WorldWideScience

Sample records for deformation features pdfs

  1. Scanning electron microscope cathodoluminescence imaging of subgrain boundaries, twins and planar deformation features in quartz

    Science.gov (United States)

    Hamers, M. F.; Pennock, G. M.; Drury, M. R.

    2017-04-01

    The study of deformation features has been of great importance to determine deformation mechanisms in quartz. Relevant microstructures in both growth and deformation processes include dislocations, subgrains, subgrain boundaries, Brazil and Dauphiné twins and planar deformation features (PDFs). Dislocations and twin boundaries are most commonly imaged using a transmission electron microscope (TEM), because these cannot directly be observed using light microscopy, in contrast to PDFs. Here, we show that red-filtered cathodoluminescence imaging in a scanning electron microscope (SEM) is a useful method to visualise subgrain boundaries, Brazil and Dauphiné twin boundaries. Because standard petrographic thin sections can be studied in the SEM, the observed structures can be directly and easily correlated to light microscopy studies. In contrast to TEM preparation methods, SEM techniques are non-destructive to the area of interest on a petrographic thin section.

  2. Distinction between amorphous and healed planar deformation features in shocked quartz using composite color scanning electron microscope cathodoluminescence (SEM-CL) imaging

    Science.gov (United States)

    Hamers, Maartje F.; Pennock, Gill M.; Herwegh, Marco; Drury, Martyn R.

    2016-10-01

    Planar deformation features (PDFs) in quartz are one of the most reliable and most widely used forms of evidence for hypervelocity impact. PDFs can be identified in scanning electron microscope cathodoluminescence (SEM-CL) images, but not all PDFs show the same CL behavior: there are nonluminescent and red luminescent PDFs. This study aims to explain the origin of the different CL emissions in PDFs. Focused ion beam (FIB) thin foils were prepared of specific sample locations selected in composite color SEM-CL images and were analyzed in a transmission electron microscope (TEM). The FIB preparation technique allowed a direct, often one-to-one correlation between the CL images and the defect structure observed in TEM. This correlation shows that composite color SEM-CL imaging allows distinction between amorphous PDFs on one hand and healed PDFs and basal Brazil twins on the other: nonluminescent PDFs are amorphous, while healed PDFs and basal Brazil twins are red luminescent, with a dominant emission peak at 650 nm. We suggest that the red luminescence is the result of preferential beam damage along dislocations, fluid inclusions, and twin boundaries. Furthermore, a high-pressure phase (possibly stishovite) in PDFs can be detected in color SEM-CL images by its blue luminescence.

  3. Three sets of crystallographic sub-planar structures in quartz formed by tectonic deformation

    Science.gov (United States)

    Derez, Tine; Pennock, Gill; Drury, Martyn; Sintubin, Manuel

    2016-05-01

    In quartz, multiple sets of fine planar deformation microstructures that have specific crystallographic orientations parallel to planes with low Miller-Bravais indices are commonly considered as shock-induced planar deformation features (PDFs) diagnostic of shock metamorphism. Using polarized light microscopy, we demonstrate that up to three sets of tectonically induced sub-planar fine extinction bands (FEBs), sub-parallel to the basal, γ, ω, and π crystallographic planes, are common in vein quartz in low-grade tectonometamorphic settings. We conclude that the observation of multiple (2-3) sets of fine scale, closely spaced, crystallographically controlled, sub-planar microstructures is not sufficient to unambiguously distinguish PDFs from tectonic FEBs.

  4. Estimating average shock pressures recorded by impactite samples based on universal stage investigations of planar deformation features in quartz - Sources of error and recommendations

    Science.gov (United States)

    Holm-Alwmark, S.; Ferrière, L.; Alwmark, C.; Poelchau, M. H.

    2018-01-01

    Planar deformation features (PDFs) in quartz are the most widely used indicator of shock metamorphism in terrestrial rocks. They can also be used for estimating average shock pressures that quartz-bearing rocks have been subjected to. Here we report on a number of observations and problems that we have encountered when performing universal stage measurements and crystallographically indexing of PDF orientations in quartz. These include a comparison between manual and automated methods of indexing PDFs, an evaluation of the new stereographic projection template, and observations regarding the PDF statistics related to the c-axis position and rhombohedral plane symmetry. We further discuss the implications that our findings have for shock barometry studies. Our study shows that the currently used stereographic projection template for indexing PDFs in quartz might induce an overestimation of rhombohedral planes with low Miller-Bravais indices. We suggest, based on a comparison of different shock barometry methods, that a unified method of assigning shock pressures to samples based on PDFs in quartz is necessary to allow comparison of data sets. This method needs to take into account not only the average number of PDF sets/grain but also the number of high Miller-Bravais index planes, both of which are important factors according to our study. Finally, we present a suggestion for such a method (which is valid for nonporous quartz-bearing rock types), which consists of assigning quartz grains into types (A-E) based on the PDF orientation pattern, and then calculation of a mean shock pressure for each sample.

  5. Specialized minimal PDFs for optimized LHC calculations

    NARCIS (Netherlands)

    Carrazza, Stefano; Forte, Stefano; Kassabov, Zahari; Rojo, Juan

    2016-01-01

    We present a methodology for the construction of parton distribution functions (PDFs) designed to provide an accurate representation of PDF uncertainties for specific processes or classes of processes with a minimal number of PDF error sets: specialized minimal PDF sets, or SM-PDFs. We construct

  6. Specialized minimal PDFs for optimized LHC calculations

    CERN Document Server

    Carrazza, Stefano; Kassabov, Zahari; Rojo, Juan

    2016-04-15

    We present a methodology for the construction of parton distribution functions (PDFs) designed to provide an accurate representation of PDF uncertainties for specific processes or classes of processes with a minimal number of PDF error sets: specialized minimal PDF sets, or SM-PDFs. We construct these SM-PDFs in such a way that sets corresponding to different input processes can be combined without losing information, specifically on their correlations, and that they are robust upon smooth variations of the kinematic cuts. The proposed strategy never discards information, so that the SM-PDF sets can be enlarged by the addition of new processes, until the prior PDF set is eventually recovered for a large enough set of processes. We illustrate the method by producing SM-PDFs tailored to Higgs, top quark pair, and electroweak gauge boson physics, and determine that, when the PDF4LHC15 combined set is used as the prior, around 11, 4 and 11 Hessian eigenvectors respectively are enough to fully describe the corresp...

  7. A critical appraisal and evaluation of modern PDFs

    Energy Technology Data Exchange (ETDEWEB)

    Accardi, A. [Hampton University, Hampton, VA (United States); Jefferson Lab, Newport News, VA (United States); Alekhin, S. [Universitaet Hamburg, II. Institut fuer Theoretische Physik, Hamburg (Germany); Institute for High Energy Physics, Protvino, Moscow region (Russian Federation); Bluemlein, J. [Deutsches Elektronensynchrotron DESY, Zeuthen (Germany); Garzelli, M.V.; Moch, S. [Universitaet Hamburg, II. Institut fuer Theoretische Physik, Hamburg (Germany); Lipka, K.; Placakyte, R.; Zenaiev, O. [Deutsches Elektronensynchrotron DESY, Hamburg (Germany); Melnitchouk, W.; Sato, N. [Jefferson Lab, Newport News, VA (United States); Owens, J.F. [Florida State University, Tallahassee, FL (United States); Reya, E. [Technische Universitaet Dortmund, Institut fuer Physik, Dortmund (Germany); Vogt, A. [University of Liverpool, Department of Mathematical Sciences, Liverpool (United Kingdom)

    2016-08-15

    We review the present status of the determination of parton distribution functions (PDFs) in the light of the precision requirements for the LHC in Run 2 and other future hadron colliders. We provide brief reviews of all currently available PDF sets and use them to compute cross sections for a number of benchmark processes, including Higgs boson production in gluon-gluon fusion at the LHC. We show that the differences in the predictions obtained with the various PDFs are due to particular theory assumptions made in the fits of those PDFs. We discuss PDF uncertainties in the kinematic region covered by the LHC and on averaging procedures for PDFs, such as advocated by the PDF4LHC15 sets, and provide recommendations for the usage of PDF sets for theory predictions at the LHC. (orig.)

  8. Specialized minimal PDFs for optimized LHC calculations

    International Nuclear Information System (INIS)

    Carrazza, Stefano; Forte, Stefano; Kassabov, Zahari; Rojo, Juan

    2016-01-01

    We present a methodology for the construction of parton distribution functions (PDFs) designed to provide an accurate representation of PDF uncertainties for specific processes or classes of processes with a minimal number of PDF error sets: specialized minimal PDF sets, or SM-PDFs. We construct these SM-PDFs in such a way that sets corresponding to different input processes can be combined without losing information, specifically as regards their correlations, and that they are robust upon smooth variations of the kinematic cuts. The proposed strategy never discards information, so that the SM-PDF sets can be enlarged by the addition of new processes, until the prior PDF set is eventually recovered for a large enough set of processes. We illustrate the method by producing SM-PDFs tailored to Higgs, top-quark pair, and electroweak gauge boson physics, and we determine that, when the PDF4LHC15 combined set is used as the prior, around 11, 4, and 11 Hessian eigenvectors, respectively, are enough to fully describe the corresponding processes. (orig.)

  9. LHC Data and its Impact on nCTEQ15 PDFs

    Energy Technology Data Exchange (ETDEWEB)

    Clark, D. B. [Southern Methodist U.; Godat, E. [Southern Methodist U.; Ježo, T.; Keppel, C. [Jefferson Lab; Kovarík, K. [Munster U., ITP; Kusina, A. [Cracow, INP; Lyonnet, F. [Southern Methodist U.; Morfin, J. G. [Fermilab; Olness, F. I. [Southern Methodist U.; Owens, J. F. [Florida State U.; Schienbein, I. [LPSC, Grenoble; Yu, J. Y. [Southern Methodist U.

    2018-01-10

    The LHC heavy ion data for W/Z production can provide new incisive information on the PDFs. This data is sensitive to the heavier quark flavors (strange and charm) in a high energy kinematic region; this can facilitate the determination of PDFs in the small x region where previous data was limited. At present, the flavor separation of the proton PDFs is dependent on DIS data from nuclear targets. Therefore, improved nuclear corrections can also yield enhanced flavor determination of both the proton and nuclear PDFs.

  10. Constraining nuclear PDFs with CMS

    CERN Document Server

    Chapon, Emilien

    2017-01-01

    Nuclear parton distribution functions are essential to the understanding of proton-lead collisions. We will review several measurements from CMS that are particularly sensitive to nPDFs. W and Z bosons are medium-blind probes of the initial state of the collisions, and we will present the measurements of their production cross sections in pPb collisions at 5.02 TeV, and as well a asymmetries with an increased sensitivity to nPDFs. We will also report measurements of charmonium production, including the nuclear modification factor of J/$\\psi$ and $\\psi$(2S) in pPb collisions at 5.02 TeV, though other cold nuclear matter effects may also be at play in those processes. At last, we will present measurements of the pseudorapidity of dijets in pPb collisions at 5.02 TeV.

  11. Shocked quartz in the SEM: Distinction between amorphous and healed PDFs

    NARCIS (Netherlands)

    Hamers, M.F.; Pennock, G.M.; Drury, M.R.

    2012-01-01

    Combined SEM techniques show that different CL signatures of PDFs are related to fresh and healed microstructures of PDFs and host quartz. This is confirmed by TEM results. A combination of SEM techniques can give the same type of information as TEM

  12. Impact of CMS measurements on PDFs

    CERN Document Server

    Ruckstuhl, Nicole Manuela

    2015-01-01

    \\par The quark PDFs are more directly probed by gauge boson production. Therefore the second analysis studies the effect of W-boson production measurements on PFDs. This consists of a W-boson charge asymmetry measurement and a study of W-boson production in association with...

  13. Compounding local invariant features and global deformable geometry for medical image registration.

    Directory of Open Access Journals (Sweden)

    Jianhua Zhang

    Full Text Available Using deformable models to register medical images can result in problems of initialization of deformable models and robustness and accuracy of matching of inter-subject anatomical variability. To tackle these problems, a novel model is proposed in this paper by compounding local invariant features and global deformable geometry. This model has four steps. First, a set of highly-repeatable and highly-robust local invariant features, called Key Features Model (KFM, are extracted by an effective matching strategy. Second, local features can be matched more accurately through the KFM for the purpose of initializing a global deformable model. Third, the positional relationship between the KFM and the global deformable model can be used to precisely pinpoint all landmarks after initialization. And fourth, the final pose of the global deformable model is determined by an iterative process with a lower time cost. Through the practical experiments, the paper finds three important conclusions. First, it proves that the KFM can detect the matching feature points well. Second, the precision of landmark locations adjusted by the modeled relationship between KFM and global deformable model is greatly improved. Third, regarding the fitting accuracy and efficiency, by observation from the practical experiments, it is found that the proposed method can improve 6~8% of the fitting accuracy and reduce around 50% of the computational time compared with state-of-the-art methods.

  14. Microstructural evolution and deformation features in gas turbine blades operated in-service

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Fei [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China); Tong, Jinyan [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); Feng, Qiang [National Center for Materials Service Safety, University of Science and Technology Beijing, Beijing 100083 (China); State Key Laboratory for Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083 (China); Zhang, Jianxin [Key Laboratory of Liquid Structure and Heredity of Materials, Ministry of Education, Shandong University, Jinan 250061 (China)

    2015-01-05

    Highlights: • Gas turbine blades operated in-service have been investigated. • Two primary MC decomposition reactions take place during servicing. • Deformation features during servicing have been analyzed. - Abstract: The nickel based superalloy GH4037 is employed in gas turbine blades because of its high temperature strength and oxidation resistance. Microstructural evolution and deformation features in gas turbine blades after 1600 h service have been investigated by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The microstructure of blade changes according to complex and comprehensive temperature and stress fields applied on it. Microstructural observations show that minor carbide precipitates dispersedly precipitate in the matrix. Two MC decomposition reactions occur: MC + γ → M{sub 23}C{sub 6} + γ′ and MC + γ → M{sub 23}C{sub 6} + η. Blocky, closely spaced M{sub 23}C{sub 6} particles continuously distribute along grain boundaries. The main deformation features, such as slip bands, APB-coupled dislocation pairs, stacking faults bound by partial dislocations and deformation twinning, have also been analyzed in terms of fundamental deformation mechanisms and environmental effects.

  15. The new ABMP16 PDFs

    International Nuclear Information System (INIS)

    Alekhin, Sergey; Bluemlein, Johannes; Moch, Sven-Olaf

    2016-09-01

    We present an update of the ABM12 PDF analysis including improved constraints due to the final version of the inclusive DIS HERA data, the Tevatron and LHC data on the W- and Z-production and those on heavy-quark production in the electron- and neutrino-induced DIS at HERA and the fixed-target experiments NOMAD and CHORUS. We also check the impact of the Tevatron and LHC top-quark production data on the PDFs and the strong coupling constant. We obtain α_s(M_Z)=0.1145(9) and 0.1147(8) with and without the top-quark data included, respectively.

  16. Variability of sea ice deformation rates in the Arctic and their relationship with basin-scale wind forcing

    Directory of Open Access Journals (Sweden)

    A. Herman

    2012-12-01

    Full Text Available The temporal variability of the moments of probability distribution functions (pdfs of total sea ice deformation rates in the Arctic is analyzed in the context of the basin-scale wind forcing acting on the ice. The pdfs are estimated for 594 satellite-derived sea ice deformation maps from 11 winter seasons between 1996/1997 and 2007/2008, provided by the RADARSAT Geophysical Processor System. The temporal scale analyzed equals 3 days. The moments of the pdfs, calculated for a range of spatial scales (12.5–900 km, have two dominating components of variability: a seasonal cycle, with deformation rates decreasing throughout winter towards a minimum in March; and a short-term, synoptic variability, strongly correlated with the area-averaged magnitude of the wind stress over the Arctic, estimated based on the NCEP-DOE Reanalysis-2 data (correlation coefficient of 0.71 for the mean deformation rate. Due to scaling properties of the moments, logarithms of higher moments are strongly correlated with the wind stress as well. Exceptions are observed only at small spatial scales, as a result of extreme deformation events, not directly associated with large-scale wind forcing. By repeating the analysis within regions of different sizes and locations, we show that the wind–ice deformation correlation is largest at the basin scale and decreases with decreasing size of the area of study. Finally, we suggest that a positive trend in seasonally averaged correlation between sea ice deformation rates and the wind forcing, present in the analyzed data, may be related to an observed decrease in the multi-year ice area in the Arctic, indicating possibly even stronger correlations in the future.

  17. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes.

    Science.gov (United States)

    Zhong, Zichun; Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun; Mao, Weihua

    2016-01-01

    By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  18. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes

    Directory of Open Access Journals (Sweden)

    Zichun Zhong

    2016-01-01

    Full Text Available By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  19. Sea-ice deformation in a coupled ocean–sea-ice model and in satellite remote sensing data

    Directory of Open Access Journals (Sweden)

    G. Spreen

    2017-07-01

    Full Text Available A realistic representation of sea-ice deformation in models is important for accurate simulation of the sea-ice mass balance. Simulated sea-ice deformation from numerical simulations with 4.5, 9, and 18 km horizontal grid spacing and a viscous–plastic (VP sea-ice rheology are compared with synthetic aperture radar (SAR satellite observations (RGPS, RADARSAT Geophysical Processor System for the time period 1996–2008. All three simulations can reproduce the large-scale ice deformation patterns, but small-scale sea-ice deformations and linear kinematic features (LKFs are not adequately reproduced. The mean sea-ice total deformation rate is about 40 % lower in all model solutions than in the satellite observations, especially in the seasonal sea-ice zone. A decrease in model grid spacing, however, produces a higher density and more localized ice deformation features. The 4.5 km simulation produces some linear kinematic features, but not with the right frequency. The dependence on length scale and probability density functions (PDFs of absolute divergence and shear for all three model solutions show a power-law scaling behavior similar to RGPS observations, contrary to what was found in some previous studies. Overall, the 4.5 km simulation produces the most realistic divergence, vorticity, and shear when compared with RGPS data. This study provides an evaluation of high and coarse-resolution viscous–plastic sea-ice simulations based on spatial distribution, time series, and power-law scaling metrics.

  20. Contour Propagation Using Feature-Based Deformable Registration for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yuhan Yang

    2013-01-01

    Full Text Available Accurate target delineation of CT image is a critical step in radiotherapy treatment planning. This paper describes a novel strategy for automatic contour propagation, based on deformable registration, for CT images of lung cancer. The proposed strategy starts with a manual-delineated contour in one slice of a 3D CT image. By means of feature-based deformable registration, the initial contour in other slices of the image can be propagated automatically, and then refined by active contour approach. Three algorithms are employed in the strategy: the Speeded-Up Robust Features (SURF, Thin-Plate Spline (TPS, and an adapted active contour (Snake, used to refine and modify the initial contours. Five pulmonary cancer cases with about 400 slices and 1000 contours have been used to verify the proposed strategy. Experiments demonstrate that the proposed strategy can improve the segmentation performance in the pulmonary CT images. Jaccard similarity (JS mean is about 0.88 and the maximum of Hausdorff distance (HD is about 90%. In addition, delineation time has been considerably reduced. The proposed feature-based deformable registration method in the automatic contour propagation improves the delineation efficiency significantly.

  1. Coordinated Mapping of Sea Ice Deformation Features with Autonomous Vehicles

    Science.gov (United States)

    Maksym, T.; Williams, G. D.; Singh, H.; Weissling, B.; Anderson, J.; Maki, T.; Ackley, S. F.

    2016-12-01

    Decreases in summer sea ice extent in the Beaufort and Chukchi Seas has lead to a transition from a largely perennial ice cover, to a seasonal ice cover. This drives shifts in sea ice production, dynamics, ice types, and thickness distribution. To examine how the processes driving ice advance might also impact the morphology of the ice cover, a coordinated ice mapping effort was undertaken during a field campaign in the Beaufort Sea in October, 2015. Here, we present observations of sea ice draft topography from six missions of an Autonomous Underwater Vehicle run under different ice types and deformation features observed during autumn freeze-up. Ice surface features were also mapped during coordinated drone photogrammetric missions over each site. We present preliminary results of a comparison between sea ice surface topography and ice underside morphology for a range of sample ice types, including hummocked multiyear ice, rubble fields, young ice ridges and rafts, and consolidated pancake ice. These data are compared to prior observations of ice morphological features from deformed Antarctic sea ice. Such data will be useful for improving parameterizations of sea ice redistribution during deformation, and for better constraining estimates of airborne or satellite sea ice thickness.

  2. A first unbiased global determination of polarized PDFs and their uncertainties

    International Nuclear Information System (INIS)

    Nocera, Emanuele R.; Ball, Richard D.; Forte, Stefano; Ridolfi, Giovanni; Rojo, Juan

    2014-01-01

    We present a first global determination of spin-dependent parton distribution functions (PDFs) and their uncertainties using the NNPDF methodology: NNPDFpol1.1. Longitudinally polarized deep-inelastic scattering data, already used for the previous NNPDFpol1.0 PDF set, are supplemented with the most recent polarized hadron collider data for inclusive jet and W boson production from the STAR and PHENIX experiments at RHIC, and with open-charm production data from the COMPASS experiment, thereby allowing for a separate determination of the polarized quark and antiquark PDFs, and an improved determination of the medium- and large-x polarized gluon PDF. We study the phenomenological implications of the NNPDFpol1.1 set, and we provide predictions for the longitudinal double-spin asymmetry for semi-inclusive pion production at RHIC

  3. A first unbiased global determination of polarized PDFs and their uncertainties

    Directory of Open Access Journals (Sweden)

    Emanuele R. Nocera

    2014-10-01

    Full Text Available We present a first global determination of spin-dependent parton distribution functions (PDFs and their uncertainties using the NNPDF methodology: NNPDFpol1.1. Longitudinally polarized deep-inelastic scattering data, already used for the previous NNPDFpol1.0 PDF set, are supplemented with the most recent polarized hadron collider data for inclusive jet and W boson production from the STAR and PHENIX experiments at RHIC, and with open-charm production data from the COMPASS experiment, thereby allowing for a separate determination of the polarized quark and antiquark PDFs, and an improved determination of the medium- and large-x polarized gluon PDF. We study the phenomenological implications of the NNPDFpol1.1 set, and we provide predictions for the longitudinal double-spin asymmetry for semi-inclusive pion production at RHIC.

  4. A first unbiased global determination of polarized PDFs and their uncertainties

    Energy Technology Data Exchange (ETDEWEB)

    Nocera, Emanuele R. [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ball, Richard D. [Higgs Centre, University of Edinburgh, JCMB, KB, Mayfield Rd, Edinburgh EH9 3JZ, Scotland (United Kingdom); Forte, Stefano [Dipartimento di Fisica, Università di Milano and INFN, Sezione di Milano, Via Celoria 16, I-20133 Milano (Italy); Ridolfi, Giovanni [Dipartimento di Fisica, Università di Genova and INFN, Sezione di Genova, Genova (Italy); Rojo, Juan [PH Department, TH Unit, CERN, CH-1211 Geneva 23 (Switzerland); Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, University of Oxford, OX1 3NP Oxford (United Kingdom)

    2014-10-15

    We present a first global determination of spin-dependent parton distribution functions (PDFs) and their uncertainties using the NNPDF methodology: NNPDFpol1.1. Longitudinally polarized deep-inelastic scattering data, already used for the previous NNPDFpol1.0 PDF set, are supplemented with the most recent polarized hadron collider data for inclusive jet and W boson production from the STAR and PHENIX experiments at RHIC, and with open-charm production data from the COMPASS experiment, thereby allowing for a separate determination of the polarized quark and antiquark PDFs, and an improved determination of the medium- and large-x polarized gluon PDF. We study the phenomenological implications of the NNPDFpol1.1 set, and we provide predictions for the longitudinal double-spin asymmetry for semi-inclusive pion production at RHIC.

  5. A first unbiased global determination of polarized PDFs and their uncertainties

    CERN Document Server

    Nocera, Emanuele R.; Forte, Stefano; Ridolfi, Giovanni; Rojo, Juan

    2014-01-01

    We present a first global determination of spin-dependent parton distribution functions (PDFs) and their uncertainties using the NNPDF methodology: NNPDFpol1.1. Longitudinally polarized deep-inelastic scattering data, already used for the previous NNPDFpol1.0 PDF set, are supplemented with the most recent polarized hadron collider data for inclusive jet and $W$ boson production from the STAR and PHENIX experiments at RHIC, and with open-charm production data from the COMPASS experiment, thereby allowing for a separate determination of the polarized quark and anti-quark PDFs, and an improved determination of the medium- and large-$x$ polarized gluon PDF. We study the phenomenological implications of the NNPDFpol1.1 set, and we provide predictions for the longitudinal double-spin asymmetry for semi-inclusive pion production at RHIC.

  6. The shapes of column density PDFs. The importance of the last closed contour

    Science.gov (United States)

    Alves, João; Lombardi, Marco; Lada, Charles J.

    2017-10-01

    The probability distribution function of column density (PDF) has become the tool of choice for cloud structure analysis and star formation studies. Its simplicity is attractive, and the PDF could offer access to cloud physical parameters otherwise difficult to measure, but there has been some confusion in the literature on the definition of its completeness limit and shape at the low column density end. In this letter we use the natural definition of the completeness limit of a column density PDF, the last closed column density contour inside a surveyed region, and apply it to a set of large-scale maps of nearby molecular clouds. We conclude that there is no observational evidence for log-normal PDFs in these objects. We find that all studied molecular clouds have PDFs well described by power laws, including the diffuse cloud Polaris. Our results call for a new physical interpretation of the shape of the column density PDFs. We find that the slope of a cloud PDF is invariant to distance but not to the spatial arrangement of cloud material, and as such it is still a useful tool for investigating cloud structure.

  7. Deformable Image Registration with Inclusion of Autodetected Homologous Tissue Features

    Directory of Open Access Journals (Sweden)

    Qingsong Zhu

    2012-01-01

    Full Text Available A novel deformable registration algorithm is proposed in the application of radiation therapy. The algorithm starts with autodetection of a number of points with distinct tissue features. The feature points are then matched by using the scale invariance features transform (SIFT method. The associated feature point pairs are served as landmarks for the subsequent thin plate spline (TPS interpolation. Several registration experiments using both digital phantom and clinical data demonstrate the accuracy and efficiency of the method. For the 3D phantom case, markers with error less than 2 mm are over 85% of total test markers, and it takes only 2-3 minutes for 3D feature points association. The proposed method provides a clinically practical solution and should be valuable for various image-guided radiation therapy (IGRT applications.

  8. Relationship between local deformation behavior and crystallographic features of as-quenched lath martensite during uniaxial tensile deformation

    International Nuclear Information System (INIS)

    Michiuchi, M.; Nambu, S.; Ishimoto, Y.; Inoue, J.; Koseki, T.

    2009-01-01

    Electron backscattering diffraction patterns were used to investigate the relationship between local deformation behavior and the crystallographic features of as-quenched lath martensite of low-carbon steel during uniform elongation in tensile tests. The slip system operating during the deformation up to a strain of 20% was estimated by comparing the crystal rotation of each martensite block after deformation of 20% strain with predictions by the Taylor and Sachs models. The results indicate that the in-lath-plane slip system was preferentially activated compared to the out-of-lath-plane system up to this strain level. Further detailed analysis of crystal rotation at intervals of approximately 5% strain confirmed that the constraint on the operative slip system by the lath structure begins at a strain of 8% and that the local strain hardening of the primary slip systems occurred at approximately 15% strain.

  9. Datum Feature Extraction and Deformation Analysis Method Based on Normal Vector of Point Cloud

    Science.gov (United States)

    Sun, W.; Wang, J.; Jin, F.; Liang, Z.; Yang, Y.

    2018-04-01

    In order to solve the problem lacking applicable analysis method in the application of three-dimensional laser scanning technology to the field of deformation monitoring, an efficient method extracting datum feature and analysing deformation based on normal vector of point cloud was proposed. Firstly, the kd-tree is used to establish the topological relation. Datum points are detected by tracking the normal vector of point cloud determined by the normal vector of local planar. Then, the cubic B-spline curve fitting is performed on the datum points. Finally, datum elevation and the inclination angle of the radial point are calculated according to the fitted curve and then the deformation information was analyzed. The proposed approach was verified on real large-scale tank data set captured with terrestrial laser scanner in a chemical plant. The results show that the method could obtain the entire information of the monitor object quickly and comprehensively, and reflect accurately the datum feature deformation.

  10. Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching.

    Science.gov (United States)

    Guo, Yanrong; Gao, Yaozong; Shen, Dinggang

    2016-04-01

    Automatic and reliable segmentation of the prostate is an important but difficult task for various clinical applications such as prostate cancer radiotherapy. The main challenges for accurate MR prostate localization lie in two aspects: (1) inhomogeneous and inconsistent appearance around prostate boundary, and (2) the large shape variation across different patients. To tackle these two problems, we propose a new deformable MR prostate segmentation method by unifying deep feature learning with the sparse patch matching. First, instead of directly using handcrafted features, we propose to learn the latent feature representation from prostate MR images by the stacked sparse auto-encoder (SSAE). Since the deep learning algorithm learns the feature hierarchy from the data, the learned features are often more concise and effective than the handcrafted features in describing the underlying data. To improve the discriminability of learned features, we further refine the feature representation in a supervised fashion. Second, based on the learned features, a sparse patch matching method is proposed to infer a prostate likelihood map by transferring the prostate labels from multiple atlases to the new prostate MR image. Finally, a deformable segmentation is used to integrate a sparse shape model with the prostate likelihood map for achieving the final segmentation. The proposed method has been extensively evaluated on the dataset that contains 66 T2-wighted prostate MR images. Experimental results show that the deep-learned features are more effective than the handcrafted features in guiding MR prostate segmentation. Moreover, our method shows superior performance than other state-of-the-art segmentation methods.

  11. A Semi-Analytical Method for the PDFs of A Ship Rolling in Random Oblique Waves

    Science.gov (United States)

    Liu, Li-qin; Liu, Ya-liu; Xu, Wan-hai; Li, Yan; Tang, You-gang

    2018-03-01

    The PDFs (probability density functions) and probability of a ship rolling under the random parametric and forced excitations were studied by a semi-analytical method. The rolling motion equation of the ship in random oblique waves was established. The righting arm obtained by the numerical simulation was approximately fitted by an analytical function. The irregular waves were decomposed into two Gauss stationary random processes, and the CARMA (2, 1) model was used to fit the spectral density function of parametric and forced excitations. The stochastic energy envelope averaging method was used to solve the PDFs and the probability. The validity of the semi-analytical method was verified by the Monte Carlo method. The C11 ship was taken as an example, and the influences of the system parameters on the PDFs and probability were analyzed. The results show that the probability of ship rolling is affected by the characteristic wave height, wave length, and the heading angle. In order to provide proper advice for the ship's manoeuvring, the parametric excitations should be considered appropriately when the ship navigates in the oblique seas.

  12. Iris-based medical analysis by geometric deformation features.

    Science.gov (United States)

    Ma, Lin; Zhang, D; Li, Naimin; Cai, Yan; Zuo, Wangmeng; Wang, Kuanguan

    2013-01-01

    Iris analysis studies the relationship between human health and changes in the anatomy of the iris. Apart from the fact that iris recognition focuses on modeling the overall structure of the iris, iris diagnosis emphasizes the detecting and analyzing of local variations in the characteristics of irises. This paper focuses on studying the geometrical structure changes in irises that are caused by gastrointestinal diseases, and on measuring the observable deformations in the geometrical structures of irises that are related to roundness, diameter and other geometric forms of the pupil and the collarette. Pupil and collarette based features are defined and extracted. A series of experiments are implemented on our experimental pathological iris database, including manual clustering of both normal and pathological iris images, manual classification by non-specialists, manual classification by individuals with a medical background, classification ability verification for the proposed features, and disease recognition by applying the proposed features. The results prove the effectiveness and clinical diagnostic significance of the proposed features and a reliable recognition performance for automatic disease diagnosis. Our research results offer a novel systematic perspective for iridology studies and promote the progress of both theoretical and practical work in iris diagnosis.

  13. Hard probes in heavy ion collisions at the LHC: PDFs, shadowing and $pA$ collisions

    CERN Document Server

    Accardi, Alberto; Botje, M.; Brodsky, S.J.; Cole, B.; Eskola, K.J.; Fai, George I.; Frankfurt, L.; Fries, R.J.; Geist, Walter M.; Guzey, V.; Honkanen, H.; Kolhinen, V.J.; Kovchegov, Yu.V.; McDermott, M.; Morsch, A.; Qiu, Jian-wei; Salgado, C.A.; Strikman, M.; Takai, H.; Tapprogge, S.; Vogt, R.; Zhang, X.f.

    2003-01-01

    This manuscript is the outcome of the subgroup ``PDFs, shadowing and $pA$ collisions'' from the CERN workshop ``Hard Probes in Heavy Ion Collisions at the LHC''. In addition to the experimental parameters for $pA$ collisions at the LHC, the issues discussed are factorization in nuclear collisions, nuclear parton distributions (nPDFs), hard probes as the benchmark tests of factorization in $pA$ collisions at the LHC, and semi-hard probes as observables with potentially large nuclear effects. Also, novel QCD phenomena in $pA$ collisions at the LHC are considered. The importance of the $pA$ program at the LHC is emphasized.

  14. Vector boson production in pPb and PbPb collisions at the LHC and its impact on nCTEQ15 PDFs

    Energy Technology Data Exchange (ETDEWEB)

    Kusina, A. [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France); Institute of Nuclear Physics Polish Academy of Sciences, Krakow (Poland); Lyonnet, F.; Clark, D.B.; Godat, E.; Olness, F.I.; Yu, J.Y. [Southern Methodist University, Dallas, TX (United States); Jezo, T. [Physik-Institut, Universitaet Zuerich, Zuerich (Switzerland); Kovarik, K. [Westfaelische Wilhelms-Universitaet Muenster, Institut fuer Theoretische Physik, Muenster (Germany); Schienbein, I. [Universite Grenoble-Alpes, CNRS/IN2P3, Laboratoire de Physique Subatomique et de Cosmologie, Grenoble (France)

    2017-07-15

    We provide a comprehensive comparison of W{sup ±} / Z vector boson production data in pPb and PbPb collisions at the LHC with predictions obtained using the nCTEQ15 PDFs. We identify the measurements which have the largest potential impact on the PDFs, and estimate the effect of including these data using a Bayesian reweighting method. We find this data set can provide information as regards both the nuclear corrections and the heavy flavor (strange quark) PDF components. As for the proton, the parton flavor determination/separation is dependent on nuclear corrections (from heavy target DIS, for example), this information can also help improve the proton PDFs. (orig.)

  15. Vector boson production in pPb and PbPb collisions at the LHC and its impact on nCTEQ15 PDFs

    Science.gov (United States)

    Kusina, A.; Lyonnet, F.; Clark, D. B.; Godat, E.; Ježo, T.; Kovařík, K.; Olness, F. I.; Schienbein, I.; Yu, J. Y.

    2017-07-01

    We provide a comprehensive comparison of W^± / Z vector boson production data in pPb and PbPb collisions at the LHC with predictions obtained using the nCTEQ15 PDFs. We identify the measurements which have the largest potential impact on the PDFs, and estimate the effect of including these data using a Bayesian reweighting method. We find this data set can provide information as regards both the nuclear corrections and the heavy flavor (strange quark) PDF components. As for the proton, the parton flavor determination/separation is dependent on nuclear corrections (from heavy target DIS, for example), this information can also help improve the proton PDFs.

  16. Nonperturbative renormalization of nonlocal quark bilinears for quasi-PDFs on the lattice using an auxiliary field

    Energy Technology Data Exchange (ETDEWEB)

    Green, Jeremy; Jansen, Karl; Steffens, Fernanda [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2017-07-15

    Quasi-PDFs provide a path toward an ab initio calculation of parton distribution functions (PDFs) using lattice QCD. One of the problems faced in calculations of quasi-PDFs is the renormalization of a nonlocal operator. By introducing an auxiliary field, we can replace the nonlocal operator with a pair of local operators in an extended theory. On the lattice, this is closely related to the static quark theory. In this approach, we show how to understand the pattern of mixing that is allowed by chiral symmetry breaking, and obtain a master formula for renormalizing the nonlocal operator that depends on three parameters. We present an approach for nonperturbatively determining these parameters and use perturbation theory to convert to the MS scheme. Renormalization parameters are obtained for two lattice spacings using Wilson twisted mass fermions and for different discretizations of the Wilson line in the nonlocal operator. Using these parameters we show the effect of renormalization on nucleon matrix elements with pion mass approximately 370 MeV, and compare renormalized results for the two lattice spacings. The renormalized matrix elements are consistent among the different Wilson line discretizations and lattice spacings.

  17. Nonperturbative renormalization of nonlocal quark bilinears for quasi-PDFs on the lattice using an auxiliary field

    International Nuclear Information System (INIS)

    Green, Jeremy; Jansen, Karl; Steffens, Fernanda

    2017-07-01

    Quasi-PDFs provide a path toward an ab initio calculation of parton distribution functions (PDFs) using lattice QCD. One of the problems faced in calculations of quasi-PDFs is the renormalization of a nonlocal operator. By introducing an auxiliary field, we can replace the nonlocal operator with a pair of local operators in an extended theory. On the lattice, this is closely related to the static quark theory. In this approach, we show how to understand the pattern of mixing that is allowed by chiral symmetry breaking, and obtain a master formula for renormalizing the nonlocal operator that depends on three parameters. We present an approach for nonperturbatively determining these parameters and use perturbation theory to convert to the MS scheme. Renormalization parameters are obtained for two lattice spacings using Wilson twisted mass fermions and for different discretizations of the Wilson line in the nonlocal operator. Using these parameters we show the effect of renormalization on nucleon matrix elements with pion mass approximately 370 MeV, and compare renormalized results for the two lattice spacings. The renormalized matrix elements are consistent among the different Wilson line discretizations and lattice spacings.

  18. Deformation and wear of pyramidal, silicon-nitride AFM tips scanning micrometre-size features in contact mode

    NARCIS (Netherlands)

    Bloo, M.; Haitjema, H.; Pril, W.O.

    1999-01-01

    An experimental study was carried out, in order to investigate the deformation and wear taking place on pyramidal silicon-nitride AFM tips. The study focuses on the contact mode scanning of silicon features of micrometre-size. First the deformation and the mechanisms of wear of the tip during

  19. PDFs, α_s, and quark masses from global fits

    International Nuclear Information System (INIS)

    Alekhin, Sergey; Bluemlein, Johannes; Moch, Sven-Olaf

    2016-09-01

    The strong coupling constant α_s and the heavy-quark masses, m_c, m_b, m_t are extracted simultaneously with the parton distribution functions (PDFs) in the updated ABM12 fit including recent data from CERN-SPS, HERA, Tevatron, and the LHC. The values of α_s(M_Z)=0.1147±0.0008(exp.), m_c(m_c)=1.252±0.018(exp.) GeV, m_b(m_b)=3.83±0.12(exp.) GeV, m_t(m_t)=160.9±1.1(exp.) GeV are obtained with the MS heavy-quark mass definition being employed throughout the analysis.

  20. The construction features of the deformation and force model of concrete and reinforced concrete resistance

    Directory of Open Access Journals (Sweden)

    Romashko Vasyl

    2017-01-01

    Full Text Available The main features of the deformation and force model of deformation of reinforced concrete elements and structures based on generalized diagrams of their state are considered in the article. Particular attention is focused on the basic methodological problems and shortcomings of modern "deformation" models. It is shown that in the most cases these problems can be solved by the generalized diagrams of reinforced concrete elements and structures real state. Thanks to these diagrams, the developed method: provides a single methodological approach to the calculation of reinforced concrete elements and structures normal sections for limit states; allows to reveal the internal static indeterminacy of heterogeneously deformable elements and structures in their ultimate limit state calculation; justifies the application of the basic and derived criteria of reinforced concrete elements and structures bearing capacity exhaustion; retains the essence of the physical processes of concrete and reinforced concrete structures deformation. The defining positions of the generalized (universal methodology for calculating reinforced concrete elements and structures are stated.

  1. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    KAUST Repository

    Mohamed, Mamdouh S.

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  2. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    KAUST Repository

    Mohamed, Mamdouh S.; Larson, Ben C.; Tischler, Jon Z.; El-Azab, Anter

    2015-01-01

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  3. Combining Multiple Features for Text-Independent Writer Identification and Verification

    OpenAIRE

    Bulacu , Marius; Schomaker , Lambert

    2006-01-01

    http://www.suvisoft.com; In recent years, we proposed a number of new and very effective features for automatic writer identification and verification. They are probability distribution functions (PDFs) extracted from the handwriting images and characterize writer individuality independently of the textual content of the written samples. In this paper, we perform an extensive analysis of feature combinations. In our fusion scheme, the final unique distance between two handwritten samples is c...

  4. ABM11 PDFs and the cross section benchmarks in NNLO

    International Nuclear Information System (INIS)

    Alekhin, Sergey; Bluemlein, Johannes; Moch, Sven-Olaf

    2013-02-01

    We report an updated version of the ABKM09 NNLO PDF fit, which includes the most recent HERA collider data on the inclusive cross sections and an improved treatment of the heavy-quark contribution to deep-inelastic scattering using advantages of the running-mass definition for the heavy quarks. The ABM11 PDFs obtained from the updated fit are in a good agreement with the recent LHC data on the W- and Z-production within the experimental and PDF uncertainties. We also perform a determination of the strong coupling constant α s in a variant of the ABM11 fit insensitive to the influence of the higher twist terms and find the value of α s =0.1133(11) which is in good agreement with the nominal ABM11 one and our earlier determination.

  5. Update of the NNLO PDFs in the 3-, 4- and 5-flavour schemes

    International Nuclear Information System (INIS)

    Alekhin, Sergey; Bluemlein, Johannes; Moch, Sven-Olaf

    2010-07-01

    We report on an update of the next-to-next-to-leading order (NNLO) ABKM09 parton distributions functions. They are obtained with the use of the combined HERA collider Run I inclusive deep-inelastic scattering (DIS) data and the partial NNLO corrections to the heavy quark electro-production taken into account. The value of the strong couplig constant α NNLO s (M Z )=0.1147(12) is obtained. The standard candle cross sections for the Tevatron collider and the LHC estimated with the updated PDFs are provided. (orig.)

  6. Tissue Feature-Based and Segmented Deformable Image Registration for Improved Modeling of Shear Movement of Lungs

    International Nuclear Information System (INIS)

    Xie Yaoqin; Chao Ming; Xing Lei

    2009-01-01

    Purpose: To report a tissue feature-based image registration strategy with explicit inclusion of the differential motions of thoracic structures. Methods and Materials: The proposed technique started with auto-identification of a number of corresponding points with distinct tissue features. The tissue feature points were found by using the scale-invariant feature transform method. The control point pairs were then sorted into different 'colors' according to the organs in which they resided and used to model the involved organs individually. A thin-plate spline method was used to register a structure characterized by the control points with a given 'color.' The proposed technique was applied to study a digital phantom case and 3 lung and 3 liver cancer patients. Results: For the phantom case, a comparison with the conventional thin-plate spline method showed that the registration accuracy was markedly improved when the differential motions of the lung and chest wall were taken into account. On average, the registration error and standard deviation of the 15 points against the known ground truth were reduced from 3.0 to 0.5 mm and from 1.5 to 0.2 mm, respectively, when the new method was used. A similar level of improvement was achieved for the clinical cases. Conclusion: The results of our study have shown that the segmented deformable approach provides a natural and logical solution to model the discontinuous organ motions and greatly improves the accuracy and robustness of deformable registration.

  7. The PDF4LHC report on PDFs and LHC data : Results from Run I and preparation for Run II

    NARCIS (Netherlands)

    Rojo, Juan; Accardi, Alberto; Ball, Richard D.; Cooper-Sarkar, Amanda; Roeck, Albert de; Farry, Stephen; Ferrando, James; Forte, Stefano; Gao, Jun; Harland-Lang, Lucian; Huston, Joey; Glazov, Alexander; Gouzevitch, Maxime; Gwenlan, Claire; Lipka, Katerina; Lisovyi, Mykhailo; Mangano, Michelangelo L.; Nadolsky, Pavel; Perrozzi, Luca; Placakyte, Ringaile; Radescu, Voica; Salam, Gavin P.; Thorne, Robert S.

    2015-01-01

    The accurate determination of the Parton Distribution Functions (PDFs) of the proton is an essential ingredient of the Large Hadron Collider (LHC) program. PDF uncertainties impact a wide range of processes, from Higgs boson characterisation and precision Standard Model measurements to New Physics

  8. The PDF4LHC report on PDFs and LHC data: Results from Run I and preparation for Run II

    CERN Document Server

    Rojo, Juan; Ball, Richard D; Cooper-Sarkar, Amanda; de Roeck, Albert; Farry, Stephen; Ferrando, James; Forte, Stefano; Gao, Jun; Harland-Lang, Lucian; Huston, Joey; Glazov, Alexander; Gouzevitch, Maxime; Gwenlan, Claire; Lipka, Katerina; Lisovyi, Mykhailo; Mangano, Michelangelo; Nadolsky, Pavel; Perrozzi, Luca; Placakyte, Ringaile; Radescu, Voica; Salam, Gavin P; Thorne, Robert

    2015-01-01

    The accurate determination of the Parton Distribution Functions (PDFs) of the proton is an essential ingredient of the Large Hadron Collider (LHC) program. PDF uncertainties impact a wide range of processes, from Higgs boson characterisation and precision Standard Model measurements to New Physics searches. A major recent development in modern PDF analyses has been to exploit the wealth of new information contained in precision measurements from the LHC Run I, as well as progress in tools and methods to include these data in PDF fits. In this report we summarise the information that PDF-sensitive measurements at the LHC have provided so far, and review the prospects for further constraining PDFs with data from the recently started Run II. This document aims to provide useful input to the LHC collaborations to prioritise their PDF-sensitive measurements at Run II, as well as a comprehensive reference for the PDF-fitting collaborations.

  9. The PDF4LHC report on PDFs and LHC data. Results from Run I and preparation for Run II

    International Nuclear Information System (INIS)

    Rojo, Juan; Ball, Richard D.; CERN, Geneva

    2015-07-01

    The accurate determination of the Parton Distribution Functions (PDFs) of the proton is an essential ingredient of the Large Hadron Collider (LHC) program. PDF uncertainties impact a wide range of processes, from Higgs boson characterisation and precision Standard Model measurements to New Physics searches. A major recent development in modern PDF analyses has been to exploit the wealth of new information contained in precision measurements from the LHC Run I, as well as progress in tools and methods to include these data in PDF fits. In this report we summarise the information that PDF-sensitive measurements at the LHC have provided so far, and review the prospects for further constraining PDFs with data from the recently started Run II. This document aims to provide useful input to the LHC collaborations to prioritise their PDF-sensitive measurements at Run II, as well as a comprehensive reference for the PDF-fitting collaborations.

  10. Design Features of Hardening Turners with Outstripping Plastic Deformation

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2014-01-01

    Full Text Available An efficiency of the cutting method with outstripping plastic deformation (OPD in lathe works is defined in many respects by design features of the add-on devices for mechanical hardening of a cut-off layer material in the course of cutting. Applied on lathes, deforming OPD devices can have differing dimensions, placement on the lathe, drive type (manual, electric, hydraulic, pneumatic, pneumohydraulic, electromagnetic, and autonomy degree towards the metalcutting equipment and industrial equipment.At the same time there are a number of inherent design features of work-hardening devices the modernized lathes with OPD use for machining. Now the OPD standard devices implement two principle construction options: loading device is placed on the machine or on the OPD slide support separate of the tool, or it is structurally aligned with the cutting tool. In the latter case the OPD device for turning is called a tool mandrel, which is mounted in a tool post of the machine or, at large dimensions, such a mandrel is mounted on the machine instead of the tool mandrel.When designing the OPD devices, is important to take into consideration production requirements and recommendations for the technological equipment, developed in the course of creation, working off and introduction of such installations for mechanical hardening of material. In compliance with it, OPD devices, their placement on the machine, and working displacements shouldn't limit technological capabilities of the applied metal-cutting equipment. OPD stresses have to be smoothly regulated, with maximum loads being limited to admissible values for the machine model to be modernized. It is necessary to ensure synchronized longitudinal and cross displacements of the cutting tool and OPD hardener with respect to the axis of billet rotation to enable regulation and readjustment of the hardener and tool placement. It ought to foresee the increased mobile components rigidity and manufacturing

  11. A complete non-perturbative renormalization prescription for quasi-PDFs

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Faculty of Physics; Constantinou, Martha [Temple Univ., Philadelphia, PA (United States). Dept. of Physics; Hadjiyiannakou, Kyriakos [The Cyprus Institute, Nicosia (Cyprus); Jansen, Karl; Steffens, Fernanda [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Panagopoulos, Haralambos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Collaboration: European Twisted Mass Collaboration

    2017-06-15

    In this work we present, for the first time, the non-perturbative renormalization for the unpolarized, helicity and transversity quasi-PDFs, in an RI{sup '} scheme. The proposed prescription addresses simultaneously all aspects of renormalization: logarithmic divergences, finite renormalization as well as the linear divergence which is present in the matrix elements of fermion operators with Wilson lines. Furthermore, for the case of the unpolarized quasi-PDF, we describe how to eliminate the unwanted mixing with the twist-3 scalar operator. We utilize perturbation theory for the one-loop conversion factor that brings the renormalization functions to the MS-scheme at a scale of 2 GeV. We also explain how to improve the estimates on the renormalization functions by eliminating lattice artifacts. The latter can be computed in one-loop perturbation theory and to all orders in the lattice spacing. We apply the methodology for the renormalization to an ensemble of twisted mass fermions with N{sub f}=2+1+1 dynamical quarks, and a pion mass of around 375 MeV.

  12. Deformational Features and Microstructure Evolution of Copper Fabricated by a Single Pass of the Elliptical Cross-Section Spiral Equal-Channel Extrusion (ECSEE) Process

    Science.gov (United States)

    Wang, Chengpeng; Li, Fuguo; Liu, Juncheng

    2018-04-01

    The objectives of this work are to study the deformational feature, textures, microstructures, and dislocation configurations of ultrafine-grained copper processed by the process of elliptical cross-section spiral equal-channel extrusion (ECSEE). The deformation patterns of simple shear and pure shear in the ECSEE process were evaluated with the analytical method of geometric strain. The influence of the main technical parameters of ECSEE die on the effective strain distribution on the surface of ECSEE-fabricated samples was examined by the finite element simulation. The high friction factor could improve the effective strain accumulation of material deformation. Moreover, the pure copper sample fabricated by ECSEE ion shows a strong rotated cube shear texture. The refining mechanism of the dislocation deformation is dominant in copper processed by a single pass of ECSEE. The inhomogeneity of the micro-hardness distribution on the longitudinal section of the ECSEE-fabricated sample is consistent with the strain and microstructure distribution features.

  13. The PDF4LHC report on PDFs and LHC data: results from Run I and preparation for Run II

    International Nuclear Information System (INIS)

    Rojo, Juan; Accardi, Alberto; Ball, Richard D; Cooper-Sarkar, Amanda; Gwenlan, Claire; Roeck, Albert de; Mangano, Michelangelo; Farry, Stephen; Ferrando, James; Forte, Stefano; Gao, Jun; Harland-Lang, Lucian; Huston, Joey; Glazov, Alexander; Lipka, Katerina; Gouzevitch, Maxime; Lisovyi, Mykhailo; Nadolsky, Pavel

    2015-01-01

    The accurate determination of the parton distribution functions (PDFs) of the proton is an essential ingredient of the Large Hadron Collider (LHC) program. PDF uncertainties impact a wide range of processes, from Higgs boson characterization and precision Standard Model measurements to new physics searches. A major recent development in modern PDF analyses has been to exploit the wealth of new information contained in precision measurements from the LHC Run I, as well as progress in tools and methods to include these data in PDF fits. In this report we summarize the information that PDF-sensitive measurements at the LHC have provided so far, and review the prospects for further constraining PDFs with data from the recently started Run II. This document aims to provide useful input to the LHC collaborations to prioritize their PDF-sensitive measurements at Run II, as well as a comprehensive reference for the PDF-fitting collaborations. (topical review)

  14. Deformation of Man Made Objects

    KAUST Repository

    Ibrahim, Mohamed

    2012-07-01

    We introduce a framework for 3D object deformation with primary focus on man-made objects. Our framework enables a user to deform a model while preserving its defining characteristics. Moreover, our framework enables a user to set constraints on a model to keep its most significant features intact after the deformation process. Our framework supports a semi-automatic constraint setting environment, where some constraints could be automatically set by the framework while others are left for the user to specify. Our framework has several advantages over some state of the art deformation techniques in that it enables a user to add new features to the deformed model while keeping its general look similar to the input model. In addition, our framework enables the rotation and extrusion of different parts of a model.

  15. Geometric Total Variation for Texture Deformation

    DEFF Research Database (Denmark)

    Bespalov, Dmitriy; Dahl, Anders Lindbjerg; Shokoufandeh, Ali

    2010-01-01

    In this work we propose a novel variational method that we intend to use for estimating non-rigid texture deformation. The method is able to capture variation in grayscale images with respect to the geometry of its features. Our experimental evaluations demonstrate that accounting for geometry...... of features in texture images leads to significant improvements in localization of these features, when textures undergo geometrical transformations. Accurate localization of features in the presense of unkown deformations is a crucial property for texture characterization methods, and we intend to expoit...

  16. Unsupervised segmentation of lung fields in chest radiographs using multiresolution fractal feature vector and deformable models.

    Science.gov (United States)

    Lee, Wen-Li; Chang, Koyin; Hsieh, Kai-Sheng

    2016-09-01

    Segmenting lung fields in a chest radiograph is essential for automatically analyzing an image. We present an unsupervised method based on multiresolution fractal feature vector. The feature vector characterizes the lung field region effectively. A fuzzy c-means clustering algorithm is then applied to obtain a satisfactory initial contour. The final contour is obtained by deformable models. The results show the feasibility and high performance of the proposed method. Furthermore, based on the segmentation of lung fields, the cardiothoracic ratio (CTR) can be measured. The CTR is a simple index for evaluating cardiac hypertrophy. After identifying a suspicious symptom based on the estimated CTR, a physician can suggest that the patient undergoes additional extensive tests before a treatment plan is finalized.

  17. Text-independent writer identification and verification using textural and allographic features.

    Science.gov (United States)

    Bulacu, Marius; Schomaker, Lambert

    2007-04-01

    The identification of a person on the basis of scanned images of handwriting is a useful biometric modality with application in forensic and historic document analysis and constitutes an exemplary study area within the research field of behavioral biometrics. We developed new and very effective techniques for automatic writer identification and verification that use probability distribution functions (PDFs) extracted from the handwriting images to characterize writer individuality. A defining property of our methods is that they are designed to be independent of the textual content of the handwritten samples. Our methods operate at two levels of analysis: the texture level and the character-shape (allograph) level. At the texture level, we use contour-based joint directional PDFs that encode orientation and curvature information to give an intimate characterization of individual handwriting style. In our analysis at the allograph level, the writer is considered to be characterized by a stochastic pattern generator of ink-trace fragments, or graphemes. The PDF of these simple shapes in a given handwriting sample is characteristic for the writer and is computed using a common shape codebook obtained by grapheme clustering. Combining multiple features (directional, grapheme, and run-length PDFs) yields increased writer identification and verification performance. The proposed methods are applicable to free-style handwriting (both cursive and isolated) and have practical feasibility, under the assumption that a few text lines of handwritten material are available in order to obtain reliable probability estimates.

  18. A novel scheme for automatic nonrigid image registration using deformation invariant feature and geometric constraint

    Science.gov (United States)

    Deng, Zhipeng; Lei, Lin; Zhou, Shilin

    2015-10-01

    Automatic image registration is a vital yet challenging task, particularly for non-rigid deformation images which are more complicated and common in remote sensing images, such as distorted UAV (unmanned aerial vehicle) images or scanning imaging images caused by flutter. Traditional non-rigid image registration methods are based on the correctly matched corresponding landmarks, which usually needs artificial markers. It is a rather challenging task to locate the accurate position of the points and get accurate homonymy point sets. In this paper, we proposed an automatic non-rigid image registration algorithm which mainly consists of three steps: To begin with, we introduce an automatic feature point extraction method based on non-linear scale space and uniform distribution strategy to extract the points which are uniform distributed along the edge of the image. Next, we propose a hybrid point matching algorithm using DaLI (Deformation and Light Invariant) descriptor and local affine invariant geometric constraint based on triangulation which is constructed by K-nearest neighbor algorithm. Based on the accurate homonymy point sets, the two images are registrated by the model of TPS (Thin Plate Spline). Our method is demonstrated by three deliberately designed experiments. The first two experiments are designed to evaluate the distribution of point set and the correctly matching rate on synthetic data and real data respectively. The last experiment is designed on the non-rigid deformation remote sensing images and the three experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm compared with other traditional methods.

  19. Rare causes of scoliosis and spine deformity: experience and particular features

    Directory of Open Access Journals (Sweden)

    Pliarchopoulou Fani M

    2007-10-01

    Full Text Available Abstract Background Spine deformity can be idiopathic (more than 80% of cases, neuromuscular, congenital or neurofibromatosis-related. However, there are many disorders that may also be involved. We present our experience treating patients with scoliosis or other spine deformities related to rare clinical entities. Methods A retrospective study of the records of a school-screening study in North-West Greece was performed, covering a 10-year period (1992–2002. The records were searched for patients with deformities related to rare disorders. These patients were reviewed as regards to characteristics of underlying disorder and spine deformity, treatment and results, complications, intraoperative and anaesthesiologic difficulties particular to each case. Results In 13 cases, the spine deformity presented in relation to rare disorders. The underlying disorder was rare neurological disease in 2 cases (Rett syndrome, progressive hemidystonia, muscular disorders (facioscapulohumeral muscular dystrophy, arthrogryposis in 2 patients, osteogenesis imperfecta in 2 cases, Marfan syndrome, osteopetrosis tarda, spondyloepiphyseal dysplasia congenita, cleidocranial dysplasia and Noonan syndrome in 1 case each. In 2 cases scoliosis was related to other congenital anomalies (phocomelia, blindness. Nine of these patients were surgically treated. Surgery was avoided in 3 patients. Conclusion This study illustrates the fact that different disorders are related with curves with different characteristics, different accompanying problems and possible complications. Investigation and understanding of the underlying pathology is an essential part of the clinical evaluation and preoperative work-up, as clinical experience at any specific center is limited.

  20. Features micro plastic deformation auxetic beryllium irradiated with high-energy electrons

    International Nuclear Information System (INIS)

    Rarans'kij, M.D.; Olyijnich-Lisyuk, A.V.; Tashchuk, O.Yu.

    2016-01-01

    By low-frequency internal friction (LFIF) (1...3 Hz) method, the study of the behavior of the dynamic modulus of torsion (Gef) and by mathematical modeling of dislocation motion studied micro plastic deformation in naturally aged and irradiated with high-energy (18 MeV) electrons auxetic beryllium. With increasing doses of radiation found an increase in IF and speed of movement of dislocations in 2-3 times. Installed stage character micro strain auxetic Be. By mathematical modeling showed that in the irradiated material the deformation occurs due to the accelerated movement of the twin dislocations in the early stages, and anomalous dynamic deceleration of complete dislocations with an increase in the degree of deformation in the second stage. It is shown that theoretically estimated values are in good agreement with the experimentally determined.

  1. Study of Monte Carlo approach to experimental uncertainty propagation with MSTW 2008 PDFs

    CERN Document Server

    Watt, G.

    2012-01-01

    We investigate the Monte Carlo approach to propagation of experimental uncertainties within the context of the established 'MSTW 2008' global analysis of parton distribution functions (PDFs) of the proton at next-to-leading order in the strong coupling. We show that the Monte Carlo approach using replicas of the original data gives PDF uncertainties in good agreement with the usual Hessian approach using the standard Delta(chi^2) = 1 criterion, then we explore potential parameterisation bias by increasing the number of free parameters, concluding that any parameterisation bias is likely to be small, with the exception of the valence-quark distributions at low momentum fractions x. We motivate the need for a larger tolerance, Delta(chi^2) > 1, by making fits to restricted data sets and idealised consistent or inconsistent pseudodata. Instead of using data replicas, we alternatively produce PDF sets randomly distributed according to the covariance matrix of fit parameters including appropriate tolerance values,...

  2. On the Magnitude and Orientation of Stress during Shock Metamorphism: Understanding Peak Ring Formation by Combining Observations and Models.

    Science.gov (United States)

    Rae, A.; Poelchau, M.; Collins, G. S.; Timms, N.; Cavosie, A. J.; Lofi, J.; Salge, T.; Riller, U. P.; Ferrière, L.; Grieve, R. A. F.; Osinski, G.; Morgan, J. V.; Expedition 364 Science Party, I. I.

    2017-12-01

    Shock metamorphism occurs during the earliest moments after impact. The magnitude and orientation of shock leaves recordable signatures in rocks, which spatially vary across an impact structure. Consequently, observations of shock metamorphism can be used to understand deformation and its history within a shock wave, and to examine subsequent deformation during crater modification. IODP-ICDP Expedition 364 recovered nearly 600 m of shocked target rocks from the peak ring of the Chicxulub Crater. Samples from the expedition were used to measure the magnitude and orientation of shock in peak ring materials, and to determine the mechanism of peak-ring emplacement. Here, we present the results of petrographic analyses of the shocked granitic target rocks of the Chicxulub peak ring; using universal-stage optical microscopy, back-scattered electron images, and electron back-scatter diffraction. Deformation microstructures in quartz include planar deformation features (PDFs), feather features (FFs), which are unique to shock conditions, as well as planar fractures and crystal-plastic deformation bands. The assemblage of PDFs in quartz suggest that the peak-ring rocks experienced shock pressures of 15 GPa throughout the recovered drill core, and that the orientation of FFs are consistent with the present-day orientation of the maximum principal stress direction during shock is close to vertical. Numerical impact simulations of the impact event were run to determine the magnitude and orientation of principal stresses during shock and track those orientations throughout crater formation. Our results are remarkably consistent with the geological data, and accurately predict both the shock-pressure magnitudes, and the final near-vertical orientation of the direction of maximum principal stress in the shock wave. Furthermore, analysis of the state of stress throughout the impact event can be used to constrain the timing of fracture and fault orientations observed in the core

  3. Pattern of seismic deformation in the Western Mediterranean

    Directory of Open Access Journals (Sweden)

    S. Pondrelli

    1999-06-01

    Full Text Available The seismic deformation of the Western Mediterranean was studied with the aim of defining the strain pattern that characterizes the Africa-Eurasia plate boundary in this area. Within different sections along the boundary the cumulative moment tensor was computed over 90 years of seismological data. The results were compared with NUVELlA plate motion model and geodetic data. A stable agreement was found along Northern Africa to Sicily, where only Africa and Eurasia plates are involved. In this zone it is evident that changes in the strike of the boundary correspond to variations in the prevailing geometry of deformation, tectonic features and in the percentage of seismic with respect to total expected deformation. The geometry of deformation of periadriatic sections (Central to Southern Apennines, Eastern Alps and the Eastern Adriatic area agrees well with VLBI measurements and with regional geological features. Seismicity seems to account for low rates, from 3% to 31%, of total expected deformation. Only in the Sicily Strait, characterized by extensional to strike slip deformation, does the ratio reach a higher value (79%. If the amount of deformation deduced from seismicity seems low, because 90 years are probably not representative of the recurrence seismic cycle of the Western Mediterranean, the strain pattern we obtain from cumulative moment tensors is more representative of the kinematics of this area than global plate motion models and better identifies lower scale geodynamic features.

