WorldWideScience

Sample records for deformed actinide nuclei

  1. Static and dynamic deformations of actinide nuclei

    International Nuclear Information System (INIS)

    Rozmej, P.

    1985-09-01

    The zero-point quadrupole-hexadecapole vibrations have been taken into account to calculate dynamical deformations for even-even actinide nuclei. The collective and intrinsic motions are separated according to the Born-Oppenheimer approximation. The collective Hamiltonian is constructed using the macroscopic-microscopic method in the potential energy part and the cranking model in the kinetic energy part. The BCS theory with a modified oscillator potential is applied to describe the intrinsic motion of nucleons. A new set of Nilsson potential parameters, which produces a much better description of the properties of light actinide nuclei, has also been found. (orig.)

  2. Sub-barrier quasifission in heavy element formation reactions with deformed actinide target nuclei

    Science.gov (United States)

    Hinde, D. J.; Jeung, D. Y.; Prasad, E.; Wakhle, A.; Dasgupta, M.; Evers, M.; Luong, D. H.; du Rietz, R.; Simenel, C.; Simpson, E. C.; Williams, E.

    2018-02-01

    Background: The formation of superheavy elements (SHEs) by fusion of two massive nuclei is severely inhibited by the competing quasifission process. Low excitation energies favor SHE survival against fusion-fission competition. In "cold" fusion with spherical target nuclei near 208Pb, SHE yields are largest at beam energies significantly below the average capture barrier. In "hot" fusion with statically deformed actinide nuclei, this is not the case. Here the elongated deformation-aligned configurations in sub-barrier capture reactions inhibits fusion (formation of a compact compound nucleus), instead favoring rapid reseparation through quasifission. Purpose: To determine the probabilities of fast and slow quasifission in reactions with prolate statically deformed actinide nuclei, through measurement and quantitative analysis of the dependence of quasifission characteristics at beam energies spanning the average capture barrier energy. Methods: The Australian National University Heavy Ion Accelerator Facility and CUBE fission spectrometer have been used to measure fission and quasifission mass and angle distributions for reactions with projectiles from C to S, bombarding Th and U target nuclei. Results: Mass-asymmetric quasifission occurring on a fast time scale, associated with collisions with the tips of the prolate actinide nuclei, shows a rapid increase in probability with increasing projectile charge, the transition being centered around projectile atomic number ZP=14 . For mass-symmetric fission events, deviations of angular anisotropies from expectations for fusion fission, indicating a component of slower quasifission, suggest a similar transition, but centered around ZP˜8 . Conclusions: Collisions with the tips of statically deformed prolate actinide nuclei show evidence for two distinct quasifission processes of different time scales. Their probabilities both increase rapidly with the projectile charge. The probability of fusion can be severely

  3. Possible existence of backbending in actinide nuclei

    International Nuclear Information System (INIS)

    Dudek, J.; Nazarewicz, W.; Szymanski, Z.

    1982-01-01

    The possibilities for the backbending effect to occur in actinide nuclei are studied using the pairing-self-consistent independent quasiparticle method. The Hamiltonian used is that of the deformed Woods-Saxon potential plus monopole pairing term. The results of the calculations explain why there is no backbending in most actinide nuclei and simultaneously suggest that in some light neutron deficient nuclei around Th and 22 Ra a backbending effect may occur

  4. Strength of Coriolis Coupling in actinide nuclei

    International Nuclear Information System (INIS)

    Peker, L.K.; Rasmussen, J.O.; Hamilton, J.H.

    1982-01-01

    Coriolis Coupling V/sub cor/ plays an important role in deformed nuclei. V/sub cor/ is proportional to h 2 /J[j (j + 1) -Ω (Ω + 1)]/sup 1/2/ and therefore is particularly significant in the nuclei with large j and low Ω Nilsson levels close to Fermi surface: n(i/sub 13/2/) in A = 150 to 170 rare-earth nuclei and p(i/sub 13/2/) and n(j/sub 15/2/) in A greater than or equal to 224 actinide nuclei. Because of larger j (n(j/sub 15/2/) versus n(i/sub 13/2/)) and smaller deformations (β approx. = 0.22 versus β 0.28) it was reasonable to expect that in actinide nuclei Coriolis effects are stronger than in the rare earth nuclei. Recently it was realized that the strength of observed Coriolis effects depends not only on the genuine Coriolis Coupling but also on the interplay between Coriolis ad pairing forces which leads to an interference between the wave functions of two mixing rotational bands. As a consequence the effective interaction V/sub eff/ of both bands is an oscillating function of the degree of shell filling (or chemical potential lambda F). It was shown that in the rare earth nuclei this interference strongly influenced conclusions about the trends in the Coriolis coupling strength and explained many of the observed band-mixing features (the sharpness of back banding curves, details of the blocking effect etc.). From theoretical analysis it was concluded that in the majority of actinide nuclei the effective interaction V/sub eff/ is strong, and therefore the Coriolis band-mixing have to be very strong. In this paper we would like to demonstrate that contrary to these predictions experimental data suggest that Coriolis band mixing in studied actinide nuclei is relatively weak and possibly significantly weaker than in rare earth nuclei

  5. Microscopic mechanism of moments of inertia and odd-even differences for well-deformed actinide nuclei

    International Nuclear Information System (INIS)

    Yu Lei; Liu Shuxin; Zeng Jinyan

    2004-01-01

    The microscopic mechanism of the variation with rotational frequency of moments of inertia and their odd-even differences for well-deformed actinide nuclei are analyzed by using the particle-number conserving (PNC) method for treating nuclear pairing interaction. The moments of inertia for bands building on high j intruder orbitals in odd-A nuclei, e.g., the 235 U (ν[743]7/2) band, are found to be much larger than those of ground-state bands in neighboring even-even nuclei. Moreover, there exist large odd-even differences in the ω variation of moments of inertia. All these experimental odd-even differences are reproduced quite well in the PNC calculation, in which the effective monopole and quadrupole pairing interaction strengths are determined by the experimental odd-even differences in binding energies and bandhead moments of inertia, and no free parameter is involved in the PNC calculation

  6. Neutron scattering on deformed nuclei

    International Nuclear Information System (INIS)

    Hansen, L.F.; Haight, R.C.; Pohl, B.A.; Wong, C.; Lagrange, C.

    1984-09-01

    Measurements of neutron elastic and inelastic differential cross sections around 14 MeV for 9 Be, C, 181 Ta, 232 Th, 238 U and 239 Pu have been analyzed using a coupled channel (CC) formalism for deformed nuclei and phenomenological global optical model potentials (OMP). For the actinide targets these results are compared with the predictions of a semi-microscopic calculation using Jeukenne, Lejeune and Mahaux (JLM) microscopic OMP and a deformed ground state nuclear density. The overall agreement between calculations and the measurements is reasonable good even for the very light nuclei, where the quality of the fits is better than those obtained with spherical OMP

  7. An optical potential for the statically deformed actinide nuclei derived from a global spherical potential

    Science.gov (United States)

    Al-Rawashdeh, S. M.; Jaghoub, M. I.

    2018-04-01

    In this work we test the hypothesis that a properly deformed spherical optical potential, used within a channel-coupling scheme, provides a good description for the scattering data corresponding to neutron induced reactions on the heavy, statically deformed actinides and other lighter deformed nuclei. To accomplish our goal, we have deformed the Koning-Delaroche spherical global potential and then used it in a channel-coupling scheme. The ground-state is coupled to a sufficient number of inelastic rotational channels belonging to the ground-state band to ensure convergence. The predicted total cross sections, elastic and inelastic angular distributions are in good agreement with the experimental data. As a further test, we compare our results to those obtained by a global channel-coupled optical model whose parameters were obtained by fitting elastic and inelastic angular distributions in addition to total cross sections. Our results compare quite well with those obtained by the fitted, channel-coupled optical model. Below neutron incident energies of about 1MeV, our results show that scattering into the rotational excited states of the ground-state band plays a significant role in the scattering process and must be explicitly accounted for using a channel-coupling scheme.

  8. Modeling level structures of odd-odd deformed nuclei

    International Nuclear Information System (INIS)

    Hoff, R.W.; Kern, J.; Piepenbring, R.; Boisson, J.P.

    1984-01-01

    A technique for modeling quasiparticle excitation energies and rotational parameters in odd-odd deformed nuclei has been applied to actinide species where new experimental data have been obtained by use of neutron-capture gamma-ray spectroscopy. The input parameters required for the calculation were derived from empirical data on single-particle excitations in neighboring odd-mass nuclei. Calculated configuration-specific values for the Gallagher-Moszkowski splittings were used. Calculated and experimental level structures for 238 Np, 244 Am, and 250 Bk are compared, as well as those for several nuclei in the rare-earth region. The agreement for the actinide species is excellent, with bandhead energies deviating 22 keV and rotational parameters 5%, on the average. Corresponding average deviations for five rare-earth nuclei are 47 keV and 7%. Several applications of this modeling technique are discussed. 18 refs., 5 figs., 4 tabs

  9. Description of deformed nuclei in the sdg boson model

    Energy Technology Data Exchange (ETDEWEB)

    Li, S.C. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences; Kuyucak, S. [Australian National Univ., Canberra, ACT (Australia). Research School of Physical Sciences

    1996-07-15

    We present a study of deformed nuclei in the framework of the sdg interacting boson model utilizing both numerical diagonalization and analytical 1/N expansion techniques. The focus is on the description of high-spin states which have recently become computationally accessible through the use of computer algebra in the 1/N expansion formalism. A systematic study is made of high-spin states in rare-earth and actinide nuclei. (orig.).

  10. Description of deformed nuclei in the sdg boson model

    Science.gov (United States)

    Li, S. C.; Kuyucak, S.

    1996-02-01

    We present a study of deformed nuclei in the framework of the sdg interacting boson model utilizing both numerical diagonalization and analytical {1}/{N} expansion techniques. The focus is on the description of high-spin states which have recently become computationally accessible through the use of computer algebra in the {1}/{N} expansion formalism. A systematic study is made of high-spin states in rare-earth and actinide nuclei.

  11. Description of deformed nuclei in the sdg boson model

    International Nuclear Information System (INIS)

    Li, S.C.; Kuyucak, S.

    1996-01-01

    We present a study of deformed nuclei in the framework of the sdg interacting boson model utilizing both numerical diagonalization and analytical 1/N expansion techniques. The focus is on the description of high-spin states which have recently become computationally accessible through the use of computer algebra in the 1/N expansion formalism. A systematic study is made of high-spin states in rare-earth and actinide nuclei. (orig.)

  12. Fast neutron scattering on actinide nuclei

    International Nuclear Information System (INIS)

    1982-01-01

    More and more sophisticated neutron experiments have been carried out with better samples in several laboratories and it was necessary to intercompare them. In this respect, let us quote for example (n,n'e) and (n,n'#betta#) measurements. Moreover, high precision (p,p), (p,p') and (p,n) measurements have been made, thus supplementing neutron experiments in the determination of the parameters of the optical model, still widely used to describe the neutron-nucleus interaction. The optical model plays a major role and it is therefore essential to know it well. The spherical optical model is still very useful, especially because of its simplicity and of the relatively short calculation times, but is obviously insufficient to treat deformed nuclei such as actinides. For accurate calculations about these nuclei, it is necessary to use a deformed potential well and solve a set of coupled equations, hence long computational times. The importance of compound nucleus formation at low energy requires also a good knowledge of the statistical model together with that of all the reaction mechanisms which are involved, including fission for which an accurate barrier is necessary and, of course, well-adjusted level densities. The considerations form the background of the Scientific Programme set up by a Programme Committee whose composition is given further on in this book

  13. β4 systematics in rare-earth and actinide nuclei: sdg interacting boson model description

    International Nuclear Information System (INIS)

    Devi, Y.D.; Kota, V.K.B.

    1992-01-01

    The observed variation of hexadecupole deformation parameter β 4 with mass number A in rare-earth and actinide nuclei is studied in the sdg interacting boson model (IBM) using single j-shell Otsuka-Arima-Iachello mapped and IBM-2 to IBM-1 projected hexadecupole transition operator together with SU sdg (3) and SU sdg (5) coherent states. The SU sdg (3) limit is found to provide a good description of data

  14. Alpha decay and cluster decay of some neutron-rich actinide nuclei

    Indian Academy of Sciences (India)

    2017-02-09

    Feb 9, 2017 ... Abstract. Nuclei in the actinide region are good in exhibiting cluster radioactivity. In the present work, the half-lives of α-decay and heavy cluster emission from certain actinide nuclei have been calculated using cubic plus Yukawa plus exponential model (CYEM). Our model has a cubic potential for the ...

  15. Influence of fragment deformation and orientation on compact configuration of odd-Z superheavy nuclei

    International Nuclear Information System (INIS)

    Gurjit Kaur; Sandhu, Kirandeep; Sharma, Manoj K.

    2016-01-01

    The synthesis of heavy and superheavy nuclei is generally carried out by using hot and cold fusion reaction mechanisms. It has been noticed that, the cold fusion reactions occur at relatively low excitation energies (E*_C_N ∼ 10-20 MeV) whereas, the hot fusion reactions occur at excitation energies of E*_C_N ∼ 30- 50 MeV. The fusion mechanism is quite different in both the processes. In the cold fusion process, the interaction of spherical targets (Pb and Bi) with deformed light mass projectiles occurs. On the other hand, the fusion of deformed actinide targets with spherical "4"8Ca projectile characterize the hot interaction processes. Hence the deformations and orientations of targets and projectiles play extremely important role in the superheavy fusion process. The present analysis is carried out to aggrandize the work of which illustrate the role of deformations and orientations on even superheavy nuclei. Here, we extend this analysis for odd superheavy nuclei. It is relevant to note that the temperature and angular momentum effects are not included in the present analysis

  16. Systematics of Absolute Gamma Ray Transition Probabilities in Deformed Odd-A Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Malmskog, S G

    1965-11-15

    All known experimentally determined absolute gamma ray transition probabilities between different intrinsic states of deformed odd-A nuclei in the rare earth, region (153 < A < 181) and in the actinide region (A {>=} 227) are compared with transition probabilities (Weisskopf and Nilsson estimate). Systematic deviations from the theoretical values are found. Possible explanations for these deviations are given. This discussion includes Coriolis coupling, {delta}K ={+-}2 band-mixing effects and pairing interaction.

  17. Barriers in the energy of deformed nuclei

    Directory of Open Access Journals (Sweden)

    V. Yu. Denisov

    2014-06-01

    Full Text Available Interaction energy between two nuclei considering to their deformations is studied. Coulomb and nuclear in-teraction energies, as well as the deformation energies of both nuclei, are taken into account at evaluation of the interaction energy. It is shown that the barrier related to the interaction energy of two nuclei depends on the de-formations and the height of the minimal barrier is evaluated. It is obtained that the heavier nucleus-nucleus sys-tems have large deformation values at the lowest barrier. The difference between the barrier between spherical nuclei and the lowest barrier between deformed nuclei increases with the mass and the charge of the interacting nuclei.

  18. RIPL starter file parameter validation for actinide nuclei

    International Nuclear Information System (INIS)

    Maslov, V.M.; Porodzinskij, Yu.V.

    1999-01-01

    Nuclear reaction theory calculations are of particular importance for actinide nuclei data evaluation. Measured data base for 238-U provides a unique possibility to compare calculated data with measured total, elastic, inelastic, fission, capture, (n,2n), (n,3n) and (n,4n) cross section data up to 40 MeV

  19. Fast electric dipole transitions in Ra-Ac nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.

    1985-01-01

    Lifetime of levels in 225 Ra, 225 Ac, and 227 Ac have been measured by delayed coincidence techniques and these have been used to determine the E1 gamma-ray transition probabilities. The reduced E1 transition probabilities. The reduced E1 transition probabilities in 225 Ra and 225 Ac are about two orders of magnitude larger than the values in mid-actinide nuclei. On the other hand, the E1 rate in 227 Ac is similar to those measured in heavier actinides. Previous studies suggest the presence of octupole deformation in all the three nuclei. The present investigation indicates that fast E1 transitions occur for nuclei with octupole deformation. However, the studies also show that there is no one-to-one correspondence between E1 rate and octupole deformation. 13 refs., 4 figs

  20. Problem of ''deformed'' superheavy nuclei

    International Nuclear Information System (INIS)

    Sobiczewski, A.; Patyk, Z.; Muntian, I.

    2000-08-01

    Problem of experimental confirmation of deformed shapes of superheavy nuclei situated in the neighbourhood of 270 Hs is discussed. Measurement of the energy E 2+ of the lowest 2+ state in even-even species of these nuclei is considered as a method for this confirmation. The energy is calculated in the cranking approximation for heavy and superheavy nuclei. The branching ratio p 2+ /p 0+ between α decay of a nucleus to this lowest 2+ state and to the ground state 0+ of its daughter is also calculated for these nuclei. The results indicate that a measurement of the energy E 2+ for some superheavy nuclei by electron or α spectroscopy is a promising method for the confirmation of their deformed shapes. (orig.)

  1. Fission dynamics of superheavy nuclei formed in uranium induced reactions

    International Nuclear Information System (INIS)

    Gurjit Kaur; Sandhu, Kirandeep; Sharma, Manoj K.

    2017-01-01

    The compound nuclear system follows symmetric fission if the competing processes such as quasi-elastic, deep inelastic, quasi-fission etc are absent. The contribution of quasi fission events towards the fusion-fission mechanism depends on the entrance channel asymmetry of reaction partners, deformations and orientations of colliding nuclei beside the dependence on energy and angular momentum. Usually the 209 Bi and 208 Pb targets are opted for the production of superheavy nuclei with Z CN =104-113. The nuclei in same mass/charge range can also be synthesized using actinide targets + light projectiles (i.e. asymmetric reaction partners) via hot fusion interactions. These actinide targets are prolate deformed which prefer the compact configurations at above barrier energies, indicating the occurrence of symmetric fission events. Here an attempt is made to address the dynamics of light superheavy system (Z CN =104-106), formed via hot fusion interactions involving actinide targets

  2. Phonon operators in deformed nuclei

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1981-01-01

    For the description of the excited states in deformed nuclei new phonon operators are introduced, which depend on the sign of the angular momentum projection onto the symmetry axis of a deformed nucleus. In the calculations with new phonons the Pauli principle is correctly taken into account in the two-phonon components of the wave functions. There is a difference in comparison with the calculation with phonons independent of the sign of the angular momentum projection. The new phonons should be used in deformed nuclei if the Pauli principle is consistently taken into account and in the calculations with the excited state wave functions having the components with more than one phonon operator [ru

  3. Octupole Deformed Nuclei in the Actinide Region

    CERN Multimedia

    Thorsteinsen, T; Rubio barroso, B; Simpson, J; Gulda, K; Sanchez-vega, M; Cocks, J; Nybo, K; Garcia borge, M; Aas, A; Fogelberg, B; Honsi, J; Smith, G; Naumann, R; Grant, I

    2002-01-01

    The aim of the present study is to investigate the limits of the "island" of octupole deformation in the mass region A=225. It is of particular importance to demonstrate experimentally the sudden disappearance of the stable octupole deformation in the presence of a well developed quadrupole field. \\\\ \\\\In order to establish the upper border line the $\\beta$ -decay chains of $^{227}$Rn $\\rightarrow ^{227}$Fr $\\rightarrow ^{227}$Ra and $^{231}$Fr $\\rightarrow ^{231}$Ra $\\rightarrow ^{231}$Ac were studied at PSB-ISOLDE using advanced fast timing and $\\gamma$-ray spectroscopy techniques. The lifetimes of the excited states have been measured in the picosecond range using the time-delayed $\\beta\\gamma\\gamma$(t) method.

  4. Phonon operators for deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.

    1982-01-01

    The mathematical formalism with the phonon operators independent of the signature of the angular momentum projection turns out to be inadequate for describing excited states of deformed nuclei. New phonon operators are introduced which depend on the signature of the angular momentum projection on the symmetry axis of a deformed nucleus. It is shown that the calculations with the new phonons take correctly into account the Pauli principle in two-phonon components of wave functions. The results obtained differ from those given by the phonons independent of the signature of the angular momentum projection. The new phonons must be used in deformed nuclei at taking systematically the Pauli principle into account and in calculations involving wave functions of excited states having components with more than one-phonon operator

  5. Deformation and shape coexistence in medium mass nuclei

    International Nuclear Information System (INIS)

    Meyer, R.A.

    1985-01-01

    Emerging evidence for deformed structures in medium mass nuclei is reviewed. Included in this review are both nuclei that are ground state symmetric rotors and vibrational nuclei where there are deformed structures at excited energies (shape coexistence). For the first time, Nilsson configurations in odd-odd nuclei within the region of deformation are identified. Shape coexistence in nuclei that abut the medium mass region of deformation is also examined. Recent establishment of a four-particle, four-hole intruder band in the double subshell closure nucleus 96 Zr 56 is presented and its relation to the nuclear vibron model is discussed. Special attention is given to the N=59 nuclei where new data have led to the reanalysis of 97 Sr and 99 Zr and the presence of the [404 9/2] hole intruder state as isomers in these nuclei. The low energy levels of the N=59 nuclei from Z=38 to 50 are compared with recent quadrupole-phonon model calculations that can describe their transition from near-rotational to single closed shell nuclei. The odd-odd N=59 nuclei are discussed in the context of coexisting shape isomers based on the (p[303 5/2]n[404 9/2])2 - configuration. Ongoing in-beam (t,p conversion-electron) multiparameter measurements that have led to the determination of monopole matrix elements for even-even 42 Mo nuclei are presented, and these are compared with initial estimates using IBA-2 calculations that allow mixing of normal and cross subshell excitations. Lastly, evidence for the neutron-proton 3 S 1 force's influence on the level structure of these nuclei is discussed within the context of recent quadrupole-phonon model calculations. (Auth.)

  6. Effect of deformations on the compactness of odd-Z superheavy nuclei formed in cold and hot fusion reactions

    Science.gov (United States)

    Kaur, Gurjit; Sandhu, Kirandeep; Sharma, Manoj K.

    2018-03-01

    Using the extended fragmentation theory, the compactness of hot and cold fusion reactions is analyzed for odd-Z nuclei ranging Z = 105- 117. The calculations for the present work are carried out at T = 0MeV and ℓ = 0 ħ, as the temperature and angular momentum effects remain silent while addressing the orientation degree of freedom (i.e. compact angle configuration). In the hot fusion, 48Ca (spherical) + actinide (prolate) reaction, the non-equatorial compact (nec) shape is obtained for Z = 113 nucleus. On the other hand, Z > 113 nuclei favor equatorial compact (ec) configuration. The distribution of barrier height (VB) illustrate that the ec-shape is obtained when the magnitude of quadrupole deformation of the nucleus is higher than the hexadecupole deformation. In other words, negligible or small -ve β4-deformations support ec configurations. On the other hand, large (+ve) magnitude of the β4-deformation suggests that the configuration appears for compact angle θc < 90 °, leading to nec structure. Similar deformation effects are observed for Bi-induced reactions, in which not belly-to-belly compact (nbbc) configurations are seen at θc = 42 °. In addition to the effect of β2 and β4-deformations, the exclusive role of octupole deformations (β3) is also analyzed. The β3-deformations do not follow the reflection symmetry as that of β2 and β4, leading to the possible occurrence of compact configuration within 0° to 180° angular range.

  7. Transmission coefficents in strongly deformed nuclei

    International Nuclear Information System (INIS)

    Aleshin, V.P.

    1996-01-01

    By using our semiclassical approach to particle evaporation from deformed nuclei developed earlier, we analyze here the heuristic methods of taking into account the effects of shape deformations on particle emission. These methods are based on the 'local' transmission coefficients in which the effective barrier depends on the angle with respect to the symmetry axis. The calculations revealed that the heuristic models are reasonable for particle energy spectra but fail, at large deformations, to describe the angular distributions. In A∼160 nuclei with axis ratio in the vicinity of 2:1 at temperatures of 2-3 MeV, the W (90 )/W(0 ) anisotropies of α particles with respect to the nuclear spin are 1.5 to 3 times larger than our approach predicts. The influence of spin alignment on particle energy spectra is discussed shortly. (orig.)

  8. Geometry and dynamics of particle emission from strongly deformed nuclei

    International Nuclear Information System (INIS)

    Aleshin, V.P.

    1995-01-01

    By using our semiclassical approach to particle evaporation from deformed nuclei, we analyze the heuristic models of particle emission from deformed nuclei which are used in the codes GANES, ALICE, and EVAP. The calculations revealed that the heuristic models are reasonable for particle energy spectra but fail, at large deformations, to describe the angular distributions

  9. Electron form factors of deformable nuclei

    International Nuclear Information System (INIS)

    Tartakovskii, V.K.; Isupov, V.Yu.

    1988-01-01

    Using the smallness of the deformation parameter of the nucleus, we obtain simple explicit expressions for the form factors of electroexcitation of the low-lying rotation-vibration states of light, deformable, even-even nuclei. The expressions satisfactorily describe the experimental data on the excitation of collective nuclear states by the inelastic scattering of fast electrons

  10. Analysis of Orientation Relations Between Deformed Grains and Recrystallization Nuclei

    DEFF Research Database (Denmark)

    West, Stine S.; Winther, Grethe; Juul Jensen, Dorte

    2011-01-01

    Nucleation in 30 pct rolled high-purity aluminum samples was investigated by the electron backscattering pattern method before and after annealing. A total of 29 nuclei including two twins were observed, and approximately one third of these nuclei had orientations not detected in the deformed state....... Possible orientation relations between these nuclei and the deformed state were by 20 to 55 deg rotation around axes. These axes were compared with the active slip systems, and the crystallographic features of the deformation-induced dislocation boundaries. Good agreement was found between the rotation...

  11. Transfer involving deformed nuclei

    International Nuclear Information System (INIS)

    Rasmussen, J.O.; Guidry, M.W.; Canto, L.F.

    1985-03-01

    Results are reviewed of 1- and 2-neutron transfer reactions at near-barrier energies for deformed nuclei. Rotational angular momentum and excitation patterns are examined. A strong tendency to populating high spin states within a few MeV of the yrast line is noted, and it is interpreted as preferential transfer to rotation-aligned states. 16 refs., 12 figs

  12. Description of the Hexadecapole Deformation Parameter in the sdg Interacting Boson Model

    Science.gov (United States)

    Liu, Yu-xin; Sun, Di; Wang, Jia-jun; Han, Qi-zhi

    1998-04-01

    The hexadecapole deformation parameter β4 of the rare-earth and actinide nuclei is investigated in the framework of the sdg interacing boson model. An explicit relation between the geometric hexadecapole deformation parameter β4 and the intrinsic deformation parameters epsilon4, epsilon2 are obtained. The deformation parameters β4 of the rare-earths and actinides are determined without any free parameter. The calculated results agree with experimental data well. It also shows that the SU(5) limit of the sdg interacting boson model can describe the β4 systematics as well as the SU(3) limit.

  13. Description of the hexadecapole deformation parameter in the sdg interacting boson model

    International Nuclear Information System (INIS)

    Liu Yuxin; Sun Di; Wang Jiajun; Han Qizhi

    1998-01-01

    The hexadecapole deformation parameter β 4 of the rare-earth and actinide nuclei is investigated in the framework of the sdg interacting boson model. An explicit relation between the geometric hexadecapole deformation parameter β 4 and the intrinsic deformation parameters ε 4 , ε 2 are obtained. The deformation parameters β 4 of the rare-earths and actinides are determined without any free parameter. The calculated results agree with experimental data well. It also shows that the SU(5) limit of the sdg interacting boson model can describe the β 4 systematics as well as the SU(3) limit

  14. Neutron halo in deformed nuclei

    International Nuclear Information System (INIS)

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-01-01

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  15. Ground state properties of exotic nuclei in deformed medium mass region

    International Nuclear Information System (INIS)

    Manju; Chatterjee, R.; Singh, Jagjit; Shubhchintak

    2017-01-01

    The dipole moment, size of the nucleus and other ground state properties of deformed nuclei 37 Mg and 31 Ne are presented. Furthermore with this deformed wave function the electric dipole strength distribution for deformed nuclei 37 Mg and 31 Ne is calculated. This will allow us to investigate the two dimensional scaling phenomenon with two parameters: quadrupole deformation and separation energy

  16. Systematics of triaxial deformation in Xe, Ba, and Ce nuclei

    International Nuclear Information System (INIS)

    Yan, J.; Vogel, O.; von Brentano, P.; Gelberg, A.

    1993-01-01

    The (β,γ) deformation parameters of even-even Xe, Ba, and Ce nuclei have been calculated by using the triaxial rotor model. Deformation parameters calculated, on one hand, from decay properties and, on the other hand, from energies are in good agreement. The smooth dependence of the deformation parameters on Z and N is discussed. The results are compared with those extracted from properties of odd-A nuclei

  17. ''Identical'' bands in normally-deformed nuclei

    International Nuclear Information System (INIS)

    Garrett, J.D.; Baktash, C.; Yu, C.H.

    1990-01-01

    Gamma-ray transitions energies in neighboring odd- and even-mass nuclei for normally-deformed nuclear configurations are analyzed in a manner similar to recent analyses for superdeformed states. The moment of inertia is shown to depend on pair correlations and the aligned angular momentum of the odd nucleon. The implications of this analysis for ''identical'' super-deformed bands are discussed. 26 refs., 9 figs

  18. Rotational states in deformed nuclei: An analytic approach

    International Nuclear Information System (INIS)

    Bentz, W.; Arima, A.; Enders, J.; Wambach, J.; Richter, A.

    2011-01-01

    The consequences of the spontaneous breaking of rotational symmetry are investigated in a field theory model for deformed nuclei, based on simple separable interactions. The crucial role of the Ward-Takahashi identities in describing the rotational states is emphasized. We show explicitly how the rotor picture emerges from the isoscalar Goldstone modes and how the two-rotor model emerges from the isovector scissors modes. As an application of the formalism, we discuss the M1 sum rules in deformed nuclei and make the connection to empirical information.

  19. Collisions of deformed nuclei and superheavy-element production

    International Nuclear Information System (INIS)

    Iwamoto, Akira; Moeller, P.; Univ. of Aizu, Fukushima; P. Moller Scientific Computing and Graphics, Inc., Los Alamos, NM; Los Alamos National Lab., NM; Nix, J.R.; Sagawa, Hiroyuki, Sagawa

    1995-01-01

    A detailed understanding of complete fusion cross sections in heavy-ion collisions requires a consideration of the effects of the deformation of the projectile and target. The aim here is to show that deformation and orientation of the colliding nuclei have a very significant effect on the fusion-barrier height and on the compactness of the touching configuration. To facilitate discussions of fusion configurations of deformed nuclei, the authors develop a classification scheme and introduce a notation convention for these configurations. They discuss particular deformations and orientations that lead to compact touching configurations and to fusion-barrier heights that correspond to fairly low excitation energies of the compound systems. Such configurations should be the most favorable for producing superheavy elements. They analyze a few projectile-target combinations whose deformations allow favorable entrance-channel configurations and whose proton and neutron numbers lead to compound systems in a part of the superheavy region where a half-lives are calculated to be observable, that is, longer than 1 micros

  20. Dynamic deformation theory of spherical and deformed light and heavy nuclei with A = 12-240

    International Nuclear Information System (INIS)

    Kumar, Krishna.

    1979-01-01

    Deformation dependent wave functions are calculated for different types of even-even nuclei (spherical, transitional, deformed; light, medium, heavy) without any fitting parameters. These wave functions are employed for the energies, B(E2)'s, quadrupole and magnetic moments of selected nuclei with A = 12-240 (with special emphasis on 56 Fe, 154 Gd), and for neutron cross sections of 148 Sm, 152 Sm

  1. Single particle Schroedinger fluid and moments of inertia of deformed nuclei

    International Nuclear Information System (INIS)

    Doma, S.B.

    2002-01-01

    The authors have applied the theory of the single-particle Schroedinger fluid to the nuclear collective motion of axially deformed nuclei. A counter example of an arbitrary number of independent nucleons in the anisotropic harmonic oscillator potential at the equilibrium deformation has been also given. Moreover, the ground states of the doubly even nuclei in the s-d shell 20 Ne, 24 Mg, 28 Si, 32 S and 36 Ar are constructed by filling the single-particle states corresponding to the possible values of the number of quanta of excitations n x , n y and n z . Accordingly, the cranking-model, the rigid-body model and the equilibrium-model moments of inertia of these nuclei are calculated as functions of the oscillator parameters ℎω x , ℎω y and ℎω z which are given in terms of the non deformed value ℎω 0 0 , depending on the mass number A, the number of neutrons N, the number of protons Z, and the deformation parameter β. The calculated values of the cranking-model moments of inertia of these nuclei are in good agreement with the corresponding experiential values and show that the considered axially deformed nuclei may have oblate as well as prolate shapes and that the nucleus 24 Mg is the only one which is highly deformed. The rigid-body model and the equilibrium-model moments of inertia of the two nuclei 20 Ne and 24 Mg are also in good agreement with the corresponding experimental values

  2. Gyromagnetic factors for high spin states in the actinides

    International Nuclear Information System (INIS)

    Ring, P.

    1984-01-01

    The cranked Hartree-Fock-Bogoliubov theory was used for a systematic investigation of gyromagnetic factors in the yrast states of even-even actinide nuclei. The theory used was the most simplified version with fixed deformation and gap parameters, that is, so-called rotating shell model. The gyromagnetic factor g and the contribution gsub(p) and gsub(n) were obtained for a large number of nuclei in the actinide region. The aligned angular momenta for protons and for neutrons are shown in the same actinide region. The general behaviour of g-factor was able to be understood in terms of simple rules: (i) For fixed proton number, neutron alignment becomes more difficult with increasing the neutron number, and vice versa. (ii) A sudden neutron alignment was observed for N=140 and N=146, and a sudden proton alignment was also observed for Z=94. The alignment between these critical numbers was smooth. The pattern obtained for the values of the aligned angular momentum was clearly reflected to the g-factor, and it provided an excellent tool to study the structure of level in the high spin region. (Asami, T.)

  3. Beta-delayed fission and neutron emission calculations for the actinide cosmochronometers

    International Nuclear Information System (INIS)

    Meyer, B.S.; Howard, W.M.; Mathews, G.J.; Takahashi, K.; Moeller, P.; Leander, G.A.

    1989-01-01

    The Gamow-Teller beta-strength distributions for 19 neutron-rich nuclei, including ten of interest for the production of the actinide cosmochronometers, are computed microscopically with a code that treats nuclear deformation explicitly. The strength distributions are then used to calculate the beta-delayed fission, neutron emission, and gamma deexcitation probabilities for these nuclei. Fission is treated both in the complete damping and WKB approximations for penetrabilities through the nuclear potential-energy surface. The resulting fission probabilities differ by factors of 2 to 3 or more from the results of previous calculations using microscopically computed beta-strength distributions around the region of greatest interest for production of the cosmochronometers. The indications are that a consistent treatment of nuclear deformation, fission barriers, and beta-strength functions is important in the calculation of delayed fission probabilities and the production of the actinide cosmochronometers. Since we show that the results are very sensitive to relatively small changes in model assumptions, large chronometric ages for the Galaxy based upon high beta-delayed fission probabilities derived from an inconsistent set of nuclear data calculations must be considered quite uncertain

  4. Polarized electric dipole moment of well-deformed reflection asymmetric nuclei

    International Nuclear Information System (INIS)

    Denisov, V.Yu.

    2012-01-01

    The expression for polarized electric dipole moment of well-deformed reflection asymmetric nuclei is obtained in the framework of liquid-drop model in the case of geometrically similar proton and neutron surfaces. The expression for polarized electric dipole moment consists of the first and second orders terms. It is shown that the second-order correction terms of the polarized electric dipole moment are important for well-deformed nuclei

  5. Spectroscopy of very heavy nuclei with a view to study super-heavy nuclei

    International Nuclear Information System (INIS)

    Khalfallah, F.

    2007-08-01

    Within the recent years, the spectroscopic study of single particle orbitals of very heavy elements (VHE) has become possible with the development of increasingly efficient experimental setups. This allows us, through nuclear deformation, to access with these deformed nuclei to orbitals situated around the Fermi level in the spherical superheavy elements (SHE) and learn more about the nuclear structure of these nuclei. The aim of this work is the spectroscopic studies of heavy and very heavy elements. Because of the experimental difficulties associated with the fusion reactions in the VHE region, a detailed optimization studies is essential. Simulation of energy loss and angular straggling of these nuclei due to the interaction in the target and to neutron's evaporation was carried out and allowed us to optimize the angular acceptance of the separators according to the target thickness. An extensive survey and exploration in the VHE region was also conducted on the basis of cross section's systematics in the literature and simulations carried out using the statistical code Hivap. In this framework, the possible extension of the range of validity of a set of Hivap parameters was investigated. This work has enabled us to prepare a list of experiments of interest for the production of very heavy nuclei. In this thesis, our work was concentrated on the spectroscopy of the nuclei No 256 et Rf 256 for which two experimental proposals were accepted. The octupole deformations predicted in the actinides region is studied in another part of this thesis, a part witch is dedicated to the gamma spectroscopy of Pa 223 . The data from a new experiment carried out using the Jurogam-Ritu-Great setup are analysed and compared to previous results. They confirm the octupole deformed shape in this nucleus. (author)

  6. Relativistic extension of the complex scaled Green's function method for resonances in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Min [Anhui University, School of Physics and Materials Science, Hefei (China); RIKEN Nishina Center, Wako (Japan); Shi, Xin-Xing; Guo, Jian-You [Anhui University, School of Physics and Materials Science, Hefei (China); Niu, Zhong-Ming [Anhui University, School of Physics and Materials Science, Hefei (China); Interdisciplinary Theoretical Science Research Group, RIKEN, Wako (Japan); Sun, Ting-Ting [Zhengzhou University, School of Physics and Engineering, Zhengzhou (China)

    2017-03-15

    We have extended the complex scaled Green's function method to the relativistic framework describing deformed nuclei with the theoretical formalism presented in detail. We have checked the applicability and validity of the present formalism for exploration of the resonances in deformed nuclei. Furthermore, we have studied the dependences of resonances on nuclear deformations and the shape of potential, which are helpful to recognize the evolution of resonant levels from stable nuclei to exotic nuclei with axially quadruple deformations. (orig.)

  7. Collective two-phonon states in deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Shirikova, N.Y.

    1982-01-01

    The Pauli principle in the two-phonon components of the wave functions is taken into account within the framework of the quasiparticle-phonon model of the nucleus with phonon operators depending on the sign of the projection of the angular momentum. The centroid energies of collective two-phonon states in even-even deformed nuclei are calculated and it is shown that the inclusion of the Pauli principle shifts them by 1--3 MeV to higher energies. The shifts of the three-phonon poles due to the inclusion of the Pauli principle in the three-phonon components of the wave functions are calculated. Strong fragmentation of collective two-phonon states whose energy centroids are 3--5 MeV should be expected. It is concluded that collective two-phonon states need not exist in deformed nuclei. The situation with the 168 Er nucleus and the Th and U isotopes is analyzed

  8. Some aspects of reflection asymmetric deformations in nuclei

    International Nuclear Information System (INIS)

    Olanders, P.

    1984-10-01

    The nuclear shape in the intrinsic frame is studied using the Strutinsky method. Various potentials (Nilsson, folded Yukawa and Woods-Saxon) are used for the microscopic part, and the macroscopic part is described as a liquid drop with either a sharp or a smooth surface. Special attention is paid to the possibility of octupole deformed ground states. The consequences of octupole deformations for the rotational behaviour are investigated using the cranking model. It is particularly shown that octupole deformation may supress the backbending in some nuclei. (author)

  9. Equilibrium deformations of single-particle states of odd nuclei of rare earth region

    International Nuclear Information System (INIS)

    Alikov, B.A.; Tsoj, E.G.; Zuber, K.; Pashkevich, V.V.

    1983-01-01

    In terms of the Strutinsky shell-correction method using the Woods-Saxon non-spherical potential the energies, quadrupole, and hexadecapole momenta of the ground and excited states of odd-proton nuclei with 61 6 deformation on atomic nuclei non-rotation states energies is discussed. It is shown that account of deformation of α 6 type slightly influences on the quadrupole and hexadecapole deformation value

  10. Relativistic mean field theory for deformed nuclei with pairing correlations

    International Nuclear Information System (INIS)

    Geng, Lisheng; Toki, Hiroshi; Sugimoto, Satoru; Meng, Jie

    2003-01-01

    We develop a relativistic mean field (RMF) description of deformed nuclei with pairing correlations in the BCS approximation. The treatment of the pairing correlations for nuclei whose Fermi surfaces are close to the threshold of unbound states needs special attention. With this in mind, we use a delta function interaction for the pairing interaction to pick up those states whose wave functions are concentrated in the nuclear region and employ the standard BCS approximation for the single-particle states obtained from the BMF theory with deformation. We apply the RMF + BCS method to the Zr isotopes and obtain a good description of the binding energies and the nuclear radii of nuclei from the proton drip line to the neutron drip line. (author)

  11. Nuclear-charge polarization at scission in fission from moderately excited light-actinide nuclei

    International Nuclear Information System (INIS)

    Nishinaka, Ichiro

    2009-01-01

    Fragment mass yields and the average neutron multiplicity in the proton-induced fission of 232 Th and 238 U were measured by a double time-of-flight method. The most probable charges of secondary fragments were evaluated from the fragment mass yields measured by the double time-of-flight method and the fractional cumulative and independent yields reported in literature. The nuclear-charge polarization of primary fragments at scission was obtained by correcting the most probable charge of secondary fragments for neutron evaporation. The results show that the nuclear-charge polarization at scission is associated with the liquid-drop properties of nuclei and the proton shell effect with Z = 50 of heavy fragments and that it is practically insensitive to mass and excitation energy of the fissioning nucleus in the region of light-actinide nuclei. (author)

  12. Anisotropy of favoured alpha transitions producing even-even deformed nuclei

    International Nuclear Information System (INIS)

    Tavares, O.A.P.

    1997-05-01

    The anisotropy in favoured alpha transitions which produce even-even deformed nuclei is discussed. A simple, Gamow's-like model which takes into account the quadrupole deformation of the product nucleus has been formulated to calculate the alpha decay half-life. It is assumed that before tunneling into a purely Coulomb potential barrier the two-body system oscillated isotropically, thus giving rise to an equivalent, average preferential polar direction θ 0 (referred to the symmetry axis of the ellipsoidal shape of the product nucleus) for alpha emission in favoured alpha transitions of even-even nuclei. (author)

  13. Strongly Enhanced Low Energy Alpha-Particle Decay in Heavy Actinide Nuclei and Long-Lived Superdeformed and Hyperdeformed Isomeric States

    CERN Document Server

    Marinov, Amnon; Kolb, D.; Weil, J.L.

    2001-01-01

    Relatively low energy and very enhanced alpha-particle groups have been observed in various actinide fractions produced via secondary reactions in a CERN W target which had been irradiated with 24-GeV protons. In particular, 5.14, 5.27 and 5.53 MeV alpha-particle groups with corresponding half-lives of 3.8(+ -)1.0 y, 625(+ -)84 d and 26(+ -)7 d, have been seen in Bk, Es and Lr-No sources, respectively. The measured energies are a few MeV lower than the known g.s. to g.s. alpha-decays in the corresponding neutron-deficient actinide nuclei. The half-lives are 4 to 7 orders of magnitude shorter than expected from the systematics of alpha-particle decay in this region of nuclei. The deduced evaporation residue cross sections are in the mb region, about 4 orders of magnitude higher than expected. A consistent interpretation of the data is given in terms of production of long-lived isomeric states in the second and third wells of the potential-energy surfaces of the parent nuclei, which decay to the corresponding w...

  14. Fusion barrier characteristics of actinides

    Science.gov (United States)

    Manjunatha, H. C.; Sridhar, K. N.

    2018-03-01

    We have studied fusion barrier characteristics of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations. After the calculation of fusion barrier heights and positions, we have searched for their parameterization. We have achieved the empirical formula for fusion barrier heights (VB), positions (RB), curvature of the inverted parabola (ħω) of actinide compound nuclei with atomic number range 89 ≤ Z ≤ 103 for all projectile target combinations (6 projectile target combinations. The values produced by the present formula are also compared with experiments. The present pocket formula produces fusion barrier characteristics of actinides with the simple inputs of mass number (A) and atomic number (Z) of projectile-targets.

  15. Study of ^{14}C Cluster Decay Half-Lives of Heavy Deformed Nuclei

    Science.gov (United States)

    Shamami, S. Rahimi; Pahlavani, M. R.

    2018-01-01

    A theoretical model based on deformed Woods-Saxon, Coulomb and centrifugal terms are constructed to evaluate the half-lives for the cluster radioactivity of various super heavy nuclei. Deformation have been applied on all parts of their potential containing nuclear barrier for cluster decay. Also, both parent and daughter nuclei are considered to be deformed. The calculated results of ^{14}C cluster radioactivity half-lives are compared with available experimental data. A satisfactory agreement between theoretical and measured data is achieved. Also, obtained half-lives for each decay family is agreed with Geiger-Nuttall law.

  16. {Delta}I = 2 energy staggering in normal deformed dysprosium nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Riley, M.A.; Brown, T.B.; Archer, D.E. [Florida State Univ., Tallahassee, FL (United States)] [and others

    1996-12-31

    Very high spin states (I{ge}50{Dirac_h}) have been observed in {sup 155,156,157}Dy. The long regular band sequences, free from sharp backbending effects, observed in these dysprosium nuclei offer the possibility of investigating the occurence of any {Delta}I = 2 staggering in normal deformed nuclei. Employing the same analysis techniques as used in superdeformed nuclei, certain bands do indeed demonstrate an apparent staggering and this is discussed.

  17. Role of shape and quadrupole deformation of parents in the cluster emission of rare earth nuclei

    International Nuclear Information System (INIS)

    Girija, K.K.; Joseph, Antony

    2014-01-01

    The nuclear structure effects on α decay and cluster emission are investigated in the case of even–even rare earth nuclei 150–160 Dy, 150–160 Er, 150–160 Yb, 158,162,166–176 Hf, 160,164–178 W and 162,166,170–180 Os. The role of shape and deformation of parent nuclei in the decay rate is studied by taking the Coulomb and proximity potentials as the interacting barrier for the post scission configuration. The quadrupole deformation of parent nuclei causes a slight change in the half-life of α emissions, but it affects the rate of heavy cluster emissions significantly. Prolate deformation of parents enhances cluster emission, while an oblate deformation slows down the decay. Shape and deformation of parent nuclei causes change in the branching ratio also. A prolate deformation increases the branching ratio, whereas an oblate deformation reduces it. Highest branching ratio is predicted at N ∼ 90. (author)

  18. Strong electric and magnetic dipole excitations in deformed nuclei

    International Nuclear Information System (INIS)

    Kneissl, U.

    1993-01-01

    Systematic nuclear resonance fluorescence (NRF) experiments have been performed at the bremsstrahlung facility of the Stutgart dynamitron to investigate the distribution of magnetic and electric dipole excitations in deformed nuclei

  19. Real and complex boson expansions in even-even deformed nuclei

    International Nuclear Information System (INIS)

    Silvestre-Brac, B.; Piepenbring, R.

    1977-01-01

    Analysis of real and complex boson expansions of the Kishimoto-Tamura type is performed in a deformed basis in order to allow a further study of the anharmonicities of vibrations in deformed nuclei. It is shown that complex solutions cannot be found in the cases where no real one exists. (Auth.)

  20. IBA in deformed nuclei

    International Nuclear Information System (INIS)

    Casten, R.F.; Warner, D.D.

    1982-01-01

    The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for 168 Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong β → γ transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the β → γ transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ΔK=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics

  1. Spectroscopic study of 228-234Th nuclei using multi-nucleon transfer reactions

    International Nuclear Information System (INIS)

    Amzal, N.; Butler, P.A.; Cann, K.J.; Greenlees, P.T.; Jones, G.D.; Cocks, J.F.C.; Asztalos, S.; Clark, R.M.; Deleplanque, M.A.; Diamond, R.M.; Fallon, P.; Lees, I.Y.; Machiavelli, A.O.; MacLeod, R.W.; Stephens, F.S.; Jones, P.M.; Julin, R.; Broda, R.; Fornal, B.; Smith, J.F.; Lauritsen, T.; Bhattacharyya, P.; Zhang, C.T.

    1999-01-01

    Light-actinide nuclei in the octupole deformed region have been populated using multi-nucleon transfer from 232 Th. The energy level schemes of several thorium isotopes with A=228-234 have been extended up to I∼24ℎ and negative parity states have been observed for the first time in 234 Th. A systematic study of the difference in alignment between the positive- and negative-parity bands in thorium nuclei in this mass region shows that 228,230,234 Th behave like octupole vibrators, in contrast with 224,226 Th, which are octupole-deformed in character. An intrinsic electric dipole moment has been measured for the first time in 234 Th. The small value obtained is consistent with the vibrational description of this nucleus. (author)

  2. Nuclear quadrupole-quadrupole interaction in the inelastic scattering of aligned deuterons from deformed nuclei

    International Nuclear Information System (INIS)

    Clement, H.; Frick, R.; Graw, G.; Schiemenz, P.; Seichert, N.

    1983-01-01

    The 2 1 + -excitation of deformed nuclei by tensor polarized deuterons provides an alignment of both nuclei and thus a means to study specifically the quadrupole-quadrupole interaction between both nuclei. The tensor analyzing power Asub(xz)(theta) has been measured for the elastic and inelastic scattering on 24 Mg and 28 Si. The coupled channel analysis including a deformed tensor potential reveals a clear signature of the quadrupole-quadrupole part of the nuclear projectile-target interaction. (orig.)

  3. Deformed model Sp(4) model for studying pairing correlations in atomic nuclei

    CERN Document Server

    Georgieva, A I; Sviratcheva, K

    2002-01-01

    A fermion representation of the compact symplectic sp(4) algebra introduces a theoretical framework for describing pairing correlations in atomic nuclei. The important non-deformed and deformed subalgebras of sp sub ( sub q sub ) (4) and the corresponding reduction chains are explored for the multiple orbit problem. One realization of the u sub ( sub q sub ) (2) subalgebra is associated with the valence isospin, other reductions describe coupling between identical nucleons or proton-neutron pairs. Microscopic non-deformed and deformed Hamiltonians are expressed in terms of the generators of the sp(4) and sp sub q (4) algebras. In both cases eigenvalues of the isospin breaking Hamiltonian are fit to experimental ground state energies. The theory can be used to investigate the origin of the deformation and predict binding energies of nuclei in proton-rich regions. The q-deformation parameter changes the pairing strength and in so doing introduces a non-linear coupling into the collective degree of freedom

  4. Survey of odd-odd deformed nuclear spectroscopy

    International Nuclear Information System (INIS)

    Hoff, R.W.

    1993-01-01

    In this paper, we survey the current experimental data that support assignment of rotational bands in odd-odd deformed nuclear in the rare earth and actinide regions. We present the results of a new study of 170 Mt nuclear structure. In a comparing experimental and calculated Gallagher-Moszkowski matrix elements for rare earth-region nuclei, we have developed a new approach to the systematics of these matrix elements

  5. New estimates of quadrupole deformation β of some nearly spherical even Mo nuclei

    International Nuclear Information System (INIS)

    Singh, Y.; Gupta, K.K.; Singh, M.; Bihari, Chhail; Varshney, A.K.; Gupta, D.K.

    2013-01-01

    The deformation parameter β and γ of the collective model of Bohr and Mottelson are basic descriptors of the nuclear equilibrium shape and structure. In recent past the sets of deformation parameters (β, γ) have been extracted from both level energies and E2 transition rates in even Xe, Ba and Ce nuclei and Hf, W, Os, Pt and Hg nuclei using rigid triaxial rotor model of Davydov – Filippov

  6. Production of actinide nuclei by multi-nucleon transfer

    Energy Technology Data Exchange (ETDEWEB)

    Lauritsen, T.; Ahmad, I.; Carpenter, M.P. [and others

    1995-08-01

    Multi-nucleon transfers have increasingly allowed us to reach parts of the nuclear chart where regular compound nuclear reactions are prohibited. The interesting region of Ra and Rn, where a rich tapestry of nuclear structure manifests itself, is now accessible using this technique of deep inelastic scattering. In particular, these nuclei are predicted to lie at the onset of octupole deformation and the region is rich in examples of shape coexistence. There are several theoretical predictions of nuclear structure of these nuclei that have not been experimentally tested. Moreover, there is serious disagreement among these theories. We used a beam of {sup 136}Xe at 720 MeV from ATLAS on a target of {sup 232}Th to produce a range of Rn isotopes, with a mass from 220 to 224, and Ra isotopes with masses greater than 222. The beam energy, target and beam were selected carefully to enhance the cross-section for production of these nuclei and reduce the Doppler broadening of the gamma rays that were observed in the Argonne Notre Dame gamma-ray facility. The 12 germanium detectors of this array allowed the observation of gamma-gamma coincidences. The inner ball of 50 BGO detectors allowed us to record the multiplicity and sum-energy information for each event. The latter should permit us to determine the entry region in the products of the transfer reaction. We had four successful days of beam-time, when we collected in excess of 8 x 10{sup 7} events. Data analysis is in progress at the University of Liverpool. A complete set of spectroscopic information on the yrast structure of the many nuclei produced in this reaction is being extracted.

  7. Exotic octupole deformation in proton-rich Z=N nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Takami, Satoshi; Yabana, K [Niigata Univ. (Japan); Matsuo, M

    1998-03-01

    We study static non-axial octupole deformations in proton-rich Z=N nuclei, {sup 64}Ge, {sup 68}Se, {sup 72}Kr, {sup 76}Sr, {sup 80}Zr and {sup 84}Mo, by using the Skyrme Hartree-Fock plus BCS method with no restrictions on the nuclear shape. The calculation predicts that the oblate ground state in {sup 68}Se is extremely soft for the Y{sub 33} triangular deformation, and that in {sup 80}Zr the low-lying local minimum state coexisting with the prolate ground state has the Y{sub 32} tetrahedral deformation. (author)

  8. Study of Triaxial deformation variable γ in even - even nuclei

    International Nuclear Information System (INIS)

    Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Sharma, Aparna; Varshney, A.K.; Singh, M.; Gupta, D.K.; Varshney, Mani; Dhiman, S.K.

    2011-01-01

    The deformation parameters β and γ of the collective model are basic description of the nuclear equilibrium shape and structure, while values for these variables have been discussed for many nuclei. A systematic study in mass region A = 120-140 and A = 150 -180 can never be less revealing, such study has been presented, in A = 90 -120 for Mo, Ru and Pd nuclei where β and γ both vary strongly

  9. Gamma band odd-even staggering in some deformed nuclei

    International Nuclear Information System (INIS)

    Khairy, M.K.; Talaat, SH.M.; Morsy, M.

    2005-01-01

    A complete investigation was carried out in studying the odd-even staggering (OES) of gamma bands energy levels in some deformed nuclei up to angular momentum L=13 . With the help of Minkov treatment in the framework of a collective Vector Boson Model (VBM) with broken SU (3) symmetry. The OES behavior of deformed isotopes 162 E r, 164 E r, 166 E r, 156 G d, 170 Y b and 232 T h was studied and discussed

  10. Superdeformed nuclei

    International Nuclear Information System (INIS)

    Janssens, R.V.F.; Khoo, T.L.

    1991-01-01

    Superdeformation was first proposed some twenty years ago to explain the fission isomers observed in some actinide nuclei. It was later realized that superdeformed shapes can occur at high angular momentum in lighter nuclei. The interest in the mechanisms responsible for these exotic shapes has increased enormously with the discovery of a superdeformed band of nineteen discrete lines in 152 Dy (8). At about the same time, evidence for highly deformed nuclei (axis ratio 3:2) was also reported near 132 Ce(9). Striking properties emerged from the first experiments, such as the essentially constant energy spacing between transitions (picket-fence spectra), the unexpectedly strong population of superdeformed bands at high spins, and the apparent lack of a link between the superdeformed states and the yrast levels. These findings were reviewed by Nolan and Twin. The present article follows upon their work and discusses the wealth of information that has since become available. This includes the discovery of a new island of superdeformation near A = 190, the detailed spectroscopy of ground and excited bands in the superdeformed well near A = 150 and A = 190, the surprising occurrence of superdeformed bands with identical transition energies in nuclei differing by one or two mass units, and the improved understanding of mechanisms responsible for the feeding into and the decay out of the superdeformed states

  11. The reduced transition probabilities for excited states of rare-earths and actinide even-even nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Ghumman, S. S. [Department of Physics, Sant Longowal Institute of Engineering and Technology (Deemed University), Longowal, Sangrur-148106, Punjab, India s-ghumman@yahoo.com (India)

    2015-08-28

    The theoretical B(E2) ratios have been calculated on DF, DR and Krutov models. A simple method based on the work of Arima and Iachello is used to calculate the reduced transition probabilities within SU(3) limit of IBA-I framework. The reduced E2 transition probabilities from second excited states of rare-earths and actinide even–even nuclei calculated from experimental energies and intensities from recent data, have been found to compare better with those calculated on the Krutov model and the SU(3) limit of IBA than the DR and DF models.

