WorldWideScience

Sample records for deformed gum metal

  1. Nanodisturbances in deformed Gum Metal

    International Nuclear Information System (INIS)

    Gutkin, Mikhail Yu.; Ishizaki, Toshitaka; Kuramoto, Shigeru; Ovid'ko, Ilya A.

    2006-01-01

    Systematic experiments have been performed to characterize defect structures in deformed Gum Metal, a special titanium alloy with high strength, low Young's modulus, excellent cold workability and low resistance to shear in certain crystallographic planes. Results from high-resolution transmission electron microscopy characterization reveal nanodisturbances (planar nanoscopic areas of local shear) as typical elements of defect structures in deformed Gum Metal. A theoretical model is suggested describing nanodisturbances as nanoscale dipoles of non-conventional partial dislocations with arbitrary, non-quantized Burgers vectors. It is shown theoretically that the homogeneous generation of nanodisturbances is energetically favorable in Gum Metal, where they effectively carry plastic flow

  2. Deformation Mechanisms of Gum Metals Under Nanoindentation

    Science.gov (United States)

    Sankaran, Rohini Priya

    Gum Metal is a set of multi-component beta-Ti alloys designed and developed by Toyota Central R&D Labs in 2003 to have a nearly zero shear modulus in the direction. After significant amounts of cold-work (>90%), these alloys were found to have yield strengths at a significant fraction of the predicted ideal strengths and exhibited very little work hardening. It has been speculated that this mechanical behavior may be realized through an ideal shear mechanism as opposed to conventional plastic deformation mechanisms, such as slip, and that such a mechanism may be realized through a defect structure termed "nanodisturbance". It is furthermore theorized that for near ideal strength to be attained, dislocations need to be pinned at sufficiently high stresses. It is the search for these defects and pinning points that motivates the present study. However, the mechanism of plastic deformation and the true origin of specific defect structures unique to gum metals is still controversial, mainly due to the complexity of the beta-Ti alloy system and the heavily distorted lattice exhibited in cold worked gum metals, rendering interpretation of images difficult. Accordingly, the first aim of this study is to clarify the starting as-received microstructures of gum metal alloys through conventional transmission electron microscopy (TEM) and aberration-corrected high resolution scanning transmission electron microscopy with high-angle annular dark field detector (HAADF-HRSTEM) imaging. To elucidate the effects of beta-stability and starting microstructure on the deformation behavior of gum metals and thus to provide adequate context for potentially novel deformation structures, we investigate three alloy conditions: gum metal that has undergone solution heat treatment (STGM), gum metal that has been heavily cold worked (CWGM), and a solution treated alloy of nominal gum metal composition, but leaner in beta-stabilizing content (ST Ref-1). In order to directly relate observed

  3. Microscopic study of gum-metal alloys: A role of trace oxygen for dislocation-free deformation

    International Nuclear Information System (INIS)

    Nagasako, Naoyuki; Asahi, Ryoji; Isheim, Dieter; Seidman, David N.; Kuramoto, Shigeru; Furuta, Tadahiko

    2016-01-01

    A class of Ti–Nb–Ta–Zr–O alloys called gum metal are known to display high strength, low Young's modulus and high elastic deformability up to 2.5%, simultaneously, and considered to deform by a dislocation-free deformation mechanism. A trace of oxygen (∼1%) in gum metal is indispensable to realize such significant properties; however, the detailed mechanism and the role of the oxygen has not been understood. To investigate an effect of trace oxygen included in gum metal, first-principles calculations for gum-metal approximants including zirconium and oxygen are performed. Calculated results clearly indicate that oxygen site with less neighboring Nb atom is energetically favorable, and that Zr–O bonding has an important role to stabilize the bcc structure of gum metal. The three-dimensional atom-probe tomography (3-D APT) measurements for gum metal were also performed to identify compositional inhomogeneity attributed to the trace elements. From the 3-D APT measurements, Zr ions bonding with oxygen ions are observed, which indicates existence of Zr–O nano-clusters in gum metal. Consequently, it is found that (a) coexistence of Zr atom and oxygen atom improves elastical stability of gum metal, (b) inhomogeneous distribution of the compositions induced by the trace elements causes anisotropical change of shear moduli, and (c) Zr–O nano-clusters existing in gum metal are expected to be obstacles to suppress movemen of dislocations.

  4. Elastic properties of Gum Metal

    International Nuclear Information System (INIS)

    Kuramoto, Shigeru; Furuta, Tadahiko; Hwang, Junghwan; Nishino, Kazuaki; Saito, Takashi

    2006-01-01

    In situ X-ray diffraction measurements under tensile loading and dynamic mechanical analysis were performed to investigate the mechanisms of elastic deformation in Gum Metal. Tensile stress-strain curves for Gum Metal indicate that cold working substantially decreases the elastic modulus while increasing the yield strength, thereby confirming nonlinearity in the elastic range. The gradient of each curve decreased continuously to about one-third its original value near the elastic limit. As a result of this decrease in elastic modulus and nonlinearity, elastic deformability reaches 2.5% after cold working. Superelasticity is attributed to stress-induced martensitic transformations, although the large elastic deformation in Gum Metal is not accompanied by a phase transformation

  5. The deformation of Gum Metal through in situ compression of nanopillars

    International Nuclear Information System (INIS)

    Withey, E.A.; Minor, A.M.; Chrzan, D.C.; Morris, J.W.; Kuramoto, S.

    2010-01-01

    The name 'Gum Metal' has been given to a set of β-Ti alloys that achieve exceptional elastic elongation and, with appropriate preparation, appear to deform by a dislocation-free mechanism triggered by elastic instability at the limit of strength. We have studied the compressive deformation of these materials with in situ nanocompression in a quantitative stage in a transmission electron microscope. The samples studied are cylindrical nanopillars 80-250 nm in diameter. The deformation pattern is monitored in real time using bright-field microscopy, dark-field microscopy or electron diffraction. Interesting results include the following: (i) nanopillars approach, and in several examples appear to reach, ideal strength; (ii) in contrast to conventional crystalline materials, there is no substantial 'size effect' in pillar strength; (iii) the deformation mode is fine-scale with respect to the sample dimension, even in pillars of 100 nm size; (iv) shear bands ('giant faults') do form in some tests, but only after yield and plastic deformation; and (v) a martensitic transformation to the base-centered orthorhombic α'' phase is sometimes observed, but is an incidental feature of the deformation rather than a significant cause of it.

  6. The mechanism of strength and deformation in Gum Metal

    International Nuclear Information System (INIS)

    Furuta, T.; Kuramoto, S.; Morris, J.W.; Nagasako, N.; Withey, E.; Chrzan, D.C.

    2013-01-01

    Gum Metal” refers to β-Ti alloys that achieve exceptional elastic elongation and, with a specific alloy composition, appear to deform via a dislocation-free mechanism involving elastic instability at the limit of strength. This paper describes the current status of research on its strength, deformation mechanism and the possible role of stress-induced martensite. The theoretical basis for deformation at ideal strength is presented. The relevant experimental data is then discussed, including ex situ nanoindentation behavior and in situ pillar compression observed by transmission electron microscopy

  7. Transmission electron microscopy studies on nanometer-sized ω phase produced in Gum Metal

    International Nuclear Information System (INIS)

    Yano, Takaaki; Murakami, Yasukazu; Shindo, Daisuke; Hayasaka, Yuichiro; Kuramoto, Shigeru

    2010-01-01

    The morphology, numerical density and average spacing of the ω phase formed in Gum Metal, a Ti-based alloy showing unique mechanical properties, were studied by transmission electron microscopy. Based on dark-field image observations and precise thickness measurements using a thin-foil specimen, the average spacing of the nanometer-sized ω phase was determined to be 6 nm. This spacing appeared to be sufficiently small for trapping dislocations. The results are discussed in conjunction with the dislocation-free deformation mechanism proposed for Gum Metal.

  8. Thermomechanical Studies of Yielding and Strain Localization Phenomena of Gum Metal under Tension

    Directory of Open Access Journals (Sweden)

    Elżbieta A. Pieczyska

    2018-04-01

    Full Text Available This paper presents results of investigation of multifunctional β-Ti alloy Gum Metal subjected to tension at various strain rates. Digital image correlation was used to determine strain distributions and stress-strain curves, while infrared camera allowed for us to obtain the related temperature characteristics of the specimen during deformation. The mechanical curves completed by the temperature changes were applied to analyze the subsequent stages of the alloy loading. Elastic limit, recoverable strain, and development of the strain localization were studied. It was found that the maximal drop in temperature, which corresponds to the yield limit of solid materials, was referred to a significantly lower strain value in the case of Gum Metal in contrast to its large recoverable strain. The temperature increase proves a dissipative character of the process and is related to presence of ω and α″ phases induced during the alloy fabrication and their exothermic phase transformations activated under loading. During plastic deformation, both the strain and temperature distributions demonstrate that strain localization for higher strain rates starts nucleating just after the yield limit leading to specimen necking and rupture. Macroscopically, it is exhibited as softening of the stress-strain curve in contrast to the strain hardening observed at lower strain rates.

  9. Study of the nanostructure of Gum Metal using energy-filtered transmission electron microscopy

    International Nuclear Information System (INIS)

    Yano, T.; Murakami, Y.; Shindo, D.; Kuramoto, S.

    2009-01-01

    The nanostructure of Gum Metal, which has many anomalous mechanical properties, was investigated using transmission electron microscopy with energy filtering. A precise analysis of the weak diffuse electron scattering that was observed in the electron diffraction patterns of the Gum Metal specimen revealed that Gum Metal contains a substantial amount of the nanometer-sized ω phase. The morphology of the ω phase appeared to have a correlation with the faulting in the {2 1 1} planes, which are one of the characteristic lattice imperfections of the Gum Metal specimen. It is likely that the nanometer-sized ω phase may be a type of obstacle related to the restriction of the dislocation movement, which has been a significant problem in research on Gum Metal

  10. Evaluation on Bending Properties of Biomaterial GUM Metal Meshed Plates for Bone Graft Applications

    Science.gov (United States)

    Suzuki, Hiromichi; He, Jianmei

    2017-11-01

    There are three bone graft methods for bone defects caused by diseases such as cancer and accident injuries: Autogenous bone grafts, Allografts and Artificial bone grafts. In this study, meshed GUM Metal plates with lower elasticity, high strength and high biocompatibility are introduced to solve the over stiffness & weight problems of ready-used metal implants. Basic mesh shapes are designed and applied to GUM Metal plates using 3D CAD modeling tools. Bending properties of prototype meshed GUM Metal plates are evaluated experimentally and analytically. Meshed plate specimens with 180°, 120° and 60° axis-symmetrical types were fabricated for 3-point bending tests. The pseudo bending elastic moduli of meshed plate specimens obtained from 3-point bending test are ranged from 4.22 GPa to 16.07 GPa, within the elasticity range of natural cortical bones from 2.0 GPa to 30.0 GPa. Analytical approach method is validated by comparison with experimental and analytical results for evaluation on bending property of meshed plates.

  11. Deformation limits of polymer coated metal sheets

    NARCIS (Netherlands)

    Van Den Bosch, M.J.W.J.P.; Schreurs, P.J.G; Geers, M.G.D.

    2005-01-01

    Polymer coated metals are increasingly used by the packaging and automotive industry. During industrial deformation processes (drawing, roll-forming, bending etc.) the polymer-metal laminate is highly deformed at high deformation rates. These forming conditions can affect the mechanical integrity

  12. Superelastic load cycling of Gum Metal

    International Nuclear Information System (INIS)

    Vorontsov, V.A.; Jones, N.G.; Rahman, K.M.; Dye, D.

    2015-01-01

    The superelastic beta titanium alloy, Gum Metal, has been found to accumulate plastic strain during tensile load cycling in the superelastic regime. This is evident from the positive drift of the macroscopic stress vs. strain hysteresis curve parallel to the strain axis and the change in its geometry subsequent to every load–unload cycle. In addition, there is a progressive reduction in the hysteresis loop width and in the stress at which the superelastic transition occurs. In situ synchrotron X-ray diffraction has shown that the lattice strain exhibited the same behaviour as that observed in macroscopic measurements and identified further evidence of plastic strain accumulation. The mechanisms responsible for the observed behaviour have been evaluated using transmission electron microscopy, which revealed a range of different defects that formed during load cycling. The formation of these defects is consistent with the classical mathematical theory for the bcc to orthorhombic martensitic transformation. It is the accumulation of these defects over time that alters its superelastic behaviour

  13. Plastic Deformation of Metal Surfaces

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2013-01-01

    of metal components. An optimization of processes and material parameters must be based on a quantification of stress and strain gradients at the surface and in near surface layer where the structural scale can reach few tens of nanometers. For such fine structures it is suggested to quantify structural...... parameters by TEM and EBSD and apply strength-structural relationships established for the bulk metal deformed to high strains. This technique has been applied to steel deformed by high energy shot peening and a calculated stress gradient at or near the surface has been successfully validated by hardness...

  14. Studies on the optimization of deformation processed metal metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, Tim W. [Iowa State Univ., Ames, IA (United States)

    1994-01-04

    A methodology for the production of deformation processed metal metal matrix composites from hyper-eutectic copper-chromium alloys was developed. This methodology was derived from a basic study of the precipitation phenomena in these alloys encompassing evaluation of microstructural, electrical, and mechanical properties. The methodology developed produces material with a superior combination of electrical and mechanical properties compared to those presently available in commercial alloys. New and novel alloying procedures were investigated to extend the range of production methods available for these material. These studies focused on the use of High Pressure Gas Atomization and the development of new containment technologies for the liquid alloy. This allowed the production of alloys with a much more refined starting microstructure and lower contamination than available by other methods. The knowledge gained in the previous studies was used to develop two completely new families of deformation processed metal metal matrix composites. These composites are based on immissible alloys with yttrium and magnesium matrices and refractory metal reinforcement. This work extends the physical property range available in deformation processed metal metal matrix composites. Additionally, it also represents new ways to apply these metals in engineering applications.

  15. Preparation and characterization of gum karaya hydrogel nanocomposite flocculant for metal ions removal from mine effluents

    CSIR Research Space (South Africa)

    Fosso-Kankeu, E

    2016-02-01

    Full Text Available This research paper reports the removal of heavy metal ions from mine effluents using the gum karaya (GK)-grafted poly(acrylamide-co-acrylic acid) incorporated iron oxide magnetic nanoparticles (Fe3O4 MNPs) hydrogel nanocomposite [i.e., GK...

  16. Neem gum as a binder in a formulated paracetamol tablet with reference to Acacia gum BP.

    Science.gov (United States)

    Ogunjimi, Abayomi Tolulope; Alebiowu, Gbenga

    2014-04-01

    This study determined the physical, compressional, and binding properties of neem gum (NMG) obtained from the trunk of Azadirachta indica (A Juss) in a paracetamol tablet formulation in comparison with official Acacia gum BP (ACA). The physical and flow properties were evaluated using density parameters: porosity, Carr's index, Hausner's ratio, and flow rate. Compressional properties were analyzed using Heckel and Kawakita equations. The tensile strength, brittle fracture index, and crushing strength-friability/disintegration time ratio were used to evaluate the mechanical properties of paracetamol tablets while the drug release properties of the tablets were assessed using disintegration time and dissolution times. Tablet formulations containing NMG exhibited faster onset and higher amount of plastic deformation during compression than those containing ACA. Neem gum produced paracetamol tablets with lower mechanical strength; however, the tendency of the tablets to cap or laminate was lower when compared to those containing ACA. Inclusion of NMG improved the balance between binding and disintegration properties of paracetamol tablets produced than those containing ACA. Neem gum produced paracetamol tablets with lower disintegration and dissolution times than those containing ACA.

  17. Deformed metals - structure, recrystallisation and strength

    DEFF Research Database (Denmark)

    Hansen, Niels; Juul Jensen, Dorte

    2011-01-01

    It is shown how new discoveries and advanced experimental techniques in the last 25 years have led to paradigm shifts in the analysis of deformation and annealing structures of metals and in the way the strength of deformed samples is related to structural parameters. This is described in three...

  18. Structure of deformed metals. Struktura deformirovannykh metallov

    Energy Technology Data Exchange (ETDEWEB)

    Bernshtein, M L

    1977-01-01

    A teaching aid for students at metallurgical and machine-building institutions of higher learning. It can also be used by engineering-technical personnel and scientists. A presentation is made of physical concepts on the mechanism of plastic deformation and its effect on fine structure, structure and properties of metals and alloys. An examination is made of the processes of recovery, polygonization and recrystallization during the heating of cold-deformed metals. The influence of thermal deformation is described to account for the interaction between admixture atoms and dislocations, phase and structural transformations. An examination is made of the phenomenon of superplasticity. Special attention is given to the process of hot deformation. An analysis is made of phenomena at the basis of hardening steel as a result of thermo-mechanical processing, including controlled rolling.

  19. Plastic Deformation of Pressured Metallic Glass

    Directory of Open Access Journals (Sweden)

    Yun Cheng

    2017-11-01

    Full Text Available Although pressured metallic glass (MG has been reported in the literature; there are few studies focusing on pressure effects on the structure; dynamics and its plastic deformation. In this paper; we report on and characterize; via molecular dynamics simulation, the structure and dynamics heterogeneity of pressured MGs, and explore a causal link between local structures and plastic deformation mechanism of pressured glass. The results exhibit that the dynamical heterogeneity of metallic liquid is more pronounced at high pressure, while the MGs were less fragile after the release of external pressure, reflected by the non-Gaussian parameter (NGP. High pressure glass shows better plastic deformation; and the local strain zone distributed more uniformly than of in normal glass. Further research indicates that although the number of icosahedrons in pressured glass was much larger than that in normal glass, while the interpenetrating connections of icosahedra (ICOI exhibited spatial correlations were rather poor; In addition, the number of ‘fast’ atoms indexed by the atoms’ moving distance is larger than that in normal glass; leading to the sharp decreasing in number of icosahedrons during deformation. An uniform distribution of ‘fast’ atoms also contributed to better plastic deformation ability in the pressured glass. These findings may suggest a link between the deformation and destruction of icosahedra with short-range order.

  20. Correlations between deformations, surface state and leak rate in metal to metal contact; Correlations entre deformations, etat de surface et debit de fuite au contact metal-metal

    Energy Technology Data Exchange (ETDEWEB)

    Armand, G; Lapujoulade, J; Paigne, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1963-07-01

    The study of metal to metal contact from the stand-point of the leak rate has been carried on a copper ring located between two hard-steel flanges. The analysis of the results confirms the hysteresis phenomenon already seen. Some curves (leak rate versus force and leak rate versus true deformation) in semi-logarithmic coordinates are straight lines. Likewise some curves (electrical contact resistance versus force) in bi-logarithmic coordinates are straight lines. All these results can be understood by looking at the conductance introduced by the deformations of the micro-geometry of the surfaces in contact. Some tests carried out in rising the temperature confirm these hypothesis. (authors) [French] L'etude du contact metal-metal du point de vue debit de fuite a ete poursuivie en utilisant un anneau de cuivre place entre brides d'acier dur. L'analyse des resultats confirme le phenomene d'hysteresis deja constate, montre l'influence de l'etat de surface des brides et du joint. Certaines courbes (debit de fuite/force et debit de fuite/deformation rationnelle), en coordonnees semi-logarithmiques, sont des droites. De meme, certaines courbes (resistance de contact/force) en coordonnees bi-logarithmiques, sont des droites. Ces resultats s'interpretent en considerant la conductance produite par la deformation des microgeometries des surfaces en contact. Quelques essais d'elevation de temperature confirment ces resultats. (auteurs)

  1. Low temperature uniform plastic deformation of metallic glasses during elastic iteration

    International Nuclear Information System (INIS)

    Fujita, Takeshi; Wang Zheng; Liu Yanhui; Sheng, Howard; Wang Weihua; Chen Mingwei

    2012-01-01

    Molecular dynamics simulations and dynamic mechanical analysis experiments were employed to investigate the mechanical behavior of metallic glasses subjected to iteration deformation in a nominally elastic region. It was found that cyclic deformation leads to the formation of irreversible shear transformation zones (STZs) and a permanent uniform strain. The initiation of STZs is directly correlated with the atomic heterogeneity of the metallic glass and the accumulated permanent strain has a linear relation with the number of STZs. This study reveals a new deformation mode and offers insights into the atomic mechanisms of STZ formation and low temperature uniform plastic deformation of metallic glasses.

  2. Collective excitations in deformed alkali metal clusters

    International Nuclear Information System (INIS)

    Lipparini, E.; Stringari, S.; Istituto Nazionale di Fisica Nucleare, Povo

    1991-01-01

    A theoretical study of collective excitations in deformed metal clusters is presented. Sum rules are used to study the splittings of the dipole surface plasma resonance originating from the cluster deformation. The vibrating potential model is developed and used to predict the occurrence of a low lying collective mode of orbital magnetic nature. (orig.)

  3. Computing elastic anisotropy to discover gum-metal-like structural alloys

    Science.gov (United States)

    Winter, I. S.; de Jong, M.; Asta, M.; Chrzan, D. C.

    2017-08-01

    The computer aided discovery of structural alloys is a burgeoning but still challenging area of research. A primary challenge in the field is to identify computable screening parameters that embody key structural alloy properties. Here, an elastic anisotropy parameter that captures a material's susceptibility to solute solution strengthening is identified. The parameter has many applications in the discovery and optimization of structural materials. As a first example, the parameter is used to identify alloys that might display the super elasticity, super strength, and high ductility of the class of TiNb alloys known as gum metals. In addition, it is noted that the parameter can be used to screen candidate alloys for shape memory response, and potentially aid in the optimization of the mechanical properties of high-entropy alloys.

  4. Hardening by annealing and softening by deformation in nanostructured metals

    DEFF Research Database (Denmark)

    Huang, X.; Hansen, N.; Tsuji, N.

    2006-01-01

    We observe that a nanostructured metal can be hardened by annealing and softened when subsequently deformed, which is in contrast to the typical behavior of a metal. Microstructural investigation points to an effect of the structural scale on fundamental mechanisms of dislocation-dislocation and ......We observe that a nanostructured metal can be hardened by annealing and softened when subsequently deformed, which is in contrast to the typical behavior of a metal. Microstructural investigation points to an effect of the structural scale on fundamental mechanisms of dislocation....... As a consequence, the strength decreases and the ductility increases. These observations suggest that for materials such as the nanostructured aluminum studied here, deformation should be used as an optimizing procedure instead of annealing....

  5. Texture-geometric deformational effects in some metal-hydrogen systems

    International Nuclear Information System (INIS)

    Spivak, L.V.; Kats, M.Ya.

    1992-01-01

    Possible deformation effects were studied in vanadium, tantalum, niobium, palladium and iron which occurred during electrolytic hydrogenation of specimens preliminarily deformed by torsion and then annealed. Noticeable texture-geometric effects were observed and related to the system tendency to enhance the degree of specimen form symmetry during hydrogenation. The latter was an off-beat realization of Le-Chatelier principle. It was assumed that the nature of deformation effects was connected with one of minimization channels for overall elastic stress fields in metals being hydrogenated. Some distinction was revealed in behaviour of 5a group metal, palladium and iron

  6. Room temperature creep behavior of Ti–Nb–Ta–Zr–O alloy

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Wei-dong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Liu, Yong, E-mail: yonliu@csu.edu.cn [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Wu, Hong; Lan, Xiao-dong [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Qiu, Jingwen [College of Electrical and Mechanical Engineering, Hunan University of Science and Technology, Xiangtan, Hunan 411201 (China); Hu, Te [State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083 (China); Tang, Hui-ping [State Key Laboratory of Porous Metal Materials, Northwestern Institute of Nonferrous Metal Research, Xi' an, Shaanxi 710012 (China)

    2016-08-15

    The room temperature creep behavior and deformation mechanisms of a Ti–Nb–Ta–Zr–O alloy, which is also called “gum metal”, were investigated with the nanoindentation creep and conventional creep tests. The microstructure was observed with electron backscattered diffraction analysis (EBSD) and transmission electron microscopy (TEM). The results show that the creep stress exponent of the alloy is sensitive to cold deformation history of the alloy. The alloy which was cold swaged by 85% shows high creep resistance and the stress exponent is approximately equal to 1. Microstructural observation shows that creep process of the alloy without cold deformation is controlled by dislocation mechanism. The stress-induced α' martensitic phase transformation also occurs. The EBSD results show that the grain orientation changes after the creep tests, and thus, the creep of the cold-worked alloy is dominated by the shear deformation of giant faults without direct assistance from dislocations. - Highlights: •Nanoindentation was used to investigate room temperature creep behavior of gum metal. •The creep stress exponent of gum metal is sensitive to the cold deformation history. •The creep stress exponent of cold worked gum metal is approximately equal to 1. •The creep of the cold-worked gum metal is governed by the shear deformation of giant faults.

  7. Slip systems, dislocation boundaries and lattice rotations in deformed metals

    DEFF Research Database (Denmark)

    Winther, Grethe

    2009-01-01

    Metals are polycrystals and consist of grains, which are subdivided on a finer scale upon plastic deformation due to formation of dislocation boundaries. The crystallographic alignment of planar dislocation boundaries in face centred cubic metals, like aluminium and copper, deformed to moderate...... of the mechanical anisotropy of rolled sheets. The rotation of the crystallographic lattice in each grain during deformation also exhibits grain orientation dependence, originating from the slip systems. A combined analysis of dislocation boundaries and lattice rotations concludes that the two phenomena are coupled...

  8. Local microstructure and flow stress in deformed metals

    DEFF Research Database (Denmark)

    Zhang, Xiaodan; Hansen, Niels; Nielsen, Chris Valentin

    2017-01-01

    The microstructure and flow stress of metals are related through many well-known strength-structure relationships based on structural parameters, where grain size and dislocation density are examples. In heterogeneous structures, the local stress and strain are important as they will affect...... the bulk properties. A microstructural method is presented which allows the local stress in a deformed metal to be estimated based on microstructural parameters determined by an EBSD analysis. These parameters are the average spacing of deformation introduced boundaries and the fraction of high angle...... boundaries. The method is demonstrated for two heterogeneous structures: (i) a gradient (sub)surface structure in steel deformed by shot peening; (ii) a heterogeneous structure introduced by friction between a tool and a workpiece of aluminum. Flow stress data are calculated based on the microstructural...

  9. Research on geometrical model and mechanism for metal deformation based on plastic flow

    International Nuclear Information System (INIS)

    An, H P; Li, X; Rui, Z Y

    2015-01-01

    Starting with general conditions of metal plastic deformation, it analyses the relation between the percentage spread and geometric parameters of a forming body with typical machining process are studied. A geometrical model of deforming metal is set up according to the characteristic of a flowing metal particle. Starting from experimental results, the effect of technological parameters and friction between workpiece and dies on plastic deformation of a material were studied and a slippage deformation model of mass points within the material was proposed. Finally, the computing methods for strain and deformation energy and temperature rise are derived from homogeneous deformation. The results can be used to select technical parameters and compute physical quantities such as strain, deformation energy, and temperature rise. (paper)

  10. Electromigration-induced plastic deformation in passivated metal lines

    Science.gov (United States)

    Valek, B. C.; Bravman, J. C.; Tamura, N.; MacDowell, A. A.; Celestre, R. S.; Padmore, H. A.; Spolenak, R.; Brown, W. L.; Batterman, B. W.; Patel, J. R.

    2002-11-01

    We have used scanning white beam x-ray microdiffraction to study microstructural evolution during an in situ electromigration experiment on a passivated Al(Cu) test line. The data show plastic deformation and grain rotations occurring under the influence of electromigration, seen as broadening, movement, and splitting of reflections diffracted from individual metal grains. We believe this deformation is due to localized shear stresses that arise due to the inhomogeneous transfer of metal along the line. Deviatoric stress measurements show changes in the components of stress within the line, including relaxation of stress when current is removed.

  11. Three-dimensional phase-field simulation on the deformation of metallic glass nanowires

    International Nuclear Information System (INIS)

    Zhang, H.Y.; Zheng, G.P.

    2014-01-01

    Highlights: • 3D phase-field modeling is developed to investigate the deformation of MG nanowires. • The surface defects significantly affect the mechanical properties of nanowires. • Multiple shear bands are initiated from the surfaces of nanowires with D < 50 nm. - Abstract: It is very challenging to investigate the deformation mechanisms in micro- and nano-scale metallic glasses with diameters below several hundred nanometers using the atomistic simulation or the experimental approaches. In this work, we develop the fully three-dimensional phase-field model to bridge this gap and investigate the sample size effects on the deformation behaviors of metallic glass nanowires. The initial deformation defects on the surface are found to significantly affect the mechanical strength and deformation mode of nanowires. The improved ductility of metallic glass nanowires could be related with the multiple shear bands initiated from the nanowire surfaces

  12. Determination of parameters of microstructural inhomogeneity of metal deformation by the method of modelling

    International Nuclear Information System (INIS)

    Kornienko, V.T.

    1991-01-01

    A method is suggested to estimate microstructural non-uniformity of deformation in metals by means of modelling. This method includes measurement of deformation in metals by small-dimensioned dividing grid cells as well as calculation of parameters by means of model representation of microdeformation distribution. It is shown that the method of modelling gives an opportunity to objectively estimate deformation non-uniformity in metals irrespective of the selected dimension of a dividing grid cells. New structural characteristics: base and wave of variations, reflecting a degree of dividing or uniting grains in metals according to the non-uniformity of deformation are introduced

  13. Structural Changes in Deformed Soft Magnetic Ni-Based Metallic Glass

    NARCIS (Netherlands)

    Jurikova, A.; Csach, K.; Miskuf, J.; Ocelik, V.

    The effects of intensive plastic deformation of the soft magnetic metallic glass Ni Si 13 on the structural relaxation were examined. The enthalpy changes studied by differential scanning calorimetry revealed that the intensive plastic deformation was associated with the partial structural

  14. Measuring time-dependent deformations in metallic MEMS

    NARCIS (Netherlands)

    Bergers, L.I.J.C.; Hoefnagels, J.P.M.; Delhey, N.K.R.; Geers, M.G.D.

    2011-01-01

    The reliability of metallic microelectromechanical systems (MEMS) depends on time-dependent deformation such as creep. Key to this process is the interaction between microstructural length scales and dimensional length scales, so-called size-effects. As a first critical step towards studying these

  15. Herbal-caffeinated chewing gum, but not bubble gum, improves aspects of memory.

    Science.gov (United States)

    Davidson, Matthew G

    2011-08-01

    Research has shown that standard chewing gum can affect aspects of both attention and memory. The present study examined the effects of Think Gum®, a caffeinated-herbal chewing gum, on both concentration and memory using a series of paper-based and online testing. Compared to standard chewing gum and a no-gum control, chewing caffeinated-herbal gum during testing improved aspects of memory, but did not affect concentration. The findings suggest that caffeinated-herbal chewing gum is an effective memory aid. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Gum Disease

    Science.gov (United States)

    ... and gums isn't removed by good daily dental care, over time it will harden into a crust called calculus or tartar . Once tartar forms, it starts to destroy gum tissue, causing gums to bleed and pull away from the teeth. This is known as periodontitis (pronounced: pair-ee- ...

  17. Temperature dependency of the interaction between xanthan gum and sage seed gum: An interpretation of dynamic rheology and thixotropy based on creep test.

    Science.gov (United States)

    Razavi, Seyed M A; Behrouzian, Fataneh; Alghooneh, Ali

    2017-10-01

    The viscoelastic (transient and dynamic) and time-dependent rheological behaviors of XG (xanthan gum), SSG (sage seed gum) and their blends at various ratios (1-3, 1-1, and 3-1 SSG-XG) and temperatures (10, 30, and 50C) were investigated using creep and recovery analyses. The creep compliance was converted to stress relaxation data; then, the structural kinetic model satisfactorily fitted the time-dependent relaxation modulus. Furthermore, dynamic rheology of mixtures was investigated using creep analyses. The most important contribution of the Maxwell spring to deformation (53.51%), was that corresponding to the SSG at 50C and the most important contribution of the Maxwell dashpot to the maximum deformation, were those corresponding to the XG (61.44%) and 1-3 SSG-XG (58.91%) samples both at 50C. The breakdown rate constant ( α) of the crosslinked gum structure in SSG and 3-1 SSG-XG under the application of external shear stress increases with temperature from 10 to 50C in the range of 0.14-0.32 (1/s) and 0.14-0.24 (1/s), respectively, whereas other dispersions showed the reverse trend. Among all dispersions, only XG and 1-3 SSG-XG demonstrated crossover frequency at 9.95 and 31.47 rad/s, respectively, at 50C, indicative of the lowest entanglement density for 1-3 SSG-XG. The greatest interaction between SSG and XG occurred for 3-1 ratio at 50C, which was confirmed by the Han curves. Hydrocolloid blends, particularly those consisting of xanthan gum and a galactomannan from new source can provide a range of attractive textural properties. Rheological studies contribute to the description of the molecular structure and prediction of the structural changes during their manufacturing processes. Sage seed gum (SSG), as a polyelectrolyte galactomannan, has a great potential to exert stabilizing, thickening, gelling and binding properties in food, cosmetics, and pharmaceutical systems. Therefore, we elaborate the interactions between SSG and xanthan gum and also the

  18. Order and chaos in nuclear and metal cluster deformation

    International Nuclear Information System (INIS)

    Radu, S.

    1995-08-01

    The vast amount of nuclear and metal cluster data indicates that shell structure and deformation are two simultaneous properties. A conflicting situation is therefore encountered as the shell structure, a firm expression of order, is apparently not compatible with the non-integrable nature of the models incorporating deformation. The main issue covered in this thesis is the intricate connection between deformation and chaotic behaviour in deformation models pertinent to nuclear structure and metal cluster physics. It is shown that, at least in some cases, it is possible to reconcile the occurrence of shell structure with non-integrability. The coupling of an axially deformed harmonic oscillator to an axially symmetric octupole term renders the problem non-integrable. The chaotic character of the motion is strongly dependent on the type of deformation, in that a prolate shape shows virtually no chaos, while in an oblate case the motion exhibits fully developed chaos when the octupole term is switched on. Whereas the problem is non-integrable, the quantum mechanical spectrum nevertheless shows some shell structure in the prolate case for particular, yet fairly large octupole strengths; for spherical or oblate deformation the shell structure disappears. This result is explained in terms of classical periodic orbits which are found by employing the 'removal of resonances method'. Particular emphasis is put on the effect of the hexadecapole deformation which is important in fission processes. The combined effect of octupole and hexadecapole deformation leads to important conclusions for the experimental work as a high degree of ambiguity is signaled for the interpretation of data. The ambiguity results from the discovery of a mutual cancellation of the octupole and hexadecapole deformation in prolate superdeformed systems. The phenomenological Nilsson model is treated in a similar way. It is argued that while in nuclei it produces good results for the low-lying levels

  19. Atomic-scale simulations of the mechanical deformation of nanocrystalline metals

    DEFF Research Database (Denmark)

    Schiøtz, Jakob; Vegge, Tejs; Di Tolla, Francesco

    1999-01-01

    that the main deformation mode is sliding in the grain boundaries through a large number of uncorrelated events, where a few atoms (or a few tens of atoms) slide with respect to each other. Little dislocation activity is seen in the grain interiors. The localization of the deformation to the grain boundaries......Nanocrystalline metals, i.e., metals in which the grain size is in the nanometer range, have a range of technologically interesting properties including increased hardness and yield strength. We present atomic-scale simulations of the plastic behavior of nanocrystalline copper. The simulations show...

  20. Stability of surface plastic flow in large strain deformation of metals

    Science.gov (United States)

    Viswanathan, Koushik; Udapa, Anirduh; Sagapuram, Dinakar; Mann, James; Chandrasekar, Srinivasan

    We examine large-strain unconstrained simple shear deformation in metals using a model two-dimensional cutting system and high-speed in situ imaging. The nature of the deformation mode is shown to be a function of the initial microstructure state of the metal and the deformation geometry. For annealed metals, which exhibit large ductility and strain hardening capacity, the commonly assumed laminar flow mode is inherently unstable. Instead, the imposed shear is accommodated by a highly rotational flow-sinuous flow-with vortex-like components and large-amplitude folding on the mesoscale. Sinuous flow is triggered by a plastic instability on the material surface ahead of the primary region of shear. On the other hand, when the material is extensively strain-hardened prior to shear, laminar flow again becomes unstable giving way to shear banding. The existence of these flow modes is established by stability analysis of laminar flow. The role of the initial microstructure state in determining the change in stability from laminar to sinuous / shear-banded flows in metals is elucidated. The implications for cutting, forming and wear processes for metals, and to surface plasticity phenomena such as mechanochemical Rehbinder effects are discussed.

  1. Characteristic structures and properties of nanostructured metals prepared by plastic deformation

    DEFF Research Database (Denmark)

    Huang, Xiaoxu

    2011-01-01

    This chapter focuses on describing the characteristic microstructures of nanostructured metals produced by plastic deformation to ultrahigh strains and their correlation with hardening by annealing and softening by deformation. The results suggest that optimising microstructure and the mechanical...

  2. The effect of gamma irradiation on guar gum, locust bean gum, gum tragacanth and gum karaya

    International Nuclear Information System (INIS)

    King, Karen; Gray, Richard

    1993-01-01

    Changes in rheological properties, as measured by viscosity, of two galactomannans (guar gum and locust beam gum) and two acidic polysaccharides (gumtragacanth and gum karaya) were studied at a range of irradiation doses o C for 1 h was determined over a wide shear rate range. All samples showed pseudoplastic behaviour which approached Newtonian with increasing irradiation dose. Viscosities were calculated at a shear rate of 54 sec -1 to enable comparison across the samples. Both galactomannans showed a decrease in viscosity with increasing γ irradiation independent of temperature and a hypothesis is proposed that at low γ irradiation doses (<2 kGy) there is a reduction in polymer aggregation in solution, whereas at higher doses polymer hydrolysis occurs. Electron spin resonance spectroscopy data supports this hypothesis, with the detection of different free radicals at low and high irradiation doses. The viscosity of the acidic polysaccharides, gum karaya and gum tragacanth, following γ irradiation at low doses (<1 kGy) was unchanged or slightly higher when compared to the unirradiated control samples. Above 1 kGy dispersion viscosity decreased with increasing dose. For these polysaccharides chain hydrolysis seems to occur during irradiation at all doses resulting in an increase in the amount of soluble polymer and hence increased viscosity at low doses, whilst at high doses viscosity decreases due to extensive polymer hydrolysis. Similar electron spin resonance (ESR) spectra were obtained at low and high doses with a stronger signal at the higher dose. (Author)

  3. Immune reactivities against gums.

    Science.gov (United States)

    Vojdani, Aristo; Vojdani, Charlene

    2015-01-01

    Different kinds of gums from various sources enjoy an extremely broad range of commercial and industrial use, from food and pharmaceuticals to printing and adhesives. Although generally recognized as safe by the US Food and Drug Administration (FDA), gums have a history of association with sensitive or allergic reactions. In addition, studies have shown that gums have a structural, molecular similarity to a number of common foods. A possibility exists for cross-reactivity. Due to the widespread use of gums in almost every aspect of modern life, the overall goal of the current investigation was to determine the degree of immune reactivity to various gum antigens in the sera of individuals representing the general population. The study was a randomized, controlled trial. 288 sera purchased from a commercial source. The sera was screened for immunoglobulin G (IgG) and immunoglobulin E (IgE) antibodies against extracts of mastic gum, carrageenan, xantham gum, guar gum, gum tragacanth, locust bean gum, and β-glucan, using indirect enzyme-linked immunosorbent assay (ELISA) testing. For each gum antigen, inhibition testing was performed on the 4 sera that showed the highest IgG and IgE immune reactivity against the different gums used in the study. Inhibition testing on these same sera for sesame albumin, lentil, corn, rice, pineapple, peanut, pea protein, shrimp, or kidney bean was used to determine the cross-reactivity of these foods with the gum. Of the 288 samples, 4.2%-27% of the specimens showed a significant elevation in IgG antibodies against various gums. Only 4 of 288, or 1.4%, showed a simultaneous elevation of the IgG antibody against all 7 gum extracts. For the IgE antibody, 15.6%-29.1% of the specimens showed an elevation against the various gums. A significant percentage of the specimens, 12.8%, simultaneously produced IgE antibodies against all 7 tested extracts. Overall, the percentage of elevation in IgE antibodies against different gum extracts, with

  4. Anelastic deformation processes in metallic glasses and activation energy spectrum model

    NARCIS (Netherlands)

    Ocelik, [No Value; Csach, K; Kasardova, A; Bengus, VZ; Ocelik, Vaclav

    1997-01-01

    The isothermal kinetics of anelastic deformation below the glass transition temperature (so-called 'stress induced ordering' or 'creep recovery' deformation) was investigated in Ni-Si-B metallic glass. The relaxation time spectrum model and two recently developed methods for its calculation from the

  5. Micromechanical modeling of the deformation of HCP metals

    Energy Technology Data Exchange (ETDEWEB)

    Graff, S. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2008-12-04

    Nowadays, intense research is conducted to understand the relation between microstructural features and mechanical properties of hexagonal close-packed (hcp) metals. Due to their hexagonal structure, hcp metals exhibit mechanical properties such as strong anisotropy, which is more pronounced than for construction metals with cubic crystal structure, and tension/compression asymmetry. Deformation mechanisms in hcp metals, dislocation motion on specific slip systems and activation of twinning, are not yet completely understood. The purpose of this work is to link the physical mechanisms developing during deformation of magnesium (Mg) on the microscale with the macroscopic yielding properties of texture Mg samples. It will be shown that the mechanical behavior of hcp metals may be understood and reproduced with the help of a visco-plastic model for crystal plasticity and a phenomenological yield criterion with appropriate hardening behavior. The study of single crystal specimens subjected to channel die compression tests reveals the active slip systems and twinning systems of the material considered. The material anisotropy at mesoscale is reproduced by using adequate critical resolved shear stresses (CRSS) for the considered deformation mechanisms. In order to describe the macroscopic behavior, texture is incorporated into polycrystalline Representative Volume Elements (RVEs) and various mechanical properties of extruded bars and rolled plates can be predicted. For RVEs exhibiting the texture of rolled plates the numerical results reveal the plate's anisotropic yielding and hardening behavior on a mesoscale. In order to extend the modeling possibilities to process simulations and to allow for time-saving simulations of structural behavior, a phenomenological yield surface accounting for anisotropy and tension/compression asymmetry has been established and implemented in a finite element code. Its numerous model parameters are calibrated by an optimization

  6. Gummed-up memory: chewing gum impairs short-term recall.

    Science.gov (United States)

    Kozlov, Michail D; Hughes, Robert W; Jones, Dylan M

    2012-01-01

    Several studies have suggested that short-term memory is generally improved by chewing gum. However, we report the first studies to show that chewing gum impairs short-term memory for both item order and item identity. Experiment 1 showed that chewing gum reduces serial recall of letter lists. Experiment 2 indicated that chewing does not simply disrupt vocal-articulatory planning required for order retention: Chewing equally impairs a matched task that required retention of list item identity. Experiment 3 demonstrated that manual tapping produces a similar pattern of impairment to that of chewing gum. These results clearly qualify the assertion that chewing gum improves short-term memory. They also pose a problem for short-term memory theories asserting that forgetting is based on domain-specific interference given that chewing does not interfere with verbal memory any more than tapping. It is suggested that tapping and chewing reduce the general capacity to process sequences.

  7. New deformation model of grain boundary strengthening in polycrystalline metals

    International Nuclear Information System (INIS)

    Trefilov, V.I.; Moiseev, V.F.; Pechkovskij, Eh.P.

    1988-01-01

    A new model explaining grain boundary strengthening in polycrystalline metals and alloys by strain hardening due to localization of plastic deformation in narrow bands near grain boundaries is suggested. Occurrence of localized deformation is caused by different flow stresses in grains of different orientation. A new model takes into account the active role of stress concentrator, independence of the strengthening coefficient on deformation, influence of segregations. Successful use of the model suggested for explanation of rhenium effect in molybdenum and tungsten is alloys pointed out

  8. The effect of gamma irradiation on guar gum, locust bean gum, gum tragacanth and gum karaya

    Energy Technology Data Exchange (ETDEWEB)

    King, Karen (Department of Agriculture for Northern Ireland, Belfast (United Kingdom) Queen' s Univ., Belfast, Northern Ireland (United Kingdom)); Gray, Richard (Department of Agriculture for Northern Ireland, Belfast (United Kingdom))

    1993-02-01

    Changes in rheological properties, as measured by viscosity, of two galactomannans (guar gum and locust beam gum) and two acidic polysaccharides (gumtragacanth and gum karaya) were studied at a range of irradiation doses < 10 kGy. Powdered samples were irradiated, and the viscosity of a 1% dispersion prepared at room temperature or by heating to 80[sup o]C for 1 h was determined over a wide shear rate range. All samples showed pseudoplastic behaviour which approached Newtonian with increasing irradiation dose. Viscosities were calculated at a shear rate of 54 sec[sup -1] to enable comparison across the samples. Both galactomannans showed a decrease in viscosity with increasing [gamma] irradiation independent of temperature and a hypothesis is proposed that at low [gamma] irradiation doses (<2 kGy) there is a reduction in polymer aggregation in solution, whereas at higher doses polymer hydrolysis occurs. Electron spin resonance spectroscopy data supports this hypothesis, with the detection of different free radicals at low and high irradiation doses. The viscosity of the acidic polysaccharides, gum karaya and gum tragacanth, following [gamma] irradiation at low doses (<1 kGy) was unchanged or slightly higher when compared to the unirradiated control samples. Above 1 kGy dispersion viscosity decreased with increasing dose. For these polysaccharides chain hydrolysis seems to occur during irradiation at all doses resulting in an increase in the amount of soluble polymer and hence increased viscosity at low doses, whilst at high doses viscosity decreases due to extensive polymer hydrolysis. Similar electron spin resonance (ESR) spectra were obtained at low and high doses with a stronger signal at the higher dose. (Author).

  9. Gummed-up memory: Chewing gum impairs short-term recall

    OpenAIRE

    Kozlov, Michail D; Hughes, Robert W; Jones, Dylan M

    2012-01-01

    Several studies have suggested that short-term memory is generally improved by chewing gum. However, we report the first studies to show that chewing gum impairs short-term memory for both item order and item identity. Experiment 1 showed that chewing gum reduces serial recall of letter lists. Experiment 2 indicated that chewing does not simply disrupt vocal-articulatory planning required for order retention: Chewing equally impairs a matched task that required retention of list item identity...

  10. Microstructure, Properties and Atomic Level Strain in Severely Deformed Rare Metal Niobium

    Directory of Open Access Journals (Sweden)

    Lembit KOMMEL

    2012-12-01

    Full Text Available The mechanical and physical properties relationship from atomic level strain/stress causes dislocation density and electrical conductivity relationship, as well as crystallites deformation and hkl-parameter change in the severely deformed pure refractory rare metal Nb at ambient temperature and during short processing times. The above mentioned issues are discussed in this study. For ultrafine-grained and nanocrystalline microstructure forming in metal the equal-channel angular pressing and hard cyclic viscoplastic deformation were used. The flat deformation and heat treatment at different parameters were conducted as follows. The focused ion beam method was used for micrometric measures samples manufacturied under nanocrystalline microstructure study by transmission electron microscope. The microstructure features of metal were studied under different orientations by X-ray diffraction scattering method, and according to the atomic level strains, dislocation density, hkl-parameters and crystallite sizes were calculated by different computation methods. According to results the evolutions of atomic level strains/stresses, induced by processing features have great influence on the microstructure and advanced properties forming in pure Nb. Due to cumulative strain increase the tensile stress and hardness were increased significantly. In this case the dislocation density of Nb varies from 5.0E+10 cm–2 to 2.0E+11 cm–2. The samples from Nb at maximal atomic level strain in the (110 and (211 directions have the maximal values of hkl-parameters, highest tensile strength and hardness but minimal electrical conductivity. The crystallite size was minimal and relative atomic level strain maximal in (211 orientation of crystal. Next, flat deformation and heat treatment increase the atomic level parameters of severely deformed metal.DOI: http://dx.doi.org/10.5755/j01.ms.18.4.3091

  11. Even-Odd Differences and Shape Deformation of Metal Clusters

    OpenAIRE

    Hidetoshi, Nishioka; Yoshio, Takahashi; Department of Physics, Konan University; Faculty of General Education, Yamagata University

    1994-01-01

    The relation between even-odd difference of metal cluster and the deformation of equilibrium shape is studied in terms of two different models; (i) tri-axially deformed harmonic oscillator model, (ii) rectangular box model. Having assumed the matter density ρ kept constant for different shapes of a cluster, we can determine the equilibrium shape both for the two models. The enhancement of HOMO-LUMO gap is obtained and it is ascribed to Jahn-Teller effect. Good agreement of the calculated resu...

  12. Structural, thermal and rheological characterization of modified Dalbergia sissoo gum--A medicinal gum.

    Science.gov (United States)

    Munir, Hira; Shahid, Muhammad; Anjum, Fozia; Mudgil, Deepak

    2016-03-01

    Dalbergia sissoo gum was purified by ethanol precipitation. The purified gum was modified and hydrolyzed. Gum was modified by performing polyacrylamide grafting and carboxymethylation methods. The hydrolysis was carried out by using mannanase, barium hydroxide and trifluoroacetic acid. The modified and hydrolyzed gums were characterized using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and scanning electron microscopy (SEM). The decrease in viscosity was studied by performing the flow test. The modified and hydrolyzed gums were thermally stable as compared to crude gum. There was increase in crystallinity after modification and hydrolysis, determined through XRD. FTIR analysis exhibits no major transformation of functional group, only there was change in the intensity of transmittance. It is concluded that the modified and hydrolyzed gum can be used for pharmaceutical and food industry. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. High Strain Rate and Shock-Induced Deformation in Metals

    Science.gov (United States)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as

  14. Rheology of Rice Flour Dough with Gum Arabic: Small and Large-Deformation Studies, Sensory Assessment and Modeling.

    Science.gov (United States)

    Shanthilal, J; Bhattacharya, Suvendu

    2015-08-01

    The absence of gluten protein makes the rice flour doughs difficult to handle when flattened/sheeted products are to be prepared. The rheological, sensory and microstructural changes in rice flour doughs having gum Arabic (0% to 5%, w/w) and moisture contents (44% to 50%) were studied for improving the dough handling characteristics. Rheological parameters like storage modulus (G') and complex viscosity (η*) decreased with an increase in moisture content while loss angle (δ) increased. A power-law type equation was suitable to relate angular frequency (ω) with G', G", and η* (0.814 ≤ r ≤ 0.999, P ≤ 0.01). An increase in gum and moisture contents increased δ from 6.9° to 15.5° but decreased the energy required for compression/flattening. The 6-element spring-dashpot model was suitable (r ≥ 0.991, P ≤ 0.01) for creep curves. The sensory panel had the opinion that dough with a low to moderate hardness between 3 and 4, and stickiness of ≤ 3.5 was suitable for the purpose of flattening in relation to the preparation of sheeted/flattened products; the appropriate condition for dough formulation was with the moisture and gum contents of 47.0% to 47.9% and 1.55% to 2.25%, respectively to offer the desirability index between 0.50 and 0.52. The microstructure of the rice flour dough in the absence of gum Arabic appeared to possess loosely bound flour particles. The presence of gum provided a coating on flour particles to yield dough having good cohesive microstructure. © 2015 Institute of Food Technologists®

  15. Boundary-integral equation formulation for time-dependent inelastic deformation in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V; Mukherjee, S

    1977-01-01

    The mathematical structure of various constitutive relations proposed in recent years for representing time-dependent inelastic deformation behavior of metals at elevated temperatues has certain features which permit a simple formulation of the three-dimensional inelasticity problem in terms of real time rates. A direct formulation of the boundary-integral equation method in terms of rates is discussed for the analysis of time-dependent inelastic deformation of arbitrarily shaped three-dimensional metallic bodies subjected to arbitrary mechanical and thermal loading histories and obeying constitutive relations of the kind mentioned above. The formulation is based on the assumption of infinitesimal deformations. Several illustrative examples involving creep of thick-walled spheres, long thick-walled cylinders, and rotating discs are discussed. The implementation of the method appears to be far easier than analogous BIE formulations that have been suggested for elastoplastic problems.

  16. The Micromechanics of Deformation and Failure in Metal-Matrix Composites

    National Research Council Canada - National Science Library

    Needleman, Alan

    1997-01-01

    .... However, metal-matrix composites often have low ductility and low fracture toughness. An improved understanding of the basic deformation and failure mechanisms is needed to overcome these problems...

  17. High Rate Plastic Deformation and Failure of Tungsten-Sintered Metals

    National Research Council Canada - National Science Library

    Bjerke, Todd

    2004-01-01

    The competition between plastic deformation and brittle fracture during high rate loading of a tungsten-sintered metal is examined through impact experiments, post-experiment microscopy, and numerical simulation...

  18. High rate deformation of metallic liner and its dislocation description

    International Nuclear Information System (INIS)

    Prut, V.V.; Shybaev, S.A.

    1996-01-01

    The dynamics of deformation in cylindrical liners are studied experimentally and theoretically in Z-pinch geometry, where the cylinders are deformed by a magnetic field created by a current flowing along the axis. This method allows one to obtain one-dimensional deformation and a reliable recording of magnetic field and cylinder deformation. The experiments are performed with a current amplitude of 0.8-3 MA and a current rise time of 2.5-4 μs. Aluminium and copper tubes, from 4 to 6 mm in diameter and 0.25-1 mm wall thick, are compressed. The deformation rates under study are in the range of 10 5 -10 6 s -1 . The time dependence of the radii of the copper and aluminium tubes are measured with a streak camera and by the pulsed x-ray technique. The time resolution of the streak and x-ray photographs is 10-15 ns, their spatial resolution is 10-15 μm. A rheological model describing the dynamics of compression is developed. The model includes the description of the metal as a plastic medium with moving dislocations in the solid state, and as a viscous medium in the liquid state. The one-dimensional solution to magneto-hydrodynamical equations of the liner dynamics is compared with the experimental results and thus the following rheological parameters of the metal are obtained: β, the probability of dislocation generation in plastic deformation; and σ d , the drag stress, the parameter which characterizes a drag force acting on the dislocation. (Author)

  19. Adhesion along metal-polymer interfaces during plastic deformation

    NARCIS (Netherlands)

    van Tijum, R.; Vellinga, W. P.; De Hosson, J. Th. M.

    In this paper a numerical study is presented that concentrates on the influence of the interface roughness that develops during plastic deformation of a metal, on the work of adhesion and on the change of interface energy upon contact with a glassy polymer. The polymer coating is described with a

  20. Computer simulation of plastic deformation in irradiated metals

    International Nuclear Information System (INIS)

    Colak, U.

    1989-01-01

    A computer-based model is developed for the localized plastic deformation in irradiated metals by dislocation channeling, and it is applied to irradiated single crystals of niobium. In the model, the concentrated plastic deformation in the dislocation channels is postulated to occur by virtue of the motion of dislocations in a series of pile-tips on closely spaced parallel slip planes. The dynamics of this dislocation motion is governed by an experimentally determined dependence of dislocation velocity on shear stress. This leads to a set of coupled differential equations for the positions of the individual dislocations in the pile-up as a function of time. Shear displacement in the channel region is calculated from the total distance traveled by the dislocations. The macroscopic shape change in single crystal metal sheet samples is determined by the axial displacement produced by the shear displacements in the dislocation channels. Computer simulations are performed for the plastic deformation up to 20% engineering strain at a constant strain rate. Results of the computer calculations are compared with experimental observations of the shear stress-engineering strain curve obtained in tensile tests described in the literature. Agreement between the calculated and experimental stress-strain curves is obtained for shear displacement of 1.20-1.25 μm and 1000 active slip planes per channel, which is reasonable in the view of experimental observations

  1. Removal of metal ions from water using nanohydrogel tragacanth gum-g-polyamidoxime: isotherm and kinetic study.

    Science.gov (United States)

    Masoumi, Arameh; Ghaemy, Mousa

    2014-08-08

    A new biosorbent was prepared by grafting polyacrylonitrile onto iranian tragacanth gum (ITG), a naturally and abundantly available polysaccharide, and subsequent amidoximation in the presence of hydroxylamine hydrochloride. This nanohydrogel with amidoxime functional groups [C(NH2)NOH], named polyamidoxime-g-tragacanth (ITG-g-PAO), was characterized and used for the removal of metal ions from aqueous solution. The effect of pH, agitation time, concentration of adsorbate and amount of adsorbent on the extent of adsorption was investigated. The experimental data were analyzed by four isotherms and kinetics equations, and the results were fitted well with the Temkin isotherm and pseudo-second-order model. The maximum adsorption capacities (Qm) of ITG-g-PAO as obtained from Langmuir adsorption isotherm were found to be 100.0, 76.92, 71.42 and 66.67 (mgg(-1)) for the adsorption of metal ions in order of Co(II)>Zn(II)>Cr(III)>Cd(II). The experimental results demonstrate that the above selective order of adsorption capacity is due to formation of stable chelating ring between the bidentate amidoxime ligand and metal ion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. 21 CFR 201.319 - Water-soluble gums, hydrophilic gums, and hydrophilic mucilloids (including, but not limited to...

    Science.gov (United States)

    2010-04-01

    ... gum, kelp, methylcellulose, plantago seed (psyllium), polycarbophil tragacanth, and xanthan gum) as... gum, kelp, methylcellulose, plantago seed (psyllium), polycarbophil tragacanth, and xanthan gum) as..., methylcellulose, plantago seed (psyllium), polycarbophil, tragacanth, and xanthan gum. Esophageal obstruction and...

  3. Numerical Simulation of Multiphase Magnetohydrodynamic Flow and Deformation of Electrolyte-Metal Interface in Aluminum Electrolysis Cells

    Science.gov (United States)

    Hua, Jinsong; Rudshaug, Magne; Droste, Christian; Jorgensen, Robert; Giskeodegard, Nils-Haavard

    2018-06-01

    A computational fluid dynamics based multiphase magnetohydrodynamic (MHD) flow model for simulating the melt flow and bath-metal interface deformation in realistic aluminum reduction cells is presented. The model accounts for the complex physics of the MHD problem in aluminum reduction cells by coupling two immiscible fluids, electromagnetic field, Lorentz force, flow turbulence, and complex cell geometry with large length scale. Especially, the deformation of bath-metal interface is tracked directly in the simulation, and the condition of constant anode-cathode distance (ACD) is maintained by moving anode bottom dynamically with the deforming bath-metal interface. The metal pad deformation and melt flow predicted by the current model are compared to the predictions using a simplified model where the bath-metal interface is assumed flat. The effects of the induced electric current due to fluid flow and the magnetic field due to the interior cell current on the metal pad deformation and melt flow are investigated. The presented model extends the conventional simplified box model by including detailed cell geometry such as the ledge profile and all channels (side, central, and cross-channels). The simulations show the model sensitivity to different side ledge profiles and the cross-channel width by comparing the predicted melt flow and metal pad heaving. In addition, the model dependencies upon the reduction cell operation conditions such as ACD, current distribution on cathode surface and open/closed channel top, are discussed.

  4. Creep of crystals: High-temperature deformation processes in metals, ceramics and minerals

    Science.gov (United States)

    Poirier, J. P.

    An introductory text describing high-temperature deformation processes in metals, ceramics, and minerals is presented. Among the specific topics discussed are: the mechanical aspects of crystal deformation; lattice defects; and phenomenological and thermodynamical analysis of quasi-steady-state creep. Consideration is also given to: dislocation creep models; the effect of hydrostatic pressure on deformation; creep polygonization; and dynamic recrystallization. The status of experimental techniques for the study of transformation plasticity in crystals is also discussed.

  5. Tragacanth gum

    DEFF Research Database (Denmark)

    Meyer, Anne S.; Mikkelsen, Jørn Dalgaard; Gavlighi, Hassan Ahmadi

    2013-01-01

    highly substituted pectin-like structural elements. Enzymatically produced low molecular- weight fractions of tragacanth gum exhibit potential prebiotic activity by promoting growth in vitro of Bifidobacterium longum subsp. infantis strains. These findings may lead to new uses of this gum for production...... of value-added prebiotic compounds for functional foods....

  6. Compression deformation behaviors of sheet metals at various clearances and side forces

    Directory of Open Access Journals (Sweden)

    Zhan Mei

    2015-01-01

    Full Text Available Modeling sheet metal forming operations requires understanding of plastic behaviors of sheet metals along non-proportional strain paths. The plastic behavior under reversed uniaxial loading is of particular interest because of its simplicity of interpretation and its application to material elements drawn over a die radius and underwent repeated bending. However, the attainable strain is limited by failures, such as buckling and in-plane deformation, dependent on clearances and side forces. In this study, a finite element (FE model was established for the compression process of sheet specimens, to probe the deformation behavior. The results show that: With the decrease of the clearance from a very large value to a very small value, four defects modes, including plastic t-buckling, micro-bending, w-buckling, and in-plane compression deformation will occur. With the increase of the side force from a very small value to a very large value, plastic t-buckling, w-buckling, uniform deformation, and in-plane compression will occur. The difference in deformation behaviors under these two parameters indicates that the successful compression process without failures for sheet specimens only can be carried out under a reasonable side force.

  7. Exudate gums: occurrence, production, and applications.

    Science.gov (United States)

    Verbeken, D; Dierckx, S; Dewettinck, K

    2003-11-01

    This paper presents a review of the industrially most relevant exudate gums: gum arabic, gum karya, and gum tragacanth. Exudate gums are obtained as the natural exudates of different tree species and exhibit unique properties in a wide variety of applications. This review covers the chemical structure, occurrence and production of the different gums. It also deals with the size and relative importance of the various players on the world market. Furthermore, it gives an overview of the main application fields of the different gums, both food and non-food.

  8. Fluoroacetic acid in guar gum.

    Science.gov (United States)

    Vartiainen, T; Gynther, J

    1984-04-01

    The toxicity of guar gum, derived from the Indian leguminous plant Cyamopsis tetragonolobus, is thought to be due to a globulin which can be denaturated and made non-toxic. Another very toxic compound, fluoroacetic acid, has been detected at a low level in raw samples of guar gum (0.07-1.42 micrograms fluoroacetic acid/g). A sample of a guar-gum pharmaceutical formulation contained only 0.08 ppm fluoroacetate. One exceptionally high value of 9.5 micrograms/g was found in a guar-gum powder. The low concentrations of fluoroacetate found in guar gum dispel any considerations about possible health risks associated with fluoroacetate during the prolonged use of guar gum at the recommended doses.

  9. Deformations in micro extrusion of metals

    Directory of Open Access Journals (Sweden)

    J. Piwnik

    2010-07-01

    Full Text Available Production technologies of small dimensions metallic elements are known for a long time. They are produced by machining methods:turning, milling, polishing. Recently, methods for manufacturing small details by forming are developed – microforming. This process ischaracterized by the high dimensions accuracy and the surface smoothness of received items and the high production rate. When a forming process is scaled down to micro dimensions, the microstructure of the workpiece, the surface topology of the workpiece and that of the tooling remain unchanged. Size effect is appearing. This paper analyses specifications of a metal extrusion in micro scale. To determine the impact of the tool surface roughness on deformation process the numerical model of roughness as triangle wave were developed. In paper the influence of the wave presence on the material flow is described. Impact of the forming conditions on extrusion forces there is also characterized.