  4. Skeletal deformities of acardius anceps: the gross and imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Chen Chihping [Dept. of Medical Research, Mackay Memorial Hospital, Taipei (Taiwan, Province of China); Shih Shinlin [Dept. of Radiology, Mackay Memorial Hospital, Taipei (Taiwan, Province of China); Liu Fenfen [Dept. of Medical Research, Mackay Memorial Hospital, Taipei (Taiwan, Province of China); Jan Sheauwen [Dept. of Medical Research, Mackay Memorial Hospital, Taipei (Taiwan, Province of China); Lin Yunnan [Dept. of Pathology, Mackay Memorial Hospital, Taipei (Taiwan, Province of China); Lan Chungchi [Dept. of Obstetrics and Gynecology, Mackay Memorial Hospital, Taipei (Taiwan, Province of China)

    1997-03-01

    A morphology based imaging review is presented of the characteristic skeletal deformities associated with acardius anceps in three acardiac twins. These fetuses demonstrated poorly developed skulls, limb reduction defects, and phocomelia of the upper limbs, as well as narrow thoracic cages with or without the complete development of ribs, clavicles, scapulae, and cervical, thoracic, or lumbar vertebrae. However, their lower limbs and pelvic girdles were almost normal. The authors conclude that skeletal development is likely to be jeopardized in the area adjacent to the heart and in the cephalic portion of the body in fetuses with acardius anceps, and suggest vascular deficiency and hypoperfusion as pathogenetic mechanisms in this type of skeletal deformity. (orig.)

  5. Skeletal deformities of acardius anceps: the gross and imaging features

    International Nuclear Information System (INIS)

    Chen Chihping; Shih Shinlin; Liu Fenfen; Jan Sheauwen; Lin Yunnan; Lan Chungchi

    1997-01-01

    A morphology based imaging review is presented of the characteristic skeletal deformities associated with acardius anceps in three acardiac twins. These fetuses demonstrated poorly developed skulls, limb reduction defects, and phocomelia of the upper limbs, as well as narrow thoracic cages with or without the complete development of ribs, clavicles, scapulae, and cervical, thoracic, or lumbar vertebrae. However, their lower limbs and pelvic girdles were almost normal. The authors conclude that skeletal development is likely to be jeopardized in the area adjacent to the heart and in the cephalic portion of the body in fetuses with acardius anceps, and suggest vascular deficiency and hypoperfusion as pathogenetic mechanisms in this type of skeletal deformity. (orig.)

  6. Quartz microstructures in the Younger Dryas boundary layer ~12.9 ka.

    Science.gov (United States)

    van Hoesel, A.; Hoek, W. Z.; Pennock, G. M.; Drury, M. R.

    2012-04-01

    In 2007, Firestone et al. proposed that an extraterrestrial impact occurred at the end of the Allerød interstadial, destabilizing the North American ice sheet and initiating the colder Younger Dryas (YD) stadial. Up to now, the evidence for this proposed impact has been heavily debated (Pinter et al., 2011) and no one has been able to provide convincing evidence in favour of the hypothesis. Two years later, Mahaney et al. (2009) claimed that they had frequently found planar deformation features (PDFs) in quartz from a possible YD boundary layer in Venezuela. However, the data presented consisted of an SEM image of the surface of a quartz grain only, and in following work Mahaney et al. (2010) stated that they had found no irrefutable evidence of PDFs. Instead, they showed grains with oriented cracks along their edges, which they claimed to be related to the 'mass impact and extreme heat' from incoming ejecta material. However, oriented cracks are not accepted evidence for an impact (French, Koeberl, 2010). We investigate the quartz fraction of samples from the European Usselo horizon, an Allerød-YD age soil, as well as one sample from the North American Black Mat, which marks the onset of the YD. Possible shocked quartz grains were isolated using density separation, mounted in epoxy and polished. No evidence for oriented cracks along grain edges, like those reported by Mahaney et al. (2010), has been found so far. Transmitted light microscopy showed that a number of grains contained tectonic deformation lamellae. One grain from the Usselo horizon contains at least two sets of closely spaced, straight, and narrow lamellae, similar to PDFs. In SEM-CL imaging however, only some of these lamellae showed up as non-luminescent, while most had the same intensity as the host grain. This is not typical for PDFs (Hamers, Drury 2011). It is possible that these lamellae represent planar fractures, which also form by low pressure shock processes. It must be noted that even if

  7. A non-parametric 2D deformable template classifier

    DEFF Research Database (Denmark)

    Schultz, Nette; Nielsen, Allan Aasbjerg; Conradsen, Knut

    2005-01-01

    feature space the ship-master will be able to interactively define a segmentation map, which is refined and optimized by the deformable template algorithms. The deformable templates are defined as two-dimensional vector-cycles. Local random transformations are applied to the vector-cycles, and stochastic...

  8. 3D High Resolution Mesh Deformation Based on Multi Library Wavelet Neural Network Architecture

    Science.gov (United States)

    Dhibi, Naziha; Elkefi, Akram; Bellil, Wajdi; Amar, Chokri Ben

    2016-12-01

    This paper deals with the features of a novel technique for large Laplacian boundary deformations using estimated rotations. The proposed method is based on a Multi Library Wavelet Neural Network structure founded on several mother wavelet families (MLWNN). The objective is to align features of mesh and minimize distortion with a fixed feature that minimizes the sum of the distances between all corresponding vertices. New mesh deformation method worked in the domain of Region of Interest (ROI). Our approach computes deformed ROI, updates and optimizes it to align features of mesh based on MLWNN and spherical parameterization configuration. This structure has the advantage of constructing the network by several mother wavelets to solve high dimensions problem using the best wavelet mother that models the signal better. The simulation test achieved the robustness and speed considerations when developing deformation methodologies. The Mean-Square Error and the ratio of deformation are low compared to other works from the state of the art. Our approach minimizes distortions with fixed features to have a well reconstructed object.

  9. Microsurgery Simulator of Cerebral Aneurysm Clipping with Interactive Cerebral Deformation Featuring a Virtual Arachnoid.

    Science.gov (United States)

    Shono, Naoyuki; Kin, Taichi; Nomura, Seiji; Miyawaki, Satoru; Saito, Toki; Imai, Hideaki; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2018-05-01

    A virtual reality simulator for aneurysmal clipping surgery is an attractive research target for neurosurgeons. Brain deformation is one of the most important functionalities necessary for an accurate clipping simulator and is vastly affected by the status of the supporting tissue, such as the arachnoid membrane. However, no virtual reality simulator implementing the supporting tissue of the brain has yet been developed. To develop a virtual reality clipping simulator possessing interactive brain deforming capability closely dependent on arachnoid dissection and apply it to clinical cases. Three-dimensional computer graphics models of cerebral tissue and surrounding structures were extracted from medical images. We developed a new method for modifiable cerebral tissue complex deformation by incorporating a nonmedical image-derived virtual arachnoid/trabecula in a process called multitissue integrated interactive deformation (MTIID). MTIID made it possible for cerebral tissue complexes to selectively deform at the site of dissection. Simulations for 8 cases of actual clipping surgery were performed before surgery and evaluated for their usefulness in surgical approach planning. Preoperatively, each operative field was precisely reproduced and visualized with the virtual brain retraction defined by users. The clear visualization of the optimal approach to treating the aneurysm via an appropriate arachnoid incision was possible with MTIID. A virtual clipping simulator mainly focusing on supporting tissues and less on physical properties seemed to be useful in the surgical simulation of cerebral aneurysm clipping. To our knowledge, this article is the first to report brain deformation based on supporting tissues.

  10. Theory of photoinduced deformation of molecular films

    DEFF Research Database (Denmark)

    Gaididei, Yuri B.; Christiansen, Peter Leth; Ramanujam, P.S.

    2002-01-01

    Azobenzene-containing polymers exhibit strong surface-relief features when irradiated with polarized light. Currently proposed theories do not explain all the observed features. Here we propose a theory based on elastic deformation of the polymer due to interaction between dipoles ordered through...

  11. Normal values for myocardial deformation within the right heart measured by feature-tracking cardiovascular magnetic resonance imaging.

    Science.gov (United States)

    Liu, Boyang; Dardeer, Ahmed M; Moody, William E; Edwards, Nicola C; Hudsmith, Lucy E; Steeds, Richard P

    2018-02-01

    Reproducible and repeatable assessment of right heart function is vital for monitoring congenital and acquired heart disease. There is increasing evidence for the additional value of myocardial deformation (strain and strain rate) in determining prognosis. This study aims to determine the reproducibility of deformation analyses in the right heart using cardiovascular magnetic resonance feature tracking (FT-CMR); and to establish normal ranges within an adult population. A cohort of 100 healthy subjects containing 10 males and 10 females from each decade of life between the ages of 20 and 70 without known congenital or acquired cardiovascular disease, hypertension, diabetes, dyslipidaemia or renal, hepatic, haematologic and systemic inflammatory disorders underwent FT-CMR assessment of right ventricular (RV) and right atrial (RA) myocardial strain and strain rate. RV longitudinal strain (Ell) was -21.9±3.24% (FW+S Ell) and -24.2±3.59% (FW-Ell). Peak systolic strain rate (S') was -1.45±0.39s -1 (FW+S) and -1.54±0.41s -1 (FW). Early diastolic strain rate (E') was 1.04±0.26s -1 (FW+S) and 1.04±0.33s -1 (FW). Late diastolic strain rate (A') was 0.94±0.33s -1 (FW+S) and 1.08±0.33s -1 (FW). RA peak strain was -21.1±3.76%. The intra- and inter-observer ICC for RV Ell (FW+S) was 0.92 and 0.80 respectively, while for RA peak strain was 0.92 and 0.89 respectively. Normal values of RV & RA deformation for healthy individuals using FT-CMR are provided with good RV Ell and RA peak strain reproducibility. Strain rate suffered from sub-optimal reproducibility and may not be satisfactory for clinical use. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Effect of compression deformation on the microstructure and corrosion behavior of magnesium alloys

    International Nuclear Information System (INIS)

    Snir, Y.; Ben-Hamu, G.; Eliezer, D.; Abramov, E.

    2012-01-01

    Highlights: ► Metallurgical features (mainly twinning, dislocation accumulation, and dynamic recrystallization). ► The thermo-mechanical state (amount of deformation and its temperature). ► The corrosion behavior of wrought Mg-alloys. This correlation was emphasized by the mechanical behavior measured through micro-hardness. ► Microstructural changes during deformation, and potentio-dynamic corrosion tests were correlated. - Abstract: The effect of deformation on the corrosion and mechanical behavior of wrought Mg-alloys AZ31, AM50, and ZK60 was investigated. The materials’ behavior was correlated to the changes in metallurgical features, during compression, into different amounts of deformation at three temperatures: 250° C, 280° C, and 350° C. The metallurgical features were monitored by optical microscope, scanning electron microscope (SEM), and transmission electron microscopy (TEM). It was observed that there is a very strong correlation between three features: 1. metallurgical features (mainly twinning, dislocation accumulation, and dynamic recrystallization); 2. The thermo-mechanical state (amount of deformation and its temperature); and 3. The corrosion behavior of wrought Mg-alloys. This correlation was emphasized by the mechanical behavior measured through micro-hardness. Microstructural changes during deformation, and potentio-dynamic corrosion tests were correlated. These results show that studies on the effect of thermo-mechanical state (related to the microstructure) on the corrosion behavior of wrought Mg-alloys are essential in order to optimize their applicability to plastic forming processes.

  13. Deformation mechanisms in the San Andreas Fault zone - a comparison between natural and experimentally deformed microstructures

    Science.gov (United States)

    van Diggelen, Esther; Holdsworth, Robert; de Bresser, Hans; Spiers, Chris

    2010-05-01

    The San Andreas Fault (SAF) in California marks the boundary between the Pacific plate and the North American plate. The San Andreas Fault Observatory at Depth (SAFOD) is located 9 km northwest of the town of Parkfield, CA and provide an extensive set of samples through the SAF. The SAFOD drill hole encountered different lithologies, including arkosic sediments from the Salinian block (Pacific plate) and claystones and siltstones from the Great Valley block (North American plate). Fault deformation in the area is mainly by a combination of micro-earthquakes and fault creep. Deformation of the borehole casing indicated that the SAFOD drill hole cross cuts two actively deforming strands of the SAF. In order to determine the deformation mechanisms in the actively creeping fault segments, we have studied thin sections obtained from SAFOD phase 3 core material using optical and electron microscopy, and we have compared these natural SAFOD microstructures with microstructures developed in simulated fault gouges deformed in laboratory shear experiments. The phase 3 core material is divided in three different core intervals consisting of different lithologies. Core interval 1 consists of mildly deformed Salinian rocks that show evidence of cataclasis, pressure solution and reaction of feldspar to form phyllosilicates, all common processes in upper crustal rocks. Most of Core interval 3 (Great Valley) is also only mildly deformed and very similar to Core interval 1. Bedding and some sedimentary features are still visible, together with limited evidence for cataclasis and pressure solution, and reaction of feldspar to form phyllosilicates. However, in between the relatively undeformed rocks, Core interval 3 encountered a zone of foliated fault gouge, consisting mostly of phyllosilicates. This zone is correlated with one of the zones of localized deformation of the borehole casing, i.e. with an actively deforming strand of the SAF. The fault gouge zone shows a strong, chaotic

  14. Strong crystal size effect on deformation twinning

    DEFF Research Database (Denmark)

    Yu, Qian; Shan, Zhi-Wei; Li, Ju

    2010-01-01

    plasticity. Accompanying the transition in deformation mechanism, the maximum flow stress of the submicrometre-sized pillars was observed to saturate at a value close to titanium’s ideal strength9, 10. We develop a ‘stimulated slip’ model to explain the strong size dependence of deformation twinning......Deformation twinning1, 2, 3, 4, 5, 6 in crystals is a highly coherent inelastic shearing process that controls the mechanical behaviour of many materials, but its origin and spatio-temporal features are shrouded in mystery. Using micro-compression and in situ nano-compression experiments, here we...... find that the stress required for deformation twinning increases drastically with decreasing sample size of a titanium alloy single crystal7, 8, until the sample size is reduced to one micrometre, below which the deformation twinning is entirely replaced by less correlated, ordinary dislocation...

  15. Calorimetric features of release of plastic deformation induced internal stresses, and approach to equilibrium state on annealing of crystals and glasses

    Energy Technology Data Exchange (ETDEWEB)

    Johari, G.P., E-mail: joharig@mcmaster.ca

    2014-04-01

    Highlights: • Stress release in a glass occurs at a faster rate than structural relaxation. • Plastically-deformed glass would show two exothermic minima, and no glass transition. • Enthalpy matching procedure would yield an inaccurate fictive temperature. • Complex heat capacity may distinguish plastically-deformed from quench-formed glass. - Abstract: Plastic deformation of crystals and glasses produces internal strains (stresses), which change their energy and other thermodynamic properties. On annealing, these stresses decrease at a rate faster than the structure relaxes toward the equilibrium state. Mechanism of such relaxations in crystals differs from that in glasses and it also differs for glasses of different types. In all cases, the energy related properties decrease with time isothermally and on heating, resembling the structure relaxation of a stress-free glass. We consider these features and argue that kinetics of enthalpy loss with time yields the rate constants of the stress release and of the structure change, and not the viscosity determining α-relaxation time. Since thermal cycling does not recover the enthalpy from internal stresses, a glass with stresses has neither a glass-softening temperature, T{sub g}, nor a fictive temperature, T{sub f}. Plastic deformation would not rejuvenate a physically aged glass to the properties of its un-aged state. The Prigogine–Defay ratio can be extended to all T{sub f}s, and used to investigate the effect of distribution of relaxation times on its value, but it can not be defined for an internally stressed glass. After discussing the effects of annealing on the heat capacity and DSC scans, we conclude that on slow heating, glass with deformation-induced stresses would show two exothermic minima, and normal glass would show only one such minimum. Temperature-modulated scanning calorimetry would also distinguish an internally stressed glass from an equally high-enthalpy, stress-free glass. Enthalpy

  16. Deformation and fracture mechanics of engineering materials

    National Research Council Canada - National Science Library

    Hertzberg, Richard W; Vinci, Richard Paul; Hertzberg, Jason L

    2012-01-01

    "Hertzberg's 5th edition of Deformation & Fracture Mechanics of Engineering Materials offers several new features including a greater number and variety of homework problems using more computational software...

  17. Comparison of laminite fracture features at different scales

    OpenAIRE

    Zihms, Stephanie; Miranda, Tiago; Lewis, Helen; Hall, Stephen

    2017-01-01

    Laminites (NE Brazil) are well laminated carbonates that provide insight into the geomechanical behaviour of layered systems, especially when comparing deformation characteristics observed in the laboratory with outcrop / field scale deformations. This is useful in order to a)  validate where laboratory experiments can reproduce field scale deformation types b)  understand which feature characteristics can or cannot be scaled

  18. Saturation of Deformation and Identical Bands in Very-Neutron Rich Sr Isotopes

    CERN Multimedia

    2002-01-01

    The present proposal aims at establishing nuclear properties in an isotopic chain showing unique features. These features include the saturation of ground state deformation at its onset and the existence of ground state identical bands in neighbouring nuclei with the same deformation. The measurements should help to elucidate the role played by the proton-neutron residual interaction between orbitals with large spatial overlap, i.e. $\\pi g _{9/2} \

  19. Red blood cell-deformability measurement: review of techniques.

    Science.gov (United States)

    Musielak, M

    2009-01-01

    Cell-deformability characterization involves general measurement of highly complex relationships between cell biology and physical forces to which the cell is subjected. The review takes account of the modern technical solutions simulating the action of the force applied to the red blood cell in macro- and microcirculation. Diffraction ektacytometers and rheoscopes measure the mean deformability value for the total red blood cell population investigated and the deformation distribution index of individual cells, respectively. Deformation assays of a whole single cell are possible by means of optical tweezers. The single cell-measuring setups for micropipette aspiration and atomic force microscopy allow conducting a selective investigation of deformation parameters (e.g., cytoplasm viscosity, viscoelastic membrane properties). The distinction between instrument sensitivity to various RBC-rheological features as well as the influence of temperature on measurement are discussed. The reports quoted confront fascinating possibilities of the techniques with their medical applications since the RBC-deformability has the key position in the etiology of a wide range of conditions.

  20. Canny edge-based deformable image registration.

    Science.gov (United States)

    Kearney, Vasant; Huang, Yihui; Mao, Weihua; Yuan, Baohong; Tang, Liping

    2017-02-07

    This work focuses on developing a 2D Canny edge-based deformable image registration (Canny DIR) algorithm to register in vivo white light images taken at various time points. This method uses a sparse interpolation deformation algorithm to sparsely register regions of the image with strong edge information. A stability criterion is enforced which removes regions of edges that do not deform in a smooth uniform manner. Using a synthetic mouse surface ground truth model, the accuracy of the Canny DIR algorithm was evaluated under axial rotation in the presence of deformation. The accuracy was also tested using fluorescent dye injections, which were then used for gamma analysis to establish a second ground truth. The results indicate that the Canny DIR algorithm performs better than rigid registration, intensity corrected Demons, and distinctive features for all evaluation matrices and ground truth scenarios. In conclusion Canny DIR performs well in the presence of the unique lighting and shading variations associated with white-light-based image registration.

  1. Impact of beauty and charm H1-ZEUS combined measurements on PDFs and determination of the strong coupling

    Energy Technology Data Exchange (ETDEWEB)

    Vafaee, A. [National Foundation of Elites, Tehran (Iran, Islamic Republic of); Khorramian, A. [Semnan University, Faculty of Physics, Semnan (Iran, Islamic Republic of)

    2017-11-15

    In this QCD analysis, we investigate the impact of recent measurements of heavy-flavor charm and beauty cross sections data sets on the simultaneous determination of Parton Distribution Functions (PDFs) and the strong coupling, α{sub s}(M{sup 2}{sub Z}). We perform three different fits based on Variable-Flavour Number Scheme (VFNS) at the Leading Order (LO) and Next-to-Leading Order (NLO) and choose the full HERA run I and II combined data as a new measurement of inclusive Deep Inelastic Scattering (DIS) cross sections for our base data set. We show that including charm and beauty cross sections data reduces the uncertainty of gluon distribution and improves the fit quality up to 4.1% from leading order to next-to-leading order and up to 1.7% for only NLO without and with beauty and charm data contributions. (orig.)

  2. The role of strength anisotropy in the development of deep-seated gravitational slope deformation features in schist at Roys Peak, South Island, New Zealand

    Science.gov (United States)

    Brideau, M.

    2013-12-01

    This study looked at the interaction between the rock strength anisotropy and discontinuity orientations on the development of well-expressed deep-seated gravitational slope deformation (DSGSD) features around Roys Peak. The project area is located near the town of Wanaka in the Otago region of New Zealand's South Island. The Roys Peak area has well defined geomorphological features (antislope scarps and split ridges) typically associated with DSGSD over a distance extending almost 4.5 km along the Lake Wanaka Valley. The summit corresponds with the intersection of two prominent ridges running approximately north-south and east-west and has an elevation of 1580 metres above sea level with a local relief of 1250 m. The bedrock geology at Roys Peak consists of Late Paleozoic to Mid Mesozoic pelitic schist having a granitic protolith. The study area has been glaciated several times during the Quaternary Period. Glaciers have strongly influenced the landscape by rounding the spurs in the valley bottom and steepening the lower parts of mountains. Roys Peak is located approximately 75km south from the Alpine Fault (boundary between the Pacific and Australian plates) and as such the project area is not particularly seismically active with only 52 earthquakes with a magnitude greater than 4 within a 50km radius of the project area listed in the New Zealand Historical Earthquake Database. Engineering geological mapping at Roys Peak identified three discontinuity sets and a pervasive schistose fabric in a dip-slope position with the main valley orientation. The rock mass quality was described in the field using the Geological Strength Index (GSI). The observed rock mass quality at Roys Peak had a GSI range between 30-45. This corresponds to a blocky/disturbed/seamy structure with fair quality discontinuity surfaces. The intact rock strength of the schist rock was evaluated using field estimates, Schmidt hammer rebound values, and point load tests. The three methods overlap

  3. Peculiar features of low temperature deformation and strengthening of Cu-Nb bimetal components

    International Nuclear Information System (INIS)

    Lototskaya, V.A.; Il'ichev, V.Ya.

    1988-01-01

    The Cu-Nb bimetal treated in different ways is studied under conditions of uniaxial tension within the temperature range of 4.2...20 K. Stresses of the components being in the bimetal itself are estimated from the load jumps of the strain curve caused by the niobium layer failure. Stresses of components in the bimetal and in its separated layers are found to be different. Variation in the stressed state of a colddrawn and annealed bimetals is, in this case, a factor which determines the stress difference. This variation is accounted for by different structural states of the copper layer under low-temperature localization of the plastic niobium deformation the plastic niobium deformation

  4. Features of energy impact on a billet material when cutting with outstripping plastic deformation

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2014-01-01

    Full Text Available In the last decades the so-called combined machining methods based on parallel, serial or parallelserial combination of different types of energy impacts on the billet are designed and developed. Combination of two or more sources of external energy in one method of machining can be directed to the solution of different technological tasks, such as: improvement of a basic method to enhance technicaland-economic and technological indicators of machining, expansion of technological capabilities of the method, increase of reliability and stability of technological process to produce details, etc. Besides, the combined methods of machining are considered as one of the means, which enables reducing the number of operations in technological process, allows the growth of workforce productivity.When developing the combined technologies, one of the main scientific tasks is to define the general regularities of interaction and mutual influence of the energy fluxes brought to the zone of machining. The result of such mutual influence becomes apparent from the forming technological parameters of machining and determines the most rational operating conditions of technological process.In the context of conducted in BMSTU researches on the combined cutting method with outstripping plastic deformation (OPD the mutual influence of the energetic components of machining has been quantitatively assessed. The paper shows a direct relationship between the rational ratio of the two types of the mechanical energy brought in the machining zone, the machining conditions, and the optimum operating conditions.The paper offers a physical model of chip formation when machining with OPD. The essence of model is that specific works spent on material deformation of a cut-off layer are quantitatively compared at usual cutting and at cutting with OPD. It is experimentally confirmed that the final strain-deformed material states of a cut-off layer, essentially, coincide in both

  5. FEATURES OF THE RESEARCH WORK ELEMENTS DEFORMABILITY OF RAILWAY TRACK

    Directory of Open Access Journals (Sweden)

    I. O. Bondarenko

    2015-06-01

    Full Text Available Purpose. The scientific paper is supposed the determination of basic physical and structural conditions in modeling life cycle of the elements of the railway line for the study of deformation processes as the basis of normative base of the track at the condition of railway safety. Methodology. To achieve the aim principles of the elasticity theory and wave propagation process in the description of the interaction between the track and rolling stock were used. Findings. The basic physical and structural conditions under which it is necessary to carry out the simulation of the life cycle of the elements of the railway line for the study of deformation processes were determined. The basic physical and structural principles of drawing the design schemes of railway track elements for the process assessment of the track deformation work were formulated. The decision correctness and the possibility of the problem solution are proved. Originality. The study of the track reliability questions motivates the development of new models, allow considering it for some developments. There is a need to identify the main physical and structural conditions for assembly design schemes based on assessment and prediction of possible track state changes during its operation. The paper presents the basic principles of physical and structural drafting design schemes of railway line items for which Huygens’ principle is implemented. This principle can be performed only when the four dimensional space: the volume changing over time is considered. Practical value. Analytical models applied in determining the parameters of strength and resistance lines, fully satisfy the task, but can not be used to determine the parameters of track reliability. One of the main impossibility factors of these models is quasidynamic approach. Therefore, as a rule, receive and examine not only dynamic process of a railway track, but also its consequences. Besides, these models are related to

  6. Lithological history and ductile deformation: the lessons for long-term stability of large-scales structures in the olkiluoto

    International Nuclear Information System (INIS)

    Wikstrom, L.; Aaltonen, I.; Mattila, J.

    2009-01-01

    The Olkiluoto site has been chosen as a repository site for the high-level nuclear waste in 2001. Investigations in the site have been ongoing since 1987. The basic idea in the crystalline nuclear waste site still is that the solid repository block surrounded by deformation zones can host a safe repository. It is impossible to say that neither the major ductile nor large-scale brittle deformation zones are stable, but it is possible to say that the tectonic processes have been active in a stable way for billions of years by reactivating the old features time after time and there are no signs of new large features formed in the vicinity of the site during the present time including post-glacial period. Understanding the geological history, especially the ductile deformation and over thrusting, begins from the understanding of the lithological features, mainly rock types, in the island. Vice versa, the occurrence and location of the lithological features are interpreted according to ductile deformation. In addition, you cannot study only present brittle deformation but you need to understand also older ductile and lithological features to be able to understand why these brittle features are where they are and to be able to predict them. (authors)

  7. Invariant Feature Matching for Image Registration Application Based on New Dissimilarity of Spatial Features

    Science.gov (United States)

    Mousavi Kahaki, Seyed Mostafa; Nordin, Md Jan; Ashtari, Amir H.; J. Zahra, Sophia

    2016-01-01

    An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics—such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient—are insufficient for achieving adequate results under different image deformations. Thus, new descriptor’s similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence. PMID:26985996

  8. Invariant Feature Matching for Image Registration Application Based on New Dissimilarity of Spatial Features.

    Directory of Open Access Journals (Sweden)

    Seyed Mostafa Mousavi Kahaki

    Full Text Available An invariant feature matching method is proposed as a spatially invariant feature matching approach. Deformation effects, such as affine and homography, change the local information within the image and can result in ambiguous local information pertaining to image points. New method based on dissimilarity values, which measures the dissimilarity of the features through the path based on Eigenvector properties, is proposed. Evidence shows that existing matching techniques using similarity metrics--such as normalized cross-correlation, squared sum of intensity differences and correlation coefficient--are insufficient for achieving adequate results under different image deformations. Thus, new descriptor's similarity metrics based on normalized Eigenvector correlation and signal directional differences, which are robust under local variation of the image information, are proposed to establish an efficient feature matching technique. The method proposed in this study measures the dissimilarity in the signal frequency along the path between two features. Moreover, these dissimilarity values are accumulated in a 2D dissimilarity space, allowing accurate corresponding features to be extracted based on the cumulative space using a voting strategy. This method can be used in image registration applications, as it overcomes the limitations of the existing approaches. The output results demonstrate that the proposed technique outperforms the other methods when evaluated using a standard dataset, in terms of precision-recall and corner correspondence.

  9. Deformation processes within wheel-rail adhesion in contact area

    Science.gov (United States)

    Albagachiev, A. Yu; Keropyan, A. M.

    2018-03-01

    The study of working surface deformation during interaction of open-pit locomotive tires allowed defining outstanding features of phenomena occurring in the contact area of interacting surfaces. It was found that processes typical for plastic saturated contact occur in the area of wheel-rail interaction of industrial railway transport. In case of plastic deformation exposed to heavy loads typical for open-pit locomotives, upon all rough surfaces of the contour contact area being fully deformed, the frame on which they are found is exposed to plastic deformation. Plastic deformation of roughness within the contact area of interacting surfaces leads to the increase in the actual area of their contact and, therefore, increases the towing capacity of mining machines. Finally, the available data on deformation characteristics with regard to processes occurring in the contact area of wheel-rail interaction will allow making theoretical forecasts on the expected design value of friction coefficient and, therefore, the towing capacity of open-pit locomotives.

  10. Determination of shell energies. Nuclear deformations and fission barriers

    International Nuclear Information System (INIS)

    Koura, Hiroyuki; Tachibana, Takahiro; Uno, Masahiro; Yamada, Masami.

    1996-01-01

    We have been studying a method of determining nuclear shell energies and incorporating them into a mass formula. The main feature of this method lies in estimating shell energies of deformed nuclei from spherical shell energies. We adopt three assumptions, from which the shell energy of a deformed nucleus is deduced to be a weighted sum of spherical shell energies of its neighboring nuclei. This shell energy should be called intrinsic shell energy since the average deformation energy also acts as an effective shell energy. The ground-state shell energy of a deformed nucleus and its equilibrium shape can be obtained by minimizing the sum of these two energies with respect to variation of deformation parameters. In addition, we investigate the existence of fission isomers for heavy nuclei with use of the obtained shell energies. (author)

  11. Analyzing locomotion synthesis with feature-based motion graphs.

    Science.gov (United States)

    Mahmudi, Mentar; Kallmann, Marcelo

    2013-05-01

    We propose feature-based motion graphs for realistic locomotion synthesis among obstacles. Among several advantages, feature-based motion graphs achieve improved results in search queries, eliminate the need of postprocessing for foot skating removal, and reduce the computational requirements in comparison to traditional motion graphs. Our contributions are threefold. First, we show that choosing transitions based on relevant features significantly reduces graph construction time and leads to improved search performances. Second, we employ a fast channel search method that confines the motion graph search to a free channel with guaranteed clearance among obstacles, achieving faster and improved results that avoid expensive collision checking. Lastly, we present a motion deformation model based on Inverse Kinematics applied over the transitions of a solution branch. Each transition is assigned a continuous deformation range that does not exceed the original transition cost threshold specified by the user for the graph construction. The obtained deformation improves the reachability of the feature-based motion graph and in turn also reduces the time spent during search. The results obtained by the proposed methods are evaluated and quantified, and they demonstrate significant improvements in comparison to traditional motion graph techniques.

  12. Deformed two-photon squeezed states in noncommutative space

    International Nuclear Information System (INIS)

    Zhang Jianzu

    2004-01-01

    Recent studies on nonperturbation aspects of noncommutative quantum mechanics explored a new type of boson commutation relations at the deformed level, described by deformed annihilation-creation operators in noncommutative space. This correlated boson commutator correlates different degrees of freedom, and shows an essential influence on dynamics. This Letter devotes to the development of formalism of deformed two-photon squeezed states in noncommutative space. General representations of deformed annihilation-creation operators and the consistency condition for the electromagnetic wave with a single mode of frequency in noncommunicative space are obtained. Two-photon squeezed states are studied. One finds that variances of the dimensionless Hermitian quadratures of the annihilation operator in one degree of freedom include variances in the other degree of freedom. Such correlations show the new feature of spatial noncommutativity and allow a deeper understanding of the correlated boson commutator

  13. Analysis of Orientation Relations Between Deformed Grains and Recrystallization Nuclei

    DEFF Research Database (Denmark)

    West, Stine S.; Winther, Grethe; Juul Jensen, Dorte

    2011-01-01

    Nucleation in 30 pct rolled high-purity aluminum samples was investigated by the electron backscattering pattern method before and after annealing. A total of 29 nuclei including two twins were observed, and approximately one third of these nuclei had orientations not detected in the deformed state....... Possible orientation relations between these nuclei and the deformed state were by 20 to 55 deg rotation around axes. These axes were compared with the active slip systems, and the crystallographic features of the deformation-induced dislocation boundaries. Good agreement was found between the rotation...

  14. Dynamics of viscoplastic deformation in amorphous solids

    International Nuclear Information System (INIS)

    Falk, M.L.; Langer, J.S.

    1998-01-01

    We propose a dynamical theory of low-temperature shear deformation in amorphous solids. Our analysis is based on molecular-dynamics simulations of a two-dimensional, two-component noncrystalline system. These numerical simulations reveal behavior typical of metallic glasses and other viscoplastic materials, specifically, reversible elastic deformation at small applied stresses, irreversible plastic deformation at larger stresses, a stress threshold above which unbounded plastic flow occurs, and a strong dependence of the state of the system on the history of past deformations. Microscopic observations suggest that a dynamically complete description of the macroscopic state of this deforming body requires specifying, in addition to stress and strain, certain average features of a population of two-state shear transformation zones. Our introduction of these state variables into the constitutive equations for this system is an extension of earlier models of creep in metallic glasses. In the treatment presented here, we specialize to temperatures far below the glass transition and postulate that irreversible motions are governed by local entropic fluctuations in the volumes of the transformation zones. In most respects, our theory is in good quantitative agreement with the rich variety of phenomena seen in the simulations. copyright 1998 The American Physical Society

  15. Fishtail deformity - a delayed complication of distal humeral fractures in children

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, Srikala [Massachusetts General Hospital, Department of Radiology, Division of Pediatric Imaging, Boston, MA (United States); University of Pittsburgh Medical Center, Department of Radiology, Pittsburgh, PA (United States); Shailam, Randheer; Nimkin, Katherine [Massachusetts General Hospital, Department of Radiology, Division of Pediatric Imaging, Boston, MA (United States); Grottkau, Brian E. [Massachusetts General Hospital, Department of Orthopaedics, Pediatric Orthopaedics, Boston, MA (United States)

    2015-06-15

    Concavity in the central portion of the distal humerus is referred to as fishtail deformity. This entity is a rare complication of distal humeral fractures in children. The purpose of this study is to describe imaging features of post-traumatic fishtail deformity and discuss the pathophysiology. We conducted a retrospective analysis of seven cases of fishtail deformity after distal humeral fractures. Seven children ages 7-14 years (five boys, two girls) presented with elbow pain and history of distal humeral fracture. Four of the seven children had limited range of motion. Five children had prior grade 3 supracondylar fracture treated with closed reduction and percutaneous pinning. One child had a medial condylar fracture and another had a lateral condylar fracture; both had been treated with conservative casting. All children had radiographs, five had CT and three had MRI. All children had a concave central defect in the distal humerus. Other imaging features included joint space narrowing with osteophytes and subchondral cystic changes in four children, synovitis in one, hypertrophy or subluxation of the radial head in three and proximal migration of the ulna in two. Fishtail deformity of the distal humerus is a rare complication of distal humeral fractures in children. This entity is infrequently reported in the radiology literature. Awareness of the classic imaging features can result in earlier diagnosis and appropriate treatment. (orig.)

  16. Fishtail deformity - a delayed complication of distal humeral fractures in children

    International Nuclear Information System (INIS)

    Narayanan, Srikala; Shailam, Randheer; Nimkin, Katherine; Grottkau, Brian E.

    2015-01-01

    Concavity in the central portion of the distal humerus is referred to as fishtail deformity. This entity is a rare complication of distal humeral fractures in children. The purpose of this study is to describe imaging features of post-traumatic fishtail deformity and discuss the pathophysiology. We conducted a retrospective analysis of seven cases of fishtail deformity after distal humeral fractures. Seven children ages 7-14 years (five boys, two girls) presented with elbow pain and history of distal humeral fracture. Four of the seven children had limited range of motion. Five children had prior grade 3 supracondylar fracture treated with closed reduction and percutaneous pinning. One child had a medial condylar fracture and another had a lateral condylar fracture; both had been treated with conservative casting. All children had radiographs, five had CT and three had MRI. All children had a concave central defect in the distal humerus. Other imaging features included joint space narrowing with osteophytes and subchondral cystic changes in four children, synovitis in one, hypertrophy or subluxation of the radial head in three and proximal migration of the ulna in two. Fishtail deformity of the distal humerus is a rare complication of distal humeral fractures in children. This entity is infrequently reported in the radiology literature. Awareness of the classic imaging features can result in earlier diagnosis and appropriate treatment. (orig.)

  17. T\\overline{T} -deformations, AdS/CFT and correlation functions

    Science.gov (United States)

    Giribet, Gaston

    2018-02-01

    A solvable irrelevant deformation of AdS3/CFT2 correspondence leading to a theory with Hagedorn spectrum at high energy has been recently proposed. It consists of a single trace deformation of the boundary theory, which is inspired by the recent work on solvable T\\overline{T} deformations of two-dimensional CFTs. Thought of as a worldsheet σ-model, the interpretation of the deformed theory from the bulk viewpoint is that of string theory on a background that interpolates between AdS3 in the IR and a linear dilaton vacuum of little string theory in the UV. The insertion of the operator that realizes the deformation in the correlation functions produces a logarithmic divergence, leading to the renormalization of the primary operators, which thus acquire an anomalous dimension. We compute this anomalous dimension explicitly, and this provides us with a direct way of determining the spectrum of the theory. We discuss this and other features of the correlation functions in presence of the deformation.

  18. Highly Deformable Origami Paper Photodetector Arrays

    KAUST Repository

    Lin, Chun-Ho

    2017-09-25

    Flexible electronics will form the basis of many next-generation technologies, such as wearable devices, biomedical sensors, the Internet of things, and more. However, most flexible devices can bear strains of less than 300% as a result of stretching. In this work, we demonstrate a simple and low-cost paper-based photodetector array featuring superior deformability using printable ZnO nanowires, carbon electrodes, and origami-based techniques. With a folded Miura structure, the paper photodetector array can be oriented in four different directions via tessellated parallelograms to provide the device with excellent omnidirectional light harvesting capabilities. Additionally, we demonstrate that the device can be repeatedly stretched (up to 1000% strain), bent (bending angle ±30°), and twisted (up to 360°) without degrading performance as a result of the paper folding technique, which enables the ZnO nanowire layers to remain rigid even as the device is deformed. The origami-based strategy described herein suggests avenues for the development of next-generation deformable optoelectronic applications.

  19. Surface Impedance of Copper MOB Depending on the Annealing Temperature and Deformation Degree

    International Nuclear Information System (INIS)

    Kutovoj, V.A.; Nikolaenko, A.A.; Stoev, P.I.; Vinogradov, D.V.

    2006-01-01

    Results of researches of influence of annealing temperature and deformation degree on mechanical features of copper MOB are presented. It is shown that minimal surface resistance is observed in copper samples that were subject to pre-deformation and were annealed in the range of temperatures 873...923 K

  20. A novel deformation mechanism for superplastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Muto, H.; Sakai, M. (Toyohashi Univ. of Technology (Japan). Dept. of Materials Science)

    1999-01-01

    Uniaxial compressive creep tests with strain value up to -0.1 for a [beta]-spodumene glass ceramic are conducted at 1060 C. From the observation of microstructural changes between before and after the creep deformations, it is shown that the grain-boundary sliding takes place via cooperative movement of groups of grains rather than individual grains under the large-scale-deformation. The deformation process and the surface technique used in this work are not only applicable to explain the deformation and flow of two-phase ceramics but also the superplastic deformation. (orig.) 12 refs.

  1. Plastic deformation of cubic zirconia single crystals at 1400 C

    International Nuclear Information System (INIS)

    Baufeld, B.; Baither, D.; Bartsch, M.; Messerschmidt, U.

    1998-01-01

    Cubic zirconia single crystals stabilized with 11 mol% yttria were deformed in air at 1400 C and around 1200 C at different strain rates along [1 anti 12] and [100] compression directions. The strain rate sensitivity of the flow stress was determined by strain rate cycling and stress relaxation tests. The microstructure of the deformed specimens was investigated by transmission high-voltage electron microscopy, including contrast extinction analysis for determining the Burgers vectors as well as stereo pairs and wide-angle tilting experiments to find the active slip planes. At deformation along [1 anti 12], the primary and secondary slip planes are of {100} type. Previous experiments had shown that the dislocations move easily on these planes in an athermal way. During deformation along [100], mainly dislocations on {100} planes are activated, which move in a viscous way by the aid of thermal activation. The discussion of the different deformation behaviours during deformation along [1 anti 12] and [100] is based on the different dynamic properties of dislocations and the fact that recovery is an essential feature of the deformation of cubic zirconia at 1400 C. The results on the shape of the deformation curve and the strain rate sensitivity of the flow stress are partly at variance with those of previous authors. (orig.)

  2. Audio Query by Example Using Similarity Measures between Probability Density Functions of Features

    Directory of Open Access Journals (Sweden)

    Marko Helén

    2010-01-01

    Full Text Available This paper proposes a query by example system for generic audio. We estimate the similarity of the example signal and the samples in the queried database by calculating the distance between the probability density functions (pdfs of their frame-wise acoustic features. Since the features are continuous valued, we propose to model them using Gaussian mixture models (GMMs or hidden Markov models (HMMs. The models parametrize each sample efficiently and retain sufficient information for similarity measurement. To measure the distance between the models, we apply a novel Euclidean distance, approximations of Kullback-Leibler divergence, and a cross-likelihood ratio test. The performance of the measures was tested in simulations where audio samples are automatically retrieved from a general audio database, based on the estimated similarity to a user-provided example. The simulations show that the distance between probability density functions is an accurate measure for similarity. Measures based on GMMs or HMMs are shown to produce better results than that of the existing methods based on simpler statistics or histograms of the features. A good performance with low computational cost is obtained with the proposed Euclidean distance.

  3. Deformation bands and dislocation structures of [1-bar 5 5] coplanar double-slip-oriented copper single crystal under cyclic deformation

    International Nuclear Information System (INIS)

    Li, Y.; Li, S.X.; Li, G.Y.

    2004-01-01

    The features of surface morphology and dislocation structure of [1-bar 5 5] coplanar double-slip-oriented copper single crystal under cyclic deformation at a constant plastic shear strain amplitude of 2x10 -3 were studied using optical microscope (OP) and electron channelling contrast imaging (ECCI) in the scanning electron microscope (SEM). Experimental results show that there are two sets of the secondary type of deformation band (DBII) formed in the specimen. The geometry relationship of the two sets of deformation bands (DBs) and slip band (SB) are given. The habit planes of DBIIs are close to (1-bar 0 1) and (1-bar 1 0) plane, respectively. The surface dislocation structures in the specimen including vein, irregular dislocation cells and dislocation walls were also observed. The typical dislocation structure in DBII is the dislocation walls

  4. Chiral trace relations in Ω-deformed N=2 theories

    Energy Technology Data Exchange (ETDEWEB)

    Beccaria, Matteo; Fachechi, Alberto; Macorini, Guido [Dipartimento di Matematica e Fisica Ennio De Giorgi,Università del Salento, Via Arnesano, 73100 Lecce (Italy); INFN - Sezione di LecceVia Arnesano, 73100 Lecce (Italy)

    2017-05-04

    We consider N=2SU(2) gauge theories in four dimensions (pure or mass deformed) and discuss the properties of the simplest chiral observables in the presence of a generic Ω-deformation. We compute them by equivariant localization and analyze the structure of the exact instanton corrections to the classical chiral ring relations. We predict exact relations valid at all instanton number among the traces 〈Trφ{sup n}〉, where φ is the scalar field in the gauge multiplet. In the Nekrasov-Shatashvili limit, such relations may be explained in terms of the available quantized Seiberg-Witten curves. Instead, the full two-parameter deformation enjoys novel features and the ring relations require non trivial additional derivative terms with respect to the modular parameter. Higher rank groups are briefly discussed emphasizing non-factorization of correlators due to the Ω-deformation. Finally, the structure of the deformed ring relations in the N=2{sup ⋆} theory is analyzed from the point of view of the Alday-Gaiotto-Tachikawa correspondence proving consistency as well as some interesting universality properties.

  5. Congenital Double Lip: A Rare Deformity Treated Surgically

    Science.gov (United States)

    Aggarwal, Titiksha; Chawla, Kirti; Lamba, Arundeep Kaur; Faraz, Farukh; Tandon, Shruti

    2016-01-01

    Lip is an important aspect of facial features affecting ones personality. A deformity of the lip characterized by excessive tissue sagging below the usual giving it thicker wider appearance is referred to as double lip. It is a rare occurrence with a proposed male predilection. This article is a report of a 20 years old male with this deformity who presented with the complaint of difficult speech and poor aesthetics. There was no other history patient being systemically healthy. It was successively treated with a simple surgical technique without recurrence over a period of 12 months. PMID:27853696

  6. Performance of 12 DIR algorithms in low-contrast regions for mass and density conserving deformation

    International Nuclear Information System (INIS)

    Yeo, U. J.; Supple, J. R.; Franich, R. D.; Taylor, M. L.; Smith, R.; Kron, T.

    2013-01-01

    Purpose: Deformable image registration (DIR) has become a key tool for adaptive radiotherapy to account for inter- and intrafraction organ deformation. Of contemporary interest, the application to deformable dose accumulation requires accurate deformation even in low contrast regions where dose gradients may exist within near-uniform tissues. One expects high-contrast features to generally be deformed more accurately by DIR algorithms. The authors systematically assess the accuracy of 12 DIR algorithms and quantitatively examine, in particular, low-contrast regions, where accuracy has not previously been established.Methods: This work investigates DIR algorithms in three dimensions using deformable gel (DEFGEL) [U. J. Yeo, M. L. Taylor, L. Dunn, R. L. Smith, T. Kron, and R. D. Franich, “A novel methodology for 3D deformable dosimetry,” Med. Phys. 39, 2203–2213 (2012)], for application to mass- and density-conserving deformations. CT images of DEFGEL phantoms with 16 fiducial markers (FMs) implanted were acquired in deformed and undeformed states for three different representative deformation geometries. Nonrigid image registration was performed using 12 common algorithms in the public domain. The optimum parameter setup was identified for each algorithm and each was tested for deformation accuracy in three scenarios: (I) original images of the DEFGEL with 16 FMs; (II) images with eight of the FMs mathematically erased; and (III) images with all FMs mathematically erased. The deformation vector fields obtained for scenarios II and III were then applied to the original images containing all 16 FMs. The locations of the FMs estimated by the algorithms were compared to actual locations determined by CT imaging. The accuracy of the algorithms was assessed by evaluation of three-dimensional vectors between true marker locations and predicted marker locations.Results: The mean magnitude of 16 error vectors per sample ranged from 0.3 to 3.7, 1.0 to 6.3, and 1.3 to 7

  7. Quantification of global myocardial function by cine MRI deformable registration-based analysis: Comparison with MR feature tracking and speckle-tracking echocardiography.

    Science.gov (United States)

    Lamacie, Mariana M; Thavendiranathan, Paaladinesh; Hanneman, Kate; Greiser, Andreas; Jolly, Marie-Pierre; Ward, Richard; Wintersperger, Bernd J

    2017-04-01

    To evaluate deformable registration algorithms (DRA)-based quantification of cine steady-state free-precession (SSFP) for myocardial strain assessment in comparison with feature-tracking (FT) and speckle-tracking echocardiography (STE). Data sets of 28 patients/10 volunteers, undergoing same-day 1.5T cardiac MRI and echocardiography were included. LV global longitudinal (GLS), circumferential (GCS) and radial (GRS) peak systolic strain were assessed on cine SSFP data using commercially available FT algorithms and prototype DRA-based algorithms. STE was applied as standard of reference for accuracy, precision and intra-/interobserver reproducibility testing. DRA showed narrower limits of agreement compared to STE for GLS (-4.0 [-0.9,-7.9]) and GCS (-5.1 [1.1,-11.2]) than FT (3.2 [11.2,-4.9]; 3.8 [13.9,-6.3], respectively). While both DRA and FT demonstrated significant differences to STE for GLS and GCS (all pcine MRI. • Inverse DRA demonstrated superior reproducibility compared to feature-tracking (FT) methods. • Cine MR DRA and FT analysis demonstrate differences to speckle-tracking echocardiography • DRA demonstrated better correlation with STE than FT for MR-derived global strain data.

  8. Sea-ice deformation state from synthetic aperture radar imagery - Part I: comparison of C- and L-band and different polarization

    DEFF Research Database (Denmark)

    Dierking, Wolfgang; Dall, Jørgen

    2007-01-01

    configuration and ice conditions. Optical imagery of sufficient quality for comparison is available only in a very few cases. To characterize the deformation state, the areal fraction of deformation features and the average distance between these features are evaluated. The values obtained for both parameters...... negligible. In comparison to optical images, it was observed that deformed-ice areas can be distinguished from level ice over their whole length and extension at L-band, whereas at C-band, often, only prominent parts are visible....

  9. High resolution, large deformation 3D traction force microscopy.

    Directory of Open Access Journals (Sweden)

    Jennet Toyjanova

    Full Text Available Traction Force Microscopy (TFM is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D imaging and traction force analysis (3D TFM have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients.

  10. A two-dimensional deformable phantom for quantitatively verifying deformation algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; Chuang, Cynthia; Pouliot, Jean [Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143-1708 (United States)

    2011-08-15

    Purpose: The incorporation of deformable image registration into the treatment planning process is rapidly advancing. For this reason, the methods used to verify the underlying deformation algorithms must evolve equally fast. This manuscript proposes a two-dimensional deformable phantom, which can objectively verify the accuracy of deformation algorithms, as the next step for improving these techniques. Methods: The phantom represents a single plane of the anatomy for a head and neck patient. Inflation of a balloon catheter inside the phantom simulates tumor growth. CT and camera images of the phantom are acquired before and after its deformation. Nonradiopaque markers reside on the surface of the deformable anatomy and are visible through an acrylic plate, which enables an optical camera to measure their positions; thus, establishing the ground-truth deformation. This measured deformation is directly compared to the predictions of deformation algorithms, using several similarity metrics. The ratio of the number of points with more than a 3 mm deformation error over the number that are deformed by more than 3 mm is used for an error metric to evaluate algorithm accuracy. Results: An optical method of characterizing deformation has been successfully demonstrated. For the tests of this method, the balloon catheter deforms 32 out of the 54 surface markers by more than 3 mm. Different deformation errors result from the different similarity metrics. The most accurate deformation predictions had an error of 75%. Conclusions: The results presented here demonstrate the utility of the phantom for objectively verifying deformation algorithms and determining which is the most accurate. They also indicate that the phantom would benefit from more electron density heterogeneity. The reduction of the deformable anatomy to a two-dimensional system allows for the use of nonradiopaque markers, which do not influence deformation algorithms. This is the fundamental advantage of this

  11. Contour junctions defined by dynamic image deformations enhance perceptual transparency.

    Science.gov (United States)

    Kawabe, Takahiro; Nishida, Shin'ya

    2017-11-01

    The majority of work on the perception of transparency has focused on static images with luminance-defined contour junctions, but recent work has shown that dynamic image sequences with dynamic image deformations also provide information about transparency. The present study demonstrates that when part of a static image is dynamically deformed, contour junctions at which deforming and nondeforming contours are connected facilitate the deformation-based perception of a transparent layer. We found that the impression of a transparent layer was stronger when a dynamically deforming area was adjacent to static nondeforming areas than when presented alone. When contour junctions were not formed at the dynamic-static boundaries, however, the impression of a transparent layer was not facilitated by the presence of static surrounding areas. The effect of the deformation-defined junctions was attenuated when the spatial pattern of luminance contrast at the junctions was inconsistent with the perceived transparency related to luminance contrast, while the effect did not change when the spatial luminance pattern was consistent with it. In addition, the results showed that contour completions across the junctions were required for the perception of a transparent layer. These results indicate that deformation-defined junctions that involve contour completion between deforming and nondeforming regions enhance the perception of a transparent layer, and that the deformation-based perceptual transparency can be promoted by the simultaneous presence of appropriately configured luminance and contrast-other features that can also by themselves produce the sensation of perceiving transparency.

  12. Meteorite Impact "Earthquake" Features (Rock Liquefaction, Surface Wave Deformations, Seismites) from Ground Penetrating Radar (GPR) and Geoelectric Complex Resistivity/Induced Polarization (IP) Measurements, Chiemgau (Alpine Foreland, Southeast Germany)

    Science.gov (United States)

    Ernstson, K.; Poßekel, J.

    2017-12-01

    Densely spaced GPR and complex resistivity measurements on a 30,000 square meters site in a region of enigmatic sinkhole occurrences in unconsolidated Quaternary sediments have featured unexpected and highlighting results from both a meteorite impact research and an engineering geology point of view. The GPR measurements and a complex resistivity/IP electrical imaging revealed extended subrosion depressions related with a uniformly but in various degrees of intensity deformed loamy and gravelly ground down to at least 10 m depth. Two principle observations could be made from both the GPR high-resolution measurements and the more integrating resistivity and IP soundings with both petrophysical evidences in good complement. Subrosion can be shown to be the result of prominent sandy-gravelly intrusions and extrusions typical of rock liquefaction processes well known to occur during strong earthquakes. Funnel-shaped structures with diameters up to 25 m near the surface and reaching down to the floating ground water level at 10 m depth were measured. GPR radargrams could trace prominent gravelly-material transport bottom-up within the funnels. Seen in both GPR tomography and resistivity/IP sections more or less the whole investigated area is overprinted by wavy deformations of the unconsolidated sediments with wavelengths of the order of 5 - 10 m and amplitudes up to half a meter, likewise down to 10 m depth. Substantial earthquakes are not known in this region. Hence, the observed heavy underground disorder is considered the result of the prominent earthquake shattering that must have occurred during the Holocene (Bronze Age/Celtic era) Chiemgau meteorite impact event that produced a 60 km x 30 km sized crater strewn field directly hosting the investigated site. Depending on depth and size of floating aquifers local concentrations of rock liquefaction and seismic surface waves (probably LOVE waves) to produce the wavy deformations could develop, when the big

  13. Updated lattice results for parton distributions

    International Nuclear Information System (INIS)

    Alexandrou, Constantia; Cichy, Krzysztof; Hadjiyiannakou, Kyriakos; Jansen, Karl; Steffens, Fernanda; Wiese, Christian

    2017-07-01

    We provide an analysis of the x-dependence of the bare unpolarized, helicity and transversity iso-vector parton distribution functions (PDFs) from lattice calculations employing (maximally) twisted mass fermions. The x-dependence of the calculated PDFs resembles the one of the phenomenological parameterizations, a feature that makes this approach very promising. Furthermore, we apply momentum smearing for the relevant matrix elements to compute the lattice PDFs and find a large improvement factor when compared to conventional Gaussian smearing. This allows us to extend the lattice computation of the distributions to higher values of the nucleon momentum, which is essential for the prospects of a reliable extraction of the PDFs in the future.

  14. Updated lattice results for parton distributions

    Energy Technology Data Exchange (ETDEWEB)

    Alexandrou, Constantia [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; The Cyprus Institute, Nicosia (Cyprus); Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Poznan Univ. (Poland). Faculty of Physics; Constantinou, Martha [Temple Univ., Philadelphia, PA (United States); Hadjiyiannakou, Kyriakos [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Jansen, Karl; Steffens, Fernanda; Wiese, Christian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC

    2017-07-15

    We provide an analysis of the x-dependence of the bare unpolarized, helicity and transversity iso-vector parton distribution functions (PDFs) from lattice calculations employing (maximally) twisted mass fermions. The x-dependence of the calculated PDFs resembles the one of the phenomenological parameterizations, a feature that makes this approach very promising. Furthermore, we apply momentum smearing for the relevant matrix elements to compute the lattice PDFs and find a large improvement factor when compared to conventional Gaussian smearing. This allows us to extend the lattice computation of the distributions to higher values of the nucleon momentum, which is essential for the prospects of a reliable extraction of the PDFs in the future.

  15. Diffusion tensor image registration using hybrid connectivity and tensor features.

    Science.gov (United States)

    Wang, Qian; Yap, Pew-Thian; Wu, Guorong; Shen, Dinggang

    2014-07-01

    Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone. Copyright © 2013 Wiley Periodicals, Inc.

  16. A coupled deformation-diffusion theory for fluid-saturated porous solids

    Science.gov (United States)

    Henann, David; Kamrin, Ken; Anand, Lallit

    2012-02-01

    Fluid-saturated porous materials are important in several familiar applications, such as the response of soils in geomechanics, food processing, pharmaceuticals, and the biomechanics of living bone tissue. An appropriate constitutive theory describing the coupling of the mechanical behavior of the porous solid with the transport of the fluid is a crucial ingredient towards understanding the material behavior in these varied applications. In this work, we formulate and numerically implement in a finite-element framework a large-deformation theory for coupled deformation-diffusion in isotropic, fluid-saturated porous solids. The theory synthesizes the classical Biot theory of linear poroelasticity and the more-recent Coussy theory of poroplasticity in a large deformation framework. In this talk, we highlight several salient features of our theory and discuss representative examples of the application of our numerical simulation capability to problems of consolidation as well as deformation localization in granular materials.

  17. Decoherence and discrete symmetries in deformed relativistic kinematics

    Science.gov (United States)

    Arzano, Michele

    2018-01-01

    Models of deformed Poincaré symmetries based on group valued momenta have long been studied as effective modifications of relativistic kinematics possibly capturing quantum gravity effects. In this contribution we show how they naturally lead to a generalized quantum time evolution of the type proposed to model fundamental decoherence for quantum systems in the presence of an evaporating black hole. The same structures which determine such generalized evolution also lead to a modification of the action of discrete symmetries and of the CPT operator. These features can in principle be used to put phenomenological constraints on models of deformed relativistic symmetries using precision measurements of neutral kaons.

  18. A finite deformation theory of higher-order gradient crystal plasticity

    DEFF Research Database (Denmark)

    Kuroda, Mitsutoshi; Tvergaard, Viggo

    2008-01-01

    crystal plasticity that is based on an assumption of the existence of higher-order stresses. Furthermore, a boundary-value problem for simple shear of a constrained thin strip is studied numerically, and some characteristic features of finite deformation are demonstrated through a comparison to a solution......For higher-order gradient crystal plasticity, a finite deformation formulation is presented. The theory does not deviate much from the conventional crystal plasticity theory. Only a back stress effect and additional differential equations for evolution of the geometrically necessary dislocation...

  19. Scratch-induced deformation in fine- and ultrafine-grained bulk alumina

    International Nuclear Information System (INIS)

    Huang, Lin; Zhang, Zhihui; Zhao, Yonghao; Yao, Wenlong; Mukherjee, Amiya K.; Schoenung, Julie M.

    2010-01-01

    The nanoscratch behavior of two bulk α-alumina samples with 1.3 μm and 290 nm average grain sizes, respectively, was investigated using a nanoindenter in scratch mode, in combination with atomic force and scanning electron microscopy. A ductile to brittle transition was observed in the fine-grained sample, while the ultrafine-grained sample exhibited predominantly ductile deformation with a fish-bone feature indicative of a stick-slip mechanism. These findings suggest that grain refinement can increase the potential for plastic deformation in ceramics.

  20. Quantification of global myocardial function by cine MRI deformable registration-based analysis: Comparison with MR feature tracking and speckle-tracking echocardiography

    International Nuclear Information System (INIS)

    Lamacie, Mariana M.; Thavendiranathan, Paaladinesh; Hanneman, Kate; Greiser, Andreas; Jolly, Marie-Pierre; Ward, Richard; Wintersperger, Bernd J.

    2017-01-01

    To evaluate deformable registration algorithms (DRA)-based quantification of cine steady-state free-precession (SSFP) for myocardial strain assessment in comparison with feature-tracking (FT) and speckle-tracking echocardiography (STE). Data sets of 28 patients/10 volunteers, undergoing same-day 1.5T cardiac MRI and echocardiography were included. LV global longitudinal (GLS), circumferential (GCS) and radial (GRS) peak systolic strain were assessed on cine SSFP data using commercially available FT algorithms and prototype DRA-based algorithms. STE was applied as standard of reference for accuracy, precision and intra-/interobserver reproducibility testing. DRA showed narrower limits of agreement compared to STE for GLS (-4.0 [-0.9,-7.9]) and GCS (-5.1 [1.1,-11.2]) than FT (3.2 [11.2,-4.9]; 3.8 [13.9,-6.3], respectively). While both DRA and FT demonstrated significant differences to STE for GLS and GCS (all p<0.001), only DRA correlated significantly to STE for GLS (r=0.47; p=0.006). However, good correlation was demonstrated between MR techniques (GLS:r=0.74; GCS:r=0.80; GRS:r=0.45, all p<0.05). Comparing DRA with FT, intra-/interobserver coefficient of variance was lower (1.6 %/3.2 % vs. 6.4 %/5.7 %) and intraclass-correlation coefficient was higher. DRA GCS and GRS data presented zero variability for repeated observations. DRA is an automated method that allows myocardial deformation assessment with superior reproducibility compared to FT. (orig.)

  1. Quantification of global myocardial function by cine MRI deformable registration-based analysis: Comparison with MR feature tracking and speckle-tracking echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Lamacie, Mariana M. [University Health Network, Department of Medical Imaging, Toronto, Ontario (Canada); Thavendiranathan, Paaladinesh [University Health Network, Department of Medical Imaging, Toronto, Ontario (Canada); University of Toronto, Department of Medicine, Division of Cardiology, Toronto, Ontario (Canada); Hanneman, Kate [University Health Network, Department of Medical Imaging, Toronto, Ontario (Canada); University of Toronto, Department of Medical Imaging, Toronto, Ontario (Canada); Greiser, Andreas [Siemens Healthcare, Erlangen (Germany); Jolly, Marie-Pierre [Medical Imaging Technologies, Siemens Healthcare, Princeton, NJ (United States); Ward, Richard [University of Toronto, Department of Medicine, Division of Cardiology, Toronto, Ontario (Canada); Wintersperger, Bernd J. [University Health Network, Department of Medical Imaging, Toronto, Ontario (Canada); University of Toronto, Department of Medical Imaging, Toronto, Ontario (Canada); Toronto General Hospital, Department of Medical Imaging, Toronto, Ontario (Canada)

    2017-04-15

    To evaluate deformable registration algorithms (DRA)-based quantification of cine steady-state free-precession (SSFP) for myocardial strain assessment in comparison with feature-tracking (FT) and speckle-tracking echocardiography (STE). Data sets of 28 patients/10 volunteers, undergoing same-day 1.5T cardiac MRI and echocardiography were included. LV global longitudinal (GLS), circumferential (GCS) and radial (GRS) peak systolic strain were assessed on cine SSFP data using commercially available FT algorithms and prototype DRA-based algorithms. STE was applied as standard of reference for accuracy, precision and intra-/interobserver reproducibility testing. DRA showed narrower limits of agreement compared to STE for GLS (-4.0 [-0.9,-7.9]) and GCS (-5.1 [1.1,-11.2]) than FT (3.2 [11.2,-4.9]; 3.8 [13.9,-6.3], respectively). While both DRA and FT demonstrated significant differences to STE for GLS and GCS (all p<0.001), only DRA correlated significantly to STE for GLS (r=0.47; p=0.006). However, good correlation was demonstrated between MR techniques (GLS:r=0.74; GCS:r=0.80; GRS:r=0.45, all p<0.05). Comparing DRA with FT, intra-/interobserver coefficient of variance was lower (1.6 %/3.2 % vs. 6.4 %/5.7 %) and intraclass-correlation coefficient was higher. DRA GCS and GRS data presented zero variability for repeated observations. DRA is an automated method that allows myocardial deformation assessment with superior reproducibility compared to FT. (orig.)