  12. Effective field theory of emergent symmetry breaking in deformed atomic nuclei

    International Nuclear Information System (INIS)

    Papenbrock, T; Weidenmüller, H A

    2015-01-01

    Spontaneous symmetry breaking in non-relativistic quantum systems has previously been addressed in the framework of effective field theory. Low-lying excitations are constructed from Nambu–Goldstone modes using symmetry arguments only. We extend that approach to finite systems. The approach is very general. To be specific, however, we consider atomic nuclei with intrinsically deformed ground states. The emergent symmetry breaking in such systems requires the introduction of additional degrees of freedom on top of the Nambu–Goldstone modes. Symmetry arguments suffice to construct the low-lying states of the system. In deformed nuclei these are vibrational modes each of which serves as band head of a rotational band. (paper)

  13. Situation with collective two-phonon states in deformed nuclei

    International Nuclear Information System (INIS)

    Soloviev, V.G.; Shirikova, N.Yu.

    1982-01-01

    Within the quasiparticle-phonon nuclear model with the operators of phonons depending on the sign of the angular momentum projection, the Pauli principle is taken into account in the two-phonon components of the wave functions. The centroid energies of the collective two-phonon states in even-even deformed nuclei are calculated. It is shown that the inclusion of the Pauli principle leads to their shift by 1-3 MeV towards high energies. The shifts of three-phonon poles due to the Pauli principle are calculated in the three-phonon components of the wave functions. The collective two-phonon states, the centroid energies of which are 3-5 MeV, are expected to be strongly fragmented. The conclusion is confirmed that the collective two-phonon states should not exist in deformed nuclei. The situation in 168 Er and in the 228 Th isotopes is analysed

  14. E2 transitions in deformed nuclei and the IBA

    International Nuclear Information System (INIS)

    Warner, D.D.; Casten, R.F.

    1981-01-01

    The mechanism which determines the relative E2 strengths in the Interacting Boson Approximation is studied, and the structure of the E2 operator necessary to reproduce the empirical B(E2) values in deformed even-even nuclei in the rate earth region is investigated

  15. Rare-earth nuclei: Radii, isotope-shifts and deformation properties in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Lalazissis, G.A.; Ring, P.

    1996-01-01

    A systematic study of the ground-state properties of even-even rare earth nuclei has been performed in the framework of the Relativistic Mean-Field (RMF) theory using the parameter set NL-SH. Nuclear radii, isotope shifts and deformation properties of the heavier rare-earth nuclei have been obtained, which encompass atomic numbers ranging from Z=60 to Z=70 and include a large range of isospin. It is shown that RMF theory is able to provide a good and comprehensive description of the empirical binding energies of the isotopic chains. At the same time the quadrupole deformations β 2 obtained in the RMF theory are found to be in good agreement with the available empirical values. The theory predicts a shape transition from prolate to oblate for nuclei at neutron number N=78 in all the chains. A further addition of neutrons up to the magic number 82 brings about the spherical shape. For nuclei above N=82, the RMF theory predicts the well-known onset of prolate deformation at about N=88, which saturates at about N=102. The deformation properties display an identical behaviour for all the nuclear chains. A good description of the above deformation transitions in the RMF theory in all the isotopic chains leads to a successful reproduction of the anomalous behaviour of the empirical isotopic shifts of the rare-earth nuclei. The RMF theory exhibits a remarkable success in providing a unified and microscopic description of various empirical data. (orig.)

  16. Fragmentation of two-phonon {gamma}-vibrational strength in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Wu, C.Y.; Cline, D. [Univ. of Rochester, NY (United States)

    1996-12-31

    Rotational and vibrational modes of collective motion. are very useful in classifying the low-lying excited states in deformed nuclei. The rotational mode of collective motion is characterized by rotational bands having correlated level energies and strongly-enhanced E2 matrix elements. The lowest intrinsic excitation with I,K{sup {pi}} = 2,2{sup +} in even-even deformed nuclei, typically occurring at {approx}1 MeV, is classified as a one-phonon {gamma}-vibration state. In a pure harmonic vibration limit, the expected two-phonon {gamma}-vibration states with I,K{sup {pi}} = 0,0{sup +} and 4,4{sup +} should have excitation energies at twice that of the I,K{sup {pi}} = 2,2{sup +} excitation, i.e. {approx}2 MeV, which usually is above the pairing gap leading to possible mixing with two-quasiparticle configurations. Therefore, the question of the localization of two-phonon {gamma}-vibration strength has been raised because mixing may lead to fragmentation of the two-phonon strength over a range of excitation energy. For several well-deformed nuclei, an assignment of I,K{sup {pi}}=4,4{sup +} states as being two-phonon vibrational excitations has been suggested based on the excitation energies and the predominant {gamma}-ray decay to the I,K{sup {pi}}=2,2{sup +} state. However, absolute B(E2) values connecting the presumed two- and one-phonon states are the only unambiguous measure of double phonon excitation. Such B(E2) data are available for {sup 156}Gd, {sup 160}Dy, {sup 168}Er, {sup 232}Th, and {sup 186,188,190,192}Os. Except for {sup 160}Dy, the measured B(E2) values range from 2-3 Weisskopf units in {sup 156}Gd to 10-20 Weisskopf units in osmium nuclei; enhancement that is consistent with collective modes of motion.

  17. Relativistic quasiparticle random phase approximation in deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Pena Arteaga, D.

    2007-06-25

    Covariant density functional theory is used to study the influence of electromagnetic radiation on deformed superfluid nuclei. The relativistic Hartree-Bogolyubov equations and the resulting diagonalization problem of the quasiparticle random phase approximation are solved for axially symmetric systems in a fully self-consistent way by a newly developed parallel code. Three different kinds of high precision energy functionals are investigated and special care is taken for the decoupling of the Goldstone modes. This allows the microscopic investigation of Pygmy and scissor resonances in electric and magnetic dipole fields. Excellent agreement with recent experiments is found and new types of modes are predicted for deformed systems with large neutron excess. (orig.)

  18. Improving the Calculation of The Potential Between Spherical and Deformed Nuclei

    International Nuclear Information System (INIS)

    Ismail, M.; Ramadan, Kh.A.

    2000-01-01

    The Heavy Ion (HI) interaction potential between spherical and deformed nuclei is improved by calculating its exchange part using finite range nucleon-nucleon (NN) force. We considered U 238 as a target nucleus and seven projectile nuclei to show the dependence of the HI potential on both the energy and orientation of the deformed target nucleus. The effect of finite range NN force has been found to produce significant changes in the HI potential. The variation of the barrier height V B , its thickness and its position R B due to the use of finite range NN force are significant. Such variation enhance the fusion cross-section at energy values just below the Coulomb barrier by a factor increasing with the mass number of projectile nucleus. (author)

  19. Effects of high-order deformation on high-K isomers in superheavy nuclei

    International Nuclear Information System (INIS)

    Liu, H. L.; Bertulani, C. A.; Xu, F. R.; Walker, P. M.

    2011-01-01

    Using, for the first time, configuration-constrained potential-energy-surface calculations with the inclusion of β 6 deformation, we find remarkable effects of the high-order deformation on the high-K isomers in 254 No, the focus of recent spectroscopy experiments on superheavy nuclei. For shapes with multipolarity six, the isomers are more tightly bound and, microscopically, have enhanced deformed shell gaps at N=152 and Z=100. The inclusion of β 6 deformation significantly improves the description of the very heavy high-K isomers.

  20. Self-consistent description of static properties of nuclear deformation from nucleon-nucleon effective interactions

    International Nuclear Information System (INIS)

    Quentin, Philippe.

    1975-01-01

    A self-consistent description of deformed nuclei is presented in the Hartree-Fock approximation after correcting in an approximate but variational way for pairing correlations. Density dependent phenomenological effective interactions have been used, mainly according to the Skyrme's parametrization. Methods in use and various related approximations are reviewed in an extensive way. Calculated nuclei belong to the s-d shell, to the rare earth region, to the two transitional regions before and after the latter region, and to the actinide region. For all these nuclei, calculated deformation properties agree remarkably well with experimental data. Such results are extensively compared with those obtained in the more phenomenological approach due to Strutinsky. Finally the hypotheses formulated by Strutinsky are checked numerically in a systematic way, thus leading to the conclusion of the validity of the Strutinsky method [fr

  1. Macroscopic-microscopic energy of rotating nuclei in the fusion-like deformation valley

    International Nuclear Information System (INIS)

    Gherghescu, R.A.; Royer, Guy

    2000-01-01

    The energy of rotating nuclei in the fusion-like deformation valley has been determined within a liquid drop model including the proximity energy, the two-center shell model and the Strutinsky method. The potential barriers of the 84 Zr, 132 Ce, 152 Dy and 192 Hg nuclei have been determined. A first minimum having a microscopic origin and lodging the normally deformed states disappears with increasing angular momenta. The microscopic and macroscopic energies contribute to generate a second minimum where superdeformed states may survive. It becomes progressively the lowest one at intermediate spins. At higher angular momenta, the minimum moves towards the foot of the external fission barrier leading to hyperdeformed quasi-molecular states. (author)

  2. Microscopic description of low-lying M1 excitations in odd-mass actinide nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Tabar, Emre, E-mail: etabar@sakarya.edu.tr [Physics Department, Sakarya University, 54187 Sakarya (Turkey); Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), Sakarya University, 54187 Sakarya (Turkey); Yakut, Hakan, E-mail: hyakut@sakarya.edu.tr [Physics Department, Sakarya University, 54187 Sakarya (Turkey); Biomedical, Magnetic and Semiconductor Materials Research Center (BIMAS-RC), Sakarya University, 54187 Sakarya (Turkey); Kuliev, Ali Akbar [Azerbaijan National Academy of Aviation, Baku (Azerbaijan)

    2017-01-15

    A restoration method of a broken symmetry which allows self-consistent determination of the separable effective restoration forces is now adapted to odd-mass nuclei in order to restore violated rotational invariance (RI-) of the Quasiparticle Phonon Nuclear Model (QPNM) Hamiltonian. Because of the self-consistency of the method, these effective forces contain no arbitrary parameters. Within RI-QPNM, the properties of the low-lying magnetic dipole excitations in odd-mass deformed {sup 229–233}Th and {sup 233–239}U nuclei have been investigated for the first time. It has been shown that computed fragmentation of the M1 strengths below 4 MeV in these nuclei is much stronger than that in neighboring doubly even {sup 228–232}Th and {sup 232–238}U nuclei. For {sup 235}U the summed M1 strength in the energy range 1.5–2.8 MeV is in agreement with the relevant experimental data where the missing strength was extracted by means of a fluctuation analysis.

  3. On the study of level density parameters for some deformed light nuclei

    International Nuclear Information System (INIS)

    Sonmezoglu, S.

    2005-01-01

    The nuclear level density, which is the number of energy levels/MeV at an excitation energy Ex , is a characteristic property of every nucleus. Total level densities are among the key quantities in statistical calculations in many fields, such as nuclear physics, astrophysics, spallation s neutrons measurements, and studies of intermediate-energy heavy-ion collisions. The nuclear level density is an important physical quantity both from the fundamental point of view as well as in understanding the particle and gamma ray emission in various reactions. In light and heavy deformed nucleus, the gamma-ray energies drop with decreasing spin in a very regular fashion. The nuclear level density parameters have been usually used in investigation of the nuclear level density. This parameter itself changes with excitation energy depending on both shell effect in the single particle model and different excitation modes in the collective models. In this study, the energy level density parameters of some deformed light nucleus (40 C a, 47 T i, 59 N i, 79 S e, 80 B r) are determined by using energy spectrum of the interest nucleus for different band. In calculation of energy-level density parameters dependent upon excitation energy of nuclei studied, a model was considered which relies on the fact that energy levels of deformed light nuclei, just like those of deformed heavy nuclei, are equidistant and which relies on collective motions of their nucleons. The present calculation results have been compared with the corresponding experimental and theoretical results. The obtained results are in good agreement with the experimental results

  4. Thermal neutron actinide data

    International Nuclear Information System (INIS)

    Tellier, H.

    1992-01-01

    During the 70's, the physicists involved in the cross section measurements for the low energy neutrons were almost exclusively interested in the resonance energy range. The thermal range was considered as sufficiently known. In the beginning of the 80's, reactor physicists had again to deal with the delicate problem of the power reactor temperature coefficient, essentially for the light water reactors. The measured value of the reactivity temperature coefficient does not agree with the computed one. The later is too negative. For obvious safety reasons, it is an important problem which must be solved. Several causes were suggested to explain this discrepancy. Among all these causes, the spectral shift in the thermal energy range seems to be very important. Sensibility calculations shown that this spectral shift is very sensitive to the shape of the neutron cross sections of the actinides for energies below one electron-volt. Consequently, reactor physicists require new and accurate measurements in the thermal and subthermal energy ranges. A part of these new measurement results were recently released and reviewed. The purpose of this study is to complete the preceding review with the new informations which are now available. In reactor physics the major actinides are the fertile nuclei, uranium 238, thorium 232 and plutonium 240 and the fissile nuclei, uranium 233, uranium 235 and plutonium 239. For the fertile nuclei the main datum is the capture cross section, for the fissile nuclei the data of interest are nu-bar, the fission and capture cross sections or a combination of these data such as η or α. In the following sections, we will review the neutron data of the major actinides for the energy below 1 eV

  5. Effects of deformations and orientations on neutron-halo structure of light-halo nuclei

    International Nuclear Information System (INIS)

    Sawhney, Gudveen; Gupta, Raj K.; Sharma, Manoj K.

    2013-01-01

    The availability of radioactive nuclear beams have enabled to study the structure of nuclei far from the stability line, which in turn led to the discovery of neutron-halo nuclei. These nuclei, located near the neutron drip-line exhibit a high probability of presence of one or two loosely bound neutrons at a large distance from the rest of nucleons. The fragmentation behavior is studied for 13 cases of 1n-halo nuclei, which include 11 Be, 14 B, 15 C, 17 C, 19 C, 22 N, 22 O, 23 O, 24 O, 24 F, 26 F, 29 Ne and 31 Ne, using the cluster-core model (CCM) extended to include the deformations and orientations of nuclei

  6. Spectroscopy of heavy fissionable nuclei

    Indian Academy of Sciences (India)

    2015-08-05

    Aug 5, 2015 ... Nuclei in the actinide chain and beyond are prone to fission owing to ... mass nuclei are typically more difficult, because the intensity is .... j15/2 neutron alignments in a region where shell stablization effects are crucial.

  7. Spectroscopy of very heavy nuclei with a view to study super-heavy nuclei; Spectroscopie de noyaux tres lourds en vue de l'etude des noyaux super-lourds

    Energy Technology Data Exchange (ETDEWEB)

    Khalfallah, F

    2007-08-15

    Within the recent years, the spectroscopic study of single particle orbitals of very heavy elements (VHE) has become possible with the development of increasingly efficient experimental setups. This allows us, through nuclear deformation, to access with these deformed nuclei to orbitals situated around the Fermi level in the spherical superheavy elements (SHE) and learn more about the nuclear structure of these nuclei. The aim of this work is the spectroscopic studies of heavy and very heavy elements. Because of the experimental difficulties associated with the fusion reactions in the VHE region, a detailed optimization studies is essential. Simulation of energy loss and angular straggling of these nuclei due to the interaction in the target and to neutron's evaporation was carried out and allowed us to optimize the angular acceptance of the separators according to the target thickness. An extensive survey and exploration in the VHE region was also conducted on the basis of cross section's systematics in the literature and simulations carried out using the statistical code Hivap. In this framework, the possible extension of the range of validity of a set of Hivap parameters was investigated. This work has enabled us to prepare a list of experiments of interest for the production of very heavy nuclei. In this thesis, our work was concentrated on the spectroscopy of the nuclei No{sup 256} et Rf{sup 256} for which two experimental proposals were accepted. The octupole deformations predicted in the actinides region is studied in another part of this thesis, a part witch is dedicated to the gamma spectroscopy of Pa{sup 223}. The data from a new experiment carried out using the Jurogam-Ritu-Great setup are analysed and compared to previous results. They confirm the octupole deformed shape in this nucleus. (author)

  8. The multiphonon method as a dynamical approach to octupole correlations in deformed nuclei

    International Nuclear Information System (INIS)

    Piepenbring, R.

    1986-09-01

    The octupole correlations in nuclei are studied within the framework of the multiphonon method which is mainly the exact diagonalization of the total Hamiltonian in the space spanned by collective phonons. This treatment takes properly into account the Pauli principle. It is a microscopic approach based on a reflection symmetry of the potential. The spectroscopic properties of double even and odd-mass nuclei are nicely reproduced. The multiphonon method appears as a dynamical approach to octupole correlations in nuclei which can be compared to other models based on stable octupole deformation. 66 refs

  9. The splitting of giant multipole states of deformed nuclei

    International Nuclear Information System (INIS)

    Suzuki, T.; Rowe, D.J.

    1977-01-01

    A vibrating potential model is applied to deformed nuclei with a deformed harmonic oscillator potential in order to discuss the splitting of isoscalar giant quadrupole states. Eigenfrequencies of the collective states are estimated to be √2ω(1 - delta/3), √2ω(1 - delta/6) and √2ω(1 + delta/3) for K = 0 + ,1 + and 2 + modes, respectively. The splitting of isovector dipole and isovector quadrupole states is also studied according to a schematic model as proposed by Bohr and Mottelson. It is shown that isovector dipole states are split, as in a hydrodynamic model, while isovector quadrupole states with the same scaling factors as those of isocalar quadrupole modes. (Auth.)

  10. Evolution of the low-lying dipole strength in deformed nuclei with extreme neutron excess with the Relativistic QRPA

    International Nuclear Information System (INIS)

    Pena Arteaga, D.; Khan, E.; Ring, P.

    2009-01-01

    Covariant density functional theory, in the framework of self-consistent Relativistic Hartree Bogoliubov (HFB) and Relativistic Quasiparticle Random Phase approximation (RQRPA), is for the first time applied to axially deformed nuclei [1]. The fully self-consistent RHB+RQRPA equations are posed for the case of axial symmetry and different energy functionals, and solved with the help of a new parallel code. As a sample application, the El strength is systematically analyzed in very neutron-rich Sn nuclei, beyond 1 32S n until 1 66S n [2]. The great neutron excess favors the appearance of a deformed ground state for 1 42-162S n. The evolution of the low-lying strength in deformed nuclei is discussed, and in particular its dependence on the interplay of two major and competing factors, isospin asymmetry and deformation.(author)

  11. Pauli principle role in the description of collective non-rotational states of deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Shirikova, N.Yu.; Serdyukova, S.I.; Meliev, F.; Nesterenko, V.O.

    1981-01-01

    The Pauli principle role account for one-phonon and two- phonon states of even-even deformed nuclei sup(160, 164)Dy, sup(230, 232)Th, 154 Gd, 240 Pu, 238 U is performed. With account of isoscalar part of multipole-multipole interaction hamiltonian of a model and basic equations for energy and wave functions of one-phonon and two-phonon states are obtained. The results of calculations of centroids of energies of two-phonon states of the (lambda 1 μ 1 i 1 lambda 2 μ 2 i 2 ) type with and without the Pauli principle are tabulated. The calculations performed have shown that the energy centroids shift of collective two-phonon states with the Pauli-principle account is characteristic for all even-even deformed nuclei. In the authors opinion additional experimental investigations of 154 Cd, 164 Dy, 240 Pu two-phonon nuclei states to confirm theoretical results are necessary [ru

  12. Generalized vibrating potential model for collective excitations in spherical, deformed and superdeformed systems: (1) atomic nuclei, (2) metal clusters

    International Nuclear Information System (INIS)

    Nesterenko, V.O.; Kleinig, W.

    1995-01-01

    The self-consistent vibrating potential model (VPM) is extended for description of Eλ collective excitations in atomic nuclei and metal clusters with practically any kind of static deformation. The model is convenient for a qualitative analysis and provides the RPA accuracy of numerical calculations. The VPM is applied to study Eλ giant resonances in spherical metal clusters and deformed and superdeformed nuclei. It is shown that the deformation splitting of superdeformed nuclei results in a very complicated (''jungle-like'') structure of the resonances, which makes the experimental observation of E2 and E3 giant resonances in superdeformed nuclei quite problematic. Calculations of E1 giant resonance in spherical sodium clusters Na 8 , Na 20 and Na 40 are presented, as a test of the VPM in this field. The results are in qualitative agreement with the experimental data. (orig.)

  13. Fragmentation of single-particle states in deformed nuclei

    International Nuclear Information System (INIS)

    Malov, L.A.; Soloviev, V.G.

    1975-01-01

    Fragmentation of single-particle states on levels of deformed nuclei is studied on the example of 239 U and 169 Er nuclei in the framework of the model taking into consideration the interaction of quasiparticles with phonons. The dependence of fragmentation on the Fermi surface is considered from the viewpoint of single-particle levels. It is shown that in the distribution of single-particle strength functions a second maximum appears together with the large asymmetry maximum at high-energy excitation, and the distribution has a long ''tail''. A semimicroscopic approach is proposed for calculating the neutron strength functions. The following values of the strength functions are obtained: for sub(239)U-Ssub(0)sup(cal)=1.2x10sup(-4), Ssub(1)sup(cal)=2.7x10sub(-4) and for sub(169)Er-Ssub(0)sup(cal)=1.10sup(-4), Ssub(1)sup(cal)=1.2x10sup(-4)

  14. Program package for calculation of cross sections of neutron scattering on deformed nuclei by the coupled-channel method

    International Nuclear Information System (INIS)

    Kloss, Yu.Yu.

    1985-01-01

    Program package and numerical solution of the problem for a system of coupled equations used in optical model to solve a problem on low and mean energy neutron scattering on deformed nuclei, is considered. With these programs differnet scattering cross sections depending on the incident neutron energy on even-even and even-odd nuclei were obtained. The programm permits to obtain different scattering cross sections (elastic, inelastic), excitation cross sections of the first three energy levels of rotational band depending on the energy, angular distributions and neutron polarizations including excited channels. In the program there is possibility for accounting even-even nuclei octupole deformation

  15. On the Orientation Barrier Distribution of the interacting spherical- Deformed Nuclei

    International Nuclear Information System (INIS)

    Ismail, M.; Seif, W.M.

    2009-01-01

    The effect of different multipole deformations on the Coulomb barrier distribution in the orientation degrees of freedom is studied. The demonstrated Coulomb barriers are calculated microscopically using the double folding model which is based on realistic density dependent nucleon nucleon interaction. A simple straight forward method, presented in recent work, has been used to predict the distribution of barriers at arbitrary orientations in presence of different deformations far away the complicated numerical calculations. The proposed interpretation is related to the half density radius change of the deformed nucleus involved in interaction where the orientation Coulomb barrier parameters distributions show similar patterns to that of orientation deformed nucleus one. The orientation Coulomb barrier radius distribution follows the same variation of the deformed nucleus radius, while the barrier height distribution is directly proportional to it. This correlation allows a simple evaluation of the orientation barrier distribution which greatly helps us to estimate when the barrier parameters will increase or decrease and at which orientations they will be independent of the deformation. It helps also to estimate the optimum orientations for hot and cold fusion of colliding nuclei.

  16. Semimicroscopic description of the giant quadrupole resonances in deformed nuclei

    International Nuclear Information System (INIS)

    Kurchev, G.; Malov, L.A.; Nesterenko, V.O.; Soloviev, V.G.

    1976-01-01

    The calculation results of the giant quadrupole isoscalar and isovector resonances performed within the random phase approximation are represented. The strength functions for E2-transitions are calculated for doubly even deformed nuclei in the regions 150 (<=) A < 190 and 228 (<=) A < 248 in the energy interval (0-40) MeV. The following integral characteristics of giant quadrupole resonances are obtained: the position, widths, the contribution to the energy weighted sum rule and the contribution to the total cross section of photoabsorption. The calculations have shown that giant quadrupole resonances are common for all the considered nuclei. The calculated characteristics of the isoscalar giant quadrupole resonance agree with the available experimental data. The calculations also show that the semimicroscopic theory can be successfully applied for the description of giant multipole resonances

  17. Effect of the Pauli principle on the nonrotational states in odd-A deformed nuclei

    International Nuclear Information System (INIS)

    Bastrukov, S.I.; Nesterenko, V.O.; Soloviev, V.G.

    1982-01-01

    The commutation relations between the quasiparticle and phonon operators are used to obtain the equations allowing a correct accounting of the Pauli principle for the description of the states of odd-A deformed nuclei. It is shown, that if in the quasiparticle plus phonon component the Pauli principle is not violated or is slightly violated, then a relevant vibrational state may exist in an odd-A deformed nucleus

  18. Photon strength in spherical and deformed heavy nuclei

    International Nuclear Information System (INIS)

    Grosse, E.; Junghans, A.; Birgersson, E.; Massarczyk, R.; Schramm, G.; Becvar, F.

    2010-01-01

    Information on the photon strength in heavy nuclei with mass A>150 will be given and compared to respective data. The photon strength function is a very important ingredient for statistical model calculations - especially when these are used to describe neutron capture. Several schemes for a transmutation of radioactive waste favor nuclear reactions with fast neutrons and these also influence the performance of various reactor types proposed to deliver nuclear energy together with only small quantities of such waste. Reactions with fast neutrons are far less studied as compared to those induced by thermal neutrons. As they are not easily accessible experimentally, reference is often made to calculations using the statistical model. Photon emission probabilities are needed as input to such calculations aiming for predictions on fission to capture ratios. From the favorable comparison of our parameterization to the experimental data for photon induced as well radiative capture processes in nuclei with various shapes and level densities we conclude what follows. First, the giant dipole resonance has very much the same properties in all heavy nuclei when their deformation is properly accounted for and its spreading width varies only smoothly with the resonance energies E k and not with the photon energy E γ . The radiative neutron capture results presented confirm strength data found in the literature. We also learn that our parameterization is at least a good approximation for photon energies below 4 MeV that dominate this process

  19. Relativistic deformed mean-field calculation of binding energy differences of mirror nuclei

    International Nuclear Information System (INIS)

    Koepf, W.; Barreiro, L.A.

    1996-01-01

    Binding energy differences of mirror nuclei for A=15, 17, 27, 29, 31, 33, 39 and 41 are calculated in the framework of relativistic deformed mean-field theory. The spatial components of the vector meson fields and the photon are fully taken into account in a self-consistent manner. The calculated binding energy differences are systematically smaller than the experimental values and lend support to the existence of the Okamoto-Nolen-Schiffer anomaly found decades ago in nonrelativistic calculations. For the majority of the nuclei studied, however, the results are such that the anomaly is significantly smaller than the one obtained within state-of-the-art nonrelativistic calculations. (author). 35 refs

  20. Predicting the optical observables for nucleon scattering on even-even actinides

    Science.gov (United States)

    Martyanov, D. S.; Soukhovitskiĩ, E. Sh.; Capote, R.; Quesada, J. M.; Chiba, S.

    2017-09-01

    The previously derived Lane consistent dispersive coupled-channel optical model for nucleon scattering on 232Th and 238U nuclei is extended to describe scattering on even-even actinides with Z = 90-98. A soft-rotator-model (SRM) description of the low-lying nuclear structure is used, where the SRM Hamiltonian parameters are adjusted to the observed collective levels of the target nucleus. SRM nuclear wave functions (mixed in K quantum number) have been used to calculate the coupling matrix elements of the generalized optical model. The “effective” deformations that define inter-band couplings are derived from the SRM Hamiltonian parameters. Conservation of nuclear volume is enforced by introducing a dynamic monopolar term to the deformed potential, leading to additional couplings between rotational bands. The fitted static deformation parameters are in very good agreement with those derived by Wang and collaborators using the Weizsäcker-Skyrme global mass model (WS4), allowing use of the latter to predict cross sections for nuclei without experimental data. A good description of the scarce “optical” experimental database is achieved. SRM couplings and volume conservation allow a precise calculation of the compound-nucleus formation cross sections, which is significantly different from that calculated with rigid-rotor potentials coupling the ground-state rotational band. The derived parameters can be used to describe both neutron- and proton-induced reactions. Supported by International Atomic Energy Agency, through the IAEA Research Contract 19263, by the Spanish Ministry of Economy and Competitivity under Contracts FPA2014-53290-C2-2-P and FPA2016-77689-C2-1-R.

  1. Effective field theory for triaxially deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Q.B. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Kaiser, N. [Technische Universitaet Muechen, Physik-Department, Garching (Germany); Meissner, Ulf G. [Universitaet Bonn, Helmholtz-Institut fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics, Bonn (Germany); Institute for Advanced Simulation, Institut fuer Kernphysik, Juelich Center for Hadron Physics and JARA-HPC, Forschungszentrum Juelich, Juelich (Germany); Meng, J. [Peking University, State Key Laboratory of Nuclear Physics and Technology, School of Physics, Beijing (China); Beihang University, School of Physics and Nuclear Energy Engineering, Beijing (China); University of Stellenbosch, Department of Physics, Stellenbosch (South Africa)

    2017-10-15

    Effective field theory is generalized to investigate the rotational motion of triaxially deformed even-even nuclei. The Hamiltonian for the triaxial rotor is obtained up to next-to-leading order within the effective field theory formalism. Its applicability is examined by comparing with a five-dimensional rotor-vibrator Hamiltonian for the description of the energy spectra of the ground state and γ band in Ru isotopes. It is found that by taking into account the next-to-leading order corrections, the ground state band in the whole spin region and the γ band in the low spin region are well described. The deviations for high-spin states in the γ bands point towards the importance of including vibrational degrees of freedom in the effective field theory formulation. (orig.)

  2. Giant monopole resonance in transitional and deformed nuclei

    International Nuclear Information System (INIS)

    Garg, U.; Bogucki, P.; Bronson, J.D.; Lui, Y.; Youngblood, D.H.

    1984-01-01

    Small-angle inelastic α-scattering measurements have been made at E/sub α/ = 129 MeV on /sup 144,148/Sm and /sup 142,146,150/Nd to investigate the giant monopole resonance in transitional and deformed nuclei. The experimental data reveal a mixing of L = 0 and L = 2 modes in 148 Sm resulting in almost identical angular distributions for the two components of the giant resonance peaks in the angular range 2 0 --6 0 . A ''splitting'' of the giant monopole resonance is observed in 150 Nd; the extent of this splitting is smaller than that reported for 154 Sm. Comparison is made with the predictions of various theoretical models

  3. Quadrupole deformation and clusterization in nuclei

    International Nuclear Information System (INIS)

    Cseh, J.; Algora, A.; Darai, J.; Hess, P.O.

    2004-01-01

    in the dinuclear system model, or in the local potential approach. On the other hand the treatment of the exclusion- principle has to be done microscopically, there- fore, apart from the light, or simplest heavy nuclei, it gives rise to very big computational difficulties. Due to this fact no systematic studies has been done, and many of the experimentally interesting systems are untouched from this viewpoint. The main point of our work is that we present a method for the approximative treatment of the exclusion principle, which can be applied both to binary and ternary (and even to multi) cluster-configurations, and we combine this microscopic approach with an empirical method of the calculation of the energetic preference. This latter quantity is obtained in a similar way as in the work with a straightforward generalisation for ternary clusterization. In this way both aspects of the clusterization (i.e. energy-minimum and exclusion principles) can be handled, therefore, their interrelation can be studied in specific problems. The exclusion-principle is taken into account by a selection rule, based on the real or effective U(3) symmetry for light and heavy nuclei, respectively. This symmetry-based consideration can also be very involved for heavy nuclei, nevertheless, it seems to be widely applicable. As specific examples we consider binary and ternary cluster-configurations in the ground, superdeformed and hyperdeformed states of the light 36 Ar and heavy 252 Cf nuclei. In case of 36 Ar the superdeformed state has been found experimentally, and a theoretical prediction is available for its hyperdeformed state. In case of 252 Cf the main motivation is provided by the spontaneous fission experiments from its ground state, which indicated several very exotic clusterizations. As for superdeformed and hyperdeformed states of this nucleus, we consider hypothetical states with appropriate deformations (ε = 0.6 and ε = 0.86 respectively). The main conclusions of our

  4. Global set of quadrupole deformation parameters for even-even nuclei

    International Nuclear Information System (INIS)

    Raman, S.; Nestor, C.W. Jr.

    1986-01-01

    A compilation of experimental results has been completed for the reduced electric quadrupole transition probability [B(E2)up arrow] between the 0 + ground state and the first 2 + state in even-even nuclei. This compilation together with certain simple relationships noted by other authors can be used to make reasonable predictions of unmeasured B(E2)up arrow values. The quadrupole deformation parameter β 2 immediately follows, because β 2 is proportional to [B(E2)up arrow]/sup 1/2/. 8 refs., 7 figs

  5. Charge-exchange QRPA with the Gogny Force for Axially-symmetric Deformed Nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Martini, M., E-mail: martini.marco@gmail.com [Institut d' Astronomie et d' Astrophysique, Université Libre de Bruxelles, CP-226, 1050 Brussels (Belgium); CEA, DAM, DIF, F-91297 Arpajon (France); Goriely, S. [Institut d' Astronomie et d' Astrophysique, Université Libre de Bruxelles, CP-226, 1050 Brussels (Belgium); Péru, S. [CEA, DAM, DIF, F-91297 Arpajon (France)

    2014-06-15

    In recent years fully consistent quasiparticle random-phase approximation (QRPA) calculations using finite range Gogny force have been performed to study electromagnetic excitations of several axially-symmetric deformed nuclei up to the {sup 238}U. Here we present the extension of this approach to the charge-exchange nuclear excitations (pnQRPA). In particular we focus on the Isobaric Analog and Gamow-Teller resonances. A comparison of the predicted GT strength distribution with existing experimental data is presented. The role of nuclear deformation is shown. Special attention is paid to β-decay half-lives calculations for which experimental data exist and for specific isotone chains of relevance for the r-process nucleosynthesis.

  6. Woods-Saxon potential parametrization at large deformations for odd-plutonium nuclei

    International Nuclear Information System (INIS)

    Garcia, F.; Yoneama, M.L.; Arruda Neto, J.D.T.; Mesa, J.; Bringas, F.; Dias, J.F.; Likhachev, V.P.

    1997-01-01

    The structure of the the single-particle levels in the secondary minima of 237,239,241 Pu fissioning nuclei is analysed with the help of an axially-deformed Woods-Saxon potential. The nuclear shape was parametrized in terms of the Cassinian ovaloids. The parametrization of the spin-orbit part of the potential in the region corresponding to large deformations (second minimum), which depends only on the nuclear surface area, B s , was obtained. With this relation we were able to reproduce successfully the spin (parity) and the energies of the rotational band built on the 8μs isomeric rate in 239 Pu and also to make a spin assignment for both isomer states in 237 Pu and 241 Pu. (author)

  7. Hartree-Fock calculations for strongly deformed and highly excited nuclei using the Skyrme force

    International Nuclear Information System (INIS)

    Zint, P.G.

    1975-01-01

    It has been shown that in CHF-calculations the Skyrme-force is usefull to describe strongly deformed nuclei with even proton and neutron number till separation. Thereby the eigenfunctions of the two-centre Hamiltonian form an adequate basis. With this procedure, we obtain the correct deformation of the 32 S-system. Induding the spurious energy of relative motion between the 16 O-fragments, the energy curve is a good approximation for the real potential, extracted form scattering experiments. (orig./WL) [de

  8. High-lying Gamow-Teller excited states in the deformed nuclei,76Ge,82Se and N = 20 nuclei in the island of inversion by the Deformed QRPA (DQRPA)

    Science.gov (United States)

    Cheoun, Myung-Ki; Ha, Eunja

    2013-07-01

    With the advent of high analysis technology in detecting the Gamow-Teller (GT) excited states beyond one nucleon emission threshold, the quenching of the GT strength to the Ikeda sum rule (ISR) seems to be recovered by the high-lying (HL) GT states. We address that these HL GT excited states result from the smearing of the Fermi surface by the increase of the chemical potential owing to the deformation within a framework of the deformed quasi-particle random phase approximation (DQRPA). Detailed mechanism leading to the smearing is discussed, and comparisons to the available experimental data on 76Ge,82Se and N = 20 nuclei are shown to explain the strong peaks on the HL GT excited states.

  9. High-lying Gamow-Teller excited states in the deformed nuclei,76Ge,82Se and N = 20 nuclei in the island of inversion by the Deformed QRPA (DQRPA)

    International Nuclear Information System (INIS)

    Cheoun, Myung-Ki; Ha, Eunja

    2013-01-01

    With the advent of high analysis technology in detecting the Gamow-Teller (GT) excited states beyond one nucleon emission threshold, the quenching of the GT strength to the Ikeda sum rule (ISR) seems to be recovered by the high-lying (HL) GT states. We address that these HL GT excited states result from the smearing of the Fermi surface by the increase of the chemical potential owing to the deformation within a framework of the deformed quasi-particle random phase approximation (DQRPA). Detailed mechanism leading to the smearing is discussed, and comparisons to the available experimental data on 76 Ge, 82 Se and N = 20 nuclei are shown to explain the strong peaks on the HL GT excited states

  10. Deformation and clustering in even-Z nuclei up to Mg studied using AMD with the Gogny force

    Energy Technology Data Exchange (ETDEWEB)

    Kimura, Masaaki; Sugawa, Yoshio; Horiuchi, Hisashi [Kyoto Univ. (Japan). Dept. of Physics

    2001-12-01

    Employing the Gogny force as an effective force, we study the ground state properties of light nuclei using antisymmetrized molecular dynamics (AMD). In a previous paper, we discussed the nuclear binding energies and nuclear radii of He, Be, C, O, Ne and Mg isotopes. In this paper, we mainly consider the deformation properties and the clustering nature of these isotopes. By comparing the calculated results with the AMD results by use of the Skyrme-III (SIII) force, we investigated the differences and similarities between the SIII force and the Gogny force. We find that the Gogny force yields rather better binding energy and larger deformation than the SIII force. We carry out the parity-projected calculations. Parity projection enhances the parity-violating deformation and the cluster structure of certain nuclei. Shape of the deformation energy surface is also changed by parity projection. This causes a competition between the mean-field-like structure and the cluster-like structure. A modified version of AMD, which employs deformed Gaussian wave packets instead of spherical ones, is shown to give large quadrupole moments in the case of Mg isotopes. (author)

  11. Deformation and clustering in even-Z nuclei up to Mg studied using AMD with the Gogny force

    International Nuclear Information System (INIS)

    Kimura, Masaaki; Sugawa, Yoshio; Horiuchi, Hisashi

    2001-01-01

    Employing the Gogny force as an effective force, we study the ground state properties of light nuclei using antisymmetrized molecular dynamics (AMD). In a previous paper, we discussed the nuclear binding energies and nuclear radii of He, Be, C, O, Ne and Mg isotopes. In this paper, we mainly consider the deformation properties and the clustering nature of these isotopes. By comparing the calculated results with the AMD results by use of the Skyrme-III (SIII) force, we investigated the differences and similarities between the SIII force and the Gogny force. We find that the Gogny force yields rather better binding energy and larger deformation than the SIII force. We carry out the parity-projected calculations. Parity projection enhances the parity-violating deformation and the cluster structure of certain nuclei. Shape of the deformation energy surface is also changed by parity projection. This causes a competition between the mean-field-like structure and the cluster-like structure. A modified version of AMD, which employs deformed Gaussian wave packets instead of spherical ones, is shown to give large quadrupole moments in the case of Mg isotopes. (author)

  12. Description of low-lying vibrational Kπ≠0+ states of deformed nuclei in the quasiparticle-phonon nuclear model

    International Nuclear Information System (INIS)

    Soloviev, V.G.; Shirikova, N.Yu.

    1989-01-01

    The QPNM equations are derived taking account of p-h and p-p interactions. The calculated quadrupole, octupole and hexadecapole vibrational states in 168 Er, 172 Yb and 178 Hf are found to be in reasonable agreement with experimental data. It is shown that distribution of the Eλ strength in some deformed nuclei differs from the standard one. There are cases when for a given K π the Eλ strength is concentrated not on the first but on higher-lying states. The assertion made earlier about the absence of collective two-phonon states in deformed nuclei is confirmed. (orig.)

  13. Description of low-lying vibrational Kπ ≠ 0+ states of deformed nuclei in the quasiparticle-phonon nuclear model

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Shirikova, N.Yu.

    1989-01-01

    The QPNM equations are derived taking account of p-h and p-p interactions. The calculated quadrupole, octupole and hexadecapole vibrational states in 168 Er, 172 Yb and 178 Hf are found to be reasonale agreement with experimental data. It is shown that distribution of the Eλ strength in some deformed nuclei differs from the standard one. There are cases when for a given K π and Eλ strength is concentrated not on the first but on higher-lying states. The assertion made earlier about the absence of collective two-phonon states in deformed nuclei is confirmed. 44 refs.; 1 fig.; 6 tabs

  14. nuclei

    Directory of Open Access Journals (Sweden)

    Minkov N.

    2016-01-01

    Full Text Available We study the effects of quadrupole-octupole deformations on the energy and magnetic properties of high-K isomeric states in even-even heavy and superheavy nuclei. The neutron two-quasiparticle (2qp isomeric energies and magnetic dipole moments are calculated within a deformed shell model with the Bardeen-Cooper- Schrieffer (BCS pairing interaction over a wide range of quadrupole and octupole deformations. We found that in most cases the magnetic moments exhibit a pronounced sensitivity to the octupole deformation, while the 2qp energies indicate regions of nuclei in which the presence of high-K isomeric states may be associated with the presence of octupole softness or even with octupole deformation. In the present work we also examine the influence of the BCS pairing strength on the energy of the blocked isomer configuration. We show that the formation of 2qp energy minima in the space of quadrupole-octupole and eventually higher multipolarity deformations is a subtle effect depending on nuclear pairing correlations.

  15. Process of diffractive scattering and disintegration of complex particles by nonspherical deformed nuclei

    International Nuclear Information System (INIS)

    Evlanov, M.V.

    1989-01-01

    The differential and integral cross sections of diffractive elastic and inelastic scattering and of the disintegration of complex particles by axial and nonaxial deformed nuclei are investigated depending on the shape, deformability and diffuseness of nuclear boundary as well as on the structure of the incident particles and of the rescattering processes. It is shown that the complicated coincidence experiments and experimnts on inelastic scattering with excitation of the target nucleus collective states are satisfactorily described taking simultaneously into account all factors mentioned above and the final-state interaction between the disintegration products of the incident particle

  16. Calculation of ground state deformation of even-even rare-earth nuclei in sdg interacting boson model

    International Nuclear Information System (INIS)

    Wang Baolin

    1995-01-01

    The analytical calculation of the nuclear ground state deformation of the even-even isotopes in the rare-earth region is given by utilizing the intrinsic states of the sdg interacting boson model. It is compared systematically with the reported theoretical and experimental results. It is shown that the sdg interacting boson model is a reasonable scheme for the description of even-even nuclei deformation

  17. Surface thickness effects and splitting of multipole excitations in deformed nuclei. [Sum rule, hydrodynamic model

    Energy Technology Data Exchange (ETDEWEB)

    Christillin, P [Scuola Normale Superiore, Pisa (Italy); Lipparini, E; Stringari, S [Dipartimento Matematica e Fisica, Trento, Italy

    1978-09-25

    A sum-rule approach is used to study the influence of surface thickness upon the splitting of dipole and isoscalar quadrupole energies in deformed nuclei. It is shown that hydrodynamic model results are recovered in the case of a deformed skin thickness. A constant skin thickness leads in the dipole case to slightly different predictions which seem in better agreement with experiments. The splitting of the isoscalar quadrupole mode is not sensitive to the surface thickness shape.

  18. Systematic features of mass yield curves in low-energy fission of actinides

    International Nuclear Information System (INIS)

    Nagame, Yuichiro

    1999-01-01

    Characteristics of mass yield curves in fission of wide range of nuclides from pre-actinides through transactinides are reviewed and the following points are discussed. (1) Systematic trends of the mass yield distributions in low-energy proton-induced fission of actinides and in spontaneous fission of actinides are discussed in terms of weighted mean mass numbers of the light and heavy asymmetric mass yield peaks and widths of the heavy asymmetric mass yields. (2) Gross features of the two kinds of mass yield curves, symmetric and asymmetric ones, as a function of a fissioning nucleus. (3) Competition between the symmetric and asymmetric fission as a function of not only Z (proton number) but also N (neutron number) of a fissioning nucleus. (4) Experimental verification of the existence of two kinds of deformation paths in low energy fission of actinides; the first path is initiated at higher threshold energy and ends with elongated scission configuration, giving a final mass yield distribution centered around the symmetric mass division, 'symmetric fission path'. In the second path, a fissioning nucleus experiences lower threshold energy and results in more compact scission configuration, which gives a double humped mass distribution always centered around A=140 for the heavier fragment, 'asymmetric fission path'. (5) Interpretation of the 'bimodal fission' observed in the spontaneous fission of heavy actinides as the presence of the two fission paths of the ordinary asymmetric one and a strongly shell-affected symmetric path from the systematic analysis of scission configurations. (6) A dynamical fission process deduced from the analysis of the experimental mass yield curves and the correlation data of neutron multiplicity and fragment mass and total kinetic energy. (7) Prediction of the characteristics of gross properties of fission in superheavy nuclei around 280 114. (8) Characteristics of highly asymmetric fission: formation cross section as a function of

  19. g-factors in deformed nuclei: Annual report, September 1, 1983-August 31, 1984

    International Nuclear Information System (INIS)

    Krane, K.S.

    1984-01-01

    This report describes work performed for the period September 1, 1983 to August 31, 1984 under the contract DE-AT06-83ER40109, /open quotes/g-Factors in Deformed Nuclei./close quotes/ The literature survey has been completed and the first stage of the raw data analysis has been accomplished. A preliminary data summary prepared for publication is attached

  20. The decay from the two-quasiparticle regime in even-even deformed rare earth nuclei

    International Nuclear Information System (INIS)

    Henriques, A.; Thorstensen, T.F.; Hammaren, E.

    1983-06-01

    A bump at 1 MeV has been identified in coincidence gamma-ray spectra from the ( 3 He, 4 He) reaction in deformed rare earth nuclei. Particle/gamma-ray angular correlation indicates a dipole character. It is suggested that this bump corresponds to transitions from two-quasiparticle states to the ground state band

  1. Heavy ion interactions of deformed nuclei. Progress report, May 1, 1984-December 31, 1984

    International Nuclear Information System (INIS)

    Oberacker, V.E.

    1984-11-01

    This progress report describes the main topics that were investigated during the reporting period: (a) a new microscopic approach to the calculation of heavy ion interaction potentials; (b) the dynamical orientation of deformed heavy nuclei near the distance of closest approach; and (c) the theory of Coulomb fission (project finished in Sept.)

  2. On the role of high multipolarity interactions in deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.; Sushkov, A.V.

    1989-01-01

    The influence of interactions with the multipolarity λ=5,6,7 and 9 is studied on the mixing of two-quasineutron and two-quasineutron states with large K in doubly even deformed nuclei. The mixing of the two-quasineutron and two-quasiproton states with the same values of K π , caused by a high multipolarity interaction, is shown to be large in the case of proximity of their energies. Qualitatively correct description of experimental data on the mixing of two-quasineutron and two-quasiproton configurations in 178,176 Hf, 174 Yb, 168 Er and 158 Gd is obtained. 20 refs.; 1 tab

  3. Alpha Anisotropy Studies of Near-Spherical and Deformed Nuclei

    CERN Multimedia

    Van Duppen, P

    2002-01-01

    % IS329 \\\\ \\\\ Although it was the first decay mode to be discovered, the process of $\\alpha$-particle emission is still poorly understood. A few years ago the first systematic study of anisotropic $\\alpha$-decay triggered renewed theoretical interest. Nevertheless, today the theories are still not adequate enough and more experimental data are urgently needed. We therefore measure the $\\alpha$-anisotropies of the favoured transitions of a number of near-spherical Rn and At isotopes, and of deformed nuclei near A=220. As the different models yield contradictory predictions for the transitions that are investigated, the measurements will allow to discern on their validity. They will at the same time provide the necessary basis for further theoretical developments.

  4. Photofissility of actinide nuclei at intermediate energies

    International Nuclear Information System (INIS)

    Deppman, A.; Tavares, O.A.P.; Duarte, S.B.; Oliveira, E.C. de; Arruda-Neto, J.D.T.; Pina, S.R. de; Likhachev, V.P.; Mesa, J.; Goncalves, M.

    2001-08-01

    We analyze the recent experimental data on photofissility for 237 Np, 238 U, and 232 Th at incident photon energies above 200 MeV. For this analysis, we developed a Monte carlo algorithm for the nuclear evaporation process in photonuclear reactions. This code is used in association with the multi-collisional model for the photon-induced intranuclear cascade process. Our results show a good quantitative and qualitative agreement with the experimental data. It is shown that the emission of protons and alpha particles at the evaporation stage is an important component for the non-saturation of the actinides photofissility up to, at least, 1GeV. (author)

  5. γ-spectroscopy and radioactive beams: search for highly deformed exotic nuclei

    International Nuclear Information System (INIS)

    Rosse, B.

    2006-07-01

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A ∼ 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr 76 radioactive beam (T1/2 = 14.8 h). γ-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first γ transition was observed in the very exotic odd-odd Pm 130 nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  6. γ-spectroscopy and radioactive beams: search for highly deformed exotic nuclei

    International Nuclear Information System (INIS)

    Rosse, Bertrand

    2006-01-01

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A∼130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient 76 Kr radioactive beam (T 1/2 = 14.8 h). γ-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first γ transition was observed in the very exotic odd-odd 130 Pm nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  7. Photofissility of heavy nuclei at intermediate energies

    International Nuclear Information System (INIS)

    Deppman, A.; Arruda Neto, J.D.T.; Likhachev, V.P.; Goncalves, M.

    2002-10-01

    We use the recently developed MCMC/MCEF (Multi Collisional Monte Carlo plus Monte Carlo for Evaporation-Fission calculations) model to calculate the photo fissility and the photofission cross section at intermediate energies for the 243 Am and for 209 Bi, and compare them to results obtained for other actinides and to available experimental data. As expected, the results for 243 Am are close to those for 237 Np. The fissility for pre actinide nuclei is nearly one order of magnitude lower than that for the actinides. Both fissility and photofission cross section for 209 Bi are in good agreement with the experimental data. (author)

  8. Actinide collisions for QED and superheavy elements with the time-dependent Hartree-Fock theory and the Balian-Vénéroni variational principle

    Directory of Open Access Journals (Sweden)

    Kedziora David J.

    2011-10-01

    produce transfermium nuclei (Z > 100 in the collision of prolate deformed actinides such as 232Th+250Cf. The collision of the tip of one nucleus with the side of the other results in a nucleon flux toward the latter. The probability distributions for transfermium production in such a collision are computed. The produced nuclei are more neutron-rich than those formed in fusion reactions, thus, leading to more stable isotopes closer to the predicted superheavy island of stability. In addition to mass and charge dispersion, the Balian-Veneroni variational principle is used to compute correlations between Z and N distributions, which are zero in standard TDHF calculations.

  9. E2 and M1 transition strengths in heavy deformed nuclei revisited

    International Nuclear Information System (INIS)

    Draayer, J.P.; Popa, G.; Hirsch, J.G.; Vargas, C.E.

    2003-01-01

    An update on the status of pseudo-SU(3) shell-model calculations in strongly deformed nuclei in the rare earth region is presented. Representative results for energy levels as well as E2 (quadrupole) and M1 (scissors) transitions strengths in 162 Dy (even-even) and 163 Dy (odd-mass) are given. The calculations use realistic single-particle energies and quadrupole-quadrupole and pairing interaction strengths fixed from systematics. The strengths of rotor-like terms included in the Hamiltonian- all small relative to the other terms in the interaction were adjusted to give an overall best fit to the energy spectra. The results present a paradox: for even-even nuclei (integer angular momentum) non-zero pseudo-spin configurations seems to be unimportant while for the odd-mass systems (half-integer angular momentum) pseudo-spin mixing is essential as spin-flip couplings appear to dominate the M1 transition strengths. (Author)

  10. Observation of large scissors resonance strength in actinides.

    Science.gov (United States)

    Guttormsen, M; Bernstein, L A; Bürger, A; Görgen, A; Gunsing, F; Hagen, T W; Larsen, A C; Renstrøm, T; Siem, S; Wiedeking, M; Wilson, J N

    2012-10-19

    The orbital M1 scissors resonance has been measured for the first time in the quasicontinuum of actinides. Particle-γ coincidences are recorded with deuteron and (3)He-induced reactions on (232)Th. The residual nuclei (231,232,233)Th and (232,233) Pa show an unexpectedly strong integrated strength of B(M1)=11-15μ(n)(2) in the E(γ)=1.0-3.5 MeV region. The increased γ-decay probability in actinides due to scissors resonance is important for cross-section calculations for future fuel cycles of fast nuclear reactors and may also have an impact on stellar nucleosynthesis.

  11. Diffraction scattering and disintegration of complex particles by nonspherical deformable nuclei

    International Nuclear Information System (INIS)

    Evlanov, M.V.; Isupov, V.Y.; Tartakovskii, V.K.

    1989-01-01

    We study the dependence of the differential and integrated cross sections for diffraction scattering and disintegration of complex particles by axially symmetric and non-axially-symmetric nuclei on the shape, deformability, and diffuseness of the nuclear surface, and also on the structure of the incident particles and rescattering processes. It is shown that when all of these factors are taken into account, as well as the interaction in the final state between the disintegration products of the incident particle, a satisfactory description of complicated coincidence experiments can be obtained, and also inelastic scattering experiments with excitation of collective states of the target nucleus

  12. Gamow-Teller strength in deformed nuclei within self-consistent pnQRPA with the Gogny force

    Directory of Open Access Journals (Sweden)

    Martini M.

    2014-03-01

    Full Text Available In recent years fully consistent quasiparticle random-phase approximation (QRPA calculations using finite range Gogny force have been performed to study electromagnetic excitations of several axially-symmetric deformed nuclei up to the 238U. Here we present the extension of this approach to the charge-exchange nuclear excitations (pn-QRPA. In particular we focus on the Gamow-Teller (GT excitations. A comparison of the predicted GT strength distribution with existing experimental data is presented The role of nuclear deformation is shown. Special attention is paid to β-decay half-lives calculations for which experimental data exist.

  13. One- and two-phonon excitations in strongly deformed triaxial nuclei

    International Nuclear Information System (INIS)

    Hagemann, G.B.

    2003-01-01

    The wobbling mode is uniquely related to triaxiality and introduces a series of bands with increasing wobbling phonon number, n ω , and a characteristic large Δ nω =1 E2 strength between the bands. The pattern of γ-transitions between the wobbling excitations will be influenced by the presence of an aligned particle. Evidence for the wobbling mode was obtained recently, and even a two-phonon wobbling excitation has now been identified in 163 Lu. The similarity of the data in 163 Lu to new strongly deformed triaxial bands and connecting transitions in the neighbouring nuclei, 165 Lu and 167 Lu, establishes wobbling as a more general phenomenon in this region. (author)

  14. Some considerations of the energy spectrum of odd-odd deformed nuclei; Quelqes considerations sur le spectre d'energie des noyaux impair-impair deformes

    Energy Technology Data Exchange (ETDEWEB)

    Alceanu-G, Pinho de; Picard, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The odd-odd deformed nuclei are described as a rotator plus two odd nucleons moving in orbitals {omega}{sub p} and {omega}{sub n} of the deformed potential. We investigate the energies and wave functions of the various states of the ({omega}{sub p}, {omega}{sub n}) configurations by calculating and numerically diagonalizing the Hamiltonian matrix (with R.P.C. and residual interactions). The Gallagher-Mosskowski coupling rules ana the abnormal K equals 0 rotational bands are discussed. (authors) [French] Les noyaux impair-impairs deformes sont decrits comme un rotateur plus deux nucleons non apparies dans les orbites {omega}{sub p} et {omega}{sub n} du potentiel deforme. Nous etudions le spectre d'energie et les fonctions d'onde des configurations ({omega}{sub p}, {omega}{sub n}) en tenant compte de l'interaction particule-rotation et de la force residuelle entre les deux nucleons celibataires.

  15. Generalized Michailov plot analysis of inband E2 transitions of deformed nuclei

    International Nuclear Information System (INIS)

    Long, G.L.; Zhang, W.L.; Ji, H.Y.; Gao, J.F.

    1998-01-01

    Intraband E2 transitions of some 30 deformed nuclei are analysed using a generalized Michailov plot, based on an E2 transition formula in the SU(3) limit of the sdg interacting boson model. The general E2 transition formula in the sdg-IBM has an L(L+3) term in addition to the usual SU(3) model result. It is found that the general E2 formula can describe the inband transitions well. Comparisons with other models are made. The implications of the results are also discussed. (author)

  16. One-phonon states in deformed nuclei for isoscalar and isovector interactions

    International Nuclear Information System (INIS)

    Malov, L.A.; Nesterenko, V.O.; Solov'ev, V.G.