  10. Stress analysis and deformation prediction of sheet metal workpieces based on finite element simulation

    OpenAIRE

    Ren Penghao; Wang Aimin; Wang Xiaolong; Zhang Yanlin

    2017-01-01

    After aluminum alloy sheet metal parts machining, the residual stress release will cause a large deformation. To solve this problem, this paper takes a aluminum alloy sheet aerospace workpiece as an example, establishes the theoretical model of elastic deformation and the finite element model, and places quantitative initial stress in each element of machining area, analyses stress release simulation and deformation. Through different initial stress release simulative analysis of deformation ...

  11. Natural gums and modified natural gums as sustained-release carriers.

    Science.gov (United States)

    Bhardwaj, T R; Kanwar, M; Lal, R; Gupta, A

    2000-10-01

    Although natural gums and their derivatives are used widely in pharmaceutical dosage forms, their use as biodegradable polymeric materials to deliver bioactive agents has been hampered by the synthetic materials. These natural polysaccharides do hold advantages over the synthetic polymers, generally because they are nontoxic, less expensive, and freely available. Natural gums can also be modified to have tailor-made materials for drug delivery systems and thus can compete with the synthetic biodegradable excipients available in the market. In this review, recent developments in the area of natural gums and their derivatives as carriers in the sustained release of drugs are explored.

  12. Rheological and interfacial properties at the equilibrium of almond gum tree exudate (Prunus dulcis) in comparison with gum arabic.

    Science.gov (United States)

    Mahfoudhi, Nesrine; Sessa, Mariarenata; Ferrari, Giovanna; Hamdi, Salem; Donsi, Francesco

    2016-06-01

    Almond gum contains an arabinogalactan-type polysaccharide, which plays an important role in defining its interfacial and rheological properties. In this study, rheological and interfacial properties of almond gum and gum arabic aqueous dispersions were comparatively investigated. The interfacial tension of almond gum and gum arabic aqueous dispersions was measured using the pendant drop method in hexadecane. The asymptotic interfacial tension values for almond gum were significantly lower than the corresponding values measured for gum arabic, especially at high concentration. Rheological properties were characterized by steady and oscillatory tests using a coaxial geometry. Almond gum flow curves exhibited a shear thinning non-Newtonian behavior with a tendency to a Newtonian plateau at low shear rate, while gum arabic flow curves exhibited such behavior only at high shear rate. The influence of temperature (5-50  ℃) on the flow curves was studied at 4% (m/m) gum concentration and the Newtonian viscosities at infinite and at zero shear rate, for gum arabic and almond gum, respectively, were accurately fitted by an Arrhenius-type equation. The dynamic properties of the two gum dispersions were also studied. Both gum dispersions exhibited viscoelastic properties, with the viscous component being predominant in a wider range of concentrations for almond gum, while for gum arabic the elastic component being higher than the elastic one especially at higher concentrations.The rheological and interfacial tension properties of almond gum suggest that it may represent a possible substitute of gum arabic in different food applications. © The Author(s) 2015.

  13. Modeling of dislocation generation and interaction during high-speed deformation of metals

    DEFF Research Database (Denmark)

    Schiøtz, J.; Leffers, T.; Singh, B.N.

    2002-01-01

    Recent experiments by Kiritani et al. [1] have revealed a surprisingly high rate of vacancy production during highspeed deformation of thin foils of fcc metals. Virtually no dislocations are seen after the deformation. This is interpreted as evidence for a dislocation-free deformation mechanism...... at very high strain rates. We have used molecular-dynamics simulations to investigate high-speed deformation of copper crystals. Even though no pre-existing dislocation sources are present in the initial system, dislocations are quickly nucleated and a very high dislocation density is reached during...... the deformation. Due to the high density of dislocations, many inelastic interactions occur between dislocations, resulting in the generation of vacancies. After the deformation, a very high density of vacancies is observed, in agreement with the experimental observations. The processes responsible...

  14. Chewing gum and context-dependent memory: the independent roles of chewing gum and mint flavour.

    Science.gov (United States)

    Johnson, Andrew J; Miles, Christopher

    2008-05-01

    Two experiments independently investigated the basis of the chewing gum induced context-dependent memory effect. At learning and/or recall, participants either chewed flavourless gum (Experiment 1) or received mint-flavoured strips (Experiment 2). No context-dependent memory effect was found with either flavourless gum or mint-flavoured strips, indicating that independently the contexts were insufficiently salient to induce the effect. This is found despite participants' subjective ratings indicating a perceived change in state following administration of flavourless gum or mint-flavoured strips. Additionally, some preliminary evidence for a non-additive facilitative effect of receiving gum or flavour at either learning and/or recall is reported. The findings raise further concerns regarding the robustness of the previously reported context-dependent memory effect with chewing gum.

  15. Modeling the Mechanical Behavior of Aluminum Laminated Metal Composites During High Temperature Deformation

    National Research Council Canada - National Science Library

    Grishber, R

    1997-01-01

    A constitutive model for deformation of a novel laminated metal composite (LMC) which is comprised of 21 alternating layers of Al 5182 alloy and Al 6090/SiC/25p metal matrix composite (MMC) has been proposed...

  16. Deformation response of gellan gum based bone scaffold subjected to uniaxial quasi-static loading

    Czech Academy of Sciences Publication Activity Database

    Kytýř, Daniel; Krčmářová, Nela; Šleichrt, Jan; Fíla, Tomáš; Koudelka_ml., Petr; Gantar, A.; Novak, S.

    2017-01-01

    Roč. 57, č. 1 (2017), s. 14-21 ISSN 1210-2709 EU Projects: European Commission(XE) ATCZ38 Institutional support: RVO:68378297 Keywords : gellan gum scaffold * reinforcement * uni-axial loading Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering https://ojs.cvut.cz/ojs/index.php/ap/article/view/3885

  17. The role of edge dislocations in the deformation of BCC metals

    International Nuclear Information System (INIS)

    Lung, C.W.

    1994-08-01

    It was widely accepted that the screw dislocation is responsible for the strong temperature dependence of the yield stresses observed in bcc metals. In this paper, we show the role of edge dislocations in the deformation of bcc metals and point out that in some cases, its main contribution to the yield stress cannot be ignored. (author). 15 refs, 2 figs, 1 tab

  18. Deformation analysis of gellan-gum based bone scaffold using on-the-fly tomography

    Czech Academy of Sciences Publication Activity Database

    Kytýř, Daniel; Zlámal, Petr; Koudelka_ml., Petr; Fíla, Tomáš; Krčmářová, Nela; Kumpová, Ivana; Vavřík, Daniel; Gantar, A.; Novak, S.

    2017-01-01

    Roč. 134, November (2017), s. 400-417 ISSN 0264-1275 EU Projects: European Commission(XE) ATCZ38 - Com3d-XCT; European Commission(XE) ATCZ133 Keywords : on-the-fly tomography * gellan-gum * scaffold * digital volume correlation * compression Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 4.364, year: 2016 http://www.sciencedirect.com/science/article/pii/S026412751730789X

  19. INVESTIGATION OF MATERIAL RESISTANCE TO PLASTIC DEFORMATION AT PROCESSING METALS BY PRESSURE WITH IMPOSING ULTRASONIC OSCILLATIONS

    Directory of Open Access Journals (Sweden)

    V. V. Klubovich

    2007-01-01

    Full Text Available The paper contains substantiation for application of experimental technique in order to investigate material resistance to plastic deformation at processing metals by pressure with imposing ultrasonic oscillations while proceeding from laws of similarity. It is shown that at modeling any metal processing by pressure with imposing ultrasonic oscillations it is possible to consider that actual elastic and plastic metal properties remain constant during processing under ultrasound action. The second aspect that requires a special attention at modeling is pulse or vibration-shock deformation at processing metals by pressure with imposing ultrasonic oscillations.

  20. Deformation of extreme viscoelastic metals and composites

    International Nuclear Information System (INIS)

    Wang, Y.C.; Ludwigson, M.; Lakes, R.S.

    2004-01-01

    The figure of merit for structural damping and damping layer applications is the product of stiffness E and damping tan δ. For most materials, even practical polymer damping layers, E tan δ is less than 0.6 GPa. We consider several methods to achieve high values of this figure of merit: high damping metals, metal matrix composites and composites containing constituents of negative stiffness. As for high damping metals, damping of polycrystalline zinc was determined and compared with InSn studied earlier. Damping of Zn is less dependent on frequency than that of InSn, so Zn is superior at high frequency. High damping and large stiffness anomalies are possible in viscoelastic composites with inclusions of negative stiffness. Negative stiffness entails a reversal of the usual directional relationship between force and displacement in deformed objects. An isolated object with negative stiffness is unstable, but an inclusion embedded in a composite matrix can be stabilized under some circumstances. Ferroelastic domains in the vicinity of a phase transition can exhibit a region of negative stiffness. Metal matrix composites containing vanadium dioxide were prepared and studied. The concentration of embedded particles was sensitive to the processing method

  1. Nucleation of recrystallization at selected sites in deformed fcc metals

    DEFF Research Database (Denmark)

    Xu, Chaoling

    The objective of this thesis is to explore nucleation of recrystallization at selected sites in selected face-centered-cubic (FCC) metals, namely cold rolled columnar-grained nickel and high purity aluminum further deformed by indenting. Various techniques, including, optical microscopy, electron...... backscattered diffraction (EBSD), electron channeling contrast (ECC) and synchrotron X-ray technique, differential-aperture X-ray microscopy (DAXM), were used to characterize the microstructures, to explore nucleation sites, orientation relationships between nuclei and deformed microstructures, and nucleation...... mechanisms. In the cold rolled nickel samples, the preference of triple junctions (TJs) and grain boundaries (GBs) as nucleation sites is observed. The majorities of the nuclei have the same orientations as the surrounding matrix or are twin-related to a surrounding deformed grain. Only a few nuclei...

  2. Mechanical deformation of atomic-scale metallic contacts: Structure and mechanisms

    DEFF Research Database (Denmark)

    Sørensen, Mads Reinholdt; Brandbyge, Mads; Jacobsen, Karsten Wedel

    1998-01-01

    We have simulated the mechanical deformation of atomic-scale metallic contacts under tensile strain using molecular dynamics and effective medium theory potentials. The evolution of the structure of the contacts and the underlying deformation mechanisms are described along with the calculated......, but vacancies can be permanently present. The transition states and energies for slip mechanisms have been determined using the nudged elastic band method, and we find a size-dependent crossover from a dislocation-mediated slip to a homogeneous slip when the contact diameter becomes less than a few nm. We show...

  3. Residual strain evolution during the deformation of single fiber metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Hanan, J.C.; Uestuendag, E.; Clausen, B. [Dept. of Materials Science, California Inst. of Tech., Pasadena, CA (United States); Sivasambu, M.; Beyerlein, I.J. [Theoretical Div., Los Alamos National Lab., Los Alamos, NM (United States); Brown, D.W.; Bourke, M.A.M. [Materials Science and Technology Div., Los Alamos National Lab., Los Alamos, NM (United States)

    2002-07-01

    Successful application of metal matrix composites often requires strength and lifetime predictions that account for the deformation of each phase. Yet, the deformation of individual phases in composites usually differs significantly from their respective monolithic behaviors. An approach is presented that quantifies the deformation parameters of each phase using neutron diffraction measurements before, during, and after failure under tensile loading in model composites consisting of a single alumina fiber embedded in an aluminum matrix. The evolution of residual strains after loading was examined including the effects of fiber failure. (orig.)

  4. Cyclic deformation behavior of steels and light-metal alloys

    International Nuclear Information System (INIS)

    Walther, Frank; Eifler, Dietmar

    2007-01-01

    The detailed knowledge of the cyclic deformation behavior of metallic materials is an essential condition for the comprehensive understanding of fatigue mechanisms and a reliable lifetime calculation of cyclically loaded specimens and components. Various steels and light-metal alloys were investigated under stress and strain control on servohydraulic testing systems. In addition to mechanical stress-strain hysteresis measurements, the changes of the specimen temperature and the electrical resistance due to plastic deformation processes were measured. The plasticity-induced martensite formation in metastable austenitic steels was detected in situ with a ferritescope sensor. As advanced magnetic measuring technique giant-magneto-resistance sensors in combination with an universal eddy-current equipment were used for the on-line monitoring of fatigue processes. Due to their direct dependence on microstructural changes, all physical values show a clear interaction with the actual fatigue state. The results of the plastic strain, thermometric, electric and magnetic measuring techniques were presented versus the number of cycles as well as in Morrow and Coffin-Manson plots. The microstructures were characterized by scanning electron microscopy

  5. Cyclic deformation behavior of steels and light-metal alloys

    Energy Technology Data Exchange (ETDEWEB)

    Walther, Frank [University of Kaiserslautern, Institute of Materials Science and Engineering, P.O. Box 3049, D-67653 Kaiserslautern (Germany)], E-mail: walther@mv.uni-kl.de; Eifler, Dietmar [University of Kaiserslautern, Institute of Materials Science and Engineering, P.O. Box 3049, D-67653 Kaiserslautern (Germany)

    2007-11-15

    The detailed knowledge of the cyclic deformation behavior of metallic materials is an essential condition for the comprehensive understanding of fatigue mechanisms and a reliable lifetime calculation of cyclically loaded specimens and components. Various steels and light-metal alloys were investigated under stress and strain control on servohydraulic testing systems. In addition to mechanical stress-strain hysteresis measurements, the changes of the specimen temperature and the electrical resistance due to plastic deformation processes were measured. The plasticity-induced martensite formation in metastable austenitic steels was detected in situ with a ferritescope sensor. As advanced magnetic measuring technique giant-magneto-resistance sensors in combination with an universal eddy-current equipment were used for the on-line monitoring of fatigue processes. Due to their direct dependence on microstructural changes, all physical values show a clear interaction with the actual fatigue state. The results of the plastic strain, thermometric, electric and magnetic measuring techniques were presented versus the number of cycles as well as in Morrow and Coffin-Manson plots. The microstructures were characterized by scanning electron microscopy.

  6. Direct observation of radial distribution change during tensile deformation of metallic glass by high energy X-ray diffraction method

    Energy Technology Data Exchange (ETDEWEB)

    Nasu, Toshio, E-mail: nasu@kekexafs.kj.yamagata-u.ac.j [Faculty of Education, Arts and Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata, Yamagata, 990-8560 (Japan); Sasaki, Motokatsu [Faculty of Education, Arts and Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata, Yamagata, 990-8560 (Japan); Usuki, Takeshi; Sekine, Mai [Faculty of Science, Yamagata University, Yamagata 990-8560 (Japan); Takigawa, Yorinobu; Higashi, Kenji [Graduate School of Engineering, Osaka Prefecture University, Sakai 599-8531 (Japan); Kohara, Shinji [Japan Synchrotron Radiation Research Institute, Harima Science Garden City, Sayo town, Hyogo 679-5198 (Japan); Sakurai, Masaki; Wei Zhang; Inoue, Akihisa [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan)

    2009-08-26

    The purpose of this research is to investigate the micro-mechanism of deformation behavior of metallic glasses. We report the results of direct observations of short-range and medium-range structural change during tensile deformation of metallic glasses by high energy X-ray diffraction method. Cu{sub 50}Zr{sub 50} and Ni{sub 30}Zr{sub 70} metallic glass samples in the ribbon shape (1.5 mm width and 25 mum) were made by using rapid quenching method. Tensile deformation added to the sample was made by using special equipment adopted for measuring the high energy X-ray diffraction. The peaks in pair distribution function g(r) for Cu{sub 50}Zr{sub 50} and N{sub 30}iZr{sub 70} metallic glasses move zigzag into front and into rear during tensile deformation. These results of direct observation on atomic distribution change for Cu{sub 50}Zr{sub 50} and Ni{sub 30}Zr{sub 70} metallic glass ribbons during tensile deformation suggest that the micro-relaxations occur.

  7. 21 CFR 172.615 - Chewing gum base.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Chewing gum base. 172.615 Section 172.615 Food and..., Chewing Gum Bases and Related Substances § 172.615 Chewing gum base. The food additive chewing gum base... substances listed in paragraph (a) of this section, chewing gum base may also include substances generally...

  8. Dependence on the nicotine gum in former smokers.

    Science.gov (United States)

    Etter, Jean-François

    2009-03-01

    We conducted an Internet survey in 2004-2007 in 526 daily users of the nicotine gum, to assess use of, and dependence on the nicotine gum in former smokers. We used modified versions of the Nicotine Dependence Syndrome Scale (NDSS-G), the Cigarette Dependence Scale (CDS-G) and the Fagerström Test (FTND-G). After 30 days, 155 participants (29%) indicated their gum use. Higher dependence on the gum predicted a lower chance of stopping using it at follow-up (odds ratio=0.36 for each standard deviation unit on CDS-G, p=0.001). More long-term (>3 months) than short-term (dependence on the gum than short-term users, as assessed with NDSS-Gum, CDS-Gum and FTND-Gum (all pdependence on the nicotine gum. Lower levels of dependence on the gum predicted cessation of gum use. However, long term use of the nicotine gum has no known serious adverse consequence, and may be beneficial if it prevents late relapse.

  9. Effect of pass schedule and groove design on the metal deformation ...

    Indian Academy of Sciences (India)

    c Indian Academy of Sciences. Effect of pass schedule and ... metal flow behaviour in a hot rolling process is a complex phenomenon, which is ... Computer based FEM simulations incorporating deformation mod- els can be used to develop ...

  10. Recent improvements in modelling fission gas release and rod deformation on metallic fuel in LMR

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, Byoung-Oon; Kim, Young Jin

    2000-01-01

    Metallic fuel design is a key feature to assure LMR core safety goals. To date, a large effort has been devoted to the development of the MACSIS code for metallic fuel rod design and the evaluation of operational limits under irradiation conditions. The updated models of fission gas release, fuel core swelling, and rod deformation are incorporated into the correspondence routines in MACSIS MOD1. The MACSIS MOD1 which is a new version of MACSIS, has been partly benchmarked on FGR, fuel swelling and rod deformation comparing with the results of U-Zr and U-Pu-Zr metal fuels irradiated in LMRs. The MACSIS MOD1 predicts, relatively well, the absolute magnitudes and trends of the gas release and rod deformations depending on burn-up, and it gives better agreement with the experimental data than the previous predictions of MACSIS and the results of the empirical model

  11. A mechanical deformation model of metallic fuel pin under steady state conditions

    International Nuclear Information System (INIS)

    Lee, D. W.; Lee, B. W.; Kim, Y. I.; Han, D. H.

    2004-01-01

    As a mechanical deformation model of the MACSIS code predicts the cladding deformation due to the simple thin shell theory, it is impossible to predict the FCMI(Fuel-Cladding Mechanical Interaction). Therefore, a mechanical deformation model used the generalized plane strain is developed. The DEFORM is a mechanical deformation routine which is used to analyze the stresses and strains in the fuel and cladding of a metallic fuel pin of LMRs. The accuracy of the program is demonstrated by comparison of the DEFORM predictions with the result of another code calculations or experimental results in literature. The stress/strain distributions of elastic part under free thermal expansion condition are completely matched with the results of ANSYS code. The swelling and creep solutions are reasonably well agreed with the simulations of ALFUS and LIFE-M codes, respectively. The predicted cladding strains are under estimated than experimental data at the range of high burnup. Therefore, it is recommended that the fine tuning of the DEFORM based on various range of experimental data

  12. Investigation of peculiarities of metal deformability during multi-operation cold working with intermediate annealings

    International Nuclear Information System (INIS)

    Bogatov, A.A.; Smirnov, S.V.; Kolmogorov, V.L.

    1979-01-01

    Deformation defects in ready products considerably deteriorate their exploitation characteristics. Recovery of plasticity reserve PSI of the cold deformed 12Kh18N10T steel during electroannealing has been investigated. Moments of micropore (PSIsub(*) approximately O.33) and microcrack (PSIsub(*) approximately 0.55) formation in a deformed metal have been found. The conclusion has been made that PSI value before annealing on a ready size in technological processes of metal treatment with pressure should be restricted by the following conditions: PSI<1 - for products suffering no considerable loadings, PSI< PSIsub(**-0.5) - for most of the products, which have restrictions over the lower strength limit, toughness, durability, and for products which operate in agressive media; PSI< PSIsub(*)=0.33 - for products intended for exploitation under ''rigid'' conditions (low temperatures, shock loadings)

  13. Effect of GutsyGum(tm), A Novel Gum, on Subjective Ratings of Gastro Esophageal Reflux Following A Refluxogenic Meal.

    Science.gov (United States)

    Brown, Rachel; Sam, Cecilia H Y; Green, Tim; Wood, Simon

    2015-06-01

    Chewing gum alleviates symptoms of gastro-esophageal reflux (GER) following a refluxogenic meal. GutsyGum(tm), a chewing gum developed to alleviate the symptoms of GER contains calcium carbonate, with a proprietary blend of licorice extract, papain, and apple cider vinegar (GiGs®). The efficacy of GutsyGum(tm) was determined in alleviating the symptoms of GER after a refluxogenic meal compared to placebo gum. This double-blind, placebo-controlled-crossover trial with a one-week washout between treatments had 24 participants with a history of GER consume a refluxogenic meal and then chew GutsyGum(tm) or placebo gum. Participants completed GER symptom questionnaires, consisting of symptom based 10 cm Visual Analogue Scales, immediately following the meal and then at regular intervals out to four hours postmeal. Adjusted mean ± SEM heartburn score (15-min postmeal to 240 min) was significantly lower in GutsyGum(tm) than in placebo gum treatment (0.81 ± 0.20 vs. 1.45 ± 0.20 cm; p = 0.034). Mean acid reflux score was significantly lower in GutsyGum(tm) than in placebo treatment (0.72 ± 0.19 vs. 1.46 ± 0.19 cm; p = 0.013). There were no significant differences for any of the secondary outcomes. However, pain approached significance with less pain reported in GutsyGum(tm) versus placebo treatment (0.4 ± 0.2 vs. 0.9 ± 0.2 cm; p = 0.081). Although nausea (p = 0.114) and belching (p = 0.154) were lower following GutsyGum(tm), the difference was not statistically significant. GutsyGum(tm) is more effective than a placebo gum in alleviating primary symptoms of heartburn and acid reflux (Clinical Trial Registration: ACTRN12612000973819).

  14. Multi Scale Models for Flexure Deformation in Sheet Metal Forming

    Directory of Open Access Journals (Sweden)

    Di Pasquale Edmondo

    2016-01-01

    Full Text Available This paper presents the application of multi scale techniques to the simulation of sheet metal forming using the one-step method. When a blank flows over the die radius, it undergoes a complex cycle of bending and unbending. First, we describe an original model for the prediction of residual plastic deformation and stresses in the blank section. This model, working on a scale about one hundred times smaller than the element size, has been implemented in SIMEX, one-step sheet metal forming simulation code. The utilisation of this multi-scale modeling technique improves greatly the accuracy of the solution. Finally, we discuss the implications of this analysis on the prediction of springback in metal forming.

  15. Stress analysis and deformation prediction of sheet metal workpieces based on finite element simulation

    Directory of Open Access Journals (Sweden)

    Ren Penghao

    2017-01-01

    Full Text Available After aluminum alloy sheet metal parts machining, the residual stress release will cause a large deformation. To solve this problem, this paper takes a aluminum alloy sheet aerospace workpiece as an example, establishes the theoretical model of elastic deformation and the finite element model, and places quantitative initial stress in each element of machining area, analyses stress release simulation and deformation. Through different initial stress release simulative analysis of deformation of the workpiece, a linear relationship between initial stress and deformation is found; Through simulative analysis of coupling direction-stress release, the superposing relationship between the deformation caused by coupling direction-stress and the deformation caused by single direction stress is found. The research results provide important theoretical support for the stress threshold setting and deformation controlling of the workpieces in the production practice.

  16. A constitutive model of nanocrystalline metals based on competing grain boundary and grain interior deformation mechanisms

    KAUST Repository

    Gurses, Ercan; El Sayed, Tamer S.

    2011-01-01

    In this work, a viscoplastic constitutive model for nanocrystalline metals is presented. The model is based on competing grain boundary and grain interior deformation mechanisms. In particular, inelastic deformations caused by grain boundary

  17. Occupational allergic rhinitis from guar gum.

    Science.gov (United States)

    Kanerva, L; Tupasela, O; Jolanki, R; Vaheri, E; Estlander, T; Keskinen, H

    1988-05-01

    Three cases of allergic rhinitis from a vegetable gum, guar gum, have been detected. Two subjects were exposed to fine guar gum powder (Emco Gum 563, Meyhall Chemical AG, Switzerland), an insulator in rubber cables, when opening cables in a power cable laboratory. After 1-2 years' exposure the patients developed rhinitis. Scratch-chamber tests, nasal provocation tests, nasal eosinophilia and a RAST test proved their allergy. A third subject developed allergic rhinitis from another guar gum product (Meyproid 5306, Meyhall Chemical AG) after 2 years' exposure in a paper factory. A positive skin test and nasal provocation test confirmed the diagnosis. A fourth case of possible allergy to guar gum after exposure to Meyproid 5306 in a paper factory is also presented. No final diagnosis was reached in this case (in 1974). The present subjects, only one of whom was atopic, developed allergy within 2 years, although their exposure to guar gum was not especially heavy. Therefore, when handling guar, adequate ventilation facilities should be provided and protective clothing, including a respiratory mask, should be worn.

  18. Determination of locust bean gum and guar gum by polymerase chain reaction and restriction fragment length polymorphism analysis.

    Science.gov (United States)

    Meyer, K; Rosa, C; Hischenhuber, C; Meyer, R

    2001-01-01

    A polymerase chain reaction (PCR) was developed to differentiate the thickening agents locust bean gum (LBG) and the cheaper guar gum in finished food products. Universal primers for amplification of the intergenic spacer region between trnL 3' (UAA) exon and trnF (GAA) gene in the chloroplast (cp) genome and subsequent restriction analysis were applied to differentiate guar gum and LBG. The presence of guar gum powder added to LBG powder was detectable. Based on data obtained from sequencing this intergenic spacer region, a second PCR method for the specific detection of guar gum DNA was also developed. This assay detected guar gum powder in LBG in amounts as low as 1% (w/w). Both methods successfully detected guar gum and/or LBG in ice cream stabilizers and in foodstuffs, such as dairy products, ice cream, dry seasoning mixes, a finished roasting sauce, and a fruit jelly product, but not in products with highly degraded DNA, such as tomato ketchup and sterilized chocolate cream. Both methods detected guar gum and LBG in ice cream and fresh cheese at levels <0.1%.

  19. Design, formulation and evaluation of caffeine chewing gum.

    Science.gov (United States)

    Aslani, Abolfazl; Jalilian, Fatemeh

    2013-01-01

    Caffeine which exists in drinks such as coffee as well as in drug dosage forms in the global market is among the materials that increase alertness and decrease fatigue. Compared to other forms of caffeine, caffeine gum can create faster and more prominent effects. In this study, the main goal is to design a new formulation of caffeine gum with desirable taste and assess its physicochemical properties. Caffeine gum was prepared by softening of gum bases and then mixing with other formulation ingredients. To decrease the bitterness of caffeine, sugar, aspartame, liquid glucose, sorbitol, manitol, xylitol, and various flavors were used. Caffeine release from gum base was investigated by mechanical chewing set. Content uniformity test was also performed on the gums. The gums were evaluated in terms of organoleptic properties by the Latin-Square design at different stages. After making 22 formulations of caffeine gums, F11 from 20 mg caffeine gums and F22 from 50 mg caffeine gums were chosen as the best formulation in organoleptic properties. Both types of gum released about 90% of their own drug content after 30 min. Drug content of 20 and 50 mg caffeine gum was about 18.2-21.3 mg and 45.7-53.6 mg respectively. In this study, 20 and 50 mg caffeine gums with suitable and desirable properties (i.e., good taste and satisfactory release) were formulated. The best flavor for caffeine gum was cinnamon. Both kinds of 20 and 50 mg gums succeeded in content uniformity test.

  20. Time-lapse micro-tomography analysis of the deformation response of a gellan-gum-based scaffold

    Czech Academy of Sciences Publication Activity Database

    Kytýř, Daniel; Fenclová, Nela; Zlámal, Petr; Kumpová, Ivana; Fíla, Tomáš; Koudelka_ml., Petr; Gantar, A.; Novak, S.

    2017-01-01

    Roč. 51, č. 3 (2017), s. 397-402 ISSN 1580-2949 Institutional support: RVO:68378297 Keywords : bone scaffold * gellan gum * time-lapse micro CT * digital volume correlation Subject RIV: JJ - Other Materials OBOR OECD: Materials engineering Impact factor: 0.436, year: 2016 http://mit.imt.si/Revija/izvodi/mit173/kytyr.pdf

  1. Void growth and coalescence in metals deformed at elevated temperature

    DEFF Research Database (Denmark)

    Klöcker, H.; Tvergaard, Viggo

    2000-01-01

    For metals deformed at elevated temperatures the growth of voids to coalescence is studied numerically. The voids are assumed to be present from the beginning of deformation, and the rate of deformation considered is so high that void growth is dominated by power law creep of the material, without...... any noticeable effect of surface diffusion. Axisymmetric unit cell model computations are used to study void growth in a material containing a periodic array of voids, and the onset of the coalescence process is defined as the stage where plastic flow localizes in the ligaments between neighbouring...... voids. The focus of the study is on various relatively high stress triaxialties. In order to represent the results in terms of a porous ductile material model a set of constitutive relations are used, which have been proposed for void growth in a material undergoing power law creep....

  2. Chewing gum can produce context-dependent effects upon memory.

    Science.gov (United States)

    Baker, Jess R; Bezance, Jessica B; Zellaby, Ella; Aggleton, John P

    2004-10-01

    Two experiments examined whether chewing spearmint gum can affect the initial learning or subsequent recall of a word list. Comparing those participants in Experiment 1 who chewed gum at the learning or the recall phases showed that chewing gum at initial learning was associated with superior recall. In addition, chewing gum led to context-dependent effects as a switch between gum and no gum (or no gum and gum) between learning and recall led to poorer performance. Experiment 2 provided evidence that sucking gum was sufficient to induce some of the same effects as chewing.

  3. Compressional, mechanical and release properties of a novel gum in paracetamol tablet formulations

    Directory of Open Access Journals (Sweden)

    Adedokun Musiliu O.

    2014-09-01

    Full Text Available The binding properties of Eucalyptus gum obtained from the incised trunk of Eucalyptus tereticornis, were evaluated in paracetamol tablet formulations, in comparison with that of Gelatin B.P. In so doing, the compression properties were analyzed using density measurements and the compression equations of Heckel, Kawakita and Gurham. In our work, the mechanical properties of the tablets were assessed using the crushing strength and friability of the tablets, while the drug release properties of the tablets were assessed using disintegration and dissolution times. The results of the study reveal that tablet formulations incorporating Eucalyptus gum as binder, exhibited faster onset and higher amount of plastic deformation during compression than those containing gelatin. What is more, the Gurnham equation could be used as a substitute for the Kawakita equation in describing the compression properties of pharmaceutical tablets. Furthermore, the crushing strength, disintegration and dissolution times of the tablets increased with binder concentration, while friability values decreased. We noted that no significant differences in properties exist between formulations derived from the two binders (p > 0.05 exist. While tablets incorporating gelatin exhibited higher values for mechanical properties, Eucalyptus gum tablets had better balance between mechanical and release properties - as seen from the CSFR/Dt values. Tablets of good mechanical and release properties were prepared using Eucalyptus gum as a binder, and, therefore, it could serve as an alternative binder in producing tablets with good mechanical strength and fast drug release.

  4. Occupational asthma caused by guar gum.

    Science.gov (United States)

    Lagier, F; Cartier, A; Somer, J; Dolovich, J; Malo, J L

    1990-04-01

    Some vegetable gums have been reported to cause asthma. We describe three subjects who were exposed at work to guar gum, which is derived from the outer part of Cyanopsis tetragonolobus, a vegetable that grows in India. The first subject worked for a pharmaceutical company; the second and third subjects worked at a carpet-manufacturing plant. All three subjects developed symptoms of rhinitis and asthma after the onset of exposure to guar gum. All subjects were atopic and demonstrated mild bronchial hyperresponsiveness to inhaled histamine at the time they were observed. Skin prick tests demonstrated an immediate skin reaction to guar gum. All three subjects had high levels of serum IgE antibodies to guar gum. Specific inhalation challenges in which the three subjects were exposed for short intervals (less than or equal to 4 minutes) to powder of guar gum elicited isolated immediate bronchospastic reactions in two subjects and a dual reaction in the other subject.

  5. Cyclic Deformation and Fatigue Behaviors of Alloy 617 Base Metal and Weldments at 900℃ for VHTR Applications

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seon Jin; Kim, Byung Tak; Dewa, Rando T.; Hwang, Jeong Jun; Kim, Tae Su [Pukyong National Univ., Busan (Korea, Republic of); Kim, Woo Gon; Kim, Eung Seon [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    An analysis of cyclic deformation can contribute to a deeper understanding of the fatigue fracture mechanisms as well as to improvements in the design and application of VHTR system. However, the studies associated with cyclic deformation and low cycle fatigue (LCF) properties of Alloy 617 have focused mainly on the base metal, with little attention given to the weldments. Totemeier studied on high-temperature creep-fatigue of Alloy 617 base metal and weldments. Current research activities at PKNU and KAERI focus on the study of cyclic deformation and LCF behaviors of Alloy 617 base metal (BM) and weldments (WM) specimens were machined from GTAW buttwelded plates at very high-temperature of 900℃. In this work, the cyclic deformation characteristics and fatigue behaviors of Alloy 617 BM and WM are studied and discussed with respect to LCF. In this paper, cyclic deformation and low cycle fatigue behaviors of Alloy 617 base metal and weldments was evaluated using strain-controlled LCF tests at 900℃for 0.6% total strain range. Results of the current experiments can be concluded; The WM specimen has shown a higher cyclic stress response than the BM specimen. The fatigue life of WM specimen was reduced relative to that of BM specimen.

  6. Oral health benefits of chewing gum

    NARCIS (Netherlands)

    Wessel, Stefan

    2016-01-01

    In the last decades sugar-free chewing gum has developed in an oral healthcare product, next to the conventional products such as the toothbrush and mouthrinses. In this thesis we investigate the oral health benefits of chewing gum and the effects of additives to chewing gum, such as antimicrobials.

  7. Chewing gum and context-dependent memory: The independent roles of chewing gum and mint flavour

    OpenAIRE

    Johnson, A.J.; Miles, C.

    2008-01-01

    Two experiments independently investigated the basis of the chewing-gum induced context-dependent memory effect (Baker et al, 2004). At learning and/or recall participants either chewed flavourless gum (Experiment 1) or received mint-flavoured strips (Experiment 2). No context dependent memory effect was found with either flavourless gum or mint-flavoured strips, indicating that independently the contexts were insufficiently salient to induce the effect. This is found despite participants’ su...

  8. Gums, badgers, and economics

    CSIR Research Space (South Africa)

    Van Wilgen, BW

    2007-01-01

    Full Text Available Gums trees (in the genus Eucalyptus, from Australia) are not set to ‘disappear’ (even if some people wanted them to). Gums form an important component of the forest industry and, at last count, they covered over 540 000 ha in formal plantations...

  9. Molecular Dynamics Simulation of Structural Characterization of Elastic and Inelastic Deformation in ZrCu Metallic Glasses

    Directory of Open Access Journals (Sweden)

    Shidong Feng

    2014-01-01

    Full Text Available The nanoscopic deformation behaviors in a ZrCu metallic glass model during loading-unloading process under uniaxial compression have been analyzed on the basis of the molecular dynamics (MD. The reversible degree of shear origin zones (SOZs is used as the structural indicator to distinguish the elastic deformation and inelastic deformation of ZrCu metallic glass at the atomic level. We find that the formation of SOZs is reversible at the elastic stage but irreversible at the inelastic stage during the loading and unloading processes. At the inelastic stage, the full-icosahedra fraction in SOZs is quickly reduced with increased strain and the decreasing process is also irreversible during the unloading processes.

  10. Two-scale characterization of deformation-induced anisotropy of polycrystalline metals

    International Nuclear Information System (INIS)

    Watanabe, Ikumu; Terada, Kenjiro

    2004-01-01

    The anisotropic macro-scale mechanical behavior of polycrystalline metals is characterized by incorporating the micro-scale constitutive model of single crystal plasticity into the two-scale modeling based on the mathematical homogenization theory. The two-scale simulations are conducted to analyze the macro-scale anisotropy induced by micro-scale plastic deformation of the polycrystalline aggregate. In the simulations, the micro-scale representative volume element (RVE) of a polycrystalline aggregate is uniformly loaded in one direction, unloaded to macroscopically zero stress in a certain stage of deformation and then re-loaded in the different directions. The last re-loading calculations provide different macro-scale responses of the RVE, which can be the appearance of material anisotropy. We then try to examine the effects of the intergranular and intragranular behaviors on the anisotropy by means of various illustrations of plastic deformation process in stead of the use of pole figures for the change of crystallographic orientations

  11. Compression deformation behaviors of sheet metals at various clearances and side forces

    OpenAIRE

    Zhan Mei; Wang Xianxian; Cao Jian; Yang He

    2015-01-01

    Modeling sheet metal forming operations requires understanding of plastic behaviors of sheet metals along non-proportional strain paths. The plastic behavior under reversed uniaxial loading is of particular interest because of its simplicity of interpretation and its application to material elements drawn over a die radius and underwent repeated bending. However, the attainable strain is limited by failures, such as buckling and in-plane deformation, dependent on clearances and side forces. I...

  12. Multi-Axial Deformation Setup for Microscopic Testing of Sheet Metal to Fracture

    NARCIS (Netherlands)

    Tasan, C.C.; Hoefnagels, J.P.M.; Dekkers, E.C.A.; Geers, M.G.D.

    2012-01-01

    While the industrial interest in sheet metal with improved specific-properties led to the design of new alloys with complex microstructures, predicting their safe forming limits and understanding their microstructural deformation mechanisms remain as significant challenges largely due to the

  13. 21 CFR 184.1351 - Gum tragacanth.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Gum tragacanth. 184.1351 Section 184.1351 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) FOOD FOR HUMAN... Substances Affirmed as GRAS § 184.1351 Gum tragacanth. (a) Gum tragacanth is the exudate from one of several...

  14. The CT appearance of intraoral chewing gum

    Energy Technology Data Exchange (ETDEWEB)

    Towbin, Alexander J. [Cincinnati Children' s Hospital Medical Center, Department of Radiology, Cincinnati, OH (United States)

    2008-12-15

    When imaged, intraoral chewing gum has the potential to be misdiagnosed. Chewing gum has a characteristic appearance on CT: it is ovoid in shape, hyperdense, and has small internal locules of air. Reports have described the appearance of gum on radiographs and abdominal CT images; however, no reports could be found detailing its appearance within the mouth. This report describes the appearance of intraoral chewing gum as well as the properties of the gum that lead to this appearance. Because of the potential for misdiagnosis, screening for intraoral foreign bodies should be considered prior to imaging. (orig.)

  15. The CT appearance of intraoral chewing gum

    International Nuclear Information System (INIS)

    Towbin, Alexander J.

    2008-01-01

    When imaged, intraoral chewing gum has the potential to be misdiagnosed. Chewing gum has a characteristic appearance on CT: it is ovoid in shape, hyperdense, and has small internal locules of air. Reports have described the appearance of gum on radiographs and abdominal CT images; however, no reports could be found detailing its appearance within the mouth. This report describes the appearance of intraoral chewing gum as well as the properties of the gum that lead to this appearance. Because of the potential for misdiagnosis, screening for intraoral foreign bodies should be considered prior to imaging. (orig.)

  16. Gum Producers Can Improve Quality Of Gum Marketed and Get Higher Prices

    Science.gov (United States)

    Ralph W. Clements

    1979-01-01

    Acid waste from over-treatment and old, wornout iron cups have contributed significantly to the generally poor quality of gum marketed. Today producers are reluctant to purchase new cups and gutters and invest up to $1.80 per tree for production when the market price for gum averages 14.54 per pound annually. Guidelines are given for improving the quality by...

  17. Use of state variables in the description of irradiation creep and deformation of metals

    International Nuclear Information System (INIS)

    Hart, E.W.; Li, C.Y.

    1976-01-01

    The understanding of the effects of irradiation on metal creep and deformation are not yet satisfactory, owing in part to the limitations on experimentation in radiation environment. Because of such limitations, theoretical considerations must play a strong role. Virtually all of the theoretical considerations currently employed are based on micro-mechanical models for the deformation behavior. The recent theoretical and experimental development of a plastic equation of state for metal deformation has led to the identification of some of the principal micro-mechanisms in phenomenological terms. The role of the individual mechanisms can be related to the state variables of the description, and those variables are directly accessible measurable quantities. This paper explores how irradiation might affect this description. It is shown that the radiation flux and the radiation fluence are expected to affect different components of the equation of state. The resultant description makes considerable use of the information developed in radiation-free environment. 5 fig

  18. Development of postcompressional textural tests to evaluate the mechanical properties of medicated chewing gum tablets with high drug loadings.

    Science.gov (United States)

    Al Hagbani, Turki; Nazzal, Sami

    2018-02-01

    Medicated chewing gum tablets (CGTs) represent a unique platform for drug delivery. Loading directly compressible gums with high concentrations of powdered medication, however, results in compacts with hybrid properties between a chewable gum and a brittle tablet. The aim of the present study was to develop textural tests that can identify the point at which CGTs begin to behave like a solid tablet upon drug incorporation. Curcumin (CUR) CGTs made with Health in gum were prepared with increasing CUR load from 0 to 100% and were characterized for their mechanical properties by a single-bite (knife) and a two-bite tests. From each test several parameters were extracted and correlated with drug loading. In the single-bite test, the change in the resistance of the compacts to plastic deformation was found to give a definitive guide on whether they behave as gums or tablets. A more in depth analysis of the impact of CUR loading on the chewability of the CGTs was provided by the two-bite test where CUR loading was found to have a nonlinear impact on the mechanical properties of compacts. An upper limit of 10% was found to yield compacts with gum-like properties, which were abolished at higher CUR loads. The textural test procedure outlined in this study are expected to assist those involved in the formulation of medicated gums for pharmaceutical applications in making an informed decision on the impact of drug loading on gum behavior before proceeding with clinical testing. There is a growing interest in utilizing medicated chewing gums for drug delivery, especially those made using directly compressible gum bases, such as Health in gum. Directly compressing a gum base with high amounts of solid drug powder, however, poses a challenge as it may result in compressed compacts with hybrid properties between a chewing gum and a hard tablet. Currently, official Pharmacopeias do not specify a testing procedure for the estimation of the mechanical and textural properties of

  19. Examining disadoption of gum arabic production in Sudan

    NARCIS (Netherlands)

    Rahim, A.; Ruben, R.; Ierland, van E.C.

    2008-01-01

    Gum arabic production in Sudan has developed over the years in a well-established traditional bush-fallow system in which the gum tree (Acacia senegal) is rotated with annual crops. Following the Sahel drought, the gum area has suffered from deforestation and gum production has declined. Several

  20. Flavor-Enhanced Modulation of Cerebral Blood Flow during Gum Chewing.

    Directory of Open Access Journals (Sweden)

    Yoko Hasegawa

    Full Text Available Flavor perception, the integration of taste and odor, is a critical factor in eating behavior. It remains unclear how such sensory signals influence the human brain systems that execute the eating behavior.WE TESTED CEREBRAL BLOOD FLOW (CBF IN THE FRONTAL LOBES BILATERALLY WHILE SUBJECTS CHEWED THREE TYPES OF GUM WITH DIFFERENT COMBINATIONS OF TASTE AND ODOR: no taste/no odor gum (C-gum, sweet taste/no odor gum (T-gum, and sweet taste/lemon odor gum (TO-gum. Simultaneous recordings of transcranial Doppler ultrasound (TCD and near infrared spectrometer (NIRS were used to measure CBF during gum chewing in 25 healthy volunteers. Bilateral masseter muscle activity was also monitored.We found that subjects could discriminate the type of gum without prior information. Subjects rated the TO-gum as the most flavorful gum and the C-gum as the least flavorful. Analysis of masseter muscle activity indicated that masticatory motor output during gum chewing was not affected by taste and odor. The TCD/NIRS measurements revealed significantly higher hemodynamic signals when subjects chewed the TO-gum compared to when they chewed the C-gum and T-gum.These data suggest that taste and odor can influence brain activation during chewing in sensory, cognitive, and motivational processes rather than in motor control.

  1. Chewing gum moderates the vigilance decrement.

    Science.gov (United States)

    Morgan, Kate; Johnson, Andrew J; Miles, Christopher

    2014-05-01

    We examine the impact of chewing gum on a Bakan-type vigilance task that requires the continual updating of short-term order memory. Forty participants completed a 30-min auditory Bakan-task either with, or without, the requirement to chew gum. Self-rated measures of mood were taken both pre- and post-task. As expected, the vigilance task produced a time-dependent performance decrement indexed via decreases in target detections and lengthened correct reaction times (RTs), and a reduction in post-task self-rated alertness scores. The declines in both performance and subjective alertness were attenuated in the chewing-gum group. In particular, correct RTs were significantly shorter following the chewing of gum in the latter stages of the task. Additionally, the gradients of decline for target detection and incline for correct RTs were both attenuated for the chewing-gum group. These findings are consistent with the data of Tucha and Simpson (2011), Appetite, 56, 299-301, who showed beneficial effects of chewing gum in the latter stages of a 30 min visual attention task, and extend their data to a task that necessitates the continuous updating of order memory. It is noteworthy that our data contradict the claim (Kozlov, Hughes, & Jones, 2012, Q. J. Exp. Psychology, 65, 501-513) that chewing gum negatively impacts short-term memory task performance. © 2013 The British Psychological Society.

  2. Surface flow in severe plastic deformation of metals by sliding

    International Nuclear Information System (INIS)

    Mahato, A; Yeung, H; Chandrasekar, S; Guo, Y

    2014-01-01

    An in situ study of flow in severe plastic deformation (SPD) of surfaces by sliding is described. The model system – a hard wedge sliding against a metal surface – is representative of surface conditioning processes typical of manufacturing, and sliding wear. By combining high speed imaging and image analysis, important characteristics of unconstrained plastic flow inherent to this system are highlighted. These characteristics include development of large plastic strains on the surface and in the subsurface by laminar type flow, unusual fluid-like flow with vortex formation and surface folding, and defect and particle generation. Preferred conditions, as well as undesirable regimes, for surface SPD are demarcated. Implications for surface conditioning in manufacturing, modeling of surface deformation and wear are discussed

  3. Plastic deformation and failure mechanisms in nano-scale notched metallic glass specimens under tensile loading

    Science.gov (United States)

    Dutta, Tanmay; Chauniyal, Ashish; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U.

    2018-02-01

    In this work, numerical simulations using molecular dynamics and non-local plasticity based finite element analysis are carried out on tensile loading of nano-scale double edge notched metallic glass specimens. The effect of acuteness of notches as well as the metallic glass chemical composition or internal material length scale on the plastic deformation response of the specimens are studied. Both MD and FE simulations, in spite of the fundamental differences in their nature, indicate near-identical deformation features. Results show two distinct transitions in the notch tip deformation behavior as the acuity is increased, first from single shear band dominant plastic flow localization to ligament necking, and then to double shear banding in notches that are very sharp. Specimens with moderately blunt notches and composition showing wider shear bands or higher material length scale characterizing the interaction stress associated with flow defects display profuse plastic deformation and failure by ligament necking. These results are rationalized from the role of the interaction stress and development of the notch root plastic zones.

  4. The effect of tooling deformation on process control in multistage metal forming

    NARCIS (Netherlands)

    Havinga, Gosse Tjipke; van den Boogaard, Antonius H.; Chinesta, F; Cueto, E; Abisset-Chavanne, E.

    2016-01-01

    Forming of high-strength steels leads to high loads within the production process. In multistage metal forming, the loads in different process stages are transferred to the other stages through elastic deformation of the stamping press. This leads to interactions between process steps, affecting the

  5. Investigating Deformation and Failure Mechanisms in Nanoscale Multilayer Metallic Composites

    Energy Technology Data Exchange (ETDEWEB)

    Zbib, Hussein M. [Washington State Univ., Pullman, WA (United States); Bahr, David F. [Purdue Univ., West Lafayette, IN (United States)

    2014-10-22

    Over the history of materials science there are many examples of materials discoveries that have made superlative materials; the strongest, lightest, or toughest material is almost always a goal when we invent new materials. However, often these have been a result of enormous trial and error approaches. A new methodology, one in which researchers design, from the atoms up, new ultra-strong materials for use in energy applications, is taking hold within the science and engineering community. This project focused on one particular new classification of materials; nanolaminate metallic composites. These materials, where two metallic materials are intimately bonded and layered over and over to form sheets or coatings, have been shown over the past decade to reach strengths over 10 times that of their constituents. However, they are not yet widely used in part because while extremely strong (they don’t permanently bend), they are also not particularly tough (they break relatively easily when notched). Our program took a coupled approach to investigating new materials systems within the laminate field. We used computational materials science to explore ways to institute new deformation mechanisms that occurred when a tri-layer, rather than the more common bi-layer system was created. Our predictions suggested that copper-nickel or copper-niobium composites (two very common bi-layer systems) with layer thicknesses on the order of 20 nm and then layered 100’s of times, would be less tough than a copper-nickel-niobium metallic composite of similar thicknesses. In particular, a particular mode of permanent deformation, cross-slip, could be activated only in the tri-layer system; the crystal structure of the other bi-layers would prohibit this particular mode of deformation. We then experimentally validated this predication using a wide range of tools. We utilized a DOE user facility, the Center for Integrated Nanotechnology (CINT), to fabricate, for the first time, these

  6. Modelling of the plastic deformation and primary creep of metals coupled with DC in terms of the synthetic theory of irrecoverable deformation

    Science.gov (United States)

    Rusinko, Andrew; Varga, Peter

    2018-04-01

    The paper deals with modelling of the plastic and creep deformation of metals coupled with current. The passage of DC manifests itself in the increase in creep deformation and leads to primary creep time shortening. With plastic deformation, a short electric impulse results in the step-wise decrease of stress (stress-drop) on the stress-strain diagram. To catch these phenomena, we utilize the synthetic theory of recoverable deformation. The constitutive equation of this theory is supplemented by a term taking into account the intensity of DC. Further, we introduce DC intensity into the function governing transient creep. As a result, we predict the parameters of transient creep and calculate the stress-drop as a function of current intensity. The model results show good agreement with experimental data.

  7. GumTree-An integrated scientific experiment environment

    International Nuclear Information System (INIS)

    Lam, Tony; Hauser, Nick; Goetz, Andy; Hathaway, Paul; Franceschini, Fredi; Rayner, Hugh; Zhang, Lidia

    2006-01-01

    GumTree is an open source and multi-platform graphical user interface for performing neutron scattering and X-ray experiments. It handles the complete experiment life cycle from instrument calibration, data acquisition, and real time data analysis to results publication. The aim of the GumTree Project is to create a highly Integrated Scientific Experiment Environment (ISEE), allowing interconnectivity and data sharing between different distributed components such as motors, detectors, user proposal database and data analysis server. GumTree is being adapted to several instrument control server systems such as TANGO, EPICS and SICS, providing an easy-to-use front-end for users and simple-to-extend model for software developers. The design of GumTree is aimed to be reusable and configurable for any scientific instrument. GumTree will be adapted to six neutron beam instruments for the OPAL reactor at ANSTO. Other European institutes including ESRF, ILL and PSI have shown interest in using GumTree as their workbench for instrument control and data analysis

  8. In vitro tooth whitening effect of two medicated chewing gums compared to a whitening gum and saliva

    Directory of Open Access Journals (Sweden)

    Saroea Geoffrey

    2008-08-01

    Full Text Available Abstract Background Extrinsic staining of teeth may result from the deposition of a variety of pigments into or onto the tooth surface, which originate mainly from diet or from tobacco use. More recently, clinical studies have demonstrated the efficacy of some chewing gums in removing extrinsic tooth staining. The aim of this study was to assess the effectiveness of two nicotine medicated chewing gums (A and B on stain removal in an in vitro experiment, when compared with a confectionary whitening chewing gum (C and human saliva (D. Methods Bovine incisors were stained by alternating air exposure and immersion in a broth containing natural pigments such as coffee, tea and oral microorganisms for 10 days. Stained enamel samples were exposed to saliva alone or to the test chewing gums under conditions simulating human mastication. The coloration change of the enamel samples was measured using a spectrophotometer. Measurements were obtained for each specimen (average of three absorbances using the L*a*b scale: lightness (L*, red-green (a and yellow-blue (b. Results Medicated chewing gums (A and B removed a greater amount of visible extrinsic stain, while the confectionary chewing gum with a whitening claim (C had a milder whitening effect as evaluated by quantitative and qualitative assessment. Conclusion The tested Nicotine Replacement Therapy (NRT chewing gums were more effective in the removal of the extrinsic tooth stain. This visible improvement in tooth whitening appearance could strengthen the smokers' motivation to quit smoking.

  9. What do GUM physicians think should be taught in a modern undergraduate GUM module? A qualitative inquiry.

    Science.gov (United States)

    Fernando, I

    2015-10-01

    Traditional undergraduate Genitourinary Medicine (GUM) teaching in the UK concentrated on the management of individual sexually transmitted infections. There is significant variation, however, in the GUM teaching provided by different medical schools today. I undertook a qualitative interview study to gather views of GUM and other sexual health clinicians regarding what should be taught within a modern undergraduate GUM module. Nine GUM clinicians and two Sexual and Reproductive Health (SRH) clinicians participated in the study; all were directly involved in undergraduate teaching. Semi-structured interviews were conducted with study participants by a single interviewer, focusing on three key topics: their individual opinions regarding important learning outcomes (LOs) for a modern model GUM curriculum, their preferred teaching methods and the total recommended teaching time required. Interviews were audio-recorded with consent and professionally transcribed. Data were analysed by the content analysis method. Interviewees frequently stressed skill and attitudinal LOs, even above knowledge. Recommended important skills included sexual history taking, HIV risk assessment and testing, and male and female genital examination. Recommended attitudinal LOs were developing an open and non-judgemental approach to sexual health issues and understanding sexual well-being to be an important component of general health. Respondents were keen for a mixture of teaching methods, but generally agreed that clinic attendance and experiential learning were beneficial. They preferred that GUM teaching should be delivered in the latter years of the undergraduate curriculum. © The Author(s) 2015.

  10. Rheological Modeling and Characterization of Ficus platyphylla Gum Exudates

    Directory of Open Access Journals (Sweden)

    Nnabuk O. Eddy

    2013-01-01

    Full Text Available Ficus platyphylla gum exudates (FP gum have been analyzed for their physicochemical parameters and found to be ionic, mildly acidic, odourless, and yellowish brown in colour. The gum is soluble in water, sparingly soluble in ethanol, and insoluble in acetone and chloroform. The nitrogen (0.39% and protein (2.44% contents of the gum are relatively low. The concentrations of the cations were found to increase according to the following trend, Mn>Fe>Zn>Pb>Cu>Mg>Cd>Ca. Analysis of the FTIR spectrum of the gum revealed vibrations similar to those found in polysaccharides while the scanning electron micrograph indicated that the gum has irregular molecular shapes, arranged randomly. The intrinsic viscosity of FP gum estimated by extrapolating to zero concentrations in Huggins, Kraemer, Schulz-Blaschke, and Martin plots has an average value of 7 dL/g. From the plots of viscosity versus shear rate/speed of rotation and also that of shear stress versus shear rate, FP gum can be classified as a non-Newtonian gum with characteristics-plastic properties. Development of the Master_s curve for FP gum also indicated that the gum prefers to remain in a dilute domain (Cgum (calculated from Arrhenius-Frenkel-Eyring plot was relatively low and indicated the presence of fewer inter- and intramolecular interactions.

  11. Gellan Gum: Fermentative Production, Downstream Processing and Applications

    Directory of Open Access Journals (Sweden)

    Ishwar B. Bajaj

    2007-01-01

    Full Text Available The microbial exopolysaccharides are water-soluble polymers secreted by microorganisms during fermentation. The biopolymer gellan gum is a relatively recent addition to the family of microbial polysaccharides that is gaining much importance in food, pharmaceutical and chemical industries due to its novel properties. It is commercially produced by C. P. Kelco in Japan and the USA. Further research and development in biopolymer technology is expected to expand its use. This article presents a critical review of the available information on the gellan gum synthesized by Sphingomonas paucimobilis with special emphasis on its fermentative production and downstream processing. Rheological behaviour of fermentation broth during fermentative production of gellan gum and problems associated with mass transfer have been addressed. Information on the biosynthetic pathway of gellan gum, enzymes and precursors involved in gellan gum production and application of metabolic engineering for enhancement of yield of gellan gum has been specified. Characteristics of gellan gum with respect to its structure, physicochemical properties, rheology of its solutions and gel formation behaviour are discussed. An attempt has also been made to review the current and potential applications of gellan gum in food, pharmaceutical and other industries.

  12. Optimizing gelling parameters of gellan gum for fibrocartilage tissue engineering.

    Science.gov (United States)

    Lee, Haeyeon; Fisher, Stephanie; Kallos, Michael S; Hunter, Christopher J

    2011-08-01

    Gellan gum is an attractive biomaterial for fibrocartilage tissue engineering applications because it is cell compatible, can be injected into a defect, and gels at body temperature. However, the gelling parameters of gellan gum have not yet been fully optimized. The aim of this study was to investigate the mechanics, degradation, gelling temperature, and viscosity of low acyl and low/high acyl gellan gum blends. Dynamic mechanical analysis showed that increased concentrations of low acyl gellan gum resulted in increased stiffness and the addition of high acyl gellan gum resulted in greatly decreased stiffness. Degradation studies showed that low acyl gellan gum was more stable than low/high acyl gellan gum blends. Gelling temperature studies showed that increased concentrations of low acyl gellan gum and CaCl₂ increased gelling temperature and low acyl gellan gum concentrations below 2% (w/v) would be most suitable for cell encapsulation. Gellan gum blends were generally found to have a higher gelling temperature than low acyl gellan gum. Viscosity studies showed that increased concentrations of low acyl gellan gum increased viscosity. Our results suggest that 2% (w/v) low acyl gellan gum would have the most appropriate mechanics, degradation, and gelling temperature for use in fibrocartilage tissue engineering applications. Copyright © 2011 Wiley Periodicals, Inc.

  13. Tailoring dislocation structures and mechanical properties of nanostructured metals produced by plastic deformation

    DEFF Research Database (Denmark)

    Huang, Xiaoxu

    2009-01-01

    The presence of a dislocation structure associated with low-angle dislocation boundaries and interior dislocations is a common and characteristic feature in nanostructured metals produced by plastic deformation, and plays an important role in determining both the strength and ductility...

  14. Extraction and Characterization of Boswellia Serrata Gum as Pharmaceutical Excipient.

    Science.gov (United States)

    Panta, Sumedha; Malviya, Rishabha; Sharma, Pramod

    2015-01-01

    This manuscript deals with the purification and characterization of Boswellia serrata gum as a suspending agent. The Boswellia serrata gum was purchased as crude material, purified and further characterized in terms of organoleptic properties and further micromeritic studies were carried out to characterize the polymer as a pharmaceutical excipient. The suspending properties of the polymer were also evaluated. The results showed that the extracted gum possesses optimum organoleptic as well as micromeritic and suspending properties. To characterize Boswellia serrata gum as a natural excipient. Boswellia serrata gum, paracetamol, distilled water. The results showed that the extracted gum possesses optimum organoleptic as well as micromeritic and suspending properties. It is concluded from the research work that the gum extracted from Boswellia serrata shows the presence of carbohydrates after chemical tests. All the organoleptic properties evaluated were found to be acceptable. The pH was found to be slightly acidic. Swelling Index reveals that the gum swells well in water. Total ash value was within the limits. The values of angle of repose and Carr's Index of powdered gum powder showed that the flow property was good. IR spectra confirmed the presence of alcohol, amines, ketones, anhydrides and aromatic rings. The suspending properties of Boswellia serrata gum were found to be higher as compared to gum acacia while the flow rate of Boswellia serrata gum (1% suspension) was less than gum acacia (1% suspension). The viscosity measurement of both Boswellia serrata gum suspension and gum acacia suspension showed approximately similar results.

  15. Research of state of metal welded joint by deformation and corrosion surface projection parameters

    Directory of Open Access Journals (Sweden)

    Demchenko Maria Vyacheslavovna

    2017-10-01

    Full Text Available At industrial enterprises in building structures and equipment one can see corrosion damage, as well as damage accumulated during operation period. The areas of stress concentration are welded joints as their structure is heterogeneous. From the point of view of the scale hierarchy, the welded joint represents the welded and base metal zones at the meso-macrolevel, the weld zone, the thermal zone, the base metal at the micro-mesolevel, the grain constituents at the nano-microlevel. Borders are the stress concentrators at different scale levels, thus they becomes the most dangerous places of metal structure. Modeling by the molecular dynamics method at the atomic level has shown nanocracks initiation in triple junctions of grain boundaries and on the ledges of the grain boundaries. Due to active development of nanotechnology, it became possible to evaluate the state of the weld metal at the nanoscale, where irreversible changes take place from the very beginning. Existing methods of nondestructive testing can detect damage only at the meso- and macrolevel. Modern equipment makes it possible to use other methods of control and approaches. For example, according to GOST R55046-2012 and R57223-2016, the analysis of the parameters of the surface projection deformation performed by confocal laser scanning microscopy should be taken into account when the evaluation of state of metal pipelines is carried out. However, there is a problem to monitore it due to various factors affecting the surface during operation. The paper proposes an additional method to estimate the state of weld metal at any stage of deformation that uses 3D analysis of the parameters of the «artificial» corrosion relief of surface. During the operation period changes in the stress-strain state and structure of the metal take place, as the result the character and depth of etching of the grains of the structural components and their boundaries change too. Evaluation of the

  16. Study of inelastic deformation mechanisms in metal glass volume

    International Nuclear Information System (INIS)

    Bakaj, S.A.; Neklyudov, I.M.; Savchenko, V.I.; Ehkert, Yu.