  2. Shepherd's Crook Deformity of Polyostotic Fibrous Dysplasia Treated with Corrective Osteotomy and Dynamic Hip Screw

    Directory of Open Access Journals (Sweden)

    Wei-Jen Chen

    2005-07-01

    Full Text Available Fibrous dysplasia, a condition in which the skeleton fails to develop normally, is characterized by fibroblastic stroma and immature bone. Bowing of the long bones occurs frequently in the polyostotic form, and stress fractures often result. Shepherd's crook deformity is a characteristic feature of fibrous dysplasia. The goal of its treatment is to obtain normal walking ability and relieve pain due to pathologic fracture secondary to the deformity; however, correction of the deformity is a surgical challenge. We present 2 cases of shepherd's crook deformity treated with corrective osteotomy and a dynamic hip screw. Both cases showed good bone healing and no recurrent deformity. The gross deformities were corrected, and both patients were pain-free after operation.

  3. Optical image hiding based on chaotic vibration of deformable moiré grating

    Science.gov (United States)

    Lu, Guangqing; Saunoriene, Loreta; Aleksiene, Sandra; Ragulskis, Minvydas

    2018-03-01

    Image hiding technique based on chaotic vibration of deformable moiré grating is presented in this paper. The embedded secret digital image is leaked in a form of a pattern of time-averaged moiré fringes when the deformable cover grating vibrates according to a chaotic law of motion with a predefined set of parameters. Computational experiments are used to demonstrate the features and the applicability of the proposed scheme.

  4. Improved initial guess with semi-subpixel level accuracy in digital image correlation by feature-based method

    Science.gov (United States)

    Zhang, Yunlu; Yan, Lei; Liou, Frank

    2018-05-01

    The quality initial guess of deformation parameters in digital image correlation (DIC) has a serious impact on convergence, robustness, and efficiency of the following subpixel level searching stage. In this work, an improved feature-based initial guess (FB-IG) scheme is presented to provide initial guess for points of interest (POIs) inside a large region. Oriented FAST and Rotated BRIEF (ORB) features are semi-uniformly extracted from the region of interest (ROI) and matched to provide initial deformation information. False matched pairs are eliminated by the novel feature guided Gaussian mixture model (FG-GMM) point set registration algorithm, and nonuniform deformation parameters of the versatile reproducing kernel Hilbert space (RKHS) function are calculated simultaneously. Validations on simulated images and real-world mini tensile test verify that this scheme can robustly and accurately compute initial guesses with semi-subpixel level accuracy in cases with small or large translation, deformation, or rotation.

  5. Discrete kinematic modeling of the 3-D deformation of sedimentary basins; Modelisation cinematique discrete de la deformation 3D des bassins sedimentaires

    Energy Technology Data Exchange (ETDEWEB)

    Cornu, T.

    2001-01-01

    The present work deals with three-dimensional deformation of sedimentary basins. The main goal of the work was to propose new ways to study tectonic deformation and to insert it into basin-modeling environment for hydrocarbon migration applications. To handle the complexity of the deformation, the model uses kinematic laws, a discrete approach, and the construction of a code that allows the greatest diversity in the deformation mechanisms we can take into account. The 3-D-volume deformation is obtained through the calculation of the behavior of the neutral surface of each basin layer. The main idea is to deform the neutral surface of each layer with the help of geometrical laws and to use the result to rebuild the volume deformation of the basin. The constitutive algorithm includes three characteristic features. The first one deals with the mathematical operator we use to describe the flexural-slip mechanism which is a combination of the translation of the neutral surface nodes and the rotation of the vertical edges attached to these nodes. This performs the reversibility that was required for the basin modeling. The second one is about. the use of a discrete approach, which gives a better description of the global deformation and offers to locally control volume evolutions. The knowledge of volume variations can become a powerful tool in structural geology analysis and the perfect complement for a field study. The last one concerns the modularity of the developed code. Indeed, the proposed model uses three main mechanisms of deformation. But the architecture of the code allows the insertion of new mechanisms or a better interaction between them. The model has been validated first with 2-D cases, then with 3-D natural cases. They give good results from a qualitative point of view. They also show the capacity of the model to provide a deformation path that is geologically acceptable, and its ability to control the volume variations of the basin through the

  6. Interplay of static and dynamic features in biomimetic smart ears.

    Science.gov (United States)

    Pannala, Mittu; Meymand, Sajjad Zeinoddini; Müller, Rolf

    2013-06-01

    Horseshoe bats (family Rhinolophidae) have sophisticated biosonar systems with outer ears (pinnae) that are characterized by static local shape features as well as dynamic non-rigid changes to their overall shapes. Here, biomimetic prototypes fabricated from elastic rubber sheets have been used to study the impact of these static and dynamic features on the acoustic device characteristics. The basic shape of the prototypes was an obliquely truncated horn augmented with three static local shape features: vertical ridge, pinna-rim incision and frontal flap (antitragus). The prototype shape was deformed dynamically using a one-point actuation mechanism to produce a biomimetic bending of the prototype's tip. In isolation, the local shape features had little impact on the device beampattern. However, strong interactions were observed between these features and the overall deformation. The further the prototype tip was bent down, the stronger the beampatterns associated with combinations of multiple features differed from the upright configuration in the prominence of sidelobes. This behavior was qualitatively similar to numerical predictions for horseshoe bats. Hence, the interplay between static and dynamic features could be a bioinspired principle for affecting large changes through the dynamic manipulations of interactions that are sensitive to small geometrical changes.

  7. Comparison of demons deformable registration-based methods for texture analysis of serial thoracic CT scans

    Science.gov (United States)

    Cunliffe, Alexandra R.; Al-Hallaq, Hania A.; Fei, Xianhan M.; Tuohy, Rachel E.; Armato, Samuel G.

    2013-02-01

    To determine how 19 image texture features may be altered by three image registration methods, "normal" baseline and follow-up computed tomography (CT) scans from 27 patients were analyzed. Nineteen texture feature values were calculated in over 1,000 32x32-pixel regions of interest (ROIs) randomly placed in each baseline scan. All three methods used demons registration to map baseline scan ROIs to anatomically matched locations in the corresponding transformed follow-up scan. For the first method, the follow-up scan transformation was subsampled to achieve a voxel size identical to that of the baseline scan. For the second method, the follow-up scan was transformed through affine registration to achieve global alignment with the baseline scan. For the third method, the follow-up scan was directly deformed to the baseline scan using demons deformable registration. Feature values in matched ROIs were compared using Bland- Altman 95% limits of agreement. For each feature, the range spanned by the 95% limits was normalized to the mean feature value to obtain the normalized range of agreement, nRoA. Wilcoxon signed-rank tests were used to compare nRoA values across features for the three methods. Significance for individual tests was adjusted using the Bonferroni method. nRoA was significantly smaller for affine-registered scans than for the resampled scans (p=0.003), indicating lower feature value variability between baseline and follow-up scan ROIs using this method. For both of these methods, however, nRoA was significantly higher than when feature values were calculated directly on demons-deformed followup scans (p<0.001). Across features and methods, nRoA values remained below 26%.

  8. Statistical description of turbulent transport for flux driven toroidal plasmas

    Science.gov (United States)

    Anderson, J.; Imadera, K.; Kishimoto, Y.; Li, J. Q.; Nordman, H.

    2017-06-01

    A novel methodology to analyze non-Gaussian probability distribution functions (PDFs) of intermittent turbulent transport in global full-f gyrokinetic simulations is presented. In this work, the auto-regressive integrated moving average (ARIMA) model is applied to time series data of intermittent turbulent heat transport to separate noise and oscillatory trends, allowing for the extraction of non-Gaussian features of the PDFs. It was shown that non-Gaussian tails of the PDFs from first principles based gyrokinetic simulations agree with an analytical estimation based on a two fluid model.

  9. The strain accommodation in Ti–28Nb–12Ta–5Zr alloy during warm deformation

    International Nuclear Information System (INIS)

    Farghadany, E.; Zarei-Hanzaki, A.; Abedi, H.R.; Dietrich, D.; Lampke, T.

    2014-01-01

    The warm deformation behavior of a β-type Ti alloys, composing of Ti–27.96Nb–11.97Ta–5.02Zr %wt, (so called TNTZ alloy), has been investigated in the present work in a warm deformation temperature. A variety of deformation features are characterized in the material microstructure after applied warm deformation scheme. The XRD analysis confirms an enhancement in martensite volume fraction. The electron back scatter diffractometry (EBSD) elucidates that the martensite has been mainly formed by laterally at the vicinity of different types of deformation bands. Both the well-known twining systems in TNTZ series have been occurred during deformation. The micro-shear bands, which are defined as highly concentrated plastic strain regions, are characterized in the deformed microstructure. The micro-shear bands are severely formed in the regions, which accommodate the most amount of applied strain

  10. Decontaminate feature for tracking: adaptive tracking via evolutionary feature subset

    Science.gov (United States)

    Liu, Qiaoyuan; Wang, Yuru; Yin, Minghao; Ren, Jinchang; Li, Ruizhi

    2017-11-01

    Although various visual tracking algorithms have been proposed in the last 2-3 decades, it remains a challenging problem for effective tracking with fast motion, deformation, occlusion, etc. Under complex tracking conditions, most tracking models are not discriminative and adaptive enough. When the combined feature vectors are inputted to the visual models, this may lead to redundancy causing low efficiency and ambiguity causing poor performance. An effective tracking algorithm is proposed to decontaminate features for each video sequence adaptively, where the visual modeling is treated as an optimization problem from the perspective of evolution. Every feature vector is compared to a biological individual and then decontaminated via classical evolutionary algorithms. With the optimized subsets of features, the "curse of dimensionality" has been avoided while the accuracy of the visual model has been improved. The proposed algorithm has been tested on several publicly available datasets with various tracking challenges and benchmarked with a number of state-of-the-art approaches. The comprehensive experiments have demonstrated the efficacy of the proposed methodology.

  11. Tensile deformation behavior and deformation twinning of an equimolar CoCrFeMnNi high-entropy alloy

    Energy Technology Data Exchange (ETDEWEB)

    Joo, S.-H.; Kato, H. [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Jang, M.J.; Moon, J. [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Tsai, C.W.; Yeh, J.W. [Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Kim, H.S., E-mail: hskim@postech.ac.kr [Department of Materials Science and Engineering, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of); Center for High Entropy Alloys, Pohang University of Science and Technology, Pohang 37673 (Korea, Republic of)

    2017-03-24

    The tensile deformation and strain hardening behaviors of an equimolar CoCrFeMnNi high-entropy alloy (HEA) were investigated and compared with low and medium entropy equiatomic alloys (LEA and MEA). The HEA had a lower yield strength than the MEA because the addition of Mn weakens solid solution hardening in the HEA. However, deformation twinning induced the multiple stage strain hardening behavior of the HEA and enhanced strength and elongation. Using tensile-interrupted electron backscatter diffraction analysis, geometrically necessary dislocations were observed as plume-shaped features in grain interior, and a considerable texture was characterized, which is typical of face centered cubic metals. Moreover, the relationship between favorably oriented grains and twinning in the HEA bore a clear resemblance to the same tendency in TWIP steels. The thickness of the twin bundles was less than 100 nm. A high density of stacking defects was found in the nanotwins. Nano twinning and stacking faults were found to contribute to the remarkable mechanical properties. Deformation induced twinning not only demonstrated the dynamic Hall-Petch effect but also changed dislocation cell substructures into microband structures.

  12. Earthquake-induced soft-sediment deformation structures in Late Pleistocene lacustrine deposits of Issyk-Kul lake (Kyrgyzstan)

    Science.gov (United States)

    Gladkov, A. S.; Lobova, E. U.; Deev, E. V.; Korzhenkov, A. M.; Mazeika, J. V.; Abdieva, S. V.; Rogozhin, E. A.; Rodkin, M. V.; Fortuna, A. B.; Charimov, T. A.; Yudakhin, A. S.

    2016-10-01

    This paper discusses the composition and distribution of soft-sediment deformation structures induced by liquefaction in Late Pleistocene lacustrine terrace deposits on the southern shore of Issyk-Kul Lake in the northern Tien Shan mountains of Kyrgyzstan. The section contains seven deformed beds grouped in two intervals. Five deformed beds in the upper interval contain load structures (load casts and flame structures), convolute lamination, ball-and-pillow structures, folds and slumps. Deformation patterns indicate that a seismic trigger generated a multiple slump on a gentle slope. The dating of overlying subaerial deposits suggests correlation between the deformation features and strong earthquakes in the Late Pleistocene.

  13. Quantum Space-Time Deformed Symmetries Versus Broken Symmetries

    CERN Document Server

    Amelino-Camelia, G

    2002-01-01

    Several recent studies have concerned the faith of classical symmetries in quantum space-time. In particular, it appears likely that quantum (discretized, noncommutative,...) versions of Minkowski space-time would not enjoy the classical Lorentz symmetries. I compare two interesting cases: the case in which the classical symmetries are "broken", i.e. at the quantum level some classical symmetries are lost, and the case in which the classical symmetries are "deformed", i.e. the quantum space-time has as many symmetries as its classical counterpart but the nature of these symmetries is affected by the space-time quantization procedure. While some general features, such as the emergence of deformed dispersion relations, characterize both the symmetry-breaking case and the symmetry-deformation case, the two scenarios are also characterized by sharp differences, even concerning the nature of the new effects predicted. I illustrate this point within an illustrative calculation concerning the role of space-time symm...

  14. TU-AB-202-06: Quantitative Evaluation of Deformable Image Registration in MRI-Guided Adaptive Radiation Therapy

    International Nuclear Information System (INIS)

    Mooney, K; Zhao, T; Green, O; Mutic, S; Yang, D; Duan, Y; Zhang, M

    2016-01-01

    Purpose: To assess the performance of the deformable image registration algorithm used for MRI-guided adaptive radiation therapy using image feature analysis. Methods: MR images were collected from five patients treated on the MRIdian (ViewRay, Inc., Oakwood Village, OH), a three head Cobalt-60 therapy machine with an 0.35 T MR system. The images were acquired immediately prior to treatment with a uniform 1.5 mm resolution. Treatment sites were as follows: head/neck, lung, breast, stomach, and bladder. Deformable image registration was performed using the ViewRay software between the first fraction MRI and the final fraction MRI, and the DICE similarity coefficient (DSC) for the skin contours was reported. The SIFT and Harris feature detection and matching algorithms identified point features in each image separately, then found matching features in the other image. The target registration error (TRE) was defined as the vector distance between matched features on the two image sets. Each deformation was evaluated based on comparison of average TRE and DSC. Results: Image feature analysis produced between 2000–9500 points for evaluation on the patient images. The average (± standard deviation) TRE for all patients was 3.3 mm (±3.1 mm), and the passing rate of TRE<3 mm was 60% on the images. The head/neck patient had the best average TRE (1.9 mm±2.3 mm) and the best passing rate (80%). The lung patient had the worst average TRE (4.8 mm±3.3 mm) and the worst passing rate (37.2%). DSC was not significantly correlated with either TRE (p=0.63) or passing rate (p=0.55). Conclusions: Feature matching provides a quantitative assessment of deformable image registration, with a large number of data points for analysis. The TRE of matched features can be used to evaluate the registration of many objects throughout the volume, whereas DSC mainly provides a measure of gross overlap. We have a research agreement with ViewRay Inc.

  15. TU-AB-202-06: Quantitative Evaluation of Deformable Image Registration in MRI-Guided Adaptive Radiation Therapy

    Energy Technology Data Exchange (ETDEWEB)

    Mooney, K; Zhao, T; Green, O; Mutic, S; Yang, D [Washington University School of Medicine, Saint Louis, MO (United States); Duan, Y [University of Missouri, Columbia, Missouri (United States); Zhang, M [Oregon Health and Science University, Portland, Oregon (United States)

    2016-06-15

    Purpose: To assess the performance of the deformable image registration algorithm used for MRI-guided adaptive radiation therapy using image feature analysis. Methods: MR images were collected from five patients treated on the MRIdian (ViewRay, Inc., Oakwood Village, OH), a three head Cobalt-60 therapy machine with an 0.35 T MR system. The images were acquired immediately prior to treatment with a uniform 1.5 mm resolution. Treatment sites were as follows: head/neck, lung, breast, stomach, and bladder. Deformable image registration was performed using the ViewRay software between the first fraction MRI and the final fraction MRI, and the DICE similarity coefficient (DSC) for the skin contours was reported. The SIFT and Harris feature detection and matching algorithms identified point features in each image separately, then found matching features in the other image. The target registration error (TRE) was defined as the vector distance between matched features on the two image sets. Each deformation was evaluated based on comparison of average TRE and DSC. Results: Image feature analysis produced between 2000–9500 points for evaluation on the patient images. The average (± standard deviation) TRE for all patients was 3.3 mm (±3.1 mm), and the passing rate of TRE<3 mm was 60% on the images. The head/neck patient had the best average TRE (1.9 mm±2.3 mm) and the best passing rate (80%). The lung patient had the worst average TRE (4.8 mm±3.3 mm) and the worst passing rate (37.2%). DSC was not significantly correlated with either TRE (p=0.63) or passing rate (p=0.55). Conclusions: Feature matching provides a quantitative assessment of deformable image registration, with a large number of data points for analysis. The TRE of matched features can be used to evaluate the registration of many objects throughout the volume, whereas DSC mainly provides a measure of gross overlap. We have a research agreement with ViewRay Inc.

  16. A non-linear elastic constitutive framework for replicating plastic deformation in solids.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Scott Alan; Schunk, Peter Randall

    2014-02-01

    Ductile metals and other materials typically deform plastically under large applied loads; a behavior most often modeled using plastic deformation constitutive models. However, it is possible to capture some of the key behaviors of plastic deformation using only the framework for nonlinear elastic mechanics. In this paper, we develop a phenomenological, hysteretic, nonlinear elastic constitutive model that captures many of the features expected of a plastic deformation model. This model is based on calculating a secant modulus directly from a materials stress-strain curve. Scalar stress and strain values are obtained in three dimensions by using the von Mises invariants. Hysteresis is incorporated by tracking an additional history variable and assuming an elastic unloading response. This model is demonstrated in both single- and multi-element simulations under varying strain conditions.

  17. Real-time detection of antibiotic activity by measuring nanometer-scale bacterial deformation

    Science.gov (United States)

    Iriya, Rafael; Syal, Karan; Jing, Wenwen; Mo, Manni; Yu, Hui; Haydel, Shelley E.; Wang, Shaopeng; Tao, Nongjian

    2017-12-01

    Diagnosing antibiotic-resistant bacteria currently requires sensitive detection of phenotypic changes associated with antibiotic action on bacteria. Here, we present an optical imaging-based approach to quantify bacterial membrane deformation as a phenotypic feature in real-time with a nanometer scale (˜9 nm) detection limit. Using this approach, we found two types of antibiotic-induced membrane deformations in different bacterial strains: polymyxin B induced relatively uniform spatial deformation of Escherichia coli O157:H7 cells leading to change in cellular volume and ampicillin-induced localized spatial deformation leading to the formation of bulges or protrusions on uropathogenic E. coli CFT073 cells. We anticipate that the approach will contribute to understanding of antibiotic phenotypic effects on bacteria with a potential for applications in rapid antibiotic susceptibility testing.

  18. The deformation of Gum Metal through in situ compression of nanopillars

    International Nuclear Information System (INIS)

    Withey, E.A.; Minor, A.M.; Chrzan, D.C.; Morris, J.W.; Kuramoto, S.

    2010-01-01

    The name 'Gum Metal' has been given to a set of β-Ti alloys that achieve exceptional elastic elongation and, with appropriate preparation, appear to deform by a dislocation-free mechanism triggered by elastic instability at the limit of strength. We have studied the compressive deformation of these materials with in situ nanocompression in a quantitative stage in a transmission electron microscope. The samples studied are cylindrical nanopillars 80-250 nm in diameter. The deformation pattern is monitored in real time using bright-field microscopy, dark-field microscopy or electron diffraction. Interesting results include the following: (i) nanopillars approach, and in several examples appear to reach, ideal strength; (ii) in contrast to conventional crystalline materials, there is no substantial 'size effect' in pillar strength; (iii) the deformation mode is fine-scale with respect to the sample dimension, even in pillars of 100 nm size; (iv) shear bands ('giant faults') do form in some tests, but only after yield and plastic deformation; and (v) a martensitic transformation to the base-centered orthorhombic α'' phase is sometimes observed, but is an incidental feature of the deformation rather than a significant cause of it.

  19. Sequence-dependent DNA deformability studied using molecular dynamics simulations.

    Science.gov (United States)

    Fujii, Satoshi; Kono, Hidetoshi; Takenaka, Shigeori; Go, Nobuhiro; Sarai, Akinori

    2007-01-01

    Proteins recognize specific DNA sequences not only through direct contact between amino acids and bases, but also indirectly based on the sequence-dependent conformation and deformability of the DNA (indirect readout). We used molecular dynamics simulations to analyze the sequence-dependent DNA conformations of all 136 possible tetrameric sequences sandwiched between CGCG sequences. The deformability of dimeric steps obtained by the simulations is consistent with that by the crystal structures. The simulation results further showed that the conformation and deformability of the tetramers can highly depend on the flanking base pairs. The conformations of xATx tetramers show the most rigidity and are not affected by the flanking base pairs and the xYRx show by contrast the greatest flexibility and change their conformations depending on the base pairs at both ends, suggesting tetramers with the same central dimer can show different deformabilities. These results suggest that analysis of dimeric steps alone may overlook some conformational features of DNA and provide insight into the mechanism of indirect readout during protein-DNA recognition. Moreover, the sequence dependence of DNA conformation and deformability may be used to estimate the contribution of indirect readout to the specificity of protein-DNA recognition as well as nucleosome positioning and large-scale behavior of nucleic acids.

  20. High-Precision, Continuous GPS Data Reveals Seasonal Groundwater Influence on the Deformation of the Salmon Falls Landslide, a Slow-Moving, Rotational Feature in Central Idaho

    Science.gov (United States)

    Lauer, I. H.; Crosby, B. T.

    2017-12-01

    The development of predictive tools for landslide initiation and deformation serve both the natural hazard and geomorphic communities. Founded on both field observations and physical laws, these tools require a mechanistic understanding of the connection between forcing and response. Water has a well-documented influence on slope stability, impacting both soil plasticity and pore water pressure. High precision, high frequency GPS measurements of deformation paired with similar frequency water table measurements enable new insight into the lag and sensitivity present in the coupled hillslope-groundwater system, especially in the rotational domain, which is underrepresented in current literature. Our study explores the influence of groundwater on a slow-moving, deep-seated, rotational slide in southern Idaho using daily, mm precision GPS positions and contemporaneous groundwater levels measurements in adjacent wells, lakes, and streams. Seven semi-permanent GPS stations are spatially distributed across the slide and record three-dimensional velocities up to 11 cm/yr, which compare well with historical measurements from the early 2000's. Water level loggers are located in a rough cross-section through the study area and documents rises in water level during spring 2017 and a subsequent 1.5m drop in the following summer. We hypothesize a correlation of groundwater levels and landslide velocity, which varies seasonally and spatially across the body of the slide. We will present whether deformation is spatially contemporaneous or initiate in one region and propagates down-feature. We will also discuss whether temporal lag exists between water level change and deformation and if hysteresis complicates correlation between forcing and response. Results will bolster the breadth of case-studies available for this landslide morphology and provide regional land managers with predictors for increased landslide activity and associated hazards, such as rockfall or landslide dam

  1. Deformation-specific and deformation-invariant visual object recognition: pose vs identity recognition of people and deforming objects

    Directory of Open Access Journals (Sweden)

    Tristan J Webb

    2014-04-01

    Full Text Available When we see a human sitting down, standing up, or walking, we can recognise one of these poses independently of the individual, or we can recognise the individual person, independently of the pose. The same issues arise for deforming objects. For example, if we see a flag deformed by the wind, either blowing out or hanging languidly, we can usually recognise the flag, independently of its deformation; or we can recognise the deformation independently of the identity of the flag. We hypothesize that these types of recognition can be implemented by the primate visual system using temporo-spatial continuity as objects transform as a learning principle. In particular, we hypothesize that pose or deformation can be learned under conditions in which large numbers of different people are successively seen in the same pose, or objects in the same deformation. We also hypothesize that person-specific representations that are independent of pose, and object-specific representations that are independent of deformation and view, could be built, when individual people or objects are observed successively transforming from one pose or deformation and view to another. These hypotheses were tested in a simulation of the ventral visual system, VisNet, that uses temporal continuity, implemented in a synaptic learning rule with a short-term memory trace of previous neuronal activity, to learn invariant representations. It was found that depending on the statistics of the visual input, either pose-specific or deformation-specific representations could be built that were invariant with respect to individual and view; or that identity-specific representations could be built that were invariant with respect to pose or deformation and view. We propose that this is how pose-specific and pose-invariant, and deformation-specific and deformation-invariant, perceptual representations are built in the brain.

  2. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.

    Directory of Open Access Journals (Sweden)

    Olga Kononova

    2016-01-01

    Full Text Available The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams modeling the particle structure. The beams' deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F-deformation (X spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young's moduli for Hertzian and bending deformations, and the structural damage dependent beams' survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications.

  3. Orientation sensitive deformation in Zr alloys: experimental and modeling studies

    International Nuclear Information System (INIS)

    Srivastava, D.; Keskar, N.; Manikrishna, K.V.; Dey, G.K.; Jha, S.K.; Saibaba, N.

    2016-01-01

    Zirconium alloys are used for fuel cladding and other structural components in pressurised heavy water nuclear reactors (PHWR's). Currently there is a lot of interest in developing alloys for structural components for higher temperature reactor operation. There is also need for development of cladding material with better corrosion and mechanical property of cladding material for higher and extended burn up applications. The performance of the cladding material is primarily influenced by the microstructural features of the material such as constituent phases their morphology, precipitates characteristics, nature of defects etc. Therefore, the microstructure is tailored as per the performance requirement by through controlled additions of alloying elements, thermo-mechanical- treatments. In order to obtain the desired microstructure, it is important to know the deformation behaviour of the material. Orientation dependent deformation behavior was studied in Zr using a combination of experimental and modeling (both discrete and atomistic dislocation dynamics) methods. Under the conditions of plane strain deformation, it was observed that single phase Zr, had significant extent of deformation heterogeneity based on local orientations. Discrete dislocation dynamics simulations incorporating multi slip systems had captured the orientation sensitive deformation. MD dislocations on the other hand brought the fundamental difference in various crystallographic orientations in determining the nucleating stress for the dislocations. The deformed structure has been characterized using X-ray, electron and neutron diffraction techniques. The various operating deformation mechanism will be discussed in this presentation. (author)

  4. Microstructure, Properties and Atomic Level Strain in Severely Deformed Rare Metal Niobium

    Directory of Open Access Journals (Sweden)

    Lembit KOMMEL

    2012-12-01

    Full Text Available The mechanical and physical properties relationship from atomic level strain/stress causes dislocation density and electrical conductivity relationship, as well as crystallites deformation and hkl-parameter change in the severely deformed pure refractory rare metal Nb at ambient temperature and during short processing times. The above mentioned issues are discussed in this study. For ultrafine-grained and nanocrystalline microstructure forming in metal the equal-channel angular pressing and hard cyclic viscoplastic deformation were used. The flat deformation and heat treatment at different parameters were conducted as follows. The focused ion beam method was used for micrometric measures samples manufacturied under nanocrystalline microstructure study by transmission electron microscope. The microstructure features of metal were studied under different orientations by X-ray diffraction scattering method, and according to the atomic level strains, dislocation density, hkl-parameters and crystallite sizes were calculated by different computation methods. According to results the evolutions of atomic level strains/stresses, induced by processing features have great influence on the microstructure and advanced properties forming in pure Nb. Due to cumulative strain increase the tensile stress and hardness were increased significantly. In this case the dislocation density of Nb varies from 5.0E+10 cm–2 to 2.0E+11 cm–2. The samples from Nb at maximal atomic level strain in the (110 and (211 directions have the maximal values of hkl-parameters, highest tensile strength and hardness but minimal electrical conductivity. The crystallite size was minimal and relative atomic level strain maximal in (211 orientation of crystal. Next, flat deformation and heat treatment increase the atomic level parameters of severely deformed metal.DOI: http://dx.doi.org/10.5755/j01.ms.18.4.3091

  5. Reconstructing 3D Face Model with Associated Expression Deformation from a Single Face Image via Constructing a Low-Dimensional Expression Deformation Manifold.

    Science.gov (United States)

    Wang, Shu-Fan; Lai, Shang-Hong

    2011-10-01

    Facial expression modeling is central to facial expression recognition and expression synthesis for facial animation. In this work, we propose a manifold-based 3D face reconstruction approach to estimating the 3D face model and the associated expression deformation from a single face image. With the proposed robust weighted feature map (RWF), we can obtain the dense correspondences between 3D face models and build a nonlinear 3D expression manifold from a large set of 3D facial expression models. Then a Gaussian mixture model in this manifold is learned to represent the distribution of expression deformation. By combining the merits of morphable neutral face model and the low-dimensional expression manifold, a novel algorithm is developed to reconstruct the 3D face geometry as well as the facial deformation from a single face image in an energy minimization framework. Experimental results on simulated and real images are shown to validate the effectiveness and accuracy of the proposed algorithm.

  6. Nanostructures by Severe Plastic Deformation of Steels: Advantages and Problems

    Directory of Open Access Journals (Sweden)

    Dobatkin, S. V.

    2006-01-01

    Full Text Available The aim of this paper is to consider the features of structure evolution during severe plastic deformation (SPD of steels and its influence on mechanical properties. The investigation have been carried out mainly on low carbon steels as well as on austenitic stainless steels after SPD by torsion under high pressure (HPT and equal channel angular (ECA pressing. Structure formation dependencies on temperature deformation conditions, strain degree, chemical composition, initial state and pressure are considered. The role of phase transformations for additional grain refinement, namely, martensitic transformation, precipitation of carbide particles during SPD and heating is underlined.

  7. On the algebra of deformed differential operators, and induced integrable Toda field theory

    International Nuclear Information System (INIS)

    Hssaini, M.; Kessabi, M.; Maroufi, B.; Sedra, M.B.

    2000-07-01

    We build in this paper the algebra of q-deformed pseudo-differential operators shown to be an essential step towards setting a q-deformed integrability program. In fact, using the results of this q-deformed algebra, we derive the q-analogues of the generalised KdV hierarchy. We focus in particular the first leading orders of this q-deformed hierarchy namely the q-KdV and q-Boussinesq integrable systems. We also present the q-generalisation of the conformal transformations of the currents u n , n ≥ 2 and discuss the primary condition of the fields w n , n ≥ 2 by using the Volterra gauge group transformations for the q-covariant Lax operators. An induced su(n)-Toda(su(2)-Liouville) field theory construction is discussed and other important features are presented. (author)

  8. Deformable meshes for medical image segmentation accurate automatic segmentation of anatomical structures

    CERN Document Server

    Kainmueller, Dagmar

    2014-01-01

    ? Segmentation of anatomical structures in medical image data is an essential task in clinical practice. Dagmar Kainmueller introduces methods for accurate fully automatic segmentation of anatomical structures in 3D medical image data. The author's core methodological contribution is a novel deformation model that overcomes limitations of state-of-the-art Deformable Surface approaches, hence allowing for accurate segmentation of tip- and ridge-shaped features of anatomical structures. As for practical contributions, she proposes application-specific segmentation pipelines for a range of anatom

  9. An On-Chip RBC Deformability Checker Significantly Improves Velocity-Deformation Correlation

    Directory of Open Access Journals (Sweden)

    Chia-Hung Dylan Tsai

    2016-10-01

    Full Text Available An on-chip deformability checker is proposed to improve the velocity–deformation correlation for red blood cell (RBC evaluation. RBC deformability has been found related to human diseases, and can be evaluated based on RBC velocity through a microfluidic constriction as in conventional approaches. The correlation between transit velocity and amount of deformation provides statistical information of RBC deformability. However, such correlations are usually only moderate, or even weak, in practical evaluations due to limited range of RBC deformation. To solve this issue, we implemented three constrictions of different width in the proposed checker, so that three different deformation regions can be applied to RBCs. By considering cell responses from the three regions as a whole, we practically extend the range of cell deformation in the evaluation, and could resolve the issue about the limited range of RBC deformation. RBCs from five volunteer subjects were tested using the proposed checker. The results show that the correlation between cell deformation and transit velocity is significantly improved by the proposed deformability checker. The absolute values of the correlation coefficients are increased from an average of 0.54 to 0.92. The effects of cell size, shape and orientation to the evaluation are discussed according to the experimental results. The proposed checker is expected to be useful for RBC evaluation in medical practices.

  10. Hot Deformation Behavior of SiCP/A1-Cu Composite

    Directory of Open Access Journals (Sweden)

    CHENG Ming-yang

    2017-02-01

    Full Text Available Using the Gleeble-1500D simulator, the high temperature plastic deformation behavior of SiCp/Al-Cu composite were investigated at 350-500℃ with the strain rate of 0.01-10s-1. The true stress-strain curves were obtained in the tests. Constitutive equation and processing map were established. The results show that the softening mechanism of dynamic recrystallization is a feature of high-temperature flow stress-strain curves of SiCp/A1-Cu composite, and the peak stress increases with the decrease of deformation temperature or the increase of strain rate.The flow stress behavior of the composite during hot compression deformation can be represented by a Zener-Hollomon parameter in the hyperbolic sine form. Its activation energy for hot deformation Q is 320.79kJ/mol. The stable regions and the instability regions in the processing map were identified and the microstructures in different regions of processing map were studied.There are particle breakage and void in the instability regions.

  11. Probability Density Functions for the CALIPSO Lidar Version 4 Cloud-Aerosol Discrimination (CAD) Algorithm

    Science.gov (United States)

    Liu, Z.; Kar, J.; Zeng, S.; Tackett, J. L.; Vaughan, M.; Trepte, C. R.; Omar, A. H.; Hu, Y.; Winker, D. M.

    2017-12-01

    In the CALIPSO retrieval algorithm, detection layers in the lidar measurements is followed by their classification as a "cloud" or "aerosol" using 5-dimensional probability density functions (PDFs). The five dimensions are the mean attenuated backscatter at 532 nm, the layer integrated total attenuated color ratio, the mid-layer altitude, integrated volume depolarization ratio and latitude. The new version 4 (V4) level 2 (L2) data products, released in November 2016, are the first major revision to the L2 product suite since May 2010. Significant calibration changes in the V4 level 1 data necessitated substantial revisions to the V4 L2 CAD algorithm. Accordingly, a new set of PDFs was generated to derive the V4 L2 data products. The V4 CAD algorithm is now applied to layers detected in the stratosphere, where volcanic layers and occasional cloud and smoke layers are observed. Previously, these layers were designated as `stratospheric', and not further classified. The V4 CAD algorithm is also applied to all layers detected at single shot (333 m) resolution. In prior data releases, single shot detections were uniformly classified as clouds. The CAD PDFs used in the earlier releases were generated using a full year (2008) of CALIPSO measurements. Because the CAD algorithm was not applied to stratospheric features, the properties of these layers were not incorporated into the PDFs. When building the V4 PDFs, the 2008 data were augmented with additional data from June 2011, and all stratospheric features were included. The Nabro and Puyehue-Cordon volcanos erupted in June 2011, and volcanic aerosol layers were observed in the upper troposphere and lower stratosphere in both the northern and southern hemispheres. The June 2011 data thus provides the stratospheric aerosol properties needed for comprehensive PDF generation. In contrast to earlier versions of the PDFs, which were generated based solely on observed distributions, construction of the V4 PDFs considered the

  12. Clinical Features of Osteogenesis Imperfecta in Taiwan

    Directory of Open Access Journals (Sweden)

    Hsiang-Yu Lin

    2009-07-01

    Conclusion: Nine of the 11 clinical features examined—height, weight, BMD, dentinogenesis imperfecta, bone deformity, scoliosis, walking ability, fracture rate, and family history—were significantly different among the three types of OI patients. This finding may be of help in evaluating patients and establishing their prognosis.

  13. Image Retrieval based on Integration between Color and Geometric Moment Features

    International Nuclear Information System (INIS)

    Saad, M.H.; Saleh, H.I.; Konbor, H.; Ashour, M.

    2012-01-01

    Content based image retrieval is the retrieval of images based on visual features such as colour, texture and shape. .the Current approaches to CBIR differ in terms of which image features are extracted; recent work deals with combination of distances or scores from different and usually independent representations in an attempt to induce high level semantics from the low level descriptors of the images. content-based image retrieval has many application areas such as, education, commerce, military, searching, commerce, and biomedicine and Web image classification. This paper proposes a new image retrieval system, which uses color and geometric moment feature to form the feature vectors. Bhattacharyya distance and histogram intersection are used to perform feature matching. This framework integrates the color histogram which represents the global feature and geometric moment as local descriptor to enhance the retrieval results. The proposed technique is proper for precisely retrieving images even in deformation cases such as geometric deformations and noise. It is tested on a standard the results shows that a combination of our approach as a local image descriptor with other global descriptors outperforms other approaches.

  14. Structural defects in natural plastically deformed diamonds: Evidence from EPR spectroscopy

    Science.gov (United States)

    Mineeva, R. M.; Titkov, S. V.; Speransky, A. V.

    2009-06-01

    Structural defects formed as a result of plastic deformation in natural diamond crystals have been studied by EPR spectroscopy. The spectra of brown, pink-brown, black-brown, pink-purple, and gray plastically deformed diamonds of type Ia from deposits in Yakutia and the Urals were recorded. The results of EPR spectroscopy allowed us to identify various deformation centers in the structure of natural diamonds and to show that nitrogen centers were transformed under epigenetic mechanical loading. Abundant A centers, consisting of two isomorphic nitrogen atoms located in neighboring structural sites, were destroyed as a result of this process to form a series of N1, N4, W7, M2, and M3 nitrogen centers. Such centers are characterized by an anisotropic spatial distribution and a positive charge, related to the mechanism of their formation. In addition, N2 centers (probably, deformation-produced dislocations decorated by nitrogen) were formed in all plastically deformed diamonds and W10 and W35 centers (the models have not been finally ascertained) were formed in some of them. It has been established that diamonds with various types of deformation-induced color contain characteristic associations of these deformation centers. The diversity of associations of deformation centers indicates appreciable variations in conditions of disintegration of deep-seated rocks, transfer of diamonds to the Earth’s surface, and formation of kimberlitic deposits. Depending on the conditions of mechanical loading, the diamond crystals were plastically deformed by either dislocation gliding or mechanical twinning. Characteristic features of plastic deformation by dislocation gliding are the substantial prevalence of the N2 centers over other deformation centers and the occurrence of the high-spin W10 and W35 centers. The attributes of less frequent plastic deformation by mechanical twinning are unusual localization of the M2 centers and, in some cases, the N1 centers in microtwinned

  15. On the role of deformed Coulomb potential in fusion using energy ...

    Indian Academy of Sciences (India)

    Fusion probabilities; quadrupole deformation; Skyrme energy density formalism ... interaction time between the colliding nuclei is large and therefore, various features of ... parameters t0, t1, t2, t3 and W0, the values of which can be adjusted for ...

  16. Mesozoic to Eocene ductile deformation of western Central Iran: From Cimmerian collisional orogeny to Eocene exhumation

    Science.gov (United States)

    Kargaranbafghi, Fariba; Neubauer, Franz; Genser, Johann; Faghih, Ali; Kusky, Timothy

    2012-09-01

    To advance our understanding of the Mesozoic to Eocene tectonics and kinematics of basement units exposed in the south-western Central Iran plateau, this paper presents new structural and thermochronological data from the Chapedony metamorphic core complex and hangingwall units, particularly from the Posht-e-Badam complex. The overall Paleogene structural characteristics of the area are related to an oblique convergent zone. The Saghand area represents part of a deformation zone between the Arabian and Eurasian plates, and can be interpreted to result from the Central Iran intracontinental deformation acting as a weak zone during Mesozoic to Paleogene times. Field and microstructural evidence reveal that the metamorphic and igneous rocks suffered a ductile shear deformation including mylonitization at the hangingwall boundary of the Eocene Chapedony metamorphic core complex. Comparison of deformation features in the mylonites and other structural features within the footwall unit leads to the conclusion that the mylonites were formed in a subhorizontal shear zone by NE-SW stretching during Middle to Late Eocene extensional tectonics. The Chapedony metamorphic core complex is characterized by amphibolite-facies metamorphism and development of S and S-L tectonic fabrics. The Posht-e-Badam complex was deformed by two stages during Cimmerian tectonic processes forming the Paleo-Tethyan suture.

  17. Deformable Image Registration of Liver With Consideration of Lung Sliding Motion

    International Nuclear Information System (INIS)

    Xie, Yaoqin; Chao, Ming; Xiong, Guanglei

    2011-01-01

    Purpose: A feature based deformable registration model with sliding transformation was developed in the upper abdominal region for liver cancer. Methods: A two-step thin-plate spline (bi-TPS) algorithm was implemented to deformably register the liver organ. The first TPS registration was performed to exclusively quantify the sliding displacement component. A manual segmentation of the thoracic and abdominal cavity was performed as a priori knowledge. Tissue feature points were automatically identified inside the segmented contour on the images. The scale invariant feature transform method was utilized to match feature points that served as landmarks for the subsequent TPS registration to derive the sliding displacement vector field. To a good approximation, only motion along superior/inferior (SI) direction of voxels on each slice was averaged to obtain the sliding displacement for each slice. A second TPS transformation, as the last step, was carried out to obtain the local deformation field. Manual identification of bifurcation on liver, together with the manual segmentation of liver organ, was employed as a ''ground truth'' for assessing the algorithm's performance. Results: The proposed two-step TPS was assessed with six liver patients. The average error of liver bifurcation between manual identification and calculation for these patients was less than 1.8 mm. The residual errors between manual contour and propagated contour of liver organ using the algorithm fell in the range between 2.1 and 2.8 mm. An index of Dice similarity coefficient (DSC) between manual contour and calculated contour for liver tumor was 93.6% compared with 71.2% from the conventional TPS calculation. Conclusions: A high accuracy (∼2 mm) of the two-step feature based TPS registration algorithm was achievable for registering the liver organ. The discontinuous motion in the upper abdominal region was properly taken into consideration. Clinical implementation of the algorithm will find

  18. q-deformed Weinberg-Salam model and q-deformed Maxwell equations

    International Nuclear Information System (INIS)

    Alavi, S.A.; Sarbishaei, M.; Mokhtari, A.

    2000-01-01

    We study the q-deformation of the gauge part of the Weinberg-Salam model and show that the q-deformed theory involves new interactions. We then obtain q-deformed Maxwell equations from which magnetic monopoles appear naturally. (author)

  19. Deformations, moduli stabilisation and gauge couplings at one-loop

    Energy Technology Data Exchange (ETDEWEB)

    Honecker, Gabriele; Koltermann, Isabel [PRISMA Cluster of Excellence, MITP & Institut für Physik (WA THEP),Johannes Gutenberg-Universität,Staudingerweg 9, 55128 Mainz (Germany); Staessens, Wieland [Instituto de Física Teórica UAM-CSIC, Universidad Autónoma de Madrid Cantoblanco,Calle de Nicolás Cabrera 13-15, 28049 Madrid (Spain); Departamento de Física Teórica, Universidad Autónoma de Madrid Cantoblanco,Calle de Nicolás Cabrera 13-15, 28049 Madrid (Spain)

    2017-04-05

    We investigate deformations of ℤ{sub 2} orbifold singularities on the toroidal orbifold T{sup 6}/(ℤ{sub 2}×ℤ{sub 6}) with discrete torsion in the framework of Type IIA orientifold model building with intersecting D6-branes wrapping special Lagrangian cycles. To this aim, we employ the hypersurface formalism developed previously for the orbifold T{sup 6}/(ℤ{sub 2}×ℤ{sub 2}) with discrete torsion and adapt it to the (ℤ{sub 2}×ℤ{sub 6}×ΩR) point group by modding out the remaining ℤ{sub 3} subsymmetry and the orientifold projection ΩR. We first study the local behaviour of the ℤ{sub 3}×ΩR invariant deformation orbits under non-zero deformation and then develop methods to assess the deformation effects on the fractional three-cycle volumes globally. We confirm that D6-branes supporting USp(2N) or SO(2N) gauge groups do not constrain any deformation, while deformation parameters associated to cycles wrapped by D6-branes with U(N) gauge groups are constrained by D-term supersymmetry breaking. These features are exposed in global prototype MSSM, Left-Right symmetric and Pati-Salam models first constructed in (DOI: 10.1016/j.nuclphysb.2015.10.009; 10.1002/prop.201400066), for which we here count the number of stabilised moduli and study flat directions changing the values of some gauge couplings. Finally, we confront the behaviour of tree-level gauge couplings under non-vanishing deformations along flat directions with the one-loop gauge threshold corrections at the orbifold point and discuss phenomenological implications, in particular on possible LARGE volume scenarios and the corresponding value of the string scale M{sub string}, for the same global D6-brane models.

  20. Large scale deformation of the oceanic lithosphere: insights from numerical modeling of the Indo-Australian intraplate deformation

    Science.gov (United States)

    Royer, J.; Brandon, V.

    2011-12-01

    the Central and Southeast Indian ridges, or in compressional areas, in the Central Indian and Wharton basins. Reactivation of the Eocene fossil FZ's in these basins may also explain the drastic change in the deformation style on either side of the Ninetyeast ridge. Moreover introducing a heat flow anomaly in the Central Indian Basin has a significant effect on focusing and increasing the lithospheric deformation. The rates of extension or shortening, inferred from the predicted strain rates, are consistent with previous estimates based on different approaches. Although unable to predict features like the fold and thrust belt in the Central Indian Basin, the SHELLS thin-plate approach proves very useful to understand the behavior of the lithosphere in wide oceanic deforming zones.

  1. REGULAR AND SPECIFIC FEATURES OF STRESSED AND DEFORMED STATE OF COMPOSITE MATERIAL WITH PIERCED OPENING

    Directory of Open Access Journals (Sweden)

    Yu. V. Vasilevich

    2007-01-01

    Full Text Available Mathematical model describing a dependence between deformations and stresses in the zone of prepreg piercing zone is given in the paper. Boundary conditions in the piercing zone in number of four functional dependences for prepregs can express either the given stresses or displacements, or describe boundary form, or express relations between stresses and displacements etc.

  2. Tensile Deformation Temperature Impact on Microstructure and Mechanical Properties of AISI 316LN Austenitic Stainless Steel

    Science.gov (United States)

    Xiong, Yi; He, Tiantian; Lu, Yan; Ren, Fengzhang; Volinsky, Alex A.; Cao, Wei

    2018-03-01

    Uniaxial tensile tests were conducted on AISI 316LN austenitic stainless steel from - 40 to 300 °C at a rate of 0.5 mm/min. Microstructure and mechanical properties of the deformed steel were investigated by optical, scanning and transmission electron microscopies, x-ray diffraction, and microhardness testing. The yield strength, ultimate tensile strength, elongation, and microhardness increase with the decrease in the test temperature. The tensile fracture morphology has the dimple rupture feature after low-temperature deformations and turns to a mixture of transgranular fracture and dimple fracture after high-temperature ones. The dominating deformation microstructure evolves from dislocation tangle/slip bands to large deformation twins/slip bands with temperature decrease. The deformation-induced martensite transformation can only be realized at low temperature, and its quantity increases with the decrease in the temperature.

  3. Puncture mechanics of soft elastomeric membrane with large deformation by rigid cylindrical indenter

    Science.gov (United States)

    Liu, Junjie; Chen, Zhe; Liang, Xueya; Huang, Xiaoqiang; Mao, Guoyong; Hong, Wei; Yu, Honghui; Qu, Shaoxing

    2018-03-01

    Soft elastomeric membrane structures are widely used and commonly found in engineering and biological applications. Puncture is one of the primary failure modes of soft elastomeric membrane at large deformation when indented by rigid objects. In order to investigate the puncture failure mechanism of soft elastomeric membrane with large deformation, we study the deformation and puncture failure of silicone rubber membrane that results from the continuous axisymmetric indentation by cylindrical steel indenters experimentally and analytically. In the experiment, effects of indenter size and the friction between the indenter and the membrane on the deformation and puncture failure of the membrane are investigated. In the analytical study, a model within the framework of nonlinear field theory is developed to describe the large local deformation around the punctured area, as well as to predict the puncture failure of the membrane. The deformed membrane is divided into three parts and the friction contact between the membrane and indenter is modeled by Coulomb friction law. The first invariant of the right Cauchy-Green deformation tensor I1 is adopted to predict the puncture failure of the membrane. The experimental and analytical results agree well. This work provides a guideline in designing reliable soft devices featured with membrane structures, which are present in a wide variety of applications.

  4. Boundary-integral equation formulation for time-dependent inelastic deformation in metals

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, V; Mukherjee, S

    1977-01-01

    The mathematical structure of various constitutive relations proposed in recent years for representing time-dependent inelastic deformation behavior of metals at elevated temperatues has certain features which permit a simple formulation of the three-dimensional inelasticity problem in terms of real time rates. A direct formulation of the boundary-integral equation method in terms of rates is discussed for the analysis of time-dependent inelastic deformation of arbitrarily shaped three-dimensional metallic bodies subjected to arbitrary mechanical and thermal loading histories and obeying constitutive relations of the kind mentioned above. The formulation is based on the assumption of infinitesimal deformations. Several illustrative examples involving creep of thick-walled spheres, long thick-walled cylinders, and rotating discs are discussed. The implementation of the method appears to be far easier than analogous BIE formulations that have been suggested for elastoplastic problems.

  5. Spatiotemporal processing of gated cardiac SPECT images using deformable mesh modeling

    International Nuclear Information System (INIS)

    Brankov, Jovan G.; Yang Yongyi; Wernick, Miles N.

    2005-01-01

    In this paper we present a spatiotemporal processing approach, based on deformable mesh modeling, for noise reduction in gated cardiac single-photon emission computed tomography images. Because of the partial volume effect (PVE), clinical cardiac-gated perfusion images exhibit a phenomenon known as brightening--the myocardium appears to become brighter as the heart wall thickens. Although brightening is an artifact, it serves as an important diagnostic feature for assessment of wall thickening in clinical practice. Our proposed processing algorithm aims to preserve this important diagnostic feature while reducing the noise level in the images. The proposed algorithm is based on the use of a deformable mesh for modeling the cardiac motion in a gated cardiac sequence, based on which the images are processed by smoothing along space-time trajectories of object points while taking into account the PVE. Our experiments demonstrate that the proposed algorithm can yield significantly more-accurate results than several existing methods

  6. Deformation twinning in a creep-deformed nanolaminate structure

    International Nuclear Information System (INIS)

    Hsiung, Luke L

    2010-01-01

    The underlying mechanism of deformation twinning occurring in a TiAl-(γ)/Ti 3 Al-(α 2 ) nanolaminate creep deformed at elevated temperatures has been studied. Since the multiplication and propagation of lattice dislocations in both γ and α 2 thin lamellae are very limited, the total flow of lattice dislocations becomes insufficient to accommodate the accumulated creep strains. Consequently, the movement of interfacial dislocations along the laminate interfaces, i.e., interface sliding, becomes an alternative deformation mode of the nanolaminate structure. Pile-ups of interfacial dislocations occur when interfacial ledges and impinged lattice dislocations act as obstacles to impede the movement of interfacial dislocations. Deformation twinning can accordingly take place to relieve a stress concentration resulting from the pile-up of interfacial dislocations. An interface-controlled twinning mechanism driven by the pile-up and dissociation of interfacial dislocations is accordingly proposed.

  7. Deformation twinning in a creep-deformed nanolaminate structure

    Science.gov (United States)

    Hsiung, Luke L.

    2010-10-01

    The underlying mechanism of deformation twinning occurring in a TiAl-(γ)/Ti3Al-(α2) nanolaminate creep deformed at elevated temperatures has been studied. Since the multiplication and propagation of lattice dislocations in both γ and α2 thin lamellae are very limited, the total flow of lattice dislocations becomes insufficient to accommodate the accumulated creep strains. Consequently, the movement of interfacial dislocations along the laminate interfaces, i.e., interface sliding, becomes an alternative deformation mode of the nanolaminate structure. Pile-ups of interfacial dislocations occur when interfacial ledges and impinged lattice dislocations act as obstacles to impede the movement of interfacial dislocations. Deformation twinning can accordingly take place to relieve a stress concentration resulting from the pile-up of interfacial dislocations. An interface-controlled twinning mechanism driven by the pile-up and dissociation of interfacial dislocations is accordingly proposed.

  8. Deformation localization at the tips of shear fractures: An analytical approach

    Science.gov (United States)

    Misra, Santanu

    2011-04-01

    Mechanical heterogeneities are important features in rocks which trigger deformation localization in brittle, ductile or brittle-ductile modes during deformation. In a recent study Misra et al. (2009) have investigated these different processes of deformation localization at the tips of pre-existing planar shear fractures. The authors identified four mechanisms of deformation, ranging from brittle to ductile, operating at the crack tips. Mechanism A: brittle deformation is the dominant process that forms a pair of long tensile fractures at the two crack tips. Mechanism B: nature of deformation is mixed where the tensile fractures grow to a finite length with incipient plastic deformation at the tips. Mechanism C: mixed mode deformation characterized by dominating macro-scale shear bands, and short, opened-out tensile fissures. Mechanism D: localization of plastic bands in the form of a pair of shear bands at each tip without any discernible brittle fracturing. The transition of the mechanisms is a function of orientation ( α) of the crack with respect to the bulk compression direction and the finite length ( l) of the crack. The aim of this study is to present a theoretical analysis to account for the variability of deformation localization in the vicinity of pre-existing shear cracks considering an elastic-plastic rheological model. The analysis calculates the principal tensile stress ( σ1) and the second stress invariant ( I2) of the stress field at the fracture tip to explain the transition from Mechanism A (tensile fracturing) to Mechanism D (ductile strain). The results show that σ1 at the fracture tip increases non-linearly with increasing α and Ar (aspect ratio of the shear crack), and assumes a large value when α > 50 o, promoting tensile fractures. On the other hand, I2 is a maximum at α < 45°, resulting in nucleation of ductile shear bands.

  9. Healing behavior of preexisting hydrogen micropores in aluminum alloys during plastic deformation

    International Nuclear Information System (INIS)

    Toda, H.; Minami, K.; Koyama, K.; Ichitani, K.; Kobayashi, M.; Uesugi, K.; Suzuki, Y.

    2009-01-01

    Synchrotron X-ray microtomography was used to observe the shrinkage and annihilation behaviors of hydrogen micropores in three dimensions during hot and cold plastic deformation of an Al-Mg alloy. Whether complete healing of micropores is achieved after plastic deformation was examined by exposing the material to a high temperature after plastic deformation. Although micropores generally show a pattern of shrinking and closing, closer inspection of a single specimen revealed a variety of geometrically variable behaviors. It is noteworthy that some of the micropores are reinitiated in positions identical to those before their annihilation, even after an 8-22% macroscopic strain has been further applied after annihilation. We attribute local variations such as these to significant local strain variation, which we measured in a series of tomographic volumes by tracking the microstructural features.

  10. Measurement of the inclusive photon and photon+jet production cross-sections at $\\sqrt{s}$ = 7 TeV with the ATLAS detector and constraints to PDFs

    CERN Document Server

    Saimpert, Matthias; The ATLAS collaboration

    2015-01-01

    Measurements of the inclusive photon production performed by the ATLAS collaboration using an integrated luminosity of 4.5~fb$^{-1}$ are reported as a function of the photon transverse energy in different fiducial regions covering a wide acceptance. A comparison to the data of next-to-leading order QCD calculation JETPHOX with different PDFs is presented. The impact of the measurements to constraint the gluon PDF is also evaluated. The cross sections for photons produced in association with a jet are also measured by the ATLAS collaboration using an integrated luminosity of 37~pb$^{-1}$ as functions of photon and jet kinematics and are compared to JETPHOX calculation. The theoretical uncertainties, including scale, strong coupling, and PDF uncertainties are evaluated for all predictions. Data and theory usually show a good agreement within uncertainties, except for the azimuthal angle in the photon + jet case.

  11. Deformation behavior of human enamel and dentin-enamel junction under compression.

    Science.gov (United States)

    Zaytsev, Dmitry; Panfilov, Peter

    2014-01-01

    Deformation behavior under uniaxial compression of human enamel and dentin-enamel junction (DEJ) is considered in comparison with human dentin. This deformation scheme allows estimating the total response from all levels of the hierarchical composite material in contrast with the indentation, which are limited by the mesoscopic and microscopic scales. It was shown for the first time that dental enamel is the strength (up to 1850MPa) hard tissue, which is able to consider some elastic (up to 8%) and plastic (up to 5%) deformation under compression. In so doing, it is almost undeformable substance under the creep condition. Mechanical properties of human enamel depend on the geometry of sample. Human dentin exhibits the similar deformation behavior under compression, but the values of its elasticity (up to 40%) and plasticity (up to 18%) are much more, while its strength (up to 800MPa) is less in two times. Despite the difference in mechanical properties, human enamel is able to suppress the cracking alike dentin. Deformation behavior under the compression of the samples contained DEJ as the same to dentin. This feature allows a tooth to be elastic-plastic (as dentin) and wear resistible (as enamel), simultaneously. © 2013 Elsevier B.V. All rights reserved.

  12. Atomic-scale features of phase boundaries in hot deformed Nd–Fe–Co–B–Ga magnets infiltrated with a Nd–Cu eutectic liquid

    International Nuclear Information System (INIS)

    Woodcock, T.G.; Ramasse, Q.M.; Hrkac, G.; Shoji, T.; Yano, M.; Kato, A.; Gutfleisch, O.

    2014-01-01

    Hot deformed Nd–Fe–Co–B–Ga magnets were infiltrated with a Nd–Cu eutectic liquid, resulting in a 71% increase in coercivity to μ 0 H c = 2.4 T without the use of Dy, and a 22% decrease in remanence, attributed to the dilution effect. Aberration-corrected scanning transmission electron microscopy and electron energy loss spectroscopy have been used to reveal the structure and chemical composition of phase boundaries in the magnets on the atomic scale. The results showed that the Nd–Cu liquid penetrated the ≈1 nm thick intergranular regions. The coercivity increase following infiltration was therefore attributed to improved volume fraction and distribution of the intergranular phases. Co enrichment in the outermost 1–2 unit cells at several {0 0 1} and {1 1 0} surfaces of the Nd 2 (Fe, Co) 14 B crystals was shown for the infiltrated sample. The as-deformed sample did not appear to show this Co enrichment. Molecular dynamics simulations indicated that the distorted layer at an {0 0 1} surface of a Nd 2 (Fe, Co) 14 B grain was significantly thicker with higher Co surface enrichment. The magnetocrystalline anisotropy may be reduced in such distorted regions, which could have a detrimental effect on coercivity. Such features may therefore play a role in limiting coercivity to a fraction of the anisotropy field. Interfacial segregation of Cu between Nd 2 (Fe, Co) 14 B and the Nd-rich intergranular phase occurred in the infiltrated sample. Step defects in Nd 2 (Fe, Co) 14 B {0 0 1} surfaces, a half or a whole unit cell in height, were also observed

  13. Use of Geophysical and Remote Sensing Data for Assessment of Aquifer Depletion and Related Land Deformation

    Science.gov (United States)

    Othman, Abdullah; Sultan, Mohamed; Becker, Richard; Alsefry, Saleh; Alharbi, Talal; Gebremichael, Esayas; Alharbi, Hassan; Abdelmohsen, Karem

    2018-01-01

    An integrated approach [field, Interferometric Synthetic Aperture Radar (InSAR), hydrogeology, geodesy, and spatial analysis] was adopted to identify the nature, intensity, and spatial distribution of deformational features (sinkholes, fissures, differential settling) reported over fossil aquifers in arid lands, their controlling factors, and possible remedies. The Lower Mega Aquifer System (area 2 × 106 km2) in central and northern Arabia was used as a test site. Findings suggest that excessive groundwater extraction from the fossil aquifer is the main cause of deformation: (1) deformational features correlated spatially and/or temporally with increased agricultural development and groundwater extraction, and with a decline in water levels and groundwater storage (- 3.7 ± 0.6 km3/year); (2) earthquake events (years 1985-2016; magnitude 1-5) are largely (65% of reported earthquakes) shallow (1-5 km) and increased from 1 event/year in the early 1980s (extraction 1 km3/year), up to 13 events/year in the 1990s (average annual extraction > 6.4 km3). Results indicate that faults played a role in localizing deformation given that deformational sites and InSAR-based high subsidence rates (- 4 to - 15 mm/year) were largely found within, but not outside of, NW-SE-trending grabens bound by the Kahf fault system. Findings from the analysis of Gravity Recovery and Climate Experiment solutions indicate that sustainable extraction could be attained if groundwater extraction was reduced by 3.5-4 km3/year. This study provides replicable and cost-effective methodologies for optimum utilization of fossil aquifers and for minimizing deformation associated with their use.

  14. Localized scleroderma: imaging features

    International Nuclear Information System (INIS)

    Liu, P.; Uziel, Y.; Chuang, S.; Silverman, E.; Krafchik, B.; Laxer, R.

    1994-01-01

    Localized scleroderma is distinct from the diffuse form of scleroderma and does not show Raynaud's phenomenon and visceral involvement. The imaging features in 23 patients ranging from 2 to 17 years of age (mean 11.1 years) were reviewed. Leg length discrepancy and muscle atrophy were the most common findings (five patients), with two patients also showing modelling deformity of the fibula. One patient with lower extremity involvement showed abnormal bone marrow signals on MR. Disabling joint contracture requiring orthopedic intervention was noted in one patient. In two patients with ''en coup de sabre'' facial deformity, CT and MR scans revealed intracranial calcifications and white matter abnormality in the ipsilateral frontal lobes, with one also showing migrational abnormality. In a third patient, CT revealed white matter abnormality in the ipsilateral parietal lobe. In one patient with progressive facial hemiatrophy, CT and MR scans showed the underlying hypoplastic left maxillary antrum and cheek. Imaging studies of areas of clinical concern revealed positive findings in half our patients. (orig.)