    1977-01-01

    Extension of the formulas describing the one-phonon states of compound even-even deformed nuclei to the case when the isoscalar and isovector multipole-multipole forces are taken into account, is given. The formalism presented makes it possible to obtain an unified description of the low-lying states and gigantic multipole resonances. Procedure is developed which makes it possible to write down the reduced probability and energetically weighted sum rule in the form of force functions averaged over certain interval of energies. The procedure simplifies the calculations significantly and makes it possible to avoid solving the secular equation for energies of one-phonon states

  17. Study of five-dimensional potential-energy surfaces for actinide isotopes by the macroscopic-microscopic method

    Science.gov (United States)

    Fan, T. S.; Wang, Z. M.; Zhu, X.; Zhu, W. J.; Zhong, C. L.

    2017-09-01

    In this work, the nuclear potential-energy of the deformed nuclei as a function of shape coordinates is calculated in a five-dimensional (5D) parameter space of the axially symmetric generalized Lawrence shapes, on the basis of the macroscopic-microscopic method. The liquid-drop part of the nuclear energy is calculated according to the Myers-Swiatecki model and the Lublin-Strasbourg-drop (LSD) formula. The Woods-Saxon and the folded-Yukawa potentials for deformed nuclei are used for the shell and pairing corrections of the Strutinsky-type. The pairing corrections are calculated at zero temperature, T, related to the excitation energy. The eigenvalues of Hamiltonians for protons and neutrons are found by expanding the eigen-functions in terms of harmonic-oscillator wave functions of a spheroid. Then the BCS pair is applied on the smeared-out single-particle spectrum. By comparing the results obtained by different models, the most favorable combination of the macroscopic-microscopic model is known as the LSD formula with the folded-Yukawa potential. Potential-energy landscapes for actinide isotopes are investigated based on a grid of more than 4,000,000 deformation points and the heights of static fission barriers are obtained in terms of a double-humped structure on the full 5D parameter space. In order to locate the ground state shapes, saddle points, scission points and optimal fission path on the calculated 5D potential-energy surface, the falling rain algorithm and immersion method are designed and implemented. The comparison of our results with available experimental data and others' theoretical results confirms the reliability of our calculations.

  18. Hyperdeformed nuclei and the residual pseudo-SU(3) symmetry

    International Nuclear Information System (INIS)

    Dudek, J.; Werner, T.

    1988-01-01

    The author discusses superdeformed and hypothetical hyperdeformed nuclei. Quadrupole deformations characteristic of these types of nuclei are defined. Symmetry features are also discussed. The characteristic cycle dependence of shell structures as functions of the deformation gives rise to chains of the deformed shell closures. Such a chain structure applies to moderately-, super- and hyper-deformed nuclei as well. The resulting total energy calculations give a systematic variation of super- and hyperdeformations with, e.g., increasing N at fixed Z, thus predicting the way nuclei deviate from the simple a:b = 2:1 and a:b = 3:1 symmetries

  19. Octupole correlation effects in nuclei

    International Nuclear Information System (INIS)

    Chasman, R.R.

    1992-01-01

    Octupole correlation effects in nuclei are discussed from the point of view of many-body wavefunctions as well as mean-field methods. The light actinides, where octupole effects are largest, are considered in detail. Comparisons of theory and experiment are made for energy splittings of parity doublets; E1 transition matrix elements and one-nucleon transfer reactions

  20. Protonic decay of oriented nuclei

    International Nuclear Information System (INIS)

    Kadmensky, S.G.

    2002-01-01

    On the basis of the multiparticle theory of protonic decay, the angular distributions of protons emitted by oriented spherical and deformed nuclei in the laboratory frame and in the internal coordinate frame of deformed parent nuclei are constructed with allowance for symmetry with respect to time inversion. It is shown that, because of the deep-subbarrier character of protonic decay, the adiabatic approximation is not applicable to describing the angular distributions of protons emitted by oriented deformed nuclei and that the angular distribution of protons in the laboratory frame does not coincide with that in the internal coordinate frame. It is demonstrated that these angular distributions coincide only if the adiabatic and the semiclassical approximation are simultaneously valid

  1. Nuclear masses, deformations and shell effects

    International Nuclear Information System (INIS)

    Hirsch, Jorge G; Barbero, César A; Mariano, Alejandro E

    2011-01-01

    We show that the Liquid Drop Model is best suited to describe the masses of prolate deformed nuclei than of spherical nuclei. To this end three Liquid Drop Mass formulas are employed to describe nuclear masses of eight sets of nuclei with similar quadrupole deformations. It is shown that they are able to fit the measured masses of prolate deformed nuclei with an RMS smaller than 750 keV, while for the spherical nuclei the RMS is, in the three cases, larger than 2000 keV. The RMS of the best fit of the masses of semi-magic nuclei is also larger than 2000 keV. The parameters of the three models are studied, showing that the surface symmetry term is the one which varies the most from one group of nuclei to another. In one model, isospin dependent terms are also found to exhibit strong changes. The inclusion of shell effects allows for better fits, which continue to be better in the prolate deformed nuclei region.

  2. Some considerations of the energy spectrum of odd-odd deformed nuclei; Quelqes considerations sur le spectre d'energie des noyaux impair-impair deformes

    Energy Technology Data Exchange (ETDEWEB)

    Alceanu-G, Pinho de; Picard, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1965-07-01

    The odd-odd deformed nuclei are described as a rotator plus two odd nucleons moving in orbitals {omega}{sub p} and {omega}{sub n} of the deformed potential. We investigate the energies and wave functions of the various states of the ({omega}{sub p}, {omega}{sub n}) configurations by calculating and numerically diagonalizing the Hamiltonian matrix (with R.P.C. and residual interactions). The Gallagher-Mosskowski coupling rules ana the abnormal K equals 0 rotational bands are discussed. (authors) [French] Les noyaux impair-impairs deformes sont decrits comme un rotateur plus deux nucleons non apparies dans les orbites {omega}{sub p} et {omega}{sub n} du potentiel deforme. Nous etudions le spectre d'energie et les fonctions d'onde des configurations ({omega}{sub p}, {omega}{sub n}) en tenant compte de l'interaction particule-rotation et de la force residuelle entre les deux nucleons celibataires.

  3. Nuclear Data for Reactor Physics: Cross sections and level densities in the actinide region

    Directory of Open Access Journals (Sweden)

    Bernstein L.

    2010-03-01

    Full Text Available Nuclear data in the actinide region are particularly important because they are basis behind all simulations of nuclear reactor core behaviour over both long time scales (fuel depletion and waste production and short time scales (accident scenarios. Nuclear reaction cross sections must be known as precisely as possible so that core reaction rates can be accurately calculated. Although cross section measurements in this region have been widely performed, for certain nuclei, particularly those with short half lives, direct measurements are either very difficult or impossible and thus reactor simulations must rely on theoretical calculations or extrapolations from neighbouring nuclei. The greatest uncertainty in theoretical cross section calculations comes from the lack of knowledge of level densities, for which predicted values can often be incorrect by a factor of two or more. Therefore there is a strong case for a systematic experimental study of level densities in the actinide region for the purpose of a providing a stringent test of theoretical cross section calculations for nuclei where experimental cross section data are available and b for providing better estimations of cross sections for nuclei in which no cross section data are available.

  4. Low-energy E1 transitions and octupole softness in odd-A deformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Hagemann, G B [Niels Bohr Inst., Copenhagen (Denmark); Hamamoto, I [Lund Univ. (Sweden). Dept. of Mathematical Physics; Kownacki, J; Satula, W [Warsaw Univ. (Poland)

    1992-08-01

    It is found that B(E1) values for yrast spectroscopy of deformed odd-A rare-earth nuclei calculated by using a model in which one quasiparticle is coupled to a rotor are more than an order of magnitude too small. Therefore, measured B(E1) values for {sup 169}Lu were analyzed by introducing parameters which effectively took octupole softness into account. Some preliminary results of the theoretical analysis which are presented in this paper still give do not agree completely with experiment. 4 refs., 1 tab., 5 figs.

  5. Effects of fissioning nuclei distributions on fragment mass distributions for high energy fission

    Directory of Open Access Journals (Sweden)

    Rossi P C R

    2012-02-01

    Full Text Available We study the effects of fissioning nuclei mass- and energy-distributions on the formation of fragments for fission induced by high energy probes. A Monte Carlo code called CRISP was used for obtaining mass distributions and spectra of the fissioning nuclei for reactions induced by 660 MeV protons on 241Am and on 239Np, by 500 MeV protons on 208Pb, and by Bremsstrahlung photons with end-point energies at 50 MeV and 3500 MeV on 238U. The results show that even at high excitation energies, asymmetric fission may still contribute significantly to the fission cross section of actinide nuclei, while it is the dominante mode in the case of lead. However, more precise data for high energy fission on actinide are necessary in order to allow definite conclusions.

  6. Gamow-Teller decay of T = 1 nuclei to odd-odd N = Z nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lisetskiy, A F [National Superconducting Cyclotron Laboratory, MSU, East Lansing, MI 48824 (United States); Gelberg, A [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany); Institute of Physical and Chemical Reasearch (RIKEN), Wako, 351-0198 (Japan); Brentano, P von [Institute for Nuclear Physics, University of Cologne, 50937 Cologne (Germany)

    2005-01-01

    Transition strengths of Gamow-Teller decay of T{sub z} = {+-}1 nuclei to N = Z odd-odd nuclei have been calculated in a two-nucleon approximation for spherical and deformed nuclei. The results obtained for the latter are quite close to the values obtained by full-space shell-model calculations and to the experiment.

  7. Cold transfer between deformed, Coulomb excited nuclei

    International Nuclear Information System (INIS)

    Bauer, H.

    1998-01-01

    The scattering system 162 Dy → 116 Sn has been examined at energies in the vicinity of the Coulomb barrier using the Heidelberg-Darmstadt Crystal Ball spectrometer combined with 5 Germanium-CLUSTER detectors. In order to study pairing correlations as a function of angular momentum cold events were selected in the 2n stripping channel by identifying and suppressing the dominant hot part of the transfer with the Crystal Ball. The CLUSTER detectors with their high γ-efficiency were used to identify the transfer channel and to resolve individual final states. Cross sections for the population of individual yrast states in a cold transfer reaction have been measured for the first time indicating the strong influence of higher transfer multipolarities. At small surface distances Coulomb-nuclear interferences were found to be responsible for the stronger decline of the population of higher yrast states in the transfer channel as compared to the Coulex channel. As a preparatory study for 2n transfer measurements between high spin yrast states in the backbending region of deformed nuclei the Coulomb excitation process in the crossing region of two bands in 162 Dy has been analyzed. The gross properties of the measured population probabilities could be interpreted in a simple band mixing model. (orig.)

  8. Contribution to the study of deformed heavy nuclei by means of nuclear reactions; Contribution a l'etude des noyaux lourds deformes au moyen de reactions nucleaires

    Energy Technology Data Exchange (ETDEWEB)

    Gastebois, J. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1968-06-01

    The experimental results obtained in the study of the (d,p) reactions, at E{sub d} = 12 MeV, on the three even-even deformed nuclei {sup 170}Yb, {sup 172}Yb and {sup 174}Yb have been analysed in terms of DWBA calculations. The spectroscopic information relative to the odd final nuclei have been compared with the predictions of the collective model and of the Nilsson's model. The effect of various parameters used in the DWBA analysis (form factors, optical wave functions) has been carefully studied. The observed differences between the three final nuclei are qualitatively reproduced in the experimental study of resonances, seen in excitation functions of elastically and inelastically scattered protons on the same target nuclei, and corresponding to analogue states in the three nuclei {sup 171}Lu, {sup 173}Lu and {sup 175}Lu. (author) [French] Les resultats experimentaux de l'etude des reactions (d.p) a E{sub d} = 12 MeV, sur les noyaux deformes pairs-pairs {sup 170}Yb, {sup 172}Yb et {sup 174}Yb ont ete interpretes dans le cadre de l'approximation de Born des ondes deformees. Les informations spectroscopiques relatives aux noyaux impairs finals ont ete comparees aux predictions du modele collectif et du modele de Nilsson, apres avoir examine avec soin l'influence des differents parametres (facteurs de forme, fonctions d'onde 'optiques') utilises lors de l'analyse. Les differences observees entre les trois noyaux finals sont qualitativement reproduites par les resultats experimentaux de l'etude de resonances dans les fonctions d'excitation de diffusion elastique et inelastique de protons sur les memes noyaux-cibles, lors de la recherche d'etats analogues dans les noyaux {sup 171}Lu, {sup 173}Lu et {sup 175}Lu. (auteur)

  9. Tunneling from super- to normal-deformed minima in nuclei

    International Nuclear Information System (INIS)

    Khoo, T. L.

    1998-01-01

    An excited minimum, or false vacuum, gives rise to a highly elongated superdeformed (SD) nucleus. A brief review of superdeformation is given, with emphasis on the tunneling from the false to the true vacuum, which occurs in the feeding and decay of SD bands. During the feeding process the tunneling is between hot states, while in the decay it is from a cold to a hot state. The γ spectra connecting SD and normal-deformed (ND) states provide information on several physics issues: the decay mechanism; the spin/parity quantum numbers, energies and microscopic structures of SD bands; the origin of identical SD bands; the quenching of pairing with excitation energy; and the chaoticity of excited ND states at 2.5-5 MeV. Other examples of tunneling in nuclei, which are briefly described, include the possible role of tunneling in ΔI = 4 bifurcation in SD bands, sub-barrier fusion and proton emitters

  10. Tunneling from super- to normal-deformed minima in nuclei.

    Energy Technology Data Exchange (ETDEWEB)

    Khoo, T. L.

    1998-01-08

    An excited minimum, or false vacuum, gives rise to a highly elongated superdeformed (SD) nucleus. A brief review of superdeformation is given, with emphasis on the tunneling from the false to the true vacuum, which occurs in the feeding and decay of SD bands. During the feeding process the tunneling is between hot states, while in the decay it is from a cold to a hot state. The {gamma} spectra connecting SD and normal-deformed (ND) states provide information on several physics issues: the decay mechanism; the spin/parity quantum numbers, energies and microscopic structures of SD bands; the origin of identical SD bands; the quenching of pairing with excitation energy; and the chaoticity of excited ND states at 2.5-5 MeV. Other examples of tunneling in nuclei, which are briefly described, include the possible role of tunneling in {Delta}I = 4 bifurcation in SD bands, sub-barrier fusion and proton emitters.

  11. The shape of nuclei

    International Nuclear Information System (INIS)

    Mackintosh, R.S.

    1977-01-01

    For the class of nuclei which are 'strongly deformed' it is possible to introduce the idea of an empirically measurable static nuclear shape. The limitations of this concept as applied to nuclei (fundamentally quantum-mechanical objects) are discussed. These are basically the limitations of the rotational model which must be introduced in order to define and measure nuclear shape. A unified discussion of the ways in which the shape has been parametrized is given with emphasis on the fact that different parametrizations correspond to different nuclear structures. Accounts of the various theoretical procedures for calculating nuclear shapes and of the interaction between nuclear shapes and nuclear spectroscopy are given. A coherent account of a large subset of nuclei (strongly deformed nuclei) can be given by means of a model in which the concept of nuclear shape plays a central role. (author)

  12. Level Densities in the actinide region and indirect n,y cross section measurements using the surrogate method

    Directory of Open Access Journals (Sweden)

    Wiedeking M.

    2012-02-01

    Full Text Available Results from a program of measurements of level densities and gamma ray strength functions in the actinide region are presented. Experiments at the Oslo cyclotron involving the Cactus/Siri detectors and 232Th(d,x and 232Th(3He,x reactions were carried out to help answer the question of which level density model is the most appropriate for actinide nuclei, since it will have an impact on cross section calculations important for reactor physics simulations. A new technique for extracting level densities and gamma ray strength functions from particle-gamma coincidence data is proposed and results from the development of this technique are presented. In addition, simultaneous measurements of compound nuclear gamma decay probabilities have been performed for the key thorium cycle nuclei 233Th, 231Th and 232Pa up to around 1MeV above the neutron binding energy and have enabled extraction of indirect neutron induced capture cross sections for the 232Th, 231Pa and 230Th nuclei using the surrogate reaction method. Since the neutron capture cross section for 232Th is already well known from direct measurements a comparison provides a stringent test of the applicability of the surrogate technique in the actinide region.

  13. Status of nuclear data for actinides

    Energy Technology Data Exchange (ETDEWEB)

    Guzhovskii, B.Y.; Gorelov, V.P.; Grebennikov, A.N. [Russia Federal Nuclear Centre, Arzamas (Russian Federation)] [and others

    1995-10-01

    Nuclear data required for transmutation problem include many actinide nuclei. In present paper the analysis of neutron fission, capture, (n,2n) and (n,3n) reaction cross sections at energy region from thermal point to 14 MeV was carried out for Th, Pa, U, Np, Pu, Am and Cm isotops using modern evaluated nuclear data libraries and handbooks of recommended nuclear data. Comparison of these data indicates on substantial discrepancies in different versions of files, that connect with quality and completeness of original experimental data.

  14. Structures of exotic nuclei

    International Nuclear Information System (INIS)

    Hamilton, J.H.

    1987-01-01

    Discoveries of many different types of nuclear shape coexistence are being found at both low and high excitation energies throughout the periodic table, as documented in recent reviews. Many new types of shape coexistence have been observed at low excitation energies, for examples bands on more than four different overlapping and coexisting shapes are observed in 185 Au, and competing triaxial and prolate shapes in 71 Se and 176 Pt. Discrete states in super-deformed bands with deformations β 2 ∼ 0.4-0.6, coexisting with other shapes, have been seen to high spin up to 60ℎ in 152 Dy, 132 Ce and 135 Nd. Super-deformed nuclei with N and Z both around 38 and around Z = 38, N ≥ 60. These data led to the discovery of new shell gaps and magic numbers of 38 for N and Z and 60 for N but now for deformed shapes. Marked differences in structure are observed at spins of 6 to 20 in nuclei in this region, which differ by only two protons; for example, 68 Ge and 70 Se. The differences are thought to be related to the competing shell gaps in these nuclei

  15. Decay properties of nuclei close to Z = 108 and N = 162

    International Nuclear Information System (INIS)

    Dvorak, Jan

    2007-01-01

    The goal of the research conducted in the frame of this thesis was to investigate the decay properties of the nuclides 269-271 Hs and their daughters using an improved chemical separation and detection system. Shell stabilization was predicted in the region around Z=108 and N=162 in calculations, taking into account possible higher orders of deformations of the nuclei. The nucleus 270 Hs with a closed proton and a closed neutron deformed shell, was predicted to be ''deformed doubly magic''. Nuclei around 270 Hs can be produced only via fusion reactions at picobarn levels, resulting in a production rates of few atoms per day. Investigating short-lived nuclei using rapid chemical separation and subsequent on-line detection methods provides an independent and alternative means to electromagnetic on-line separators. Chemical separation of Hs in the form of HsO 4 provides an excellent tool to study the formation reactions and nuclear structure in this region of the chart of nuclides due to a high overall efficiency and a very high purification factor. The goal was accomplished, as element 108, hassium, was produced in the reaction 248 Cm( 26 Mg,xn) 274-x Hs and chemically isolated. After gas phase separation of HsO 4 , 26 genetically linked decay chains have been observed. These were attributed to decays of three different Hs isotopes produced in the 3-5n evaporation channels. The known decay chain of 269 Hs, the 5n evaporation product, serves as an anchor point, thus allowing the unambiguous assignment of the observed decay chains to the 5n, 4n, and 3n channels, respectively. Decay properties of five nuclei have been unambiguously established for the first time, including the one for the the doubly-magic nuclide 270 Hs. This hassium isotope is the next doubly magic nucleus after the well known 208 Pb and the first experimentally observed even-even nucleus on the predicted N=162 neutron shell. The observed decay properties provide strong indications for enhanced nuclear

  16. Systematic studies of the energy levels of odd z even mass actinides

    International Nuclear Information System (INIS)

    Sood, P.C.

    1985-01-01

    The bandhead energies for the two-particle states in doubly odd actinides are evaluated based on the calculation of the zero-range residual interaction energy contribution. Guidelines are presented to decide the relative ordering of the expected configurations, leading to spin-parity assignments to the ground states and to the isomeric states in these nuclei. Presently available experimental information lists definite spin-parity for only four out of over fifty known nuclides in the region. Expected location of several new isomers, particularly in heavier nuclei, is indicated

  17. Two-neutron transfer reactions with heavy-deformed nuclei

    International Nuclear Information System (INIS)

    Price, C.; Landowne, S.; Esbensen, H.

    1988-01-01

    In a recent communication we pointed out that one can combine the macroscopic model for two-particle transfer reactions on deformed nuclei with the sudden limit approximation for rotational excitation, and thereby obtain a practical method for calculating transfer reactions leading to high-spin states. As an example, we presented results for the reaction 162 Dy( 58 Ni, 60 Ni) 160 Dy populating the ground-state rotational band up to the spin I = 14 + state. We have also tested the validity of the sudden limit for the inelastic excitation of high spin states and we have noted how the macroscopic model may be modified to allow for more microscopic nuclear structure effects in an application to diabolic pair-transfer processes. This paper describes our subsequent work in which we investigated the systematic features of pair-transfer reactions within the macroscopic model by using heavier projectiles to generate higher spins and by decomposing the cross sections according to the multipolarity of the transfer interaction. Particular attention is paid to characteristic structures in the angular distributions for the lower spin states and how they depend on the angular momentum carried by the transferred particles. 11 refs., 3 figs

  18. Reflection asymmetric shapes in nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.; Carpenter, M.P.; Emling, H.

    1989-01-01

    Experimental data show that there is no even-even nucleus with a reflection asymmetric shape in its ground state. Maximum octupole- octupole correlations occur in nuclei in the mass 224 (N∼134, Z∼88) region. Parity doublets, which are the characteristic signature of octupole deformation, have been observed in several odd mass Ra, Ac and Pa nuclei. Intertwined negative and positive parity levels have been observed in several even-even Ra and Th nuclei above spin ∼8ℎ. In both cases, the opposite parity states are connected by fast El transitions. In some medium-mass nuclei intertwined negative and positive parity levels have also been observed above spin ∼7ℎ. The nuclei which exhibit octupole deformation in this mass region are 144 Ba, 146 Ba and 146 Ce; 142 Ba, 148 Ce, 150 Ce and 142 Xe do not show these characteristics. No case of parity doublet has been observed in the mass 144 region. 32 refs., 16 figs., 1 tab

  19. Minor actinide transmutation using minor actinide burner reactors

    International Nuclear Information System (INIS)

    Mukaiyama, T.; Yoshida, H.; Gunji, Y.

    1991-01-01

    The concept of minor actinide burner reactor is proposed as an efficient way to transmute long-lived minor actinides in order to ease the burden of high-level radioactive waste disposal problem. Conceptual design study of minor actinide burner reactors was performed to obtain a reactor model with very hard neutron spectrum and very high neutron flux in which minor actinides can be fissioned efficiently. Two models of burner reactors were obtained, one with metal fuel core and the other with particle fuel core. Minor actinide transmutation by the actinide burner reactors is compared with that by power reactors from both the reactor physics and fuel cycle facilities view point. (author)

  20. Symmetries of the nuclear average field hamiltonian and a search for possible exotic equilibrium deformations in superdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Li Xunjun; Dudek, J.; Romain, P. (Centre de Recherches Nucleaires, IN2P3-CNRS, Univ. Louis Pasteur, 67 - Strasbourg (France))

    1991-11-21

    Symmetry properties of the general average-field hamiltonian-matrix resulting from the geometrical symmetries of the hamiltonian itself are derived and discussed. The corresponding numerical algorithms are constructed. Total energy calculations for superdeformed nuclei are then extended to include the usually neglected deformation modes {alpha}{sub {lambda}=3{mu}{ne}0} in the expansion of the nuclear surface expression R({theta}, {phi}; {l brace}{alpha}{r brace})=c({l brace}{alpha}{r brace})R{sub 0}(1+{Sigma}{sub {lambda}} {Sigma}{sub {mu}=-{lambda}}{sup {lambda}} {alpha}{sub {lambda}{mu}}{sup *}{Upsilon}{sub {lambda}{mu}}({theta}, {phi})). The general trends in the shell-energy dependence on {alpha}{sub {lambda}=3{mu}} and the implied instabilities in the superdeformed configurations of the rare earth nuclei are studied using the Strutinsky formula with the macroscopic part taken in the form of the folded-Yukawa plus exponential interaction. A possibility of new (double superdeformed minimum) structures coexisting in some nuclei and resulting from the proton shell effects is predicted and illustrated. No significant neutron effects are found in the rare earth superdeformed nuclei considered. (orig.).

  1. Nuclei and quantum worlds

    International Nuclear Information System (INIS)

    Chomaz, Ph.

    2000-01-01

    This document gathers the slides and their commentaries that have been presented at the conference 'physics and fundamental questions' by P. Chomaz. The author reviews the different quantum aspects of nuclei: tunnel effect, symmetries, magic numbers, wave functions, size, shapes and deformations. The author shows that nuclei are quantum objects of great complexity, their structures are not yet well understood and the study of exotic nuclei will continue bringing valuable information

  2. Shape of 44Ar: Onset of deformation in neutron-rich nuclei near 48Ca

    International Nuclear Information System (INIS)

    Zielinska, M.; Goergen, A.; Clement, E.; Korten, W.; Dossat, C.; Ljungvall, J.; Obertelli, A.; Theisen, Ch.; Delaroche, J.-P.; Girod, M.; Buerger, A.; Catford, W.; Iwanicki, J.; Napiorkowski, P. J.; Srebrny, J.; Wrzosek, K.; Libert, J.; PiePtak, D.; Rodriguez-Guzman, R.; Sletten, G.

    2009-01-01

    The development of deformation and shape coexistence in the vicinity of doubly magic 48 Ca, related to the weakening of the N=28 shell closure, was addressed in a low-energy Coulomb excitation experiment using a radioactive 44 Ar beam from the SPIRAL facility at GANIL. The 2 1 + and 2 2 + states in 44 Ar were excited on 208 Pb and 109 Ag targets at two different beam energies. B(E2) values between all observed states and the spectroscopic quadrupole moment of the 2 1 + state were extracted from the differential Coulomb excitation cross sections, indicating a prolate shape of the 44 Ar nucleus and giving evidence of an onset of deformation already two protons and two neutrons away from doubly magic 48 Ca. New Hartree-Fock-Bogoliubov based configuration mixing calculations have been performed with the Gogny D1S interaction for 44 Ar and neighboring nuclei using two different approaches: the angular momentum projected generator coordinate method considering axial quadrupole deformations and a five-dimensional approach including the triaxial degree of freedom. The experimental values and new calculations are furthermore compared to shell-model calculations and to relativistic mean-field calculations. The new results give insight into the weakening of the N=28 shell closure and the development of deformation in this neutron-rich region of the nuclear chart.

  3. Nucleus spectroscopy: extreme masses and deformations

    International Nuclear Information System (INIS)

    Theisen, Ch.

    2009-12-01

    The author proposes a synthesis of research activities performed since 1995 in the field of experimental nuclear physics, and more particularly in the investigation of two nucleus extreme states: deformation on the one hand, heavy and very heavy nuclei on the other hand. After a presentation of the context of investigations on deformation, rotation, and heavy nuclei, he gives an overview of developments regarding instruments (gamma spectrometers, detection of fission fragments, and detection at the focal plane of spectrometers or separators) and analysis techniques. Experiments and results are then reported and discussed, concerning super-deformed states with a high angular moment, spectroscopy of neutron-rich nuclei, very heavy nuclei close to nucleus map borders. He finally draws perspectives for middle and long term studies on the heaviest nuclei

  4. {gamma}-spectroscopy and radioactive beams: search for highly deformed exotic nuclei; Detection {gamma} et faisceaux radioactifs: recherche de noyaux exotiques tres deformes

    Energy Technology Data Exchange (ETDEWEB)

    Rosse, B

    2006-07-15

    This work is devoted to the search for highly deformed nuclei under extreme conditions of isospin, located near the proton drip-line, around A {approx} 130. The experiment was performed at GANIL (Caen) with the SPIRAL radioactive beam facility. The nuclei of interest were produced by fusion-evaporation reactions induced by the neutron deficient Kr{sup 76} radioactive beam (T1/2 = 14.8 h). {gamma}-rays were detected by the EXOGAM array, composed of 11 segmented germanium clover detectors, for which a new segment calibration method has been developed. To extract fusion-evaporation events of a overwhelming background due to the radioactivity of the beam, the EXOGAM array was coupled with the light charged particle detector DIAMANT and the high acceptance VAMOS spectrometer. The latter was used for the first time to detect fusion-evaporation residues. The detailed data analysis allowed us to demonstrate that the EXOGAM + DIAMANT + VAMOS coupling is operational and essential to investigate the structure of these nuclei. Furthermore, the first {gamma} transition was observed in the very exotic odd-odd Pm{sup 130} nucleus. The results have been interpreted with static and dynamic self-consistent microscopic calculations in collaboration with the Theoretical Physicists of the IPN Lyon. (author)

  5. The Peculiarities of the Production and Decay of Superheavy Nuclei

    International Nuclear Information System (INIS)

    Itkis, M. G.; Bogachev, A. A.; Itkis, I. M.; Jandel, M.; Kliman, J.; Knyazheva, G. N.; Kondratiev, N. A.; Kozulin, E. M.; Krupa, L.; Oganessian, Yu. Ts.; Pokrovsky, I. V.; Prokhorova, E. V.; Rusanov, A. Ya.; Sagaidak, R. N.; Beghini, S.; Montagnoli, G.; Scarlassara, F.; Behera, B. R.; Corradi, L.; Fioretto, E.

    2006-01-01

    The interest in the study of the fission process of superheavy nuclei mainly deals with the opportunity to obtain information about the cross-section of the compound nucleus (CN) formation at excitation energies E*≅15-30 MeV. It allows one to estimate the survival probability of the superheavy composite system after evaporation of 1-3 neutrons, i.e. in 'cold' or 'warm' fusion reactions. However, in order to solve this problem deeper understanding of the coalescence processes between colliding nuclei, the competition between fusion-fission and quasi-fission processes is needed. The characteristics of both processes, their manifestation in the experimental observables and the relative contribution to the capture cross-section in dependence on the excitation energies, reaction entrance channel etc were investigated for a wide range of target-projectile combinations. Results of the experiments devoted to the study of the fusion-fission and quasi-fission processes in the reactions of the formation of the superheavy nuclei with Z = 102-122 are presented. The heavy ions 26Mg, 48Ca, 50Ti, 58Fe and 64Ni were used as projectiles. The choice of the reactions with 48Ca and actinide-targets was inspired by the experiments on the production of the isotopes 283112, 289114 and 283116 in Dubna using the same reactions. The 50Ti, 58Fe and 64Ni projectiles were chosen since the corresponding projectile-target combinations lead to the synthesis of even heavier elements. The experiments were carried out at the U-400 accelerator of the Flerov Laboratory of Nuclear Reactions (JINR, Russia) and the XTU Tandem accelerator of the National Laboratory of Legnaro (LNL, Italy) using the time-of-flight spectrometer of fission fragments CORSET. The role of the shell effects, the influence of the entrance channel asymmetry and the deformations of colliding nuclei on the mechanism of the fusion-fission and the competitive process of quasi-fission are discussed. The recent results on synthesis of

  6. Accuracy Improvement of Neutron Nuclear Data on Minor Actinides

    Science.gov (United States)

    Harada, Hideo; Iwamoto, Osamu; Iwamoto, Nobuyuki; Kimura, Atsushi; Terada, Kazushi; Nakao, Taro; Nakamura, Shoji; Mizuyama, Kazuhito; Igashira, Masayuki; Katabuchi, Tatsuya; Sano, Tadafumi; Takahashi, Yoshiyuki; Takamiya, Koichi; Pyeon, Cheol Ho; Fukutani, Satoshi; Fujii, Toshiyuki; Hori, Jun-ichi; Yagi, Takahiro; Yashima, Hiroshi

    2015-05-01

    Improvement of accuracy of neutron nuclear data for minor actinides (MAs) and long-lived fission products (LLFPs) is required for developing innovative nuclear system transmuting these nuclei. In order to meet the requirement, the project entitled as "Research and development for Accuracy Improvement of neutron nuclear data on Minor ACtinides (AIMAC)" has been started as one of the "Innovative Nuclear Research and Development Program" in Japan at October 2013. The AIMAC project team is composed of researchers in four different fields: differential nuclear data measurement, integral nuclear data measurement, nuclear chemistry, and nuclear data evaluation. By integrating all of the forefront knowledge and techniques in these fields, the team aims at improving the accuracy of the data. The background and research plan of the AIMAC project are presented.

  7. Nuclei in high forms

    International Nuclear Information System (INIS)

    Szymanski, Z.; Berger, J.F.; Heenen, P.H.; Heyde, K.; Haas, B.; Janssens, R.; Paya, D.; Gogny, D.; Huber, G.; Bjoernholm, S.; Brack, M.

    1991-01-01

    The purpose of 1991 Joliot-Curie Summer School is to review the most advances in the understanding of the nuclei physics after the considerable progress in gamma spectroscopy. It covers the following topics: Highly and super-deformed nuclei, nuclear structures, mean-field approach and beyond, fission isomers, nuclear excitations with long lifetime and metal clusters

  8. Decay properties of nuclei close to Z = 108 and N = 162

    Energy Technology Data Exchange (ETDEWEB)

    Dvorak, Jan

    2007-07-12

    The goal of the research conducted in the frame of this thesis was to investigate the decay properties of the nuclides {sup 269-271}Hs and their daughters using an improved chemical separation and detection system. Shell stabilization was predicted in the region around Z=108 and N=162 in calculations, taking into account possible higher orders of deformations of the nuclei. The nucleus {sup 270}Hs with a closed proton and a closed neutron deformed shell, was predicted to be ''deformed doubly magic''. Nuclei around {sup 270}Hs can be produced only via fusion reactions at picobarn levels, resulting in a production rates of few atoms per day. Investigating short-lived nuclei using rapid chemical separation and subsequent on-line detection methods provides an independent and alternative means to electromagnetic on-line separators. Chemical separation of Hs in the form of HsO{sub 4} provides an excellent tool to study the formation reactions and nuclear structure in this region of the chart of nuclides due to a high overall efficiency and a very high purification factor. The goal was accomplished, as element 108, hassium, was produced in the reaction {sup 248}Cm({sup 26}Mg,xn){sup 274-x}Hs and chemically isolated. After gas phase separation of HsO{sub 4}, 26 genetically linked decay chains have been observed. These were attributed to decays of three different Hs isotopes produced in the 3-5n evaporation channels. The known decay chain of {sup 269}Hs, the 5n evaporation product, serves as an anchor point, thus allowing the unambiguous assignment of the observed decay chains to the 5n, 4n, and 3n channels, respectively. Decay properties of five nuclei have been unambiguously established for the first time, including the one for the the doubly-magic nuclide {sup 270}Hs. This hassium isotope is the next doubly magic nucleus after the well known {sup 208}Pb and the first experimentally observed even-even nucleus on the predicted N=162 neutron shell. The

  9. Rotational motion in nuclei

    International Nuclear Information System (INIS)

    Bohr, A.

    1976-01-01

    Nuclear structure theories are reviewed concerned with nuclei rotational motion. The development of the deformed nucleus model facilitated a discovery of rotational spectra of nuclei. Comprehensive verification of the rotational scheme and a successful classification of corresponding spectra stimulated investigations of the rotational movement dynamics. Values of nuclear moments of inertia proved to fall between two marginal values corresponding to rotation of a solid and hydrodynamic pattern of an unrotating flow, respectively. The discovery of governing role of the deformation and a degree of a symmetry violence for determining rotational degrees of freedon is pointed out to pave the way for generalization of the rotational spectra

  10. Status of measurements of fission neutron spectra of Minor Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Drapchinsky, L.; Shiryaev, B. [V.G. Khlopin Radium Inst., Saint Petersburg (Russian Federation)

    1997-03-01

    The report considers experimental and theoretical works on studying the energy spectra of prompt neutrons emitted in spontaneous fission and neutron induced fission of Minor Actinides. It is noted that neutron spectra investigations were done for only a small number of such nuclei, most measurements, except those of Cf-252, having been carried out long ago by obsolete methods and imperfectapparatus. The works have no detailed description of experiments, analysis of errors, detailed numerical information about results of experiments. A conclusion is made that the available data do not come up to modern requirements. It is necessary to make new measurements of fission prompt neutron spectra of transuranium nuclides important for the objectives of working out a conception of minor actinides transmutation by means of special reactors. (author)

  11. Scissors and unique-parity modes of M1 excitation in deformed nuclei

    International Nuclear Information System (INIS)

    Otsuka, T.

    1989-01-01

    In this paper the possible modes of M1 excitation in deformed even-even nuclei are studied in terms of the particle-number-conserved Nilsson + BCS formalism with the standard parameters. The spurious motion with respect to the rotation is removed. In addition to the Scissors mode, the Unique-Parity Spin and Normal-Parity Spin modes are suggested, although the latter may be fragmented to a large extent. The Scissors mode carries most of the orbital strength, while the others the spin strength. The proton Unique-Parity (i.e. Oh 11/12 ) Spin mode for 164 Dy is obtained just below Ex = 3 MeV with B(M1) ∼ 0.2 μ 2 N ) in the sum rule limit. This is in a good agreement to the recent experimental data

  12. Systematics of triaxial moment of inertia and deformation parameters (β, γ) in even-even nuclei of mass region A = 90-120

    International Nuclear Information System (INIS)

    Singh, Yuvraj; Gupta, D.K.; Singh, M.; Gupta, K.K.; Bihari, Chhail; Varshney, A.K.; Dhiman, S.K.

    2012-01-01

    The deformation parameter β and γ of the collective model of Bohr and Mottelson are basic descriptors of the nuclear equilibrium shape and structure. In recent past the sets of deformation parameters ((β, γ) have been extracted from both level energies and E2 transition rates in even Xe, Ba and Ce nuclei (A∼120-140) and Hf, W, Os, Pt and Hg nuclei (A∼160-200) using rigid triaxial rotor model of Davydov-Filippov (DF). Researcher have found that the values of β obtained separately from energy and transition rate (β e and β b respectively), though, are found almost equal in heavy mass region (A ∼160-200) but, not so in medium mass (A∼120-140) nuclei. This observation puts a question mark whether the ββ dependence of moment of inertia in hydrodynamic model is reliable. The purpose of the present work is to study a relatively lighter mass region (A∼90-120) where the gap between values of two sets of β may further increase. To improve the calculations for extracting β e , the use of Grodzins rule will be made along with uncertainties, since only through this rule the E2 1 + is related with β G (value of β for symmetric nucleus and evaluated using Grodzins rule)

  13. The contour deformation method in momentum space and effective interactions for weakly bound nuclei

    International Nuclear Information System (INIS)

    Hagen, Gaute

    2005-01-01

    The main purpose of this thesis has been to investigate and develop methods suitable for study of resonance phenomena in nuclear and subatomic physics. Emphasis has been on the momentum space formulation of the Schrodinger equation. It has been shown; starting from the integral formulation of the Schrodinger equation, that an efficient way of obtaining a complete set of states including bound- antibound and resonant states is through the Contour Deformation Method. The strength of the Contour Deformation Method has been illustrated by studying a wide range of different cases in subatomic physics where resonance phenomena appear. These applications ranges from the case of a single-particle moving in a spherically symmetric field to the case of strong deformations of the field. Further, it has been studied how resonances may be solved for in complex potentials which models absorptive and emittive processes, using the Contour Deformation Method. The results obtained in these specific applications, strongly favour the Contour Deformation Method in comparison with other methods such as complex coordinate scaling and analytic continuation in the coupling strength. The most appealing feature of CD-NI is that not only does it give accurate results for resonances and anti-bound states, but in addition it provides us with a complete set of states which may be used in many different eigenfunction expansions. The only limitation of CDM is that the analytic structure of the potential has to be known, since the choice of contour is dictated by the singularity structure of the potential. The revival and study of CDM applied to nuclear physics, may be considered the main issue of the first part of this thesis, and is also the topic of Paper 1. In the second part of this thesis, the focus was directed towards the issue of how resonance phenomena may be understood in nuclei, when several valence particles are present. The newly developed Gamow Shell Model is a promising approach in

  14. Octupole shapes in heavy nuclei

    International Nuclear Information System (INIS)

    Ahmad, I.

    1994-01-01

    Theoretical calculations and measurements show the presence of strong octupole correlations in thecyround states and low-lying states of odd-mass and odd-odd nuclei in the RaPa region. Evidence for octupole correlations is provided by the observation of parity doublets and reductions in M1 matrix elements, decoupling parameters, and Coriolis matrix elements Involving high-j states. Enhancement of E1 transition rates has also been observed for some of the octupole deformed nuclei. The most convincing argument for octupole deformation is provided by the similarities of the reduced alpha decay rates to the two members of parity doublets

  15. Band-head spectra of low-energy single-particle excitations in some well-deformed, odd-mass heavy nuclei within a microscopic approach

    Energy Technology Data Exchange (ETDEWEB)

    Koh, Meng-Hock [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Duc, Dao Duy [Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Ton Duc Thang University, Faculty of Applied Sciences, Ho Chi Minh City (Viet Nam); Nhan Hao, T.V. [Duy Tan University, Center of Research and Development, Danang (Viet Nam); Hue University, Center for Theoretical and Computational Physics, College of Education, Hue City (Viet Nam); Long, Ha Thuy [Hanoi University of Sciences, Vietnam National University, Hanoi (Viet Nam); Quentin, P. [Universiti Teknologi Malaysia, Skudai, Johor (Malaysia); Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France); Ton Duc Thang University, Division of Nuclear Physics, Ho Chi Minh City (Viet Nam); Bonneau, L. [Univ. Bordeaux, CENBG, UMR5797, Gradignan (France); CNRS, IN2P3, CENBG, UMR5797, Gradignan (France)

    2016-01-15

    In four well-deformed heavy odd nuclei, the energies of low-lying rotational band heads have been determined microscopically within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. Only such states which are phenomenologically deemed to be related to single-particle excitations have been considered. The polarization effects, including those associated with the genuine time-reversal symmetry breaking have been fully taken into account within our model assumptions. The calculated spectra are in reasonably good qualitative agreement with available data for the considered odd-neutron nuclei. This is not so much the case for the odd-proton nuclei. A potential explanation for such a difference in behavior is proposed. (orig.)

  16. Deformation and shell effects in nuclear mass formulas

    International Nuclear Information System (INIS)

    Barbero, César; Hirsch, Jorge G.; Mariano, Alejandro E.

    2012-01-01

    We analyze the ability of three different Liquid Drop Mass (LDM) formulas to describe nuclear masses for nuclei in various deformation regions. Separating the 2149 measured nuclear species into eight sets with similar quadrupole deformations, we show that the masses of prolate deformed nuclei are better described than those of spherical ones. In fact, the prolate deformed nuclei are fitted with an RMS smaller than 750 keV, while for spherical and semi-magic species the RMS is always larger than 2000 keV. These results are found to be independent of pairing. It is also shown that the macroscopic sector of the Duflo–Zuker (DZ) mass model reproduces shell effects, while most of the deformation dependence is lost and the RMS is larger than in any LDM. Adding to the LDM the microscopically motivated DZ master terms introduces the shell effects, allowing for a significant reduction in the RMS of the fit but still exhibiting a better description of prolate deformed nuclei. The inclusion of shell effects following the Interacting Boson Model's ideas produces similar results.

  17. Deformation and shell effects in nuclear mass formulas

    Energy Technology Data Exchange (ETDEWEB)

    Barbero, Cesar [Departamento de Fisica, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Instituto de Fisica La Plata, CONICET, 1900 La Plata (Argentina); Hirsch, Jorge G., E-mail: hirsch@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autonoma de Mexico, 04510 Mexico D.F. (Mexico); Mariano, Alejandro E. [Departamento de Fisica, Universidad Nacional de La Plata, C.C. 67, 1900 La Plata (Argentina); Instituto de Fisica La Plata, CONICET, 1900 La Plata (Argentina)

    2012-01-15

    We analyze the ability of three different Liquid Drop Mass (LDM) formulas to describe nuclear masses for nuclei in various deformation regions. Separating the 2149 measured nuclear species into eight sets with similar quadrupole deformations, we show that the masses of prolate deformed nuclei are better described than those of spherical ones. In fact, the prolate deformed nuclei are fitted with an RMS smaller than 750 keV, while for spherical and semi-magic species the RMS is always larger than 2000 keV. These results are found to be independent of pairing. It is also shown that the macroscopic sector of the Duflo-Zuker (DZ) mass model reproduces shell effects, while most of the deformation dependence is lost and the RMS is larger than in any LDM. Adding to the LDM the microscopically motivated DZ master terms introduces the shell effects, allowing for a significant reduction in the RMS of the fit but still exhibiting a better description of prolate deformed nuclei. The inclusion of shell effects following the Interacting Boson Model's ideas produces similar results.

  18. Actinide metal processing

    International Nuclear Information System (INIS)

    Sauer, N.N.; Watkin, J.G.

    1992-01-01

    A process for converting an actinide metal such as thorium, uranium, or plutonium to an actinide oxide material by admixing the actinide metal in an aqueous medium with a hypochlorite as an oxidizing agent for sufficient time to form the actinide oxide material and recovering the actinide oxide material is described together with a low temperature process for preparing an actinide oxide nitrate such as uranyl nitrate. Additionally, a composition of matter comprising the reaction product of uranium metal and sodium hypochlorite is provided, the reaction product being an essentially insoluble uranium oxide material suitable for disposal or long term storage

  19. Calculation of gaint Elambda-resonances of high multipolarity in deformed nuclei

    International Nuclear Information System (INIS)

    Kiselev, M.A.; Malov, L.A.; Nesterenko, V.O.; Solov'ev, V.G.

    1978-01-01

    High-miltipole ( lambda=4-7 ) single-phonon states and strength functions of Elambda(0sup(+) → lambdasup(π))-transitions from the ground states to the excited Isup(π)K states with I=lambda in deformed nuclei are calculated. Possible existance of high-multipole ( lambda >= 4 ) giant Elambda-resonances is considered. Magnitudes of isoscalar and isovector constants of multipole-multipole interaction, required for a description of phonons as quasiparticles of the phonon model, are discussed. All the calculations have been carried out in the random-phase approximation of the general semimicroscopic approach. There is a tendency towards broadening resonances and shifting the maxima into the region of high excitation energies as lambda increases. Broad isoscalar resonances at energies of 10-17 MeV, 10-25 MeV, 15-25 MeV and 10-40 MeV for lambda=4, 5, 6 and 7 respectively. Isovector resonances at lambda=4, 5, 6 and 7 show up themselves as well sufficiently clearly

  20. Heavy-ion interactions of deformed nuclei. Progress report and final report, January 1, 1985-December 31, 1985

    International Nuclear Information System (INIS)

    Oberacker, V.E.

    1985-09-01

    This Progress Report describes the main topics that were investigated during the reporting period: (1) a new microscopic approach (many-body theory with two-center shell model basis) to the calculation of heavy-ion interaction potentials, primarily for heavy systems; (2) dynamic alignment of deformed nuclei during heavy-ion collisions; (3) the role of shell effects, static deformation and dynamic alignment in heavy-ion fusion reactions; (4) giant nuclear quasimolecules and the positron problem. The proposed research has direct relevance to experimental programs supported by DOE, e.g. the Holifield Heavy-Ion Research Facility (HHIRF) at Oak Ridge, the ATLAS accelerator at Argonne National Laboratory, the Double MP Tandem at Brookhaven and some of the smaller University-based accelerators. A discussion of a review article on Coulomb fission is presented. 36 refs., 7 figs

  1. A study of Gamow-Teller transitions for N = Z nuclei, {sup 24}Mg, {sup 28}Si, and {sup 32}S, by a deformed QRPA

    Energy Technology Data Exchange (ETDEWEB)

    Ha, Eunja; Cheoun, Myung-Ki [Soongsil University, Origin of Matter and Evolution of Galaxy Institute and Department of Physics, Seoul (Korea, Republic of)

    2017-02-15

    We investigated Gamow-Teller (GT) transitions and strength distributions of s-d shell N = Z nuclei, {sup 24}Mg, {sup 28}Si, and {sup 32}S, by a deformed quasi-particle random phase approximation (DQRPA). In the DQRPA, we included particle model space up to p-f shell and considered explicitly the deformation as well as the like- and unlike-pairing correlations. Shell evolution by deformation and attractive force by unlike-pairing correlations turned out to play vital roles to reproduce the experimental GT data. Correlations between the deformation and the pairing correlations are also discussed with the comparison to the experimental data shape. (orig.)

  2. Studies of pear-shaped nuclei using accelerated radioactive beams

    CERN Document Server

    Gaffney, L P; Scheck, M; Hayes, A B; Wenander, F; Albers, M; Bastin, B; Bauer, C; Blazhev, A; Bonig, S; Bree, N; Cederkall, J; Chupp, T; Cline, D; Cocolios, T E; Davinson, T; DeWitte, H; Diriken, J; Grahn, T; Herzan, A; Huyse, M; Jenkins, D G; Joss, D T; Kesteloot, N; Konki, J; Kowalczyk, M; Kroll, Th; Kwan, E; Lutter, R; Moschner, K; Napiorkowski, P; Pakarinen, J; Pfeiffer, M; Radeck, D; Reiter, P; Reynders, K; Rigby, S V; Robledo, L M; Rudigier, M; Sambi, S; Seidlitz, M; Siebeck, B; Stora, T; Thoele, P; Van Duppen, P; Vermeulen, M J; von Schmid, M; Voulot, D; Warr, N; Wimmer, K; Wrzosek-Lipska, K; Wu, C Y; Zielinska, M

    2013-01-01

    There is strong circumstantial evidence that certain heavy, unstable atomic nuclei are ‘octupole deformed’, that is, distorted into a pear shape. This contrasts with the more prevalent rugby-ball shape of nuclei with reflection-symmetric, quadrupole deformations. The elusive octupole deformed nuclei are of importance for nuclear structure theory, and also in searches for physics beyond the standard model; any measurable electric-dipole moment (a signature of the latter) is expected to be amplified in such nuclei. Here we determine electric octupole transition strengths (a direct measure of octupole correlations) for short-lived isotopes of radon and radium. Coulomb excitation experiments were performed using accelerated beams of heavy, radioactive ions. Our data on and $^{224}$Ra show clear evidence for stronger octupole deformation in the latter. The results enable discrimination between differing theoretical approaches to octupole correlations, and help to constrain suitable candidates for experimental...

  3. Synthesis of tetravalent actinide chlorides. Versatile compounds for actinide chemistry

    Energy Technology Data Exchange (ETDEWEB)

    Maerz, Juliane [Helmholtz-Zentrum Dresden-Rossendorf e.V., Dresden (Germany). Div. Chemistry of the F-Elements

    2016-07-01

    Anhydrous actinide tetrachlorides (AnCl{sub 4}) were synthesized under mild conditions to provide versatile compounds for actinide chemistry. They enable a direct access to actinide complexes with organic and inorganic ligands.

  4. Bimodal nature in low-energy fission of light actinides

    International Nuclear Information System (INIS)

    Nagame, Yuichiro; Nishinaka, Ichiro; Tsukada, Kazuaki; Ikezoe, Hiroshi; Otsuki, Tsutomu; Sueki, Keisuke; Nakahara, Hiromichi; Kudo, Hisaaki.

    1995-01-01

    To solve various problems in the mass division process of light actinoids, some experiments on the basis of bimodal fission were carried. Mass and kinetic energy distribution of Th-232 and U-238 were determined. Pa-225 (N= 134) and Pa-227 (N=136), fission nuclei, were produced by Bi-209 + 0-16 and Bi-209 + 0-18 heavy ion nucleus reactions, and the mass yield distribution were determined by the time-of-flight method and the radiochemical procedure. From the results, two independent deforming processes were proved in the fission process of light actinoid nuclei. On the deforming process through the low fission barrier, nucleus fissioned after small deformation under the influence of stabilization of the shell structure of fission product. In the case of process through the high barrier, however, the nucleus fissioned after large deformation. The unsymmetrical mass division was derived from the former and the symmetrical one from the latter. (S.Y.)

  5. Effect of the Pauli principle on the excited states of doubly-even deformed nuclei

    International Nuclear Information System (INIS)

    Jolos, R.V.; Molina, J.L.; Soloviev, V.G.

    1980-01-01

    It is shown that the commutation relations between the quasiparticles forming phonons can correctly be taken into account within the quasiparticle-phonon nuclear model. The doubly-even deformed nuclei with the isoscalar and isovector multipole-multipole forces are studied. The exact and approximate secular equations are derived. It is shown that the two-phonon poles in the secular equation are shifted due to the Pauli principle. These shifts are large for the two identical collective phonons. In some cases pronounced shifts are found for the poles composed of a low-lying collective phonon and a collective phonon forming the giant resonance. In other cases the shifts are not large, as a rule. (orig.) 891 FKS/orig. 892 MB

  6. Gamma bands in doubly odd rhenium and iridium nuclei

    Directory of Open Access Journals (Sweden)

    Balodis M.

    2015-01-01

    Full Text Available Structure of the |K ± 2| bands in doubly-odd nuclei belonging to the transitional deformation region at A∼190 is discussed. Relation of these quasi gamma-bands with the non-axial deformation of the parent two-quasiparticle configurations is studied. Using available experimental information, new tentative |K ± 2| bands are proposed in 188Re, and 192,194Ir nuclei. Coexistence of two-quasiparticle states with different deformation modes is considered in the case of 188Re and 194Ir.

  7. Simple description of odd-A nuclei around the critical point of the spherical to axially deformed shape phase transition

    International Nuclear Information System (INIS)

    Zhang Yu; Pan Feng; Liu Yuxin; Luo Yanan; Draayer, J. P.

    2011-01-01

    An analytically solvable model, X(3/2j+1), is proposed to describe odd-A nuclei near the X(3) critical point. The model is constructed based on a collective core described by the X(3) critical point symmetry coupled to a spin-j particle. A detailed analysis of the spectral patterns for cases j=1/2 and j=3/2 is provided to illustrate dynamical features of the model. By comparing theory with experimental data and results of other models, it is found that the X(3/2j+1) model can be taken as a simple yet very effective scheme to describe those odd-A nuclei with an even-even core at the critical point of the spherical to axially deformed shape phase transition.

  8. Vibrational-rotational model of odd-odd nuclei

    International Nuclear Information System (INIS)

    Afanas'ev, A.V.; Guseva, T.V.; Tamberg, Yu.Ya.

    1988-01-01

    The rotational vibrational (RV) model of odd nuclei is generalized to odd-odd nuclei. The hamiltonian, wave functions and matrix elements of the RV-model of odd-odd nuclei are obtained. The expressions obtained for matrix elements of the RV-model of odd-odd nuclei can be used to study the role of vibrational additions in low-lying two-particle states of odd-odd deformed nuclei. Such calculations permit to study more correctly the residual neutron-proton interaction of valent nucleons with respect to collectivization effects

  9. Use of the optical model in the actinide region

    International Nuclear Information System (INIS)

    Salvy, J.

    1985-11-01

    This paper reviews current methods as well as recent developments in the use of optical model for calculating actinide nuclear data in the incident neutron energy range from 10 keV to 20 MeV. Special consideration is given of the general role of the model, parameterization procedures with taking account of nuclear deformations, parameters sets to be recommended, and some utilization problems [fr

  10. Actinide separation by electrorefining

    International Nuclear Information System (INIS)

    Fusselman, S.P.; Gay, R.L.; Grantham, L.F.; Grimmett, D.L.; Roy, J.J.; Inoue, T.; Hijikata, T.; Krueger, C.L.; Storvick, T.S.; Takahashi, N.

    1995-01-01

    TRUMP-S is a pyrochemical process being developed for the recovery of actinides from PUREX wastes. This paper describes development of the electrochemical partitioning step for recovery of actinides in the TRUMP-S process. The objectives are to remove 99 % of each actinide from PUREX wastes, with a product that is > 90 % actinides. Laboratory tests indicate that > 99 % of actinides can be removed in the electrochemical partitioning step. A dynamic (not equilibrium) process model predicts that 90 wt % product actinide content can be achieved through 99 % actinide removal. Accuracy of model simulation results were confirmed in tests with rare earths. (authors)

  11. Systematics of B(E2;01+→21+) values for even-even nuclei

    International Nuclear Information System (INIS)

    Raman, S.; Nestor, C.W. Jr.; Bhatt, K.H.