    2001-01-01

    The results of investigations of the mechanical properties and internal friction of the bulk amorphous alloy Zr 53.5 Ti 5 Cu 17.5 Ni 14.6 Al 10.4 within the temperature range from the room temperature up to glass-transition temperature are reported. The yield stress and transition from homogeneous to inhomogeneous plastic deformation are investigated. The temperature dependence of low-frequency internal friction, Q -1 (T), in the amplitude-independent limit of oscillations is obtained. The temperature range within which the homogeneous plastic deformation is observed under compression stress is determined. The superplasticity of the amorphous alloy is revealed at the temperature which is 100K lower than the glass-transition temperature. The lowest temperature, at which the superplasticity is revealed, turns to be an edge of the temperature range where Q -1 (T) increases fast. The microscopic nature of the observed phenomena are interpreted on the base of the polycluster model of the metallic glasses

  17. Cross-linked natural gum resins, when inserted in shampooing product, result infallible to eliminate several metallic ions risky for hair keratin

    Directory of Open Access Journals (Sweden)

    Martini Lorenzo

    2016-04-01

    Full Text Available Aims of my research is to herald the method of eliminating Calcium and Magnesium ions that remain onto hair and scalp keratin after washing with common hard water and trivial shampooing products, but even of removing other metals as Lead, Silicon and Nickel ions which can be retrieved in manifold building materials like mortar, cement, concrete, pozzolans, limestone and asbest, most of workers throughout the world are directly involved with, because of their continuous contact with those chemical materials. I have selected twelve volunteers (workers who are directly in contact with building materials containing Calcium and Magnesium ions and prayed them to use three types of shampooing products of my invention (containing special gum resins previously cross-linked in order to uptake or sorption the metallic ions after having used, in precedence, trivial shampoos (bought at the same store and used the same tap water, since they live all in the same town. I calculated the difference of quantities of Magnesium and Calcium that remain onto hair and scalp keratin, using a general and trivial shampoo respect to my products, apt to remove the same metallic ions. Results are satisfactory and encouraging.

  18. Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    Science.gov (United States)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2004-01-01

    In friction stir welding, a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. This solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld such as aluminum alloys. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and thus tracks the aluminum deformation flow paths in a unique 3-dimensional manner. CT scanning is a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  19. GumTree - An Integrated Scientific Experiment Environment

    International Nuclear Information System (INIS)

    Lam, Tony; Hauser, Nick; Hathaway, Paul; Franceschini, Fredi; Rayner, Hugh; Zhang, Lidia; Goetz, Andy

    2005-01-01

    Full text: GumTree is an open source and multi-platform graphical user interface for performing neutron scattering and X-ray experiments. It handles the complete experiment life cycle from instrument calibration, data acquisition, and real time data analysis to results publication. The aim of the GumTree Project is to create a highly Integrated Scientific Experiment Environment (ISEE), allowing interconnectivity and data sharing between different distributed components such as motors, detectors, user proposal database and data analysis server. GumTree is being adapted to several instrument control server systems such as TANGO, EPICS and SICS, providing an easy-to-use front-end for users and simple-to-extend model for software developers. The design of GumTree is aimed to be reusable and configurable for any scientific instrument. GumTree will be adapted to six neutron beam instruments for the OPAL reactor at ANSTO. Other European institutes including ESRF, ILL and PSI have shown interest in using GumTree as their workbench for instrument control and data analysis. (authors)

  20. Atomistic simulation study of the shear-band deformation mechanism in Mg-Cu metallic glasses

    DEFF Research Database (Denmark)

    Bailey, Nicholas; Schiøtz, Jakob; Jacobsen, Karsten Wedel

    2006-01-01

    We have simulated plastic deformation of a model Mg-Cu metallic glass in order to study shear banding. In uniaxial tension, we find a necking instability occurs rather than shear banding. We can force the latter to occur by deforming in plane strain, forbidding the change of length in one...... of the transverse directions. Furthermore, in most of the simulations a notch is used to initiate shear bands, which lie at a 45 degrees angle to the tensile loading direction. The shear bands are characterized by the Falk and Langer local measure of plastic deformation D-min(2), averaged here over volumes...... observe a slight decrease in density, up to 1%, within the shear band, which is consistent with notions of increased free volume or disorder within a plastically deforming amorphous material....

  1. Bending and tensile deformation of metallic nanowires

    International Nuclear Information System (INIS)

    McDowell, Matthew T; Leach, Austin M; Gall, Ken

    2008-01-01

    Using molecular statics simulations and the embedded atom method, a technique for bending silver nanowires and calculating Young's modulus via continuum mechanics has been developed. The measured Young's modulus values extracted from bending simulations were compared with modulus values calculated from uniaxial tension simulations for a range of nanowire sizes, orientations and geometries. Depending on axial orientation, the nanowires exhibit stiffening or softening under tension and bending as size decreases. Bending simulations typically result in a greater variation of Young's modulus values with nanowire size compared with tensile deformation, which indicates a loading-method-dependent size effect on elastic properties at sub-5 nm wire diameters. Since the axial stress is maximized at the lateral surfaces in bending, the loading-method-dependent size effect is postulated to be primarily a result of differences in nanowire surface and core elastic modulus. The divergence of Young's modulus from the bulk modulus in these simulations occurs at sizes below the range in which experiments have demonstrated a size scale effect on elastic properties of metallic nanowires. This difference indicates that other factors beyond native metallic surface properties play a role in experimentally observed nanowire elastic modulus size effects

  2. Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation

    Directory of Open Access Journals (Sweden)

    Masahide Sato, Nobuhiro Tsuji, Yoritoshi Minamino and Yuichiro Koizumi

    2004-01-01

    Full Text Available The surface of the various kinds of metallic materials sheets were severely deformed by wire-brushing at ambient temperature to achieve nanocrystalline surface layer. The surface layers of the metallic materials developed by the near surface severe plastic deformation (NS-SPD were characterized by means of TEM. Nearly equiaxed nanocrystals with grain sizes ranging from 30 to 200 nm were observed in the near surface regions of all the severely scratched metallic materials, which are Ti-added ultra-low carbon interstitial free steel, austenitic stainless steel (SUS304, 99.99 wt.%Al, commercial purity aluminum (A1050 and A1100, Al–Mg alloy (A5083, Al-4 wt.%Cu alloy, OFHC-Cu (C1020, Cu–Zn alloy (C2600 and Pb-1.5%Sn alloy. In case of the 1050-H24 aluminum, the depth of the surface nanocrystalline layer was about 15 μm. It was clarified that wire-brushing is an effective way of NS-SPD, and surface nanocrystallization can be easily achieved in most of metallic materials.

  3. Numerical Modelling of Metal-Elastomer Spring Nonlinear Response for Low-Rate Deformations

    Directory of Open Access Journals (Sweden)

    Sikora Wojciech

    2018-03-01

    Full Text Available Advanced knowledge of mechanical characteristics of metal-elastomer springs is useful in their design process and selection. It can also be used in simulating dynamics of machine where such elements are utilized. Therefore this paper presents a procedure for preparing and executing FEM modelling of a single metal-elastomer spring, also called Neidhart’s spring, for low-rate deformations. Elastomer elements were made of SBR rubber of two hardness values: 50°Sh and 70°Sh. For the description of material behaviour the Bergström-Boyce model has been used.

  4. Free volume model: High-temperature deformation of a Zr-based bulk metallic glass

    International Nuclear Information System (INIS)

    Bletry, M.; Guyot, P.; Blandin, J.J.; Soubeyroux, J.L.

    2006-01-01

    The homogeneous deformation of a zirconium-based bulk metallic glass is investigated in the glass transition region. Compression tests at different temperatures and strain rates have been conducted. The mechanical behavior is analyzed in the framework of the free volume model, taking into account the dependence of the flow defect concentration on deformation. The activation volume is evaluated and allows one to gather the viscosity data (for the different strain rates and temperatures) on a unique master curve. It is also shown that, due to the relation between flow defect concentration and free volume, it is not possible to deduce the equilibrium flow defect concentration directly from mechanical measurements. However, if this parameter is arbitrarily chosen, mechanical measurements give access to the other parameters of the model, these parameters for the alloy under investigation being of the same order of magnitude as those for other metallic glasses

  5. Isolation and characterization of gum from Chrysophyllum albidum ...

    African Journals Online (AJOL)

    This study describes the morphology, physicochemical and compressional characteristics of a natural gum derived from the fruits of Chrysophyllum albidum. Preliminary phytochemical screening and physicochemical properties of Chrysophyllum albidum gum (in comparison with tragacanth gum) were determined while ...

  6. GumTree: Data reduction

    Energy Technology Data Exchange (ETDEWEB)

    Rayner, Hugh [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)]. E-mail: hrz@ansto.gov.au; Hathaway, Paul [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Hauser, Nick [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Fei, Yang [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Franceschini, Ferdi [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia); Lam, Tony [Bragg Institute, Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    2006-11-15

    Access to software tools for interactive data reduction, visualisation and analysis during a neutron scattering experiment enables instrument users to make informed decisions regarding the direction and success of their experiment. ANSTO aims to enhance the experiment experience of its facility's users by integrating these data reduction tools with the instrument control interface for immediate feedback. GumTree is a software framework and application designed to support an Integrated Scientific Experimental Environment, for concurrent access to instrument control, data acquisition, visualisation and analysis software. The Data Reduction and Analysis (DRA) module is a component of the GumTree framework that allows users to perform data reduction, correction and basic analysis within GumTree while an experiment is running. It is highly integrated with GumTree, able to pull experiment data and metadata directly from the instrument control and data acquisition components. The DRA itself uses components common to all instruments at the facility, providing a consistent interface. It features familiar ISAW-based 1D and 2D plotting, an OpenGL-based 3D plotter and peak fitting performed by fityk. This paper covers the benefits of integration, the flexibility of the DRA module, ease of use for the interface and audit trail generation.

  7. GumTree: Data reduction

    International Nuclear Information System (INIS)

    Rayner, Hugh; Hathaway, Paul; Hauser, Nick; Fei, Yang; Franceschini, Ferdi; Lam, Tony

    2006-01-01

    Access to software tools for interactive data reduction, visualisation and analysis during a neutron scattering experiment enables instrument users to make informed decisions regarding the direction and success of their experiment. ANSTO aims to enhance the experiment experience of its facility's users by integrating these data reduction tools with the instrument control interface for immediate feedback. GumTree is a software framework and application designed to support an Integrated Scientific Experimental Environment, for concurrent access to instrument control, data acquisition, visualisation and analysis software. The Data Reduction and Analysis (DRA) module is a component of the GumTree framework that allows users to perform data reduction, correction and basic analysis within GumTree while an experiment is running. It is highly integrated with GumTree, able to pull experiment data and metadata directly from the instrument control and data acquisition components. The DRA itself uses components common to all instruments at the facility, providing a consistent interface. It features familiar ISAW-based 1D and 2D plotting, an OpenGL-based 3D plotter and peak fitting performed by fityk. This paper covers the benefits of integration, the flexibility of the DRA module, ease of use for the interface and audit trail generation

  8. Plastic Deformation of Metal Tubes Subjected to Lateral Blast Loads

    Directory of Open Access Journals (Sweden)

    Kejian Song

    2014-01-01

    Full Text Available When subjected to the dynamic load, the behavior of the structures is complex and makes it difficult to describe the process of the deformation. In the paper, an analytical model is presented to analyze the plastic deformation of the steel circular tubes. The aim of the research is to calculate the deflection and the deformation angle of the tubes. A series of assumptions are made to achieve the objective. During the research, we build a mathematical model for simply supported thin-walled metal tubes with finite length. At a specified distance above the tube, a TNT charge explodes and generates a plastic shock wave. The wave can be seen as uniformly distributed over the upper semicircle of the cross-section. The simplified Tresca yield domain can be used to describe the plastic flow of the circular tube. The yield domain together with the plastic flow law and other assumptions can finally lead to the solving of the deflection. In the end, tubes with different dimensions subjected to blast wave induced by the TNT charge are observed in experiments. Comparison shows that the numerical results agree well with experiment observations.

  9. Discontinuities of Plastic Deformation in Metallic Glasses with Different Glass Forming Ability

    Science.gov (United States)

    Hurakova, Maria; Csach, Kornel; Miskuf, Jozef; Jurikova, Alena; Demcak, Stefan; Ocelik, Vaclav; Hosson, Jeff Th. M. De

    The metallic ribbons Fe40Ni40B20, Cu47Ti35Zr11Ni6Si1 and Zr65Cu17.5Ni10Al7.5 with different microhardness and glass forming ability were studied at different loading rates from 0.05 to 100 mN/s. We describe in details the differences in elemental discontinuities on the loading curves for the studied alloys. It was found that the discontinuities began at a certain local deformation independently on the macroscopic mechanical properties of a ribbon. More developed discontinuities at higher deformations are created for the materials with lower microhardness and so lower strength.

  10. Ra and the average effective strain of surface asperities deformed in metal-working processes

    DEFF Research Database (Denmark)

    Bay, Niels; Wanheim, Tarras; Petersen, A. S

    1975-01-01

    Based upon a slip-line analysis of the plastic deformation of surface asperities, a theory is developed determining the Ra-value (c.l.a.) and the average effective strain in the surface layer when deforming asperities in metal-working processes. The ratio between Ra and Ra0, the Ra-value after...... and before deformation, is a function of the nominal normal pressure and the initial slope γ0 of the surface asperities. The last parameter does not influence Ra significantly. The average effective strain View the MathML sourcege in the deformed surface layer is a function of the nominal normal pressure...... and γ0. View the MathML sourcege is highly dependent on γ0, View the MathML sourcege increasing with increasing γ0. It is shown that the Ra-value and the strain are hardly affected by the normal pressure until interacting deformation of the asperities begins, that is until the limit of Amonton's law...

  11. The role of deformation microstructure in recovery and recrystallization of heavily strained metals

    DEFF Research Database (Denmark)

    Hansen, Niels

    2012-01-01

    Metals deformed to high and ultrahigh strains are characterized by a nanoscale microstructure, a large fraction of high angle boundaries and a high dislocation density. Another characteristic of such a microstructure is a large stored energy that combines elastic energy due to dislocations and bo...

  12. Investigating the Mechanical Behavior and Deformation Mechanisms of Ultrafinegrained Metal Films Using Ex-situ and In-situ TEM Techniques

    Science.gov (United States)

    Izadi, Ehsan

    Nanocrystalline (NC) and Ultrafine-grained (UFG) metal films exhibit a wide range of enhanced mechanical properties compared to their coarse-grained counterparts. These properties, such as very high strength, primarily arise from the change in the underlying deformation mechanisms. Experimental and simulation studies have shown that because of the small grain size, conventional dislocation plasticity is curtailed in these materials and grain boundary mediated mechanisms become more important. Although the deformation behavior and the underlying mechanisms in these materials have been investigated in depth, relatively little attention has been focused on the inhomogeneous nature of their microstructure (particularly originating from the texture of the film) and its influence on their macroscopic response. Furthermore, the rate dependency of mechanical response in NC/UFG metal films with different textures has not been systematically investigated. The objectives of this dissertation are two-fold. The first objective is to carry out a systematic investigation of the mechanical behavior of NC/UFG thin films with different textures under different loading rates. This includes a novel approach to study the effect of texture-induced plastic anisotropy on mechanical behavior of the films. Efforts are made to correlate the behavior of UFG metal films and the underlying deformation mechanisms. The second objective is to understand the deformation mechanisms of UFG aluminum films using in-situ transmission electron microscopy (TEM) experiments with Automated Crystal Orientation Mapping. This technique enables us to investigate grain rotations in UFG Al films and to monitor the microstructural changes in these films during deformation, thereby revealing detailed information about the deformation mechanisms prevalent in UFG metal films.

  13. Design, formulation and evaluation of nicotine chewing gum.

    Science.gov (United States)

    Aslani, Abolfazl; Rafiei, Sahar

    2012-01-01

    Nicotine replacement therapy (NRT) can help smokers to quit smoking. Nicotine chewing gum has attracted the attention from pharmaceutical industries to offer it to consumers as an easily accessible NRT product. However, the bitter taste of such gums may compromise their acceptability by patients. This study was, therefore, designed to develop 2 and 4 mg nicotine chewing gums of pleasant taste, which satisfy the consumers the most. Nicotine, sugar, liquid glucose, glycerin, different sweetening and taste-masking agents, and a flavoring agent were added to the gum bases at appropriate temperature. The medicated gums were cut into pieces of suitable size and coated by acacia aqueous solution (2% w/v), sugar dusting, followed by acacia-sugar-calcium carbonate until a smooth surface was produced. The gums' weight variation and content uniformity were determined. The release of nicotine was studied in pH 6.8 phosphate buffer using a mastication device which simulated the mastication of chewing gum in human. The Latin Square design was used for the evaluation of organoleptic characteristics of the formulations at different stages of development. Most formulations released 79-83% of their nicotine content within 20 min. Nicotine-containing sugar-coated gums in which aspartame as sweetener and cherry and eucalyptus as flavoring agents were incorporated (i.e. formulations F(19-SC) and F(20-SC), respectively) had optimal chewing hardness, adhering to teeth, and plumpness characteristics, as well as the most pleasant taste and highest acceptability to smokers. Taste enhancement of nicotine gums was achieved where formulations comprised aspartame as the sweetener and cherry and eucalyptus as the flavoring agents. Nicotine gums of pleasant taste may, therefore, be used as NRT to assist smokers quit smoking.

  14. Inspection and Reconstruction of Metal-Roof Deformation under Wind Pressure Based on Bend Sensors

    OpenAIRE

    Yang, Liman; Cui, Langfu; Li, Yunhua; An, Chao

    2017-01-01

    Metal roof sheathings are widely employed in large-span buildings because of their light weight, high strength and corrosion resistance. However, their severe working environment may lead to deformation, leakage and wind-lift, etc. Thus, predicting these damages in advance and taking maintenance measures accordingly has become important to avoid economic losses and personal injuries. Conventionally, the health monitoring of metal roofs mainly relies on manual inspection, which unavoidably com...

  15. Design, formulation and evaluation of caffeine chewing gum

    Directory of Open Access Journals (Sweden)

    Abolfazl Aslani

    2013-01-01

    Conclusion: In this study, 20 and 50 mg caffeine gums with suitable and desirable properties (i.e., good taste and satisfactory release were formulated. The best flavor for caffeine gum was cinnamon. Both kinds of 20 and 50 mg gums succeeded in content uniformity test.

  16. Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    Science.gov (United States)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  17. Effect of strain rate on the mechanical properties of a gum metal with various microstructures

    International Nuclear Information System (INIS)

    Liu, Silu; Pan, Z.L.; Zhao, Y.H.; Topping, T.; Valiev, R.Z.; Liao, X.Z.; Lavernia, E.J.; Zhu, Y.T.; Wei, Q.

    2017-01-01

    In this work, a bulk gum metal (GM) was fabricated via arc melting from high purity powders. The ingots were first extruded using a conventional route followed by equal channel angular pressing (ECAP). The mechanical behavior of the extruded GM and ECAP-processed GM was studied under both quasi-static and high strain rate compression conditions to evaluate the influence of strain rate. In addition, the associated mechanical anisotropy, or the lack thereof, was investigated through loading in different orientations with respect to the extrusion or ECAP direction. Precipitous stress drops were observed under dynamic compression of both extruded and ECAP-processed GM specimens when loading perpendicular to the extrusion direction. Adiabatic shear banding (ASB) was found to be associated with the precipitous stress drops on the dynamic stress-strain curves. The details of the ASBs were characterized by optical and scanning electron microscopy, with emphasis on electron backscattered diffraction (EBSD). The mechanisms responsible for the formation of ASB were examined both from thermal softening and geometrical softening perspectives. Significant microstructure refinement within ASBs was established, and a possible grain refinement mechanism was proposed.

  18. Synthesis and characterization of a polymeric material based on gum arabic by gamma radiation for purification of water

    International Nuclear Information System (INIS)

    Ibrahim, K. M. A.

    2012-07-01

    The objective of this study is to prepare interpenetrating polymer net works to be used in adsorption of heavy metal from water. (Gum Arabic (GA)/ acrylamide (AAm)) interpenetrating polymer net works (IPN) have been prepared at different compositions where Acrylamide varies between 5, 10, 15, and 20% w/w Gum Arabic solution. The percent conversion was determined gravimetrically. The swelling result of ( GA/AAm) IPN hydrogels in solutions of desired ph at a temperature of 25 O showed maximum swelling in water at ph 4.75 and the diffusion of water within ( GA/AAM) IPN hydrogels was found to be of non-fickian character at the stage of swelling. The maximum weight loss temperature and half life temperature for GA, PAAM and (GA/AAm) INP hydrogels were found from the thermal analysis. The results showed that the weight loss of hydrogels is 374 o C . This degree was between gum arabic 317 o C and acrylamide 400 o C . In the adsorption experiments, the efficiency of (GA/AAm) IPN hydrogels to adsorb cooper ions from water was studied. (GA/AAm) IPN hydrogels showed maximum adsorption for different aqueous solutions of copper at ph 5.00. Adsorption isotherm was constructed for (GA/AAm) IPN copper ion. Linear type in adsorption classification system was found. The complexation between GA and copper solution was investigated and their complex stoichiometries were calculated. The result shows that the percent of gum arabic to copper ions is 2:1 the spectroscopic analysis of copper, GA, AAM and (GA/AAm) IPN hydrogels was performed. The optimum ratio used to synthesize (IPN) hydrogels was found to be: Gum Arabic 30% and Acrylamide between 10% and 15% and the best dose is 10 kGy. The efficiency of the (IPN) hydrogels to adsorb heavy metal ions found to be 47 mg/g of hydrogels.(Author)

  19. Study on plant Gums and their new development in application: with focus on tragacanth, guar and arabic Gum; a short review

    Directory of Open Access Journals (Sweden)

    F. Hassanpour

    2016-01-01

    Full Text Available Gums refer to a type of polysaccharides which are used to increase viscosity and create some other functional properties such as thickening agent, emulsifying agent, stabilizer, crystal inhibitor and so forth. They are classifying based on their nature and originality including, microbial, plant, exudate and animal Gums. This article shortly reviews a group of plant Gums and recent findings in their application. Gums or Hydrocolloids are main compounds which create stability of emulsion via entering into water phase. The importance of these compounds is on viscosity and electrostatic reactions to stabilize nonalcoholic emulsion with below properties; 1 easily soluble in cold water, 2 the lowest amount of viscosity in water, 3 having maximum level of emulsifier amount, 4 no creation of gelling. Diversity and functionality of Gums and regarding their still novelty in food industries have made Gums one of the main additives in food formulations. Since sourced of Gums are different we must focus on using them together to improve their synergistic effect but interactions among them and combined matrixes produced by them also need to be studied in details.

  20. Nicotine Gum

    Science.gov (United States)

    ... with a smoking cessation program, which may include support groups, counseling, or specific behavioral change techniques. Nicotine gum ... and pharmacist what prescription and nonprescription medications, vitamins, nutritional supplements, and herbal products you are taking or ...

  1. Stabilization of emulsions by gum tragacanth (Astragalus spp.) correlates to the galacturonic acid content and methoxylation degree of the gum

    DEFF Research Database (Denmark)

    Ahmadi Gavlighi, Hassan; Meyer, Anne S.; Abang Zaidel, Dayang Norulfairuz

    2013-01-01

    Gum tragacanth samples from six species of Iranian Astragalus bush plants (“goat's-horn”) were evaluated for their emulsion stabilizing effects and their detailed chemical composition in order to examine any possible correlation between the make-up and the emulsion stabilizing properties of gum......:50 (A. rahensis, A. microcephalus, A. compactus) or tipped toward higher bassorin than tragacanthin (A. gossypinus). The monosaccharide make-up of the six gums also varied, but all the gums contained relatively high levels of galacturonic acid (∼100–330 mg/g), arabinose (50–360 mg/g), xylose (∼150...

  2. Phytase application in chewing gum - A technical assessment

    DEFF Research Database (Denmark)

    Nielsen, Anne Veller Friis; Meyer, Anne S.

    2016-01-01

    either prior to ingestion, i.e. in the food, or post ingestion, i.e. in the human gastrointestinal tract. We have assessed the technical aspects of formulation and release of phytase added to chewing gum as a delivery vehicle. Phytases from Aspergillus niger and Escherichia coli incorporated into chewing...... gum were released quantitatively upon chewing and retained phytase activity (50-80% of the enzyme activity added was released within 10 minutes). Initial evaluations of phytase chewing gum shelf life showed good stability after 48 days of storage of the chewing gum at ambient conditions....

  3. Numerical simulation of a bubble rising in an environment consisting of Xanthan gum

    Science.gov (United States)

    Aguirre, Víctor A.; Castillo, Byron A.; Narvaez, Christian P.

    2017-09-01

    An improved numerical algorithm for front tracking method is developed to simulate a bubble rising in viscous liquid. In the new numerical algorithm, volume correction is introduced to conserve the bubble volume while tracking the bubble's rising and deforming. Volume flux conservation is adopted to solve the Navier-Stokes equation for fluid flow using finite volume method. Non-Newtonian fluids are widely used in industry such as feed and energy industries. In this research we used Xanthan gum which is a microbiological polysaccharide. In order to obtain the properties of the Xanthan gum, such as viscosity, storage and loss modulus, shear rate, etc., it was necessary to do an amplitude sweep and steady flow test in a rheometer with a concentric cylinder as geometry. Based on the data given and using a numerical regression, the coefficients required by Giesekus model are obtained. With these coefficients, it is possible to simulate the comportment of the fluid by the use of the developed algorithm. Once the data given by OpenFOAM is acquired, it is compared with the experimental data.

  4. A constitutive model of nanocrystalline metals based on competing grain boundary and grain interior deformation mechanisms

    KAUST Repository

    Gurses, Ercan

    2011-12-01

    In this work, a viscoplastic constitutive model for nanocrystalline metals is presented. The model is based on competing grain boundary and grain interior deformation mechanisms. In particular, inelastic deformations caused by grain boundary diffusion, grain boundary sliding and dislocation activities are considered. Effects of pressure on the grain boundary diffusion and sliding mechanisms are taken into account. Furthermore, the influence of grain size distribution on macroscopic response is studied. The model is shown to capture the fundamental mechanical characteristics of nanocrystalline metals. These include grain size dependence of the strength, i.e., both the traditional and the inverse Hall-Petch effects, the tension-compression asymmetry and the enhanced rate sensitivity. © 2011 Elsevier B.V. All rights reserved.

  5. Physico-chemical study on guar gum

    International Nuclear Information System (INIS)

    Mahmoud, Nahla Mubarak

    2000-05-01

    Guar plant is an annual summer plant and it can resist diseases, pests and drought. Guar gum is used in a lot of industries. The present study deals with some physical properties of two commercial grade samples of guar gum cyamopsis tetragonoloba which where produced in 1996 and 1997 seasons (S 1 and S 2 respectively). Our analytical data are compared with those of previous workers in this area and international quality. Guar gum (S 2 ) is separated into water-insoluble components. Three fractions were obtained from the water-soluble components by fractional participation using acetone. Guar gum powder is yellowish white; the water-insoluble component is brownish white. Comparison study between gum samples (S 1 and S 2 ) and water-insoluble fraction (1) and water-soluble fractions are close to each other in their physico-properties. chemical All samples and fractions contain galactomannan polysaccharide as explained by infra-red spectra.Moisture contents for the gum samples were 5.2% and 7.8% and that for the water-insoluble fraction 4.7% while that for fraction samples were 5.2%-7.5% ash contents for the gum samples was 0.81% and 1.14% and for the water-insoluble component 0.88% while the contents in the fractions between 0.5%-0.66%. Nitrogen content determination showed that the gum samples had value of 0.678% and 0.732% and water -insoluble fraction had a value of 0.118%. The values decreased in the water-soluble fractions giving 0.049%, 0.053 and 0.056%. Water-soluble component and its fractions record the following results: pH measurements showed that the water-soluble component had pH 6.70 and 6.84 while its fractions had pH 5.90 and 7.00. Viscosity measurements showed that water-soluble fractions had intrinsic viscosity of 6.4 and 6.8 dL. g -1 . The fractions derived from water-soluble fraction had intrinsic viscosity of 6.6, 7 and 7.5 dl. g -1 . Using Mark-Howink equation, calculated average molecular weights for the water-soluble components were 7.01x10 5

  6. Characterization of Grewia Gum, a Potential Pharmaceutical Excipient

    Directory of Open Access Journals (Sweden)

    Elijah.I.Nep

    2010-03-01

    Full Text Available Grewia gum was extracted from the inner stem bark of Grewia mollis and characterized by several techniques such as gas chromatography (GC, gel permeation chromatography (GPC, scanning electron microscopy (SEM, differential scanning calorimetry (DSC and thermogravimetric analysis of the extracted sample. Spectroscopic techniques such as x-ray photoelectron spectroscopy (XPS, fourier-transformed infrared (FT-IR, solid-state nuclear magnetic resonance (NMR, and 1H and 13C NMR techniques were also used to characterize the gum. The results showed that grewia gum is a typically amorphous polysaccharide gum containing glucose, rhamnose, galactose, arabinose and xylose as neutral sugars. It has an average molecular weight of 5925 kDa expressed as the pullulan equivalent. The gum slowly hydrated in water, dispersing and swelling to form a highly viscous dispersion exhibiting pseudoplastic flow behaviour. The polysaccharide gum is thermally stable and may have application as stabilizer or suspending agent in foods, cosmetics and in pharmaceuticals. It may have application as a binder or sustained-release polymer matrix in tablets or granulations.

  7. Evaluation of carboxymethyl moringa gum as nanometric carrier.

    Science.gov (United States)

    Rimpy; Abhishek; Ahuja, Munish

    2017-10-15

    In the present study, carboxymethylation of Moringa oleifera gum was carried out by reacting with monochloroacetic acid. Modified gum was characterised employing Fourier-transform infrared spectroscopy, differential scanning calorimetry, X-ray diffraction, scanning electron microscopy, and Rheology study. The carboxymethyl modification of moringa gum was found to increase its degree of crystallinity, reduce viscosity and swelling, increase the surface roughness and render its more anionic. The interaction between carboxymethyl moringa gum and chitosan was optimised by 2-factor, 3-level central composite experimental design to prepare polyelectrolyte nanoparticle using ofloxacin, as a model drug. The optimal calculated parameters were found to be carboxymethyl moringa gum- 0.016% (w/v), chitosan- 0.012% (w/v) which provided polyelectrolyte nanoparticle of average particle size 231nm and zeta potential 28mV. Carboxymethyl moringa gum-chitosan polyelectrolyte nanoparticles show sustained in vitro release of ofloxacin upto 6h which followed first order kinetics with mechanism of release being erosion of polymer matrix. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Two-dimensional discrete dislocation models of deformation in polycrystalline thin metal films on substrates

    International Nuclear Information System (INIS)

    Hartmaier, Alexander; Buehler, Markus J.; Gao, Huajian

    2005-01-01

    The time-dependent irreversible deformation of polycrystalline thin metal films on substrates is investigated using two-dimensional discrete dislocation dynamics models incorporating essential parameters determined from atomistic studies. The work is focused on the mechanical properties of uncapped films, where diffusive processes play an important role. The simulations incorporate dislocation climb along the grain boundary as well as conservative glide. Despite of severe limitations of the two-dimensional dislocation models, the simulation results are found to largely corroborate experimental findings on different dominant deformation mechanisms at different film thicknesses

  9. Competition in the gum arabic market: a game theoretic modelling approach

    NARCIS (Netherlands)

    Rahim, A.; Ierland, van E.C.; Weikard, H.P.

    2010-01-01

    Gum arabic is mainly produced from two Acacias that are found in the gum belt of Sub-Saharan Africa. These are Acacia senegal that produces high quality gum and Acacia seyal that produces low quality gum. In recent years the gum market structure has changed and Sudan lost its near monopoly position

  10. Gum chewing and cognition : an overview

    NARCIS (Netherlands)

    Tucha, L.I.; Koerts, J.

    In recent years, there was a debate about the effects of gum chewing on various aspects of cognitive functioning. In this review, the results of previous studies are presented and summarized. There is a clear indication that gum chewing can improve various aspects of cognitive functioning including

  11. Grewia Gum 1: Some Mechanical and Swelling Properties of ...

    African Journals Online (AJOL)

    Erah

    Methods: Compacts (500 mg) of both freeze-dried and air-dried grewia gum were separately ... grewia gum films were compared with films of pullulan and guar gum which were similarly prepared. .... Freeze-drying was carried out using an.

  12. Evaluation of the content of TiO2 nanoparticles in the coatings of chewing gums.

    Science.gov (United States)

    Dudefoi, William; Terrisse, Hélène; Popa, Aurelian Florin; Gautron, Eric; Humbert, Bernard; Ropers, Marie-Hélène

    2018-02-01

    Titanium dioxide is a metal oxide used as a white pigment in many food categories, including confectionery. Due to differences in the mass fraction of nanoparticles contained in TiO 2 , the estimated intakes of TiO 2 nanoparticles differ by a factor of 10 in the literature. To resolve this problem, a better estimation of the mass of nanoparticles present in food products is needed. In this study, we focused our efforts on chewing gum, which is one of the food products contributing most to the intake of TiO 2 . The coatings of four kinds of chewing gum, where the presence of TiO 2 was confirmed by Raman spectroscopy, were extracted in aqueous phases. The extracts were analysed by transmission electron microscopy (TEM), X-ray diffraction, Fourier Transform Raman spectroscopy, and inductively coupled plasma atomic emission spectroscopy (ICP-AES) to establish their chemical composition, crystallinity and size distribution. The coatings of the four chewing gums differ chemically from each other, and more specifically the amount of TiO 2 varies from one coating to another. TiO 2 particles constitute the entire coating of some chewing gums, whereas for others, TiO 2 particles are embedded in an organic matrix and/or mixed with minerals like calcium carbonate, talc, or magnesium silicate. We found 1.1 ± 0.3 to 17.3 ± 0.9 mg TiO 2 particles per piece of chewing gum, with a mean diameter of 135 ± 42 nm. TiO 2 nanoparticles account for 19 ± 4% of all particles, which represents a mass fraction of 4.2 ± 0.1% on average. The intake of nanoparticles is thus highly dependent on the kind of chewing gum, with an estimated range extending from 0.04 ± 0.01 to 0.81 ± 0.04 mg of nano-TiO 2 per piece of chewing gum. These data should serve to refine the exposure scenario.

  13. On the fast amorphous phase growth in plastically deformed metallic couples

    International Nuclear Information System (INIS)

    Mazzone, G.; Montone, A.; Antisari, M.V.

    1993-01-01

    The authors have modeled the kinetics of glass formation at the Ni-Zr interface of plastically deformed diffusion couples on the basis of a free volume description of glass structure, taking also into account the structural effects of an externally applied stress. Owing to the complexity of the problem several approximations have necessarily been introduced, the main ones being probably the simplified description of the structure and of the tensile behavior of a metallic glass and the use of the Spaepen Eqs. in an alloy system. However, these approximations do not seem to significantly affect the main trends displayed by the computations, that is the high value of D, the exponential dependence of x on var-epsilon and the low value of the activation energy, in agreement with experimental trends (3) not easily attributable to other causes. Of course, the numerical values of the free parameters have to be considered an approximate evaluation of the corresponding physical quantities. However, despite of the above limitations, their values are physically plausible. In conclusion the authors have shown that the present model describes in a quantitative way the kinetics of solid state amorphization at the interface of a diffusion couple plastically deformed during the reaction. The effective diffusion coefficient increases by several orders of magnitude as a consequence of a small increase in vf driven by the stress required to deform the growing film. The effects of strain rate and deformation time balance each other almost exactly so that the film thickness increases exponentially with the total deformation of the diffusion couple

  14. gum production by Xanthomonas campestris pv

    African Journals Online (AJOL)

    DR TONUKARI NYEROVWO

    2012-09-11

    Sep 11, 2012 ... 8004) for xanthan gum production in this study. ... strain for xanthan gum production using cassava starch in industrial applications. ... the cassava price is cost-effective relative to other ... For amylase activity determination, a crude enzyme sample (1 ml) .... time point to stop fermentation from an economic.

  15. 21 CFR 582.7351 - Gum tragacanth.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Gum tragacanth. 582.7351 Section 582.7351 Food and Drugs FOOD AND DRUG ADMINISTRATION, DEPARTMENT OF HEALTH AND HUMAN SERVICES (CONTINUED) ANIMAL DRUGS... tragacanth. (a) Product. Tragacanth (gum tragacanth). (b) Conditions of use. This substance is generally...

  16. Brief Report: Gum Chewing Affects Standardized Math Scores in Adolescents

    Science.gov (United States)

    Johnston, Craig A.; Tyler, Chermaine; Stansberry, Sandra A.; Moreno, Jennette P.; Foreyt, John P.

    2012-01-01

    Gum chewing has been shown to improve cognitive performance in adults; however, gum chewing has not been evaluated in children. This study examined the effects of gum chewing on standardized test scores and class grades of eighth grade math students. Math classes were randomized to a gum chewing (GC) condition that provided students with gum…

  17. Mango kernel starch-gum composite films: Physical, mechanical and barrier properties.

    Science.gov (United States)

    Nawab, Anjum; Alam, Feroz; Haq, Muhammad Abdul; Lutfi, Zubala; Hasnain, Abid

    2017-05-01

    Composite films were developed by the casting method using mango kernel starch (MKS) and guar and xanthan gums. The concentration of both gums ranged from 0% to 30% (w/w of starch; db). Mechanical properties, oxygen permeability (OP), water vapor permeability (WVP), solubility in water and color parameters of composite films were evaluated. The crystallinity and homogeneity between the starch and gums were also evaluated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The scanning electron micrographs showed homogeneous matrix, with no signs of phase separation between the components. XRD analysis demonstrated diminished crystalline peak. Regardless of gum type the tensile strength (TS) of composite films increased with increasing gum concentration while reverse trend was noted for elongation at break (EAB) which found to be decreased with increasing gum concentration. The addition of both guar and xanthan gums increased solubility and WVP of the composite films. However, the OP was found to be lower than that of the control with both gums. Furthermore, addition of both gums led to changes in transparency and opacity of MKS films. Films containing 10% (w/w) xanthan gum showed lower values for solubility, WVP and OP, while film containing 20% guar gum showed good mechanical properties. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Synthetically chemical-electrical mechanism for controlling large scale reversible deformation of liquid metal objects

    Science.gov (United States)

    Zhang, Jie; Sheng, Lei; Liu, Jing

    2014-11-01

    Reversible deformation of a machine holds enormous promise across many scientific areas ranging from mechanical engineering to applied physics. So far, such capabilities are still hard to achieve through conventional rigid materials or depending mainly on elastomeric materials, which however own rather limited performances and require complicated manipulations. Here, we show a basic strategy which is fundamentally different from the existing ones to realize large scale reversible deformation through controlling the working materials via the synthetically chemical-electrical mechanism (SCHEME). Such activity incorporates an object of liquid metal gallium whose surface area could spread up to five times of its original size and vice versa under low energy consumption. Particularly, the alterable surface tension based on combination of chemical dissolution and electrochemical oxidation is ascribed to the reversible shape transformation, which works much more flexible than many former deformation principles through converting electrical energy into mechanical movement. A series of very unusual phenomena regarding the reversible configurational shifts are disclosed with dominant factors clarified. This study opens a generalized way to combine the liquid metal serving as shape-variable element with the SCHEME to compose functional soft machines, which implies huge potential for developing future smart robots to fulfill various complicated tasks.

  19. {sup 13} C-NMR of mesquite gum

    Energy Technology Data Exchange (ETDEWEB)

    Andrade, Cristina T; Garcia, Rosangela B [Universidade Federal, Rio de Janeiro, RJ (Brazil). Inst. de Macromoleculas

    1992-12-31

    Mesquite and guar gums are galactomannans extracted from the seeds of Proposis Juliflora and Cyamopsis tetragonolobus, respectively. An experimental sample of mesquite gum and a commercial sample of guar gum were partially depolymerized by ultrasonic radiation and the produce analysed by high resolution {sup 13} C-NMR spectroscopy. The different carbon lines were resolved and their assignments were done as those reported in the literature. The galactose to mannose ratios (G/M) were estimated from the relative peak areas of the C-1 lines as G/M=61 for mesquite and G/M=0.54 for guar gum. The next nearest-neighbour probabilities (diad frequencies) of the D-galactosyl substitution to the D-mannose backbone were evaluated by integrating C-4 mannose splitted peaks. (author) 9 refs., 2 figs., 2 tabs.

  20. Deformation in Metallic Glass: Connecting Atoms to Continua

    Science.gov (United States)

    Hinkle, Adam R.; Falk, Michael L.; Rycroft, Chris H.; Shields, Michael D.

    Metallic glasses like other amorphous solids experience strain localization as the primary mode of failure. However, the development of continuum constitutive laws which provide a quantitative description of disorder and mechanical deformation remains an open challenge. Recent progress has shown the necessity of accurately capturing fluctuations in material structure, in particular the statistical changes in potential energy of the atomic constituents during the non-equilibrium process of applied shear. Here we directly cross-compare molecular dynamics shear simulations of a ZrCu glass with continuum shear transformation zone (STZ) theory representations. We present preliminary results for a methodology to coarse-grain detailed molecular dynamics data with the goal of initializing a continuum representation in the STZ theory. NSF Grants Awards 1107838, 1408685, and 0801471.

  1. Effect of cooling rate on microstructure and deformation behavior of Ti-based metallic glassy/crystalline powders

    Energy Technology Data Exchange (ETDEWEB)

    Wang, D.J. [State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001 (China); School of Mechanical and Mining Engineering, University of Queensland, Brisbane, QLD 4072 (Australia); Huang, Y.J. [State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001 (China); Shen, J., E-mail: junshen@hit.edu.cn [State Key Laboratory of Advanced Welding Production Technology, Harbin Institute of Technology, Harbin 150001 (China); Wu, Y.Q.; Huang, H. [School of Mechanical and Mining Engineering, University of Queensland, Brisbane, QLD 4072 (Australia); Zou, J., E-mail: j.zou@uq.edu.au [School of Mechanical and Mining Engineering, University of Queensland, Brisbane, QLD 4072 (Australia); Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, QLD 4072 (Australia)

    2010-08-20

    The microstructures and deformation behavior of Ti-based metallic powders were comprehensively investigated. It has been found that, with increasing the powder size, the phase constituent alters from pure glassy to glassy with crystalline phases (face centered cubic structured NiSnZr and hexagonal structured Ti{sub 3}Sn phases). Our results suggest that the synergetic effect of the thermodynamics and kinetics determines the subsequent characteristics of the crystalline precipitations. Through comparative nanoindentation tests, it was found that the small powders exhibit more pop-in events and a larger pile-up ratio, suggesting that the plastic deformation of the metallic powders is governed by the combined effects of the free volume and the crystallization, which are determined by the cooling rate.

  2. In-situ deformation studies of an aluminum metal-matrix composite in a scanning electron microscope

    Science.gov (United States)

    Manoharan, M.; Lewandowski, J. J.

    1989-01-01

    Tensile specimens made of a metal-matrix composite (cast and extruded aluminum alloy-based matrix reinforced with Al2O3 particulate) were tested in situ in a scanning electron microscope equipped with a deformation stage, to directly monitor the crack propagation phenomenon. The in situ SEM observations revealed the presence of microcracks both ahead of and near the crack-tip region. The microcracks were primarily associated with cracks in the alumina particles. The results suggest that a region of intense deformation exists ahead of the crack and corresponds to the region of microcracking. As the crack progresses, a region of plastically deformed material and associated microcracks remains in the wake of the crack.

  3. Impact of welan gum on tricalcium aluminate–gypsum hydration

    International Nuclear Information System (INIS)

    Ma Lei; Zhao Qinglin; Yao Chukang; Zhou Mingkai

    2012-01-01

    The retarding effect of welan gum on tricalcium aluminate–gypsum hydration, as a partial system of ordinary Portland cement (OPC) hydration, was investigated with several methods. The tricalcium aluminate–gypsum hydration behavior in the presence or absence of welan gum was researched by field emission gun scanning electron microscopy, X-ray diffraction and zeta potential analysis. Meanwhile, we studied the surface electrochemical properties and adsorption characteristics of welan gum by utilizing a zeta potential analyzer and UV–VIS absorption spectrophotometer. By adding welan gum, the morphology change of ettringite and retardation of hydration stages in tricalcium aluminate–gypsum system was observed. Moreover, we detected the adsorption behavior and zeta potential inversion of tricalcium aluminate and ettringite, as well as a rapid decrease in the zeta potential of tricalcium aluminate–gypsum system. The reduction on nucleation rate of ettringite and hydration activity of C 3 A was also demonstrated. Thus, through the adsorption effect, welan gum induces a retarding behavior in tricalcium aluminate–gypsum hydration. Highlights: ► Adsorption characteristics of welan gum on C 3 A and ettringite have been studied. ► C 3 A–gypsum hydration behavior and the hydration products are examined in L/S = 3. ► Welan gum retards the process of C 3 A–gypsum hydration. ► The addition of welan gum changes the nucleation growth of ettringite.

  4. Chewing gum and context-dependent memory effects: a re-examination.

    Science.gov (United States)

    Miles, Christopher; Johnson, Andrew J

    2007-03-01

    Two experiments re-examined whether chewing spearmint gum affects initial word learning and/or immediate recall for a word list. Both experiments failed to show effects of chewing gum at learning or recall, nor did they suggest that chewing gum produces a context-dependent memory effect. This was true when extraneous contextual cues at learning and recall were minimised (Experiment 2). Together, the data are inconsistent with [Wilkinson, L., Scholey, A. & Wesnes, K. (2002). Chewing gum selectively improves aspects of memory in healthy volunteers. Appetite, 38, 235-236.] claim that chewing gum aids immediate recall of visually presented words. Our results are consistent with [Baker, J. R., Bezance, J. B., Zellaby, E. & Aggleton, J. P. (2004). Chewing gum can produce context-dependent effects upon memory. Appetite, 43, 207-210.] finding that chewing gum of itself is not a sufficient condition to provoke context-dependent learning with immediate testing.

  5. Investigation of crystallization kinetics and deformation behavior in supercooled liquid region of CuZr-based bulk metallic glass

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ke; Fan, Xinhui; Li, Bing; Li, Yanhong; Wang, Xin; Xu, Xuanxuan [Xi' an Technological Univ. (China). School of Material and Chemical Engineering

    2017-08-15

    In this paper, a systematic study of crystallization kinetics and deformation behavior is presented for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} bulk metallic glass in the supercooled liquid region. Crystallization results showed that the activation energy for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} was calculated using the Arrhenius equation in isothermal mode and the Kissinger-Akahira-Sunose method in non-isothermal mode. The activation energy was quite high compared with other bulk metallic glasses. Based on isothermal transformation kinetics described by the Johson-Mehl-Avrami model, the average Avrami exponent of about 3.05 implies a mainly diffusion controlled three-dimensional growth with an increasing nucleation rate during the crystallization. For warm deformation, the results showed that deformation behavior, composed of homogeneous and inhomogeneous deformation, is strongly dependent on strain rate and temperature. The homogeneous deformation transformed from non-Newtonian flow to Newtonian flow with a decrease in strain rate and an increase in temperature. It was found that the crystallization during high temperature deformation is induced by heating. The appropriate working temperature/strain rate combination for the alloy forming, without in-situ crystallization, was deduced by constructing an empirical deformation map. The optimum process condition for (Cu{sub 50}Zr{sub 50}){sub 94}Al{sub 6} can be expressed as T∝733 K and ∝ ε 10{sup -3} s{sup -1}.

  6. Evaluation of Package Stress during Temperature Cycling using Metal Deformation Measurement and FEM Simulation

    International Nuclear Information System (INIS)

    Hoeglauer, J.; Bohm, C.; Otremba, R.; Maerz, J.; Nelle, P.; Stecher, M.; Alpern, P.

    2006-01-01

    Plastic encapsulated devices that are exposed to Temperature Cycling (TC) tests undergo an excessive mechanical stress due to different Coefficients of Thermal Expansion (CTE) of the various materials used in the system. Especially in the corners of the die, passivation cracks and shifted metal lines can be observed, which demonstrates an increasing mechanical stress from chip center to the corners of the die. This effect has been known for a long time. This paper presents a simple measurement technique to quantify the mechanical shear stress at the chip-Mold Compound (MC) interface by measuring the deformation of a periodical metal structure. Based on this deformation measurement, we evaluated the stress distribution within the package, and the influence of different parameters such as number of cycles and chip size. Furthermore, these experimental results were compared with FEM simulation, and showed good agreement but could not account in all cases for the total amount of observed shift

  7. Deformation processes in refractory metals. Progress report, 1 December 1974--30 November 1975

    International Nuclear Information System (INIS)

    Donoso, J.R.; Reed-Hill, R.E.

    1975-01-01

    Work in progress is mostly concerned with the stress-strain behavior of niobium, as affected by dynamic strain aging. An investigation of the aging phenomena in nickel containing carbon as the major interstitial impurity was also conducted. Some aspects of the deformation behavior of the hexagonal metals titanium and zirconium still warrant investigation and are also being considered. (auth)

  8. Chewing gum differentially affects aspects of attention in healthy subjects.

    Science.gov (United States)

    Tucha, Oliver; Mecklinger, Lara; Maier, Kerstin; Hammerl, Marianne; Lange, Klaus W

    2004-06-01

    In a study published previously in this journal (Wilkinson et al., 2002), the effect of chewing gum on cognitive functioning was examined. The results of this study indicated that chewing a piece of gum results in an improvement of working memory and of both immediate and delayed recall of words but not of attention. In the present study, memory and a variety of attentional functions of healthy adult participants were examined under four different conditions: no chewing, mimicking chewing movements, chewing a piece of tasteless chewing gum and chewing a piece of spearmint flavoured chewing gum. The sequence of conditions was randomised across participants. The results showed that the chewing of gum did not improve participants' memory functions. Furthermore, chewing may differentially affect specific aspects of attention. While sustained attention was improved by the chewing of gum, alertness and flexibility were adversely affected by chewing. In conclusion, claims that the chewing a gum improves cognition should be viewed with caution.

  9. Quantification and Qualification of Bacteria Trapped in Chewed Gum

    NARCIS (Netherlands)

    Wessel, Stefan W.; van der Mei, Henny C.; Morando, David; Slomp, Anje M.; van de Belt-Gritter, Betsy; Maitra, Amarnath; Busscher, Henk J.

    2015-01-01

    Chewing of gum contributes to the maintenance of oral health. Many oral diseases, including caries and periodontal disease, are caused by bacteria. However, it is unknown whether chewing of gum can remove bacteria from the oral cavity. Here, we hypothesize that chewing of gum can trap bacteria and

  10. 75 FR 44251 - Wood Oils and Gums, and Streptomyces

    Science.gov (United States)

    2010-07-28

    ... ENVIRONMENTAL PROTECTION AGENCY EPA-HQ-OPP-2010-0441; FRL-8829-8 Wood Oils and Gums, and... integrated use in tank mixes with chemical fungicides. The Wood Oils and Gums Registration Review Case no longer contains any other wood oils or gums with active ingredients with registered products except for...

  11. Aplikasi Campuran Alginat Dari Sargassum Crassifolium Dan Gum Sebagai Pengental Textile Printing

    Directory of Open Access Journals (Sweden)

    Subaryono Subaryono

    2015-12-01

    Full Text Available Penelitian aplikasi campuran alginat dari Sargassum crassifolium dan gum untuk meningkatkan viskositas alginat sebagai pengental pada textile printing telah dilakukan. Viskositas campuran alginat dengan guar gum, gum arab, dan locust bean gum diamati pada penyimpanan selama 8 jam. Produk terbaik diujikan sebagai pengental pada textile printing. Campuran alginat dengan guar gum pada perbandingan 90:10 dan 80:20 meningkatkan viskositas dan stabilitas alginat selama penyimpanan. Campuran alginat dengan gum arab dan locust bean gum akan menurunkan viskositas alginat sehingga tidak sesuai untuk aplikasi textile printing. Aplikasi campuran alginat dengan guar gum 90:10 dan 80:20 sebagai pengental pada tekstil printing menghasilkan produk akhir yang setara dengan pengental komersial manutex.

  12. A Deformation Model of TRU Metal Dispersion Fuel Rod for HYPER

    International Nuclear Information System (INIS)

    Lee, Byoung Oon; Hwang, Woan; Park, Won S.

    2002-01-01

    Deformation analysis in fuel rod design is essential to assure adequate fuel performance and integrity under irradiation conditions. An in-reactor performance computer code for a dispersion fuel rod is being developed in the conceptual design stage of blanket fuel for HYPER. In this paper, a mechanistic deformation model was developed and the model was installed into the DIMAC program. The model was based on the elasto-plasticity theory and power-law creep theory. The preliminary deformation calculation results for (TRU-Zr)-Zr dispersion fuel predicted by DIMAC were compared with those of silicide dispersion fuel predicted by DIFAIR. It appeared that the deformation levels for (TRU-Zr)-Zr dispersion fuel were relatively higher than those of silicide fuel. Some experimental tests including in-pile and out-pile experiments are needed for verifying the predictive capability of the DIMAC code. An in-reactor performance analysis computer code for blanket fuel is being developed at the conceptual design stage of blanket fuel for HYPER. In this paper, a mechanistic deformation model was developed and the model was installed into the DIMAC program. The model was based on the elasto-plasticity theory and power-law creep theory. The preliminary deformation calculation results for (TRUZr)- Zr dispersion fuel predicted by DIMAC were compared with those of silicide dispersion fuel predicted by DIFAIR. It appears that the deformation by swelling within fuel meat is very large for both fuels, and the major deformation mechanism at cladding is creep. The swelling strain is almost constant within the fuel meat, and is assumed to be zero in the cladding made of HT9. It is estimated that the deformation levels for (TRU-Zr)-Zr dispersion fuel were relatively higher than those of silicide fuel, and the dispersion fuel performance may be limited by swelling. But the predicted volume change of the (TRU-Zr)-Zr dispersion fuel models is about 6.1% at 30 at.% burnup. The value of cladding

  13. Gum Arabic authentication and mixture quantification by near infrared spectroscopy

    DEFF Research Database (Denmark)

    Dong, Yongjiang; Sørensen, Klavs Martin; He, Sailing

    2017-01-01

    A rapid and reliable method is developed for Gum Arabic authentication based on Near Infrared (NIR) spectroscopy and chemometric methods. On a large industrial collection of authentic gum Arabics, the two major Acacia gum species, Acacia senegal and Acacia seyal could be assigned perfectly...... by the NIR spectroscopic method. In addition, a partial least squares (PLS) regression model is calibrated to predict the blending percentage of the two pure gum types, producing an accuracy, root mean square error of cross validation (RMSECV) of 2.8%. Sampling of the Gum Arabic ‘tears’ is discussed......, and it was determined that subsamples from three ‘tears’ is required for a representative result. It is concluded that NIR spectroscopy is a very powerful and reliable method for authenticity testing of Gum Arabic species....

  14. Masticatory performance alters stress relief effect of gum chewing.

    Science.gov (United States)

    Nishigawa, Keisuke; Suzuki, Yoshitaka; Matsuka, Yoshizo

    2015-10-01

    We evaluated the effects of gum chewing on the response to psychological stress induced by a calculation task and investigated the relationship between this response and masticatory performance. Nineteen healthy adult volunteers without dental problems undertook the Uchida-Kraepelin (UK) test (30 min of reiterating additions of one-digit numbers). Before and immediately after the test, saliva samples were collected from the sublingual area of the participants. Three min after the UK test, the participants were made to chew flavorless gum for 3 min, and the final saliva samples were collected 10 min after the UK test. The experiment was performed without gum chewing on a different day. Masticatory performance was evaluated using color-changing chewing gum. Salivary CgA levels at immediately and 10 min after the UK test were compared with and without gum chewing condition. Two-way repeated measures analysis of variance revealed significant interaction between gum chewing condition and changes in CgA levels during post 10 min UK test period. A significant correlation was found between changes in CgA levels and masticatory performance in all participants. Our results indicate that gum chewing may relieve stress responses; however, high masticatory performance is required to achieve this effect. Copyright © 2015 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  15. Analytical studies on the gum exudate from Anogeissus leiocarpus

    International Nuclear Information System (INIS)

    Ahmed, Samia Eltayeb

    1999-04-01

    Anogeissus leiocarpus gum samples were collected as natural exudate nodules, from three different location. Physicochemical properties of gum samples were studied. results showed significant differences within each location in most parameters studied except refractive index value which was found to be constant in all samples. The effect of location on the properties of gum samples was also studied and the analysis of variance showed insignificant differences (P≤0.05) in all properties studied except in ash content. Inter nodule variations of gum from two different location were studied individually. Results showed significant differences for each parameter studied except for the refractive index value. The properties studied of all gum samples were as follows: 9.2% moisture, 3.4% ash, 0.72% nitrogen, 4.74% protein, -35.5 specific rotation, 1.68 relative viscosity, 4.2 pH, 1.334 refractive index, 14.3 uronic acid, 0.44% reducing sugar, 1336.0 equivalent weight and 0.68% tannin content. UV absorption spectra of gum samples and gum nodules were determined. Cationic composition of gum samples was also determined and the results showed that (Mg) has highest value in all samples studied followed by Fe, Na, K, Ca, Zn and trace amount of Mn, Co, Ni, Cd and Pb. The water holding capacity was found to be 65.5% and emulsifying stability was found to be 1.008. The component sugars of gum were examined by different methods followed by qualitative and quantitative analysis. Analysis of hydrolysate crude gum sample by HPLC show L-rhamnose (6.82), L-arabinose (48.08), D-galactose (11.26) and two unknown oligosaccharides having values (0.22 and 32.61). Some physicochemical properties were studied. Results showed significant differences in nitrogen and protein contents, specific rotation, relative viscosity, equivalent weight and pH of fractions, where as insignificant differences were observed in uronic acid content and refractive index values

  16. Design, formulation and evaluation of nicotine chewing gum

    OpenAIRE

    Abolfazl Aslani; Sahar Rafiei

    2012-01-01

    Background: Nicotine replacement therapy (NRT) can help smokers to quit smoking. Nicotine chewing gum has attracted the attention from pharmaceutical industries to offer it to consumers as an easily accessible NRT product. However, the bitter taste of such gums may compromise their acceptability by patients. This study was, therefore, designed to develop 2 and 4 mg nicotine chewing gums of pleasant taste, which satisfy the consumers the most. Materials and Methods: Nicotine, sugar, liquid...

  17. Phase engineering of monolayer transition-metal dichalcogenide through coupled electron doping and lattice deformation

    International Nuclear Information System (INIS)

    Ouyang, Bin; Lan, Guoqiang; Song, Jun; Guo, Yinsheng; Mi, Zetian

    2015-01-01

    First-principles calculations were performed to investigate the phase stability and transition within four monolayer transition-metal dichalcogenide (TMD) systems, i.e., MX 2 (M = Mo or W and X = S or Se) under coupled electron doping and lattice deformation. With the lattice distortion and electron doping density treated as state variables, the energy surfaces of different phases were computed, and the diagrams of energetically preferred phases were constructed. These diagrams assess the competition between different phases and predict conditions of phase transitions for the TMDs considered. The interplay between lattice deformation and electron doping was identified as originating from the deformation induced band shifting and band bending. Based on our findings, a potential design strategy combining an efficient electrolytic gating and a lattice straining to achieve controllable phase engineering in TMD monolayers was demonstrated

  18. 21 CFR 172.695 - Xanthan gum.

    Science.gov (United States)

    2010-04-01

    .... Record the sample as “negative” for xanthan gum if no gel forms or if a soft or brittle gel forms both... more than 1.5 percent of pyruvic acid and “negative” for xanthan gum if the sample contains less than 1... preclude such use. (f) To assure safe use of the additive: (1) The label of its container shall bear, in...

  19. Thermoplastic deformation of ferromagnetic CoFe-based bulk metallic glasses

    Science.gov (United States)

    Wu, Chenguang; Hu, Renchao; Man, Qikui; Chang, Chuntao; Wang, Xinmin

    2017-12-01

    The superplastic deformation behavior of the ferromagnetic Co31Fe31Nb8B30 bulk metallic glass (BMG) in the supercooled liquid region was investigated. At a given temperature, the BMG exhibits a Newtonian behavior at low strain rates but a non-Newtonian behavior at high strain rates. The high thermal stability of this glassy alloy system offers an enough processing window to thermoplastic forming (TPF), and the strong processing ability was examined by simple micro-replication experiments. It is demonstrated that the TPF formability on length scales ranging down to nanometers can be achieved in the selected experimental condition. Based on the analysis of deformation behavior, the nearly full density sample (i.e. nearly 100%), was produced from water-atomized glassy powders and consolidated by the hot-pressing technique. The sample exhibits good soft-magnetic and mechanical properties, i.e., low coercive force of 0.43 Oe, high initial permeability of 4100 and high Vickers hardness 1398. These results suggest that the hot-pressing process opens up possibilities for the commercial exploitation of BMGs in engineering applications.

  20. Granule properties of paracetamol made with Bombax ceiba gum ...

    African Journals Online (AJOL)

    Bombax ceiba gum was extracted from the calyx of the Bombax flower using both hot and cold water extraction method. The gum was used as binder to prepare paracetamol granules in concentrations of 1, 1.5, 2, and 3 %. Acacia gum was used to prepare the standard at the same concentrations. The granule properties of ...

  1. A work-hardening rule for finite elastic-plastic deformation of metals at elevated temperatures

    International Nuclear Information System (INIS)

    Lee, L.H.N.; Horng, J.T.

    1975-01-01

    The paper is concerned with an extension of Prager-Ziegler's kinematic work-hardening rule for infinitesimal elastic-plastic deformation to a work-hardening rule for finite elastic-plastic deformation of a polycrystalline metal. It is shown that the finite work-hardening rule, which accounts for the Bauschinger and temperature effects within certain pressure and temperature ranges, satisfies certain invariant, continuity and thermodynamic requirements. A description of the kinematics of an elastic-plastic body is employed with reference to three separate configurations: initial, current and an intermediate configuration. The intermediate configuration is a conceptual, local configuration obtained by removing the stress and temperature changes in the neighborhood of an element. A rigid body rotation of the intermediate configuration is allowed. Piola-Kirchhoff stresses and Green deformation tensors referred to the initial and intermediate configurations are employed as stress and strain measures. The plastic deformation has been associated with the motion and production of dislocations. It has been observed that the motion of mobile dislocations usually occur in the narrow slip bands in each grain, leaving the basic lattice structure practically intact, so that the macroscopic elastic properties of the material are essentially independent of plastic deformation. Employing this fact and the thermodynamic laws, a simplified elastic stress-strain relationship of the plastically deformed material, which agrees with the results of Naghdi and Trapp, is obtained

  2. Guar gum: processing, properties and food applications-A Review.

    Science.gov (United States)

    Mudgil, Deepak; Barak, Sheweta; Khatkar, Bhupendar Singh

    2014-03-01

    Guar gum is a novel agrochemical processed from endosperm of cluster bean. It is largely used in the form of guar gum powder as an additive in food, pharmaceuticals, paper, textile, explosive, oil well drilling and cosmetics industry. Industrial applications of guar gum are possible because of its ability to form hydrogen bonding with water molecule. Thus, it is chiefly used as thickener and stabilizer. It is also beneficial in the control of many health problems like diabetes, bowel movements, heart disease and colon cancer. This article focuses on production, processing, composition, properties, food applications and health benefits of guar gum.

