique, J.C.; Bastin, B.; Azaiez, F.; Baiborodin, D.; Borcea, R.

    2009-01-01

    Complete text of publication follows. In order to clarify the role of proton excitations across the Z = 14 subshell closure in neutron-rich Si isotopes, we investigated the structure of the 14 39 Si 25 isotope, having three neutron-hole configurations with respect to an N = 28 core. The excited states of 39 Si were studied by in-beam γ-ray spectroscopy trough fragmentation of radioactive beams. The experiment was performed at the GANIL facility in France. The radioactive beams were produced by the fragmentation of the stable 48 Ca beam of 60 MeV/u energy and 4μA intensity on a 12 C target in the SISSI device. The cocktail beam produced was impinged onto a 9 Be target. The nuclei produced in the secondary fragmentation reaction were selected and unambiguously identified by the SPEG spectrometer. In the performed experiment the 39 Si nuclei were obtained via 1p, 1p1n, 2p1n and 2p2n knockout reactions from the 40,41 P and 42,43 S secondary beams. To measure the γ rays emitted from the excited states, the secondary target was surrounded by the 4π 'Chateau de Crystal' array consisting of 74 BaF 2 scintillators. The γ-ray spectra were generated by gating event-by-event on the incoming secondary beam particles and the ejectiles after the secondary target. For the γ rays emitted by the fast moving fragments accurate Doppler correction was performed. From the obtained γ spectra of 39 Si displayed in Figure 1, two strong γ transitions at 163 and 397 keV as well as weaker ones at 303, 657, 906, 1143 and 1551 keV have been identified. γγ coincidences were obtained in 39 Si after having added all data from the various reaction channels giving rise to 39 Si. Analysing these data the 163 keV transition was found to be in coincidence with the 657, 1143 and 1551 keV ones, but not with the 397 keV transition. The two lines of the 303+397 keV doublet are in mutual coincidence, and one or both of them are found in coincidence with the 906 keV transition.

  5. Probing the collectivity in neutron-rich Cd isotopes via γ-ray spectroscopy

    International Nuclear Information System (INIS)

    Naqvi, Farheen

    2011-01-01

    The spin and configurational structure of excited states of 127 Cd, 125 Cd and 129 Cd, having two proton and three, five and one neutron holes, respectively in the doubly magic 132 Sn core have been studied. The isomeric states in Cd isotopes were populated in the fragmentation of a 136 Xe beam at an energy of 750 MeV/u on a 9 Be target of 4 g/cm 2 . The experiment was performed at GSI Darmstadt. The neutron-rich Cd isotopes were selected using the Bρ - ΔE - Bρ method at the FRagment Separator (FRS). Event by event identification of fragments in terms of their A (mass) and Z (charge) was provided by the standard FRS detectors. The reaction residues were implanted in a plastic stopper surrounded by 15 Ge cluster detectors from the RISING array to detect the γ decays. In 127 Cd, an isomeric state with a half-life of 17.5(3) μs has been detected. This yrast (19/2) + isomer is proposed to have mixed proton-neutron configurations and to decay by two competing stretched M2 and E3 transitions. Experimental results are compared with the isotone 129 Sn. In 125 Cd, apart from the previously observed (19/2) + isomer, two new metastable states at 3896 keV and 2141 keV have been detected. A half-life of 13.6(2) μs was measured for the (19/2) + isomer, having a decay structure similar to the corresponding isomeric state in 127 Cd. The higher lying isomers have a half-life of 3.1(1) μs and 2.5(15) ns, respectively. Time distributions of delayed γ transitions and γγ-coincidence relations were exploited to construct decay schemes for the two nuclei. Comparison of the experimental data with shell-model calculations is also discussed. The new information provides input for the proton-neutron interaction in nuclei around the doubly magic 132 Sn core. The γ decays of the isomeric states in 129 Cd were not observed experimentally. The reasons for the non-observation of delayed γ rays for 129 Cd are either an isomeric half-life of less than 93 ns based on the experimentally

  6. Heavy-ion interactions of deformed nuclei. Progress report and final report, January 1, 1985-December 31, 1985

    International Nuclear Information System (INIS)

    Oberacker, V.E.

    1985-09-01

    This Progress Report describes the main topics that were investigated during the reporting period: (1) a new microscopic approach (many-body theory with two-center shell model basis) to the calculation of heavy-ion interaction potentials, primarily for heavy systems; (2) dynamic alignment of deformed nuclei during heavy-ion collisions; (3) the role of shell effects, static deformation and dynamic alignment in heavy-ion fusion reactions; (4) giant nuclear quasimolecules and the positron problem. The proposed research has direct relevance to experimental programs supported by DOE, e.g. the Holifield Heavy-Ion Research Facility (HHIRF) at Oak Ridge, the ATLAS accelerator at Argonne National Laboratory, the Double MP Tandem at Brookhaven and some of the smaller University-based accelerators. A discussion of a review article on Coulomb fission is presented. 36 refs., 7 figs

  7. Role of nuclear couplings in the inelastic excitation of weakly-bound neutron-rich nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Dasso, C.H. [Niels Bohr Institute, Copenhagen (Denmark); Lenzi, S.M.; Vitturi, A. [Universita di Padova (Italy)

    1996-12-31

    Much effort is presently devoted to the study of nuclear systems far from the stability line. Particular emphasis has been placed in light systems such as {sup 11}Li, {sup 8}B and others, where the very small binding energy of the last particles causes their density distribution to extend considerably outside of the remaining nuclear core. Some of the properties associated with this feature are expected to characterize also heavier systems in the vicinity of the proton or neutron drip lines. It is by now well established that low-lying concentrations of multipole strength arise from pure configurations in which a peculiar matching between the wavelength of the continuum wavefunction of the particles and the range of the weakly-bound hole states occurs. To this end the authors consider the break-up of a weakly-bound system in a heavy-ion collision and focus attention in the inelastic excitation of the low-lying part of the continuum. They make use of the fact that previous investigations have shown that the multipole response in this region is not of a collective nature and describe their excited states as pure particle-hole configurations. Since the relevant parameter determining the strength distributions is the binding energy of the last bound orbital they find it most convenient to use single-particle wavefunctions generated by a sperical square-well potential with characteristic nuclear dimensions and whose depth has been adjusted to give rise to a situation in which the last occupied neutron orbital is loosely-bound. Spin-orbit couplings are, for the present purpose, ignored. The results of this investigation clearly indicate that nuclear couplings have the predominant role in causing projectile dissociation in many circumstances, even at bombarding energies remarkably below the Coulomb barrier.

  8. Synthesis of neutron-rich transuranic nuclei in fissile spallation targets

    OpenAIRE

    Mishustin, Igor; Malyshkin, Yury; Pshenichnov, Igor; Greiner, Walter

    2014-01-01

    A possibility of synthesizing neutron-reach super-heavy elements in spallation targets of Accelerator Driven Systems (ADS) is considered. A dedicated software called Nuclide Composition Dynamics (NuCoD) was developed to model the evolution of isotope composition in the targets during a long-time irradiation by intense proton and deuteron beams. Simulation results show that transuranic elements up to Bk-249 can be produced in multiple neutron capture reactions in macroscopic quantities. Howeve...

  9. Changes in neutron shell closures of light very neutron-rich nuclei

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Zdeněk; Angéligue, J. C.; Anne, R.; Auger, G.; Azaiez, F.; Baiborodin, Dmitri; Borcea, C.; Caurier, E.; Gillibert, A.; Grévy, S.; Guillemaud-Mueller, D.; Lalleman, A. S.; Lewitowicz, M.; Lopez-Jimenez, M. J.; Lukyanov, S. M.; Mittig, W.; Mrázek, Jaromír; Mueller, A. C.; Nowacki, F.; Oganessian, Yu. T.; de Oliveira Santos, F.; Orr, N.; Page, R. D.; Penionzhkevich, Y. E.; Pougheon, F.; Reed, A. T.; Ren, Z.; Ridikas, D.; Roussel-Chomaz, P.; Saint Laurent, M. G.; Sakurai, H.; Sarazin, F.; Savajols, H.; Sorlin, O.; Tarasov, O.; Thiamová, Gabriela; de Vismes, A.; Winfield, J.

    2001-01-01

    Roč. 51, - (2001), s. 245-253 ISSN 0011-4626. [Proceedings of the International Workshop "Symmetries and spin". Praha, 17.07.2000-22.07.2000] R&D Projects: GA AV ČR IAA1048102 Institutional research plan: CEZ:AV0Z1048901 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.345, year: 2001

  10. Electromagnetic properties of neutron-rich nuclei adjacent to the Z=50 shell closure

    Directory of Open Access Journals (Sweden)

    M. Rejmund

    2016-02-01

    Full Text Available Low-lying high-spin yrast states in the exotic odd–odd isotopes 124–128Sb (Z=51 and 118–128In (Z=49, studied for the first time, show a striking difference in their observed γ-ray decay. With a single valence proton particle/hole occupying the g7/2/g9/2 spin-orbit partners, dominant electric quadrupole transitions occur in Sb as opposed to magnetic dipole transitions in In. The observed properties are explained on the basis of general principles of symmetry and with large-scale shell-model calculations, and reveal novel aspects of the competition between the neutron–proton interaction and the like-nucleon pairing interaction.

  11. Soft dipole mode of neutron-rich light nuclei in asymptotic potential approximation

    International Nuclear Information System (INIS)

    Filippov, G.F.; Lashko, Yu.A.; Shvedov, L.P.

    2000-01-01

    Completely antisymmetrized 1''-continuum wave functions as well as the ground state wave function for ''6He have been constructed in asymptotic potential approximation. The behaviour of two-channel S-matrix elements shows on the existence of 1''- resonant state just above the three-body decay threshold of ''6He

  12. Deformation properties of lead isotopes

    International Nuclear Information System (INIS)

    Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.; Saperstein, E. E.

    2016-01-01

    The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF 0 Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, 180 Pb and 184 Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF 0 functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF 0 functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron-rich lead isotopes undergo

  13. Magnetic dipole moments of deformed odd-odd nuclei up to 2p-1f shells

    Energy Technology Data Exchange (ETDEWEB)

    Garg, V P; Verma, A K; Gandhi, R; Sharma, S D [Punjabi Univ., Patiala (India). Dept. of Physics

    1981-02-01

    The expression for magnetic moments for the states comprising ground state configurations of odd-odd nuclei has been simplified by excluding mixing of other nucleonic configurations. This is contrary to Sharma's and Davidson's results which had been obtained by diagonalizing state matrices for a set of parameters using Davidov and Filippov's non-axial rotor model. According to the relative directions of spins of unpaired odd nucleons, the nuclei have been classified under four categories-an exercise not attempted till now. The calculations have been done with various quenching factors depending upon the relative spin orientations of odd nucleons. For most of the nuclei, the results show considerable improvement over those of Gallagher and Moszkowski and of Sharma.

  14. Electron-capture Rates for pf-shell Nuclei in Stellar Environments and Nucleosynthesis

    Science.gov (United States)

    Suzuki, Toshio; Honma, Michio; Mori, Kanji; Famiano, Michael A.; Kajino, Toshitaka; Hidakai, Jun; Otsuka, Takaharu

    Gamow-Teller strengths in pf-shell nuclei obtained by a new shell-model Hamltonian, GXPF1J, are used to evaluate electron-capture rates in pf-shell nuclei at stellar environments. The nuclear weak rates with GXPF1J, which are generally smaller than previous evaluations for proton-rich nuclei, are applied to nucleosynthesis in type Ia supernova explosions. The updated rates are found to lead to less production of neutron-rich nuclei such as 58Ni and 54Cr, thus toward a solution of the problem of over-production of neutron-rich isotopes of iron-group nuclei compared to the solar abundance.

  15. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons

    International Nuclear Information System (INIS)

    Lau, Ch.

    2000-01-01

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons

  16. Gamma-ray Spectroscopy of Nano-second Isomers in Neutron-rich Ni Region Produced by Deep-inelastic Collisions

    Science.gov (United States)

    Ishii, Tetsuro; Asai, Masato; Kleinheinz, Peter; Matsuda, Makoto; Ichikawa, Shinichi; Makishima, Akiyasu; Ogawa, Masao

    2001-10-01

    We have been studying nuclear structure of neutron-rich nuclei produced by heavy-ion deep-inelastic collisions at the JAERI Tandem Booster facility. In our method using an `isomer-scope', γ-rays only from isomers with T_1/2 > 1ns are measured by shielding Ge detectors from prompt γ rays emitted at the target position. Atomic numbers of isomers can be also identified by detecting projectile-like fragments with Si Δ E-E detectors. Until now, we have found several new isomers in neutron-rich Ni region using about 8 MeV/nucleon ^70Zn, ^76Ge and ^82Se beams and a ^198Pt target of 4.3 mg/cm^2 thickness. In the doubly magic ^68_28Ni_40, the (ν g_9/2^2 ν p_1/2-2)8^+ isomer with T_1/2=23(1) ns was found. In its neighbor nuclei ^69,71Cu, the 19/2^- isomers were found and the energy levels decaying from the isomers can be calculated very accurately by a parameter-free shell model calculation using experimental energy levels as two-body residual interactions. I will also briefly discuss nano-second isomers in ^32,33Si and ^34P produced by 9 MeV/nucleon ^37Cl beams.

  17. Microscopic study of neutron-rich dysprosium isotopes

    International Nuclear Information System (INIS)

    Vargas, Carlos E.; Velazquez, Victor; Lerma, Sergio

    2013-01-01

    Microscopic studies in heavy nuclei are very scarce due to large valence spaces involved. This computational problem can be avoided by means of the use of symmetry-based models. Ground-state, γ and β bands, and their B(E2) transition strengths in 160-168 Dy isotopes, are studied in the framework of the pseudo-SU(3) model which includes the preserving symmetry Q . Q term and the symmetry-breaking Nilsson and pairing terms, systematically parametrized. Additionally, three rotor-like terms are considered, whose free parameters, fixed for all members of the chain, are used to fine tune the moment of inertia of rotational bands and the band head of γ and β bands. The model succesfully describes in a systematic way rotational features in these nuclei and allows to extrapolate toward the midshell nucleus 170 Dy. The results presented show that it is possible to study a full chain of isotopes or isotones in the region with the present model. (orig.)

  18. Microscopic study of neutron-rich dysprosium isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Vargas, Carlos E. [Universidad Veracruzana, Facultad de Fisica e Inteligencia Artificial, Xalapa (Mexico); Universidad Nacional Autonoma de Mexico, Facultad de Ciencias, Apartado Postal 70-542, Mexico D.F. (Mexico); Velazquez, Victor [Universidad Nacional Autonoma de Mexico, Facultad de Ciencias, Apartado Postal 70-542, Mexico D.F. (Mexico); Lerma, Sergio [Universidad Veracruzana, Facultad de Fisica e Inteligencia Artificial, Xalapa (Mexico)

    2013-01-15

    Microscopic studies in heavy nuclei are very scarce due to large valence spaces involved. This computational problem can be avoided by means of the use of symmetry-based models. Ground-state, {gamma} and {beta} bands, and their B(E2) transition strengths in {sup 160-168}Dy isotopes, are studied in the framework of the pseudo-SU(3) model which includes the preserving symmetry Q . Q term and the symmetry-breaking Nilsson and pairing terms, systematically parametrized. Additionally, three rotor-like terms are considered, whose free parameters, fixed for all members of the chain, are used to fine tune the moment of inertia of rotational bands and the band head of {gamma} and {beta} bands. The model succesfully describes in a systematic way rotational features in these nuclei and allows to extrapolate toward the midshell nucleus {sup 170}Dy. The results presented show that it is possible to study a full chain of isotopes or isotones in the region with the present model. (orig.)

  19. Laser-spectroscopy studies of the nuclear structure of neutron-rich radium

    Science.gov (United States)

    Lynch, K. M.; Wilkins, S. G.; Billowes, J.; Binnersley, C. L.; Bissell, M. L.; Chrysalidis, K.; Cocolios, T. E.; Goodacre, T. Day; de Groote, R. P.; Farooq-Smith, G. J.; Fedorov, D. V.; Fedosseev, V. N.; Flanagan, K. T.; Franchoo, S.; Garcia Ruiz, R. F.; Gins, W.; Heinke, R.; Koszorús, Á.; Marsh, B. A.; Molkanov, P. L.; Naubereit, P.; Neyens, G.; Ricketts, C. M.; Rothe, S.; Seiffert, C.; Seliverstov, M. D.; Stroke, H. H.; Studer, D.; Vernon, A. R.; Wendt, K. D. A.; Yang, X. F.

    2018-02-01

    The neutron-rich radium isotopes, Ra-233222, were measured with Collinear Resonance Ionization Spectroscopy (CRIS) at the ISOLDE facility, CERN. The hyperfine structure of the 7 s2S10→7 s 7 p P31 transition was probed, allowing measurement of the magnetic moments, quadrupole moments, and changes in mean-square charge radii. These results are compared to existing literature values, and the new moments and change in mean-square charge radii of 231Ra are presented. Low-resolution laser spectroscopy of the very neutron-rich 233Ra has allowed the isotope shift and relative charge radius to be determined for the first time.