    1988-01-01

    We have completed a compilation of experimental results for the electric quadrupole transition probability B(E2)up-arrow between the 0 + ground state and the first 2 + state in even-even nuclei. The adopted B(E2)up-arrow values have been employed to test the various systematic, empirical, and theoretical relationships proposed by several authors (Grodzins, Bohr and Mottelson, Wang et al., Ross and Bhaduri, Patnaik et al., Hamamoto, Casten, Moeller and Nix, and Kumar) on a global, local, or regional basis. These systematics offer methods for making reasonable predictions of unmeasured B(E2) values. For nuclei away from closed shells, the SU(3) limit of the intermediate boson approximation implies that the B(E2)up-arrow values are proportional to (e/sub p/N/sub p/+e/sub n/N/sub n/) 2 , where e/sub p /(e/sub n/) is the proton (neutron) effective charge and N/sub p/ (N/sub n/) refers to the number of valence protons (neutrons). This proportionality is consistent with the observed behavior of B(E2)up-arrow vs N/sub p/N/sub n/. For deformed nuclei and the actinides, the B(E2)up-arrow values calculated in a schematic single-particle ''SU(3)'' simulation or large single-j simulation of major shells successfully reproduce not only the empirical variation of the B(E2)up-arrow values but also the observed saturation of these values when plotted against N/sub p/N/sub n/. .AE

  12. SURFACE SYMMETRY ENERGY OF NUCLEAR ENERGY DENSITY FUNCTIONALS

    Energy Technology Data Exchange (ETDEWEB)

    Nikolov, N; Schunck, N; Nazarewicz, W; Bender, M; Pei, J

    2010-12-20

    We study the bulk deformation properties of the Skyrme nuclear energy density functionals. Following simple arguments based on the leptodermous expansion and liquid drop model, we apply the nuclear density functional theory to assess the role of the surface symmetry energy in nuclei. To this end, we validate the commonly used functional parametrizations against the data on excitation energies of superdeformed band-heads in Hg and Pb isotopes, and fission isomers in actinide nuclei. After subtracting shell effects, the results of our self-consistent calculations are consistent with macroscopic arguments and indicate that experimental data on strongly deformed configurations in neutron-rich nuclei are essential for optimizing future nuclear energy density functionals. The resulting survey provides a useful benchmark for further theoretical improvements. Unlike in nuclei close to the stability valley, whose macroscopic deformability hangs on the balance of surface and Coulomb terms, the deformability of neutron-rich nuclei strongly depends on the surface-symmetry energy; hence, its proper determination is crucial for the stability of deformed phases of the neutron-rich matter and description of fission rates for r-process nucleosynthesis.

  13. ORNL actinide materials and a new detection system for superheavy nuclei

    Directory of Open Access Journals (Sweden)

    Rykaczewski Krzysztof P.

    2016-01-01

    Full Text Available The actinide resources and production capabilities at Oak Ridge National Laboratory (ORNL are reviewed, including potential electromagnetic separation of rare radioactive materials. The first experiments at the Dubna Gas Filled Recoil Separator (DGFRS with a new digital detection system developed at ORNL and University of Tennessee Knoxville (UTK are presented. These studies used 240Pu material provided by ORNL and mixed-Cf targets made at ORNL. The proposal to use an enriched 251Cf target and a large dose of 58Fe beam to reach the N = 184 shell closure and to observe new elements with Z = 124, 122 and 120 is discussed.

  14. Magnetic dipole moments of deformed odd-A nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Garg, V P; Sharma, S D; Mahesh, P S [Punjabi Univ., Patiala (India). Dept. of Physics

    1976-12-01

    Using an extended version of A S Davydov and G F Filippov's model (1958), B E Chi and J P Davidson have calculated magnetic moments of odd-A nuclei in 2s-ld shell, diagonalizing the state matrices for a set of parameters giving the best fit for nuclear spectra (1966). To study the failure of this model in case of nuclear moments, instead of diagonalizing an attempt has been made to simplify the expression for magnetic dipole moment for single nucleonic states without configuration mixing. The model takes care of the proper sign of spin projections. On replacing the total angular momentum j of odd particle (proton or neutron) by its projection ..cap omega.., the expression reduces to that of Mottelson and Nilsson for spin-up nuclei. The Coriolis coupling calculations also have been performed for those odd-A nuclei with K = 1/2. The results are found in better agreement with experimental report in comparison with those of other models.

  15. A systematic fast-timing study of even-even nuclei in the well deformed A 170-180 region

    Energy Technology Data Exchange (ETDEWEB)

    Jolie, J.; Regis, J.M.; Dannhoff, M.; Gerst, R.B.; Karayonchev, V.; Mueller-Gatermann, C.; Saed-Samii, N.; Stegemann, S.; Blazhev, A. [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Rudigier, M. [Institut fuer Kernphysik, Universitaet zu Koeln (Germany); Department of Physics, University of Surrey (United Kingdom)

    2016-07-01

    At the Cologne Tandem accelerator we are performing a systematic study of lifetimes in the ground state bands of well deformed even-even nuclei in order to increase the precision of the ns-ps lifetimes and to solve inconsistencies in the literature. The measurements are done using Orange spectrometers, LaBr{sub 3}(Ce) scintillators and Ge detectors. The data are analyzed using the slope and the generalized centroid difference method. The latter allows the measurement of lifetimes down to 5 ps. First results on Yb, Hf and W isotopes are presented.

  16. Deformed configurations, band structures and spectroscopic ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... The deformed configurations and rotational band structures in =50 Ge and Se nuclei are studied by deformed Hartree–Fock with quadrupole constraint and angular momentum projection. Apart from the `almost' spherical HF solution, a well-deformed configuration occurs at low excitation. A deformed ...

  17. Stability and production of superheavy nuclei

    International Nuclear Information System (INIS)

    Moeller, P.; Los Alamos National Lab., NM; Nix, J.R.

    1997-01-01

    Beyond uranium heavy elements rapidly become increasingly unstable with respect to spontaneous fission as the proton number Z increases, because of the disruptive effect of the long-range Coulomb force. However, in the region just beyond Z = 100 magic proton and neutron numbers and the associated shell structure enhances nuclear stability sufficient to allow observation of additional nuclei. Some thirty years ago it was speculated that an island of spherical, relatively stable superheavy nuclei would exist near the next doubly magic proton-neutron combination beyond 208 Pb, that is, at proton number Z 114 and neutron number N = 184. Theory and experiment now show that there also exists a rock of stability in the vicinity of Z = 110 and N = 162 between the actinide region, which previously was the end of the peninsula of known elements, and the predicted island of spherical superheavy nuclei slightly southwest of the magic numbers Z = 114 and N = 184. The authors review here the stability properties of the heavy region of nuclei. Just as the decay properties of nuclei in the heavy region depend strongly on shell structure, this structure also dramatically affects the fusion entrance channel. The six most recently discovered new elements were all formed in cold-fusion reactions. They discuss here the effect of the doubly magic structure of the target in cold-fusion reactions on the fusion barrier and on dissipation

  18. Actinide neutron-induced fission up to 20 MeV

    International Nuclear Information System (INIS)

    Maslov, V.M.

    2001-01-01

    Fission and total level densities modelling along with double-humped fission barrier parameters allow to describe available actinide neutron-induced fission cross section data in the incident neutron energy range of ∼ 10 keV - 20 MeV. Saddle asymmetries relevant to shell correction model calculations influence fission barriers, extracted by cross section data analysis. The inner barrier was assumed axially symmetric in case of U, Np and Pu neutron-deficient nuclei. It is shown that observed irregularities in neutron-induced fission cross section data in the energy range of 0.5-3 MeV could be attributed to the interplay of few-quasiparticle excitations in the level density of fissioning and residual nuclei. Estimates of first-chance fission cross section and secondary neutron spectrum model were validated by 238 U fission, (n,2n) and (n,3n) data description up to 20 MeV. (author)

  19. Actinide neutron-induced fission up to 20 MeV

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, V M [Radiation Physics and Chemistry Problems Institute, Minsk-Sosny (Belarus)

    2001-12-15

    Fission and total level densities modelling along with double-humped fission barrier parameters allow to describe available actinide neutron-induced fission cross section data in the incident neutron energy range of {approx} 10 keV - 20 MeV. Saddle asymmetries relevant to shell correction model calculations influence fission barriers, extracted by cross section data analysis. The inner barrier was assumed axially symmetric in case of U, Np and Pu neutron-deficient nuclei. It is shown that observed irregularities in neutron-induced fission cross section data in the energy range of 0.5-3 MeV could be attributed to the interplay of few-quasiparticle excitations in the level density of fissioning and residual nuclei. Estimates of first-chance fission cross section and secondary neutron spectrum model were validated by {sup 238}U fission, (n,2n) and (n,3n) data description up to 20 MeV. (author)

  20. Determination of shell energies. Nuclear deformations and fission barriers

    International Nuclear Information System (INIS)

    Koura, Hiroyuki; Tachibana, Takahiro; Uno, Masahiro; Yamada, Masami.

    1996-01-01

    We have been studying a method of determining nuclear shell energies and incorporating them into a mass formula. The main feature of this method lies in estimating shell energies of deformed nuclei from spherical shell energies. We adopt three assumptions, from which the shell energy of a deformed nucleus is deduced to be a weighted sum of spherical shell energies of its neighboring nuclei. This shell energy should be called intrinsic shell energy since the average deformation energy also acts as an effective shell energy. The ground-state shell energy of a deformed nucleus and its equilibrium shape can be obtained by minimizing the sum of these two energies with respect to variation of deformation parameters. In addition, we investigate the existence of fission isomers for heavy nuclei with use of the obtained shell energies. (author)

  1. 'Static' octupole deformation at high spin

    International Nuclear Information System (INIS)

    Nazarewicz, W.

    1985-01-01

    Rotational bands characterized by spin states of alternating parity p=(-1) I connected by enhanced E1 transitions have recently been observed in several nuclei from the Ra-Th region. They can be interpreted by means of a reflection asymmetric mean field theory. The interplay between octupole deformation and rotation is briefly discussed. For nuclei with ground state octupole deformation a transition to a reflection symmetric shape is expected around I=22. (orig.)

  2. Collective states of nonspherical deformable even--even nuclei

    International Nuclear Information System (INIS)

    Tartakovskii, V.K.

    1989-01-01

    A more correct method, as compared with some earlier studies, of finding the wave functions and corresponding energies of longitudinal quadrupole vibrations of nonspherical even--even nuclei is proposed. The wave functions and energies of collective motions in nuclei have been obtained in explicit form for a number of dependences of the potential energy of longitudinal vibrations V(β), including the dependence V(β), not previously used, of the most general form. Explicit dependences of the potential energy of transverse vibrations and the corresponding wave functions and eigenvalues for nuclear states with zero spins are proposed

  3. Quantum algebra Uqp(u2) and application to the rotational collective dynamics of the nuclei

    International Nuclear Information System (INIS)

    Barbier, R.

    1995-01-01

    This thesis concerns some aspects of new symmetries in Nuclear Physics. It comprises three parts. The first one is devoted to the study of the quantum algebra U qp (u 2 ). More precisely, we develop its Hopf algebraic structure and we study its co-product structure. The bases of the representation theory of U qp (u 2 ) are introduced. On one hand, we construct the finite-dimensional irreducible representations of U qp (u 2 ). On the other hand, we calculate the Clebsch-Gordan coefficients with the projection operator method. To complete our study, we construct some deformed boson mappings of the quantum algebras U qp (u 2 ), U q 2 (su 2 ) and U qp (u 1,1 ). The second part deals with the construction of a new phenomenological model of the non rigid rotator. This model is based on the quantum algebra U qp (u 2 ). The rotational energy and the E2 reduced transition probabilities are obtained. They depend on the two deformation parameters q and p of the quantum algebra. We show how the use of the two-parameter deformation of the algebra U qp (u 2 ) leads to a generalization of the U q (su 2 )-rotator model. We also introduce a new model of the anharmonic oscillator on the basis of the quantum algebra U qp (u 2 ). We show that the system of the U q (su 2 )-rotator and of the anharmonic oscillator can be coupled with the use of the deformation parameters of U qp (u 2 ). A ro-vibration energy formula and expansion 'a la' Dunham are obtained. The aim of the lest part is to apply our non rigid rotator model to the rotational collective dynamics of the superdeformed nuclei of the A∼130 - 150 and A∼190 mass regions and deformed nuclei of the actinide and rare earth series. We adjust the free parameters of our model and compare our results with those arising from four other models of the non rigid rotator. A comparative analysis is given in terms of transition energies. We calculate the dynamical moments of inertia with the fitted parameters. A comparison between the

  4. Proceedings of the Workshop on Experimental and theoretical problems around actinides for future reactors

    International Nuclear Information System (INIS)

    Kerveno, Maelle; Dupuis, Marc; Bauge, E.; Hilaire, S.; Romain, P.; Morillon, B.; Delaroche, J.P.; Dupuis, M.; Peru, S.; Belier, G.; Bonnet, T.; Laborie, J.M.; Laurent, B.; Ledoux, X.; Varignon, C.; Meot, V.; Bernard, David; Capote, Roberto; Kawano, T.; Bond, E.; Vieira, D.J.; Wilhelmy, J.B.; Raynal, J.; Plompen, Arjan J.M.; Drohe, J.C.; Nankov, N.; Nyman, M.; Rouki, C.; Bacquias, A.; Dessagne, Ph.; Henning, G.; Karam, H.; Kerveno, M.; Rudolf, G.; Thiry, J.C.; Borcea, C.; Negret, A.; Stanoiu, M.; Bucurescu, D.; Deleanu, D.; Filipescu, D.; Ghita, D.; Glodariu, T.; Marginean, N.; Marginean, R.; Mihai, C.; Olacel, A.; Pascu, S.; Sava, T.; Stroe, L.; Goriely, S.; Pavlik, A.; Jericha, E.; Ledoux, X.; Becker, J.A.; Macri, R.; Authier, N.; Hyneck, D.; Jansen, Y.; Legendre, J.; Jacquet, X.; Gunsing, Frank; Henning, Greg

    2014-03-01

    Since the two last decades, in the framework of general researches on future reactors, strong efforts have been devoted to improve the quantity and quality of nuclear data. Indeed, in order to improve safety margins and fuel optimization, but also to develop new kind of reactors or fuel cycles, accurate nuclear data are mandatory. At the end of the twentieth century, nuclear data bases did not reach the required quality level to be used in future reactor simulations. Therefore, both experimentalists and theoreticians, in the framework of several European research programs (HINDAS, NUDATRA, ANDES, CHANDA...), have tried to make the situation better. New sets of precise data measurements concerning fission, capture, (n,xn),..., reaction cross sections for a large variety of nuclei have been initiated. From evaluation point of view, the JEFF project has also improved the quality of nuclear data bases for several nuclei. In parallel, on the theoretical side, progress has also been made concerning cross section modeling in a wide range of energy (eV to GeV). The goal was to provide theoretical models with a good predictive power to feed data bases where experimental data are still missing and where the measurement is too complex. In this context, for example, a new nuclear reaction code TALYS has been developed. Collaboration between experimentalists, theoreticians and evaluators are then of strong interest to make progress. The number of problems to be solved covers various fields of nuclear reactions such as fission, capture or inelastic scattering. In order to avoid too large an audience we have decided, as a first step, to focus on inelastic scattering on actinides. Experimentally, three main methods exist to measure the total inelastic cross section: activation, detection of the emitted neutrons and prompt-gamma spectroscopy. This last method is, nevertheless, dependent on theoretical models since it provides (n,xn γ) cross sections and not the total inelastic

  5. Two-particle spatial correlations in superfluid nuclei

    International Nuclear Information System (INIS)

    Pillet, N.; Berger, J.-F.; Sandulescu, N.; Schuck, P.

    2010-01-01

    We discuss the effect of pairing on two-neutron space correlations in deformed nuclei. The spatial correlations are described by the pairing tensor in coordinate space calculated in the HFB approach. Calculations are done using the D1S Gogny force. We show that the pairing tensor has a rather small extension in the relative coordinate, a feature observed earlier in spherical nuclei. It is pointed out that in deformed nuclei the coherence length corresponding to the pairing tensor has a pattern similar to what we have found previously in spherical nuclei; that is, it is maximal in the interior of the nucleus and then it decreases rather rapidly in the surface region, where it reaches a minimal value of about 2 fm. This minimal value of the coherence length in the surface is essentially determined by the finite size properties of single-particle states in the vicinity of the chemical potential and has little to do with enhanced pairing correlations in the nuclear surface. It is shown that in nuclei the coherence length is not a good indicator of the intensity of pairing correlations. This feature is contrasted with the situation in infinite matter.

  6. Actinide oxide photodiode and nuclear battery

    Energy Technology Data Exchange (ETDEWEB)

    Sykora, Milan; Usov, Igor

    2017-12-05

    Photodiodes and nuclear batteries may utilize actinide oxides, such a uranium oxide. An actinide oxide photodiode may include a first actinide oxide layer and a second actinide oxide layer deposited on the first actinide oxide layer. The first actinide oxide layer may be n-doped or p-doped. The second actinide oxide layer may be p-doped when the first actinide oxide layer is n-doped, and the second actinide oxide layer may be n-doped when the first actinide oxide layer is p-doped. The first actinide oxide layer and the second actinide oxide layer may form a p/n junction therebetween. Photodiodes including actinide oxides are better light absorbers, can be used in thinner films, and are more thermally stable than silicon, germanium, and gallium arsenide.

  7. Rotational-vibrational states of nonaxial deformable even-even nuclei

    International Nuclear Information System (INIS)

    Porodzinskii, Yu.V.; Sukhovitskii, E.Sh.

    1991-01-01

    The rotational-vibrational excitations of nonaxial even-even nuclei are studied on the basis of a Hamiltonian operator with five dynamical variables. Explicit forms of the wave functions and energies of the rotational-vibrational excitations of such nuclei are obtained. The experimental energies of excited positive-parity states of the 238 U nucleus and those calculated in terms of the model discussed in the article are compared

  8. Thermodynamic Properties of Actinides and Actinide Compounds

    Science.gov (United States)

    Konings, Rudy J. M.; Morss, Lester R.; Fuger, Jean

    The necessity of obtaining accurate thermodynamic quantities for the actinide elements and their compounds was recognized at the outset of the Manhattan Project, when a dedicated team of scientists and engineers initiated the program to exploit nuclear energy for military purposes. Since the end of World War II, both fundamental and applied objectives have motivated a great deal of further study of actinide thermodynamics. This chapter brings together many research papers and critical reviews on this subject. It also seeks to assess, to systematize, and to predict important properties of the actinide elements, ions, and compounds, especially for species in which there is significant interest and for which there is an experimental basis for the prediction.

  9. Electro-magnetic properties of heavy nuclei

    International Nuclear Information System (INIS)

    Otsuka, Takaharu

    1989-01-01

    Two topics of electro-magnetic properties of heavy nuclei are discussed. The first topic is the M1 excitation from well-deformed heavy nuclei, and the other is the sudden increase of the isotope shift as a function of N in going away from the closed shell. These problems are considered in terms of the particle-number projected (Nilsson-) BCS calculation. (author)

  10. First and second-order corrections to the eikonal phase shifts for the interactions of two deformed nuclei

    International Nuclear Information System (INIS)

    Metawei, Z.

    2000-01-01

    We present the first and second - order corrections to the eikonal phase shifts for the interactions of two deformed nuclei. The elastic scattering differential cross-section has been calculated for both the interactions of I2 C- 12 C system (at energies 1016, 1449 and 2400 MeV) and 16 O- 12 C system (at energy 1503 MeV). The calculated results corrections seems to improve the agreement with the experimental data.The deflection function, the S-matrix,the near-side and the far-side decompositions of the scattering amplitude has been calculated using the same corrections

  11. Nucleosynthesis of neutron-rich heavy nuclei during explosive helium burning in massive stars

    International Nuclear Information System (INIS)

    Blake, J.B.; Woosley, S.E.; Weaver, T.A.; Schramm, D.N.

    1981-01-01

    The production of heavy nuclei during explosive helium burning has been calculated using a hydrodynamical model of a 15 M/sub sun/ (Type II) supernovae and a n-process nuclear reaction network. The resulting neutron-rich heavy nuclei are not produced in the relative abundances of solar-system r-process material, especially in the vicinity of Pt, nor are any actinides produced. These deficiencies reflect an inadequate supply of neutrons. However, some neutron-rich isotopes, normally associated with the r-process, are produced which may be significant for the production of isotopic anomalies in meteorites

  12. Scissors strength in the quasi-continuum of actinides

    Directory of Open Access Journals (Sweden)

    Guttormsen M.

    2014-03-01

    Full Text Available The M1-scissors resonance has been measured for the first time in the quasi-continuum of actinides. The strength and position of the resonances in 231,232,233Th were determined by particle-γ coincidences using deuteron induced reactions on a 232Th target. The residual nuclei show a strong integrated strength of BM1 = 9 − 11 µn2 in the Eγ = 1.0 − 3.5 MeV region. The presence of the scissors resonance modifies significantly the (n,γ cross section, which has impact on fuel-cycle simulations of fast nuclear reactors and nucleosynthesis in explosive stellar environments.

  13. Shell model for warm rotating nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Matsuo, M.; Yoshida, K. [Kyoto Univ. (Japan); Dossing, T. [Univ. of Copenhagen (Denmark)] [and others

    1996-12-31

    Utilizing a shell model which combines the cranked Nilsson mean-field and the residual surface and volume delta two-body forces, the authors discuss the onset of rotational damping in normal- and super-deformed nuclei. Calculation for a typical normal deformed nucleus {sup 168}Yb indicates that the rotational damping sets in at around 0.8 MeV above the yrast line, and about 30 rotational bands of various length exists at a given rotational frequency, in overall agreement with experimental findings. It is predicted that the onset of rotational damping changes significantly in different superdeformed nuclei due to the variety of the shell gaps and single-particle orbits associated with the superdeformed mean-field.

  14. Structure and symmetries of odd-odd triaxial nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Palit, R. [Tata Institute of Fundamental Research, Department of Nuclear and Atomic Physics, Colaba, Mumbai (India); Bhat, G.H. [University of Kashmir, Department of Physics, Srinagar (India); Govt. Degree College Kulgam, Department of Physics, Kulgam (India); Sheikh, J.A. [University of Kashmir, Department of Physics, Srinagar (India); Cluster University of Srinagar, Srinagar, Jammu and Kashmir (India)

    2017-05-15

    Rotational spectra of odd-odd Rh and Ag isotopes are investigated with the primary motivation to search for the spontaneous chiral symmetry breaking phenomenon in these nuclei. The experimental results obtained on the degenerate dipole bands of some of these isotopes using a large array of gamma detectors are discussed and studied using the triaxial projected shell (TPSM) approach. It is shown that, first of all, to reproduce the odd-even staggering of the known yrast bands of these nuclei, large triaxial deformation is needed. This large triaxial deformation also gives rise to doublet band structures in many of these studied nuclei. The observed doublet bands in these isotopes are shown to be reproduced reasonably well by the TPSM calculations. Further, the TPSM calculations for neutron-rich nuclei indicate that the ideal manifestation of the chirality can be realised in {sup 106}Rh and {sup 112}Ag, where the doublet bands have similar electromagnetic properties along with small differences in excitation energies. (orig.)

  15. Heterogeneous all actinide recycling in LWR all actinide cycle closure concept

    International Nuclear Information System (INIS)

    Tondinelli, Luciano

    1980-01-01

    A project for the elimination of transuranium elements (Waste Actinides, WA) by neutron transmutation is developed in a commercial BWR with U-Pu (Fuel Actinides, FA) recycle. The project is based on the All Actinide Cycle Closure concept: 1) closure of the 'back end' of the fuel cycle, U-Pu coprocessing, 2) waste actinide disposal by neutron transmutation. The reactor core consists of Pu-island fuel assemblies containing WAs in target pins. Two parallel reprocessing lines for FAs and WAs are provided. Mass balance, hazard measure, spontaneous activity during 10 recycles are calculated. Conclusions are: the reduction in All Actinide inventory achieved by Heterogeneous All Actinide Recycling is on the order of 83% after 10 recycles. The U235 enrichment needed for a constant end of cycle reactivity decreases for increasing number of recycles after the 4th recycle. A diffusion-burnup calculation of the pin power peak factors in the fuel assembly shows that design limits can be satisfied. A strong effort should be devoted to the solution of the problems related to high values of spontaneous emission by the target pins

  16. Actinides-1981

    International Nuclear Information System (INIS)

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry

  17. Actinides-1981

    Energy Technology Data Exchange (ETDEWEB)

    1981-09-01

    Abstracts of 134 papers which were presented at the Actinides-1981 conference are presented. Approximately half of these papers deal with electronic structure of the actinides. Others deal with solid state chemistry, nuclear physic, thermodynamic properties, solution chemistry, and applied chemistry.

  18. Study of a new magnetic dipole mode in the heavy deformed nuclei 154Sm, 156Gd, 158Gd, 164Dy, 168Er, and 174Yb by high-resolution electron spectroscopy

    International Nuclear Information System (INIS)

    Bohle, D.

    1985-01-01

    By inelastic electron scattering with high energy resolution a new magnetic dipole mode in heavy, deformed nuclei could be detected. For this the nuclei 154 Sm, 156 Gd, 158 Gd, 164 Dy, 168 Er, and 174 Yb were studied at the Darmstadt electron linear accelerator (DALINAC) at small momentum transfer q ≤ 0.6 fm -1 and low excitation energies. A collective magnetic dipole excitation could be discovered in all nuclei at an excitation energy of E x ≅ 66 δA -1/3 MeV whereby δ means the mass deformation. The transition strength extends in the mean to B(M1)↑ ≅ 1.3 μ N 2 . A systematic study of the nucleus 156 Gd yielded hints to a strong fragmentation of the magnetic dipole strength. A comparison of electron scattering, proton scattering, and nuclear resonance fluorescence experiments shows that the new mode is a pure orbital mode. (orig./HSI) [de

  19. The quest for novel modes of excitation in exotic nuclei

    Science.gov (United States)

    Paar, N.

    2010-06-01

    This paper provides an insight into several open problems in the quest for novel modes of excitation in nuclei with isospin asymmetry, deformation and finite-temperature characteristics in stellar environments. Major unsolved problems include the nature of pygmy dipole resonances, the quest for various multipole and spin-isospin excitations both in neutron-rich and proton drip-line nuclei mainly driven by loosely bound nucleons, excitations in unstable deformed nuclei and evolution of their properties with the shape phase transition. Exotic modes of excitation in nuclei at finite temperatures characteristic of supernova evolution present open problems with a possible impact in modeling astrophysically relevant weak interaction rates. All these issues challenge self-consistent many-body theory frameworks at the frontiers of on-going research, including nuclear energy density functionals, both phenomenological and constrained by the strong interaction physics of QCD, models based on low-momentum two-nucleon interaction Vlow-k and correlated realistic nucleon-nucleon interaction VUCOM, supplemented by three-body force, as well as two-nucleon and three-nucleon interactions derived from the chiral effective field theory. Joined theoretical and experimental efforts, including research with radioactive isotope beams, are needed to provide insight into dynamical properties of nuclei away from the valley of stability, involving the interplay of isospin asymmetry, deformation and finite temperature.

  20. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures

    International Nuclear Information System (INIS)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-01-01

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs

  1. Subsurface interactions of actinide species and microorganisms : implications for the bioremediation of actinide-organic mixtures.

    Energy Technology Data Exchange (ETDEWEB)

    Banaszak, J.E.; Reed, D.T.; Rittmann, B.E.

    1999-02-12

    By reviewing how microorganisms interact with actinides in subsurface environments, we assess how bioremediation controls the fate of actinides. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. We describe how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility. We explain why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. We describe the development of mathematical models that link microbiological and geochemical reactions. Throughout, we identify the key research needs.

  2. Collective models of transition nuclei Pt. 2

    International Nuclear Information System (INIS)

    Dombradi, Zs.

    1982-01-01

    The models describing the even-odd and odd-odd transition nuclei (nuclei of moderate ground state deformation) are reviewed. The nuclear core is described by models of even-even nuclei, and the interaction of a single particle and the core is added. Different models of particle-core coupling (phenomenological models, collective models, nuclear field theory, interacting boson-fermion model, vibration nucleon cluster model) and their results are discussed. New developments like dynamical supersymmetry and new research trends are summarized. (D.Gy.)

  3. Subsurface interactions of actinide species and microorganisms. Implications for the bioremediation of actinide-organic mixtures

    International Nuclear Information System (INIS)

    Banaszak, J.E.; Rittmann, B.E.; Reed, D.T.

    1999-01-01

    By reviewing how microorganisms interact with actinides in subsurface environments, the way how bioremediation controls the fate of actinides is assessed. Actinides often are co-contaminants with strong organic chelators, chlorinated solvents, and fuel hydrocarbons. Bioremediation can immobilize the actinides, biodegrade the co-contaminants, or both. Actinides at the IV oxidation state are the least soluble, and microorganisms accelerate precipitation by altering the actinide's oxidation state or its speciation. The way how microorganisms directly oxidize or reduce actinides and how microbiological reactions that biodegrade strong organic chelators, alter the pH, and consume or produce precipitating anions strongly affect actinide speciation and, therefore, mobility is described. Why inhibition caused by chemical or radiolytic toxicities uniquely affects microbial reactions is explained. Due to the complex interactions of the microbiological and chemical phenomena, mathematical modeling is an essential tool for research on and application of bioremediation involving co-contamination with actinides. Development of mathematical models that link microbiological and geochemical reactions is described. Throughout, the key research needs are identified. (author)

  4. Calculation of the total potential between two deformed heavy ion nuclei using the Monte Carlo method and M3Y nucleon-nucleon forces

    International Nuclear Information System (INIS)

    Ghodsi, O. N.; Zanganeh, V.

    2009-01-01

    In the current study, a simulation technique has been employed to calculate the total potential between two deformed nuclei. It has been shown that this simulation technique is an efficient one for calculating the total potential for all possible orientations between the symmetry axes of the interacting nuclei using the realistic nuclear matter density and the M3Y nucleon-nucleon effective forces. The analysis of the results obtained for the 48 Ca+ 238 U, 46 Ti+ 46 Ti, and 27 Al+ 70 Ge reactions reveal that considering the density dependent effects in the M3Y forces causes the nuclear potential to drop by an amount of 0.4 MeV.

  5. High spin spectroscopy for A ∼ 160 nuclei

    International Nuclear Information System (INIS)

    Yu, C.-H.

    1989-01-01

    Experimental routhians, alignments, band crossing frequencies, and the B(M1)/B(E2) ratios of the N = 90 isotopes and several light Lu (N = 90--96) isotopes are summarized and discussed in terms of shape changes. These systematic analyses show a neutron and proton number dependent deformations (both quadruple and γ deformations) for these light rare earth nuclei. The stability of the nuclear deformation with respect to β and γ is also found to be particle number dependent. Such particle number dependent shapes can be attributed to the different locations of the proton and neutron Fermi levels in the Nilsson diagrams. Configurations dependent shapes are discussed specially concerned the deformation difference between the proton h 9/2 1/2 - [541] and the high-K h 11/2 configurations. The observed large neutron band crossing frequencies in the h 9/2 1/2 - [541] configuration support the predicted large deformation of this configuration but can be reproduced by the cranked shell model calculation according to the predicted deformations. Lifetime measurement for 157 Ho, one of the nuclei that show a large ℎω c in the 1/2 - [541] band, indicates that deformation difference can only account for 20% of such shift in ℎω c . 55 refs., 12 figs

  6. Actinide colloid generation in groundwater

    International Nuclear Information System (INIS)

    Kim, J.I.

    1990-05-01

    The progress made in the investigation of actinide colloid generation in groundwaters is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudocolloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC project MIRAGE II, particularly, to research area: complexation and colloids. (orig.)

  7. Electromagnetic transitions in nuclei between states with different deformation for the case H>=Ksub(iota)+Ksub(j)

    International Nuclear Information System (INIS)

    Kopanets, E.G.; Inopin, E.V.; Korda, L.P.

    1980-01-01

    Calculations of matrix elements of the electromagnetic transitions at the multipolarity L>Ksub(i)+Ksub(f), where Ksub(i) and Ksub(f) are the projections of the total moment of the final and initial states on the nucleus symmetry axis, have been carried out E2transitions between the low-lying levels -/ of the rotational bands of 23 Na, 29 P, 35 Cl and 37 Cl nuclei have been investigated. The ranges of the initial and final state deformation parameters are given at which a coincidence is observed between the calculated and experimental values of the probability of E2-transitions between the ground states of the rotational bands. A conclusion has been made that the theory and experiments can agree only on the assumption that changes in nucleus equilibrium deformation take place not only in the case of single-particle levels but also in the case of the same rotational band. This indicates to breaking the adiabatic approximation due to mixing the states with different K caused by the Coriolis interaction [ru

  8. Electric monopole transitions from low energy excitations in nuclei

    CERN Document Server

    Wood, J L; De Coster, C; Heyde, Kris L G

    1999-01-01

    Electric monopole (E0) properties are studied across the entire nuclear mass surface. Besides an introductory discussion of various model results (shell model, geometric vibrational and rotational models, algebraic models), we point out that many of the largest E0 transition strengths, $\\rho^2$(E0), are associated with shape mixing. We discuss in detail the manifestation of E0 transitions and present extensive data for~: single-closed shell nuclei, vibrational nuclei, well-deformed nuclei, nuclei that exhibit sudden ground-state changes, and nuclei that exhibit shape coexistence and intruder states. We also give attention to light nuclei, odd-A nuclei, and illustrate a suggested relation between $\\rho^2$(E0) and isotopic shifts.

  9. Fission theory and actinide fission data

    Energy Technology Data Exchange (ETDEWEB)

    Michaudon, A.

    1975-06-01

    The understanding of the fission process has made great progress recently, as a result of the calculation of fission barriers, using the Strutinsky prescription. Double-humped shapes were obtained for nuclei in the actinide region. Such shapes could explain, in a coherent manner, many different phenomena: fission isomers, structure in near-threshold fission cross sections, intermediate structure in subthreshold fission cross sections and anisotropy in the emission of the fission fragments. A brief review of fission barrier calculations and relevant experimental data is presented. Calculations of fission cross sections, using double-humped barrier shapes and fission channel properties, as obtained from the data discussed previously, are given for some U and Pu isotopes. The fission channel theory of A. Bohr has greatly influenced the study of low-energy fission. However, recent investigation of the yields of prompt neutrons and γ rays emitted in the resonances of {sup 235}U and {sup 239}Pu, together with the spin determination for many resonances of these two nuclei cannot be explained purely in terms of the Bohr theory. Variation in the prompt neutron and γ-ray yields from resonance to resonance does not seem to be due to such fission channels, as was thought previously, but to the effect of the (n,γf) reaction. The number of prompt fission neutrons and the kinetic energy of the fission fragments are affected by the energy balance and damping or viscosity effects in the last stage of the fission process, from saddle point to scission. These effects are discussed for some nuclei, especially for {sup 240}Pu.

  10. In-beam studies of high-spin states of actinide nuclei

    International Nuclear Information System (INIS)

    Stoyer, M.A.; California Univ., Berkeley, CA

    1990-01-01

    High-spin states in the actinides have been studied using Coulomb- excitation, inelastic excitation reactions, and one-neutron transfer reactions. Experimental data are presented for states in 232 U, 233 U, 234 U, 235 U, 238 Pu and 239 Pu from a variety of reactions. Energy levels, moments-of-inertia, aligned angular momentum, Routhians, gamma-ray intensities, and cross-sections are presented for most cases. Additional spectroscopic information (magnetic moments, M 1 /E 2 mixing ratios, and g-factors) is presented for 233 U. One- and two-neutron transfer reaction mechanisms and the possibility of band crossings (backbending) are discussed. A discussion of odd-A band fitting and Cranking calculations is presented to aid in the interpretation of rotational energy levels and alignment. In addition, several theoretical calculations of rotational populations for inelastic excitation and neutron transfer are compared to the data. Intratheory comparisons between the Sudden Approximation, Semi-Classical, and Alder-Winther-DeBoer methods are made. In connection with the theory development, the possible signature for the nuclear SQUID effect is discussed. 98 refs., 61 figs., 21 tabs

  11. A version of the Quasiparticle-Phonon Nuclear Model for doubly-even well-deformed nuclei

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1992-06-01

    The basic assumptions concerning the Quasiparticle-Phonon Nuclear Model are formulated and the mathematical apparatus is developed. The Hamiltonian, containing a finite-rank separable isoscalar and isovector multipole, a spin-multipole and a tensor particle-hole as well as particle-particle interactions transforms to a form containing quasiparticle, phonon and quasiparticle-phonon interactions. The general RPA equation is derived and the particular cases are discussed. The very complex interaction does not complicate the description of the fragmentation one-phonon states. It is shown that the three-phonon terms added to the one- and two-phonon terms in the wave function lead to an additional small shift of the two-phonon poles in the secular equation. The influence of the density-dependent separable interaction on the vibrational states is small. A common description of the collective, weakly collective and two-quasiparticle states in doubly-even well-deformed nuclei is obtained. (author)

  12. Studies of Stable Octupole Deformations in the Radium Region

    CERN Multimedia

    2002-01-01

    The purpose of the present project is to locate and identify states in the atomic nuclei possessing stable pearshaped octupole deformation. Such states, formally related to the structures known in molecular physics, manifest themselves as families of parity doublets in odd nuclei.\\\\ \\\\ The best possibilities for observing stable octupole deformations are offered in the Ra-region. Both theoretical calculations and experimental indications support such expectations. Such indications are the non-observation of two-phonon octupole vibrational states in the ISOLDE studies of the even-even radium nuclei, and the reversed sign of the decoupling factor of the ground state band in |2|2|5Ra observed in the single-neutron transfer reactions. In order to establish the predicted strong E1 and E3-transitions between the parity doublets in odd nuclei with stable octupole deformations it is proposed to study conversion electrons in odd-mass francium radium and radon isotopes following the @b-decay of francium and astatine. \\...

  13. Shell effects in the nuclear deformation energy

    International Nuclear Information System (INIS)

    Ross, C.K.

    1973-01-01

    A new approach to shell effects in the Strutinsky method for calculating nuclear deformation energy is evaluated and the suggestion of non-conservation of angular momentum in the same method is resolved. Shell effects on the deformation energy in rotational bands of deformed nuclei are discussed. (B.F.G.)

  14. Research in actinide chemistry

    International Nuclear Information System (INIS)

    Choppin, G.R.

    1993-01-01

    This research studies the behavior of the actinide elements in aqueous solution. The high radioactivity of the transuranium actinides limits the concentrations which can be studied and, consequently, limits the experimental techniques. However, oxidation state analogs (trivalent lanthanides, tetravalent thorium, and hexavalent uranium) do not suffer from these limitations. Behavior of actinides in the environment are a major USDOE concern, whether in connection with long-term releases from a repository, releases from stored defense wastes or accidental releases in reprocessing, etc. Principal goal of our research was expand the thermodynamic data base on complexation of actinides by natural ligands (e.g., OH - , CO 3 2- , PO 4 3- , humates). The research undertakes fundamental studies of actinide complexes which can increase understanding of the environmental behavior of these elements

  15. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    Energy Technology Data Exchange (ETDEWEB)

    Cassayre, L., E-mail: cassayre@chimie.ups-tlse.fr [Laboratoire de Genie Chimique (LGC), Departement Procedes Electrochimiques, CNRS-UMR 5503, Universite de Toulouse III - Paul Sabatier, 31062 Toulouse (France); Soucek, P.; Mendes, E.; Malmbeck, R.; Nourry, C.; Eloirdi, R.; Glatz, J.-P. [European Commission, JRC, Institute for Transuranium Elements, Postfach 2340, 76125 Karlsruhe (Germany)

    2011-07-01

    Pyrochemical processes in molten LiCl-KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide-aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorination of the actinide-aluminium alloys by chlorine gas and sublimation of the formed AlCl{sub 3}. A thermochemical study showed thermodynamic feasibility of all three steps. On the basis of the conditions identified by the calculations, experiments using pure UAl{sub 3} alloy were carried out to evaluate and optimise the chlorination step. The work was focused on determination of the optimal temperature and Cl{sub 2}/UAl{sub 3} molar ratio, providing complete chlorination of the alloy without formation of volatile UCl{sub 5} and UCl{sub 6}. The results showed high efficient chlorination at a temperature of 150 deg. C.

  16. Recovery of actinides from actinide-aluminium alloys by chlorination: Part I

    International Nuclear Information System (INIS)

    Cassayre, L.; Soucek, P.; Mendes, E.; Malmbeck, R.; Nourry, C.; Eloirdi, R.; Glatz, J.-P.

    2011-01-01

    Pyrochemical processes in molten LiCl-KCl are being developed in ITU for recovery of actinides from spent nuclear fuel. The fuel is anodically dissolved to the molten salt electrolyte and actinides are electrochemically reduced on solid aluminium cathodes forming solid actinide-aluminium alloys. A chlorination route is being investigated for recovery of actinides from the alloys. This route consists in three steps: Vacuum distillation for removal of the salt adhered on the electrode, chlorination of the actinide-aluminium alloys by chlorine gas and sublimation of the formed AlCl 3 . A thermochemical study showed thermodynamic feasibility of all three steps. On the basis of the conditions identified by the calculations, experiments using pure UAl 3 alloy were carried out to evaluate and optimise the chlorination step. The work was focused on determination of the optimal temperature and Cl 2 /UAl 3 molar ratio, providing complete chlorination of the alloy without formation of volatile UCl 5 and UCl 6 . The results showed high efficient chlorination at a temperature of 150 deg. C.

  17. Selfconsistent calculations for hyperdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Molique, H.; Dobaczewski, J.; Dudek, J.; Luo, W.D. [Universite Louis Pasteur, Strasbourg (France)

    1996-12-31

    Properties of the hyperdeformed nuclei in the A {approximately} 170 mass range are re-examined using the self-consistent Hartree-Fock method with the SOP parametrization. A comparison with the previous predictions that were based on a non-selfconsistent approach is made. The existence of the {open_quotes}hyper-deformed shell closures{close_quotes} at the proton and neutron numbers Z=70 and N=100 and their very weak dependence on the rotational frequency is suggested; the corresponding single-particle energy gaps are predicted to play a role similar to that of the Z=66 and N=86 gaps in the super-deformed nuclei of the A {approximately} 150 mass range. Selfconsistent calculations suggest also that the A {approximately} 170 hyperdeformed structures have neglegible mass asymmetry in their shapes. Very importantly for the experimental studies, both the fission barriers and the {open_quotes}inner{close_quotes} barriers (that separate the hyperdeformed structures from those with smaller deformations) are predicted to be relatively high, up to the factor of {approximately}2 higher than the corresponding ones in the {sup 152}Dy superdeformed nucleus used as a reference.

  18. α decay chains in 271-294115 superheavy nuclei

    International Nuclear Information System (INIS)

    Santhosh, K. P.; Priyanka, B.; Joseph, Jayesh George; Sahadevan, Sabina

    2011-01-01

    α decay of 271-294 115 superheavy nuclei is studied using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The predicted α half-lives of 287 115 and 288 115 nuclei and their decay products are in good agreement with experimental values. Comparison of α and spontaneous fission half-lives predicts four-α chains and three-α chains, respectively, from 287 115 and 288 115 nuclei and are in agreement with experimental observation. Our study predicts two-α chains from 273,274,289 115, three-α chains from 275 115, and four-α chains consistently from 284,285,286 115 nuclei. These observations will be useful for further experimental investigation in this region.

  19. Spectroscopical study of the yrast and yrare structure in far-from-stability nuclei; Etude spectroscopique de la structure yrast et yrare de noyaux loin de la stabilite

    Energy Technology Data Exchange (ETDEWEB)

    Hoellinger Fabien [Institut de Recherches Subatomiques, 23, Rue du Loess, BP 28, 67037 Strasbourg Cedex 2 (France)]|[Universite Louis Pasteur, 67 - Strasbourg (France)

    1999-01-13

    The nuclear structure study of neutron-rich nuclei was realized with the EUROGAM II array in two different experiments. The first study consisted in the analysis of the product of spontaneous fission of {sup 248}Cm. Three neutron-rich cerium isotopes {sup 147,149,151}Ce were analyzed. A level scheme for {sup 151}Ce is presented for the first time. The yrast structure of the three nuclei does not show alternative parity bands as expected in this region of octupole deformations. We studied the rotational structure of the bands and this leads to suggest Nilsson configurations to some of them. The aim of this second experiment was the study of the nuclei {sup 99}Mo, {sup 101}Tc, {sup 103}Ru. The three nuclei are situated on the neutron-rich side of the nuclear chart and are produced as fission fragments of a heavy-ion induced reaction. Some bands are extended to higher spins and some new bands are observed. The structure of the rotational bands is interpreted by means of the Hartree-Fock-Bogolyubov model. A last experiment intended to study the structure of the proton-rich nucleus {sup 223}Pa has been achieved with the JURO+RITU array located at Jyvaeskylae (Finland). In this proton-rich actinide region, the nuclei develop octupole features around Z{approx_equal}88, N{approx_equal}132. The analysis of this experiment leads to the first assignment of gamma transitions to the {sup 223}Pa. (author) 91 refs., 78 figs., 16 tabs.

  20. Stability of the spherical form of nuclei

    International Nuclear Information System (INIS)

    Sabry, A.A.

    1976-08-01

    An extension of the mass formula for a spherical nucleus in the drop model to include a largely deformed nucleus of different forms is investigated. It is found that although the spherical form is stable under small deformations from equilibrium, there exists for heavier nuclei another more favourable stable form, which can be approximated by two, or three touching prolate ellipsoids of revolution

  1. High-spin excitations of atomic nuclei

    International Nuclear Information System (INIS)

    Xu Furong; National Laboratory of Heavy Ion Physics, Lanzhou; Chinese Academy of Sciences, Beijing

    2004-01-01

    The authors used the cranking shell model to investigate the high-spin motions and structures of atomic nuclei. The authors focus the collective rotations of the A∼50, 80 and 110 nuclei. The A∼50 calculations show complicated g spectroscopy, which can have significant vibration effects. The A≅80 N≅Z nuclei show rich shape coexistence with prolate and oblate rotational bands. The A≅110 nuclei near the r-process path can have well-deformed oblate shapes that become yrast and more stable with increasing rotational frequency. As another important investigation, the authors used the configuration-constrained adiabatic method to calculate the multi-quasiparticle high-K states in the A∼130, 180 and superheavy regions. The calculations show significant shape polarizations due to quasi-particle excitations for soft nuclei, which should be considered in the investigations of high-K states. The authors predicted some important high-K isomers, e.g., the 8 - isomers in the unstable nuclei of 140 Dy and 188 Pb, which have been confirmed in experiments. In superheavy nuclei, our calculations show systematic existence of high-K states. The high-K excitations can increase the productions of synthesis and the survival probabilities of superheavy nuclei. (authors)

  2. Actinides

    International Nuclear Information System (INIS)

    Martinot, L.; Fuger, J.

    1985-01-01

    The oxidation behavior of the actinides is explained on the basis of their electronic structure. The actinide elements, actinium, thorium, protactinium, uranium, neptunium, plutonium, americium, curium, berkelium, californium, einsteinium, fermium, mendelevium, nobelium, and laurencium are included. For all except the last three elements, the points of discussion are oxidation states, Gibbs energies and potentials, and potential diagram for the element in acid solution; and thermodynamic properties of these same elements are tabulated. References are cited following discussion of each element with a total of 97 references being cited. 13 tables

  3. Nucleation of recrystallization at selected sites in deformed fcc metals

    DEFF Research Database (Denmark)

    Xu, Chaoling

    The objective of this thesis is to explore nucleation of recrystallization at selected sites in selected face-centered-cubic (FCC) metals, namely cold rolled columnar-grained nickel and high purity aluminum further deformed by indenting. Various techniques, including, optical microscopy, electron...... backscattered diffraction (EBSD), electron channeling contrast (ECC) and synchrotron X-ray technique, differential-aperture X-ray microscopy (DAXM), were used to characterize the microstructures, to explore nucleation sites, orientation relationships between nuclei and deformed microstructures, and nucleation...... mechanisms. In the cold rolled nickel samples, the preference of triple junctions (TJs) and grain boundaries (GBs) as nucleation sites is observed. The majorities of the nuclei have the same orientations as the surrounding matrix or are twin-related to a surrounding deformed grain. Only a few nuclei...

  4. Lifetime measurements in the yrast band of the gamma-soft nuclei ...

    Indian Academy of Sciences (India)

    2016-06-15

    Jun 15, 2016 ... ... J. Phys. (2016) 87: 7 c Indian Academy of Sciences ... +j. 1. Introduction. Shape deformations in nuclei are related to the gen- eral phenomenon of ... properties of various orbitals in which the nucleons move. Nuclei in the ...

  5. Direct non-destructive observation of bulk nucleation in 30% deformed aluminum

    DEFF Research Database (Denmark)

    West, Stine; Schmidt, Søren; Sørensen, Henning Osholm

    2009-01-01

    A 30% deformed aluminum sample was mapped non-destructively using three-dimensional X-ray diffraction (3DXRD) before and after annealing to nucleation of recrystallization. Nuclei appeared in the bulk of the sample. Their positions and volumes were determined, and the crystallographic orientations...... were compared with the orientations of the deformed grains. It was found that nuclei with new orientations can form and their orientations have been related to the dislocation structure in the deformed grains....

  6. Fine structure in deformed proton emitting nuclei

    International Nuclear Information System (INIS)

    Sonzogni, A. A.; Davids, C. N.; Woods, P. J.; Seweryniak, D.; Carpenter, M. P.; Ressler, J. J.; Schwartz, J.; Uusitalo, J.; Walters, W. B.

    1999-01-01

    In a recent experiment to study the proton radioactivity of the highly deformed 131 Eu nucleus, two proton lines were detected. The higher energy one was assigned to the ground-state to ground-state decay, while the lower energy, to the ground-state to the 2 + state decay. This constitutes the first observation of fine structure in proton radioactivity. With these four measured quantities, proton energies, half-life and branching ratio, it is possible to determine the Nilsson configuration of the ground state of the proton emitting nucleus as well as the 2 + energy and nuclear deformation of the daughter nucleus. These results will be presented and discussed

  7. Stability of superheavy nuclei

    Science.gov (United States)

    Pomorski, K.; Nerlo-Pomorska, B.; Bartel, J.; Schmitt, C.

    2018-03-01

    The potential-energy surfaces of an extended set of heavy and superheavy even-even nuclei with 92 ≤Z ≤126 and isospins 40 ≤N -Z ≤74 are evaluated within the recently developed Fourier shape parametrization. Ground-state and decay properties are studied for 324 different even-even isotopes in a four-dimensional deformation space, defined by nonaxiality, quadrupole, octupole, and hexadecapole degrees of freedom. Nuclear deformation energies are evaluated in the framework of the macroscopic-microscopic approach, with the Lublin-Strasbourg drop model and a Yukawa-folded mean-field potential. The evolution of the ground-state equilibrium shape (and possible isomeric, metastable states) is studied as a function of Z and N . α -decay Q values and half-lives, as well as fission-barrier heights, are deduced. In order to understand the transition from asymmetric to symmetric fission along the Fm isotopic chain, the properties of all identified fission paths are investigated. Good agreement is found with experimental data wherever available. New interesting features about the population of different fission modes for nuclei beyond Fm are predicted.

  8. Studies of high-K isomers in hafnium nuclei

    International Nuclear Information System (INIS)

    Sletten, G.; Gjoerup, N.L.

    1991-01-01

    K-isomeric states built on high-Ω Nilsson orbitals from deformation-aligned high-j levels near the Fermi surface are found to cluster in the neutron rich Hf, W and Os nuclei. It has been shown that some of the high seniority states of this type have decay properties that indicate strong mixing of configurations and that in Osmium nuclei γ-softness cause strong deviations from the well established K-selection rule. Also in the Hafnium nuclei is the expected forbiddenness in isomeric decays an order of magnitude smaller than expected from the K-selection rule. A new 9 quasiparticle isomer has been discovered in 175 Hf at I=57/2. This isomer has the anomalous decay as the dominant mode. Other lower seniority states are also identified. At spin 35/2 and 45/2 the deformation aligned states become yrast, but the structure of the yrast line to even higher spins is not yet understood. (author)

  9. The collective model of nuclei and its applications

    International Nuclear Information System (INIS)

    Frank H, A.; Castanos G, O.H.

    1975-01-01

    The concepts of collective coordinates, the establishment of Hamiltonian collectives through the model of the drop of liquid or through the symmetry arguments and of the operators in these variables are discussed in this study. The passage of the laboratory system to the principal axis system is discussed thoroughly with the symmetries produced by this transformation, considering a drop in two dimensions. It is also observed that the deformed nuclei have some properties that can be described through the rotation-vibration and symmetric rotor models. The rotation-vibration model concerns the nuclei with axially symmetric deformations in the basic state and its importance is due to the fact that it can predict the nuclear spectrum at low energies. The asymmetric rotor model assumes the existence of triaxial nuclei and considers their collective movements. This model can be modified taking into consideration that vibrations β can also appear. Finally there is a comparison between the two models and the models are also compared with the experiment. (author)

  10. Shape transition in Pt-nuclei with mass A ∼190

    International Nuclear Information System (INIS)

    Chamoli, S.K.

    2017-01-01

    The nuclei in mass region A ∼190 are well known for the prolate-oblate shape co-existence/transition phenomena. The shape coexistence phenomena has been observed in nuclei like Hg and Tl of this mass region. The calculations done for Pt nuclei in indicate a smooth shape change from prolate deformed "1"8"6Pt to nearly spherical "2"0"2"-"2"0"4 Pt through the region of triaxially deformed "1"8"8"-"1"9"8Pt and slightly oblate "2"0"0Pt. In these calculations, a change of shape from prolate to oblate is expected at A = 188. In recent high spin spectroscopic investigations, significant amount of reduced prolate collectivity has been observed in "1"8"8Pt. The level lifetimes provide valuable information about the nuclear shape and also the shape change with increase in spin along a band. So, to get clear signature of prolate to oblate shape inversion in Pt nuclei near A = 190, it is required to perform lifetime measurements. With this objective, the RDM lifetime measurements of high spin states have been done for various even-even Pt isotopes with masss A ≤ 186 over the years. The results obtained in these measurements are very encouraging and do indicate changing nuclear structure for Pt-isotopes with increasing mass at low spins. A gradual increase in B(E2) values upto 4"+ state and near constant nature there after in "1"8"8Pt, contrary to the other light neighboring Pt nuclei tends to indicate the volatile nature of deformation in Pt nuclei near A ∼ 190 which needs further theoretical investigations. (author)

  11. A review of experimental evidence for octupole deformation

    International Nuclear Information System (INIS)

    Zylicz, J.

    1986-08-01

    Experimental evidence for octupole correlations, which lead to octupole instability and octupole deformation of some nuclei, is illustrated through typical examples. Data are considered for both the 220< A<230 region and for a few medium mass nuclei. (orig.)

  12. Description of low-lying states in odd-odd deformed nuclei taking account of the coupling with core rotations and vibrations. 1

    International Nuclear Information System (INIS)

    Kvasil, J.; Hrivnacova, I.; Nesterenko, V.O.

    1990-01-01

    The microscopic approach for description of low-lyinig states in deformed odd-odd nuclei is formulated as a generalization of the quasiparticle-phonon model (QPM) with including the rotational degrees of freedom and n-p interaction between external nucleons into the QPM. In comparison with other models, the approach proposed includes all three the most important effects coupling with rotational and vibrational degrees of freedom of doubly-even core and p-n interaction mentioned above even treates them on the microscopic base. 36 refs

  13. Study of actinides fission induced by multi-nucleon transfer reactions in inverse kinematics

    International Nuclear Information System (INIS)

    Derkx, X.

    2010-10-01

    The study of actinide fission encounters two major issues. On one hand, measurements of the fission fragment distributions and the fission probabilities allow a better understanding of the fission process itself and the discrimination among the models of nuclear structure and dynamics. On the other hand, new measurements are required to improve nuclear data bases, which are a key component for the design of new generation reactors and radio-toxic waste incinerators. This thesis is in line with different French and American experimental projects using the surrogate method, i.e. transfer reactions leading to the same compound nuclei as in neutron irradiation, allowing the study of fission of actinides which are inaccessible by conventional techniques, whereas they are important for applications. The experiment is based on multi-nucleon transfer reactions between a 238 U beam and a 12 C target, using the inverse kinematics technique to measure, for each transfer channel, the complete isotopic distributions of the fission fragments with the VAMOS spectrometer. The work presented in this dissertation is focused on the identification of the transfer channels and their properties, as their angular distributions and the distributions of the associated excitation energy, using the SPIDER telescope to identify the target recoil nuclei. This work of an exploratory nature aims to generalize the surrogate method to heavy transfers and to measure, for the first time, the fission probabilities in inverse kinematics. The obtained results are compared with available direct kinematics and neutron irradiation measurements. (author)

  14. Towards Superheavies: Spectroscopy of 94 < Z < 98, 150 < N < 154 Nuclei

    Directory of Open Access Journals (Sweden)

    Chowdhury P.

    2016-01-01

    nuclear structure studies are important testing grounds for theoretical models that aim to describe superheavy nuclei. To study the highest neutron orbitals (150 ≤ N ≤ 154, we have populated high angular momentum states in a series of Pu (Z = 94, Cm (Z = 96 and Cf (Z = 98 nuclei, via inelastic and transfer reactions, with heavy beams on long-lived radioactive actinide targets. Multiple collective excitation modes and structures were identified, and their configurations deduced. Quasiparticle alignments are mapped, with odd-A band structures helping identify specific orbital contributions via blocking arguments. Higher-order multipole shapes are observed to play a significant role in disentangling competing neutron and proton alignments. The N > 152 data provide new perspectives on physics beyond the N = 152 sub-shell gap.