  15. SU-E-J-252: Reproducibility of Radiogenomic Image Features: Comparison of Two Semi-Automated Segmentation Methods

    Energy Technology Data Exchange (ETDEWEB)

    Lee, M; Woo, B; Kim, J [Seoul National University, Seoul (Korea, Republic of); Jamshidi, N; Kuo, M [UCLA School of Medicine, Los Angeles, CA (United States)

    2015-06-15

    Purpose: Objective and reliable quantification of imaging phenotype is an essential part of radiogenomic studies. We compared the reproducibility of two semi-automatic segmentation methods for quantitative image phenotyping in magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM). Methods: MRI examinations with T1 post-gadolinium and FLAIR sequences of 10 GBM patients were downloaded from the Cancer Image Archive site. Two semi-automatic segmentation tools with different algorithms (deformable model and grow cut method) were used to segment contrast enhancement, necrosis and edema regions by two independent observers. A total of 21 imaging features consisting of area and edge groups were extracted automatically from the segmented tumor. The inter-observer variability and coefficient of variation (COV) were calculated to evaluate the reproducibility. Results: Inter-observer correlations and coefficient of variation of imaging features with the deformable model ranged from 0.953 to 0.999 and 2.1% to 9.2%, respectively, and the grow cut method ranged from 0.799 to 0.976 and 3.5% to 26.6%, respectively. Coefficient of variation for especially important features which were previously reported as predictive of patient survival were: 3.4% with deformable model and 7.4% with grow cut method for the proportion of contrast enhanced tumor region; 5.5% with deformable model and 25.7% with grow cut method for the proportion of necrosis; and 2.1% with deformable model and 4.4% with grow cut method for edge sharpness of tumor on CE-T1W1. Conclusion: Comparison of two semi-automated tumor segmentation techniques shows reliable image feature extraction for radiogenomic analysis of GBM patients with multiparametric Brain MRI.

  16. SU-E-J-252: Reproducibility of Radiogenomic Image Features: Comparison of Two Semi-Automated Segmentation Methods

    International Nuclear Information System (INIS)

    Lee, M; Woo, B; Kim, J; Jamshidi, N; Kuo, M

    2015-01-01

    Purpose: Objective and reliable quantification of imaging phenotype is an essential part of radiogenomic studies. We compared the reproducibility of two semi-automatic segmentation methods for quantitative image phenotyping in magnetic resonance imaging (MRI) of glioblastoma multiforme (GBM). Methods: MRI examinations with T1 post-gadolinium and FLAIR sequences of 10 GBM patients were downloaded from the Cancer Image Archive site. Two semi-automatic segmentation tools with different algorithms (deformable model and grow cut method) were used to segment contrast enhancement, necrosis and edema regions by two independent observers. A total of 21 imaging features consisting of area and edge groups were extracted automatically from the segmented tumor. The inter-observer variability and coefficient of variation (COV) were calculated to evaluate the reproducibility. Results: Inter-observer correlations and coefficient of variation of imaging features with the deformable model ranged from 0.953 to 0.999 and 2.1% to 9.2%, respectively, and the grow cut method ranged from 0.799 to 0.976 and 3.5% to 26.6%, respectively. Coefficient of variation for especially important features which were previously reported as predictive of patient survival were: 3.4% with deformable model and 7.4% with grow cut method for the proportion of contrast enhanced tumor region; 5.5% with deformable model and 25.7% with grow cut method for the proportion of necrosis; and 2.1% with deformable model and 4.4% with grow cut method for edge sharpness of tumor on CE-T1W1. Conclusion: Comparison of two semi-automated tumor segmentation techniques shows reliable image feature extraction for radiogenomic analysis of GBM patients with multiparametric Brain MRI

  17. Deformed special relativity as an effective flat limit of quantum gravity

    International Nuclear Information System (INIS)

    Girelli, Florian; Livine, Etera R.; Oriti, Daniele

    2005-01-01

    We argue that a (slightly) curved space-time probed with a finite resolution, equivalently a finite minimal length, is effectively described by a flat non-commutative space-time. More precisely, a small cosmological constant (so a constant curvature) leads the κ-deformed Poincare flat space-time of deformed special relativity (DSR) theories. This point of view eventually helps understanding some puzzling features of DSR. It also explains how DSR can be considered as an effective flat (low energy) limit of a (true) quantum gravity theory. This point of view leads us to consider a possible generalization of DSR to arbitrary curvature in momentum space and to speculate about a possible formulation of an effective quantum gravity model in these terms. It also leads us to suggest a doubly deformed special relativity framework for describing particle kinematics in an effective low energy description of quantum gravity

  18. Illumination-Invariant and Deformation-Tolerant Inner Knuckle Print Recognition Using Portable Devices

    Directory of Open Access Journals (Sweden)

    Xuemiao Xu

    2015-02-01

    Full Text Available We propose a novel biometric recognition method that identifies the inner knuckle print (IKP. It is robust enough to confront uncontrolled lighting conditions, pose variations and low imaging quality. Such robustness is crucial for its application on portable devices equipped with consumer-level cameras. We achieve this robustness by two means. First, we propose a novel feature extraction scheme that highlights the salient structure and suppresses incorrect and/or unwanted features. The extracted IKP features retain simple geometry and morphology and reduce the interference of illumination. Second, to counteract the deformation induced by different hand orientations, we propose a novel structure-context descriptor based on local statistics. To our best knowledge, we are the first to simultaneously consider the illumination invariance and deformation tolerance for appearance-based low-resolution hand biometrics. Settings in previous works are more restrictive. They made strong assumptions either about the illumination condition or the restrictive hand orientation. Extensive experiments demonstrate that our method outperforms the state-of-the-art methods in terms of recognition accuracy, especially under uncontrolled lighting conditions and the flexible hand orientation requirement.

  19. Deformation inhomogeneity in large-grained AA5754 sheets

    International Nuclear Information System (INIS)

    Zhu Guozhen; Hu Xiaohua; Kang Jidong; Mishra, Raja K.; Wilkinson, David S.

    2011-01-01

    Research highlights: → Microstructure and strain relationship at individual grain level was studied. → 'Hot spots' nucleate early and most keep growing throughout deformation stages. → 'Hot spots' are correlated with 'soft' grains and soft-evolution grains. → Grains with high Schmid factors tend to be 'soft' grains. → Grains with the direction close to tensile axis tend to become softer. - Abstract: Models for deformation and strain localization in polycrystals that incorporate microstructural features including particles are computationally intensive due to the large variation in scale in going from particles to grains to a specimen. As a result such models are generally 2-D in nature. This is an issue for experimental validation. We have therefore studied deformation heterogeneities and strain localization behavior of coarse-grained alloys with only two grains across the sample thickness, therefore mimicking 2-D behavior. Aluminum alloy sheets (AA5754) have been investigated by a number of surface techniques, including digital image correlation, slip trace analysis and electron backscattered diffraction, at the individual grain level. Local strain concentration zones appear from the very beginning of deformation, which then maintain sustained growth and lead, in one of these regions, to localization and final fracture. These 'hot spots' occur in areas with locally soft grains (i.e. grains with or close to the tensile direction) and soft-evolution orientations (i.e. grains with close to the tensile direction). These grains can be correlated with Taylor and/or Schmid factors.

  20. Tailoring dislocation structures and mechanical properties of nanostructured metals produced by plastic deformation

    DEFF Research Database (Denmark)

    Huang, Xiaoxu

    2009-01-01

    The presence of a dislocation structure associated with low-angle dislocation boundaries and interior dislocations is a common and characteristic feature in nanostructured metals produced by plastic deformation, and plays an important role in determining both the strength and ductility...

  1. Shear Creep Simulation of Structural Plane of Rock Mass Based on Discontinuous Deformation Analysis

    Directory of Open Access Journals (Sweden)

    Guoxin Zhang

    2017-01-01

    Full Text Available Numerical simulations of the creep characteristics of the structural plane of rock mass are very useful. However, most existing simulation methods are based on continuum mechanics and hence are unsuitable in the case of large displacements and deformations. The discontinuous deformation analysis method proposed by Genhua is a discrete one and has a significant advantage when simulating the contacting problem of blocks. In this study, we combined the viscoelastic rheological model of Burgers with the discontinuous deformation analysis (DDA method. We also derived the recurrence formula for the creep deformation increment with the time step during numerical simulations. Based on the minimum potential energy principle, the general equilibrium equation was derived, and the shear creep deformation in the structural plane was considered. A numerical program was also developed and its effectiveness was confirmed based on the curves obtained by the creep test of the structural plane of a rock mass under different stress levels. Finally, the program was used to analyze the mechanism responsible for the creep features of the structural plane in the case of the toppling deformation of the rock slope. The results showed that the extended DDA method is an effective one.

  2. Real-time deformations of organ based on structural mechanics for surgical simulators

    Science.gov (United States)

    Nakaguchi, Toshiya; Tagaya, Masashi; Tamura, Nobuhiko; Tsumura, Norimichi; Miyake, Yoichi

    2006-03-01

    This research proposes the deformation model of organs for the development of the medical training system using Virtual Reality (VR) technology. First, the proposed model calculates the strains of coordinate axis. Secondly, the deformation is obtained by mapping the coordinate of the object to the strained coordinate. We assume the beams in the coordinate space to calculate the strain of the coordinate axis. The forces acting on the object are converted to the forces applied to the beams. The bend and the twist of the beams are calculated based on the theory of structural mechanics. The bend is derived by the finite element method. We propose two deformation methods which differ in the position of the beams in the coordinate space. One method locates the beams along the three orthogonal axes (x, y, z). Another method locates the beam in the area where the deformation is large. In addition, the strain of the coordinate axis is attenuated in proportion to the distance from the point of action to consider the attenuation of the stress which is a viscoelastic feature of the organs. The proposed model needs less computational cost compared to the conventional deformation method since our model does not need to divide the object into the elasticity element. The proposed model was implemented in the laparoscopic surgery training system, and a real-time deformation can be realized.

  3. Is nucleon deformed?

    International Nuclear Information System (INIS)

    Abbas, Afsar

    1992-01-01

    The surprising answer to this question Is nucleon deformed? is : Yes. The evidence comes from a study of the quark model of the single nucleon and when it is found in a nucleus. It turns out that many of the long standing problems of the Naive Quark Model are taken care of if the nucleon is assumed to be deformed. Only one value of the parameter P D ∼1/4 (which specifies deformation) fits g A (the axial vector coupling constant) for all the semileptonic decay of baryons, the F/D ratio, the pion-nucleon-delta coupling constant fsub(πNΔ), the double delta coupling constant 1 fsub(πΔΔ), the Ml transition moment μΔN and g 1 p the spin structure function of proton 2 . All this gives strong hint that both neutron and proton are deformed. It is important to look for further signatures of this deformation. When this deformed nucleon finds itself in a nuclear medium its deformation decreases. So much that in a heavy nucleus the nucleons are actually spherical. We look into the Gamow-Teller strengths, magnetic moments and magnetic transition strengths in nuclei to study this property. (author). 15 refs

  4. Students/ PDFs

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Sneh Lata Singla—Post doc with Ralph Quatrano, now at ICGEB, New Delhi. Sneh Lata Singla—Post doc with Ralph Quatrano, now at ICGEB, New Delhi. Ashwani Pareek—Post doc with Ralph Quatrano, now at JNU, New Delhi. Deepika Minhas—Post Doc with Prof.

  5. A kinematical model for the plastic deformation of face-centred cubic polycrystals

    International Nuclear Information System (INIS)

    Leffers, T.

    1975-01-01

    During the plastic deformation of a polycrystalline material the deformation of the individual grain must be adjusted to the deformation of the surrounding grains so that material continuity is maintained. This continuity condition is the essential feature distinguishing polycrystal deformation from single-crystal deformation. In the present work it is attempted to explain how the continuity condition is fulfilled in face-centred cubic polycrystals. The early treatments of the plastic deformation of polycrystalline materials were aimed directly at the formulation of a ''dynamical'' theory, i.e. it was the intention to cover the magnitude of the stresses involved as well as the slip processes producing the deformation. It is argued that rolling texture is a good tool for a necessary intermediate stage of establishing a ''kinematical'' model describing the slip processes, but not the magnitude of the necessary stresses. Three aspects of rolling texture are considered: (a) the development of the rolling textures found experimentally in face-centred cubic materials can be computer-simulated on the basis of models for the plastic deformation that only involve (111) slip; (b) experimentally that the widely accepted twinning theory for the transition in f.c.c. rolling texture does not reflect the behaviour of real materials; and (c) it is shown that the texture transition is thermally activated with an activation energy corresponding to that of cross slip. An electron-microscopical investigation of the slip process operating during rolling of f.c.c. polycrystals is also included. On the basis of the computer simulation of the texture formation supplemented by the experimental results a kinematical model is developed for the plastic deformation of f.c.c. polycrystals by rolling. In the proposed model the material continuity is maintained by inhomogeneous slip processes, combined with homogeneous multiple glide when the cross-slip frequency is high. (author)

  6. Local and global deformations in a strain-stiffening fibrin gel

    Energy Technology Data Exchange (ETDEWEB)

    Wen Qi [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Basu, Anindita [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Winer, Jessamine P [Institute for Medicine and Engineering, University of Pennsylvania, Philadelphia, PA 19104 (United States); Yodh, Arjun [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States); Janmey, Paul A [Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104 (United States)

    2007-11-15

    Extracellular matrices composed of filamentous biopolymers like collagen and fibrin have viscoelastic properties that differ from those of rubberlike elastomers or hydrogels formed by flexible polymers. Compared to flexible polymer gels, filamentous biopolymer networks generally have larger elastic moduli, a striking increase in elastic modulus with increasing strain, and a pronounced negative normal stress when deformed in simple shear. All three of these unusual features can be accounted for by a theory that extends concepts of entropic elasticity to a regime where the polymer chains are already significantly extended in the absence of external forces because of their finite bending stiffness. An essential assumption of the theories that relate microscopic structural parameters such as persistence length and mesh size of biopolymer gels to their macroscopic rheology is that the deformation of these materials is affine: that is, the macroscopic strain of the bulk material is equal to the local strain within the material at each point. The validity of this assumption for the dilute open meshworks of most biopolymer gels has been experimentally tested by embedding micron diameter fluorescent beads within the networks formed by fibrin and quantifying their displacements as the macroscopic samples are deformed in a rheometer. Measures of non-affine deformation are small at small strains and decrease as strain increases and the sample stiffens. These results are consistent with the entropic model for non-linear elasticity of semiflexible polymer networks and show that strain-stiffening does not require non-affine deformations.

  7. Geological ductile deformation mapping at the Olkiluoto site, Eurajoki, Finland

    Energy Technology Data Exchange (ETDEWEB)

    Engstroem, J. [Geological Survey of Finland, Espoo (Finland)

    2013-12-15

    During 2010-2012 eight larger excavated and cleaned outcrops were investigated to study the polyphase nature of the ductile deformation within the Olkiluoto Island. A detailed structural geological mapping together with a thin section study was performed to get a broader and better understanding of the nature and occurrence of these different ductile deformation phases. These outcrops were selected to represent all different ductile deformation phases recognized earlier during the site investigations. The relicts of primary sedimentary structures and products of the earliest deformations (D{sub 0}-D{sub 1}) are mostly obscured by later deformation events. The D{sub 2}-D{sub 4} is the most significant ductile deformation phases occurring on the Olkiluoto Island and almost all structural features can be labeled within these three phases. The outcrops for this investigation were selected mostly from the eastern part of the Olkiluoto Island because that part of the Island has been less investigated previously. As a reference, one outcrop was selected in the western part of the Island where it was previously known that this location had especially well preserved structures of the second deformation phase (D{sub 2}). The S{sub 2} foliation is E-W orientated with moderate dip towards south. A few folds can be associated with this deformational event, mostly having a tight to isoclinal character. During D{sub 3} the migmatites were re-deformed and migrated leucosomes, were intruded mainly parallel to S{sub 3} axial surfaces having a NE-SW orientation. Generally the dip of the S{sub 3} axial surfaces is slightly more steeper (55- 65 deg C) than that of the S{sub 2} axial surfaces, which shows a more moderate dip (40-65 deg C). F{sub 3} fold structures are quite common in the eastern part of Island showing asymmetrical, overturned, shear folds usually with a dextral sense of shear. Large scale D{sub 3} shear structures contain blastomylonites as characteristic fault rocks

  8. Automatic selective feature retention in patient specific elastic surface registration

    CSIR Research Space (South Africa)

    Jansen van Rensburg, GJ

    2011-01-01

    Full Text Available The accuracy with which a recent elastic surface registration algorithm deforms the complex geometry of a skull is examined. This algorithm is then coupled to a line based algorithm as is frequently used in patient specific feature registration...

  9. Quantized planes and multiparameter deformations of Heisenberg and GL(N) algebras

    International Nuclear Information System (INIS)

    Fairlie, D.B.; Zachos, C.

    1991-01-01

    We summarize our work on explicitly deforming classical oscillators to multiparameter quantum oscillators which do not commute with each other. These ''anyonic'' oscillators lead to the construction of a consistent quantum algebra GL q (N) with (N - 1)(N - 2)/2 independent parameters, some of whose features and applications we shall discuss. 22 refs

  10. Multi-object segmentation framework using deformable models for medical imaging analysis.

    Science.gov (United States)

    Namías, Rafael; D'Amato, Juan Pablo; Del Fresno, Mariana; Vénere, Marcelo; Pirró, Nicola; Bellemare, Marc-Emmanuel

    2016-08-01

    Segmenting structures of interest in medical images is an important step in different tasks such as visualization, quantitative analysis, simulation, and image-guided surgery, among several other clinical applications. Numerous segmentation methods have been developed in the past three decades for extraction of anatomical or functional structures on medical imaging. Deformable models, which include the active contour models or snakes, are among the most popular methods for image segmentation combining several desirable features such as inherent connectivity and smoothness. Even though different approaches have been proposed and significant work has been dedicated to the improvement of such algorithms, there are still challenging research directions as the simultaneous extraction of multiple objects and the integration of individual techniques. This paper presents a novel open-source framework called deformable model array (DMA) for the segmentation of multiple and complex structures of interest in different imaging modalities. While most active contour algorithms can extract one region at a time, DMA allows integrating several deformable models to deal with multiple segmentation scenarios. Moreover, it is possible to consider any existing explicit deformable model formulation and even to incorporate new active contour methods, allowing to select a suitable combination in different conditions. The framework also introduces a control module that coordinates the cooperative evolution of the snakes and is able to solve interaction issues toward the segmentation goal. Thus, DMA can implement complex object and multi-object segmentations in both 2D and 3D using the contextual information derived from the model interaction. These are important features for several medical image analysis tasks in which different but related objects need to be simultaneously extracted. Experimental results on both computed tomography and magnetic resonance imaging show that the proposed

  11. In-Situ Characterization of Deformation and Fracture Behavior of Hot-Rolled Medium Manganese Lightweight Steel

    Science.gov (United States)

    Zhao, Zheng-zhi; Cao, Rong-hua; Liang, Ju-hua; Li, Feng; Li, Cheng; Yang, Shu-feng

    2018-02-01

    The deformation and fracture behavior of hot-rolled medium manganese lightweight (0.32C-3.85Mn-4.18Al-1.53Si) steel was revealed by an in situ tensile test. Deformed δ-ferrite with plenty of cross-parallel deformation bands during in situ tensile tests provides δ-ferrite of good plasticity and ductility, although it is finally featured by the cleavage fracture. The soft and ductile δ-ferrite and high-volume fraction of austenite contribute to the superior mechanical properties of medium manganese lightweight steel heated at 800°C, with a tensile strength of 924 MPa, total elongation of 35.2% and product of the strength and elongation of 32.5 GPa %.

  12. Genetic relationship between deformation and low-Ca content in olivine from magmatic systems: evidence from the Poyi ultramafic intrusion, NW China

    Science.gov (United States)

    Yao, Zhuo-sen; Qin, Ke-zhang; Xue, Sheng-chao

    2017-12-01

    The deformation features (e.g., undulose extinction and subgrain boundaries) and low Ca content (causing the widespread deformation observed in Ca-depleted olivine from Poyi and other intrusions. What is more important, this work fills the gaps in the interpretation of this type of olivine in volcanic rocks.

  13. Plastic deformation

    NARCIS (Netherlands)

    Sitter, de L.U.

    1937-01-01

    § 1. Plastic deformation of solid matter under high confining pressures has been insufficiently studied. Jeffreys 1) devotes a few paragraphs to deformation of solid matter as a preface to his chapter on the isostasy problem. He distinguishes two properties of solid matter with regard to its

  14. Craniofacial features of children with spinal deformities

    Directory of Open Access Journals (Sweden)

    Végh András

    2008-12-01

    Full Text Available Abstract Background The objective of this epidemiological study is to map the dentofacial anomalies that can be correlated to the two most frequent spinal diseases responsible for postural abnormalities and that can be clinically identified by the orthodontic examination. Methods Twenty-three children with Scheuermann's disease participated in the study (mean age: 14Y8M; SD: 1Y8M, 28 with Scoliosis (mean age: 14Y7M; SD: 2Y3M and a control group of 68 orthopedically healthy children (mean age: 14Y8M; SD: 0Y11M. Standardized orthodontic screening protocols were used to map the occlusal relations in the sagittal, vertical, and transversal dimensions, space relations of the maxillary and mandibular frontal segment, and the TMJ status and function. The examinations for the children with orthopedic disorders were supplemented by the evaluation of routine orthodontic radiograms – lateral cephalograms and panoramic X-rays. Results The majority of the dentofacial features examined revealed more and greater abnormalities among patients in the Scheuermann's disease group than in the scoliosis group. In the latter group the proportion of the TMJ symptoms and the consecutive functional deviations were greater. When comparing the values of the two spinal-disorder groups and the control group, statistically significant differences (p p Conclusion The more extended treatment of the malocclusions closely correlated to postural disorders draws attention to the indicators of a higher frequency and severity occurring in the case of the dentofacial deviations in the patients of the MSCH group who had previously been less examined.

  15. Crystal-plastic deformation of zircon : effects on microstructures, textures, microchemistry and the retention of radiogenic isotopes

    International Nuclear Information System (INIS)

    Kovaleva, E.

    2015-01-01

    Dating of deep-crustal deformation events potentially can be achieved by using plastically-deformed accessory minerals found in high-temperature shear zones. Deformation microstructures, such as dislocations and low-angle boundaries, form due to plastic deformation in the crystal lattice and act as fluid migration pathways and trace element (e.g. Pb, Ti, U, Th, REE) diffusion pathways through so-called “pipe diffusion”. Deformation microstructures can alter the chemical and isotopic composition of certain grain parts and may lead to complete or partial isotopic resetting of certain geochronometers (e.g. U/Th/Pb, K/Ar, Rb/Sr) in the mineral domains. This work aims to better understand the processes of crystal-plastic deformation and associated trace element redistribution and the resetting of isotopic systems in zircon. This study finds that: a) there are three general finite deformation patterns in deformed zircons; b) suggests that it is possible to reconstruct the macroscopic kinematic framework of the shear zone based on the orientation of deformed zircon grains and the operating misorientation axes; c) and demonstrates the effect of deformation microstructures on trace elements and Pb isotopes in zircon. The final goal of this project is to develop a tool for isotopic dating of high-temperature deformation events in the deep crust. In addition to these results, zircon grains with planar deformation bands have been discovered in paleo-seismic zones; these deformation features have been described in detail and a possible mechanism of their origin and formation is suggested. The effect of planar deformation bands on trace element and isotopic behavior has also been investigated. (author) [de

  16. COMPASS polarized Drell-Yan experiment

    CERN Document Server

    Doshita, Norihiro

    2016-01-01

    The COMPASS II started at 2012 that includes polarized Drell-Yan program with a polarized solid target. The availability of pion beam provides an access to the Drell-Yan physics throughout the process where quark(target)-antiquark(beam) pair annihilates electromagnetically with a production of dilepton pair. Study of angular dependencies of the Drell-Yan process cross-section allows us to access to parton distribution functions (PDFs) or, more precisely, a convolutions of various PDFs. The transversely polarized target together with negative pion beam is an important feature of the COMPASS Drell-Yan experiment, that provides us with unique data on transverse momentum dependent (TMD) PDFs. After a plot run in 2014, the experiment has just started in 2015. The role of the Drell-Yan experiment at COMPASS in TMD PDFs study, with a comparison to semi-inclusive deep inelastic scattering experiment, is described. The experimental set-up, the status of the data taking in 2015 and preliminary analysis results in the 2...

  17. Deformation compensation in dynamic tomography; Compensation de deformations en tomographie dynamique

    Energy Technology Data Exchange (ETDEWEB)

    Desbat, L. [Universite Joseph Fourier, UMR CNRS 5525, 38 - Grenoble (France); Roux, S. [Universite Joseph Fourier, TIMC-IMAG, In3S, Faculte de Medecine, 38 - Grenoble (France)]|[CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France); Grangeat, P. [CEA Grenoble, Lab. d' Electronique et de Technologie de l' Informatique (LETI), 38 (France)

    2005-07-01

    This work is a contribution to the compensation of motion in tomography. New classes of deformation are proposed, that compensates analytically by an algorithm of a F.B.P. type reconstruction. This work makes a generalisation of the known results for affine deformations, in parallel geometry and fan-beam, to deformation classes of infinite dimension able to include strong non linearities. (N.C.)

  18. Experimental Investigation of Aeroelastic Deformation of Slender Wings at Supersonic Speeds Using a Video Model Deformation Measurement Technique

    Science.gov (United States)

    Erickson, Gary E.

    2013-01-01

    A video-based photogrammetric model deformation system was established as a dedicated optical measurement technique at supersonic speeds in the NASA Langley Research Center Unitary Plan Wind Tunnel. This system was used to measure the wing twist due to aerodynamic loads of two supersonic commercial transport airplane models with identical outer mold lines but different aeroelastic properties. One model featured wings with deflectable leading- and trailing-edge flaps and internal channels to accommodate static pressure tube instrumentation. The wings of the second model were of single-piece construction without flaps or internal channels. The testing was performed at Mach numbers from 1.6 to 2.7, unit Reynolds numbers of 1.0 million to 5.0 million, and angles of attack from -4 degrees to +10 degrees. The video model deformation system quantified the wing aeroelastic response to changes in the Mach number, Reynolds number concurrent with dynamic pressure, and angle of attack and effectively captured the differences in the wing twist characteristics between the two test articles.

  19. Microstructure and Texture in Surface Deformation Layer of Al-Zn-Mg-Cu Alloy Processed by Milling

    Directory of Open Access Journals (Sweden)

    CHEN Yanxia

    2017-12-01

    Full Text Available The microstructural and crystallographic features of the surface deformation layer in Al-Zn-Mg-Cu alloy induced by milling were investigated by means of transmission electron microscopy (TEM and precession electron diffraction (PED assisted nanoscale orientation mapping. The result shows that the surface deformation layer is composed by the top surface of equiaxed nanograins/ultrafine grains and the subsurface of lamellar nanograins/ultrafine grains surrounded by coarse grain boundary precipitates (GBPs. The recrystallized nanograins/ultrafine grains in the deformation layer show direct evidence that dynamic recrystallization plays an important role in grain refining process. The GBPs and grain interior precipitates (GIPs show a great difference in size and density with the matrix due to the thermally and mechanically induced precipitate redistribution. The crystallographic texture of the surface deformation layer is proved to be a mixture of approximate copper{112}, rotated cube{001} and F {111}. The severe shear deformation of the surface induced by milling is responsible for the texture evolution.

  20. The effect of the matrix superplastic deformation on interface reaction in fiber-reinforced composites

    International Nuclear Information System (INIS)

    Astanin, V.V.; Imayeva, L.A.

    1995-01-01

    It is known that superplastic deformation affects the processes o solid phases bonding. In particular, the effect of a character of matrix flow upon nucleation and growth of the reaction products at the fiber/matrix interface should be expected during consolidation of the fiber-reinforced composites under superplastic conditions. The matrix material flow in thin clearance (about 20μm) between strengthening fibers is a special feature of composite consolidation. In previous papers, it was shown that the character of the flow in thin specimens, when the specimen thickness is equal to several grain sizes, is very different from that in thick specimens. In this manner the question of the effect of the deformation on the fiber/matrix interface formation is complicated and one should consider the peculiarities of matrix deformation during the composite fabrication and the effect of localization of the deformation on the fiber/matrix interface reaction. In this paper, the authors shall focus on these two problems

  1. Surface reconstruction and deformation monitoring of stratospheric airship based on laser scanning technology

    Science.gov (United States)

    Guo, Kai; Xie, Yongjie; Ye, Hu; Zhang, Song; Li, Yunfei

    2018-04-01

    Due to the uncertainty of stratospheric airship's shape and the security problem caused by the uncertainty, surface reconstruction and surface deformation monitoring of airship was conducted based on laser scanning technology and a √3-subdivision scheme based on Shepard interpolation was developed. Then, comparison was conducted between our subdivision scheme and the original √3-subdivision scheme. The result shows our subdivision scheme could reduce the shrinkage of surface and the number of narrow triangles. In addition, our subdivision scheme could keep the sharp features. So, surface reconstruction and surface deformation monitoring of airship could be conducted precisely by our subdivision scheme.

  2. Seismically-induced soft-sediment deformation structures associated with the Magallanes-Fagnano Fault System (Isla Grande de Tierra del Fuego, Argentina)

    Science.gov (United States)

    Onorato, M. Romina; Perucca, Laura; Coronato, Andrea; Rabassa, Jorge; López, Ramiro

    2016-10-01

    In this paper, evidence of paleoearthquake-induced soft-sediment deformation structures associated with the Magallanes-Fagnano Fault System in the Isla Grande de Tierra del Fuego, southern Argentina, has been identified. Well-preserved soft-sediment deformation structures were found in a Holocene sequence of the Udaeta pond. These structures were analyzed in terms of their geometrical characteristics, deformation mechanism, driving force system and possible trigger agent. They were also grouped in different morphological types: sand dykes, convolute lamination, load structures and faulted soft-sediment deformation features. Udaeta, a small pond in Argentina Tierra del Fuego, is considered a Quaternary pull-apart basin related to the Magallanes-Fagnano Fault System. The recognition of these seismically-induced features is an essential tool for paleoseismic studies. Since the three main urban centers in the Tierra del Fuego province of Argentina (Ushuaia, Río Grande and Tolhuin) have undergone an explosive growth in recent years, the results of this study will hopefully contribute to future analyses of the seismic risk of the region.

  3. Localized scleroderma: imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Liu, P. (Dept. of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON (Canada)); Uziel, Y. (Div. of Rheumatology, Hospital for Sick Children, Toronto, ON (Canada)); Chuang, S. (Dept. of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON (Canada)); Silverman, E. (Div. of Rheumatology, Hospital for Sick Children, Toronto, ON (Canada)); Krafchik, B. (Div. of Dermatology, Dept. of Pediatrics, Hospital for Sick Children, Toronto, ON (Canada)); Laxer, R. (Div. of Rheumatology, Hospital for Sick Children, Toronto, ON (Canada))

    1994-06-01

    Localized scleroderma is distinct from the diffuse form of scleroderma and does not show Raynaud's phenomenon and visceral involvement. The imaging features in 23 patients ranging from 2 to 17 years of age (mean 11.1 years) were reviewed. Leg length discrepancy and muscle atrophy were the most common findings (five patients), with two patients also showing modelling deformity of the fibula. One patient with lower extremity involvement showed abnormal bone marrow signals on MR. Disabling joint contracture requiring orthopedic intervention was noted in one patient. In two patients with ''en coup de sabre'' facial deformity, CT and MR scans revealed intracranial calcifications and white matter abnormality in the ipsilateral frontal lobes, with one also showing migrational abnormality. In a third patient, CT revealed white matter abnormality in the ipsilateral parietal lobe. In one patient with progressive facial hemiatrophy, CT and MR scans showed the underlying hypoplastic left maxillary antrum and cheek. Imaging studies of areas of clinical concern revealed positive findings in half our patients. (orig.)

  4. Variable near-surface deformation along the Commerce segment of the Commerce geophysical lineament, southeast Missouri to southern Illinois, USA

    Science.gov (United States)

    Odum, J.K.; Stephenson, W.J.; Williams, R.A.

    2003-01-01

    Recent studies have demonstrated a plausible link between surface and near-surface tectonic features and the vertical projection of the Commerce geophysical lineament (CGL). The CGL is a 5- to 10-km-wide zone of basement magnetic and gravity anomalies traceable for more than 600 km, extending from Arkansas through southeast Missouri and southern Illinois and into Indiana. Twelve kilometers of high-resolution seismic reflection data, collected at four sites along a 175-km segment of the CGL projection, are interpreted to show varying amounts of deformation involving Tertiary and some Quaternary sediments. Some of the locally anomalous geomorphic features in the northern Mississippi embayment region (i.e., paleoliquefaction features, anomalous directional changes in stream channels, and areas of linear bluff escarpments) overlying the CGL can be correlated with specific faults and/or narrow zones of deformed (faulted and folded) strata that are imaged on high-resolution seismic reflection data. There is an observable change in near-surface deformation style and complexity progressing from the southwest to the northeast along the trace of the CGL. The seismic reflection data collaborate mapping evidence which suggests that this region has undergone a complex history of deformation, some of which is documented to be as young as Quaternary, during multiple episodes of reactivation under varying stress fields. This work, along with that of other studies presented in this volume, points to the existence of at least one major crustal feature outside the currently defined zone of seismic activity (New Madrid Seismic Zone) that should be considered as a significant potential source zone for seismogenic activity within the midcontinent region of the United States. ?? 2003 Elsevier B.V. All rights reserved.

  5. q-Deformed KP Hierarchy and q-Deformed Constrained KP Hierarchy

    OpenAIRE

    He, Jingsong; Li, Yinghua; Cheng, Yi

    2006-01-01

    Using the determinant representation of gauge transformation operator, we have shown that the general form of $au$ function of the $q$-KP hierarchy is a $q$-deformed generalized Wronskian, which includes the $q$-deformed Wronskian as a special case. On the basis of these, we study the $q$-deformed constrained KP ($q$-cKP) hierarchy, i.e. $l$-constraints of $q$-KP hierarchy. Similar to the ordinary constrained KP (cKP) hierarchy, a large class of solutions of $q$-cKP hierarchy can be represent...

  6. Deformed barchans under alternating flows: Flume experiments and comparison with barchan dunes within Proctor Crater, Mars

    Science.gov (United States)

    Taniguchi, Keisuke; Endo, Noritaka

    2007-10-01

    It is generally considered that barchans, isolated crescentic-shaped dunes, develop where wind is unidirectional and the available sand is insufficient to cover the entire dune field; however, Bishop [Bishop, M.A., 2001. Seasonal variation of crescentic dune morphology and morphometry, Strzelecki Simpson desert, Australia. Earth Surface Process and Landforms 26, 783 791.] observed barchans that developed in areas where winds blow seasonally in opposite directions and described a peculiar deformation feature, the “rear slipface,” that is not found in ordinary barchans. Barchans under such bidirectional flows are poorly understood, and it is necessary to study barchans that formed under many different flow conditions. We conducted flume experiments to investigate the deformation of barchans under alternating water flow, and observed new deformation features in addition to rear slipfaces. We conclude that the deformation of barchans can be categorized into four types, one of which shows morphologies similar to barchans within Proctor Crater, Mars. The deformation type depends on the strength of the reverse flow relative to the forward flow and the absolute velocity of the forward flow. Comparison of our results with barchan dunes within Proctor Crater enable us to qualitatively estimate the wind strength and direction related to dune formation on Mars. These results are in agreement with those of Fenton et al. [Fenton, L.K., Toigo, A.D., Richardson, M.I., 2005. Aeolian processes in Proctor Crater on Mars: Mesoscale modeling of dune-forming winds. Journal of Geophysical Research 110 (E6), E06005.].

  7. Lagrangian statistics and flow topology in forced two-dimensional turbulence.

    Science.gov (United States)

    Kadoch, B; Del-Castillo-Negrete, D; Bos, W J T; Schneider, K

    2011-03-01

    A study of the relationship between Lagrangian statistics and flow topology in fluid turbulence is presented. The topology is characterized using the Weiss criterion, which provides a conceptually simple tool to partition the flow into topologically different regions: elliptic (vortex dominated), hyperbolic (deformation dominated), and intermediate (turbulent background). The flow corresponds to forced two-dimensional Navier-Stokes turbulence in doubly periodic and circular bounded domains, the latter with no-slip boundary conditions. In the double periodic domain, the probability density function (pdf) of the Weiss field exhibits a negative skewness consistent with the fact that in periodic domains the flow is dominated by coherent vortex structures. On the other hand, in the circular domain, the elliptic and hyperbolic regions seem to be statistically similar. We follow a Lagrangian approach and obtain the statistics by tracking large ensembles of passively advected tracers. The pdfs of residence time in the topologically different regions are computed introducing the Lagrangian Weiss field, i.e., the Weiss field computed along the particles' trajectories. In elliptic and hyperbolic regions, the pdfs of the residence time have self-similar algebraic decaying tails. In contrast, in the intermediate regions the pdf has exponential decaying tails. The conditional pdfs (with respect to the flow topology) of the Lagrangian velocity exhibit Gaussian-like behavior in the periodic and in the bounded domains. In contrast to the freely decaying turbulence case, the conditional pdfs of the Lagrangian acceleration in forced turbulence show a comparable level of intermittency in both the periodic and the bounded domains. The conditional pdfs of the Lagrangian curvature are characterized, in all cases, by self-similar power-law behavior with a decay exponent of order -2.

  8. High temperature creep deformation of glass-phase containing MoSi sub 2 sintered compacts. Glass so wo fukumu MoSi sub 2 shoketsutai no koon henkei

    Energy Technology Data Exchange (ETDEWEB)

    Shobu, K.; Watanabe, T.; Tani, E. (Government Industrial Research Inst., Kyushu, Saga (Japan))

    1991-07-25

    As such deformation mechanisms as diffusion, grain boundary sliding and motion of dislocation are known for high temperature deformation of polycrystallines, these atomic theoretical mechanism and quantitative side are not resolved perfectly. In this report, high temperature plasticity of sintered MoSi {sub 2} containing glass phase was examined and obtained some results shown as follows: its transient feature was same as usually observed one; and according to observe its structure, the deformation mechanism was mainly based on grain boundary sliding, and viscous flow of glass phase and diffusion therethrough; stress feature in deformation was shown a transient phenomenon at about 10MPa, and stress index approached to 3 under low stress and to 1 under high stress, in other words stress feature was controlled by viscous flow under high stress and by grain boundary sliding under low stress; and the stress index of grain boundary sliding was supposed to be 3 at low inclined angle and responsive grain boundary and 2 at high inclined angle. 4 refs., 5 figs.

  9. Room temperature deformation of in-situ grown quasicrystals embedded in Al-based cast alloy

    Directory of Open Access Journals (Sweden)

    Boštjan Markoli

    2013-12-01

    Full Text Available An Al-based cast alloy containing Mn, Be and Cu has been chosen to investigate the room temperature deformation behavior of QC particles embedded in Al-matrix. Using LOM, SEM (equipped with EDS, conventional TEM with SAED and controlled tensile and compression tests, the deformation response of AlMn2Be2Cu2 cast alloy at room temperature has been examined. Alloy consisted of Al-based matrix, primary particles and eutectic icosahedral quasicrystalline (QC i-phase and traces of Θ-Al2Cu and Al10Mn3. Tensile and compression specimens were used for evaluation of mechanical response and behavior of QC i-phase articles embedded in Al-cast alloy. It has been established that embedded QC i-phase particles undergo plastic deformation along with the Al-based matrix even under severe deformation and have the response resembling that of the metallic materials by formation of typical cup-and-cone feature prior to failure. So, we can conclude that QC i-phase has the ability to undergo plastic deformation along with the Al-matrix to greater extent contrary to e.g. intermetallics such as Θ-Al2Cu for instance.

  10. Extension of an anisotropic creep model to general high temperature deformation of a single crystal superalloy

    International Nuclear Information System (INIS)

    Pan, L.M.; Ghosh, R.N.; McLean, M.

    1993-01-01

    A physics based model has been developed that accounts for the principal features of anisotropic creep deformation of single crystal superalloys. The present paper extends this model to simulate other types of high temperature deformation under strain controlled test conditions, such as stress relaxation and tension tests at constant strain rate in single crystals subject to axial loading along an arbitrary crystal direction. The approach is applied to the SRR99 single crystal superalloy where a model parameter database is available, determined via analysis of a database of constant stress creep curves. A software package has been generated to simulate the deformation behaviour under complex stress-strain conditions taking into account anisotropic elasticity. (orig.)

  11. Identifying Septal Support Reconstructions for Saddle Nose Deformity: The Cakmak Algorithm.

    Science.gov (United States)

    Cakmak, Ozcan; Emre, Ismet Emrah; Ozkurt, Fazil Emre

    2015-01-01

    The saddle nose deformity is one of the most challenging problems in nasal surgery with a less predictable and reproducible result than other nasal procedures. The main feature of this deformity is loss of septal support with both functional and aesthetic implications. Most reports on saddle nose have focused on aesthetic improvement and neglected the reestablishment of septal support to improve airway. To explain how the Cakmak algorithm, an algorithm that describes various fixation techniques and grafts in different types of saddle nose deformities, aids in identifying saddle nose reconstructions that restore supportive nasal framework and provide the aesthetic improvements typically associated with procedures to correct saddle nose deformities. This algorithm presents septal support reconstruction of patients with saddle nose deformity based on the experience of the senior author in 206 patients with saddle nose deformity. Preoperative examination, intraoperative assessment, reconstruction techniques, graft materials, and patient evaluation of aesthetic success were documented, and 4 different types of saddle nose deformities were defined. The Cakmak algorithm classifies varying degrees of saddle nose deformity from type 0 to type 4 and helps identify the most appropriate surgical procedure to restore the supportive nasal framework and aesthetic dorsum. Among the 206 patients, 110 women and 96 men, mean (range) age was 39.7 years (15-68 years), and mean (range) of follow-up was 32 months (6-148 months). All but 12 patients had a history of previous nasal surgeries. Application of the Cakmak algorithm resulted in 36 patients categorized with type 0 saddle nose deformities; 79, type 1; 50, type 2; 20, type 3a; 7, type 3b; and 14, type 4. Postoperative photographs showed improvement of deformities, and patient surveys revealed aesthetic improvement in 201 patients and improvement in nasal breathing in 195 patients. Three patients developed postoperative infection

  12. Deformations of superconformal theories

    Energy Technology Data Exchange (ETDEWEB)

    Córdova, Clay [School of Natural Sciences, Institute for Advanced Study,1 Einstein Drive, Princeton, NJ 08540 (United States); Dumitrescu, Thomas T. [Department of Physics, Harvard University,17 Oxford Street, Cambridge, MA 02138 (United States); Intriligator, Kenneth [Department of Physics, University of California,9500 Gilman Drive, San Diego, La Jolla, CA 92093 (United States)

    2016-11-22

    We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in d≥3 dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformations can be used to derive known and new constraints on moduli-space effective actions.

  13. Deformation of ``Villafranchian'' lacustrine sediments in the Chisone Valley (Western Alps, Italy)

    Science.gov (United States)

    Collo, Giovanni; Giardino, Marco

    1997-09-01

    The Chisone Valley is located in the internal NW Alps, in the Pinerolese District, an area characterized by present low to medium seismicity. Fine-grained sediments (sand, silt and clay with interbedded gravel) crop out in the lower Chisone Valley: they were first interpreted as glaciolacustrine deposits, and then as a lacustrine infilling of the valley floor probably due to differential uplifting of the valley mouth. Review of this data, together with new field and palynological observations, lead us to refer the lacustrine deposits to approximately the Lower Pleistocene (Villafranchian). In many outcrops, the lacustrine deposits show strong soft-sediment deformation such as convolute laminations, water-escape structures and disrupted beds, some of them associated with folds and faults (cm to dm in size); only two sites show metric to decametric folds and faults trending E-W and N-S. Detailed structural analysis conducted along a recently exposed section (Rio Gran Dubbione site) shows several soft-sediment deformation features on the limbs of mesoscale folds. Because of their intimate structural association, the origin of these minor structures seems to be connected to synsedimentary activity on reverse and normal faults (m to dm in size) affecting the lacustrine deposits in the same locality. Soft-sediment deformation features can be interpreted as possible paleoseismites. If so, the present seismicity of the Pinerolese District, which is the major area of such activity in NW Italy, cannot be considered an isolated episode in the geological evolution of the region; even if there is no supporting evidence for continuous seismicity, the deformations in the lacustrine sediments of the Chisone Valley testify to Early Pleistocene seismic activity, probably related to the recent tectonic evolution of the internal side of the NW Alps.

  14. Correlations of Surface Deformation and 3D Flow Field in a Compliant Wall Turbulent Channel Flow.

    Science.gov (United States)

    Wang, Jin; Zhang, Cao; Katz, Joseph

    2015-11-01

    This study focuses on the correlations between surface deformation and flow features, including velocity, vorticity and pressure, in a turbulent channel flow over a flat, compliant Polydimethylsiloxane (PDMS) wall. The channel centerline velocity is 2.5 m/s, and the friction Reynolds number is 2.3x103. Analysis is based on simultaneous measurements of the time resolved 3D velocity and surface deformation using tomographic PIV and Mach-Zehnder Interferometry. The volumetric pressure distribution is calculated plane by plane by spatially integrating the material acceleration using virtual boundary, omni-directional method. Conditional sampling based on local high/low pressure and deformation events reveals the primary flow structures causing the deformation. High pressure peaks appear at the interface between sweep and ejection, whereas the negative deformations peaks (dent) appear upstream, under the sweeps. The persistent phase lag between flow and deformations are presumably caused by internal damping within the PDMS. Some of the low pressure peaks and strong ejections are located under the head of hairpin vortices, and accordingly, are associated with positive deformation (bump). Others bumps and dents are correlated with some spanwise offset large inclined quasi-streamwise vortices that are not necessarily associated with hairpins. Sponsored by ONR.

  15. q-Deformed Kink solutions

    International Nuclear Information System (INIS)

    Lima, A.F. de

    2003-01-01

    The q-deformed kink of the λφ 4 -model is obtained via the normalisable ground state eigenfunction of a fluctuation operator associated with the q-deformed hyperbolic functions. The kink mass, the bosonic zero-mode and the q-deformed potential in 1+1 dimensions are found. (author)

  16. Deformation Mechanisms of Gum Metals Under Nanoindentation

    Science.gov (United States)

    Sankaran, Rohini Priya

    defect structures to applied loading, we perform ex-situ nanoindentation. Nanoindentation is a convenient method as the plastic deformation is localized and probes a nominally defect free volume of the material. We subsequently characterize the defect structures in these alloys with both conventional TEM and advanced techniques such as HAADF HRSTEM and nanoprobe diffraction. These advanced techniques allow for a more thorough understanding of the observed deformation features. The main findings from this investigation are as follows. As expected we observe that a non-equilibrium phase, o, is present in the leaner beta-stabilized alloy, ST Ref-1. We do not find any direct evidence of secondary phases in STGM, and we find the beta phase in CWGM, along with lath microstructure with subgrain structure consisting of dislocation cell networks. Upon nanoindentation, we find twinning accompanied by beta nucleation on the twin boundary in ST Ref-1 samples. This result is consistent with previous findings and is reasonable considering the alloy is unstable with respect to beta transformation. We find deformation nanotwinning in cold worked gum metals under nanoindentation, which is initially surprising. We argue that when viewed as a nanocrystalline material, such a deformation mechanism is consistent with previous work, and furthermore, a deformation nanotwinned structure does not preclude an ideal shear mechanism from operating in the alloy. Lastly, we observe continuous lattice rotations in STGM under nanoindentation via nanoprobe diffraction. With this technique, for the first time we can demonstrate that the lattice rotations are truly continuous at the nanoscale. We can quantify this lattice rotation, and find that even though the rotation is large, it may be mediated by a reasonable geometrically necessary dislocation density, and note that similar rotations are typically observed in other materials under nanoindentation. HRSTEM and conventional TEM data confirm the

  17. In-situ monitoring of deformation of clayey and volcanic sequences in the lacustrine plain of Iztapalapa, Mexico City

    Science.gov (United States)

    Carreon-Freyre, D.; Cerca, M.; Barrientos, B.; Gutierrez, R.; Blancas, D.

    2012-12-01

    Major cities of Central Mexico with lowering of land elevation problems are located in inter-volcanic and fault bounded basins within the central Trans-Mexican Volcanic Belt (TMVB). The most representative and studied case of ground deformation is Mexico City, where the Iztapalapa Municipality presents the highest population density. This area is located over the geological contact between the "Sierra de Santa Catarina" volcanic range and a lacustrine plain. Filling of lacustrine basins includes silty and clayey sediments as well as pyroclastic deposits (coarse and fine grained) and volcanic rocks layers. We used Ground Penetrating Radar (GPR) and MASW prospection to evaluate contrasts in the physical properties of fine grained soils and identify geometry of the deformational features and implemented a mechanical system for in situ monitoring in fractured sites. Deformational features in this basin reflect an interplay between the geological history (depositional conditions), load history, seismic activity, and faulting. Plastic mechanical behaviour predominates in these clayey sediments and differential deformation locally triggers brittle fracturing and/or subsidence of the surface. In this work we present the results of monitoring and characterization of ground deformation and fracturing in different sequences, our results show a dynamic interplay between the mechanisms of ground fracturing and the stress history of sedimentary sequences. Relating the mechanical behaviour of the studied sequences with variations of physical and geological properties should be taken into account to estimate land level lowering and risk of fracturing for urban development planning.

  18. A MATCHING METHOD TO REDUCE THE INFLUENCE OF SAR GEOMETRIC DEFORMATION

    Directory of Open Access Journals (Sweden)

    C. Gao

    2018-04-01

    Full Text Available There are large geometrical deformations in SAR image, including foreshortening, layover, shade,which leads to SAR Image matching with low accuracy. Especially in complex terrain area, the control points are difficult to obtain, and the matching is difficult to achieve. Considering the impact of geometric distortions in SAR image pairs, a matching algorithm with a combination of speeded up robust features (SURF and summed of normalize cross correlation (SNCC was proposed, which can avoid the influence of SAR geometric deformation. Firstly, SURF algorithm was utilized to predict the search area. Then the matching point pairs was selected based on summed of normalized cross correlation. Finally, false match points were eliminated by the bidirectional consistency. SURF algorithm can control the range of matching points, and the matching points extracted from the deformation area are eliminated, and the matching points with stable and even distribution are obtained. The experimental results demonstrated that the proposed algorithm had high precision, and can effectively avoid the effect of geometric distortion on SAR image matching. Meet accuracy requirements of the block adjustment with sparse control points.

  19. The prevalence of cam-type deformity of the hip joint: a survey of 4151 subjects of the Copenhagen Osteoarthritis Study

    DEFF Research Database (Denmark)

    Gosvig, K.K.; Jacobsen, S.; Sonne-Holm, S.

    2008-01-01

    . The relationships between cam malformation and self-reported hip pain were evaluated, and the relative importance of known risk factors for cam malformation estimated. RESULTS: We found a pronounced sex-related difference in cam-deformity distribution. The overall prevalence of cam deformity was approximately 17......BACKGROUND: Cam deformity is a preosteoarthritic malformation causing premature hip-joint degeneration. While the pathogenetic pathway from deformity to osteoarthrosis (OA) has been well established, almost nothing is known of the malformation's epidemiology. PURPOSE: To determine the distribution......% in men and 4% in women. The distribution of cam deformity was unaltered in subjects with normal joint-space width or other features of hip-joint degeneration. We found no significant association with self-reported hip pain, nor did we find any relative importance of possible risk factors for hip...

  20. Assessing ScanSAR Interferometry for Deformation Studies

    Science.gov (United States)

    Buckley, S. M.; Gudipati, K.

    2007-12-01

    , we consider several vastly different study sites. Phoenix, Arizona is an urban area which is located in an arid region with very little vegetation. C-band data over Phoenix is generally coherent over 5+ years. ERS data collected through the 1990s is used to monitor land subsidence in and around the Phoenix metropolitan area. We contrast these measurements with both broad and narrow deformation features in the vegetated Houston, Texas and London, U.K. areas. We find that low resolution ScanSAR data can be used to detect narrow features with small spatial extent. Several additional interferograms demonstrate the general applicability of C-band ScanSAR interferometry to WInSAR community interests, e.g., the Hector Mine earthquake, aseismic fault motion and Long Valley and Yellowstone deformation over time. With the September 2006 implementation of a new burst synchronization strategy for Envisat, 90% of all ScanSAR acquisitions exhibit at least 50% burst overlap. Our results demonstrate that these new data can be successfully used for a number of InSAR applications.

  1. Thermal image analysis of plastic deformation and fracture behavior by a thermo-video measurement system

    International Nuclear Information System (INIS)

    Ohbuchi, Yoshifumi; Sakamoto, Hidetoshi; Nagatomo, Nobuaki

    2016-01-01

    The visualization of the plastic region and the measurement of its size are necessary and indispensable to evaluate the deformation and fracture behavior of a material. In order to evaluate the plastic deformation and fracture behavior in a structural member with some flaws, the authors paid attention to the surface temperature which is generated by plastic strain energy. The visualization of the plastic deformation was developed by analyzing the relationship between the extension of the plastic deformation range and the surface temperature distribution, which was obtained by an infrared thermo-video system. Furthermore, FEM elasto-plastic analysis was carried out with the experiment, and the effectiveness of this non-contact measurement system of the plastic deformation and fracture process by a thermography system was discussed. The evaluation method using an infrared imaging device proposed in this research has a feature which does not exist in the current evaluation method, i.e. the heat distribution on the surface of the material has been measured widely by noncontact at 2D at high speed. The new measuring technique proposed here can measure the macroscopic plastic deformation distribution on the material surface widely and precisely as a 2D image, and at high speed, by calculation from the heat generation and the heat propagation distribution. (paper)

  2. Experimental deformation of a mafic rock - interplay between fracturing, reaction and viscous deformation

    Science.gov (United States)

    Marti, Sina; Stünitz, Holger; Heilbronner, Renée; Plümper, Oliver; Drury, Martyn

    2016-04-01

    Deformation experiments were performed on natural Maryland Diabase (˜ 55% Plg, 42% Px, 3% accessories, 0.18 wt.-% H2O added) in a Griggs-type deformation apparatus in order to explore the brittle-viscous transition and the interplay between deformation and mineral reactions. Shear experiments at strain rates of ˜ 2e-5 /s are performed, at T=600, 700 and 800°C and confining pressures Pc=1.0 and 1.5 GPa. Deformation localizes in all experiments. Below 700°C, the microstructure is dominated by brittle deformation with a foliation formed by cataclastic flow and high strain accommodated along 3-5 major ultracataclasite shear bands. At 700°C, the bulk of the material still exhibits abundant microfractures, however, deformation localizes into an anastomosing network of shear bands (SB) formed from a fine-grained (<< 1 μm) mixture of newly formed Plg and Amph. These reaction products occur almost exclusively along syn-kinematic structures such as fractures and SB. Experiments at 800°C show extensive mineral reactions, with the main reaction products Amph+Plg (+Zo). Deformation is localized in broad C' and C SB formed by a fine-grained (0.1 - 0.8 μm) mixture of Plg+Amph (+Zo). The onset of mineral reactions in the 700°C experiments shows that reaction kinetics and diffusional mass transport are fast enough to keep up with the short experimental timescales. While in the 700°C experiments brittle processes kinematically contribute to deformation, fracturing is largely absent at 800°C. Diffusive mass transfer dominates. The very small grain size within SB favours a grain size sensitive deformation mechanism. Due to the presence of water (and relatively high supported stresses), dissolution-precipitation creep is interpreted to be the dominant strain accommodating mechanism. From the change of Amph coronas around Px clasts with strain, we can determine that Amph is re-dissolved at high stress sites while growing in low stress sites, showing the ability of Amph to

  3. Deformation of second and third quantization

    Science.gov (United States)

    Faizal, Mir

    2015-03-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  4. Deformations of the Almheiri-Polchinski model

    Energy Technology Data Exchange (ETDEWEB)

    Kyono, Hideki; Okumura, Suguru; Yoshida, Kentaroh [Department of Physics, Kyoto University, Kitashirakawa Oiwake-cho, Kyoto 606-8502 (Japan)

    2017-03-31

    We study deformations of the Almheiri-Polchinski (AP) model by employing the Yang-Baxter deformation technique. The general deformed AdS{sub 2} metric becomes a solution of a deformed AP model. In particular, the dilaton potential is deformed from a simple quadratic form to a hyperbolic function-type potential similarly to integrable deformations. A specific solution is a deformed black hole solution. Because the deformation makes the spacetime structure around the boundary change drastically and a new naked singularity appears, the holographic interpretation is far from trivial. The Hawking temperature is the same as the undeformed case but the Bekenstein-Hawking entropy is modified due to the deformation. This entropy can also be reproduced by evaluating the renormalized stress tensor with an appropriate counter-term on the regularized screen close to the singularity.

  5. Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala

    Directory of Open Access Journals (Sweden)

    Lauren N. Schaefer

    2016-01-01

    Full Text Available Pacaya volcano is a persistently active basaltic cone complex located in the Central American Volcanic Arc in Guatemala. In May of 2010, violent Volcanic Explosivity Index-3 (VEI-3 eruptions caused significant topographic changes to the edifice, including a linear collapse feature 600 m long originating from the summit, the dispersion of ~20 cm of tephra and ash on the cone, the emplacement of a 5.4 km long lava flow, and ~3 m of co-eruptive movement of the southwest flank. For this study, Interferometric Synthetic Aperture Radar (InSAR images (interferograms processed from both spaceborne Advanced Land Observing Satellite-1 (ALOS-1 and aerial Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR data acquired between 31 May 2010 and 10 April 2014 were used to measure post-eruptive deformation events. Interferograms suggest three distinct deformation processes after the May 2010 eruptions, including: (1 subsidence of the area involved in the co-eruptive slope movement; (2 localized deformation near the summit; and (3 emplacement and subsequent subsidence of about a 5.4 km lava flow. The detection of several different geophysical signals emphasizes the utility of measuring volcanic deformation using remote sensing techniques with broad spatial coverage. Additionally, the high spatial resolution of UAVSAR has proven to be an excellent compliment to satellite data, particularly for constraining motion components. Measuring the rapid initiation and cessation of flank instability, followed by stabilization and subsequent influence on eruptive features, provides a rare glimpse into volcanic slope stability processes. Observing these and other deformation events contributes both to hazard assessment at Pacaya and to the study of the stability of stratovolcanoes.

  6. q-deformed Minkowski space

    International Nuclear Information System (INIS)

    Ogievetsky, O.; Pillin, M.; Schmidke, W.B.; Wess, J.; Zumino, B.

    1993-01-01

    In this lecture I discuss the algebraic structure of a q-deformed four-vector space. It serves as a good example of quantizing Minkowski space. To give a physical interpretation of such a quantized Minkowski space we construct the Hilbert space representation and find that the relevant time and space operators have a discrete spectrum. Thus the q-deformed Minkowski space has a lattice structure. Nevertheless this lattice structure is compatible with the operation of q-deformed Lorentz transformations. The generators of the q-deformed Lorentz group can be represented as linear operators in the same Hilbert space. (orig.)

  7. Rotary deformity in degenerative spondylolisthesis

    International Nuclear Information System (INIS)

    Kang, Sung Gwon; Kim, Jeong; Kho, Hyen Sim; Yun, Sung Su; Oh, Jae Hee; Byen, Ju Nam; Kim, Young Chul

    1994-01-01

    We studied to determine whether the degenerative spondylolisthesis has rotary deformity in addition to forward displacement. We have made analysis of difference of rotary deformity between the 31 study groups of symptomatic degenerative spondylolisthesis and 31 control groups without any symptom, statistically. We also reviewed CT findings in 15 study groups. The mean rotary deformity in study groups was 6.1 degree(the standard deviation is 5.20), and the mean rotary deformity in control groups was 2.52 degree(the standard deviation is 2.16)(p < 0.01). The rotary deformity can be accompanied with degenerative spondylolisthesis. We may consider the rotary deformity as a cause of symptomatic degenerative spondylolisthesis in case that any other cause is not detected

  8. A morphing-based scheme for large deformation analysis with stereo-DIC

    Science.gov (United States)

    Genovese, Katia; Sorgente, Donato

    2018-05-01

    A key step in the DIC-based image registration process is the definition of the initial guess for the non-linear optimization routine aimed at finding the parameters describing the pixel subset transformation. This initialization may result very challenging and possibly fail when dealing with pairs of largely deformed images such those obtained from two angled-views of not-flat objects or from the temporal undersampling of rapidly evolving phenomena. To address this problem, we developed a procedure that generates a sequence of intermediate synthetic images for gradually tracking the pixel subset transformation between the two extreme configurations. To this scope, a proper image warping function is defined over the entire image domain through the adoption of a robust feature-based algorithm followed by a NURBS-based interpolation scheme. This allows a fast and reliable estimation of the initial guess of the deformation parameters for the subsequent refinement stage of the DIC analysis. The proposed method is described step-by-step by illustrating the measurement of the large and heterogeneous deformation of a circular silicone membrane undergoing axisymmetric indentation. A comparative analysis of the results is carried out by taking as a benchmark a standard reference-updating approach. Finally, the morphing scheme is extended to the most general case of the correspondence search between two largely deformed textured 3D geometries. The feasibility of this latter approach is demonstrated on a very challenging case: the full-surface measurement of the severe deformation (> 150% strain) suffered by an aluminum sheet blank subjected to a pneumatic bulge test.

  9. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  10. Deforming tachyon kinks and tachyon potentials

    International Nuclear Information System (INIS)

    Afonso, Victor I.; Bazeia, Dionisio; Brito, Francisco A.

    2006-01-01

    In this paper we investigate deformation of tachyon potentials and tachyon kink solutions. We consider the deformation of a DBI type action with gauge and tachyon fields living on D1-brane and D3-brane world-volume. We deform tachyon potentials to get other consistent tachyon potentials by using properly a deformation function depending on the gauge field components. Resolutions of singular tachyon kinks via deformation and applications of deformed tachyon potentials to scalar cosmology scenario are discussed

  11. SU-E-J-113: Effects of Deformable Registration On First-Order Texture Maps Calculated From Thoracic Lung CT Scans

    International Nuclear Information System (INIS)

    Smith, C; Cunliffe, A; Al-Hallaq, H; Armato, S

    2015-01-01

    Purpose: To determine the stability of eight first-order texture features following the deformable registration of serial computed tomography (CT) scans. Methods: CT scans at two different time points from 10 patients deemed to have no lung abnormalities by a radiologist were collected. Following lung segmentation using an in-house program, texture maps were calculated from 32×32-pixel regions of interest centered at every pixel in the lungs. The texture feature value of the ROI was assigned to the center pixel of the ROI in the corresponding location of the texture map. Pixels in the square ROI not contained within the segmented lung were not included in the calculation. To quantify the agreement between ROI texture features in corresponding pixels of the baseline and follow-up texture maps, the Fraunhofer MEVIS EMPIRE10 deformable registration algorithm was used to register the baseline and follow-up scans. Bland-Altman analysis was used to compare registered scan pairs by computing normalized bias (nBias), defined as the feature value change normalized to the mean feature value, and normalized range of agreement (nRoA), defined as the range spanned by the 95% limits of agreement normalized to the mean feature value. Results: Each patient’s scans contained between 6.8–15.4 million ROIs. All of the first-order features investigated were found to have an nBias value less than 0.04% and an nRoA less than 19%, indicating that the variability introduced by deformable registration was low. Conclusion: The eight first-order features investigated were found to be registration stable. Changes in CT texture maps could allow for temporal-spatial evaluation of the evolution of lung abnormalities relating to a variety of diseases on a patient-by-patient basis. SGA and HA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology. Research reported in this publication was supported by the National Institute Of General

  12. SU-E-J-113: Effects of Deformable Registration On First-Order Texture Maps Calculated From Thoracic Lung CT Scans

    Energy Technology Data Exchange (ETDEWEB)

    Smith, C; Cunliffe, A; Al-Hallaq, H; Armato, S [The University of Chicago, Chicago, IL (United States)

    2015-06-15

    Purpose: To determine the stability of eight first-order texture features following the deformable registration of serial computed tomography (CT) scans. Methods: CT scans at two different time points from 10 patients deemed to have no lung abnormalities by a radiologist were collected. Following lung segmentation using an in-house program, texture maps were calculated from 32×32-pixel regions of interest centered at every pixel in the lungs. The texture feature value of the ROI was assigned to the center pixel of the ROI in the corresponding location of the texture map. Pixels in the square ROI not contained within the segmented lung were not included in the calculation. To quantify the agreement between ROI texture features in corresponding pixels of the baseline and follow-up texture maps, the Fraunhofer MEVIS EMPIRE10 deformable registration algorithm was used to register the baseline and follow-up scans. Bland-Altman analysis was used to compare registered scan pairs by computing normalized bias (nBias), defined as the feature value change normalized to the mean feature value, and normalized range of agreement (nRoA), defined as the range spanned by the 95% limits of agreement normalized to the mean feature value. Results: Each patient’s scans contained between 6.8–15.4 million ROIs. All of the first-order features investigated were found to have an nBias value less than 0.04% and an nRoA less than 19%, indicating that the variability introduced by deformable registration was low. Conclusion: The eight first-order features investigated were found to be registration stable. Changes in CT texture maps could allow for temporal-spatial evaluation of the evolution of lung abnormalities relating to a variety of diseases on a patient-by-patient basis. SGA and HA receives royalties and licensing fees through the University of Chicago for computer-aided diagnosis technology. Research reported in this publication was supported by the National Institute Of General

  13. Examples of deformation-dependent flow simulations of conjunctive use with MF-OWHM

    Science.gov (United States)

    Hanson, Randall T.; Traum, Jonathan A.; Boyce, Scott E.; Schmid, Wolfgang; Hughes, Joseph D.