  20. Exotic nuclei in self-consistent mean-field models

    International Nuclear Information System (INIS)

    Bender, M.; Rutz, K.; Buervenich, T.; Reinhard, P.-G.; Maruhn, J. A.; Greiner, W.

    1999-01-01

    We discuss two widely used nuclear mean-field models, the relativistic mean-field model and the (nonrelativistic) Skyrme-Hartree-Fock model, and their capability to describe exotic nuclei with emphasis on neutron-rich tin isotopes and superheavy nuclei. (c) 1999 American Institute of Physics

  1. Halo nuclei studied by relativistic mean-field approach

    International Nuclear Information System (INIS)

    Gmuca, S.

    1997-01-01

    Density distributions of light neutron-rich nuclei are studied by using the relativistic mean-field approach. The effective interaction which parameterizes the recent Dirac-Brueckner-Hartree-Fock calculations of nuclear matter is used. The results are discussed and compared with the experimental observations with special reference to the neutron halo in the drip-line nuclei. (author)

  2. Studies of high-K isomers in hafnium nuclei

    International Nuclear Information System (INIS)

    Sletten, G.; Gjoerup, N.L.

    1991-01-01

    K-isomeric states built on high-Ω Nilsson orbitals from deformation-aligned high-j levels near the Fermi surface are found to cluster in the neutron rich Hf, W and Os nuclei. It has been shown that some of the high seniority states of this type have decay properties that indicate strong mixing of configurations and that in Osmium nuclei γ-softness cause strong deviations from the well established K-selection rule. Also in the Hafnium nuclei is the expected forbiddenness in isomeric decays an order of magnitude smaller than expected from the K-selection rule. A new 9 quasiparticle isomer has been discovered in 175 Hf at I=57/2. This isomer has the anomalous decay as the dominant mode. Other lower seniority states are also identified. At spin 35/2 and 45/2 the deformation aligned states become yrast, but the structure of the yrast line to even higher spins is not yet understood. (author)

  3. Cluster configuration and super deformation in f-p shell nuclei

    International Nuclear Information System (INIS)

    Shanmugam, G.; Santhosh Kumar, S.; Chintalapudi, S.N.; Benjamin, G.A.

    1996-01-01

    The aim of this work was to perform three oxygen clusters calculation for excited 48 Cr, to do a Cranked Nilsson Strutinsky calculations for it and to compare the results so as to look for super deformations

  4. A study of Gamow-Teller transitions for N = Z nuclei, {sup 24}Mg, {sup 28}Si, and {sup 32}S, by a deformed QRPA

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Eunja; Cheoun, Myung-Ki [Soongsil University, Origin of Matter and Evolution of Galaxy Institute and Department of Physics, Seoul (Korea, Republic of)

    2017-02-15

    We investigated Gamow-Teller (GT) transitions and strength distributions of s-d shell N = Z nuclei, {sup 24}Mg, {sup 28}Si, and {sup 32}S, by a deformed quasi-particle random phase approximation (DQRPA). In the DQRPA, we included particle model space up to p-f shell and considered explicitly the deformation as well as the like- and unlike-pairing correlations. Shell evolution by deformation and attractive force by unlike-pairing correlations turned out to play vital roles to reproduce the experimental GT data. Correlations between the deformation and the pairing correlations are also discussed with the comparison to the experimental data shape. (orig.)

  5. Description of low-lying vibrational Kπ≠0+ states of deformed nuclei in the quasiparticle-phonon nuclear model

    International Nuclear Information System (INIS)

    Soloviev, V.G.; Shirikova, N.Yu.

    1989-01-01

    The QPNM equations are derived taking account of p-h and p-p interactions. The calculated quadrupole, octupole and hexadecapole vibrational states in 168 Er, 172 Yb and 178 Hf are found to be in reasonable agreement with experimental data. It is shown that distribution of the Eλ strength in some deformed nuclei differs from the standard one. There are cases when for a given K π the Eλ strength is concentrated not on the first but on higher-lying states. The assertion made earlier about the absence of collective two-phonon states in deformed nuclei is confirmed. (orig.)

  6. Droplet dynamics of atomic nuclei - a parameter free description of collective deformations

    International Nuclear Information System (INIS)

    Vaz de Abreu Hiller, B.A.

    1980-01-01

    The dynamics of a fermion system can be represented under certain model assumption as classical motion in a potential surface for generalized coordinates (moments of the density distribution). The potential surface is calculated using the droplet model. It is applied to calculate the scattering of two nuclei. The effects of the model assumptions, the performed approximations, different moments of inertia, and the introduction of friction are extensively studied. (orig.) [de

  7. Mass measurement and structure studies of neutron-rich isotopes of Zn, Ni, Fe

    International Nuclear Information System (INIS)

    Dessagne, P.

    1982-01-01

    With the Orsay MP Tandem, the reaction ( 14 C, 16 O) on 58 - 60 - 62 - 64 Ni, 64 - 66 - 68 - 70 Zn, 74 - 76 Ge and 82 Se targets, and the reaction ( 14 C, 15 O) on 60 - 62 - 64 Ni, 68 - 70 Zn, 76 Ge targets, have been investigated at 72 MeV bombarding energy. The mass excess of neutron rich nuclei: 63 Fe (-55.19+-.06MeV), 69 Ni(-60.14+-.06 MeV), 75 Zn(.62.7+-08 MeV) have been measured for the first time, and those of 62 Fe, 68 Ni, 74 Zn, 80 Ge have been remeasured. A new equipment has been designed in order to perform measurements at zero degree. From the angular distribution around 0 0 for the 70 Zn( 14 C, 16 O) reaction, the first state of 68 Ni observed for the first time (1.77 MeV +- .04 MeV) has been shown to be a 0 + . This result establishes a new case of 2 1+ - 0 2+ inversion. The systematics of the ( 14 C, 16 O) measurements on the even Ni and Zn isotopes have shown a different behaviour with two series. For the Ni → Fe (g.s.) transitions, the ratio σsub(exp)/σsub(DWBA) increases by a factor of four when the neutron number varies from 30 to 36. Whereas for the Zn → Ni (gs) transitions this ratio remains constant for the first three isotopes and decrease by a factor of two when N=40. For the Ni → Fe transitions, axial and spherical symmetries have been used. In agreement with the shell model no change are found with the spherical symmetry. For the axial symmetry a variation is observed but strongly dapendant of the sub-shell. Hence no clear conclusion can be deduced for the cross section estimate. For the Zn → Ni transitions, the spherical symmetry has been used. One configuration prevails, leading to a qualitative agreement with the experimental results [fr

  8. Multi-quasiparticle high-K isomeric states in deformed nuclei

    Directory of Open Access Journals (Sweden)

    Xu F. R.

    2016-01-01

    Full Text Available In the past years, we have made many theoretical investigations on multi-quasiparticle high-K isomeric states. A deformation-pairing-configuration self-consistent calculation has been developed by calculating a configuration-constrained multi-quasiparticle potential energy surface (PES. The specific single-particle orbits that define the high-K configuration are identified and tracked (adiabatically blocked by calculating the average Nilsson numbers. The deformed Woods-Saxon potential was taken to give single-particle orbits. The configuration-constrained PES takes into account the shape polarization effect. Such calculations give good results on excitation energies, deformations and other structure information about multi-quasiparticle high-K isomeric states. Many different mass regions have been investigated.

  9. Comparison Between Weisskopf and Thomas-Fermi Model for Particle Emission Widths from Hot Deformed Nuclei

    International Nuclear Information System (INIS)

    Surowiec, Aa.; Pomorski, K.; Schmitt, Ch.; Bartel, J.

    2002-01-01

    The emission widths Γ n and Γ p for emission of neutrons and protons are calculated within the Thomas-Fermi model, which we have recently developed, and are compared with those obtained in the usual Weisskopf approach for the case of zero angular momentum. Both methods yield quite similar results at small deformations, but rather important differences are observed for very deformed shapes, in particular for charged particles. A possible generalization of the model for emission of α-particles is also discussed. (author)

  10. Introduction of the deformed base AMD and application to the stable and unstable nuclei

    International Nuclear Information System (INIS)

    Kimura, M.; Horiuchi, H.

    2003-01-01

    A new theoretical framework named as deformed base antisymmetrized molecular dynamics is presented. The theoretical framework enables us to describe sufficiently well the deforemd mean-field structure, cluster structure and their mixed structure within the same framework. Indeed the coexistence and mixture of the deformed mean-field structure and the cluster structure in the low-lying rotational bands of 20 Ne are described well. The possible existence of the cluster core + valance neutron structure in the K π =0 3 + band of 30 Ne is shown as well as the reasonable description of the observed properties of the ground bands of 30 Ne and 32 Mg

  11. Effects of angular dependence of surface diffuseness in deformed nuclei on Coulomb barrier

    International Nuclear Information System (INIS)

    Adamian, G.G.; Antonenko, N.V.; Malov, L.A.; Scamps, G.; Lacroix, D.

    2014-01-01

    The angular dependence of surface diffuseness is further discussed. The results of self-consistent calculations are compared with those obtained with the phenomenological mean-field potential. The rather simple parametrizations are suggested. The effects of surface polarization and hexadecapole deformation on the height of the Coulomb barrier are revealed. (authors)

  12. E4 properties in deformed nuclei and the sdg interacting boson model

    NARCIS (Netherlands)

    Wu, H.C.; Dieperink, A. E. L.; Scholten, O.; Harakeh, M. N.; de Leo, R.; Pignanelli, M.; Morrison, I.

    1988-01-01

    The hexadecapole transition strength distribution is measured for the deformed nucleus 150Nd using the (p,p') reaction at Ep=30 MeV. The experimental information on B(E4) values in this nucleus and in 156Gd is interpreted in the framework of the sdg interacting boson model. It is found that the main

  13. Equation of motion method to describe quasiparticle structures in transitional and deformed nuclei

    International Nuclear Information System (INIS)

    Doenau, F.

    1985-01-01

    The development of the experimental techniques will supply one with more and more complete level schemes and transition matrix elements. This is a great challenge for the theorists to put the right questions and to work out the models accordingly. In this respect the method of equation of motion (EQM) seems to be a sulitable approach the inherent possibilities of which are yet not fully explored. The EQM is sketched for the case of one-quasiparticle (1qp) excitation in odd-mass nuclei. The coupling of a particle to the quasrupole and pair field is treated using the IBA for the collective degrees of freedom. Physical implications are shortly discussed. The selfconsistent aspects of the theory are considered. A perturbational treatment is proposed to construct the physical subspace that is necessary to perform selfconsistent calculations of the collective core energies. The EQM is formulated for the two-quasiparticle (2qp) excitations in transitional nuclei inclusive the coupling to the collective excitations (0 qp space). EQM can be widely applied to describe the complicated interplay between collective degrees of freedom and quasiparticle configurations are concluded

  14. Lifetime of spherical and deformed states in 1f7/2 nuclei

    International Nuclear Information System (INIS)

    Medina, N.H.; Ribas, R.V.; Oliveira, J.R.B.; Brandolini, F.; Lenzi, S.M.; Ur, C.A.; Bazzacco, D.; Menegazzo, R.; Pavan, P.; Rossi A, C.; Napoli, D.R.; Marginean, N.; Angelis, G. De; Poli, M. De; Martinez, T.; Algora P, A.; Gadea, A.; Farnea, E.; Bucurescu, D.; Ionescu B, M.; Iordachescu, A.; Cameron, J.A.; Kasemann, S.; Schneider, I.; Espino, J.M.; Poves, A.; Sanchez S, J.

    2001-01-01

    Full text: An extensive experimental study of the structure of the N ≅ Z 1f 7/2 shell nuclei is going on at LNL, using the GASP gamma-spectrometer. An essential part of this program is aimed at the determination of good quality electromagnetic moments for monitoring rotational collectivity and single particle properties. For this purpose precise DSAM lifetimes were deduced for many levels with the new procedure named Narrow Gate on Transition Below, which avoids the influence of side feeding. In this contribution we report, in particular, lifetime measurements in the N ≅ Z nuclei 46 48 V, and 46 Ti. The data were obtained from the reactions: 28 Si on 28 Si, and 28 Si on 24 Mg at 115 MeV. The targets consisted of a layer of about 0.8 mg/cm 2 backed with Au or Pb. The experimental results for levels with natural parity agree very well with Shell Model (SM) calculations in the full f p configuration space with respect to energies B(E2) and B(E1) values of all observed levels. Big efforts have been made to interpret SM in terms of collective models, developing new tools and approaches. Another well described feature is the loss of collectivity when approaching band termination in the 1f 7/2 shell. The N=Z 46 V nuclei is very peculiar because of the coexistence at low excitation energy of natural parity T=1 states with T=0 and unnatural parity states. Some new transitions have been observed, and lifetime values could be obtained for about 15 transitions. The yrast structure for the 48 V nucleus can be classified as a K = 4 + band, obtained by a parallel coupling of the π[321]3/2 - and υ[312]5/2 - . The strong variation in signature splitting in this band may indicate a change of triaxiality. The low lying negative parity levels can be grouped in two strongly coupled rotational bands with K = 4 - and K = 1 - , which are given by parallel and antiparallel coupling of π [203]3/2 - and υ [312]5/2 - orbitals, respectively. Life times have been determined for 24

  15. Electromagnetic transitions in nuclei between states with different deformation for the case H>=Ksub(iota)+Ksub(j)

    International Nuclear Information System (INIS)

    Kopanets, E.G.; Inopin, E.V.; Korda, L.P.

    1980-01-01

    Calculations of matrix elements of the electromagnetic transitions at the multipolarity L>Ksub(i)+Ksub(f), where Ksub(i) and Ksub(f) are the projections of the total moment of the final and initial states on the nucleus symmetry axis, have been carried out E2transitions between the low-lying levels -/ of the rotational bands of 23 Na, 29 P, 35 Cl and 37 Cl nuclei have been investigated. The ranges of the initial and final state deformation parameters are given at which a coincidence is observed between the calculated and experimental values of the probability of E2-transitions between the ground states of the rotational bands. A conclusion has been made that the theory and experiments can agree only on the assumption that changes in nucleus equilibrium deformation take place not only in the case of single-particle levels but also in the case of the same rotational band. This indicates to breaking the adiabatic approximation due to mixing the states with different K caused by the Coriolis interaction [ru

  16. ${\\beta}$-decay studies of neutron-rich $^{61-70}$Mn isotopes with the new LISOL ${\\beta}$-decay setup

    CERN Multimedia

    Diriken, J V J

    2008-01-01

    The aim of this proposal is to gather new information that will serve as benchmark to test shell model calculations in the region below $^{68}$Ni, where proper residual interactions are still under development. More specifically, the ${\\beta}$-decay experiment of the $^{61-70}$Mn isotopes will highlight the development of collectivity in the Fe isotopes and its daughters. At ISOLDE, neutron-rich Mn isotopes are produced with a UC$_{x}$ target and selective laser ionization. These beams are particularly pure and reasonable yields are obtained for the neutron-rich short lived $^{61-70}$Mn isotopes. We propose to perform ${\\beta}$-decay studies on $^{61-70}$Mn utilizing the newly-developed "LISOL ${\\beta}$-decay setup", consisting of two MINIBALL cluster Ge detectors and a standard tape station. The use of digital electronics in the readout of these detectors enables us to perform a "slow correlation technique" which should indicate the possible existence of isomers in the daughter nuclei.

  17. Interplay between tensor force and deformation in even–even nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Bernard, Rémi N., E-mail: rbernard@ugr.es; Anguiano, Marta

    2016-09-15

    In this work we study the effect of the nuclear tensor force on properties related with deformation. We focus on isotopes in the Mg, Si, S, Ar, Sr and Zr chains within the Hartree–Fock–Bogoliubov theory using the D1ST2a Gogny interaction. Contributions to the tensor energy in terms of saturated and unsaturated subshells are analyzed. Like–particle and proton–neutron parts of the tensor term are independently examinated. We found that the tensor term may considerably modify the potential energy landscapes and change the ground state shape. We analyze too how the pairing characteristics of the ground state change when the tensor force is included.

  18. Development of the model describing highly excited states of odd deformed nuclei

    International Nuclear Information System (INIS)

    Malov, L.A.; Solov'ev, V.G.