  15. Influence of a diffuse distribution of nucleon density on the effective moments of inertia of fissioning nuclei

    International Nuclear Information System (INIS)

    Adeev, G.; Trunova, T.

    1982-01-01

    The effective moments of inertia of pre-actinide nuclei with 73< or =Z< or =85 are calculated in the droplet model. In contrast to studies carried out previously, the influence of the diffuseness of the nuclear surface and the nonuniformity of the distribution of nucleon density was taken into account both in calculation of the saddle-point configurations and directly in calculation of the effective moments of inertia of the fissioning nuclei. The results are compared with the moments of inertia calculated in the liquid-drop model and with experimental data

  16. Dominant Modes in Light Nuclei - Ab Initio View of Emergent Symmetries

    International Nuclear Information System (INIS)

    Draayer, J P; Dytrych, T; Launey, K D; Dreyfuss, A C; Langr, D

    2015-01-01

    An innovative symmetry-guided concept is discussed with a focus on emergent symmetry patterns in complex nuclei. In particular, the ab initio symmetry-adapted no-core shell model (SA-NCSM), which capitalizes on exact as well as partial symmetries that underpin the structure of nuclei, provides remarkable insight into how simple symmetry patterns emerge in the many-body nuclear dynamics from first principles. This ab initio view is complemented by a fully microscopic no-core symplectic shell-model framework (NCSpM), which, in turn, informs key features of the primary physics responsible for the emergent phenomena of large deformation and alpha-cluster substructures in studies of the challenging Hoyle state in Carbon-12 and enhanced collectivity in intermediate-mass nuclei. Furthermore, by recognizing that deformed configurations often dominate the low-energy regime, the SA-NCSM provides a strategy for determining the nature of bound states of nuclei in terms of a relatively small subspace of the symmetry-reorganized complete model space, which opens new domains of nuclei for ab initio investigations, namely, the intermediate-mass region, including isotopes of Ne, Mg, and Si

  17. Fusion probability and survivability in estimates of heaviest nuclei production

    International Nuclear Information System (INIS)

    Sagaidak, Roman

    2012-01-01

    A number of theoretical models have been recently developed to predict production cross sections for the heaviest nuclei in fusion-evaporation reactions. All the models reproduce cross sections obtained in experiments quite well. At the same time they give fusion probability values P fus ≡ P CN differed within several orders of the value. This difference implies a corresponding distinction in the calculated values of survivability. The production of the heaviest nuclei (from Cm to the region of superheavy elements (SHE) close to Z = 114 and N = 184) in fusion-evaporation reactions induced by heavy ions has been considered in a systematic way within the framework of the barrier-passing (fusion) model coupled with the standard statistical model (SSM) of the compound nucleus (CN) decay. Both models are incorporated into the HIVAP code. Available data on the excitation functions for fission and evaporation residues (ER) produced in very asymmetric combinations can be described rather well within the framework of HIVAP. Cross-section data obtained in these reactions allow one to choose model parameters quite definitely. Thus one can scale and fix macroscopic (liquid-drop) fission barriers for nuclei involved in the evaporation-fission cascade. In less asymmetric combinations (with 22 Ne and heavier projectiles) effects of fusion suppression caused by quasi-fission are starting to appear in the entrance channel of reactions. The P fus values derived from the capture-fission and fusion-fission cross-sections obtained at energies above the Bass barrier were plotted as a function of the Coulomb parameter. For more symmetric combinations one can deduce the P fus values semi-empirically, using the ER and fission excitation functions measured in experiments, and applying SSM model with parameters obtained in the analysis of a very asymmetric combination leading to the production of (nearly) the same CN, as was done for reactions leading to the pre-actinide nuclei formation

  18. Actinide recycle

    Energy Technology Data Exchange (ETDEWEB)

    Till, C; Chang, Y [Argonne National Laboratory, Argonne, IL (United States)

    1990-07-01

    A multitude of studies and assessments of actinide partitioning and transmutation were carried out in the late 1970s and early 1980s. Probably the most comprehensive of these was a study coordinated by Oak Ridge National Laboratory. The conclusions of this study were that only rather weak economic and safety incentives existed for partitioning and transmuting the actinides for waste management purposes, due to the facts that (1) partitioning processes were complicated and expensive, and (2) the geologic repository was assumed to contain actinides for hundreds of thousands of years. Much has changed in the few years since then. A variety of developments now combine to warrant a renewed assessment of the actinide recycle. First of all, it has become increasingly difficult to provide to all parties the necessary assurance that the repository will contain essentially all radioactive materials until they have decayed. Assurance can almost certainly be provided to regulatory agencies by sound technical arguments, but it is difficult to convince the general public that the behavior of wastes stored in the ground can be modeled and predicted for even a few thousand years. From this point of view alone there would seem to be a clear benefit in reducing the long-term toxicity of the high-level wastes placed in the repository.

  19. Actinide recycle

    International Nuclear Information System (INIS)

    Till, C.; Chang, Y.

    1990-01-01

    A multitude of studies and assessments of actinide partitioning and transmutation were carried out in the late 1970s and early 1980s. Probably the most comprehensive of these was a study coordinated by Oak Ridge National Laboratory. The conclusions of this study were that only rather weak economic and safety incentives existed for partitioning and transmuting the actinides for waste management purposes, due to the facts that (1) partitioning processes were complicated and expensive, and (2) the geologic repository was assumed to contain actinides for hundreds of thousands of years. Much has changed in the few years since then. A variety of developments now combine to warrant a renewed assessment of the actinide recycle. First of all, it has become increasingly difficult to provide to all parties the necessary assurance that the repository will contain essentially all radioactive materials until they have decayed. Assurance can almost certainly be provided to regulatory agencies by sound technical arguments, but it is difficult to convince the general public that the behavior of wastes stored in the ground can be modeled and predicted for even a few thousand years. From this point of view alone there would seem to be a clear benefit in reducing the long-term toxicity of the high-level wastes placed in the repository

  20. Theory of two-step two-proton decays of nuclei

    International Nuclear Information System (INIS)

    Kadmensky, S. G.; Ivankov, Yu. V.

    2014-01-01

    A general theory of many-body diagonal and nondiagonal one-proton decays of spherical and deformed nuclei is developed on the basis of an approach not employing R-matrix theory in describing deep-subbarrier alpha and one-proton decays of nuclei but relying on integral formulas for the widths with respect to these decays. With the aid of this theory and by means of a diagram technique, a formalism is developed for describing two-step two-proton decays of a (Z, A) parent nucleus, which proceed as two successive time-separated one-proton decays of the parent and intermediate [(Z − 1, A − 1)] nuclei, these decays being related by the Green’s function for the intermediate nucleus, G(Z − 1, A − 1). It is shown that, upon taking into account, in this Green’s function, intermediate-nucleus states that are on- and off-shell states for the decaying system, there arise, respectively, sequential and virtual two-proton decays of parent nuclei. Expressions for the widths with respect to sequential and virtual two-proton decays from the ground and excited states of spherical and deformed nuclei and for the angular and energy distributions of emitted protons are obtained

  1. Breakdown of NpNn scheme in very heavy nuclei

    International Nuclear Information System (INIS)

    Varshney, A.K.; Singh, M.; Kumar, Rajesh; Gupta, K.K.; Gupta, D.K.

    2016-01-01

    The proton neutron interaction has been considered the key ingredient in the development of configuration mixing, collectivity and ultimately deformation in atomic nuclei for over five decades. Phenomenologically, the correlation of the integrated valance p - n interaction with the onset of collectivity and deformation has been described in terms of NpNn scheme

  2. The cosmic ray actinide charge spectrum derived from a 10 m2 array of solid state nuclear track detectors in Earth orbit

    International Nuclear Information System (INIS)

    Donnelly, J.; Thompson, A.; O'Sullivan, D.; Drury, L.O'C.; Wenzel, K.-P.

    2001-01-01

    The DIAS-ESTEC Ultra Heavy Cosmic Ray Experiment (UHCRE) on the Long Duration Exposure Facility, collected approximately 3000 cosmic ray nuclei with Z>65 in the energy region E>1.5 GeV nucleon -1 during a six year exposure in Earth orbit. The entire accessible collecting area of the solid state nuclear track detector (SSNTD) array has been scanned for actinides, yielding a sample of 30 from an exposure of ∼150 m 2 sr yr. The UHCRE experimental setup is described and the observed charge spectrum presented. The current best value for the cosmic ray actinide relative abundance, (Z>88)/(74≤Z≤87), is reported

  3. Deformation inside and outside the nuclear molecules

    International Nuclear Information System (INIS)

    Cseh, J.; Algora, A.; Antonenko, N.V.; Jolos, R.V.; Hess, P.O.

    2006-01-01

    Complete text of publication follows. Clusterization is an important phenomenon both in light and in heavy nuclei. The two basic natural laws governing the clusterization (just like the composition of nuclei from nucleons) are the energy-minimum principle, and the Pauli-exclusion principle. In a fully microscopic description of clusterization both aspects are taken into account. This kind of description, however, is limited to the territory of light nuclei. Many interesting aspects of the clusterization, like e.g. the appearance of exotic cluster configurations, show up only in heavy nuclei. Phenomenologic approaches are applied both to light and to heavy nuclei, on an equal footing, but these models do not really contain the effects of the antisymmetrization, or it is not under control, what aspects of the exclusion principle is incorporated. Recently we have developed an approach, which involves both the energetic preference and the exclusion principle [?]. The antisymmetrization is not carried out explicitly, it is treated in an approximate way, but it is done microscopically in a well-controlled manner, and consistency-check measures, how effective it is. We calculate the energetic preference of different clusterizations both on the basis of simple binding-energy-arguments [?], and from the Dinuclear System Model (DNS) [?], including Coulomb as well as nuclear interactions. The potential energy is calculated both for the usual pole-to-pole configuration, and for those more compact configurations, which turn out to be allowed from the microscopic viewpoint. The exclusion principle is treated by the application of a selection rule, related to the microscopic structure. For light nuclei it is based on the real U(3) symmetry [?], and it is exact to the extent to which the leading term representation is valid. In heavy nuclei it is based on the quasidynamical, or effective U(3) symmetry [?]. Its validity is shown by the consistency of the quadrupole deformation of

  4. Recent development in computational actinide chemistry

    International Nuclear Information System (INIS)

    Li Jun

    2008-01-01

    Ever since the Manhattan project in World War II, actinide chemistry has been essential for nuclear science and technology. Yet scientists still seek the ability to interpret and predict chemical and physical properties of actinide compounds and materials using first-principle theory and computational modeling. Actinide compounds are challenging to computational chemistry because of their complicated electron correlation effects and relativistic effects, including spin-orbit coupling effects. There have been significant developments in theoretical studies on actinide compounds in the past several years. The theoretical capabilities coupled with new experimental characterization techniques now offer a powerful combination for unraveling the complexities of actinide chemistry. In this talk, we will provide an overview of our own research in this field, with particular emphasis on applications of relativistic density functional and ab initio quantum chemical methods to the geometries, electronic structures, spectroscopy and excited-state properties of small actinide molecules such as CUO and UO 2 and some large actinide compounds relevant to separation and environment science. The performance of various density functional approaches and wavefunction theory-based electron correlation methods will be compared. The results of computational modeling on the vibrational, electronic, and NMR spectra of actinide compounds will be briefly discussed as well [1-4]. We will show that progress in relativistic quantum chemistry, computer hardware and computational chemistry software has enabled computational actinide chemistry to emerge as a powerful and predictive tool for research in actinide chemistry. (authors)

  5. Study of 148-152Sm nuclei employing γ - derived from B(E2) values and level energies

    International Nuclear Information System (INIS)

    Sharma, Aparna; Varshney, A.K.; Singh, M.; Gupta, D.K.; Singh, Yuvraj; Gupta, K.K.; Bihari, Chhail; Varshney, Mani

    2011-01-01

    The study of samarium nuclei has been a challenging theoretical problem, since they lie in the range from near spherical to well deformed shapes. 148 Sm was believed to be basically spherical while 154 Sm is thought to be well deformed nucleus and 150-15 '2Sm are transitional nuclei

  6. Electron scattering and collective excitations in nuclei

    International Nuclear Information System (INIS)

    Goutte, D.

    1989-01-01

    Nuclear collective degrees of freedom are investigated through the study of the radial dependance of their wave function. Inelastic electron scattering is shown to be the appropriate tool to extract such a detailed information. Some recent results on spherical as well as deformed nuclei are discussed and the most recent extensions to the mean field approach are compared to these data in order to clarify the present status of our understanding of the dynamical properties of complex nuclei

  7. Actinide isotopic analysis systems

    International Nuclear Information System (INIS)

    Koenig, Z.M.; Ruhter, W.D.; Gunnink, R.

    1990-01-01

    This manual provides instructions and procedures for using the Lawrence Livermore National Laboratory's two-detector actinide isotope analysis system to measure plutonium samples with other possible actinides (including uranium, americium, and neptunium) by gamma-ray spectrometry. The computer program that controls the system and analyzes the gamma-ray spectral data is driven by a menu of one-, two-, or three-letter options chosen by the operator. Provided in this manual are descriptions of these options and their functions, plus detailed instructions (operator dialog) for choosing among the options. Also provided are general instructions for calibrating the actinide isotropic analysis system and for monitoring its performance. The inventory measurement of a sample's total plutonium and other actinides content is determined by two nondestructive measurements. One is a calorimetry measurement of the sample's heat or power output, and the other is a gamma-ray spectrometry measurement of its relative isotopic abundances. The isotopic measurements needed to interpret the observed calorimetric power measurement are the relative abundances of various plutonium and uranium isotopes and americium-241. The actinide analysis system carries out these measurements. 8 figs

  8. Actinide recovery techniques utilizing electromechanical processes

    International Nuclear Information System (INIS)

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  9. Criteria for achieving actinide reduction goals

    International Nuclear Information System (INIS)

    Liljenzin, J.O.

    1996-01-01

    In order to discuss various criteria for achieving actinide reduction goals, the goals for actinide reduction must be defined themselves. In this context the term actinides is interpreted to mean plutonium and the so called ''minor actinides'' neptunium, americium and curium, but also protactinium. Some possible goals and the reasons behind these will be presented. On the basis of the suggested goals it is possible to analyze various types of devices for production of nuclear energy from uranium or thorium, such as thermal or fast reactors and accelerator driven system, with their associated fuel cycles with regard to their ability to reach the actinide reduction goals. The relation between necessary single cycle burn-up values, fuel cycle processing losses and losses to waste will be defined and discussed. Finally, an attempt is made to arrange the possible systems on order of performance with regard to their potential to reduce the actinide inventory and the actinide losses to wastes. (author). 3 refs, 3 figs, 2 tabs

  10. Actinides: why are they important biologically

    International Nuclear Information System (INIS)

    Durbin, P.W.

    1978-01-01

    The following topics are discussed: actinide elements in energy systems; biological hazards of the actinides; radiation protection standards; and purposes of actinide biological research with regard to toxicity, metabolism, and therapeutic regimens

  11. Understanding nuclei in the upper sd - shell

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, M. Saha; Bisoi, Abhijit; Ray, Sudatta [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064 (India); Kshetri, Ritesh [Nuclear Physics Division, Saha Institute of Nuclear Physics, Kolkata 700064, India and Sidho-Kanho-Birsha University, Purulia - 723101 (India); Sarkar, S. [Indian Institute of Engineering Science and Technology, Shibpur, Howrah - 711103 (India)

    2014-08-14

    Nuclei in the upper-sd shell usually exhibit characteristics of spherical single particle excitations. In the recent years, employment of sophisticated techniques of gamma spectroscopy has led to observation of high spin states of several nuclei near A ≃ 40. In a few of them multiparticle, multihole rotational states coexist with states of single particle nature. We have studied a few nuclei in this mass region experimentally, using various campaigns of the Indian National Gamma Array setup. We have compared and combined our empirical observations with the large-scale shell model results to interpret the structure of these nuclei. Indication of population of states of large deformation has been found in our data. This gives us an opportunity to investigate the interplay of single particle and collective degrees of freedom in this mass region.

  12. Shell and isotopic effects in neutron interaction with nuclei. [Optical model and nucleus asymmetry correlations

    Energy Technology Data Exchange (ETDEWEB)

    Pasechnik, M V

    1978-01-01

    Major results of investigations into the shell structure of deformed nuclei with the number of neutrons of approximately 100, as well as new isotopic effects in the inelastic scattering of fast neutrons with nuclei are reported. The experiments conducted at the WWR-M research reactor have shown a substantial dependence of the nuclear excited energy-level density on the mass number and the number of neutrons. The fact resulted in a conclusion that the deformed nuclei possess filled shells, that was an incentive to revise the whole nuclear shell concept. In particular it was established that the property of magicity rests not only on the sphericity of nuclei but it may be also observed in strongly deformed nuclei. The isotope-spin dependence of the nuclear potential was studied at the AG-5 pulse electrostatic generator. The parameters of the potential were determined by comparing the experimental data on inelastic scattering and polarization of fast neutrons by nuclei from /sup 48/Ti to /sup 209/Bi with the calculations in terms of the optical model. Simple correlations were established between the optical potential and the nucleus asymmetry parameter ..cap alpha..=N-Z/A in wide ranges of mass numbers and neutron energy.

  13. Superheavy Nuclei in the Quark-Meson-Coupling Model

    Directory of Open Access Journals (Sweden)

    Stone Jirina

    2017-01-01

    Full Text Available We present a selection of the first results obtained in a comprehensive calculation of ground state properties of even-even superheavy nuclei in the region of 96 < Z < 136 and 118 < N < 320 from the Quark-Meson-Coupling model (QMC. Ground state binding energies, the neutron and proton number dependence of quadrupole deformations and Qα values are reported for even-even nuclei with 100 < Z < 136 and compared with available experimental data and predictions of macro-microscopic models. Predictions of properties of nuclei, including Qα values, relevant for planning future experiments are presented.

  14. The cosmic ray actinide charge spectrum derived from a 10 m{sup 2} array of solid state nuclear track detectors in Earth orbit

    Energy Technology Data Exchange (ETDEWEB)

    Donnelly, J. E-mail: jd@cp.dias.ie; Thompson, A.; O' Sullivan, D.; Drury, L.O' C.; Wenzel, K.-P

    2001-06-01

    The DIAS-ESTEC Ultra Heavy Cosmic Ray Experiment (UHCRE) on the Long Duration Exposure Facility, collected approximately 3000 cosmic ray nuclei with Z>65 in the energy region E>1.5 GeV nucleon{sup -1} during a six year exposure in Earth orbit. The entire accessible collecting area of the solid state nuclear track detector (SSNTD) array has been scanned for actinides, yielding a sample of 30 from an exposure of {approx}150 m{sup 2} sr yr. The UHCRE experimental setup is described and the observed charge spectrum presented. The current best value for the cosmic ray actinide relative abundance, (Z>88)/(74{<=}Z{<=}87), is reported.

  15. Actinide recovery techniques utilizing electromechanical processes

    International Nuclear Information System (INIS)

    Westphal, B.R.; Benedict, R.W.

    1994-01-01

    Under certain conditions, the separation of actinides using electromechanical techniques may be an effective means of residue processing. The separation of granular mixtures of actinides and other materials discussed in this report is based on appreciable differences in the magnetic and electrical properties of the actinide elements. In addition, the high density of actinides, particularly uranium and plutonium, may render a simultaneous separation based on mutually complementary parameters. Both high intensity magnetic separation and electrostatic separation have been investigated for the concentration of an actinide waste stream. Waste stream constituents include an actinide metal alloy and broken quartz shards. The investigation of these techniques is in support of the Integral Fast Reactor (IFR) concept currently being developed at Argonne National Laboratory under the auspices of the Department of Energy

  16. Classically dynamical behaviour of a nucleon in heavy nuclei

    International Nuclear Information System (INIS)

    Gu Jianzhong; Zhao Enguang; Zong Hongshi; Zhuo Yizhong; Wu Xizhen

    1998-01-01

    Within the framework of the two-center shell model the classically dynamical behaviour of a nucleon in heavy nuclei is investigated systematically with the change of nuclear shape parameters for the first time. It is found that as long as the nucleonic energy 0is appreciably higher than the height of the potential barrier there is a good quantum-classical correspondence of nucleonic regular (chaotic) motion. Thus, Bohigas, Giannoni and Schmit conjecture is confirmed once again. We find that the difference between the potential barrier for prolate nuclei and that for oblate ones is reponsible for the energy-dependence difference between the nucleonic chaotic dynamics for prolate nuclei and that for oblate ones. In addition, it is suggested that nuclear dissipation is shape-dependent, and strong nuclear dissipation can be expected for medium or large separations in the presence of a considerable neck deformation built on a pronounced octupole-like deformation, which provides us a dynamical understanding of nuclear shape dependence of nuclear dissipation. (orig.)

  17. Underlying physics of identical odd- and even-mass bands in normally deformed rare-earth nuclei

    International Nuclear Information System (INIS)

    Yu Lei; Liu Shuxin; Lei Yian; Zeng Jinyan

    2001-01-01

    The microscopic mechanism of the identical odd- and even-mass number nuclear bands in normally deformed rare-earth nuclei was investigated using the particle-number conserving (PNC) method for treating nuclear pairing correlation. It was found that the odd particle of an odd-A identical band always occupied a cranked low j and high Ω Nilsson orbital (e.g. proton [404]7/2, [402]5/2. On the contrary, if the odd particle occupies an intruder high j orbital (e.g. neutron [633]7/2, proton[514]9/2), the moment of inertia of the odd-A band was much larger than that of neighboring even-even ground state band. The observed variation of moment of inertia (below band crossing) was reproduced quite well by the PNC calculation, in which no free parameter was involved. The strengths of monopole and Y 20 quadrupole interactions were determined by the experimental odd-even differences in binding energy and band head moment of inertia

  18. The role of cranking frequency in the generation of angular momentum in isospin formalism for nuclei around A=90

    International Nuclear Information System (INIS)

    Mohamed Akbar, A.; Veeraraghavan, S.; Arunachalam, N.

    1998-01-01

    The role of cranking frequency in hot rotating deformed nuclei has been studied with reference to the extraction of several nuclear parameters. In this work, the angular momentum degree of freedom is included in the isospin formalism using statistical theory of hot deformed nuclei

  19. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    Jung, Euo Chang; Park, K. K.; Cho, H. R.

    2010-04-01

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using advanced laser-based highly sensitive spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been performed for the chemical speciation of actinide in an aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. (1) Development of TRLFS technology for chemical speciation of actinides, (2) Development of LIBD technology for measuring solubility of actinides, (3) Chemical speciation of plutonium complexes by using a LWCC system, (4) Development of LIBS technology for the quantitative analysis of actinides, (5) Development of technology for the chemical speciation of actinides by CE, (6) Evaluation on the chemical reactions between actinides and humic substances, (7) Chemical speciation of actinides adsorbed on metal oxides surfaces, (8) Determination of actinide source terms of spent nuclear fuel

  20. Actinide Separation Demonstration Facility, Tarapur

    International Nuclear Information System (INIS)

    Vishwaraj, I.

    2017-01-01

    Partitioning of minor actinide from high level waste could have a substantial impact in lowering the radio toxicity associated with high level waste as well as it will reduce the burden on geological repository. In Indian context, the partitioned minor actinide could be routed into the fast breeder reactor systems scheduled for commissioning in the near period. The technological breakthrough in solvent development has catalyzed the partitioning programme in India, leading to the setting up and hot commissioning of the Actinide Separation Demonstration Facility (ASDF) at BARC, Tarapur. The engineering scale Actinide Separation Demonstration Facility (ASDF) has been retrofitted in an available radiological hot cell situated adjacent to the Advanced Vitrification Facility (AVS). This location advantage ensures an uninterrupted supply of high-level waste and facilitates the vitrification of the high-level waste after separation of minor actinides

  1. Subsurface Biogeochemistry of Actinides

    Energy Technology Data Exchange (ETDEWEB)

    Kersting, Annie B. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Univ. Relations and Science Education; Zavarin, Mavrik [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Glenn T. Seaborg Inst.

    2016-06-29

    A major scientific challenge in environmental sciences is to identify the dominant processes controlling actinide transport in the environment. It is estimated that currently, over 2200 metric tons of plutonium (Pu) have been deposited in the subsurface worldwide, a number that increases yearly with additional spent nuclear fuel (Ewing et al., 2010). Plutonium has been shown to migrate on the scale of kilometers, giving way to a critical concern that the fundamental biogeochemical processes that control its behavior in the subsurface are not well understood (Kersting et al., 1999; Novikov et al., 2006; Santschi et al., 2002). Neptunium (Np) is less prevalent in the environment; however, it is predicted to be a significant long-term dose contributor in high-level nuclear waste. Our focus on Np chemistry in this Science Plan is intended to help formulate a better understanding of Pu redox transformations in the environment and clarify the differences between the two long-lived actinides. The research approach of our Science Plan combines (1) Fundamental Mechanistic Studies that identify and quantify biogeochemical processes that control actinide behavior in solution and on solids, (2) Field Integration Studies that investigate the transport characteristics of Pu and test our conceptual understanding of actinide transport, and (3) Actinide Research Capabilities that allow us to achieve the objectives of this Scientific Focus Area (SFA and provide new opportunities for advancing actinide environmental chemistry. These three Research Thrusts form the basis of our SFA Science Program (Figure 1).

  2. The investigation of the decay of the deformed 167Yb, 164Tm, 225Ac, 221Fr nuclei. Beta-spectrograph with positional-sensitive detector

    International Nuclear Information System (INIS)

    Butabaev, Yu.S.

    1994-01-01

    The decay of the deformed 167 Yb, 164 Tm, 225 Ac, 221 Fr nuclei is investigated in this work. For 167 Yb and 164 Tm decays the specters of the conversion electrons were measured. 32 γ-transitions were found for 167 Yb decay, 6 of which were found for the first time. The multipolarities for 9 γ-transitions were found. For 164 Tm decay 23 new γ-transitions were found. The theoretical investigations of the collective states in the nucleus were carried out. Octupole-rotatory line with k=1 - was found in the measurement of conversion electrons specters of the short-life nuclei. Device' nonlinearity was 0,04%. Resolution was Δβρ/βρ 0,11%. Effective light yield was 1-2 %. The decay of 225 Ac and 221 Fr nuclei were investigated. The investigations of α-γ -coincidence, α-γ - rays were carried out. 24 new γ -transitions for 225 Ac and 13 ones for 221 Fr were found. The new levels and their intensities were defined more precisely. Intensity balance calculations were carried out and the full populations of the nuclear levels were calculated. (author). 3 tabs.; 10 figs

  3. Systematics in p-n interaction vs deformation

    International Nuclear Information System (INIS)

    Singh, M.; Singh, Yuvraj; Kumar, Rajesh; Vrshney, A.K.; Gupta, K.K.

    2017-01-01

    The correlation of integrated valance p-n interaction in the onset of collectivity and deformation has been described phenomenologically in terms of N p N n scheme. L. Esser et al. presented the graphs between N p N n and deformation β and γ for some heavy nuclei

  4. Concentration of actinides in the food chain

    International Nuclear Information System (INIS)

    Bulman, R.A.

    1976-06-01

    Considerable concern is now being expressed over the discharge of actinides into the environment. This report presents a brief review of the chemistry of the actinides and examines the evidence for interaction of the actinides with some naturally-occurring chelating agents and other factors which might stimulate actinide concentration in the food chain of man. This report also reviews the evidence for concentration of actinides in plants and for uptake through the gastrointestinal tract. (author)

  5. Thermal-hydraulics of actinide burner reactors

    International Nuclear Information System (INIS)

    Takizuka, Takakazu; Mukaiyama, Takehiko; Takano, Hideki; Ogawa, Toru; Osakabe, Masahiro.

    1989-07-01

    As a part of conceptual study of actinide burner reactors, core thermal-hydraulic analyses were conducted for two types of reactor concepts, namely (1) sodium-cooled actinide alloy fuel reactor, and (2) helium-cooled particle-bed reactor, to examine the feasibility of high power-density cores for efficient transmutation of actinides within the maximum allowable temperature limits of fuel and cladding. In addition, calculations were made on cooling of actinide fuel assembly. (author)

  6. Multi-quasiparticle high-K isomeric states in deformed nuclei

    Directory of Open Access Journals (Sweden)

    Xu F. R.

    2016-01-01

    Full Text Available In the past years, we have made many theoretical investigations on multi-quasiparticle high-K isomeric states. A deformation-pairing-configuration self-consistent calculation has been developed by calculating a configuration-constrained multi-quasiparticle potential energy surface (PES. The specific single-particle orbits that define the high-K configuration are identified and tracked (adiabatically blocked by calculating the average Nilsson numbers. The deformed Woods-Saxon potential was taken to give single-particle orbits. The configuration-constrained PES takes into account the shape polarization effect. Such calculations give good results on excitation energies, deformations and other structure information about multi-quasiparticle high-K isomeric states. Many different mass regions have been investigated.

  7. Actinide colloid generation in groundwater. Part 2

    International Nuclear Information System (INIS)

    Kim, J.I.

    1991-01-01

    The progress made in the investigation of actinide colloid generation in groundwater is summarized and discussed with particular examples relevant to an understanding of the migration behaviour of actinides in natural aquifer systems. The first part deals with the characterization of colloids: groundwater colloids, actinide real-colloids and actinide pseudocolloids. The second part concentrates on the generation processes and migration behaviour of actinide pseudo colloids, which are discussed with some notable experimental examples. Importance is stressed more on the chemical aspects of the actinide colloid generation in groundwater. This work is a contribution to the CEC Mirage II project, in particular the complexation and colloids research area

  8. Microscopic properties of superdeformed nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Karlsson, Lennart B

    1999-04-01

    Many high spin rotational bands in superdeformed nuclei have been found in the A 140 - 150 region, but so far no linking transitions to known normal-deformed states have been found in these nuclei. Therefore, configuration and spin assignments have to be based on indirect spectroscopic information. Identical bands were first discovered in this region of superdeformed states. At present, some identical bands have also been found at normal deformation, but such bands are more common at superdeformation. Recently lifetime measurements have given relative quadrupole moments with high accuracy. Spectroscopic quantities are calculated using the configuration constrained cranked Nilsson-Strutinsky model with the modified oscillator potential. In a statistical study the occurrence of identical bands is tested. Comparing superdeformed and normal deformed nuclei, the higher possibility for identical bands at superdeformation is understood from calculated reduced widths of the E{sub {gamma}} and J{sup (2)} distributions. The importance of high-N orbitals for identical bands is also discussed. Additivity of electric quadrupole moment contributions in the superdeformed A - 150 region is discussed with the nucleus {sup 152}Dy as a `core`. In analytic harmonic oscillator calculations, the effective electric quadrupole moment q{sub eff}, i.e. the change in the total quadrupole moment caused by the added particle, is expressed as a simple function of the single-particle mass, quadrupole moment q{sub {nu}}. Also in realistic calculations, simple relations between q{sub eff} and q{sub {nu}} can be used to estimate the total electric quadrupole moment, e.g. for the nucleus {sup 142}Sm, by adding the effect of 10 holes, to the total electric quadrupole moment of {sup 152}Dy. Furthermore, tools are given for estimating the quadrupole moment for possible configurations in the superdeformed A - 150 region. For the superdeformed region around {sup 143}Eu, configuration and spin assignments

  9. Octupole correlations in positive-parity states of rare-earth and actinide nuclei

    Directory of Open Access Journals (Sweden)

    Spieker M.

    2015-01-01

    Full Text Available In this contribution, further evidence of the importance of multiphonon-octupole excitations to describe experimental data in the rare earths and actinides will be presented. First, new results of a (p, t experiment at the Q3D magnetic spectrograph in Munich will be discussed, which was performed to selectively excite Jπ = 0+ states in 240Pu. spdf interacting boson model (IBM calculations suggest that the previously proposed double-octupole phonon nature of the Jπ = 0+2 state is not in conflict with its strong (p, t population. Second, the framework of the IBM has been adopted for the description of experimental observables related to octupole excitations in the rare earths. Here, the IBM is able to describe the signature splitting for positiveand negative-parity states when multi-dipole and multi-octupole bosons are included. The present study might support the idea of octupole-phonon condensation at intermediate spin (Jπ = 10+ leading to the change in yrast structure observed in 146Nd.

  10. Actinide cation-cation complexes

    International Nuclear Information System (INIS)

    Stoyer, N.J.; Seaborg, G.T.

    1994-12-01

    The +5 oxidation state of U, Np, Pu, and Am is a linear dioxo cation (AnO 2 + ) with a formal charge of +1. These cations form complexes with a variety of other cations, including actinide cations. Other oxidation states of actinides do not form these cation-cation complexes with any cation other than AnO 2 + ; therefore, cation-cation complexes indicate something unique about AnO 2 + cations compared to actinide cations in general. The first cation-cation complex, NpO 2 + ·UO 2 2+ , was reported by Sullivan, Hindman, and Zielen in 1961. Of the four actinides that form AnO 2 + species, the cation-cation complexes of NpO 2 + have been studied most extensively while the other actinides have not. The only PuO 2 + cation-cation complexes that have been studied are with Fe 3+ and Cr 3+ and neither one has had its equilibrium constant measured. Actinides have small molar absorptivities and cation-cation complexes have small equilibrium constants; therefore, to overcome these obstacles a sensitive technique is required. Spectroscopic techniques are used most often to study cation-cation complexes. Laser-Induced Photacoustic Spectroscopy equilibrium constants for the complexes NpO 2 + ·UO 2 2+ , NpO 2 + ·Th 4+ , PuO 2 + ·UO 2 2+ , and PuO 2 + ·Th 4+ at an ionic strength of 6 M using LIPAS are 2.4 ± 0.2, 1.8 ± 0.9, 2.2 ± 1.5, and ∼0.8 M -1

  11. Possible isomers in nuclei beyond the drip line

    International Nuclear Information System (INIS)

    Ogawa, K.

    1986-12-01

    To search a new decay model which is not observed in nuclei near stability line such as beta-delayed proton emission or direct proton emission provides us a wealth of knowledge on nuclear stability. Besides study of the nuclear decay modes, study of nuclear structures reveals us new aspect of nuclei like new deformed regions or new magic numbers. In these respects the study of a nucleus 100 Sn and its closest neighbours has a special role. (author)

  12. Deformation effects in the Si + C and Si + Si reactions

    Indian Academy of Sciences (India)

    The possible occurrence of highly deformed configurations is investigated in the. ¼ ... Fusion–fission; nuclear deformation; exclusive light charge particle measurements. .... In hot rotating nuclei formed in heavy-ion reactions, the energy level.

  13. The structure of nuclei far from stability

    International Nuclear Information System (INIS)

    Zganjar, E.F.

    1993-01-01

    Studies on nuclei near Z=82 contributed to the establishment of a new region of nuclear deformation and a new class of nuclear structure at closed shells. A important aspect of this work is the establishment of the connection between low-lying 0 + states in even endash even nuclei and the occurrence of shape coexistence in the odd-mass neighbors (E0 transitions in 185 Pt, shape coexistence in 184 Pt and 187 Au). A new type of picosecond lifetime measurement system capable of measuring the lifetime of states that decay only by internal conversion was developed and applied to the 186,188 Tl decay to determine the lifetime of the 0 2 + and 2 2 + deformed states in 186,188 Hg. A search for the population of superdeformed states in 192 Hg by the radioactive decay of 192 Tl was accomplished by using a prototype internal pair formation spectrometer

  14. Nuclear sub-structure in 112–122Ba nuclei within relativistic mean field theory

    International Nuclear Information System (INIS)

    Bhuyan, M.; Patra, S.K.; Arumugam, P.; Gupta, Raj K.

    2011-01-01

    Working within the framework of relativistic mean field theory, we study for the first time the clustering structure (nuclear sub-structure) of 112–122 Ba nuclei in an axially deformed cylindrical coordinate. We calculate the individual neutrons and protons density distributions for Ba-isotopes. From the analysis of the clustering configurations in total (neutrons-plus-protons) density distributions for various shapes of both the ground and excited states, we find different sub-structures inside the Ba nuclei considered here. The important step, carried out here for the first time, is the counting of number of protons and neutrons present in the clustering region(s). 12 C is shown to constitute the cluster configuration in prolate-deformed ground-states of 112–116 Ba and oblate-deformed first excited states of 118–122 Ba nuclei. Presence of other lighter clusters such as 2 H, 3 H and nuclei in the neighborhood of N = Z, 14 N, 34–36 Cl, 36 Ar and 42 Ca are also indicated in the ground and excited states of these nuclei. Cases with no cluster configuration are shown for 112–116 Ba in their first and second excited states. All these results are of interest for the observed intermediate-mass-fragments and fusion–fission processes, and the so far unobserved evaporation residues from the decaying Ba* compound nuclei formed in heavy ion reactions. (author)

  15. Field-substance interaction and collective oscillation of nuclei

    International Nuclear Information System (INIS)

    Shermatov, E.N.; Choriev, M.

    2004-01-01

    Full text: In this work a mechanism of formation of collective excitation in a set of particles, including atomic nuclei, is proposed. According to [1] the energy density of cosmic vacuum significantly exceeds the energy density of an atomic nucleus. In [2] the process of formation of the physical vacuum in surrounding cosmic space was considered. We considered the behavior of a system of particles, which possesses transversal and longitudinal oscillation with frequency ω 0 in the physical or cosmic vacuum. The oscillating influence on the physical vacuum and surrounding particles on a single particle leads to inducing the spins with various directions and magnitudes. This process leads to the formation of oscillating response wave function (RWF) of particles. As a result of a phase coherency among RWF of particles an oscillating self-coordinated field in a set of particles is formed. As a result of realization of the phase coherency among harmonics of RWF of particles there occurs a deformation of the character of distribution of the energy structure of the self-coordinated field, which, finally, transforms into a resonant line. At this occurs a collapse of the RWF of particles there. In terms of these ideas we explained the observed regularities in the self-coordinated field in a set of particles, including the atomic nuclei. It was shown that the giant resonance in spectra of atomic nuclei is a result of manifestation of the self-coordinated field of atomic nuclei. As a result of realization of the phase coherency among harmonics of RWF of atomic nuclei there occurs a collapse of the RWF of particles, and the energy structure of the self-coordinated field of nuclei gains a resonant form, and it is manifested as the giant resonance. In deformable nuclei the RWF of particles possesses two oscillation modes, and that is why in the energy spectrum of the self-coordinated field of nuclei they are manifested as two maximum

  16. Fissility of actinide nuclei induced by 60-130 MeV photons

    International Nuclear Information System (INIS)

    Morcelle, Viviane; Tavares, Odilon A.P.

    2004-06-01

    Nuclear fissilities obtained from recent photofission reaction cross section measurements carried out at Saskatchewan Accelerator Laboratory (Saskatoon, Canada) in the energy range 60-130 MeV for 232 Th, 233 U, 235 U, 238 U, and 237 Np nuclei have been analysed in a systematic way. To this aim, a semiempirical approach has been developed based on the quasi-deuteron nuclear photoabsorption model followed by the process of competition between neutron evaporation and fission for the excited nucleus. The study reproduces satisfactorily well the increasing trend of nuclear fissility with parameter Z 2 =A. (author)

  17. Extraction chromatogrpahy of actinides, ch. 7

    International Nuclear Information System (INIS)

    Mueller, W.

    1975-01-01

    This review on extraction chromatography of actinides emphasizes the important usage of neutral (Tributylphosphate), basic (substituted ammonium salts), and acidic (HDEHP) extractants, and their application to separations of actinides in the di-to hexavalent oxidation state. Furthermore, the actinide extraction by ketones, ethers, alcohols and β-diketones is discussed

  18. $\\beta$-delayed fission in proton-rich nuclei in the lead region

    CERN Document Server

    AUTHOR|(CDS)2085005; Huyse, Mark; Popescu, Lucia

    Nuclear fission is the breakup of an atomic nucleus into two (sometimes three) fragments, thereby releasing a large amount of energy. Soon after its discovery in the late 1930’s, the gross properties of the fission phenomenon were explained by macroscopic nuclear models. Certain features however, such as asymmetric fission-fragment mass distributions in the actinide region, require the inclusion of microscopic effects. This interplay of the microscopic motion of individual nucleons on this macroscopic process is, until today, not yet fully understood. The phenomenon of fission has therefore been of recurring interest for both theoretical and experimental studies. This thesis work focuses on the $\\beta$-delayed fission ($\\beta$DF) process, an excellent tool to study low-energy fission of exotic nuclei, which was discovered in 1966 in the actinide region. In this two-step process, a precursor nucleus first undergoes $\\beta$-decay to an excited level in the daughter nucleus, which may subsequently fission. Rec...

  19. Near-Barrier Fusion of Heavy Nuclei. Coupling of the Channels

    CERN Document Server

    Zagrebaev, V I

    2003-01-01

    The problem of quantum description of near-barrier fusion of heavy nuclei taking place under strong coupling of relative motion with rotation of deformed nuclei and with dynamic deformations of their surfaces is studied in the paper. A new effective method is proposed for numerical solution of a set of coupled Schrodinger equations with boundary conditions corresponding to a full absorption of the flux penetrated through the multi-dimensional Coulomb barrier. The method has no limitation on the number of coupled channels and allows one to calculate fusion cross-sections of very heavy nuclei used for synthesis of super-heavy elements. A combined analysis of the multi-dimensional potential energy surface relief and the multi-channel wave function in the vicinity of the Coulomb barrier gives a clear interpretation of near-barrier fusion dynamics. Comparison with experimental data and with semi-empirical model calculations is performed. The computing codes are allocated at the web-server http://nrv.jinr.ru/nrv/ w...

  20. Minor actinide transmutation on PWR burnable poison rods

    International Nuclear Information System (INIS)

    Hu, Wenchao; Liu, Bin; Ouyang, Xiaoping; Tu, Jing; Liu, Fang; Huang, Liming; Fu, Juan; Meng, Haiyan

    2015-01-01

    Highlights: • Key issues associated with MA transmutation are the appropriate loading pattern. • Commercial PWRs are the only choice to transmute MAs in large scale currently. • Considerable amount of MA can be loaded to PWR without disturbing k eff markedly. • Loading MA to PWR burnable poison rods for transmutation is an optimal loading pattern. - Abstract: Minor actinides are the primary contributors to long term radiotoxicity in spent fuel. The majority of commercial reactors in operation in the world are PWRs, so to study the minor actinide transmutation characteristics in the PWRs and ultimately realize the successful minor actinide transmutation in PWRs are crucial problem in the area of the nuclear waste disposal. The key issues associated with the minor actinide transmutation are the appropriate loading patterns when introducing minor actinides to the PWR core. We study two different minor actinide transmutation materials loading patterns on the PWR burnable poison rods, one is to coat a thin layer of minor actinide in the water gap between the zircaloy cladding and the stainless steel which is filled with water, another one is that minor actinides substitute for burnable poison directly within burnable poison rods. Simulation calculation indicates that the two loading patterns can load approximately equivalent to 5–6 PWR annual minor actinide yields without disturbing the PWR k eff markedly. The PWR k eff can return criticality again by slightly reducing the boric acid concentration in the coolant of PWR or removing some burnable poison rods without coating the minor actinide transmutation materials from PWR core. In other words, loading minor actinide transmutation material to PWR does not consume extra neutron, minor actinide just consumes the neutrons which absorbed by the removed control poisons. Both minor actinide loading patterns are technically feasible; most importantly do not need to modify the configuration of the PWR core and

  1. Polarization electric dipole moment in nonaxial nuclei

    International Nuclear Information System (INIS)

    Denisov, V.Yu.; Davidovskaya, O.I.

    1996-01-01

    An expression for the macroscopic polarization electric dipole moment is obtained for nonaxial nuclei whose radii of the proton and neutron surfaces are related by a linear equation. Dipole transitions associated with the polarization electric dipole moment are analyzed for static and dynamical multipole deformations

  2. Shapes and alignments at high spin in some rare-earth nuclei

    International Nuclear Information System (INIS)

    Deleplanque, M.A.; Diamond, R.M.; Stephens, F.S.; Macchiavelli, A.O.; Doessing, T.; Draper, J.E.; Dines, E.L.

    1985-01-01

    The structure of nuclei at high spins is dominated by an interplay between deformation and alignment effects. Cranking models predict various shapes but at the highest spins, there is a tendency towards large triaxial deformations and sometimes towards very large prolate deformations (superdeformations). Directly involved in the shape changes are aligned orbitals which come down to the Fermi level as the nucleus rotates more rapidly. At a certain frequency, they become populated and cause large alignments. The mechanism of these changes has been explored by looking at a series of rare earth quasirotational nuclei from Dy to W in the transition region around N = 90 neutrons. The continuum spectra, corrected for incomplete population (feeding) of the high spins, are directly proportional to dynamic effective moments of inertia which describe how much spin is generated at each rotational frequency

  3. Where is the Scissors Mode Strength in Odd-Mass Nuclei?

    International Nuclear Information System (INIS)

    Enders, J.; Huxel, N.; von Neumann-Cosel, P.; Richter, A.

    1997-01-01

    It is demonstrated by a fluctuation analysis based on the assumption of a Wigner distribution for the nuclear level spacings and of a Porter-Thomas distribution for the transition strengths that significant parts of the dipole strength excited in photon scattering experiments in heavy, deformed odd-mass nuclei are hidden in the background of the experimental spectra. With this additional strength, the heretofore claimed severe reduction of the B(M1) scissors mode strength in odd-mass nuclei compared to the one in neighboring even-even nuclei disappears. copyright 1997 The American Physical Society

  4. Symmetry energy and surface properties of neutron-rich exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Gaidarov, M. K.; Antonov, A. N. [Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Sciences, Sofia 1784 (Bulgaria); Sarriguren, P. [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 123, E-28006 Madrid (Spain); Moya de Guerra, E. [Departamento de Fisica Atomica, Molecular y Nuclear, Facultad de Ciencias Fisicas, Universidad Complutense de Madrid, E-28040 Madrid (Spain)

    2014-07-23

    The symmetry energy, the neutron pressure and the asymmetric compressibility of spherical Ni, Sn, and Pb and deformed Kr and Sm neutron-rich even-even nuclei are calculated within the coherent density fluctuation model using the symmetry energy as a function of density within the Brueckner energy-density functional. The correlation between the thickness of the neutron skin and the characteristics related with the density dependence of the nuclear symmetry energy is investigated for isotopic chains of these nuclei in the framework of the deformed self-consistent mean-field Skyrme HF+BCS method. The mass dependence of the nuclear symmetry energy and the neutron skin thickness are also studied together with the role of the neutron-proton asymmetry. The studied correlations reveal a smoother behavior in the case of spherical nuclei than for deformed ones. We also notice that the neutron skin thickness obtained for {sup 208}Pb with SLy4 force is found to be in a good agreement with the recent data. In addition to the interest that this study may have by itself, we give some numerical arguments in proof of the existence of peculiarities of the studied quantities in Ni and Sn isotopic chains that are not present in the Pb chain.

  5. Actinide speciation in the environment

    International Nuclear Information System (INIS)

    Choppin, G.R.

    2007-01-01

    Nuclear test explosions and nuclear reactor wastes and accidents have released large amounts of radioactivity into the environment. Actinide ions in waters often are not in a state of thermodynamic equilibrium and their solubility and migration behavior is related to the form in which the nuclides are introduced into the aquatic system. Chemical speciation, oxidation state, redox reactions, and sorption characteristics are necessary in predicting solubility of the different actinides, their migration behaviors and their potential effects on marine biota. The most significant of these variables is the oxidation state of the metal ion as the simultaneous presence of more than one oxidation state for some actinides in a solution complicates actinide environmental behavior. Both Np(V)O 2 + and Pu(V)O 2 + , the most significant soluble states in natural oxic waters, are relatively noncomplexing and resistant to hydrolysis and subsequent precipitation. The solubility of NpO 2 + can be as high as 10 -4 M while that of PuO 2 + is much more limited by reduction to the insoluble tetravalent species, Pu(OH) 4 , (pK sp ≥56) but which can be present in the pentavalent form in aqautic phases as colloidal material. The solubility of hexavalent UO 2 2+ in sea water is relatively high due to formation of carbonate complexes. The insoluble trivalent americium hydroxocarbonate, Am(OH)(CO 3 ) is the limiting species for the solubility of Am(III) in sea water. Thorium(IV) is present as Th(OH) 4 , in colloidal form. The chemistry of actinide ions in the environment is reviewed to show the spectrum of reactions that can occur in natural waters which must be considered in assessing the environmental behavior of actinides. Much is understood about sorption of actinides on surfaces, the mode of migration of actinides in such waters and the potential effects of these radioactive species on marine biota, but much more understanding of the behavior of the actinides in the environment is

  6. Nuclei and models, 2001-2003. DEA fields, particles and matter

    International Nuclear Information System (INIS)

    Sida, J.L.

    2003-01-01

    This document gathers a series of 6 lessons dedicated to students in the first year of their thesis (DEA) in fields and particles physics: 1) the extent of nuclear physics, 2) the nucleus as a cluster of interacting fermions, 3) models and deformation, 4) nuclei and rotation, 5) isospin and exotic nuclei, and 6) fission reactions from the saddle point to the scission point

  7. Research on the chemical speciation of actinides

    International Nuclear Information System (INIS)

    Jung, Euo Chang; Park, K. K.; Cho, H. R.

    2012-04-01

    A demand for the safe and effective management of spent nuclear fuel and radioactive waste generated from nuclear power plant draws increasing attention with the growth of nuclear power industry. The objective of this project is to establish the basis of research on the actinide chemistry by using highly sensitive and advanced laser-based spectroscopic systems. Researches on the chemical speciation of actinides are prerequisite for the development of technologies related to nuclear fuel cycles, especially, such as the safe management of high level radioactive wastes and the chemical examination of irradiated nuclear fuels. For supporting these technologies, laser-based spectroscopies have been applied for the chemical speciation of actinide in aqueous solutions and the quantitative analysis of actinide isotopes in spent nuclear fuels. In this report, results on the following subjects have been summarized. Development of TRLFS technology for the chemical speciation of actinides, Development of laser-induced photo-acoustic spectroscopy (LPAS) system, Application of LIBD technology to investigate dynamic behaviors of actinides dissolution reactions, Development of nanoparticle analysis technology in groundwater using LIBD, Chemical speciation of plutonium complexes by using a LWCC system, Development of LIBS technology for the quantitative analysis of actinides, Evaluation on the chemical reactions between actinides and humic substances, Spectroscopic speciation of uranium-ligand complexes in aqueous solution, Chemical speciation of actinides adsorbed on metal oxides surfaces

  8. Safe actinide disposition in molten salt reactors

    International Nuclear Information System (INIS)

    Gat, U.

    1997-01-01

    Safe molten salt reactors (MSR) can readily accommodate the burning of all fissile actinides. Only minor compromises associated with plutonium are required. The MSRs can dispose safely of actinides and long lived isotopes to result in safer and simpler waste. Disposing of actinides in MSRs does increase the source term of a safety optimized MSR. It is concluded that the burning and transmutation of actinides in MSRs can be done in a safe manner. Development is needed for the processing to handle and separate the actinides. Calculations are needed to establish the neutron economy and the fuel management. 9 refs

  9. Study of Photon Strength Functions of Actinides: the case of U-235, Np-238 and Pu-241

    CERN Document Server

    Guerrero, C; Cano-Ott, D; Martinez, T; Mendoza, E; Villamarin, D; Colonna, N; Meaze, M H; Marrone, S; Tagliente, G; Terlizzi, R; Belloni, F; Abbondanno, U; Fujii, K; Milazzo, P M; Moreau, C; Aerts, G; Berthoumieux, E; Dridi, W; Gunsing, F; Pancin, J; Perrot, L; Plukis, A; Alvarez, H; Duran, I; Paradela, C; Andriamonje, S; Calviani, M; Chiaveri, E; Gonzalez-Romero, E; Kadi, Y; Vicente, M C; Vlachoudis, V; Andrzejewski, J; Marganiec, J; Assimakopoulos, P; Karadimos, D; Karamanis, D; Papachristodoulou, C; Patronis, N; Audouin, L; David, S; Ferrant, L; Isaev, S; Stephan, C; Tassan-Got, L; Badurek, G; Jericha, E; Leeb, H; Oberhummer, H; Pigni, M T; Baumann, P; Kerveno, M; Lukic, S; Rudolf, G; Becvar, F; Krticka, M; Calvino, F; Capote, R; Carrillo De Albornoz, A; Marques, L; Salgado, J; Tavora, L; Vaz, P; Cennini, P; Dahlfors, M; Ferrari, A; Gramegna, F; Herrera-Martinez, A; Mastinu, P; Praena, J; Sarchiapone, L; Wendler, H; Chepel, V; Ferreira-Marques, R; Goncalves, I; Lindote, A; Lopes, I; Neves, F; Cortes, G; Poch, A; Pretel, C; Couture, A; Cox, J; O'brien, S; Wiescher, M; Dillman, I; Kappeler, F; Mosconi, M; Plag, R; Voss, F; Walter, S; Wisshak, K; Dolfini, R; Rubbia, C; Domingo-Pardo, C; Tain, J L; Eleftheriadis, C; Savvidis, I; Frais-Koelbl, H; Griesmayer, E; Furman, W; Konovalov, V; Goverdovski, A; Ketlerov, V; Haas, B; Haight, R; Reifarth, R; Heil, M; Igashira, M; Koehler, P; Kossionides, E; Lampoudis, C; Lozano, M; Quesada, J; Massimi, C; Vannini, G; Mengoni, A; Oshima, M; Papadopoulos, C; Vlastou, R; Pavlik, A; Pavlopoulos, P; Plompen, A; Rullhusen, P; Rauscher, T; Rosetti, M; Ventura, A

    2011-01-01

    The decay from excited levels in medium and heavy nuclei can be described in a statistical approach by means of Photon Strength Functions and Level Density distributions combined with the theory of the compound. The study of electromagnetic cascades following neutron capture by means of high efficiency detectors has been shown to be well suited for probing the properties of the Photon Strength Function of heavy (high level density) and/or radioactive (high background) nuclei. In this work we have investigated for the first time the validity of the recommended PSF for actinides, in particular 235U, 238Np and 241Pu. Our study includes the search for resonance structures in the PSF below Sn and draws conclusions regarding their existence and their characteristics in terms of energy, width and electromagnetic nature.

  10. Shapes of non-rotating nuclei

    International Nuclear Information System (INIS)

    Bengtsson, R.; Krumlinde, J.; Moeller, P.; Nix, J.R.; Zhang, J.

    1983-01-01

    We study nuclear potential-energy surfaces, ground-state masses and shapes calculated by use of a Yukawa-plus-exponential macroscopic model and a folded-Yukawa single-particle potential for 4023 nuclei ranging from 16 O to 279 112. We discuss extensively the transition from spherical to deformed shapes and study the relation between shape changes and the mass corresponding to the ground-state minimum. The calculated values for the ground-state mass and shape show good agreement with experimental data throughout the periodic system, but some discrepancies remain that deserve further study. We also discuss the effect of deformation on Gamow-Teller #betta#-strength functions

  11. Abnormal radioactive decays out of long-lived super- and hyper-deformed isomeric states

    International Nuclear Information System (INIS)

    Marinov, A.; Gelberg, S.; Kolb, D.

    2000-01-01

    Complete text of publication follows. Recently (1-3) long-lived isomeric states have been found in the super- and hyper-deformed wells of the potential. These isomers manifested themselves by abnormal particle decays. An isomeric state in the superdeformed well of the potential in the parent nucleus can decay by very enhanced α-particle groups to superdeformed states in the daughter (1) or by very retarded α-particles (3) and also by protons (2) to normal states in the daughters. Similarly an isomeric state in the hyper-deformed well may decay by very retarded α-particle groups to superdeformed states (3), or by very enhanced α-groups to hyper-deformed states in the daughter nucleus (4). All these very unusual decay modes have been observed experimentally (1-4). For instance, a very high energy α-group of 8.6 MeV with 40d ≤ t 1/2 ≤ 2y (retardation factor of ∼10 13 ) has been observed in 195 Hg and interpreted as a III min → II min α-transition (3). Likewise, relatively low-energy and very enhanced α-particle groups (enhancement factors of 10 5 to 10 7 ) have been seen in several actinide sources and interpreted as due to II min → II min and III min → III min transitions (4). These unusual decay modes introduce new considerations in the study of heavy and superheavy elements. For instance, if low-energy α-particle groups around 4.4 - 4.6 MeV have been seen in nature (5), they may be interpreted as due to very enhanced III min → III min transitions in the superheavy element region around Z = 108 (eka-Os) with t 1/2 ∼10 8 y rather than ∼10 15 y as expected for normal α-transitions of such energies in this region, or due to very retarded III min → II min or II min → I min decays in nuclei around Os itself. In both cases, if such activities have been seen in nature, they indicate that the existence of the II min and III min isomeric states may be important in the nucleosynthesis process. It should be mentioned that long-lived high

  12. Superheavy nuclei in the relativistic mean-field theory

    International Nuclear Information System (INIS)

    Lalazissis, G.A.; Ring, P.; Gambhir, Y.K.