  3. Recent trends on gellan gum blends with natural and synthetic polymers: A review.

    Science.gov (United States)

    Zia, Khalid Mahmood; Tabasum, Shazia; Khan, Muhammad Faris; Akram, Nadia; Akhter, Naheed; Noreen, Aqdas; Zuber, Mohammad

    2018-04-01

    Gellan gum (GG), a linear negatively charged exopolysaccharide,is biodegradable and non-toxic in nature. It produces hard and translucent gel in the presence of metallic ions which is stable at low pH. However, GG has poor mechanical strength, poor stability in physiological conditions, high gelling temperature and small temperature window.Therefore,it is blended with different polymers such as agar, chitosan, cellulose, sodium alginate, starch, pectin, polyanaline, pullulan, polyvinyl chloride, and xanthan gum. In this article, a comprehensive overview of combination of GG with natural and synthetic polymers/compounds and their applications in biomedical field involving drug delivery system, insulin delivery, wound healing and gene therapy, is presented. It also describes the utilization of GG based materials in food and petroleum industry. All the technical scientific issues have been addressed; highlighting the recent advancement. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Gum Graft Surgery

    Science.gov (United States)

    ... Tomography (CBCT) American Academy of Periodontology Installs New President, Officers in Boston American Academy of Periodontology Announces ... May Increase Lung Cancer Risk CDC Estimate: New Mexico, Hawaii Have Highest U.S. Incidence of Advanced Gum ...

  5. Gum Disease Symptoms

    Science.gov (United States)

    ... Tomography (CBCT) American Academy of Periodontology Installs New President, Officers in Boston American Academy of Periodontology Announces ... May Increase Lung Cancer Risk CDC Estimate: New Mexico, Hawaii Have Highest U.S. Incidence of Advanced Gum ...

  6. Gum chewing affects academic performance in adolescents

    Science.gov (United States)

    Chewing gum may have an impact on improved memory during specific tasks of recognition and sustained attention. Research objective was to determine the effect of gum chewing on standardized test scores and math class grades of eighth grade students. Four math classes, 108 students, were randomized i...

  7. Structural aspects of elastic deformation of a metallic glass

    International Nuclear Information System (INIS)

    Hufnagel, T. C.; Ott, R. T.; Almer, J.

    2006-01-01

    We report the use of high-energy x-ray scattering to measure strain in a Zr 57 Ti 5 Cu 20 Ni 8 Al 10 bulk metallic glass in situ during uniaxial compression in the elastic regime up to stresses of approximately 60% of the yield stress. The strains extracted in two ways--directly from the normalized scattering data and from the pair correlation functions--are in good agreement with each other for length scales greater than 4 A. The elastic modulus calculated on the basis of this strain is in good agreement with that reported for closely related amorphous alloys based on macroscopic measurements. The strain measured for atoms in the nearest-neighbor shell, however, is smaller than that for more distant shells, and the effective elastic modulus calculated from the strain on this scale is therefore larger, comparable to crystalline alloys of similar composition. These observations are in agreement with previously proposed models in which the nominally elastic deformation of a metallic glass has a significant anelastic component due to atomic rearrangements in topologically unstable regions of the structure. We also observe that the distribution of the atomic-level stresses in the glass becomes more uniform during loading. This implies that the stiffness of metallic glasses may have an entropic contribution, analogous to the entropic contribution in rubber elasticity

  8. Generalized vibrating potential model for collective excitations in spherical, deformed and superdeformed systems: (1) atomic nuclei, (2) metal clusters

    International Nuclear Information System (INIS)

    Nesterenko, V.O.; Kleinig, W.

    1995-01-01

    The self-consistent vibrating potential model (VPM) is extended for description of Eλ collective excitations in atomic nuclei and metal clusters with practically any kind of static deformation. The model is convenient for a qualitative analysis and provides the RPA accuracy of numerical calculations. The VPM is applied to study Eλ giant resonances in spherical metal clusters and deformed and superdeformed nuclei. It is shown that the deformation splitting of superdeformed nuclei results in a very complicated (''jungle-like'') structure of the resonances, which makes the experimental observation of E2 and E3 giant resonances in superdeformed nuclei quite problematic. Calculations of E1 giant resonance in spherical sodium clusters Na 8 , Na 20 and Na 40 are presented, as a test of the VPM in this field. The results are in qualitative agreement with the experimental data. (orig.)

  9. Effects of caffeine in chewing gum on mood and attention.

    Science.gov (United States)

    Smith, Andrew

    2009-04-01

    Recent research has shown that even small doses (attention tasks. Previous studies have given the caffeine in a variety of beverages or in capsules and it was of interest to see whether similar effects could be observed when the caffeine was given in gum. In addition, chewing gum has been shown to have behavioural effects and the present study extended our knowledge of this topic. To compare the effects of caffeinated gum (40 mg), placebo gum and no gum conditions on mood and attention. A double blind placebo controlled study was conducted with volunteers being randomly assigned to one of the three conditions. Baseline measures of mood and attention were taken prior to chewing and a test session was then conducted. One hundred and eighteen young adults participated in the study. Caffeinated gum was associated with a more positive mood and better performance on tasks requiring sustained attention. The caffeine improved the speed of encoding of new information which is consistent with previous findings. Chewing placebo gum was also found to be associated with more positive mood, both shortly after chewing and at the end of the study. The implications of the present study are that chewing caffeinated gum has been shown to improve performance efficiency and mood by its alerting and energising effects. The profile of caffeine effects is what one would predict from the existing caffeine literature and such effects may be extremely beneficial in real-life situations. Prior chewing of placebo gum was associated with a more positive mood and this also confirms previous findings.

  10. Neem Gum as a Binder in a Formulated Paracetamol Tablet with Reference to Acacia Gum BP

    OpenAIRE

    Ogunjimi, Abayomi Tolulope; Alebiowu, Gbenga

    2014-01-01

    This study determined the physical, compressional, and binding properties of neem gum (NMG) obtained from the trunk of Azadirachta indica (A Juss) in a paracetamol tablet formulation in comparison with official Acacia gum BP (ACA). The physical and flow properties were evaluated using density parameters: porosity, Carr’s index, Hausner’s ratio, and flow rate. Compressional properties were analyzed using Heckel and Kawakita equations. The tensile strength, brittle fracture index, and crushing ...

  11. Occurrence of gum spots in black cherry after partial harvest cutting

    Science.gov (United States)

    Charles O. Rexrode; H. Clay Smith; H. Clay Smith

    1990-01-01

    Bark beetles, primarily the bark beetle Phlosotribus liminori (Harris), are the major cause of gum spots in sawtimber-size black cherry Prunus serotina Ehrh. Approximately 90 percent of all gum spots in the bole sections are caused by bark beetles. Gum spots were studied in 95 black cherry trees near Parsons, West Virginia. Over 50 percent of the bark beetle-caused gum...

  12. Rapid screening of guar gum using portable Raman spectral identification methods.

    Science.gov (United States)

    Srivastava, Hirsch K; Wolfgang, Steven; Rodriguez, Jason D

    2016-01-25

    Guar gum is a well-known inactive ingredient (excipient) used in a variety of oral pharmaceutical dosage forms as a thickener and stabilizer of suspensions and as a binder of powders. It is also widely used as a food ingredient in which case alternatives with similar properties, including chemically similar gums, are readily available. Recent supply shortages and price fluctuations have caused guar gum to come under increasing scrutiny for possible adulteration by substitution of cheaper alternatives. One way that the U.S. FDA is attempting to screen pharmaceutical ingredients at risk for adulteration or substitution is through field-deployable spectroscopic screening. Here we report a comprehensive approach to evaluate two field-deployable Raman methods--spectral correlation and principal component analysis--to differentiate guar gum from other gums. We report a comparison of the sensitivity of the spectroscopic screening methods with current compendial identification tests. The ability of the spectroscopic methods to perform unambiguous identification of guar gum compared to other gums makes them an enhanced surveillance alternative to the current compendial identification tests, which are largely subjective in nature. Our findings indicate that Raman spectral identification methods perform better than compendial identification methods and are able to distinguish guar gum from other gums with 100% accuracy for samples tested by spectral correlation and principal component analysis. Published by Elsevier B.V.

  13. Xanthan gum production by Xanthomonas campestris pv ...

    African Journals Online (AJOL)

    Cassava starch is a main renewable bio-resource with low price and mass production in Guangxi, China. It was used as carbon source in growing Xanthomonas campestris pv. campestris 8004 (Xcc 8004) for xanthan gum production in this study. The xanthan gum yield of gelatinized cassava starch was higher than that of ...

  14. Design, formulation and evaluation of nicotine chewing gum

    Directory of Open Access Journals (Sweden)

    Abolfazl Aslani

    2012-01-01

    Conclusion: Taste enhancement of nicotine gums was achieved where formulations comprised aspartame as the sweetener and cherry and eucalyptus as the flavoring agents. Nicotine gums of pleasant taste may, therefore, be used as NRT to assist smokers quit smoking.

  15. Chewing Gum: Cognitive Performance, Mood, Well-Being, and Associated Physiology

    Science.gov (United States)

    Allen, Andrew P.; Smith, Andrew P.

    2015-01-01

    Recent evidence has indicated that chewing gum can enhance attention, as well as promoting well-being and work performance. Four studies (two experiments and two intervention studies) examined the robustness of and mechanisms for these effects. Study 1 investigated the acute effect of gum on mood in the absence of task performance. Study 2 examined the effect of rate and force of chewing on mood and attention performance. Study 3 assessed the effects of chewing gum during one working day on well-being and performance, as well as postwork mood and cognitive performance. In Study 4, performance and well-being were reported throughout the workday and at the end of the day, and heart rate and cortisol were measured. Under experimental conditions, gum was associated with higher alertness regardless of whether performance tasks were completed and altered sustained attention. Rate of chewing and subjective force of chewing did not alter mood but had some limited effects on attention. Chewing gum during the workday was associated with higher productivity and fewer cognitive problems, raised cortisol levels in the morning, and did not affect heart rate. The results emphasise that chewing gum can attenuate reductions in alertness, suggesting that chewing gum enhances worker performance. PMID:26075253

  16. Chewing Gum: Cognitive Performance, Mood, Well-Being, and Associated Physiology

    Directory of Open Access Journals (Sweden)

    Andrew P. Allen

    2015-01-01

    Full Text Available Recent evidence has indicated that chewing gum can enhance attention, as well as promoting well-being and work performance. Four studies (two experiments and two intervention studies examined the robustness of and mechanisms for these effects. Study 1 investigated the acute effect of gum on mood in the absence of task performance. Study 2 examined the effect of rate and force of chewing on mood and attention performance. Study 3 assessed the effects of chewing gum during one working day on well-being and performance, as well as postwork mood and cognitive performance. In Study 4, performance and well-being were reported throughout the workday and at the end of the day, and heart rate and cortisol were measured. Under experimental conditions, gum was associated with higher alertness regardless of whether performance tasks were completed and altered sustained attention. Rate of chewing and subjective force of chewing did not alter mood but had some limited effects on attention. Chewing gum during the workday was associated with higher productivity and fewer cognitive problems, raised cortisol levels in the morning, and did not affect heart rate. The results emphasise that chewing gum can attenuate reductions in alertness, suggesting that chewing gum enhances worker performance.

  17. Chewing gum: cognitive performance, mood, well-being, and associated physiology.

    Science.gov (United States)

    Allen, Andrew P; Smith, Andrew P

    2015-01-01

    Recent evidence has indicated that chewing gum can enhance attention, as well as promoting well-being and work performance. Four studies (two experiments and two intervention studies) examined the robustness of and mechanisms for these effects. Study 1 investigated the acute effect of gum on mood in the absence of task performance. Study 2 examined the effect of rate and force of chewing on mood and attention performance. Study 3 assessed the effects of chewing gum during one working day on well-being and performance, as well as postwork mood and cognitive performance. In Study 4, performance and well-being were reported throughout the workday and at the end of the day, and heart rate and cortisol were measured. Under experimental conditions, gum was associated with higher alertness regardless of whether performance tasks were completed and altered sustained attention. Rate of chewing and subjective force of chewing did not alter mood but had some limited effects on attention. Chewing gum during the workday was associated with higher productivity and fewer cognitive problems, raised cortisol levels in the morning, and did not affect heart rate. The results emphasise that chewing gum can attenuate reductions in alertness, suggesting that chewing gum enhances worker performance.

  18. Induction of mouthpart deformities in chironomid larvae exposed to contaminated sediments

    Energy Technology Data Exchange (ETDEWEB)

    Di Veroli, Alessandra [Dipartimento di Biologia Cellulare e Ambientale, Universita degli Studi di Perugia, Via Elce Di Sotto, 06123 Perugia (Italy); Goretti, Enzo [Dipartimento di Biologia Cellulare e Ambientale, Universita degli Studi di Perugia, Via Elce Di Sotto, 06123 Perugia (Italy); Paumen, Miriam Leon; Kraak, Michiel H.S.; Admiraal, Wim [Department of Aquatic Ecology and Ecotoxicology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Sciencepark 904, 1098 XH Amsterdam (Netherlands)

    2012-07-15

    The aim of the present study was to improve the cause-effect relationship between toxicant exposure and chironomid mouthpart deformities, by linking induction of mouthpart deformities to contaminated field sediments, metal mixtures and a mutagenic polycyclic aromatic compound metabolite (acridone). Mouthpart deformities in Chironomus riparius larvae were induced by both the heavy metal mixture and by acridone. A clear correlation between metal concentrations in the sediment and deformities incidence was only observed when the contaminated field sediments were left out of the analysis, probably because these natural sediments contained other toxic compounds, which could be responsible for a higher incidence of deformities than predicted by the measured metal concentrations only. The present study clearly improved the cause-effect relationship between toxicant exposure and the induction of mouthpart deformities. It is concluded that the incidence of mouthpart deformities may better reflect the potential toxicity of contaminated sediments than chemical analysis. - Highlights: Black-Right-Pointing-Pointer We tested the induction of deformities in C. riparius in laboratory toxicity experiments. Black-Right-Pointing-Pointer We used field sediments and spiked sediments with heavy metals and mutagenic PAC. Black-Right-Pointing-Pointer Mouthpart deformities were induced both by heavy metal mixtures and by acridone. Black-Right-Pointing-Pointer A correlation between metal concentrations in the sediment and deformities was found. Black-Right-Pointing-Pointer Mouthpart deformities better reflect the toxicity of sediments than chemical analysis. - Mouthpart deformities of Chironomus riparius larvae better reflect the toxicity of sediments than chemical analysis.

  19. Chewing gum benefits sustained attention in the absence of task degradation.

    Science.gov (United States)

    Johnson, Andrew J; Muneem, Mohammed; Miles, Christopher

    2013-07-01

    The present study examined the effect of chewing gum on sustained attention and associated changes in subjective alertness. In a within-participants design, 20 participants completed an extended version of the sustained attention response task (SART: Robertson et al., 1997), both with and without chewing gum. Self-rated measures of alertness, contentedness, and calmness were taken before and after the SART. Chewing gum was associated with improved attentional task performance. This finding was not contingent upon a general decrease in attentional performance and was apparent at all stages of the task. Subjective measures of alertness, contentedness, and calmness were higher following the chewing of gum. Changes in sustained attention co-varied with subjective alertness. The effects of chewing gum on attention and alertness are consistent with past literature and were not contingent on declines in attention. Additionally, we found evidence that gum-induced changes in self-rated alertness and attention are related. We found no support for the proposition that chewing gum can impair attention due to the division of resources.

  20. Effect of enzymatic depolymerization on physicochemical and rheological properties of guar gum.

    Science.gov (United States)

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2012-09-01

    Depolymerization of guar gum using enzymatic hydrolysis was performed to obtain depolymerized guar gum having functional application as soluble dietary fiber. Enzymatic hydrolysis of guar gum significantly affected the physicochemical and rheological characteristics of guar gum. The depolymerized guar gum showed a significant increase in crystallinity index from 3.86% to 13.2% and flow behavior index from 0.31 to 1.7 as compared to native guar gum. Remarkable decrease in intrinsic viscosity and consistency index was also observed from 9 to 0.28 and 4.04 to 0.07, respectively. Results revealed that enzymatic hydrolysis of guar gum resulted in a polysaccharide with low degree of polymerization, viscosity and consistency which could make it useful for incorporation in food products as dietary fiber without affecting the rheology, consistency and texture of the products. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Preparation and characterization of cross-linked excipient of coprocessed xanthan gum-acacia gum as matrix for sustained release tablets

    Science.gov (United States)

    Surini, Silvia; Wati, Dina Risma; Syahdi, Rezi Riadhi

    2018-02-01

    Sustained release tablet is solid dosage form which is designed to release drugs slowly in the body. This research was intended to prepare and characterize the cross-linked excipients of co-processed xanthan gum-acacia gum (CL-Co-XGGA) as matrices for sustained release tablets with gliclazide as a model drug. CL-Co-XGGA excipients were cross-linked materials of co-processed excipients of xanthan gum-acacia gum (Co-XGGA) using sodium trimetaphosphate. Co-processed excipients of xanthan gum-acacia gum were prepared in the ratio of each excipient 1:2, 1:1 and 2:1. Co-XGGA and CL-Co-XGGA excipients were characterized physically, chemically and functionally. Then, the sustained release (SR) tablets were formulated by wet granulation method using CL-Co-XGGA excipients as matrices. Also, the dissolution study of the gliclazide SR tablets was carried out in phosphate buffer medium pH 7,4 containing sodium lauryl sulphate 0.2% for 12 hours. The results showed that the degree of substitution (DS) of CL-Co-XGGA 1:2, 1:1, 2:1 excipients were respectively 0.067, 0.082 and 0.08. Besides that, the excipients gel strengths were 14.03, 17.27 and 20,70 gF, respectively. The cross-linked excipients had improved flow properties and swelling capability compared to the Co-XGGA excipients. The results of the gliclazide SR tablets evaluations showed that all tablets were passed all tablet requirements. Moreover, the gliclazide release from SR tablets F1 - F6 revealed the sustained release profile, which was following zero order kinetics (F1, F2, F3, F6) and Higuchi kinetics (F4 and F5). It could be concluded that the obtained CL-Co-XGGA excipients might be used as matrices for sustained release tablets and could retard drug release up to 8 until 32 hours.

  2. Oxidized Xanthan Gum and Chitosan as Natural Adhesives for Cork

    Directory of Open Access Journals (Sweden)

    Diana Paiva

    2016-07-01

    Full Text Available Natural cork stopper manufacturing produces a significant amount of cork waste, which is granulated and combined with synthetic glues for use in a wide range of applications. There is a high demand for using biosourced polymers in these composite materials. In this study, xanthan gum (XG and chitosan (CS were investigated as possible natural binders for cork. Xanthan gum was oxidized at two different aldehyde contents as a strategy to improve its water resistance. This modification was studied in detail by 1H and 13C nuclear magnetic resonance (NMR, and the degree of oxidation was determined by the hydroxylamine hydrochloride titration method. The performance of the adhesives was studied by tensile tests and total soluble matter (TSM determinations. Xanthan gum showed no water resistance, contrary to oxidized xanthan gum and chitosan. It is hypothesized that the good performance of oxidized xanthan gum is due to the reaction of aldehyde groups—formed in the oxidation process—with hydroxyl groups on the cork surface during the high temperature drying. Combining oxidized xanthan gum with chitosan did not yield significant improvements.

  3. Xylitol Chewing Gums on the Market: Do They Prevent Caries?

    Science.gov (United States)

    Alanzi, Abrar; Soderling, Eva; Varghese, Anisha; Honkala, Eino

    To measure the xylitol content in sugar-free chewing gums available on the market in Gulf Cooperation Council (GCC) countries in the Middle East, in order to identify those products that can provide the recommended daily dose of xylitol for caries prevention (6-7 g). Acid production from chewing gums was also measured in vitro and in vivo. Twenty-one chewing gums containing xylitol were identified and collected from the GCC market (Kuwait, Bahrain, Qatar, Saudi Arabia, UAE and Oman). Xylitol was extracted and its concentration was analysed using a special enzymatic kit. The pH of extracts was measured during 30-min incubation with Streptococcus mutans. Changes in saliva and plaque pH were noted in four subjects after the consumption of highly concentrated xylitol gums. The xylitol content in grams was clearly mentioned only on one product's label. Twelve products stated the percentage of xylitol (3.5% to 35%). The rest did not specify the amount. The mean measured weight of one piece of gum was 1.67 ± 0.38 g. The mean measured xylitol content/piece was 0.33 ± 0.21 g. Xylitol content was 0.5 g in 5 products. None of the highly concentrated xylitol gums showed a pH drop in vitro or in vivo. One chewing gum, containing xylitol and glucose, resulted in a low pH level (xylitol chewing gums sold on the GCC market do not provide the consumers with the recommended daily dose of xylitol for caries prevention. Clear, accurate labeling is recommended.

  4. Effects of Chewing Different Flavored Gums on Salivary Flow Rate and pH

    Directory of Open Access Journals (Sweden)

    Maryam Karami Nogourani

    2012-01-01

    Full Text Available Chewing gum increases salivary flow rate (SFR and pH, but differences in preferences of gum flavor may influence SFR and pH. The aim of this paper was to assess the effect of five different flavors of sucrose-free chewing gum on the salivary flow rate and pH in healthy dental students in Isfahan, Iran. Fifteen (7 men and 8 women healthy dental student volunteers collected unstimulated saliva and then chewed one of five flavored gums for 6 min. The whole saliva was collected and assessed for 6 consecutive days. After unstimulated saliva was collected, stimulated saliva was collected at interval of 0-1, 1–3, and 3–6 minutes after the start of different flavored chewing gums. The SFR and salivary pH were measured. The SFR increased in all five flavored gums at 1, 3, and 6 minutes after start of chewing gums (<0.001. The flow rate of all products reached peak in the 1st minute of stimulation, except spearmint-flavored gums which reached peak in the 6th minute. In the 1st minute, the strawberry-flavored gums showed the highest SFR. During 1–3 minutes, strawberry- and apple-flavored gums showed higher SFR, respectively. Only the spearmint- and cinnamon-flavored gum significantly increased salivary pH. Gum flavored can affect the SFR and pH and special flavors can be advised for different individuals according to their oral conditions.

  5. Compatibility of chewing gum excipients with the amino acid L-cysteine and stability of the active substance in directly compressed chewing gum formulation.

    Science.gov (United States)

    Kartal, Alma; Björkqvist, Mikko; Lehto, Vesa-Pekka; Juppo, Anne Mari; Marvola, Martti; Sivén, Mia

    2008-09-01

    Using L-cysteine chewing gum to eliminate carcinogenic acetaldehyde in the mouth during smoking has recently been introduced. Besides its efficacy, optimal properties of the gum include stability of the formulation. However, only a limited number of studies exist on the compatibility of chewing gum excipients and stability of gum formulations. In this study we used the solid-state stability method, Fourier transform infrared spectroscopy and isothermal microcalorimetry to investigate the interactions between L-cysteine (as a free base or as a salt) and excipients commonly used in gum. These excipients include xylitol, sorbitol, magnesium stearate, Pharmagum S, Every T Toco and Smily 2 Toco. The influence of temperature and relative humidity during a three-month storage period on gum formulation was also studied. Cysteine alone was stable at 25 degrees C/60% RH and 45 degrees C/75% RH whether stored in open or closed glass ambers. As a component of binary mixtures, cysteine base remained stable at lower temperature and humidity but the salt form was incompatible with all the studied excipients. The results obtained with the different methods corresponded with each other. At high temperature and humidity, excipient incompatibility with both forms of cysteine was obvious. Such sensitivity to heat and humidity during storage was also seen in studies on gum formulations. It was also found that cysteine is sensitive to high pressure and increase in temperature induced by compression. The results suggest that the final product should be well protected from temperature and humidity and, for example, cooling process before compression should be considered.

  6. Chew on this: No support for facilitating effects of gum on spatial task performance.

    Science.gov (United States)

    Nader, Ingo W; Gittler, Georg; Waldherr, Karin; Pietschnig, Jakob

    2010-09-01

    To determine whether chewing of gum facilitates spatial task performance in healthy participants, two behavioral experiments were performed. In the first experiment, spatial task performance of 349 men and women preceding and after treatment administration (saccharated chewing gum, sugar-free chewing gum, no chewing gum) was assessed using effect modeling by means of Item Response Theory. In the second experiment, another 100 participants were either administered sugar-free chewing gum or no chewing gum during spatial task performance. Effects of gum in the second study were assessed by standard means of data analysis. Results indicated no significant effects of either chewing gum or sugar on spatial task performance in either experiment. Our findings are consistent with recent studies investigating the influences of chewing gum on various memory functions, extending them by another measure of cognitive ability. Thus, further doubt is cast on enhancing effects of chewing gum on cognitive task performance. Copyright 2010 Elsevier Ltd. All rights reserved.

  7. Modelling plastic deformation of metals over a wide range of strain rates using irreversible thermodynamics

    International Nuclear Information System (INIS)

    Huang Mingxin; Rivera-Diaz-del-Castillo, Pedro E J; Zwaag, Sybrand van der; Bouaziz, Olivier

    2009-01-01

    Based on the theory of irreversible thermodynamics, the present work proposes a dislocation-based model to describe the plastic deformation of FCC metals over wide ranges of strain rates. The stress-strain behaviour and the evolution of the average dislocation density are derived. It is found that there is a transitional strain rate (∼ 10 4 s -1 ) over which the phonon drag effects appear, resulting in a significant increase in the flow stress and the average dislocation density. The model is applied to pure Cu deformed at room temperature and at strain rates ranging from 10 -5 to 10 6 s -1 showing good agreement with experimental results.

  8. Chromium (VI Induced Biochemical Changes and Gum Content in Cluster Bean (Cyamopsis tetragonoloba L. at Different Developmental Stages

    Directory of Open Access Journals (Sweden)

    Punesh Sangwan

    2013-01-01

    Full Text Available Chromium (Cr contamination by various industries and other activities is known to inhibit plants growth and development. The present study was conducted using pot experiments in a net house to determine the effect of Cr (VI on biochemical parameters such as photosynthetic pigments, reducing sugars, and important minerals at different stages of growth in leaves, stem, and roots of clusterbean, a multipurpose fodder crop including a source of guar gum. Guar gum content was estimated in seeds at maturity. All biochemical contents showed a great variation with respect to increase in Cr concentration at different stages of growth. The levels of K, Fe, and Zn decreased, while Cr and Na content increased with increase in Cr concentration. Cr induced toxicity in clusterbean appears at 0.5 mg Cr (VI Kg−1 soil with maximum inhibitory effect at 2 mg Cr (VI Kg−1 soil, where impaired sugar supply resulted in decreased guar gum synthesis and altered micronutrient content. The study reveals the possible role of these biochemical parameters in decreasing plant growth and development under heavy metal stress.

  9. Experimental studies on the deformation and rupture of thin metal plates subject to underwater shock wave loading

    Directory of Open Access Journals (Sweden)

    Chen Pengwan

    2015-01-01

    Full Text Available In this paper, the dynamic deformation and rupture of thin metal plates subject to underwater shock wave loading are studied by using high-speed 3D digital image correlation (3D-DIC. An equivalent device consist of a gas gun and a water anvil tube was used to supplying an exponentially decaying pressure in lieu of explosive detonation which acted on the panel specimen. The thin metal plate is clamped on the end of the shock tube by a flange. The deformation and rupture process of the metal plates subject to underwater shock waves are recorded by two high-speed cameras. The shape, displacement fields and strain fields of the metal plates under dynamic loading are obtained by using VIC-3D digital image correlation software. The strain gauges also were used to monitor the structural response on the selected position for comparison. The DIC data and the strain gauges results show a high level of correlation, and 3D-DIC is proven to be an effective method to measure 3D full-field dynamic response of structures under underwater impact loading. The effects of pre-notches on the failure modes of thin circular plate were also discussed.

  10. Entandophragma angolense Gum as a Novel Binder and ...

    African Journals Online (AJOL)

    Michael

    the development of oral controlled release dosage forms. These semisynthetic polymers are quite expensive when compared with natural polymers such as guar gum and alginates, while the natural polymers are nontoxic and readily available [18]. The present study was designed to evaluate the hydrophilic natural gum ...

  11. Guar gum: processing, properties and food applications—A Review

    OpenAIRE

    Mudgil, Deepak; Barak, Sheweta; Khatkar, Bhupendar Singh

    2011-01-01

    Guar gum is a novel agrochemical processed from endosperm of cluster bean. It is largely used in the form of guar gum powder as an additive in food, pharmaceuticals, paper, textile, explosive, oil well drilling and cosmetics industry. Industrial applications of guar gum are possible because of its ability to form hydrogen bonding with water molecule. Thus, it is chiefly used as thickener and stabilizer. It is also beneficial in the control of many health problems like diabetes, bowel movement...

  12. The effect of chewing gum's flavor on salivary flow rate and pH.

    Science.gov (United States)

    Karami-Nogourani, Maryam; Kowsari-Isfahan, Raha; Hosseini-Beheshti, Mozhgan

    2011-12-01

    Chewing sugar-free gums is a convenient way to increase salivary flow. Salivary flow increases in response to both gustatory (taste) and mechanical (chewing) stimuli, and chewing gum can provide both of these stimuli. The aim of this study was to compare the effect of five different flavors of sugar-free chewing gum on the salivary flow rate (SFR) and pH. Fifteen dental students volunteered at the same time on six consecutive days, to collect one minute unstimulated saliva. After five minutes, while some volunteers continued to collect only unstimulated saliva, the others asked to start chewing one of the five flavored gums randomly. The flavors were spearmint, cinnamon, watermelon, strawberry, and apple. The whole saliva was collected over time periods of 0 - 1, 1 - 3, and 3 - 6 minutes, and the SFR and pH were also measured. The data were subjected to pair t-test, repeated-measures analysis of variance, and Duncan tests. Compared to the unstimulated rate, all five different flavored gums significantly increased the SFR within six minutes. Although the flow rate peaked during the first minute of stimulation with all five products, it reduced gradually, but still remained above the unstimulated saliva, after six minutes. In the first minute, the strawberry-flavored gums showed the highest weight, yet, it only induced a significantly higher SFR compared to the cinnamon-flavored gums. During one to three minutes, strawberry and apple-flavored gums showed significantly higher SFR, respectively, compared to cinnamon-flavored gums. There were no significant differences in the flow rates elicited by each flavored gum through the three-to-six minute interval, although the spearmint-flavored gums induced slightly higher SFR. Only the spearmint and cinnamon-flavored gum significantly increased the salivary pH. Gum flavor can affect the SFR and special flavors may be advised for different individuals according to their oral conditions.

  13. Preparation and characterization of tragacanth-locust bean gum edible blend films.

    Science.gov (United States)

    Mostafavi, Fatemeh Sadat; Kadkhodaee, Rassoul; Emadzadeh, Bahareh; Koocheki, Arash

    2016-03-30

    The present work introduces the structure and physicomechanical properties of a novel blend film made from binary solutions of gum tragacanth (GT) and locust bean gum (LBG) at different mixing ratios. Apparent viscosities and surface tensions of individual and blend gum solutions were also investigated. The viscosity data indicated that there was a distinct synergism between the two gums at all mixing ratios. FTIR spectra showed the existence of noncovalent intermolecular interactions between gums. The surface tensions of binary solutions were significantly lower than those of individual gums which is advantageous for coating applications. All films had homogenous and smooth surface morphology and their transparency, water vapour barrier and mechanical properties were improved by incorporating LBG in blend. The results of this study suggest that GT-LBG blend film, owing to its desirable properties, has the potential to be used as a new degradable food packaging material. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Modified gum arabic cross-linked gelatin scaffold for biomedical applications

    International Nuclear Information System (INIS)

    Sarika, P.R.; Cinthya, Kuriakose; Jayakrishnan, A.; Anilkumar, P.R.; James, Nirmala Rachel

    2014-01-01

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. - Highlights: • Gum arabic cross-linked gelatin scaffold was developed for tissue engineering. • Cross-linking was achieved by Schiff's base reaction. • The scaffold is non-cytotoxic and non adherent to fibroblast and hepatocytes. • The scaffolds are potential candidates for spheroid cell culture

  15. Modified gum arabic cross-linked gelatin scaffold for biomedical applications

    Energy Technology Data Exchange (ETDEWEB)

    Sarika, P.R. [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547 (India); Cinthya, Kuriakose [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012 (India); Jayakrishnan, A. [Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600 036 (India); Anilkumar, P.R., E-mail: anilkumarpr@sctimst.ac.in [Tissue Culture Laboratory, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Sciences and Technology, Poojappura, Thiruvananthapuram, Kerala 695 012 (India); James, Nirmala Rachel, E-mail: nirmala@iist.ac.in [Department of Chemistry, Indian Institute of Space Science and Technology, Valiamala, Thiruvananthapuram, Kerala 695 547 (India)

    2014-10-01

    The present work deals with development of modified gum arabic cross-linked gelatin scaffold for cell culture. A new biocompatible scaffold was developed by cross-linking gelatin (Gel) with gum arabic, a polysaccharide. Gum arabic was subjected to periodate oxidation to obtain gum arabic aldehyde (GAA). GAA was reacted with gelatin under appropriate pH to prepare the cross-linked hydrogel. Cross-linking occurred due to Schiff's base reaction between aldehyde groups of oxidized gum arabic and amino groups of gelatin. The scaffold prepared from the hydrogel was characterized by swelling properties, degree of cross-linking, in vitro degradation and scanning electron microscopy (SEM). Cytocompatibility evaluation using L-929 and HepG2 cells confirmed non-cytotoxic and non-adherent nature of the scaffold. These properties are essential for generating multicellular spheroids and hence the scaffold is proposed to be a suitable candidate for spheroid cell culture. - Highlights: • Gum arabic cross-linked gelatin scaffold was developed for tissue engineering. • Cross-linking was achieved by Schiff's base reaction. • The scaffold is non-cytotoxic and non adherent to fibroblast and hepatocytes. • The scaffolds are potential candidates for spheroid cell culture.

  16. Chewing gum moderates the vigilance decrement.

    OpenAIRE

    Morgan, K.; Johnson, A.J.; Miles, C..

    2014-01-01

    We examine the impact of chewing gum on a Bakan-type vigilance task that requires the continual updating of short-term order memory. Forty participants completed a 30-min auditory Bakan-task either with, or without, the requirement to chew gum. Self-rated measures of mood were taken both pre- and post-task. As expected, the vigilance task produced a time-dependent performance decrement indexed via decreases in target detections and lengthened correct reaction times (RTs), and a reduction in p...

  17. Comparative study of gum arabic and PVP as stabilizing agents for synthesis of gold nanoparticles

    International Nuclear Information System (INIS)

    Silva, Andressa A.; Leal, Jessica; Geraldes, Adriana N.; Lugao, Ademar B.

    2015-01-01

    Use Colloidal metallic nanoparticles such as gold nanoparticles have received a great attention, due in part to their specific properties and potential applications. Control of size and uniformity of nanoparticles is important to prevent aggregation. High-molecular-weight polymers were used as stabilizer agents. Natural polymers, such as gum Arabic, are used as stabilizer because of capping nanoparticles behavior and present advantages such as solubility, non- toxicity and its compatibility for pharmaceutical and biomedical applications. Previous studies showed that the hydrophilic group of Poly(vinyl pyrrolidone) (PVP) caused repulsion on gold nanoparticles surface because steric interactions with polymer, for this reason this kind of polymers could be used as stabilizer agent. The aim of this work is to study the synthesis and stabilization of gold nanoparticles with PVP and gum Arabic using gamma radiation. The results obtained by samples analysis using UV-Visible showed that the gamma irradiation doses influenced the nanoparticles formation by PVP but that is not the case with the GA, because for smaller quantity of Arabic gum in different doses produced and stabilized nanoparticles. The samples were observed for 20 days and showed stability. We have obtained preliminary results showed that the use of radiation is applicable to the formation of gold nanoparticles. (author)

  18. Comparative study of gum arabic and PVP as stabilizing agents for synthesis of gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Andressa A.; Leal, Jessica; Geraldes, Adriana N.; Lugao, Ademar B., E-mail: andressa_alvess@yahoo.com.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    Use Colloidal metallic nanoparticles such as gold nanoparticles have received a great attention, due in part to their specific properties and potential applications. Control of size and uniformity of nanoparticles is important to prevent aggregation. High-molecular-weight polymers were used as stabilizer agents. Natural polymers, such as gum Arabic, are used as stabilizer because of capping nanoparticles behavior and present advantages such as solubility, non- toxicity and its compatibility for pharmaceutical and biomedical applications. Previous studies showed that the hydrophilic group of Poly(vinyl pyrrolidone) (PVP) caused repulsion on gold nanoparticles surface because steric interactions with polymer, for this reason this kind of polymers could be used as stabilizer agent. The aim of this work is to study the synthesis and stabilization of gold nanoparticles with PVP and gum Arabic using gamma radiation. The results obtained by samples analysis using UV-Visible showed that the gamma irradiation doses influenced the nanoparticles formation by PVP but that is not the case with the GA, because for smaller quantity of Arabic gum in different doses produced and stabilized nanoparticles. The samples were observed for 20 days and showed stability. We have obtained preliminary results showed that the use of radiation is applicable to the formation of gold nanoparticles. (author)

  19. Compressive deformation of in situ formed bulk metallic glass composites

    Energy Technology Data Exchange (ETDEWEB)

    Clausen, B. [Lujan Neutron Science Center, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Lee, S.Y. [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States); Ustuendag, E. [Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011 (United States)]. E-mail: ustundag@iastate.edu; Kim, C.P. [Liquidmetal Technologies, Lake Forest, CA 92630 (United States); Brown, D.W. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Bourke, M.A.M. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2006-02-15

    A bulk metallic glass matrix composite with dendc second phase precipitates was investigated using neutron diffraction and self-consistent modeling (SCM) to ascertain its deformation mechanisms. The compressive behavior of both the composite and the second phase (in its monolithic form) were investigated. The diffraction data were compared to the predictions of a new SCM resulting in good agreement. For the first time, this model considered both amorphous and crystalline phases and allowed the calculation of single crystal elastic constants from polycrystalline diffraction data. It was shown that the ductile second phase yielded first upon loading, and this was followed by multiple shear band formation in the matrix, a process which enhanced the ductility of the composite.

  20. Compressive deformation of in situ formed bulk metallic glass composites

    International Nuclear Information System (INIS)

    Clausen, B.; Lee, S.Y.; Ustuendag, E.; Kim, C.P.; Brown, D.W.; Bourke, M.A.M.

    2006-01-01

    A bulk metallic glass matrix composite with dendritic second phase precipitates was investigated using neutron diffraction and self-consistent modeling (SCM) to ascertain its deformation mechanisms. The compressive behavior of both the composite and the second phase (in its monolithic form) were investigated. The diffraction data were compared to the predictions of a new SCM resulting in good agreement. For the first time, this model considered both amorphous and crystalline phases and allowed the calculation of single crystal elastic constants from polycrystalline diffraction data. It was shown that the ductile second phase yielded first upon loading, and this was followed by multiple shear band formation in the matrix, a process which enhanced the ductility of the composite

  1. Locust bean gum: processing, properties and food applications--a review.

    Science.gov (United States)

    Barak, Sheweta; Mudgil, Deepak

    2014-05-01

    Locust bean gum or carob gum is a galactomannan obtained from seed endosperm of carob tree i.e. Ceratonia siliqua. It is widely utilized as an additive in various industries such as food, pharmaceuticals, paper, textile, oil well drilling and cosmetics. Industrial applications of locust bean gum are due to its ability to form hydrogen bonding with water molecule. It is also beneficial in the control of many health problems like diabetes, bowel movements, heart disease and colon cancer due to its dietary fiber action. This article focuses on production, processing, composition, properties, food applications and health benefits of locust bean gum. Copyright © 2014 Elsevier B.V. All rights reserved.

  2. Plastic deformation, residual stress, and crystalline texture measurements for in-process characterization of FCC metal alloys

    International Nuclear Information System (INIS)

    Ruud, C.O.; Jacobs, M.E.; Weedman, S.D.; Snoha, D.J.

    1989-01-01

    This paper describes the results of several on-going investigations on the measurement of plastic deformation, residual stress, and crystalline texture in nickel, copper, and aluminum base alloys by x-ray diffraction techniques. X-ray diffraction techniques have been shown to be effective in the measurement of plastic deformation, residual stress, and crystalline texture in FCC metals, from the breadth, position, and intensity of the x-ray diffraction peaks. The Ruud-Barrett position-sensitive scintillation detector has been demonstrated to be fast, non-contacting, and tolerant of detector to component distance variation -- necessary requirements for cost-effective in-process inspection of materials

  3. Remineralization of enamel subsurface lesions by chewing gum with added calcium.

    Science.gov (United States)

    Cai, Fan; Shen, Peiyan; Walker, Glenn D; Reynolds, Coralie; Yuan, Yi; Reynolds, Eric C

    2009-10-01

    Chewing sugar-free gum has been shown to promote enamel remineralization. Manufacturers are now adding calcium to the gum in an approach to further promote enamel remineralization. The aim of this study was to compare the remineralization efficacy of four sugar-free chewing gums, two containing added calcium, utilizing a double-blind, randomized, crossover in situ model. The sugar-free gums were: Trident Xtra Care, Orbit Professional, Orbit and Extra. Ten subjects wore removable palatal appliances with four human-enamel half-slab insets containing subsurface demineralized lesions. For four times a day for 14 consecutive days subjects chewed one of the chewing gums for 20min. After each treatment the enamel slabs were removed, paired with their respective demineralized control slabs, embedded, sectioned and mineral level determined by microradiography. After 1-week rest the subjects chewed another of the four gums and this was repeated until each subject had used the four gum products. Chewing with Trident Xtra Care resulted in significantly higher remineralization (20.67+/-1.05%) than chewing with Orbit Professional (12.43+/-0.64%), Orbit (9.27+/-0.59%) or Extra (9.32+/-0.35%). The form of added calcium in Trident Xtra Care was CPP-ACP and that in Orbit Professional calcium carbonate with added citric acid/citrate for increased calcium solubility. Although saliva analysis confirmed release of the citrate and calcium from the Orbit Professional gum the released calcium did not result in increased enamel remineralization over the normal sugar-free gums. These results highlight the importance of calcium ion bioavailability in the remineralization of enamel subsurface lesions in situ.

  4. Efficacy of baking soda-containing chewing gum in removing natural tooth stain.

    Science.gov (United States)

    Mankodi, S M; Conforti, N; Berkowitz, H

    2001-07-01

    A 14-week, double-blind, randomized clinical trial was conducted with 126 healthy volunteers to compare the efficacy of twice-daily use of 3 baking soda-containing chewing gums in removing natural tooth stain when used in conjunction with a program of regular oral hygiene. All 3 chewing gums significantly reduced extrinsic stain (P Baking Soda Gum (AHDC) reduced dental stain by 70.8%, compared to reductions of 71.9% and 65.3%, after use of 2 experimental gum formulations. Whitened appearance improved by 1.73 shade tabs using AHDC gum, and up to 2.49 shade tabs with the experimental formulations. These results suggest that the use of baking soda-containing gum after meals, in conjunction with good oral hygiene, can improve both extrinsic dental staining and the whitened appearance of teeth.

  5. In vitro tooth whitening effect of two medicated chewing gums compared to a whitening gum and saliva

    OpenAIRE

    Moore, Michael; Hasler-Nguyen, Nathalie; Saroea, Geoffrey

    2008-01-01

    Abstract Background Extrinsic staining of teeth may result from the deposition of a variety of pigments into or onto the tooth surface, which originate mainly from diet or from tobacco use. More recently, clinical studies have demonstrated the efficacy of some chewing gums in removing extrinsic tooth staining. The aim of this study was to assess the effectiveness of two nicotine medicated chewing gums (A and B) on stain removal in an in vitro experiment, when compared with a confectionary whi...

  6. Effects of chewing gum on mood, learning, memory and performance of an intelligence test.

    Science.gov (United States)

    Smith, Andrew

    2009-04-01

    Recent research suggests that chewing gum may increase alertness and lead to changes in cognitive performance. The present study examined effects of chewing gum on these functions within the context of a single study. This study had four main aims. The first was to examine whether chewing gum improved learning and memory of information in a story. The second aim was to determine whether chewing gum improved test performance on a validated intellectual task (the Alice Heim task). A third aim was to determine whether chewing gum improved performance on short memory tasks (immediate and delayed recall of a list of words, delayed recognition memory, retrieval from semantic memory, and a working memory task). The final aim was to determine whether chewing gum improved mood (alertness, calm and hedonic tone). A cross-over design was used with gum and no-gum sessions being on consecutive weeks. In each week, volunteers attended for two sessions, two days apart. The first session assessed mood, immediate recall of information from a story and performance on short memory tasks. The second session assessed mood, delayed recall of information from a story and performance of an intelligence test (the Alice Heim test). There were no significant effects of chewing gum on any aspect of recall of the story. Chewing gum improved the accuracy of performing the Alice Heim test which confirms the benefits of gum on test performance seen in an earlier study. Chewing gum had no significant effect on the short memory tasks. Chewing gum increased alertness at the end of the test session in both parts of the study. This effect was in the region of a 10% increase and was highly significant (P increases alertness. In contrast, no significant effects of chewing gum were observed in the memory tasks. Intellectual performance was improved in the gum condition. Overall, the results suggest further research on the alerting effects of chewing gum and possible improved test performance in these

  7. Gum Disease in Children

    Science.gov (United States)

    ... Club Program Perio Store Education & Careers Careers in Periodontics Perio Exam for Dental Licensure Recommended Competencies Periodontal ... With Find a Periodontist Gum Disease In Children Chronic gingivitis. aggressive periodontitis and generalized aggressive periodontitis are ...

  8. Gum Disease and Women

    Science.gov (United States)

    ... Tomography (CBCT) American Academy of Periodontology Installs New President, Officers in Boston American Academy of Periodontology Announces ... May Increase Lung Cancer Risk CDC Estimate: New Mexico, Hawaii Have Highest U.S. Incidence of Advanced Gum ...

  9. Development of natural gum based fast disintegrating tablets of glipizide

    OpenAIRE

    Antesh Kumar Jha; Dipak Chetia

    2012-01-01

    Dysphagia and risk of choking are leading causes of patient non-compliance in the self-administration of conventional tablets. To overcome these limitations of conventional tablets fast-disintegrating tablets were developed, using natural gums. Natural gums were evaluated for bulk swelling capacity. Powder mix containing natural gums and glipizide was evaluated for water sorption, swelling index and capillary action. For faster onset and immediate hypoglycemic action, the fast disintegrating ...

  10. Extraction and characterization of artocarpus integer gum as pharmaceutical excipient.

    Science.gov (United States)

    Farooq, Uzma; Malviya, Rishabha; Sharma, Pramod Kumar

    2014-01-01

    Natural polymers are widely used as excipients in pharmaceutical formulations. They are easily available, cheap and less toxic as compared to synthetic polymers. This study involves the extraction and characterization of kathal (Artocarpus integer) gum as a pharmaceutical excipient. Water was used as a solvent for extraction of the natural polymer. Yield was calculated with an aim to evaluate the efficacy of the process. The product was screened for the presence of Micrometric properties, and swelling index, flow behavior, surface tension, and viscosity of natural polymers were calculated. Using a water based extraction method, the yield of gum was found to be 2.85%. Various parameters such as flow behavior, organoleptic properties, surface tension, viscosity, loss on drying, ash value and swelling index together with microscopic studies of particles were done to characterize the extracted gum. The result showed that extracted kathal gum exhibited excellent flow properties. The gum was investigated for purity by carrying out chemical tests for different phytochemical constituents and only carbohydrates were found to be present. It had a good swelling index (13 ± 1). The pH and surface tension of the 1% gum solution were found to be 6 ± 0.5 and 0.0627 J/m2, respectively. The ash values such as total ash, acid insoluble ash, and water soluble ash were found to be 18.9%, 0.67% and 4% respectively. Loss on drying was 6.61%. The extracted gum was soluble in warm water and insoluble in organic solvents. The scanning electron micrograph (SEM) revealed rough and irregular particles of the isolated polymer. The results of the evaluated properties showed that kathal-derived gum has acceptable pH and organoleptic properties and can be used as a pharmaceutical excipient to formulate solid oral dosage forms.

  11. Evaluation of the Binding Effect of Local Gum of Boswellia papyrifera ...

    African Journals Online (AJOL)

    In this work, B. papyrifera gum has been evaluated for its binding effect in paracetamol granules and tablet formulations in comparison with the commonly used binders, Acacia BP and PVP K-30. Some physicochemical properties of the extracted gum indicated that the gum exhibited solubility in water, absence of tannin and ...

  12. Effects of chewing gum and time-on-task on alertness and attention.

    Science.gov (United States)

    Allen, A P; Smith, A P

    2012-07-01

    Chewing gum has been shown to reliably increase subjective alertness whereas the effects on attention are more variable. It has been suggested that chewing gum only enhances attention when the person has been performing a task for some time. The current research aimed to investigate if time-on-task trends enhancing effects of chewing gum could be observed in alertness and attention during and following chewing. Study 1 used tests of reported mood, including reported mood, and tests of attention (categoric search, focussed attention, simple reaction time, and vigilance). These tasks were performed shortly after the start of chewing. Study 2 examined effects of previous and current chewing on reported alertness and the attention tests. Study 1 showed that chewing gum increased reported alertness and hedonic tone and improved performance on the categoric search task. Chewing gum maintained reported alertness across sessions in study 2. In the first experimental session of study 2 gum improved categoric search performance, and during the second session gum broadened focus of attention and quickened vigilance reaction time. This effect on vigilance reaction time was moderated by time-on-task, with an initial negative effect being replaced by a positive effect. The results confirm the robust effect of chewing gum on reported alertness and show that changes in the effects of chewing gum on attention require further investigation. Future research may also determine underlying mechanisms for an alerting effect.

  13. Thiol derivatization of Xanthan gum and its evaluation as a mucoadhesive polymer.

    Science.gov (United States)

    Bhatia, Meenakshi; Ahuja, Munish; Mehta, Heena

    2015-10-20

    Thiol-derivatization of xanthan gum polysaccharide was carried out by esterification with mercaptopropionic acid and thioglycolic acid. Thiol-derivatization was confirmed by Fourier-transformed infra-red spectroscopy. Xanthan-mercaptopropionic acid conjugate and xanthan-thioglycolic acid conjugate were found to possess 432.68mM and 465.02mM of thiol groups as determined by Ellman's method respectively. Comparative evaluation of mucoadhesive property of metronidazole loaded buccal pellets of xanthan and thiolated xanthan gum using chicken buccal pouch membrane revealed higher ex vivo bioadhesion time of thiolated xanthan gum as compared to xanthan gum. Improved mucoadhesive property of thiolated xanthan gum over the xanthan gum can be attributed to the formation of disulfide bond between mucus and thiolated xanthan gum. In vitro release study conducted using phosphate buffer (pH 6.8) revealed a sustained release profile of metronidazole from thiolated xanthan pellets as compared to xanthan pellets. In conclusion, thiolation of xanthan improves its mucoadhesive property and sustained the release of metronidazole over a prolonged period. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Xanthan - A Versatile Gum

    Indian Academy of Sciences (India)

    conveniently from microbial sources due to several factors. They can ... Why do Microorganisms Produce Gums? Most phytopathogenic bacteria do not form spores. Many of .... salts of the polymer at alkaline pH, precipitation as a quarternary.

  15. Effects of Chewing Different Flavored Gums on Salivary Flow Rate and pH.

    Science.gov (United States)

    Karami Nogourani, Maryam; Janghorbani, Mohsen; Kowsari Isfahan, Raha; Hosseini Beheshti, Mozhgan

    2012-01-01

    Chewing gum increases salivary flow rate (SFR) and pH, but differences in preferences of gum flavor may influence SFR and pH. The aim of this paper was to assess the effect of five different flavors of sucrose-free chewing gum on the salivary flow rate and pH in healthy dental students in Isfahan, Iran. Fifteen (7 men and 8 women) healthy dental student volunteers collected unstimulated saliva and then chewed one of five flavored gums for 6 min. The whole saliva was collected and assessed for 6 consecutive days. After unstimulated saliva was collected, stimulated saliva was collected at interval of 0-1, 1-3, and 3-6 minutes after the start of different flavored chewing gums. The SFR and salivary pH were measured. The SFR increased in all five flavored gums at 1, 3, and 6 minutes after start of chewing gums (P salivary pH. Gum flavored can affect the SFR and pH and special flavors can be advised for different individuals according to their oral conditions.

  16. Role of glucose in chewing gum-related facilitation of cognitive function.

    Science.gov (United States)

    Stephens, Richard; Tunney, Richard J

    2004-10-01

    This study tests the hypothesis that chewing gum leads to cognitive benefits through improved delivery of glucose to the brain, by comparing the cognitive performance effects of gum and glucose administered separately and together. Participants completed a battery of cognitive tests in a fully related 2 x 2 design, where one factor was Chewing Gum (gum vs. mint sweet) and the other factor was Glucose Co-administration (consuming a 25 g glucose drink vs. consuming water). For four tests (AVLT Immediate Recall, Digit Span, Spatial Span and Grammatical Transformation), beneficial effects of chewing and glucose were found, supporting the study hypothesis. However, on AVLT Delayed Recall, enhancement due to chewing gum was not paralleled by glucose enhancement, suggesting an alternative mechanism. The glucose delivery model is supported with respect to the cognitive domains: working memory, immediate episodic long-term memory and language-based attention and processing speed. However, some other mechanism is more likely to underlie the facilitatory effect of chewing gum on delayed episodic long-term memory.

  17. Pharmacological properties of guggulsterones, the major active components of gum guggul.

    Science.gov (United States)

    Shah, Rohan; Gulati, Vandana; Palombo, Enzo A

    2012-11-01

    Oleo gum resin secreted by Commiphora mukul, also known as gum guggul, has been used widely as an ayurvedic drug. Commiphora mukul is a short thorny shrub that is native to the Indian subcontinent. Oleo gum resin extracted by incision of the bark is a very complex mixture of gum, minerals, essential oils, terpenes, sterols, ferrulates, flavanones and sterones. Its active constituents, the Z- and E-guggulsterones, have been demonstrated to exhibit their biological activities by binding to nuclear receptors and modulating the expression of proteins involved in carcinogenic activities. Guggulsterones have also been reported to regulate gene expression by exhibiting control over other molecular targets including transcription factors such as nuclear factor (NF)-κB, signal transducer and activator of transcription (STAT) and steroid receptors. Considerable scientific evidence indicates the use of gum guggul as a therapeutic agent in the treatment of inflammation, nervous disorders, hyperlipidaemia and associated cardiac disorders such as hypertension and ischaemia, skin disorders, cancer and urinary disorders. This review highlights the taxonomic details, phytochemical properties and pharmacological profile of gum guggul. Copyright © 2012 John Wiley & Sons, Ltd.

  18. Structural refinement and coarsening in deformed metals

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Xing, Q.

    2005-01-01

    The microstructural refinement by plastic deformation is analysed in terms of key parameters, the spacing between and the misorientation angle across the boundaries subdividing the structure. Coarsening of such structures by annealing is also characterised. For both deformed and annealed structur...

  19. Fabrication of electrospun almond gum/PVA nanofibers as a thermostable delivery system for vanillin.

    Science.gov (United States)

    Rezaei, Atefe; Tavanai, Hossein; Nasirpour, Ali

    2016-10-01

    In this study, the fabrication of vanillin incorporated almond gum/polyvinyl alcohol (PVA) nanofibers through electrospinning has been investigated. Electrospinning of only almond gum was proved impossible. It was found that the aqueous solution of almond gum/PVA (80:20, concentration=7% (w/w)) containing 3% (w/w) vanillin could have successfully electrospun to uniform nanofibers with diameters as low as 77nm. According to the thermal analysis, incorporated vanillin in almond gum/PVA nanofibers showed higher thermal stability than free vanillin, making this composite especially suitable for high temperature applications. XRD and FTIR analyses proved the presence of vanillin in the almond gum/PVA nanofibers. It was also found that vanillin was dispersed as big crystallites in the matrix of almond gum/PVA nanofibers. FTIR analysis showed almond gum and PVA had chemical cross-linking by etheric bonds between COH groups of almond gum and OH groups of PVA. Also, in the nanofibers, there were no major interaction between vanillin and either almond gum or PVA. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Mouthpart deformities in Chironomidae (Diptera) as bioindicators of heavy metals pollution in Shiroro Lake, Niger State, Nigeria.

    Science.gov (United States)

    Arimoro, Francis O; Auta, Yohanna I; Odume, Oghenekaro N; Keke, Unique N; Mohammed, Adamu Z

    2018-03-01

    In this study, mouthpart deformities in Chironomid larvae (Diptera) were investigated in relation to sediment contamination in the Shiroro Lake in Nigeria. Metals and chironomids were sampled monthly at three stations (A-C) between August 2013 and January 2014. Across the stations, zinc ranged (3.9-75mg/g), manganese (1.29-1.65mg/g), lead (0.00-0.10mg/g), iron (101-168mg/g) and copper (0.13-0.17mg/g). The metal ions did not differ significantly (P > 0.05) between the sampling stations. However, zinc and iron ions were significantly different between the sampling seasons (P < 0.05). Thirteen chironomid species were recorded, with Chironomus sp., Polypedilum sp. and Ablabesmyia sp. dominating the assemblage structure. Mouthpart deformities were significantly higher at Station A compared with Station C, and seasonally significantly higher during dry season compared with wet season. Elevated incidences of deformity were recorded in Chironomus spp larvae as compared to other genera therefore for further studies in this region assessments should be based solely on Chironomus species and ignoring the rest. Strategies need to be developed to reduce the contaminations and the biological effects. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Selective depression behavior of guar gum on talc-type scheelite flotation

    Science.gov (United States)

    Zhang, Yong-zhong; Gu, Guo-hua; Wu, Xiang-bin; Zhao, Kai-le

    2017-08-01

    The depression behavior and mechanism of guar gum on talc-type scheelite flotation were systematically investigated by flotation experiments, adsorption tests, zeta-potential measurements, and infrared spectroscopic analyses. The flotation results for monominerals, mixed minerals, and actual mineral samples indicated that guar gum exhibited much higher selective depression for talc than for scheelite. Bench-scale closed-circuit tests showed that a tungsten concentrate with a WO3 grade of 51.43% and a WO3 recovery of 76.18% was obtained. Adsorption tests, zeta-potential measurements, and infrared spectral analyses confirmed that guar gum absorbed more strongly onto the talc surface than onto the scheelite surface because of chemisorption between guar gum and talc. This chemisorption is responsible for the guar gum's highly selective depression for talc and small depression for scheelite. The flotation results provide technical support for talc-type scheelite flotation.

  2. Deformation of Ordinary Chondrite Under Very Reducing Conditons: Implications for Liquid Metal Compositions, HSE Partitioning and Enstatite Chondrites

    Science.gov (United States)

    Rushmer, T.; Corgne, A.

    2008-12-01

    One important method in which to gain insight into metallic liquid compositions and their ability to control HSE (highly siderophile element) distribution is through experimentation. Deformation experiments can additionally provide information into mechanisms and chemical consequences of dynamic liquid metal segregation under a variety of conditions. We report results on metallic liquid HSE compositions and their distribution from a set of deformation experiments on a natural H6 ordinary chondrite, performed under very reducing conditions and a series of phase equilibria experiments focused on HSE partitioning between Si-rich and S-rich Fe molten alloys. The deformation experiments were conducted at temperatures between 925°C and 950°C, at 1.3 GPa confining pressure with a strain rate of 10-4/s. Major element analyses of both silicate and metal phases show that they are considerably reduced and the typically lithophile elements are behaving like siderophiles. Fe-Ni-Si compositions are found in the shear zones produced during the deformation experiment. Metallic compositions also include (Mg,Fe,Ca)S, Fe-Ni-Si, FeP, and Fe-Ni-S quench metal. Silicate phases include forsterite (Fo92-96) and enstatite (En98). Highly siderophile element (HSE) concentrations have been measured in the sulphide ((Fe,Mg,Ca)S) and metal (Fe- Ni-Si) phases by LA-ICPMS and compared with results from an earlier set of experiments on the same material but which were not performed under reducing conditions. The partitioning of the PGE is modified by the changing conditions with elements such as Ir and Os having higher DMetal/Sulphide values under reducing conditions. Partitioning experiments between molten FeS and Ni-, Si-bearing molten Fe were performed at 1.5-5.0 GPa and 1500-1750° to further investigate this observation. The starting material is synthetic, doped with a range of trace and HSE elements. The results confirm the preference of the HSE for the metallic phase with DMetal

  3. In situ effect of CPP-ACP chewing gum upon erosive enamel loss

    Directory of Open Access Journals (Sweden)

    Catarina Ribeiro Barros de ALENCAR

    Full Text Available Abstract Casein phosphopeptide-amorphous calcium phosphate (CPP-ACP is able to increase salivary calcium and phosphate levels at an acidic pH. Previous studies demonstrated that a CPP-ACP chewing gum was able to enhance the re-hardening of erosion lesions, but could not diminish enamel hardness loss. Therefore, there is no consensus regarding the effectiveness of CPP-ACP on dental erosion. Objective This in situ study investigated the ability of a CPP-ACP chewing gum in preventing erosive enamel loss. Material and Methods: During three experimental crossover phases (one phase per group of seven days each, eight volunteers wore palatal devices with human enamel blocks. The groups were: GI – Sugar free chewing gum with CPP-ACP; GII – Conventional sugar free chewing gum; and GIII – No chewing gum (control. Erosive challenge was extraorally performed by immersion of the enamel blocks in cola drink (5 min, 4x/day. After each challenge, in groups CPP and No CPP, volunteers chewed one unit of the corresponding chewing gum for 30 minutes. Quantitative analysis of enamel loss was performed by profilometry (µm. Data were analyzed by Repeated-Measures ANOVA and Tukey’s test (p0.05. Conclusion The CPP-ACP chewing gum was not able to enhance the anti-erosive effect of conventional chewing gum against enamel loss.

  4. Evaluation of the suspending properties of Abizia zygia gum on ...

    African Journals Online (AJOL)

    Purpose: Some excipients are currently available for the formulation of pharmaceutical suspensions. ... Method: The suspending properties of Albizia zygia gum (family ... Characterization tests were carried out on purified Albizia zygia gum.

  5. Evaluation of Dynamic Deformation Behaviors in Metallic Materials under High Strain-Rates Using Taylor Bar Impact Test

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Kyung Oh; Shin, Hyung Seop [Andong National Univ., Andong (Korea, Republic of)

    2016-09-15

    To ensure the reliability and safety of various mechanical systems in accordance with their high-speed usage, it is necessary to evaluate the dynamic deformation behavior of structural materials under impact load. However, it is not easy to understand the dynamic deformation behavior of the structural materials using experimental methods in the high strain-rate range exceeding 10{sup 4} s{sup -1}. In this study, the Taylor bar impact test was conducted to investigate the dynamic deformation behavior of metallic materials in the high strain-rate region, using a high-speed photography system. Numerical analysis of the Taylor bar impact test was performed using AUTODYN S/W. The results of the analysis were compared with the experimental results, and the material behavior in the high strain-rate region was discussed.