    1975-01-01

    An approximate method is given for solving the system of equations obtained earlier for describing the structure of states with intermediate and high energies in the framework of the model taking into account the interaction of quasiparticles with phonons. The new method possesses a number of advantages over the approximate methods of solving the system of equations mentioned. The study is performed for the example of an odd deformed nucleus when several one-quasiparticle components are taken into account at the same time

  19. Off-Yrast low-spin structure of deformed nuclei at mass number A∼150

    Energy Technology Data Exchange (ETDEWEB)

    Krugmann, Andreas

    2014-07-14

    The present work consists of two independent parts. The first part deals with the investigation of the 0{sup +}{sub 1}→0{sup +}{sub 2} transition in {sup 150}Nd with inelastic electron scattering and in the second part a proton scattering experiment for the investigation of dipole excitations is presented. In the first part of this thesis a pioneer experiment in inelastic electron scattering is introduced. At an electron energy of 75 MeV, excitation energy spectra have been measured at the high resolution 169 spectrometer at the S-DALINAC. The aim of this investigation was the determination of the ρ{sup 2}(E0;0{sup +}{sub 1}→0{sup +}{sub 2}) transition strength in the heavy deformed nucleus {sup 150}Nd. The experimental form factor of this particular transition has been compared to a theoretical form factor that has been constructed by an effective density operator on a microscopic level with the help of the generator coordinate method. The required collective wave functions have been calculated in the Confined β soft rotor model. In this model-dependent analysis the E0 transition strength has been determined for the first time. Furthermore the evolution of the E0 transition strength as a function of the potential stiffness has been investigated from the X(5) phase shape transitional point to the Rigid Rotor limit. It has been shown, that the E0 strength is relatively high at the shape-phase transitional point and starts to decrease with increasing stiffness and vanishes completely at the Rigid Rotor limit. Additionally the wave functions of the macroscopic collective Confined β-soft rotor model have been compared to those from a microscopic mean field Hamiltonian. Good agreement has been found. The second part of this thesis covers a polarized-proton scattering experiment on the heavy deformed nucleus {sup 154}Sm, that has been performed at the RCNP in Osaka, Japan. Utilizing the method of polarization transfer observables, a separation of spinflip and non

  20. Deformation in the neutron rich sulfur isotopes {sup 40}S and {sup 42}S

    Energy Technology Data Exchange (ETDEWEB)

    Glasmacher, T.; Scheit, H.; Brown, B.A. [Michigan State Univ., East Lansing, MI (United States)] [and others

    1996-12-31

    In the experiment described here radioactive beams of {sup 40,42}S and {sup 44,46}Ar (E{approx}40 MeV/nucl.) were produced in the A1200 fragment separator at the National Superconducting Cyclotron Laboratory at Michigan State University by fragmenting an 80 MeV/nucleon {sup 48}Ca{sup 13+} beam in a 379 mg/cm{sup 2} {sup 9}Be target. The exotic ions were positively identified by a time of flight measurement before interacting with the secondary gold target (93.5 mg/cm{sup 2} or 184.1 mg/cm{sup 2}). After interacting with the virtual photon field in the gold target, fragments scattered into a lab angle of less than 4.1{degrees} were detected in a fast/slow plastic phoswich detector located downstream from the secondary target. The energy loss - total energy measurement allowed the rejection of events which led to the breakup of the projectile in the target. Photons from the deexcitation of the projectile were measured in coincidence with beam particles. The photons emitted from the excited projectile can be clearly distinguished from photons coming from the target by their Doppler shift and Doppler broadening.

  1. Goodness of isospin in neutron rich systems from the fission fragment distribution

    Science.gov (United States)

    Garg, Swati; Jain, Ashok Kumar

    2017-09-01

    We present the results of our calculations for the relative yields of neutron-rich fission fragments emitted in 208Pb (18O, fission) reaction by using the concept of the conservation of isospin and compare with the experimental data. We take into account a range of isospin values allowed by the isospin algebra and assume that the fission fragments are formed in isobaric analog states. We also take into account the neutron multiplicity data for various neutron-emission channels in each partition, and use them to obtain the weight factors in calculating the yields. We then calculate the relative yields of the fission fragments. Our calculated results are able to reproduce the experimental trends reasonably well. This is the first direct evidence of the isospin conservation in neutron-rich systems and may prove a very useful tool in their studies.

  2. Nuclear structure far from stability: the neutron-rich 69-79Cu isotopes

    International Nuclear Information System (INIS)

    Franchoo, Serge

    2015-01-01

    Far from stability, the nuclear structure that is predicted by the shell model is evolving. Old magic numbers disappear, while new ones appear. Our understanding of the underlying nuclear force that drives these changes is still incomplete. After a short overview across the nuclear chart, we discuss the strength functions of the shell-model orbitals in the neutron-rich copper isotopes towards the 78 Ni doubly-magic nucleus. These were measured in a 72 Zn(d, 3 He) 71 Cu proton pick-up reaction in inverse kinematics with a radioactive beam at the Ganil laboratory in France. We also present the latest results from a 80 Zn(p,2p) 79 Cu knockout experiment at Riken in Japan, leading to selective population of hole states in 79 Cu. Our findings show that the Z=28 shell gap in the neutron-rich copper isotopes is surprisingly steady against the addition of neutrons beyond N=40. (author)

  3. The SU(3) structure of rotational states in heavy deformed nuclei

    International Nuclear Information System (INIS)

    Jarrio, M.; Wood, J.L.; Rowe, D.J.

    1991-01-01

    The SU(3) coupling scheme provides an informative basis for the expansion of shell-model wave functions and their interpretation in collective-model terms. We show in this paper that it is possible, using the coupled-rotor-vibrator model, to infer averages of the distributions of SU(3) representation labels in heavy rotational nuclei by direct interpretation of physically observed E2 transition rates and quadrupole moments. We find that the distributions of SU(3) representation labels have nearly constant average values for states belonging to some well-defined rotational bands. These are bands of states having B(E2) values and quadrupole moments that follow the predictions of the rotor model. Such bands are interpreted as soft SU(3) bands in parallel with the concept of a soft rotor band with vibrational-shape fluctuations. The concept of a soft SU(3) band and its implications for beta-vibrational excited bands is developed. The average SU(3) representation labels inferred from experiment are interpreted by calculating those implied by the Nilsson model. An analysis of the SU(3) content of Nilsson wave functions also leads to two remarkable predictions. The first is that, in the asymptotic limit, the Nilsson model implies intrinsic states for a rotor band that are beta rigid. The second is that, although the intrinsic Nilsson state is axially symmetric, it generates a sequence of K=0, 2, 4,...bands. (orig.)

  4. Calculating Absolute Transition Probabilities for Deformed Nuclei in the Rare-Earth Region

    Science.gov (United States)

    Stratman, Anne; Casarella, Clark; Aprahamian, Ani

    2017-09-01

    Absolute transition probabilities are the cornerstone of understanding nuclear structure physics in comparison to nuclear models. We have developed a code to calculate absolute transition probabilities from measured lifetimes, using a Python script and a Mathematica notebook. Both of these methods take pertinent quantities such as the lifetime of a given state, the energy and intensity of the emitted gamma ray, and the multipolarities of the transitions to calculate the appropriate B(E1), B(E2), B(M1) or in general, any B(σλ) values. The program allows for the inclusion of mixing ratios of different multipolarities and the electron conversion of gamma-rays to correct for their intensities, and yields results in absolute units or results normalized to Weisskopf units. The code has been tested against available data in a wide range of nuclei from the rare earth region (28 in total), including 146-154Sm, 154-160Gd, 158-164Dy, 162-170Er, 168-176Yb, and 174-182Hf. It will be available from the Notre Dame Nuclear Science Laboratory webpage for use by the community. This work was supported by the University of Notre Dame College of Science, and by the National Science Foundation, under Contract PHY-1419765.

  5. Asymptotic giant branch stars as producers of carbon and of neutron-rich isotopes

    International Nuclear Information System (INIS)

    Iben, I. Jr.

    1984-01-01

    Carbon stars are thought to be in the asymptotic giant branch (AGB) phase of evolution, alternately burning hydrogen and helium in shells above an electron-degenerate carbon-oxygen (CO) core. The excess of carbon relative to oxygen at the surfaces of these stars is thought to be due to convective dredge-up which occurs following a thermal pulse. During a thermal pulse, carbon and neutron-rich isotopes are made in a convective helium-burning zone. In model stars of large CO core mass, the source of neutrons for producing the neutron-rich isotopes is the 22 Ne(α,n) 25 Mg reaction and the isotopes are produced in the solar system s-process distribution. In models of small core mass, the 13 C(α,n) 16 reaction is thought to be responsible for the release of neutrons, and the resultant distribution of neutron-rich isotopes is expected to vary considerably from one star to the next, with the distribution in isolated instances possibly resembling the solar system distribution of r-process isotopes

  6. Experimental determination of one- and two-neutron separation energies for neutron-rich copper isotopes

    Science.gov (United States)

    Yu, Mian; Wei, Hui-Ling; Song, Yi-Dan; Ma, Chun-Wang

    2017-09-01

    A method is proposed to determine the one-neutron S n or two-neutron S 2n separation energy of neutron-rich isotopes. Relationships between S n (S 2n) and isotopic cross sections have been deduced from an empirical formula, i.e., the cross section of an isotope exponentially depends on the average binding energy per nucleon B/A. The proposed relationships have been verified using the neutron-rich copper isotopes measured in the 64A MeV 86Kr + 9Be reaction. S n, S 2n, and B/A for the very neutron-rich 77,78,79Cu isotopes are determined from the proposed correlations. It is also proposed that the correlations between S n, S 2n and isotopic cross sections can be used to find the location of neutron drip line isotopes. Supported by Program for Science and Technology Innovation Talents at Universities of Henan Province (13HASTIT046), Natural and Science Foundation in Henan Province (162300410179), Program for the Excellent Youth at Henan Normal University (154100510007) and Y-D Song thanks the support from the Creative Experimental Project of National Undergraduate Students (CEPNU 201510476017)

  7. Study of the nuclear structure far from stability: Coulomb excitation of neutron-rich Rb isotopes around N=60; Production of nuclear spin polarized beams using the tilted foils technique

    International Nuclear Information System (INIS)

    Sotty, C.

    2013-01-01

    The underlying structure in the region A ∼ 100, N ∼ 60 has been under intensive and extensive investigation, mainly by β-decay and γ-ray spectroscopy from fission processes. Around N ∼ 60, by adding just few neutrons, protons a rapid shape change occurs from spherical-like to well deformed g.s. shape. Shape coexistence has been observed in the Sr and Zr nuclei, and is expected to take place in the whole region. The mechanisms involved in the appearance of the deformation is not well understood. The interplay between down-sloping and up-sloping neutron Nilsson orbital is evoked as one of the main reasons for the sudden shape change. However, a clear identification of the active proton and neutron orbitals was still on-going. For that purpose, the neutron rich 93;95;97;99 Rb isotopes have been studied by Coulomb excitation at CERN (ISOLDE) using the REX-ISOLDE post-accelerator and the MINIBALL setup. The completely unknown structures of 97;99 Rb have been populated and observed. Prompt γ-ray coincidences of low-lying states have been observed and time-correlated in order to build level schemes. The associated transition strengths have been extracted with the GOSIA code. The observed matrix elements of the electromagnetic operator constituted new inputs of further theoretical calculations giving new insight on the involved orbitals. The sensitivity of such experiment can be increased using nuclear spin polarized radioactive ion beam. For that purpose the Tilted Foils Technique (TFT) of polarization has been investigated at CERN. This technique consists to spin polarize the ion beam, passing through thin foils tilted at an oblique angle with respect to the beam direction. The initially obtained atomic polarization is transferred to the nucleus by hyperfine interaction. This technique does not depend on the chemical nature of the element. Short lived nuclei can be polarized in-flight without any need to be stopped in a catcher. It opens up the possibility to

  8. Deformation properties of even-even Os, Pt, Hg nuclei and spectroscopic properties of odd Re, Os, Ir, Pt, Au, Hg nuclei from self-consistent calculations

    CERN Document Server

    Desthuilliers-Porquet, M G; Quentin, P; Sauvage-Letessier, J

    1981-01-01

    Static properties of even-even Os, Pt, Hg nuclei have been obtained from HF+BCS calculations. Single-particle wave functions which come from these self-consistent calculations have been used to calculate some spectroscopic properties of odd Re, Os, Ir, Pt, Au, and Hg nuclei, within the rotor-quasiparticle coupling model. The authors' calculations are able to give a good description of most of available experimental data. (12 refs).

  9. Underlying physics of identical odd- and even-mass bands in normally deformed rare-earth nuclei

    International Nuclear Information System (INIS)

    Yu Lei; Liu Shuxin; Lei Yian; Zeng Jinyan

    2001-01-01

    The microscopic mechanism of the identical odd- and even-mass number nuclear bands in normally deformed rare-earth nuclei was investigated using the particle-number conserving (PNC) method for treating nuclear pairing correlation. It was found that the odd particle of an odd-A identical band always occupied a cranked low j and high Ω Nilsson orbital (e.g. proton [404]7/2, [402]5/2. On the contrary, if the odd particle occupies an intruder high j orbital (e.g. neutron [633]7/2, proton[514]9/2), the moment of inertia of the odd-A band was much larger than that of neighboring even-even ground state band. The observed variation of moment of inertia (below band crossing) was reproduced quite well by the PNC calculation, in which no free parameter was involved. The strengths of monopole and Y 20 quadrupole interactions were determined by the experimental odd-even differences in binding energy and band head moment of inertia

  10. A version of the Quasiparticle-Phonon Nuclear Model for doubly-even well-deformed nuclei

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1992-06-01

    The basic assumptions concerning the Quasiparticle-Phonon Nuclear Model are formulated and the mathematical apparatus is developed. The Hamiltonian, containing a finite-rank separable isoscalar and isovector multipole, a spin-multipole and a tensor particle-hole as well as particle-particle interactions transforms to a form containing quasiparticle, phonon and quasiparticle-phonon interactions. The general RPA equation is derived and the particular cases are discussed. The very complex interaction does not complicate the description of the fragmentation one-phonon states. It is shown that the three-phonon terms added to the one- and two-phonon terms in the wave function lead to an additional small shift of the two-phonon poles in the secular equation. The influence of the density-dependent separable interaction on the vibrational states is small. A common description of the collective, weakly collective and two-quasiparticle states in doubly-even well-deformed nuclei is obtained. (author)

  11. Band-head spectra of low-energy single-particle excitations in some well-deformed, odd-mass heavy nuclei within a microscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Meng-Hock [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Duc, Dao Duy [Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Ton Duc Thang University, Faculty of Applied Sciences, Ho Chi Minh City (Viet Nam); Nhan Hao, T.V. [Duy Tan University, Center of Research and Development, Danang (Viet Nam); Hue University, Center for Theoretical and Computational Physics, College of Education, Hue City (Viet Nam); Long, Ha Thuy [Hanoi University of Sciences, Vietnam National University, Hanoi (Viet Nam); Quentin, P. [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Bonneau, L. [Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France)

    2016-01-15

    In four well-deformed heavy odd nuclei, the energies of low-lying rotational band heads have been determined microscopically within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. Only such states which are phenomenologically deemed to be related to single-particle excitations have been considered. The polarization effects, including those associated with the genuine time-reversal symmetry breaking have been fully taken into account within our model assumptions. The calculated spectra are in reasonably good qualitative agreement with available data for the considered odd-neutron nuclei. This is not so much the case for the odd-proton nuclei. A potential explanation for such a difference in behavior is proposed. (orig.)

  12. Investigation of exotic modes of spinning nuclei near Zr

    Indian Academy of Sciences (India)

    2014-04-01

    Apr 1, 2014 ... c Indian Academy of Sciences. Vol. ... transition as the high-j orbitals are occupied. ... to show Jacobi shape transition based on the model calculations [7]. ... vibration with other modes, high spin states of neutron-rich nuclei in ...

  13. Structure of the drip line nuclei probed by separation energies

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Zdeněk

    2006-01-01

    Roč. 15, č. 7 (2006), s. 1471-1475 ISSN 0218-3013 Institutional research plan: CEZ:AV0Z10480505 Keywords : Neutron-rich nuclei * Shell- modell * Magic-number Subject RIV: BE - Theoretical Physics Impact factor: 0.810, year: 2006

  14. A systematic study of band structure and electromagnetic properties of neutron rich odd mass Eu isotopes in the projected shell model framework

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, Rakesh K.; Devi, Rani [University of Jammu, Department of Physics and Electronics, Jammu (India); Khosa, S.K. [Central University of Jammu, Department of Physics and Astronomical Sciences, Jammu (India); Bhat, G.H.; Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India)

    2017-10-15

    The positive and negative parity rotational band structure of the neutron rich odd mass Eu isotopes with neutron numbers ranging from 90 to 96 are investigated up to the high angular momentum. In the theoretical analysis of energy spectra, transition energies and electromagnetic transition probabilities we employ the projected shell model. The calculations successfully describe the formation of the ground and excited band structures from the single particle and multi quasiparticle configurations. Calculated excitation energy spectra, transition energies, exact quantum mechanically calculated B(E2) and B(M1) transition probabilities are compared with experimental data wherever available and a reasonably good agreement is obtained with the observed data. The change in deformation in the ground state band with the increase in angular momentum and the increase in neutron number has also been established. (orig.)

  15. Spectroscopic Quadrupole Moments in {96,98}Sr: Evidence for Shape Coexistence in Neutron-Rich Strontium Isotopes at N=60.