    2015-01-01

    The dependency of surface- and groundwater flows and aquifer hydraulic properties on deformation induced by changes in aquifer head is not accounted for in the standard version of MODFLOW. A new USGS integrated hydrologic model, MODFLOW-OWHM, incorporates this dependency by linking subsidence and mesh deformation with changes in aquifer transmissivity and storage coefficient, and with flows that also depend on aquifer characteristics and land-surface geometry. This new deformation-dependent approach is being used for the further development of the integrated Central Valley hydrologic model (CVHM) in California. Preliminary results from this application and from hypothetical test cases of similar systems show that changes in canal flows, stream seepage, and evapotranspiration from groundwater (ETgw) are sensitive to deformation. Deformation feedback has been shown to also have an indirect effect on conjunctive surface- and groundwater use components with increased stream seepage and streamflows influencing surface-water deliveries and return flows. In the Central Valley model, land subsidence may significantly degrade the ability of the major canals to deliver surface water from the Delta to the San Joaquin and Tulare basins. Subsidence can also affect irrigation demand and ETgw, which, along with altered surface-water supplies, causes a feedback response resulting in changed estimates of groundwater pumping for irrigation. This modeling feature also may improve the impact assessment of dewatering-induced land subsidence/uplift (following irrigation pumping or coal-seam gas extraction) on surface receptors, inter-basin transfers, and surface infrastructure integrity.

  14. Examples of deformation-dependent flow simulations of conjunctive use with MF-OWHM

    Directory of Open Access Journals (Sweden)

    R. T. Hanson

    2015-11-01

    Full Text Available The dependency of surface- and groundwater flows and aquifer hydraulic properties on deformation induced by changes in aquifer head is not accounted for in the standard version of MODFLOW. A new USGS integrated hydrologic model, MODFLOW-OWHM, incorporates this dependency by linking subsidence and mesh deformation with changes in aquifer transmissivity and storage coefficient, and with flows that also depend on aquifer characteristics and land-surface geometry. This new deformation-dependent approach is being used for the further development of the integrated Central Valley hydrologic model (CVHM in California. Preliminary results from this application and from hypothetical test cases of similar systems show that changes in canal flows, stream seepage, and evapotranspiration from groundwater (ETgw are sensitive to deformation. Deformation feedback has been shown to also have an indirect effect on conjunctive surface- and groundwater use components with increased stream seepage and streamflows influencing surface-water deliveries and return flows. In the Central Valley model, land subsidence may significantly degrade the ability of the major canals to deliver surface water from the Delta to the San Joaquin and Tulare basins. Subsidence can also affect irrigation demand and ETgw, which, along with altered surface-water supplies, causes a feedback response resulting in changed estimates of groundwater pumping for irrigation. This modeling feature also may improve the impact assessment of dewatering-induced land subsidence/uplift (following irrigation pumping or coal-seam gas extraction on surface receptors, inter-basin transfers, and surface infrastructure integrity.

  15. q-deformed Brownian motion

    CERN Document Server

    Man'ko, V I

    1993-01-01

    Brownian motion may be embedded in the Fock space of bosonic free field in one dimension.Extending this correspondence to a family of creation and annihilation operators satisfying a q-deformed algebra, the notion of q-deformation is carried from the algebra to the domain of stochastic processes.The properties of q-deformed Brownian motion, in particular its non-Gaussian nature and cumulant structure,are established.

  16. Vortex and characteristics of prestrained type-II deformable superconductors under magnetic fields

    International Nuclear Information System (INIS)

    Ma, Zeling; Wang, Xingzhe; Zhou, Youhe

    2016-01-01

    Highlights: • A numerical investigation of magnetic vortex dynamics of a deformable superconductor with prestrains is presented. • The prestrain has a remarkable influence on the magnetic vortex distribution and dynamics. • The different prestrains, i.e., pre-given compression and tension strains, result in dissimilar characteristics. • The energy density and spectrum in the deformable superconductor are demonstrated. - Abstract: Based on the time-dependent Ginzburg–Landau (TDGL) theory and the linear deformation theory, we present a numerical investigation of magnetic vortex characteristics of a type-II deformable superconductor with prestrain. The effect of prestrain on the wave function, vortex dynamics and energy density of a superconducting film is analyzed by solving the nonlinear TDGL equations in the presence of magnetic field. The results show that the prestrain has a remarkable influence on the magnetic vortex distribution and the vortex dynamics, as well as value of wave function of the superconductor. The different prestrains, i.e., pre-given compression and tension strains, result in dissimilar characteristics on a half-plane of deformable superconductor in an applied magnetic field, and the vortex distribution and entrance in a two dimensional superconducting film. The studies demonstrated that the compression prestrain may speed up the vortexes entering into the region of the superconducting film and increases the vortex number in comparison with those of free-prestrain case, while the tension prestrain shows the reversal features. The energy density and spectrum in the superconductor are further demonstrated numerically and discussed. The present investigation is an attempt to give insight into the superconductivity and electromagnetic characteristics taking into account the elastic deformation in superconductors.

  17. Disappearance of neutron magic numbers and deformation coexistence

    International Nuclear Information System (INIS)

    Kimura, Masaaki

    2014-01-01

    The disappearance of N=8, 20 and 28 magic numbers in the neutron excess nuclei is a representative example of the special features of the unstable nuclei. In this lecture of summer school, the problems of the magic number disappearance are presented. And the appearance of the deformation coexistence and the anomalous cluster structure come into the problem with them. At the begging the Antisymmetrized Molecular Dynamic (AMD) framework is explained with finite range two body central force and Gorgny DIS force composed of the zero range spin-orbit force and saturability. Island of inversion is explained in the nuclear chart shown in the figure and energy curves of the nuclei near 32 Mg and the excitation level schemes of 32 Mg are shown in the serial figures. As one of the extreme example of the nuclear structure the deformation of 19 F is picked up. The level schemes and structures of 21 F are shown as well. The molecule-like structure in the island of inversion is clear. The rotational band energy of fluorine isotopes are shown up to 29 F. As a new deformation area, disappearance of N=28 magic number is in the spotlight recently. In this case it is characteristic properties that the parities of the orbits to form the gap must be the same but the angular momenta should be different by 2. According to the AMD research, it is shown that deformations of prolate, three-axis asymmetric and oblate characters coexist in the very low excitation energy region accompanying the disappearance of N=28 gap. The concept of magic numbers has been very fundamental in nuclear physics since the success of shell model. At present its disappearance in the unstable nuclei is one of the most challenging problems in the understanding of the nuclear many body problems. (S. Funahashi)

  18. Soliton-like excitations in a deformable spin model

    International Nuclear Information System (INIS)

    Nguenang, Jean-Pierre; Kenfack, Aurelien J; Kofane, Timoleon C

    2004-01-01

    Nonlinear excitations in a one-dimensional deformable, discrete, classical, ferromagnetic chain are numerically investigated. In the continuum limit the equations of motion are reduced to a Klein-Gordon equation, with a Remoissenet-Peyrard substrate potential. From a numerical computation of the discrete system with a suitable choice of the deformability parameters, the soliton solutions are shown to exist and move both with a monotonic oscillating (i.e. nanopteron) and a monotonic nonoscillating tail, and also with a non-oscillating tail but with a splitting propagating shape. The stability of all these various soliton shapes is confirmed numerically in a range of the reduced magnetic fields greater than for a rigid magnetic chain i.e. 0 ≤ b ≤0.33. From a kink-antikink and a kink-kink colliding simulation, we found various effects, including a bound state of a kink and an antikink, as well as a moving kink profile with higher topological charge that appears to be the bound state of two kinks. For some values of the deformability parameter, with a suitable choice of the initial velocity, we observed that the presence of an internal mode leads to the combination of an attractive and a repulsive phenomenon, that arises when the kink-kink collision is engaged. The fact that this collision happens only in the centre of the magnetic chain with the presence of a minimal distance between the two kinks as long as the collision is produced is also a feature of the deformability effect in the dynamics of a magnetic chain. From our results, it appears that the value of the shape parameter of the substrate potential or the modified Zeeman energy is a factor of utmost importance when modelling magnetic chains

  19. Radiological features and biomechanical patterns in Perthes disease

    International Nuclear Information System (INIS)

    Choo, B.S.; Hogg, A.D.C.; Burwell, R.G.; Moulton, A.; Worthington, B.S.

    1990-01-01

    This paper examines the relationship between radiologic features and biomechanical patterns in Perthes disease as shown in finite element models. A two-dimensional finite element model of a child's hip that allowed for movement at the joint line was loaded to simulate normal heel strike. The finite element method is a computer-based technique of mathematical modeling that permits calculation of the magnitude and direction of stresses, deformation, and dynamic behavior of continuous structures. In the normal hip model, maximum compressive stresses occur superolaterally and inferomedially in the femoral head, corresponding to the radiographic features of flattening and increased tear drop distance, attributable to cartilage thickening, seen in Perthes disease

  20. Groundwater-related Land Deformation over the Mega Aquifer System in Saudi Arabia: Inferences from InSAR, GRACE, Earthquake records, Field, and Spatial Data Analysis.

    Science.gov (United States)

    Othman, A.; Sultan, M.; Becker, R.; Sefry, S.; Alharbi, T.; Alharbi, H.; Gebremichael, E.

    2017-12-01

    Land deformational features (subsidence, and earth fissures, etc.) are being reported from many locations over the Lower Mega Aquifer System (LMAS) in the central and northern parts of Saudi Arabia. We applied an integrated approach (remote sensing, geodesy, GIS, geology, hydrogeology, and geotechnical) to identify nature, intensity, spatial distribution, and factors controlling the observed deformation. A three-fold approach was adopted to accomplish the following: (1) investigate, identify, and verify the land deformation through fieldwork; (2) assess the spatial and temporal distribution of land deformation and quantify deformation rates using Interferometric Synthetic Aperture Radar (InSAR) and Persistent Scatterer Interferometry (PSI) methods (period: 2003 to 2012); (3) generate a GIS database to host all relevant data and derived products (remote sensing, geology, geotechnical, GPS, groundwater extraction rates, and water levels, etc.) and to correlate these spatial and temporal datasets in search of causal effects. The following observations are consistent with deformational features being caused by excessive groundwater extraction: (1) distribution of deformational features correlated spatially and temporally with increased agricultural development and groundwater extraction, and with the decline in groundwater levels and storage; (2) earthquake events (1.5 - 5.5 M) increased from one event at the beginning of the agricultural development program in 1980 (average annual extraction [ANE]: 1-2 km³/yr), to 13 events per year between 1995 to 2005, the decade that witnessed the largest expansion in groundwater extraction (ANE: >6.4 km³) and land reclamation using groundwater resources; and (3) earthquake epicenters and the deformation sites are found largely within areas bound by the Kahf fault system suggesting that faults play a key role in the deformation phenomenon. Findings from the PSI investigation revealed high, yet irregularly distributed, subsidence

  1. THE CHANGE IN DEFORMATION CHARACTERISTICS OF CONCRETE MONOLITHIC HIGH-RISE BUILDINGS

    Directory of Open Access Journals (Sweden)

    V. V. Punahin

    2009-03-01

    Full Text Available In the article results of studies of deformation features of concrete on actuate cement for monolithic high-altitude buildings are presented. It is shown that in construction of the high-altitude monolithic buildings in a summer period of a year one should take into account the character of changing the concrete elasticity and plasticity in time, which differs from the same indices for the concrete of normal hardening.

  2. In-situ studies of bulk deformation structures: Static properties under load and dynamics during deformation

    DEFF Research Database (Denmark)

    Jakobsen, Bo

    2006-01-01

    The main goal of the study presented in this thesis was to perform in-situ investigations on deformation structures in plastically deformed polycrystalline copper at low degrees of tensile deformation (model system for cell forming pure fcc metals. Anovel synchrotron...... grains in polycrystalline samples during tensile deformation. We have shown that the resulting 3D reciprocal space maps from tensile deformed copper comprise a pronounced structure, consisting of bright sharp peaks superimposed on a cloud of enhanced intensity. Based on the integrated intensity......, the width of the peaks, and spatial scanning experiments it is concluded that the individual peaks arise from individual dislocation-free regions (the subgrains) in the dislocation structure. The cloud is attributed to the dislocation rich walls. Samples deformed to 2% tensile strain were investigated under...

  3. Mechanisms operating during plastic deformation of metals under concurrent production of cascades and dislocations

    DEFF Research Database (Denmark)

    Trinkaus, H.; Singh, Bachu Narain

    Recent in-reactor tensile tests (IRTs) on pure copper have revealed a deformation behaviour which is significantly different from that observed in post-irradiation tensile tests (PITs). In IRTs, the material deforms uniformly and homogeneously without yield drop and plastic instability as commonly...... observed in PITs. An increase in the pre-yield dose results in an increase in the level of hardening over the whole test periods and a decrease in the uniform elongation suggesting that the materials “remember” the impact of the pre-yield damage level. These features are modelled in terms of the decoration...... and deformation, moving dislocations are decorated by the sweeping of matrix loops. The interaction of dislocations with loops and between loops is discussed as a function of the relevant parameters. On this basis, the kinetics of decoration is treated in terms of fluxes of loops to and reactions with each other...

  4. Glacio-tectonic thrust and deformation structures in the Vejle Fjord, Denmark revealed by high-resolution subbottom-profile data

    DEFF Research Database (Denmark)

    Andresen, Katrine Juul; Boldreel, Lars Ole; Wahlgreen, Katrine Bak

    Surface geomorphological features and partial cliff exposures up till now represent the predominant source of information of glaciation related deformation in Denmark. In this study we apply high-resolution marine reflection seismic data from the Vejle Fjord area, supported by gravity and Rumohr...... coring, to document intense glacio-tectonic deformation in the shallow subsurface of Denmark. The subbottom profiler seismic data have a peak frequency around 13 kHz and a vertical resolution in the order of 10-20 cm. The data reveal several variations of glacio-tectonic deformation structures, primarily...... movements from outcrops and shallow cores. The subbottom profiler data provides larger (longer and deeper) sectional views on for instance deformation and deposition complexes related to ice progressions and retreats and thus represents a very good supplement and valuable input to field mapping and outcrops...

  5. Effect of alloy deformation on the average spacing parameters of non-deforming particles

    International Nuclear Information System (INIS)

    Fisher, J.; Gurland, J.

    1980-02-01

    It is shown on the basis of stereological definitions and a few simple experiments that the commonly used average dispersion parameters, area fraction (A/sub A/)/sub β/, areal particle density N/sub Aβ/ and mean free path lambda/sub α/, remain invariant during plastic deformation in the case of non-deforming equiaxed particles. Directional effects on the spacing parameters N/sub Aβ/ and lambda/sub α/ arise during uniaxial deformation by rotation and preferred orientation of nonequiaxed particles. Particle arrangement in stringered or layered structures and the effect of deformation on nearest neighbor distances of particles and voids are briefly discussed in relation to strength and fracture theories

  6. Plate Like Convection with Viscous Strain Weakening and Corresponding Surface Deformation Pattern

    Science.gov (United States)

    Fuchs, L.; Becker, T. W.

    2017-12-01

    How plate tectonic surface motions are generated by mantle convection on Earth and possibly other terrestrial type planets has recently become more readily accessible with fully dynamic convection computations. However, it remains debated how plate-like the behavior in such models truly is, and in particular how the well plate boundary dynamics are captured in models which typically exclude the effects of deformation history and memory. Here, we analyze some of the effects of viscous strain weakening on plate behavior and the interactions between interior convection dynamics and surface deformation patterns. We use the finite element code CitcomCU to model convection in a 3D Cartesian model setup. The models are internally heated, with an Arrhenius-type temperature dependent viscosity including plastic yielding and viscous strain weakening (VSW) and healing (VSWH). VSW can mimic first order features of more complex damage mechanisms such as grain-size dependent rheology. Besides plate diagnostic parameters (Plateness, Mobility, and Toroidal: Poloidal ratio) to analyze the tectonic behavior our models, we also explore how "plate boundaries" link to convective patterns. In a first model series, we analyze general surface deformation patterns without VSW. In the early stages, deformation patterns are clearly co-located with up- and downwelling limbs of convection. Along downwellings strain-rates are high and localized, whereas upwellings tend to lead to broad zones of high deformation. At a more advanced stage, however, the plates' interior is highly deformed due to continuous strain accumulation and resurfaced inherited strain. Including only VSW leads to more localized deformation along downwellings. However, at a more advanced stage plate-like convection fails due an overall weakening of the material. This is prevented including strain healing. Deformation pattern at the surface more closely coincide with the internal convection patterns. The average surface

  7. Cosmetic and Functional Nasal Deformities

    Science.gov (United States)

    ... nasal complaints. Nasal deformity can be categorized as “cosmetic” or “functional.” Cosmetic deformity of the nose results in a less ... taste , nose bleeds and/or recurrent sinusitis . A cosmetic or functional nasal deformity may occur secondary to ...

  8. Plastic deformation and failure mechanisms in nano-scale notched metallic glass specimens under tensile loading

    Science.gov (United States)

    Dutta, Tanmay; Chauniyal, Ashish; Singh, I.; Narasimhan, R.; Thamburaja, P.; Ramamurty, U.

    2018-02-01

    In this work, numerical simulations using molecular dynamics and non-local plasticity based finite element analysis are carried out on tensile loading of nano-scale double edge notched metallic glass specimens. The effect of acuteness of notches as well as the metallic glass chemical composition or internal material length scale on the plastic deformation response of the specimens are studied. Both MD and FE simulations, in spite of the fundamental differences in their nature, indicate near-identical deformation features. Results show two distinct transitions in the notch tip deformation behavior as the acuity is increased, first from single shear band dominant plastic flow localization to ligament necking, and then to double shear banding in notches that are very sharp. Specimens with moderately blunt notches and composition showing wider shear bands or higher material length scale characterizing the interaction stress associated with flow defects display profuse plastic deformation and failure by ligament necking. These results are rationalized from the role of the interaction stress and development of the notch root plastic zones.

  9. Deformation-induced crystallographic-preferred orientation of hcp-iron: An experimental study using a deformation-DIA apparatus

    Science.gov (United States)

    Nishihara, Yu; Ohuchi, Tomohiro; Kawazoe, Takaaki; Seto, Yusuke; Maruyama, Genta; Higo, Yuji; Funakoshi, Ken-ichi; Tange, Yoshinori; Irifune, Tetsuo

    2018-05-01

    Shear and uniaxial deformation experiments on hexagonal close-packed iron (hcp-Fe) was conducted using a deformation-DIA apparatus at a pressure of 13-17 GPa and a temperature of 723 K to determine its deformation-induced crystallographic-preferred orientation (CPO). Development of the CPO in the deforming sample is determined in-situ based on two-dimensional X-ray diffraction using monochromatic synchrotron X-rays. In the shear deformation geometry, the and axes gradually align to be sub-parallel to the shear plane normal and shear direction, respectively, from the initial random texture. In the uniaxial compression and tensile geometry, the and axes, respectively, gradually align along the direction of the uniaxial deformation axis. These results suggest that basal slip (0001) is the dominant slip system in hcp-Fe under the studied deformation conditions. The P-wave anisotropy for a shear deformed sample was calculated using elastic constants at the inner core condition by recent ab-initio calculations. Strength of the calculated anisotropy was comparable to or higher than axisymmetric anisotropy in Earth's inner core.

  10. Neutron halo in deformed nuclei

    International Nuclear Information System (INIS)

    Zhou Shangui; Meng Jie; Ring, P.; Zhao Enguang

    2010-01-01

    Halo phenomena in deformed nuclei are investigated within a deformed relativistic Hartree Bogoliubov (DRHB) theory. These weakly bound quantum systems present interesting examples for the study of the interdependence between the deformation of the core and the particles in the halo. Contributions of the halo, deformation effects, and large spatial extensions of these systems are described in a fully self-consistent way by the DRHB equations in a spherical Woods-Saxon basis with the proper asymptotic behavior at a large distance from the nuclear center. Magnesium and neon isotopes are studied and detailed results are presented for the deformed neutron-rich and weakly bound nucleus 44 Mg. The core of this nucleus is prolate, but the halo has a slightly oblate shape. This indicates a decoupling of the halo orbitals from the deformation of the core. The generic conditions for the occurrence of this decoupling effects are discussed.

  11. Deformation bands in porous sandstones their microstructure and petrophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Torabi, Anita

    2007-12-15

    deformation bands are characterized by strain hardening, these new bands feature a central slip surface, which indicates late strain softening. They lack the characteristic compaction envelop, and are typified by higher porosity and lower permeability than previously-described cataclastic deformation bands. Intense background fracturing of the host rock and significant initial porosity are considered to be important in creating these newly-discovered deformation bands. In a related study, we investigate, for millimeter- wide deformation bands, the scale limitation inherent in laboratory measurements of porosity and permeability. The scale limitations imposed by the deformation band relative to the physical sample size motivated us to develop a new method for determining porosity and permeability based on image processing. While plug measurements measure the effective permeability across a 25.4 mm (1 inch) long sample, which includes both host rock and deformation band, the method presented here provides a means to estimate porosity and permeability of deformation band on microscale. This method utilizes low-order (one- and two orders) spatial correlation functions to analyze high-resolution, high-magnification backscatter images, to estimate the porosity and specific surface area of the pore-grain interface in the deformed sandstones. Further, this work demonstrates the use of a modified version of the Kozeny-Carmen relation to calculate permeability by using porosity and specific surface area obtained through the image processing. The result shows that permeability difference between the band and the host rock is up to four orders of magnitude. Moreover, the porosities and permeabilities estimated from image processing are lower than those obtained from their plug measurements; hence the traditional laboratory measurements have been overestimating permeability because of the previously-unrecognized scale problem. In addition, the image processing results clearly show that

  12. Early Cretaceous Ductile Deformation of Marbles from the Western Hills of Beijing, North China Craton

    Science.gov (United States)

    Feng, H.; Liu, J.

    2017-12-01

    During the Early Cretaceous tectonic lithosphere extension, the pre-mesozoic rocks from the Western Hills in the central part of the North China Craton suffered from weak metamorphism but intense shear deformation. The prominent features of the deformation structures are the coexisting layer-parallel shear zones and intrafolia folds, and the along-strike thickness variations of the marble layers from the highly sheared Mesoproterozoic Jing'eryu Formation. Platy marbles are well-developed in the thinner layers, while intrafolia folds are often observed in the thicker layers. Most folds are tight recumbent folds and their axial planes are parallel to the foliations and layerings of the marbles. The folds are A-type folds with hinges being always paralleling to the stretching lineations consistently oriented at 130°-310° directions throughout the entire area. SPO and microstructural analyses of the sheared marbles suggest that the thicker layers suffered from deformations homogeneously, while strain localization can be distinguished in the thinner layers. Calcite twin morphology and CPO analysis indicate that the deformation of marbles from both thinner and thicker layers happened at temperatures of 300 to 500°C. The above analysis suggests that marbles in the thicker layers experienced a progressive sequence of thermodynamic events: 1) regional metamorphism, 2) early ductile deformation dominated by relatively higher temperature conditions, during which all the mineral particles elongated and oriented limitedly and the calcite grains are deformed mainly by mechanical twinning, and 3) late superimposition of relatively lower temperature deformation and recrystallization, which superposed the early deformation, and made the calcites finely granulated, elongated and oriented by dynamical recrystallization along with other grains. Marbles from the thinner layers, however, experienced a similar, but different sequence of thermo-dynamic events, i.e. regional

  13. Mechanics of deformable bodies

    CERN Document Server

    Sommerfeld, Arnold Johannes Wilhelm

    1950-01-01

    Mechanics of Deformable Bodies: Lectures on Theoretical Physics, Volume II covers topics on the mechanics of deformable bodies. The book discusses the kinematics, statics, and dynamics of deformable bodies; the vortex theory; as well as the theory of waves. The text also describes the flow with given boundaries. Supplementary notes on selected hydrodynamic problems and supplements to the theory of elasticity are provided. Physicists, mathematicians, and students taking related courses will find the book useful.

  14. Quantum deformed magnon kinematics

    OpenAIRE

    Gómez, César; Hernández Redondo, Rafael

    2007-01-01

    The dispersion relation for planar N=4 supersymmetric Yang-Mills is identified with the Casimir of a quantum deformed two-dimensional kinematical symmetry, E_q(1,1). The quantum deformed symmetry algebra is generated by the momentum, energy and boost, with deformation parameter q=e^{2\\pi i/\\lambda}. Representing the boost as the infinitesimal generator for translations on the rapidity space leads to an elliptic uniformization with crossing transformations implemented through translations by t...

  15. An automated landmark-based elastic registration technique for large deformation recovery from 4-D CT lung images

    Science.gov (United States)

    Negahdar, Mohammadreza; Zacarias, Albert; Milam, Rebecca A.; Dunlap, Neal; Woo, Shiao Y.; Amini, Amir A.

    2012-03-01

    The treatment plan evaluation for lung cancer patients involves pre-treatment and post-treatment volume CT imaging of the lung. However, treatment of the tumor volume lung results in structural changes to the lung during the course of treatment. In order to register the pre-treatment volume to post-treatment volume, there is a need to find robust and homologous features which are not affected by the radiation treatment along with a smooth deformation field. Since airways are well-distributed in the entire lung, in this paper, we propose use of airway tree bifurcations for registration of the pre-treatment volume to the post-treatment volume. A dedicated and automated algorithm has been developed that finds corresponding airway bifurcations in both images. To derive the 3-D deformation field, a B-spline transformation model guided by mutual information similarity metric was used to guarantee the smoothness of the transformation while combining global information from bifurcation points. Therefore, the approach combines both global statistical intensity information with local image feature information. Since during normal breathing, the lung undergoes large nonlinear deformations, it is expected that the proposed method would also be applicable to large deformation registration between maximum inhale and maximum exhale images in the same subject. The method has been evaluated by registering 3-D CT volumes at maximum exhale data to all the other temporal volumes in the POPI-model data.

  16. Thorax deformity, joint hypermobility and anxiety disorder

    International Nuclear Information System (INIS)

    Gulsun, M.; Dumlu, K.; Erbas, M.; Yilmaz, Mehmet B.; Pinar, M.; Tonbul, M.; Celik, C.; Ozdemir, B.

    2007-01-01

    Objective was to evaluate the association between thorax deformities, panic disorder and joint hypermobility. The study includes 52 males diagnosed with thorax deformity, and 40 healthy male controls without thorax deformity, in Tatvan Bitlis and Isparta, Turkey. The study was carried out from 2004 to 2006. The teleradiographic and thoracic lateral images of the subjects were evaluated to obtain the Beighton scores; subjects psychiatric conditions were evaluated using the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-1), and the Hamilton Anxiety Scale (HAM-A) was applied in order to determine the anxiety levels. Both the subjects and controls were compared in sociodemographic, anxiety levels and joint mobility levels. In addition, males with joint hypermobility and thorax deformity were compared to the group with thorax deformity without joint hypermobility. A significant difference in HAM-A scores was found between the groups with thorax deformity and without. In addition, 21 subjects with thorax deformity met the joint hypermobility criteria in the group with thorax deformity and 7 subjects without thorax deformity met the joint hypermobility criteria in the group without thorax deformity, according to Beighton scoring. The Beighton score of subjects with thorax deformity were significantly different from those of the group without deformity. Additionally, anxiety scores of the males with thorax deformity and joint hypermobility were found higher than males with thorax deformity without joint hypermobility. Anxiety disorders, particularly panic disorder, have a significantly higher distribution in males subjects with thorax deformity compared to the healthy control group. In addition, the anxiety level of males with thorax deformity and joint hypermobility is higher than males with thorax deformity without joint hypermobility. (author)

  17. Deformed configurations, band structures and spectroscopic ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... The deformed configurations and rotational band structures in =50 Ge and Se nuclei are studied by deformed Hartree–Fock with quadrupole constraint and angular momentum projection. Apart from the `almost' spherical HF solution, a well-deformed configuration occurs at low excitation. A deformed ...

  18. Competitive adsorption of a two-component gas on a deformable adsorbent

    International Nuclear Information System (INIS)

    Usenko, A S

    2014-01-01

    We investigate the competitive adsorption of a two-component gas on the surface of an adsorbent whose adsorption properties vary due to the adsorbent deformation. The essential difference of adsorption isotherms for a deformable adsorbent both from the classical Langmuir adsorption isotherms of a two-component gas and from the adsorption isotherms of a one-component gas is obtained, taking into account variations in the adsorption properties of the adsorbent in adsorption. We establish bistability and tristability of the system caused by variations in adsorption properties of the adsorbent in competitive adsorption of gas particles on it. We derive conditions under which adsorption isotherms of a binary gas mixture have two stable asymptotes. It is shown that the specific features of the behavior of the system under study can be described in terms of a potential of the known explicit form. (paper)

  19. Diffeomorphic Statistical Deformation Models

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Hansen, Mads/Fogtman; Larsen, Rasmus

    2007-01-01

    In this paper we present a new method for constructing diffeomorphic statistical deformation models in arbitrary dimensional images with a nonlinear generative model and a linear parameter space. Our deformation model is a modified version of the diffeomorphic model introduced by Cootes et al....... The modifications ensure that no boundary restriction has to be enforced on the parameter space to prevent folds or tears in the deformation field. For straightforward statistical analysis, principal component analysis and sparse methods, we assume that the parameters for a class of deformations lie on a linear...... with ground truth in form of manual expert annotations, and compared to Cootes's model. We anticipate applications in unconstrained diffeomorphic synthesis of images, e.g. for tracking, segmentation, registration or classification purposes....

  20. Deformation and Failure Mechanism of Roadway Sensitive to Stress Disturbance and Its Zonal Support Technology

    Directory of Open Access Journals (Sweden)

    Qiangling Yao

    2016-01-01

    Full Text Available The 6163 haulage roadway in the Qidong coal mine passes through a fault zone, which causes severe deformation in the surrounding rock, requiring repeated roadway repairs. Based on geological features in the fault area, we analyze the factors affecting roadway deformation and failure and propose the concept of roadway sensitive to stress disturbance (RSSD. We investigate the deformation and failure mechanism of the surrounding rocks of RSSD using field monitoring, theoretical analysis, and numerical simulation. The deformation of the surrounding rocks involves dilatation of shallow rocks and separation of deep rocks. Horizontal and longitudinal fissures evolve to bed separation and fracture zones; alternatively, fissures can evolve into fracture zones with new fissures extending to deeper rock. The fault affects the stress field of the surrounding rock to ~27 m radius. Its maximum impact is on the vertical stress of the rib rock mass and its minimum impact is on the vertical stress of the floor rock mass. Based on our results, we propose a zonal support system for a roadway passing through a fault. Engineering practice shows that the deformation of the surrounding rocks of the roadway can be effectively controlled to ensure normal and safe production in the mine.

  1. Clinical, radiographic, pathologic, and genetic features of osteochondrodysplasia in Scottish Deerhounds

    International Nuclear Information System (INIS)

    Breur, G.J.; Zerbe, C.A.; Slocombe, R.F.; Padgett, G.A.; Braden, T.D.

    1989-01-01

    Clinical, radiographic, pathologic, and genetic features of a form of osteochondrodysplasia in 5 related Scottish Deerhound pups from 2 litters were evaluated. All pups appeared to be phenotypically normal at birth. At approximately 4 or 5 weeks, exercise intolerance and retarded growth were observed. Kyphosis, limb deformities, and joint laxity gradually developed. Radiography of the affected pups revealed skeletal changes characterized by abnormalities in long bones and vertebrae, with involvement of epiphyses, growth plates, and metaphyses. Short long bones and vertebrae and irregular and delayed epiphyseal ossification were most noticeable in younger pups; in older pups, bony deformities became more prominent. In skeletally mature dogs, osteopenia and severe deformities were seen. The histologic changes of the growth plate were compatible with a diagnosis of chondrodysplasia. Growth plate chondrocytes contained periodic acid Schiff-positive, diastase-resistant cytoplasmic inclusions. A single autosomal recessive mode of inheritance was suspected

  2. Interfacial Bubble Deformations

    Science.gov (United States)

    Seymour, Brian; Shabane, Parvis; Cypull, Olivia; Cheng, Shengfeng; Feitosa, Klebert

    Soap bubbles floating at an air-water experience deformations as a result of surface tension and hydrostatic forces. In this experiment, we investigate the nature of such deformations by taking cross-sectional images of bubbles of different volumes. The results show that as their volume increases, bubbles transition from spherical to hemispherical shape. The deformation of the interface also changes with bubble volume with the capillary rise converging to the capillary length as volume increases. The profile of the top and bottom of the bubble and the capillary rise are completely determined by the volume and pressure differences. James Madison University Department of Physics and Astronomy, 4VA Consortium, Research Corporation for Advancement of Science.

  3. Deformation behaviour of turbine foundations

    International Nuclear Information System (INIS)

    Koch, W.; Klitzing, R.; Pietzonka, R.; Wehr, J.

    1979-01-01

    The effects of foundation deformation on alignment in turbine generator sets have gained significance with the transition to modern units at the limit of design possibilities. It is therefore necessary to obtain clarification about the remaining operational variations of turbine foundations. Static measurement programmes, which cover both deformation processes as well as individual conditions of deformation are described in the paper. In order to explain the deformations measured structural engineering model calculations are being undertaken which indicate the effect of limiting factors. (orig.) [de

  4. Late-Paleozoic-Mesozoic deformational and deformation related metamorphic structures of Kuznetsk-Altai region

    Science.gov (United States)

    Zinoviev, Sergei

    2014-05-01

    Kuznetsk-Altai region is a part of the Central Asian Orogenic Belt. The nature and formation mechanisms of the observed structure of Kuznetsk-Altai region are interpreted by the author as the consequence of convergence of Tuva-Mongolian and Junggar lithospheric block structures and energy of collision interaction between the blocks of crust in Late-Paleozoic-Mesozoic period. Tectonic zoning of Kuznetsk-Altai region is based on the principle of adequate description of geological medium (without methods of 'primary' state recovery). The initial indication of this convergence is the crust thickening in the zone of collision. On the surface the mechanisms of lateral compression form a regional elevation; with this elevation growth the 'mountain roots' start growing. With an approach of blocks an interblock elevation is divided into various fragments, and these fragments interact in the manner of collision. The physical expression of collision mechanisms are periodic pulses of seismic activity. The main tectonic consequence of the block convergence and collision of interblock units is formation of an ensemble of regional structures of the deformation type on the basis of previous 'pre-collision' geological substratum [Chikov et al., 2012]. This ensemble includes: 1) allochthonous and autochthonous blocks of weakly deformed substratum; 2) folded (folded-thrust) systems; 3) dynamic metamorphism zones of regional shears and main faults. Characteristic of the main structures includes: the position of sedimentary, magmatic and PT-metamorphic rocks, the degree of rock dynamometamorphism and variety rock body deformation, as well as the styles and concentrations of mechanic deformations. 1) block terranes have weakly elongated or isometric shape in plane, and they are the systems of block structures of pre-collision substratum separated by the younger zones of interblock deformations. They stand out among the main deformation systems, and the smallest are included into the

  5. Hydrological deformation signals in karst systems: new evidence from the European Alps

    Science.gov (United States)

    Serpelloni, E.; Pintori, F.; Gualandi, A.; Scoccimarro, E.; Cavaliere, A.; Anderlini, L.; Belardinelli, M. E.; Todesco, M.

    2017-12-01

    The influence of rainfall on crustal deformation has been described at local scales, using tilt and strain meters, in several tectonic settings. However, the literature on the spatial extent of rainfall-induced deformation is still scarce. We analyzed 10 years of displacement time-series from 150 continuous GPS stations operating across the broad zone of deformation accommodating the N-S Adria-Eurasia convergence and the E-ward escape of the Eastern Alps toward the Pannonian basin. We applied a blind-source-separation algorithm based on a variational Bayesian Independent Component Analysis method to the de-trended time-series, being able to characterize the temporal and spatial features of several deformation signals. The most important ones are a common mode annual signal, with spatially uniform response in the vertical and horizontal components and a time-variable, non-cyclic, signal characterized by a spatially variable response in the horizontal components, with stations moving (up to 8 mm) in the opposite directions, reversing the sense of movement in time. This implies a succession of extensional/compressional strains, with variable amplitudes through time, oriented normal to rock fractures in karst areas. While seasonal displacements in the vertical component (with an average amplitude of 4 mm over the study area) are satisfactorily reproduced by surface hydrological loading, estimated from global assimilation models, the non seasonal signal is associated with groundwater flow in karst systems, and is mainly influencing the horizontal component. The temporal evolution of this deformation signal is correlated with cumulated precipitation values over periods of 200-300 days. This horizontal deformation can be explained by pressure changes associated with variable water levels within vertical fractures in the vadose zones of karst systems, and the water level changes required to open or close these fractures are consistent with the fluctuations of precipitation

  6. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  7. TU-AB-202-05: GPU-Based 4D Deformable Image Registration Using Adaptive Tetrahedral Mesh Modeling

    International Nuclear Information System (INIS)

    Zhong, Z; Zhuang, L; Gu, X; Wang, J; Chen, H; Zhen, X

    2016-01-01

    Purpose: Deformable image registration (DIR) has been employed today as an automated and effective segmentation method to transfer tumor or organ contours from the planning image to daily images, instead of manual segmentation. However, the computational time and accuracy of current DIR approaches are still insufficient for online adaptive radiation therapy (ART), which requires real-time and high-quality image segmentation, especially in a large datasets of 4D-CT images. The objective of this work is to propose a new DIR algorithm, with fast computational speed and high accuracy, by using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the adaptive tetrahedral mesh based on the image features of a reference phase of 4D-CT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. Subsequently, the deformation vector fields (DVF) and other phases of 4D-CT can be obtained by matching each phase of the target 4D-CT images with the corresponding deformed reference phase. The proposed 4D DIR method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its parallel computing ability. Results: A 4D NCAT digital phantom was used to test the efficiency and accuracy of our method. Both the image and DVF results show that the fine structures and shapes of lung are well preserved, and the tumor position is well captured, i.e., 3D distance error is 1.14 mm. Compared to the previous voxel-based CPU implementation of DIR, such as demons, the proposed method is about 160x faster for registering a 10-phase 4D-CT with a phase dimension of 256×256×150. Conclusion: The proposed 4D DIR method uses feature-based mesh and GPU-based parallelism, which demonstrates the capability to compute both high-quality image and motion results, with significant improvement on the computational speed.

  8. TU-AB-202-05: GPU-Based 4D Deformable Image Registration Using Adaptive Tetrahedral Mesh Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Z; Zhuang, L [Wayne State University, Detroit, MI (United States); Gu, X; Wang, J [UT Southwestern Medical Center, Dallas, TX (United States); Chen, H; Zhen, X [Southern Medical University, Guangzhou, Guangdong (China)

    2016-06-15

    Purpose: Deformable image registration (DIR) has been employed today as an automated and effective segmentation method to transfer tumor or organ contours from the planning image to daily images, instead of manual segmentation. However, the computational time and accuracy of current DIR approaches are still insufficient for online adaptive radiation therapy (ART), which requires real-time and high-quality image segmentation, especially in a large datasets of 4D-CT images. The objective of this work is to propose a new DIR algorithm, with fast computational speed and high accuracy, by using adaptive feature-based tetrahedral meshing and GPU-based parallelization. Methods: The first step is to generate the adaptive tetrahedral mesh based on the image features of a reference phase of 4D-CT, so that the deformation can be well captured and accurately diffused from the mesh vertices to voxels of the image volume. Subsequently, the deformation vector fields (DVF) and other phases of 4D-CT can be obtained by matching each phase of the target 4D-CT images with the corresponding deformed reference phase. The proposed 4D DIR method is implemented on GPU, resulting in significantly increasing the computational efficiency due to its parallel computing ability. Results: A 4D NCAT digital phantom was used to test the efficiency and accuracy of our method. Both the image and DVF results show that the fine structures and shapes of lung are well preserved, and the tumor position is well captured, i.e., 3D distance error is 1.14 mm. Compared to the previous voxel-based CPU implementation of DIR, such as demons, the proposed method is about 160x faster for registering a 10-phase 4D-CT with a phase dimension of 256×256×150. Conclusion: The proposed 4D DIR method uses feature-based mesh and GPU-based parallelism, which demonstrates the capability to compute both high-quality image and motion results, with significant improvement on the computational speed.

  9. q-Deformed nonlinear maps

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 64; Issue 3 ... Keywords. Nonlinear dynamics; logistic map; -deformation; Tsallis statistics. ... As a specific example, a -deformation procedure is applied to the logistic map. Compared ...

  10. FEAST 3.1: finite-element modeling of sheath deformation such as longitudinal ridging and collapse into axial gap

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X.; Xu, Z.; Kim, Y-S.; Lai, L.; Cheng, G.; Xu, S. [Atomic Energy of Canada Limited, Mississauga, Ontario (Canada)

    2010-07-01

    During normal operation, the collapsible CANDU® fuel sheath deforms, especially, it may deform into longitudinal ridges or collapse instantaneously into the axial gaps between the end pellet and endcap or between two neighbouring pellets. These phenomena occur under certain conditions, such as the coolant pressure exceeding critical pressures for longitudinal ridging or axial collapse. Both longitudinal ridging and axial collapse phenomena result from plastic instability in the sheath under coolant pressure. Longitudinal ridging features one or multiple lobes or 'ridges' (outward from the sheath surface) formed along the sheath in the longitudinal direction. Axial collapse features a 'valley' around the sheath circumference. Both phenomena can lead to sheath overstrain, which in turn potentially leads to sheath failure. The LONGER code, which contains empirical correlations, has been used to predict the critical pressures for these two sheath deformation phenomena. To study fuel behaviour outside of the application ranges of the LONGER empirical correlations, a mechanistic model is needed. FEAST (Finite Element Analysis for Stresses) is an AECL computer code used to assess the structural integrity of the CANDU fuel element. The FEAST code has recently been developed (to Version 3.1) to model processes occurring during longitudinal ridge formation and instantaneous collapse into the axial gap. The new models include those for geometric non-linearity (large deformation, large material rotation), non-linear stress-strain curve for plastic deformation, Zr-4 sheath creep law, and variable Young’s Modulus etc. This paper describes the mechanistic model (FEAST 3.1) development for analyses of longitudinal ridging and instantaneous collapse into axial gap, and the comparison with the results from empirical correlations in LONGER. (author)

  11. FEAST 3.1: finite-element modeling of sheath deformation such as longitudinal ridging and collapse into axial gap

    International Nuclear Information System (INIS)

    Wang, X.; Xu, Z.; Kim, Y-S.; Lai, L.; Cheng, G.; Xu, S.

    2010-01-01

    During normal operation, the collapsible CANDU® fuel sheath deforms, especially, it may deform into longitudinal ridges or collapse instantaneously into the axial gaps between the end pellet and endcap or between two neighbouring pellets. These phenomena occur under certain conditions, such as the coolant pressure exceeding critical pressures for longitudinal ridging or axial collapse. Both longitudinal ridging and axial collapse phenomena result from plastic instability in the sheath under coolant pressure. Longitudinal ridging features one or multiple lobes or 'ridges' (outward from the sheath surface) formed along the sheath in the longitudinal direction. Axial collapse features a 'valley' around the sheath circumference. Both phenomena can lead to sheath overstrain, which in turn potentially leads to sheath failure. The LONGER code, which contains empirical correlations, has been used to predict the critical pressures for these two sheath deformation phenomena. To study fuel behaviour outside of the application ranges of the LONGER empirical correlations, a mechanistic model is needed. FEAST (Finite Element Analysis for Stresses) is an AECL computer code used to assess the structural integrity of the CANDU fuel element. The FEAST code has recently been developed (to Version 3.1) to model processes occurring during longitudinal ridge formation and instantaneous collapse into the axial gap. The new models include those for geometric non-linearity (large deformation, large material rotation), non-linear stress-strain curve for plastic deformation, Zr-4 sheath creep law, and variable Young’s Modulus etc. This paper describes the mechanistic model (FEAST 3.1) development for analyses of longitudinal ridging and instantaneous collapse into axial gap, and the comparison with the results from empirical correlations in LONGER. (author)

  12. Recent improvements in modelling fission gas release and rod deformation on metallic fuel in LMR

    International Nuclear Information System (INIS)

    Hwang, Woan; Lee, Byoung-Oon; Kim, Young Jin

    2000-01-01

    Metallic fuel design is a key feature to assure LMR core safety goals. To date, a large effort has been devoted to the development of the MACSIS code for metallic fuel rod design and the evaluation of operational limits under irradiation conditions. The updated models of fission gas release, fuel core swelling, and rod deformation are incorporated into the correspondence routines in MACSIS MOD1. The MACSIS MOD1 which is a new version of MACSIS, has been partly benchmarked on FGR, fuel swelling and rod deformation comparing with the results of U-Zr and U-Pu-Zr metal fuels irradiated in LMRs. The MACSIS MOD1 predicts, relatively well, the absolute magnitudes and trends of the gas release and rod deformations depending on burn-up, and it gives better agreement with the experimental data than the previous predictions of MACSIS and the results of the empirical model

  13. Deformation twinning: Influence of strain rate

    Energy Technology Data Exchange (ETDEWEB)

    Gray, G.T. III

    1993-11-01

    Twins in most crystal structures, including advanced materials such as intermetallics, form more readily as the temperature of deformation is decreased or the rate of deformation is increased. Both parameters lead to the suppression of thermally-activated dislocation processes which can result in stresses high enough to nucleate and grow deformation twins. Under high-strain rate or shock-loading/impact conditions deformation twinning is observed to be promoted even in high stacking fault energy FCC metals and alloys, composites, and ordered intermetallics which normally do not readily deform via twinning. Under such conditions and in particular under the extreme loading rates typical of shock wave deformation the competition between slip and deformation twinning can be examined in detail. In this paper, examples of deformation twinning in the intermetallics TiAl, Ti-48Al-lV and Ni{sub 3}A as well in the cermet Al-B{sub 4}C as a function of strain rate will be presented. Discussion includes: (1) the microstructural and experimental variables influencing twin formation in these systems and twinning topics related to high-strain-rate loading, (2) the high velocity of twin formation, and (3) the influence of deformation twinning on the constitutive response of advanced materials.

  14. q-deformations of noncompact Lie (super-) algebras: The examples of q-deformed Lorentz, Weyl, Poincare' and (super-) conformal algebras

    International Nuclear Information System (INIS)

    Dobrev, V.K.

    1992-01-01

    We review and explain a canonical procedure for the q-deformation of the real forms G of complex Lie (super-) algebras associated with (generalized) Cartan matrices. Our procedure gives different q-deformations for the non-conjugate Cartan subalgebras of G. We give several in detail the q-deformed Lorentz and conformal (super-) algebras. The q-deformed conformal algebra contains as a subalgebra a q-deformed Poincare algebra and as Hopf subalgebras two conjugate 11-generator q-deformed Weyl algebras. The q-deformed Lorentz algebra in Hopf subalgebra of both Weyl algebras. (author). 24 refs

  15. Modelling ground deformation patterns associated with volcanic processes at the Okataina Volcanic Centre

    Science.gov (United States)

    Holden, L.; Cas, R.; Fournier, N.; Ailleres, L.

    2017-09-01

    The Okataina Volcanic Centre (OVC) is one of two large active rhyolite centres in the modern Taupo Volcanic Zone (TVZ) in the North Island of New Zealand. It is located in a complex section of the Taupo rift, a tectonically active section of the TVZ. The most recent volcanic unrest at the OVC includes the 1315 CE Kaharoa and 1886 Tarawera eruptions. Current monitoring activity at the OVC includes the use of continuous GPS receivers (cGPS), lake levelling and seismographs. The ground deformation patterns preceding volcanic activity the OVC are poorly constrained and restricted to predictions from basic modelling and comparison to other volcanoes worldwide. A better understanding of the deformation patterns preceding renewed volcanic activity is essential to determine if observed deformation is related to volcanic, tectonic or hydrothermal processes. Such an understanding also means that the ability of the present day cGPS network to detect these deformation patterns can also be assessed. The research presented here uses the finite element (FE) modelling technique to investigate ground deformation patterns associated with magma accumulation and diking processes at the OVC in greater detail. A number of FE models are produced and tested using Pylith software and incorporate characteristics of the 1315 CE Kaharoa and 1886 Tarawera eruptions, summarised from the existing body of research literature. The influence of a simple ring fault structure at the OVC on the modelled deformation is evaluated. The ability of the present-day continuous GPS (cGPS) GeoNet monitoring network to detect or observe the modelled deformation is also considered. The results show the modelled horizontal and vertical displacement fields have a number of key features, which include prominent lobe based regions extending northwest and southeast of the OVC. The results also show that the ring fault structure increases the magnitude of the displacements inside the caldera, in particular in the

  16. Feature Size Effect on Formability of Multilayer Metal Composite Sheets under Microscale Laser Flexible Forming

    Directory of Open Access Journals (Sweden)

    Huixia Liu

    2017-07-01

    Full Text Available Multilayer metal composite sheets possess superior properties to monolithic metal sheets, and formability is different from monolithic metal sheets. In this research, the feature size effect on formability of multilayer metal composite sheets under microscale laser flexible forming was studied by experiment. Two-layer copper/nickel composite sheets were selected as experimental materials. Five types of micro molds with different diameters were utilized. The formability of materials was evaluated by forming depth, thickness thinning, surface quality, and micro-hardness distribution. The research results showed that the formability of two-layer copper/nickel composite sheets was strongly influenced by feature size. With feature size increasing, the effect of layer stacking sequence on forming depth, thickness thinning ratio, and surface roughness became increasingly larger. However, the normalized forming depth, thickness thinning ratio, surface roughness, and micro-hardness of the formed components under the same layer stacking sequence first increased and then decreased with increasing feature size. The deformation behavior of copper/nickel composite sheets was determined by the external layer. The deformation extent was larger when the copper layer was set as the external layer.

  17. Sparse Representation of Deformable 3D Organs with Spherical Harmonics and Structured Dictionary

    Directory of Open Access Journals (Sweden)

    Dan Wang

    2011-01-01

    Full Text Available This paper proposed a novel algorithm to sparsely represent a deformable surface (SRDS with low dimensionality based on spherical harmonic decomposition (SHD and orthogonal subspace pursuit (OSP. The key idea in SRDS method is to identify the subspaces from a training data set in the transformed spherical harmonic domain and then cluster each deformation into the best-fit subspace for fast and accurate representation. This algorithm is also generalized into applications of organs with both interior and exterior surfaces. To test the feasibility, we first use the computer models to demonstrate that the proposed approach matches the accuracy of complex mathematical modeling techniques and then both ex vivo and in vivo experiments are conducted using 3D magnetic resonance imaging (MRI scans for verification in practical settings. All results demonstrated that the proposed algorithm features sparse representation of deformable surfaces with low dimensionality and high accuracy. Specifically, the precision evaluated as maximum error distance between the reconstructed surface and the MRI ground truth is better than 3 mm in real MRI experiments.

  18. Composite microstructural anisotropies in reservoir rocks: consequences on elastic properties and relation with deformation; Anisotropies microstructurales composites dans les roches reservoir: consequences sur les proprietes elastiques et relation a la deformation

    Energy Technology Data Exchange (ETDEWEB)

    Louis, L.

    2003-10-15

    From diagenesis to tectonic stress induced deformation, rock microstructures always present some anisotropy associated with a preferential orientation, shape or spatial arrangement of its constituents. Considering the consequences anisotropy has on directional transport properties and compliance, as the geological history it carries, this approach has received a particular attention in numerous works. In this work, the microstructural features of various sedimentary rocks were investigated through direct observations and laboratory measurements in naturally deformed and undeformed blocks, samples being considered as effective media. All investigated samples were found to be anisotropic with respect to the physical properties we measured (i.e. ultrasonic P-wave velocity, magnetic susceptibility, electrical conductivity). Considering that P-wave velocities can be described by a second order tensor, we applied to the velocity data the same inversion procedure as the one routinely used in magnetic studies, which provided an efficient tool to estimate and compare these 3D anisotropies with respect to the original sample geographical position. In each case, we tried to identify as thoroughly as possible the microstructural source of the observed anisotropies, first by the mean of existing models, then through direct observations (optic and electronic microscopy). Depending on the rock investigated, anisotropy was found to be controlled by pore shape, intergranular contact distribution, preferentially oriented microcracks interacting with compaction pattern or pressure solution cleavages interacting with each other. The net result of this work is that P-wave velocity anisotropy can express the interaction between different microstructural features as well as their evolution during deformation. (author)

  19. Identifying deformation mechanisms in the NEEM ice core using EBSD measurements

    Science.gov (United States)

    Kuiper, Ernst-Jan; Weikusat, Ilka; Drury, Martyn R.; Pennock, Gill M.; de Winter, Matthijs D. A.

    2015-04-01

    Deformation of ice in continental sized ice sheets determines the flow behavior of ice towards the sea. Basal dislocation glide is assumed to be the dominant deformation mechanism in the creep deformation of natural ice, but non-basal glide is active as well. Knowledge of what types of deformation mechanisms are active in polar ice is critical in predicting the response of ice sheets in future warmer climates and its contribution to sea level rise, because the activity of deformation mechanisms depends critically on deformation conditions (such as temperature) as well as on the material properties (such as grain size). One of the methods to study the deformation mechanisms in natural materials is Electron Backscattered Diffraction (EBSD). We obtained ca. 50 EBSD maps of five different depths from a Greenlandic ice core (NEEM). The step size varied between 8 and 25 micron depending on the size of the deformation features. The size of the maps varied from 2000 to 10000 grid point. Indexing rates were up to 95%, partially by saving and reanalyzing the EBSP patterns. With this method we can characterize subgrain boundaries and determine the lattice rotation configurations of each individual subgrain. Combining these observations with arrangement/geometry of subgrain boundaries the dislocation types can be determined, which form these boundaries. Three main types of subgrain boundaries have been recognized in Antarctic (EDML) ice core¹². Here, we present the first results obtained from EBSD measurements performed on the NEEM ice core samples from the last glacial period, focusing on the relevance of dislocation activity of the possible slip systems. Preliminary results show that all three subgrain types, recognized in the EDML core, occur in the NEEM samples. In addition to the classical boundaries made up of basal dislocations, subgrain boundaries made of non-basal dislocations are also common. ¹Weikusat, I.; de Winter, D. A. M.; Pennock, G. M.; Hayles, M

  20. Bioidentical Hormones and Menopause

    Science.gov (United States)

    ... Endocrinologist Search Featured Resource Menopause Map™ View Bioidentical Hormones January 2012 Download PDFs English Espanol Editors Howard ... take HT for symptom relief. What are bioidentical hormones? Bioidentical hormones are identical to the hormones that ...

  1. Vitamin D, Calcium, and Bone Health

    Science.gov (United States)

    ... Bone Health Featured Resource Find an Endocrinologist Search Vitamin D, Calcium, and Bone Health Download PDFs English ... also helps keep your bones strong. Why are vitamin D and calcium important to bone health? Vitamin ...

  2. Vaginal Atrophy

    Science.gov (United States)

    ... an Endocrinologist Search Featured Resource Menopause Map™ View Vaginal Atrophy October 2017 Download PDFs English Editors Christine ... during this time, including vaginal dryness. What is vaginal atrophy? Vaginal atrophy (also referred to as vulvovaginal ...

  3. PCOS: What Teens Need to Know

    Science.gov (United States)

    ... Turner Syndrome Featured Resource Find an Endocrinologist Search PCOS for Teens September 2013 Download PDFs English Espanol ... PCOS Challenge womenshealth.gov Teens Health What is PCOS? PCOS, which stands for polycystic ovary syndrome, is ...

  4. Stress dependence of microstructures in experimentally deformed calcite

    Science.gov (United States)

    Platt, John P.; De Bresser, J. H. P.

    2017-12-01

    Optical measurements of microstructural features in experimentally deformed Carrara marble help define their dependence on stress. These features include dynamically recrystallized grain size (Dr), subgrain size (Sg), minimum bulge size (Lρ), and the maximum scale length for surface-energy driven grain-boundary migration (Lγ). Taken together with previously published data Dr defines a paleopiezometer over the range 15-291 MPa and temperature over the range 500-1000 °C, with a stress exponent of -1.09 (CI -1.27 to -0.95), showing no detectable dependence on temperature. Sg and Dr measured in the same samples are closely similar in size, suggesting that the new grains did not grow significantly after nucleation. Lρ and Lγ measured on each sample define a relationship to stress with an exponent of approximately -1.6, which helps define the boundary between a region of dominant strain-energy-driven grain-boundary migration at high stress, from a region of dominant surface-energy-driven grain-boundary migration at low stress.

  5. High Strain Rate and Shock-Induced Deformation in Metals

    Science.gov (United States)

    Ravelo, Ramon

    2012-02-01

    Large-scale non-equilibrium molecular Dynamics (MD) simulations are now commonly used to study material deformation at high strain rates (10^9-10^12 s-1). They can provide detailed information-- such as defect morphology, dislocation densities, and temperature and stress profiles, unavailable or hard to measure experimentally. Computational studies of shock-induced plasticity and melting in fcc and bcc single, mono-crystal metals, exhibit generic characteristics: high elastic limits, large directional anisotropies in the yield stress and pre-melting much below the equilibrium melt temperature for shock wave propagation along specific crystallographic directions. These generic features in the response of single crystals subjected to high strain rates of deformation can be explained from the changes in the energy landscape of the uniaxially compressed crystal lattice. For time scales relevant to dynamic shock loading, the directional-dependence of the yield strength in single crystals is shown to be due to the onset of instabilities in elastic-wave propagation velocities. The elastic-plastic transition threshold can accurately be predicted by a wave-propagation stability analysis. These strain-induced instabilities create incipient defect structures, which can be quite different from the ones, which characterize the long-time, asymptotic state of the compressed solid. With increase compression and strain rate, plastic deformation via extended defects gives way to amorphization associated with the loss in shear rigidity along specific deformation paths. The hot amorphous or (super-cooled liquid) metal re-crystallizes at rates, which depend on the temperature difference between the amorphous solid and the equilibrium melt line. This plastic-amorphous transition threshold can be computed from shear-waves stability analyses. Examples from selected fcc and bcc metals will be presented employing semi-empirical potentials of the embedded atom method (EAM) type as well as

  6. Features of structure formation in the low modulus quasi-single crystal from Zr-25%Nb alloy at cold rolling

    Science.gov (United States)

    Isaenkova, M.; Perlovich, Yu.; Fesenko, V.; Babich, Y.; Zaripova, M.; Krapivka, N.

    2018-05-01

    The paper presents the results of investigation of the regularities of the structure and texture formation during rolling of single crystals of Zr-25%Nb alloy differing in their initial orientations relative to the external principal directions in the rolled plate: normal (ND) and rolling directions (RD). The features of rolled single crystals with initial orientations of planes {001}, {011} or {111} parallel to the rolling plane and different crystallographic directions along RD are considered. A comparison of the peculiarities of plastic deformation in a polycrystalline alloy of the same composition is made. For the samples studied, a decrease in the lattice parameter of the β-phase has been recorded, the minimum of the parameter being observed for different degrees of deformation, varying from 20 to 50%. Observed decrease in the unit cell parameter can be connected with the precipitation of the α(α')-Zr phase from the deformed nonequilibrium β-phase of the Zr-25%Nb alloy, i.e. change in the composition of the solid solution. Distributions of the increase in the dimensions of the deformed single crystal along RD and the transverse direction (TD) with its deformation up to 30% in thickness, which indicate the anisotropy of the plasticity of single crystals during their rolling, are constructed on stereographic projection. It is shown, that the deformation of single crystals occurs practically without increasing of their dimensions in the direction with a total thickness deformation of up to 30%. Direction is characterized by maximum hardening (microhardness) with indentation along it, which causes low plasticity of deformed and annealed foils from Zr-25%Nb alloy at the stretching along and across RD, that is connected with the features of their crystallographic texture.

  7. On infinitesimal conformai deformations of surfaces

    Directory of Open Access Journals (Sweden)

    Юлия Степановна Федченко

    2014-11-01

    Full Text Available A new form of basic equations for conformai deformations is found. The equations involve tensor fields of displacement vector only. Conditions for trivial deformations as well as infinitesimal conformai deformations are studied.