  6. Evidence against memorial facilitation and context-dependent memory effects through the chewing of gum

    OpenAIRE

    Johnson, A.J.; Miles, C.

    2007-01-01

    The experiment examined the prediction that chewing gum at learning and/or recall facilitated subsequent word recall. Chewing gum at learning significantly impaired recall, indicating that the chewing of gum has a detrimental impact upon initial word encoding. In addition, a context-dependent memory effect was reported for those participants who both learned and recalled in the absence of gum, however a context dependent effect was not found with chewing gum. The findings contradict previous ...

  7. Effect of guar and xanthan gums on functional properties of mango (Mangifera indica) kernel starch.

    Science.gov (United States)

    Nawab, Anjum; Alam, Feroz; Haq, Muhammad Abdul; Hasnain, Abid

    2016-12-01

    The effects of different concentrations of guar and xanthan gums on functional properties of mango kernel starch (MKS) were studied. Both guar and xanthan gum enhanced the water absorption of MKS. The addition of xanthan gum appeared to reduce the SP (swelling power) and solubility at higher temperatures while guar gum significantly enhanced the SP as well as solubility of MKS. The addition of both gums produced a reinforcing effect on peak viscosity of MKS as compared to control. Pasting temperature of MKS was higher than that of starch modified by gums indicating ease of gelatinization. Guar gum played an accelerative effect on setback but xanthan gum delayed the setback phenomenon during the cooling of the starch paste. Both gums were found to be effective in reducing the syneresis while gel firmness was markedly improved. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. Design, formulation, and evaluation of ginger medicated chewing gum

    Directory of Open Access Journals (Sweden)

    Abolfazl Aslani

    2016-01-01

    Conclusion: Ginger chewing gum comprises admissible properties to be used as a modern drug delivery system due to its advantageous results in motion sickness. It passed all the specified tests for an acceptable chewing gum. Thus, it may be successfully produced to help GI problems.

  9. Switching between chewing-gum and no-gum at learning and retrieval does not accentuate error production in free recall

    OpenAIRE

    Miles, C.; Johnson, A.J.

    2010-01-01

    Three experiments compared chewing gum to a no gum condition to examine further the finding (Anderson, Berry, Morse & Diotte, 2005) that switching flavour between learning and recall encourages error production independently of free recall. In order to encourage error production, participants in Experiment 1 were told to guess responses at recall, participants in Experiment 2 were required to recall categorised word lists and in Experiment 3 participants repeated the same learning-recall comb...

  10. The potential of dental-protective chewing gum in oral health interventions.

    Science.gov (United States)

    Ly, Kiet A; Milgrom, Peter; Rothen, Marilynn

    2008-05-01

    The authors provide an overview of chewing gum as a delivery vehicle for dental-protective agents, highlighting xylitol and its potential application in caries-prevention programs for children. The authors reviewed selected clinical investigations and previous reviews associated with chewing gum containing substances such as calcium, bicarbonate, carbamide, chlorhexidine, fluoride and xylitol and their effects on reducing caries. They searched the MEDLINE database by using the key words "dental caries," "oral health," "calcium," "bicarbonate," "carbamide," "chlorhexidine," "fluoride" and "xylitol." Chewing gum is being used as a delivery vehicle for substances such as calcium, bicarbonate, carbamide, chlorhexidine, fluoride and xylitol to improve oral health and reduce caries. These substances exhibit properties that are protective of the oral environment and mediate common oral diseases. The debate for advocating xylitol use in caries prevention is advancing; however, chewing gum use by young schoolchildren in the United States is hindered by choking hazard concerns and lack of specific xylitol dosing recommendations. The use of chewing gum containing dental-protective substances, particularly xylitol, in caries-prevention programs can reduce the tooth decay epidemic. Chewing gum use by children in the school setting should be reconsidered.

  11. Evidence against memorial facilitation and context-dependent memory effects through the chewing of gum.

    Science.gov (United States)

    Johnson, Andrew J; Miles, Christopher

    2007-05-01

    The experiment examined the prediction that chewing gum at learning and/or recall facilitated subsequent word recall. Chewing gum at learning significantly impaired recall, indicating that the chewing of gum has a detrimental impact upon initial word encoding. In addition, a context-dependent memory effect was reported for those participants who both learned and recalled in the absence of gum; however, a context-dependent effect was not found with chewing gum. The findings contradict previous research.

  12. Fluoride and urea chewing gums in an intra-oral experimental caries model

    NARCIS (Netherlands)

    Sjogren, K; Ruben, J; Lingstrom, P; Lundberg, AB; Birkhed, D

    2002-01-01

    The aim of the present investigation was to evaluate the effect of sugar-free chewing gums containing fluoride (F) and urea in an intra-oral experimental caries model. Placebo chewing gums (without any active ingredient) and no gum served as controls. Fifteen subjects participated in a cross-over,

  13. Formulation and In vitro Evaluation of Natural Gum-Based ...

    African Journals Online (AJOL)

    obtained using the blends of natural gum: alginate at total polymer concentration of 2 % w/v using 10 % w/v calcium ... Keywords: Microbeads, Ibuprofen, Natural gums, Sodium alginate, Drug release kinetics. Tropical ... addition, its high cohesiveness which result in ... different chelating agents in order to optimize the.

  14. Chewing Gum: Cognitive Performance, Mood, Well-Being, and Associated Physiology

    OpenAIRE

    Allen, Andrew P.; Smith, Andrew P.

    2015-01-01

    Recent evidence has indicated that chewing gum can enhance attention, as well as promoting well-being and work performance. Four studies (two experiments and two intervention studies) examined the robustness of and mechanisms for these effects. Study 1 investigated the acute effect of gum on mood in the absence of task performance. Study 2 examined the effect of rate and force of chewing on mood and attention performance. Study 3 assessed the effects of chewing gum during one working day on w...

  15. Enzymatic depolymerization of gum Tragacanth: Bifidogenic potential of low molecular weight oligosaccharides

    DEFF Research Database (Denmark)

    Ahmadi Gavlighi, Hassan; Michalak, Malwina; Meyer, Anne S.

    2013-01-01

    Gum tragacanth derived from the plant “goat’s horn” (Astragalus sp.) has a long history of use as a stabilizing, viscosity-enhancing agent in food emulsions. The gum contains pectinaceous arabinogalactans and fucose-substituted xylogalacturonans. In this work, gum tragacanth from Astragalus...... and galactose content. The growth-stimulating potential of the three enzymatically produced gum tragacanth fractions was evaluated via growth assessment on seven different probiotic strains in single culture fermentations on: Bifidobacterium longum subsp. longum (2 strains), B. longum subsp. infantis (3 strains...... that on galactan (control). HAG3 completely inhibited the growth of the Cl. perfringens strain. Tragacanth gum is thus a potential source of prebiotic carbohydrates that exert no viscosity effects and which may find use as natural functional food ingredients....

  16. Effect of rolling deformation on the microstructure of bulk Cu60Zr20Ti20 metallic glass and its crystallization

    DEFF Research Database (Denmark)

    Cao, Q.P.; Li, J.F.; Zhou, Y.H.

    2006-01-01

    Bulk Cu60Zr20Ti20 metallic glass has been rolled at room temperature (RT) and cryogenic temperature (CIF) up to 97% in thickness reduction, and the dependences of microstructure on the strain and temperature have been investigated. It is revealed that as the deformation proceeds below a critical...... thickness reduction, which is 87% at RT and 89% at CT, only the shear band density and the free-volume content increase, whereas the thermal stability of the deformed glass remains unchanged. Deformation above the critical thickness reduction results in phase separation plus nanocrystallization at RT...

  17. Partially hydrolyzed guar gum as a potential prebiotic source.

    Science.gov (United States)

    Mudgil, Deepak; Barak, Sheweta; Patel, Ami; Shah, Nihir

    2018-06-01

    Guar galactomannan was enzymatically hydrolyzed to obtain partially hydrolyzed guar gum which can be utilized as prebiotic source. In present study, growth of probiotics (Lactic Acid Bacteria strains) were studied with glucose, partially hydrolyzed guar gum and native guar gum. All the six strains were galactose &/or mannose positive using the API CHl 50 test. Almost all these strains showed an ability to assimilate partially hydrolyzed guar gum with respect to increase in optical density and viable cell count with concomitant decrease in the pH of the growth medium. Streptococcus thermophilus MD2 exhibited higher growth (7.78 log cfu/ml) while P. parvulus AI1 showed comparatively less growth (7.24 log cfu/ml) as compared to used lactobacillus and Weissella strains. Outcomes of the current study suggest that partially hydrolyzed guar can be considered as potential prebiotic compound that may further stimulate the growth of potentially probiotic bacteria or native gut microflora. Copyright © 2018 Elsevier B.V. All rights reserved.

  18. Radiation induced degradation of xanthan gum in aqueous solution

    Science.gov (United States)

    Hayrabolulu, Hande; Demeter, Maria; Cutrubinis, Mihalis; Güven, Olgun; Şen, Murat

    2018-03-01

    In our previous study, we have investigated the effect of gamma rays on xanthan gum in the solid state and it was determined that dose rate was an important factor effecting the radiation degradation of xanthan gum. In the present study, in order to provide a better understanding of how ionizing radiation effect xanthan gum, we have investigated the effects of ionizing radiation on aqueous solutions of xanthan at various concentrations (0.5-4%). Xanthan solutions were irradiated with gamma rays in air, at ambient temperature, at different dose rates (0.1-3.3-7.0 kGy/h) and doses (2.5-50 kGy). Change in their molecular weights was followed by size exclusion chromatography (SEC). Chain scission yield (G(S)), and degradation rate constants (k) were calculated. It was determined that, solution concentration was a factor effecting the degradation chemical yield and degradation rate of xanthan gum. Chain scission reactions were more effective for lower solution concentrations.

  19. Scaling laws for dislocation microstructures in monotonic and cyclic deformation of fcc metals

    International Nuclear Information System (INIS)

    Kubin, L.P.; Sauzay, M.

    2011-01-01

    This work reviews and critically discusses the current understanding of two scaling laws, which are ubiquitous in the modeling of monotonic plastic deformation in face-centered cubic metals. A compilation of the available data allows extending the domain of application of these scaling laws to cyclic deformation. The strengthening relation tells that the flow stress is proportional to the square root of the average dislocation density, whereas the similitude relation assumes that the flow stress is inversely proportional to the characteristic wavelength of dislocation patterns. The strengthening relation arises from short-range reactions of non-coplanar segments and applies all through the first three stages of the monotonic stress vs. strain curves. The value of the proportionality coefficient is calculated and simulated in good agreement with the bulk of experimental measurements published since the beginning of the 1960's. The physical origin of what is called similitude is not understood and the related coefficient is not predictable. Its value is determined from a review of the experimental literature. The generalization of these scaling laws to cyclic deformation is carried out on the base of a large collection of experimental results on single and polycrystals of various materials and on different microstructures. Surprisingly, for persistent slip bands (PSBs), both the strengthening and similitude coefficients appear to be more than two times smaller than the corresponding monotonic values, whereas their ratio is the same as in monotonic deformation. The similitude relation is also checked in cell structures and in labyrinth structures. Under low cyclic stresses, the strengthening coefficient is found even lower than in PSBs. A tentative explanation is proposed for the differences observed between cyclic and monotonic deformation. Finally, the influence of cross-slip on the temperature dependence of the saturation stress of PSBs is discussed in some detail

  20. Symmetry-induced deformation and reconstructive phase transformation in metal-oxide interface: the Fe (001) example

    International Nuclear Information System (INIS)

    Lahoche, L.; Universite de Technologie de Compiegne; Lorman, V.; Roelandt, J.M.; Rochal, S.B.

    1996-01-01

    A model is proposed for the structural transformation and corresponding induced deformation in physical three-dimensional interface of the metal-oxide system. The thermodynamical and elastic state of the system is described by the Landau-Ginzbourg free energy. Calculated theoretical phase diagram shows several different types of isothermal growth processes. The model is applied to the case of the oxidation of the (001) Fe surface. (orig.)

  1. High-temperature deformation and processing maps of Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles

    Science.gov (United States)

    Chen, Jing; Liu, Huiqun; Zhang, Ruiqian; Li, Gang; Yi, Danqing; Lin, Gaoyong; Guo, Zhen; Liu, Shaoqiang

    2018-06-01

    High-temperature compression deformation of a Zr-4 metal matrix with dispersed coated surrogate nuclear fuel particles was investigated at 750 °C-950 °C with a strain rate of 0.01-1.0 s-1 and height reduction of 20%. Scanning electron microscopy was utilized to investigate the influence of the deformation conditions on the microstructure of the composite and damage to the coated surrogate fuel particles. The results indicated that the flow stress of the composite increased with increasing strain rate and decreasing temperature. The true stress-strain curves showed obvious serrated oscillation characteristics. There were stable deformation ranges at the initial deformation stage with low true strain at strain rate 0.01 s-1 for all measured temperatures. Additionally, the coating on the surface of the surrogate nuclear fuel particles was damaged when the Zr-4 matrix was deformed at conditions of high strain rate and low temperature. The deformation stability was obtained from the processing maps and microstructural characterization. The high-temperature deformation activation energy was 354.22, 407.68, and 433.81 kJ/mol at true strains of 0.02, 0.08, and 0.15, respectively. The optimum deformation parameters for the composite were 900-950 °C and 0.01 s-1. These results are expected to provide guidance for subsequent determination of possible hot working processes for this composite.

  2. Effects and after-effects of chewing gum on vigilance, heart rate, EEG and mood.

    Science.gov (United States)

    Allen, Andrew P; Jacob, Tim J C; Smith, Andrew P

    2014-06-22

    Research has shown that chewing gum improves attention, although the mechanism for this effect remains unclear. This study investigated the effects and after-effects of chewing gum on vigilance, mood, heart rate and EEG. Participants completed a vigilance task four times; at baseline, with or without chewing gum, and twice post-chewing. EEG alpha and beta power at left frontal and temporal lobes, subjective mood and heart rate were assessed. Chewing gum shortened reaction time and increased the rate of hits, although hits fell during the second post-chewing task. Chewing gum heightened heart rate, but only during chewing. Gum also increased beta power at F7 and T3 immediately post-chewing, but not following the post-chewing tasks. The findings show that chewing gum affects several different indicators of alertness. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. KARAKTERISTIK EMULSI SANTAN DAN MINYAK KEDELAI YANG DITAMBAH GUM ARAB DAN SUKROSA ESTER [Emulsion Characteristics of Coconut Milk and Soybean Oil Added with Gum Arabic and Sucrose Ester

    Directory of Open Access Journals (Sweden)

    Laksmi Hartayanie

    2015-07-01

    Full Text Available High saturated fatty acid content in coconut milk can be reduced by adding unsaturated fat. Pretreatment such as pasteurisation, homogenization or stabilizer and emulsifier addition are essential to prevent emulsion deterioration that could happen in few hours. This study aimed to determine the most appropriate combination of gum arabic and sucrose ester to produce good emulsion stability based on its physical and chemical characteristics. Furthermore this study also aimed to determine correlation between creaming index and other characteristics of coconut milk emulsion. Emulsion stability of mixed coconut milk in sterile glass bottles was observed for 7 days under 23-24°C. Stabilizer and emulsifier added were gum arabic and sucrose ester in five combinations, i.e. 6% gum arabic, 0.3% sucrose ester, 6% gum arabic + 0.3% sucrose ester, 3% gum arabic + 0.15% sucrose ester and 4.5% gum arabic + 0.225% sucrose ester. The physical characteristics evaluated were creaming index, total color change, viscosity and droplet distribution, while the chemical characteristics observed included pH, TBA value, and protein content. Data were analyzed by One Way Anova at 95% significant level to determine the differences among treatments. Bivariate Pearson Correlation was used in order to determine the interaction among sample characteristics. The data showed that, gum arabic and sucrose ester can maintain the emulsion stability. A combination of 4.5% gum arabic and 0.225% sucrose ester provided the best physicochemical characteristics with the lowest creaming index and decreased viscosit, and uniform droplet distribution.

  4. Grewia Gum 1: Some Mechanical and Swelling Properties of ...

    African Journals Online (AJOL)

    Purpose: To study the mechanical and dynamic swelling properties of grewia gum, evaluate its compression behaviour and determine the effect of drying methods on its properties. Methods: Compacts (500 mg) of both freeze-dried and air-dried grewia gum were separately prepared by compression on a potassium bromide ...

  5. Effect of gum hardness on chewing pattern.

    Science.gov (United States)

    Plesh, O; Bishop, B; McCall, W

    1986-06-01

    Chewing rhythms are set by a putative central pattern generator whose output is influenced by sensory feedback. In this study we assessed how an altered feedback imposed by changing the hardness of a gum bolus modifies the timing of chewing, the maximal gape, and the activity in the masseter muscle on the chewing side. Ten adult subjects with no orofacial dysfunction chewed a standard piece of soft or hard gum for at least 3 min in random order. Vertical jaw movements were recorded with a kinesiograph and activity of the masseter muscle was recorded and integrated from surface EMG electrodes. The subjects sat in a dental chair and viewed a video lecture to distract their attention from chewing; they were instructed to chew on the right molars. Cycle-by-cycle analysis showed that 9 of the 10 subjects chewed the hard gum more slowly than the soft with no significant change in gape. The increases in cycle duration were due to changes in the duration of the opening and occlusal phases. The duration of closing was not significantly changed even though the duration and level of masseter activity were both significantly increased. We conclude that gum hardness by altering proprioceptive feedback modifies the output of the masticatory central pattern generator in such a way that the temporal aspects of chewing and the output of the masseteric motor pool are affected.

  6. Effect of Teucrium Polium-Containing Chewing Gum on Reducing Salivary Streptococcus Mutans Counts

    Directory of Open Access Journals (Sweden)

    Somayeh Khoramian Tusi

    2018-06-01

    Full Text Available Introduction: Several studies have reported the antibacterial effect of Teucrium polium extract. In this study, we sought to determine the effect of a chewing gum containing the aqueous extract of Teucrium polium on the level of salivary Streptococcus mutans. Materials and Methods: In this double-blind clinical trial, 20 dental students were randomly assigned to two groups of intervention and control. The intervention group received a chewing gum containing the aqueous extract of Teucrium polium, and the control group received a chewing gum without any plant extract. Each person chewed the gum for 20 minutes three times a day (after each meal for three weeks. Unstimulated saliva samples were collected at the beginning of the experiment before the use of the gums and one day after the final gum consumption. The quantitative polymerase chain reaction (qPCR technique was employed to determine the bacterial level. The colonization rate of Streptococcus mutans was compared between the two groups by using t-test in SPSS, version 21. Results: There was no significant difference between the two groups in terms of Streptococcus mutans counts before the intervention (P>0.05. The consumption of Teucrium polium extract-containing chewing gum in comparison with the placebo gum significantly diminished the number of Streptococcus mutans colonies (P=0.002. Conclusion: The results of this study showed that the chewing gum containing the aqueous extract of Teucrium polium significantly lowered the colonization rate of Streptococcus mutans in human saliva.

  7. Gum cordia as carrier of antioxidants: effects on lipid oxidation of peanuts.

    Science.gov (United States)

    Haq, Muhammad Abdul; Azam, Mahmood; Hasnain, Abid

    2015-04-01

    Performance of antioxidants is improved by incorporating them into polymer matrix such as polysaccharides based edible coatings. Gum cordia, an anionic polysaccharide extracted from the fruits of Cordia.myxa could be used as carrier of antioxidants by virtue of its strong adhering and emulsifying properties. This study aimed to explore the potential of gum cordia as carrier of antioxidants when applied as edible coating on peanuts. Gum Cordia was compared with carboxymethyl cellulose (CMC) in delivering of antioxidants: butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT) and ascorbic acid (AA). Coated and uncoated peanuts were stored at 35 °C for 126 days and coating carrier effectiveness was measured by following lipid oxidation using chemical parameters (peroxide value and thiobarbituric acid reactive species) and sensory evaluation (oxidized flavor). Significant differences (p cordia was found better than CMC to deliver the antioxidants. Gum cordia based coating in combination with BHA/BHT exhibited highest protection (290 % higher shelf life than control) based on peroxide value (40 meq.O2 kg(-1)) followed by gum codia plus BHT (244 %), gum cordia plus BHA (232 %), CMC plus BHA/BHT (184 %), CMC plus BHA (139 %), CMC plus BHT (119 %), gum cordia plus AA (96 %) and CMC plus AA (46 %).

  8. Effects of chewing gum on cognitive function, mood and physiology in stressed and non-stressed volunteers.

    Science.gov (United States)

    Smith, Andrew

    2010-02-01

    Recent research suggests that chewing gum may improve aspects of cognitive function and mood. There is also evidence suggesting that chewing gum reduces stress. It is important, therefore, to examine these two areas and to determine whether contextual factors (chewing habit, type of gum, and personality) modify such effects. The aims of the present study were: (i) to determine whether chewing gum improved mood and mental performance; (ii) to determine whether chewing gum had benefits in stressed individuals; and (iii) to determine whether chewing habit, type of gum and level of anxiety modified the effects of gum. A cross-over study involving 133 volunteers was carried out. Each volunteer carried out a test session when they were chewing gum and without gum, with order of gum conditions counterbalanced across subjects. Baseline sessions were conducted prior to each test session. Approximately half of the volunteers were tested in 75 dBA noise (the stress condition) and the rest in quiet. Volunteers were stratified on chewing habit and anxiety level. Approximately, half of the volunteers were given mint gum and half fruit gum. The volunteers rated their mood at the start and end of each session and had their heart rate monitored over the session. Saliva samples were taken to allow cortisol levels (good indicator of alertness and stress) to be assayed. During the session, volunteers carried out tasks measuring a range of cognitive functions (aspects of memory, selective and sustained attention, psychomotor speed and accuracy). Chewing gum was associated with greater alertness and a more positive mood. Reaction times were quicker in the gum condition, and this effect became bigger as the task became more difficult. Chewing gum also improved selective and sustained attention. Heart rate and cortisol levels were higher when chewing which confirms the alerting effect of chewing gum. Overall, the results suggest that chewing gum produces a number of benefits that are

  9. Extrudates of starch-xanthan gum mixtures as affected by chemical agents and irradiation

    International Nuclear Information System (INIS)

    Hanna, M.A.; Chinnaswamy, R.; Gray, D.R.; Miladinov, V.D.

    1997-01-01

    Mixtures of starch, xanthan gum and either polyvinyl alcohol, epichlorohydrin, valeric acid or adipoyl chloride were extruded. Properties of extrudates including apparent viscosity, water solubility, water absorption indices and extrudate expansion were measured for different proportions of xanthan gum, 70% amylose starch (with or without irradiation) and chemical agents. Extrusion with chemical agents and irradiation changed physical properties of both starch and xanthan gum. Expansions of extrudates were higher than that of starch. Viscosity of extrudates increased with xanthan gum concentration. The addition of 1% (w/w) polyvinyl alcohol had the greatest effect of the chemical agents. Irradiation increased the apparent viscosity of starch-xanthan gum mixtures

  10. Fabrication and characterization of gum Arabic bonded Rhizophora spp. particleboards

    International Nuclear Information System (INIS)

    Abuarra, Ali; Hashim, Rokiah; Bauk, Sabar; Kandaiya, Sivamany; Tousi, Ehsan Taghizadeh

    2014-01-01

    Highlights: • Exploring gum Arabic as a binder for Rhizophora sp. particleboards. • The addition of gum Arabic improved overall properties. • Gum Arabic could be added to manufacture particleboards. - Abstract: Gum Arabic (GA) was used as a binder for the fabrication of Rhizophora spp. particleboards. The physical and mechanical properties of the bioadhesive bonded particleboards, including moisture content, internal bond (IB) strength, thickness swelling (TS), water absorption (WA) and field-emission scanning electron microscopy (FESEM) were used to characterize the manufactured particleboards. Three different particle sizes of the Rhizophora spp. with four adhesive levels were utilized. Results revealed that the addition of GA into the particleboards noticeably improved panel overall properties. The GA bonded particleboards resulted in smoother surfaces, more rigid texture and better internal bonding strength compared to binderless particleboards made without using any adhesive. All specimens had internal bond strength of more than the minimum requirement of the Japanese Industrial Standard JIS A-5908 Type-8 of 0.15 N/mm 2 and were noticed to increase by increasing the adhesive level. However the GA bonded particleboards had higher percentage of WA and the TS compared with the binderless boards. Microscopic study also revealed that particleboards bonded with the gum had better contact compared to the binderless boards. Based on these results, it could be concluded that gum Arabic is an effective natural substance that could be added to manufacture particleboards to improve some of panels’ physical and mechanical properties

  11. STUDIES ON SOME PHYSICOCHEMICAL PROPERTIES OF LEUCAENA LEUCOCEPHALA BARK GUM

    Directory of Open Access Journals (Sweden)

    Vijetha Pendyala

    2010-06-01

    Full Text Available Gum exudates from Leucaena Leucocephala (Family: Fabaceae plants grown all over India were investigated for its physicochemical properties such as pH, swelling capacity and viscosities at different temperatures using standard methods. Leucaena Leucocephala bark gum appeared to be colorless to reddish brown translucent tears. 5 % w/v mucilage has pH of 7.5 at 28°C. The gum is slightly soluble in water and practically insoluble in ethanol, acetone and chloroform. It swells to about 5 times its original weight in water. A 5 %w/v mucilage concentration gave a viscosity value which was unaffected at temperature ranges (28-40°C. At concentrations of 2 and 5 %w/v, the gum exhibited pseudo plastic flow pattern while at 10 %w/v concentration the flow behaviour was thixotropic. The results indicate that the swelling ability of Leucaena Leucocephala (LL bark gum may provide potentials for its use as a disintegrant in tablet formulation, as a hydro gel in modified release dosage forms and the rheological flow properties may also provide potentials for its use as suspending and emulsifying agents owing to its pseudo plastic and thixotropic flow patterns.

  12. The impact of chewing gum resistance on immediate free recall.

    Science.gov (United States)

    Rickman, Sarah; Johnson, Andrew; Miles, Christopher

    2013-08-01

    Although the facilitative effects of chewing gum on free recall have proved contentious (e.g., Tucha, Mecklinger, Maier, Hammerl, & Lange, 2004; Wilkinson, Scholey, & Wesnes, 2002), there are strong physiological grounds, for example, increased cerebral activity and blood flow following the act of mastication, to suppose facilitation. The present study manipulated resistance to mastication, that is, chewing four pellets versus one pellet of gum, with the assumption that increased resistance will accentuate cerebral activity and blood flow. Additionally, chewing rate was recorded for all participants. In a within-participants design, participants performed a series of immediate free recall tasks while chewing gum at learning (one or four pellets) and recall (one or four pellets). Increased chewing resistance was not associated with increased memory performance, despite consistent chewing rates for both the one and four pellet conditions at both learning and recall. However, a pattern of recall consistent with context-dependent memory was observed. Here, participants who chewed the equivalent number of gum pellets at both learning and recall experienced significantly superior word recall compared to those conditions where the number of gum pellets differed. ©2012 The British Psychological Society.

  13. QbD based synthesis and characterization of polyacrylamide grafted corn fibre gum.

    Science.gov (United States)

    Singh, Akashdeep; Mangla, Bhumika; Sethi, Sheshank; Kamboj, Sunil; Sharma, Radhika; Rana, Vikas

    2017-01-20

    The aim of present investigation was to utilize quality by design approach for the synthesis of polyacrylamide corn fibre gum (PAAm-g-CFG) from corn fibre gum (CFG) by varying concentration of acrylamide and initiator. The spectral analysis (ATR-FTIR, 1 H NMR, DSC, X-ray and Mass spectroscopy) was conducted to assure grafting copolymerization of CFG with acrylamide. The powder flow properties confirm the porous nature of PAAm-g-CFG. The grafted copolymer dispersion showed shear thinning behaviour that follows Herschel Bulkley model. The viscoelastic analysis suggested viscous liquid like nature of PAAm-g-CFG and its viscosity increases with increase in concentration of PAAm-g-CFG. The mucoadhesive strength of synthesized PAAm-g-CFG was found to be higher than moringa oleifera gum, karaya gum, guar gum, xanthan gum, chitosan and gelatin. Further, the results pointed toward enhanced thermal stability of PAAm-g-CFG. Thus, PAAm-g-CFG has a great potential to be used in food and pharmaceutical industry. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Flavor release measurement from gum model system.

    Science.gov (United States)

    Ovejero-López, Isabel; Haahr, Anne-Mette; van den Berg, Frans; Bredie, Wender L P

    2004-12-29

    Flavor release from a mint-flavored chewing gum model system was measured by atmospheric pressure chemical ionization mass spectroscopy (APCI-MS) and sensory time-intensity (TI). A data analysis method for handling the individual curves from both methods is presented. The APCI-MS data are ratio-scaled using the signal from acetone in the breath of subjects. Next, APCI-MS and sensory TI curves are smoothed by low-pass filtering. Principal component analysis of the individual curves is used to display graphically the product differentiation by APCI-MS or TI signals. It is shown that differences in gum composition can be measured by both instrumental and sensory techniques, providing comparable information. The peppermint oil level (0.5-2% w/w) in the gum influenced both the retronasal concentration and the perceived peppermint flavor. The sweeteners' (sorbitol or xylitol) effect is less apparent. Sensory adaptation and sensitivity differences of human perception versus APCI-MS detection might explain the divergence between the two dynamic measurement methods.

  15. Strength and deformability of compressed concrete elements with various types of non-metallic fiber and rods reinforcement under static loading

    Science.gov (United States)

    Nevskii, A. V.; Baldin, I. V.; Kudyakov, K. L.

    2015-01-01

    Adoption of modern building materials based on non-metallic fibers and their application in concrete structures represent one of the important issues in construction industry. This paper presents results of investigation of several types of raw materials selected: basalt fiber, carbon fiber and composite fiber rods based on glass and carbon. Preliminary testing has shown the possibility of raw materials to be effectively used in compressed concrete elements. Experimental program to define strength and deformability of compressed concrete elements with non-metallic fiber reinforcement and rod composite reinforcement included design, manufacture and testing of several types of concrete samples with different types of fiber and longitudinal rod reinforcement. The samples were tested under compressive static load. The results demonstrated that fiber reinforcement of concrete allows increasing carrying capacity of compressed concrete elements and reducing their deformability. Using composite longitudinal reinforcement instead of steel longitudinal reinforcement in compressed concrete elements insignificantly influences bearing capacity. Combined use of composite rod reinforcement and fiber reinforcement in compressed concrete elements enables to achieve maximum strength and minimum deformability.

  16. Increased gum arabic production after infestation of Acacia senegal ...

    African Journals Online (AJOL)

    The aim of this study was to investigate the correlation between the beetle Agrilus nubeculosus and gum arabic production by Acacia senegal. Some trees were tapped and left open to facilitate infestation by A. nubeculosus and others were covered with wire mesh as control. Gum yield, physical and chemical properties of ...

  17. X-ray diffraction, IR spectroscopy and thermal characterization of partially hydrolyzed guar gum.

    Science.gov (United States)

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2012-05-01

    Guar gum was hydrolyzed using cellulase from Aspergillus niger at 5.6 pH and 50°C temperature. Hydrolyzed guar gum sample was characterized using Fourier transform infrared spectroscopy, differential scanning calorimetry, thermogravimetric analysis, X-ray diffraction, dilute solution viscometry and rotational viscometry. Viscometry analysis of native guar gum showed a molecular weight of 889742.06, whereas, after enzymatic hydrolysis, the resultant product had a molecular weight of 7936.5. IR spectral analysis suggests that after enzymatic hydrolysis of guar gum there was no major transformation of functional group. Thermal analysis revealed no major change in thermal behavior of hydrolyzed guar gum. It was shown that partial hydrolysis of guar gum could be achieved by inexpensive and food grade cellulase (Aspergillus niger) having commercial importance and utilization as a functional soluble dietary fiber for food industry. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Chewing gum benefits sustained attention in the absence of task degradation.

    OpenAIRE

    Johnson, A.J.; Muneem, M.; Miles, C.

    2013-01-01

    OBJECTIVES: The present study examined the effect of chewing gum on sustained attention and associated changes in subjective alertness. METHODS: In a within-participants design, 20 participants completed an extended version of the sustained attention response task (SART: Robertson et al., 1997), both with and without chewing gum. Self-rated measures of alertness, contentedness, and calmness were taken before and after the SART. RESULTS: Chewing gum was associated with improved attentional tas...

  19. [Analysis of constituents of ester-type gum bases used as natural food additives].

    Science.gov (United States)

    Tada, Atsuko; Masuda, Aino; Sugimoto, Naoki; Yamagata, Kazuo; Yamazaki, Takeshi; Tanamoto, Kenichi

    2007-12-01

    The differences in the constituents of ten ester-type gum bases used as natural food additives in Japan (urushi wax, carnauba wax, candelilla wax, rice bran wax, shellac wax, jojoba wax, bees wax, Japan wax, montan wax, and lanolin) were investigated. Several kinds of gum bases showed characteristic TLC patterns of lipids. In addition, compositions of fatty acid and alcohol moieties of esters in the gum bases were analyzed by GC/MS after methanolysis and hydrolysis, respectively. The results indicated that the varieties of fatty acids and alcohols and their compositions were characteristic for each gum base. These results will be useful for identification and discrimination of the ester-type gum bases.

  20. Design, formulation and evaluation of Aloe vera chewing gum

    Science.gov (United States)

    Aslani, Abolfazl; Ghannadi, Alireza; Raddanipour, Razieh

    2015-01-01

    Background: Aloe vera has antioxidant, antiinflammatory, healing, antiseptic, anticancer and antidiabetic effects. The aim of the present study was to design and evaluate the formulation of Aloe vera chewing gum with an appropriate taste and quality with the indications for healing oral wounds, such as lichen planus, mouth sores caused by cancer chemotherapy and mouth abscesses as well as reducing mouth dryness caused by chemotherapy. Materials and Methods: In Aloe vera powder, the carbohydrate content was determined according to mannose and phenolic compounds in terms of gallic acid. Aloe vera powder, sugar, liquid glucose, glycerin, sweeteners and different flavors were added to the soft gum bases. In Aloe vera chewing gum formulation, 10% of dried Aloe vera extract entered the gum base. Then the chewing gum was cut into pieces of suitable sizes. Weight uniformity, content uniformity, the organoleptic properties evaluation, releasing the active ingredient in the phosphate buffer (pH, 6.8) and taste evaluation were examined by Latin square method. Results: One gram of Aloe vera powder contained 5.16 ± 0.25 mg/g of phenolic compounds and 104.63 ± 4.72 mg/g of carbohydrates. After making 16 Aloe vera chewing gum formulations, the F16 formulation was selected as the best formulation according to its physicochemical and organoleptic properties. In fact F16 formulation has suitable hardness, lack of adhesion to the tooth and appropriate size and taste; and after 30 min, it released more than 90% of its drug content. Conclusion: After assessments made, the F16 formulation with maltitol, aspartame and sugar sweeteners was selected as the best formulation. Among various flavors used, peppermint flavor which had the most acceptance between consumers was selected. PMID:26605214

  1. Increased gum arabic production after infestation of Acacia senegal ...

    African Journals Online (AJOL)

    Jane

    2011-07-20

    Jul 20, 2011 ... chemical properties of gum were determined for infested and control trees. A. senegal infested by A. ... also in the textile, pottery, lithography, cosmetics and ... Deforestation within the gum belt has lead to an increase in desert .... Atomic Absorption = V*N EDTA*1000/Volume of extract (mg/l). Where, V is the ...

  2. Rheological and Quality Characteristics of Taftoon Bread as Affected by Salep and Persian Gums

    Directory of Open Access Journals (Sweden)

    M. A. Sahari

    2014-01-01

    Full Text Available Effects of salep gum at concentrations of 0.5%, 1%, 3%, and 5% (w/w flour basis and the Persian gum at concentrations of 0.5%, 1%, and 3% (w/w flour basis and combination of the two gums at concentrations of 0.5% + 0.5%, 0.75% + 0.25%, and 0.25% + 0.75% on rheological properties of the wheat flour dough and quality of Taftoon bread were studied with regard to retardation of staling. Rheological (farinograph and extensograph characteristics, staling, and organoleptic evaluations were performed on the dough and the resulting Taftoon bread. Statistical results showed that the salep gum at 5% and Persian gum at 3% (w/w flour basis had a significant effect on the dough properties. Salep and Persian gums when each separately added increased and decreased dough water absorption, respectively. Both hydrocolloids increased the dough resistance to extension and decreased its extensibility. Persian gum shows dual nature in water absorption and some other baking properties. Textural studies revealed that addition of 5% salep gum (w/w flour basis reduced the bread crumb firmness and delayed the staling process of the Taftoon bread. X-ray diffraction study also confirmed this result.

  3. Rheological and Quality Characteristics of Taftoon Bread as Affected by Salep and Persian Gums.

    Science.gov (United States)

    Sahari, M A; Mohammadi, R; Hamidi Esfehani, Z

    2014-01-01

    Effects of salep gum at concentrations of 0.5%, 1%, 3%, and 5% (w/w flour basis) and the Persian gum at concentrations of 0.5%, 1%, and 3% (w/w flour basis) and combination of the two gums at concentrations of 0.5% + 0.5%, 0.75% + 0.25%, and 0.25% + 0.75% on rheological properties of the wheat flour dough and quality of Taftoon bread were studied with regard to retardation of staling. Rheological (farinograph and extensograph) characteristics, staling, and organoleptic evaluations were performed on the dough and the resulting Taftoon bread. Statistical results showed that the salep gum at 5% and Persian gum at 3% (w/w flour basis) had a significant effect on the dough properties. Salep and Persian gums when each separately added increased and decreased dough water absorption, respectively. Both hydrocolloids increased the dough resistance to extension and decreased its extensibility. Persian gum shows dual nature in water absorption and some other baking properties. Textural studies revealed that addition of 5% salep gum (w/w flour basis) reduced the bread crumb firmness and delayed the staling process of the Taftoon bread. X-ray diffraction study also confirmed this result.

  4. Recent advances in Rosaceae gum exudates: From synthesis to food and non-food applications.

    Science.gov (United States)

    Bouaziz, Fatma; Koubaa, Mohamed; Ellouz Ghorbel, Raoudha; Ellouz Chaabouni, Semia

    2016-05-01

    In recent years, great interest has been devoted to the development of new applications for natural gums. These molecules were used for a variety of purposes since they are chemically inert, non-toxic, less expensive, biodegradable and widely available. They represent one of the most abundant raw materials used not only in commercial food products, but also in cosmetic and pharmaceutical products. Plant gums take their advantages compared to other gums (e.g., from animal and microbial sources) mainly because of their acceptance by consumers. Despite of the well description given in literature for the features of plant gum exudates, there is a lack distinguishing the different families that are producing gums, and their potential applications. Among these gums, the ones produced by Rosaceae family (e.g., almond, apricot, cherry, peach, and plum plants) have been taking special attention. Thus, the aim of this review is to report the recent advances in Rosaceae gum exudates. An emphasis is given for the formation mechanisms of these gums, their chemical composition, functional properties and structures, beneficial properties, as well as their food/non-food applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Influence of gamma radiation on the physicochemical and rheological properties of sterculia gum polysaccharides

    International Nuclear Information System (INIS)

    Singh, Baljit; Sharma, Vikrant

    2013-01-01

    Keeping in view the influence of gamma radiation on the physiochemical properties of the polysaccharides and their importance in the food and pharmaceutical industry, in the present study attempt has been made to investigate the effects of absorbed dose on FTIR, XRD, SEMs, absorbance, pH, solubility, water absorption capacity, emulsion stability and rheology of sterculia gum. Increase in solubility and decrease in swellability of gum has been observed on increasing the absorbed dose. The emulsion stability has improved for the gum sample irradiated with total dose of 8.1±0.2 kGy. Apparent viscosity of gum solution first increased with increase in dose from 0 to 8.1±0.2 kGy than decreased with regular trends with further increase in total absorbed dose. Flow behavior of gum solution shifted to Newtonian from non-Newtonian with increasing the dose. - Highlights: • Solubility increased and swellability decreased of gum on increasing the total dose. • Apparent viscosity of gum solution increased upto 8.1 kGy then decreased. • Emulsion stability improved for gum irradiated with total dose of 8.1 kGy. • Flow behavior shifted to Newtonian from non-Newtonian with increasing total dose

  6. EBSD-based techniques for characterization of microstructural restoration processes during annealing of metals deformed to large plastic strains

    DEFF Research Database (Denmark)

    Godfrey, A.; Mishin, Oleg; Yu, Tianbo

    2012-01-01

    Some methods for quantitative characterization of the microstructures deformed to large plastic strains both before and after annealing are discussed and illustrated using examples of samples after equal channel angular extrusion and cold-rolling. It is emphasized that the microstructures...... in such deformed samples exhibit a heterogeneity in the microstructural refinement by high angle boundaries. Based on this, a new parameter describing the fraction of regions containing predominantly low angle boundaries is introduced. This parameter has some advantages over the simpler high angle boundary...... on mode of the distribution of dislocation cell sizes is outlined, and it is demonstrated how this parameter can be used to investigate the uniformity, or otherwise, of the restoration processes occurring during annealing of metals deformed to large plastic strains. © (2012) Trans Tech Publications...

  7. Gum acacia coating with garlic and cinnamon as an alternate ...

    African Journals Online (AJOL)

    Madhumita

    The antibacterial activity of gum arabic coating with ... Key words: Gum acacia coating, garlic, cinnamon, antioxidant, antimicrobial, meat, ... cinnamaldehyde and eugenol inhibit production of an ... antioxidant activity because these two properties are ... temperatures .... activity of these spices but no report on its application.

  8. Self-healing guar gum and guar gum-multiwalled carbon nanotubes nanocomposite gels prepared in an ionic liquid.

    Science.gov (United States)

    Sharma, Mukesh; Mondal, Dibyendu; Mukesh, Chandrakant; Prasad, Kamalesh

    2013-10-15

    Guar gum is a galactomannan extracted from the seed of the leguminous shrub Cyamopsis tetragonoloba. It was found to form a soft viscoelastic gel in 1-butyl-3-methylimidazolium chloride, an ionic liquid at an optimized concentration of 10%w/v. A nanocomposite gel of the gum with enhanced strength could be prepared with 0.2%w/v of multiwalled carbon nanotubes (MWCNTs) in the ionic liquid. When the gels thus prepared were subjected to surface fractures or bisected completely, they found to self-heal at room temperature without any external interventions. The self-healing process could be repeated several times. These viscoelastic gel systems showed thixotropic nature and recovery of the storage modulus with time for several cycles was observed upon rheological investigations. The interaction took place between ionic liquid, guar gum and MWCNT was studied by SEM, TEM, FT-IR, powder XRD and rheometry. The results suggested that, upon standing at room temperature development of electrostatic interactions and the van der Waals interactions among the ionic liquid molecules facilitated the formation of reversible noncovalent bonds and eventually activated the self-healing in the gel systems through appropriate chain entanglements. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Evaluation of mucoadhesive potential of gum cordia, an anionic polysaccharide.

    Science.gov (United States)

    Ahuja, Munish; Kumar, Suresh; Kumar, Ashok

    2013-04-01

    The study involves mucoadhesive evaluation by formulating buccal discs using fluconazole as the model drug. The effect of compression pressure and gum cordia/lactose ratio on the ex vivo bioadhesion time and in vitro release of fluconazole was optimized using central composite experimental design. It was observed that the response ex vivo bioadhesion time was affected significantly by the proportion of gum cordia in the buccal discs while the in vitro release of fluconazole from the buccal discs was influenced significantly by the compression pressure. The optimized batch of buccal discs comprised of gum cordia/lactose - 0.66, fluconazole - 20 mg and was compressed at the pressure of 6600 kg. Further, it provided the ex vivo bioadhesion of 22 h and in vitro release of 80% in 24h. In conclusion, gum cordia is a promising bucoadhesive polymer. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Chewing gum, occupational stress, work performance and wellbeing. An intervention study.

    Science.gov (United States)

    Smith, Andrew P; Chaplin, Katherine; Wadsworth, Emma

    2012-06-01

    An intervention study was carried out to examine the effects of chewing gum on occupational stress and related outcomes. 101 volunteers from Cardiff University completed the study. The results showed that chewing gum reduced stress (both at work and outside work), reduced fatigue, reduced anxiety and depression and led to a more positive mood. Chewing gum was also associated with perceptions of better performance (both at work and outside). Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Gum chewing improves swallow frequency and latency in Parkinson patients: a preliminary study.

    Science.gov (United States)

    South, Angela R; Somers, Stephanie M; Jog, Mandar S

    2010-04-13

    Reduced swallowing frequency affects secretion management in Parkinson disease (PD). Gum chewing increases saliva flow and swallow frequency. This study uses chewing gum to modify swallow frequency and latency between swallows in patients with PD. 1) Assess the frequency and latency of swallow at baseline (BL), during gum chewing (GC), and post gum chewing (PGC) for participants with PD (stage 2-4) nonsymptomatic for prandial dysphagia; and 2) assess carryover after gum is expectorated. Twenty participants were studied across 3 tasks, each of 5 minutes in duration: BL, GC, and PGC. Respiratory and laryngeal signals were continuously recorded using PowerLab (version 5.5.5; ADI Instruments, Castle Hill, Australia). Frequency and latency of swallow events were calculated. Differences (analysis of variance) are reported for frequency (p Parkinson disease. This study provides Class III evidence that chewing gum increases swallow frequency and decreases latency of swallowing in an experiment in patients with stage 2 to 4 Parkinson disease who are nonsymptomatic for significant prandial dysphagia.

  12. Increased gum arabic production after infestation of Acacia senegal ...

    African Journals Online (AJOL)

    Jane

    2011-07-20

    Jul 20, 2011 ... Despite the fact that gum arabic is widely used as a vehicle for .... humidity, are the main factors affecting gum arabic yield. ... 450 mm from May to October; the soil is uniform deep reddish sand with little textural differentiation in the profile. .... 0.01; Mg/l * equivalent weight = mg/l (ppm); Molecular weight *.

  13. Intrinsic viscosity of guar gum in sweeteners solutions | Samavati ...

    African Journals Online (AJOL)

    Rheological methods were applied to study the effect of sweeteners on the rheological behavior of guar gum in dilute solutions. The concentration of the sweeteners were 0.1, 0.2%w/v for aspartame, acesulfame-k and cyclamate, and 0.001, 0.002%w/v for neotame. Gum was evaluated for intrinsic viscosity by various ...

  14. Gum in apricot (Prunus armeniaca L. shoots induced by methyl jasmonate

    Directory of Open Access Journals (Sweden)

    Marian Saniewski

    2013-12-01

    Full Text Available It has been well known that some fungal pathogens (Monilia laxa, M. fructigena, Cytospora cincta, larvae of Grapholita molesta and plant hormone - ethylene, induce gummosis in apricot shoots. Methyl jasmonate (JA-Me was also found to induce gummosis in apricot shoots as well as biotic and abiotic factors mentioned above. In order to know the mode of action of JA-Me on gum induction and/or formation, chemical composition of polysaccharides (after hydrolysis in gums of apricot shoots induced by JA-Me compared with those by ethephon and their mixture, and naturally occurring ones was studied, resulted in the succesful identification of monosaccharides, and the similarity of a composition consisting of xylose, arabinose and galactose at molar ratio 1:10:14, respectively. These results suggest that beside different inducers of gum in apricot the mechanism of polysaccharides biosynthesis of gums is the same or similar. The physiological role for JA-Me on gum induction and/or formation in apricot shoots, and other species are also discussed.

  15. Effects of xanthan, guar, carrageenan and locust bean gum addition on physical, chemical and sensory properties of meatballs.

    Science.gov (United States)

    Demirci, Zeynep Ozben; Yılmaz, Ismail; Demirci, Ahmet Şukru

    2014-05-01

    This study evaluated the effects of xanthan gum, guar gum, carrageenan and locust bean gum on physical, chemical and sensory properties of meatballs. Meatball samples were produced with three different formulations including of 0.5, 1, and 1.5% each gum addition and gum added samples were compared with the control meatballs. Physical and chemical analyses were carried out on raw and cooked samples separately. Moisture contents of raw samples decreased by addition of gums. There were significant decreases (p meatball samples formulated with gum when compared with control. Ash contents and texture values increased with gum addition to meatballs. Meatball redness decreased with more gum addition in raw and cooked meatball samples, which means that addition of gums resulted in a lighter-coloured product. According to sensory analysis results, locust bean gum added (1%) samples were much preferred by the panelists.

  16. Gum Disease by the Numbers | NIH MedlinePlus the Magazine

    Science.gov (United States)

    ... us Gum Disease by the Numbers Gum (or periodontal) disease is one of the leading threats to dental health. It's typically caused by poor brushing and flossing habits that allow plaque—a sticky film of bacteria—to build up on teeth and harden. In ...

  17. Deformation aspects of time dependent fracture

    International Nuclear Information System (INIS)

    Li, C.Y.; Turner, A.P.L.; Diercks, D.R.; Laird, C.; Langdon, T.G.; Nix, W.D.; Swindeman, R.; Wolfer, W.G.; Woodford, D.A.

    1979-01-01

    For all metallic materials, particularly at elevated temperatures, deformation plays an important role in fracture. On the macro-continuum level, the inelastic deformation behavior of the material determines how stress is distributed in the body and thus determines the driving force for fracture. At the micro-continuum level, inelastic deformation alters the elastic stress singularity at the crack tip and so determines the local environment in which crack advance takes place. At the microscopic and mechanistic level, there are many possibilities for the mechanisms of deformation to be related to those for crack initiation and growth. At elevated temperatures, inelastic deformation in metallic systems is time dependent so that the distribution of stress in a body will vary with time, affecting conditions for crack initiation and propagation. Creep deformation can reduce the tendency for fracture by relaxing the stresses at geometric stress concentrations. It can also, under suitable constraints, cause a concentration of stresses at specific loading points as a result of relaxation elsewhere in the body. A combination of deformation and unequal heating, as in welding, can generate large residual stress which cannot be predicted from the external loads on the body. Acceleration of deformation by raising the temperature can be an effective way to relieve such residual stresses

  18. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  19. Relative bioavailability of methadone hydrochloride administered in chewing gum and tablets

    DEFF Research Database (Denmark)

    Christrup, Lona Louring; Angelo, H.R.; Bonde, J.

    1990-01-01

    Methadone administered in chewing gum in doses of 16.7-22.6 mg to seven patients in a study using an open balanced cross-over design, was compared with 20 mg of methadone given perorally as tablets. There was no significant difference in the AUC/D obtained after administration of chewing gum...... and tablets (p>0.05). It is concluded that the chewing gum formulation should be considered for further testing with respect to suppression of abstinence syndrome in narcotic addicts....

  20. Relative bioavailability of methadone hydrochloride administered in chewing gum and tablets.

    Science.gov (United States)

    Christrup, L L; Angelo, H R; Bonde, J; Kristensen, F; Rasmussen, S N

    1990-01-01

    Methadone administered in chewing gum in doses of 16.7-22.6 mg to seven patients in a study using an open balanced cross-over design, was compared with 20 mg of methadone given perorally as tablets. There was no significant difference in the AUC/D obtained after administration of chewing gum and tablets (p greater than 0.05). It is concluded that the chewing gum formulation should be considered for further testing with respect to suppression of abstinence syndrome in narcotic addicts.

  1. Acoustic softening in metals during ultrasonic assisted deformation via CP-FEM

    KAUST Repository

    Siddiq, Amir

    2011-01-01

    In this paper, a phenomenological crystal plasticity model is modified to account for acoustic (ultrasonic) softening effects based on the level of ultrasonic intensity supplied to single and polycrystalline metals. The material parameters are identified using the inverse modeling approach by interfacing the crystal plasticity model with an optimization tool. The proposed model is validated and verified by comparing the microstructure evolution with experimental EBSD results reported in the literature. The model is able to capture the ultrasonic softening effect and the results show that as the ultrasonic intensity increases, the plastic deformation also increases. Differences in the stress-strain response are explained based on the slip system orientation tensor (Schmidt factors) which depends upon the crystal orientation. © 2010 Elsevier B.V. All rights reserved.

  2. Constitutive equations for energy balance evaluation in metals under inelastic deformation

    Science.gov (United States)

    Kostina, A.; Plekhov, O.; Venkatraman, B.

    2017-12-01

    The work is devoted to the development of constitutive equations for energy balance evaluation in plastically deformed metals. The evolution of the defect system is described by a previously obtained model based on the Boltzmann-Gibbs statistics. In the framework of this model, a collective behavior of mesodefect ensembles is taken into account by the introduction of an internal variable representing additional structural strain. This parameter enables the partition of plastic work into dissipated heat and stored energy. The proposed model is applied to energy balance calculation in a Ti-1Al-1Mn specimen subjected to cyclic loading. Simulation results have shown that the model is able to describe an upward trend in the stored energy value with the increase in the load ratio.

  3. Physicochemical and functional parameters of Cochlospermum vitifolium (bototo gum exudate

    Directory of Open Access Journals (Sweden)

    Maritza Coromoto Martínez

    2016-12-01

    Full Text Available The physicochemical parameters of Cochlospermum vitifolium they were evaluated and were linked to certain functional properties of industrial interest. The physicochemical parameters were determined by the classic methodology used for carbohydrates and the functional properties, as reported in the literature. The results obtained showed that the gum object of this study is low soluble in water, which corresponds with relatively high values of swelling indexes and water absorption capacity. Also, the intrinsic viscosity of the C. vitifolium exudate was related to a high molar mass, in the order of 106. Its emulsifying capacity is high, which is attributed to hydrophobic groups present in its structure. The gum gels at a minimum concentration, similar to that of the gum karaya (4.5%, but the gel that forms agglomerates, it is not uniform. The C. vitifolium gum exhibits important physicochemical and functional parameters which could serve as a criterion for testing its use in various industries.

  4. Analysis of Deformation and Failure Behaviors of TIG Welded Dissimilar Metal Joints Using Miniature Tensile Specimens

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Ji-Hwan; Jahanzeb, Nabeel; Kim, Min-Seong; Hwang, Ji-Hyun; Choi, Shi-Hoon [Sunchon National University, Suncheon (Korea, Republic of)

    2017-02-15

    The deformation and failure behaviors of dissimilar metal joints between SS400 steel and STS316L steel were investigated. The dissimilar metal joints were fabricated using the tungsten inert gas (TIG) welding process with STS309 steel as a filler metal. The microstructures of the dissimilar metal joints were investigated using an optical microscope and EBSD technique. The mechanical properties of the base metal (BM), heat affected zone (HAZ) and weld metal (WM) were measured using a micro-hardness and micro-tension tester combined with the digital image correlation (DIC) technique. The HAZ of the STS316L steel exhibited the highest micro-hardness value, and yield/tensile strengths, while the BM of the SS440 steel exhibited the lowest micro-hardness value and yield /tensile strengths. The grain size refinement in the HAZ of SS400 steel induced an enhancement of micro-hardness value and yield/tensile strengths compared to the BM of the SS400 steel. The WM, which consists of primary δ-ferrite and a matrix of austenite phase, exhibited relatively a high micro-hardness value, yield /tensile strengths and elongation compared to the BM and HAZ of the SS400 steel.

  5. Gum from the bark of Anogeissius leiocarpus as a potential ...

    African Journals Online (AJOL)

    Gum from the bark of Anogeissius leiocarpusas a potential pharmaceutical raw material – granule properties. Philip F Builders, Olubayo O Kunle, Yetunde C Isimi. Abstract. With the continuous effort to discover and produce cheap but high quality excipients for drug production Anogeissius leiocarpus gum (ALG), a brownish ...

  6. Vegetation status and socio-economic importance of gum and resin ...

    African Journals Online (AJOL)

    Ethiopian Journal of Biological Sciences ... Abstract. Study on population status, socio-economic importance and threats of gum- and resin-producing plant species was made in Borena, South Wollo, (Ethiopia). ... A total of 14 gum- and resin-bearing plant species representing seven families were recorded. Five of them ...

  7. Development of controlled release spheroids using Buchananiacochinchinesis gum

    Directory of Open Access Journals (Sweden)

    Narayan Babulal Gaikwad

    2013-03-01

    Full Text Available Chirauli nut gum was isolated from the bark of Buchanania cochinchinesis (fam. Anacadiacea and was used as a release modifier for the preparation of Diclofenac sodium spheroids using the extrusion spheronization technique. The process was studied for the effects on variables when making spheroids with satisfactory particle shape, size and size distribution. The prepared spheroids were characterized for surface morphology, qualitative surface porosity, friability, bulk density and flow properties. In vitro studies demonstrated that the release exhibited Fickian diffusion kinetics which was confirmed by the Higuchi and the Korsmeyer-Peppas models. The physico-chemical parameters of the gum could be correlated to the in vitro dissolution profile of the spheroids. The spheroids were not able to sustain the drug releases over 12 hours. A greater concentration of Chirauli nut gum and a process that can accommodate such greater concentrations may produce a formulation capable of significant sustained release.

  8. Influence of gas injection on viscous and viscoelastic properties of Xanthan gum.

    Science.gov (United States)

    Bobade, Veena; Cheetham, Madalyn; Hashim, Jamal; Eshtiaghi, Nicky

    2018-05-01

    Xanthan gum is widely used as a model fluid for sludge to mimic the rheological behaviour under various conditions including impact of gas injection in sludge. However, there is no study to show the influence of gas injection on rheological properties of xanthan gum specifically at the concentrations at which it is used as a model fluid for sludge with solids concentration above 2%. In this paper, the rheological properties of aqueous xanthan gum solutions at different concentrations were measured over a range of gas injection flow rates. The effect of gas injection on both the flow and viscoelastic behaviour of Xanthan gum (using two different methods - a creep test and a time sweep test) was evaluated. The viscosity curve of different solid concentrations of digested sludge and waste activated sludge were compared with different solid concentrations of Xanthan gum and the results showed that Xanthan gum can mimic the flow behaviour of sludge in flow regime. The results in linear viscoelastic regime showed that increasing gas flow rate increases storage modulus (G'), indicating an increase in the intermolecular associations within the material structure leading to an increase in material strength and solid behaviour. Similarly, in creep test an increase in the gas flow rate decreased strain%, signifying that the material has become more resistant to flow. Both observed behaviour is opposite to what occurs in sludge under similar conditions. The results of both the creep test and the time sweep test indicated that choosing Xanthan gum aqueous solution as a transparent model fluid for sludge in viscoelastic regime under similar conditions involving gas injection in a concentration range studied is not feasible. However Xanthan gum can be used as a model material for sludge in flow regime; because it shows a similar behaviour to sludge. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. The release of vitamin C from chewing gum and its effects on supragingival calculus formation.

    Science.gov (United States)

    Lingström, Peter; Fure, Solveig; Dinitzen, Bettina; Fritzne, Christina; Klefbom, Carin; Birkhed, Dowen

    2005-02-01

    The aims of this study were to evaluate (i): whether vitamin C in chewing gum, alone or in combination with carbamide, influences calculus formation, and (ii) whether carbamide affects the release, stability and uptake of vitamin C in a chewing gum. In two test series (Series I and II), 30 subjects, all calculus formers, participated. They were instructed to chew on five (Series I) or 10 (Series II) pieces of gum per day for a period of 3 months. The chewing gums were: vitamin C (60 mg, Series I), non-vitamin C (Series I) and vitamin C + carbamide (30 mg + 30 mg, Series II). In both series, no gum was used as a negative control. Calculus formation was scored on three lingual sites on the six anterior mandibular teeth according to the Volpe-Manhold index. The effect on plaque and gingivitis was also determined. A significant reduction in the total calculus score was observed after the use of vitamin C (33%) and vitamin C + carbamide (12%) gums compared with no gum use; this reduction was most pronounced in the heavy calculus formers. A reduced amount of visible plaque was also observed after use of vitamin C and non-vitamin C gum, but only the vitamin C gum reduced the number of bleeding sites (37%). In a separate study, the release, stability and uptake of vitamin C were evaluated using the iodine titration method in both saliva and urine after exposure to the following gums: vitamin C + carbamide (30 mg + 30 mg) and vitamin C (30 mg). There was no indication that carbamide affected the release, stability or uptake of vitamin C when used in a chewing gum.

  10. Water adsorption isotherms of carboxymethyl cellulose, guar, locust bean, tragacanth and xanthan gums.

    Science.gov (United States)

    Torres, María D; Moreira, Ramón; Chenlo, Francisco; Vázquez, María J

    2012-06-20

    Water adsorption isotherms of carboxymethyl cellulose (CMC), guar gum (GG), locust bean gum (LBG), tragacanth gum (TG) and xanthan gum (XG) were determined at different temperatures (20, 35, 50, and 65°C) using a gravimetric method. Several saturated salt solutions were selected to obtain different water activities in the range from 0.09 to 0.91. Water adsorption isotherms of tested hydrocolloids were classified like type II isotherms. In all cases, equilibrium moisture content decreased with increasing temperature at each water activity value. Three-parameter Guggenheim-Anderson-de Boer (GAB) model was employed to fit the experimental data in the water activity range and statistical analysis indicated that this model gave satisfactory results. CMC and GG were the most and the least hygroscopic gums, respectively. Sorption heats decreased with increasing moisture content. Monolayer moisture content evaluated with GAB model was consistent with equilibrium conditions of maximum stability calculated from thermodynamic analysis of net integral entropy. Values of equilibrium relative humidity at 20°C are proposed to storage adequately the tested gums. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Nicotine chewing gum (2 mg, 4 mg) and cigarette smoking: comparative effects upon vigilance and heart rate.

    Science.gov (United States)

    Parrott, A C; Winder, G

    1989-01-01

    Sixteen male smokers, abstinent the morning before testing, were assessed under four conditions: placebo chewing gum, 2 mg nicotine chewing gum, 4 mg nicotine gum, and cigarette smoking. Placebo gum was administered in the cigarette condition, while sham smoking occurred in the gum conditions. Pre-drug administration and post-drug difference scores were calculated for each assessment measure: rapid visual information processing (RVIP), memory for new information, and heart rate. Nicotine raised heart rate in a significant monotonic dose-related manner (P less than 0.001): placebo +0.2; 2 mg gum +5.1; 4 mg gum +9.8; cigarette +17.5 bpm. Rapid visual information processing target detections were also significantly related to dose (P less than 0.01), with this increased vigilance significant under 4 mg nicotine gum and cigarette smoking. Memory task performance was not significantly affected. Self-reported feelings of alertness/energy were higher while smoking than under placebo or 4 mg gum. Complaints about the taste of the 4 mg nicotine gum were frequent.

  12. Immunogenicity, immunological cross reactivity and non-specific irritant properties of the exudate gums, arabic, karaya and tragacanth.