    Science.gov (United States)

    Clément, E; Zielińska, M; Görgen, A; Korten, W; Péru, S; Libert, J; Goutte, H; Hilaire, S; Bastin, B; Bauer, C; Blazhev, A; Bree, N; Bruyneel, B; Butler, P A; Butterworth, J; Delahaye, P; Dijon, A; Doherty, D T; Ekström, A; Fitzpatrick, C; Fransen, C; Georgiev, G; Gernhäuser, R; Hess, H; Iwanicki, J; Jenkins, D G; Larsen, A C; Ljungvall, J; Lutter, R; Marley, P; Moschner, K; Napiorkowski, P J; Pakarinen, J; Petts, A; Reiter, P; Renstrøm, T; Seidlitz, M; Siebeck, B; Siem, S; Sotty, C; Srebrny, J; Stefanescu, I; Tveten, G M; Van de Walle, J; Vermeulen, M; Voulot, D; Warr, N; Wenander, F; Wiens, A; De Witte, H; Wrzosek-Lipska, K

    2016-01-15

    Neutron-rich {96,98}Sr isotopes have been investigated by safe Coulomb excitation of radioactive beams at the REX-ISOLDE facility. Reduced transition probabilities and spectroscopic quadrupole moments have been extracted from the differential Coulomb excitation cross sections. These results allow, for the first time, the drawing of definite conclusions about the shape coexistence of highly deformed prolate and spherical configurations. In particular, a very small mixing between the coexisting states is observed, contrary to other mass regions where strong mixing is present. Experimental results have been compared to beyond-mean-field calculations using the Gogny D1S interaction in a five-dimensional collective Hamiltonian formalism, which reproduce the shape change at N=60.

  16. Application of the generator coordinate method to neutron-rich Se and Ge isotopes

    Directory of Open Access Journals (Sweden)

    Higashiyama Koji

    2014-03-01

    Full Text Available The quantum-number projected generator coordinate method (GCM is applied to the neutron-rich Se and Ge isotopes, where the monopole and quadrupole pairing plus quadrupole-quadrupole interaction is employed as an effective interaction. The energy spectra obtained by the GCM are compared to both the shell model results and the experimental data. The GCM reproduces well the energy levels of high-spin states as well as the low-lying states. The structure of the low-lying collective states is analyzed through the GCM wave functions.

  17. Decay of a three-quasiparticle isomer in the neutron-rich nucleus 183Ta

    Directory of Open Access Journals (Sweden)

    Zhu S.

    2012-10-01

    Full Text Available Excited states in neutron-rich tantalum isotopes have been studied with deep-inelastic reactions using 136Xe ions incident on a 186W target. New transitions observed below the τ=1.3 μs isomer in 183Ta have enabled the establishment of its energy and put limits on the spin and parity. On the basis of the reduced hindrances for the depopulating transitions, a 3-quasiparticle configuration of ν1/2−[510]11/2+[615] ⊗ π9/2−[514] is suggested.

  18. High-accuracy mass measurements of neutron-rich Kr isotopes

    CERN Document Server

    Delahaye, P; Blaum, K; Carrel, F; George, S; Herfurth, F; Herlert, A; Kellerbauer, A G; Kluge, H J; Lunney, D; Schweikhard, L; Yazidjian, C

    2006-01-01

    The atomic masses of the neutron-rich krypton isotopes 84,86-95Kr have been determined with the tandem Penning trap mass spectrometer ISOLTRAP with uncertainties ranging from 20 to 220 ppb. The masses of the short-lived isotopes 94Kr and 95Kr were measured for the first time. The masses of the radioactive nuclides 89Kr and 91Kr disagree by 4 and 6 standard deviations, respectively, from the present Atomic-Mass Evaluation database. The resulting modification of the mass surface with respect to the two-neutron separation energies as well as implications for mass models and stellar nucleosynthesis are discussed.

  19. Ground-state configuration of neutron-rich Aluminum isotopes through Coulomb Breakup

    Directory of Open Access Journals (Sweden)

    Chakraborty S.

    2014-03-01

    Full Text Available Neutron-rich 34,35Al isotopes have been studied through Coulomb excitation using LAND-FRS setup at GSI, Darmstadt. The method of invariant mass analysis has been used to reconstruct the excitation energy of the nucleus prior to decay. Comparison of experimental CD cross-section with direct breakup model calculation with neutron in p3/2 orbital favours 34Al(g.s⊗νp3/2 as ground state configuration of 35Al. But ground state configuration of 34Al is complicated as evident from γ-ray spectra of 33Al after Coulomb breakup of 34Al.

  20. Coulomb excitation of neutron-rich $^{134-136}$Sn isotopes

    CERN Multimedia

    We propose to study excited states in the isotopes $^{134,136}$Sn by $\\gamma$-ray spectroscopy following "safe" Coulomb excitation. The experiment aims to investigate the evolution of quadrupole collectivity beyond the magic shell closure at N = 82 by the determination of B(E2) values and electric quadrupole moments $\\mathcal{Q}_2$. Recent shell-model calculations using realistic interactions predict possible enhanced collectivity in neutron-rich regions. Evidence for this could be obtained by this experiment. Furthermore, the currently unknown excitation energies of the 2$^+_{1}$ and 4$^+_{1}$ states in $^{136}$Sn will be measured for the first time.

  1. Investigation of the core-halo structure of the neutron-rich nuclei {sup 6}He and {sup 8}He by intermediate-energy elastic proton scattering at high momentum transfer; Etude de la structure coeur-halo des noyaux riches en neutron {sup 6}He et {sup 8}He par la diffusion elastique de protons aux energies intermediaires etendue a la region du premier minimum de diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Aksouh, F

    2002-12-01

    The elastic proton scattering from the halo nuclei {sup 6}He and {sup 8}He was investigated in inverse kinematics at energies around 700 MeV/u with the aim to deduce the differential cross sections for the region of high momentum transfer, covering the first diffraction minimum. For this purpose, a liquid-hydrogen target was specially developed and used for the first time allowing to obtain low-background data as compared to commonly used targets made from C-H compounds. Previous data taken in the region of small momentum transfer were sensitive to the size and the peripheral shape of the total nuclear matter density distribution but not to the inner part. The present data allow for a more detailed insight in the structure of the alike core in {sup 6,8}He through a better determination of the matter density distributions. Several density distributions calculated from different microscopic models were used to derive elastic scattering cross sections which are compared with the obtained data. (author)

  2. Production and identification of very exotic nuclei

    International Nuclear Information System (INIS)

    Pougheon, F.

    1986-01-01

    New very exotic nuclei have been produced by fragmentation of the projectile at intermediate energy at GANIL. They have been identified through time of flight and ΔE-E measurements after a magnetic separation with the 0 0 LISE spectrometer. New neutron rich isotopes have been identified up to Z = 26 and evidence for the stability of the new series Tz = -5/2 has been shown. These results improve the knowledge of the neutron and proton drip lines

  3. Systematics of triaxial moment of inertia and deformation parameters (β, γ) in even-even nuclei of mass region A = 90-120

    International Nuclear Information System (INIS)

    Singh, Yuvraj; Gupta, D.K.; Singh, M.; Gupta, K.K.; Bihari, Chhail; Varshney, A.K.; Dhiman, S.K.

    2012-01-01

    The deformation parameter β and γ of the collective model of Bohr and Mottelson are basic descriptors of the nuclear equilibrium shape and structure. In recent past the sets of deformation parameters ((β, γ) have been extracted from both level energies and E2 transition rates in even Xe, Ba and Ce nuclei (A∼120-140) and Hf, W, Os, Pt and Hg nuclei (A∼160-200) using rigid triaxial rotor model of Davydov-Filippov (DF). Researcher have found that the values of β obtained separately from energy and transition rate (β e and β b respectively), though, are found almost equal in heavy mass region (A ∼160-200) but, not so in medium mass (A∼120-140) nuclei. This observation puts a question mark whether the ββ dependence of moment of inertia in hydrodynamic model is reliable. The purpose of the present work is to study a relatively lighter mass region (A∼90-120) where the gap between values of two sets of β may further increase. To improve the calculations for extracting β e , the use of Grodzins rule will be made along with uncertainties, since only through this rule the E2 1 + is related with β G (value of β for symmetric nucleus and evaluated using Grodzins rule)

  4. Survivability and Fusibility in Reactions Leading to Heavy Nuclei in the Vicinity of the N=126 Closed Shell

    International Nuclear Information System (INIS)

    Sagaidak, R. N.

    2009-01-01

    Nuclear fission is well suited to study the dynamic properties and dissipative processes in cold and moderately excited nuclei. It is also a unique tool to explore level density and shell effects at an extreme deformation. Despite the significant progress in the fission studies, the isospin dependence of fission properties and, in particular, of fission barrier heights still remains an open problem. Theoretical fission model parameters are tuned by using the experimental nuclear and fission data close to stability [1]. The models provide a reasonable description of the fission barriers close to the stability line. However, large deviations are observed between predictions of different models for the fission barriers of very neutron-deficient and neutron-rich nuclei. These discrepancies (by as much as 20-30 MeV, see, e.g. [2]) become especially important in the r-process calculations for extremely neutron-rich nuclei, whose fission barriers determine the termination of the r-process by fission [3]. Unfortunately, such neutron-rich nuclei will probably not become accessible in the nearest experiments. Therefore, fission properties of exotic nuclei and especially their isospin dependence can be investigated in alternative regions of the Nuclide Chart, which are accessible for such studies now. Fusion-evaporation cross sections for heavy fissile nuclei obtained in heavy ion induced reactions as well as their fission cross sections are mainly determined by statistical properties of decaying compound nuclei (CN) and first of all by the fission-barrier heights of nuclei involved in the de-excitation chains leading to observable evaporation residues (ER). At the same time, the ER production and fission in nearly symmetric projectile-target fusion reactions leading to the most neutron-deficient CN could be strongly suppressed due to the quasi-fission (QF) effect [4], as observed recently in the 4 8C a induced reactions leading to Ra [5] and Pb [6] CN. The production of

  5. Identification and Decay Studies of New, Neutron-Rich Isotopes of Bismuth, Lead and Thallium by means of a Pulsed Release Element Selective Method

    CERN Multimedia

    Mills, A; Kugler, E; Van duppen, P L E; Lettry, J

    2002-01-01

    % IS354 \\\\ \\\\ It is proposed to produce, identify and investigate at ISOLDE new, neutron-rich isotopes of bismuth, lead and thallium at the mass numbers A=215 to A=218. A recently tested operation mode of the PS Booster-ISOLDE complex, taking an advantage of the unique pulsed proton beam structure, will be used together with a ThC target in order to increase the selectivity. The decay properties of new nuclides will be studied by means of $\\beta$-, $\\gamma$- and X- ray spectroscopy methods. The expected information on the $\\beta$-half-lives and excited states will be used for testing and developing the nuclear structure models ``south-east'' of $^{208}$Pb, and will provide input data for the description of the r-process path at very heavy nuclei. The proposed study of the yields and the decay properties of those heavy nuclei produced in the spallation of $^{232}$Th by a 1~GeV proton beam contributes also the data necessary for the simulations of a hybrid accelerator-reactor system.

  6. Calculation of the total potential between two deformed heavy ion nuclei using the Monte Carlo method and M3Y nucleon-nucleon forces

    International Nuclear Information System (INIS)

    Ghodsi, O. N.; Zanganeh, V.

    2009-01-01

    In the current study, a simulation technique has been employed to calculate the total potential between two deformed nuclei. It has been shown that this simulation technique is an efficient one for calculating the total potential for all possible orientations between the symmetry axes of the interacting nuclei using the realistic nuclear matter density and the M3Y nucleon-nucleon effective forces. The analysis of the results obtained for the 48 Ca+ 238 U, 46 Ti+ 46 Ti, and 27 Al+ 70 Ge reactions reveal that considering the density dependent effects in the M3Y forces causes the nuclear potential to drop by an amount of 0.4 MeV.

  7. Nuclei in a neutron star

    International Nuclear Information System (INIS)

    Oyamatsu, K.; Yamada, M.

    1994-01-01

    We report on the recent progress in understanding the matter in the crust of a neutron star. For nuclides in the outer crust, recently measured masses of neutron-rich nuclei enable us to determine more accurately the stable nuclide as a function of the matter density. In the inner crust, the compressible liquid-drop model predicts successive change of the nuclear shape, from sphere to cylinder, slab, cylindrical hole and spherical hole at densities just before the transition to uniform matter. In order to go beyond the liquiddrop model, we performed the Thomas-Fermi calculation paying special attention to the surface diffuseness, and have recently calculated the shell energies of the non-spherical nuclei. We have found from these studies that all these non-spherical nuclei exist stably in the above order even if we include the surface diffuseness and shell energies. (author)

  8. Deformation properties of lead isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.; Saperstein, E. E., E-mail: saper43-7@mail.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-01-15

    The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF{sup 0} Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, {sup 180}Pb and {sup 184}Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF{sup 0} functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF{sup 0} functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron-rich

  9. A special type of neutron-proton pairing interaction and the moments of inertia of some deformed even-even nuclei in the rare earth region

    International Nuclear Information System (INIS)

    Meftunoglu, E.; Gerceklioglu, M.; Erbil, H.H.; Kuliev, A.A.

    1998-01-01

    In this work, the effect of a special type of neutron-proton pairing interaction on the moments of inertia of some deformed nuclei in the rare earth region is investigated. First, making a perturbative approximation, we assume that the form of the equations of the BCS theory and usual Bogolyubov transformations are unchanged. Second, we use a phenomenological method for the strength of this neutron-proton pairing interaction introducing a parameter. Calculations show that this interaction is important for the ground-state moments of inertia and that it could be effectual in other nuclear phenomena. (author)

  10. Description of low-lying states in odd-odd deformed nuclei taking account of the coupling with core rotations and vibrations. 1

    International Nuclear Information System (INIS)

    Kvasil, J.; Hrivnacova, I.; Nesterenko, V.O.

    1990-01-01

    The microscopic approach for description of low-lyinig states in deformed odd-odd nuclei is formulated as a generalization of the quasiparticle-phonon model (QPM) with including the rotational degrees of freedom and n-p interaction between external nucleons into the QPM. In comparison with other models, the approach proposed includes all three the most important effects coupling with rotational and vibrational degrees of freedom of doubly-even core and p-n interaction mentioned above even treates them on the microscopic base. 36 refs

  11. Mass measurements of neutron-rich indium isotopes toward the N =82 shell closure

    Science.gov (United States)

    Babcock, C.; Klawitter, R.; Leistenschneider, E.; Lascar, D.; Barquest, B. R.; Finlay, A.; Foster, M.; Gallant, A. T.; Hunt, P.; Kootte, B.; Lan, Y.; Paul, S. F.; Phan, M. L.; Reiter, M. P.; Schultz, B.; Short, D.; Andreoiu, C.; Brodeur, M.; Dillmann, I.; Gwinner, G.; Kwiatkowski, A. A.; Leach, K. G.; Dilling, J.

    2018-02-01

    Precise mass measurements of the neutron-rich In-130125 isotopes have been performed with the TITAN Penning trap mass spectrometer. TITAN's electron beam ion trap was used to charge breed the ions to charge state q =13 + thus providing the necessary resolving power to measure not only the ground states but also isomeric states at each mass number. In this paper, the properties of the ground states are investigated through a series of mass differentials, highlighting trends in the indium isotopic chain as compared to its proton-magic neighbor, tin (Z =50 ). In addition, the energies of the indium isomers are presented. The (8-) level in 128In is found to be 78 keV lower than previously thought and the (21 /2- ) isomer in 127In is shown to be lower than the literature value by more than 150 keV.

  12. Quadrupole collectivity beyond N = 50 in neutron- rich Se and Kr isotopes

    Science.gov (United States)

    Elman, Brandon; Gade, A.; Barofsky, D.; Bender, P. C.; Bowry, M.; Hjorth-Jensen, M.; Kemper, K. W.; Lipschutz, S.; Lunderberg, E.; Sachmpazidi, N.; Terpstra, N.; Walters, W. B.; Weisshaar, D.; Westerberg, A.; Williams, S. J.; Wimmer, K.

    2017-09-01

    We will present results on measuring the B (E 2 ;01+ ->2n+) strength for the neutron-rich 88,90Kr and 86Se isotopes from intermediate-energy Coulomb excitation. The electric quadrupole transition strengths to the first 2+ state complete, with considerably improved uncertainties, the evolution of quadrupole collectivity in the Kr and Se isotopes approaching N = 60 , for which 90Kr and 86Se had previously been the most uncertain. We also report significant excitation strength to several higher lying 2+ states in the krypton isotopes. The results confirm shell model calculations in the π (fpg) - ν (sdg) shell with only a minimally tuned shell model setup that is based on a nucleon-nucleon interaction derived from effective field theory with effective charges adjusted to 86Kr.