    1996-01-01

    We have carried out a study of superheavy nuclei in the framework of the relativistic mean-field theory. Relativistic Hartree-Bogoliubov (RHB) calculations have been performed for nuclei with large proton and neutron numbers. A finite-range pairing force of Gogny type has been used in the RHB calculations. The ground-state properties of very heavy nuclei with atomic numbers Z=100-114 and neutron numbers N=154-190 have been obtained. The results show that in addition to N=184 the neutron numbers N=160 and N=166 exhibit an extra stability as compared to their neighbors. For the case of protons the atomic number Z=106 is shown to demonstrate a closed-shell behavior in the region of well deformed nuclei about N=160. The proton number Z=114 also indicates a shell closure. Indications for a doubly magic character at Z=106 and N=160 are observed. Implications of shell closures on a possible synthesis of superheavy nuclei are discussed. (orig.)

  13. Vibrational states in deformed nuclei. Chaos, order and individual nature of nuclei

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1993-01-01

    General properties of the vibrational states in doubly-even well-deformed are formulated. The large many-quasiparticle components of the wave functions of the neutron resonance state are responsible for enhance E1- and M1-transitions rates from the neutron resonances states to the levels lying 1-2 MeV below them. 44 refs.; 4 tabs

  14. SP (4,R) symmetry in light nuclei

    International Nuclear Information System (INIS)

    Peterson, D.R.

    1979-01-01

    A classification of nuclear states according to the noncompact sympletic Lie algebras sp(2n,R), n = 1, 2, 3, is investigated. Such a classification has recently been shown to be physically meaningful. This classification scheme is the appropriate generalization fo Elliott's SU 3 model of rotational states in deformed light nuclei to include core excitations. A restricted classification according to the Lie algebra, sp(4,R), is motivated. Truncation of the model space to a single sp(4,R) irreducible representation allows the inclusion of states possessing very high excitation energy. An sp(4,R) model study is performed on S = T = 0 positive-parity rotational bands in the deformed light nuclei 16 O and 24 Mg. States are included in the model space that possess up to 10h ω in excitation energy. Results for the B(E2) transition rates compare favorable with experiment, without resort to effective charges

  15. Structure of exotic nuclei and superheavy elements in meson field theory

    Energy Technology Data Exchange (ETDEWEB)

    Linn, Khin Nyan

    2008-07-15

    In this work the nuclear structure of exotic nuclei and superheavy nuclei is studied in a relativistic framework. In the relativistic mean-field (RMF) approximation, the nucleons interact with each other through the exchange of various effective mesons (scalar, vector, isovector-vector). Ground state properties of exotic nuclei and superheavy nuclei are studied in the RMF theory with the three different parameter sets (ChiM,NL3,NL-Z2). Axial deformation of nuclei within two drip lines are performed with the parameter set (ChiM). The position of drip lines are investigated with three different parameter sets (ChiM,NL3,NL-Z2) and compared with the experimental drip line nuclei. In addition, the structure of hypernuclei are studied and for a certain isotope, hyperon halo nucleus is predicted. (orig.)

  16. Structure of exotic nuclei and superheavy elements in meson field theory

    International Nuclear Information System (INIS)

    Linn, Khin Nyan

    2008-07-01

    In this work the nuclear structure of exotic nuclei and superheavy nuclei is studied in a relativistic framework. In the relativistic mean-field (RMF) approximation, the nucleons interact with each other through the exchange of various effective mesons (scalar, vector, isovector-vector). Ground state properties of exotic nuclei and superheavy nuclei are studied in the RMF theory with the three different parameter sets (ChiM,NL3,NL-Z2). Axial deformation of nuclei within two drip lines are performed with the parameter set (ChiM). The position of drip lines are investigated with three different parameter sets (ChiM,NL3,NL-Z2) and compared with the experimental drip line nuclei. In addition, the structure of hypernuclei are studied and for a certain isotope, hyperon halo nucleus is predicted. (orig.)

  17. Results and simulations on γ-spectroscopy of deformed nuclei: cases of isomers and tetrahedral nuclei

    International Nuclear Information System (INIS)

    Vancraeyenest, A.

    2010-10-01

    The major part of this work is about the realization and complete analysis of an experiment for studying isomeric states in 138,139,140 Nd nuclei. This was performed at Jyvaeskylae laboratory (Finland) using a fusion-evaporation reaction with 48 Ca beam on a thin 96 Zr target. Experimental setup consisted in the target position gamma ray detector Jurogam II which was coupled with the RITU recoil separator and the GREAT focal plane detector array. This particularly well adapted setup permit to manage γ spectroscopy of the interest nuclei around isomeric states. Indeed, we used prompt-delayed matrices to separate rays that come onto isomeric states and these who decay from them. Then, the correlations between the two components permit to establish feeding transitions of isomeric states. Thanks to this experiment, a new isomeric state was also highlighted in 139 Nd with spin 23/2+, which was predicted and interpreted in Cranked-Nilsson-Strutinsky calculation. Finally, very clean time spectra allow to determine precisely life-time of four states in four nuclei. This Ph.d. is also made of a part of the analysis of the first experimental search for fingerprints of tetrahedral symmetry in 156 Gd using high fold gamma ray spectroscopy. Thanks to a large number of triple coincidence events, we managed a detailed spectroscopy of this nucleus. Particularly, we found out 13 new transitions in positive parity bands. As a complement of this work, we have done GEANT4 simulations about the detection limits of low intensity transitions by Agata multidetector. Indeed, tetrahedral symmetry predicts vanishing of E2 transitions at lower spin states and simulations permit to determine observation limit of these transitions with different version of Agata. (author)

  18. Investigation of the neutron emission spectra of some deformed nuclei for (n, xn) reactions up to 26 MeV energy

    International Nuclear Information System (INIS)

    Kaplan, A.; Bueyuekuslu, H.; Tel, E.; Aydin, A.; Boeluekdemir, M.H.

    2011-01-01

    In this study, neutron-emission spectra produced by (n, xn) reactions up to 26 MeV for some deformed target nuclei as 165 Ho, 181 Ta, 184 W, 232 Th and 238 U have been investigated. Also, the mean free path parameter's effect for 9n, xn) neutron-emission spectra has been examined. In the calculations, pre-equilibrium neutron-emission spectra have been calculated by using new evaluated hybrid model and geometry dependent hybrid model, full exciton model and cascade exciton model. The reaction equilibrium component has been calculated by Weisskopf-Ewing model. The obtained results have been discussed and compared with the available experimental data and found agreement with each other. (author)

  19. Actinides burnup in a sodium fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez S, J. R.; Pineda A, R.; Martinez C, E.; Alonso, G., E-mail: ramon.ramirez@inin.gob.mx [ININ, Carretera Mexico-Toluca s/n, 52750 Ocoyoacac, Estado de Mexico (Mexico)

    2017-09-15

    The burnup of actinides in a nuclear reactor is been proposed as part of an advanced nuclear fuel cycle, this process would close the fuel cycle recycling some of the radioactive material produced in the open nuclear fuel cycle. These actinides are found in the spent nuclear fuel from nuclear power reactors at the end of their burnup in the reactor. Previous studies of actinides recycling in thermal reactors show that would be possible reduce the amounts of actinides at least in 50% of the recycled amounts. in this work, the amounts of actinides that can be burned in a fast reactor is calculated, very interesting results surge from the calculations, first, the amounts of actinides generated by the fuel is higher than for thermal fuel and the composition of the actinides vector is different as in fuel for thermal reactor the main isotope is the {sup 237}Np in the fuel for fast reactor the main isotope is the {sup 241}Am, finally it is concluded that the fast reactor, also generates important amounts of waste. (Author)

  20. Role of hexadecapole deformation of projectile 28Si in heavy-ion fusion reactions near the Coulomb barrier

    Science.gov (United States)

    Kaur, Gurpreet; Hagino, K.; Rowley, N.

    2018-06-01

    The vast knowledge regarding the strong influence of quadrupole deformation β2 of colliding nuclei in heavy-ion sub-barrier fusion reactions inspires a desire to quest the sensitivity of fusion dynamics to higher order deformations, such as β4 and β6 deformations. However, such studies have rarely been carried out, especially for deformation of projectile nuclei. In this article, we investigated the role of β4 of the projectile nucleus in the fusion of the 28Si+92Zr system. We demonstrated that the fusion barrier distribution is sensitive to the sign and value of the β4 parameter of the projectile, 28Si, and confirmed that the 28Si nucleus has a large positive β4. This study opens an indirect way to estimate deformation parameters of radioactive nuclei using fusion reactions, which is otherwise difficult because of experimental constraints.

  1. Burning actinides in very hard spectrum reactors

    International Nuclear Information System (INIS)

    Robinson, A.H.; Shirley, G.W.; Prichard, A.W.; Trapp, T.J.

    1978-01-01

    The major unresolved problem in the nuclear industry is the ultimate disposition of the waste products of light water reactors. The study demonstrates the feasibility of designing a very hard spectrum actinide burner reactor (ABR). A 1100 MW/sub t/ ABR design fueled entirely with actinides reprocessed from light water reactor (LWR) wastes is proposed as both an ultimate disposal mechanism for actinides and a means of concurrently producing usable power. Actinides from discharged ABR fuel are recycled to the ABR while fission products are routed to a permanent repository. As an integral part of a large energy park, each such ABR would dispose of the waste actinides from 2 LWRs

  2. Actinide separative chemistry

    International Nuclear Information System (INIS)

    Boullis, B.

    2004-01-01

    Actinide separative chemistry has focused very heavy work during the last decades. The main was nuclear spent fuel reprocessing: solvent extraction processes appeared quickly a suitable, an efficient way to recover major actinides (uranium and plutonium), and an extensive research, concerning both process chemistry and chemical engineering technologies, allowed the industrial development in this field. We can observe for about half a century a succession of Purex plants which, if based on the same initial discovery (i.e. the outstanding properties of a molecule, the famous TBP), present huge improvements at each step, for a large part due to an increased mastery of the mechanisms involved. And actinide separation should still focus R and D in the near future: there is a real, an important need for this, even if reprocessing may appear as a mature industry. We can present three main reasons for this. First, actinide recycling appear as a key-issue for future nuclear fuel cycles, both for waste management optimization and for conservation of natural resource; and the need concerns not only major actinide but also so-called minor ones, thus enlarging the scope of the investigation. Second, extraction processes are not well mastered at microscopic scale: there is a real, great lack in fundamental knowledge, useful or even necessary for process optimization (for instance, how to design the best extracting molecule, taken into account the several notifications and constraints, from selectivity to radiolytic resistivity?); and such a need for a real optimization is to be more accurate with the search of always cheaper, cleaner processes. And then, there is room too for exploratory research, on new concepts-perhaps for processing quite new fuels- which could appear attractive and justify further developments to be properly assessed: pyro-processes first, but also others, like chemistry in 'extreme' or 'unusual' conditions (supercritical solvents, sono-chemistry, could be

  3. Actinides integral measurements on FCA assemblies

    International Nuclear Information System (INIS)

    Mukaiyama, Takehiko; Okajima, Shigeaki

    1984-01-01

    Actinide integral measurements were performed on eight assemblies of FCA where neutron energy spectra were shifted systematically from soft to hard in order to evaluate and modify the nuclear cross section data of major actinides. Experimental values on actinide fission rates and sample reactivity worths are compared with the calculated values using JENDL-2 and ENDF/B-V (or IV) data sets. (author)

  4. Low-spin identical bands in rare earth nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Winchell, D.F.; Garrett, J.D.; Smith, A.

    1992-01-01

    A comprehensive study of odd-A rotational bands in normally deformed rare earth nuclei indicates that a large number of seniority-one configurations (21% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models of nuclear pair correlation, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority

  5. Applications of the nuclear theory to the computation of neutron cross sections for actinide isotopes

    International Nuclear Information System (INIS)

    Konshin, V.A.

    1981-01-01

    Neutron cross section calculational methods for actinides in the unresolved resonance energy range (1-150 kev) are discussed, with a special emphasis on calculation of width fluctuation factors for the generalized distribution, as well as for a sub-threshold fission. It is shown that the energy dependence of sub(J), the (n,n') -process competition and the structure in neutron cross section has to be taken into account in the energy range considered. Analysis of different approaches in the statistical theory for heavy nuclei neutron cross-section calculation is given, and it is shown to be important to allow for the (n,γf)-reaction in neutron cross section calculations for fissile nuclei. The use of the non-spherical potential, the Lorentzian spectral factor and the Fermi-gas model involving the collective modes enables to obtain the self-consistent data for all neutron cross sections, including σnγ. (author)

  6. Geiger-Nuttall Law for Nuclei in Strong Electromagnetic Fields

    Science.gov (United States)

    Delion, D. S.; Ghinescu, S. A.

    2017-11-01

    We investigate the influence of a strong laser electromagnetic field on the α -decay rate by using the Hennenberger frame of reference. We introduce an adimensional parameter D =S0/R0, where R0 is the geometrical nuclear radius and S0˜√{I }/ω2 is a length parameter depending on the laser intensity I and frequency ω . We show that the barrier penetrability has a strong increase for intensities corresponding to D >Dcrit=1 , due to the fact that the resulting Coulomb potential becomes strongly anisotropic even for spherical nuclei. As a consequence, the contribution of the monopole term increases the barrier penetrability by 2 orders of magnitude, while the total contribution has an effect of 6 orders of magnitude at D ˜3 Dcrit. In the case of deformed nuclei, the electromagnetic field increases the penetrability by an additional order of magnitude for a quadrupole deformation β2˜0.3 . The influence of the electromagnetic field can be expressed in terms of a shifted Geiger-Nuttal law by a term depending on S0 and deformation.

  7. Actinide burning and waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Pigford, T H [University of California, Berkeley, CA (United States)

    1990-07-01

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  8. Actinide burning and waste disposal

    International Nuclear Information System (INIS)

    Pigford, T.H.

    1990-01-01

    Here we review technical and economic features of a new proposal for a synergistic waste-management system involving reprocessing the spent fuel otherwise destined for a U.S. high-level waste repository and transmuting the recovered actinides in a fast reactor. The proposal would require a U.S. fuel reprocessing plant, capable of recovering and recycling all actinides, including neptunium americium, and curium, from LWR spent fuel, at recoveries of 99.9% to 99.999%. The recovered transuranics would fuel the annual introduction of 14 GWe of actinide-burning liquid-metal fast reactors (ALMRs), beginning in the period 2005 to 2012. The new ALMRs would be accompanied by pyrochemical reprocessing facilities to recover and recycle all actinides from discharged ALMR fuel. By the year 2045 all of the LWR spent fuel now destined f a geologic repository would be reprocessed. Costs of constructing and operating these new reprocessing and reactor facilities would be borne by U.S. industry, from the sale of electrical energy produced. The ALMR program expects that ALMRs that burn actinides from LWR spent fuel will be more economical power producers than LWRs as early as 2005 to 2012, so that they can be prudently selected by electric utility companies for new construction of nuclear power plants in that era. Some leaders of DOE and its contractors argue that recovering actinides from spent fuel waste and burning them in fast reactors would reduce the life of the remaining waste to about 200-300 years, instead of 00,000 years. The waste could then be stored above ground until it dies out. Some argue that no geologic repositories would be needed. The current view expressed within the ALMR program is that actinide recycle technology would not replace the need for a geologic repository, but that removing actinides from the waste for even the first repository would simplify design and licensing of that repository. A second geologic repository would not be needed. Waste now planned

  9. Projected shell model study of yrast states of neutron-deficient odd-mass Pr nuclei

    International Nuclear Information System (INIS)

    Ibanez-Sandoval, A.; Ortiz, M. E.; Velazquez, V.; Galindo-Uribarri, A.; Hess, P. O.; Sun, Y.

    2011-01-01

    A wide variety of modern instruments allow us to study neutron-deficient nuclei in the A=130 mass region. Highly deformed nuclei have been found in this region, providing opportunities to study the deformed rotational bands. The description of the 125,127,129,131,133 Pr isotopes with the projected shell model is presented in this paper. Good agreement between theory and experiment is obtained and some characteristics are discussed, including the dynamic moment of inertia J (2) , kinetic moment of inertia J (1) , the crossing of rotational bands, and backbending effects.

  10. Universal correlations of nuclear observables and the structure of exotic nuclei

    International Nuclear Information System (INIS)

    Casten, R.F.; Zamfir, N.V.

    1996-01-01

    Despite the apparent complexity of nuclear structural evolution, recent work has shown a remarkable underlying simplicity that is unexpected, global, and which leads to new signatures for structure based on the easiest-to-obtain data. As such they will be extremely valuable for use in the experiments with low intensity radioactive beams. Beautiful correlations based either on extrinsic variables such as N p N n or the P-factor or correlations between collective observables themselves have been discovered. Examples to be discussed include a tri-partite classification of structural evolution, leading to a new paradigm that discloses certain specific classes of nuclei, universal trajectories for B(E2: w 1 + → 0 1 + ) values and their use in extracting hexadecapole deformations from this observable alone, the use of these B(E2) values to identify shell gaps and magic numbers in exotic nuclei, the relationship of β and γ deformations, and single nucleon separation energies. Predictions for nuclei far off stability by interpolation will also be discussed

  11. Chemistry of actinides and fission products

    International Nuclear Information System (INIS)

    Pruett, D.J.; Sherrow, S.A.; Toth, L.M.

    1988-01-01

    This task is concerned primarily with the fundamental chemistry of the actinide and fission product elements. Special efforts are made to develop research programs in collaboration with researchers at universities and in industry who have need of national laboratory facilities. Specific areas currently under investigation include: (1) spectroscopy and photochemistry of actinides in low-temperature matrices; (2) small-angle scattering studies of hydrous actinide and fission product polymers in aqueous and nonaqueous solvents; (3) kinetic and thermodynamic studies of complexation reactions in aqueous and nonaqueous solutions; and (4) the development of inorganic ion exchange materials for actinide and lanthanide separations. Recent results from work in these areas are summarized here

  12. Study of actinide paramagnetism in solution

    International Nuclear Information System (INIS)

    Autillo, Matthieu

    2015-01-01

    The physiochemical properties of actinide (An) solutions are still difficult to explain, particularly the behavioral differences between An(III) and Ln(III). The study of actinide paramagnetic behavior may be a 'simple' method to analyze the electronic properties of actinide elements and to obtain information on the ligand-actinide interaction. The objective of this PhD thesis is to understand the paramagnetic properties of these elements by magnetic susceptibility measurements and chemical shift studies. Studies on actinide electronic properties at various oxidation states in solution were carried out by magnetic susceptibility measurements in solution according to the Evans method. Unlike Ln(III) elements, there is no specific theory describing the magnetic properties of these ions in solution. To obtain accurate data, the influence of experimental measurement technique and radioactivity of these elements was analyzed. Then, to describe the electronic structure of their low energy states, the experimental results were complemented with quantum chemical calculations from which the influence of the ligand field was studied. Finally, these interpretations were applied to better understand the variations in the magnetic properties of actinide cations in chloride and nitrate media. Information about ligand-actinide interactions may be determined from an NMR chemical shift study of actinide complexes. Indeed, modifications induced by a paramagnetic complex can be separated into two components. The first component, a Fermi contact contribution (δ_c) is related to the degree of covalency in coordination bonds with the actinide ions and the second, a dipolar contribution (δ_p_c) is related to the structure of the complex. The paramagnetic induced shift can be used only if we can isolate these two terms. To achieve this study on actinide elements, we chose to work with the complexes of dipicolinic acid (DPA). Firstly, to characterize the geometrical parameters, a

  13. A new relation of parameters of Bohr-Mottelson rotational spectra formula

    International Nuclear Information System (INIS)

    Li Mingliang; Xu Fuxin

    2003-01-01

    With the first three terms of Harris formula included and Mottelson's method followed, a new relation of the parameters of Bohr-Mottelson rotational spectra formula is brought forward. Superdeformed bands of even-even nuclei and normal deformed bands of nuclei in actinide and rare-earth are fitted with four-parameter Bohr-Mottelson rotational spectra formula. The relations of the parameters A, B, C, D are studied. The result show, for normal deformed bands, the new relation approach the experiment value in the same degree as the relation deduced from ab formula, but for superdeformed bands, the new relation is closer to the experiment than the relation deduced from ab formula. Three-parameter Harris formula may have better convergence than two-parameter Harris formula

  14. Catalytic Organic Transformations Mediated by Actinide Complexes

    Directory of Open Access Journals (Sweden)

    Isabell S. R. Karmel

    2015-10-01

    Full Text Available This review article presents the development of organoactinides and actinide coordination complexes as catalysts for homogeneous organic transformations. This chapter introduces the basic principles of actinide catalysis and deals with the historic development of actinide complexes in catalytic processes. The application of organoactinides in homogeneous catalysis is exemplified in the hydroelementation reactions, such as the hydroamination, hydrosilylation, hydroalkoxylation and hydrothiolation of alkynes. Additionally, the use of actinide coordination complexes for the catalytic polymerization of α-olefins and the ring opening polymerization of cyclic esters is presented. The last part of this review article highlights novel catalytic transformations mediated by actinide compounds and gives an outlook to the further potential of this field.

  15. Collective description of magnetic properties of even-even nuclei

    International Nuclear Information System (INIS)

    Maruhn, V.

    1975-01-01

    The generalized collective model is modified by introducing a number of quadrupole deformations for protons and neutrons. The coupling potential is described by physical approaches, and the overall model is applied to even-even nuclei. (WL) [de

  16. Rotating bubble and toroidal nuclei and fragmentation

    International Nuclear Information System (INIS)

    Royer, G.; Haddad, F.; Jouault, B.

    1995-01-01

    The energy of rotating bubble and toroidal nuclei predicted to be formed in central heavy-ion collisions at intermediate energies is calculated within the generalized rotating liquid drop model. The potential barriers standing in these exotic deformation paths are compared with the three dimensional and plane fragmentation barriers. In the toroidal deformation path of the heaviest systems exists a large potential pocket localised below the plane fragmentation barriers. This might allow the temporary survival of heavy nuclear toroids before the final clusterization induced by the surface and proximity tension. (author)

  17. Burn of actinides in MOX fuel cells

    International Nuclear Information System (INIS)

    Martinez C, E.; Ramirez S, J. R.; Alonso V, G.

    2017-09-01

    The spent fuel from nuclear reactors is stored temporarily in dry repositories in many countries of the world. However, the main problem of spent fuel, which is its high radio-toxicity in the long term, is not solved. A new strategy is required to close the nuclear fuel cycle and for the sustain ability of nuclear power generation, this strategy could be the recycling of plutonium to obtain more energy and recycle the actinides generated during the irradiation of the fuel to transmute them in less radioactive radionuclides. In this work we evaluate the quantities of actinides generated in different fuels and the quantities of actinides that are generated after their recycling in a thermal reactor. First, we make a reference calculation with a regular enriched uranium fuel, and then is changed to a MOX fuel, varying the plutonium concentrations and determining the quantities of actinides generated. Finally, different amounts of actinides are introduced into a new fuel and the amount of actinides generated at the end of the fuel burn is calculated, in order to determine the reduction of minor actinides obtained. The results show that if the concentration of plutonium in the fuel is high, then the production of minor actinides is also high. The calculations were made using the cell code CASMO-4 and the results obtained are shown in section 6 of this work. (Author)

  18. Minor actinide transmutation - a waste management option

    International Nuclear Information System (INIS)

    Koch, L.

    1986-01-01

    The incentive to recycle minor actinides results from the reduction of the long-term α-radiological risk rather than from a better utilization of the uranium resources. Nevertheless, the gain in generated electricity by minor actinide transmutation in a fast breeder reactor can compensate for the costs of their recovery and make-up into fuel elements. Different recycling options of minor actinides are discussed: transmutation in liquid metal fast breeder reactors (LMFBRs) is possible as long as plutonium is not recycled in light water reactors (LWRs). In this case a minor actinide burner with fuel of different composition has to be introduced. The development of appropriate minor actinide fuels and their properties are described. The irradiation experiments underway or planned are summarized. A review of minor actinide partitioning from the PUREX waste stream is given. From the present constraints of LMFBR technology a reduction of the long-term α-radiological risk by a factor of 200 is deduced relative to that from the direct storage of spent LWR fuel. Though the present accumulation of minor actinides is low, nuclear transmutation may be needed when nuclear energy production has grown. (orig.)

  19. Effects on auto-irradiation on the solubility of mineral phases enriched by actinides

    International Nuclear Information System (INIS)

    Prot, T.

    1993-07-01

    The scope of the present work is to investigate possible effects of self-irradiation damage induced by α-decay (α-recoil nucleus and α-particle) on the hydrated layer formed by aqueous corrosion of nuclear glass and on alteration phases of a granitic geological repository (calcium carbonate or iron oxides and oxihydroxide) which would be likely irradiated in the framework of high-level radioactive waste disposal, for sufficient concentration of actinides and age. Our experimental procedure relies on a bombardment with external beams of 1.5 to 1.8 MeV He ions and 200 KeV Pb ions, which respectively simulate the radiation effects of α-particles and of α-recoil nuclei. We have observed in a first step, direct irradiation effects (change of volume and refractive index, chemical modification) by means of optical microscopy, microtopographical analysis (surface profilometer) and R.B.S. and X.P.S. In a second step, corrosion tests were performed in static conditions to observe a possible indirect effect (increase of the hydratation rate, actinide release) on the later evolution as for example, a marked increase in solubility (calcium carbonate case)

  20. Structural and decay properties of Z = 132, 138 superheavy nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rather, Asloob A.; Ikram, M.; Usmani, A.A. [Aligarh Muslim University, Department of Physics, Aligarh (India); Kumar, Bharat; Patra, S.K. [Institute of Physics, Bhubaneswar (India); Homi Bhabha National Institute, Mumbai, Anushakti Nagar (India)

    2016-12-15

    In this paper, we analyze the structural properties of Z = 132 and Z = 138 superheavy nuclei within the ambit of axially deformed relativistic mean-field framework with NL3* parametrization and calculate the total binding energies, radii, quadrupole deformation parameter, separation energies, density distributions. We also investigate the phenomenon of shape coexistence by performing the calculations for prolate, oblate and spherical configurations. For clear presentation of nucleon distributions, the two-dimensional contour representation of individual nucleon density and total matter density has been made. Further, a competition between possible decay modes such as α-decay, β-decay and spontaneous fission of the isotopic chain of superheavy nuclei with Z = 132 within the range 312 ≤ A ≤ 392 and 318 ≤ A ≤ 398 for Z = 138 is systematically analyzed within self-consistent relativistic mean-field model. From our analysis, we inferred that the α-decay and spontaneous fission are the principal modes of decay in majority of the isotopes of superheavy nuclei under investigation apart from β-decay as dominant mode of decay in {sup 318-322}138 isotopes. (orig.)

  1. Disappearance of neutron magic numbers and deformation coexistence

    International Nuclear Information System (INIS)

    Kimura, Masaaki

    2014-01-01

    The disappearance of N=8, 20 and 28 magic numbers in the neutron excess nuclei is a representative example of the special features of the unstable nuclei. In this lecture of summer school, the problems of the magic number disappearance are presented. And the appearance of the deformation coexistence and the anomalous cluster structure come into the problem with them. At the begging the Antisymmetrized Molecular Dynamic (AMD) framework is explained with finite range two body central force and Gorgny DIS force composed of the zero range spin-orbit force and saturability. Island of inversion is explained in the nuclear chart shown in the figure and energy curves of the nuclei near 32 Mg and the excitation level schemes of 32 Mg are shown in the serial figures. As one of the extreme example of the nuclear structure the deformation of 19 F is picked up. The level schemes and structures of 21 F are shown as well. The molecule-like structure in the island of inversion is clear. The rotational band energy of fluorine isotopes are shown up to 29 F. As a new deformation area, disappearance of N=28 magic number is in the spotlight recently. In this case it is characteristic properties that the parities of the orbits to form the gap must be the same but the angular momenta should be different by 2. According to the AMD research, it is shown that deformations of prolate, three-axis asymmetric and oblate characters coexist in the very low excitation energy region accompanying the disappearance of N=28 gap. The concept of magic numbers has been very fundamental in nuclear physics since the success of shell model. At present its disappearance in the unstable nuclei is one of the most challenging problems in the understanding of the nuclear many body problems. (S. Funahashi)

  2. Chaos in nuclei: Theory and experiment

    Science.gov (United States)

    Muñoz, L.; Molina, R. A.; Gómez, J. M. G.

    2018-05-01

    During the last three decades the quest for chaos in nuclei has been quite intensive, both with theoretical calculations using nuclear models and with detailed analyses of experimental data. In this paper we outline the concept and characteristics of quantum chaos in two different approaches, the random matrix theory fluctuations and the time series fluctuations. Then we discuss the theoretical and experimental evidence of chaos in nuclei. Theoretical calculations, especially shell-model calculations, have shown a strongly chaotic behavior of bound states in regions of high level density. The analysis of experimental data has shown a strongly chaotic behavior of nuclear resonances just above the one-nucleon emission threshold. For bound states, combining experimental data of a large number of nuclei, a tendency towards chaotic motion is observed in spherical nuclei, while deformed nuclei exhibit a more regular behavior associated to the collective motion. On the other hand, it had never been possible to observe chaos in the experimental bound energy levels of any single nucleus. However, the complete experimental spectrum of the first 151 states up to excitation energies of 6.20 MeV in the 208Pb nucleus have been recently identified and the analysis of its spectral fluctuations clearly shows the existence of chaotic motion.

  3. Moessbauer effect studies with actinides

    International Nuclear Information System (INIS)

    Stone, J.A.

    1966-01-01

    Moessbauer resonance studies in the actinide elements offer a new technique for measuring solid-state properties to a region of the periodic chart where such information is relatively sparse. It is well known that the actinides, the elements with atomic numbers from 90 to 103, form a transition series due to filling of the 5f electron shell, analogous to the rare-earth series in which the 4f shell is filled. Like the rare earths, the actinide metals and compounds are expected to exhibit a variety of interesting magnetic properties, but, unlike the rare earths, there have been few studies of the magnetic behaviour of actinides, and these properties are largely unknown. The chemical properties of the actinides have been studied somewhat more extensively, and, in contrast to the rare earths, form a multiplicity of stable valence states, especially in the lighter members of the series. It is just these properties, magnetic and chemical, for which the Moessbauer effect is a valuable probe, sensitive to the magnetic and electric environment of an atom. The rare-earth series has been a particularly fruitful region in terms of the number of elements which have been shown to exhibit the Moessbauer effect, and for this reason the exploitation of the Moessbauer effect to yield new solid-state and chemical information on the rare earths is a highly active field of research today. There is every reason to believe that the actinides can be similarly studied by the Moessbauer effect. 43 refs, 6 figs, 4 tabs

  4. Evaluation of actinide partitioning and transmutation

    International Nuclear Information System (INIS)

    1982-01-01

    After a few centuries of radioactive decay the long-lived actinides, the elements of atomic numbers 89-103, may constitute the main potential radiological health hazard in nuclear wastes. This is because all but a very few fission products (principally technetium-99 and iodine-129) have by then undergone radioactive decay to insignificant levels, leaving the actinides as the principal radionuclides remaining. It was therefore at first sight an attractive concept to recycle the actinides to nuclear reactors, so as to eliminate them by nuclear fission. Thus, investigations of the feasibility and potential benefits and hazards of the concept of 'actinide partitioning and transmutation' were started in numerous countries in the mid-1970s. This final report summarizes the results and conclusions of technical studies performed in connection with a four-year IAEA Co-ordinated Research Programme, started in 1976, on the ''Environmental Evaluation and Hazard Assessment of the Separation of Actinides from Nuclear Wastes followed by either Transmutation or Separate Disposal''. Although many related studies are still continuing, e.g. on waste disposal, long-term safety assessments, and waste actinide management (particularly for low and intermediate-level wastes), some firm conclusions on the overall concept were drawn by the programme participants, which are reflected in this report

  5. Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS

    International Nuclear Information System (INIS)

    Perkasa, Y. S.; Waris, A.; Kurniadi, R.; Su'ud, Z.

    2014-01-01

    Comparative studies of actinide and sub-actinide fission cross section calculation from MCNP6 and TALYS have been conducted. In this work, fission cross section resulted from MCNP6 prediction will be compared with result from TALYS calculation. MCNP6 with its event generator CEM03.03 and LAQGSM03.03 have been validated and verified for several intermediate and heavy nuclides fission reaction data and also has a good agreement with experimental data for fission reaction that induced by photons, pions, and nucleons at energy from several ten of MeV to about 1 TeV. The calculation that induced within TALYS will be focused mainly to several hundred MeV for actinide and sub-actinide nuclides and will be compared with MCNP6 code and several experimental data from other evaluator

  6. Studies of nuclei using radioactive beams

    International Nuclear Information System (INIS)

    Piercey, R.B.

    1989-07-01

    The 12 month period from May 1988 to July 1989 represents the first full year of our 18 month pilot program in nuclear structure research. In this period, research was initiated to develop a capability for radioactive secondary beams at Argonne National Laboratory using the Atlas and the new Fragment Mass Analyzer (FMA), which is currently under construction. Two major new detector facilities are currently in the final stages of design and testing. The Large-Area, Scintillator Telescope (LAST) detector is fully operational and will be shipped to Argonne National Laboratory in August for fit-tests and in-beam calibrations. The first segments of a new sixteen-segment neutron multiplicity detector have been built and tested. The remaining segments are currently being constructed. Research was continued in the areas of (1) Coulomb excitation studies of rare earth and actinide nuclei; (2) In-beam, gamma-ray spectroscopy of nuclei in the mass 100 region, and (3) Advanced detector design. Several journal articles and abstracts were published or submitted for publication in the reporting period, and others are currently in preparation. Three graduate students participated in the program, one from the University of Florida and two from the Royal Institute of Technology, Stockholm, Sweden

  7. Nuclear structure investigations on spherical nuclei

    International Nuclear Information System (INIS)

    Heisenberg, J.; Calarco, J.; Dawson, J.; Hersman, F.W.

    1989-09-01

    This report discusses the following topics: electron scattering studies on spherical nuclei; electron scattering from collective states in deformed nuclei; proton and pion scattering studies; 12 C(e,e'p) and 16 O(e,e'p); 12 C(e,e'α) and 16 O(e,e'α); studies at high q at Bates; measurements with rvec e at Bates; 12 C(γ,p); future directions in giant resonance studies; proton knockout from 16 O; quasielastic studies at Bates; triple coincidence studies of nuclear correlations; contributions to (e,e'2p) at KIKHEF; contributions to instrumentation at CEBAF; instrumentation development at UNH; the Bates large acceptance spectrometer toroid; shell model and core polarization calculations; and the relativistic nuclear model

  8. Actinide nanoparticle research

    International Nuclear Information System (INIS)

    Kalmykov, Stepan N.; Denecke, Melissa A.

    2011-01-01

    This is the first book to cover actinide nano research. It is of interest both for fundamental research into the chemistry and physics of f-block elements as well as for applied researchers such as those studying the long-term safety of nuclear waste disposal and developing remediation strategies. The authors cover important issues of the formation of actinide nano-particles, their properties and structure, environmental behavior of colloids and nanoparticles related to the safe disposal of nuclear wastes, modeling and advanced methods of characterization at the nano-scale. (orig.)

  9. The core-quasiparticle model for odd-odd nuclei and applications to candidates for gamma-ray lasers

    International Nuclear Information System (INIS)

    Strottman, D.D.

    1988-01-01

    A reliable estimate of the properties of isomers that may be viable candidates for a gamma-ray laser requires the use of the most accurate save functions possible. The majority of models that have been used to estimate the properties of isomers are applicable to only selected regions of the nuclear mass table. In particular, the Bohr-Mottelson model of odd-A and odd-odd nuclei will fail if the even-even core is not strongly deformed or if the deformations are changing strongly as a function of mass. This paper reports how the problem is overcome in a new core- quasiparticle model for odd-odd nuclei. The model introduces the pairing interaction ab initio; the odd-A states are mixtures of particle and hole states. The core may be soft towards deformation or axial asymmetry and may change rapidly as a function of mass. Thus, the model is ideally suited for application to the region of transitional nuclei such as the Te, La, and Os regions

  10. Interplay of single particle and collective excitations in antimony nuclei

    International Nuclear Information System (INIS)

    Stan-Sion, C.

    1987-01-01

    The antimony nuclei are considered classical examples for coexisting spherical and well-deformed structures. The electromagnetic moment measurements presented in this paper provide direct evidence for shape coexistence. 8 refs., 3 figs. (M.F.W.)

  11. Burning minor actinides in a HTR energy spectrum

    International Nuclear Information System (INIS)

    Pohl, Christoph; Rütten, H. Jochem

    2012-01-01

    Highlights: ► Burn-up analysis for varying plutonium/minor actinide fuel compositions. ► The influence of varying heavy metal fuel element loads is investigated. ► Significant burn-up via radiative capture and subsequently fission is observed. ► Difference observed between fuel element burn-up and total actinide burning rate. - Abstract: The generation of nuclear energy by means of the existing nuclear reactor systems is based mainly on the fission of U-235. But this comes along with the capture of neutrons by the U-238 faction and results in a build-up of plutonium isotopes and minor actinides as neptunium, americium and curium. These actinides are dominant for the long time assessment of the radiological risk of a final disposal therefore a minimization of the long living isotopes is aspired. Burning the actinides in a high temperature helium cooled graphite moderated reactor (HTR) is one of these options. The use of plutonium isotopes to sustain the criticality of the system is intended to avoid on the one hand highly enriched uranium because of international regulations and on the other hand low enriched uranium because of the build up of new actinides from neutron capture in the U-238 fraction. Because initial minor actinide isotopes are typically not fissionable by thermal neutrons the idea is to fission instead the intermediate isotopes generated by the first neutron capture. This paper comprises calculations for plutonium/minor actinides/thorium fuel compositions and their correlated final burn-up for a generic pebble bed HTR based on the reference design of the 400 MW PBMR. In particular the cross sections and the neutron balance of the different minor actinide isotopes in the higher thermal energy spectrum of a HTR will be discussed. For a fuel mixture of plutonium and minor actinides a significant burn-up of these actinides up to 20% can be achieved but at the expense of a higher residual fraction of plutonium in the burned fuel. Combining

  12. Is nucleon deformed?

    International Nuclear Information System (INIS)

    Abbas, Afsar

    1992-01-01

    The surprising answer to this question Is nucleon deformed? is : Yes. The evidence comes from a study of the quark model of the single nucleon and when it is found in a nucleus. It turns out that many of the long standing problems of the Naive Quark Model are taken care of if the nucleon is assumed to be deformed. Only one value of the parameter P D ∼1/4 (which specifies deformation) fits g A (the axial vector coupling constant) for all the semileptonic decay of baryons, the F/D ratio, the pion-nucleon-delta coupling constant fsub(πNΔ), the double delta coupling constant 1 fsub(πΔΔ), the Ml transition moment μΔN and g 1 p the spin structure function of proton 2 . All this gives strong hint that both neutron and proton are deformed. It is important to look for further signatures of this deformation. When this deformed nucleon finds itself in a nuclear medium its deformation decreases. So much that in a heavy nucleus the nucleons are actually spherical. We look into the Gamow-Teller strengths, magnetic moments and magnetic transition strengths in nuclei to study this property. (author). 15 refs

  13. Actinides reduction by recycling in a thermal reactor

    International Nuclear Information System (INIS)

    Ramirez S, J. R.; Martinez C, E.; Balboa L, H.

    2014-10-01

    This work is directed towards the evaluation of an advanced nuclear fuel cycle in which radioactive actinides could be recycled to remove most of the radioactive material; firstly a production reference of actinides in standard nuclear fuel of uranium at the end of its burning in a BWR reactor is established, after a fuel containing plutonium is modeled to also calculate the actinides production in MOX fuel type. Also it proposes a design of fuel rod containing 6% of actinides in a matrix of uranium from the tails of enrichment, then four standard uranium fuel rods are replaced by actinides rods to evaluate the production and transmutation thereof, the same procedure was performed in the fuel type MOX and the end actinide reduction in the fuel was evaluated. (Author)

  14. Fission properties of odd-A nuclei in a mean field framework

    International Nuclear Information System (INIS)

    Perez-Martin, S.; Robledo, L.M.

    2009-01-01

    Theoretical tools at the level of the mean field approximation are used to explore the spontaneous fission properties of odd-A nuclei. The tools rely on the equal (or uniform) filling approximation to deal with the unpaired nucleon in a time-reversal preserving manner. Realistic calculations have been carried out with the finite range Gogny force D1S, which was tailored to reasonably reproduce fission properties in the actinides. The preliminary results obtained for the nucleus 235 U are analyzed and the physical origin for the hindrance factor for the spontaneous fission half life is discussed. (author)

  15. Exotic Nuclei and Yukawa's Forces

    International Nuclear Information System (INIS)

    Otsuka, Takaharu; Suzuki, Toshio; Utsuno, Yutaka

    2008-01-01

    In this plenary talk, we will overview the evolution of the shell structure in stable and exotic nuclei as a new paradigm of nuclear structure physics. This shell evolution is primarily due to the tensor force. The robust mechanism and some examples will be presented. Such examples include the disappearance of existing magic numbers and the appearance of new ones. The nuclear magic numbers have been believed, since Mayer and Jensen, to be constants as 2, 8, 20, 28, 50, ... This turned out to be changed, once we entered the regime of exotic nuclei. This shell evolution develops at many places on the nuclear chart in various forms. For example, superheavy magic numbers may be altered. Thus, we are led to a new paradigm as to how and where the nuclear shell evolves, and what consequences arise. The evolution of the shell affects weak process transitions, and plays a crucial role in deformation. The π and ρ mesons generate tensor forces, and are the fundamental elements of such intriguing phenomena. Thus, physics of exotic nuclei arises as a manifestation of Yukawa's forces

  16. Low-lying states of 184W and 184Os nuclei

    International Nuclear Information System (INIS)

    Sharrad, F.I.; Abdullah, Hewa Y.; Al-Dahan, N.; Umran, N.M.; Okhunov, A.A.; Abu Kassim, H.

    2013-01-01

    The energy levels, transition energy, B(E2) values, intrinsic quadrupole moment Q 0 and potential energy surface for even-even 184 W and 184 Os nuclei were calculated using IBM-1. The predicted energy levels, transition energy, B(E2) values and intrinsic quadrupole moment Q 0 results are reasonably consistent with the experimental data. A contour plot of the potential energy surfaces shows that two interesting nuclei are deformed and have rotational characters. (authors)

  17. PRODUCTION OF ACTINIDE METAL

    Science.gov (United States)

    Knighton, J.B.

    1963-11-01

    A process of reducing actinide oxide to the metal with magnesium-zinc alloy in a flux of 5 mole% of magnesium fluoride and 95 mole% of magnesium chloride plus lithium, sodium, potassium, calcium, strontium, or barium chloride is presented. The flux contains at least 14 mole% of magnesium cation at 600-- 900 deg C in air. The formed magnesium-zinc-actinide alloy is separated from the magnesium-oxide-containing flux. (AEC)

  18. On peculiarities of the cascade γ decay of heavy nuclei

    International Nuclear Information System (INIS)

    Boneva, S.T.; Khitrov, V.A.; Popov, Yu.P.; Sukhovoj, A.M.; Vasil'eva, E.V.; Yazvitskij, Yu.S.

    1987-01-01

    Comparison of measured and calculated by statistical theory sums of two-quanta cascade intensities in compound-nuclei 163 ≤ A ≤ 183 points to the dependence of cascade intensity on the structure of initial and intermediate levels. The dependence of two-quanta cascade intensity sum on reduced neutron widths of compound states of even-even nuclei-targets of rare earth regions is detected. In 175 Yb and 179 Hf nuclei a considerable increase in the intensity of two-quanta cascades at the energy of their intermediate level in the range of the calculated position of one-quasiparticle states of the Saxon-Woods deformed potential is observed

  19. Potential carcinogenic effects of actinides in the environment

    International Nuclear Information System (INIS)

    Harley, N.H.; Pasternack, B.S.

    1979-01-01

    Inhalation of alpha emitting actinides delivers a dose to critical cancer sites in the human body. These sites are the bronchial epithelium and cells near bone surfaces. Inhalation of the naturally occurring actinides uranium and thorium in resuspended soil in the air results in a continuous exposure for the global population of about 0.1 fCi/m 3 for each of these actinides. The highest dose is from the natural actinide 230 Th. Over 50 yr, the dose to bronchial epithelium is 0.05 mrad and to bone surfaces 0.4 mrad. In the case of accidental environmental contamination (e.g. near a nuclear fuel reprocessing plant) the man-made actinides plutonium, americium and curium could deliver about the same alpha dose to these sites if the soil is contaminated to the same level as the natural actinides (approximately 1 pCi/g). Two nuclear accidents have already produced contamination of about this level. Exposures in this case, however, are to small local populations compared with global exposure for the natural actinides. Significant enhancement of the natural radioactive actinide pollution by combustion of all types of fossil fuel is suspected but not enough data are available to estimate total population doses. (author)

  20. End point control of an actinide precipitation reactor

    International Nuclear Information System (INIS)

    Muske, K.R.

    1997-01-01

    The actinide precipitation reactors in the nuclear materials processing facility at Los Alamos National Laboratory are used to remove actinides and other heavy metals from the effluent streams generated during the purification of plutonium. These effluent streams consist of hydrochloric acid solutions, ranging from one to five molar in concentration, in which actinides and other metals are dissolved. The actinides present are plutonium and americium. Typical actinide loadings range from one to five grams per liter. The most prevalent heavy metals are iron, chromium, and nickel that are due to stainless steel. Removal of these metals from solution is accomplished by hydroxide precipitation during the neutralization of the effluent. An end point control algorithm for the semi-batch actinide precipitation reactors at Los Alamos National Laboratory is described. The algorithm is based on an equilibrium solubility model of the chemical species in solution. This model is used to predict the amount of base hydroxide necessary to reach the end point of the actinide precipitation reaction. The model parameters are updated by on-line pH measurements

  1. On the suitability of lanthanides as actinide analogs

    International Nuclear Information System (INIS)

    Raymond, Kenneth; Szigethy, Geza

    2008-01-01

    With the current level of actinide materials used in civilian power generation and the need for safe and efficient methods for the chemical separation of these species from their daughter products and for long-term storage requirements, a detailed understanding of actinide chemistry is of great importance. Due to the unique bonding properties of the f-elements, the lanthanides are commonly used as structural and chemical models for the actinides, but differences in the bonding between these 4f and 5f elements has become a question of immediate applicability to separations technology. This brief overview of actinide coordination chemistry in the Raymond group at UC Berkeley/LBNL examines the validity of using lanthanide analogs as structural models for the actinides, with particular attention paid to single crystal X-ray diffraction structures. Although lanthanides are commonly accepted as reasonable analogs for the actinides, these comparisons suggest the careful study of actinide materials independent of their lanthanide analogs to be of utmost importance to present and future efforts in nuclear industries. (authors)

  2. Giant resonances in the deformed continuum

    International Nuclear Information System (INIS)

    Nakatsukasa, T.; Yabana, K.

    2004-01-01

    Giant resonances in the continuum for deformed nuclei are studied with the time-dependent Hartree-Fock (TDHF) theory in real time and real space. The continuum effect is effectively taken into account by introducing a complex Absorbing Boundary Condition (ABC). (orig.)

  3. A systematic study of even-even nuclei in the nuclear chart by the relativistic mean field theory

    Energy Technology Data Exchange (ETDEWEB)

    Sumiyoshi, K.; Hirata, D.; Tanihata, I.; Sugahara, Y.; Toki, H. [Institute of Physical and Chemical Research, Wako, Saitama (Japan)

    1997-03-01

    We study systematically the properties of nuclei in the whole mass range up to the drip lines by the relativistic mean field (RMF) theory with deformations as a microscopic framework to provide the data of nuclear structure in the nuclear chart. The RMF theory is a phenomenological many-body framework, in which the self-consistent equations for nucleons and mesons are solved with arbitrary deformation, and has a potential ability to provide all the essential information of nuclear structure such as masses, radii and deformations together with single particle states and wave functions from the effective lagrangian containing nuclear interaction. As a first step toward the whole project, we study the ground state properties of even-even nuclei ranging from Z=8 to Z=120 up to the proton and neutron drip lines in the RMF theory. We adopt the parameter set TMA, which has been determined by the experimental masses and charge radii in a wide mass range, for the effective lagrangian of the RMF theory. We take into account the axially symmetric deformation using the constrained method on the quadrupole moment. We provide the properties of all even-even nuclei with all the possible ground state deformations extracted from the deformation energy curves by the constrained calculations. By studying the calculated ground state properties systematically, we aim to explore the general trend of masses, radii and deformations in the whole region of the nuclear chart. We discuss the agreement with experimental data and the predictions such as magicness and triaxial deformations beyond the experimental frontier. (author)

  4. Review of actinide decorporation with chelating agents

    Energy Technology Data Exchange (ETDEWEB)

    Ansoborlo, E. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DRCP/CETAMA), 30 - Marcoule (France); Amekraz, B.; Moulin, Ch. [CEA Saclay, Dept. de Physico-Chimie (DEN/DPC/SECR), 91 - Gif sur Yvette (France); Moulin, V. [CEA Saclay, Dir. du Developpement et de l' Innovation Nucleares (DEN/DDIN/MR), 91 - Gif Sur Yvette (France); Taran, F. [CEA Saclay (DSV/DBJC/SMMCB), 91 - Gif-sur-Yvette (France); Bailly, Th.; Burgada, R. [Centre National de la Recherche Scientifique (CNRS/LCSB/UMR 7033), 93 - Bobigny (France); Henge-Napoli, M.H. [CEA Valrho, Site de Marcoule (INSTN), 30 (France); Jeanson, A.; Den Auwer, Ch.; Bonin, L.; Moisy, Ph. [CEA Valrho, Dir. de l' Energie Nucleaire (DEN/DRCP/SCPS), 30 - Marcoule (France)

    2007-10-15

    In case of accidental release of radionuclides in a nuclear facility or in the environment, internal contamination (inhalation, ingestion or wound) with actinides represents a severe health risk to human beings. It is therefore important to provide effective chelation therapy or decorporation to reduce acute radiation damage, chemical toxicity, and late radiation effects. Speciation governs bioavailability and toxicity of elements and it is a prerequisite tool for the design and success of new ligands or chelating agents. The purpose of this review is to present the state-of-the-art of actinide decorporation within biological media, to recall briefly actinide metabolism, to list the basic constraints of actinide-ligand for development, to describe main tools developed and used for decorporation studies, to review mainly the chelating agents tested for actinides, and finally to conclude on the future trends in this field. (authors)

  5. Actinide-Aluminate Speciation in Alkaline Radioactive Waste

    International Nuclear Information System (INIS)

    Clark, David L.; Fedosseev, Alexander M.

    2001-01-01

    Investigation of behavior of actinides in alkaline media containing AL(III) showed that no aluminate complexes of actinides in oxidation states (IIII-VIII) were formed in alkaline solutions. At alkaline precipitation IPH (10-14) of actinides in presence of AL(III) formation of aluminate compounds is not observed. However, in precipitates contained actinides (IIV)<(VI), and to a lesser degree actinides (III), some interference of components takes place that is reflected in change of solid phase properties in comparison with pure components or their mechanical mixture. The interference decreases with rise of precipitation PH and at PH 14 is exhibited very feebly. In the case of NP(VII) the individual compound with AL(III) is obtained, however it is not aluminate of neptunium(VII), but neptunate of aluminium(III) similar to neptunates of other metals obtained earlier

  6. Transmutation of waste actinides in light water reactors

    International Nuclear Information System (INIS)

    Gorrell, T.C.

    1979-04-01

    Actinide recycle and transmutation calculations were made for three irradiation options of a light water reactor (LWR). The cases considered were: all actinides recycled in regular uranium fuel assemblies; transuranic actinides recycled in separate MOX assemblies with 235 U enrichment of uranium; and transuranic actinides recycled in separate MOX assemblies with plutonium enrichment of natural uranium. When all actinides were recycled in a uniform lattice, the transuranic inventory after ten recycles was 38% of the inventory accumulated without recycle. When the transuranics from two regular uranium assemblies were combined with those recycled from a MOX assembly, the transuranic inventory was reduced 50% after five recycles

  7. Chemical compatibility of HLW borosilicate glasses with actinides

    International Nuclear Information System (INIS)

    Walker, C.T.; Scheffler, K.; Riege, U.

    1978-11-01

    During liquid storage of HLLW the formation of actinide enriched sludges is being expected. Also during melting of HLW glasses an increase of top-to-bottom actinide concentrations can take place. Both effects have been studied. Besides, the vitrification of plutonium enriched wastes from Pu fuel element fabrication plants has been investigated with respect to an isolated vitrification process or a combined one with the HLLW. It is shown that the solidification of actinides from HLLW and actinide waste concentrates will set no principal problems. The leaching of actinides has been measured in salt brine at 23 0 C and 115 0 C. (orig.) [de

  8. Superheavy nuclei – cold synthesis and structure

    Indian Academy of Sciences (India)

    120 and Ж = 172 or 184, for superheavy nuclei. This result is discussed in ... 1980 [7] on the basis of the QMFT, once again prior to its observation in 1984. Thus, cold ... On the other hand, based on a rather complete deformed relativistic mean field (DRMF) calculation, using the NL1 parameter set, we [16] predicted. = 120.

  9. Low-spin identical bands in odd-A nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Garrett, J.D.; Winchell, D.F.; Smith, A.

    1992-01-01

    A comprehensive study of odd-A rotational bands in normally-deformed rare-earth nuclei indicates that a large number of seniority-one configurations (30% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models, based on the traditional picture of nuclear pair correlation in vogue for more than three decades, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority

  10. Single Particle energy levels in ODD-A Nuclei

    International Nuclear Information System (INIS)

    Lasijo, R.S.

    1997-01-01

    Singe particle energies for atomic nuclei with odd-A number of nucleons, i.e. nuclei possessing odd number of protons or odd number of neutrons, were calculated based on Nilsson's theory, and then the diagrams were made. the energy diagram is in the from of plot of energies as function of deformations, entities identifying the deviations from the spherical shape. The energy calculations were done using FORTRAN 77 language of PC (Personal Computer) version with Microsoft Fortran Power Station compiler, which was then combined with WORD version 6.0 and EXCEL version 5.0 of WINDOWS WORKGROUP to make the plot

  11. The neutron-proton pairing and the moments of inertia of the rare earth even-even nuclei

    International Nuclear Information System (INIS)

    Calik, A. E.; Deniz, C.; Gerceklioglu, M.

    2009-01-01

    In this study, the possible effect of the neutron-proton pairing interaction in the heavy nuclei has been investigated in the framework of the BCS model by making a simple approximation. This effect has been searched realistically by calculating the moments of inertia of deformed even-even nuclei. Calculations show that the moments of inertia of rare earth nuclei changed dramatically and approached the experimental values.

  12. Status and perspectives of the M1 scissors mode in nuclei

    International Nuclear Information System (INIS)

    Richter, A.

    1988-07-01

    The present status of the M1 scissors mode which is now known in deformed nuclei ranging from 46 Ti to 238 U is summarized. Particular emphasis is placed on a discussion of the structure, the excitation energy, the transition strength, the form factor and the spin to orbit ratio in the strength of the mode. Finally it is demonstrated how strongly this mode contributes to the magnetic dipole polarizability of nuclei. (orig.)

  13. Advances in computational actinide chemistry in China

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dongqi; Wu, Jingyi; Chai, Zhifang [Chinese Academy of Sciences, Beijing (China). Multidisciplinary Initiative Center; Su, Jing [Chinese Academy of Sciences, Shanghai (China). Div. of Nuclear Materials Science and Engineering; Li, Jun [Tsinghua Univ., Beijing (China). Dept. of Chemistry and Laboratory of Organic Optoelectronics and Molecular Engineering

    2014-04-01

    The advances in computational actinide chemistry made in China are reviewed. Several areas relevant to chemistry of actinides in gas, liquid, and solid phases have been explored. However, we limit the scope to selected contributions in the chemistry of molecular actinide systems in gas and liquid phases. These studies may be classified into two categories: treatment of relativistic effects, which cover the development of two- and four-component Hamiltonians and the optimization of relativistic pseudopotentials, and the applications of theoretical methods in actinide chemistry. The applications include (1) the electronic structures of actinocene, noble gas complexes, An-C multiple bonding compounds, uranyl and its isoelectronic species, fluorides and oxides, molecular systems with metal-metal bonding in their isolated forms (U{sub 2}, Pu{sub 2}) and in fullerene (U{sub 2} rate at C{sub 60}), and the excited states of actinide complexes; (2) chemical reactions, including oxidation, hydrolysis of UF{sub 6}, ligand exchange, reactivities of thorium oxo and sulfido metallocenes, CO{sub 2}/CS{sub 2} functionalization promoted by trivalent uranium complex; and (3) migration of actinides in the environment. A future outlook is discussed. (orig.)

  14. Collective 0+, 1+ and 2+ excitations in rotating nuclei

    International Nuclear Information System (INIS)

    Balbutsev, E.B.; Piperova, J.