    Science.gov (United States)

    Strobel, S; Ferguson, A; Anderson, D M

    1986-01-01

    An animal model has been used to investigate the immunogenicity and non-specific irritant properties of exudate gums. The materials studied were four preparations of gum arabic (Acacia spp.), two of gum karaya (Sterculia spp.), two of gum tragacanth (Astralagus spp.) and a residue obtained after ethanol extraction of gum arabic. Groups of animals were intradermally immunized with the gum in complete Freund's adjuvant. Serum antibody levels were measured by an ELISA technique and delayed hypersensitivity responses by a footpad swelling test. Antigenic cross-reactivity within each gum species was tested in a crossover fashion. All gum preparations elicited systemic immune responses after immunization. Further processing reduced immunogenicity, although there was no evidence that systemic immunity to these complex polysaccharide antigens responses could be completely abolished by processing or purification. The ethanolic extract, and some of the gum preparations, particularly tragacanth and karaya, caused considerable footpad swelling when injected intradermally. It is concluded that processing and awareness of subspecies differences can reduce the inherent immunogenicity and potential irritant effects of exudate gums.

  13. Iron microencapsulation in gum tragacanth using solvent evaporation method.

    Science.gov (United States)

    Asghari-Varzaneh, Elham; Shahedi, Mohammad; Shekarchizadeh, Hajar

    2017-10-01

    In this study iron salt (FeSO 4 ·7H 2 O) was microencapsulated in gum tragacanth hydrogel using solvent evaporation method. Three significant parameters (ferrous sulfate content, content of gum tragacanth, and alcohol to mixture ratio) were optimized by response surface methodology to obtain maximum encapsulation efficiency. Ferrous sulfate content, 5%, content of gum tragacanth, 22%, and alcohol to mixture ratio, 11:1 was determined to be the optimum condition to reach maximum encapsulation efficiency. Microstructure of iron microcapsules was thoroughly monitored using scanning electron microscopy (SEM). The microphotographs indicated two distinct crystalline and amorphous structures in the microcapsules. This structure was confirmed by X-ray diffraction (XRD) pattern of microcapsules. Fourier transform infrared (FTIR) spectra of iron microcapsules identified the presence of iron in the tragacanth microcapsules. The average size of microcapsules was determined by particle size analyzer. Release assessment of iron in simulated gastric fluid showed its complete release in stomach which is necessary for its absorption in duodenum. However, the use of encapsulated iron in gum tragacanth in watery foods is rather recommended due to the fast release of iron in water. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Optimization of enzymatic hydrolysis of guar gum using response surface methodology.

    Science.gov (United States)

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B S

    2014-08-01

    Guar gum is a polysaccharide obtained from guar seed endosperm portion. Enzymatically hydrolyzed guar gum is low in viscosity and has several health benefits as dietary fiber. In this study, response surface methodology was used to determine the optimum conditions for hydrolysis that give minimum viscosity of guar gum. Central composite was employed to investigate the effects of pH (3-7), temperature (20-60 °C), reaction time (1-5 h) and cellulase concentration (0.25-1.25 mg/g) on viscosity during enzymatic hydrolysis of guar (Cyamopsis tetragonolobus) gum. A second order polynomial model was developed for viscosity using regression analysis. Results revealed statistical significance of model as evidenced from high value of coefficient of determination (R(2) = 0.9472) and P < 0.05. Viscosity was primarily affected by cellulase concentration, pH and hydrolysis time. Maximum viscosity reduction was obtained when pH, temperature, hydrolysis time and cellulase concentration were 6, 50 °C, 4 h and 1.00 mg/g, respectively. The study is important in optimizing the enzymatic process for hydrolysis of guar gum as potential source of soluble dietary fiber for human health benefits.

  15. Effect of contact deformation on contact electrification: a first-principles calculation

    International Nuclear Information System (INIS)

    Zhang, Yuanyue; Shao, Tianmin

    2013-01-01

    The effect of contact deformation on contact electrification of metallic materials was studied by the first-principles method. The results of charge population and the densities of states of the deformed contact models demonstrated that the magnitude of the transferred charge increased with deformation. The mechanism of the effect of deformation was investigated by studying the electronic properties of the deformed surface slabs. The results showed that crystal deformation led to a change in the electrostatic potential of the metal, where the number of nearly free electrons and unoccupied orbitals for charge transfer increased, and their energy barrier decreased. (paper)

  16. The influence of excessive chewing gum use on headache frequency and severity among adolescents.

    Science.gov (United States)

    Watemberg, Nathan; Matar, Manar; Har-Gil, Miki; Mahajnah, Muhammad

    2014-01-01

    Excessive gum-chewing is underreported as a headache precipitant in children and adolescents. We evaluated the influence of daily excessive gum-chewing in older children and teenagers with chronic headache, emphasizing the impact of habit discontinuation and its reintroduction. Patients with chronic headache and excessive gum-chewing were consecutively recruited and asked to fill questionnaire pertaining headache characteristics, potential triggers, family history of headaches, and gum-chewing habits. These individuals were classified into four groups depending on the number of daily hours of gum-chewing. All children discontinued chewing for 1 month, reintroduced the habit, and were reinterviewed after 2 to 4 weeks. Thirty patients (25 girls) were recruited. Median age was 16 years. Most had migraine-like headaches. Following gum-chewing discontinuation, 26 reported significant improvement, including headache resolution in 19. All 20 patients reinstituting the habit reported symptom relapse within days. Duration of headache before discontinuation and the number of daily hours of chewing had no influence on the response to habit discontinuation. Excessive daily gum-chewing may be associated with chronic headache and should get more attention in the medical literature. Physician and patient awareness of this association could have a meaningful impact on the quality of life of children and adolescents with chronic headache who chew gum excessively. Copyright © 2014 Elsevier Inc. All rights reserved.

  17. Optimization of enzymatic hydrolysis of guar gum using response surface methodology

    OpenAIRE

    Mudgil, Deepak; Barak, Sheweta; Khatkar, B. S.

    2012-01-01

    Guar gum is a polysaccharide obtained from guar seed endosperm portion. Enzymatically hydrolyzed guar gum is low in viscosity and has several health benefits as dietary fiber. In this study, response surface methodology was used to determine the optimum conditions for hydrolysis that give minimum viscosity of guar gum. Central composite was employed to investigate the effects of pH (3–7), temperature (20–60 °C), reaction time (1–5 h) and cellulase concentration (0.25–1.25 mg/g) on viscosity d...

  18. Gum cordia as carrier of antioxidants: effects on lipid oxidation of peanuts

    OpenAIRE

    Haq, Muhammad Abdul; Azam, Mahmood; Hasnain, Abid

    2013-01-01

    Performance of antioxidants is improved by incorporating them into polymer matrix such as polysaccharides based edible coatings. Gum cordia, an anionic polysaccharide extracted from the fruits of Cordia.myxa could be used as carrier of antioxidants by virtue of its strong adhering and emulsifying properties. This study aimed to explore the potential of gum cordia as carrier of antioxidants when applied as edible coating on peanuts. Gum Cordia was compared with carboxymethyl cellulose (CMC) in...

  19. Structural, Thermal, Physical, Mechanical, and Barrier Properties of Chitosan Films with the Addition of Xanthan Gum.

    Science.gov (United States)

    de Morais Lima, Maria; Carneiro, Lucia Cesar; Bianchini, Daniela; Dias, Alvaro Renato Guerra; Zavareze, Elessandra da Rosa; Prentice, Carlos; Moreira, Angelita da Silveira

    2017-03-01

    Films based on chitosan and xanthan gum were prepared using casting technique aiming to investigate the potential of these polymers as packaging materials. Six formulations of films were studied varying the proportion of chitosan and xanthan gum: 100:0 (chitosan:xanthan gum, w/w, C100XG0 film); 90:10 (chitosan:xanthan gum, w/w, C90XG10 film); 80:20 (chitosan:xanthan gum, w/w, C80XG20 film); 70:30 (chitosan:xanthan gum, w/w, C70XG30 film); 60:40 (chitosan:xanthan gum, w/w, C60XG40 film); and 50:50 (chitosan:xanthan gum, w/w, C50XG50 film). The total quantity of solids (chitosan and xanthan gum) in the filmogenic solution was 1.5 g per 100 mL of aqueous solution for all treatments, according to the proportion of each polymer. The films were evaluated by their functional groups, structural, thermal, morphological, physical, mechanical, and barrier properties. All films have presented endothermic peaks in the range of 122 to 175 °C and broad exothermic peaks above 200 °C, which were assigned to the melting temperature and thermal decomposition, respectively. These results demonstrated that films with xanthan gum have the highest T m and Δ m H. The films containing higher content of xanthan gum show also the highest tensile strength and the lowest elongation. Xanthan gum addition did not affect the water vapor permeability, solubility, and moisture of films. This set of data suggests the formation of chitosan-xanthan complexes in the films. © 2017 Institute of Food Technologists®.

  20. Particle deformation during stirred media milling

    Science.gov (United States)

    Hamey, Rhye Garrett

    Production of high aspect ratio metal flakes is an important part of the paint and coating industry. The United States Army also uses high aspect ratio metal flakes of a specific dimension in obscurant clouds to attenuate infrared radiation. The most common method for their production is by milling a metal powder. Ductile metal particles are initially flattened in the process increasing the aspect ratio. As the process continues, coldwelding of metal flakes can take place increasing the particle size and decreasing the aspect ratio. Extended milling times may also result in fracture leading to a further decrease in the particle size and aspect ratio. Both the coldwelding of the particles and the breakage of the particles are ultimately detrimental to the materials performance. This study utilized characterization techniques, such as, light scattering and image analysis to determine the change in particle size as a function of milling time and parameters. This study proved that a fundamental relationship between the milling parameters and particle deformation could be established by using Hertz's theory to calculate the stress acting on the aluminum particles. The study also demonstrated a method by which milling efficiency could be calculated, based on the amount of energy required to cause particle deformation. The study found that the particle deformation process could be an energy efficient process at short milling times with milling efficiency as high as 80%. Finally, statistical design of experiment was used to obtain a model that related particle deformation to milling parameters, such as, rotation rate and milling media size.

  1. Detrimental effects of gum chewing on vigilance in children with attention deficit hyperactivity disorder.

    Science.gov (United States)

    Tucha, Lara; Simpson, William; Evans, Lynsay; Birrel, Laura; Sontag, Thomas A; Lange, Klaus W; Tucha, Oliver

    2010-12-01

    Impairments of attention are cardinal features of attention deficit hyperactivity disorder (ADHD) and can seriously affect the daily life of children with ADHD. Despite effective treatment strategies, there is a need of further treatment options that can be added to available and well established treatments. Further treatment options are needed since available treatments are often time consuming, expensive and limited regarding their external validity. Recent research demonstrated that gum chewing has beneficial effects on cognition including certain aspects of attention. Therefore, gum chewing may benefit children with ADHD in situations requiring particular cognitive efforts. In a crossover study, attentional functioning of 32 children with ADHD and 32 children without the condition was examined. All participants were assessed with chewing gum and without chewing gum. A computerized test was used for the assessment of vigilance and sustained attention. The findings of the present study suggest that gum chewing during task execution has detrimental effects on vigilance of both healthy children and children with ADHD. Sustained attention was not affected by gum chewing. Chewing gum, therefore, appears not to improve attentional performance in children with ADHD. Copyright © 2010 Elsevier Ltd. All rights reserved.

  2. The role of time on task performance in modifying the effects of gum chewing on attention.

    Science.gov (United States)

    Tucha, Lara; Simpson, William

    2011-04-01

    Recent research examined the effects of chewing gum on attention and reported a significant interaction of gum chewing with time. Using a crossover within-subject design, the present study examined the effect of gum chewing on sustained attention in healthy adults over a period of 30 min. The results revealed a significant main effect of time and a significant interaction between gum chewing and time. The findings suggest that gum chewing differentially affects attention performance. While gum chewing has detrimental effects on sustained attention in earlier stages of the task, beneficial effects on sustained attention were observed at later stages. Copyright © 2010 Elsevier Ltd. All rights reserved.

  3. Tragacanth gum: an effective oil well drilling fluid additive

    Energy Technology Data Exchange (ETDEWEB)

    Mahto, V.; Sharma, V. [Indian School of Mines, Dhanbad (India). Department of Petroleum Engineering

    2005-02-15

    The low penetration rate, excessive torque and drag, poor hole cleaning and formation damage are major impediments in drilling oil and gas well. These have a major impact on drilling efficiency and well economics. Keeping these in mind, an attempt was made to design a water based drilling fluid system using Indian bentonite clays and tragacanth gum. The effect of tragacanth gum on rheological behavior of three different Indian bentonite water suspensions was studied and a drilling fluid system was developed. The filtrates of these drilling fluids were subjected to formation damage study on the field core using Ruska Liquid Permeameter. The laboratory investigation furnishes that tragacanth gum acts as a good viscosifier and fluid loss control agent. The drilling fluid filtrate also has less effect on formation damage. (author)

  4. Influence of tragacanth gum in egg white based bioplastics: Thermomechanical and water uptake properties.

    Science.gov (United States)

    López-Castejón, María Luisa; Bengoechea, Carlos; García-Morales, Moisés; Martínez, Inmaculada

    2016-11-05

    This study aims to extend the range of applications of tragacanth gum by studying its incorporation into bioplastics formulation, exploring the influence that different gum contents (0-20wt.%) exert over the thermomechanical and water uptake properties of bioplastics based on egg white albumen protein (EW). The effect of plasticizer nature was also evaluated through the modification of the water/glycerol ratio within the plasticizer fraction (fixed at 40wt.%). The addition of tragacanth gum generally yielded an enhancement of the water uptake capacity, being doubled at the highest content. Conversely, presence of tragacanth gum resulted in a considerable decrease in the bioplastic mechanical properties: both tensile strength and maximum elongation were reduced up to 75% approximately when compared to the gum-free system. Ageing of selected samples was also studied, revealing an important effect of storage time when tragacanth gum is present, possibly due to its hydrophilic character. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Deformation mechanisms of nanotwinned Al

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xinghang [Texas A & M Univ., College Station, TX (United States)

    2016-11-10

    The objective of this project is to investigate the role of different types of layer interfaces on the formation of high density stacking fault (SF) in Al in Al/fcc multilayers, and understand the corresponding deformation mechanisms of the films. Stacking faults or twins can be intentionally introduced (via growth) into certain fcc metals with low stacking fault energy (such as Cu, Ag and 330 stainless steels) to achieve high strength, high ductility, superior thermal stability and good electrical conductivity. However it is still a major challenge to synthesize these types of defects into metals with high stacking fault energy, such as Al. Although deformation twins have been observed in some nanocrystalline Al powders by low temperature, high strain rate cryomilling or in Al at the edge of crack tip or indentation (with the assistance of high stress intensity factor), these deformation techniques typically introduce twins sporadically and the control of deformation twin density in Al is still not feasible. This project is designed to test the following hypotheses: (1) Certain type of layer interfaces may assist the formation of SF in Al, (2) Al with high density SF may have deformation mechanisms drastically different from those of coarse-grained Al and nanotwinned Cu. To test these hypotheses, we have performed the following tasks: (i) Investigate the influence of layer interfaces, stresses and deposition parameters on the formation and density of SF in Al. (ii) Understand the role of SF on the deformation behavior of Al. In situ nanoindentation experiments will be performed to probe deformation mechanisms in Al. The major findings related to the formation mechanism of twins and mechanical behavior of nanotwinned metals include the followings: 1) Our studies show that nanotwins can be introduced into metals with high stacking fault energy, in drastic contrast to the general anticipation. 2) We show two strategies that can effectively introduce growth twins in

  6. Deformation mechanisms of nanotwinned Al

    International Nuclear Information System (INIS)

    Zhang, Xinghang

    2016-01-01

    The objective of this project is to investigate the role of different types of layer interfaces on the formation of high density stacking fault (SF) in Al in Al/fcc multilayers, and understand the corresponding deformation mechanisms of the films. Stacking faults or twins can be intentionally introduced (via growth) into certain fcc metals with low stacking fault energy (such as Cu, Ag and 330 stainless steels) to achieve high strength, high ductility, superior thermal stability and good electrical conductivity. However it is still a major challenge to synthesize these types of defects into metals with high stacking fault energy, such as Al. Although deformation twins have been observed in some nanocrystalline Al powders by low temperature, high strain rate cryomilling or in Al at the edge of crack tip or indentation (with the assistance of high stress intensity factor), these deformation techniques typically introduce twins sporadically and the control of deformation twin density in Al is still not feasible. This project is designed to test the following hypotheses: (1) Certain type of layer interfaces may assist the formation of SF in Al, (2) Al with high density SF may have deformation mechanisms drastically different from those of coarse-grained Al and nanotwinned Cu. To test these hypotheses, we have performed the following tasks: (i) Investigate the influence of layer interfaces, stresses and deposition parameters on the formation and density of SF in Al. (ii) Understand the role of SF on the deformation behavior of Al. In situ nanoindentation experiments will be performed to probe deformation mechanisms in Al. The major findings related to the formation mechanism of twins and mechanical behavior of nanotwinned metals include the followings: 1) Our studies show that nanotwins can be introduced into metals with high stacking fault energy, in drastic contrast to the general anticipation. 2) We show two strategies that can effectively introduce growth twins in

  7. Nucleation reactions during deformation and crystallization of metallic glass

    International Nuclear Information System (INIS)

    Perepezko, J.H.; Imhoff, S.D.; Chen, M.W.; Gonzalez, S.; Inoue, A.

    2012-01-01

    Highlights: ► New approach to the examination and analysis of shear band nucleation. ► Discovery of multiple shear band nucleation sites. ► Identification of a method of using transient kinetic behavior to provide a more realistic evaluation of the diffusivity that is relevant to nucleation. - Abstract: Nucleation reactions play a central role in the synthesis of both bulk metallic glasses and nanostructured materials. For nanostructured materials it is necessary to promote a high nucleation density without significant growth or coarsening. Beyond crystallization reactions nucleation of shear bands is critical for promoting a homogeneous flow and useful ductility for structural applications of bulk metallic glass. The study and analysis of nucleation reactions for these different situations requires a consideration of the stochastic nature of nucleation, the influence of heterogeneous sites, and the controlling transport properties. For shear band nucleation, the stochastic nature can be effectively probed by instrumented nanoindentation tests. The analysis of a statistically significant number of measurements of the first pop-in shear band nucleation events reveals at least two main nucleation sites. In nanostructured composites, the initial nucleation stage is influenced by transient effects as reflected in the delay time prior to steady state nucleation and by heterogeneous nucleation sites that are related to medium range order regions in Al-base amorphous alloys. Moreover, the early growth characteristics are linked to the maximum achievable particle density. The new developments and insight on the fundamental understanding of nanostructure reaction mechanisms offer valuable guidance for control of nanoscale microstructures and for promoting ductile deformation behavior.

  8. Gas chromatographic-mass spectrometric characterisation of plant gums in samples from painted works of art.

    Science.gov (United States)

    Bonaduce, Ilaria; Brecoulaki, Hariclia; Colombini, Maria Perla; Lluveras, Anna; Restivo, Vincenzo; Ribechini, Erika

    2007-12-21

    This paper presents an analytical GC-MS procedure to study the chemical composition of plant gums, determining aldoses and uronic acids in one step. The procedure is based on the silylation of aldoses and uronic acids, released from plant gums by microwave assisted hydrolysis, and previously converted into the corresponding diethyl-dithioacetals and diethyl-dithioacetal lactones. Using this method only one peak for each compound is obtained, thus providing simple and highly reproducible chromatograms. The analytical procedure was optimised using reference samples of raw plant gums (arabic, karaya, ghatti, guar, locust bean and tragacanth, cherry, plum and peach gums), commercial watercolours and paint layers prepared according to ancient recipes at the Opificio delle Pietre Dure of Florence (Italy). To identify gum media in samples of unknown composition, a decisional schema for the gum identification and the principal component analysis of the relative sugar percentage contents were employed. The procedure was used to study samples collected from wall paintings from Macedonian tombs (4th-3rd centuries bc) and from the Mycenaean "Palace of Nestor" (13th century bc) in Pylos, Greece. The presence of carbohydrates was ascertained and plant gum binders (fruit and a mixture of tragacanth and fruit tree gums) were identified in some of the samples.

  9. Influence of gum tragacanth on the physicochemical and rheological properties of kashk.

    Science.gov (United States)

    Shiroodi, Setareh Ghorban; Mohammadifar, Mohammad Amin; Gorji, Elham Ghorbani; Ezzatpanah, Hamid; Zohouri, Nilofar

    2012-02-01

    In this study, the physicochemical properties of a low-fat dried yogurt paste (kashk) were determined, and the effects of different concentrations (0, 0·1, 0·3 and 0·5% w/w) of gum tragacanth exudates from Astragalus gossypinus on the stability and texture of the samples were investigated by measuring amount of syneresis, turbidity, particle size distribution (PSD), flow behaviour and viscoelastic properties. The flow behaviour index was not very sensitive to the concentration of gum, while a remarkable concentration dependency of the power-law consistency coefficient and Herschel-Bulkley yield stress was observed. The initial increase in the gum concentration at 0·1 and 0·3% levels led to a higher degree of syneresis, which was related to the depletion flocculation mechanism. However, the reduced amount of syneresis in samples containing 0·5% gum tragacanth was attributed to the significant increase in viscosity of the continuous phase, which is also accompanied by trapping of the aggregated casein particles. The presence of 3% salt in the samples may have led to the neutralization of charges on the surface of gum tragacanth; consequently, the non-adsorbing behaviour of high-ionic-strength polysaccharides inhibited the formation of electrostatic protein-polysaccharide complexes. Furthermore, maximum values of polydispersity, syneresis and tan δ at high frequencies were found in samples containing 0·1% gum tragacanth.

  10. Guar gum effects on food intake, blood serum lipids and glucose levels of Wistar rats.

    Science.gov (United States)

    Frias, A C; Sgarbieri, V C

    1998-01-01

    The effects of guar gum derived from the endosperm of Cyamopsis tetragonoloba (75% soluble fiber, 7.6% insoluble fiber, 2.16% crude protein, 0.78% total lipids, 0.54% ash and 9.55% moisture) on food intake, levels of blood serum cholesterol, triacylglycerols, glucose and LDL and HDL-cholesterol were studied. The effects of guar gum on indices of protein absorption and utilization were also investigated. Diets containing 0%, 10% and 20% (w/w) guar gum or 10% and 20% cellulose powder (reference) were fed to normal rats for 60 days. The rats fed the guar gum diets showed significantly (p Guar gum decreased blood serum glucose only during the first month of the experiment, and no changes in the indices of protein absorption and utilization were found. The guar gum caused a 10% increase in the small intestine length and a 25% retardation in the intestinal transit. The results of this research suggested that guar gum could potentially be effective in the treatment of hypercholesterolemia and obesity in humans.

  11. Compositional analysis and rheological characterization of gum tragacanth exudates from six species of Iranian Astragalus

    DEFF Research Database (Denmark)

    Balaghi, Sima; Mohammadifar, Mohammad Amin; Zargaraan, Azizollaah

    2011-01-01

    The sugar composition and viscoelastic behaviour of Iranian gum tragacanth exuded by six species of Astragalus was investigated at a concentration of 1.3% and varying ionic strength using a controlled shear-rate rheometer. Compositional analysis of the six species of gum tragacanth by high...... of Astragalus, and this variation led to interesting differences in functional properties. Rheological measurements performed on dispersions of the six species of gum tragacanth demonstrated viscoelastic properties. The mechanical spectra derived from strain sweep and frequency sweep measurements indicated...... that the different gum tragacanth dispersions had distinctive viscoelastic behaviours. Investigation of the viscoelastic properties of the different gum dispersions in the presence of NaCl revealed that the addition of NaCl could lead to slight to drastic decreases in the G′, G″ or η∗ values of the various gums...

  12. Seeds of genus Cassia as possible sources of industrial gums

    Energy Technology Data Exchange (ETDEWEB)

    Farooqi, M I.H.; Kapoor, V P; Islam, G

    1978-01-01

    Water-soluble mucilages (gums) and their properties were determined for the seeds of twenty Indian Cassia species, including nine trees and nine shrubs. The seeds of the shrub C. alata were regarded as the best potential commercial source of gums; those of the trees C. fistula, C. grandis, C. javanica, C. marginata and C. multijuga were also promising.

  13. Economic incentives for abandoning or expanding gum arabic production in Sudan

    NARCIS (Netherlands)

    Rahim, A.; Ierland, van E.C.; Wesseler, J.H.H.

    2007-01-01

    In this paper we use a real options approach to analyze farmers' economic incentives to abandon gum production or expand by creating new plantations. Our results indicate that agricultural crops currently provide higher economic benefits as compared to gum agroforestry. However, we show that the

  14. Gellan gum fluid gels for topical administration of diclofenac.

    Science.gov (United States)

    Mahdi, Mohammed H; Conway, Barbara R; Mills, Thomas; Smith, Alan M

    2016-12-30

    Diclofenac topical formulations are often preferred for drug administration to patients who experience serious GIT problems. Absorption of the drug through the skin, however, can be challenging due to the natural protective feature of the stratum corneum (SC). In this article, fluid gels prepared from gellan gum were explored as a topical drug delivery vehicle. Rheological analysis of the formulations showed that it was possible to produce a topical gel with a viscosity and the mechanical strength similar to that of the commercially available Voltaren ® gel using 1% w/w of a 50:50 low acyl/high acyl (LA/HA) gellan blend. Soft-tribology was used to assess the lubrication properties of gellan fluid gels. The lubrication of the gellan gum fluid gel formulations at high rubbing speeds was similar to the lubrication of the Voltaren ® gel. The use of gellan gum dramatically increased skin permeation of diclofenac when compared with the commercially available formulation and could be controlled by changing the gellan gum concentration and/or sodium ion concentration in the formulation. This study highlights the potential use of fluid gels that can be easily tuned to have physical properties suitable for topical formulations with the added advantage of increasing drug permeation. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Behavioral economic substitutability of e-cigarettes, tobacco cigarettes, and nicotine gum.

    Science.gov (United States)

    Johnson, Matthew W; Johnson, Patrick S; Rass, Olga; Pacek, Lauren R

    2017-07-01

    The public health impact of e-cigarettes may depend on their substitutability for tobacco cigarettes. Dual users of e-cigarettes and tobacco cigarettes completed purchasing tasks in which they specified daily use levels under hypothetical conditions that varied the availability and price of e-cigarettes, tobacco cigarettes, and nicotine gum (for those with nicotine gum experience). When either e-cigarettes or tobacco cigarettes were the only available commodity, as price per puff increased, purchasing decreased, revealing similar reinforcement profiles. When available concurrently, as the price of tobacco puffs increased, purchasing of tobacco puffs decreased while purchasing of fixed-price e-cigarette puffs increased. Among those with nicotine gum experience, when the price of tobacco puffs was closest to the actual market value of tobacco puffs, e-cigarette availability decreased median tobacco puff purchases by 44% compared to when tobacco was available alone. In contrast, nicotine gum availability caused no decrease in tobacco puff purchases. E-cigarettes may serve as a behavioral economic substitute for tobacco cigarettes, and may be a superior substitute compared to nicotine gum in their ability to decrease tobacco use. Although important questions remain regarding the health impacts of e-cigarettes, these data are consistent with the possibility that e-cigarettes may serve as smoking cessation/reduction aids.

  16. Effects of short-term xylitol gum chewing on the oral microbiome.

    Science.gov (United States)

    Söderling, Eva; ElSalhy, Mohamed; Honkala, Eino; Fontana, Margherita; Flannagan, Susan; Eckert, George; Kokaras, Alexis; Paster, Bruce; Tolvanen, Mimmi; Honkala, Sisko

    2015-03-01

    The aim of this study was to determine the effects of short-term xylitol gum chewing on the salivary microbiota of children. The study was a randomised, controlled, double-blind trial. Healthy children used xylitol chewing gum (xylitol group, n = 35) or sorbitol chewing gum (control group, n = 38) for 5 weeks. The daily dose of xylitol/sorbitol was approximately 6 g/day. At baseline and at the end of the test period, unstimulated and paraffin-stimulated saliva were collected. The microbial composition of the saliva was assessed using human oral microbe identification microarray (HOMIM). Mutans streptococci (MS) were plate cultured. As judged by HOMIM results, no xylitol-induced changes in the salivary microbiota took place in the xylitol group. In the control group, Veillonella atypica showed a significant decrease (p = 0.0001). The xylitol gum chewing decreased viable counts of MS in both stimulated (p = 0.006) and unstimulated (p = 0.002) saliva, but similar effects were also seen in the control group. The use of xylitol gum decreased MS, in general, but did not change the salivary microbial composition. Short-term consumption of xylitol had no impact on the composition of the salivary microbiota, but resulted in a decrease in the levels of MS.

  17. Surface analysis characterisation of gum binders used in modern watercolour paints

    Science.gov (United States)

    Sano, Naoko; Cumpson, Peter J.

    2016-02-01

    Conducting this study has demonstrated that not only SEM-EDX but also XPS can be an efficient tool for characterising watercolour paint surfaces. We find that surface effects are mediated by water. Once the powdered components in the watercolour come into contact with water they dramatically transform their chemical structures at the surface and show the presence of pigment components with a random dispersion within the gum layer. Hence the topmost surface of the paint is confirmed as being composed of the gum binder components. This result is difficult to confirm using just one analytical technique (either XPS or SEM-EDX). In addition, peak fitting of C1s XPS spectra suggests that the gum binder in the commercial watercolour paints is probably gum arabic (by comparison with the reference materials). This identification is not conclusive, but the combination techniques of XPS and SEM shows the surface structure with material distribution of the gum binder and the other ingredients of the watercolour paints. Therefore as a unique technique, XPS combined with SEM-EDX may prove a useful method in the study of surface structure for not only watercolour objects but also other art objects; which may in future help in the conservation for art.

  18. Using Gamma Irradiation to Modify Properties of Polysaccharides (Guar Gum)

    International Nuclear Information System (INIS)

    Sayed, H.

    2015-01-01

    Radiation processing of material is one of most recent technology used in modification of material properties. The aim of this work was to determine the effect of gamma irradiation on the Polysaccharides Viscosity and Molecular Weight, as definition of Guar Gum. Its series of glactomanene (glactos + manose). (1-2-,3). Guar Gum powder was the main material and Co-60 irradiator facility as main technique. For gamma–ray source of required doses, 2.5, 5, 7.5, 10, 20, 30, 40 and 50 kGy. Viscosity of the aqueous suspensions of irradiated Guar Gum at different concentrations (0.1–0.5%) was measured, also it measured for solutions made of irradiated powder. Results used to calculate the difference occur in molecular weight, in order to determine the irradiation effect in the material. The monitored rheological parameters showed (non-Newtonian Behavior) of the samples which processed by gamma irradiation. The decrease tendency of the viscosity by irradiation of samples under study (different concentrations) and compared with control also for irradiated powder decrease of the concentration as well has been noticed. From results evaluation concluded that the viscosity values for all studied concentrations decreased by irradiation. This aspect suggests a depolymerization phenomenon of the aqueous Guar Gum solutions. This study contributes to the knowledge of the viscoelastic properties of Guar Gum as powder or aqueous solution, with application for food, agriculture, medical products, Petroleum and construction. (author)

  19. The next GUM and its proposals: a comparison study

    Science.gov (United States)

    Damasceno, J. C.; Couto, P. R. G.

    2018-03-01

    The Guide to the Expression of Uncertainty in Measurement (GUM) is currently under revision. New proposals for its implementation were circulated in the form of a draft document. Two of the main changes are explored in this work using a Brinell hardness model example. Changes in the evaluation of uncertainty for repeated indications and in the construction of coverage intervals are compared with the classic GUM and with Monte Carlo simulation method.

  20. Gum forming olefinic precursors in motor gasoline: a model compound study

    Energy Technology Data Exchange (ETDEWEB)

    Nagpal, J.M.; Joshi, G.C.; Singh, J.; Rastogi, S.N. (Indian Institute of Petroleum, Dehradun (India))

    1994-01-01

    The source of the cracked components in motor gasoline are generally (Fluid Catalytic Cracking) FCC and thermal cracking naphthas incorporated in the gasoline pool. The FCC olefins are predominant in isostructures, while thermal cracking naphthas obtained from visbreaking and coking operations contain substantial amounts of cyclic structures. The contribution of various olefinic structures present in these naphthas are likely to vary. The gum forming tendencies of different types of olefinic structures have been studied by taking model compounds in a known sample matrix through potential gum measurements under accelerated test conditions. Peroxide number values have also been determined on aged sample. Cyclic and dicyclic structures have been found to contribute maximum, towards gum formation tendencies. Branching generally increases the gum formation. However, position of branching plays an important role besides the double bond. Synergistic effects of dienes with straight chain and branched olefins have also been studied. 11 refs., 10 figs., 2 tabs.

  1. Deformation mechanisms of nanograined metallic polycrystals

    Czech Academy of Sciences Publication Activity Database

    Saada, G.; Kruml, Tomáš

    2011-01-01

    Roč. 59, - (2011), s. 2565-2574 ISSN 1359-6454 Institutional research plan: CEZ:AV0Z20410507 Keywords : nanocrystalline materials * grain boundary defects * plastic deformation Subject RIV: JJ - Other Materials Impact factor: 3.755, year: 2011

  2. Non-proportional deformation paths for sheet metal: experiments and models

    NARCIS (Netherlands)

    van den Boogaard, Antonius H.; van Riel, M.; Hora, P.

    2009-01-01

    For mild steel, after significant plastic deformation in one direction, a subsequent deformation in an orthogonal direction shows a typical stress overshoot compared to monotonic deformation. This phenomenon is investigated experimentally and numerically on a DC06 material. Two models that

  3. Whole and crushed nutlets of chia (Salvia hispanica from Mexico as a source of functional gums

    Directory of Open Access Journals (Sweden)

    Maira Segura-Campos

    2014-12-01

    Full Text Available The objective of this study was to characterize the chemical and functional properties of Mexican chia (Salvia hispanica gums extracted from defatted whole and crushed nutlets using the Soxhlet and SFE-CO2 methods. Chia gums have interesting chemical and functional properties for the food industry. The oil and gum yields were in the range of 1.98-16.42% and 5.81-12.60%, respectively. The defatting procedure did not affect significantly the oil and gum extraction; the nutlet type (whole or crushed was the only parameter influencing the yield. The proximate composition and the protein and fiber contents of chia gum were evaluated. Low contents of protein and fiber and high NFE levels were found in whole nutlet gums. The functional properties of chia gum extracted from whole and crushed nutlets with the Soxhlet and SFE-COs methods showed the following ranges of water absorption capacity of 62.64 to 143.66 g/g, water adsorption capacity of 0.69 to 1.35 g/g, and water and oil holding capacity of 100 to 149.28 g/g and19.5 to 40.4 g/g, respectively. The rheological behavior exhibited by the gums was pseudoplastic or shear thinning. From a functional perspective, chia gum is an important food component due its emulsifier and stabilizer potentials.

  4. Texture of low-fat Iranian White cheese as influenced by gum tragacanth as a fat replacer.

    Science.gov (United States)

    Rahimi, J; Khosrowshahi, A; Madadlou, A; Aziznia, S

    2007-09-01

    The effect of different concentrations of gum tragacanth on the textural characteristics of low-fat Iranian White cheese was studied during ripening. A batch of full-fat and 5 batches of low-fat Iranian White cheeses with different gum tragacanth concentrations (without gum or with 0.25, 0.5, 0.75, or 1 g of gum/kg of milk) were produced to study the effects of fat content reduction and gum concentration on the textural and functional properties of the product during ripening. Cheese samples were analyzed with respect to chemical, color, and sensory characteristics, rheological parameters (uniaxial compression and small-amplitude oscillatory shear), and microstructure. Reducing the fat content had an adverse effect on cheese yield, sensory characteristics, and the texture of Iranian White cheese, and it increased the instrumental hardness parameters (i.e., fracture stress, elastic modulus, storage modulus, and complex modulus). However, increasing the gum tragacanth concentration reduced the values of instrumental hardness parameters and increased the whiteness of cheese. Although when the gum concentration was increased, the low-fat cheese somewhat resembled its full-fat counterpart, the interaction of the gum concentration with ripening time caused visible undesirable effects on cheese characteristics by the sixth week of ripening. Cheeses with a high gum tragacanth concentration became very soft and their solid texture declined somewhat.

  5. In-situ studies of bulk deformation structures: Static properties under load and dynamics during deformation

    DEFF Research Database (Denmark)

    Jakobsen, Bo

    2006-01-01

    The main goal of the study presented in this thesis was to perform in-situ investigations on deformation structures in plastically deformed polycrystalline copper at low degrees of tensile deformation (model system for cell forming pure fcc metals. Anovel synchrotron...... grains in polycrystalline samples during tensile deformation. We have shown that the resulting 3D reciprocal space maps from tensile deformed copper comprise a pronounced structure, consisting of bright sharp peaks superimposed on a cloud of enhanced intensity. Based on the integrated intensity......, the width of the peaks, and spatial scanning experiments it is concluded that the individual peaks arise from individual dislocation-free regions (the subgrains) in the dislocation structure. The cloud is attributed to the dislocation rich walls. Samples deformed to 2% tensile strain were investigated under...

  6. A SANS study of the adsorption of guar gum on talc surfaces

    International Nuclear Information System (INIS)

    Cram, S.L.; Knott, R.; Hanley, H.

    2002-01-01

    Reagents based on guar gum are commonly used as 'gangue' depressants in the flotation of sulphides from ores containing naturally floating layer silicate minerals such as talc. Nickel sulphide ores processed by WMC Resources Ltd. at the Leinster Nickel Operations in Western Australia typically contain 1-2 % talc. Guar gum, added to the flotation cell, depresses the talc by adsorbing onto its surface, thereby reducing its hydrophobic nature. Guar gum is a long chain polysaccharide containing many hydroxyl functional groups along the length of its chain. The ratio of chain length to the number of hydroxyl and carboxyl groups causes the guar gum to be selective in depressing talc rather than nickel sulphide minerals. Small angle neutron scattering (SANS) it is an excellent tool for probing structures in the nano length scale. Unlike X-rays, neutrons are sensitive to low atomic weight elements, especially hydrogen and therefore organics. Using SANS it is possible to contrast different parts of a composite sample to get information on spatial arrangements. These qualities make SANS an obvious choice for studying the adsorption of guar gum on the surface of talc in aqueous solutions. Complimentary SANS experiments were carried out in Australia at the Australian Nuclear Science and Technology Organisation (ANSTO) and in the United States at the National Institute of Standards and Technology (NIST). Initially talc samples were studied 'as supplied', however as experiments proceeded attempts to reduce the particle size and distribution were carried out by milling and centrifuging procedures. Contrast matching techniques were used to observed the scattering behaviour of talc with and without the presence of guar gum and vice versa, over a total q range of 0.002 - 0.1 Angstroms -1 . The size of the talc particles appears to affect the scattering behaviour not only of talc but also of guar gum in the same solutions. This implies that the structure of the guar gum is strongly

  7. Dependence levels in users of electronic cigarettes, nicotine gums and tobacco cigarettes.

    Science.gov (United States)

    Etter, Jean-François; Eissenberg, Thomas

    2015-02-01

    To assess dependence levels in users of e-cigarettes, and compare them with dependence levels in users of nicotine gums and tobacco cigarettes. Self-reports from cross-sectional Internet and mail surveys. Comparisons of: (a) 766 daily users of nicotine-containing e-cigarettes with 30 daily users of nicotine-free e-cigarettes; (b) 911 former smokers who used the e-cigarette daily with 451 former smokers who used the nicotine gum daily (but no e-cigarette); (c) 125 daily e-cigarette users who smoked daily (dual users) with two samples of daily smokers who did not use e-cigarettes (2206 enrolled on the Internet and 292 enrolled by mail from the general population of Geneva). We used the Fagerström test for nicotine dependence, the nicotine dependence syndrome scale, the cigarette dependence scale and versions of these scales adapted for e-cigarettes and nicotine gums. Dependence ratings were slightly higher in users of nicotine-containing e-cigarettes than in users of nicotine-free e-cigarettes. In former smokers, long-term (>3 months) users of e-cigarettes were less dependent on e-cigarettes than long-term users of the nicotine gum were dependent on the gum. There were few differences in dependence ratings between short-term (≤3 months) users of gums or e-cigarettes. Dependence on e-cigarettes was generally lower in dual users than dependence on tobacco cigarettes in the two other samples of daily smokers. Some e-cigarette users were dependent on nicotine-containing e-cigarettes, but these products were less addictive than tobacco cigarettes. E-cigarettes may be as or less addictive than nicotine gums, which themselves are not very addictive. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  8. Matrix Effect on the Spray Drying Nanoencapsulation of Lippia sidoides Essential Oil in Chitosan-Native Gum Blends.

    Science.gov (United States)

    Paula, Haroldo C B; Oliveira, Erick F; Carneiro, Maria J M; de Paula, Regina C M

    2017-03-01

    Essential oils have many applications in the pharmaceutical, chemical, and food fields, however, their use is limited to the fact that they are very labile, requiring their a priori encapsulation, aiming to preserve their properties.This work reports on the preparation of chitosan-gum nanoparticles loaded with thymol containing Lippia sidoides essential oil, using exudates of Anacardium Occidentale (cashew gum), Sterculia striata (chichá gum), and Anadenanthera macrocarpa trees (angico gum). Nanoparticles were produced by spray drying an emulsion of L. sidoides essential oil and aqueous solution of gums with different chitosan : gum ratios. Samples were characterized by FTIR and UV/VIS spectroscopy, particle size, volume distribution, and zeta potential. The FTIR spectrum showed the main signals of chitosan and the gums. Data obtained revealed that the samples had sizes in the nano range, varying from 17 nm to 800 nm. The zeta potential varied from + 30 mV to - 40 mV. Nanoparticle loading values varied from 6.7 % to 15.6 %, with an average encapsulating efficiency of 62 %, where the samples with high ratios of cashew gum and chichá gum presented high oil loading values. The data revealed that both the chitosan : gum ratio and polysaccharide characteristics play major roles in nanoencapsulation processes. Georg Thieme Verlag KG Stuttgart · New York.

  9. Influence of gamma radiation on the physicochemical and rheological properties of sterculia gum polysaccharides

    Science.gov (United States)

    Singh, Baljit; Sharma, Vikrant

    2013-11-01

    Keeping in view the influence of gamma radiation on the physiochemical properties of the polysaccharides and their importance in the food and pharmaceutical industry, in the present study attempt has been made to investigate the effects of absorbed dose on FTIR, XRD, SEMs, absorbance, pH, solubility, water absorption capacity, emulsion stability and rheology of sterculia gum. Increase in solubility and decrease in swellability of gum has been observed on increasing the absorbed dose. The emulsion stability has improved for the gum sample irradiated with total dose of 8.1±0.2 kGy. Apparent viscosity of gum solution first increased with increase in dose from 0 to 8.1±0.2 kGy than decreased with regular trends with further increase in total absorbed dose. Flow behavior of gum solution shifted to Newtonian from non-Newtonian with increasing the dose.

  10. Evaluation of masticatory function after maxillectomy using a colour-changing chewing gum.

    Science.gov (United States)

    Shibuya, Y; Ishida, S; Kobayashi, M; Hasegawa, T; Nibu, K; Komori, T

    2013-03-01

    The purpose of this study was to identify the risk factors associated with the masticatory dysfunction after maxillectomy using a colour-changing chewing gum. Thirty-nine patients who underwent maxillectomy between January 2002 and May 2010 in the Department of Kobe University Hospital were recruited for this study. There were 20 male and 19 female subjects, with a median age of 73·3 years (range of 44-90) at the time of surgery. The intra-oral conditions after maxillectomy were classified by HS classification, and the masticatory function was evaluated by a colour-changing chewing gum and the results of a modified Sato's questionnaire. The scores of the colour-changing gum were closely correlated with the scores of the modified Sato's questionnaire (r = 0·661, P gum test masticatory dysfunction were the number of anchor teeth ≤2 and a soft palate defect. A colour-changing gum was found to be useful for evaluating the post-operative masticatory function, and it was important to conserve the anchor teeth and the soft palate to avoid masticatory dysfunction. © 2012 Blackwell Publishing Ltd.

  11. A study of guar seed and guar gum properties (Cyamopsis tetragonolabous)

    Energy Technology Data Exchange (ETDEWEB)

    Eldaw, Ganal Elawad [Department of Food Science and Technology, Faculty of Agriculture, University of Khartoum, Khartoum (Sudan)

    1998-06-01

    Guar seed components of three genotypes (HFG53, HFG182, HFG363), are hull (13.4-14%), germ (43.3-44.2%) and endosperm (36.0-40%). The proximate composition of guar seed in mean values is moisture (11.3{+-}0.01%), crude protein (29.10{+-}0.01%), crude fat (1.58{+-}0.01%), crude fibre (9.01{+-}0.01%) and carbohydrates by difference. The endosperm analysis showed mean values for moisture (6.18{+-}0.03%), ash (1.35{+-}0.03%), crude protein (4.41{+-}0.0%), crude fat (0.30{+-}0.0%), crude fibre (1.55{+-}0.01%) and carbohydrates (0.41{+-}0.04%). The micro and macro-elements quantities of the endosperm of the three genotypes are as follows: Zn (29-44 mg/kg), fe (52-112 mg/kg), Cu (2.6-3.8 mg/kg), Pb (0.34-0.38 mg/kg) and As (0.24 mg/kg), Na (0.1-0.5%), K (0.70-0.95%), Ca (0.30-0.37%) and Mg (0.11%), respectively. The micro and macro elements of germ and hull are also reported in this study. The Ost wald relative viscosity of guar gum behave Newtonian up to 0.5% mg/ml. The relative viscosity linear curves have high coefficient of correlation (r=0.87, 0.82-1.05, and 0.99) for gum of endosperm, respectively. Redwood measures kinematic viscosity of guar gum for the three genotypes at varying temperatures 40-80 degree. Heat stability of HFG53 is the best among the three genotypes guar gum. the high contamination in gum lowered the heat stability of the three genotypes. Brookfield method shows a high rate of dispersability for HFG363 followed by HFG182 and HFG53. The comparative study of the effect of purification on guar gum viscosities measured by Ostwald within the three genotypes show high coefficient of correlation. The influence of salt concentration 1.0, 1.5 and 2.0% on heat stability of commercial guar gum show high viscosities. Sugar influence in heated guar gum solution 0.5% (200 mesh) gives a high viscosity increase than 80 mesh with 5, 10 and 15% added sugar. The effect of combined salt-sugar on commercial guar gives increased viscosity than the control.

  12. A study of guar seed and guar gum properties (Cyamopsis tetragonolabous)

    International Nuclear Information System (INIS)

    Eldaw, Ganal Elawad

    1998-06-01

    Guar seed components of three genotypes (HFG53, HFG182, HFG363), are hull (13.4-14%), germ (43.3-44.2%) and endosperm (36.0-40%). The proximate composition of guar seed in mean values is moisture (11.3±0.01%), crude protein (29.10±0.01%), crude fat (1.58±0.01%), crude fibre (9.01±0.01%) and carbohydrates by difference. The endosperm analysis showed mean values for moisture (6.18±0.03%), ash (1.35±0.03%), crude protein (4.41±0.0%), crude fat (0.30±0.0%), crude fibre (1.55±0.01%) and carbohydrates (0.41±0.04%). The micro and macro-elements quantities of the endosperm of the three genotypes are as follows: Zn (29-44 mg/kg), fe (52-112 mg/kg), Cu (2.6-3.8 mg/kg), Pb (0.34-0.38 mg/kg) and As (0.24 mg/kg), Na (0.1-0.5%), K (0.70-0.95%), Ca (0.30-0.37%) and Mg (0.11%), respectively. The micro and macro elements of germ and hull are also reported in this study. The Ost wald relative viscosity of guar gum behave Newtonian up to 0.5% mg/ml. The relative viscosity linear curves have high coefficient of correlation (r=0.87, 0.82-1.05, and 0.99) for gum of endosperm, respectively. Redwood measures kinematic viscosity of guar gum for the three genotypes at varying temperatures 40-80 degree. Heat stability of HFG53 is the best among the three genotypes guar gum. the high contamination in gum lowered the heat stability of the three genotypes. Brookfield method shows a high rate of dispersability for HFG363 followed by HFG182 and HFG53. The comparative study of the effect of purification on guar gum viscosities measured by Ostwald within the three genotypes show high coefficient of correlation. The influence of salt concentration 1.0, 1.5 and 2.0% on heat stability of commercial guar gum show high viscosities. Sugar influence in heated guar gum solution 0.5% (200 mesh) gives a high viscosity increase than 80 mesh with 5, 10 and 15% added sugar. The effect of combined salt-sugar on commercial guar gives increased viscosity than the control

  13. Gum acacia mitigates genetic damage in adenine-induced chronic renal failure in rats.

    Science.gov (United States)

    Ali, B H; Al Balushi, K; Al-Husseini, I; Mandel, P; Nemmar, A; Schupp, N; Ribeiro, D A

    2015-12-01

    Subjects with chronic renal failure (CRF) exhibit oxidative genome damage, which may predispose to carcinogenesis, and Gum acacia (GumA) ameliorates this condition in humans and animals. We evaluated here renal DNA damage and urinary excretion of four nucleic acid oxidation adducts namely 8-oxoguanine (8-oxoGua), 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG), 8-oxoguanosine (8-oxoGuo) and 8-hydroxy-2-deoxyguanisone (8-OHdg) in rats with adenine (ADE)-induced CRF with and without GumA treatment. Twenty-four rats were divided into four equal groups and treated for 4 weeks. The first group was given normal food and water (control). The second group was given normal food and GumA (15% w/v) in drinking water. The third group was fed powder diet containing adenine (ADE) (0·75% w/w in feed). The fourth group was fed like in the third group, plus GumA in drinking water (15%, w/v). ADE feeding induced CRF (as measured by several physiological, biochemical and histological indices) and also caused a significant genetic damage and significant decreases in urinary 8-oxo Gua and 8-oxoGuo, but not in the other nucleic acids. However, concomitant GumA treatment reduced the level of genetic damage in kidney cells as detected by Comet assay and significantly reversed the effect of adenine on urinary 8-oxoGuo. Treatment with GumA is able to mitigate genetic damage in renal tissues of rats with ADE-induced CRF. © 2015 Stichting European Society for Clinical Investigation Journal Foundation.

  14. Gum chewing improves adolescents’ math performance in an SAT preparatory course

    Science.gov (United States)

    The purpose of the current study was to determine the effect of gum chewing on students’ performance in a preparatory course for the Scholastic Aptitude Test (SAT). A total of 182 adolescents enrolled in an SAT preparatory class were randomized into one of two treatments: 1) gum chewing condition (G...

  15. Evaluation of the suspening property of Grewia gum in zinc oxide ...

    African Journals Online (AJOL)

    The suspending property of grewia gum in zinc oxide suspension was evaluated. The gum was extracted by maceration, filtration, precipitation and drying techniques. It was used at 0.3 to 1% w/v as a suspending agent for zinc oxide. Sodiumcarboxymethylcellulose (SCMC) and tragacanth were used as basis for ...

  16. Evaluation of accelerated stability test conditions for medicated chewing gums.

    Science.gov (United States)

    Maggi, Lauretta; Conte, Ubaldo; Nhamias, Alain; Grenier, Pascal; Vergnault, Guy

    2013-10-01

    The overall stability of medicated chewing gums is investigated under different storage conditions. Active substances with different chemical stabilities in solid state are chosen as model drugs. The dosage form is a three layer tablet obtained by direct compression. The gum core contains the active ingredient while the external layers are formulated to prevent gum adhesion to the punches of the tableting machine. Two accelerated test conditions (40°C/75% RH and 30°C/65% RH) are performed for 6 months. Furthermore, a long-term stability test at room conditions is conducted to verify the predictability of the results obtained from the stress tests. Some drugs are stable in all the conditions tested, but other drugs, generally considered stable in solid dosage forms, have shown relevant stability problems particularly when stress test conditions are applied to this particular semi-solid dosage forms. For less stable drugs, the stress conditions of 40°C/75% RH are not always predictable of chewing gum stability at room temperature and may produce false negative; intermediate conditions, 30°C/65% RH, are more predictive for this purpose, the results of drug content found after 6 months at intermediate stress conditions and 12 months at room conditions are generally comparable. But the results obtained show that only long-term conditions stability tests gave consistent results. During aging, the semi solid nature of the gum base itself, may also influence the drug delivery rate during chewing and great attention should be given also to the dissolution stability.

  17. Sugar-free chewing gum and dental caries: a systematic review

    Directory of Open Access Journals (Sweden)

    Steffen Mickenautsch

    2007-04-01

    Full Text Available OBJECTIVE: To appraise existing evidence for a therapeutic / anti-cariogenic effect of sugar-free chewing gum for patients. METHOD: 9 English and 2 Portuguese databases were searched using English and Portuguese keywords. Relevant articles in English, German, Portuguese and Spanish were included for review. Trials were excluded on lack of randomisation, control group, blinding and baseline data, drop out rate >33%, no statistical adjustment of baseline differences and no assessment of clinically important outcomes. Reviews were excluded on lack of information, article selection criteria, search strategy followed, search keywords, searched databases or lack of study-by-study critique tables. In cases of multiple reports from the same study, the report covering the longest period was included. Two reviewers independently reviewed and assessed the quality of accepted articles. RESULTS: Thirty-nine articles were included for review. Thirty were excluded and 9 accepted. Of the 9 accepted, 2 trials of reasonable and good evidence value did not demonstrate any anti-cariogenic effect of sugar-free chewing gum. However, 7 articles, with 1 of strong, and 6 of good evidence value, demonstrated anti-cariogenic effects of chewing Sorbitol, Xylitol or Sorbitol/Xylitol gum. This effect can be ascribed to saliva stimulation through the chewing process, particularly when gum is used immediately after meals; the lack of sucrose and the inability of bacteria to metabolize polyols into acids. Conclusion: The evidence suggests that sugar-free chewing gum has a caries-reducing effect. Further well-designed randomised trials are needed to confirm these findings.

  18. Naturalistic assessment of demand for cigarettes, snus, and nicotine gum.

    Science.gov (United States)

    Stein, Jeffrey S; Wilson, A George; Koffarnus, Mikhail N; Judd, Michael C; Bickel, Warren K

    2017-01-01

    Behavioral economic measures of demand provide estimates of tobacco product abuse liability and may predict effects of policy-related price regulation on consumption of existing and emerging tobacco products. In the present study, we examined demand for snus, a smokeless tobacco product, in comparison to both cigarettes and medicinal nicotine. We used both a naturalistic method in which participants purchased these products for use outside the laboratory, as well as laboratory-based self-administration procedures. Cigarette smokers (N = 42) used an experimental income to purchase their usual brand of cigarettes and either snus or gum (only one product available per session) across a range of prices, while receiving all products they purchased from one randomly selected price. In a separate portion of the study, participants self-administered these products during laboratory-based, progressive ratio sessions. Demand elasticity (sensitivity of purchasing to price) was significantly greater for snus than cigarettes. Elasticity for gum was intermediate between snus and cigarettes but was not significantly different than either. Demand intensity (purchasing unconstrained by price) was significantly lower for gum compared to cigarettes, with no significant difference observed between snus and cigarettes. Results of the laboratory-based, progressive ratio sessions were generally discordant with measures of demand elasticity, with significantly higher "breakpoints" for cigarettes compared to gum and no significant differences between other study products. Moreover, breakpoints and product purchasing were generally uncorrelated across tasks. Under naturalistic conditions, snus appears more sensitive to price manipulation than either cigarettes or nicotine gum in existing smokers.

  19. Protein-free cress seed (Lepidium sativum) gum: Physicochemical characterization and rheological properties

    DEFF Research Database (Denmark)

    Razmkhah, Somayeh; Razavi, Seyed Mohammad Ali; Mohammadifar, Mohammad Amin

    2016-01-01

    Protein-free cress seed gum (PFCSG) was obtained by precipitation of crude cress seed gum (CSG) withethanol followed by treatment with protease. Molecular weight, moisture, ash and uronic acids contentdecreased after elimination of protein. Elimination of protein improved significantly rheologica...

  20. Influence of deformation rate on plasticity of metals under pressure

    International Nuclear Information System (INIS)

    Churbaev, R.V.; Dobromyslov, A.V.; Kolmogorov, V.L.; Taluts, G.G.

    1990-01-01

    Change of polycrystalline molybdenum (BCC) and titanium (HCP) plasticity under pressure depeding on the deformation rate at the room temperature is studied. It is shown that the reduction of molybdenum and titanium deformation rate leads to a substantial growth of their plastic properties with the effect being increased with pressure growth. Production of several necks testifying to the transition to a superplastic state is observed at high pressures and low deformation rates. A functional dependence of plasticity change on the deformation rate under pressure is ascertained

  1. PHYSICOCHEMICAL AND gabonensis GUM EXUDATES A ...

    African Journals Online (AJOL)

    userpc

    fundamental property of a gum therefore is i water solubility ... tion November, 2017. Journal of ... ly or after mechanical incision of the .... and structure of liquid water. .... On the other hand, the strength .... the mineral/aqueous solution interface.".

  2. Synthesis, physico-chemical and biomedical applications of sulfated Aegle marmelos gum: Green chemistry approach

    Directory of Open Access Journals (Sweden)

    Manish Jindal

    2017-05-01

    Full Text Available The present investigation was aimed at obtaining a sulfated derivative of gum obtained from partially ripe fruits of Aegle marmelos employing the ultrasonication technique. Elemental analysis and FTIR-ATR studies confirmed successful sulfation. The molarity of sulfuric acid exerted maximum influence on the degree of substitution followed by reaction temperature and reaction time. The sulfated derivative showed higher swelling in both acidic and alkaline pH as compared to the unmodified gum. It also possessed higher negative zeta potential, higher viscosity, work of shear, firmness, consistency, cohesiveness and index of viscosity as compared to both unmodified gum as well as sodium alginate. Sulfated derivative was superior to unmodified gum and sodium alginate in terms of antimicrobial and anticoagulant activities. The sulfated sample appears to be a potential substitute over the unmodified gum sample and sodium alginate for modulating the physicochemical properties of food and drug release dosage forms.

  3. intra-species variation of the properties of gum exudates from Acacia

    African Journals Online (AJOL)

    a

    The results show that significant inter-species variation of the properties of the gum exudates from the two species exist, whereas only some parameters show significant intra-species variation. The specific optical rotations of the gum exudates have been found to vary from ---43.2o to ---52o for Acacia senegal var. senegal ...

  4. Evaluation of Blue Gum Chalid Infestation Woodlots in Western Kenya

    International Nuclear Information System (INIS)

    Otuoma, J.; Muchiri, M.N

    2007-01-01

    Blue gum chalcid (BGC) Leptocybe invasa is a gall-forming wasp that belongs to the insect order Hymenoptera, family Eulophidae. It attacks a wide range of Eucalyptus species mostly between the seedling stage and five years of age. BGC causes damage to eucalyptus by forming bump-shaped galls on the leaf midribs, petioles and stems.Twisted and knobbed leaves manifest severe infestation. The aim of this study was to establish the spatial distribution of BGC and extent of host plant damage in Eucalyptus woodlots in Western Kenya. The study was carried out in six permanent sampling plots in Eucalyptus woodlots in Busia, Bungoma, Kakamega and Nyando. Trees were assessed for crown damage by estimating and classifying the density of galls on the leaves into four levels of infestation: low (greater than 50% of foliage canopy with galls and no twisted or knobbed leaves), moderate (greater than 50% of foliage with galls and less than 50% of the leaves twisted and knobbed), high (greater than 50% of the leaves twisted and knobbed, galls on the twigs and some twigs deformed and severe (greater than 50% of the twigs deformed and regeneration foliage observed). An evaluation of the pests' infestation and the extent of host plant damage indicated that, 4% of the trees and severe infestation; 5% high; 20% moderate and 70% low. Approximately 1% of trees died as a result of loss of foliage attributable to severe infestation. Other observations from the study were that the severity of BGC infestation tended to decline as trees grew older and BGC infestation retarded tree growth

  5. Want to block earworms from conscious awareness? B(u)y gum!

    Science.gov (United States)

    Beaman, C Philip; Powell, Kitty; Rapley, Ellie

    2015-01-01

    Three experiments examine the role of articulatory motor planning in experiencing an involuntary musical recollection (an "earworm"). Experiment 1 shows that interfering with articulatory motor programming by chewing gum reduces both the number of voluntary and the number of involuntary-unwanted-musical thoughts. This is consistent with other findings that chewing gum interferes with voluntary processes such as recollections from verbal memory, the interpretation of ambiguous auditory images, and the scanning of familiar melodies, but is not predicted by theories of thought suppression, which assume that suppression is made more difficult by concurrent tasks or cognitive loads. Experiment 2 shows that chewing the gum affects the experience of "hearing" the music and cannot be ascribed to a general effect on thinking about a tune only in abstract terms. Experiment 3 confirms that the reduction of musical recollections by chewing gum is not the consequence of a general attentional or dual-task demand. The data support a link between articulatory motor programming and the appearance in consciousness of both voluntary and unwanted musical recollections.

  6. Synthesis of modified gum tragacanth/graphene oxide composite hydrogel for heavy metal ions removal and preparation of silver nanocomposite for antibacterial activity.

    Science.gov (United States)

    Sahraei, Razieh; Ghaemy, Mousa

    2017-02-10

    New composite hydrogels were synthesized based on gum tragacanth (GT) carbohydrate and graphene oxide (GO). GT was sulfonic acid-functionalized and cross-linked by using 2-acrylamido-2-methylpropanesulfonic acid (AMPS) and N,N'-methylenebisacrylamide (MBA) monomers and ceric ammonium nitrate (CAN) as an initiator. The prepared hydrogels were characterized by Fourier transform infrared spectrum (FT-IR), field emission scanning electron microscope (FE-SEM), energy dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). Adsorption process for removal of heavy metal ions has followed the pseudo-first-order kinetic model and fitted well with the Langmuir model. The maximum adsorption capacity (Q m ) was 142.50, 112.50 and 132.12mgg -1 for Pb(II), Cd(II), and Ag(I), respectively. The removal percentage decreased slightly after several adsorption/desorption cycles. The adsorbed Ag(I) ions in hydrogel were transformed to Ag 0 nanoparticles (with a narrow distribution and mean size of 13.0nm) by using Achillea millefolium flower extract. The antibacterial performance of the Ag 0 nanocomposite hydrogel was also investigated. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Electron beam irradiation effects on xanthan gum. Rheological aspects

    International Nuclear Information System (INIS)

    Vieira, F.F.; Del Mastro, N.L.