  8. Estimation methods of deformational behaviours of RC beams under the unrestrained condition at elevated temperatures

    International Nuclear Information System (INIS)

    Kanezu, Tsutomu; Nakano, Takehiro; Endo, Tatsumi

    1986-01-01

    The estimation methods of free deformations of reinforced concrete (RC) beams at elevated temperatures are investigated based on the concepts of ACI's and CEB/FIP's formulas, which are well used to estimate the flexural deformations of RC beams at normal temperature. Conclusions derived from the study are as follows. 1. Features of free deformations of RC beams. (i) The ratios of the average compressive strains on the top fiber of RC beams to the calculated ones at the cracked section show the inclinations that the ratios once drop after cracking and then remain constant according to temperature rises. (ii) Average compressive strains might be estimated by the average of the calculated strains at the perfect bond section and the cracked section of RC beam. (iii) The ratios of the average tensile strains on the level of reinforcements to the calculated ones at the cracked section are inclined to approach the value of 1.0 monotonically according to temperature rises. The changes of the average tensile strains are caused by the deterioration of bond strength and cracking due to the increase of the differences of expansive strains between reinforcement and concrete. 2. Estimation methods of free deformations of RC beams. (i) In order to estimate the free deformations of RC beams at elevated temperatures, the basic concepts of ACI's and CEB/FIP's formulas are adopted, which are well used to estimate the M-φ relations of RC beams at normal temperature. (ii) It was confirmed that the suggested formulas are able to estimate the free deformations of RC beams, that is, the longitudinal deformation and the curvature, at elevated temperatures. (author)

  9. Intracrystalline deformation of calcite

    NARCIS (Netherlands)

    Bresser, J.H.P. de

    1991-01-01

    It is well established from observations on natural calcite tectonites that intracrystalline plastic mechanisms are important during the deformation of calcite rocks in nature. In this thesis, new data are presented on fundamental aspects of deformation behaviour of calcite under conditions where

  10. A large deformation viscoelastic model for double-network hydrogels

    Science.gov (United States)

    Mao, Yunwei; Lin, Shaoting; Zhao, Xuanhe; Anand, Lallit

    2017-03-01

    We present a large deformation viscoelasticity model for recently synthesized double network hydrogels which consist of a covalently-crosslinked polyacrylamide network with long chains, and an ionically-crosslinked alginate network with short chains. Such double-network gels are highly stretchable and at the same time tough, because when stretched the crosslinks in the ionically-crosslinked alginate network rupture which results in distributed internal microdamage which dissipates a substantial amount of energy, while the configurational entropy of the covalently-crosslinked polyacrylamide network allows the gel to return to its original configuration after deformation. In addition to the large hysteresis during loading and unloading, these double network hydrogels also exhibit a substantial rate-sensitive response during loading, but exhibit almost no rate-sensitivity during unloading. These features of large hysteresis and asymmetric rate-sensitivity are quite different from the response of conventional hydrogels. We limit our attention to modeling the complex viscoelastic response of such hydrogels under isothermal conditions. Our model is restricted in the sense that we have limited our attention to conditions under which one might neglect any diffusion of the water in the hydrogel - as might occur when the gel has a uniform initial value of the concentration of water, and the mobility of the water molecules in the gel is low relative to the time scale of the mechanical deformation. We also do not attempt to model the final fracture of such double-network hydrogels.

  11. Complex deformation in western Tibet revealed by anisotropic tomography

    Science.gov (United States)

    Zhang, Heng; Zhao, Junmeng; Zhao, Dapeng; Yu, Chunquan; Liu, Hongbing; Hu, Zhaoguo

    2016-10-01

    The mechanism and pattern of deformation beneath western Tibet are still an issue of debate. In this work we present 3-D P- and S-wave velocity tomography as well as P-wave radial and azimuthal anisotropy along the ANTILOPE-I profile and surrounding areas in western Tibet, which are determined by using a large number of P and S arrival-time data of local earthquakes and teleseismic events. Our results show that low-velocity (low-V) zones exist widely in the middle crust, whereas low-V zones are only visible in the lower crust beneath northwestern Tibet, indicating the existence of significant heterogeneities and complex flow there. In the upper mantle, a distinct low-V gap exists between the Indian and Asian plates. Considering the P- and S-wave tomography and P-wave azimuthal and radial anisotropy results, we interpret the gap to be caused mainly by shear heating. Depth-independent azimuthal anisotropy and high-velocity zones exist beneath the northern part of the study region, suggesting a vertically coherent deformation beneath the Tarim Basin. In contrast, tomographic and anisotropic features change with depth beneath the central and southern parts of the study region, which reflects depth-dependent (or decoupled) deformations there. At the northern edge of the Indian lithospheric mantle (ILM), P-wave azimuthal anisotropy shows a nearly east-west fast-velocity direction, suggesting that the ILM was re-built by mantle materials flowing to the north.

  12. Adrenal Fatigue

    Science.gov (United States)

    ... Search Featured Resource New Mobile App DOWNLOAD Adrenal Fatigue October 2017 Download PDFs English Editors Irina Bancos, MD Additional Resources Mayo Clinic What is adrenal fatigue? The term “adrenal fatigue” has been used to ...

  13. Simple metric for a magnetized, spinning, deformed mass

    Science.gov (United States)

    Manko, V. S.; Ruiz, E.

    2018-05-01

    We present and discuss a 4-parameter stationary axisymmetric solution of the Einstein-Maxwell equations, which is able to describe the exterior field of a rotating magnetized deformed mass. The solution arises as a system of two overlapping corotating magnetized nonequal black holes or hyperextreme disks, and we write it in a concise explicit form that is very suitable for concrete applications. An interesting peculiar feature of this electrovac solution is that it does not develop massless ring singularities outside the stationary limit surface, its first four electric multipole moments being equal to zero; it also has a nontrivial extreme limit, which we elaborate completely in terms of four polynomial factors.

  14. Deformable paper origami optoelectronic devices

    KAUST Repository

    He, Jr-Hau

    2017-01-19

    Deformable optoelectronic devices are provided, including photodetectors, photodiodes, and photovoltaic cells. The devices can be made on a variety of paper substrates, and can include a plurality of fold segments in the paper substrate creating a deformable pattern. Thin electrode layers and semiconductor nanowire layers can be attached to the substrate, creating the optoelectronic device. The devices can be highly deformable, e.g. capable of undergoing strains of 500% or more, bending angles of 25° or more, and/or twist angles of 270° or more. Methods of making the deformable optoelectronic devices and methods of using, e.g. as a photodetector, are also provided.

  15. Stochastic deformation of a thermodynamic symplectic structure

    OpenAIRE

    Kazinski, P. O.

    2008-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transform...

  16. Integrable deformations of the Gk1 ×Gk2 /Gk1+k2 coset CFTs

    Science.gov (United States)

    Sfetsos, Konstantinos; Siampos, Konstantinos

    2018-02-01

    We study the effective action for the integrable λ-deformation of the Gk1 ×Gk2 /Gk1+k2 coset CFTs. For unequal levels theses models do not fall into the general discussion of λ-deformations of CFTs corresponding to symmetric spaces and have many attractive features. We show that the perturbation is driven by parafermion bilinears and we revisit the derivation of their algebra. We uncover a non-trivial symmetry of these models parametric space, which has not encountered before in the literature. Using field theoretical methods and the effective action we compute the exact in the deformation parameter β-function and explicitly demonstrate the existence of a fixed point in the IR corresponding to the Gk1-k2 ×Gk2 /Gk1 coset CFTs. The same result is verified using gravitational methods for G = SU (2). We examine various limiting cases previously considered in the literature and found agreement.

  17. Integrable deformations of the Gk1×Gk2/Gk1+k2 coset CFTs

    Directory of Open Access Journals (Sweden)

    Konstantinos Sfetsos

    2018-02-01

    Full Text Available We study the effective action for the integrable λ-deformation of the Gk1×Gk2/Gk1+k2 coset CFTs. For unequal levels theses models do not fall into the general discussion of λ-deformations of CFTs corresponding to symmetric spaces and have many attractive features. We show that the perturbation is driven by parafermion bilinears and we revisit the derivation of their algebra. We uncover a non-trivial symmetry of these models parametric space, which has not encountered before in the literature. Using field theoretical methods and the effective action we compute the exact in the deformation parameter β-function and explicitly demonstrate the existence of a fixed point in the IR corresponding to the Gk1−k2×Gk2/Gk1 coset CFTs. The same result is verified using gravitational methods for G=SU(2. We examine various limiting cases previously considered in the literature and found agreement.

  18. Deformation aspects of time dependent fracture

    International Nuclear Information System (INIS)

    Li, C.Y.; Turner, A.P.L.; Diercks, D.R.; Laird, C.; Langdon, T.G.; Nix, W.D.; Swindeman, R.; Wolfer, W.G.; Woodford, D.A.

    1979-01-01

    For all metallic materials, particularly at elevated temperatures, deformation plays an important role in fracture. On the macro-continuum level, the inelastic deformation behavior of the material determines how stress is distributed in the body and thus determines the driving force for fracture. At the micro-continuum level, inelastic deformation alters the elastic stress singularity at the crack tip and so determines the local environment in which crack advance takes place. At the microscopic and mechanistic level, there are many possibilities for the mechanisms of deformation to be related to those for crack initiation and growth. At elevated temperatures, inelastic deformation in metallic systems is time dependent so that the distribution of stress in a body will vary with time, affecting conditions for crack initiation and propagation. Creep deformation can reduce the tendency for fracture by relaxing the stresses at geometric stress concentrations. It can also, under suitable constraints, cause a concentration of stresses at specific loading points as a result of relaxation elsewhere in the body. A combination of deformation and unequal heating, as in welding, can generate large residual stress which cannot be predicted from the external loads on the body. Acceleration of deformation by raising the temperature can be an effective way to relieve such residual stresses

  19. 3D Face modeling using the multi-deformable method.

    Science.gov (United States)

    Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun

    2012-09-25

    In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper.

  20. Quantifying the Erlenmeyer flask deformity

    Science.gov (United States)

    Carter, A; Rajan, P S; Deegan, P; Cox, T M; Bearcroft, P

    2012-01-01

    Objective Erlenmeyer flask deformity is a common radiological finding in patients with Gaucher′s disease; however, no definition of this deformity exists and the reported prevalence of the deformity varies widely. To devise an easily applied definition of this deformity, we investigated a cohort of knee radiographs in which there was consensus between three experienced radiologists as to the presence or absence of Erlenmeyer flask morphology. Methods Using the presence or absence of Erlenmeyer flask morphology as a benchmark, we measured the diameter of the femur at the level of the physeal scar and serially at defined intervals along the metadiaphysis. Results A measured ratio in excess of 0.57 between the diameter of the femoral shaft 4 cm from the physis to the diameter of the physeal baseline itself on a frontal radiograph of the knee predicted the Erlenmeyer flask deformity with 95.6% sensitivity and 100% specificity in our series of 43 independently diagnosed adults with Gaucher′s disease. Application of this method to the distal femur detected the Erlenmeyer flask deformity reproducibly and was simple to carry out. Conclusion Unlike diagnostic assignments based on subjective review, our simple procedure for identifying the modelling deformity is based on robust quantitative measurement: it should facilitate comparative studies between different groups of patients, and may allow more rigorous exploration of the pathogenesis of the complex osseous manifestations of Gaucher′s disease to be undertaken. PMID:22010032

  1. Microstructure evolution and deformation mechanism change in 0.98C-8.3Mn-0.04N steel during compressive deformation

    International Nuclear Information System (INIS)

    Wang, T.S.; Hou, R.J.; Lv, B.; Zhang, M.; Zhang, F.C.

    2007-01-01

    The microstructure evolution and the deformation mechanism change in 0.98C-8.3Mn-0.04N steel during compressive deformation at room temperature have been studied as a function of the reduction in the range of 20-60%. Experimental results show that with the reduction increasing the microstructure of the deformed sample changes from dislocation substructures into the dominant twins plus dislocations. This suggests that the plastic deformation mechanism changes from the dislocation slip to the dominant deformation twinning. The minimum reduction for deformation twins starting is estimated to be at between 30 and 40%. With the reduction further increases to more than 40%, the deformation twinning is operative and the thickness of deformation twins gradually decreases to nanoscale and shear bands occur. These high-density twins can be curved by the formation of shear bands. In addition, both transmission electron microscopy and X-ray diffraction examinations confirm the inexistence of deformation-induced martensites in these deformed samples

  2. Multiscale modeling of high contrast brinkman equations with applications to deformable porous media

    KAUST Repository

    Brown, Donald

    2013-06-18

    Simulating porous media flows has a wide range of applications. Often, these applications involve many scales and multi-physical processes. A useful tool in the analysis of such problems in that of homogenization as an averaged description is derived circumventing the need for complicated simulation of the fine scale features. In this work, we recall recent developments of homogenization techniques in the application of flows in deformable porous media. In addition, homogenization of media with high-contrast. In particular, we recall the main ideas of the homogenization of slowly varying Stokes flow and summarize the results of [4]. We also present the ideas for extending these techniques to high-contrast deformable media [3]. These ideas are connected by the modeling of multiscale fluid-structure interaction problems. © 2013 American Society of Civil Engineers.

  3. Nonlinear microrheology and molecular imaging to map microscale deformations of entangled DNA networks

    Science.gov (United States)

    Wu, Tsai-Chin; Anderson, Rae

    We use active microrheology coupled to single-molecule fluorescence imaging to elucidate the microscale dynamics of entangled DNA. DNA naturally exists in a wide range of lengths and topologies, and is often confined in cell nucleui, forming highly concentrated and entangled biopolymer networks. Thus, DNA is the model polymer for understanding entangled polymer dynamics as well as the crowded environment of cells. These networks display complex viscoelastic properties that are not well understood, especially at the molecular-level and in response to nonlinear perturbations. Specifically, how microscopic stresses and strains propagate through entangled networks, and what molecular deformations lead to the network stress responses are unknown. To answer these important questions, we optically drive a microsphere through entangled DNA, perturbing the system far from equilibrium, while measuring the resistive force the DNA exerts on the bead during and after bead motion. We simultaneously image single fluorescent-labeled DNA molecules throughout the network to directly link the microscale stress response to molecular deformations. We characterize the deformation of the network from the molecular-level to the mesoscale, and map the stress propagation throughout the network. We further study the impact of DNA length (11 - 115 kbp) and topology (linear vs ring DNA) on deformation and propagation dynamics, exploring key nonlinear features such as tube dilation and power-law relaxation.

  4. Plastic deformation of indium nanostructures

    International Nuclear Information System (INIS)

    Lee, Gyuhyon; Kim, Ju-Young; Burek, Michael J.; Greer, Julia R.; Tsui, Ting Y.

    2011-01-01

    Highlights: → Indium nanopillars display two different deformation mechanisms. → ∼80% exhibited low flow stresses near that of bulk indium. → Low strength nanopillars have strain rate sensitivity similar to bulk indium. → ∼20% of compressed indium nanopillars deformed at nearly theoretical strengths. → Low-strength samples do not exhibit strength size effects. - Abstract: Mechanical properties and morphology of cylindrical indium nanopillars, fabricated by electron beam lithography and electroplating, are characterized in uniaxial compression. Time-dependent deformation and influence of size on nanoscale indium mechanical properties were investigated. The results show two fundamentally different deformation mechanisms which govern plasticity in these indium nanostructures. We observed that the majority of indium nanopillars deform at engineering stresses near the bulk values (Type I), with a small fraction sustaining flow stresses approaching the theoretical limit for indium (Type II). The results also show the strain rate sensitivity and flow stresses in Type I indium nanopillars are similar to bulk indium with no apparent size effects.

  5. Congenital Hypothyroidism

    Science.gov (United States)

    ... Disease Featured Resource Find an Endocrinologist Search Congenital Hypothyroidism March 2012 Download PDFs English Espanol Editors Rosalind S. ... Resources MedlinePlus (NIH) Mayo Clinic What is congenital hypothyroidism? Newborn babies who are unable to make enough ...

  6. Breast Cancer and Bone Loss

    Science.gov (United States)

    ... Menopause Map Featured Resource Find an Endocrinologist Search Breast Cancer and Bone Loss July 2010 Download PDFs English ... G. Komen Foundation What is the link between breast cancer and bone loss? Certain treatments for breast cancer ...

  7. Interactive Character Deformation Using Simplified Elastic Models

    NARCIS (Netherlands)

    Luo, Z.

    2016-01-01

    This thesis describes the results of our research into realistic skin and model deformation methods aimed at the field of character deformation and animation. The main contributions lie in the properties of our deformation scheme. Our approach preserves the volume of the deformed object while

  8. Nonlinear Deformable-body Dynamics

    CERN Document Server

    Luo, Albert C J

    2010-01-01

    "Nonlinear Deformable-body Dynamics" mainly consists in a mathematical treatise of approximate theories for thin deformable bodies, including cables, beams, rods, webs, membranes, plates, and shells. The intent of the book is to stimulate more research in the area of nonlinear deformable-body dynamics not only because of the unsolved theoretical puzzles it presents but also because of its wide spectrum of applications. For instance, the theories for soft webs and rod-reinforced soft structures can be applied to biomechanics for DNA and living tissues, and the nonlinear theory of deformable bodies, based on the Kirchhoff assumptions, is a special case discussed. This book can serve as a reference work for researchers and a textbook for senior and postgraduate students in physics, mathematics, engineering and biophysics. Dr. Albert C.J. Luo is a Professor of Mechanical Engineering at Southern Illinois University, Edwardsville, IL, USA. Professor Luo is an internationally recognized scientist in the field of non...

  9. Developing a Virtual Rock Deformation Laboratory

    Science.gov (United States)

    Zhu, W.; Ougier-simonin, A.; Lisabeth, H. P.; Banker, J. S.

    2012-12-01

    Experimental rock physics plays an important role in advancing earthquake research. Despite its importance in geophysics, reservoir engineering, waste deposits and energy resources, most geology departments in U.S. universities don't have rock deformation facilities. A virtual deformation laboratory can serve as an efficient tool to help geology students naturally and internationally learn about rock deformation. Working with computer science engineers, we built a virtual deformation laboratory that aims at fostering user interaction to facilitate classroom and outreach teaching and learning. The virtual lab is built to center around a triaxial deformation apparatus in which laboratory measurements of mechanical and transport properties such as stress, axial and radial strains, acoustic emission activities, wave velocities, and permeability are demonstrated. A student user can create her avatar to enter the virtual lab. In the virtual lab, the avatar can browse and choose among various rock samples, determine the testing conditions (pressure, temperature, strain rate, loading paths), then operate the virtual deformation machine to observe how deformation changes physical properties of rocks. Actual experimental results on the mechanical, frictional, sonic, acoustic and transport properties of different rocks at different conditions are compiled. The data acquisition system in the virtual lab is linked to the complied experimental data. Structural and microstructural images of deformed rocks are up-loaded and linked to different deformation tests. The integration of the microstructural image and the deformation data allows the student to visualize how forces reshape the structure of the rock and change the physical properties. The virtual lab is built using the Game Engine. The geological background, outstanding questions related to the geological environment, and physical and mechanical concepts associated with the problem will be illustrated on the web portal. In

  10. The clinical and radiological features of Fanconi's anaemia pictorial review

    International Nuclear Information System (INIS)

    De Kerviler, E.; Guermazi, A.; Zagdanski, A.-M.; Gluckman, E.; Frija, J.

    2000-01-01

    Fanconi's anaemia is a severe refractory anaemia, associated with congenital malformations in approximately two-thirds of cases. Although these malformations may involve every organ system, suggestive dysmorphic features include growth retardation, radial ray deformities and urinary malformations. These malformations are not specific for Fanconi's anaemia, but should be recognized during pregnancy, or later in childhood, and suggest the possibility of inherited haematopoiesis disorders. De Kerviler, E. (2000)

  11. Tracking hydrothermal feature changes in response to seismicity and deformation at Mud Volcano thermal area, Yellowstone

    Science.gov (United States)

    Diefenbach, A. K.; Hurwitz, S.; Murphy, F.; Evans, W.

    2013-12-01

    The Mud Volcano thermal area in Yellowstone National Park comprises many hydrothermal features including fumaroles, mudpots, springs, and thermal pools. Observations of hydrothermal changes have been made for decades in the Mud Volcano thermal area, and include reports of significant changes (the appearance of new features, increased water levels in pools, vigor of activity, and tree mortality) following an earthquake swarm in 1978 that took place beneath the area. However, no quantitative method to map and measure surface feature changes through time has been applied. We present an analysis of aerial photographs from 1954 to present to track temporal changes in the boundaries between vegetated and thermally barren areas, as well as location, extent, color, clarity, and runoff patterns of hydrothermal features within the Mud Volcano thermal area. This study attempts to provide a detailed, long-term (>50 year) inventory of hydrothermal features and change detection at Mud Volcano thermal area that can be used to identify changes in hydrothermal activity in response to seismicity, uplift and subsidence episodes of the adjacent Sour Creek resurgent dome, or other potential causes.

  12. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...

  13. IBA in deformed nuclei

    International Nuclear Information System (INIS)

    Casten, R.F.; Warner, D.D.

    1982-01-01

    The structure and characteristic properties and predictions of the IBA in deformed nuclei are reviewed, and compared with experiment, in particular for 168 Er. Overall, excellent agreement, with a minimum of free parameters (in effect, two, neglecting scale factors on energy differences), was obtained. A particularly surprising, and unavoidable, prediction is that of strong β → γ transitions, a feature characteristically absent in the geometrical model, but manifest empirically. Some discrepancies were also noted, principally for the K=4 excitation, and the detailed magnitudes of some specific B(E2) values. Considerable attention is paid to analyzing the structure of the IBA states and their relation to geometric models. The bandmixing formalism was studied to interpret both the aforementioned discrepancies and the origin of the β → γ transitions. The IBA states, extremely complex in the usual SU(5) basis, are transformed to the SU(3) basis, as is the interaction Hamiltonian. The IBA wave functions appear with much simplified structure in this way as does the structure of the associated B(E2) values. The nature of the symmetry breaking of SU(3) for actual deformed nuclei is seen to be predominantly ΔK=0 mixing. A modified, and more consistent, formalism for the IBA-1 is introduced which is simpler, has fewer free parameters (in effect, one, neglecting scale factors on energy differences), is in at least as good agreement with experiment as the earlier formalism, contains a special case of the 0(6) limit which corresponds to that known empirically, and appears to have a close relationship to the IBA-2. The new formalism facilitates the construction of contour plots of various observables (e.g., energy or B(E2) ratios) as functions of N and chi/sub Q/ which allow the parameter-free discussion of qualitative trajectories or systematics

  14. Passive sorting of capsules by deformability

    Science.gov (United States)

    Haener, Edgar; Juel, Anne

    We study passive sorting according to deformability of liquid-filled ovalbumin-alginate capsules. We present results for two sorting geometries: a straight channel with a half-cylindrical obstruction and a pinched flow fractioning device (PFF) adapted for use with capsules. In the half-cylinder device, the capsules deform as they encounter the obstruction, and travel around the half-cylinder. The distance from the capsule's centre of mass to the surface of the half-cylinder depends on deformability, and separation between capsules of different deformability is amplified by diverging streamlines in the channel expansion downstream of the obstruction. We show experimentally that capsules can be sorted according to deformability with their downstream position depending on capillary number only, and we establish the sensitivity of the device to experimental variability. In the PFF device, particles are compressed against a wall using a strong pinching flow. We show that capsule deformation increases with the intensity of the pinching flow, but that the downstream capsule position is not set by deformation in the device. However, when using the PFF device like a T-Junction, we achieve improved sorting resolution compared to the half-cylinder device.

  15. Ductile bookshelf faulting: A new kinematic model for Cenozoic deformation in northern Tibet

    Science.gov (United States)

    Zuza, A. V.; Yin, A.

    2013-12-01

    It has been long recognized that the most dominant features on the northern Tibetan Plateau are the >1000 km left-slip strike-slip faults (e.g., the Atyn Tagh, Kunlun, and Haiyuan faults). Early workers used the presence of these faults, especially the Kunlun and Haiyuan faults, as evidence for eastward lateral extrusion of the plateau, but their low documented offsets--100s of km or less--can not account for the 2500 km of convergence between India and Asia. Instead, these faults may result from north-south right-lateral simple shear due to the northward indentation of India, which leads to the clockwise rotation of the strike-slip faults and left-lateral slip (i.e., bookshelf faulting). With this idea, deformation is still localized on discrete fault planes, and 'microplates' or blocks rotate and/or translate with little internal deformation. As significant internal deformation occurs across northern Tibet within strike-slip-bounded domains, there is need for a coherent model to describe all of the deformational features. We also note the following: (1) geologic offsets and Quaternary slip rates of both the Kunlun and Haiyuan faults vary along strike and appear to diminish to the east, (2) the faults appear to kinematically link with thrust belts (e.g., Qilian Shan, Liupan Shan, Longmen Shan, and Qimen Tagh) and extensional zones (e.g., Shanxi, Yinchuan, and Qinling grabens), and (3) temporal relationships between the major deformation zones and the strike-slip faults (e.g., simultaneous enhanced deformation and offset in the Qilian Shan and Liupan Shan, and the Haiyuan fault, at 8 Ma). We propose a new kinematic model to describe the active deformation in northern Tibet: a ductile-bookshelf-faulting model. With this model, right-lateral simple shear leads to clockwise vertical axis rotation of the Qaidam and Qilian blocks, and left-slip faulting. This motion creates regions of compression and extension, dependent on the local boundary conditions (e.g., rigid

  16. Study on Plastic Deformation Characteristics of Shot Peening of Ni-Based Superalloy GH4079

    Science.gov (United States)

    Zhong, L. Q.; Liang, Y. L.; Hu, H.

    2017-09-01

    In this paper, the X-ray stress diffractometer, surface roughness tester, field emission scanning electron microscope(SEM), dynamic ultra-small microhardness tester were used to measure the surface residual stress and roughness, topography and surface hardness changes of GH4079 superalloy, which was processed by metallographic grinding, turning, metallographic grinding +shot peening and turning + shot peening. Analysized the effects of shot peening parameters on shot peening plastic deformation features; and the effects of the surface state before shot peening on shot peening plastic deformation characteristics. Results show that: the surface residual compressive stress, surface roughness and surface hardness of GH4079 superalloy were increased by shot peening, in addition, the increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening increased with increasing shot peening intensity, shot peening time, shot peening pressure and shot hardness, but harden layer depth was not affected considerably. The more plastic deformation degree of before shot peening surface state, the less increment of the surface residual compressive stress, surface roughness and surface hardness induced by shot peening.

  17. Micro-mechanisms of Surface Defects Induced on Aluminum Alloys during Plastic Deformation at Elevated Temperatures

    Science.gov (United States)

    Gali, Olufisayo A.

    Near-surface deformed layers developed on aluminum alloys significantly influence the corrosion and tribological behavior as well as reduce the surface quality of the rolled aluminum. The evolution of the near-surface microstructures induced on magnesium containing aluminum alloys during thermomechanical processing has been investigated with the aim generating an understanding of the influence of individual forming parameters on its evolution and examine the microstructure of the roll coating induced on the mating steel roll through material transfer during rolling. The micro-mechanisms related to the various features of near-surface microstructure developed during tribological conditions of the simulated hot rolling process were identified. Thermomechanical processing experiments were performed with the aid of hot rolling (operating temperature: 550 to 460 °C, 4, 10 and 20 rolling pass schedules) and hot forming (operating temperature: 350 to 545 °C, strain rate: 4 x 10-2 s-1) tribo-simulators. The surface, near-surface features and material transfer induced during the elevated temperature plastic deformation were examined and characterized employing optical interferometry, SEM/EDS, FIB and TEM. Near-surface features characterized on the rolled aluminum alloys included; cracks, fractured intermetallic particles, aluminum nano-particles, oxide decorated grain boundaries, rolled-in oxides, shingles and blisters. These features were related to various individual rolling parameters which included, the work roll roughness, which induced the formation of shingles, rolling marks and were responsible for the redistribution of surface oxide and the enhancements of the depth of the near-surface damage. The enhanced stresses and strains experienced during rolling were related to the formation and propagation of cracks, the nanocrystalline structure of the near-surface layers and aluminum nano-particles. The mechanism of the evolution of the near-surface microstructure were

  18. Perceptual transparency from image deformation.

    Science.gov (United States)

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation.

  19. Associative and Lie deformations of Poisson algebras

    OpenAIRE

    Remm, Elisabeth

    2011-01-01

    Considering a Poisson algebra as a non associative algebra satisfying the Markl-Remm identity, we study deformations of Poisson algebras as deformations of this non associative algebra. This gives a natural interpretation of deformations which preserves the underlying associative structure and we study deformations which preserve the underlying Lie algebra.

  20. Deformation Models Tracking, Animation and Applications

    CERN Document Server

    Torres, Arnau; Gómez, Javier

    2013-01-01

    The computational modelling of deformations has been actively studied for the last thirty years. This is mainly due to its large range of applications that include computer animation, medical imaging, shape estimation, face deformation as well as other parts of the human body, and object tracking. In addition, these advances have been supported by the evolution of computer processing capabilities, enabling realism in a more sophisticated way. This book encompasses relevant works of expert researchers in the field of deformation models and their applications.  The book is divided into two main parts. The first part presents recent object deformation techniques from the point of view of computer graphics and computer animation. The second part of this book presents six works that study deformations from a computer vision point of view with a common characteristic: deformations are applied in real world applications. The primary audience for this work are researchers from different multidisciplinary fields, s...

  1. Olivine CPO in non-deformed peridotite due to topotactic replacement of antigorite

    Science.gov (United States)

    Nagaya, Takayoshi; Wallis, Simon; Kobayashi, Hiroaki; Michibayashi, Katsuyoshi; Mizukami, Tomoyuki; Seto, Yusuke; Miyake, Akira; Matsumoto, Megumi

    2014-05-01

    Olivine crystallographic preferred orientation (CPO) is thought to be the main cause of seismic anisotropy in the mantle, and its formation is generally considered to be the result of plastic deformation of mantle by dislocation creep. Olivine CPO has been reproduced in laboratory deformation experiments and considerable success has been achieved in understanding the deformation conditions (e.g. stress, temperature and water content) under which different olivine CPO patterns develop. This opens the possibility of mapping conditions in the mantle using seismic anisotropy and has been the subject of considerable study. Here we report an alternative mechanism for olivine CPO without the need for deformation. This process may be important in understanding the seismic properties of mantle in convergent margins. Metamorphic studies show peridotite in the Happo area, central Japan, formed by the dehydration of antigorite-schist related to contact metamorphism around a granite intrusion. Both field and microstructural observations suggest the olivine has not undergone strong plastic deformation. This was confirmed by TEM work that shows the olivine has very low dislocation densities and lacks low angle tilt boundaries. Such tilt boundaries are general stable even after annealing. These features show that peridotite in the Happo area formed in the absence of solid-state deformation. The olivine of the Happo peridotite formed dominantly by the dehydration breakdown of antigorite schist. We propose that the olivine CPO formed as a result of topotactic replacement of antigorite by the newly formed olivine. EBSD measurements in samples where both antigorite and new olivine are present and in contact show a very close crystallographic relationship between the two minerals: the a-axes are parallel, and the b- and c-axes are perpendicular. We conclude the strong olivine CPO in the Happo area was inherited from the original CPO of the antigorite. Such a process is likely to also

  2. Thermodynamic analysis of elastic-plastic deformation

    International Nuclear Information System (INIS)

    Lubarda, V.

    1981-01-01

    The complete set of constitutive equations which fully describes the behaviour of material in elastic-plastic deformation is derived on the basis of thermodynamic analysis of the deformation process. The analysis is done after the matrix decomposition of the deformation gradient is introduced into the structure of thermodynamics with internal state variables. The free energy function, is decomposed. Derive the expressions for the stress response, entropy and heat flux, and establish the evolution equation. Finally, we establish the thermodynamic restrictions of the deformation process. (Author) [pt

  3. SPINAL DEFORMITIES AFTER SELECTIVE DORSAL RHIZOTOMY

    Directory of Open Access Journals (Sweden)

    PATRICIO PABLO MANZONE

    Full Text Available ABSTRACT Objective: Selective dorsal rhizotomy (SDR used for spasticity treatment could worsen or develop spinal deformities. Our goal is to describe spinal deformities seen in patients with cerebral palsy (CP after being treated by SDR. Methods: Retrospective study of patients operated on (SDR between January/1999 and June/2012. Inclusion criteria: spinal Rx before SDR surgery, spinography, and assessment at follow-up. We evaluated several factors emphasizing level and type of SDR approach, spinal deformity and its treatment, final Risser, and follow-up duration. Results: We found 7 patients (6 males: mean age at SDR 7.56 years (4.08-11.16. Mean follow-up: 6.64 years (2.16-13, final age: 14.32 years (7.5-19. No patient had previous deformity. GMFCS: 2 patients level IV, 2 level III, 3 level II. Initial walking status: 2 community walkers, 2 household walkers, 2 functional walkers, 1 not ambulant, at the follow-up, 3 patients improved, and 4 kept their status. We found 4 TL/L laminotomies, 2 L/LS laminectomies, and 1 thoracic laminectomy. Six spinal deformities were observed: 2 sagittal, 3 mixed, and 1 scoliosis. There was no association among the type of deformity, final gait status, topographic type, GMFCS, age, or SDR approach. Three patients had surgery indication for spinal deformity at skeletal maturity, while those patients with smaller deformities were still immature (Risser 0 to 2/3 although with progressive curves. Conclusions: After SDR, patients should be periodically evaluated until they reach Risser 5. The development of a deformity does not compromise functional results but adds morbidity because it may require surgical treatment.

  4. Nd-Fe-B-Cu hot deformation processing: a comparison of deformation modes, microstructural development and magnetic properties

    International Nuclear Information System (INIS)

    Ferrante, M.; Sinka, V.; Assis, O.B.G.; Oliveira, I. de; Freitas, E. de

    1996-01-01

    Due to its relative simplicity and low cost the hot deformation of Nd-Fe-B ingots is rapidly reaching the status of a valid alternative to sintering. Among the possible deformation modes, pressing, rolling and forging are perhaps the most successful. This paper describes the research programme undertaken so far, by discussing the relationship between deformation mode, microstructure and magnetic properties of magnets produced by hot deformation mode, microstructure and magnetic properties of magnets produced by hot deformation of a number of Nd-fe-B-Cu alloys. Microstructural observation showed that both pressed and forged samples are characterized by a heterogeneous microstructure and from magnetic measurements it was concluded that magnetic properties differ when taken in the center or in the periphery of the sample. On the other hand roller magnets were homogeneous both in terms of microstructure and magnetic properties, and interpretations of the mechanisms of texture development and of microstructural development of hot deformed magnets is put forward. (author)

  5. Volcanic deformation in the Andes

    Science.gov (United States)

    Riddick, S.; Fournier, T.; Pritchard, M.

    2009-05-01

    We present the results from an InSAR survey of volcanic activity in South America. We use data from the Japanese Space Agency's ALOS L-band radar satellite from 2006-2009. The L-band instrument provides better coherence in densely vegetated regions, compared to the shorter wave length C-band data. The survey reveals volcano related deformation in regions, north, central and southern, of the Andes volcanic arc. Since observations are limited to the austral summer, comprehensive coverage of all volcanoes is not possible. Yet, our combined observations reveal volcanic/hydrothermal deformation at Lonquimay, Llaima, Laguna del Maule, and Chaitén volcanoes, extend deformation measurements at Copahue, and illustrate temporal complexity to the previously described deformation at Cerro Hudson and Cordón Caulle. No precursory deformation is apparent before the large Chaitén eruption (VEI_5) of 2 May 2008, (at least before 16 April) suggesting rapid magma movement from depth at this long dormant volcano. Subsidence at Ticsani Volcano occurred coincident with an earthquake swarm in the same region.

  6. Static response of deformable microchannels

    Science.gov (United States)

    Christov, Ivan C.; Sidhore, Tanmay C.

    2017-11-01

    Microfluidic channels manufactured from PDMS are a key component of lab-on-a-chip devices. Experimentally, rectangular microchannels are found to deform into a non-rectangular cross-section due to fluid-structure interactions. Deformation affects the flow profile, which results in a nonlinear relationship between the volumetric flow rate and the pressure drop. We develop a framework, within the lubrication approximation (l >> w >> h), to self-consistently derive flow rate-pressure drop relations. Emphasis is placed on handling different types of elastic response: from pure plate-bending, to half-space deformation, to membrane stretching. The ``simplest'' model (Stokes flow in a 3D rectangular channel capped with a linearly elastic Kirchhoff-Love plate) agrees well with recent experiments. We also simulate the static response of such microfluidic channels under laminar flow conditions using ANSYSWorkbench. Simulations are calibrated using experimental flow rate-pressure drop data from the literature. The simulations provide highly resolved deformation profiles, which are difficult to measure experimentally. By comparing simulations, experiments and our theoretical models, we show good agreement in many flow/deformation regimes, without any fitting parameters.

  7. Effect of the tiger stripes on the deformation of Saturn's moon Enceladus

    Science.gov (United States)

    Souček, Ondřej; Hron, Jaroslav; Běhounková, Marie; Čadek, Ondřej

    2016-07-01

    Enceladus is a small icy moon of Saturn with active jets of water emanating from fractures around the south pole, informally called tiger stripes, which might be connected to a subsurface water ocean. The effect of these features on periodic tidal deformation of the moon has so far been neglected because of the difficulties associated with implementation of faults in continuum mechanics models. Here we estimate the maximum possible impact of the tiger stripes on tidal deformation and heat production within Enceladus's ice shell by representing them as narrow zones with negligible frictional and bulk resistance passing vertically through the whole ice shell. Assuming a uniform ice shell thickness of 25 km, consistent with the recent estimate of libration, we demonstrate that the faults can dramatically change the distribution of stress and strain in Enceladus's south polar region, leading to a significant increase of the heat production in this area.

  8. Versal deformation of the Lie algebra L_2

    NARCIS (Netherlands)

    Post, Gerhard F.; Fialowski, Alice

    2001-01-01

    We investigate deformations of the infinite-dimensional vector-field Lie algebra spanned by the fields ei = zi + 1d/dz, where i ≥ 2. The goal is to describe the base of a “versal” deformation; such a versal deformation induces all the other nonequivalent deformations and solves the deformation

  9. On Loosening Plastic Composite under Active Load and Its Influence on the Deformation and Strength Properties

    Directory of Open Access Journals (Sweden)

    K. F. Komkov

    2015-01-01

    and stress, derived from the initial M. Rayner equations (M. Rheology. - M.: Nauka (Science, 1965. 223 pp.. To bring together the non-linearity of the relationship between deviators with nonlinearity between the spherical tensor of stresses and deformations, parameters are introduced. To define them is developed a technique. The parameters as the functions of a stress-state angle are defined by the selection of their values when the theoretical curves in the best way overlay the experimental curves for secant moduli and coefficients of transverse deformationsThis experimental data processing procedure allows us to find both the parameters and the bulk compression modulus. Parameters allow us to more accurately reflect the changing bulk deformation and mean (hydrostatic stress.Graphs present all the features and parameters found. Using them, we have obtained dependences for ratios of dilatancies to the value of maximum dilatancy in tension. As a result, dependence of ratios on deformations can be graphically shown for different types of stress-state. To check calculations are presented three theoretical curves for the mean stress - maximum stress ratio (mean stress module in compression to compare them with the corresponding theoretical curves, which define the mean stress as the third part of the stress along the axis of the specimen in tension or compression. Their overlapping each other proves the non-contradiction of a relation equation of the spherical tensors and the accuracy of determining parameters, which define dilatancy, according to stress. The paper shows how the ratio of these dilatancies to the value of maximum dilatancy in tension depends on the deformation for different angles of the stress-state.Using a mathematical model that takes into consideration the features of unstable media, the accounting for non-linearity with defining tensor dilatancy allows us to find a logical approach to defining the relationships between dilatancies and deformation and

  10. Quantification and validation of soft tissue deformation

    DEFF Research Database (Denmark)

    Mosbech, Thomas Hammershaimb; Ersbøll, Bjarne Kjær; Christensen, Lars Bager

    2009-01-01

    We present a model for soft tissue deformation derived empirically from 10 pig carcases. The carcasses are subjected to deformation from a known single source of pressure located at the skin surface, and the deformation is quantified by means of steel markers injected into the tissue. The steel...... markers are easy to distinguish from the surrounding soft tissue in 3D computed tomography images. By tracking corresponding markers using methods from point-based registration, we are able to accurately quantify the magnitude and propagation of the induced deformation. The deformation is parameterised...

  11. Physics-based deformable organisms for medical image analysis

    Science.gov (United States)

    Hamarneh, Ghassan; McIntosh, Chris

    2005-04-01

    Previously, "Deformable organisms" were introduced as a novel paradigm for medical image analysis that uses artificial life modelling concepts. Deformable organisms were designed to complement the classical bottom-up deformable models methodologies (geometrical and physical layers), with top-down intelligent deformation control mechanisms (behavioral and cognitive layers). However, a true physical layer was absent and in order to complete medical image segmentation tasks, deformable organisms relied on pure geometry-based shape deformations guided by sensory data, prior structural knowledge, and expert-generated schedules of behaviors. In this paper we introduce the use of physics-based shape deformations within the deformable organisms framework yielding additional robustness by allowing intuitive real-time user guidance and interaction when necessary. We present the results of applying our physics-based deformable organisms, with an underlying dynamic spring-mass mesh model, to segmenting and labelling the corpus callosum in 2D midsagittal magnetic resonance images.

  12. A novel methodology for 3D deformable dosimetry.

    Science.gov (United States)

    Yeo, U J; Taylor, M L; Dunn, L; Kron, T; Smith, R L; Franich, R D

    2012-04-01

    Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue-equivalent deformable gel dosimeter that can reproducibly simulate targets subject to deformation. This will enable direct measurement of integrated doses delivered in different deformation states, and the verification of dose deforming algorithms. A modified version of the nPAG polymer gel has been used as a deformable 3D dosimeter and phantom to investigate doses delivered to deforming tissue-equivalent geometry. The deformable gel (DEFGEL) dosimeter/phantom is comprised of polymer gel in a latex membrane, moulded (in this case) into a cylindrical geometry, and deformed with an acrylic compressor. Fifteen aluminium fiducial markers (FM) were implanted into DEFGEL phantoms and the reproducibility of deformation was determined via multiple computed tomography (CT) scans in deformed and nondeformed states before and after multiple (up to 150) deformations. Dose was delivered to the DEFGEL phantom in three arrangements: (i) without deformation, (ii) with deformation, and (iii) cumulative exposures with and without deformation, i.e., dose integration. Irradiations included both square field and a stereotactic multiple dynamic arc treatment adapted from a patient plan. Doses delivered to the DEFGEL phantom were read out using cone beam optical CT. Reproducibility was verified by observation of interscan shifts of FM locations (as determined via CT), measured from an absolute reference point and in terms of inter-FM distance. The majority (76%) of points exhibited zero shift, with others shifting by one pixel size consistent with setup error as confirmed with a control sample. Comparison of dose profiles and 2D isodose distributions from the three arrangements illustrated complex spatial redistribution of dose in all three dimensions occurring as

  13. A novel methodology for 3D deformable dosimetry

    International Nuclear Information System (INIS)

    Yeo, U. J.; Taylor, M. L.; Dunn, L.; Kron, T.; Smith, R. L.; Franich, R. D.

    2012-01-01

    Purpose: Interfraction and intrafraction variation in anatomic structures is a significant challenge in contemporary radiotherapy. The objective of this work is to develop a novel tool for deformable structure dosimetry, using a tissue-equivalent deformable gel dosimeter that can reproducibly simulate targets subject to deformation. This will enable direct measurement of integrated doses delivered in different deformation states, and the verification of dose deforming algorithms. Methods: A modified version of the nPAG polymer gel has been used as a deformable 3D dosimeter and phantom to investigate doses delivered to deforming tissue-equivalent geometry. The deformable gel (DEFGEL) dosimeter/phantom is comprised of polymer gel in a latex membrane, moulded (in this case) into a cylindrical geometry, and deformed with an acrylic compressor. Fifteen aluminium fiducial markers (FM) were implanted into DEFGEL phantoms and the reproducibility of deformation was determined via multiple computed tomography (CT) scans in deformed and nondeformed states before and after multiple (up to 150) deformations. Dose was delivered to the DEFGEL phantom in three arrangements: (i) without deformation, (ii) with deformation, and (iii) cumulative exposures with and without deformation, i.e., dose integration. Irradiations included both square field and a stereotactic multiple dynamic arc treatment adapted from a patient plan. Doses delivered to the DEFGEL phantom were read out using cone beam optical CT. Results: Reproducibility was verified by observation of interscan shifts of FM locations (as determined via CT), measured from an absolute reference point and in terms of inter-FM distance. The majority (76%) of points exhibited zero shift, with others shifting by one pixel size consistent with setup error as confirmed with a control sample. Comparison of dose profiles and 2D isodose distributions from the three arrangements illustrated complex spatial redistribution of dose in all

  14. M theory on deformed superspace

    Science.gov (United States)

    Faizal, Mir

    2011-11-01

    In this paper we will analyze a noncommutative deformation of the Aharony-Bergman-Jafferis-Maldacena (ABJM) theory in N=1 superspace formalism. We will then analyze the Becchi-Rouet-Stora-Tyutin (BRST) and anti-BRST symmetries for this deformed ABJM theory, and its linear as well as nonlinear gauges. We will show that the sum of the gauge fixing term and the ghost term for this deformed ABJM theory can be expressed as a combination of the total BRST and the total anti-BRST variation, in Landau and nonlinear gauges. We will show that in Landau and Curci-Ferrari gauges deformed ABJM theory is invariant under an additional set of symmetry transformations. We will also discuss the effect that the addition of a bare mass term has on this theory.

  15. Structural petrology of undeformed and experimentally deformed halite samples from USERDA site No. 7 and No. 9

    International Nuclear Information System (INIS)

    Callender, J.; Ingwell, T.

    1977-01-01

    Preliminary data from USERDA test holes No. 7 and No. 9 in the Salado Formation of southeastern New Mexico are presented. Cores consist primarily of halite (> 80 modal percent), clay, polyhalite, anhydrite, celestite, iron oxide, and magnesite. Macroscopic features of undeformed core include moderately tight grain boundaries, large cavities (less than or equal to 8 mm 2 ), fluid inclusions, rare intragranular dislocations, and coarse and bimodal textures. Petrographic examination reveals numerous secondary fluid inclusions of variable size, blebby halite and transected hopper crystals, all of which suggest mobility and recrystallization of the primary evaporite assemblages. Deformed core shows a complex group of fabric elements, including tight grain boundaries, intercrystalline lattice rotation, cavity deformation and closure, distortion of hopper crystals, polygonization, irregular lattice dislocations, glide dislocations, and climb dislocations. Grain boundaries become tight or locked with deformation, forming pinned and bulged grains. Intercrystalline lattice rotation causes grains to rotate as much as 17 0 to develop preferred orientation. Polygonization yields fabrics analogous to prophyroclasts in cataclastic rocks. Irregular dislocations are relatively abundant. Glide dislocations are also abundant in many deformed specimens. Individual mineral components within deformed halite also exhibit deformational fabrics. Folded layers of clay and anhydrite, and bent and broken single crystals of anhydrite are present in some samples. Secondary fluid inclusions apparently migrate in response to differential stress and form along dislocations in halite, healing the dislocations by secondary crystallization and forming discontinuous or completely healed dislocation fabrics. 67 figures, 9 tables

  16. Earthquake-induced deformations on ice-stream landforms in Kuusamo, eastern Finnish Lapland

    Science.gov (United States)

    Sutinen, Raimo; Hyvönen, Eija; Middleton, Maarit; Airo, Meri-Liisa

    2018-01-01

    Kuusamo in eastern Finnish Lapland is characterized by ice-streamlined landforms as well as clusters of historical and recent earthquakes (Mw landslides, earth flows as well as kettle holes (craters), on the fluted surfaces within the Kuusamo ice-stream fan. We found these deformations to be a common feature on the Archean granitoid gneisses and within a 20 km wide and NW-SE oriented corridor between the major intrusives, the Iivaara nepheline syenite and the Näränkävaara gabbro. Of the paleolandslides, liquefaction morphologies were generally developed on the distal slopes (1.3-2.8%; 0.75-1.6°) of the streamlined forms. Sedimentary anisotropy, obtained with azimuthal electrical conductivity (σa; skin depth down to 3-6 m), of the deformed flutes significantly deviated from the non-deformed (clean) ones. The fields of the Pulju moraine, a subglacial landform, formed a grounding zone for the ice-streaming SW of the paleolandslide cluster. We therefore propose that both subglacial and postglacial earthquake-induced landforms are present in Kuusamo. No PGFs could be verified in the Kuusamo area, yet gravity, airborne magnetic, and LiDAR morphological lineaments suggest that the old Paleoproterozoic structures have been reactivated as strike-slip faults, due to the lithospheric plate stresses and glacio-isostatic adjustment (GIA).

  17. Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for "dose of the day" calculations.

    Science.gov (United States)

    Veiga, Catarina; McClelland, Jamie; Moinuddin, Syed; Lourenço, Ana; Ricketts, Kate; Annkah, James; Modat, Marc; Ourselin, Sébastien; D'Souza, Derek; Royle, Gary

    2014-03-01

    The aim of this study was to evaluate the appropriateness of using computed tomography (CT) to cone-beam CT (CBCT) deformable image registration (DIR) for the application of calculating the "dose of the day" received by a head and neck patient. NiftyReg is an open-source registration package implemented in our institution. The affine registration uses a Block Matching-based approach, while the deformable registration is a GPU implementation of the popular B-spline Free Form Deformation algorithm. Two independent tests were performed to assess the suitability of our registrations methodology for "dose of the day" calculations in a deformed CT. A geometric evaluation was performed to assess the ability of the DIR method to map identical structures between the CT and CBCT datasets. Features delineated in the planning CT were warped and compared with features manually drawn on the CBCT. The authors computed the dice similarity coefficient (DSC), distance transformation, and centre of mass distance between features. A dosimetric evaluation was performed to evaluate the clinical significance of the registrations errors in the application proposed and to identify the limitations of the approximations used. Dose calculations for the same intensity-modulated radiation therapy plan on the deformed CT and replan CT were compared. Dose distributions were compared in terms of dose differences (DD), gamma analysis, target coverage, and dose volume histograms (DVHs). Doses calculated in a rigidly aligned CT and directly in an extended CBCT were also evaluated. A mean value of 0.850 in DSC was achieved in overlap between manually delineated and warped features, with the distance between surfaces being less than 2 mm on over 90% of the pixels. Deformable registration was clearly superior to rigid registration in mapping identical structures between the two datasets. The dose recalculated in the deformed CT is a good match to the dose calculated on a replan CT. The DD is smaller

  18. Multiple feature fusion via covariance matrix for visual tracking

    Science.gov (United States)

    Jin, Zefenfen; Hou, Zhiqiang; Yu, Wangsheng; Wang, Xin; Sun, Hui

    2018-04-01

    Aiming at the problem of complicated dynamic scenes in visual target tracking, a multi-feature fusion tracking algorithm based on covariance matrix is proposed to improve the robustness of the tracking algorithm. In the frame-work of quantum genetic algorithm, this paper uses the region covariance descriptor to fuse the color, edge and texture features. It also uses a fast covariance intersection algorithm to update the model. The low dimension of region covariance descriptor, the fast convergence speed and strong global optimization ability of quantum genetic algorithm, and the fast computation of fast covariance intersection algorithm are used to improve the computational efficiency of fusion, matching, and updating process, so that the algorithm achieves a fast and effective multi-feature fusion tracking. The experiments prove that the proposed algorithm can not only achieve fast and robust tracking but also effectively handle interference of occlusion, rotation, deformation, motion blur and so on.

  19. Formulations and algorithms for problems on rock mass and support deformation during mining

    Science.gov (United States)

    Seryakov, VM

    2018-03-01

    The analysis of problem formulations to calculate stress-strain state of mine support and surrounding rocks mass in rock mechanics shows that such formulations incompletely describe the mechanical features of joint deformation in the rock mass–support system. The present paper proposes an algorithm to take into account the actual conditions of rock mass and support interaction and the algorithm implementation method to ensure efficient calculation of stresses in rocks and support.

  20. Birefringence and incipient plastic deformation in elastically overdriven [100] CaF2 under shock compression

    Science.gov (United States)

    Li, Y.; Zhou, X. M.; Cai, Y.; Liu, C. L.; Luo, S. N.

    2018-04-01

    [100] CaF2 single crystals are shock-compressed via symmetric planar impact, and the flyer plate-target interface velocity histories are measured with a laser displacement interferometry. The shock loading is slightly above the Hugoniot elastic limit to investigate incipient plasticity and its kinetics, and its effects on optical properties and deformation inhomogeneity. Fringe patterns demonstrate different features in modulation of fringe amplitude, including birefringence and complicated modulations. The birefringence is attributed to local lattice rotation accompanying incipient plasticity. Spatially resolved measurements show inhomogeneity in deformation, birefringence, and fringe pattern evolutions, most likely caused by the inhomogeneity associated with lattice rotation and dislocation slip. Transiently overdriven elastic states are observed, and the incubation time for incipient plasticity decreases inversely with increasing overdrive by the elastic shock.

  1. Automated local line rolling forming and simplified deformation simulation method for complex curvature plate of ships

    Directory of Open Access Journals (Sweden)

    Y. Zhao

    2017-06-01

    Full Text Available Local line rolling forming is a common forming approach for the complex curvature plate of ships. However, the processing mode based on artificial experience is still applied at present, because it is difficult to integrally determine relational data for the forming shape, processing path, and process parameters used to drive automation equipment. Numerical simulation is currently the major approach for generating such complex relational data. Therefore, a highly precise and effective numerical computation method becomes crucial in the development of the automated local line rolling forming system for producing complex curvature plates used in ships. In this study, a three-dimensional elastoplastic finite element method was first employed to perform numerical computations for local line rolling forming, and the corresponding deformation and strain distribution features were acquired. In addition, according to the characteristics of strain distributions, a simplified deformation simulation method, based on the deformation obtained by applying strain was presented. Compared to the results of the three-dimensional elastoplastic finite element method, this simplified deformation simulation method was verified to provide high computational accuracy, and this could result in a substantial reduction in calculation time. Thus, the application of the simplified deformation simulation method was further explored in the case of multiple rolling loading paths. Moreover, it was also utilized to calculate the local line rolling forming for the typical complex curvature plate of ships. Research findings indicated that the simplified deformation simulation method was an effective tool for rapidly obtaining relationships between the forming shape, processing path, and process parameters.

  2. Features communikations media products and value system of teens

    OpenAIRE

    Гречаник, М. І.

    2014-01-01

    We investigate the genesis of the features of the relationship of media products and values as a teenager in the light of current trends in contemporary global information society, found that media products can influence the formation and development of personal values yk adolescence, due to physiological characteristics age. Media products meets the needs of adolescents and penetrates the subconscious, thus affecting the value system, which can lead to deformation of values as a teenager fal...

  3. Nuclear structure at high-spin and large-deformation

    International Nuclear Information System (INIS)

    Shimizu, Yoshifumi R.

    2000-01-01

    Atomic nucleus is a finite quantal system and shows various marvelous features. One of the purposes of the nuclear structure study is to understand such features from a microscopic viewpoint of nuclear many-body problem. Recently, it is becoming possible to explore nuclear states under 'extreme conditions', which are far different from the usual ground states of stable nuclei, and new aspects of such unstable nuclei attract our interests. In this lecture, I would like to discuss the nuclear structure in the limit of rapid rotation, or the extreme states with very large angular momenta, which became accessible by recent advent of large arrays of gamma-ray detecting system; these devices are extremely useful to measure coincident multiple γ-rays following heavy-ion fusion reactions. Including such experimental aspects as how to detect the nuclear rotational states, I review physics of high-spin states starting from the elementary subjects of nuclear structure study. In would like also to discuss the extreme states with very large nuclear deformation, which are easily realized in rapidly rotating nuclei. (author)

  4. Effects of mechanical deformation on energy conversion efficiency of piezoelectric nanogenerators

    International Nuclear Information System (INIS)

    Yoo, Jinho; Kim, Wook; Choi, Dukhyun; Cho, Seunghyeon; Kim, Chang-Wan; Kwon, Jang-Yeon; Kim, Hojoong; Kim, Seunghyun; Chang, Yoon-Suk

    2015-01-01

    Piezoelectric nanogenerators (PNGs) are capable of converting energy from various mechanical sources into electric energy and have many attractive features such as continuous operation, replenishment and low cost. However, many researchers still have studied novel material synthesis and interfacial controls to improve the power production from PNGs. In this study, we report the energy conversion efficiency (ECE) of PNGs dependent on mechanical deformations such as bending and twisting. Since the output power of PNGs is caused by the mechanical strain of the piezoelectric material, the power production and their ECE is critically dependent on the types of external mechanical deformations. Thus, we examine the output power from PNGs according to bending and twisting. In order to clearly understand the ECE of PNGs in the presence of those external mechanical deformations, we determine the ECE of PNGs by the ratio of output electrical energy and input mechanical energy, where we suggest that the input energy is based only on the strain energy of the piezoelectric layer. We calculate the strain energy of the piezoelectric layer using numerical simulation of bending and twisting of the PNG. Finally, we demonstrate that the ECE of the PNG caused by twisting is much higher than that caused by bending due to the multiple effects of normal and lateral piezoelectric coefficients. Our results thus provide a design direction for PNG systems as high-performance power generators. (paper)

  5. Deformation mechanisms in austenitic TRIP/TWIP steels at room and elevated temperature investigated by acoustic emission and scanning electron microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Linderov, M. [Laboratory of Physics of Strength of Materials and Intelligent Diagnostic Systems, Togliatti State University, Togliatti 445667 (Russian Federation); Segel, C.; Weidner, A.; Biermann, H. [Institute of Materials Engineering, Technische Universität Bergakademie Freiberg, 09599 Freiberg (Germany); Vinogradov, A., E-mail: vinogradov@tltsu.ru [Laboratory of Physics of Strength of Materials and Intelligent Diagnostic Systems, Togliatti State University, Togliatti 445667 (Russian Federation)

    2014-03-01

    The modern austenitic stainless TRIP/TWIP steels have an outstanding combination of strength and ductility, depending on their chemical composition and loading conditions. A critical factor, which strongly affects all deformation-induced processes in metastable austenitic steels, is the temperature. To get a better insight into the effect of temperature on the deformation kinetics and transformation processes in high-alloy CrMnNi TRIP/TWIP steels with different austenite stability due to a varied content of Ni (3, 6 and 9 wt%), an acoustic emission (AE) technique was used during uniaxial tension at two different temperatures – ambient and 373 K. The in-situ AE results were paired with detailed SEM investigations using the electron backscattered diffraction (EBSD) technique to identify the deformation-induced phase transformations and mechnical twinning. The cluster analysis of the AE signals has revealed an excellent correlation of AE features with synergistic complexity of deformation mechanisms involved in various combinations: dislocation glide, stacking faults, martensitic phase transformation and twinning.

  6. Microstructure of AZ31 Magnesium Alloy deformed by indentation-flattening compound deformation technology

    Science.gov (United States)

    Wang, Minghao; Wang, Zhongtang; Yu, Xiaolin

    2018-03-01

    Characteristic of indentation-flattening compound deformation technology (IFCDT) is discussed, and the parameters of IFCDT are defined. Performance of magnesium alloy AZ31 sheet deformed by IFCDT is researched. The effect of IFCDT coefficient, temperature and reduction ratio on the microstructure of magnesium alloy sheet is analyzed. The research results show that the volume fraction of the twin crystal decreases gradually and the average grain size increases with increasing of coefficient of IFCDT. With increase of the reduction ratio, the volume fraction of the twin crystal gradually increases, and the average grain size also increases. With increase of deformation temperature, the volume fraction of the twin crystal decreases gradually, and the twin crystal grain size increases.

  7. Deformation-Induced Microstructural Banding in TRIP Steels

    Science.gov (United States)

    Celotto, S.; Ghadbeigi, H.; Pinna, C.; Shollock, B. A.; Efthymiadis, P.

    2018-05-01

    Microstructure inhomogeneities can strongly influence the mechanical properties of advanced high-strength steels in a detrimental manner. This study of a transformation-induced plasticity (TRIP) steel investigates the effect of pre-existing contiguous grain boundary networks (CGBNs) of hard second-phases and shows how these develop into bands during tensile testing using in situ observations in conjunction with digital image correlation (DIC). The bands form by the lateral contraction of the soft ferrite matrix, which rotates and displaces the CGBNs of second-phases and the individual features within them to become aligned with the loading direction. The more extensive pre-existing CGBNs that were before the deformation already aligned with the loading direction are the most critical microstructural feature for damage initiation and propagation. They induce micro-void formation between the hard second-phases along them, which coalesce and develop into long macroscopic fissures. The hard phases, retained austenite and martensite, were not differentiated as it was found that the individual phases do not play a role in the formation of these bands. It is suggested that minimizing the presence of CGBNs of hard second-phases in the initial microstructure will increase the formability.

  8. ACCUMULATED DEFORMATION MODELING OF PERMANENT WAY BASED ON ENTROPY SYSTEM

    Directory of Open Access Journals (Sweden)

    D. M. Kurhan

    2015-07-01

    Full Text Available Purpose. The work provides a theoretical research about the possibility of using methods that determine the lifetime of a railway track not only in terms of total stresses, and accounting its structure and dynamic characteristics. The aim of these studies is creation the model of deformations accumulation for assessment of service life of a railway track taking into account these features. Methodology. To simulate a gradual change state during the operation (accumulation of deformations the railway track is presented as a system that consists of many particles of different materials collected in a coherent design. It is appropriate to speak not about the appearance of deformations of a certain size in a certain section of the track, and the probability of such event on the site. If to operate the probability of occurrence of deviations, comfortable state of the system is characterized by the number of breaks of the conditional internal connections. The same state of the system may correspond to different combinations of breaks. The more breaks, the more the number of options changes in the structure of the system appropriate to its current state. Such a process can be represented as a gradual transition from an ordered state to a chaotic one. To describe the characteristics of the system used the numerical value of the entropy. Findings. Its entropy is constantly increasing at system aging. The growth of entropy is expressed by changes in the internal energy of the system, which can be determined using mechanical work forces, which leads to deformation. This gives the opportunity to show quantitative indication of breaking the bonds in the system as a consequence of performing mechanical work. According to the results of theoretical research methods for estimation of the timing of life cycles of railway operation considering such factors as the structure of the flow of trains, construction of the permanent way, the movement of trains at high

  9. Origami-enabled deformable silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Tu, Hongen; Xu, Yong [Electrical and Computer Engineering, Wayne State University, 5050 Anthony Wayne Dr., Detroit, Michigan 48202 (United States); Song, Zeming; Jiang, Hanqing, E-mail: hanqing.jiang@asu.edu [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Yu, Hongyu, E-mail: hongyu.yu@asu.edu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States)

    2014-02-24

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

  10. Origami-enabled deformable silicon solar cells

    International Nuclear Information System (INIS)

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing; Tu, Hongen; Xu, Yong; Song, Zeming; Jiang, Hanqing; Yu, Hongyu

    2014-01-01

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics

  11. Novel insights into nanopore deformation caused by capillary condensation.

    Science.gov (United States)

    Günther, Gerrit; Prass, Johannes; Paris, Oskar; Schoen, Martin

    2008-08-22

    By means of in situ small-angle x-ray diffraction experiments and semi-grand-canonical ensemble Monte Carlo simulations we demonstrate that sorption and condensation of a fluid confined within nanopores is capable of deforming the pore walls. At low pressures the pore is widened due to a repulsive interaction caused by collisions of the fluid molecules with the walls. At capillary condensation the pores contract abruptly on account of attractive fluid-wall interactions whereas for larger pressures they expand again. These features cannot solely be accounted for by effects related to pore-wall curvature but have to be attributed to fluid-wall dispersion forces instead.

  12. Microstructural evolution during tensile deformation of polypropylenes

    International Nuclear Information System (INIS)

    Dasari, A.; Rohrmann, J.; Misra, R.D.K.