    1988-01-01

    The energies and B(Eγ) factors of the isoscalar and isovector 0 + and 2 + resonances are calculated with Skyrme interaction. A satisfactory agreement with experimental data is obtained. It is shown that in rotating nuclei the 2 + excitations split into five branches and also 5 low-lying excitations appear. Two of these low-lying modes are angular resonances and the theory reproduces their energies and B(M1) factors. The experimentally observed splitting of giant monopole resonance in deformed nuclei is confirmed. 34 refs.; 10 figs.; 1 tab

  15. Transmutation of minor actinide using thorium fueled BWR core

    International Nuclear Information System (INIS)

    Susilo, Jati

    2002-01-01

    One of the methods to conduct transmutation of minor actinide is the use of BWR with thorium fuel. Thorium fuel has a specific behaviour of producing a little secondary minor actinides. Transmutation of minor actinide is done by loading it in the BWR with thorium fuel through two methods, namely close recycle and accumulation recycle. The calculation of minor actinide composition produced, weigh of minor actinide transmuted, and percentage of reminder transmutation was carried SRAC. The calculations were done to equivalent cell modeling from one fuel rod of BWR. The results show that minor actinide transmutation is more effective using thorium fuel than uranium fuel, through both close recycle and accumulation recycle. Minor actinide transmutation weight show that the same value for those recycle for 5th recycle. And most of all minor actinide produced from 5 unit BWR uranium fuel can transmuted in the 6 t h of close recycle. And, the minimal value of excess reactivity of the core is 12,15 % Δk/k, that is possible value for core operation

  16. Actinide recovery from waste and low-grade sources

    International Nuclear Information System (INIS)

    Navratil, J.D.; Schulz, W.W.

    1982-01-01

    Actinide and nuclear fuel cycle operations generate a variety of process waste streams. New methods are needed to remove and recover actinides. More interest is also being expressed in recovering uranium from oceans, phosphoric acid, and other low grade sources. To meet the need for an up-to-date status report in the area of actinide recovery from waste and low grade sources, these papers were brought together. The papers provide an authoritative, in-depth coverage of an important area of nuclear and industrial and engineering chemistry which cover the following topics: uranium recovery from oceans and phosphoric acid; recovery of actinides from solids and liquid wastes; plutonium scrap recovery technology; and other new developments in actinide recovery processes

  17. Transmutation of LWR waste actinides in thermal reactors

    International Nuclear Information System (INIS)

    Gorrell, T.C.

    1979-01-01

    Recycle of actinides to a reactor for transmutation to fission products is being considered as a possible means of waste disposal. Actinide transmutation calculations were made for two irradiation options in a thermal (LWR) reactor. The cases considered were: all actinides recycled in regular uranium fuel assemblies, and transuranic actinides recycled in separate mixed oxide (MOX) assemblies. When all actinides were recycled in a uranium lattice, a reduction of 62% in the transuranic inventory was achieved after 10 recycles, compared to the inventory accumulated without recycle. When the transuranics from 2 regular uranium assemblies were combined with those recycled from a MOX assembly, the transuranic inventory was reduced 50% after 5 recycles

  18. Actinide science. Fundamental and environmental aspects

    International Nuclear Information System (INIS)

    Choppin, Gregory R.

    2005-01-01

    Nuclear test explosions and reactor wastes have deposited an estimated 16x10 15 Bq of plutonium into the world's aquatic systems. However, plutonium concentration in open ocean waters is orders of magnitude less, indicating that most of the plutonium is quite insolvable in marine waters and has been incorporated into sediments. Actinide ions in waters often are not in a state of thermodynamic equilibrium and their solubility and migration behavior is related to the form in which the nuclides were introduced into the aquatic system. Actinide solubility depends on such factors as pH(hydrolysis), E H (oxidation state), reaction with complexants (e.g. carbonate, phosphate, humic acid, etc.) sorption to surfaces of minerals and/or colloids, etc., in the water. The most significant of these variables is the oxidation sate of the metal ion. The simultaneous presence of more than one oxidation state for some actinides (e.g. plutonium) in a solution complicates actinide environmental behavior. Both Np(V)O 2 + and Pu(V)O 2 + , the most significant soluble states in natural oxic waters are relatively noncomplexing and resistant to hydrolysis and subsequent precipitation but can undergo reduction to the Pu(IV) oxidation state with its different elemental behavior. The solubility of NpO 2 + can be as high as 10 -4 M while that of PuO 2 + is more limited by reduction to the insoluble tetravalent species, Pu(OH) 4 , (pK SP - 56). The net solubility of hexavalent UO 2 2+ in sea water is also limited by hydrolysis; however, it has a relatively high concentration due to formation of carbonate complexes. The insoluble trivalent americium hydroxocarbonate, Am(CO) 3 (OH), is the limiting species for the solubility of Am(III) in sea water. Thorium is found exclusively as the tetravalent species and its solubility is limited by the formation of quite insoluble Th(OH) 4 . The chemistry of actinide ions in the environment is reviewed to show the spectrum of reactions that can occur in

  19. Solubility of actinides and surrogates in nuclear glasses

    International Nuclear Information System (INIS)

    Lopez, Ch.

    2003-01-01

    The nuclear wastes are currently incorporated in borosilicate glass matrices. The resulting glass must be perfectly homogeneous. The work discussed here is a study of actinide (thorium and plutonium) solubility in borosilicate glass, undertaken to assess the extent of actinide solubility in the glass and to understand the mechanisms controlling actinide solubilization. Glass specimens containing; actinide surrogates were used to prepare and optimize the fabrication of radioactive glass samples. These preliminary studies revealed that actinide Surrogates solubility in the glass was enhanced by controlling the processing temperature, the dissolution kinetic of the surrogate precursors, the glass composition and the oxidizing versus reducing conditions. The actinide solubility was investigated in the borosilicate glass. The evolution of thorium solubility in borosilicate glass was determined for temperatures ranging from 1200 deg C to 1400 deg C.Borosilicate glass specimens containing plutonium were fabricated. The experimental result showed that the plutonium solubility limit ranged from 1 to 2.5 wt% PuO 2 at 1200 deg C. A structural approach based on the determination of the local structure around actinides and their surrogates by EXAFS spectroscopy was used to determine their structural role in the glass and the nature of their bonding with the vitreous network. This approach revealed a correlation between the length of these bonds and the solubility of the actinides and their surrogates. (author)

  20. Nuclear waste forms for actinides

    Science.gov (United States)

    Ewing, Rodney C.

    1999-01-01

    The disposition of actinides, most recently 239Pu from dismantled nuclear weapons, requires effective containment of waste generated by the nuclear fuel cycle. Because actinides (e.g., 239Pu and 237Np) are long-lived, they have a major impact on risk assessments of geologic repositories. Thus, demonstrable, long-term chemical and mechanical durability are essential properties of waste forms for the immobilization of actinides. Mineralogic and geologic studies provide excellent candidate phases for immobilization and a unique database that cannot be duplicated by a purely materials science approach. The “mineralogic approach” is illustrated by a discussion of zircon as a phase for the immobilization of excess weapons plutonium. PMID:10097054

  1. Programme and Abstracts. 38. Journees des Actinides together with the 7. School on the Physics and Chemistry of the Actinides

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Journees des Actinides (JdA) is a traditional informal actinide forum, including physics, chemistry, and materials research. It regularly brings together experts from fields involved, taking place in a very informal way, emphasizing exchanges and discussions on current issues in actinide science. At the 38{sup th} JdA (10-15 April 2008; Wroclaw, Poland) scientific communications on the following topics on physics and chemistry of the actinides were presented: (a) inorganic and organometallic chemistry; (b) strongly correlated behaviour, superconductivity, quantum criticality; (c) materials science; (d) theory, electronic structure; (e) nuclear fuel cycle, environment.

  2. Programme and Abstracts. 38. Journees des Actinides together with the 7. School on the Physics and Chemistry of the Actinides

    International Nuclear Information System (INIS)

    2008-01-01

    Journees des Actinides (JdA) is a traditional informal actinide forum, including physics, chemistry, and materials research. It regularly brings together experts from fields involved, taking place in a very informal way, emphasizing exchanges and discussions on current issues in actinide science. At the 38 th JdA (10-15 April 2008; Wroclaw, Poland) scientific communications on the following topics on physics and chemistry of the actinides were presented: (a) inorganic and organometallic chemistry; (b) strongly correlated behaviour, superconductivity, quantum criticality; (c) materials science; (d) theory, electronic structure; (e) nuclear fuel cycle, environment

  3. New properties of giant resonances in highly excited nuclei

    International Nuclear Information System (INIS)

    Morsch, H.P.

    1991-01-01

    Studies on the giant dipole resonance in very hot nuclei investigated in heavy ion-induced particle-γ coincidence experiments are reviewed. A signature is found in the γ-decay of excited nuceli which shows direct decay of the giant dipole resonance. This provides a new dimension in giant resonance studies and the possibility to study the dependence of giant resonance energy, width and sum rule strength on excitation energy and rotation of the system. Further, the fact that the giant resonance splits in deformed nuclei provides a unique way to get information on the shape of hot nuclei. First results are obtained on the following questions: (i)What is the nuclear shape at high temperature (T≥2 MeV)? (ii)Is there a phase transition in the nuclear shape at T∼1.7 MeV? (iii)Does motional narrowing exist in hot nuclei? (author). 19 refs., 11 figs

  4. A special type of neutron-proton pairing interaction and the moments of inertia of some deformed even-even nuclei in the rare earth region

    International Nuclear Information System (INIS)

    Meftunoglu, E.; Gerceklioglu, M.; Erbil, H.H.; Kuliev, A.A.

    1998-01-01

    In this work, the effect of a special type of neutron-proton pairing interaction on the moments of inertia of some deformed nuclei in the rare earth region is investigated. First, making a perturbative approximation, we assume that the form of the equations of the BCS theory and usual Bogolyubov transformations are unchanged. Second, we use a phenomenological method for the strength of this neutron-proton pairing interaction introducing a parameter. Calculations show that this interaction is important for the ground-state moments of inertia and that it could be effectual in other nuclear phenomena. (author)

  5. Studies of the shapes of heavy pear-shaped nuclei at ISOLDE

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P. A., E-mail: peter.butler@liverpool.ac.uk [Oliver Lodge Laboratory, University of Liverpool, Liverpool L69 7ZE (United Kingdom)

    2016-07-07

    For certain combinations of protons and neutrons there is a theoretical expectation that the shape of nuclei can assume octupole deformation, which would give rise to reflection asymmetry or a ”pear-shape” in the intrinsic frame, either dynamically (octupole vibrations) or statically (permanent octupole deformation). I will briefly review the historic evidence for reflection asymmetry in nuclei and describe how recent experiments carried out at REX-ISOLDE have constrained nuclear theory and how they contribute to tests of extensions of the Standard Model. I will also discuss future prospects for measuring nuclear shapes from Coulomb Excitation: experiments are being planned that will exploit beams from HIE-ISOLDE that are cooled in the TSR storage ring and injected into a solenoidal spectrometer similar to the HELIOS device developed at the Argonne National Laboratory.

  6. Potential energy surfaces for N = Z, 20Ne-112Ba nuclei

    International Nuclear Information System (INIS)

    Mehta, M.S.; Gupta, Raj K.; Jha, T.K.; Patra, S.K.

    2004-01-01

    We have calculated the potential energy surfaces for N = Z, 20 Ne- 112 Ba nuclei in an axially deformed relativistic mean field approach. A quadratic constraint scheme is applied to determine the complete energy surface for a wide range of the quadrupole deformation. The NL3, NL-RAl and TM1 parameter sets are used. The phenomenon of (multiple) shape coexistence is studied and the calculated ground and excited state binding energies, quadrupole deformation parameters and root mean square (rms) charge radii are compared with the available experimental data and other theoretical predictions. (author)

  7. Actinide Source Term Program, position paper. Revision 1

    International Nuclear Information System (INIS)

    Novak, C.F.; Papenguth, H.W.; Crafts, C.C.; Dhooge, N.J.

    1994-01-01

    The Actinide Source Term represents the quantity of actinides that could be mobilized within WIPP brines and could migrate with the brines away from the disposal room vicinity. This document presents the various proposed methods for estimating this source term, with a particular focus on defining these methods and evaluating the defensibility of the models for mobile actinide concentrations. The conclusions reached in this document are: the 92 PA open-quotes expert panelclose quotes model for mobile actinide concentrations is not defensible; and, although it is extremely conservative, the open-quotes inventory limitsclose quotes model is the only existing defensible model for the actinide source term. The model effort in progress, open-quotes chemical modeling of mobile actinide concentrationsclose quotes, supported by a laboratory effort that is also in progress, is designed to provide a reasonable description of the system and be scientifically realistic and supplant the open-quotes Inventory limitsclose quotes model

  8. Limitations of actinide recycle and waste disposal consequences

    International Nuclear Information System (INIS)

    Baetsle, L.H.; Raedt, C. de

    1994-01-01

    The paper emphasizes the impact of Light Water Reactor - Mixed Oxides introduction on the subsequent actinide management and fate of reprocessed and depleted uranium. The spent fuel from LWR-MOX contains in principle 75% of the initially produced plutonium. This new source term has to be considered together with the minor actinides from the conventional reprocessing. Subsequent LWR-MOX reprocessing in the first step in a very long term Pu + minor actinides management. Recycling of Pu + minor actinides in fast reactors to significantly reduce the Pu and minor actinides inventory (e.g. a factor of 10) is a very slow process which requires the development and operation of a large park of actinide burner reactors during an extended period of time. The overall feasibility of the P and T option will greatly depend on the massive introduction during the next century of fast neutron reactors as a replacement to the present LWR generation of nuclear power plants. (authors). 11 refs., 6 tabs., 2 figs

  9. Relativistic mean field theory for unstable nuclei

    International Nuclear Information System (INIS)

    Toki, Hiroshi

    2000-01-01

    We discuss the properties of unstable nuclei in the framework of the relativistic mean field (RMF) theory. We take the RMF theory as a phenomenological theory with several parameters, whose form is constrained by the successful microscopic theory (RBHF), and whose values are extracted from the experimental values of unstable nuclei. We find the outcome with the newly obtained parameter sets (TM1 and TMA) is promising in comparison with various experimental data. We calculate systematically the ground state properties of even-even nuclei up to the drip lines; about 2000 nuclei. We find that the neutron magic shells (N=82, 128) at the standard magic numbers stay at the same numbers even far from the stability line and hence provide the feature of the r-process nuclei. However, many proton magic numbers disappear at the neutron numbers far away from the magic numbers due to the deformations. We discuss how to describe giant resonances for the case of the non-linear coupling terms for the sigma and omega mesons in the relativistic RPA. We mention also the importance of the relativistic effect on the spin observables as the Gamow-Teller strength and the longitudinal and transverse spin responses. (author)

  10. 33rd Actinide Separations Conference

    Energy Technology Data Exchange (ETDEWEB)

    McDonald, L M; Wilk, P A

    2009-05-04

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  11. 33rd Actinide Separations Conference

    International Nuclear Information System (INIS)

    McDonald, L.M.; Wilk, P.A.

    2009-01-01

    Welcome to the 33rd Actinide Separations Conference hosted this year by the Lawrence Livermore National Laboratory. This annual conference is centered on the idea of networking and communication with scientists from throughout the United States, Britain, France and Japan who have expertise in nuclear material processing. This conference forum provides an excellent opportunity for bringing together experts in the fields of chemistry, nuclear and chemical engineering, and actinide processing to present and discuss experiences, research results, testing and application of actinide separation processes. The exchange of information that will take place between you, and other subject matter experts from around the nation and across the international boundaries, is a critical tool to assist in solving both national and international problems associated with the processing of nuclear materials used for both defense and energy purposes, as well as for the safe disposition of excess nuclear material. Granlibakken is a dedicated conference facility and training campus that is set up to provide the venue that supports communication between scientists and engineers attending the 33rd Actinide Separations Conference. We believe that you will find that Granlibakken and the Lake Tahoe views provide an atmosphere that is stimulating for fruitful discussions between participants from both government and private industry. We thank the Lawrence Livermore National Laboratory and the United States Department of Energy for their support of this conference. We especially thank you, the participants and subject matter experts, for your involvement in the 33rd Actinide Separations Conference.

  12. TUCS/phosphate mineralization of actinides

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L. [Argonne National Lab., IL (United States)

    1997-10-01

    This program has as its objective the development of a new technology that combines cation exchange and mineralization to reduce the concentration of heavy metals (in particular actinides) in groundwaters. The treatment regimen must be compatible with the groundwater and soil, potentially using groundwater/soil components to aid in the immobilization process. The delivery system (probably a water-soluble chelating agent) should first concentrate the radionuclides then release the precipitating anion, which forms thermodynamically stable mineral phases, either with the target metal ions alone or in combination with matrix cations. This approach should generate thermodynamically stable mineral phases resistant to weathering. The chelating agent should decompose spontaneously with time, release the mineralizing agent, and leave a residue that does not interfere with mineral formation. For the actinides, the ideal compound probably will release phosphate, as actinide phosphate mineral phases are among the least soluble species for these metals. The most promising means of delivering the precipitant would be to use a water-soluble, hydrolytically unstable complexant that functions in the initial stages as a cation exchanger to concentrate the metal ions. As it decomposes, the chelating agent releases phosphate to foster formation of crystalline mineral phases. Because it involves only the application of inexpensive reagents, the method of phosphate mineralization promises to be an economical alternative for in situ immobilization of radionuclides (actinides in particular). The method relies on the inherent (thermodynamic) stability of actinide mineral phases.

  13. Hydrothermal decomposition of actinide(IV oxalates: a new aqueous route towards reactive actinide oxide nanocrystals

    Directory of Open Access Journals (Sweden)

    Walter Olaf

    2016-01-01

    Full Text Available The hydrothermal decomposition of actinide(IV oxalates (An= Th, U, Pu at temperatures between 95 and 250 °C is shown to lead to the production of highly crystalline, reactive actinide oxide nanocrystals (NCs. This aqueous process proved to be quantitative, reproducible and fast (depending on temperature. The NCs obtained were characterised by X-ray diffraction and TEM showing their size to be smaller than 15 nm. Attempts to extend this general approach towards transition metal or lanthanide oxalates failed in the 95–250 °C temperature range. The hydrothermal decomposition of actinide oxalates is therefore a clean, flexible and powerful approach towards NCs of AnO2 with possible scale-up potential.

  14. Research for actinides extractants from various wastes

    International Nuclear Information System (INIS)

    Musikas, C.; Cuillerdier, C.; Condamines, N.

    1990-01-01

    This paper is an overview of the actinides solvent extraction research undertaken in Fontenay-aux-Roses. Two kinds of extractants are investigated; those usable for the improvement of the nowadays nuclear fuels reprocessing and those necessary for advanced fuels cycles which include the minor actinides (Np, Am) recovery for a further elimination through nuclear reactions. In the first class the mono and diamides, alternative to the organophosphorus extractants, TBP and polyfunctional phosphonates, showed promising properties. The main results are discussed. For the future efficient extractants for trivalent actinides-lanthanides group separations are suitable. The point about the actinides (III) - lanthanides (III) group separation chemistry and the development of some of these extractants are given

  15. Transitional nuclei near shell closures

    Energy Technology Data Exchange (ETDEWEB)

    Mukherjee, G. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064 (India); Pai, H. [Variable Energy Cyclotron Centre, 1/AF Bidhan Nagar, Kolkata 700064, India and Present Address: Institut für Kernphysik, Technische Universität Darmstadt, Schlossgartenstrasse 9, 64289 Darmstadt (Germany)

    2014-08-14

    High spin states in Bismuth and Thallium nuclei near the Z = 82 shell closure and Cesium nuclei near the N = 82 shell closure in A = 190 and A = 130 regions, respectively, have been experimentally investigated using heavy-ion fusion evaporation reaction and by detecting the gamma rays using the Indian National Gamma Array (INGA). Interesting shape properties in these transitional nuclei have been observed. The results were compared with the neighboring nuclei in these two regions. The total Routhian surface (TRS) calculations have been performed for a better understanding of the observed properties. In mass region A = 190, a change in shape from spherical to deformed has been observd around neutron number N = 112 for the Bi (Z = 83) isotopes with proton number above the magic gap Z = 82, whereas, the shape of Tl (Z = 81) isotopes with proton number below the magic gap Z = 82 remains stable as a function of neutron number. An important transition from aplanar to planar configuration of angular momentum vectors leading to the occurance of nuclar chirality and magnetic rotation, respectively, has been proposed for the unique parity πh{sub 11/2}⊗νh{sub 11/2} configuration in Cs isotopes in the mass region A ∼ 130 around neutron number N = 79. These results are in commensurate with the TRS calculations.

  16. Transitional nuclei in the A∼100 region

    International Nuclear Information System (INIS)

    Petry, R.F.

    1986-01-01

    This is a report on nuclear structure studies funded by the Department of Energy over a seven-year period from August 1, 1979 to August 31, 1986. In summary, the work was concerned with nuclear structure in the A∼100 region. In particular the focus of the work was on odd-A deformed nuclei in this region with N > 60

  17. ACTINET - EU network of excellence for actinide sciences

    International Nuclear Information System (INIS)

    Gompper, K.

    2006-01-01

    ACTINET, the Network of Excellence for Actinide Sciences within the 6th EU Framework Program, was launched in March 2004 for an initial period of four years. A number of tools are available in ACTINET to serve the purposes of the project, i.e. stimulate and coordinate actinide research in Europe, promote integration, train young scientists and, in this way, ensure and enhance European competence. The large European actinide laboratories with their unique experimental and analytical equipment are available to scientists from Europe as so-called 'pool facilities' within the framework of joint research projects. Setting up a 'theoretical user lab' has turned out to be a promising way of exploiting the synergies of theory and experiment in various fields of actinide science. Joint research projects are supported within the network, working with actinides being made possible in the pool facilities. Training and instruction are ensured by seminars, workshops, and schools organized annually. In familiarizing young scientists with actinide work, ACTINET exercises training functions and contributes to ensuring and enhancing European competence in the field on the medium and long term. Even after only half of its term, ACTINET is developing into a live network, thus decisively contributing towards promoting, coordinating and integrating European actinide research. As actinides play a key role in the use of nuclear power, this benefits European industries, research centers, operators of nuclear power plants and nuclear facilities as well as licensing and regulatory authorities. (orig.)

  18. Superconductivity in the actinides

    International Nuclear Information System (INIS)

    Smith, J.L.; Lawson, A.C.

    1985-01-01

    The trends in the occurrence of superconductivity in actinide materials are discussed. Most of them seem to show simple transition metal behavior. However, the superconductivity of americium proves that the f electrons are localized in that element and that ''actinides'' is the correct name for this row of elements. Recently the superconductivity of UBe 13 and UPt 3 has been shown to be extremely unusual, and these compounds fall in the new class of compounds now known as heavy fermion materials

  19. Measurements of actinide-fission product yields in Caliban and Prospero metallic core reactor fission neutron fields

    Energy Technology Data Exchange (ETDEWEB)

    Casoli, P.; Authier, N. [CEA, Centre de Valduc, 21120 Is-sur-Tille (France); Laurec, J.; Bauge, E.; Granier, T. [CEA, Centre DIF, 91297 Arpajon (France)

    2011-07-01

    In the 1970's and early 1980's, an experimental program was performed on the facilities of the CEA Valduc Research Center to measure several actinide-fission product yields. Experiments were, in particular, completed on the Caliban and Prospero metallic core reactors to study fission-neutron-induced reactions on {sup 233}U, {sup 235}U, and {sup 239}Pu. Thick actinide samples were irradiated and the number of nuclei of each fission product was determined by gamma spectrometry. Fission chambers were irradiated simultaneously to measure the numbers of fissions in thin deposits of the same actinides. The masses of the thick samples and the thin deposits were determined by mass spectrometry and alpha spectrometry. The results of these experiments will be fully presented in this paper for the first time. A description of the Caliban and Prospero reactors, their characteristics and performances, and explanations about the experimental approach will also be given in the article. A recent work has been completed to analyze and reinterpret these measurements and particularly to evaluate the associated uncertainties. In this context, calculations have also been carried out with the Monte Carlo transport code Tripoli-4, using the published benchmarked Caliban description and a three-dimensional model of Prospero, to determine the average neutron energy causing fission. Simulation results will be discussed in this paper. Finally, new fission yield measurements will be proposed on Caliban and Prospero reactors to strengthen the results of the first experiments. (authors)

  20. Triaxiality and alternating M1 strengths in f-p-g shell nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Tabor, S L; Johnson, T D; Holcombe, J W; Womble, P C; Doring, J; Nazarewicz, W [Florida State Univ., Tallahassee, FL (United States). Dept. of Physics

    1992-08-01

    The appearance of alternating patterns in B(M1) strengths in f-p-g shell nuclei is surveyed. The M1 alternations in a sequence of N= 41 isotones, in conjunction with particle-rotor model calculations, is shown to provide information about changing {gamma} deformation. In addition to other odd-A nuclei, several odd-odd nuclei are shown to exhibit alternating B(M1) values and signature inversion. alternations have also been reported in a 4 quasiparticle band in {sup 86}Zr, where they have been interpreted in terms of the interacting boson model. (author). 15 refs., 1 tab., 6 figs.

  1. Nuclei far from stability. Individual and collective excitations at low energy

    International Nuclear Information System (INIS)

    Meyer, M.

    1984-01-01

    The low energy structure of exotic nuclei is discussed in terms of self-consistent microscopic models. The experimental striking features of the spectroscopy of these nuclei are briefly surveyed and the schematic steps performed to obtain from effective N-N interactions their spectroscopic properties are presented. Their saturation and deformation properties are given by the Hartree-Fock approximation (HF). Then it is shown how to describe the dynamics of even-even exotic nuclei excited states by solving the complete Bohr Hamiltonian, built microscopically using the HF approximation and the adiabatic limit (and its derivatives) of the time-dependent HF approximation (ATDHF). The structure of odd and doubly odd nuclei is discussed in the framework of the unified model, ie the microscopic rotor + quasiparticles model. Finally possible future directions of experimental research concerning exotic nuclei are described and improvements or new theoretical approaches discussed [fr

  2. Analysis of some modes of multibody decays of low excited actinide nuclei

    International Nuclear Information System (INIS)

    Pyatkov, Yu V; Lavrova, J E; Kamanin, D V; Alexandrov, A A; Alexandrova, I A; Goryainova, Z I; Kuznetsova, E A; Strekalovsky, A O; Strekalovsky, O V; Zhuchko, V E; Mkaza, N; Malaza, V

    2017-01-01

    Careful studies of the fission fragments mass correlation distributions let us to reveal specific linear structures in the region of a big missing mass. It became possible due to applying of effective cleaning of this region from the background linked with scattered fragments. One of the most pronounced structure looks like a rectangle bounded by the magic nuclei. The fission events aggregated in the rectangle show a very low total kinetic energy. We propose possible scenario of forming and decay of the multi-cluster prescission configuration decisive for the experimental findings. This approach is valid as well for treating of another rare decay modes discovered in the past. (paper)

  3. Reactor physics aspects of burning actinides in a nuclear reactor

    International Nuclear Information System (INIS)

    Hage, W.; Schmidt, E.

    1978-01-01

    A short review of the different recycling strategies of actinides other than fuel treated in the literature, is given along with nuclear data requirements for actinide build-up and transmutation studies. The effects of recycling actinides in a nuclear reactor on the flux distribution, the infinite neutron multiplication factor, the reactivity control system, the reactivity coefficients and the delayed neutron fraction are discussed considering a notional LWR or LMFBR as an Actinide Trasmutaton Reactor. Some operational problems of Actinide Transmutation reactors are mentioned, which are caused by the α-decay heat and the neutron sources of Actinide Target Elements

  4. Description of proton radioactivity using the Coulomb and proximity potential model for deformed nuclei

    Science.gov (United States)

    Santhosh, K. P.; Sukumaran, Indu

    2017-09-01

    Half-life predictions have been performed for the proton emitters with Z >50 in the ground state and isomeric state using the Coulomb and proximity potential model for deformed nuclei (CPPMDN). The agreement of the calculated values with the experimental data made it possible to predict some proton emissions that are not verified experimentally yet. For a comparison, the calculations also are performed using other theoretical models, such as the Gamow-like model of Zdeb et al. [Eur. Phys. J. A 52, 323 (2016), 10.1140/epja/i2016-16323-7], the semiempirical relation of Hatsukawa et al. [Phys. Rev. C 42, 674 (1990), 10.1103/PhysRevC.42.674], and the CPPM of Santhosh et al. [Pramana 58, 611 (2002)], 10.1007/s12043-002-0019-2. The Geiger-Nuttall law, originally observed for α decay, studied for proton radioactivity is found to work well provided it is plotted for the isotopes of a given proton emitter nuclide with the same ℓ value. The universal curve is found to be valid for proton radioactivity also as we obtained a single straight line for all proton emissions irrespective of the parents. Through the analysis of the experimentally measured half-lives of 44 proton emitters, the study revealed that the present systematic study lends support to a unified description for studying α decay, cluster radioactivity, and proton radioactivity.

  5. Molecular and electronic structure of actinide hexa-cyanoferrates; Structure moleculaire et electronique des hexacyanoferrates d'actinides

    Energy Technology Data Exchange (ETDEWEB)

    Bonhoure, I

    2001-07-01

    The goal of this work is to improve our knowledge on the actinide-ligand bond properties. To this end, the hexacyanoferrate entities have been used as pre-organized ligand. We have synthesized, using mild chemistry, the following series of complexes: An{sup IV}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Th, U, Np, Pu); Am{sup III}[Fe{sup III}(CN){sub 6}].xH{sub 2}O; Pu {sup III}[Co{sup III}(CN){sub 6}].xH{sub 2}O and K(H?)An{sup III}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Pu, Am). The metal oxidation states have been obtained thanks to the {nu}{sub CN}, stretching vibration and to the actinide L{sub III} absorption edge studies. As Prussian Blue, the An{sup IV}[Fe{sup II}(CN){sub 6}].xH{sub 2}O (An = Np, Pu) are class II of Robin and Day compounds. X-ray Diffraction has shown besides that these complexes crystallize in the P6{sub 3}/m space group, as the isomorphic LaKFe(CN){sub 6}.4H{sub 2}O complex used as structural model. The EXAFS oscillations at the iron K edge and at the An L{sub III} edge allowed to determine the An-N, An-O, Fe-C and Fe-N distances. The display of the multiple scattering paths for both edges explains the actinide contribution absence at the iron edge, whereas the iron signature is present at the actinide edge. We have shown that the actinide coordination sphere in actinides hexa-cyanoferrates is comparable to the one of lanthanides. However, the actinides typical behavior towards the lanthanides is brought to the fore by the An{sup IV} versus Ln{sup III} ions presence in this family of complexes. Contrarily to the 4f electrons, the 5f electrons influence the electronic properties of the compounds of this family. However, the gap between the An-N and Ln-N distances towards the corresponding metals ionic radii do not show any covalence bond evolution between the actinide and lanthanide series. (author)

  6. Actinide chemistry in the far field

    International Nuclear Information System (INIS)

    Livens, F.R.; Morris, K.; Parkman, R.; Moyes, L.

    1996-01-01

    The environmental chemistry of the actinides is complicated due both to the extensive redox and coordination chemistry of the elements and also to the complexity of the reactive phases encountered in natural environments. In the far field, interactions with reactive surfaces, coatings and colloidal particles will play a crucial role in controlling actinide mobility. By virtue of both their abundance and reactivity; clays and other layer aluminosilicate minerals, hydrous oxides and organic matter (humic substances) are all identified as having the potential to react with actinide ions and some possible modes of interaction are described, together with experimental evidence for their occurrence. (author)

  7. Deformation and orientation effects in the binary symmetric decay of 20,21,22Ne*

    International Nuclear Information System (INIS)

    Singh, BirBikram; Kaur, Manpreet; Gupta, Raj K.

    2014-01-01

    We have extended the study of binary symmetric decay (BSD) of extremely light mass compound systems 20,21,22 Ne* formed in 10,11 B+ 10,11 B reactions at E lab = 48 MeV, to explore the role of deformations and orientations, using the Dynamical Cluster decay Model (DCM). In the present work, we find that with inclusion of quadruple deformations and 'hot compact' orientations of nuclei σ ff increases in comparison to the case of spherical considerations of nuclei

  8. Self-consistent theory of finite Fermi systems and radii of nuclei

    International Nuclear Information System (INIS)

    Saperstein, E. E.; Tolokonnikov, S. V.

    2011-01-01

    Present-day self-consistent approaches in nuclear theory were analyzed from the point of view of describing distributions of nuclear densities. The generalized method of the energy density functional due to Fayans and his coauthors (this is the most successful version of the self-consistent theory of finite Fermi systems) was the first among the approaches under comparison. The second was the most successful version of the Skyrme-Hartree-Fock method with the HFB-17 functional due to Goriely and his coauthors. Charge radii of spherical nuclei were analyzed in detail. Several isotopic chains of deformed nuclei were also considered. Charge-density distributions ρ ch (r) were calculated for several spherical nuclei. They were compared with model-independent data extracted from an analysis of elastic electron scattering on nuclei.

  9. Band structure in Platinum nuclei (A ∼ 182)

    International Nuclear Information System (INIS)

    Popescu, D.G.

    1991-01-01

    In this thesis, the author studies the band structure in Platinum nuclei and has divided his work in 5 parts: in the first, the author makes a general presentation of nucleus physics with a high angular momentum and introduces to the deformed nucleus notion -axial, triaxial or mixing of different deformations. The notion of form co-existence will be used to interpret the experimental results. In the second part, the author describes the detection means which have been used to make measurements. An abstract of theoretical notions, usefull for the understanding of fusion-evaporation reaction is presented. The author explains the details, performances and different modes of using of 'Chateau de cristal' and others used spectrometers. In the third part, the author presents all experimental data. He has effected γ coincidence measurements for Pt, Au and Ir nuclei. In the fourth part, for a classical analysis or an interpretation in the frame of cranking model the author presents theoretical models which are adapted at the study of high spin states and band structures

  10. Separations chemistry for actinide elements: Recent developments and historical perspective

    International Nuclear Information System (INIS)

    Nash, K.L.; Choppin, G.R.

    1997-01-01

    With the end of the cold war, the principal mission in actinide separations has changed from production of plutonium to cleanup of the immense volume of moderately radioactive mixed wastes which resulted from fifty years of processing activities. In order to approach the cleanup task from a proper perspective, it is necessary to understand how the wastes were generated. Most of the key separations techniques central to actinide production were developed in the 40's and 50's for the identification and production of actinide elements. Total actinide recovery, lanthanide/actinide separations, and selective partitioning of actinides from inert constituents are currently of primary concern. To respond to the modern world of actinide separations, new techniques are being developed for separations ranging from analytical methods to detect ultra-trace concentrations (for bioassay and environmental monitoring) to large-scale waste treatment procedures. In this report, the history of actinide separations, both the basic science and production aspects, is examined and evaluated in terms of contemporary priorities

  11. 1981 Annual Status Report. Plutonium fuels and actinide programme

    International Nuclear Information System (INIS)

    1981-01-01

    In this 1981 report the work carried out by the European Institute for Transuranium elements is reviewed. Main topics are: operation limits of plutonium fuels: swelling of advanced fuels, oxide fuel transients, equation of state of nuclear materials; actinide cycle safety: formation of actinides (FACT), safe handling of plutonium fuel (SHAPE), aspects of the head-end processing of carbide fuel (RECARB); actinide research: crystal chemistry, solid state studies, applied actinide research

  12. Ultratrace analysis of transuranic actinides by laser-induced fluorescence

    Science.gov (United States)

    Miller, S.M.

    1983-10-31

    Ultratrace quantities of transuranic actinides are detected indirectly by their effect on the fluorescent emissions of a preselected fluorescent species. Transuranic actinides in a sample are coprecipitated with a host lattice material containing at least one preselected fluorescent species. The actinide either quenches or enhances the laser-induced fluorescence of the preselected fluorescent species. The degree of enhancement or quenching is quantitatively related to the concentration of actinide in the sample.

  13. Extraction chromatography of actinides

    International Nuclear Information System (INIS)

    Muller, W.

    1978-01-01

    Extraction chromatography of actinides in the oxidation state from 2 to 6 is reviewed. Data on using neutral (tbp), basic (substituted ammonium salts) and acidic [di-(2-ethylhexyl)-phosphoric acid (D2EHPA)] extracting agents ketones, esters, alcohols and β-diketones in this method are given. Using the example of actinide separation using D2EHPA, discussed are factors influencing the efficiency of their chromatography separation (nature and particle size of the carrier materials, extracting agents amount on the carrier, temperature and elution rate)

  14. Low-spin identical bands in odd-A nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Baktash, C; Garrett, J D; Winchell, D F; Smith, A [Oak Ridge National Lab., TN (United States)

    1992-08-01

    A comprehensive study of odd-A rotational bands in normally-deformed rare-earth nuclei indicates that a large number of seniority-one configurations (30% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models, based on the traditional picture of nuclear pair correlation in vogue for more than three decades, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority. (author). 18 refs., 1 tab., 1 fig.

  15. Low-spin identical bands in odd-A nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Garrett, J.D.; Winchell, D.F.; Smith, A.

    1992-01-01

    A comprehensive study of odd-A rotational bands in normally-deformed rare-earth nuclei indicates that a large number of seniority-one configurations (30% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models, based on the traditional picture of nuclear pair correlation in vogue for more than three decades, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority. (author). 18 refs., 1 tab., 1 fig

  16. Multiphonon states in even-even spherical nuclei. Pt.1. Calculation of the overlap matrix

    International Nuclear Information System (INIS)

    Piepenbring, R.; Protasov, K.V.; Silvestre-Brac, B.

    1995-01-01

    The multiphonon method, previously developed for deformed nuclei is extended to the case of even-even spherical nuclei. Recursion formulae, well suited for numerical calculations are given for the overlap matrix elements. The method is illustrated for a single j-shell, where S-, D-, G-, .. phonons are introduced. In such an approach, the Pauli principle is fully and properly taken into account. ((orig.))

  17. Advanced Aqueous Separation Systems for Actinide Partitioning

    Energy Technology Data Exchange (ETDEWEB)

    Nash, Kenneth L.; Clark, Sue; Meier, G Patrick; Alexandratos, Spiro; Paine, Robert; Hancock, Robert; Ensor, Dale

    2012-03-21

    One of the most challenging aspects of advanced processing of spent nuclear fuel is the need to isolate transuranium elements from fission product lanthanides. This project expanded the scope of earlier investigations of americium (Am) partitioning from the lanthanides with the synthesis of new separations materials and a centralized focus on radiochemical characterization of the separation systems that could be developed based on these new materials. The primary objective of this program was to explore alternative materials for actinide separations and to link the design of new reagents for actinide separations to characterizations based on actinide chemistry. In the predominant trivalent oxidation state, the chemistry of lanthanides overlaps substantially with that of the trivalent actinides and their mutual separation is quite challenging.

  18. Collective properties and shapes of nuclei at very high spins

    International Nuclear Information System (INIS)

    Johnson, N.R.

    1991-01-01

    A topic which has been of major interest to us for some years now involves the evolution of nuclear collectivity at high rotational frequencies and the accompanying changes in the shapes of nuclei in these extreme conditions. We carry out these studies by determining the dynamic electromagnetic multipole moments which are a reflection of the collective aspects of the nuclear wave functions. The most direct way to get these multipole moments is by measurements of excited-state lifetimes which provide the transition matrix elements in a fairly straightforward fashion. Although the primary emphasis of this paper is on the collectivity of the high-spin states in 160 Yb and 164 Yb, it is important to review briefly some work we began about ten years ago lifetime studies of moderately high spins in nuclei near N=90 using the recoil-distance (RD) method. These nuclei are just at the onset of permanent deformation and are known to be very soft with respect to deformation changes. This softness is clearly illustrated in contour diagrams of their potential-energy surfaces. For example, the potential energy surface of 160 Yb reveals that the minimum in the potential occurs around var-epsilon ∼ 0.2 and that it is very shallow in the γ degree of freedom. Because of their γ softness, we have studied several nuclei near N=90 to assess to what extent the polarization effects induced by rotation alignment of high-j quasiparticles affect their collectivity

  19. PREPARATION OF ACTINIDE-ALUMINUM ALLOYS

    Science.gov (United States)

    Moore, R.H.

    1962-09-01

    BS>A process is given for preparing alloys of aluminum with plutonium, uranium, and/or thorium by chlorinating actinide oxide dissolved in molten alkali metal chloride with hydrochloric acid, chlorine, and/or phosgene, adding aluminum metal, and passing air and/or water vapor through the mass. Actinide metal is formed and alloyed with the aluminum. After cooling to solidification, the alloy is separated from the salt. (AEC)

  20. Actinide isotopes in the marine environment

    International Nuclear Information System (INIS)

    Holm, E.; Fukai, R.

    1986-01-01

    Studies of actinide isotopes in the environment are important not only from the viewpoint of their radiological effects on human life, but also from the fact that they act as excellent biochemical and geochemical tracers especially in the marine environment. For several of the actinide isotopes there is still a lack of basic data on concentration levels and further investigations on their chemical and physical speciation are required to understand their behaviour in the marine environment. The measured and estimated activity concentration levels of artificial actinides are at present in general a few orders of magnitude lower than those of the natural ones and their concentration factors in biota are relatively low, except in a few species of macroalgae and phytoplankton. The contribution from seafood to total ingestion of actinides by the world population is a few per cent and, therefore, the dose to man from these long-lived radionuclides caused by seafood ingestion is usually low. (orig.)

  1. Shell model Monte Carlo investigation of rare earth nuclei

    International Nuclear Information System (INIS)

    White, J. A.; Koonin, S. E.; Dean, D. J.

    2000-01-01

    We utilize the shell model Monte Carlo method to study the structure of rare earth nuclei. This work demonstrates the first systematic full oscillator shell with intruder calculations in such heavy nuclei. Exact solutions of a pairing plus quadrupole Hamiltonian are compared with the static path approximation in several dysprosium isotopes from A=152 to 162, including the odd mass A=153. Some comparisons are also made with Hartree-Fock-Bogoliubov results from Baranger and Kumar. Basic properties of these nuclei at various temperatures and spin are explored. These include energy, deformation, moments of inertia, pairing channel strengths, band crossing, and evolution of shell model occupation numbers. Exact level densities are also calculated and, in the case of 162 Dy, compared with experimental data. (c) 2000 The American Physical Society

  2. Actinide recycle in LMFBRs as a waste management alternative

    International Nuclear Information System (INIS)

    Beaman, S.L.

    1979-01-01

    A strategy of actinide burnup in fast reactor systems has been investigated as an approach for reducing the long term hazards and storage requirements of the actinide waste elements and their decay daughters. The actinide recycle studies also included plutonium burnup studies in the event that plutonium is no longer required as a fuel. Particular emphasis was placed upon the timing of the recycle program, the requirements for separability of the waste materials, and the impact of the actinides on the reactor operations and performance. It is concluded that actinide recycle and plutonium burnout are attractive alternative waste management concepts. 25 refs., 14 figs., 34 tabs

  3. Thin layers in actinide research

    International Nuclear Information System (INIS)

    Gouder, T.

    1998-01-01

    Surface science research at the ITU is focused on the synthesis and surface spectroscopy studies of thin films of actinides and actinide compounds. The surface spectroscopies used are X-ray and ultra violet photoelectron spectroscopy (XPS and UPS, respectively), and Auger electron spectroscopy (AES). Thin films of actinide elements and compounds are prepared by sputter deposition from elemental targets. Alloy films are deposited from corresponding alloy targets and could be used, in principle, as replicates of these targets. However, there are deviations between alloy film and target composition, which depend on the deposition conditions, such as pressure and target voltage. Mastering of these effects may allow us to study stoichiometric film replicates instead of thick bulk compounds. As an example, we discuss the composition of U-Ni films prepared from a UNi 5 target. (orig.)

  4. Study of fossil tracks due to 50≤Z≤92 galactic cosmic ray nuclei in meteoritic crystals: Results and perspectives

    International Nuclear Information System (INIS)

    Perelygin, V.P.; Petrova, R.I.; Stetsenko, S.G.; Brandt, R.; Vater, P.; Rebetez, M.; Spohr, R.; Vetter, J.; Perron, C.

    1999-01-01

    A new approach to the problem of investigation of charge and energy spectra of ultra heavy Galactic cosmic ray nuclei, based on fossil track study of extraterrestrial olivine crystals has been developed. The results of an investigation of ultra heavy Galactic cosmic ray nuclei (Z=50-92) in meteoritic olivine crystals are presented. The technique was based on calibration of olivine crystals with accelerated Xe, Au, Pb and U ions and well-controlled partial annealing of 'fresh' and 'fossil' tracks. It allows us to determine the charge spectra and abundances of cosmic ray nuclei based on fossil track length study in meteoritic and Moon crystals. The comparative studies of the spectra of ''fossil' tracks and tracks due to 208 Pb and 238 U nuclei have shown that the group of 210 μm 'fossil' tracks, first observed in 1980 at JINR is due to Th-U nuclei-products of recent r-process nucleosyntesis in our Galaxy. The method in principle allows one to resolve Pt-Pb peaks in fossil tracks, to establish the upper limit of the abundance of Z>110 nuclei in the Galactic cosmic rays at the level ≤10 -3 to the abundance of actinide nuclei and to get information on the history of Z>50 cosmic ray nuclei in time interval up to 220 M.Y

  5. Rapid determination of actinides in seawater samples

    International Nuclear Information System (INIS)

    Maxwell, S.L.; Culligan, B.K.; Hutchison, J.B.; Utsey, R.C.; McAlister, D.R.

    2014-01-01

    A new rapid method for the determination of actinides in seawater samples has been developed at the Savannah River National Laboratory. The actinides can be measured by alpha spectrometry or inductively-coupled plasma mass spectrometry. The new method employs novel pre-concentration steps to collect the actinide isotopes quickly from 80 L or more of seawater. Actinides are co-precipitated using an iron hydroxide co-precipitation step enhanced with Ti +3 reductant, followed by lanthanum fluoride co-precipitation. Stacked TEVA Resin and TRU Resin cartridges are used to rapidly separate Pu, U, and Np isotopes from seawater samples. TEVA Resin and DGA Resin were used to separate and measure Pu, Am and Cm isotopes in seawater volumes up to 80 L. This robust method is ideal for emergency seawater samples following a radiological incident. It can also be used, however, for the routine analysis of seawater samples for oceanographic studies to enhance efficiency and productivity. In contrast, many current methods to determine actinides in seawater can take 1-2 weeks and provide chemical yields of ∼30-60 %. This new sample preparation method can be performed in 4-8 h with tracer yields of ∼85-95 %. By employing a rapid, robust sample preparation method with high chemical yields, less seawater is needed to achieve lower or comparable detection limits for actinide isotopes with less time and effort. (author)

  6. Super and hyper-deformed states, and reactions to populate them

    International Nuclear Information System (INIS)

    Cseh, J.; Darai, J.; Algora, A.; Antonenko, N.; Adamian, G.

    2011-01-01

    We study the possible binary cluster configurations of the superdeformed and hyper-deformed states of some N=Z nuclei. We have determined the shape isomers from the quasi-dynamical U(3) symmetry obtained from Nilsson calculations. In searching for the possible binary clusterization of the shape isomers we have taken into account both natural laws which govern the building up of a nucleus from smaller constituents. The exclusion principle was taken into account by applying a selection rule (in combination with Harvey's prescription), based on the microscopic configuration associated to the quasi-dynamical U(3) symmetry. In this way the Pauli-principle is incorporated only in an approximate way. The clusters were considered to have a deformation, like the corresponding free nuclei (spherical, prolate, oblate or triaxial), and no constraints were applied for their relative orientation. The methods we applied here seem to be applicable in heavier nuclei, too. Symmetry considerations can be helpful in studying both the shape isomers of nuclei, and their clusterization. These investigations contribute to the structural understanding of the shape isomers, and indicate some reaction channels to populate them

  7. Radiochemistry and actinide chemistry

    International Nuclear Information System (INIS)

    Guillaumont, R.; Peneloux, A.

    1989-01-01

    The analysis of trace amounts of actinide elements by means of radiochemistry, is discussed. The similarities between radiochemistry and actinide chemistry, in the case of species amount by cubic cm below 10 12 , are explained. The parameters which allow to define what are the observable chemical reactions, are given. The classification of radionuclides in micro or macrocomponents is considered. The validity of the mass action law and the partition function in the definition of the average number of species for trace amounts, is investigated. Examples illustrating the results are given

  8. Shape nuclei and nuclear reactions

    International Nuclear Information System (INIS)

    Yushkov, A.V.

    1975-01-01

    Experimental methods for obtaining the nucleus shape parameters are reviewed throughout the period of 1955-1975. Spatial properties of a nucleus, which can be directly or indirectly measured, are determined. They include: parameters of nucleus localization in space; parameters characterizing the nucleus nonsphericity; parameters of the nucleus nonaxiality. Dimensional parameters of a nucleus, namely, radius R and surface ΔR are derived from electron scattering. The deformation sign is indirectly obtained in the experiments. Parameters of the nucleus shape, namely, the sign and magnitude of nuclear deformation are derived from the mean energy proton scattering by a coupled channels method. The only direct way of deriving the nucleus surface deformation signs is the method of the Blaire phase shift. Results on scattering of electrons, protons, and α-particles on light and medium nuclei are reported. Data on the nucleus shape can be also obtained from reactions with heavy ions. A difference between strong absorptions of incident particles of high and average energy by a nucleus is noted. Numerous diagrams illustrate experimental and theoretical results

  9. Interaction between actinides and protein: the calmodulin

    International Nuclear Information System (INIS)

    Brulfert, Florian

    2016-01-01

    Considering the environmental impact of the Fukushima nuclear accident, it is fundamental to study the mechanisms governing the effects of the released radionuclides on the biosphere and thus identify the molecular processes generating the transport and deposition of actinides, such as neptunium and uranium. However, the information about the microscopic aspect of the interaction between actinides and biological molecules (peptides, proteins...) is scarce. The data being mostly reported from a physiological point of view, the structure of the coordination sites remains largely unknown. These microscopic data are indeed essential for the understanding of the interdependency between structural aspect, function and affinity.The Calmodulin (CaM) (abbreviation for Calcium-Modulated protein), also known for its affinity towards actinides, acts as a metabolic regulator of calcium. This protein is a Ca carrier, which is present ubiquitously in the human body, may also bind other metals such as actinides. Thus, in case of a contamination, actinides that bind to CaM could avoid the protein to perform properly and lead to repercussions on a large range of vital functions.The complexation of Np and U was studied by EXAFS spectroscopy which showed that actinides were incorporated in a calcium coordination site. Once the thermodynamical and structural aspects studied, the impact of the coordination site distortion on the biological efficiency was analyzed. In order to evaluate these consequences, a calorimetric method based on enzyme kinetics was developed. This experiment, which was conducted with both uranium (50 - 500 nM) and neptunium (30 - 250 nM) showed a decrease of the heat produced by the enzymatic reaction with an increasing concentration of actinides in the medium. Our findings showed that the Calmodulin actinide complex works as an enzymatic inhibitor. Furthermore, at higher neptunium (250 nM) and uranium (500 nM) concentration the metals seem to have a poison

  10. On the hazard accumulation of actinide waste in a Pu-fueled LMFBR power economy with and without by-product actinide recycling

    International Nuclear Information System (INIS)

    Anselmi, L.; Caruso, K.; Hage, W.; Schmidt, E.

    1979-01-01

    The actinide waste arisings in terms of hazard potential for ingestion and inhalation are given for a Pu-fueled LMFBR Power Economy as function of decay time. The data were assessed for two simplified fuel cycles, one considering the recycling of by-product actinides and the other their complete discharge to the high-level waste. Two durations of nuclear power and several loss fractions of actinides to the waste were considered. The major contributors in form of chemical elements or isotopes to the actinide waste hazard built up during the nuclear power duration were identified for various decay intervals

  11. Study of fp States in Nuclei with High Neutron Excess

    CERN Multimedia

    2002-01-01

    Previous results obtained at ISOLDE on GT transitions in n-rich Na and Mg nuclei have shown the sharp decrease of excitation energy for fp states when A$>$29. \\\\ \\\\ Independently, shell model calculations have revealed that the onset of a deformation region near N=20 for Ne, Na and Mg nuclei was related to a sudden transition in the ground state properties with the appearance of a major (sd)$^{-2}$(fp)$^2$ component. \\\\ \\\\ We propose to use the new possibilities of producing and detecting n-rich nuclei to study by $\\gamma$ and n spectroscopy the properties of fp states with different cores: around N=20 (Na, Mg and Al) and N=28 (Ar, K and Ca). In particular, the cases of $^3

  12. Selective extraction of actinides from high level liquid wastes. Study of the possibilities offered by the Redox properties of actinides

    International Nuclear Information System (INIS)

    Adnet, J.M.

    1991-07-01

    Partitioning of high level liquid wastes coming from nuclear fuel reprocessing by the PUREX process, consists in the elimination of minor actinides (Np, Am, and traces of Pu and U). Among the possible processes, the selective extraction of actinides with oxidation states higher than three is studied. First part of this work deals with a preliminary step; the elimination of the ruthenium from fission products solutions using the electrovolatilization of the RuO4 compound. The second part of this work concerns the complexation and oxidation reactions of the elements U, Np, Pu and Am in presence of a compound belonging to the insaturated polyanions family: the potassium phosphotungstate. For actinide ions with oxidation state (IV) complexed with phosphotungstate anion the extraction mechanism by dioctylamine was studied and the use of a chromatographic extraction technic permitted successful separations between tetravalents actinides and trivalents actinides. Finally, in accordance with the obtained results, the basis of a separation scheme for the management of fission products solutions is proposed

  13. Systematically too low values of the cranking model collective inertia parameters

    International Nuclear Information System (INIS)

    Dudek, I.; Dudek, W.; Lukasiak-Ruchowska, E.; Skalski, I.

    1980-01-01

    Deformed Nilsson and Woods-Saxon potentials were employed for generating single particle states used henceforth for calculating the inertia tensor (cranking model and monopole pairing) and the collective energy surfaces (Strutinsky method). The deformation was parametrized in terms of quadrupole and hexadecapole degrees of freedom. The classical energy expression obtained from the inertia tensor and energy surfaces was quantized and the resulting stationary Schroedinger equation was solved using the approximate method. The second Isup(π) = 0 + 2 collective level energies were calculated for the Rare Earth and Actinide nuclei and the results compared with the experimental data. The vibrational level energies agree with the experimental ones much better for spherical nuclei for both single particle potentials; the discrepancies for deformed nuclei overestimate the experimental results by roughly a factor of two. It is argued that coupling of the axially symmetric quadrupole degrees of freedom to non-axial and hexadecapole ones does not affect the conclusions about systematically too low mass parameter values. The alternative explanation of the systematic deviations from the 0 + 2 level energies could be a systematically too high stiffness of the energy surfaces obrained with the Strutinsky method. (orig.)

  14. Structural characterization of the Actinides (III) and (IV) - DOTA complexes

    International Nuclear Information System (INIS)

    Audras, Matthieu

    2014-01-01

    The polyamino-carboxylate anions have been identified as compounds of interest in the operations of actinide separation, in actinide migration in the environment and in human radio-toxicology. The structural characterization of complexes formed between actinides and polyamino-carboxylates ligands is essential for a better understanding of actinide-ligands interactions. Among the polyamino-carboxylate anions, the DOTA ligand (1,4,7,10-tetraaza-cyclododecane tetraacetic acid) is described as a very strong complexing agent of the lanthanides(III), but has been little studied with actinides. The objective of this thesis is to describe the complexes formed between the actinides (III) and (IV) and the DOTA ligand, and compare them with the lanthanide complexes. For this, an approach has been introduced to characterize the complexes by complementary analytical techniques (spectrophotometry, electro-spray ionization mass spectrometry, NMR, EXAFS, electrochemistry), but also by calculations of theoretical chemistry to help the interpretation of the experimental data. The formation of a 1:1 complex is observed with the actinides(III) (plutonium and americium) as for lanthanides(III): rapid formation of intermediate species which evolves slowly towards the formation of a limit complex. Within this complex, the cation is located inside the cavity formed by the ligand. Four nitrogen atoms and four oxygen atoms from the carboxylate functions are involved in the coordination sphere of the cation. However, differences were observed in the bond lengths formed between the cation and the nitrogen atoms (the bonds are somewhat shorter in the case of actinide complexes) as well as the complexation kinetics, which is slightly faster for the actinides(III) than for lanthanide(III) ions of equivalent radius. The same behavior was observed in solution upon complexation of actinides(IV) (uranium, plutonium and neptunium): slow formation of a 1:1 complex (actinide(IV):ligand) in wherein the

  15. Calculated investigation of actinide transmutation in the BOR-60 reactor

    International Nuclear Information System (INIS)

    Zhemkov, I.Yu.; Ishunina, O.V.; Yakovleva, I.V.