    2001-01-01

    The paper describes the application of electron beam irradiation to xanthum gum as used as ingredient by the food or cosmetics industry in order to establish their radiosensitivity. The edible powder of xanthum gum samples were irradiated in 1mm thick layers of Petri dishes covered by a transparent PVC of films using an EB accelerator Dynamitron (Radiation Dynamics Inc.) model JOB 188, dose rate 11.17 kGy/s, 0.637 MeV, 1.78 mA, 5 kGy per passage, 3.36 m min -1 with doses of 5, 10, 20 and 50kGy. One % aqueous solutions from irradiated and non-irradiated xanthum gum were prepared and the radiation effects were measured following viscosity changes at 25 deg. C using a Brookfield viscometer; model DVIII, spindel L, with Rheocalc software. Viscosity measurements were performed according to our previous experience and the results are the mean of at least 3 experiments

  8. Cardiovascular responses in humans to experimental chewing of gums of different consistencies.

    Science.gov (United States)

    Farella, M; Bakke, M; Michelotti, A; Marotta, G; Martina, R

    1999-10-01

    Although the cardiovascular effects of exercise have been extensively investigated in man, little attention has been paid to such responses to jaw muscle activity. The aim here was to investigate the general cardiovascular effects of chewing activity in a single-blind, cross-over design. Ten healthy individuals performed one of the following chewing tasks in four separate sessions: chewing a very hard gum, chewing a moderately hard gum, chewing a soft gum, and "empty chewing" without a bolus. Unilateral chewing of gum or empty chewing was performed for 20 min on the participant's most convenient chewing side at a constant rate of 80 cycles/min. In each session, heart rate and arterial blood pressure were recorded together with electromyographic activity in the masseter and anterior temporalis muscles on the chewing side. Ratings of perceived masticatory fatigue were recorded with visual analogue scales. The heart rate and blood pressure were significantly increased (ANOVA; p chewing tasks and the increases were, in parallel with the muscle activity, more pronounced the harder the gum. With the very hard gum, heart rate increased by up to 11 beats/min, the systolic blood pressure was 14 mmHg (1.9kPa) higher, and the diastolic blood pressure was 11 mmHg (1.5kPa) higher. The perceived fatigue was proportional to the level of muscle activity. After 10 min of recovery from exercise, heart rate and arterial blood pressures were slightly but still significantly elevated. The results demonstrate that chewing is associated with general circulatory effects proportional to the bolus resistance.

  9. A comparison of mandibular denture base deformation with different impression techniques for implant overdentures.

    Science.gov (United States)

    Elsyad, Moustafa Abdou; El-Waseef, Fatma Ahmad; Al-Mahdy, Yasmeen Fathy; Fouad, Mohammed Mohammed

    2013-08-01

    This study aimed to evaluate mandibular denture base deformation along with three impression techniques used for implant-retained overdenture. Ten edentulous patients (five men and five women) received two implants in the canine region of the mandible and three duplicate mandibular overdentures which were constructed with mucostatic, selective pressure, and definitive pressure impression techniques. Ball abutments and respective gold matrices were used to connect the overdentures to the implants. Six linear strain gauges were bonded to the lingual polished surface of each duplicate overdenture at midline and implant areas to measure strain during maximal clenching and gum chewing. The strains recorded at midline were compressive while strains at implant areas were tensile. Clenching recorded significant higher strain when compared with gum chewing for all techniques. The mucostatic technique recorded the highest strain and the definite pressure technique recorded the lowest. There was no significant difference between the strain recorded with mucostatic technique and that registered with selective pressure technique. The highest strain was recorded at the level of ball abutment's top with the mucostatic technique during clenching. Definite pressure impression technique for implant-retained mandibular overdenture is associated with minimal denture deformation during function when compared with mucostatic and selective pressure techniques. Reinforcement of the denture base over the implants may be recommended to increase resistance of fracture when mucostatic or selective pressure impression technique is used. © 2012 John Wiley & Sons A/S.

  10. The Effect of Persian Gums and Tragacanth on Texture and Sensory Characteristics of Non-Gluten ‎Cakes

    Directory of Open Access Journals (Sweden)

    Afrooz Ghasemi

    2017-08-01

    Methods: The effect of addition of Persian gums, Tragacanth, and a combination of both of these compounds at levels of 0.5, 1, and 1.5% on texture, color, and sensory characteristics of these cakes was evaluated in this study. Results: The results showed that solidity and viscosity factors were elevated by addition of gum to cake. Using of gums in cakes leads to moisture maintenance inside the cake texture and thus improves mastication property. Furthermore, the results of porosity evaluation showed that addition of Persian gums and Tragacanth decreases the size and increases the number of gas cells inside the cake texture and improves porosity. The best porosity was related to the sample containing 1.5% Persian gum and Tragacanth. The treatment that contained 0.75% Persian gum and 0.75% Tragacanth had the highest acceptability among consumers. Conclusions: Results showed that Persian and Tragacanth gums, whether used independently or in combination, can improve the quality and organoleptic characteristics of gluten-free cakes.

  11. Natural gums of plant origin as edible coatings for food industry applications.

    Science.gov (United States)

    Saha, Anuradha; Tyagi, Shvetambri; Gupta, Rajinder K; Tyagi, Yogesh K

    2017-12-01

    Natural plant-based gums and their derivatives are widely utilized in food industries, however, their applications as edible coatings to extend fresh fruits and vegetable shelf-life has been explored recently. These natural polymeric polysaccharides have many advantages as compared to synthetic polymers, because they are biodegradable, nontoxic, economical and easily available in the environment. Natural gums can also be semi synthetically modified to produce derivatives, which can easily compete with the synthetic preservatives available on the food market. In this review, the recent developments in the use of natural gums and their derivatives as edible coatings have been explored and discussed.

  12. In vitro studies on guar gum based formulation for the colon targeted delivery of Sennosides.

    Science.gov (United States)

    Momin, Munira; Pundarikakshudu, K

    2004-09-24

    The objective of the present study is to develop colon targeted drug delivery systems for sennosides using guar gum as a carrier. Matrix tablets containing various proportions of guar gum were prepared by wet granulation technique using starch paste as a binder. The tablets were evaluated for content uniformity and in vitro drug release study as per BP method. T(50) % value from the dissolution studies was taken for selecting the best formulation. Guar gum matrix tablets released 4-18% sennosides in the physiological environment of gastrointestinal tract depending on the proportion of the guar gum used in the formulation. The matrix tablets containing 50% of guar gum were found to be suitable for targeting of sennosides for local action in the colon. Compared to tablets having 30% and 40% of guar gum, those with 50% guar gum gave better T(50)% (11.7 h) le and fewer amounts (5-8%) of drug release in upper GIT. These tablets with 50% guar gum released 43% and 96% sennosides with and without rat caecal fluids. This suggests the susceptibility of matrix to the colonic micro flora. The similarity factor (f2 value) for drug release with and without rat caecal fluids was found to be less than 30. When hydroxy propyl methylcellulose phthalate (10%) was used as a coat material on the matrix tablets, the initial loss of 5-8% sennosides in stomach could be completely averted. These tablets showed no change in physical appearance, content and dissolution profile upon storage at 45 degrees C / 75% relative humidity for 3 months. The results of our study indicates that matrix tablets containing 50% guar gum and coated with 10% hydroxy propyl methylcellulose phthalate are most suitable for drugs like sennosides which are mainly active in the lower GIT.

  13. Rhythm and amplitude of rhythmic masticatory muscle activity during sleep in bruxers - comparison with gum chewing.

    Science.gov (United States)

    Matsuda, Shinpei; Yamaguchi, Taihiko; Mikami, Saki; Okada, Kazuki; Gotouda, Akihito; Sano, Kazuo

    2016-07-01

    The aim of this study was to elucidate characteristics of rhythmic masticatory muscle activity (RMMA) during sleep by comparing masseteric EMG (electromyogram) activities of RMMA with gum chewing. The parts of five or more consecutive phasic bursts in RMMA of 23 bruxers were analyzed. Wilcoxon signed-rank test for matched pairs and Spearman's correlation coefficient by the rank test were used for statistical analysis. Root mean square value of RMMA phasic burst was smaller than that during gum chewing, but correlates to that of gum chewing. The cycle of RMMA was longer than that of gum chewing due to the longer burst duration of RMMA, and variation in the cycles of RMMA was wider. These findings suggest that the longer but smaller EMG burst in comparison with gum chewing is one of the characteristics of RMMA. The relation between size of RMMA phasic bursts and gum chewing is also suggested.

  14. Interactions of reactor helium and simulating gas mixtures with high-temperature metals with particular regard to simultaneous deformation

    International Nuclear Information System (INIS)

    Berchtold, L.

    1983-01-01

    For the observation of multicomponent alloys (Inconel 617 and 713LC, chroman (Ni20Cr), vacromium (Ni20Cr+Si), TZM) in multicomponent HTR atmospheres (HHT search gas), interaction between gases and metals was studied, both in theoretical descriptions and experimentally. From the experimental viewpoint, gradual simplification employs, on the one hand, tests effected in undiluted atmospheres with exclusively oxidizing or carburizing properties; on the other hand, more simple alloys and pure metals are applied specifically in the helium atmosphere. For an evaluation of the materials, it is maintained that in a strongly oxidizing (H 2 O-rich) atmosphere, e.g. in HHT search gas, materials with sufficient chrome content (e.g. 20% Cr in Ni alloys such as IN 617) offer favourable conditions for an almost complete interruption of carburizing reactions. In that case, the maintenance of the shielding effect of coating during rapid deformation and a tendency to planar delamination during deformation, which becomes stronger as the layer thickness increases, appear to be critical. Concentrations of oxide-forming agents stronger than chromium offer disadvantages rather than advantages. Owing to its tendency to flake off as the covering oxide SiO 2 or as part of a cover layer, silicon may more than destroy the light advantage of a slowed down process of carbon diffusion. The cast alloy IN 713LC shows a deep-reaching carburation in HHT search gas, both with and without deformation. No deep-reaching corrosive damage is noticeable on the molybdenum alloy TZM. (orig./MM) [de

  15. Microwave Irradiated Copolymerization of Xanthan Gum with Acrylamide for Colonic Drug Delivery

    Directory of Open Access Journals (Sweden)

    Fozia Anjum

    2015-01-01

    Full Text Available Xanthan gum (XG is a polysaccharide produced by Xanthomonas campestris. The aim of the present study was to modify the xanthan by hydrolysis and grafting with acrylamide through microwave irradiation for different time intervals. Pure xanthan was partially hydrolyzed via enzymatic and chemical treatments followed by optional grafting. Proximate composition analysis, moisture content, and carbohydrate, protein, lipid, and fiber contents were determined. The morphological characteristics, structural composition, functional groups, and heat resistance of the crude, hydrolyzed, and grafted gum were evaluated using SEM, XRD, FTIR spectroscopy, and TGA. Morphological studies revealed that xanthan was broken down into smaller fragments as a result of hydrolysis and became somewhat smoother. Thermal analysis studies indicated a larger heat tolerance in the grafted xanthan relative to that of the native and hydrolyzed gums. Xanthan bound to a triamcinolone drug was evaluated in the context of controlled drug release. Controlled drug release correlated well with the exposure time to microwaves used to graft the gum.

  16. Effect of Guar Gum with Sorbitol Coating on the Properties and Oil Absorption of French Fries.

    Science.gov (United States)

    Jia, Bo; Fan, Daming; Li, Jinwei; Duan, Zhenhua; Fan, Liuping

    2017-12-13

    This paper investigated the effects of guar gum with sorbitol coating on the oil absorption of French fries by combined dye oil methods, confocal laser scanning microscopy (CLSM) and scanning electron microscopy (SEM). The results showed that pretreatment of blanching with calcium ions and coating with guar gum and sorbitol could significantly reduce the structural oil (STO) and penetrated surface oil (PSO) of French fries and have no negative effects on its texture and also effectively control the final moisture content ( p French fries with guar gum and sorbitol reduced by 50.8%, 33.1% and 30.6%, respectively. CLSM photographs confirmed that STO significantly reduced after coating with guar gum and sorbitol, followed by PSO. In the process of frying, the coatings of guar gum or guar gum with sorbitol could effectively prevent oil from infiltrating the potato tissue, which can be seen in the SEM photographs. The barrier properties of French fries were enhanced by coating guar gum, and sorbitol was added to avoid pores and cracks. Blanching with calcium ion can significantly reduce the final moisture content of coating French fries.

  17. Oxidation of cashew tree gum exudate polysaccharide with TEMPO reagent

    International Nuclear Information System (INIS)

    Cunha, Pablyana L.R.; Maciel, Jeanny S.; Paula, Regina C.M. de; Feitosa, Judith P.A.; Sierakowski, Maria Rita

    2007-01-01

    Cashew gum (CG), an exudate polysaccharide from Anacardium occidentale trees, was oxidized with TEMPO reagent and the product (CGOX) characterized by spectroscopic techniques (FTIR and NMR), chromatographic analyses (HPLC and GPC), viscosity measurements and thermal analysis (TGA). The yield of the reaction product was 96%. The uronic acid content in starting gum (7.2 m%) was increased to 36 m%. The degree of oxidation based on free galactose and glucose units was 68%. NMR data show that oxidation occurred preferentially at primary carbons of galactose units. High degradation degree after oxidation was estimated by the difference on the expected and observed η CGOX /η CG ratio. The presence of organic and inorganic impurities in the new polyelectrolyte was detected by TGA. A less thermally stable cashew gum is formed after the oxidation with TEMPO based on initial decomposition temperature and IPDT. (author)

  18. Size effects of nano-spaced basal stacking faults on the strength and deformation mechanisms of nanocrystalline pure hcp metals

    Science.gov (United States)

    Wang, Wen; Jiang, Ping; Yuan, Fuping; Wu, Xiaolei

    2018-05-01

    The size effects of nano-spaced basal stacking faults (SFs) on the tensile strength and deformation mechanisms of nanocrystalline pure cobalt and magnesium have been investigated by a series of large-scale 2D columnar and 3D molecular dynamics simulations. Unlike the strengthening effect of basal SFs on Mg alloys, the nano-spaced basal SFs are observed to have no strengthening effect on the nanocrystalline pure cobalt and magnesium from MD simulations. These observations could be attributed to the following two reasons: (i) Lots of new basal SFs are formed before (for cobalt) or simultaneously with (for magnesium) the other deformation mechanisms (i.e. the formation of twins and the edge dislocations) during the tensile deformation; (ii) In hcp alloys, the segregation of alloy elements and impurities at typical interfaces, such as SFs, can stablilise them for enhancing the interactions with dislocation and thus elevating the strength. Without such segregation in pure hcp metals, the edge dislocations can cut through the basal SFs although the interactions between the dislocations and the pre-existing SFs/newly formed SFs are observed. The nano-spaced basal SFs are also found to have no restriction effect on the formation of deformation twins.

  19. Bond deformation paths and electronic instabilities of ultraincompressible transition metal diborides: Case study of OsB2 and IrB2

    Science.gov (United States)

    Zhang, R. F.; Legut, D.; Wen, X. D.; Veprek, S.; Rajan, K.; Lookman, T.; Mao, H. K.; Zhao, Y. S.

    2014-09-01

    The energetically most stable orthorhombic structure of OsB2 and IrB2 is dynamically stable for OsB2 but unstable for IrB2. Both diborides have substantially lower shear strength in their easy slip systems than their metal counterparts. This is attributed to an easy sliding facilitated by out-of-plane weakening of metallic Os-Os bonds in OsB2 and by an in-plane bond splitting instability in IrB2. A much higher shear resistance of Os-B and B-B bonds than Os-Os ones is found, suggesting that the strengthened Os-B and B-B bonds are responsible for hardness enhancement in OsB2. In contrast, an in-plane electronic instability in IrB2 limits its strength. The electronic structure of deformed diborides suggests that the electronic instabilities of 5d orbitals are their origin of different bond deformation paths. Neither IrB2 nor OsB2 can be intrinsically superhard.

  20. Structure of xanthan gum and cell ultrastructure at different times of alkali stress.

    Science.gov (United States)

    Luvielmo, Márcia de Mello; Borges, Caroline Dellinghausen; Toyama, Daniela de Oliveira; Vendruscolo, Claire Tondo; Scamparini, Adilma Regina Pippa

    2016-01-01

    The effect of alkali stress on the yield, viscosity, gum structure, and cell ultrastructure of xanthan gum was evaluated at the end of fermentation process of xanthan production by Xanthomonas campestris pv. manihotis 280-95. Although greater xanthan production was observed after a 24h-alkali stress process, a lower viscosity was observed when compared to the alkali stress-free gum, regardless of the alkali stress time. However, this outcome is not conclusive as further studies on gum purification are required to remove excess sodium, verify the efficiency loss and the consequent increase in the polymer viscosity. Alkali stress altered the structure of xanthan gum from a polygon-like shape to a star-like form. At the end of the fermentation, early structural changes in the bacterium were observed. After alkali stress, marked structural differences were observed in the cells. A more vacuolated cytoplasm and discontinuities in the membrane cells evidenced the cell lysis. Xanthan was observed in the form of concentric circles instead of agglomerates as observed prior to the alkali stress. Copyright © 2015 Sociedade Brasileira de Microbiologia. Published by Elsevier Editora Ltda. All rights reserved.

  1. Chewing gum and lozenges as delivery systems for noscapine

    DEFF Research Database (Denmark)

    Norgaard Jensen, L.; Christrup, Lona Louring; Menger, N.

    1991-01-01

    Chewing gum and lozenges were evaluated as delivery systems for noscapine with the aim of developing improved antitussive preparations. The formulations studied were prepared with both the water-soluble hydrochloride salt of noscapine and with the poorly soluble embonate salt and noscapine free...... base. The release characteristics of the preparations were evaluated both in vitro and in vivo, and their taste properties examined. Only the formulations containing noscapine base were without any appreciable taste. Chewing gum containing this compound showed, however, a low level of drug release both...

  2. The role of time on task performance in modifying the effects of gum chewing on attention

    NARCIS (Netherlands)

    Tucha, Lara; Simpson, William

    Recent research examined the effects of chewing gum on attention and reported a significant interaction of gum chewing with time. Using a crossover within-subject design, the present study examined the effect of gum chewing on sustained attention in healthy adults over a period of 30 min. The

  3. Effects of a Baking Soda Gum on extrinsic dental stain: results of a longitudinal 4-week assessment.

    Science.gov (United States)

    Soparkar, P; Newman, M B

    2001-07-01

    An evaluation of the effects of ARM & HAMMER DENTAL CARE The Baking Soda Gum (AHDC) on extrinsic dental stain was made in 48 subjects presenting with measurable extrinsic stain. The subjects were randomized to use either the baking soda gum or a non-baking soda placebo gum for 20 minutes twice daily after lunch and dinner while brushing once daily. The procedure of limited brushing was chosen to simulate the level of hygiene normally practiced by participants entering a clinical study. After 4 weeks, the reduction in measurable extrinsic stain in the baking soda gum group was statistically significant (P = .0044) relative to baseline. Statistical analysis of the placebo gum group revealed no significant change in extrinsic stain from baseline. The magnitude of the unadjusted longitudinal reduction in extrinsic stain in the baking soda gum group was 29.7% at 4 weeks.

  4. Plastic deformation of YBa2Cu3O7-x superconductor compound

    International Nuclear Information System (INIS)

    Torres V, G.; Moreno, J.E.

    1988-01-01

    The high temperature superconductor YBa 2 Cu 3 O 7-x shown a brittle behavior when deformed under ambient conditions. If a hydrostatic state of stress is imposed with a metal matrix, it is possible to induce exttended plastic deformations as a great as 200% were achieved using this method without loosing the superconductivity in the ceramic. The observed deformations mechanisms are similar to those observed in the superplastic metals and the boundary ceramic metal matrix was found to be highly coherent. This method opens a new technique that can be apllied in the manufacture of superconductor wire. (author) [pt

  5. The Impact of Maltitol-Sweetened Chewing Gum on the Dental Plaque Biofilm Microbiota Composition

    Directory of Open Access Journals (Sweden)

    Bart J. F. Keijser

    2018-03-01

    Full Text Available Background: The oral cavity harbors a complex microbial ecosystem, intimately related to oral health and disease. The use of polyol-sweetened gum is believed to benefit oral health through stimulation of salivary flow and impacting oral pathogenic bacteria. Maltitol is often used as sweetener in food products. This study aimed to establish the in vivo effects of frequent consumption of maltitol-sweetened chewing gum on the dental plaque microbiota in healthy volunteers and to establish the cellular and molecular effects by in vitro cultivation and transcriptional analysis.Results: An intervention study was performed in 153 volunteers, randomly assigned to three groups (www.trialregister.nl; NTR4165. One group was requested to use maltitol gum five times daily, one group used gum-base, and the third group did not use chewing gum. At day 0 and day 28, 24 h-accumulated supragingival plaque was collected at the lingual sites of the lower jaw and the buccal sites of the upper jaw and analyzed by 16S ribosomal rRNA gene sequencing. At day 42, 2 weeks after completion of the study, lower-jaw samples were collected and analyzed. The upper buccal plaque microbiota composition had lower bacterial levels and higher relative abundances of (facultative aerobic species compared to the lower lingual sites. There was no difference in bacterial community structure between any of the three study groups (PERMANOVA. Significant lower abundance of several bacterial phylotypes was found in maltitol gum group compared to the gum-base group, including Actinomyces massiliensis HOT 852 and Lautropia mirabilis HOT 022. Cultivation studies confirmed growth inhibition of A. massiliensis and A. johnsonii by maltitol at levels of 1% and higher. Transcriptome analysis of A. massiliensis revealed that exposure to maltitol resulted in changes in the expression of genes linked to osmoregulation, biofilm formation, and central carbon metabolism.Conclusion: The results showed that

  6. The Impact of Maltitol-Sweetened Chewing Gum on the Dental Plaque Biofilm Microbiota Composition.

    Science.gov (United States)

    Keijser, Bart J F; van den Broek, Tim J; Slot, Dagmar E; van Twillert, Lodewic; Kool, Jolanda; Thabuis, Clémentine; Ossendrijver, Michel; van der Weijden, Fridus A; Montijn, Roy C

    2018-01-01

    Background: The oral cavity harbors a complex microbial ecosystem, intimately related to oral health and disease. The use of polyol-sweetened gum is believed to benefit oral health through stimulation of salivary flow and impacting oral pathogenic bacteria. Maltitol is often used as sweetener in food products. This study aimed to establish the in vivo effects of frequent consumption of maltitol-sweetened chewing gum on the dental plaque microbiota in healthy volunteers and to establish the cellular and molecular effects by in vitro cultivation and transcriptional analysis. Results: An intervention study was performed in 153 volunteers, randomly assigned to three groups (www.trialregister.nl; NTR4165). One group was requested to use maltitol gum five times daily, one group used gum-base, and the third group did not use chewing gum. At day 0 and day 28, 24 h-accumulated supragingival plaque was collected at the lingual sites of the lower jaw and the buccal sites of the upper jaw and analyzed by 16S ribosomal rRNA gene sequencing. At day 42, 2 weeks after completion of the study, lower-jaw samples were collected and analyzed. The upper buccal plaque microbiota composition had lower bacterial levels and higher relative abundances of (facultative) aerobic species compared to the lower lingual sites. There was no difference in bacterial community structure between any of the three study groups (PERMANOVA). Significant lower abundance of several bacterial phylotypes was found in maltitol gum group compared to the gum-base group, including Actinomyces massiliensis HOT 852 and Lautropia mirabilis HOT 022. Cultivation studies confirmed growth inhibition of A. massiliensis and A. johnsonii by maltitol at levels of 1% and higher. Transcriptome analysis of A. massiliensis revealed that exposure to maltitol resulted in changes in the expression of genes linked to osmoregulation, biofilm formation, and central carbon metabolism. Conclusion: The results showed that chewing itself

  7. The Impact of Maltitol-Sweetened Chewing Gum on the Dental Plaque Biofilm Microbiota Composition

    Science.gov (United States)

    Keijser, Bart J. F.; van den Broek, Tim J.; Slot, Dagmar E.; van Twillert, Lodewic; Kool, Jolanda; Thabuis, Clémentine; Ossendrijver, Michel; van der Weijden, Fridus A.; Montijn, Roy C.

    2018-01-01

    Background: The oral cavity harbors a complex microbial ecosystem, intimately related to oral health and disease. The use of polyol-sweetened gum is believed to benefit oral health through stimulation of salivary flow and impacting oral pathogenic bacteria. Maltitol is often used as sweetener in food products. This study aimed to establish the in vivo effects of frequent consumption of maltitol-sweetened chewing gum on the dental plaque microbiota in healthy volunteers and to establish the cellular and molecular effects by in vitro cultivation and transcriptional analysis. Results: An intervention study was performed in 153 volunteers, randomly assigned to three groups (www.trialregister.nl; NTR4165). One group was requested to use maltitol gum five times daily, one group used gum-base, and the third group did not use chewing gum. At day 0 and day 28, 24 h-accumulated supragingival plaque was collected at the lingual sites of the lower jaw and the buccal sites of the upper jaw and analyzed by 16S ribosomal rRNA gene sequencing. At day 42, 2 weeks after completion of the study, lower-jaw samples were collected and analyzed. The upper buccal plaque microbiota composition had lower bacterial levels and higher relative abundances of (facultative) aerobic species compared to the lower lingual sites. There was no difference in bacterial community structure between any of the three study groups (PERMANOVA). Significant lower abundance of several bacterial phylotypes was found in maltitol gum group compared to the gum-base group, including Actinomyces massiliensis HOT 852 and Lautropia mirabilis HOT 022. Cultivation studies confirmed growth inhibition of A. massiliensis and A. johnsonii by maltitol at levels of 1% and higher. Transcriptome analysis of A. massiliensis revealed that exposure to maltitol resulted in changes in the expression of genes linked to osmoregulation, biofilm formation, and central carbon metabolism. Conclusion: The results showed that chewing itself

  8. Implications of Partial Conjugation of Whey Protein Isolate to Durian Seed Gum through Maillard Reactions: Foaming Properties, Water Holding Capacity and Interfacial Activity

    Directory of Open Access Journals (Sweden)

    Bahareh Tabatabaee Amid

    2013-12-01

    Full Text Available This paper deals with the conjugation of durian seed gum (DSG with whey protein isolate (WPI through Maillard reactions. Subsequently, the functional properties of durian seed gum in the non-conjugated (control sample and conjugated forms were compared with several commercial gums (i.e., Arabic gum, sodium alginate, kappa carrageenan, guar gum, and pectin. The current study revealed that the conjugation of durian seed gum with whey protein isolate significantly (p < 0.05 improved its foaming properties. In this study, the conjugated durian seed gum produced the most stable foam among all samples. On the other hand, the emulsion stabilized with the conjugated durian seed gum also showed more uniform particles with a larger specific surface area than the emulsion containing the non-conjugated durian seed gum. The conjugated durian seed gum showed significant different foaming properties, specific surface area, particle uniformity and water holding capacity (WHC as compared to the target polysaccharide gums. The conjugated durian seed gum showed more similar functional properties to Arabic gum rather than other studied gums.

  9. The management of xerostomia in patients on haemodialysis: comparison of artificial saliva and chewing gum.

    Science.gov (United States)

    Bots, Casper P; Brand, Henk S; Veerman, Enno C I; Valentijn-Benz, Marianne; Van Amerongen, Barbara M; Nieuw Amerongen, Arie V; Valentijn, Robert M; Vos, Pieter F; Bijlsma, Joost A; Bezemer, Pieter D; ter Wee, Piet M

    2005-04-01

    Many patients on haemodialysis (HD) therapy suffer from a dry mouth and xerostomia. This can be relieved by mechanical and gustatory stimulation or palliative care. The aim of this crossover study was to investigate the effect and preferences of a sugar-free chewing gum (Freedent White) and a xanthan gum-based artificial saliva (Xialine) in the management of xerostomia in chronic HD patients. Sixty-five HD patients participated in a 6-week crossover trial. The artificial saliva was rated significantly lower than the chewing gum for effectiveness, taste and a global assessment. No preference differences were found for gender and age, although older subjects rated the artificial saliva with a higher mark. Thirty-nine subjects (60%) preferred chewing gum, 15% (n=10) preferred the artificial saliva. Therefore, both chewing gum and artificial saliva could play an important role in the palliative care of xerostomia in HD patients.

  10. Natural polymers, gums and mucilages as excipients in drug delivery.

    Science.gov (United States)

    Kumar, Shobhit; Gupta, Satish Kumar

    2012-01-01

    Use of natural polymers, gums and mucilages in drug delivery systems has been weighed down by the synthetic materials. Natural based excipients offered advantages such as non-toxicity, less cost and abundantly availablity. Aqueous solubility of natural excipients plays an important role in their selection for designing immediate, controlled or sustained release formulations. This review article provide an overview of natural gum, polymers and mucilages as excipients in dosage forms as well as novel drug delivery systems.

  11. Effect of Angum gum in combination with tragacanth gum on rheological and sensory properties of ketchup.

    Science.gov (United States)

    Komeilyfard, Ahmadreza; Fazel, Mohammad; Akhavan, Hamidreza; Mousakhani Ganjeh, Alireza

    2017-04-01

    The aim of this study was to evaluate the effect of Angum gum (AnG) alone and in combination with tragacanth gum (TG) on the stability, texture, sensory, and rheological properties of tomato ketchup. AnG, TG, and Angum gum and tragacanth gum mixture (AnGT; 1:1 ratio) were added at levels of 0.5, 1, and 1.5%. Ten tomato ketchup formulations were produced: control (without hydrocolloid), AnG (0.5-1.5%), TG (0.5-1.5%), AnGT (0.5-1.5%). It was observed that the hydrocolloids addition to tomato ketchup significantly decreased the Bostwick consistency value and serum separation at 2200, 5000, and 8800 g. Textural properties of tomato ketchup by using back extrusion test and particle size analysis were significantly increased with hydrocolloid addition. All tomato ketchup formulations showed shear thinning behavior and the addition of hydrocolloids increased apparent viscosity. The power law and Herschel-Bulkley models were successfully fitted with experimental data. The flow behavior indices of Herschel-Bulkley and power law models were changed in the range of 0.19-0.24 and 0.14-0.30, respectively. The consistency coefficients of these models were in the range of 16.31-79.57 and 11.19-146.06 Pa s n , respectively. The storage modulus (G') of all tomato ketchups was higher than the loss modulus (G″). Hydrocolloid addition showed no significant effect on the color indices (L*, a*, b*, hue angle, chroma, and total color differences) of tomato ketchup. The overall acceptability of 1.5% AnG, 0.5% TG, 1 and 1.5% AnGT were significantly higher than other samples. Therefore, AnG can be used alone and in combination with TG as stabilizer in tomato ketchup. The consistency of tomato ketchup is an important attribute from both engineering and consumer viewpoints. It was observed that addition of TG, AnG, and AnGT to tomato ketchups significantly decreased their Bostwick consistency values and their serum separation. In addition, hydrocolloid addition showed no significant effect

  12. Water surface deformation in strong electrical fields and its influence on electrical breakdown in a metal pin-water electrode system

    International Nuclear Information System (INIS)

    Bruggeman, Peter; Graham, Leigh; Groote, Joris de; Vierendeels, Jan; Leys, Christophe

    2007-01-01

    Electrical breakdown and water surface deformation in a metal pin-water electrode system with dc applied voltages is studied for small inter-electrode distances (2-12 mm). The radius of curvature of the metal pin is 0.5 cm to exclude corona before breakdown at these small inter-electrode spacings. Calculations of the water surface deformation as a function of the applied voltage and initial inter-electrode spacing are compared with measurements of the water elevation. For distances smaller than 7 mm the calculated stability limit of the water surface corresponds with the experimentally obtained breakdown voltage. It is proved with fast CCD images and calculations of the electrical field distribution that the water surface instability triggers the electrical breakdown in this case. The images show that at breakdown the water surface has a Taylor cone-like shape. At inter-electrode distance of 7 mm and larger the breakdown voltage is well below the water stability limit and the conductive channel at breakdown is formed between the pin electrode and the static water surface. Both cases are discussed and compared

  13. Oxidation of cashew tree gum exudate polysaccharide with TEMPO reagent

    Energy Technology Data Exchange (ETDEWEB)

    Cunha, Pablyana L.R.; Maciel, Jeanny S.; Paula, Regina C.M. de; Feitosa, Judith P.A. [Universidade Federal do Ceara, Fortaleza, CE (Brazil). Dept. de Quimica Organica e Inorganica; Sierakowski, Maria Rita [Universidade Federal do Parana, Curitiba, PR (Brazil). Dept. de Quimica]. E-mail: judith@dqoi.ufc.br

    2007-07-01

    Cashew gum (CG), an exudate polysaccharide from Anacardium occidentale trees, was oxidized with TEMPO reagent and the product (CGOX) characterized by spectroscopic techniques (FTIR and NMR), chromatographic analyses (HPLC and GPC), viscosity measurements and thermal analysis (TGA). The yield of the reaction product was 96%. The uronic acid content in starting gum (7.2 m%) was increased to 36 m%. The degree of oxidation based on free galactose and glucose units was 68%. NMR data show that oxidation occurred preferentially at primary carbons of galactose units. High degradation degree after oxidation was estimated by the difference on the expected and observed {eta}{sub CGOX}/{eta}{sub CG} ratio. The presence of organic and inorganic impurities in the new polyelectrolyte was detected by TGA. A less thermally stable cashew gum is formed after the oxidation with TEMPO based on initial decomposition temperature and IPDT. (author)

  14. Diabetes, Gum Disease, and Other Dental Problems

    Science.gov (United States)

    ... Diabetes, Sexual, & Bladder Problems Diabetes, Gum Disease, & Other Dental Problems How can diabetes affect my mouth? Too ... What if my mouth is sore after my dental work? A sore mouth is common after dental ...

  15. TECHNICAL NOTE: The effect of the green additive guar gum on the properties of magnetorheological fluid

    Science.gov (United States)

    Fang, Chen; Zhao, Bin Yuan; Chen, LeSheng; Wu, Qing; Liu, Nan; Hu, Ke Ao

    2005-02-01

    Magnetorheological (MR) fluid containing guar gum was prepared for the first time by ball-milling the guar gum powder together with silicone oil and carbonyl iron powder. By forming a coating layer over the ground carbonyl iron powder, the guar gum improves the sedimentation stability and thixotropy of the MR fluid effectively.

  16. Non-proportional deformation paths for sheet metal: experiments and models

    OpenAIRE

    van den Boogaard, Antonius H.; van Riel, M.; Hora, P.

    2009-01-01

    For mild steel, after significant plastic deformation in one direction, a subsequent deformation in an orthogonal direction shows a typical stress overshoot compared to monotonic deformation. This phenomenon is investigated experimentally and numerically on a DC06 material. Two models that incorporate the observed overshoot are compared. In the Teodosiu-Hu model, pre-strain influences the rate of kinematic hardening by a rather complex set of evolution equations. The shape of the elastic doma...

  17. Dynamics of viscoplastic deformation in amorphous solids

    International Nuclear Information System (INIS)

    Falk, M.L.; Langer, J.S.

    1998-01-01

    We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically, reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a stress threshold above which unbounded plastic flow occurs, and a strong dependence of the state of the system on the history of past deformations. Microscopic observations suggest that a dynamically complete description of the macroscopic state of this deforming body requires specifying, in addition to stress and strain, certain average features of a population of two-state shear transformation zones. Our introduction of these state variables into the constitutive equations for this system is an extension of earlier models of creep in metallic glasses. In the treatment presented here, we specialize to temperatures far below the glass transition and postulate that irreversible motions are governed by local entropic fluctuations in the volumes of the transformation zones. In most respects, our theory is in good quantitative agreement with the rich variety of phenomena seen in the simulations. copyright 1998 The American Physical Society

  18. Texture evolution maps for upset deformation of body-centered cubic metals

    International Nuclear Information System (INIS)

    Lee, Myoung-Gyu; Wang, Jue; Anderson, Peter M.

    2007-01-01

    Texture evolution maps are used as a tool to visualize texture development during upset deformation in body-centered cubic metals. These maps reveal initial grain orientations that tend toward normal direction (ND)|| versus ND|| . To produce these maps, a finite element analysis (FEA) with a rate-dependent crystal plasticity constitutive relation for tantalum is used. A reference case having zero workpiece/die friction shows that ∼64% of randomly oriented grains rotate toward ND|| and ∼36% rotate toward ND|| . The maps show well-established trends that increasing strain rate sensitivity and decreasing latent-to-self hardening ratio reduce both and percentages, leading to more diffuse textures. Reducing operative slip systems from both {1 1 0}/ and {1 1 2}/ to just {1 1 0}/ has a mixed effect: it increases the percentage but decreases the percentage. Reducing the number of slip systems and increasing the number of FEA integration points per grain strengthen - texture bands that are observed experimentally

  19. Effect of Chewing Bicarbonate-containing Sugar-free Gum on the Salivary pH: An in vivo Study.

    Science.gov (United States)

    Ballal, Raksha K; Bhat, Sham S; Ramdas, Shenoy Shailesh; Ballal, Shrinidhi

    2016-01-01

    The objective of the study was to evaluate the effect of chewing gum on the salivary pH and to compare the effect of chewing bicarbonate-containing sugar-free gum on salivary pH against that of standard sugar-free gum. The experiment was carried out on 30 volunteers aged 20-22 years (mean age = 21 years) who fulfilled the inclusion criteria. The test gum was sugar-free greenmint-flavored bicarbonate-containing gum and the standard control was sugar-free spearmint-flavored gum. The pH was measured immediately using pH strips. According to statistical analysis, the mean salivary pH of the bicarbonate gum at 0, 5, 10, 15 and 20 minutes is 6.9713, 6.5667, 6.4267, 6.3867 and 6.3233 respectively. There is decrease in pH from 0 to 20 minutes. According to Bonferroni, there was no significant difference in pH from 0 to 20 minutes, 10 to 20 minutes and 15 to 20 minutes, but there was a significant difference in salivary pH from 5 to 20 minutes (p = 0.014). The mean salivary pH of the standard gum at 0, 5, 10, 15 and 20 minutes is 6.8767, 6.6067, 6.4200, 6.4027 and 6.3000 respectively. There is decrease in pH from 0 to 20 minutes. According to Bonferroni, there was no significant difference in pH from 0 to 20 minutes, 5 to 20 minutes, 10 to 20 minutes and 15 to 20 minutes. Thus, the higher salivary pH achieved with chewing bicarbonate gum compared with a standard sugar-free gum may have important oral health implications. How to cite this article: Ballal RK, Bhat SS, Ramdas SS, Ballal S. Effect of Chewing Bicarbonate-containing Sugar-free Gum on the Salivary pH: An in vivo Study. Int J Clin Pediatr Dent 2016;9(1):35-38.

  20. The amino acid composition of the proteinaceous component of gum tragacanth (Asiatic Astragalus spp.).

    Science.gov (United States)

    Anderson, D M; Howlett, J F; McNab, C G

    1985-01-01

    Six Iranian and seven Turkish samples of commercial gum tragacanth, and a sample of Turkish 'gum traganton', have been studied. Their nitrogen content varied from 0.17 to 0.58%. Their amino acid compositions are characterized by the presence of very large but variable proportions of hydroxyproline and substantial proportions of serine, proline and valine. The data presented may be useful for extending the current specifications for identity and purity, at present based solely on polysaccharide parameters, for gum tragacanth (E413).

  1. investigation of the effect of zinc oxide-modified gum arabic on polar ...

    African Journals Online (AJOL)

    BARTH EKWUEME

    Gum Arabic solution, a water-based adhesive, was modified with zinc oxide filler and the formulation was applied on wood, ceramic, glass and textile substrates. A strip of paper was used as a common adherent to all the substrates. Zinc oxide increased the viscosity of 30wt% gum Arabic solution and increased bond ...

  2. Investigation of the effect of zinc oxide-modified gum Arabic on polar ...

    African Journals Online (AJOL)

    Gum Arabic solution, a water-based adhesive, was modified with zinc oxide filler and the formulation was applied on wood, ceramic, glass and textile substrates. A strip of paper was used as a common adherent to all the substrates. Zinc oxide increased the viscosity of 30wt% gum Arabic solution and increased bond ...

  3. Chewing gum does not induce context-dependent memory when flavor is held constant.

    Science.gov (United States)

    Overman, Amy A; Sun, Justin; Golding, Abbe C; Prevost, Darius

    2009-10-01

    This study examined the effect of chewing gum on memory when flavor is held constant. Four separate groups of participants (total n=101) completed a word recall task. At learning and recall, participants either chewed a piece of gum or sucked a sweet. Each participant completed the memory task twice, once with abstract words and once with concrete words. A significant effect of word type (concrete vs. abstract) was found, however recall performance was not improved by matched oral activity at learning and recall. The results cast further doubt on the ability of chewing gum to induce context-dependent memory effects.

  4. Tuliposides and tulipalins in tulip Gum

    NARCIS (Netherlands)

    Lubbe, A.; Verpoorte, R.; Gude, H.; Dijkema, M.H.G.E.

    2013-01-01

    Gummosis in tulip bulbs is one of the negative effects of ethylene gas that is produced during storage by Fusarium-infected bulbs on the healthy bulbs. Several aspects of the gummosis process, like the factors inducing it, the underlying carbohydrate metabolism and the composition of the gum have

  5. Determination of trace elements in chewing gum by neutron activation analysis

    International Nuclear Information System (INIS)

    Dietz, M.L.

    1990-01-01

    Six trace elements of nutritional or toxicological interest (Al, Ca, Cl, Mn, Na and Sr) were determined in three different brands of chewing gum by instrumental neutron activation analysis. For the particular brands of gum examined, none of the detected elements was found to be present at a level representing a substantial contribution to the total dietary intake of the element for an American adult. (author) 11 refs.; 3 tabs

  6. Want to block earworms from conscious awareness?B(u)y gum!

    OpenAIRE

    Beaman, C. Philip; Powell, Kitty; Rapley, Ellie

    2015-01-01

    Three experiments examine the role of articulatory motor planning in experiencing an involuntary musical recollection (an “earworm”). Experiment 1 shows that interfering with articulatory motor programming by chewing gum reduces both the number of voluntary and the number of involuntary—unwanted—musical thoughts. This is consistent with other findings that chewing gum interferes with voluntary processes such as recollections from verbal memory, the interpretation of ambiguous auditory images,...

  7. Application of Neem Gum for Aqueous Film Coating of Ciprofloxacin Tablets

    OpenAIRE

    A P Kulkarni; Y R Shaikh; MH GR Dehghan

    2013-01-01

    Summary. At present the pharmaceutical industry and academia are focusing on the use of natural materials and resources for development of pharmaceutical product. In previous study, neem gum (NG), obtained from Azadirachata indica plant revealed satisfactory film forming ability. The present study evaluates the application potential of neem gum, as an aqueous film coating material, using ciprofloxacin hydrchloride (drug) as a model drug. Initial study of physical mixture indicated absence of ...

  8. Deformation During Friction Stir Welding

    Science.gov (United States)

    White, Henry J.

    2002-01-01

    Friction Stir Welding (FSW) is a solid state welding process that exhibits characteristics similar to traditional metal cutting processes. The plastic deformation that occurs during friction stir welding is due to the superposition of three flow fields: a primary rotation of a radially symmetric solid plug of metal surrounding the pin tool, a secondary uniform translation, and a tertiary ring vortex flow (smoke rings) surrounding the tool. If the metal sticks to the tool, the plug surface extends down into the metal from the outer edge of the tool shoulder, decreases in diameter like a funnel, and closes up beneath the pin. Since its invention, ten years have gone by and still very little is known about the physics of the friction stir welding process. In this experiment, an H13 steel weld tool (shoulder diameter, 0.797 in; pin diameter, 0.312 in; and pin length, 0.2506 in) was used to weld three 0.255 in thick plates. The deformation behavior during friction stir welding was investigated by metallographically preparing a plan view sections of the weldment and taking Vickers hardness test in the key-hole region.

  9. Design and Fabrication of a Large-Stroke Deformable Mirror Using a Gear-Shape Ionic-Conductive Polymer Metal Composite

    Directory of Open Access Journals (Sweden)

    Guo-Dung John Su

    2012-08-01

    Full Text Available Conventional camera modules with image sensors manipulate the focus or zoom by moving lenses. Although motors, such as voice-coil motors, can move the lens sets precisely, large volume, high power consumption, and long moving time are critical issues for motor-type camera modules. A deformable mirror (DM provides a good opportunity to improve these issues. The DM is a reflective type optical component which can alter the optical power to focus the lights on the two dimensional optical image sensors. It can make the camera system operate rapidly. Ionic polymer metal composite (IPMC is a promising electro-actuated polymer material that can be used in micromachining devices because of its large deformation with low actuation voltage. We developed a convenient simulation model based on Young’s modulus and Poisson’s ratio. We divided an ion exchange polymer, also known as Nafion®, into two virtual layers in the simulation model: one was expansive and the other was contractive, caused by opposite constant surface forces on each surface of the elements. Therefore, the deformation for different IPMC shapes can be described more easily. A standard experiment of voltage vs. tip displacement was used to verify the proposed modeling. Finally, a gear shaped IPMC actuator was designed and tested. Optical power of the IPMC deformable mirror is experimentally demonstrated to be 17 diopters with two volts. The needed voltage was about two orders lower than conventional silicon deformable mirrors and about one order lower than the liquid lens.

  10. Market-driven production with transaction costs outlook: Gum arabic collection systems in Senegal

    NARCIS (Netherlands)

    Mujawamariya, G.; Burger, C.P.J.; Haese, D' M.F.C.

    2015-01-01

    Low returns from marketing of non-timber forest products such as gum arabic restrict the collection of these products. A hypothesis is tested that access to good markets motivates collectors to harvest and market gum arabic. Analyses of the choice of participation in group marketing, sale price,

  11. Validating the applicability of the GUM procedure

    Science.gov (United States)

    Cox, Maurice G.; Harris, Peter M.

    2014-08-01

    This paper is directed at practitioners seeking a degree of assurance in the quality of the results of an uncertainty evaluation when using the procedure in the Guide to the Expression of Uncertainty in Measurement (GUM) (JCGM 100 : 2008). Such assurance is required in adhering to general standards such as International Standard ISO/IEC 17025 or other sector-specific standards. We investigate the extent to which such assurance can be given. For many practical cases, a measurement result incorporating an evaluated uncertainty that is correct to one significant decimal digit would be acceptable. Any quantification of the numerical precision of an uncertainty statement is naturally relative to the adequacy of the measurement model and the knowledge used of the quantities in that model. For general univariate and multivariate measurement models, we emphasize the use of a Monte Carlo method, as recommended in GUM Supplements 1 and 2. One use of this method is as a benchmark in terms of which measurement results provided by the GUM can be assessed in any particular instance. We mainly consider measurement models that are linear in the input quantities, or have been linearized and the linearization process is deemed to be adequate. When the probability distributions for those quantities are independent, we indicate the use of other approaches such as convolution methods based on the fast Fourier transform and, particularly, Chebyshev polynomials as benchmarks.

  12. Properties of a color-changeable chewing gum used to evaluate masticatory performance.

    Science.gov (United States)

    Hama, Yohei; Kanazawa, Manabu; Minakuchi, Shunsuke; Uchida, Tatsuro; Sasaki, Yoshiyuki

    2014-04-01

    To clarify the basic properties of a color-changeable chewing gum to determine its applicability to evaluations of masticatory performance under different types of dental status. Ten participants with natural dentition aged 26-30 years chewed gum that changes color during several chewing strokes over five repetitions. Changes in color were assessed using a colorimeter, and then L*, a*, and b* values in the CIELAB color system were quantified. Relationships between chewing progression and color changes were assessed using regression analysis and the reliability of color changes was assessed using intraclass correlation coefficients. We then measured 42 dentate participants (age, 22-31 years) and 47 complete denture wearers (age, 44-90 years) to determine the detectability of masticatory performance under two types of dental status. Regression between the number of chewing strokes and the difference between two colors was non-linear. The intraclass correlation coefficients were highest between 60 and 160 chewing strokes. Dentate and edentulous groups significantly differed (Wilcoxon rank sum test) and values were widely distributed within each group. The color of the chewing gum changed over a wide range, which was sufficient to evaluate the masticatory performance of individuals with natural dentition and those with complete dentures. Changes in the color values of the gum reliably reflected masticatory performance. These findings indicate that the color-changeable chewing gum will be useful for evaluating masticatory performance under any dental status. Copyright © 2014 Japan Prosthodontic Society. Published by Elsevier Ltd. All rights reserved.

  13. Effect of gum arabic in an oral rehydration solution on recovery from diarrhea in rats.

    Science.gov (United States)

    Teichberg, S; Wingertzahn, M A; Moyse, J; Wapnir, R A

    1999-10-01

    It has been shown that gum arabic, a soluble fiber, enhances water, electrolyte, and glucose absorption from oral rehydration solutions in jejunal perfusion of healthy rats and in animals with theophylline-induced secretion or chronic osmotic-secretory diarrhea. This report concerns a study of the effectiveness of an oral rehydration solution supplemented with gum arabic, during recovery from chronic osmotic secretory diarrhea in free-living rats. Chronic diarrhea was induced in 60- to 80-g juvenile rats by providing a magnesium citrate-phenolphthalein solution as the sole fluid source for 7 days. This led to diarrhea characterized by dehydration, soft stools, increased cecal volume, decreased food and fluid intake and failure to gain weight. After 7 days of diarrhea, rats recovered for 24 hours with either tap water or an oral rehydration solution (90 mM Na, 111 mM glucose, 20 mM K, 80 mM chloride, 20 mM citrate) with or without 2.5 g/l gum arabic. Although all three solutions improved the diarrhea, optimal recovery from diarrhea was achieved with the gum arabic-supplemented oral rehydration solution. After 4 hours and 24 hours, rats drinking the gum arabic-supplemented solution gained more weight and had lower fecal output than rats receiving water or the rehydration solution without gum arabic. All three solutions normalized plasma osmolality after 24 hours. The positive effects of the gum arabic-supplemented rehydration solution on fluid and electrolyte absorption seen during jejunal perfusion also occurred during recovery from chronic osmotic secretory diarrhea, when free-living animals drank the solution ad libitum.

  14. Antinociceptive activity of Astragalus gummifer gum (gum tragacanth) through the adrenergic system: A in vivo study in mice.

    Science.gov (United States)

    Bagheri, Seyyed Majid; Keyhani, Leila; Heydari, Mehrangiz; Dashti-R, Mohammad Hossein

    2015-01-01

    In Iranian traditional medicine, gum obtained from Astragalus gummifer and some other species of Astragalus was used as analgesic agent. In this study, we investigated the antinociceptive effect of several concentrations (125, 250, and 500 μg/kg body weight) of Astragalus gummifer gum (AGG) on thermal and acetic acid induced pain in mice. AGG was dissolved in distillated water and injected i.p to male mice 15 minute before the onset of experiment. Writhing and hot-plate tests were applied to study the analgesic effect of AGG and compared with that of diclofenac sodium (30 mg/kg, i.p.) or morphine (8 mg/kg, i.p). To investigate the mechanisms involved in antinociception, yohimbine, naloxone, glibenclamide, and theophylline were used in writhing test. These drugs were injected intraperitoneally 15 min before the administration of AGG. The number of writhes were counted in 30 minutes and analyzed. AGG exhibited a significant antinociceptive effect and the most effective dose of AGG was 500 μg/kg. The most maximum possible effect (%MPE) was observed (117.4%) 15 min after drug administration. The %inhibition of acetic acid-induced writhing in AGG 125, 250 and 500 was 47%, 50% and 54% vs %15 of control and 66.3% of diclofenac sodium group. The antinociceptive effect induced by this gum in the writhing test was reversed by the systemic administration of yohimbine (α2-adrenergic antagonist), but naloxone, glibenclamide, and theophylline did not reverse this effect. The findings of this study indicated that AGG induced its antinociceptive through the adrenergic system.

  15. The relative bioavailability of loratadine administered as a chewing gum formulation in healthy volunteers

    DEFF Research Database (Denmark)

    Nøhr-Jensen, Lene; Damkier, Per; Bidstrup, Tanja Busk

    2006-01-01

    OBJECTIVE: The aim of this study was to investigate the pharmacokinetics of loratadine and its active metabolite desloratadine after single-dose administration of loratadine as a conventional tablet, orally disintegrating tablet (smelt tablet) and a chewing gum formulation with and without...... of medicated chewing gum without collection of saliva and a 30-mg portion of medicated chewing gum with collection of saliva. Blood samples were taken at predefined sampling points 0-24 h after medication, and the plasma concentrations of loratadine and desloratadine were determined by high-performance liquid...... chromatography. Each study period was separated by a wash-out period of at least 7 days. RESULTS: The mean dose-corrected area under the plasma concentration-time curve extrapolated to infinity AUC(0-infinity) for the chewing gum formulation was statistically significantly increased compared to the tablet...

  16. Simulations of Recrystallization in Metals

    DEFF Research Database (Denmark)

    Godiksen, Rasmus Brauner

    2007-01-01

    structures in the deformed metal due to local effects: Inhomogeneous boundary morphologies and dislocation-structure-dependent migration rates are observed. The effects that the dislocation structures have must be taken into account in order to create realistic recrystallization models, and through......The growth of new near-perfect grains during recrystallization of deformed metals is governed by the migration of the grain boundaries surrounding the new grains. The grain boundaries migrate through the deformed metal driven by the excess energy of the dislocation structures created during...... deformation. Recently, it has been found that recrystallization is far more inhomogeneous than previously thought. The purpose of this PhD-project is to study recrystallization by computer simulations with special focus on inhomogeneous growth. Two types of simulations have been employed: geometric...

  17. [done no pages] An overview on applications of guar gum in food systems to modify structural properties

    Directory of Open Access Journals (Sweden)

    Biljana B. Popova

    2017-01-01

    Full Text Available Polysaccharides define as complex polymers composed of units interlinked with glycosidic bonds originated naturally. Polysaccharides are categorizing in several groups and among them, Gums are those with critical roles in food systems. Guar Gum is imparting softness, emulsification, stabilizing via its addition to formulas. This Gum is a fast soluble in cold water and can be active in a wide range of pH. The aim of this overview is giving an initial concept about guar gum and then convey to an introduction of its applications in food industries.

  18. Enzymatic production of polysaccharides from gum tragacanth

    DEFF Research Database (Denmark)

    2014-01-01

    Plant polysaccharides, relating to the field of natural probiotic components, can comprise structures similar to human milk oligosaccharides. A method for enzymatic hydrolysis of gum tragacanth from the bush-like legumes of the genus Astragalus, using a combination of pectin hydrolases...

  19. Effect of chewing gums containing the probiotic bacterium Lactobacillus reuteri on oral malodour

    DEFF Research Database (Denmark)

    Keller, Mette K; Bardow, Allan; Jensdottir, Thorbjörg

    2012-01-01

    OBJECTIVE: To evaluate the effect of chewing gums containing probiotic bacteria on oral malodour. The null hypothesis was that no difference would be displayed compared with placebo gums. MATERIALS AND METHODS: Twenty-five healthy young adults with self-reported malodorous morning breath completed...... this randomized double-blind placebo-controlled cross-over trial. The design included run-in and wash-out periods interspersed by two intervention periods of 14 days each. The subjects were instructed to chew one gum in the morning and one in the evening containing either two strains of probiotic lactobacilli (L...... lower in the probiotic group compared with the placebo group (p chewing...

  20. Half-metallic zinc-blende pnictides in real environments

    International Nuclear Information System (INIS)

    Shi Lijie; Liu Banggui

    2005-01-01

    The structural stability of half-metallic zinc-blende pnictides and the robustness of their half-metallic ferromagnetism in the presence of tetragonal and orthorhombic crystalline deformations are studied using a full-potential linear augmented plane wave method within the density-functional theory. The total energies of zinc-blende MnAs, CrAs, and CrSb are proved to increase with deformation increase, in contrast to those of other zinc-blende half-metallic pnictides, and therefore these three are stable against the deformations but the others are not. This is consistent with the experimental fact that only these three have been fabricated. On the other hand, the half-metallic ferromagnetism of the latter two is proved to be robust enough to survive large crystal deformations. This implies that half-metallic ferromagnetism may be achieved experimentally even in substantially deformed zinc-blende ultrathin films or layers of CrAs and CrSb in real environments

  1. Effect of plastic deformation on the niobium thermal expansion

    International Nuclear Information System (INIS)

    Savitskij, E.M.; Bychkova, M.I.; Kanikovskij, V.B.

    1978-01-01

    Using dilatometric method the effect of plastic deformation on change of thermal expansion coefficient (TEC) of niobium of different purity was studied. It was shown that deformation affected the TEC in different ways. At first the deformation degree rising causes linear decrease of the TEC and then linear increase. Carbon intensifies the TEC decrease of deformed niobium. The linear correlation was established between the TEC and the value of macroscopic stresses in plastic deformed niobium. The expression indicating the metal TEC change under loading was defined for case of strain hardening

  2. Potential benefits of chewing gum for the delivery of oral therapeutics and its possible role in oral healthcare

    NARCIS (Netherlands)

    Wessel, Stefan W.; van der Mei, Henny C.; Maitra, Amarnath; Dodds, Michael W. J.; Busscher, Henk J.

    2016-01-01

    Introduction: Over the years, chewing gum has developed from a candy towards an oral health-promoting nutraceutical. This review summarizes evidence for the oral health benefits of chewing gum, emphasizing identification of active ingredients in gum that facilitate prevention and removal of oral

  3. Effect of irradiation on functional properties of Gum Tragacanth

    Directory of Open Access Journals (Sweden)

    Neda Mollakhalili meybodi

    2017-03-01

    Full Text Available Background and objective: irradiation is a physical treatment in which products are exposed to ionized radiation such as gamma and x rays to improve the security and quality. Hydrocolloids are components that are used in food science to improve texture properties. Exposing to irradiation treatment may change structural and functional properties. By regard to the importance of irradiation on decontaminating of hydrocolloids in food application, the aim of this study is studying the effect of irradiation at different doses on functional properties of Gum Tragacanth in food application. Material and methods: effect of irradiation treatment was studied on the rheological properties, zeta potential, particle size distribution and surface tension of dispersion systems contained 0/5% w/ w gum tragacanth that is irradiated at different doses (0, 0.75. 3, 5 kGy. The effect of irradiation on rheological properties was monitored by rheometer. In order to monitor the effect of irradiation treatment on particle size distribution, zeta potential and surface tension, particle sizer, Brookhaven zeta plus and tensiometer sere used respectively. All treatments were performed three times and the data were analyzed by one way ANOVA. Significant differences between means were identified (P values < 0.05 using Duncan test. Results: Irradiation, change rheologiacal properties and particle size distribution of dispersion contained gum tragacanth. Irradiation treatment up to 0.75 kGy increase zeta potential, but irradiating at higher doses decrease it again. Results of studying parameters showed that irradiation changes the functional properties by affecting on structure. These changes depend on irradiation dose Conclusion: Gum tragacanth irradiation may improve the functional properties by affecting on structure.

  4. Sulfomethylated graft copolymers of xanthan gum and polyacrylamide

    Energy Technology Data Exchange (ETDEWEB)

    Cottrell, I.W.; Empey, R.A.; Racciato, J.S.

    1978-08-08

    A water-soluble anionic graft copolymer of xanthan gum and polyacrylamide is described in which at least part of the amide function of the acrylamide portion of the copolymer is sulfomethylated and the xanthan gum portion of the copolymer is unreacted with formaldehyde. The copolymer is sulfomethylated by reaction with formaldehyde and sodium metabisulfite. The formaldehyde does not cause any appreciable cross-linking between hydroxyl groups of the xanthan moieties. The sulfomethylation of the acrylamido group takes place at temperatures from 35 to 70 C. The pH is 10 or higher, typically from 12 to 13. The degree of anionic character may be varied by adjusting the molar ratio of formaldehyde and sodium metabisulfite with respect to the copolymer. 10 claims.

  5. An experimental study of plastic deformation of materials

    DEFF Research Database (Denmark)

    Knudsen, Tine

    The thesis falls in three parts, focusing on different aspects of plastic deformation of metals. Part I investigates the dislocation structures induced by hot deformation and compares these with the structures after cold deformation. In particular, it is shown that the dislocation structures...... after cold deformation by calorimetry and by analysis of the dislocation structure. The stored energy measured by calorimetry is found to be larger than that determined from the dislocation structure by a factor between 1.9 and 2.7, and this factor decreases with the plastic strain. Part III aimed...

  6. Effect of Different Combinations of Gums and Emulsifiers on the Quality of Bread

    International Nuclear Information System (INIS)

    Haider, M. R.; Din, G. M. U.; Mehmood, A.; Hussain, A.; Nasir, M. U.

    2016-01-01

    A project was designed to evaluate the effect of different combinations of emulsifiers and gums on the quality of bread. Wheat variety AARI-11 was milled to get straight grade flour and mixed with the Emulsifiers (DMG and DATEM) and Gums (G.G and CMC) in a quantity of (0.3- 0.6 %). Both, straight grade flour as well as treated flour (combination with gums and emulsifiers) were subjected to proximate and rheological analysis. Results of the rheological study showed a significant change in water absorption, dough development time, dough stability time and dough viscosity i.e. W/A 61.33-62.93%, D.D.T 3.9-4.8 min, D.S.T 7-9.1 min and 818.33-950.00 BU, respectively. Breads prepared with both flours were also studied for their sensory attributes during storage after the interval of 24 h. The highest score was awarded to T1 (0.3% DATEM and 0.5% guar gum) on the bases of its excellent external attributes (colour of crust, volume, symmetry of form, evenness of bake and crust character) and internal characteristics (aroma, grain, texture, taste, mastication and colour of crumb). After the sensory and physicochemical analyses, it is concluded that with the addition of DATEM (0.3%) and guar gum (0.5%) resulted in good quality of bread. (author)

  7. A comparison of the stability of beverage cloud emulsions formulated with different gum acacia- and starch-based emulsifiers.

    Science.gov (United States)

    Reiner, S J; Reineccius, G A; Peppard, T L

    2010-06-01

    The performance of several hydrocolloids (3 gum acacias, 1 modified gum acacia, and 3 modified starches) in stabilizing beverage emulsions and corresponding model beverages was investigated employing different core materials, emulsifier usage levels, and storage temperatures. Concentrated emulsions were prepared using orange terpenes or Miglyol 812 (comprising medium-chain triglycerides, MCT) weighted 1:1 with ester gum, stored at 25 or 35 degrees C, and analyzed on days 0, 1, and 3. On day 3, model beverages were made from each emulsion, stored at both temperatures, and analyzed weekly for 4 wk. Stability of concentrated emulsions was assessed by measuring mean particle size and by visual observations of ringing; beverage stability was judged similarly and also by loss of turbidity. Particle size measurements showed concentrated emulsions containing gum acacia or modified gum acacia with either core material were stable over 3 d storage at both temperatures whereas those made with modified starches were not, destabilization being faster at 35 degrees C. Beverages based on orange terpenes, in contrast to Miglyol, yielded smaller mean particle sizes, both on manufacture and during storage, regardless of hydrocolloid used. Visual observations of ringing generally supported this finding. Modified gum acacia was evaluated at both recommended and higher usage levels, stability increasing in the latter case. In general, all gum acacia and modified gum acacia emulsifiers were superior in stability to those based on modified starches, at either temperature, for orange terpene-based beverages. In Miglyol-based beverages, similar results were seen, except 1 modified starch performed as well as the gum acacia products.