  13. Triaxial shapes in the ground states of even-even neutron-rich Ru isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Lister, C.J.; Morss, L.R. [and others

    1995-08-01

    Partial level schemes for {sup 108,110,112}Ru, and {sup 114}Ru about which nothing was previously known, were determined from the measurement of prompt, triple-gamma coincidences in {sup 248}Cm fission fragments. A 5-mg {sup 249}Cm source, mixed with 65-mg KCl and pressed in the form of a 7-mm diameter pellet, was used for the experiment. Prompt {gamma} rays emitted from the fission fragments were detected with the Eurogam array at Daresbury, which at that time consisted of 45 Compton suppressed Ge detectors and 5 LEPS spectrometers. Transitions in Ru were identified by gating on {gamma} rays in the complementary Te fragments. Figure I-25 shows the technique used to identify the previously unknown transitions in {sup 114}Ru and its partial level scheme. High spin states up to spin 10 h were observed and the {gamma}-ray branching ratios were determined. The ratios of electric quadrupole transition probabilities deduced from the experimental branching ratios were found to be in good agreement with the predictions of a simple model of rigid triaxial rotor. Our analysis shows that gamma deformation in Ru isotopes is increasing with the neutron number and the gamma value for {sup 112}Ru and {sup 114}Ru is {approximately} 25 degrees. This is one of the highest gamma values encountered in nuclei, suggesting soft triaxial shapes for {sup 112}Ru and {sup 114}Ru. The results of this investigation were published.

  14. Coexistence of spherical and deformed states in nuclei in the Z = 50 region; and the interaction of nuclei with electromagnetic fields in crystals

    International Nuclear Information System (INIS)

    Shroy, R.E. Jr.

    1976-01-01

    By applying the techniques of γ ray spectroscopy to γ rays produced in the decay of nuclear states populated in heavy-ion reactions, the following studies were performed: (1) High-spin states in 113 115 117 119 Sb and 125 127 I were investigated. The states were populated via the ( 6 Li,3n) reaction. Information on the energies, spins, decay modes, lifetimes, and electromagnetic moments was obtained for states up to a typical maximum spin of 25/2. The states in the Sb (Z = 51) and I (Z = 53) nuclei are of interest because of the nearness of the Z = 50 closed proton shell. (2) Experiments were performed to investigate the possibility of using the time differential perturbed angular distribution method to measure quadrupole moments of isomers populated in heavy-ion reactions. First, the previously known quadrupole interaction frequency of the 9/2 1 + state of 69 Ge in Zn was measured, with the state populated via the (α,n) and ( 7 Li,pn) reactions. Next, the quadrupole interaction frequency of the 9/2 1 + state of 73 As was measured in Zn using the ( 7 Li,2n) reaction. A value e 2 Qq/h = 20.2 +- 0.4 MHz was obtained. (3) The destruction of nuclear alignment by lattice defects was also studied for Sb nuclei in a Cd lattice by measuring the anisotropy of γ rays emitted in the decay of an isomer in 115 Sb as a function of temperature. The states were initially aligned when produced in a heavy-ion reaction. As the temperature of the target was increased from approximately 420 0 K to approximately 470 0 K, the anisotrophy was found to increase from zero to the maximum value expected. This can be interpreted in terms of trapping and detrapping of defects by the Sb impurities

  15. 3rd International conference on nuclei far from stability, Cargese, Corsica, 19-26 May 1976

    International Nuclear Information System (INIS)

    1976-01-01

    These conference proceedings contain 103 contributions which are grouped under the following headings: Experimental methods and techniques; Perspectives in research on exotic nuclei; Nuclear masses - experiment and theory; Nuclear spins, moments, and radii; Light nuclei; Delayed particle emission and statistical aspects; Excited states of neutron-deficient nuclei; Excited states of fission products and other neutron-rich isotopes; Heavy elements and astrophysical aspects. Also included are the Scientific programme and a List of participants. (AJ)

  16. Study of phase transition of even and odd nuclei based on q-deforme SU(1,1) algebraic model

    Science.gov (United States)

    Jafarizadeh, M. A.; Amiri, N.; Fouladi, N.; Ghapanvari, M.; Ranjbar, Z.

    2018-04-01

    The q-deformed Hamiltonian for the SO (6) ↔ U (5) transitional case in s, d interaction boson model (IBM) can be constructed by using affine SUq (1 , 1) Lie algebra in the both IBM-1 and 2 versions and IBFM. In this research paper, we have studied the energy spectra of 120-128Xe isotopes and 123-131Xe isotopes and B(E2) transition probabilities of 120-128Xe isotopes in the shape phase transition region between the spherical and gamma unstable deformed shapes of the theory of quantum deformation. The theoretical results agree with the experimental data fairly well. It is shown that the q-deformed SO (6) ↔ U (5) transitional dynamical symmetry remains after deformation.

  17. The investigation of the decay of the deformed 167Yb, 164Tm, 225Ac, 221Fr nuclei. Beta-spectrograph with positional-sensitive detector

    International Nuclear Information System (INIS)

    Butabaev, Yu.S.

    1994-01-01

    The decay of the deformed 167 Yb, 164 Tm, 225 Ac, 221 Fr nuclei is investigated in this work. For 167 Yb and 164 Tm decays the specters of the conversion electrons were measured. 32 γ-transitions were found for 167 Yb decay, 6 of which were found for the first time. The multipolarities for 9 γ-transitions were found. For 164 Tm decay 23 new γ-transitions were found. The theoretical investigations of the collective states in the nucleus were carried out. Octupole-rotatory line with k=1 - was found in the measurement of conversion electrons specters of the short-life nuclei. Device' nonlinearity was 0,04%. Resolution was Δβρ/βρ 0,11%. Effective light yield was 1-2 %. The decay of 225 Ac and 221 Fr nuclei were investigated. The investigations of α-γ -coincidence, α-γ - rays were carried out. 24 new γ -transitions for 225 Ac and 13 ones for 221 Fr were found. The new levels and their intensities were defined more precisely. Intensity balance calculations were carried out and the full populations of the nuclear levels were calculated. (author). 3 tabs.; 10 figs

  18. Study of single particle properties of nuclei in the region of the "island of inversion" by means of neutron-transfer reactions

    CERN Multimedia

    Kruecken, R; Voulot, D

    2007-01-01

    We are aiming at the investigation of single particle properties of neutron-rich nuclei in the region of the "island of inversion" where intruder states from the $\\{fp}$-shell favour deformed ground states instead of the normal spherical $\\textit{sd}$-shell states. As first experiment, we propose to study single particle states in the neutron-rich isotope $^{31}$Mg. The nucleus will be populated by a one-neutron transfer reaction with a $^{30}$Mg beam at 3 MeV/u obtained from REX-ISOLDE impinging on a CD$_{2}$ target. The $\\gamma$-rays will be detected by the MINIBALL array and the particles by a newly built set-up of segmented Si detectors with a angular coverage of nearly 4$\\pi$. Relative spectroscopic factors extracted from the cross sections will enable us to pin down the configurations of the populated states. These will be compared to recent shell model calculations involving new residual interactions. This will shed new light on the evolution of single particle structure leading to the breaking of the ...

  19. Studies of Neutron-Rich Nuclei with (d,p) Reactions in Inverse Kinematics at the HRIBF

    International Nuclear Information System (INIS)

    Grzywacz-Jones, Kate L.; Baktash, Cyrus; Bardayan, Daniel W.; Blackmon, Jeff C.; Catford, Wilton N.; Cizewski, Jolie; Fitzgerald, Ryan; Greife, Uwe; Gross, Carl J.; Johnson, Micah; Kozub, Raymond L.; Liang, J. Felix; Livesay, Jake; Ma, Zhanwen; Moazen, Brian H.; Nesaraja, Caroline D.; Shapira, Dan; Smith, Michael Scott; Thomas, Jeffrey S.; Visser, Dale William

    2005-01-01

    Two N=51 isotones have been measured using (d,p) reactions in inverse kinematics at the Holifield Radioactive Beam Facility (HRIBF) of Oak Ridge National Laboratory. Additionally, we have performed a test measurement using a stable 124Sn beam in preparation for measurements of the 2H(130,132Sn,p)131,133Sn reactions. Preliminary results for 83Ge and 85Se suggest a 5/2+ ground state and a 1/2+ first excited state for both isotopes, in agreement with systematics for the N=51 isotones. The excitation energy of the first excited state is shown to drop as the proton number is reduced. Proton angular distributions following the 2H(124Sn,p)125Sn reaction show sensitivity to the l-value of the transfered nucleon and spectroscopic factors are in agreement with previous measurements in normal kinematics.

  20. Spectroscopy of neutron-rich nuclei populated in the spontaneous fission of 252Cf and 248Cm

    International Nuclear Information System (INIS)

    Smith, A. G.; Simpson, G. S.; Billowes, J.; Durell, J. L.; Phillips, W. R.; Dagnall, P. J.; Freeman, S. J.; Leddy, M.; Roach, A. A.; Smith, J. F.

    1999-01-01

    In this paper we present research that has been carried out using the Euroball and Eurogam arrays to detect γ rays emitted from spontaneously fissioning 248 Cm and 252 Cf. The paper focuses on three sub-areas of current activity, namely, the measurement of yields of secondary fragment pairs, the measurement of state lifetimes at around spin 10, and recent measurements of g-factors of excited states in fission fragments. (c) 1999 American Institute of Physics

  1. Commissioning of the BRIKEN beta-delayed neutron detector for the study of exotic neutron-rich nuclei

    Directory of Open Access Journals (Sweden)

    Tolosa-Delgado A.

    2017-01-01

    Full Text Available The commissioning of a new setup for β-delayed neutron measurements was carried out successfully in November-2016, at the RIKEN Nishina Center in Japan. The β-decay half-lives and Pn branching ratios of several isotopes in the 78Ni region were measured. Details of the experimental setup and the first results are given.

  2. Development of deformation in the island of inversion at N=40

    International Nuclear Information System (INIS)

    Lenzi, Silvia Monica

    2012-01-01

    Full text: Far from the valley of beta stability, the nuclear shell structure undergoes important and substantial modifications. In medium-light nuclei, interesting changes have been observed such as the appearance of new magic numbers, and the development of new regions of deformation around nucleon numbers that are magic near stability. The observed changes help to shed light on specific terms of the effective nucleon-nucleon interaction and to improve our knowledge of the nuclear structure evolution towards the drip lines. In particular, it has been shown that the monopole part of the tensor force of the proton-neutron interaction gives the main contribution to the shell evolution. The possibility of having a good theoretical description of these phenomena is essential to allow a deep insight into the nuclear effective interaction, to interpret the structure of nuclei far from stability, to predict the position of the drip-lines and to understand the nucleosynthesis pathways. In the last few years, particular effort has been put on studying light and medium-mass neutron-rich nuclei where these effects manifest more dramatically. Recent results on the spectroscopy of nuclei south of 68 Ni, where rapid shape changes and shape coexistence have been observed, will be presented together with the large scale shell model calculations that are able to describe and interpret the data with very good accuracy. (author)

  3. Ultra-fast timing study of exotic neutron-rich Fe isotopes

    CERN Document Server

    Olaizola, Bruno; Mach, Henryk

    The cornerstone of nuclear structure, as we know it from stable nuclei, is the existence of magic numbers. The most stable nuclei arise for completely occupied shells, closed shells, and give rise to the magic numbers. At the Valley of Stability their values are 8, 20, 28, 50, 82 and 126. The steady development of the production, separation and identication of exotic nuclei, together with the improvement of the detection techniques, makes it possible to experimentally explore nuclei further away from the Valley of Stability. These exotic nuclei with nucleon numbers supposed to be magic do not always have the properties one would expect. As extra nucleons are added (or removed) from stable nuclei, the single particle energies are modied and strong quadrupole correlations appear, which may neutralize the spherical meanfield shell gaps. The investigation of the evolution of shell structure far from stability has become a major subject in Nuclear Physics. Research in this field has strong implications also in nuc...

  4. Neutron-rich Λ-Hypernuclei study with the FINUDA experiment

    Directory of Open Access Journals (Sweden)

    Botta E.

    2014-03-01

    Full Text Available The FINUDA experiment at DAΦNE, Frascati, has found evidence for the neutron-rich hypernucleus HΛ6${}_ \\wedge ^6{\\rm{H}}$ studying (π+, π− pairs in coincidence from the Kstop−+L6i→HΛ6+π+$K_{{\\rm{stop}}}^ - + {}^{\\rm{6}}{\\rm{Li}} \\to {}_ \\wedge ^6{\\rm{H}} + {\\pi ^ + }$ production reaction followed by HΛ6→H6e +π−${}_ \\wedge ^6{\\rm{H}} \\to {}^6{\\rm{He + }}{\\pi ^ - }$ weak decay. The production rate of HΛ6${}_ \\wedge ^6{\\rm{H}}$ undergoing this two-body π− decay has been found to be (2.9±2.0⋅10−6/Kstop−$(2.9 \\pm 2.0 \\cdot {10^{ - 6}}/K_{{\\rm{stop}}}^ - $. Its binding energy has been evaluated to be BΛ(HΛ6=(4.0±1.1${B_ \\wedge }({}_ \\wedge ^6H = (4.0 \\pm 1.1$ MeV with respect to (H5+Λ$({}^5{\\rm{H}} + \\Lambda $, jointly from production and decay. A systematic difference of (0.98 ± 0.74 MeV between BΛ values derived separately from decay and from production has been tentatively assigned to the HΛ6 0g.s.+→1+${}_\\Lambda ^6{\\rm{H 0}}_{{\\rm{g}}{\\rm{.s}}{\\rm{.}}}^ + \\to {1^ + }$ excitation. A similar investigation has been carried out for the neutron-rich hypernucleus HΛ9e${}_\\Lambda ^9{\\rm{He}}$ studying the Kstop−+B9e→HΛ9e+π+$K_{{\\rm{stop}}}^ - + {}_{}^{\\rm{9}}{\\rm{Be}} \\to {}_\\Lambda ^9{\\rm{He}} + {\\pi ^ + }$ reaction in coincidence with the H Λ 9e→ L 9i +  π −${}_\\Lambda ^9{\\rm{He}} \\to {}_{}^{\\rm{9}}{\\rm{Li + }}{\\pi ^ - }$ weak decay; an upper limit for the production rate of HΛ9e${}_\\Lambda ^9{\\rm{He}}$ undergoing the two-body π− decay has been found to be 4.2⋅10 −6 /K stop− $4.2 \\cdot {10^{ - 6}}/{\\rm{K}}_{stop}^ - $ (90% C.L..

  5. Neutron-Rich Silver Isotopes Produced by a Chemically Selective Laser Ion-Source: Test of the R-Process " Waiting-Point " Concept

    CERN Multimedia

    2002-01-01

    The r-process is an important nucleosynthesis mechanism for several reasons: \\begin{enumerate} \\item It is crucial to an understanding of about half of the A>60 elemental composition of the Galaxy; \\item It is the mechanism that forms the long-lived Th-U-Pu nuclear chronometers which are used for cosmochronolgy; \\item It provides an important probe for the temperature (T$ _{9} $)-neutron density ($n_{n}$) conditions in explosive events; and last but not least \\item It may serve to provide useful clues to and constraints upon the nuclear properties of very neutron-rich heavy nuclei. \\end{enumerate} \\\\ \\\\With regard to nuclear-physics data, of particular interest are the T$ _{1/2} $ and P$_{n-} $ values of certain$\\,$ "waiting-point"$\\,$ isotopes in the regions of the A $ \\approx $ 80 and 130. r-abundance peaks. Previous studies of $^{130}_{\\phantom{1}48}$Cd$_{82}$ and $^{79}_{29}$Cu$_{50}$. $\\beta$-decay properties at ISOLDE using a hot plasma ion source were strongly complicated by isobar and molecular-ion c...

  6. System analytical studies on ground state properties of neutron-rich nuclides in the nuclear mass region A ≅ 100

    International Nuclear Information System (INIS)

    Toenhardt, M.

    1987-01-01

    In this thesis only nuclei with even proton and even neutron number have been studied. This constraint allows to use a for the description of excitation spectra very successful model, the interacting boson model (IBM) and to combine this with the density functional method. From the obtained Hamiltonian via an energy-density functional an effective potential is constructed which can be applied in the framework of the density-functional method in order to calculate ground state energies and densities. From the density distributions radii and values for the static deformation are determined. As further ground state property the separation energy for two neutrons is studied. (orig./HSI) [de

  7. Magnetic dipole moments of deformed odd-odd nuclei in 2s-1d and 2p-1f shells

    Energy Technology Data Exchange (ETDEWEB)

    Verma, A K; Garg, V P; Sharma, S D [Punjabi Univ., Patiala (India). Dept. of Physics

    1979-01-01

    A simple expression is derived for the computation of the magnetic moments of odd-odd nuclei. The computation of magnetic dipole moments is done with and without quenching factors for the last proton and neutron. The results are found to improve for /sup 22/Na, /sup 24/Na, sup(82m)Rb, /sup 14/N, /sup 68/Gd, /sup 54/Mn and /sup 86/Rb with extreme coupling of angular moments.

  8. Decay studies and mass measurements on isobarically pure neutron-rich Hg and Tl isotopes

    CERN Multimedia

    Schweikhard, L C; Savreux, R P; Hager, U D K; Beck, D; Blaum, K

    2007-01-01

    We propose to perform mass measurements followed by $\\beta$- and $\\gamma$-decay studies on isobarically pure beams of neutron-rich Hg and Tl isotopes, which are very poorly known due to a large contamination at ISOL-facilities with surface-ionised francium. The aim is to study the binding energies of mother Hg and Tl nuclides, as well as the energies, spins and parities of the excited and ground states in the daughter Tl and Pb isotopes. The proposed studies will address a new subsection of the nuclear chart, with Z 126, where only 9 nuclides have been observed so far. Our studies will provide valuable input for mass models and shell-model calculations: they will probe the proton hole-neutron interaction and will allow to refine the matrix elements for the two-body residual interaction. Furthermore, they also give prospects for discovering new isomeric states or even new isotopes, for which the half-lives are predicted in the minute- and second-range.\\\\ To reach the isobaric purity, the experiments will be p...