    2000-01-01

    One of the prospective actinide burner reactor type is the fast reactor with a 'hard' spectrum and small breeding factor, which is the BOR-60. The calculated investigations demonstrate that Loading up to 40% of minor-actinides to the BOR-60 reactor did not lead to the considerable change of neutron-physical characteristics. The performed calculations show that the BOR- 60 reactor possesses a high efficiency of the minor-actinide and plutonium bum-up (up to 37 kg/(TW · h)) hat is comparable with properties of the actinide burner-reactors under design. The BOR-60 reactor can provide a homogeneous minor-actinide Loading (minor-actinide addition to the standard fuel) to the core and heterogeneous Loading (as separate assemblies-targets with a high minor-actinide fraction) to the first rows of a radial blanket that allows the optimum usage of the reactor and its characteristics. (authors)

  16. Recent progress in actinide and lanthanide solvent extraction

    International Nuclear Information System (INIS)

    Musikas, C.; Hubert, H.; Benjelloun, N.; Vitorge, P.; Bonnin, M.; Forchioni, A.; Chachaty, C.

    1983-04-01

    Work in progress on actinide solvent extraction is briefly reviewed in this paper. 1 H and 31 P NMR are used to elucidate several fundamental unsolved problems concerning organophosphorous extractants often used in actinides extraction: determination of site of dialkylthiophosphate protonation and addition of basic phosphine oxide to dibutylthiophosphoric acid dimer. Extraction of Am III and Eu from high radioactivity level wastes by tetrasubsituted methylene diamides is investigated. Trivalent actinide-lanthanide group are separated by solvent extraction using soft donor ligand complexes which are more stable. The synergism of dinonylnaphtalene sulfonic acid (HDNNS) associated with several neutral donors like TBP, TOPO, amides are examined in the trivalent and tetravalent actinide extraction

  17. Actinide removal from aqueous solution with activated magnetite

    International Nuclear Information System (INIS)

    Kochen, R.L.; Thomas, R.L.

    1987-01-01

    An actinide aqueous waste treatment process using activated magnetite has been developed at Rocky Flats. The use and effectiveness of various magnetites in lowering actinide concentrations in aqueous solution are described. Experiments indicate that magnetite particle size and pretreatment (activation of the magnetite surface with hydroxyl ions greatly influence the effective use of magnetite as an actinide adsorbent. With respect to actinide removal, Ba(OH) 2 -activated magnetite was more effective over a broader pH range than was NaOH-activated magnetite. About 50% less Ba(OH) 2 -activated magnetite was required to lower plutonium concentration from 10 -4 to 10 -8 g/l. 7 refs., 8 tabs

  18. Formation of actinides in irradiated HTGR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    dos Santos, A. M.

    1976-03-15

    Actinide nuclide concentrations of 11 spent AVR fuel elements were determined experimentally. The burnup of the spheres varied in the range between 10% and 100% fifa, the Th : U ratio was 5 : 1. The separation procedures for an actinide isolation were tested with highly irradiated ThO/sub 2/. Separation and decontamination factors are presented. Build-up of /sup 232/U was discussed. The AVR breeding rate was ascertained to be 0.5. The hazard potential of high activity waste was calculated. Actinide recovery factors were proposed in order to reduce the hazard potential of the waste by an actinide removal under consideration of the reprocessing technology which is available presently.

  19. Prediction of energies of yrast band in some even-even nuclei

    International Nuclear Information System (INIS)

    Varshney, A.K.; Singh, Yuvraj; Gupta, D.K.; Singh, M.; Gupta, K.K.; Bihari, Chhail; Dhiman, S.K.

    2012-01-01

    The deformation parameter β and γ of the collective model of Bohr and Mottelson are basic descriptors of the nuclear equilibrium shape and structure. The researchers found that the values of γ obtained from energies (= γ e ) are nearly equal to the value of γ derived from transition rate (= γ b ) in even Xe, Ba and Ce nuclei (A∼120-140) and Hf, W, Os, Pt and Hg nuclei (A∼160-200) using rigid triaxial rotor model of Davydov-Filippov. In the present study, the relatively light mass nuclei (Mo, Ru and Pd) have been taken. As far as γ is concerned, it is known that the Ru chains of nuclei is intermediate between the two having opposite trends for parameter γ, decreasing for Mo and increasing for Pd, and has an irregular behaviour in itself with the increase of neutron number

  20. On the octupole deformation in Ra-Th region

    International Nuclear Information System (INIS)

    Rozmej, P.; Boening, K.; Sobiczewski, A.

    1986-03-01

    The problem of the existence of a stable octupole deformation in Ra-Th region has been reinvestigated using a Nilsson single-particle potential with a newly fitted set of parameters, which reproduce the spins of the ground states of odd-A nuclei. In the energy surfaces, calculated for 222 Ra and 222 Th, the octupole deformed minima, separated by the barriers of 150 KeV and 210 keV, respectively, have been obtained. (orig.)

  1. Ground-state electronic structure of actinide monocarbides and mononitrides

    DEFF Research Database (Denmark)

    Petit, Leon; Svane, Axel; Szotek, Z.

    2009-01-01

    The self-interaction corrected local spin-density approximation is used to investigate the ground-state valency configuration of the actinide ions in the actinide monocarbides, AC (A=U,Np,Pu,Am,Cm), and the actinide mononitrides, AN. The electronic structure is characterized by a gradually increa...

  2. Role of deformation in odd-even staggering in reaction cross sections for 30,31,32Ne and 36,37,38Mg isotopes

    Science.gov (United States)

    Urata, Y.; Hagino, K.; Sagawa, H.

    2017-12-01

    We discuss the role of pairing antihalo effect in the observed odd-even staggering in reaction cross sections for 30,31,32Ne and 36,37,38Mg isotopes by taking into account the ground-state deformation of these nuclei. To this end, we construct the ground-state density for the Ne,3130 and Mg,3736 nuclei based on a deformed Woods-Saxon potential, while for the 32Ne and 38Mg nuclei we also take into account the pairing correlation using the Hartree-Fock-Bogoliubov method. We demonstrate that, when the one-neutron separation energy is small for the odd-mass nuclei, a significant odd-even staggering still appears even with finite deformation, although the degree of staggering is somewhat reduced compared to the spherical case. This implies that the pairing antihalo effect in general plays an important role in generating the odd-even staggering in reaction cross sections for weakly bound nuclei.

  3. Some aspects of the use of deep inelastic transfer reactions to produce nuclei far from stability and nuclei with large angular momenta

    International Nuclear Information System (INIS)

    Volkov, V.V.

    1980-01-01

    Some experimental data are considered that indicate the validity of the Q/sub gg/ systematics of cross sections for production of isotopes in multinucleon transfer reactions for any target-projectile combination. The effect of the nuclear structure of the light fragment on the evolution and disintegration of the double nuclear system formed in deep inelastic collisions of complex nuclei is discussed. Predominance of the α-particle emission over all other channels of the disintegration of the double nuclear system is demonstrated. It is shown that deep inelastic transfer reactions can be used to study the deformation of nuclei with large angular momenta. 9 figures

  4. Bifurcations and chaos of classical trajectories in a deformed nuclear potential

    International Nuclear Information System (INIS)

    Carbonell, J.; Arvieu, R.

    1983-01-01

    The organization of the phase space of a classical nucleon in an axially symmetric deformed potential with the restriction Lsub(z)=0 is studied by drawing the Poincare surfaces of section. In the limit of small deformations three simple limits help to understand this organization. Moreover important bifurcations of periodic trajectories occur. At higher deformations multifurcations and chaos are observed. Chaos is developed to a larger extent in the heavier nuclei. (author)

  5. Quantum algebra U{sub qp}(u{sub 2}) and application to the rotational collective dynamics of the nuclei; Algebre quantique U{sub qp}(u{sub 2}) et application a la dynamique collective de rotation dans les noyaux

    Energy Technology Data Exchange (ETDEWEB)

    Barbier, R

    1995-09-22

    This thesis concerns some aspects of new symmetries in Nuclear Physics. It comprises three parts. The first one is devoted to the study of the quantum algebra U{sub qp}(u{sub 2}). More precisely, we develop its Hopf algebraic structure and we study its co-product structure. The bases of the representation theory of U{sub qp}(u{sub 2}) are introduced. On one hand, we construct the finite-dimensional irreducible representations of U{sub qp}(u{sub 2}). On the other hand, we calculate the Clebsch-Gordan coefficients with the projection operator method. To complete our study, we construct some deformed boson mappings of the quantum algebras U{sub qp}(u{sub 2}), U{sub q{sup 2}}(su{sub 2}) and U{sub qp}(u{sub 1,1}). The second part deals with the construction of a new phenomenological model of the non rigid rotator. This model is based on the quantum algebra U{sub qp}(u{sub 2}). The rotational energy and the E2 reduced transition probabilities are obtained. They depend on the two deformation parameters q and p of the quantum algebra. We show how the use of the two-parameter deformation of the algebra U{sub qp}(u{sub 2}) leads to a generalization of the U{sub q}(su{sub 2})-rotator model. We also introduce a new model of the anharmonic oscillator on the basis of the quantum algebra U{sub qp}(u{sub 2}). We show that the system of the U{sub q}(su{sub 2})-rotator and of the anharmonic oscillator can be coupled with the use of the deformation parameters of U{sub qp}(u{sub 2}). A ro-vibration energy formula and expansion `a la` Dunham are obtained. The aim of the last part is to apply our non rigid rotator model to the rotational collective dynamics of the superdeformed nuclei of the A{approx}130 - 150 and A{approx}190 mass regions and deformed nuclei of the actinide and rare earth series. We adjust the free parameters of our model and compare our results with those from four other models of the non rigid rotator. A comparative analysis is given in terms of transition energies.

  6. Evolution of Structure in Nuclei: Meditation by Sub-Shell Modifications and Relation to Binding Energies

    Science.gov (United States)

    Casten, R. F.; Cakirli, R. B.

    2009-03-01

    Understanding the development of configuration mixing, coherence, collectivity, and deformation in nuclei is one of the crucial challenges in nuclear structure physics, and one which has become all the more important with the advent of next generation facilities for the study of exotic nuclei. We will discuss recent work on phase/shape transitional behavior in nuclei, and the role of changes in sub-shell structure in mediating such transitional regions. We will also discuss a newly found, much deeper, link between nuclear structure and nuclear binding energies.

  7. Experimental studies of actinides in molten salts

    Energy Technology Data Exchange (ETDEWEB)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs.

  8. Neutron nuclear data evaluation for actinide nucleic

    International Nuclear Information System (INIS)

    Chen Guochang; Yu Baosheng; Duan Junfeng; Ge Zhigang; Cao Wentian; Tang Guoyou; Shi Zhaomin; Zou Yubin

    2010-01-01

    The nuclear data with high accuracy for minor actinides are playing an important role in nuclear technology applications, including reactor design and operation, fuel cycle concepts, estimation of the amount of minor actinides in high burn-up reactors and the minor actinides transmutation. Through describe the class of nuclear data and nuclear date library, and introduce the procedure of neutron nuclear data evaluation. 234 U(n, f) and 237 Np(n, 2n) reaction experimental data evaluation was evaluated. The fission nuclear data are updated and improved. (authors)

  9. Experimental studies of actinides in molten salts

    International Nuclear Information System (INIS)

    Reavis, J.G.

    1985-06-01

    This review stresses techniques used in studies of molten salts containing multigram amounts of actinides exhibiting intense alpha activity but little or no penetrating gamma radiation. The preponderance of studies have used halides because oxygen-containing actinide compounds (other than oxides) are generally unstable at high temperatures. Topics discussed here include special enclosures, materials problems, preparation and purification of actinide elements and compounds, and measurements of various properties of the molten volts. Property measurements discussed are phase relationships, vapor pressure, density, viscosity, absorption spectra, electromotive force, and conductance. 188 refs., 17 figs., 6 tabs

  10. Understanding the different rotational behaviors of $^{252}$No and $^{254}$No in terms of high-order deformation

    CERN Document Server

    Liu, H L; Walker, P M

    2012-01-01

    Total Routhian surface calculations have been performed to investigate rapidly rotating transfermium nuclei, the heaviest nuclei accessible by detailed spectroscopy experiments. The observed fast alignment in $^{252}$No and slow alignment in $^{254}$No are well reproduced by the calculations incorporating high-order deformations. The different rotational behaviors of $^{252}$No and $^{254}$No can be understood for the first time in terms of $\\beta_6$ deformation that decreases the energies of the $\

  11. Feasibility studies of actinide recycle in LMFBRs as a waste management alternative

    International Nuclear Information System (INIS)

    Beaman, S.L.; Aitken, E.A.

    1976-01-01

    A strategy of actinide burnup in LMFBRs is being investigated as a waste management alternative to long term storage of high level nuclear waste. This strategy is being evaluated because many of the actinides in the waste from spent-fuel reprocessing have half-lives of thousands of years and an alternative to geological storage may be desired. From a radiological viewpoint, the actinides and their daughters dominate the waste hazard for decay times beyond about 400 years. Actinide burnup in LMFBRs may be an attractive alternative to geological storage because the actinides can be effectively transmuted to fission products which have significantly shorter half-lives. Actinide burnup in LMFBRs rather than LWRs is preferred because the ratio of fission reaction rate to capture reaction rate for the actinides is higher in an LMFBR, and an LMFBR is not so sensitive to the addition of the actinide isotopes. An actinide target assembly recycle scheme is evaluated to determine the effects of the actinides on the LMFBR performance, including local power peaking, breeding ratio, and fissile material requirements. Several schemes are evaluated to identify any major problems associated with reprocessing and fabrication of recycle actinide-containing assemblies. The overall efficiency of actinide burnout in LMFBRs is evaluated, and equilibrium cycle conditions are determined. It is concluded that actinide recycle in LMFBRs offers an attractive alternative to long term storage of the actinides, and does not significantly affect the performance of the host LMFBR. Assuming a 0.1 percent or less actinide loss during reprocessing, a 0.1 percent loss of less during fabrication, and proper recycle schemes, virtually all of the actinides produced by a fission reactor economy could be transmuted in fast reactors

  12. Fusion-fission probabilities, cross sections, and structure notes of superheavy nuclei

    International Nuclear Information System (INIS)

    Kowal, Michał; Cap, Tomasz; Jachimowicz, Piotr; Skalski, Janusz; Siwek-Wilczyńska, Krystyna; Wilczyński, Janusz

    2016-01-01

    Fusion – fission probabilities in the synthesis of heaviest elements are discussed in the context of the latest experimental reports. Cross sections for superheavy nuclei are evaluated using the “Fusion by Diffusion” (FBD) model. Predictive power of this approach is shown for experimentally known Lv and Og isotopes and predictions given for Z = 119, 120. Ground state and saddle point properties as masses, shell corrections, pairing energies, and deformations necessary for cross-section estimations are calculated systematically within the multidimensional microscopic-macroscopic method based on the deformed Woods-Saxon single-particle potential. In the frame of the FBD approach predictions for production of elements heavier than Z = 118 are not too optimistic. For this reason, and because of high instability of superheavy nuclei, we comment on some structure effects, connected with the K-isomerism phenomenon which could lead to a significant increase in the stability of these systems.

  13. Intruder bands in Z = 51 nuclei

    International Nuclear Information System (INIS)

    LaFosse, D.R.

    1993-01-01

    Recent investigations of h 11/2 proton intruder bands in odd 51 Sb nuclei are reported. In addition to experiments performed at SUNY Stony Brook and Chalk River, data from Early Implementation of GAMMASPHERE (analysis in progress) are presented. In particular, the nuclei 109 Sb and 111 Sb are discussed. Rotational bands based on the πh 11/2 orbital coupled to a 2p2h deformed state of the 50 Sn core have been observed. These bands have been observed to high spin, and in the case of 109 Sb to a rotational frequency of 1.4 MeV, the highest frequency observed in a heavy nucleus. The dynamic moments of inertia in these bands decrease slowly with frequency, suggesting a gradual band termination. The systematics of such bands in 109-119 Sb will be discussed

  14. Band structure studies of actinide systems

    International Nuclear Information System (INIS)

    Koelling, D.D.

    1976-01-01

    The nature of the f-orbitals in an actinide system plays a crucial role in determining the electronic properties. It has long been realized that when the actinide separation is small enough for the f-orbitals to interact directly, the system will exhibit itinerant electron properties: an absence of local moment due to the f-orbitals and sometimes even superconductivity. However, a number of systems with the larger actinide separation that should imply local moment behavior also exhibit intinerant properties. Such systems (URh 3 , UIr 3 , UGe 3 , UC) were examined to learn something about the other f-interactions. A preliminary observation made is that there is apparently a very large and ansiotropic mass enhancement in these systems. There is very good reason to believe that this is not solely due to large electron--electron correlations but to a large electron--phonon interaction as well. These features of the ''non-magnetic'', large actinide separation systems are discussed in light of our results to date. Finally, the results of some recent molecular calculations on actinide hexafluorides are used to illustrate the shielding effects on the intra-atomic Coulomb term U/sub f-f/ which would appear in any attempt to study the formation of local moments. As one becomes interested in materials for which a band structure is no longer an adequate model, this screened U/sub ff/ is the significant parameter and efforts must be made to evaluate it in solid state systems

  15. Properties of minor actinide nitrides

    International Nuclear Information System (INIS)

    Takano, Masahide; Itoh, Akinori; Akabori, Mitsuo; Arai, Yasuo; Minato, Kazuo

    2004-01-01

    The present status of the research on properties of minor actinide nitrides for the development of an advanced nuclear fuel cycle based on nitride fuel and pyrochemical reprocessing is described. Some thermal stabilities of Am-based nitrides such as AmN and (Am, Zr)N were mainly investigated. Stabilization effect of ZrN was cleary confirmed for the vaporization and hydrolytic behaviors. New experimental equipments for measuring thermal properties of minor actinide nitrides were also introduced. (author)

  16. ALMR potential for actinide consumption

    International Nuclear Information System (INIS)

    Cockey, C.L.; Thompson, M.L.

    1992-01-01

    The Advanced Liquid Metal Reactor (ALMR) is a US Department of Energy (DOE) sponsored fast reactor design based on the Power Reactor, Innovative Small Module (PRISM) concept originated by General Electric. This reactor combines a high degree of passive safety characteristics with a high level of modularity and factory fabrication to achieve attractive economics. The current reference design is a 471 MWt modular reactor fueled with ternary metal fuel. This paper discusses actinide transmutation core designs that fit the design envelope of the ALMR and utilize spent LWR fuel as startup material and for makeup. Actinide transmutation may be accomplished in the ALMR core by using either a breeding or burning configuration. Lifetime actinide mass consumption is calculated as well as changes in consumption behavior throughout the lifetime of the reactor. Impacts on system operational and safety performance are evaluated in a preliminary fashion. Waste disposal impacts are discussed. (author)

  17. Structure of exotic nuclei by large-scale shell model calculations

    International Nuclear Information System (INIS)

    Utsuno, Yutaka; Otsuka, Takaharu; Mizusaki, Takahiro; Honma, Michio

    2006-01-01

    An extensive large-scale shell-model study is conducted for unstable nuclei around N = 20 and N = 28, aiming to investigate how the shell structure evolves from stable to unstable nuclei and affects the nuclear structure. The structure around N = 20 including the disappearance of the magic number is reproduced systematically, exemplified in the systematics of the electromagnetic moments in the Na isotope chain. As a key ingredient dominating the structure/shell evolution in the exotic nuclei from a general viewpoint, we pay attention to the tensor force. Including a proper strength of the tensor force in the effective interaction, we successfully reproduce the proton shell evolution ranging from N = 20 to 28 without any arbitrary modifications in the interaction and predict the ground state of 42Si to contain a large deformed component

  18. Shape evolution in neutron-rich A ~ 140 nuclei beyond the doubly-magic nucleus 132Sn

    Science.gov (United States)

    Odahara, Atsuko; Eurica Collaboration

    2014-09-01

    Study for the shape evolution enables us to disentangle competition between spherical (single-particle like) shape and deformed (collective-like) shape as a function of neutron number. Neutron-rich nuclei in the northeast region of the doubly-magic 132Sn locates in one of the best mass region where a variety of collective modes, not only prolate deformation but also octupole collectivity, are expected to appear. These neutron-rich A ~140 nuclei were produced by using in-flight fission reaction of the 345 MeV/u 238U86+ beam at RIKEN RI Beam Factory. This experiment was performed in the framework of the EURICA (EUroball RIken Cluster Array) project based on the highly-efficient β- and isomer-decay spectroscopy methods. Around 20 extremely neutron-rich nuclei with Z=51--55 have been studied in this work. New isomers with half lives of longer than hundreds ns were found in some nuclei, such as the neutron-rich Cs isotopes. Also, preliminary results for the β decay of neutron-rich I and Xe isotopes have been obtained. Systematic change of the shape evolution for these neutron-rich isotopes will be discussed.

  19. Actinide recycle potential in the integral fast reactor

    International Nuclear Information System (INIS)

    Chang, Y.I.

    1993-01-01

    The Integral Fast Reactor (IFR) fuel cycle holds promise for substantial improvements in economics, diversion-resistance, and waste management. In the IFR pyroprocessing, minor actinides accompany plutonium product stream, and therefore, actinide recycle occurs naturally. The fast neutron spectrum of the IFR makes it an ideal actinide burner, as well. This paper discusses technical features of the IFR fuel cycle, its technical progress, the development status, and potential implications on long-term waste management

  20. Microscopic and semi-classical treatments of octupole deformation in the light actinides

    International Nuclear Information System (INIS)

    Chasman, R.R.

    1984-01-01

    Microscopic and semi-classical descriptions of octupole deformation are compared. New semi-classical results, obtained with the use of a Woods-Saxon potential are presented. Comparisons with experiment are made. 21 references

  1. The radiological impact of actinides discharged to the Irish Sea

    International Nuclear Information System (INIS)

    Hunt, G.J.; Smith, B.D.

    1999-01-01

    This paper describes the radiological effects of releases of actinides to the Irish Sea from Sellafield, the major source. Exposure pathways to man since the commencement of discharges in 1952 are reviewed; the importance of actinides began to increase with increased discharges in the 1970s. With the demise of the porphyra/laverbread pathway due to transport difficulties, the pathway due to fish and shellfish consumption became critical, particularly for actinides through molluscan shellfish. A reassessment on the current basis of effective dose shows that peak exposures to the critical group of about 2 mSv yr -1 were received in the mid-1970s, about 30% of which was due to actinides. Effective doses have since reduced but the relative importance of actinides is greater, due to the interplay of discharges of radionuclides from Sellafield and their behaviour in the environment. Additive doses through sea food due to releases of natural radionuclides from the Marchon phosphate plant at Whitehaven are also considered, although the actinide component from this source has been small. Exposures due to actinides from Sellafield via other pathways are shown to be much lower than those involving sea food. Collective doses are also considered; these peaked at about 300 man-Sv to the European population (including the UK) in 1979, with only a few percent due to actinides. As in the case of critical group doses, the relative importance of actinides has increased in recent years within the decreasing total collective dose. For both critical group and collective doses, therefore, the actinide component needs to be kept under review. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  2. Magnetic dipole moments of deformed odd-odd nuclei up to 2p-1f shells

    Energy Technology Data Exchange (ETDEWEB)

    Garg, V P; Verma, A K; Gandhi, R; Sharma, S D [Punjabi Univ., Patiala (India). Dept. of Physics

    1981-02-01

    The expression for magnetic moments for the states comprising ground state configurations of odd-odd nuclei has been simplified by excluding mixing of other nucleonic configurations. This is contrary to Sharma's and Davidson's results which had been obtained by diagonalizing state matrices for a set of parameters using Davidov and Filippov's non-axial rotor model. According to the relative directions of spins of unpaired odd nucleons, the nuclei have been classified under four categories-an exercise not attempted till now. The calculations have been done with various quenching factors depending upon the relative spin orientations of odd nucleons. For most of the nuclei, the results show considerable improvement over those of Gallagher and Moszkowski and of Sharma.

  3. Environmental chemistry of the actinide elements

    International Nuclear Information System (INIS)

    Rao Linfeng

    1986-01-01

    The environmental chemistry of the actinide elements is a new branch of science developing with the application of nuclear energy on a larger and larger scale. Various aspects of the environmental chemistry of the actinide elements are briefly reviewed in this paper, such as its significance in the nuclear waste disposal, its coverage of research fields and possible directions for future study

  4. Actinide separations by supported liquid membranes

    International Nuclear Information System (INIS)

    Danesi, P.R.; Horwitz, E.P.; Rickert, P.; Chiarizia, R.

    1984-01-01

    The work has demonstrated that actinide removal from synthetic waste solutions using both flat-sheet and hollow-fiber SLM's is a feasible chemical process at the laboratory scale level. The process is characterized by the typical features of SLM's processes: very small quantities of extractant required; the potential for operations with high feed/strip volume ratios, resulting in a corresponding concentration factor of the actinides; and simplicity of operation. Major obstacles to the implementation of the SLM technology to the decontamination of liquid nuclear wastes are the probable low resistance of polypropylene supports to high radiation fields, which may prevent the application to high-level nuclear wastes; the unknown lifetime of the SLM; and the high Na content of the separated actinide solution

  5. Analysis of large soil samples for actinides

    Science.gov (United States)

    Maxwell, III; Sherrod, L [Aiken, SC

    2009-03-24

    A method of analyzing relatively large soil samples for actinides by employing a separation process that includes cerium fluoride precipitation for removing the soil matrix and precipitates plutonium, americium, and curium with cerium and hydrofluoric acid followed by separating these actinides using chromatography cartridges.

  6. Spin and orbital moments in actinide compounds

    DEFF Research Database (Denmark)

    Lebech, B.; Wulff, M.; Lander, G.H.

    1991-01-01

    The extended spatial distribution of both the transition-metal 3d electrons and the actinide 5f electrons results in a strong interaction between these electron states when the relevant elements are alloyed. A particular interesting feature of this hybridization, which is predicted by single...... experiments designed to determine the magnetic moments at the actinide and transition-metal sublattice sites in compounds such as UFe2, NpCo2, and PuFe2 and to separate the spin and orbital components at the actinide sites. The results show, indeed, that the ratio of the orbital to spin moment is reduced...

  7. Evaluating the efficacy of a minor actinide burner

    International Nuclear Information System (INIS)

    Dobbin, K.D.; Kessler, S.F.; Nelson, J.V.; Omberg, R.P.; Wootan, D.W.

    1993-06-01

    The efficacy of a minor actinide burner can be evaluated by comparing safety and economic parameters to the support ratio. Minor actinide mass produced per unit time in this number of Light Water Reactors (LWRs) can be burned during the same time period in one burner system. The larger the support ratio for a given set of safety and economic parameters, the better. To illustrate this concept, the support ratio for selected Liquid Metal Reactor (LMR) burner core designs was compared with corresponding coolant void worths, a fundamental safety concern following the Chernobyl accident. Results can be used to evaluate the cost in reduced burning of minor actinides caused by LMR sodium void reduction efforts or to compare with other minor actinide burner systems

  8. Production and measurement of minor actinides in the commercial fuel cycle

    International Nuclear Information System (INIS)

    Stanbro, W.D.

    1997-03-01

    The minor actinide elements, particularly neptunium and americium, are produced as a normal byproduct of the operation of thermal power reactors. Because of the existence of long-lived isotopes of these elements, they constitute the major sources of the residual radiation in spent fuel or in wastes resulting from reprocessing. This has led to examinations by some countries of the possibility of separating the minor actinides from waste products. The papers found in this report address the production of minor actinides in common thermal power reactors as well as approaches to measure these materials in various media. The first paper in this volume, open-quotes Production of Minor Actinides in the Commercial Fuel Cycle,close quotes uses calculations with the ORIGEN2 reactor and decay code to estimate the amounts of minor actinides in spent fuel and separated plutonium as a function of reactor irradiation and the time after discharge. The second paper, open-quotes Destructive Assay of Minor Actinides,close quotes describes a number of promising approaches for the chemical analysis of minor actinides in the various forms in which they are found at reprocessing plants. The next paper, open-quotes Hybrid KED/XRF Measurement of Minor Actinides in Reprocessing Plants,close quotes uses the results of a simulation model to examine the possible applications of the hybrid KED/XRF instrument to the determination of minor actinides in some of the solutions found in reprocessing plants. In open-quotes Calorimetric Assay of Minor Actinides,close quotes the authors show some possible extensions of this powerful technique beyond the normal plutonium assays to include the minor actinides. Finally, the last paper in this volume, open-quotes Environment Measurements of Transuranic Nuclides,close quotes discusses what is known about the levels of the minor actinides in the environment and ways to analyze for these materials in environmental matrices

  9. Trends in actinide processing at Hanford

    International Nuclear Information System (INIS)

    Harmon, H.D.

    1993-09-01

    In 1989, the mission at the Hanford Site began a dramatic and sometimes painful transition. The days of production--as we used to know it--are over. Our mission officially has become waste management and environmental cleanup. This mission change didn't eliminate many jobs--in fact, budgets have grown dramatically to support the new mission. Most all of the same skilled crafts, engineers, and scientists are still required for the new mission. This change has not eliminated the need for actinide processing, but it has certainly changed the focus that our actinide chemists and process engineers have. The focus used to be on such things as increasing capacity, improving separations efficiency, and product purity. Minimizing waste had become a more important theme in recent years and it is still a very important concept in the waste management and environmental cleanup arena. However, at Hanford, a new set of words dominates the actinide process scene as we work to deal with actinides that still reside in a variety of forms at the Hanford Site. These words are repackage, stabilize, remove, store and dispose. Some key activities in each of these areas are described in this report

  10. Conversion electron spectroscopy in transfermium nuclei

    International Nuclear Information System (INIS)

    Herzberg, R.D.

    2003-01-01

    Conversion electron spectroscopy is an essential tool for the spectroscopy of heavy deformed nuclei. The conversion electron spectrometer SACRED has been used in conjunction with the gas-filled recoil separator RITU to study conversion electron cascades in 254 No. The spectra reveal the ground state rotational bands down to low spin. A detailed analysis of the background seen for 254 No shows that approximately 40% of the decay path goes via excited high K bands which may be built on an isomer. (orig.)

  11. Low-spin identical bands in neighboring odd-A and even-even nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Winchell, D.F.; Garrett, J.D.; Smith, A.

    1992-01-01

    A comprehensive study of odd-A rotational bands in normally deformed rare-earth nuclei indicates that a large number of seniority-one configurations (21% for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models of nuclear pair correlation, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority

  12. Isovector pairing in self-conjugate nuclei in a formalism of quartets

    International Nuclear Information System (INIS)

    Sambataro, M; Sandulescu, N

    2014-01-01

    The isovector proton-neutron pairing in self-conjugate nuclei is treated in a formalism of quartets. Quartets are four-body correlated structures built from two neutrons and two protons coupled to total isospin T = 0. The ground state of the isovector pairing Hamiltonian is described as a product of quartets. We review both the case in which the quartets are constrained to be all identical and the case in which they are allowed to be distinct from one another. The quality of the two approaches is tested by making comparisons with exact shell model calculations for N = Z nuclei with valence nucleons outside the 16 O, 40 Ca, and 100 Sn cores. We consider both spherical and axially deformed mean fields. Both approaches are found to be very accurate. In the applications to a deformed mean field, in particular, the formalism with distinct quartets gives rise to results which are basically exact

  13. Subcritical limits for special fissile actinides

    International Nuclear Information System (INIS)

    Clark, H.K.

    1980-01-01

    Critical masses and subcritical mass limits in oxide-water mixtures were calculated for actinide nuclides other than /sup 233/U, /sup 235/U, and /sup 239/Pu that have an odd number of neutrons in the nucleus; S/sub n/ transport theory was used together with cross sections, drawn from the GLASS multigroup library, developed to provide accurate forecasts of actinide production at Savannah River

  14. Transmutation of actinides in power reactors.

    Science.gov (United States)

    Bergelson, B R; Gerasimov, A S; Tikhomirov, G V

    2005-01-01

    Power reactors can be used for partial short-term transmutation of radwaste. This transmutation is beneficial in terms of subsequent storage conditions for spent fuel in long-term storage facilities. CANDU-type reactors can transmute the main minor actinides from two or three reactors of the VVER-1000 type. A VVER-1000-type reactor can operate in a self-service mode with transmutation of its own actinides.

  15. Separation of actinides and their transmutation

    International Nuclear Information System (INIS)

    Bouchard, M.; Bathelier, M.; Cousin, M.

    1978-08-01

    Neutron irradiation of long-half-life actinides for transmutation into elements with shorter half-life is investigated as a means to reduce the long-term hazards of these actinides. The effectiveness of the method is analysed by applying it to fission product solutions from the first extraction cycle of fuel reprocessing plants. Basic principles, separation techniques and transmutation efficiencies are studied and discussed in detail

  16. Nuclear level density of 166Er with static deformation

    International Nuclear Information System (INIS)

    Nasrabadi, M.N.

    2006-01-01

    The level densities of 166 Er is calculated using the microscopic theory of interacting fermions and is compared with experimental. It is concluded that the data can be reproduced with level density formalism for nuclei with static deformation

  17. Synthesis and radioactive properties of the heaviest nuclei

    International Nuclear Information System (INIS)

    Oganesyan, Yu.Ts.

    1996-01-01

    Experimental investigations on the synthesis and study of properties of faraway transactinide elements confirm the predictions of macro-microscopic theory on the existence of closed shells in the region of heavy deformed nuclei. It has been demonstrated experimentally that nuclear structure plays a decisive role in the stability of superheavy nuclides. Based on the experimental confirmation of the main provisions of the theory and after the introduction of a necessary correction into the calculation the properties of heavier nuclides in the region of spherical shells Z=114 and N=180-184 have been predicted. Here a substantial increase in the stability of nuclei is also expected. All the nuclei synthesized by now, were obtained in fusion reactions with a formation of a compound nucleus, the transition of which to the ground state takes place with the emission of neutrons and gamma-rays. Both the reactions of cold and hot fusion of nuclei can be used for the synthesis of new nuclei. Nevertheless, new experimental data on the fusion mechanism are required, since a number of theoretical descriptions of the fusion dynamics of complex nuclear systems need a substantial revising. One can assume that the reactions of the type 244 Pu, 248 Cm + 48 Ca are still within the current potential of the accelerators and experimental technique. This potential, nevertheless, is still to be implemented. 37 refs., 6 figs

  18. Study on remain actinides recovery in pyro reprocessing

    International Nuclear Information System (INIS)

    Suharto, Bambang

    1996-01-01

    The spent fuel reprocessing by dry process called pyro reprocessing have been studied. Most of U, Pu and MA (minor actinides) from the spent fuel will be recovered and be fed back to the reactor as new fuel. Accumulation of remain actinides will be separated by extraction process with liquid cadmium solvent. The research was conducted by computer simulation to calculate the stage number required. The calculation's results showed on the 20 stages extractor more than 99% actinides can be separated. (author)

  19. Lifetime of spherical and deformed states in 1f7/2 nuclei

    International Nuclear Information System (INIS)

    Medina, N.H.; Ribas, R.V.; Oliveira, J.R.B.; Brandolini, F.; Lenzi, S.M.; Ur, C.A.; Bazzacco, D.; Menegazzo, R.; Pavan, P.; Rossi A, C.; Napoli, D.R.; Marginean, N.; Angelis, G. De; Poli, M. De; Martinez, T.; Algora P, A.; Gadea, A.; Farnea, E.; Bucurescu, D.; Ionescu B, M.; Iordachescu, A.; Cameron, J.A.; Kasemann, S.; Schneider, I.; Espino, J.M.; Poves, A.; Sanchez S, J.

    2001-01-01

    Full text: An extensive experimental study of the structure of the N ≅ Z 1f 7/2 shell nuclei is going on at LNL, using the GASP gamma-spectrometer. An essential part of this program is aimed at the determination of good quality electromagnetic moments for monitoring rotational collectivity and single particle properties. For this purpose precise DSAM lifetimes were deduced for many levels with the new procedure named Narrow Gate on Transition Below, which avoids the influence of side feeding. In this contribution we report, in particular, lifetime measurements in the N ≅ Z nuclei 46 48 V, and 46 Ti. The data were obtained from the reactions: 28 Si on 28 Si, and 28 Si on 24 Mg at 115 MeV. The targets consisted of a layer of about 0.8 mg/cm 2 backed with Au or Pb. The experimental results for levels with natural parity agree very well with Shell Model (SM) calculations in the full f p configuration space with respect to energies B(E2) and B(E1) values of all observed levels. Big efforts have been made to interpret SM in terms of collective models, developing new tools and approaches. Another well described feature is the loss of collectivity when approaching band termination in the 1f 7/2 shell. The N=Z 46 V nuclei is very peculiar because of the coexistence at low excitation energy of natural parity T=1 states with T=0 and unnatural parity states. Some new transitions have been observed, and lifetime values could be obtained for about 15 transitions. The yrast structure for the 48 V nucleus can be classified as a K = 4 + band, obtained by a parallel coupling of the π[321]3/2 - and υ[312]5/2 - . The strong variation in signature splitting in this band may indicate a change of triaxiality. The low lying negative parity levels can be grouped in two strongly coupled rotational bands with K = 4 - and K = 1 - , which are given by parallel and antiparallel coupling of π [203]3/2 - and υ [312]5/2 - orbitals, respectively. Life times have been determined for 24

  20. Use of fast-spectrum reactors for actinide burning

    International Nuclear Information System (INIS)

    Chang, Yoon I.

    1991-01-01

    Finally, Integral Fast Reactor (IFR) pyroprocessing has been developed only in recent years and it appears to have potential as a relatively uncomplicated, effective actinide recovery process. In fact, actinide recycling occurs naturally in the IFR fuel cycle. Although still very much developmental, the entire IFR fuel cycle will be demonstrated on prototype-scale in conjunction with the EBR-II and its refurbished Fuel Cycle Facility starting in late 1991. A logical extension to this work, therefore, is to establish whether this IFR pyrochemical processing can be applied to extracting actinides from LWR spent fuel. This paper summarizes current thinking on the rationale for actinide recycle, its ramifications on the geologic repository and the current high-level waste management plans, and the necessary development programs. 4 figs., 4 tabs

  1. The effect of corrosion product colloids on actinide transport

    International Nuclear Information System (INIS)

    Gardiner, M.P.; Smith, A.J.; Williams, S.J.

    1992-01-01

    The near field of the proposed UK repository for ILW/LLW will contain containers of conditioned waste in contact with a cementious backfill. It will contain significant quantities of iron and steel, Magnox and Zircaloy. Colloids deriving from their corrosion products may possess significant sorption capacity for radioelements. If the colloids are mobile in the groundwater flow, they could act as a significant vector for activity transport into the far field. The desorption of plutonium and americium from colloidal corrosion products of iron and zirconium has been studied under chemical conditions representing the transition from the near field to the far field. Desorption R d values of ≥ 5 x 10 6 ml g -1 were measured for both actinides on these oxides and hydroxides when actinide sorption took place under the near-field conditions and desorption took place under the far-field conditions. Desorption of the actinides occurred slowly from the colloids under far-field conditions when the colloids had low loadings of actinide and more quickly at high loadings of actinide. Desorbed actinide was lost to the walls of the experimental vessel. (author)

  2. Disposition of actinides released from high-level waste glass

    International Nuclear Information System (INIS)

    Ebert, W.L.; Bates, J.K.; Buck, E.C.; Gong, M.; Wolf, S.F.

    1994-01-01

    The disposition of actinide elements released from high-level waste glasses into a tuff groundwater in laboratory tests at 90 degrees C at various glass surface area/leachant volume ratios (S/V) between dissolved, suspended, and sorbed fractions has been measured. While the maximum release of actinides is controlled by the corrosion rate of the glass matrix, their solubility and sorption behavior affects the amounts present in potentially mobile phases. Actinide solubilities are affected by the solution pH and the presence of complexants released from the glass, such as sulfate, phosphate, and chloride, radiolytic products, such as nitrate and nitrite, and carbonate. Sorption onto inorganic colloids formed during lass corrosion may increase the amounts of actinides in solution, although subsequent sedimentation of these colloids under static conditions leads to a significant reduction in the amount of actinides in solution. The solution chemistry and observed actinide behavior depend on the S/V of the test. Tests at high S/V lead to higher pH values, greater complexant concentrations, and generate colloids more quickly than tests at low S/V. The S/V also affects the rate of glass corrosion

  3. Research on the actinide chemistry in Nuclear Fuel Cycle

    Energy Technology Data Exchange (ETDEWEB)

    Song, Kyseok; Park, Yong Joon; Cho, Young Hwan; and others

    2012-04-15

    Fundamental technique to measure chemical behaviors and properties of lanthanide and actinide in radioactive waste is necessary for the development of pryochemical process. First stage, the electrochemical/spectroscopic integrated measurement system was designed and set up for spectro-electrochemical measurements of lanthanide and actinide ions in high temperature molten salt media. A compact electrochemical cell and electrode system was also developed for the minimization of reactants, and consequently minimization of radioactive waste generation. By applying these equipments, oxidation and reduction behavior of lanthanide and actinide ions in molten salt media have been made. Also, thermodynamic parameter values are determined by interpreting the results obtained from electrochemical measurements. Several lanthanide ions exhibited fluorescence properties in molten salt. Also, UV-VIS measurement provided the detailed information regarding the oxidation states of lanthanide and actinide ions in high temperature molten salt media. In the second stage, measurement system for physical properties at pyrochemical process such as viscosity, melting point and conductivity is established, and property database at different compositions of lanthanide and actinide is collected. And, both interactions between elements and properties with different potential are measured at binary composition of actinide-lanthanide in molten salt using electrochemical/spectroscopic integrated measurement system.

  4. Analysis of the Gas Core Actinide Transmutation Reactor (GCATR)

    Science.gov (United States)

    Clement, J. D.; Rust, J. H.

    1977-01-01

    Design power plant studies were carried out for two applications of the plasma core reactor: (1) As a breeder reactor, (2) As a reactor able to transmute actinides effectively. In addition to the above applications the reactor produced electrical power with a high efficiency. A reactor subsystem was designed for each of the two applications. For the breeder reactor, neutronics calculations were carried out for a U-233 plasma core with a molten salt breeding blanket. A reactor was designed with a low critical mass (less than a few hundred kilograms U-233) and a breeding ratio of 1.01. The plasma core actinide transmutation reactor was designed to transmute the nuclear waste from conventional LWR's. The spent fuel is reprocessed during which 100% of Np, Am, Cm, and higher actinides are separated from the other components. These actinides are then manufactured as oxides into zirconium clad fuel rods and charged as fuel assemblies in the reflector region of the plasma core actinide transmutation reactor. In the equilibrium cycle, about 7% of the actinides are directly fissioned away, while about 31% are removed by reprocessing.

  5. Problem of α-clustering levels in heavy nuclei

    International Nuclear Information System (INIS)

    Kadmenskij, V.G.; Kadmenskij, S.G.; Kurgalin, S.D.; Furman, V.I.

    1982-01-01

    From the optical model analysis of elastic scattering and absorption cross sections of α-particles including the (n,α) reaction induced by resonance neutrons it may be concluded that the conception of black nucleus is valid for α-particles. It was shown that the magnitudes of α-particle surface spectroscopic factors did not exceed 10sup(-2) for all the known α-transitions both in spherical and deformed heavy nuclei accounting for the ambiguities of the optical model potential. The possibilities of extracting the α-particles form factors of low-lying nuclear states from α-transfer reaction data are considered. From all the data considered it is concluded that there is no evidence for the revealing of α-clustering levels in heavy nuclei. (author)

  6. Nonaqueous method for dissolving lanthanide and actinide metals

    International Nuclear Information System (INIS)

    Crisler, L.R.

    1975-01-01

    Lanthanide and actinide beta-diketonate complex molecular compounds are produced by reacting a beta-diketone compound with a lanthanide or actinide element in the elemental metallic state in a mixture of carbon tetrachloride and methanol

  7. Biotransformation of uranium and other actinides in radioactive wastes

    International Nuclear Information System (INIS)

    Francis, A.J.

    1998-01-01

    Microorganisms affect the solubility, bioavailability, and mobility of actinides in radioactive wastes. Under appropriate conditions, actinides are solubilized or stabilized by the direct enzymatic or indirect nonenzymatic actions of microorganisms. Biotransformation of various forms of uranium (ionic, inorganic, and organic complexes) by aerobic and anaerobic microorganisms has been extensively studied, whereas limited information is available on other important actinides (Th, Np, Pu, and Am). Fundamental information on the mechanisms of biotransformation of actinides by microbes under various environmental conditions will be useful in predicting the long-term performance of waste repositories and in developing strategies for waste management and remediation of contaminated sites. (orig.)

  8. Study on rotational bands in odd-odd nuclei 102,l04Nb by using PSM

    International Nuclear Information System (INIS)

    Dong Yongsheng; Hu Wentao; Feng Youliang; Wang Jinbao; Yu Shaoying; Shen Caiwan

    2012-01-01

    The Projected Shell Model (PSM) is used to study the low energy scheme of the neutron-rich normal-deformed isotopes of odd-odd nuclei 102,104 Nb. The quasiparticle configuration is assigned. The theoretical calculations of the energy band of 102,104 Nb could well reproduce the experimental data. It is shown that PSM is a valid method for studying the low energy scheme of heavy nuclei. (authors)

  9. Strategies for minority actinides transmutation in fast reactors

    International Nuclear Information System (INIS)

    Perez-Martin, S.; Martin-Fuertes, F.; Alvarez-Velarde, F.

    2010-01-01

    Presentation of the strategies that can be followed in fast reactors designed for the fourth generation to reduce the inventory of minority actinides generated in current light water reactors, as the actinides generation in fast reactor.

  10. Actinide-handling experience for training and education of future expert under J-ACTINET

    International Nuclear Information System (INIS)

    Osaka, Masahiko; Sato, Isamu; Miwa, Shuhei; Konashi, Kenji; Li, Dexin; Homma, Yoshiya; Yamamura, Tomoo; Hayashi, Hirokazu; Minato, Kazuo; Sekimoto, Syun; Kubota, Takumi; Fukutani, Satoshi; Hori, Junichi; Okumura, Ryo; Uehara, Akihiro; Fujii, Toshiyuki; Yamana, Hajimu; Kurosaki, Ken; Muta, Hiroaki; Ohishi, Yuji; Yamanaka, Shinsuke; Uno, Masayoshi; Yaita, Tsuyoshi

    2011-01-01

    Summer schools for future experts have successfully been completed under Japan Actinide Network (J-ACTINET) for the purpose of development of human resources who are expected to be engaged in every areas of actinide-research/engineering. The first summer school was held in Ibaraki-area in August 2009, followed by the second one in Kansai-area in August 2010. Two summer schools have focused on actual experiences of actinides in actinide-research fields for university students and young researchers/engineers as an introductory course of actinide-researches. Many efforts were made to awaken interests into actinide-researches inside the participants during short periods of schools, 3 to 4 days. As actinides must be handled inside special apparatuses such as an air-tight globe-box with well-trained and qualified technicians, programs were optimized for effective experiences of actinides-handling. Several quasi actinide-handling experiences at the actinide-research fields have attracted attentions of participants at the first school in Ibaraki-area. The actual experiments using actinides-containing solutions have been carried out at the second school in Kansai-area. Future summer schools will be held every year for the sustainable human resource development in various actinide-research fields, together with other training and education programs conducted by the J-ACTINET. (author)

  11. Actinide separation chemistry in nuclear waste streams and materials

    International Nuclear Information System (INIS)

    1997-12-01

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  12. Actinide separation chemistry in nuclear waste streams and materials

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    The separation of actinide elements from various waste materials, produced either in nuclear fuel cycles or in past nuclear weapons production, represents a significant issue facing developed countries. Improvements in the efficiencies of the separation processes can be expected to occur as a result of better knowledge of the elements in these complex matrices. The Nuclear Science Committee of the OECD/NEA has established a task force of experts in actinide separation chemistry to review current and developing separation techniques and chemical processes. The report consist of eight chapters. In Chapter 1 the importance of actinide separation chemistry in the fields of waste management and its background are summarized.In Chapter 2 the types of waste streams are classified according to their relative importance, by physical form and by source of actinides. The basic data of actinide chemical thermodynamics, such as oxidation states, hydrolysis, complexation, sorption, Gibbs energies of formation, and volatility, were collected and are presented in Chapter 3. Actinide analyses related to separation processes are also mentioned in this chapter. The state of the art of actinide separation chemistry is classified in three groups, including hydrometallurgy, pyrochemical process and process based on fields, and is described in Chapter 4 along with the relationship of kinetics to separations. In Chapter 5 basic chemistry research needs and the inherent limitation on separation processes are discussed. Prioritization of research and development is discussed in Chapter 6 in the context of several attributes of waste management problems. These attributes include: mass or volume of waste; concentration of the actinide in the waste; expected difficulty of treating the wastes; short-term hazard of the waste; long-term hazard of the waste; projected cost of treatment; amount of secondary waste. Based on the priority, recommendations were made for the direction of future research

  13. High-spin states in the transitional odd-odd nuclei 150Eu and 152Tb

    International Nuclear Information System (INIS)

    Barneoud, D.; Foin, C.; Pinston, J.A.; Monnand, E.

    1983-06-01

    The ( 7 Li, 5n) and ( 11 B, 5n) reactions have been used to study the high-spin states in the two odd-odd nuclei 150 Eu and 152 Tb. Three decoupled bands have been evidenced in each nucleus belonging to the same configurations [f 7/2]sub(n) [h 11/2]sub(p), [h 9/2]sub(n) [h 11/2 ]sub(p) and [i 13/2]sub(n) [h 11/2]sub(p). The latter one is well developped and improves our knowledge of this system between the spherical and deformed region. The analysis of the collective moment of inertia and transition ratios strongly suggests an increase of the deformation when the rotational frequency increases in these two transitional nuclei 150 Eu and 152 Tb

  14. Impact of minor actinide recycling on sustainable fuel cycle options

    Energy Technology Data Exchange (ETDEWEB)

    Heidet, F.; Kim, T. K.; Taiwo, T. A.

    2017-11-01

    The recent Evaluation and Screening study chartered by the U.S. Department of Energy, Office of Nuclear Energy, has identified four fuel cycle options as being the most promising. Among these four options, the two single-stage fuel cycles rely on a fast reactor and are differing in the fact that in one case only uranium and plutonium are recycled while in the other case minor actinides are also recycled. The two other fuel cycles are two-stage and rely on both fast and thermal reactors. They also differ in the fact that in one case only uranium and plutonium are recycled while in the other case minor actinides are also recycled. The current study assesses the impact of recycling minor actinides on the reactor core design, its performance characteristics, and the characteristics of the recycled material and waste material. The recycling of minor actinides is found not to affect the reactor core performance, as long as the same cycle length, core layout and specific power are being used. One notable difference is that the required transuranics (TRU) content is slightly increased when minor actinides are recycled. The mass flows are mostly unchanged given a same specific power and cycle length. Although the material mass flows and reactor performance characteristics are hardly affected by recycling minor actinides, some differences are observed in the waste characteristics between the two fuel cycles considered. The absence of minor actinides in the waste results in a different buildup of decay products, and in somewhat different behaviors depending on the characteristic and time frame considered. Recycling of minor actinides is found to result in a reduction of the waste characteristics ranging from 10% to 90%. These results are consistent with previous studies in this domain and depending on the time frame considered, packaging conditions, repository site, repository strategy, the differences observed in the waste characteristics could be beneficial and help improve

  15. Deformation dependence of the isovector giant dipole resonance: The neodymium isotopic chain revisited

    Science.gov (United States)

    Donaldson, L. M.; Bertulani, C. A.; Carter, J.; Nesterenko, V. O.; von Neumann-Cosel, P.; Neveling, R.; Ponomarev, V. Yu.; Reinhard, P.-G.; Usman, I. T.; Adsley, P.; Brummer, J. W.; Buthelezi, E. Z.; Cooper, G. R. J.; Fearick, R. W.; Förtsch, S. V.; Fujita, H.; Fujita, Y.; Jingo, M.; Kleinig, W.; Kureba, C. O.; Kvasil, J.; Latif, M.; Li, K. C. W.; Mira, J. P.; Nemulodi, F.; Papka, P.; Pellegri, L.; Pietralla, N.; Richter, A.; Sideras-Haddad, E.; Smit, F. D.; Steyn, G. F.; Swartz, J. A.; Tamii, A.

    2018-01-01

    Proton inelastic scattering experiments at energy Ep = 200 MeV and a spectrometer scattering angle of 0° were performed on 144,146,148,150Nd and 152Sm exciting the IsoVector Giant Dipole Resonance (IVGDR). Comparison with results from photo-absorption experiments reveals a shift of resonance maxima towards higher energies for vibrational and transitional nuclei. The extracted photo-absorption cross sections in the most deformed nuclei, 150Nd and 152Sm, exhibit a pronounced asymmetry rather than a distinct double-hump structure expected as a signature of K-splitting. This behaviour may be related to the proximity of these nuclei to the critical point of the phase shape transition from vibrators to rotors with a soft quadrupole deformation potential. Self-consistent random-phase approximation (RPA) calculations using the SLy6 Skyrme force provide a relevant description of the IVGDR shapes deduced from the present data.

  16. Proceedings of the symposium Actinides 2006 - Basic Science, Applications and Technology

    International Nuclear Information System (INIS)

    Blobaum, Kerri J.M.; Chandler, Elaine A.; Havela, Ladislav; Maple, M. Brian; Neu, Mary P.

    2007-01-01

    These proceedings from the September 2006 symposium includes papers presented on experimental and modeling work with the intention of broadening understanding of the field of actinide research. Actinides have gained attention recently because of their roles in the threat of nuclear terrorism (e.g., 'dirty bombs') and the use of nuclear power to offset fossil fuel consumption. Actinide science is the study of the elements with atomic numbers in the range of 90 to 103, which includes uranium and plutonium. Beyond the well-known nuclear reactions of these heavy radioactive metals, the large electron clouds with 5f electrons in the outer shell yield fascinating and complex chemistries, crystal structures, and physical properties. Traditionally, actinide research has been divided among three scientific disciplines: chemistry (nuclear chemistry and radiochemistry); physics (condensed matter physics and electronic structure); and materials science (metallurgy). Modern actinide research, however, has become an interdisciplinary blend of these traditional fields, and it also incorporates developing fields such as environmental chemistry and superconductivity. Improved scientific understanding of actinides is needed for development of materials for actinide detection and nuclear fuels, and for safer management of nuclear waste. Recently, there has been a resurgence of actinide science at national laboratories and universities. The current multidisciplinary approach to actinide science lays the groundwork for understanding the connection between the 5f electronic structure and observed chemical reactions and physical properties such as structural phase transformations and novel ground states. This work provides many opportunities for new researchers in actinide science. These proceedings gather 25 selected papers among the 53 presentations given at this symposium

  17. Heavy-ion transfer to high-spin states

    International Nuclear Information System (INIS)

    Lauterbach, C.

    1985-01-01

    Transfer reactions between very heavy ions, in particular about systems in which one or both collision partners are well deformed, are studied. These systems are expected to give rise to new phenomena which are related to the fact that the deformed nucleus has been Coulomb excited to a rotational or vibrational state at the time when the collision partners come into contact. In this paper the authors present results of experiments in which nuclei from the rare earth and the actinide region have been bombarded by various projectiles ranging from 34 S to 208 Pb at incident energies close to the Coulomb barrier. (Auth.)

  18. Cluster configuration and super deformation in f-p shell nuclei

    International Nuclear Information System (INIS)

    Shanmugam, G.; Santhosh Kumar, S.; Chintalapudi, S.N.; Benjamin, G.A.

    1996-01-01

    The aim of this work was to perform three oxygen clusters calculation for excited 48 Cr, to do a Cranked Nilsson Strutinsky calculations for it and to compare the results so as to look for super deformations

  19. Casting of metallic fuel containing minor actinide additions

    International Nuclear Information System (INIS)

    Trybus, C.L.; Henslee, S.P.; Sanecki, J.E.

    1992-01-01

    A significant attribute of the Integral Fast Reactor (IFR) concept is the transmutation of long-lived minor actinide fission products. These isotopes require isolation for thousands of years, and if they could be removed from the waste, disposal problems would be reduced. The IFR utilizes pyroprocessing of metallic fuel to separate auranium, plutonium, and the minor actinides from nonfissionable constituents. These materials are reintroduced into the fuel and reirradiated. Spent IFR fuel is expected to contain low levels of americium, neptunium, and curium because the hard neutron spectrum should transmute these isotopes as they are produced. This opens the possibility of using an IFR to trnasmute minor actinide waste from conventional light water reactors (LWRs). A standard IFR fuel is based on the alloy U-20% Pu-10% Zr (in weight percent). A metallic fuel system eases the requirements for reprocessing methods and enables the minor actinide metals to be incorporated into the fuel with simple modifications to the basic fuel casting process. In this paper, the authors report the initial casting experience with minor actinide element addition to an IFR U-Pu-Zr metallic fuel

  20. Low-spin identical bands in neighboring odd-A and even-even nuclei

    International Nuclear Information System (INIS)

    Baktash, C.; Winchell, D.F.; Garrett, J.D.; Smith, A.

    1993-01-01

    A comprehensive study of odd-A rotational bands in normally deformed rare-earth nuclei indicates that a large number of seniority-one configurations (21 % for odd-Z nuclei) at low spin have moments of inertia nearly identical to that of the seniority-zero configuration of the neighboring even-even nucleus with one less nucleon. It is difficult to reconcile these results with conventional models of nuclear pair correlation, which predict variations of about 15% in the moments of inertia of configurations differing by one unit in seniority. (orig.)