    2003-01-01

    Tensile deformation processes occurring at varying strain rates in high and low crystallinity polypropylenes and ethylene-propylene di-block copolymers have been investigated by scanning electron microscopy. This is examined for both long and short chain polymeric materials. The deformation processes in different polymeric materials show striking dissimilarities in spite of the common propylene matrix. Additionally, the deformation behavior of long and their respective short chain polymers was different. Deformation mechanisms include crazing/tearing, wedging, ductile ploughing, fibrillation, and brittle fracture. The different modes of deformation are depicted in the form of strain rate-strain diagrams. At a constant strain rate, the strain to fracture follows the sequence: high crystallinity polypropylenes< low crystallinity polypropylenes< ethylene-propylene di-block copolymers, indicative of the trend in resistance to plastic deformation

  13. Effect of deformation ratios on grain alignment and magnetic properties of hot pressing/hot deformation Nd-Fe-B magnets

    Science.gov (United States)

    Guo, Zhaohui; Li, Mengyu; Wang, Junming; Jing, Zheng; Yue, Ming; Zhu, Minggang; Li, Wei

    2018-05-01

    The magnetic properties, microstructure and orientation degrees of hot pressing magnet and hot deformation Nd-Fe-B magnets with different deformation ratios have been investigated in this paper. The remanence (Br) and maximum magnetic energy product ((BH)max) were enhanced gradually with the deformation ratio increasing from 0% to 70%, whereas the coercivity (HCj) decreased. The scanning electron microscopy (SEM) images of fractured surfaces parallel to the pressure direction during hot deformation show that the grains tend to extend perpendicularly to the c-axes of Nd2Fe14B grains under the pressure, and the aspect ratios of the grains increase with the increase of deformation ratio. Besides, the compression stress induces the long axis of grains to rotate and the angle (θ) between c-axis and pressure direction decreases. The X-ray diffraction (XRD) patterns reveal that orientation degree improves with the increase of deformation ratio, agreeing well with the SEM results. The hot deformation magnet with a deformation ratio of 70% has the best Br and (BH)max, and the magnetic properties are as followed: Br=1.40 T, HCj=10.73 kOe, (BH)max=42.30 MGOe.

  14. Anisotropic Ripple Deformation in Phosphorene.

    Science.gov (United States)

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng

    2015-05-07

    Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  15. Atomic-scale investigation of interface-facilitated deformation twinning in severely deformed Ag-Cu nanolamellar composites

    International Nuclear Information System (INIS)

    An, X. H.; Cao, Y.; Liao, X. Z.; Zhu, S. M.; Nie, J. F.; Kawasaki, M.; Ringer, S. P.; Langdon, T. G.; Zhu, Y. T.

    2015-01-01

    We report an atomic-scale investigation of interface-facilitated deformation twinning behaviour in Ag-Cu nanolamellar composites. Profuse twinning activities in Ag supply partial dislocations to directly transmit across the Ag-Cu lamellar interface that promotes deformation twinning in the neighbouring Cu lamellae although the interface is severely deformed. The trans-interface twin bands change the local structure at the interface. Our analysis suggests that the orientation relationship and interfacial structure between neighbouring Ag-Cu lamellae play a crucial role in such special interface-facilitated twinning behaviour

  16. The analysis of image feature robustness using cometcloud

    Directory of Open Access Journals (Sweden)

    Xin Qi

    2012-01-01

    Full Text Available The robustness of image features is a very important consideration in quantitative image analysis. The objective of this paper is to investigate the robustness of a range of image texture features using hematoxylin stained breast tissue microarray slides which are assessed while simulating different imaging challenges including out of focus, changes in magnification and variations in illumination, noise, compression, distortion, and rotation. We employed five texture analysis methods and tested them while introducing all of the challenges listed above. The texture features that were evaluated include co-occurrence matrix, center-symmetric auto-correlation, texture feature coding method, local binary pattern, and texton. Due to the independence of each transformation and texture descriptor, a network structured combination was proposed and deployed on the Rutgers private cloud. The experiments utilized 20 randomly selected tissue microarray cores. All the combinations of the image transformations and deformations are calculated, and the whole feature extraction procedure was completed in 70 minutes using a cloud equipped with 20 nodes. Center-symmetric auto-correlation outperforms all the other four texture descriptors but also requires the longest computational time. It is roughly 10 times slower than local binary pattern and texton. From a speed perspective, both the local binary pattern and texton features provided excellent performance for classification and content-based image retrieval.

  17. Non-rigid registration of 3D ultrasound for neurosurgery using automatic feature detection and matching.

    Science.gov (United States)

    Machado, Inês; Toews, Matthew; Luo, Jie; Unadkat, Prashin; Essayed, Walid; George, Elizabeth; Teodoro, Pedro; Carvalho, Herculano; Martins, Jorge; Golland, Polina; Pieper, Steve; Frisken, Sarah; Golby, Alexandra; Wells, William

    2018-06-04

    The brain undergoes significant structural change over the course of neurosurgery, including highly nonlinear deformation and resection. It can be informative to recover the spatial mapping between structures identified in preoperative surgical planning and the intraoperative state of the brain. We present a novel feature-based method for achieving robust, fully automatic deformable registration of intraoperative neurosurgical ultrasound images. A sparse set of local image feature correspondences is first estimated between ultrasound image pairs, after which rigid, affine and thin-plate spline models are used to estimate dense mappings throughout the image. Correspondences are derived from 3D features, distinctive generic image patterns that are automatically extracted from 3D ultrasound images and characterized in terms of their geometry (i.e., location, scale, and orientation) and a descriptor of local image appearance. Feature correspondences between ultrasound images are achieved based on a nearest-neighbor descriptor matching and probabilistic voting model similar to the Hough transform. Experiments demonstrate our method on intraoperative ultrasound images acquired before and after opening of the dura mater, during resection and after resection in nine clinical cases. A total of 1620 automatically extracted 3D feature correspondences were manually validated by eleven experts and used to guide the registration. Then, using manually labeled corresponding landmarks in the pre- and post-resection ultrasound images, we show that our feature-based registration reduces the mean target registration error from an initial value of 3.3 to 1.5 mm. This result demonstrates that the 3D features promise to offer a robust and accurate solution for 3D ultrasound registration and to correct for brain shift in image-guided neurosurgery.

  18. Deformation of wrought uranium: Experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    McCabe, R.J., E-mail: rmccabe@lanl.gov [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Capolungo, L. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)] [UMI 2958 Georgia Tech - CNRS, 57070 Metz (France); Marshall, P.E.; Cady, C.M.; Tome, C.N. [Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)

    2010-09-15

    The room temperature deformation behavior of wrought polycrystalline uranium is studied using a combination of experimental techniques and polycrystal modeling. Electron backscatter diffraction is used to analyze the primary deformation twinning modes for wrought alpha-uranium. The {l_brace}1 3 0{r_brace}<3 1 0> twinning mode is found to be the most prominent twinning mode, with minor contributions from the '{l_brace}1 7 2{r_brace}'<3 1 2> and {l_brace}1 1 2{r_brace}'<3 7 2>' twin modes. Because of the large number of deformation modes, each with limited deformation systems, a polycrystalline model is employed to identify and quantify the activity of each mode. Model predictions of the deformation behavior and texture development agree reasonably well with experimental measures and provide reliable information about deformation systems.

  19. Nonlinear continuum mechanics and large inelastic deformations

    CERN Document Server

    Dimitrienko, Yuriy I

    2010-01-01

    This book provides a rigorous axiomatic approach to continuum mechanics under large deformation. In addition to the classical nonlinear continuum mechanics - kinematics, fundamental laws, the theory of functions having jump discontinuities across singular surfaces, etc. - the book presents the theory of co-rotational derivatives, dynamic deformation compatibility equations, and the principles of material indifference and symmetry, all in systematized form. The focus of the book is a new approach to the formulation of the constitutive equations for elastic and inelastic continua under large deformation. This new approach is based on using energetic and quasi-energetic couples of stress and deformation tensors. This approach leads to a unified treatment of large, anisotropic elastic, viscoelastic, and plastic deformations. The author analyses classical problems, including some involving nonlinear wave propagation, using different models for continua under large deformation, and shows how different models lead t...

  20. Glacitectonic deformation around the retreating margin of the last Irish ice sheet

    Science.gov (United States)

    Knight, J.

    2008-12-01

    Evidence for ice-marginal glacitectonic shunting and deformation of bedrock slabs is described from three sites around the west coast of Ireland. These sites (Brandon Bay, County Kerry; Pigeon Point, County Mayo; Inishcrone, County Sligo) are all locations where the late Devensian ice margin retreated on land and was confined to within limestone bedrock embayments. At these sites, flat-lying bedrock slabs (bedrock slabs have been variously stacked, rotated, deformed into open folds, and brecciated. Separating the bedrock slabs is either a thin layer (bedrock that shows internal folding; or a thicker (bedrock fractures and bedding planes and away from the ice margin, and that bedrock slabs were moved in part by hydraulic lift as well as thrust-style ice-marginal tectonics. The presence of a mosaic of warm and frozen ice-bed patches, in combination with strong geologic control and meltwater generation from behind the ice margin, can help explain formation of these unusual bedrock slab features.

  1. Barriers in the energy of deformed nuclei

    Directory of Open Access Journals (Sweden)

    V. Yu. Denisov

    2014-06-01

    Full Text Available Interaction energy between two nuclei considering to their deformations is studied. Coulomb and nuclear in-teraction energies, as well as the deformation energies of both nuclei, are taken into account at evaluation of the interaction energy. It is shown that the barrier related to the interaction energy of two nuclei depends on the de-formations and the height of the minimal barrier is evaluated. It is obtained that the heavier nucleus-nucleus sys-tems have large deformation values at the lowest barrier. The difference between the barrier between spherical nuclei and the lowest barrier between deformed nuclei increases with the mass and the charge of the interacting nuclei.

  2. Rare features associated with Mobius syndrome: Report of two cases

    Directory of Open Access Journals (Sweden)

    Rumela Ghosh

    2017-03-01

    Full Text Available Mobius syndrome is a rare congenital disorder with the preliminary diagnostic criteria of congenital facial and abducent nerve palsy. Involvement of other cranial nerves, too, is common. Prevalence rate of this syndrome is approximately 1 in 100,000 neonates. It is of unknown etiology with sporadic occurrence. However, data regarding the occurrence rate in India is limited. Features such as orofacial malformations, limb defects, and musculoskeletal, behavioral, and cognitive abnormalities might be associated. A thorough evaluation to identify the condition and establishing an adequate treatment plan is of utmost important in this condition. We are reporting clinical and radiographic features of Mobius syndrome in two cases along with unusual findings of limb and neck deformity.

  3. Study on Mechanical Features of Brazilian Splitting Fatigue Tests of Salt Rock

    Directory of Open Access Journals (Sweden)

    Weichao Wang

    2016-01-01

    Full Text Available The microtest, SEM, was carried out to study the fracture surface of salt rock after the Brazilian splitting test and splitting fatigue test were carried out with a servo-controlled test machine RMT-150B. The results indicate that the deviation of using the tablet splitting method is larger than that of using steel wire splitting method, in Brazilian splitting test of salt rock, when the conventional data processing method is adopted. There are similar deformation features in both the conventional splitting tests and uniaxial compression tests. The stress-strain curves include compaction, elasticity, yielding, and failure stage. Both the vertical deformation and horizontal deformation of splitting fatigue tests under constant average loading can be divided into three stages of “loosening-tightness-loosening.” The failure modes of splitting fatigue tests under the variational average loading are not controlled by the fracturing process curve of the conventional splitting tests. The deformation extent of fatigue tests under variational average loading is even greater than that of conventional splitting test. The tensile strength of salt rock has a relationship with crystallization conditions. Tensile strength of thick crystal salt rock is lower than the bonded strength of fine-grain crystals.

  4. Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for “dose of the day” calculations

    Energy Technology Data Exchange (ETDEWEB)

    Veiga, Catarina, E-mail: catarina.veiga.11@ucl.ac.uk; Lourenço, Ana; Ricketts, Kate; Annkah, James; Royle, Gary [Radiation Physics Group, Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom); McClelland, Jamie; Modat, Marc; Ourselin, Sébastien [Centre for Medical Image Computing, Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT (United Kingdom); Moinuddin, Syed [Department of Radiotherapy, University College London Hospital, London NW1 2BU (United Kingdom); D’Souza, Derek [Department of Radiotherapy Physics, University College London Hospital, London NW1 2PG (United Kingdom)

    2014-03-15

    Purpose: The aim of this study was to evaluate the appropriateness of using computed tomography (CT) to cone-beam CT (CBCT) deformable image registration (DIR) for the application of calculating the “dose of the day” received by a head and neck patient. Methods: NiftyReg is an open-source registration package implemented in our institution. The affine registration uses a Block Matching-based approach, while the deformable registration is a GPU implementation of the popular B-spline Free Form Deformation algorithm. Two independent tests were performed to assess the suitability of our registrations methodology for “dose of the day” calculations in a deformed CT. A geometric evaluation was performed to assess the ability of the DIR method to map identical structures between the CT and CBCT datasets. Features delineated in the planning CT were warped and compared with features manually drawn on the CBCT. The authors computed the dice similarity coefficient (DSC), distance transformation, and centre of mass distance between features. A dosimetric evaluation was performed to evaluate the clinical significance of the registrations errors in the application proposed and to identify the limitations of the approximations used. Dose calculations for the same intensity-modulated radiation therapy plan on the deformed CT and replan CT were compared. Dose distributions were compared in terms of dose differences (DD), gamma analysis, target coverage, and dose volume histograms (DVHs). Doses calculated in a rigidly aligned CT and directly in an extended CBCT were also evaluated. Results: A mean value of 0.850 in DSC was achieved in overlap between manually delineated and warped features, with the distance between surfaces being less than 2 mm on over 90% of the pixels. Deformable registration was clearly superior to rigid registration in mapping identical structures between the two datasets. The dose recalculated in the deformed CT is a good match to the dose calculated on

  5. Toward adaptive radiotherapy for head and neck patients: Feasibility study on using CT-to-CBCT deformable registration for “dose of the day” calculations

    International Nuclear Information System (INIS)

    Veiga, Catarina; Lourenço, Ana; Ricketts, Kate; Annkah, James; Royle, Gary; McClelland, Jamie; Modat, Marc; Ourselin, Sébastien; Moinuddin, Syed; D’Souza, Derek

    2014-01-01

    Purpose: The aim of this study was to evaluate the appropriateness of using computed tomography (CT) to cone-beam CT (CBCT) deformable image registration (DIR) for the application of calculating the “dose of the day” received by a head and neck patient. Methods: NiftyReg is an open-source registration package implemented in our institution. The affine registration uses a Block Matching-based approach, while the deformable registration is a GPU implementation of the popular B-spline Free Form Deformation algorithm. Two independent tests were performed to assess the suitability of our registrations methodology for “dose of the day” calculations in a deformed CT. A geometric evaluation was performed to assess the ability of the DIR method to map identical structures between the CT and CBCT datasets. Features delineated in the planning CT were warped and compared with features manually drawn on the CBCT. The authors computed the dice similarity coefficient (DSC), distance transformation, and centre of mass distance between features. A dosimetric evaluation was performed to evaluate the clinical significance of the registrations errors in the application proposed and to identify the limitations of the approximations used. Dose calculations for the same intensity-modulated radiation therapy plan on the deformed CT and replan CT were compared. Dose distributions were compared in terms of dose differences (DD), gamma analysis, target coverage, and dose volume histograms (DVHs). Doses calculated in a rigidly aligned CT and directly in an extended CBCT were also evaluated. Results: A mean value of 0.850 in DSC was achieved in overlap between manually delineated and warped features, with the distance between surfaces being less than 2 mm on over 90% of the pixels. Deformable registration was clearly superior to rigid registration in mapping identical structures between the two datasets. The dose recalculated in the deformed CT is a good match to the dose calculated on

  6. Deformations of Geometric Structures in Topological Sigma Models

    International Nuclear Information System (INIS)

    Bytsenko, A. A.

    2010-01-01

    We study a Lie algebra of formal vector fields W n with it application to the perturbative deformed holomorphic symplectic structure in the A-model, and a Calabi-Yau manifold with boundaries in the B-model. We show that equivalent classes of deformations are described by a Hochschild cohomology of the DG-algebra A = (A,Q), Q = ∂-bar+∂ deform, which is defined to be the cohomology of (-1) n Q+d Hoch . Here ∂-bar is the initial non-deformed BRST operator while ∂ deform is the deformed part whose algebra is a Lie algebra of linear vector fields gl n .

  7. A case of fetal valproate syndrome with new features expanding the phenotype

    International Nuclear Information System (INIS)

    Seidahmed, Mohammed Z.; Miqdad, Abeer M.; AlDohami, Hessa S.; Shareefi, Osama M.

    2009-01-01

    Fetal valproate syndrome (FVS) is a well-recognized constellation of dysmorphic features, and neurodevelopmental retardation that results from prenatal exposure to the anticonvulsant valproic acid. In this report, we describe a case with typical features of FVS. A 23-year-old lady with post-traumatic epilepsy controlled by sodium valproate (Depakene) 500 mg twice daily throughout pregnancy as monotherapy, gave birth to a female baby with facial features characteristic of FVS, and severe radial ray reduction. She also had wide-spaced nipples and short neck, features not described before. Sodium valproate, a widely used anticonvulsant and mood regulator, is a well-recognized teratogen that can result in severe limb deformities, craniosynostosis, neural tube defects and neurodevelopmental retardation. Therefore, we recommend that valproic acid must be avoided during pregnancy, as new generation of anticonvulsant drugs have emerged into the market. (author)

  8. Recent progress in modelling 3D lithospheric deformation

    Science.gov (United States)

    Kaus, B. J. P.; Popov, A.; May, D. A.

    2012-04-01

    Modelling 3D lithospheric deformation remains a challenging task, predominantly because the variations in rock types, as well as nonlinearities due to for example plastic deformation result in sharp and very large jumps in effective viscosity contrast. As a result, there are only a limited number of 3D codes available, most of which are using direct solvers which are computationally and memory-wise very demanding. As a result, the resolutions for typical model runs are quite modest, despite the use of hundreds of processors (and using much larger computers is unlikely to bring much improvement in this situation). For this reason we recently developed a new 3D deformation code,called LaMEM: Lithosphere and Mantle Evolution Model. LaMEM is written on top of PETSc, and as a result it runs on massive parallel machines and we have a large number of iterative solvers available (including geometric and algebraic multigrid methods). As it remains unclear which solver combinations work best under which conditions, we have implemented most currently suggested methods (such as schur complement reduction or Fully coupled iterations). In addition, we can use either a finite element discretization (with Q1P0, stabilized Q1Q1 or Q2P-1 elements) or a staggered finite difference discretization for the same input geometry, which is based on a marker and cell technique). This gives us he flexibility to test various solver methodologies on the same model setup, in terms of accuracy, speed, memory usage etc. Here, we will report on some features of LaMEM, on recent code additions, as well as on some lessons we learned which are important for modelling 3D lithospheric deformation. Specifically we will discuss: 1) How we combine a particle-and-cell method to make it work with both a finite difference and a (lagrangian, eulerian or ALE) finite element formulation, with only minor code modifications code 2) How finite difference and finite element discretizations compare in terms of

  9. Deformation limits of polymer coated metal sheets

    NARCIS (Netherlands)

    Van Den Bosch, M.J.W.J.P.; Schreurs, P.J.G; Geers, M.G.D.

    2005-01-01

    Polymer coated metals are increasingly used by the packaging and automotive industry. During industrial deformation processes (drawing, roll-forming, bending etc.) the polymer-metal laminate is highly deformed at high deformation rates. These forming conditions can affect the mechanical integrity

  10. Dialogical Interdetermination in Psychological Phenomenology of Education: an Example of Teachers’ Professional Deformation

    Directory of Open Access Journals (Sweden)

    Vladimir A. Yanchuk

    2017-09-01

    Full Text Available Introduction: a distinctive feature of modern psychological knowledge is an extreme degree of disintegration manifested in an infinite array of publications describing local fragments of the studied reality outside the context of integrity. Simultaneously, development of knowledge without its metatheoretical interpretation gives it a sporadic character and, consequently, restricts the optimal solutions. The author’s attempt to solve this urgent problem is presented in the framework of sociocultural-interdeterminist dialogical metatheory of integration of psychological knowledge. Methodological foundations with substantial characterisation of metatheory are described. A research objective is to present innovative and heuristic potential of the meta-approach demonstration illustrated through the teacher’s psychological anti-deforming model. Materials and Methods: the methodological basis of research is presented by the sociocultural interdeterminist dialogical approach to education phenomenology analysis which innovative potential is illustrated by the example of teacher’s personality deformation. System analysis, comparative method, systematisation and conceptualisation of scientific ideas, classification and typifications, research object and subject modeling were used during the study. Results: the foundations and innovative potential of the sociocultural-interdeterminist dialogical meta-approach to social phenomenology analysis are given a thorough account. The teacher’s personality professional deformation main criteria are given (authoritativeness, rigidity, self-perception non-criticality, role expansionism and pedagogical indifference, the personality deformation operational definition is formulated. The concept of psychological interdeterminants of professional deformation is introduced, the process of interdetermination of personality’s deformation phenomenon is revealed, that is: interdependence of per¬sonal, environmental

  11. Sea Ice Deformation State From Synthetic Aperture Radar Imagery - Part II: Effects of Spatial Resolution and Noise Level

    DEFF Research Database (Denmark)

    Dierking, Wolfgang; Dall, Jørgen

    2008-01-01

    C- and L-band airborne synthetic aperture radar (SAR) imagery acquired at like- and cross-polarization over sea ice under winter conditions is examined with the objective to study the discrimination between level ice and ice deformation features. High-resolution low-noise data were analysed...... in the first paper. In this second paper, the main topics are the effects of spatial resolution and signal-to-noise ratio. Airborne, high-resolution SAR scenes are used to generate a sequence of images with increasingly coarser spatial resolution from 5 m to 25 m, keeping the number of looks constant....... The signal-to-noise ratio is varied between typical noise levels for airborne imagery and satellite data. Areal fraction of deformed ice and average deformation distance are determined for each image product. At L-band, the retrieved values of the areal fraction get larger as the image resolution is degraded...

  12. Dealing with difficult deformations: Construction of a knowledge-based deformation atlas

    DEFF Research Database (Denmark)

    Thorup, Signe Strann; Darvann, T.A.; Hermann, N.V.

    2010-01-01

    from pre- to post-surgery using thin-plate spline warping. The registration results are convincing and represent a first move towards an automatic registration method for dealing with difficult deformations due to this type of surgery. New or breakthrough work to be presented: The method provides...... was needed. We have previously demonstrated that non-rigid registration using B-splines is able to provide automated determination of point correspondences in populations of infants without cleft lip. However, this type of registration fails when applied to the task of determining the complex deformation...

  13. From labyrinthine aplasia to otocyst deformity.

    Science.gov (United States)

    Giesemann, Anja Maria; Goetz, Friedrich; Neuburger, Jürgen; Lenarz, Thomas; Lanfermann, Heinrich

    2010-02-01

    Inner ear malformations (IEMs) are rare and it is unusual to encounter the rarest of them, namely labyrinthine aplasia (LA) and otocyst deformity. They do, however, provide useful pointers as to the early embryonic development of the ear. LA is characterised as a complete absence of inner ear structures. While some common findings do emerge, a clear definition of the otocyst deformity does not exist. It is often confused with the common cavity first described by Edward Cock. Our purpose was to radiologically characterise LA and otocyst deformity. Retrospective analysis of CT and MRI data from four patients with LA or otocyst deformity. Middle and inner ear findings were categorised by two neuroradiologists. The bony carotid canal was found to be absent in all patients. Posterior located cystic structures were found in association with LA and otocyst deformity. In the most severe cases, only soft tissue was present at the medial border of the middle ear cavity. The individuals with otocyst deformity also had hypoplasia of the petrous apex bone. These cases demonstrate gradual changes in the two most severe IEMs. Clarification of terms was necessary and, based on these findings, we propose defining otocyst deformity as a cystic structure in place of the inner ear, with the cochlea, IAC and carotid canal absent. This condition needs to be differentiated from the common cavity described by Edward Cook. A clear definition of inner ear malformations is essential if outcomes following cochlear implantation are to be compared.

  14. From labyrinthine aplasia to otocyst deformity

    International Nuclear Information System (INIS)

    Giesemann, Anja Maria; Goetz, Friedrich; Lanfermann, Heinrich; Neuburger, Juergen; Lenarz, Thomas

    2010-01-01

    Inner ear malformations (IEMs) are rare and it is unusual to encounter the rarest of them, namely labyrinthine aplasia (LA) and otocyst deformity. They do, however, provide useful pointers as to the early embryonic development of the ear. LA is characterised as a complete absence of inner ear structures. While some common findings do emerge, a clear definition of the otocyst deformity does not exist. It is often confused with the common cavity first described by Edward Cock. Our purpose was to radiologically characterise LA and otocyst deformity. Retrospective analysis of CT and MRI data from four patients with LA or otocyst deformity. Middle and inner ear findings were categorised by two neuroradiologists. The bony carotid canal was found to be absent in all patients. Posterior located cystic structures were found in association with LA and otocyst deformity. In the most severe cases, only soft tissue was present at the medial border of the middle ear cavity. The individuals with otocyst deformity also had hypoplasia of the petrous apex bone. These cases demonstrate gradual changes in the two most severe IEMs. Clarification of terms was necessary and, based on these findings, we propose defining otocyst deformity as a cystic structure in place of the inner ear, with the cochlea, IAC and carotid canal absent. This condition needs to be differentiated from the common cavity described by Edward Cook. A clear definition of inner ear malformations is essential if outcomes following cochlear implantation are to be compared. (orig.)

  15. The level of detail required in a deformable phantom to accurately perform quality assurance of deformable image registration

    Science.gov (United States)

    Saenz, Daniel L.; Kim, Hojin; Chen, Josephine; Stathakis, Sotirios; Kirby, Neil

    2016-09-01

    The primary purpose of the study was to determine how detailed deformable image registration (DIR) phantoms need to adequately simulate human anatomy and accurately assess the quality of DIR algorithms. In particular, how many distinct tissues are required in a phantom to simulate complex human anatomy? Pelvis and head-and-neck patient CT images were used for this study as virtual phantoms. Two data sets from each site were analyzed. The virtual phantoms were warped to create two pairs consisting of undeformed and deformed images. Otsu’s method was employed to create additional segmented image pairs of n distinct soft tissue CT number ranges (fat, muscle, etc). A realistic noise image was added to each image. Deformations were applied in MIM Software (MIM) and Velocity deformable multi-pass (DMP) and compared with the known warping. Images with more simulated tissue levels exhibit more contrast, enabling more accurate results. Deformation error (magnitude of the vector difference between known and predicted deformation) was used as a metric to evaluate how many CT number gray levels are needed for a phantom to serve as a realistic patient proxy. Stabilization of the mean deformation error was reached by three soft tissue levels for Velocity DMP and MIM, though MIM exhibited a persisting difference in accuracy between the discrete images and the unprocessed image pair. A minimum detail of three levels allows a realistic patient proxy for use with Velocity and MIM deformation algorithms.

  16. A Study on Distribution Measurement and Mechanism of Deformation due to Water Loss of Overburden Layer in Vertical Shaft

    Directory of Open Access Journals (Sweden)

    Chunde Piao

    2015-01-01

    Full Text Available Based on FBG fiber Bragg grating technology and BOTDA distributed optical fiber sensing technology, this study uses fine sand to simulate overburden layer in vertical shaft model equipment. It studies the placing technique and test method for optical fiber sensors in the overburden layer, combined with MODFLOW software to simulate the change of the water head value when the overburden layer is losing water, and obtains the deformation features of overburden layer. The results show, at the beginning of water loss, the vertical deformation increases due to larger hydraulic pressure drop, while the deformation decreases gradually and tends to be stable with the hydraulic pressure drop reducing. The circumferential deformation is closely related to such factors as the distance between each drainage outlet, the variations of water head value, and the method of drainage. The monitoring result based on optical fiber sensing technology is consistent with the characteristics of water loss in overburden layer simulated by MODFLOW software, which shows that the optical fiber sensing technology applied to monitor shaft overburden layer is feasible.

  17. Myocardial deformation assessed by longitudinal strain. Chamber specific normative data for CMR-feature tracking from the German competence network for congenital heart defects

    International Nuclear Information System (INIS)

    Shang, Quanliang; Patel, Shivani; Danford, David A.; Kutty, Shelby; Steinmetz, Michael; Schuster, Andreas; Beerbaum, Philipp; Sarikouch, Samir

    2018-01-01

    Left ventricular two-dimensional global longitudinal strain (LS) is superior to ejection fraction (EF) as predictor of outcome. We provide reference data for atrial and ventricular global LS during childhood and adolescence by CMR feature tracking (FT). We prospectively enrolled 115 healthy subjects (56 male, mean age 12.4 ± 4.1 years) at a single institution. CMR consisted of standard two-dimensional steady-state free-precession acquisitions. CMR-FT was performed on ventricular horizontal long-axis images for derivation of right and left atrial (RA, LA) and right and left ventricular (RV, LV) peak global LS. End-diastolic volumes (EDVs) and EF were measured. Correlations were explored for LS with age, EDV and EF of each chamber. Mean±SD of LS (%) for RA, RV, LA and LV were 26.56±10.2, -17.96±5.4, 26.45±10.6 and -17.47±5, respectively. There was a positive correlation of LS in LA, LV, RA and RV with corresponding EF (all P<0.05); correlations with age were weak. Gender-wise differences were not significant for atrial and ventricular LS, strain rate and displacement. Inter- and intra-observer comparisons showed moderate agreements. Chamber-specific nomograms for paediatric atrial and ventricular LS are provided to serve as clinical reference, and to facilitate CMR-based deformation research. (orig.)

  18. Myocardial deformation assessed by longitudinal strain. Chamber specific normative data for CMR-feature tracking from the German competence network for congenital heart defects

    Energy Technology Data Exchange (ETDEWEB)

    Shang, Quanliang [University of Nebraska College of Medicine, Children' s Hospital and Medical Center, Division of Pediatric Cardiology, Omaha, NE (United States); Central South University, Department of Radiology, Second Xiangya Hospital, Changsha, Hunan Province (China); Patel, Shivani; Danford, David A.; Kutty, Shelby [University of Nebraska College of Medicine, Children' s Hospital and Medical Center, Division of Pediatric Cardiology, Omaha, NE (United States); Steinmetz, Michael [Georg-August-University and German Centre for Cardiovascular Research (DZHK, Partner Site), Department of Paediatric Cardiology, Goettingen (Germany); Schuster, Andreas [Georg-August-University and German Centre for Cardiovascular Research (DZHK, Partner Site), Department of Cardiology and Pulmonology, Goettingen (Germany); Beerbaum, Philipp; Sarikouch, Samir [Hanover Medical School, Hanover (Germany)

    2018-03-15

    Left ventricular two-dimensional global longitudinal strain (LS) is superior to ejection fraction (EF) as predictor of outcome. We provide reference data for atrial and ventricular global LS during childhood and adolescence by CMR feature tracking (FT). We prospectively enrolled 115 healthy subjects (56 male, mean age 12.4 ± 4.1 years) at a single institution. CMR consisted of standard two-dimensional steady-state free-precession acquisitions. CMR-FT was performed on ventricular horizontal long-axis images for derivation of right and left atrial (RA, LA) and right and left ventricular (RV, LV) peak global LS. End-diastolic volumes (EDVs) and EF were measured. Correlations were explored for LS with age, EDV and EF of each chamber. Mean±SD of LS (%) for RA, RV, LA and LV were 26.56±10.2, -17.96±5.4, 26.45±10.6 and -17.47±5, respectively. There was a positive correlation of LS in LA, LV, RA and RV with corresponding EF (all P<0.05); correlations with age were weak. Gender-wise differences were not significant for atrial and ventricular LS, strain rate and displacement. Inter- and intra-observer comparisons showed moderate agreements. Chamber-specific nomograms for paediatric atrial and ventricular LS are provided to serve as clinical reference, and to facilitate CMR-based deformation research. (orig.)

  19. Effect of grain refinement by severe plastic deformation on the next-neighbor misorientation distribution

    International Nuclear Information System (INIS)

    Toth, L.S.; Beausir, B.; Gu, C.F.; Estrin, Y.; Scheerbaum, N.; Davies, C.H.J.

    2010-01-01

    Next-neighbor misorientation distributions (NNMD) in severely deformed polycrystalline materials are commonly measured by orientation imaging. A procedure is proposed which enables the separation of NNMD of ultrafine-grained materials into two parts: the distribution of misorientations between newly emerged grains within the original ('parent') grain interior ('internal daughter grains') and the distribution of misorientations between grains adjacent to an original grain boundary on its opposite sides ('grain boundary daughter grains'). The procedure is based on electron backscatter diffraction orientation map analyses carried out on different planes of deformed samples considering the evolution of the grain size and shape during severe plastic deformation. It was applied to copper processed by up to three passes of equal-channel angular pressing. A characteristic feature of the measured NNMD is the occurrence of a double peak, which is clearly due to the differences between the NNMD of the two distinct populations of new grains defined above. The peak at low angles represents mainly the continual grain subdivision process in the interior of a parent grain (and is associated with internal daughter grains), while the peak at large angles is due to the high angle misorientations of the grain boundary daughter grains.

  20. DISLOCATIONS STRUCTURE AND SCATTERING PHENOMENON IN CRYSTALLINE CELL SIZE OF 2024 AL ALLOY DEFORMED BY ONE PASS OF ECAP AT ROOM TEMPERATURE

    Directory of Open Access Journals (Sweden)

    M. H. Goodarzy

    2014-03-01

    Full Text Available Variation in microstructural features of 2024 aluminum alloy plastically deformed by equal channel angular pressing (ECAP at room temperature, was investigated by X-Ray diffraction in this work. These include dislocation density dislocation characteristic and the cell size of crystalline domains. Dislocations contrast factor was calculated using elastic constants of the alloy such as C 11, C 22 and C 44 . The effect of dislocations contrast factor on the anisotropic strain broadening of diffraction profiles was considered for measuring the microstructural features on the base of the modified Williamson-Hall and Warren-Averbach methods. Results showed that the dislocations density of the solution annealed sample increased from 4.28×10 12m-2 to 2.41×10 14m-2 after one pass of cold ECAP and the fraction of edge dislocations in the solution annealed sample increased from 43% to 74% after deformation. This means that deformation changed the overall dislocations characteristic more to edge dislocations. Also the crystalline cell size of the solution annealed sample decreased from 0.83μm to about 210nm after one pass of ECAP process at room temperature

  1. Deformations of symplectic Lie algebroids, deformations of holomorphic symplectic structures, and index theorems

    DEFF Research Database (Denmark)

    Nest, Ryszard; Tsygan, Boris

    2001-01-01

    Recently Kontsevich solved the classification problem for deformation quantizations of all Poisson structures on a manifold. In this paper we study those Poisson structures for which the explicit methods of Fedosov can be applied, namely the Poisson structures coming from symplectic Lie algebroids......, as well as holomorphic symplectic structures. For deformations of these structures we prove the classification theorems and a general a general index theorem....

  2. A Fast and Robust Feature-Based Scan-Matching Method in 3D SLAM and the Effect of Sampling Strategies

    Directory of Open Access Journals (Sweden)

    Cihan Ulas

    2013-11-01

    Full Text Available Simultaneous localization and mapping (SLAM plays an important role in fully autonomous systems when a GNSS (global navigation satellite system is not available. Studies in both 2D indoor and 3D outdoor SLAM are based on the appearance of environments and utilize scan-matching methods to find rigid body transformation parameters between two consecutive scans. In this study, a fast and robust scan-matching method based on feature extraction is introduced. Since the method is based on the matching of certain geometric structures, like plane segments, the outliers and noise in the point cloud are considerably eliminated. Therefore, the proposed scan-matching algorithm is more robust than conventional methods. Besides, the registration time and the number of iterations are significantly reduced, since the number of matching points is efficiently decreased. As a scan-matching framework, an improved version of the normal distribution transform (NDT is used. The probability density functions (PDFs of the reference scan are generated as in the traditional NDT, and the feature extraction - based on stochastic plane detection - is applied to the only input scan. By using experimental dataset belongs to an outdoor environment like a university campus, we obtained satisfactory performance results. Moreover, the feature extraction part of the algorithm is considered as a special sampling strategy for scan-matching and compared to other sampling strategies, such as random sampling and grid-based sampling, the latter of which is first used in the NDT. Thus, this study also shows the effect of the subsampling on the performance of the NDT.

  3. A time series deformation estimation in the NW Himalayas using SBAS InSAR technique

    Science.gov (United States)

    Kumar, V.; Venkataraman, G.

    2012-12-01

    A time series land deformation studies in north western Himalayan region has been presented in this study. Synthetic aperture radar (SAR) interferometry (InSAR) is an important tool for measuring the land displacement caused by different geological processes [1]. Frequent spatial and temporal decorrelation in the Himalayan region is a strong impediment in precise deformation estimation using conventional interferometric SAR approach. In such cases, advanced DInSAR approaches PSInSAR as well as Small base line subset (SBAS) can be used to estimate earth surface deformation. The SBAS technique [2] is a DInSAR approach which uses a twelve or more number of repeat SAR acquisitions in different combinations of a properly chosen data (subsets) for generation of DInSAR interferograms using two pass interferometric approach. Finally it leads to the generation of mean deformation velocity maps and displacement time series. Herein, SBAS algorithm has been used for time series deformation estimation in the NW Himalayan region. ENVISAT ASAR IS2 swath data from 2003 to 2008 have been used for quantifying slow deformation. Himalayan region is a very active tectonic belt and active orogeny play a significant role in land deformation process [3]. Geomorphology in the region is unique and reacts to the climate change adversely bringing with land slides and subsidence. Settlements on the hill slopes are prone to land slides, landslips, rockslides and soil creep. These hazardous features have hampered the over all progress of the region as they obstruct the roads and flow of traffic, break communication, block flowing water in stream and create temporary reservoirs and also bring down lot of soil cover and thus add enormous silt and gravel to the streams. It has been observed that average deformation varies from -30.0 mm/year to 10 mm/year in the NW Himalayan region . References [1] Massonnet, D., Feigl, K.L.,Rossi, M. and Adragna, F. (1994) Radar interferometry mapping of

  4. Frequency of foot deformity in preschool girls

    Directory of Open Access Journals (Sweden)

    Mihajlović Ilona

    2010-01-01

    Full Text Available Background/Aim. In order to determine the moment of creation of postural disorders, regardless of the causes of this problem, it is necessary to examine the moment of entry of children into a new environment, ie. in kindergarten or school. There is a weak evidence about the age period when foot deformity occurs, and the type of these deformities. The aim of this study was to establish the relationship between the occurrence of foot deformities and age characteristics of girls. Methods. The research was conducted in preschools 'Radosno detinjstvo' in the region of Novi Sad, using the method of random selection, on the sample of 272 girls, 4-7 years of age, classified into four strata according to the year of birth. To determine the foot deformities measurement technique using computerized digitized pedografy (CDP was applied. Results. In preschool population girls pes transversoplanus and calcanei valga deformities occurred in a very high percentage (over 90%. Disturbed longitudinal instep ie flat feet also appeared in a high percentage, but we noted the improvement of this deformity according to increasing age. Namely, there was a statistically significant correlation between the age and this deformity. As a child grows older, the deformity is lower. Conclusion. This study confirmed that the formation of foot arches probably does not end at the age of 3-4 years but lasts until school age.

  5. Versal deformation of the Lie algebra $L_2$

    NARCIS (Netherlands)

    Fialowski, A.; Post, Gerhard F.

    1999-01-01

    We investigate deformations of the infinite dimensional vector field Lie algebra spanned by the fields $e_i = z^{i+1}d/dz$, where $i \\ge 2 $. The goal is to describe the base of a ``versal'' deformation; such a versal deformation induces all the other nonequivalent deformations and solves the

  6. Cardiac fluid dynamics meets deformation imaging.

    Science.gov (United States)

    Dal Ferro, Matteo; Stolfo, Davide; De Paris, Valerio; Lesizza, Pierluigi; Korcova, Renata; Collia, Dario; Tonti, Giovanni; Sinagra, Gianfranco; Pedrizzetti, Gianni

    2018-02-20

    Cardiac function is about creating and sustaining blood in motion. This is achieved through a proper sequence of myocardial deformation whose final goal is that of creating flow. Deformation imaging provided valuable contributions to understanding cardiac mechanics; more recently, several studies evidenced the existence of an intimate relationship between cardiac function and intra-ventricular fluid dynamics. This paper summarizes the recent advances in cardiac flow evaluations, highlighting its relationship with heart wall mechanics assessed through the newest techniques of deformation imaging and finally providing an opinion of the most promising clinical perspectives of this emerging field. It will be shown how fluid dynamics can integrate volumetric and deformation assessments to provide a further level of knowledge of cardiac mechanics.

  7. Wind sock deformity in rectal atresia

    International Nuclear Information System (INIS)

    Hosseini, Seyed M V; Ghahramani, Farhad; Shamsaeefar, Alireza; Razmi, Tannaz; Zarenezhad, Mohammad

    2009-01-01

    Rectal atresia is a rare anorectal deformity. It usually presents with neonatal obstruction and it is often a complete membrane or severe stenosis. Windsock deformity has not been reported in rectal atresia especially, having been missed for 2 years. A 2-year-old girl reported only a severe constipation despite having a 1.5-cm anal canal in rectal examination with scanty discharge. She underwent loop colostomy and loopogram, which showed a wind sock deformity of rectum with mega colon. The patient underwent abdominoperineal pull-through with good result and follow-up. This is the first case of the wind sock deformity in rectal atresia being reported after 2 years of age. (author)

  8. Clinical features of symptomatic patellofemoral joint osteoarthritis

    Science.gov (United States)

    2012-01-01

    Introduction Patellofemoral joint osteoarthritis (OA) is common and leads to pain and disability. However, current classification criteria do not distinguish between patellofemoral and tibiofemoral joint OA. The objective of this study was to provide empirical evidence of the clinical features of patellofemoral joint OA (PFJOA) and to explore the potential for making a confident clinical diagnosis in the community setting. Methods This was a population-based cross-sectional study of 745 adults aged ≥50 years with knee pain. Information on risk factors and clinical signs and symptoms was gathered by a self-complete questionnaire, and standardised clinical interview and examination. Three radiographic views of the knee were obtained (weight-bearing semi-flexed posteroanterior, supine skyline and lateral) and individuals were classified into four subsets (no radiographic OA, isolated PFJOA, isolated tibiofemoral joint OA, combined patellofemoral/tibiofemoral joint OA) according to two different cut-offs: 'any OA' and 'moderate to severe OA'. A series of binary logistic and multinomial regression functions were performed to compare the clinical features of each subset and their ability in combination to discriminate PFJOA from other subsets. Results Distinctive clinical features of moderate to severe isolated PFJOA included a history of dramatic swelling, valgus deformity, markedly reduced quadriceps strength, and pain on patellofemoral joint compression. Mild isolated PFJOA was barely distinguished from no radiographic OA (AUC 0.71, 95% CI 0.66, 0.76) with only difficulty descending stairs and coarse crepitus marginally informative over age, sex and body mass index. Other cardinal signs of knee OA - the presence of effusion, bony enlargement, reduced flexion range of movement, mediolateral instability and varus deformity - were indicators of tibiofemoral joint OA. Conclusions Early isolated PFJOA is clinically manifest in symptoms and self-reported functional

  9. Effect of Deforming Temperature and Strain on Abnormal Grain Growth of Extruded FGH96 Superalloy

    Directory of Open Access Journals (Sweden)

    WANG Chaoyuan

    2016-10-01

    Full Text Available Based on the experiments of isothermal forging wedge-shaped samples, Deform-3D numerical simulation software was used to confirm the strain distribution in the wedge-shaped samples. The effect of deforming temperature and strain on abnormal grain growth(AGG in extruded FGH96 superalloy was examined. It is found that when the forging speed is 0.04 mm/s,the critical AGG occurring temperature is 1100℃,and the critical strain is 2%.AGG does not occur within 1000-1070℃,but still shows the feature of ‘critical strain’,and the region with strain of 5%-10% has the largest average grain size.AGG can be avoided and the uniform fine grains can be gained when the strain is not less than 15%.

  10. Smart Images Search based on Visual Features Fusion

    International Nuclear Information System (INIS)

    Saad, M.H.

    2013-01-01

    is more accurate in retrieving images even in distortion cases such as geometric deformations and noise. The third proposed approach uses a modified region-based segmentation scheme that provides efficient segmentation results and treats over segmentation problems. This approach segments an image to regions that work as local descriptors. This proposed approach integrates the global features vector, which is used in the first approach, with the segmented regions as local feature. A spatial graph is constructed from the segmented regions and a greedy graph matching algorithm is applied to determine the final image rank. The proposed approaches are tested on a standard image databases such as Wang and UCID databases. Also is tested on our deformed Wang image database. Finally, the third approach is tested on breast cancer images retrieved from mammographic image analysis society. Experimental work shows that the proposed approaches improve the precision and recall of retrieval results compared to other approaches reported in thesis

  11. Bilateral cleft lip nasal deformity

    Directory of Open Access Journals (Sweden)

    Singh Arun

    2009-01-01

    Full Text Available Bilateral cleft lip nose deformity is a multi-factorial and complex deformity which tends to aggravate with growth of the child, if not attended surgically. The goals of primary bilateral cleft lip nose surgery are, closure of the nasal floor and sill, lengthening of the columella, repositioning of the alar base, achieving nasal tip projection, repositioning of the lower lateral cartilages, and reorienting the nares from horizontal to oblique position. The multiplicity of procedures in the literature for correction of this deformity alludes to the fact that no single procedure is entirely effective. The timing for surgical intervention and its extent varies considerably. Early surgery on cartilage may adversely affect growth and development; at the same time, allowing the cartilage to grow in an abnormal position and contributing to aggravation of deformity. Some surgeons advocate correction of deformity at an early age. However, others like the cartilages to grow and mature before going in for surgery. With peer pressure also becoming an important consideration during the teens, the current trend is towards early intervention. There is no unanimity in the extent of nasal dissection to be done at the time of primary lip repair. While many perform limited nasal dissection for the fear of growth retardation, others opt for full cartilage correction at the time of primary surgery itself. The value of naso-alveolar moulding (NAM too is not universally accepted and has now more opponents than proponents. Also most centres in the developing world have neither the personnel nor the facilities for the same. The secondary cleft nasal deformity is variable and is affected by the extent of the original abnormality, any prior surgeries performed and alteration due to nasal growth. This article reviews the currently popular methods for correction of nasal deformity associated with bilateral cleft lip, it′s management both at the time of cleft lip repair

  12. Deformation twinning in irradiated ferritic/martensitic steels

    Science.gov (United States)

    Wang, K.; Dai, Y.; Spätig, P.

    2018-04-01

    Two different ferritic/martensitic steels were tensile tested to gain insight into the mechanisms of embrittlement induced by the combined effects of displacement damage and helium after proton/neutron irradiation in SINQ, the Swiss spallation neutron source. The irradiation conditions were in the range: 15.8-19.8 dpa (displacement per atom) with 1370-1750 appm He at 245-300 °C. All the samples fractured in brittle mode with intergranular or cleavage fracture surfaces when tested at room temperature (RT) or 300 °C. After tensile test, transmission electron microscopy (TEM) was employed to investigate the deformation microstructures. TEM-lamella samples were extracted directly below the intergranular fracture surfaces or cleavage surfaces by using the focused ion beam technique. Deformation twinning was observed in irradiated specimens at high irradiation dose. Only twins with {112} plane were observed in all of the samples. The average thickness of twins is about 40 nm. Twins initiated at the fracture surface, became gradually thinner with distance away from the fracture surface and finally stopped in the matrix. Novel features such as twin-precipitate interactions, twin-grain boundary and/or twin-lath boundary interactions were observed. Twinning bands were seen to be arrested by grain boundaries or large precipitates, but could penetrate martensitic lath boundaries. Unlike the case of defect free channels, small defect-clusters, dislocation loops and dense small helium bubbles were observed inside twins.

  13. Insights on fluid-rock interaction evolution during deformation from fracture network geochemistry at reservoir-scale

    Science.gov (United States)

    Beaudoin, Nicolas; Koehn, Daniel; Lacombe, Olivier; Bellahsen, Nicolas; Emmanuel, Laurent

    2015-04-01

    Fluid migration and fluid-rock interactions during deformation is a challenging problematic to picture. Numerous interplays, as between porosity-permeability creation and clogging, or evolution of the mechanical properties of rock, are key features when it comes to monitor reservoir evolution, or to better understand seismic cycle n the shallow crust. These phenomenoms are especially important in foreland basins, where various fluids can invade strata and efficiently react with limestones, altering their physical properties. Stable isotopes (O, C, Sr) measurements and fluid inclusion microthermometry of faults cement and veins cement lead to efficient reconstruction of the origin, temperature and migration pathways for fluids (i.e. fluid system) that precipitated during joints opening or faults activation. Such a toolbox can be used on a diffuse fracture network that testifies the local and/or regional deformation history experienced by the rock at reservoir-scale. This contribution underlines the advantages and limits of geochemical studies of diffuse fracture network at reservoir-scale by presenting results of fluid system reconstruction during deformation in folded structures from various thrust-belts, tectonic context and deformation history. We compare reconstructions of fluid-rock interaction evolution during post-deposition, post-burial growth of basement-involved folds in the Sevier-Laramide American Rocky Mountains foreland, a reconstruction of fluid-rock interaction evolution during syn-depostion shallow detachment folding in the Southern Pyrenean foreland, and a preliminary reconstruction of fluid-rock interactions in a post-deposition, post-burial development of a detachment fold in the Appenines. Beyond regional specification for the nature of fluids, a common behavior appears during deformation as in every fold, curvature-related joints (related either to folding or to foreland flexure) connected vertically the pre-existing stratified fluid system

  14. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  15. Local-Scale Simulations of Nucleate Boiling on Micrometer-Featured Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, Hariswaran [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dede, Ercan M. [Toyota Research Institute of North America; Joshi, Shailesh N. [Toyota Research Institute of North America; Zhou, Feng [Toyota Research Institute of North America

    2017-07-12

    A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulations pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.

  16. Shell effects in the nuclear deformation energy

    International Nuclear Information System (INIS)

    Ross, C.K.

    1973-01-01

    A new approach to shell effects in the Strutinsky method for calculating nuclear deformation energy is evaluated and the suggestion of non-conservation of angular momentum in the same method is resolved. Shell effects on the deformation energy in rotational bands of deformed nuclei are discussed. (B.F.G.)

  17. Infinitesimal deformations of a formal symplectic groupoid

    OpenAIRE

    Karabegov, Alexander

    2010-01-01

    Given a formal symplectic groupoid $G$ over a Poisson manifold $(M, \\pi_0)$, we define a new object, an infinitesimal deformation of $G$, which can be thought of as a formal symplectic groupoid over the manifold $M$ equipped with an infinitesimal deformation $\\pi_0 + \\epsilon \\pi_1$ of the Poisson bivector field $\\pi_0$. The source and target mappings of a deformation of $G$ are deformations of the source and target mappings of $G$. To any pair of natural star products $(\\ast, \\tilde\\ast)$ ha...

  18. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-04-15

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  19. Constitutive relationships for elastic deformation of clay rock: Data Analysis

    International Nuclear Information System (INIS)

    Liu, H.H.; Rutqvist, J.; Birkholzer, J.T.

    2011-01-01

    Geological repositories have been considered a feasible option worldwide for storing high-level nuclear waste. Clay rock is one of the rock types under consideration for such purposes, because of its favorable features to prevent radionuclide transport from the repository. Coupled hydromechanical processes have an important impact on the performance of a clay repository, and establishing constitutive relationships for modeling such processes are essential. In this study, we propose several constitutive relationships for elastic deformation in indurated clay rocks based on three recently developed concepts. First, when applying Hooke's law in clay rocks, true strain (rock volume change divided by the current rock volume), rather than engineering strain (rock volume change divided by unstressed rock volume), should be used, except when the degree of deformation is very small. In the latter case, the two strains will be practically identical. Second, because of its inherent heterogeneity, clay rock can be divided into two parts, a hard part and a soft part, with the hard part subject to a relatively small degree of deformation compared with the soft part. Third, for swelling rock like clay, effective stress needs to be generalized to include an additional term resulting from the swelling process. To evaluate our theoretical development, we analyze uniaxial test data for core samples of Opalinus clay and laboratory measurements of single fractures within macro-cracked Callovo-Oxfordian argillite samples subject to both confinement and water reduced swelling. The results from this evaluation indicate that our constitutive relationships can adequately represent the data and explain the related observations.

  20. Hot Deformation Behavior of SA508Gr.4N Steel for Reactor Pressure Vessels

    Directory of Open Access Journals (Sweden)

    YANG Zhi-qiang

    2017-08-01

    Full Text Available The high-temperature plastic deformation and dynamic recrystallization behavior of SA508Gr.4N steel were investigated through hot deformation tests in a Gleeble1500D thermal mechanical simulator. The compression tests were performed in the temperature range of 1050-1250℃ and the strain rate range of 0.001-0.1s-1 with true strain of 0.16. The results show that from the high-temperature true stress-strain curves of the SA508Gr.4N steel, the main feature is dynamic recrystallization,and the peak stress increases with the decrease of deformation temperature or the increase of strain rate, indicating the experimental steel is temperature and strain rate sensitive material. The constitutive equation for SA508Gr.4N steel is established on the basis of the true stress-strain curves, and exhibits the characteristics of the high-temperature flow behavior quite well, while the activation energy of the steel is determined to be 383.862kJ/mol. Furthermore, an inflection point is found in the θ-σ curve, while the -dθ/dσ-σ curve shows a minimum value. The critical strain increases with increasing strain rate and decreasing deformation temperature. A linear relationship between critical strain (εc and peak strain (εp is found and could be expressed as εc/εp=0.517. The predicted model of critical strain could be described as εc=8.57×10-4Z0.148.

  1. Vertical deformation associated with normal fault systems evolved over coseismic, postseismic, and multiseismic periods

    Science.gov (United States)

    Thompson, George A.; Parsons, Thomas E.

    2016-01-01

    Vertical deformation of extensional provinces varies significantly and in seemingly contradictory ways. Sparse but robust geodetic, seismic, and geologic observations in the Basin and Range province of the western United States indicate that immediately after an earthquake, vertical change primarily occurs as subsidence of the normal fault hanging wall. A few decades later, a ±100 km wide zone is symmetrically uplifted. The preserved topography of long-term rifting shows bent and tilted footwall flanks rising high above deep basins. We develop finite element models subjected to extensional and gravitational forces to study time-varying deformation associated with normal faulting. We replicate observations with a model that has a weak upper mantle overlain by a stronger lower crust and a breakable elastic upper crust. A 60° dipping normal fault cuts through the upper crust and extends through the lower crust to simulate an underlying shear zone. Stretching the model under gravity demonstrates that asymmetric slip via collapse of the hanging wall is a natural consequence of coseismic deformation. Focused flow in the upper mantle imposed by deformation of the lower crust localizes uplift under the footwall; the breakable upper crust is a necessary model feature to replicate footwall bending over the observed width ( topographic signature of rifting is expected to occur early in the postseismic period. The relatively stronger lower crust in our models is necessary to replicate broader postseismic uplift that is observed geodetically in subsequent decades.

  2. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse the s...... a single central section of the object. We use maximum-likelihood-based inference for this purpose and demonstrate the suggested methods on real data....

  3. Simultaneous correction of large low-order and high-order aberrations with a new deformable mirror technology

    Science.gov (United States)

    Rooms, F.; Camet, S.; Curis, J. F.

    2010-02-01

    A new technology of deformable mirror will be presented. Based on magnetic actuators, these deformable mirrors feature record strokes (more than +/- 45μm of astigmatism and focus correction) with an optimized temporal behavior. Furthermore, the development has been made in order to have a large density of actuators within a small clear aperture (typically 52 actuators within a diameter of 9.0mm). We will present the key benefits of this technology for vision science: simultaneous correction of low and high order aberrations, AO-SLO image without artifacts due to the membrane vibration, optimized control, etc. Using recent papers published by Doble, Thibos and Miller, we show the performances that can be achieved by various configurations using statistical approach. The typical distribution of wavefront aberrations (both the low order aberration (LOA) and high order aberration (HOA)) have been computed and the correction applied by the mirror. We compare two configurations of deformable mirrors (52 and 97 actuators) and highlight the influence of the number of actuators on the fitting error, the photon noise error and the effective bandwidth of correction.

  4. Determination of the activation energy of A-center in the uniaxially deformed n-Ge single crystals

    Directory of Open Access Journals (Sweden)

    S. V. Luniov

    2017-08-01

    Full Text Available Based on the decisions of electroneutrality equation and experimental results of measurements of the piezo-Hall-effect the dependences of activation energy of the deep level A-center depending on the uniaxial pressure along the crystallographic directions [100], [110] and [111] for n-Ge single crystals, irradiated by the electrons with energy 10 MeV are obtained. Using the method of least squares approximational polynomials for the calculation of these dependences are obtained. It is shown that the activation energy of A-center deep level decreases linearly for the entire range of uniaxial pressure along the crystallographic direction [100]. For the cases of uniaxial deformation along the crystallographic directions [110] and [111] decrease of the activation energy according to the linear law is observed only at high uniaxial pressures, when the A-center deep level interacts with the minima of the germanium conduction band, which proved the lower at the deformation. The various dependences of the activation energy of A-center depending on the orientation of the axis of deformation may be connected with features of its microstructure.

  5. A q-deformed Lorentz algebra

    International Nuclear Information System (INIS)

    Schmidke, W.B.; Wess, J.; Muenchen Univ.; Zumino, B.; Lawrence Berkeley Lab., CA

    1991-01-01

    We derive a q-deformed version of the Lorentz algebra by deformating the algebra SL(2, C). The method is based on linear representations of the algebra on the complex quantum spinor space. We find that the generators usually identified with SL q (2, C) generate SU q (2) only. Four additional generators are added which generate Lorentz boosts. The full algebra of all seven generators and their coproduct is presented. We show that in the limit q→1 the generators are those of the classical Lorentz algebra plus an additional U(1). Thus we have a deformation of SL(2, C)xU(1). (orig.)

  6. Q-deformed algebras and many-body physics

    Energy Technology Data Exchange (ETDEWEB)

    Galetti, D; Lunardi, J T; Pimentel, B M [Instituto de Fisica Teorica (IFT), Sao Paulo, SP (Brazil); Lima, C L [Sao Paulo Univ., SP (Brazil). Inst. de Fisica

    1995-11-01

    A review is presented of some applications of q-deformed algebras to many-body systems. The rotational and pairing nuclear problems will be discussed in the context of q-deformed algebras, before presenting a more microscopically based application of q-deformed concepts to many-fermion systems. (author). 30 refs., 5 figs.

  7. Exactly marginal deformations from exceptional generalised geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ashmore, Anthony [Merton College, University of Oxford,Merton Street, Oxford, OX1 4JD (United Kingdom); Mathematical Institute, University of Oxford,Andrew Wiles Building, Woodstock Road, Oxford, OX2 6GG (United Kingdom); Gabella, Maxime [Institute for Advanced Study,Einstein Drive, Princeton, NJ 08540 (United States); Graña, Mariana [Institut de Physique Théorique, CEA/Saclay,91191 Gif-sur-Yvette (France); Petrini, Michela [Sorbonne Université, UPMC Paris 05, UMR 7589, LPTHE,75005 Paris (France); Waldram, Daniel [Department of Physics, Imperial College London,Prince Consort Road, London, SW7 2AZ (United Kingdom)

    2017-01-27

    We apply exceptional generalised geometry to the study of exactly marginal deformations of N=1 SCFTs that are dual to generic AdS{sub 5} flux backgrounds in type IIB or eleven-dimensional supergravity. In the gauge theory, marginal deformations are parametrised by the space of chiral primary operators of conformal dimension three, while exactly marginal deformations correspond to quotienting this space by the complexified global symmetry group. We show how the supergravity analysis gives a geometric interpretation of the gauge theory results. The marginal deformations arise from deformations of generalised structures that solve moment maps for the generalised diffeomorphism group and have the correct charge under the generalised Reeb vector, generating the R-symmetry. If this is the only symmetry of the background, all marginal deformations are exactly marginal. If the background possesses extra isometries, there are obstructions that come from fixed points of the moment maps. The exactly marginal deformations are then given by a further quotient by these extra isometries. Our analysis holds for any N=2 AdS{sub 5} flux background. Focussing on the particular case of type IIB Sasaki-Einstein backgrounds we recover the result that marginal deformations correspond to perturbing the solution by three-form flux at first order. In various explicit examples, we show that our expression for the three-form flux matches those in the literature and the obstruction conditions match the one-loop beta functions of the dual SCFT.

  8. SPECIFIC FEATURES OF DEFORMATION OF THE CONTINENTAL AND OCEANIC LITHOSPHERE AS A RESULT OF THE EARTH CORE NORTHERN DRIFT

    Directory of Open Access Journals (Sweden)

    Mikhail A. Goncharov

    2012-01-01

    Full Text Available Drifting and submeridional compression of the continental and oceanic lithosphere, both with the northward vector (Figure 1 are revealed at the background of various directions of horizontal displacement combined with deformations of horizontal extension, compression and shear of the lithosphere (Figures 7–14. Among various structural forms and their paragenezises, indicators of such compression, the north vergence thrusts play the leading role (Figures 15–17, 19, and 22–24. This process was discontinuous, manifested discretely in time, and superimposed on processes of collisional orogenesis and platform deformations of the continental lithosphere and accretion of the oceanic lithosphere in spreading zones. Three main stages of submeridional compression of the oceanic lithosphere are distinguished as follows: Late Jurassic-Late Cretaceous, Late Miocene, and the contemporary stages.Based on the concept of balanced tectonic flow in the Earth’s body, a model of meridional convection (Figure 25 is proposed. In this case, meridional convection is considered as an integral element of the overglobal convective geodynamic system of the largest-scale rank, which also includes the western component of the lithosphere drift (Figure 6 and the Earth’s ‘wrenching’. At the background of this system, geodynamic systems of smaller scale ranks are functioning (Table 1; Figures 2, and 3. The latters are responsible for the periodic creation and break-up of supercontinents, plate tectonics and regional geodynamical processes; they also produce the ‘structural background’, in the presence of which it is challenging to reveal the above mentioned submeridional compression structures. Formation of such structures is caused by the upper horizontal flow of meridional convection.Meridional convection occurs due to drifting of the Earth core towards the North Pole (which is detected by a number of independent methods and resistance of the mantle to

  9. Deformed configurations, band structures and spectroscopic ...

    Indian Academy of Sciences (India)

    2014-03-20

    Mar 20, 2014 ... Our study gives insight into possible deformed structures at spherical shell closure. ... Considerable experimental and theoretical efforts ... True deformation effects can be seen only by considering configuration mixing.

  10. Two-component feedback loops and deformed mechanics

    International Nuclear Information System (INIS)

    Tourigny, David S.