  9. Shear viscosity of neutron-rich nucleonic matter near its liquid–gas phase transition

    International Nuclear Information System (INIS)

    Xu, Jun; Chen, Lie-Wen; Ko, Che Ming; Li, Bao-An; Ma, Yu Gang

    2013-01-01

    Within a relaxation time approach using free nucleon–nucleon cross sections modified by the in-medium nucleon masses that are determined from an isospin- and momentum-dependent effective nucleon–nucleon interaction, we investigate the specific shear viscosity (η/s) of neutron-rich nucleonic matter near its liquid–gas phase transition. It is found that as the nucleonic matter is heated at fixed pressure or compressed at fixed temperature, its specific shear viscosity shows a valley shape in the temperature or density dependence, with the minimum located at the boundary of the phase transition. Moreover, the value of η/s drops suddenly at the first-order liquid–gas phase transition temperature, reaching as low as 4–5 times the KSS bound of ℏ/4π. However, it varies smoothly for the second-order liquid–gas phase transition. Effects of the isospin degree of freedom and the nuclear symmetry energy on the value of η/s are also discussed

  10. Search for low lying dipole strength in the neutron rich nucleus Ne{sup 26}

    Energy Technology Data Exchange (ETDEWEB)

    Gibelin, J

    2005-11-15

    We carried out the Coulomb excitation, on a lead target, of an exotic beam of neutron-rich nucleus Ne{sup 26} at 58 MeV/n, in order to study the possible existence of a pygmy dipole resonance above the neutron emission threshold. The experiment was performed at the Riken Research Facility, in Tokyo (Japan) and included a gamma-ray detector, a charged fragment hodoscope and a neutron detector. Using the invariant mass method in the Ne{sup 25} + n decay channel, and by comparing the reaction cross section on the lead target and a light target of aluminum, we observe a sizable amount of E1 strength between the one neutron and the two neutron emission thresholds. The corresponding Ne{sup 26} angular distribution confirms its nature and we deduce its reduced dipole transition probability value of B(E1) = 0.54 {+-} 0.18 e{sup 2}fm{sup 2}. Our method also enables us to extract for the first time the decay pattern of a pygmy resonance. By detecting the decay photons from the excited states below the neutron emission threshold and by analyzing the angular distribution of the inelastically scattered Ne{sup 26} we deduce the reduced transition probability of the first 2{sup +} state, from the ground state. The value obtained of B(E2) = 87 {+-} 13 e{sup 2}fm{sup 4} being in disagreement with a previous result. (author)

  11. Coulomb Excitation of a Neutron-Rich $^{88}$Kr Beam Search for Mixed Symmetry States

    CERN Multimedia

    Andreoiu, C; Napiorkowski, P J; Iwanicki, J S

    2002-01-01

    We propose to use the ISOLDE/REX/MINIBALL/CD set-up to perform a Coulomb Excitation experiment with a $^{88}$Kr radioactive beam. The motivation includes a search for $Mixed$ $Symmetry$ states predicted by the IBM-2 model, gathering more spectroscopy data about the $^{88}$Kr nucleus and extending shape coexistence studies (performed previously by the proposers for neutron-deficient Kr isotopes) to the neutron-rich side. The proposed experiment will provide data complementary to the Coulomb Excitation of a relativistic $^{88}$Kr beam proposed by D. Tonev et al. for a RISING experiment. A total of 12 days of beam time is necessary for the experiment, equally divided into two runs. One run with a 2.2 MeV/A beam energy on a $^{48}$Ti target and a second run with the maximum available REX energy of 3.1 MeV/A on a $^{208}$Pb target are requested. Using either a UC$_{x}$ or ThC$_{x}$ fissioning primary target coupled with a plasma source by a cooled transfer line seems to be the best choice for the proposed experime...

  12. Low-energy Coulomb excitation of neutron-rich zinc isotopes

    CERN Document Server

    Van de Walle, J; Behrens, T; Bildstein, V; Blazhev, A; Cederkäll, J; Clément, E; Cocolios, T E; Davinson, T; Delahaye, P; Eberth, J; Ekström, A; Fedorov, D V; Fedosseev, V; Fraile, L M; Franchoo, S; Gernhäuser, R; Georgiev, G; Habs, D; Heyde, K; Huber, G; Huyse, M; Ibrahim, F; Ivanov, O; Iwanicki, J; Jolie, J; Kester, O; Köster, U; Kröll, T; Krücken, R; Lauer, M; Lisetskiy, A F; Lutter, R; Marsh, B A; Mayet, P; Niedermaier, O; Pantea, M; Raabe, R; Reiter, P; Sawicka, M; Scheit, H; Schrieder, G; Schwalm, D; Seliverstov, M D; Sieber, T; Sletten, G; Smirnova, N; Stanoiu, M; Stefanescu, I; Thomas, J C; Valiente-Dobón, J J; Van Duppen, P; Verney, D; Voulot, D; Warr, N; Weisshaar, D; Wenander, F; Wolf, B H; Zielinska, M

    2009-01-01

    At the radioactive ion beam facility REX-ISOLDE, neutron-rich zinc isotopes were investigated using low-energy Coulomb excitation. These experiments have resulted in B(E2,20) values in 74-80Zn, B(E2,42) values in 74,76Zn and the determination of the energy of the first excited 2 states in 78,80Zn. The zinc isotopes were produced by high-energy proton- (A=74,76,80) and neutron- (A=78) induced fission of 238U, combined with selective laser ionization and mass separation. The isobaric beam was postaccelerated by the REX linear accelerator and Coulomb excitation was induced on a thin secondary target, which was surrounded by the MINIBALL germanium detector array. In this work, it is shown how the selective laser ionization can be used to deal with the considerable isobaric beam contamination and how a reliable normalization of the experiment can be achieved. The results for zinc isotopes and the N=50 isotones are compared to collective model predictions and state-of-the-art large-scale shell-model calculations, i...

  13. Isomers in neutron-rich A ∼ 190 nuclides from 208Pb fragmentation

    International Nuclear Information System (INIS)

    Rykaczewski, Krzysztof Piotr; Caamano, M.; Banu, A.; Walker, P.M.; Morton, N.H.; Regan, P. H.; Regan, Patrick H; Pfutzner, M.; Podolyak, Zs.; Gerl, J.; Hellstrom, M.; Mayet, P.; Miernik, K.; Mineva, M.N.; Aprahamian, A.; Benlliure, J.; Bruce, A.M.; Butler, P.A.; Cortina Gil, D.; Cullen, D.M.; Doring, J.; Enqvist, T.; Fox, C.; Garces Narro, J.; Geissel, H.; Gelletly, W.; Giovinazzo, J.; Gorska, M.; Grawe, H.; Grzywacz, R.; Kleinbohl, A.; Korten, W.; Lewitowicz, M.; Lucas, R.; Mach, H.; O'Leary, C.D.; De Oliveira, F.; Pearson, C.J.; Rejmund, F.

    2004-01-01

    Relativistic projectile fragmentation of 208 Pb has been used to produce isomers in neutron-rich, A ∼ 190 nuclides. A forward-focusing spectrometer provided ion-by-ion mass and charge identification. The detection of gamma-rays emitted by stopped ions has led to the assignment of isomers in 188 Ta, 190 W, 192 Re, 193 Re, 195 Os, 197 Ir, 198 Ir, 200 Pt, 201 Pt, 202 Pt and 203 Au, with half-lives ranging from approximately 10 ns to 1 ms. Tentative isomer information has been found also for 174 Er, 175 Er, 185 Hf, 191 Re, 194 Re and 199 Ir. In most cases, time-correlated, singles gamma-ray events provided the first spectroscopic data on excited states for each nuclide. In 200 Pt and 201 Pt, the assignments are supported by gamma-gamma coincidences. Isomeric ratios provide additional information, such as half-life and transition energy constraints in particular cases. The level structures of the platinum isotopes are discussed, and comparisons are made with isomer systematics

  14. Light neutron-rich hypernuclei from the importance-truncated no-core shell model

    Science.gov (United States)

    Wirth, Roland; Roth, Robert

    2018-04-01

    We explore the systematics of ground-state and excitation energies in singly-strange hypernuclei throughout the helium and lithium isotopic chains - from He5Λ to He11Λ and from Li7Λ to Li12Λ - in the ab initio no-core shell model with importance truncation. All calculations are based on two- and three-baryon interaction from chiral effective field theory and we employ a similarity renormalization group transformation consistently up to the three-baryon level to improve the model-space convergence. While the absolute energies of hypernuclear states show a systematic variation with the regulator cutoff of the hyperon-nucleon interaction, the resulting neutron separation energies are very stable and in good agreement with available data for both nucleonic parents and their daughter hypernuclei. We provide predictions for the neutron separation energies and the spectra of neutron-rich hypernuclei that have not yet been observed experimentally. Furthermore, we find that the neutron drip lines in the helium and lithium isotopic chains are not changed by the addition of a hyperon.

  15. Equation of state of neutron-rich nuclear matter from chiral effective field theory

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, Norbert; Strohmeier, Susanne [Technische Universitaet Muenchen (Germany)

    2016-07-01

    Based on chiral effective field theory, the equation of state of neutron-rich nuclear matter is investigated systematically. The contributing diagrams include one- and two-pion exchange together with three-body terms arising from virtual Δ(1232)-isobar excitations. The proper expansion of the energy per particle, anti E(k{sub f},δ) = anti E{sub n}(k{sub f}) + δB{sub 1}(k{sub f}) + δ{sup 5/3}B{sub 5/3}(k{sub f}) + δ{sup 2}B{sub 2}(k{sub f}) +.., for the system with neutron density ρ{sub n} = k{sub f}{sup 3}(1-δ)/3π{sup 2} and proton density ρ{sub p} = k{sub f}{sup 3}δ/3π{sup 2} is performed analytically for the various interaction contributions. One observes essential structural differences to the commonly used quadratic approximation. The density dependent coefficient B{sub 1}(k{sub f}) turns out to be unrelated to the isospin-asymmetry of nuclear matter. The coefficient B{sub 5/3}(k{sub f}) of the non-analytical δ{sup 5/3}-term receives contributions from the proton kinetic energy and from the one- and two-pion exchange interactions. The physical consequences for neutron star matter are studied.

  16. Clusters in nuclei. Vol. 1

    International Nuclear Information System (INIS)

    Beck, Christian

    2010-01-01

    Following the pioneering discovery of alpha clustering and of molecular resonances, the field of nuclear clustering is presently one of the domains of heavy-ion nuclear physics facing both the greatest challenges and opportunities. After many summer schools and workshops, in particular over the last decade, the community of nuclear molecular physics decided to team up in producing a comprehensive collection of lectures and tutorial reviews covering the field. This first volume, gathering seven extensive lectures, covers the follow topics: - Cluster Radioactivity - Cluster States and Mean Field Theories - Alpha Clustering and Alpha Condensates - Clustering in Neutron-rich Nuclei - Di-neutron Clustering - Collective Clusterization in Nuclei - Giant Nuclear Molecules By promoting new ideas and developments while retaining a pedagogical nature of presentation throughout, these lectures will both serve as a reference and as advanced teaching material for future courses and schools in the fields of nuclear physics and nuclear astrophysics. (orig.)

  17. Beta-transition properties for neutron-rich Sn and Te isotopes by ...

    Indian Academy of Sciences (India)

    bour odd–odd nuclei and the β decay log(ft) values have been calculated within the framework of RPA. These calculations have been done for. 128,130,132. Sb and. 132,134,136. I isotopes. Since there is no study based on other models for the investi- gated nuclei in literature the calculations based on schematic model in ...

  18. Radioactive ion beams - A tool to study structure of nuclei far from stability

    Czech Academy of Sciences Publication Activity Database

    Dlouhý, Zdeněk

    2006-01-01

    Roč. 56, č. 2 (2006), s. 91-94 ISSN 0323-0465 R&D Projects: GA ČR GA202/04/0791 Institutional research plan: CEZ:AV0Z10480505 Keywords : neutron-rich nuclei * elactic-scattering * N=20 Subject RIV: BG - Nuclear, Atomic and Molecular Physics, Colliders Impact factor: 0.647, year: 2006

  19. Fingerprint states of odd mass 115I nuclei in the framework of particle rotor model

    International Nuclear Information System (INIS)

    Goswami, R.; Saha Sarkar, M.; Sen, S.

    2008-01-01

    Extensive theoretical as well as experimental investigation of the nuclear structure of odd-mass iodine nuclei have revealed systematic presence of strongly coupled bands in all neutron deficient as well as neutron rich odd-mass iodine isotopes. The present work shows that the positive as well as the negative parity are fairly well reproduced in the framework of particle rotor model

  20. Development of a model for the description of highly excited states in odd-A deformed nuclei

    International Nuclear Information System (INIS)

    Malov, L.A.; Soloviev, V.G.

    1975-01-01

    An approximate method is suggested for solution of the set of equations, obtained earlier for describing the structure of intermediate-and high-excitation states within the framework of the model taking into account quasiparticle-phonon interaction. The analysis is conducted for the case of an odd deformed nucleus, when several one-quasiparticle components are simultaneously taken into account

  1. Measurement of the quadrupole moments of the strongly deformed nuclei 18173Ta108 and 18375Re108 by hyperfine interaction in metals

    International Nuclear Information System (INIS)

    Netz, G.

    1974-01-01

    The quadrupole moments of two single particle proton states were measured in the strongly deformed nuclei region. Both measurements are independent of model because the field gradient is known in a rhenium lattice as well as at the nucleus site of a rhenium atom and also at the nucleus site of an incorporated tantalum atom. The quadrupole moments could thus be directly extracted from the quadrupole interaction frequency, the product of quadrupole moment and field gradient. For the 482 keV state (I = 5/2 + ) in 181 73 Ta 108 one obtains a quadrupole moment of: Q (5/2) = 2.5 +- 0.2 barn. For the 496 keV state (I = 9/2 - ) in 183 75 Re 108 , a quadrupole moment of: Q (0/2) = 3.6 +- 0.4 barn is found. This value agrees well with other experimental data within the framework of the collective model. (orig./LH) [de

  2. Investigation of the neutron emission spectra of some deformed nuclei for (n, xn) reactions up to 26 MeV energy

    International Nuclear Information System (INIS)

    Kaplan, A.; Bueyuekuslu, H.; Tel, E.; Aydin, A.; Boeluekdemir, M.H.

    2011-01-01

    In this study, neutron-emission spectra produced by (n, xn) reactions up to 26 MeV for some deformed target nuclei as 165 Ho, 181 Ta, 184 W, 232 Th and 238 U have been investigated. Also, the mean free path parameter's effect for 9n, xn) neutron-emission spectra has been examined. In the calculations, pre-equilibrium neutron-emission spectra have been calculated by using new evaluated hybrid model and geometry dependent hybrid model, full exciton model and cascade exciton model. The reaction equilibrium component has been calculated by Weisskopf-Ewing model. The obtained results have been discussed and compared with the available experimental data and found agreement with each other. (author)

  3. Decay Study for the very Neutron-Rich Sn Nuclides, $^{135-140}$Sn Separated by Selective Laser Ionization

    CERN Multimedia

    2002-01-01

    %IS378 %title\\\\ \\\\ In this investigation, we wish to take advantage of chemically selective laser ionization to separate the very-neutron-rich Sn nuclides and determine their half-lives and delayed-neutron branches (P$_{n}$) using the Mainz $^{3}$He-delayed neutron spectrometer and close-geometry $\\gamma$-ray spectroscopy system. The $\\beta$-decay rates are dependent on a number of nuclear structure factors that may not be well described by models of nuclear structure developed for nuclides near stability. Determination of these decay properties will provide direct experimental data for r-process calculations and test the large number of models of nuclear structure for very-neutron rich Sn nuclides now in print.

  4. Recent Progress in Constraining the Equation of State of Dense Neutron-Rich Nuclear Matter with Heavy-Ion Reactions

    International Nuclear Information System (INIS)

    Li Baoan; Chen Liewen; Wen Dehua; Xiao Zhigang; Xu Chang; Yong Gaochan; Zhang Ming

    2010-01-01

    The nuclear symmetry energy E sym (ρ) is the most uncertain part of the Equation of State (EOS) of dense neutron-rich nuclear matter. In this talk, we discuss the underlying physics responsible for the uncertain E sym (ρ) especially at supra-saturation densities, the circumstantial evidence for a super-soft E sym (ρ) from analyzing π - /π + ratio in relativistic heavy-ion collisions and its impacts on astrophysics and cosmology.