  8. The Effect of Three Gums on the Retrogradation of Indica Rice Starch

    Directory of Open Access Journals (Sweden)

    Bin Li

    2012-05-01

    Full Text Available Retrograded starch (RS3 was produced from indica rice starch with three kinds of gums (konjac glucomannan, KGM; carrageenan, CA, USA; and gellan, GA, USA by autoclaving, respectively, and the effect of the gums on the retrogradation behavior of starch was estimated. The influences of polysaccharide concentration, sodium chloride concentration, autoclaving time, refrigerated time, and pH value on RS3 formation were discussed. Except for sodium chloride’s persistent restraint on RS3, the others all forced RS3 yields higher at first, but lowered it after the peak value. The influencing sequence of these impact factors was: sodium chloride concentration > polysaccharide concentration > autoclaving time > refrigerated time > pH value. The results also proved that in the three gums, KGM plays the most significant role in RS3 changing. It was concluded that the incorporation of each of these three gums into starch, especially KGM, results in an increase or decrease of RS3 under different conditions. This phenomenon could be taken into consideration when developing starchy food with appropriate amount of RS3.

  9. Effect of gum tragacanth exuded by three Iranian Astragalus on mixed milk protein system during acid gelation.

    Science.gov (United States)

    Nejatian, Mohammad; Hatami, Masoud; Mohammadifar, Mohammad Amin

    2013-02-01

    The effects of various concentrations of three species of gum tragacanth on the gelation process, microstructure and viscoelastic properties of milk protein mixed gels acidified at 37°C by glucono-δ-lactone (GDL) were investigated using dynamic rheometry and microscopy. According to rheological measurements, the addition of gum tragacanth in the range of 0.05-0.2% (w/w) into milk protein dispersions led to a weaker structure for the milk protein network, compared to the control sample. This weakening effect could be eliminated by adding 0.3% (w/w) gum tragacanth exudates from A. gossypinus; the compositional features of gum tragacanth may have been responsible for the improved protein-protein interactions, greater structural strength and reduced gelation time onset. It was determined by scanning electron microscopy that the addition of gum tragacanth at a low concentration caused the density of the matrix to increase, while an open structure was observed in the presence of a higher gum concentration. Copyright © 2012 Elsevier B.V. All rights reserved.

  10. Economic analysis of deforestation : the case of the gum Arabic belt in Sudan

    NARCIS (Netherlands)

    Rahim, A.

    2006-01-01

    Keywords: Gum Arabic; Deforestation; Entry and Exit; Real options Drought; Socio-economic, Oligopoly; Interdependent markets; Stackelberg.The gum arabic belt inSudanoffered in the past an

  11. Impact of silver metallization and electron irradiation on the mechanical deformation of polyimide films

    Science.gov (United States)

    Muradov, A. D.; Mukashev, K. M.; Yar-Mukhamedova, G. Sh.; Korobova, N. E.

    2017-11-01

    The impact of silver metallization and electron irradiation on the physical and mechanical properties of polyimide films has been studied. The metal that impregnated the structure of the polyimide substrate was 1-5 μm. The surface coatings contained 80-97% of the relative silver mirror in the visible and infrared regions. Irradiation was performed at the ELU-6 linear accelerator with an average beam electron energy of 2 MeV, an integral current of up to 1000 μA, a pulse repetition rate of 200 Hz, and a pulse duration of 5 μs. The absorbed dose in the samples was 10, 20, 30, and 40 MGy. The samples were deformed at room temperature under uniaxial tension on an Instron 5982 universal testing system. The structural changes in the composite materials that result from the impact of the physical factors were studied using an X-ray diffractometer DRON-2M in air at 293 K using Cu K α radiation (λαCu = 1.5418 Å). A substantial growth of mechanical characteristics resulting from the film metallization, as compared to the pure film, was observed. The growth of the ultimate strength by Δσ = 105 MPa and the plasticity by Δɛ = 75% is connected with the characteristics of the change of structure of the metallized films and the chemical etching conditions. The electron irradiation of the metallized polyimide film worsens its elastic and strength characteristics due to the formation of new phases in the form of silver oxide in the coating. The concentration of these phases increased with increasing dose, which was also the result of the violation of the ordered material structure, namely, the rupture of polyimide macromolecule bonds and the formation of new phases of silver in the coating. A mathematical model was obtained that predicts the elastic properties of silver metallized polyimide films. This model agrees with the experimental data.

  12. Influence of xanthan gum on the structural characteristics of myofibrillar proteins treated by high pressure.

    Science.gov (United States)

    Villamonte, Gina; Jury, Vanessa; Jung, Stéphanie; de Lamballerie, Marie

    2015-03-01

    The effects of xanthan gum on the structural modifications of myofibrillar proteins (0.3 M NaCl, pH 6) induced by high pressure (200, 400, and 600 MPa, 6 min) were investigated. The changes in the secondary and tertiary structures of myofibrillar proteins were analyzed by circular dichroism. The protein denaturation was also evaluated by differential scanning calorimetry. Likewise, the protein surface hydrophobicity and the solubility of myofibrillar proteins were measured. High pressure (600 MPa) induced the loss of α-helix structures and an increase of β-sheet structures. However, the presence of xanthan gum hindered the former mechanism of protein denaturation by high pressure. In fact, changes in the secondary (600 MPa) and the tertiary structure fingerprint of high-pressure-treated myofibrillar proteins (400 to 600 MPa) were observed in the presence of xanthan gum. These modifications were confirmed by the thermal analysis, the thermal transitions of high-pressure (400 to 600 MPa)-treated myofibrillar proteins were modified in systems containing xanthan gum. As consequence, the high-pressure-treated myofibrillar proteins with xanthan gum showed increased solubility from 400 MPa, in contrast to high-pressure treatment (600 MPa) without xanthan gum. Moreover, the surface hydrophobicity of high-pressure-treated myofibrillar proteins was enhanced in the presence of xanthan gum. These effects could be due to the unfolding of myofibrillar proteins at high-pressure levels, which exposed sites that most likely interacted with the anionic polysaccharide. This study suggests that the role of food additives could be considered for the development of meat products produced by high-pressure processing. © 2015 Institute of Food Technologists®

  13. Novel calcified gum Arabic porous nano-composite scaffold for bone tissue regeneration.

    Science.gov (United States)

    Hadavi, M; Hasannia, S; Faghihi, Sh; Mashayekhi, F; Zadeh, H H; Mostofi, S B

    2017-07-08

    The aim of this study was to investigate the biomechanical and biological properties of a nanocomposite scaffold containing both mineral and polysaccharide constituents. Hydroxyapatite nanoparticles (n-HA) was synthesized from dead abra ovata shells using wet chemical methods and was used in different ratios in concert with gum Arabic, a branched plant polysaccharide. N-HA/gum nanocomposite was fabricated with freeze-drying process and characterized by FTIR and SEM for chemical structure and morphology. Porosity was estimated using liquid substitution method. The scaffold mechanical properties were evaluated by compressive test measurement. Osteogenic differentiation was assessed using alkaline phosphatase production and biomineralization was evaluated using Alizarin red assay. Results demonstrated that the hydroxyapatite/gum Arabic nanocomposite had favorable biocompatibility and a similar structure to natural bone matrix. Porous nanocomposite possessed macropore networks with a porosity 87-93% and mean pore size ranging between 164 and 230 μm. The gum/HA with a ratio of 50% w/w HA had the highest compressive modulus of ∼75.3 MPa Pa (MPa) and the ultimate compressive stress of ∼16.6 MPa. C2C12 cells cultured on a scaffold with higher percentage (40 and 50 w/w) of HA demonstrated increased ALP levels and calcium deposition. The data from the present study demonstrated significant changes to the biomechanical properties and osteoconductivity of the nanocomposite scaffold by modulating its mineral content. Nanocomposite scaffolds containing gum and n-HA of 40-50% exhibited highest mechanical properties, as well as supported increased biomineralization. Copyright © 2017 Elsevier Inc. All rights reserved.

  14. Enzymatic depolymerization of gum tragacanth: bifidogenic potential of low molecular weight oligosaccharides.

    Science.gov (United States)

    Gavlighi, Hassan Ahmadi; Michalak, Malwina; Meyer, Anne S; Mikkelsen, J Dalgaard

    2013-02-13

    Gum tragacanth derived from the plant "goat's horn" (Astragalus sp.) has a long history of use as a stabilizing, viscosity-enhancing agent in food emulsions. The gum contains pectinaceous arabinogalactans and fucose-substituted xylogalacturonans. In this work, gum tragacanth from Astragalus gossypinus was enzymatically depolymerized using Aspergillus niger pectinases (Pectinex BE Color). The enzymatically degraded products were divided into three molecular weight fractions via membrane separation: HAG1 10 kDa. Compositional and linkage analyses showed that these three fractions also varied with respect to composition and structural elements: HAG1 and HAG2 were enriched in arabinose, galactose, and galacturonic acid, but low in fucose and xylose, whereas HAG3 was high in (terminal) xylose, fucose, and 1,4-bonded galacturonic acid, but low in arabinose and galactose content. The growth-stimulating potential of the three enzymatically produced gum tragacanth fractions was evaluated via growth assessment on seven different probiotic strains in single-culture fermentations on Bifidobacterium longum subsp. longum (two strains), B. longum subsp. infantis (three strains), Lactobacillus acidophilus , B. lactis, and on one pathogenic strain of Clostridium perfringens . The fractions HAG1 and HAG2 consistently promoted higher growth of the probiotic strains than HAG3, especially of the three B. longum subsp. infantis strains, and the growth promotion on HAG1 and HAG2 was better than that on galactan (control). HAG3 completely inhibited the growth of the C. perfringens strain. Tragacanth gum is thus a potential source of prebiotic carbohydrates that exert no viscosity effects and which may find use as natural functional food ingredients.

  15. Franšīzes līgums

    OpenAIRE

    Bērziņš, Artūrs

    2011-01-01

    Bakalaura darba "Franšīzes līgums" mērķis ir jaunā nacionālā tiesiskā regulējuma izpēte, tā atbilstības starptautiskajam regulējumam konstatēšana. Bakalaura darbs sastāv no četrām nodaļām, kurās tiek aplūkots franšīzes līgums un tā būtība, tā atšķirība no citiem civiltieskiem līgumiem, franšīzes attīstība Latvijā un tiesiskā regulējuma pilnveidošana Eiropas Savienības tiesiskā regulējuma ietvaros, kā arī problēmjautājumi un to risinājums. Darba autors nonāk pie secinājuma, ka nolūkā past...

  16. Probiotic capsules and xylitol chewing gum to manage symptoms of pharyngitis: a randomized controlled factorial trial.

    Science.gov (United States)

    Little, Paul; Stuart, Beth; Wingrove, Zoe; Mullee, Mark; Thomas, Tammy; Johnson, Sophie; Leydon, Gerry; Richards-Hall, Samantha; Williamson, Ian; Yao, Lily; Zhu, Shihua; Moore, Michael

    2017-12-18

    Reducing the use of antibiotics for upper respiratory tract infections is needed to limit the global threat of antibiotic resistance. We estimated the effectiveness of probiotics and xylitol for the management of pharyngitis. In this parallel-group factorial randomized controlled trial, participants in primary care (aged 3 years or older) with pharyngitis underwent randomization by nurses who provided sequential intervention packs. Pack contents for 3 kinds of material and advice were previously determined by computer-generated random numbers: no chewing gum, xylitol-based chewing gum (15% xylitol; 5 pieces daily) and sorbitol gum (5 pieces daily). Half of each group were also randomly assigned to receive either probiotic capsules (containing 24 × 10 9 colony-forming units of lactobacilli and bifidobacteria) or placebo. The primary outcome was mean self-reported severity of sore throat and difficulty swallowing (scale 0-6) in the first 3 days. We used multiple imputation to avoid the assumption that data were missing completely at random. A total of 1009 individuals consented, 934 completed the baseline assessment, and 689 provided complete data for the primary outcome. Probiotics were not effective in reducing the severity of symptoms: mean severity scores 2.75 with no probiotic and 2.78 with probiotic (adjusted difference -0.001, 95% confidence interval [CI] -0.24 to 0.24). Chewing gum was also ineffective: mean severity scores 2.73 without gum, 2.72 with sorbitol gum (adjusted difference 0.07, 95% CI -0.23 to 0.37) and 2.73 with xylitol gum (adjusted difference 0.01, 95% CI -0.29 to 0.30). None of the secondary outcomes differed significantly between groups, and no harms were reported. Neither probiotics nor advice to chew xylitol-based chewing gum was effective for managing pharyngitis. Trial registration: ISRCTN, no. ISRCTN51472596. © 2017 Joule Inc. or its licensors.

  17. Preparation of Acetylated Guar Gum – Unsaturated Polyester Composites & Effect of Water on Their Properties

    Directory of Open Access Journals (Sweden)

    David D’Melo

    2012-07-01

    Full Text Available Guar gum has seen extensive use in blends, however, its application as a filler in thermoset composites has as yet not been investigated. The effect of the addition of guar gum and its acetyl derivatives on the kinetics of water diffusion in unsaturated polyester composites was studied. The effect of water on the mechanical properties of the composites was studied with respect to the nature of filler, filler concentration and time of immersion. All the mechanical properties were observed to decrease on exposure to water. Further, it was observed that acetylated guar gum, with a degree of substitution of 0.21, showed the best mechanical properties, surpassing the other filled composites and that of the pure unsaturated polyester. Thus, acetylated guar gum showed promise as eco-friendly filler in composite formulation.

  18. Creep deformation behavior of weld metal and heat affected zone on 316FR steel thick plate welded joint

    International Nuclear Information System (INIS)

    Hongo, Hiromichi; Yamazaki, Masayoshi; Watanabe, Takashi; Kinugawa, Junichi; Tanabe, Tatsuhiko; Monma, Yoshio; Nakazawa, Takanori

    1999-01-01

    Using hot-rolled 316FR stainless plate (50 mm thick) and 16Cr-8Ni-2Mo filler wire, a narrow-gap welded joint was prepared by GTAW (gas tungsten arc welding) process. In addition to conventional round bar specimens of base metals and weld metal, full-thickness joint specimens were prepared for creep test. Creep tests were conducted at 550degC in order to examine creep deformation and rupture behavior in the weld metal of the welded joint. Creep strain distribution on the surface of the joint specimen was measured by moire interferometry. In the welded joint, creep strength of the weld metal zone apart from the surface was larger than that in the vicinity of the surface due to repeating heat cycles during welding. Creep strain and creep rate within the HAZ adjacent to the weld metal zone were smaller than those within the base metal zone. Creep rate of the weld metal zone in the welded joint was smaller than that of the weld metal specimen due to the restraint of the hardened HAZ adjacent to the zone. The full-thickness welded joint specimens showed longer lives than weld metal specimens, though the lives of the latter was shorter than those of the base metal (undermatching). In the full-thickness welded joint specimen, crack started from the last pass layer of the weld metal zone and fracture occurred at the zone. From the results mentioned above, in order to evaluate the creep properties of the welded joint correctly, it is necessary to conduct the creep test using the full-thickness welded joint specimen which includes the weakest zones of the weld metal, the front and back sides of the plate. (author)

  19. Trace element evaluation of different varieties of chewing gum by radiochemical neutron activation analysis

    International Nuclear Information System (INIS)

    Zaidi, J.H.; Arif, M.; Fatima, I.; Ahmad, S.; Qureshi, I.H.

    2000-01-01

    Extensive use of chewing gums, by children in particular, entails the evaluation of trace element contents in them. Radiochemical neutron activation analysis (RNAA) was successfully employed to determine the concentration of 35 trace elements (essential, toxic and nonessential) in eight different brands of chewing gum generally consumed in Rawalpindi/Islamabad area. Comparison of trace element data of our work with literature has been presented. None of the elements detected in the brands of chewing gum examined was found to be present at a level representing a substantial contribution to the total dietary intake of the element. (author)

  20. Neuropharmacological screening of essential oil from oleo gum resin of Gardenia lucida Roxb.

    Science.gov (United States)

    Shareef, Mohammad Zubair; Yellu, Narsimha Reddy; Achanta, Venkata Narsimha Appa Rao

    2013-10-07

    The oleo gum resin of Gardenia lucida is commonly employed in traditional medicine to treat multiple ailments, including epilepsy and mania. The essential oil isolated from it was screened for CNS activities to check if it is responsible for the claims made regarding the traditional use of the oleo gum resin. The hypnotic and anticonvulsant activity was assessed by pentobarbitone induced hypnosis and convulsant models-Maximum electroshock (MES) and Pentylene tetrazole (PTZ) respectively. Effect on motor activity was evaluated using an actophotometer, rotarod and grip strength methods. The oil significantly potentiated the barbitone induced hypnosis and offered significant protection against the intensity and frequency of convulsions and mortality rate in both the convulsant models. A significant decrease in locomotion, motor impairment and loss of gripping reflex was also observed. The essential oil of the oleo gum resin of Gardenia lucida is a CNS depressant and anticonvulsant with central muscle relaxant properties. This justifies the claims made regarding the use of the oleo gum resin of Gardenia lucida in CNS disorders. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  1. Effects of nicotine gum on psychomotor performance in smokers and non-smokers.

    Science.gov (United States)

    Hindmarch, I; Kerr, J S; Sherwood, N

    1990-01-01

    Two experiments were conducted to investigate the effects of nicotine on human performance. In the first study six smokers, who had been allowed to smoke normally prior to testing, completed a battery of psychometric tests (choice reaction time, memory scanning, tracking and flicker fusion threshold) at set points over 4 h after chewing 0, 2, or 4 mg nicotine polacrilex gum. A second study followed a similar design, but used five non-smoker volunteers who were required to chew only the 0 or 2 mg nicotine gum. Blood nicotine levels following the gum were measured in all subjects. The results indicate that additional nicotine improved both the speed and accuracy of motor activity among the smokers, but did not enhance central cognitive processes. No drug effects were found in the non-smoker study.

  2. Rheological Characterization of Isabgol Husk, Gum Katira Hydrocolloids, and Their Blends

    Directory of Open Access Journals (Sweden)

    Vipin Kumar Sharma

    2014-01-01

    Full Text Available The rheological parameters of Isabgol husk, gum katira, and their blends were determined in different media such as distilled water, 0.1 N HCl, and phosphate buffer (pH 7.4. The blend properties of Isabgol husk and gum katira were measured for four different percentage compositions in order to understand their compatibility in dispersion form such as 00 : 100, 25 : 50, 50 : 50, 75 : 25, and 100 : 00 in the gel strength of 1 mass%. The miscibility of blends was determined by calculating Isabgol husk-gum katira interaction parameters by Krigbaum and Wall equation. Other rheological properties were analyzed by Bingham, Power, Casson, Casson chocolate, and IPC paste analysis. The study revealed that the power flow index “p” was less than “1” in all concentrations of Isabgol husk, gum katira, and their blends dispersions indicating the shear-thinning (pseudoplastic behavior. All blends followed pseudoplastic behavior at thermal conditions as 298.15, 313.15, and 333.15°K and in dispersion media such as distilled water, 0.1 N HCl, and phosphate buffer (pH 7.4. Moreover, the study indicated the applicability of these blends in the development of drug delivery systems and in industries, for example, ice-cream, paste, nutraceutical, and so forth.

  3. Two-colour chewing gum mixing ability: digitalisation and spatial heterogeneity analysis.

    Science.gov (United States)

    Weijenberg, R A F; Scherder, E J A; Visscher, C M; Gorissen, T; Yoshida, E; Lobbezoo, F

    2013-10-01

    Many techniques are available to assess masticatory performance, but not all are appropriate for every population. A proxy suitable for elderly persons suffering from dementia was lacking, and a two-colour chewing gum mixing ability test was investigated for this purpose. A fully automated digital analysis algorithm was applied to a mixing ability test using two-coloured gum samples in a stepwise increased number of chewing cycles protocol (Experiment 1: n = 14; seven men, 19-63 years), a test-retest assessment (Experiment 2: n = 10; four men, 20-49 years) and compared to an established wax cubes mixing ability test (Experiment 3: n = 13; 0 men, 21-31 years). Data were analysed with repeated measures anova (Experiment 1), the calculation of the intraclass correlation coefficient (ICC; Experiment 2) and Spearman's rho correlation coefficient (Experiment 3). The method was sensitive to increasing numbers of chewing cycles (F5,65 = 57·270, P = 0·000) and reliable in the test-retest (ICC value of 0·714, P = 0·004). There was no significant correlation between the two-coloured gum test and the wax cubes test. The two-coloured gum mixing ability test was able to adequately assess masticatory function and is recommended for use in a population of elderly persons with dementia. © 2013 John Wiley & Sons Ltd.

  4. Flavor release measurement from gum model system

    DEFF Research Database (Denmark)

    Ovejero-López, I.; Haahr, Anne-Mette; van den Berg, Frans W.J.

    2004-01-01

    composition can be measured by both instrumental and sensory techniques, providing comparable information. The peppermint oil level (0.5-2% w/w) in the gum influenced both the retronasal concentration and the perceived peppermint flavor. The sweeteners' (sorbitol or xylitol) effect is less apparent. Sensory...

  5. Antinociceptive activity of Astragalus gummifer gum (gum tragacanth through the adrenergic system: A in vivo study in mice

    Directory of Open Access Journals (Sweden)

    Seyyed Majid Bagheri

    2015-01-01

    Full Text Available Background: In Iranian traditional medicine, gum obtained from Astragalus gummifer and some other species of Astragalus was used as analgesic agent. Objective: In this study, we investigated the antinociceptive effect of several concentrations (125, 250, and 500 μg/kg body weight of Astragalus gummifer gum (AGG on thermal and acetic acid induced pain in mice. Materials and Methods: AGG was dissolved in distillated water and injected i.p to male mice 15 minute before the onset of experiment. Writhing and hot-plate tests were applied to study the analgesic effect of AGG and compared with that of diclofenac sodium (30 mg/kg, i.p. or morphine (8 mg/kg, i.p. To investigate the mechanisms involved in antinociception, yohimbine, naloxone, glibenclamide, and theophylline were used in writhing test. These drugs were injected intraperitoneally 15 min before the administration of AGG. The number of writhes were counted in 30 minutes and analyzed. Results: AGG exhibited a significant antinociceptive effect and the most effective dose of AGG was 500 μg/kg. The most maximum possible effect (%MPE was observed (117.4% 15 min after drug administration. The %inhibition of acetic acid-induced writhing in AGG 125, 250 and 500 was 47%, 50% and 54% vs %15 of control and 66.3% of diclofenac sodium group. The antinociceptive effect induced by this gum in the writhing test was reversed by the systemic administration of yohimbine (α2 -adrenergic antagonist, but naloxone, glibenclamide, and theophylline did not reverse this effect. Conclusions: The findings of this study indicated that AGG induced its antinociceptive through the adrenergic system.

  6. Milk protein-gum tragacanth mixed gels: effect of heat-treatment sequence.

    Science.gov (United States)

    Hatami, Masoud; Nejatian, Mohammad; Mohammadifar, Mohammad Amin; Pourmand, Hanieh

    2014-01-30

    The aim of this study was to investigate the role of the heat-treatment sequence of biopolymer mixtures as a formulation parameter on the acid-induced gelation of tri-polymeric systems composed of sodium caseinate (Na-caseinate), whey protein concentrate (WPC), and gum tragacanth (GT). This was studied by applying four sequences of heat treatment: (A) co-heating all three biopolymers; (B) heating the milk-protein dispersion and the GT dispersion separately; (C) heating the dispersion containing Na-caseinate and GT together and heating whey protein alone; and (D) co-heating whey protein with GT and heating Na-caseinate alone. According to small-deformation rheological measurements, the strength of the mixed-gel network decreased in the order: C>B>D>A samples. SEM micrographs show that the network of sample C is much more homogenous, coarse and dense than sample A, while the networks of samples B and D are of intermediate density. The heat-treatment sequence of the biopolymer mixtures as a formulation parameter thus offers an opportunity to control the microstructure and rheological properties of mixed gels. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Anisotropic deformation of metallo-dielectric core-shell colloids under MeV ion irradiation

    International Nuclear Information System (INIS)

    Penninkhof, J.J.; Dillen, T. van; Roorda, S.; Graf, C.; Blaaderen, A. van; Vredenberg, A.M.; Polman, A.

    2006-01-01

    We have studied the deformation of metallo-dielectric core-shell colloids under 4 MeV Xe, 6 and 16 MeV Au, 30 MeV Si and 30 MeV Cu ion irradiation. Colloids of silica surrounded by a gold shell, with a typical diameter of 400 nm, show anisotropic plastic deformation under MeV ion irradiation, with the metal flowing conform the anisotropically deforming silica core. The 20 nm thick metal shell imposes a mechanical constraint on the deforming silica core, reducing the net deformation strain rate compared to that of pure silica. In colloids consisting of a Au core and a silica shell, the silica expands perpendicular to the ion beam, while the metal core shows a large elongation along the ion beam direction, provided the silica shell is thick enough (>40 nm). A minimum electronic energy loss of 3.3 keV/nm is required for shape transformation of the metal core. Silver cores embedded in a silica shell show no elongation, but rather disintegrate. Also in planar SiO 2 films, Au and Ag colloids show entirely different behavior under MeV irradiation. We conclude that the deformation model of core-shell colloids must include ion-induced particle disintegration in combination with thermodynamical effects, possibly in combination with mechanical effects driven by stresses around the ion tracks

  8. Anisotropic deformation of metallo-dielectric core shell colloids under MeV ion irradiation

    Science.gov (United States)

    Penninkhof, J. J.; van Dillen, T.; Roorda, S.; Graf, C.; van Blaaderen, A.; Vredenberg, A. M.; Polman, A.

    2006-01-01

    We have studied the deformation of metallo-dielectric core-shell colloids under 4 MeV Xe, 6 and 16 MeV Au, 30 MeV Si and 30 MeV Cu ion irradiation. Colloids of silica surrounded by a gold shell, with a typical diameter of 400 nm, show anisotropic plastic deformation under MeV ion irradiation, with the metal flowing conform the anisotropically deforming silica core. The 20 nm thick metal shell imposes a mechanical constraint on the deforming silica core, reducing the net deformation strain rate compared to that of pure silica. In colloids consisting of a Au core and a silica shell, the silica expands perpendicular to the ion beam, while the metal core shows a large elongation along the ion beam direction, provided the silica shell is thick enough (>40 nm). A minimum electronic energy loss of 3.3 keV/nm is required for shape transformation of the metal core. Silver cores embedded in a silica shell show no elongation, but rather disintegrate. Also in planar SiO2 films, Au and Ag colloids show entirely different behavior under MeV irradiation. We conclude that the deformation model of core-shell colloids must include ion-induced particle disintegration in combination with thermodynamical effects, possibly in combination with mechanical effects driven by stresses around the ion tracks.

  9. Short-term effect of chewing gums containing probiotic Lactobacillus reuteri on the levels of inflammatory mediators in gingival crevicular fluid

    DEFF Research Database (Denmark)

    Twetman, Svante; Derawi, Bilal; Keller, Mette

    2009-01-01

    OBJECTIVE: To investigate the effect of a chewing gum containing probiotic bacteria on gingival inflammation and the levels of selected inflammatory mediators in gingival crevicular fluid (GCF). MATERIAL AND METHODS: Forty-two healthy adults with moderate levels of gingival inflammation entered...... a double-blind placebo-controlled study design. The subjects were randomly assigned to one of three parallel arms: Group A/P was given one active and one placebo gum daily, Group A/A received two active chewing gums, and Group P/P two placebo gums. The chewing gums contained two strains of Lactobacillus...... reuteri: ATCC 55730 and ATCC PTA 5289 (1 x 10(8) CFU/gum, respectively). The subjects were instructed to chew the gums for 10 min over the course of 2 weeks. Bleeding on probing (BOP) and GCF sampling were conducted at baseline and after 1, 2 and 4 weeks. The levels of IL-1beta, TNF-alpha, IL-6, IL-8...

  10. Enhancement of electrical conductivity in the Gum Arabica complex

    International Nuclear Information System (INIS)

    Pradhan, Sourav S.; Sarkar, A.

    2009-01-01

    Gum Arabica is a natural biopolymer obtained from plant Acacia Arabica. In this present study the electro-active nature of its complex has been investigated. The complexes were developed using pure Gum Arabica and pure Citric acid by the sol-gel process. The scope of complex formation has been investigated and their natures were examined experimentally. The experiments which were carried out in this work are namely d.c V-I characteristics, d.c Arrhenius, ion transference number measurement, UV-VIS and IR photo-absorption. Solid specimen of the complex at various concentration of Citric acid has been developed for d.c experiments and adequate specimens were also developed for UV-VIS experiment. The result of d.c V-I characteristics on specimens at different Citric acid concentrations shows that d.c conductivity increases with concentration of the acid. The said enhancement is observed to be about 100 times that of pure hosts. The ion transference number measurement shows that the total conductivity increases with external acid concentration of which d.c conductivity enhance many times compared to that of ionic part. The result from d.c Arrhenius study shows that electro-thermal activation energy decreases with increasing acid concentration leading to enhancement of electronic conductivity of the complex. The result of UV-VIS study confirms the formation of the acid complex of Gum Arabica. The nature of photo-absorption indicates very clearly that main absorption region shows gradual shifts towards longer wavelength with increase of acid concentration. The result of FTIR absorption shows the structural concepts of electro-activity and complex formation indication of pure Gum Arabica. The overall analysis shows that the electro-activity of the mentioned biopolymer may be tailored.

  11. Application and Characterization of Gum from Bombax buonopozense Calyxesas an Excipient in Tablet Formulation

    Science.gov (United States)

    Ngwuluka, Ndidi C.; Kyari, Jehu; Taplong, John; Uwaezuoke, Onyinye J.

    2012-01-01

    This study was undertaken to explore gum from Bombax buonopozense calyxes as a binding agent in formulation of immediate release dosage forms using wet granulation method. The granules were characterized to assess the flow and compression properties and when compressed, non-compendial and compendial tests were undertaken to assess the tablet properties for tablets prepared with bombax gum in comparison with those prepared with tragacanth and acacia gums. Granules prepared with bombax exhibited good flow and compressible properties with angle of repose 28.60°, Carr’s compressibility of 21.30% and Hausner’s quotient of 1.27. The tablets were hard, but did not disintegrate after one hour. Furthermore, only 52.5% of paracetamol was released after one hour. The drug release profile followed zero order kinetics. Tablets prepared with bombax gum have the potential to deliver drugs in a controlled manner over a prolonged period at a constant rate. PMID:24300296

  12. Examples of measurement uncertainty evaluations in accordance with the revised GUM

    Science.gov (United States)

    Runje, B.; Horvatic, A.; Alar, V.; Medic, S.; Bosnjakovic, A.

    2016-11-01

    The paper presents examples of the evaluation of uncertainty components in accordance with the current and revised Guide to the expression of uncertainty in measurement (GUM). In accordance with the proposed revision of the GUM a Bayesian approach was conducted for both type A and type B evaluations.The law of propagation of uncertainty (LPU) and the law of propagation of distribution applied through the Monte Carlo method, (MCM) were used to evaluate associated standard uncertainties, expanded uncertainties and coverage intervals. Furthermore, the influence of the non-Gaussian dominant input quantity and asymmetric distribution of the output quantity y on the evaluation of measurement uncertainty was analyzed. In the case when the probabilistically coverage interval is not symmetric, the coverage interval for the probability P is estimated from the experimental probability density function using the Monte Carlo method. Key highlights of the proposed revision of the GUM were analyzed through a set of examples.

  13. Effect of preliminary plastic deformation on low temperature strength of carbon steels

    International Nuclear Information System (INIS)

    Gur'ev, A.V.; Alkhimenkov, T.B.

    1979-01-01

    Considered is the effect of preliminary plastic deformation on the following low-temperature strength (at -196 deg C) of structural carbon steels at the room temperature. The study of regularities of microheterogenetic deformations by alloy structure elements at room and low temperatures shows that the transition on low -temperature loading is built on the base of inheritance of the general mechanism of plastic deformation, which took place at preliminary deformation; in this effect the ''memory'' of metal to the history of loading is shown. It is established that physical strengthening (cold hardening), received by the metal during preliminary loading at the room temperature is put over the strengthening connected only with decrease of test temperature

  14. Nanostructured SnO{sub 2} encapsulated guar-gum hybrid nanocomposites for electrocatalytic determination of hydrazine

    Energy Technology Data Exchange (ETDEWEB)

    Malik, Priya [Department of Applied Chemistry & Polymer Technology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042 (India); Srivastava, Manish [Department of Physics & Astrophysics, University of Delhi, Delhi 110007 (India); Verma, Ranjana [Solar Energy Material Laboratory, Department of Energy, Tezpur University, Tezpur, Assam 784 028 (India); Kumar, Manish [Department of Applied Chemistry & Polymer Technology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042 (India); Kumar, D., E-mail: dkumar@dce.ac.in [Department of Applied Chemistry & Polymer Technology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042 (India); Singh, Jay, E-mail: jay_singh143@yahoo.co.in [Department of Applied Chemistry & Polymer Technology, Delhi Technological University, Shahbad Daulatpur, Main Bawana Road, Delhi 110042 (India)

    2016-01-01

    nanocomposite electrode provides an attractive matrix for impregnation of metal-oxide nanoparticles and an improved sensing platform for the electrochemical studies. - Highlights: • Sol–gel derived SnO{sub 2} nanoparticles encapsulated into gaur gum matrix • Utilizes organic–inorganic hybrid nanocomposite for determination of hydrazine • Cyclic voltammetry studies were used to evaluate kinetic parameters • SnO{sub 2}-Guar gum nanocomposite an attractive matrix for the electrochemical studies.

  15. Superductile bulk metallic glass

    International Nuclear Information System (INIS)

    Yao, K.F.; Ruan, F.; Yang, Y.Q.; Chen, N.

    2006-01-01

    Usually, monolithic bulk metallic glasses undergo inhomogeneous plastic deformation and exhibit poor ductility (<2%) at room temperature. We report a newly developed Pd-Si binary bulk metallic glass, which exhibits a uniform plastic deformation and a large plastic engineering strain of 82% and a plastic true strain of 170%, together with initial strain hardening, slight strain softening and final strain hardening characteristics. The uniform shear deformation and the ultrahigh plasticity are mainly attributed to strain hardening, which results from the nanoscale inhomogeneity due to liquid phase separation. The formed nanoscale inhomogeneity will hinder, deflect, and bifurcate the propagation of shear bands

  16. Development and Antibacterial Activity of Cashew Gum-Based Silver Nanoparticles

    Directory of Open Access Journals (Sweden)

    Maria José dos S. Soares

    2013-03-01

    Full Text Available The present study describes the development of a green synthesis of silver nanoparticles reduced and stabilized by exuded gum from Anacardium occidentale L. and evaluates in vitro their antibacterial and cytotoxic activities. Characterization of cashew gum-based silver nanoparticles (AgNPs was carried out based on UV–Vis spectroscopy, transmission electron microscopy and dynamic light scattering analysis which revealed that the synthesized silver nanoparticles were spherical in shape, measuring about 4 nm in size with a uniform dispersal. AgNPs presented antibacterial activity, especially against Gram-negative bacteria, in concentrations where no significant cytotoxicity was observed.

  17. Unveiling the Sources of Chromium in Pictorialist Photographs: Gum-Dichromate Process or Paper Sizing?

    DEFF Research Database (Denmark)

    Vila, Anna; Centeno, Silvia A; Kennedy, Nora W

    2015-01-01

    For this issue of Hand Papermaking devoted to paper sizing, we offer a review and extension of pertinent results obtained in our investigations of the gum-dichromate photographic process, commonly known as the gum-bichromate process.1 We have published three articles to date on our findings; this...

  18. The hypolipidaemic effect of gum tragacanth in diet induced hyperlipidaemia in rats.

    Science.gov (United States)

    Amer, S; Kamil, R; Siddiqui, P Q

    1999-07-01

    Previous research indicated that fiber in the diet of men lowers plasma lipid and LDL cholesterol concentration. To further study the lipid lowering effect of fibre, we conducted an animal study using rats with diet induced hyperlipidaemia. Rats were randomly assigned to one of the three experimental diets. Two of the diets contained cholesterol and choice acid to induce hyperlipidaemia, the fiber source in the hyperlipidaemic diet was gum tragacanth (5%). The rats consumed one of the three diets ad libitum for 4 weeks before they were killed. Plasma LDL cholesterol and total cholesterol concentrations were significantly higher in the hyperlipidaemic group than in the non hyperlipidaemic control group. A marked improvement in the plasma LDL cholesterol and total cholesterol concentration was observed in the rats that were fed hyperlipidaemic diet containing grum tragacanth. No significant difference in the plasma triglyceride concentration was detected in the three groups. Plasma HDL concentration was significantly higher in the non-hyperlipidaemic group than in the hyperlipidaemic group than. Addition of gum tragacanth to the hyperlipidaemic diet significantly improved the plasma HDL concentration in the hyperlipidaemic rats. These results suggest that fiber from gum tragacanth lowers plasma cholesterol and LDL in hyperlipidaemia. Gum tragacanth could be useful adjunct to the dietary management of hyperlipidaemia.

  19. Deformation twinning: Influence of strain rate

    Energy Technology Data Exchange (ETDEWEB)

    Gray, G.T. III

    1993-11-01

    Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shock wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.

  20. Development of Oral Dissolvable Films of Diclofenac Sodium for Osteoarthritis Using Albizia and Khaya Gums as Hydrophilic Film Formers

    Directory of Open Access Journals (Sweden)

    Martina Aduenimaa Bonsu

    2016-01-01

    Full Text Available Oral dissolvable films (ODFs of diclofenac sodium intended for osteoarthritis were prepared using Albizia and Khaya gums as hydrophilic film formers. The physicochemical properties of the gums were characterized and the gums were used to prepare diclofenac sodium ODFs (~50 mg/4 cm2 film by solvent casting. The two gums showed satisfactory film forming properties. The physicomechanical properties, drug-excipient compatibility, and in vitro drug release of the films in phosphate buffer pH 6.8 were studied. Khaya gum had higher extraction yield, moisture content, insoluble matter and true density while Albizia gum showed greater swelling capacity, solubility, and minerals content. The ODFs were thin, soft, and flexible with smooth glossy surfaces and possessed satisfactory physicomechanical properties. FTIR studies showed that no interaction occurred between the drug and the gums. The ODFs disintegrated in 75% drug release within 7 min with dissolution efficiencies of ~83–96%. Drug releases from F2, F3, F4, F5, and F6 were similar to F1 (p>0.05; f115 and f2<50. Drug release followed the Higuchi kinetic model which is indicative of Fickian drug diffusion.

  1. Kinetic study of the gum decomposition from brazilian gasoline; Estudo cinetico da decomposicao da goma oriunda de gasolina brasileira

    Energy Technology Data Exchange (ETDEWEB)

    Pivesso, Paulo Roberto; Galvao, Luzia Patricia Fernandes de Carvalho; Fernandes Junior, Valter Jose; Coutinho, Ana Carla S.L.S. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Souza, Antonio Gouveia de [Universidade Federal da Paraiba (UFPB), Joao Pessoa, PB (Brazil)

    2004-07-01

    The modern gasoline contains in your composition insatured hydrocarbons that can be degraded by the action of the air, heat and substances presenting catalytic activity. The presence of air and heat promote oxidation reactions and polymerization, which promote the gum formation, that is a product with diverse characteristics. The petroleum and l the automobile industries have been investing in researches to lessen the gum undesirable effects. Nowadays, several products are added to the gasoline, for example, the surfactant additives, with the purpose to reduce the formation of deposits in the engine. This work evaluated the influence of a polyester amine addictive, used as the main active component in Brazilian gasoline. The gums were generated evaporating the gasolines according to the ASTM D 381 method. Two types of gum were obtained; the Common Washed Gum (White Sample) and the Additive based Washed Gum (Additive Sample). Both samples were characterized for thermal analysis and submitted for a kinetic study using the model-free method proposed by Vyazovkin. This approach was applied to the final stage of the gums decomposition, supplying the corresponding relative kinetic parameters, such as energy of activation and conversion (author)

  2. On the role of initial void geometry in plastic deformation of metallic thin films: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Su, Yanqing [School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332-0340 (United States); Xu, Shuozhi, E-mail: shuozhixu@gatech.edu [GWW School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405 (United States)

    2016-12-15

    Void growth is usually considered one of the most critical phases leading to dynamic fracture of ductile materials. Investigating the detailed process of void growth at the nanoscale aids in understanding the damage mechanism of metals. While most atomistic simulations by far assume circular or spherical voids for simplicity, recent studies highlight the significance of the initial void ellipticity in mechanical response of voided metals. In this work, we perform large scale molecular dynamics simulations with millions of atoms to investigate the void growth in plastic deformation of thin films in face-centered cubic Cu. It is found that the initial ellipticity and the initial orientation angle of the void have substantial impacts on the dislocation nucleation, the void evolution, and the stress-strain response. In particular, the initial dislocation emission sites and the sequence of slip plane activation vary with the initial void geometry. For the void size evolution, three regimes are identified: (I) the porosity increases relatively slowly in the absence of dislocations, (II) the porosity grows much more rapidly after dislocations start to glide on different slip planes, and (III) the rate of porosity variation becomes much more slowly when dislocations are saturated in the model, and the void surface becomes irregular, non-smooth. In terms of the stress-strain response, the effects of the initial orientation angle are more pronounced when the initial void ellipticity is large; the influence of the initial void ellipticity is different for different initial orientation angles. The effects of the temperature, the strain rate, the loading direction, and the initial porosity in the void growth are also explored. Our results reveal the underlying mechanisms of initial void geometry-dependent plastic deformation of metallic thin films and shed light on informing more accurate theoretical models.

  3. On the role of initial void geometry in plastic deformation of metallic thin films: A molecular dynamics study

    International Nuclear Information System (INIS)

    Su, Yanqing; Xu, Shuozhi

    2016-01-01

    Void growth is usually considered one of the most critical phases leading to dynamic fracture of ductile materials. Investigating the detailed process of void growth at the nanoscale aids in understanding the damage mechanism of metals. While most atomistic simulations by far assume circular or spherical voids for simplicity, recent studies highlight the significance of the initial void ellipticity in mechanical response of voided metals. In this work, we perform large scale molecular dynamics simulations with millions of atoms to investigate the void growth in plastic deformation of thin films in face-centered cubic Cu. It is found that the initial ellipticity and the initial orientation angle of the void have substantial impacts on the dislocation nucleation, the void evolution, and the stress-strain response. In particular, the initial dislocation emission sites and the sequence of slip plane activation vary with the initial void geometry. For the void size evolution, three regimes are identified: (I) the porosity increases relatively slowly in the absence of dislocations, (II) the porosity grows much more rapidly after dislocations start to glide on different slip planes, and (III) the rate of porosity variation becomes much more slowly when dislocations are saturated in the model, and the void surface becomes irregular, non-smooth. In terms of the stress-strain response, the effects of the initial orientation angle are more pronounced when the initial void ellipticity is large; the influence of the initial void ellipticity is different for different initial orientation angles. The effects of the temperature, the strain rate, the loading direction, and the initial porosity in the void growth are also explored. Our results reveal the underlying mechanisms of initial void geometry-dependent plastic deformation of metallic thin films and shed light on informing more accurate theoretical models.

  4. Effects of caffeinated chewing gum on muscle pain during submaximal isometric exercise in individuals with fibromyalgia.

    Science.gov (United States)

    Umeda, Masataka; Kempka, Laura; Weatherby, Amy; Greenlee, Brennan; Mansion, Kimberly

    2016-04-01

    Physical activity is important to manage symptom of fibromyalgia (FM); however, individuals with FM typically experience augmented muscle pain during exercise. This study examined the effects of caffeinated chewing gum on exercise-induced muscle pain in individuals with FM. This study was conducted with a double-blind, placebo-controlled, cross-over design. Twenty-three patients with FM completed a caffeine condition where they consumed a caffeinated chewing gum that contains 100mg of caffeine, and a placebo condition where they consumed a non-caffeinated chewing gum. They completed isometric handgrip exercise at 25% of their maximal strength for 3 min, and muscle pain rating (MPR) was recorded every 30s during exercise. Clinical pain severity was assessed in each condition using a pain questionnaire. The order of the two conditions was randomly determined. MPR increased during exercise, but caffeinated chewing gum did not attenuate the increase in MPR compared to placebo gum. Clinical pain severity was generally associated with the average MPR and the caffeine effects on MPR, calculated as difference in the average MPR between the two conditions. The results suggest that more symptomatic individuals with FM may experience greater exercise-induced muscle pain, but benefit more from caffeinated chewing gum to reduce exercise-induced muscle pain. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Analysis of temporal variation in human masticatory cycles during gum chewing.

    Science.gov (United States)

    Crane, Elizabeth A; Rothman, Edward D; Childers, David; Gerstner, Geoffrey E

    2013-10-01

    The study investigated modulation of fast and slow opening (FO, SO) and closing (FC, SC) chewing cycle phases using gum-chewing sequences in humans. Twenty-two healthy adult subjects participated by chewing gum for at least 20s on the right side and at least 20s on the left side while jaw movements were tracked with a 3D motion analysis system. Jaw movement data were digitized, and chewing cycle phases were identified and analysed for all chewing cycles in a complete sequence. All four chewing cycle phase durations were more variant than total cycle durations, a result found in other non-human primates. Significant negative correlations existed between the opening phases, SO and FO, and between the closing phases, SC and FC; however, there was less consistency in terms of which phases were negatively correlated both between subjects, and between chewing sides within subjects, compared with results reported in other species. The coordination of intra-cycle phases appears to be flexible and to follow complex rules during gum-chewing in humans. Alternatively, the observed intra-cycle phase relationships could simply reflect: (1) variation in jaw kinematics due to variation in how gum was handled by the tongue on a chew-by-chew basis in our experimental design or (2) by variation due to data sampling noise and/or how phases were defined and identified. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Production and Rheological Properties of Welan Gum Produced by Sphingomonas sp. ATCC 31555 with Different Nitrogen Sources.

    Science.gov (United States)

    Xu, Xiaopeng; Nie, Zuoming; Zheng, Zhiyong; Zhu, Li; Zhan, Xiaobei

    2017-01-01

    This study aimed to investigate the effect of nitrogen sources on the production and rheological properties of welan gum produced by Sphingomonas sp. ATCC 31555. Six different nitrogen sources were used for ATCC 31555 fermentation, and 2 of these were further analyzed due to their more positive influence on welan gum production and bacterial biomass. Bacterial biomass, welan gum yield, welan viscosity, molecular weight, monosaccharide composition, acyl content, and welan structure were analyzed. Welan gum production and the biomass concentration of ATCC 31555 were higher in media containing NaNO3 and beef extract. Welan viscosity decreased at higher temperatures of 30-90°C, and it increased with a higher welan concentration. In the media containing NaNO3 (3 g·L-1), welan viscosity was higher at 30-70°C and a welan solution concentration of 6-10 g·L-1. With a reduced NaNO3 concentration, the molecular weight of welan gum and the molar ratio of mannose decreased, but the molar ratio of glucuronic acid increased. With different nitrogen sources, the acetyl content of welan gum differed but its structure was similar. NaNO3 and beef extract facilitated welan production. A reduced NaNO3 concentration promoted welan viscosity. © 2017 S. Karger AG, Basel.

  7. A NEW SPECIES OF INVASIVE GALL WASP (HYMENOPTERA: EULOPHIDAE: TETRASTICHINAE) ON BLUE GUM (EUCALYPTUS GLOBULUS) IN CALIFORNIA

    Science.gov (United States)

    The blue gum gall wasp, Selitrichodes globulus La Salle & Gates (Hymenoptera: Eulophidae: Tetrastichinae), is described as an invasive gall inducer on blue gum, Eucalyptus globulus (Myrtaceae), in California....

  8. EFFECT OF GUM CHEWING ON AIR SWALLOWING, SALIVA SWALLOWING AND BELCHING

    Directory of Open Access Journals (Sweden)

    Ana Cristina Viana da SILVA

    2015-09-01

    Full Text Available BackgroundEructation is a physiologic event which allows gastric venting of swallowed air and most of the time is not perceived as a symptom. This is called gastric belching. Supragastric belching occurs when swallowed air does not reach the stomach and returns by mouth a short time after swallowing. This situation may cause discomfort, life limitations and problems in daily life.ObjectiveOur objective in this investigation was to evaluate if gum chewing increases the frequency of gastric and/or supragastric belches.MethodsEsophageal transit of liquid and gas was evaluated by impedance measurement in 16 patients with complaint of troublesome belching and in 15 controls. The Rome III criteria were used in the diagnosis of troublesome belching. The esophageal transit of liquid and gas was measured at 5 cm, 10 cm, 15 cm and 20 cm from the lower esophageal sphincter. The subjects were evaluated for 1 hour which was divided into three 20-minute periods: (1 while sitting for a 20-minute base period; (2 after the ingestion of yogurt (200 mL, 190 kcal, in which the subjects were evaluated while chewing or not chewing gum; (3 final 20-minute period in which the subjects then inverted the task of chewing or not chewing gum. In gastric belch, the air flowed from the stomach through the esophagus in oral direction and in supragastric belch the air entered the esophagus rapidly from proximal and was expulsed almost immediately in oral direction. Air swallows were characterized by an increase of at least 50% of basal impedance and saliva swallow by a decrease of at least 50% of basal impedance, that progress from proximal to distal esophagus.ResultsIn base period, air swallowing was more frequent in patients than in controls and saliva swallowing was more frequent in controls than in patients. There was no difference between the medians of controls and patients in the number of gastric belches and supragastric belches. In six patients, supragastric belches

  9. Micronised bran-enriched fresh egg tagliatelle: Significance of gums addition on pasta technological features.

    Science.gov (United States)

    Martín-Esparza, M E; Raga, A; González-Martínez, C; Albors, A

    2018-06-01

    The aim of the work was to produce fibre-enriched fresh pasta based on micronised wheat bran and durum wheat semolina with appropriate techno-functional properties. Wheat semolina was replaced with fine particle size (50% below 75 µm) wheat bran - up to 11.54% (w/w). A Box-Behnken design with randomised response surface methodology was used to determine a suitable combination of carboxymethylcellulose, xanthan gum and locust bean gum to improve pasta attributes: minimum cooking loss, maximum values for water gain and swelling index, as well as better colour and texture characteristics before and after cooking. The proximate chemical composition of wheat semolina and bran was determined and the microstructure of uncooked pasta was observed as well. From the response surface methodology analysis, it is recommended to use: (i) xanthan gum over 0.6% w/w as it led to bran-enriched pasta with a better developed structure and superior cooking behaviour, (ii) a combination of xanthan gum (0.8% w/w) and carboxymethylcellulose (over 0.6% w/w) to enhance uncooked pasta yellowness.

  10. Effects of chewing gum on driving performance as evaluated by the STISIM driving simulator.

    Science.gov (United States)

    Yoo, Ingyu; Kim, Eun-Joo; Lee, Joo-Hyun

    2015-06-01

    [Purpose] The purpose of this study was to determine the effects of chewing gum on driving performance in a driving simulator. [Subjects] In total, 26 young licensed drivers participated. [Methods] The driving scenario was typical of an urban environment: a single-carriageway, two-way road consisting of a mix of curved and straight sections, with considerable levels of traffic, pedestrians, and parked cars. Mean distance driven above the speed limit, lane position, mean distance driven across the center line, and mean distance driven off the road were used as estimates of brake, accelerator, and steering control. The results were compared with those of a non-chewing gum control condition. [Results] The driving performance while chewing gum was significantly better: the mean distance driven above the speed limit was 26.61% shorter, and the mean distance driven off the road was 31.99% shorter. Lane position and mean distance driven across the center line did not differ significantly between the two conditions. [Conclusion] Chewing gum appears to enhance driving performance during a sustained attention driving task.

  11. Mechanisms of liquid-metal embrittlement

    International Nuclear Information System (INIS)

    Popovich, V.V.

    1979-01-01

    The mechanism of the embrittlement of metals and alloys during deformation in contact with liquid metals are discussed. With 20Kh13 steel in a Pb-Sn melt and polycrystalline Al in the presence of various mercury solutions a.s examples, considered are the three main processes - adsorption, corrosion (dissolution), formation of new phases which cause the disintegration of materials under the action of liquid-metallic media. Presented are data on plastic ductile and strength properties of the above materials in the presence of liquid-metallic media. A model is described that takes into account the effect of the medium upon the plastic deformation and the part the medium plays in liquid-metallic embrittlement

  12. Local Stress States and Microstructural Damage Response Associated with Deformation Twins in Hexagonal Close Packed Metals

    Directory of Open Access Journals (Sweden)

    Indranil Basu

    2017-12-01

    Full Text Available The current work implements a correlative microscopy method utilizing electron back scatter diffraction, focused ion beam and digital image correlation to accurately determine spatially resolved stress profiles in the vicinity of grain/twin boundaries and tensile deformation twin tips in commercially pure titanium. Measured local stress gradients were in good agreement with local misorientation values. The role of dislocation-boundary interactions on the buildup of local stress gradients is elucidated. Stress gradients across the twin-parent interface were compressive in nature with a maximum stress magnitude at the twin boundary. Stress profiles near certain grain boundaries initially display a local stress minimum, followed by a typically observed “one over square root of distance” variation, as was first postulated by Eshelby, Frank and Nabarro. The observed trends allude to local stress relaxation mechanisms very close to the grain boundaries. Stress states in front of twin tips showed tensile stress gradients, whereas the stress state inside the twin underwent a sign reversal. The findings highlight the important role of deformation twins and their corresponding interaction with grain boundaries on damage nucleation in metals.

  13. Screening for deformed teeth; Screening for saere taender

    Energy Technology Data Exchange (ETDEWEB)

    Vermeulen, A.; Dall, P.C.; Hansen, F.G.

    1996-04-01

    Water pollution by pesticides and heavy metals causes sublethal effects in larvae of the Chironomidae midges. These effects are particularly noticeable in the deformities of the oral parts and antennae. Possibilities of using these deformities for the purpose of water/sediment biomonitoring are very promising. Here the first results of screening in a Danish stream are presented. (EG) 9 refs.

  14. Short-term effects of chewing gum on satiety and afternoon snack intake in healthy weight and obese women.

    Science.gov (United States)

    Park, Eunyoung; Edirisinghe, Indika; Inui, Taichi; Kergoat, Sophie; Kelley, Michael; Burton-Freeman, Britt

    2016-05-15

    Afternoon snacking contributes significantly to total energy intake. Strategies to enhance the satiety value of lunch and reduce afternoon snacking are of interest for body weight management. To assess whether between-meal gum chewing would enhance the satiety response to a fixed lunch meal; and assess the role of cholecystokinin (CCK) as a potential mediator of the response in non-obese healthy weight and obese women. Fifty unrestrained obese (n=25) and non-obese healthy weight (n=25) women participated in a two-arm cross-over study assessing multiple (15min per hour×3h) gum chewing (GUM) occurrences or no gum (Control) on subjective ratings of satiety, subsequent sweet and salty snack intake, CCK and general metabolic responses. GUM compared to Control resulted in significant suppression of hunger, desire to eat and prospective consumption (pwomen (p=0.05) and Oreo cookie intake in healthy weight women (p=0.03) 3h after lunch. Metabolic responses and CCK did not differ between experimental conditions. Chewing gum intermittently post-lunch enhances perceptions of satiety and may have important implications in reducing afternoon high carbohydrate-snack intake. Copyright © 2016. Published by Elsevier Inc.

  15. Effect of guar gum conjugation on functional, antioxidant and antimicrobial activity of egg white lysozyme.

    Science.gov (United States)

    Hamdani, Afshan Mumtaz; Wani, Idrees Ahmed; Bhat, Naseer Ahmad; Siddiqi, Raushid Ahmad

    2018-02-01

    This study was undertaken to analyze the effect of conjugation of egg-white lysozyme with guar gum. Lysozyme is an antimicrobial polypeptide that can be used for food preservation. Its antibacterial activity is limited to gram positive bacteria. Conjugation with polysaccharides like guar gum may broaden its activity against gram negatives. Conjugate was developed through Maillard reaction. Assays carried out included sugar estimation, SDS-PAGE, GPC, color, FT-IR, DSC, thermal stability, solubility, emulsifying, foaming and antioxidant activity. In addition, antimicrobial activity of the conjugate was determined against two gram positive (Staphyllococcus aureus and Enterococcus) and two gram negative pathogens (E. coli and Salmonella). Results showed higher functional properties of lysozyme-guar gum conjugate. The antioxidant properties increased from 2.02-35.80% (Inhibition of DPPH) and 1.65-4.93AAE/g (reducing power) upon guar gum conjugation. Conjugate significantly inhibited gram negative bacteria and the antibacterial activity also increased significantly against gram positive pathogens. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Pharmacodynamic and pharmacokinetic assessment of electronic cigarettes, combustible cigarettes, and nicotine gum: implications for abuse liability.

    Science.gov (United States)

    Stiles, Mitchell F; Campbell, Leanne R; Graff, Donald W; Jones, Bobbette A; Fant, Reginald V; Henningfield, Jack E

    2017-09-01

    Electronic cigarettes (ECs) are becoming popular alternatives for smokers, but there has been limited study of their abuse liability. The objective of this study was to evaluate the abuse liability of three Vuse Solo ECs, ranging from 14 to 36 mg in nicotine content, relative to high- and low-abuse liability comparator products (usual brand combustible cigarettes and nicotine gum, respectively) in a group of 45 EC-naïve smokers. Enrolled subjects' ratings of subjective effects and nicotine uptake over 6 h were used to measure abuse liability and pharmacokinetics following in-clinic use of each EC. Use of Vuse Solo resulted in subjective measures and nicotine uptake that were between those of combustible cigarettes and nicotine gum, although generally closer to nicotine gum. Compared to combustible cigarettes, use of Vuse Solo resulted in significantly lower scores in measures of product liking, positive effects, and intent to use again. These pharmacodynamic findings were consistent with the pharmacokinetic data, showing that cigarettes produced substantially faster and higher levels of nicotine uptake as compared to Vuse Solo and nicotine gum. Vuse Solo resulted in more rapid initial uptake of nicotine compared to nicotine gum, but peak concentration and long-term extent of uptake were not different or were lower with Vuse. Collectively, these findings suggest that Vuse Solo likely has an abuse liability that is somewhat greater than nicotine gum but lower than cigarettes. ClinicalTrials.gov identifier: NCT02269514.

  17. Multiple functionalities of Ni nanoparticles embedded in carboxymethyl guar gum polymer: catalytic activity and superparamagnetism

    Science.gov (United States)

    Sardar, Debasmita; Sengupta, Manideepa; Bordoloi, Ankur; Ahmed, Md. A.; Neogi, S. K.; Bandyopadhyay, Sudipta; Jain, Ruchi; Gopinath, Chinnakonda S.; Bala, Tanushree

    2017-05-01

    Composites comprising of metallic nanoparticles in polymer matrices have allured significant importance due to multifunctionalities. Here a simple protocol has been described to embed Ni nanoparticles in carboxymethyl guar gum (CMGG) polymer. The composite formation helps in the stabilization of Ni nanoparticles which are otherwise prone towards aerial oxidation. Further the nanoparticles retain their superparamagnetic nature and catalytic capacity. Ni-Polymer composite catalyses the reduction of 4-Nitrophenol to 4-Aminophenol very efficiently in presence of NaBH4, attaining a complete conversion under some experimental conditions. Ni-Polymer composite is well characterized using UV-vis spectroscopy, FTIR, XPS, powder XRD, TGA, SEM and TEM. A detailed magnetic measurement using superconducting quantum interference device-vibrating sample magnetometer (SQUID-VSM) reveals superparamagnetic behaviour of the composite.

  18. Socioeconomic aspects of agroforesty systems: the case of gum-cultivation cycle

    International Nuclear Information System (INIS)

    Sharawi, H. A.

    2010-01-01

    The purpose of the study was to attempt to understand the nature of the problems related to production and local marketing of gum arabic as been by producers and local traders. Using structural questionnaires and multistage stratified sampling, data were collected on economic activities, production and productivity, price and pricing policy and marketing and trade as well as services provided to producers. Statistical analysis was carried out using various descriptive methods including means and means comparisons. The results indicated a general declining trend of the areas trapped by households. Productivity per unit area, prices received by producers and different from of services during the period covered by the study. The level of the producer's price seems to be the most important socioeconomic factor affecting the decision to produce. The need for institutions that are more effective and of services that promote production and marketing were seen as essential. The results have important implications on pricing policies and sustain ability of the gum-cultivation cycle as an integrated management system in the gum belt of the Sudan.(Author)

  19. SIFAT FUNGSIONAL PRODUK INTERAKSI FRAKSI GLOBULIN 7S KOMAK (Dolichos lablab DAN GUM XANTAN [Functional Properties of the Interaction Product Between Globulin of 7S Fraction of Lablab Bean (Dolichos lablab with Xantan Gum

    Directory of Open Access Journals (Sweden)

    Sukamto1*

    2009-12-01

    Full Text Available Lablab bean (Dolichos lablab seeds is a potential source of protein globulin.The bean’s protein content is 20.86 %, and the amount of globulin was more than 60% from the total protein, having major fractions of 7S and 11S. The objectives of this research were to explore the 7S globulin fractions, to study interaction between 7S globulin fractions with xanthan gum, and to observe the functional properties of the product of the interaction. The research was conducted in 2 steps. The first step was to fractionate the 7S fractions from globulin. The second steps was to interact 7S globulin fraction with xanthan gum. The yield of these interaction were examined for its physicochemical and functional properties. The results showed that the 7S globulin fractions could be interacted by xanthan gum at pH 7. The interacted product of globulin 7S fraction 10 % with xanthan gum 0,75 % had good functional properties than globulin 7S fraction, such as oil holding capacity, foaming capacity, and emulsion activity. Water holding capacity could not be detected because the yield became soluble. However,the foaming and emulsifying stability were still lower than those of soybean protein isolates. The research concluded that xanthan gum could be used to improve the physicochemical and functional properties of globulin 7S fraction.

  20. Texture and deformation mechanism of yttrium

    International Nuclear Information System (INIS)

    Adamesku, R.A.; Grebenkin, S.V.; Stepanenko, A.V.

    1992-01-01

    X-ray pole figure analysis was applied to study texture and deformation mechanism in pure and commercial polycrystalline yttrium on cold working. It was found that in cast yttrium the texture manifected itself weakly enough both for pure and commercial metal. Analysis of the data obtained made it possible to assert that cold deformation of pure yttrium in the initial stage occurred mainly by slip the role of which decreased at strains higher than 36%. The texture of heavily deformed commercial yttrium contained two components, these were an 'ideal' basic orientation and an axial one with the angle of inclination about 20 deg. Twinning mechanism was revealed to be also possible in commercial yttrium