  5. Beta-decay measurements of neutron-rich thallium, lead, and bismuth by means of resonant laser ionisation

    Science.gov (United States)

    Franchoo, S.; de Witte, H.; Andreyev, A. N.; Cederka¨Ll, J.; Dean, S.; de Smet, A.; Eeckhaudt, S.; Fedorov, D. V.; Fedosseev, V. N.; G´Rska, M.; Huber, G.; Huyse, M.; Janas, Z.; Ko¨Ster, U.; Kurcewicz, W.; Kurpeta, J.; Mayer, P.; Płchocki, A.; van de Vel, K.; van Duppen, P.; Weissman, L.; Isolde Collaboration

    2004-04-01

    Neutron-rich thallium, lead, and bismuth isotopes were investigated at the ISOLDE facility. After mass separation and resonant laser ionisation of the produced activity, new spectroscopic data were obtained for 215,218Bi and 215Pb. An attempt to reach heavy thallium had to be abandoned because of a strong francium component in the beam that gave rise to a neutron background through (α,n) reactions on the aluminium walls of the experimental chamber.

  6. Lifetime measurements in neutron-rich isotopes close to N = 40 and development of a simulation tool for RDDS spectra

    International Nuclear Information System (INIS)

    Braunroth, Thomas Christian

    2017-01-01

    interest are the neutron-rich 59,61 Mn isotopes (Z=25), for which level lifetimes of the 7/2 - 1 , 9/2 - 1 and 11/2 - 1 states were determined (in 61 Mn the assignment is only tentative). In addition, level lifetimes in 63 Mn of the tentatively assigned (7/2 - 1 ) and (9/2 - 1 ) states were evaluated. The results are compared to shell-model calculations using the fp interaction KB3G as well as the state-of-the-art interaction LNPS-m. The present data indicates a structural change close to N=36. The experimental data for 61 Mn suggests that the B(M1) value for the 7/2 - 1 → 5/2 - gs is underestimated by the LNPS-m interaction when free g factors are used. In the second part of this thesis, a tool is presented which allows to generate γ-ray spectra of lifetime studies based on the electromagnetic Doppler-shift using empirical parameters. The tool is highly flexible which enables the incorporation of various experimental bounding conditions. It is applied to investigate the influence of velocity distributions on the lifetime analysis and results indicate that systematic deviations are minimized if distance-dependent mean recoil velocities are taken into account.

  7. Lifetime measurements in neutron-rich isotopes close to N = 40 and development of a simulation tool for RDDS spectra

    Energy Technology Data Exchange (ETDEWEB)

    Braunroth, Thomas Christian

    2017-10-10

    degree of quadrupole deformation. Other isotopes that were produced in the experiment were investigated with respect to the identification of γ-ray transitions and level lifetimes. Of particular interest are the neutron-rich {sup 59,61}Mn isotopes (Z=25), for which level lifetimes of the 7/2{sup -}{sub 1}, 9/2{sup -}{sub 1} and 11/2{sup -}{sub 1} states were determined (in {sup 61}Mn the assignment is only tentative). In addition, level lifetimes in {sup 63}Mn of the tentatively assigned (7/2{sup -}{sub 1}) and (9/2{sup -}{sub 1}) states were evaluated. The results are compared to shell-model calculations using the fp interaction KB3G as well as the state-of-the-art interaction LNPS-m. The present data indicates a structural change close to N=36. The experimental data for {sup 61}Mn suggests that the B(M1) value for the 7/2{sup -}{sub 1} → 5/2{sup -}{sub gs} is underestimated by the LNPS-m interaction when free g factors are used. In the second part of this thesis, a tool is presented which allows to generate γ-ray spectra of lifetime studies based on the electromagnetic Doppler-shift using empirical parameters. The tool is highly flexible which enables the incorporation of various experimental bounding conditions. It is applied to investigate the influence of velocity distributions on the lifetime analysis and results indicate that systematic deviations are minimized if distance-dependent mean recoil velocities are taken into account.

  8. Penning-trap mass spectrometry of radioactive, highly charged ions. Measurements of neutron-rich Rb and Sr nuclides for nuclear astrophysics and development of a novel Penning trap for cooling highly charged ions

    International Nuclear Information System (INIS)

    Simon, Vanessa Veronique

    2012-01-01

    High-precision atomic mass measurements are vital for the description of nuclear structure, investigations of nuclear astrophysical processes, and tests of fundamental symmetries. The neutron-rich A ∼ 100 region presents challenges for modeling the astrophysical r-process because of sudden nuclear shape transitions. This thesis reports on high-precision masses of short-lived neutron-rich 94,97,98 Rb and 94,97-99 Sr isotopes using the TITAN Penning-trap mass spectrometer at TRIUMF. The isotopes were charge-bred to q = 15+; uncertainties of less than 4 keV were achieved. Results deviate by up to 11σ compared to earlier measurements and extend the region of nuclear deformation observed in the A∼100 region. A parameterized r-process model network calculation shows that mass uncertainties for the elemental abundances in this region are now negligible. Although beneficial for the measurement precision, the charge breeding process leads to an increased energy spread of the ions on the order of tens of eV/q. To eliminate this drawback, a Cooler Penning Trap (CPET) has been developed as part of this thesis. The novel multi-electrode trap structure of CPET forms nested potentials to cool HCI sympathetically using either electrons or protons to increase the overall efficiency and precision of the mass measurement. The status of the off-line setup and initial commissioning experiments are presented.

  9. On the difference between proton and neutron spin-orbit splittings in nuclei

    International Nuclear Information System (INIS)

    Isakov, V.I.; Erokhina, K.I.; Mach, H.; Sanchez-Vega, M.; Fogelberg, B.

    2002-01-01

    The latest experimental data on nuclei at 132 Sn permit us for the first time to determine the spin-orbit splittings of neutrons and protons in identical orbits in this neutron-rich doubly magic region and compare the case to that of 208 Pb. Using the new results, which are now consistent for the two neutron-rich doubly magic regions, a theoretical analysis defines the isotopic dependence of the mean-field spin-orbit potential and leads to a simple explicit expression for the difference between the spin-orbit splittings of neutrons and protons. The isotopic dependence is explained in the framework of different theoretical approaches. (orig.)

  10. Lifetimes in neutron-rich Nd isotopes measured by Doppler profile method

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, I.; Lister, C.J.; Morss, L.R. [and others

    1995-08-01

    Lifetimes of the rotational levels in neutron-rich even-even Nd isotopes were deduced from the analysis of the Doppler broadened line shapes. The experiment was performed at Daresbury with the Eurogam array, which at that time consisted of 45 Compton-suppressed Ge detectors and 5 Low-Energy Photon Spectrometers. The source was in the form of a 7-mm pellet which was prepared by mixing 5-mg; {sup 248}Cm and 65-mg KCl and pressing it under high pressure. Events for which three or more detectors fired were used to construct a cubic data array whose axes represented the {gamma}-ray energies and the contents of each channel the number of events with that particular combination of {gamma}-ray energies. From this cubic array, one-dimensional spectra were generated by placing gates on peaks on the other two axes. Gamma-ray spectra of even-even Nd isotopes were obtained by gating on the transitions in the complimentary Kr fragments. The gamma peaks de-exciting states with I {>=} 12 h were found to be broader than the instrumental line width due to the Doppler effect. The line shapes of they-ray peaks were fitted separately with a simple model for the feeding of the states and assuming a rotational band with constant intrinsic quadruple moment and these are shown in Fig. I-27. The quadrupole moments thus determined were found to be in good agreement with the quadrupole moments measured previously for lower spin states. Because of the success of this technique for the Nd isotopes, we intend to apply this technique to the new larger data set collected with the Eurogam II array. The results of this study were published.

  11. Nuclei and quantum worlds

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    2000-01-01

    This document gathers the slides and their commentaries that have been presented at the conference 'physics and fundamental questions' by P. Chomaz. The author reviews the different quantum aspects of nuclei: tunnel effect, symmetries, magic numbers, wave functions, size, shapes and deformations. The author shows that nuclei are quantum objects of great complexity, their structures are not yet well understood and the study of exotic nuclei will continue bringing valuable information

  12. Study of a new magnetic dipole mode in the heavy deformed nuclei 154Sm, 156Gd, 158Gd, 164Dy, 168Er, and 174Yb by high-resolution electron spectroscopy

    International Nuclear Information System (INIS)

    Bohle, D.

    1985-01-01

    By inelastic electron scattering with high energy resolution a new magnetic dipole mode in heavy, deformed nuclei could be detected. For this the nuclei 154 Sm, 156 Gd, 158 Gd, 164 Dy, 168 Er, and 174 Yb were studied at the Darmstadt electron linear accelerator (DALINAC) at small momentum transfer q ≤ 0.6 fm -1 and low excitation energies. A collective magnetic dipole excitation could be discovered in all nuclei at an excitation energy of E x ≅ 66 δA -1/3 MeV whereby δ means the mass deformation. The transition strength extends in the mean to B(M1)↑ ≅ 1.3 μ N 2 . A systematic study of the nucleus 156 Gd yielded hints to a strong fragmentation of the magnetic dipole strength. A comparison of electron scattering, proton scattering, and nuclear resonance fluorescence experiments shows that the new mode is a pure orbital mode. (orig./HSI) [de

  13. Nuclei in high forms

    International Nuclear Information System (INIS)

    Szymanski, Z.; Berger, J.F.; Heenen, P.H.; Heyde, K.; Haas, B.; Janssens, R.; Paya, D.; Gogny, D.; Huber, G.; Bjoernholm, S.; Brack, M.

    1991-01-01

    The purpose of 1991 Joliot-Curie Summer School is to review the most advances in the understanding of the nuclei physics after the considerable progress in gamma spectroscopy. It covers the following topics: Highly and super-deformed nuclei, nuclear structures, mean-field approach and beyond, fission isomers, nuclear excitations with long lifetime and metal clusters

  14. Superdeformed nuclei

    International Nuclear Information System (INIS)

    Janssens, R.V.F.; Khoo, T.L.

    1991-01-01

    Superdeformation was first proposed some twenty years ago to explain the fission isomers observed in some actinide nuclei. It was later realized that superdeformed shapes can occur at high angular momentum in lighter nuclei. The interest in the mechanisms responsible for these exotic shapes has increased enormously with the discovery of a superdeformed band of nineteen discrete lines in 152 Dy (8). At about the same time, evidence for highly deformed nuclei (axis ratio 3:2) was also reported near 132 Ce(9). Striking properties emerged from the first experiments, such as the essentially constant energy spacing between transitions (picket-fence spectra), the unexpectedly strong population of superdeformed bands at high spins, and the apparent lack of a link between the superdeformed states and the yrast levels. These findings were reviewed by Nolan and Twin. The present article follows upon their work and discusses the wealth of information that has since become available. This includes the discovery of a new island of superdeformation near A = 190, the detailed spectroscopy of ground and excited bands in the superdeformed well near A = 150 and A = 190, the surprising occurrence of superdeformed bands with identical transition energies in nuclei differing by one or two mass units, and the improved understanding of mechanisms responsible for the feeding into and the decay out of the superdeformed states

  15. Investigation of the halo structure of exotic nuclei by direct reactions in inverse kinematics

    International Nuclear Information System (INIS)

    Egelhof, Peter

    2003-01-01

    Neutron-rich light nuclei near or at the neutron drip line have attracted much attention in recent years since there is clear evidence that they reveal a qualitatively new type of nuclear structure, namely an extended distribution of valence neutrons surrounding a compact nuclear core. A brief overview is given on this halo phenomenon, and on the various methods, which gave first evidence for, and qualitative confirmation of our present picture on halo nuclei

  16. Depletion of nuclear import protein karyopherin alpha 7 (KPNA7) induces mitotic defects and deformation of nuclei in cancer cells.

    Science.gov (United States)

    Vuorinen, Elisa M; Rajala, Nina K; Ihalainen, Teemu O; Kallioniemi, Anne

    2018-03-27

    Nucleocytoplasmic transport is a tightly regulated process carried out by specific transport machinery, the defects of which may lead to a number of diseases including cancer. Karyopherin alpha 7 (KPNA7), the newest member of the karyopherin alpha nuclear importer family, is expressed at a high level during embryogenesis, reduced to very low or absent levels in most adult tissues but re-expressed in cancer cells. We used siRNA-based knock-down of KPNA7 in cancer cell lines, followed by functional assays (proliferation and cell cycle) and immunofluorescent stainings to determine the role of KPNA7 in regulation of cancer cell growth, proper mitosis and nuclear morphology. In the present study, we show that the silencing of KPNA7 results in a dramatic reduction in pancreatic and breast cancer cell growth, irrespective of the endogenous KPNA7 expression level. This growth inhibition is accompanied by a decrease in the fraction of S-phase cells as well as aberrant number of centrosomes and severe distortion of the mitotic spindles. In addition, KPNA7 depletion leads to reorganization of lamin A/C and B1, the main nuclear lamina proteins, and drastic alterations in nuclear morphology with lobulated and elongated nuclei. Taken together, our data provide new important evidence on the contribution of KPNA7 to the regulation of cancer cell growth and the maintenance of nuclear envelope environment, and thus deepens our understanding on the impact of nuclear transfer proteins in cancer pathogenesis.

  17. New excitation modes in halo nuclei

    International Nuclear Information System (INIS)

    Sagawa, H.

    1992-01-01

    Multipole resonances in exotic neutron-rich nuclei are addressed on the basis of microscopic calculations, i.e., in the framework of the self-consistent H-F + RPA theory. A bunch of resonances with multipoles J π = 0 + , 1 - and 2 + is found near the particle threshold E x ∼ 1 MeV in 10 He having significant portions of the sum rule values and narrow widths. The long tail of the loosely-bound neutrons is the cause of the threshold anomaly of these resonances

  18. Shell model calculations for exotic nuclei

    International Nuclear Information System (INIS)

    Brown, B.A.; Wildenthal, B.H.

    1991-01-01

    A review of the shell-model approach to understanding the properties of light exotic nuclei is given. Binding energies including p and p-sd model spaces and sd and sd-pf model spaces; cross-shell excitations around 32 Mg, including weak-coupling aspects and mechanisms for lowering the ntw excitations; beta decay properties of neutron-rich sd model, of p-sd and sd-pf model spaces, of proton-rich sd model space; coulomb break-up cross sections are discussed. (G.P.) 76 refs.; 12 figs

  19. Study of ground-state configuration of neutron-rich aluminium isotopes through electromagnetic excitation

    International Nuclear Information System (INIS)

    Chakraborty, S.; Datta Pramanik, U.; Chatterjee, S.

    2013-01-01

    The region of the nuclear chart around neutron magic number, N∼20 and proton number (Z), 10≤ Z≤12 is known as the Island of Inversion. The valance neutron(s) of these nuclei, even in their ground state, are most likely occupying the upper pf orbitals which are normally lying above sd orbitals, N∼20 shell closure. Nuclei like 34,35 Al are lying at the boundary of this Island of Inversion. Little experimental information about their ground state configuration are available in literature

  20. Structure of the β-strength function in heavy nuclei and its influence on the β-delayed fission

    International Nuclear Information System (INIS)

    Wene, C.O.; Isosimow, I.N.; Naumow, Y.W.; Klapdor, H.V.

    1978-01-01

    The shape of the beta strength function Ssub(β) for neutron-rich nuclei is discussed. The structure of Ssub(β) is calculated microscopically for the GT-β-decay of 236 , 238 Pa and is shown to be decisive for the probability for β-delayed fission. (orig.) [de

  1. Beta decay of twelve light neutron-rich isotopes from 17C to 40S

    International Nuclear Information System (INIS)

    Dufour, J.P.; Del Moral, R.; Fleury, A.; Hubert, F.; Jean, D.; Pravikoff, M.S.; Geissel, H.; Schmidt, K.H.

    1986-07-01

    The results reported here have been obtained with an 40 Argon beam on a Be target. The separated nuclei were implanted in a catcher foil placed in between a thin scintillator detecting the betas and a high volume Ge detector; only gammas in coincidence with betas were recorded. Results for the gamma energies and the half-lives of the observed isotopes are given

  2. Study of the elastic scattering and of the (p,n) charge exchange reaction with neutron-rich light exotic beams; Etude de la diffusion elastique et de la reaction d`echange de charge (p,n) avec des faisceaux exotiques legers riches en neutrons

    Energy Technology Data Exchange (ETDEWEB)

    Cortina Gil, D.

    1996-07-05

    We have measured at GANIL, with the high resolution spectrometer SPEG, the elastic scattering of several neutron rich secondary beams ({sup 6}He, {sup 10}Be and {sup 11}Be) on a polypropylene target and the charge exchange reaction p({sup 6}He, {sup 6}Li)n. These exotic beams were produced by nuclear fragmentation and re-focalized with the SISSI device (superconducting solenoids). The signature of a halo structure in these nuclei has been analysed. Special attention has been paid to several aspects of the associated calculations namely, the proton and neutron density distributions and the small binding energy for the last nucleons in these exotic nuclei. Break-up mechanisms are seen to play an important role in these nuclei. 100 refs.

  3. Nuclear spectroscopy of neutron rich A = 147 nuclides: decay of 147Cs, 147Ba and 147La

    International Nuclear Information System (INIS)

    Shmid, M.; Chu, Y.Y.; Gowdy, G.M.

    1981-01-01

    A study of the beta decay of neutron rich nuclides of the A = 147 chain was carried out at the TRISTAN isotope separator. Half lives of 14 'Cs, 147 Ba and 147 La were measured. Six gamma lines are assigned to 147 Cs decay. A decay scheme for 147 Ba with levels up to 2 MeV is proposed for the first time. A partial decay scheme for 147 La is proposed, which confirms the previously existing one, with five new levels added from the present work

  4. Hyperfine structure and isotope shift of the neutron-rich barium isotopes 139-146Ba and 148Ba

    International Nuclear Information System (INIS)

    Wendt, K.; Ahmad, S.A.; Klempt, W.; Neugart, R.; Otten, E.W.

    1988-01-01

    The hyperfine structure and isotope shift in the 6s 2 S 1/2 -6p 2 P 3/2 line of Ba II (455.4 nm) have been measured by collinear fast-beam laser spectroscopy for the neutron-rich isotopes 139-146 Ba and 148 Ba. Nuclear moments and mean square charge radii of these isotopes have been recalculated. The isotope shift of the isotope 148 Ba (T 1/2 = 0.64 s) could be studied for the first time, yielding δ 2 > 138,148 = 1.245(3) fm 2 . (orig.)

  5. Decay properties of nuclei close to Z = 108 and N = 162

    International Nuclear Information System (INIS)

    Dvorak, Jan

    2007-01-01

    stability in this area of the heaviest known elements and provide an important reference point for theoretical models. The measurement of the production cross sections at five beam energies allowed the evaluation of excitation functions for the 3-5n evaporation channels at the few picobarn level. Experimental data indicate a surprising cross section enhancement at sub-barrier energies due to the deformation of the target nucleus. This opens prospects for the search for the 3n evaporation channel products in nuclear reactions with actinide targets, induced with light neutron rich projectiles. (orig.)

  6. Intruder states in sd-shell nuclei: from 1p-1t to np-nt in Si isotopes

    International Nuclear Information System (INIS)

    Goasduff, A.

    2012-01-01

    New large-scale shell-model calculations with full 1ℎω valence space for the sd-nuclei has been used for the first time to predict lifetimes of positive and negative parity states in neutron rich Si isotopes. The predicted lifetimes (1 - 100 ps) fall in the range of the differential Doppler shift method. Using the demonstrator of the European next generation γ-ray array, AGATA, in coincidence with the large acceptance PRISMA magnetic spectrometer from LNL (Legnaro) and the differential plunger of the University of Cologne, lifetimes of excited states in 32;33 Si and 35;36 S nuclei were measured. In a second step, the nℎω structure in the stable 28 Si nucleus was also studied. 28 Si is an important nucleus in order to understand the competition between mean-field and cluster structures. It displays a wealth of structures in terms of deformation and clustering. Light heavy-ion resonant radiative capture 12 C+ 16 O has been performed at energies below the Coulomb barrier. The measure γ-spectra indicate for the first time at these energies that the strongest part of the resonance decay proceeds though intermediate states around 10 MeV. Comparisons with previous radiative capture studies above the Coulomb barrier have been performed and the results have been interpreted in terms of a favoured feeding of T=1 states in the 28 Si self-conjugate nucleus. (author)

  7. A new spin-oriented nuclei facility: POLAREX

    Directory of Open Access Journals (Sweden)

    Etilé A.

    2014-03-01

    Full Text Available Using the On-Line Nuclear Orientation method, POLAREX (POLARization of EXotic nuclei is a new facility allowing to study the anisotropic decay of spin-oriented nuclei. Based on the combination of on-line implantation of radioactive nuclei with Low Temperature Nuclear Orientation technique and Nuclear Magnetic Resonance, POLAREX allows to measure nuclear electromagnetic moments and ground-state spins, in the aim to get information about the wave function composition of the nuclear state. Polarized nuclei can also be used to study fundamental interactions involving nuclear β-decay asymmetries. The POLAREX infrastructure will be installed at Accélérateur Linéaire auprés du Tandem d’Orsay in order to study neutron-rich nuclei, some of which have not been studied yet. Will be presented here, all the possibilities of this new facility and a non exhaustive scientific program.

  8. Study of yrast bands and electromagnetic properties in neutron-rich 114-128Cd isotopes

    Science.gov (United States)

    Chaudhary, Ritu; Pandit, Rakesh K.; Devi, Rani; Khosa, S. K.

    2018-02-01

    The projected shell model framework has been employed to carry out a systematic study on the deformation systematics of E (21+) and E (41+) / E (21+) values, BCS subshell occupation numbers, yrast spectra, backbending phenomena and electromagnetic quantities in 114-128Cd isotopes. Present calculations reproduce the observed systematics of the E (21+), R42 and B (E 2 ;2+ →0+) values for 114-128Cd isotopic mass chain and give the evidence that deformation increases as one moves from 114Cd to 118Cd, thereafter it decreases up to 126Cd. This in turn confirms 118Cd to be the most deformed nucleus in this set of isotopic mass chain. The emergence of backbending, decrease in B (E 2) values and change in g-factors in all these isotopes are intimately related to the crossing of g-band by 2-qp bands.

  9. Nuclear structure of neutron rich gallium, germanium and arsenic around N=50 and development of a laser ion source at ALTO

    International Nuclear Information System (INIS)

    Tastet, B.

    2011-01-01

    During this thesis, we have studied β decays of gallium's nuclei around N=50 and prepared a laser ionization source at ALTO.The production of exotic isotopes has brought new beam production challenges. The one addressed here relates to the elimination of isobar contaminants that create background for experiments. To address this issue a laser ionization source has been developed at ALTO. Copper has been chosen to be the first element to be ionized for physical interests and to compare the results of the laser ionization source with the ones at others facilities. A laser setup has been installed and optimized in order to ionize selectively the atoms of copper produced for experiments. After the optimization, a test of ionization of stable-copper was performed. This test has shown us that the laser system is able to successfully ionize atoms of copper.The studies of the region of the neutron-rich nuclei around N=50 are still to complete. 79,80,82,83,84,85 Ga has been produced using photo-nuclear reactions at the experimental area of the on-line PARRNe mass-separator operating with the ALTO facility. The fission fragments are produced at the interaction of the 50 MeV electron beam delivered by the ALTO linear accelerator with a thick target of uranium in a standard UC x form. The oven is connected to a W ionizer heated up to 2000 C degrees that selectively ionizes alkalis but also elements with low ionization potentials such as Ga. The ions are accelerated through 30 kV and magnetically mass-separated before being implanted on a mylar tape close to the detection setup, so that this system allows us to study β and β-n decays of 79,80,82,83,84,85 Ga.The data analysis have produced new results concerning the decays of 80 Ga, 84 Ga and 84 Ge. For 80 Ga, the existence of an isomeric state has been confirmed and two different half-lives were measured for the ground state and the isomer. Furthermore, the analysis of 84 Ga decay confirmed two states and allowed us to

  10. Study of neutron-rich Mo isotopes by the projected shell model ...

    Indian Academy of Sciences (India)

    But because of the low statistics and contamination, it was not possible to calculate g exp .... violated in the deformed single-particle states is fully restored by the angular-momentum- projection method ...... the yrast states have composite structure. ..... [14] M Liang, H Ohm, B De Sutter and K Sistemich, Z. Phys. A 344, 357 ...

  11. Relativistic exotic nuclei as projectile beams. New perspectives of studies on the properties of nuclei

    International Nuclear Information System (INIS)

    Geissel, H.

    1997-03-01

    Examinations of the production cross-sections and the kinematics permitted refinement of model concepts of the peripheral reactions in exotic nuclei at energies from 100 to 1000 A MeV. Due to the strong selectivity and resolution achieved it was possible to discover a large number of novel isotopes at the fragment separator FRS, despite the relatively low projectile beam intensities of the SIS. The two twice magic nuclei found, Ni 78 and Sn 100, are particularly interesting, as they could not be measured so far with other experimental systems. Fission of relativistic uranium ions proved to be a particularly successful process yielding many medium-heavy, neutron-rich nuclei. Insight into the structure of light neutron halos could be improved. The superlarge spatial dimensions of the nuclear halos is discussed. (orig./CB) [de

  12. The shape of nuclei

    International Nuclear Information System (INIS)

    Mackintosh, R.S.

    1977-01-01

    For the class of nuclei which are 'strongly deformed' it is possible to introduce the idea of an empirically measurable static nuclear shape. The limitations of this concept as applied to nuclei (fundamentally quantum-mechanical objects) are discussed. These are basically the limitations of the rotational model which must be introduced in order to define and measure nuclear shape. A unified discussion of the ways in which the shape has been parametrized is given with emphasis on the fact that different parametrizations correspond to different nuclear structures. Accounts of the various theoretical procedures for calculating nuclear shapes and of the interaction between nuclear shapes and nuclear spectroscopy are given. A coherent account of a large subset of nuclei (strongly deformed nuclei) can be given by means of a model in which the concept of nuclear shape plays a central role. (author)

  13. High-spin structure of the neutron-rich sup 1 sup 0 sup 9 sup , sup 1 sup 1 sup 1 sup , sup 1 sup 1 sup 3 sup sub 4 sup sub 5 Rh isotopes

    CERN Document Server

    Venkova, T; Bauchet, A; Deloncle, I; Astier, A; Buforn, N; Meyer, M; Prevost, A; Redon, N; Stezowski, O; Lalkovski, S; Donadille, L; Dorvaux, O; Gall, B J P; Schulz, N; Lucas, R; Minkova, A

    2002-01-01

    The sup 1 sup 0 sup 9 sup , sup 1 sup 1 sup 1 sup , sup 1 sup 1 sup 3 Rh nuclei have been produced as fission fragments in the fusion reaction sup 1 sup 8 O + sup 2 sup 0 sup 8 Pb at 85 MeV. Their level schemes have been built from gamma-rays detected using the Euroball IV array. High-spin states of the neutron-rich sup 1 sup 1 sup 1 sup , sup 1 sup 1 sup 3 Rh nuclei have been identified for the first time. Several rotational bands with the odd proton occupying the pi g sub 9 sub / sub 2 , pi p sub 1 sub / sub 2 and pi(g sub 7 sub / sub 2 /d sub 5 sub / sub 2) sub-shells have been observed. A band of low-energy transitions has been identified at excitation energy around 2 MeV in sup 1 sup 0 sup 9 sup , sup 1 sup 1 sup 1 Rh, which can be interpreted in terms of three-quasiparticle excitation, pi g sub 9 sub / sub 2 nu h sub 1 sub 1 sub / sub 2 nu g sub 7 sub / sub 2 /d sub 5 sub / sub 2. In addition another structure built on states located at low excitation energy (608 keV in sup 1 sup 1 sup 1 Rh, 570 keV in ...

  14. Study of the production of neutron-rich isotope beams issuing from fissions induced by fast neutrons; Etude de la production de faisceaux riches en neutrons par fission induite par neutrons rapides

    Energy Technology Data Exchange (ETDEWEB)

    Lau, Ch

    2000-09-15

    This work is a contribution to the PARRNe project (production of radioactive neutron-rich isotopes). This project is based on the fission fragments coming from the fission of 238-uranium induced by fast neutrons. The fast neutron flux is produced by the collisions of deutons in a converter. Thick targets of uranium carbide and liquid uranium targets have been designed in order to allow a quick release of fission fragments. A device, able to trap on a cryogenic thimble rare gas released by the target, has allowed the production of radioactive nuclei whose half-life is about 1 second. This installation has been settled to different deuton accelerators in the framework of the European collaboration SPIRAL-2. A calibration experiment has proved the feasibility of fixing an ISOL-type isotope separator to a 15 MV tandem accelerator, this installation can provide 500 nA deutons beams whose energy is 26 MeV and be a valuable tool for studying fast-neutron induced fission. Zinc, krypton, rubidium, cadmium, iodine, xenon and cesium beams have been produced in this installation. The most intense beams reach 10000 nuclei by micro-coulomb for 26 MeV deutons. An extra gain of 2 magnitude orders can be obtained by using a more specific ion source and by increasing the thickness of the target. Another extra gain of 2 magnitude orders involves 100 MeV deutons.

  15. Production of neutron-rich isotopes by cold fragmentation in the reaction 197Au + Be at 950 A MeV

    International Nuclear Information System (INIS)

    Benlliure, J.; Pereira, J.; Schmidt, K.H.; Cortina-Gil, D.; Enqvist, T.; Heinz, A.; Junghans, A.R.; Farget, F.; Taieb, J.

    1999-09-01

    The production cross sections and longitudinal-momentum distributions of very neutron-rich isotopes have been investigated in the fragmentation of a 950 A MeV 179 Au beam in a beryllium target. Seven new isotopes ( 193 Re, 194 Re, 191 W, 192 W, 189 Ta, 187 Hf and 188 Hf) and the five-proton-removal channel were observed for the first time. The reaction mechanism leading to the formation of these very neutron-rich isotopes is explained in terms of the cold-fragmentation process. An analytical model describing this reaction mechanism is presented. (orig.)

  16. Microscopic study of low-lying yrast spectra and deformation ...

    Indian Academy of Sciences (India)

    73, No. 4. — journal of. October 2009 physics pp. 657–668. Microscopic study of low-lying yrast spectra and deformation systematics in neutron-rich. 98−106Sr isotopes ... with a large and rigid moment of inertia. 98Sr is predicted to have a ... 2 energy as neutron number N changes from 58 to 60. The onset of deformation in ...

  17. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1976-01-01

    Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra

  18. Precision mass measurements of neutron-rich Co isotopes beyond N =40

    Science.gov (United States)

    Izzo, C.; Bollen, G.; Brodeur, M.; Eibach, M.; Gulyuz, K.; Holt, J. D.; Kelly, J. M.; Redshaw, M.; Ringle, R.; Sandler, R.; Schwarz, S.; Stroberg, S. R.; Sumithrarachchi, C. S.; Valverde, A. A.; Villari, A. C. C.

    2018-01-01

    The region near Z =28 and N =40 is a subject of great interest for nuclear structure studies due to spectroscopic signatures in 68Ni suggesting a subshell closure at N =40 . Trends in nuclear masses and their derivatives provide a complementary approach to shell structure investigations via separation energies. Penning trap mass spectrometry has provided precise measurements for a number of nuclei in this region; however, a complete picture of the mass surfaces has so far been limited by the large uncertainty remaining for nuclei with N >40 along the iron (Z =26 ) and cobalt (Z =27 ) chains because these species are not available from traditional isotope separator online rare isotope facilities. The Low-Energy Beam and Ion Trap Facility at the National Superconducting Cyclotron Laboratory is the first and only Penning trap mass spectrometer coupled to a fragmentation facility and therefore presents the unique opportunity to perform precise mass measurements of these elusive isotopes. Here we present the first Penning trap measurements of Co,6968, carried out at this facility. Some ambiguity remains as to whether the measured values are ground-state or isomeric-state masses. A detailed discussion is presented to evaluate this question and to motivate future work. In addition, we perform ab initio calculations of ground-state and two-neutron separation energies of cobalt isotopes with the valence-space in-medium similarity renormalization group approach based on a particular set of two- and three-nucleon forces that predict saturation in infinite matter. We discuss the importance of these measurements and calculations for understanding the evolution of nuclear structure near 68Ni.

  19. β decay half-live measurement of 22 very neutron-rich isotopes in the Ti-Ni region

    International Nuclear Information System (INIS)

    Czajkowski, S.; Ameil, F.; Armbruster, P.; Donzaud, C.; Geissel, H.; Kozhuharov, C.; Schwab, W.; Bernas, M.; Dessagne, P.; Miehe, C.; Grewe, A.; Hanelt, E.; Heinz, A.; Jong, M. de; Steinhaeuser, S.; Janas, Z.

    1997-01-01

    Very neutron-rich Ti to Ni isotopes were produced in fragmentation of a 500 MeV/u 86 Kr primary beam on a Be target, separated using the Fragment Separator at GSI, and implanted in a set of PIN-diodes where β-decay particles were detected. From time-correlations analysis the unknown β-decay half-life of 22 isotopes were determined. Their values are within 10 -1 s. The β decay spectrum of 70 Co is presented as resulting from an analysis of the first β particle detected after ion implantation in the same detector. Also are presented the example of 3 β decay chains for 65 Mn and 66 Mn. The identification of such chains was instrumental in reducing the influence of background noise in the time correlation analysis while it allows life-time determinations of high confidence

  20. β Decay processes of neutron-rich isotopes of sodium and magnesium

    International Nuclear Information System (INIS)

    Guillemaud, D.

    1982-01-01

    The γ and n activities from the β decay of Na isotopes up to 34 Na, which are formed in high-energy fragmentation and analysed through mass-spectrometry techniques, are observed as well as those from their Mg descendants. Their intensities Isub(γ) and Isub(β) are measured; some radioactive half lives are determined. Delayed-neutron branching ratios Pn are measured. The existence of 35 Na is for the first time indicated. The position of the first excited 2 + level is taken as an indication of a stronger deformation for that isotope [fr