    2015-01-01

    It is shown that a general two-component feedback loop can be viewed as a deformed Hamiltonian system. Some of the implications of using ideas from theoretical physics to study biological processes are discussed. - Highlights: • Two-component molecular feedback loops are viewed as q-deformed Hamiltonian systems. • Deformations are reversed using Jackson derivatives to take advantage of working in the Hamiltonian limit. • New results are derived for the particular examples considered. • General deformations are suggested to be associated with a broader class of biological processes

  11. Time-series analysis of surface deformation at Brady Hot Springs geothermal field (Nevada) using interferometric synthetic aperture radar

    Energy Technology Data Exchange (ETDEWEB)

    Ali, S. T. [Univ. of Wisconsin, Madison, WI (United States); Akerley, J. [Ormat Technologies Inc., Reno, NV (United States); Baluyut, E. C. [Univ. of Wisconsin, Madison, WI (United States); Cardiff, M. [Univ. of Wisconsin, Madison, WI (United States); Davatzes, N. C. [Temple Univ., Philadelphia, PA (United States). Dept. of Earth and Environmental Science; Feigl, K. L. [Univ. of Wisconsin, Madison, WI (United States); Foxall, W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fratta, D. [Univ. of Wisconsin, Madison, WI (United States); Mellors, R. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spielman, P. [Ormat Technologies Inc., Reno, NV (United States); Wang, H. F. [Univ. of Wisconsin, Madison, WI (United States); Zemach, E. [Ormat Technologies Inc., Reno, NV (United States)

    2016-05-01

    We analyze interferometric synthetic aperture radar (InSAR) data acquired between 2004 and 2014, by the ERS-2, Envisat, ALOS and TerraSAR-X/TanDEM-X satellite missions to measure and characterize time-dependent deformation at the Brady Hot Springs geothermal field in western Nevada due to extraction of fluids. The long axis of the ~4 km by ~1.5 km elliptical subsiding area coincides with the strike of the dominant normal fault system at Brady. Within this bowl of subsidence, the interference pattern shows several smaller features with length scales of the order of ~1 km. This signature occurs consistently in all of the well-correlated interferometric pairs spanning several months. Results from inverse modeling suggest that the deformation is a result of volumetric contraction in shallow units, no deeper than 600 m, likely associated with damaged regions where fault segments mechanically interact. Such damaged zones are expected to extend downward along steeply dipping fault planes, providing a high permeability conduit to the production wells. Using time series analysis, we test the hypothesis that geothermal production drives the observed deformation. We find a good correlation between the observed deformation rate and the rate of production in the shallow wells. We also explore mechanisms that could potentially cause the observed deformation, including thermal contraction of rock, decline in pore pressure and dissolution of minerals over time.

  12. Improving anatomical mapping of complexly deformed anatomy for external beam radiotherapy and brachytherapy dose accumulation in cervical cancer

    International Nuclear Information System (INIS)

    Vásquez Osorio, Eliana M.; Kolkman-Deurloo, Inger-Karine K.; Schuring-Pereira, Monica; Zolnay, András; Heijmen, Ben J. M.; Hoogeman, Mischa S.

    2015-01-01

    Purpose: In the treatment of cervical cancer, large anatomical deformations, caused by, e.g., tumor shrinkage, bladder and rectum filling changes, organ sliding, and the presence of the brachytherapy (BT) applicator, prohibit the accumulation of external beam radiotherapy (EBRT) and BT dose distributions. This work proposes a structure-wise registration with vector field integration (SW+VF) to map the largely deformed anatomies between EBRT and BT, paving the way for 3D dose accumulation between EBRT and BT. Methods: T2w-MRIs acquired before EBRT and as a part of the MRI-guided BT procedure for 12 cervical cancer patients, along with the manual delineations of the bladder, cervix-uterus, and rectum-sigmoid, were used for this study. A rigid transformation was used to align the bony anatomy in the MRIs. The proposed SW+VF method starts by automatically segmenting features in the area surrounding the delineated organs. Then, each organ and feature pair is registered independently using a feature-based nonrigid registration algorithm developed in-house. Additionally, a background transformation is calculated to account for areas far from all organs and features. In order to obtain one transformation that can be used for dose accumulation, the organ-based, feature-based, and the background transformations are combined into one vector field using a weighted sum, where the contribution of each transformation can be directly controlled by its extent of influence (scope size). The optimal scope sizes for organ-based and feature-based transformations were found by an exhaustive analysis. The anatomical correctness of the mapping was independently validated by measuring the residual distances after transformation for delineated structures inside the cervix-uterus (inner anatomical correctness), and for anatomical landmarks outside the organs in the surrounding region (outer anatomical correctness). The results of the proposed method were compared with the results of the

  13. Improving anatomical mapping of complexly deformed anatomy for external beam radiotherapy and brachytherapy dose accumulation in cervical cancer

    Energy Technology Data Exchange (ETDEWEB)

    Vásquez Osorio, Eliana M., E-mail: e.vasquezosorio@erasmusmc.nl; Kolkman-Deurloo, Inger-Karine K.; Schuring-Pereira, Monica; Zolnay, András; Heijmen, Ben J. M.; Hoogeman, Mischa S. [Department of Radiation Oncology, Erasmus MC Cancer Institute, Rotterdam 3075 (Netherlands)

    2015-01-15

    Purpose: In the treatment of cervical cancer, large anatomical deformations, caused by, e.g., tumor shrinkage, bladder and rectum filling changes, organ sliding, and the presence of the brachytherapy (BT) applicator, prohibit the accumulation of external beam radiotherapy (EBRT) and BT dose distributions. This work proposes a structure-wise registration with vector field integration (SW+VF) to map the largely deformed anatomies between EBRT and BT, paving the way for 3D dose accumulation between EBRT and BT. Methods: T2w-MRIs acquired before EBRT and as a part of the MRI-guided BT procedure for 12 cervical cancer patients, along with the manual delineations of the bladder, cervix-uterus, and rectum-sigmoid, were used for this study. A rigid transformation was used to align the bony anatomy in the MRIs. The proposed SW+VF method starts by automatically segmenting features in the area surrounding the delineated organs. Then, each organ and feature pair is registered independently using a feature-based nonrigid registration algorithm developed in-house. Additionally, a background transformation is calculated to account for areas far from all organs and features. In order to obtain one transformation that can be used for dose accumulation, the organ-based, feature-based, and the background transformations are combined into one vector field using a weighted sum, where the contribution of each transformation can be directly controlled by its extent of influence (scope size). The optimal scope sizes for organ-based and feature-based transformations were found by an exhaustive analysis. The anatomical correctness of the mapping was independently validated by measuring the residual distances after transformation for delineated structures inside the cervix-uterus (inner anatomical correctness), and for anatomical landmarks outside the organs in the surrounding region (outer anatomical correctness). The results of the proposed method were compared with the results of the

  14. Laser-ranging scanning system to observe topographical deformations of volcanoes.

    Science.gov (United States)

    Aoki, T; Takabe, M; Mizutani, K; Itabe, T

    1997-02-20

    We have developed a laser-ranging system to observe the topographical structure of volcanoes. This system can be used to measure the distance to a target by a laser and shows the three-dimensional topographical structure of a volcano with an accuracy of 30 cm. This accuracy is greater than that of a typical laser-ranging system that uses a corner-cube reflector as a target because the reflected light jitters as a result of inclination and unevenness of the target ground surface. However, this laser-ranging system is useful for detecting deformations of topographical features in which placement of a reflector is difficult, such as in volcanic regions.

  15. Plastic Deformation of Pressured Metallic Glass

    Directory of Open Access Journals (Sweden)

    Yun Cheng

    2017-11-01

    Full Text Available Although pressured metallic glass (MG has been reported in the literature; there are few studies focusing on pressure effects on the structure; dynamics and its plastic deformation. In this paper; we report on and characterize; via molecular dynamics simulation, the structure and dynamics heterogeneity of pressured MGs, and explore a causal link between local structures and plastic deformation mechanism of pressured glass. The results exhibit that the dynamical heterogeneity of metallic liquid is more pronounced at high pressure, while the MGs were less fragile after the release of external pressure, reflected by the non-Gaussian parameter (NGP. High pressure glass shows better plastic deformation; and the local strain zone distributed more uniformly than of in normal glass. Further research indicates that although the number of icosahedrons in pressured glass was much larger than that in normal glass, while the interpenetrating connections of icosahedra (ICOI exhibited spatial correlations were rather poor; In addition, the number of ‘fast’ atoms indexed by the atoms’ moving distance is larger than that in normal glass; leading to the sharp decreasing in number of icosahedrons during deformation. An uniform distribution of ‘fast’ atoms also contributed to better plastic deformation ability in the pressured glass. These findings may suggest a link between the deformation and destruction of icosahedra with short-range order.

  16. Deformable Organic Nanowire Field-Effect Transistors.

    Science.gov (United States)

    Lee, Yeongjun; Oh, Jin Young; Kim, Taeho Roy; Gu, Xiaodan; Kim, Yeongin; Wang, Ging-Ji Nathan; Wu, Hung-Chin; Pfattner, Raphael; To, John W F; Katsumata, Toru; Son, Donghee; Kang, Jiheong; Matthews, James R; Niu, Weijun; He, Mingqian; Sinclair, Robert; Cui, Yi; Tok, Jeffery B-H; Lee, Tae-Woo; Bao, Zhenan

    2018-02-01

    Deformable electronic devices that are impervious to mechanical influence when mounted on surfaces of dynamically changing soft matters have great potential for next-generation implantable bioelectronic devices. Here, deformable field-effect transistors (FETs) composed of single organic nanowires (NWs) as the semiconductor are presented. The NWs are composed of fused thiophene diketopyrrolopyrrole based polymer semiconductor and high-molecular-weight polyethylene oxide as both the molecular binder and deformability enhancer. The obtained transistors show high field-effect mobility >8 cm 2 V -1 s -1 with poly(vinylidenefluoride-co-trifluoroethylene) polymer dielectric and can easily be deformed by applied strains (both 100% tensile and compressive strains). The electrical reliability and mechanical durability of the NWs can be significantly enhanced by forming serpentine-like structures of the NWs. Remarkably, the fully deformable NW FETs withstand 3D volume changes (>1700% and reverting back to original state) of a rubber balloon with constant current output, on the surface of which it is attached. The deformable transistors can robustly operate without noticeable degradation on a mechanically dynamic soft matter surface, e.g., a pulsating balloon (pulse rate: 40 min -1 (0.67 Hz) and 40% volume expansion) that mimics a beating heart, which underscores its potential for future biomedical applications. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Deformation mechanisms in cyclic creep and fatigue

    International Nuclear Information System (INIS)

    Laird, C.

    1979-01-01

    Service conditions in which static and cyclic loading occur in conjunction are numerous. It is argued that an understanding of cyclic creep and cyclic deformation are necessary both for design and for understanding creep-fatigue fracture. Accordingly a brief, and selective, review of cyclic creep and cyclic deformation at both low and high strain amplitudes is provided. Cyclic loading in conjunction with static loading can lead to creep retardation if cyclic hardening occurs, or creep acceleration if softening occurs. Low strain amplitude cyclic deformation is understood in terms of dislocation loop patch and persistent slip band behavior, high strain deformation in terms of dislocation cell-shuttling models. While interesting advances in these fields have been made in the last few years, the deformation mechanisms are generally poorly understood

  18. Deep PDF parsing to extract features for detecting embedded malware.

    Energy Technology Data Exchange (ETDEWEB)

    Munson, Miles Arthur; Cross, Jesse S. (Missouri University of Science and Technology, Rolla, MO)

    2011-09-01

    The number of PDF files with embedded malicious code has risen significantly in the past few years. This is due to the portability of the file format, the ways Adobe Reader recovers from corrupt PDF files, the addition of many multimedia and scripting extensions to the file format, and many format properties the malware author may use to disguise the presence of malware. Current research focuses on executable, MS Office, and HTML formats. In this paper, several features and properties of PDF Files are identified. Features are extracted using an instrumented open source PDF viewer. The feature descriptions of benign and malicious PDFs can be used to construct a machine learning model for detecting possible malware in future PDF files. The detection rate of PDF malware by current antivirus software is very low. A PDF file is easy to edit and manipulate because it is a text format, providing a low barrier to malware authors. Analyzing PDF files for malware is nonetheless difficult because of (a) the complexity of the formatting language, (b) the parsing idiosyncrasies in Adobe Reader, and (c) undocumented correction techniques employed in Adobe Reader. In May 2011, Esparza demonstrated that PDF malware could be hidden from 42 of 43 antivirus packages by combining multiple obfuscation techniques [4]. One reason current antivirus software fails is the ease of varying byte sequences in PDF malware, thereby rendering conventional signature-based virus detection useless. The compression and encryption functions produce sequences of bytes that are each functions of multiple input bytes. As a result, padding the malware payload with some whitespace before compression/encryption can change many of the bytes in the final payload. In this study we analyzed a corpus of 2591 benign and 87 malicious PDF files. While this corpus is admittedly small, it allowed us to test a system for collecting indicators of embedded PDF malware. We will call these indicators features throughout

  19. On exotic supersymmetries of the φ1,3 deformation of minimal models

    International Nuclear Information System (INIS)

    Kadiri, A.; Saidi, E.H.; Zerouaoui, S.J.; Sedra, M.B.

    1994-07-01

    Using algebraic and field theoretical methods, we study the fractional spin symmetries of the φ 1,3 deformation of minimal models. The particular example of the D=2 three state tricritical Potts model is examined in detail. Various models based on subalgebras and appropriate discrete automorphism groups of the two dimensional fractional spin algebra are obtained. General features such as superspace and superfield representations, the U q (sl 2 ) symmetry, the spontaneous exotic supersymmetry breaking, relations with the N=2 Landau Ginzburg models as well as other things are discussed. (author). 24 refs

  20. How deformation enhances mobility in a polymer glass

    Science.gov (United States)

    Lacks, Daniel

    2013-03-01

    Recent experiments show that deformation of a polymer glass can lead to orders-of-magnitude enhancement in the atomic level dynamics. To determine why this change in dynamics occurs, we carry out molecular dynamics simulations and energy landscape analyses. The simulations address the coarse-grained polystyrene model of Kremer and co-workers, and the dynamics, as quantified by the van Hove function, are examined as the glass undergoes shear deformation. In agreement with experiment, the simulations find that deformation enhances the atomic mobility. The enhanced mobility is shown to arise from two mechanisms: First, active deformation continually reduces barriers for hopping events, and the importance of this mechanism is modulated by the rate of thermally activated transitions between adjacent energy minima. Second, deformation moves the system to higher-energy regions of the energy landscape, characterized by lower barriers. Both mechanisms enhance the dynamics during deformation, and the second mechanism is also relevant after deformation has ceased.

  1. An experimental study of deformation mechanism and microstructure evolution during hot deformation of Ti–6Al–2Zr–1Mo–1V alloy

    International Nuclear Information System (INIS)

    He, D.; Zhu, J.C.; Lai, Z.H.; Liu, Y.; Yang, X.W.

    2013-01-01

    Highlights: ► Isothermal tensile deformations were carried on Ti–6Al–2Zr–1Mo–1V titanium alloy. ► Deformation activations were calculated based on kinetics rate equations. ► Deformation mechanisms are dislocation creep and self-diffusion at 800 and 850 °C. ► Microstructure globularization mechanisms varied with deformation temperature. ► Recrystallization mechanism changed from CDRX to DDRX as temperature increasing. - Abstract: Isothermal tensile tests have been performed to study the deformation mechanisms and microstructure evolution of Ti–6Al–2Zr–1Mo–1V titanium alloy in the temperature range 750–850 °C and strain rate range 0.001–0.1 s −1 . The deformation activations have been calculated based on kinetics rate equation to investigate the hot deformation mechanism. Microstructures of deformed samples have been analyzed by electron backscatter diffraction (EBSD) to evaluate the influences of hot deformation parameters on the microstructure evolution and recrystallization mechanism. The results indicate that deformation mechanisms vary with deformation conditions: at medium (800 °C) and high (850 °C) temperature, the deformation is mainly controlled by the mechanisms of dislocation creep and self-diffusion, respectively. The microstructure globularization mechanisms also depend on deformation temperature: in the temperature range from 750 to 800 °C, the high angle grain boundaries are mainly formed via dislocation accumulation or subgrain boundaries sliding and subgrains rotation; while at high temperature of 850 °C, recrystallization is the dominant mechanism. Especially, the evolution of the recrystallization mechanism with the deformation temperature is first observed and investigated in TA15 titanium alloy

  2. Mechanisms of deformation and of recrystallization of imperfect uranium monocrystals; Les mecanismes de deformation et de recristallisation des monocristaux imparfaits d'uranium

    Energy Technology Data Exchange (ETDEWEB)

    Calais, D [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1960-04-15

    The various means by which plastic deformations by slip, twinning or kinking are produced by tension of imperfect {alpha} uranium single crystals prepared by a {beta} {yields} {alpha} phase change, have been studied by X-rays and micrographic examination. Depending on the crystallographic orientation with respect to the direction of the applied tension, and depending on the magnitude of the change in length, the crystals are deformed either preferentially according to a single mechanism, for example twinning, or simultaneously according to two or three mechanisms. The results of a subsequent annealing of the deformed single in the {alpha} phase are studied with respect to the deformation mechanisms. In the case of a deformation due primarily to (010) [100], (011) [100] or (110) [001] sliding, there occurs recrystallization by crystal growth selectivity. If the deformation occurs via deformation bands, there is recrystallization by 'oriented nucleation'. The crystals deformed preponderantly by twinning give on recrystallization perfect crystals having optimum dimensions and having orientational characteristics closely related to those of the original crystal. Finally are discussed some criteria relating to the geometry and the dynamics with a view to explaining the occurrence of such and such a deformation mechanism of a single crystal with a given orientation. This study, in conclusion, must help to define the best conditions (crystalline orientation and process of deformation) which will promote the growth of large, perfect, single crystals. (author) [French] Les divers modes de deformation plastique, glissement, maclage et pliage, que provoque la traction de monocristaux d'uranium {alpha} imparfaits prepares par changement de phase {beta} {yields} {alpha} ont ete etudies par rayons X et par examen micrographique. Suivant l'orientation cristallographique par rapport a la direction de l'axe de traction et suivant l'importance de l'allongement, les monocristaux se

  3. Austenite strengthening and softening during hot deformation

    International Nuclear Information System (INIS)

    Tushinskij, L.I.; Vlasov, V.S.; Kazimirova, I.E.; Tokarev, A.O.

    1981-01-01

    Processes of formation of austenite structure of 20 and 12Kh18N10T steels during hot deformation and postdeformation isothermal holdings have been investigated by the methods of analysis of curves of hot deformation, high-temperature metallography and light microscopy. Deformation has been exercised by extention in vacuum with average 4x10 -2 s -1 rate. Deformation temperatures of steel 20 are 930 and 1000 deg C, of steel 12Kh18N10T - 1100 deg C. It is stated that dynamic recrystallization takes place in both investigated steels during hot deformation. In the carbonic steel it is developed by shifting sections of high-angular boundaries, flow stress in this case remains constant. Recrystallization is developed by subgrain coalescence in austenite steel, that brings about preservation of increased defect density in recrystallized volumes. As a result strengthening of steel is continued up to fracture during the increase of the deformation degree. Postdeformation weakening of 12Kh18N10T steel is slowed down as compared with weakening of carbonic steel [ru

  4. 3D geodetic monitoring slope deformations

    Directory of Open Access Journals (Sweden)

    Weiss Gabriel

    1996-06-01

    Full Text Available For plenty of slope failures that can be found in Slovakia is necessary and very important their geodetic monitoring (because of their activity, reactivisations, checks. The paper gives new methodologies for these works, using 3D terrestrial survey technologies for measurements in convenient deformation networks. The design of an optimal type of deformation model for various kinds of landslides and their exact processing with an efficient testing procedure to determine the kinematics of the slope deformations are presented too.

  5. Deformation effects in the cluster radioactivity

    International Nuclear Information System (INIS)

    Misicu, S.; Protopopescu, D.

    1998-01-01

    We investigate the influence of the deformation on the decay rates of the cluster emission process 224 Ra → 210 Pb + 14 C. The interaction between the daughter and the cluster is given by a double folding potential, containing a nuclear repulsive core, with account of the quadrupole and hexadecupole deformed densities of both fragments. Upon comparison with the experimental value of the decay rate, the results obtained point out the importance of such deformations especially for the daughter nucleus

  6. Conformal deformation of Riemann space and torsion

    International Nuclear Information System (INIS)

    Pyzh, V.M.

    1981-01-01

    Method for investigating conformal deformations of Riemann spaces using torsion tensor, which permits to reduce the second ' order equations for Killing vectors to the system of the first order equations, is presented. The method is illustrated using conformal deformations of dimer sphere as an example. A possibility of its use when studying more complex deformations is discussed [ru

  7. Quantification of abdominal aortic deformation after EVAR

    Science.gov (United States)

    Demirci, Stefanie; Manstad-Hulaas, Frode; Navab, Nassir

    2009-02-01

    Quantification of abdominal aortic deformation is an important requirement for the evaluation of endovascular stenting procedures and the further refinement of stent graft design. During endovascular aortic repair (EVAR) treatment, the aortic shape is subject to severe deformation that is imposed by medical instruments such as guide wires, catheters, and, the stent graft. This deformation can affect the flow characteristics and morphology of the aorta which have been shown to be elicitors for stent graft failures and be reason for reappearance of aneurysms. We present a method for quantifying the deformation of an aneurysmatic aorta imposed by an inserted stent graft device. The outline of the procedure includes initial rigid alignment of the two abdominal scans, segmentation of abdominal vessel trees, and automatic reduction of their centerline structures to one specified region of interest around the aorta. This is accomplished by preprocessing and remodeling of the pre- and postoperative aortic shapes before performing a non-rigid registration. We further narrow the resulting displacement fields to only include local non-rigid deformation and therefore, eliminate all remaining global rigid transformations. Finally, deformations for specified locations can be calculated from the resulting displacement fields. In order to evaluate our method, experiments for the extraction of aortic deformation fields are conducted on 15 patient datasets from endovascular aortic repair (EVAR) treatment. A visual assessment of the registration results and evaluation of the usage of deformation quantification were performed by two vascular surgeons and one interventional radiologist who are all experts in EVAR procedures.

  8. Registration of 3D spectral OCT volumes using 3D SIFT feature point matching

    Science.gov (United States)

    Niemeijer, Meindert; Garvin, Mona K.; Lee, Kyungmoo; van Ginneken, Bram; Abràmoff, Michael D.; Sonka, Milan

    2009-02-01

    The recent introduction of next generation spectral OCT scanners has enabled routine acquisition of high resolution, 3D cross-sectional volumetric images of the retina. 3D OCT is used in the detection and management of serious eye diseases such as glaucoma and age-related macular degeneration. For follow-up studies, image registration is a vital tool to enable more precise, quantitative comparison of disease states. This work presents a registration method based on a recently introduced extension of the 2D Scale-Invariant Feature Transform (SIFT) framework1 to 3D.2 The SIFT feature extractor locates minima and maxima in the difference of Gaussian scale space to find salient feature points. It then uses histograms of the local gradient directions around each found extremum in 3D to characterize them in a 4096 element feature vector. Matching points are found by comparing the distance between feature vectors. We apply this method to the rigid registration of optic nerve head- (ONH) and macula-centered 3D OCT scans of the same patient that have only limited overlap. Three OCT data set pairs with known deformation were used for quantitative assessment of the method's robustness and accuracy when deformations of rotation and scaling were considered. Three-dimensional registration accuracy of 2.0+/-3.3 voxels was observed. The accuracy was assessed as average voxel distance error in N=1572 matched locations. The registration method was applied to 12 3D OCT scans (200 x 200 x 1024 voxels) of 6 normal eyes imaged in vivo to demonstrate the clinical utility and robustness of the method in a real-world environment.

  9. Segmentation of deformable organs from medical images using particle swarm optimization and nonlinear shape priors

    Science.gov (United States)

    Afifi, Ahmed; Nakaguchi, Toshiya; Tsumura, Norimichi

    2010-03-01

    In many medical applications, the automatic segmentation of deformable organs from medical images is indispensable and its accuracy is of a special interest. However, the automatic segmentation of these organs is a challenging task according to its complex shape. Moreover, the medical images usually have noise, clutter, or occlusion and considering the image information only often leads to meager image segmentation. In this paper, we propose a fully automated technique for the segmentation of deformable organs from medical images. In this technique, the segmentation is performed by fitting a nonlinear shape model with pre-segmented images. The kernel principle component analysis (KPCA) is utilized to capture the complex organs deformation and to construct the nonlinear shape model. The presegmentation is carried out by labeling each pixel according to its high level texture features extracted using the overcomplete wavelet packet decomposition. Furthermore, to guarantee an accurate fitting between the nonlinear model and the pre-segmented images, the particle swarm optimization (PSO) algorithm is employed to adapt the model parameters for the novel images. In this paper, we demonstrate the competence of proposed technique by implementing it to the liver segmentation from computed tomography (CT) scans of different patients.

  10. Phonon operators in deformed nuclei

    International Nuclear Information System (INIS)

    Soloviev, V.G.

    1981-01-01

    For the description of the excited states in deformed nuclei new phonon operators are introduced, which depend on the sign of the angular momentum projection onto the symmetry axis of a deformed nucleus. In the calculations with new phonons the Pauli principle is correctly taken into account in the two-phonon components of the wave functions. There is a difference in comparison with the calculation with phonons independent of the sign of the angular momentum projection. The new phonons should be used in deformed nuclei if the Pauli principle is consistently taken into account and in the calculations with the excited state wave functions having the components with more than one phonon operator [ru

  11. Highly deformable bones: unusual deformation mechanisms of seahorse armor.

    Science.gov (United States)

    Porter, Michael M; Novitskaya, Ekaterina; Castro-Ceseña, Ana Bertha; Meyers, Marc A; McKittrick, Joanna

    2013-06-01

    Multifunctional materials and devices found in nature serve as inspiration for advanced synthetic materials, structures and robotics. Here, we elucidate the architecture and unusual deformation mechanisms of seahorse tails that provide prehension as well as protection against predators. The seahorse tail is composed of subdermal bony plates arranged in articulating ring-like segments that overlap for controlled ventral bending and twisting. The bony plates are highly deformable materials designed to slide past one another and buckle when compressed. This complex plate and segment motion, along with the unique hardness distribution and structural hierarchy of each plate, provide seahorses with joint flexibility while shielding them against impact and crushing. Mimicking seahorse armor may lead to novel bio-inspired technologies, such as flexible armor, fracture-resistant structures or prehensile robotics. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  12. Fraktalnist deformational relief polycrystalline aluminum

    Directory of Open Access Journals (Sweden)

    М.В. Карускевич

    2006-02-01

    Full Text Available  The possibility of the fractal geometry method application for the analisys of surface deformation structures under cyclic loading is presented.It is shown, that deformation relief of the alclad aluminium alloyes meets the criteria of the fractality. For the fractal demention estimation the method of  “box-counting”can be applied.

  13. Clustering and triaxial deformations of 40Ca

    International Nuclear Information System (INIS)

    Taniguchi, Yasutaka; Kimura, Masaaki; Kanada-En'yo, Yoshiko; Horiuchi, Hisashi

    2007-01-01

    We have studied the positive-parity states of 40 Ca using antisymmetrized molecular dynamics (AMD) and the generator coordinate method (GCM). Imposing two different kinds of constraints on the variational calculation, we have found various kinds of 40 Ca structures such as a deformed-shell structure, as well as α- 36 Ar and 12 C- 28 Si cluster structures. After the GCM calculation, we obtained a normal-deformed band and a superdeformed band together with their side bands associated with triaxial deformation. The calculated B(E2) values agreed well with empirical data. It was also found that the normal-deformed and superdeformed bands have non-negligible α- 36 Ar cluster and 12 C- 28 Si cluster components, respectively. This leads to the presence of an α- 36 Ar higher nodal band occurring above the normal-deformed band

  14. Soft-sediment deformation in New Zealand: Structures resulting from the 2010/11 Christchurch earthquakes and comparison with Pleistocene sediments of the Taupo Volcanic Zone (TVZ)

    Science.gov (United States)

    Scholz, C.; Downs, D. T.; Gravley, D.; Quigley, M.; Rowland, J. V.

    2011-12-01

    The distinction between seismites and other event-related soft-sediment deformation is a challenging problem. Recognition and interpretation is aided by comparison of recent examples produced during known seismic events and those generated experimentally. Seismites are important features, once recognized in a rock, for interpretations of paleotectonic environment, tectonic relationships of sediments in basins, sedimentary facies analysis, evaluation of earthquake frequency and hazard and consequent land managment. Two examples of soft-sediment deformation, potentially generated through ground shaking and associated liquefaction, are described from within the TVZ: 1) Near Matata on the western margin of the Whakatane Graben. This location has a complicated en-echelon fault history and large earthquakes occur from time to time (e.g., 1987 ML6.3 Edgecumbe event). The structures occur in ~550 ka volcanic sediments, and represent soft-sediment deformation within stratigraphically-bounded layers. Based on paleoenvironment, appearance, and diagnostic criteria described by other authors (Sims 1975; Hempton and Dewey 1983), we interpret these features to have formed by ground shaking related to an earthquake and/or possibly accompanying large volcanic eruptions, rather than by slope failure. 2) Near Taupo, 3 km from the active Kaiapo fault. Lakeward dipping, nearly horizontal lacustrine sediments overlay Taupo Ignimbrite (1.8 ka). At one outcrop the lake beds have subsided into the underlying substrate resulting in kidney-shaped features. These structures formed as a result of liquefaction of the underlying substrate, which may have been caused by ground shaking related to either seismic or volcanic activity. However, inferred time relationships are more consistent with seismic-induced ground shaking. We compare and contrast the form and geometry of the above structures with seismites generated during the recent Christchurch earthquakes (Sep. 2010 and Feb. 2011). Hempton, M

  15. Dynamic tensile behaviour and deformational mechanism of C5191 phosphor bronze under high strain rates deformation

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Dao-chun [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); College of Mechanical and Electrical Engineering, Taizhou Vocational & Technical College, Taizhou 318000 (China); Chen, Ming-he, E-mail: meemhchen@nuaa.edu.cn [College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 (China); Wang, Lei; Cheng, Hu [College of Mechanical Engineering, Taizhou University, Taizhou 318000 (China)

    2016-01-01

    High speed stamping process is used to high strength and high electrical conductivity phosphor bronze with extremely high strain rates more than 10{sup 3} s{sup −1}. This study on the dynamic tensile behaviour and deformational mechanism is to optimise the high speed stamping processes and improve geometrical precision in finished products. Thus, the tensile properties and deformation behaviour of C5191 phosphor bronze under quasi-static tensile condition at a strain rate of 0.001 s{sup −1} by electronic universal testing machine, and dynamic tensile condition at strain rate of 500, 1000 and 1500 s{sup −1} by split Hopkinson tensile bar (SHTB) apparatus were studied. The effects of strain rate and the deformation mechanism were investigated by means of SEM and TEM. The results showed that the yield strength and tensile strength of C5191 phosphor bronze under high strain rates deformation increased by 32.77% and 11.07% respectively compared with quasi-static condition, the strain hardening index increases from 0.075 to 0.251, and the strength of the material strain rates sensitivity index change from 0.005 to 0.022, which presented a clear sensitive to strain rates. Therefore, it is claimed that the dominant deformation mechanism was changed by the dislocation motion under different strain rates, and the ability of plastic deformation of C5191 phosphor bronze increased due to the number of movable dislocations increased significantly, started multi-line slip, and the soft effect of adiabatic temperature rise at the strain rate ranging from 500 to 1500 s{sup −1}.

  16. Differential Calculus on h-Deformed Spaces

    Science.gov (United States)

    Herlemont, Basile; Ogievetsky, Oleg

    2017-10-01

    We construct the rings of generalized differential operators on the h-deformed vector space of gl-type. In contrast to the q-deformed vector space, where the ring of differential operators is unique up to an isomorphism, the general ring of h-deformed differential operators {Diff}_{h},σ(n) is labeled by a rational function σ in n variables, satisfying an over-determined system of finite-difference equations. We obtain the general solution of the system and describe some properties of the rings {Diff}_{h},σ(n).

  17. Deformation relaxation in heavy-ion collisions

    International Nuclear Information System (INIS)

    Yu, L.; Gan, Z.G.; Zhang, Z.Y.; Zhang, H.F.; Li, J.Q.

    2014-01-01

    In deeply inelastic heavy-ion collisions, the quadrupole deformations of both fragments are taken as stochastic independent dynamical variables governed by the Fokker–Planck equation (FPE) under the corresponding driving potential. The mean values, variances and covariance of the fragments are analytically expressed by solving the FPE in head on collisions. The characteristics and mechanism of the deformation are discussed. It is found that both the internal structures and interactions of the colliding partners are critical for the deformation relaxation in deeply inelastic collisions.

  18. Right ventricular mechanics in hypertrophic cardiomyopathy using feature tracking

    Science.gov (United States)

    Badran, Hala Mahfouz; Soliman, Mahmood; Hassan, Hesham; Abdelfatah, Raed; Saadan, Haythem; Yacoub, Magdi

    2013-01-01

    Objectives: Right ventricular (RV) mechanics in hypertrophic cardiomyopathy (HCM) are poorly understood. We investigate global and regional deformation of the RV in HCM and its relationship to LV phenotype, using 2D strain vector velocity imaging (VVI). Methods: 100 HCM patients (42% females, 41 ± 19 years) and 30 control patients were studied using VVI. Longitudinal peak systolic strain (ϵsys), strain rate (SR), time to peak (ϵ) (TTP), displacement of RV free wall (RVFW) and septal wall were analyzed. Similar parameters were quantified in LV septal, lateral, anterior and inferior segments. Intra-V-delay was defined as SD of TTP. Inter-V-delay was estimated from TTP difference between the most delayed LV segment & RVFW. Results: ϵsys and SR of both RV & LV, showed loss of base to apex gradient and significant decline in HCM (p < 0.001). Deformation variables estimated from RVFW were strongly correlated with each other (r = 0.93, p < 0.0001). Both were directly related to LV ϵsys, SRsys, SRe, ejection fraction (EF)%, RVFW displacement (P < 0.001) and inversely related to age, positive family history (p < 0.004, 0.005), RV wall thickness, maximum wall thickness (MWT), intra-V-delay, LA volume (P < 0.0001), LVOT gradient (p < 0.02, 0.005) respectively. ROC curves were constructed to explore the cut-off point that discriminates RV dysfunction. Global and RVFW ϵsys: − 19.5% shows 77, 70% sensitivity & 97% specificity, SRsys: − 1.3s− 1 shows 82, 70% sensitivity & 30% specificity. Multivariate analyses revealed that RVFW displacement (β = − 0.9, p < 0.0001) and global LV SRsys (β = 5.9, p < 0.0001) are independent predictors of global RV deformation. Conclusions: Impairment of RV deformation is evident in HCM using feature tracking. It is independently influenced by LV mechanics and correlated to the severity of LV phenotype. RVFW deformation analysis and global RV assessment are comparable. PMID:24689019

  19. Magnetic Barkhausen emission in lightly deformed AISI 1070 steel

    Energy Technology Data Exchange (ETDEWEB)

    Capo Sanchez, J., E-mail: jcapo@cnt.uo.edu.cu [Departamento de Fisica, Facultad de Ciencias Naturales, Universidad de Oriente, Av. Patricio Lumumba s/n, 90500 Santiago de Cuba (Cuba); Campos, M.F. de [EEIMVR-Universidade Federal Fluminense, Av. dos Trabalhadores 420, Vila Santa Cecilia, 27255-125 Volta Redonda, RJ (Brazil); Padovese, L.R. [Departamento de Engenharia Mecanica, Escola Politecnica, Universidade de Sao Paulo, Av. Prof. Mello Moraes, 2231, 05508-900 Sao Paulo (Brazil)

    2012-01-15

    The Magnetic Barkhausen Noise (MBN) technique can evaluate both micro- and macro-residual stresses, and provides indication about the relevance of contribution of these different stress components. MBN measurements were performed in AISI 1070 steel sheet samples, where different strains were applied. The Barkhausen emission is also analyzed when two different sheets, deformed and non-deformed, are evaluated together. This study is useful to understand the effect of a deformed region near the surface on MBN. The low permeability of the deformed region affects MBN, and if the deformed region is below the surface the magnetic Barkhausen signal increases. - Highlights: > Evaluated residual stresses by the magnetic Barkhausen technique. > Indication about the relevance of micro-and macro-stress components. > Magnetic Barkhausen measurements were carried out in AISI 1070 steel sheet samples. > Two different sheets, deformed and non-deformed, are evaluated together. > Magnetic Barkhausen signal increases when deformed region is below the surface.

  20. Corrugated Membrane Nonlinear Deformation Process Calculation

    Directory of Open Access Journals (Sweden)

    A. S. Nikolaeva

    2015-01-01

    Full Text Available Elastic elements are widely used in instrumentation. They are used to create a particular interference between the parts, for accumulating mechanical energy, as the motion transmission elements, elastic supports, and sensing elements of measuring devices. Device reliability and quality depend on the calculation accuracy of the elastic elements. A corrugated membrane is rather common embodiment of the elastic element.The corrugated membrane properties depend largely on its profile i.e. a generatrix of the meridian surface.Unlike other types of pressure elastic members (bellows, tube spring, the elastic characteristics of which are close to linear, an elastic characteristic of the corrugated membrane (typical movement versus external load is nonlinear. Therefore, the corrugated membranes can be used to measure quantities, nonlinearly related to the pressure (e.g., aircraft air speed, its altitude, pipeline fluid or gas flow rate. Another feature of the corrugated membrane is that significant movements are possible within the elastic material state. However, a significant non-linearity of membrane characteristics leads to severe complicated calculation.This article is aimed at calculating the corrugated membrane to obtain the elastic characteristics and the deformed shape of the membrane meridian, as well as at investigating the processes of buckling. As the calculation model, a thin-walled axisymmetric shell rotation is assumed. The material properties are linearly elastic. We consider a corrugated membrane of sinusoidal profile. The membrane load is a uniform pressure.The algorithm for calculating the mathematical model of an axisymmetric corrugated membrane of constant thickness, based on the Reissner’s theory of elastic thin shells, was realized as the author's program in C language. To solve the nonlinear problem were used a method of changing the subspace of control parameters, developed by S.S., Gavriushin, and a parameter marching method

  1. Deformation properties of lead isotopes

    International Nuclear Information System (INIS)

    Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.; Saperstein, E. E.

    2016-01-01

    The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF 0 Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, 180 Pb and 184 Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF 0 functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF 0 functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron-rich lead isotopes undergo

  2. Automatically tracking neurons in a moving and deforming brain.

    Directory of Open Access Journals (Sweden)

    Jeffrey P Nguyen

    2017-05-01

    Full Text Available Advances in optical neuroimaging techniques now allow neural activity to be recorded with cellular resolution in awake and behaving animals. Brain motion in these recordings pose a unique challenge. The location of individual neurons must be tracked in 3D over time to accurately extract single neuron activity traces. Recordings from small invertebrates like C. elegans are especially challenging because they undergo very large brain motion and deformation during animal movement. Here we present an automated computer vision pipeline to reliably track populations of neurons with single neuron resolution in the brain of a freely moving C. elegans undergoing large motion and deformation. 3D volumetric fluorescent images of the animal's brain are straightened, aligned and registered, and the locations of neurons in the images are found via segmentation. Each neuron is then assigned an identity using a new time-independent machine-learning approach we call Neuron Registration Vector Encoding. In this approach, non-rigid point-set registration is used to match each segmented neuron in each volume with a set of reference volumes taken from throughout the recording. The way each neuron matches with the references defines a feature vector which is clustered to assign an identity to each neuron in each volume. Finally, thin-plate spline interpolation is used to correct errors in segmentation and check consistency of assigned identities. The Neuron Registration Vector Encoding approach proposed here is uniquely well suited for tracking neurons in brains undergoing large deformations. When applied to whole-brain calcium imaging recordings in freely moving C. elegans, this analysis pipeline located 156 neurons for the duration of an 8 minute recording and consistently found more neurons more quickly than manual or semi-automated approaches.

  3. Channeling of protons through radial deformed carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Borka Jovanović, V., E-mail: vborka@vinca.rs [Atomic Physics Laboratory (040), Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Borka, D. [Atomic Physics Laboratory (040), Vinča Institute of Nuclear Sciences, University of Belgrade, P.O. Box 522, 11001 Belgrade (Serbia); Galijaš, S.M.D. [Faculty of Physics, University of Belgrade, P.O. Box 368, 11001 Belgrade (Serbia)

    2017-05-18

    Highlights: • For the first time we presented theoretically obtained distributions of channeled protons with radially deformed SWNT. • Our findings indicate that influence of the radial deformation is very strong and it should not be omitted in simulations. • We show that the spatial and angular distributions depend strongly of level of radial deformation of nanotube. • Our obtained results can be compared with measured distributions to reveal the presence of various types of defects in SWNT. - Abstract: In this paper we have presented a theoretical investigation of the channeling of 1 GeV protons with the radial deformed (10, 0) single-wall carbon nanotubes (SWNTs). We have calculated channeling potential within the deformed nanotubes. For the first time we presented theoretically obtained spatial and angular distributions of channeled protons with radially deformed SWNT. We used a Monte Carlo (MC) simulation technique. We show that the spatial and angular distributions depend strongly of level of radial deformation of nanotube. These results may be useful for nanotube characterization and production and guiding of nanosized ion beams.

  4. The clinical and radiological features of Fanconi's anaemia pictorial review

    Energy Technology Data Exchange (ETDEWEB)

    De Kerviler, E.; Guermazi, A.; Zagdanski, A.-M.; Gluckman, E.; Frija, J

    2000-05-01

    Fanconi's anaemia is a severe refractory anaemia, associated with congenital malformations in approximately two-thirds of cases. Although these malformations may involve every organ system, suggestive dysmorphic features include growth retardation, radial ray deformities and urinary malformations. These malformations are not specific for Fanconi's anaemia, but should be recognized during pregnancy, or later in childhood, and suggest the possibility of inherited haematopoiesis disorders. De Kerviler, E. (2000)

  5. 2D vector-cyclic deformable templates

    DEFF Research Database (Denmark)

    Schultz, Nette; Conradsen, Knut

    1998-01-01

    In this paper the theory of deformable templates is a vector cycle in 2D is described. The deformable template model originated in (Grenander, 1983) and was further investigated in (Grenander et al., 1991). A template vector distribution is induced by parameter distribution from transformation...... matrices applied to the vector cycle. An approximation in the parameter distribution is introduced. The main advantage by using the deformable template model is the ability to simulate a wide range of objects trained by e.g. their biological variations, and thereby improve restoration, segmentation...... and probabillity measurement. The case study concerns estimation of meat percent in pork carcasses. Given two cross-sectional images - one at the front and one near the ham of the carcass - the areas of lean and fat and a muscle in the lean area are measured automatically by the deformable templates....

  6. Isothermal deformation of gamma titanium aluminide

    International Nuclear Information System (INIS)

    Srinivasan, R.; Singh, J.P.; Tuval, E.; Weiss, I.

    1996-01-01

    Gamma titanium aluminide has received considerable attention in recent years from the automotive industry as a potential material for making rotating and reciprocating components to produce a quieter and more efficient engine. The objectives of this study were to identify processing routes for the manufacture of automobile valves from gamma titanium aluminide. The issues considered were microstructure and composition of the material, and processing parameters such as deformation rates, temperatures, and total deformation. This paper examines isothermal deformation of gamma titanium aluminide in order to develop a processing window for this type of material

  7. Geodetic deformation monitoring at Pendidikan Diponegoro Dam

    Science.gov (United States)

    Yuwono, Bambang Darmo; Awaluddin, Moehammad; Yusuf, M. A.; Fadillah, Rizki

    2017-07-01

    Deformation monitoring is one indicator to assess the feasibility of Dam. In order to get the correct result of the deformation, it is necessary to determine appropriate deformation monitoring network and the observation data should be analyse and evaluated carefully. Measurement and analysis of deformation requires relatively accurate data and the precision is high enough, one of the observation method that used is GPS (Global Positioning System). The research was conducted at Pendidikan Undip Dams is Dam which is located in Tembang. Diponegoro Dam was built in 2013 and a volume of 50.86 m3 of water, inundation normal width of up to 13,500 m2. The main purpose of these building is not only for drainage but also for education and micro hydro power plant etc. The main goal of this reasearch was to monitor and analyze the deformation at Pendidikan Undip Dam and to determaine whether GPS measurement could meet accuracy requirement for dam deformation measurements. Measurements were made 2 times over 2 years, 2015 and 2016 using dual frequency GPS receivers with static methods and processed by Scientific Software GAMIT 10.6

  8. An electromechanical based deformable model for soft tissue simulation.

    Science.gov (United States)

    Zhong, Yongmin; Shirinzadeh, Bijan; Smith, Julian; Gu, Chengfan

    2009-11-01

    Soft tissue deformation is of great importance to surgery simulation. Although a significant amount of research efforts have been dedicated to simulating the behaviours of soft tissues, modelling of soft tissue deformation is still a challenging problem. This paper presents a new deformable model for simulation of soft tissue deformation from the electromechanical viewpoint of soft tissues. Soft tissue deformation is formulated as a reaction-diffusion process coupled with a mechanical load. The mechanical load applied to a soft tissue to cause a deformation is incorporated into the reaction-diffusion system, and consequently distributed among mass points of the soft tissue. Reaction-diffusion of mechanical load and non-rigid mechanics of motion are combined to govern the simulation dynamics of soft tissue deformation. An improved reaction-diffusion model is developed to describe the distribution of the mechanical load in soft tissues. A three-layer artificial cellular neural network is constructed to solve the reaction-diffusion model for real-time simulation of soft tissue deformation. A gradient based method is established to derive internal forces from the distribution of the mechanical load. Integration with a haptic device has also been achieved to simulate soft tissue deformation with haptic feedback. The proposed methodology does not only predict the typical behaviours of living tissues, but it also accepts both local and large-range deformations. It also accommodates isotropic, anisotropic and inhomogeneous deformations by simple modification of diffusion coefficients.

  9. Joining by plastic deformation

    DEFF Research Database (Denmark)

    Mori, Ken-ichiro; Bay, Niels; Fratini, Livan

    2013-01-01

    As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating opportuni......As the scale and complexity of products such as aircraft and cars increase, demand for new functional processes to join mechanical parts grows. The use of plastic deformation for joining parts potentially offers improved accuracy, reliability and environmental safety as well as creating...

  10. On deformations of linear differential systems

    NARCIS (Netherlands)

    Gontsov, R.R.; Poberezhnyi, V.A.; Helminck, G.F.

    2011-01-01

    This article concerns deformations of meromorphic linear differential systems. Problems relating to their existence and classification are reviewed, and the global and local behaviour of solutions to deformation equations in a neighbourhood of their singular set is analysed. Certain classical

  11. Mechanisms of strain accommodation in plastically-deformed zircon under simple shear deformation conditions during amphibolite-facies metamorphism

    Science.gov (United States)

    Kovaleva, Elizaveta; Klötzli, Urs; Wheeler, John; Habler, Gerlinde

    2018-02-01

    This study documents the strain accommodation mechanisms in zircon under amphibolite-facies metamorphic conditions in simple shear. Microstructural data from undeformed, fractured and crystal-plastically deformed zircon crystals are described in the context of the host shear zone, and evaluated in the light of zircon elastic anisotropy. Our work challenges the existing model of zircon evolution and shows previously undescribed rheological characteristics for this important accessory mineral. Crystal-plastically deformed zircon grains have axis oriented parallel to the foliation plane, with the majority of deformed grains having axis parallel to the lineation. Zircon accommodates strain by a network of stepped low-angle boundaries, formed by switching between tilt dislocations with the slip systems {010} and {110} and rotation axis [001], twist dislocations with the rotation axis [001], and tilt dislocations with the slip system {001} and rotation axis [010]. The slip system {110} is newly described for zircon. Most misorientation axes in plastically-deformed zircon grains are parallel to the XY plane of the sample and have [001] crystallographic direction. Such behaviour of strained zircon lattice is caused by elastic anisotropy that has a direct geometric control on the rheology, deformation mechanisms and dominant slip systems in zircon. Young's modulus and P wave velocity have highest values parallel to zircon [001] axis, indicating that zircon is elastically strong along this direction. Poisson ratio and Shear modulus demonstrate that zircon is also most resistant to shearing along [001]. Thus, [001] axis is the most common rotation axis in zircon. The described zircon behaviour is important to take into account during structural and geochronological investigations of (poly)metamorphic terrains. Geometry of dislocations in zircon may help reconstructing the geometry of the host shear zone(s), large-scale stresses in the crust, and, possibly, the timing of

  12. Theory of reversal nonisothermal elastic-plastic deformation

    International Nuclear Information System (INIS)

    Shorr, B.F.

    1979-01-01

    Considered is approximated theory of nonisothermal elastic-plastic deformation at arbitrary laws of loading, permitting to describe nonisothermal isotropic and anisotropic strengthening of the material, Bauschinger effect and different tempo of plastic deformation development over different directions of loading depending on the deformation prehistory. The comparison of the theory with the experimental data showed good coincidence and sufficient simplicity permits to use it in technical calcualtions

  13. A Bed-Deformation Experiment Beneath Engabreen, Norway

    Science.gov (United States)

    Iverson, N. R.; Hooyer, T. S.; Fischer, U. H.; Cohen, D.; Jackson, M.; Moore, P. L.; Lappegard, G.; Kohler, J.

    2001-12-01

    Although deformation of sediment beneath ice masses may contribute to their motion and may sometimes enable fast glacier flow, both the kinematics and mechanics of deformation are controversial. This controversy stems, in part, from subglacial measurements that are difficult to interpret. Measurements have been made either beneath ice margins or remotely through boreholes with interpretive limitations caused by uncertain instrument position and performance, uncertain sediment thickness and bed geometry, and unknown disturbance of the bed and stress state by drilling. We have used a different approach made possible by the Svartisen Subglacial Laboratory, which enables human access to the bed of Engabreen, Norway, beneath 230 m of temperate ice. A trough (2 m x 1.5 m x 0.4 m deep) was blasted in the rock bed and filled with sediment (75 percent sand and gravel, 20 percent silt, 5 percent clay). Instruments were placed in the sediment to record shear deformation (tiltmeters), dilation and contraction, total normal stress, and pore-water pressure. Pore pressure was manipulated by feeding water to the base of the sediment with a high-pressure pump, operated in a rock tunnel 4 m below the bed surface. After irregular deformation during closure of ice on the sediment, shear deformation and volume change stopped, and total normal stress became constant at 2.2 MPa. Subsequent pump tests, which lasted several hours, induced pore-water pressures greater than 70 percent of the total normal stress and resulted in shear deformation over most of the sediment thickness with attendant dilation. Ice separated from the sediment when effective normal stress was lowest, arresting shear deformation. Displacement profiles during pump tests were similar to those observed by Boulton and co-workers at Breidamerkurjökull, Iceland, with rates of shear strain increasing upward toward the glacier sole. Such deformation does not require viscous deformation resistance and is expected in a

  14. Molecular dynamics simulation of deformation twin in rocksalt vanadium nitride

    International Nuclear Information System (INIS)

    Fu, Tao; Peng, Xianghe; Zhao, Yinbo; Li, Tengfei; Li, Qibin; Wang, Zhongchang

    2016-01-01

    We perform molecular dynamics simulation of nano-indentation with a cylindrical indenter to investigate the formation mechanism of deformation twin in vanadium nitride (VN) with a rocksalt structure. We find that the deformation twins occur during the loading stage, and subsequently conduct a systematic analysis of nucleation, propagation and thickening of a deformation twin. We find that the nucleation of a partial dislocation and its propagation to form a stacking fault are premise of deformation twin formation. The sequential nucleation and propagation of partial dislocation on adjacent parallel {111} planes are found to cause the thickening of the deformation twin. Moreover, the deformation twins can exist in VN at room temperature. - Highlights: • MD simulations of indentation are performed to study the deformation twin in VN. • The deformation twins can occur in VN during the loading stage. • The nucleation, propagation and thickening of a deformation twin are analyzed. • The deformation twins can exist in VN at room temperature.

  15. Local-Scale Simulations of Nucleate Boiling on Micrometer Featured Surfaces: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Sitaraman, Hariswaran [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Moreno, Gilberto [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Narumanchi, Sreekant V [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Dede, Ercan M. [Toyota Research Institute of North America; Joshi, Shailesh N. [Toyota Research Institute of North America; Zhou, Feng [Toyota Research Institute of North America

    2017-08-03

    A high-fidelity computational fluid dynamics (CFD)-based model for bubble nucleation of the refrigerant HFE7100 on micrometer-featured surfaces is presented in this work. The single-fluid incompressible Navier-Stokes equations, along with energy transport and natural convection effects are solved on a featured surface resolved grid. An a priori cavity detection method is employed to convert raw profilometer data of a surface into well-defined cavities. The cavity information and surface morphology are represented in the CFD model by geometric mesh deformations. Surface morphology is observed to initiate buoyancy-driven convection in the liquid phase, which in turn results in faster nucleation of cavities. Simulations pertaining to a generic rough surface show a trend where smaller size cavities nucleate with higher wall superheat. This local-scale model will serve as a self-consistent connection to larger device scale continuum models where local feature representation is not possible.

  16. Late Pleistocene Activity and deformation features of the North Margin Fault of West Qinling Mountains, northeastern Tibet

    Science.gov (United States)

    Chen, P.; Lin, A.; Yan, B.

    2017-12-01

    Abstract: A precise constraints of slip rates of active faults within and around Tibetan Plateau will provide us a definite and explicit knowledge of continental dynamics and present-day tectonic evolution. The major strike-slip faults in the northern and northeastern Tibetan Plateau, including the Altyn Tagh fault and Kunlun fault play a vital role in dissipating and transferring the strain energy. The WNW-trending North Margin Fault of West Qinling Mountains (hereafter name NMFWQM, the target of this study) developed along the topographic boundary between Longzhong basin and the Qinling mountains. Intensive Historic records show that large earthquakes repeatedly in the area around the NMFWQM, including the AD 143 M 7.0 Gangu West earthquake; AD 734 M≥7.0 Tianshui earthquake; AD 1654 M 8.0 Tianshui South earthquake and the most recent 2013 Mw6.0 Zhangxian earthquake. In this study, we investigated the structural features and activity of the NMFWQM including the nature of the fault, slip rate, and paleoseismicity by interpretation of high-resolution remote sensing images and field investigation. Based on the interpretations of high resolution satellite images, field investigations and 14C dating ages, we conclude the following conclusions: 1) The drainage systems have been systematical deflected or offset sinistrally along the fault trace; 2) The amounts of displacement (D) show a positive linear correlation with the upstream length (L) from the deflected point of offset river channels as DaL (a: a certain coefficient); 3) The alluvial fans and terrace risers formed in the last interglacial period are systematically offset by 16.4m to 93.9 m, indicating an accumulation of horizontal displacements as that observed in the offset drainages; 4) A horizontal slip rate is estimated to be 2.5-3.1 mm/yr with an average of 2.8 mm/yr. Comparing with the well-know strike-slip active faults developed in the northern Tibetan Plateau, such as the Altyn Tagh fault and Kunlun

  17. Wolf-Hirschhorn syndrome (WHS) - literature review on the features of the syndrome.

    Science.gov (United States)

    Paradowska-Stolarz, Anna M

    2014-01-01

    Wolf-Hirschhorn syndrome (WHS) is a congenital disorder associated with 4 chromosome microdeletion. The patients suffer from various deformities. Among them, mental and growth retardation, even in the fetus, are observed. Most of the characteristics concern facial features. The "Greek warrior helmet appearance" is the most characteristic feature and refers to the facial view with prominent glabella, high arched eyebrow, broad nasal bridge and hypertelorism. Another characteristic feature is microcephalia with micrognathia. The features are more pronounced in infants. Clefts of lip and/or palate are observed in almost half of the cases. The characteristic thing is that the more genetic material is missing, the more pronounced are the dimorphic features of the syndrome. Mostly, the dental status does not differ much from that of the healthy individuals. It had been proven though that WHS-patients are more prone to anomalies in dental structures. Cone-shaped and taurodontic teeth were observed. Multiple tooth agenesis (mainly at premolars and molars) with over-retained deciduous dentition might be associated with MSX1-gene impairment.

  18. Deformation associated with continental normal faults

    Science.gov (United States)

    Resor, Phillip G.

    Deformation associated with normal fault earthquakes and geologic structures provide insights into the seismic cycle as it unfolds over time scales from seconds to millions of years. Improved understanding of normal faulting will lead to more accurate seismic hazard assessments and prediction of associated structures. High-precision aftershock locations for the 1995 Kozani-Grevena earthquake (Mw 6.5), Greece image a segmented master fault and antithetic faults. This three-dimensional fault geometry is typical of normal fault systems mapped from outcrop or interpreted from reflection seismic data and illustrates the importance of incorporating three-dimensional fault geometry in mechanical models. Subsurface fault slip associated with the Kozani-Grevena and 1999 Hector Mine (Mw 7.1) earthquakes is modeled using a new method for slip inversion on three-dimensional fault surfaces. Incorporation of three-dimensional fault geometry improves the fit to the geodetic data while honoring aftershock distributions and surface ruptures. GPS Surveying of deformed bedding surfaces associated with normal faulting in the western Grand Canyon reveals patterns of deformation that are similar to those observed by interferometric satellite radar interferometry (InSAR) for the Kozani Grevena earthquake with a prominent down-warp in the hanging wall and a lesser up-warp in the footwall. However, deformation associated with the Kozani-Grevena earthquake extends ˜20 km from the fault surface trace, while the folds in the western Grand Canyon only extend 500 m into the footwall and 1500 m into the hanging wall. A comparison of mechanical and kinematic models illustrates advantages of mechanical models in exploring normal faulting processes including incorporation of both deformation and causative forces, and the opportunity to incorporate more complex fault geometry and constitutive properties. Elastic models with antithetic or synthetic faults or joints in association with a master

  19. Microfluidic assay of the deformability of primitive erythroblasts.

    Science.gov (United States)

    Zhou, Sitong; Huang, Yu-Shan; Kingsley, Paul D; Cyr, Kathryn H; Palis, James; Wan, Jiandi

    2017-09-01

    Primitive erythroblasts (precursors of red blood cells) enter vascular circulation during the embryonic period and mature while circulating. As a result, primitive erythroblasts constantly experience significant hemodynamic shear stress. Shear-induced deformation of primitive erythroblasts however, is poorly studied. In this work, we examined the deformability of primitive erythroblasts at physiologically relevant flow conditions in microfluidic channels and identified the regulatory roles of the maturation stage of primitive erythroblasts and cytoskeletal protein 4.1 R in shear-induced cell deformation. The results showed that the maturation stage affected the deformability of primitive erythroblasts significantly and that primitive erythroblasts at later maturational stages exhibited a better deformability due to a matured cytoskeletal structure in the cell membrane.

  20. Features, Events, and Processes: Disruptive Events

    Energy Technology Data Exchange (ETDEWEB)

    J. King

    2004-03-31

    The primary purpose of this analysis is to evaluate seismic- and igneous-related features, events, and processes (FEPs). These FEPs represent areas of natural system processes that have the potential to produce disruptive events (DE) that could impact repository performance and are related to the geologic processes of tectonism, structural deformation, seismicity, and igneous activity. Collectively, they are referred to as the DE FEPs. This evaluation determines which of the DE FEPs are excluded from modeling used to support the total system performance assessment for license application (TSPA-LA). The evaluation is based on the data and results presented in supporting analysis reports, model reports, technical information, or corroborative documents that are cited in the individual FEP discussions in Section 6.2 of this analysis report.

  1. Features, Events, and Processes: Disruptive Events

    International Nuclear Information System (INIS)

    J. King

    2004-01-01

    The primary purpose of this analysis is to evaluate seismic- and igneous-related features, events, and processes (FEPs). These FEPs represent areas of natural system processes that have the potential to produce disruptive events (DE) that could impact repository performance and are related to the geologic processes of tectonism, structural deformation, seismicity, and igneous activity. Collectively, they are referred to as the DE FEPs. This evaluation determines which of the DE FEPs are excluded from modeling used to support the total system performance assessment for license application (TSPA-LA). The evaluation is based on the data and results presented in supporting analysis reports, model reports, technical information, or corroborative documents that are cited in the individual FEP discussions in Section 6.2 of this analysis report

  2. Infinitesimal Deformations of a Formal Symplectic Groupoid

    Science.gov (United States)

    Karabegov, Alexander

    2011-09-01

    Given a formal symplectic groupoid G over a Poisson manifold ( M, π 0), we define a new object, an infinitesimal deformation of G, which can be thought of as a formal symplectic groupoid over the manifold M equipped with an infinitesimal deformation {π_0 + \\varepsilon π_1} of the Poisson bivector field π 0. To any pair of natural star products {(ast,tildeast)} having the same formal symplectic groupoid G we relate an infinitesimal deformation of G. We call it the deformation groupoid of the pair {(ast,tildeast)} . To each star product with separation of variables {ast} on a Kähler-Poisson manifold M we relate another star product with separation of variables {hatast} on M. We build an algorithm for calculating the principal symbols of the components of the logarithm of the formal Berezin transform of a star product with separation of variables {ast} . This algorithm is based upon the deformation groupoid of the pair {(ast,hatast)}.

  3. A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals

    Science.gov (United States)

    Yu, Chao; Kang, Guozheng; Kan, Qianhua

    2015-09-01

    Based on the experimental observations on the anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals done by Gall and Maier (2002), a crystal plasticity based micromechanical constitutive model is constructed to describe such anisotropic cyclic deformation. To model the internal stress caused by the unmatched inelastic deformation between the austenite and martensite phases on the plastic deformation of austenite phase, 24 induced martensite variants are assumed to be ellipsoidal inclusions with anisotropic elasticity and embedded in the austenite matrix. The homogeneous stress fields in the austenite matrix and each induced martensite variant are obtained by using the Mori-Tanaka homogenization method. Two different inelastic mechanisms, i.e., martensite transformation and transformation-induced plasticity, and their interactions are considered in the proposed model. Following the assumption of instantaneous domain growth (Cherkaoui et al., 1998), the Helmholtz free energy of a representative volume element of a NiTi shape memory single crystal is established and the thermodynamic driving forces of the internal variables are obtained from the dissipative inequalities. The capability of the proposed model to describe the anisotropic cyclic deformation of super-elastic NiTi single crystals is first verified by comparing the predicted results with the experimental ones. It is concluded that the proposed model can capture the main quantitative features observed in the experiments. And then, the proposed model is further used to predict the uniaxial and multiaxial transformation ratchetting of a NiTi single crystal.

  4. Stent Design Affects Femoropopliteal Artery Deformation.

    Science.gov (United States)

    MacTaggart, Jason; Poulson, William; Seas, Andreas; Deegan, Paul; Lomneth, Carol; Desyatova, Anastasia; Maleckis, Kaspars; Kamenskiy, Alexey

    2018-03-23

    Poor durability of femoropopliteal artery (FPA) stenting is multifactorial, and severe FPA deformations occurring with limb flexion are likely involved. Different stent designs result in dissimilar stent-artery interactions, but the degree of these effects in the FPA is insufficiently understood. To determine how different stent designs affect limb flexion-induced FPA deformations. Retrievable markers were deployed into n = 28 FPAs of lightly embalmed human cadavers. Bodies were perfused and CT images were acquired with limbs in the standing, walking, sitting, and gardening postures. Image analysis allowed measurement of baseline FPA foreshortening, bending, and twisting associated with each posture. Markers were retrieved and 7 different stents were deployed across the adductor hiatus in the same limbs. Markers were then redeployed in the stented FPAs, and limbs were reimaged. Baseline and stented FPA deformations were compared to determine the influence of each stent design. Proximal to the stent, Innova, Supera, and SmartFlex exacerbated foreshortening, SmartFlex exacerbated twisting, and SmartControl restricted bending of the FPA. Within the stent, all devices except Viabahn restricted foreshortening; Supera, SmartControl, and AbsolutePro restricted twisting; SmartFlex and Innova exacerbated twisting; and Supera and Viabahn restricted bending. Distal to the stents, all devices except AbsolutePro and Innova exacerbated foreshortening, and Viabahn, Supera, Zilver, and SmartControl exacerbated twisting. All stents except Supera were pinched in flexed limb postures. Peripheral self-expanding stents significantly affect limb flexion-induced FPA deformations, but in different ways. Although certain designs seem to accommodate some deformation modes, no device was able to match all FPA deformations.

  5. Analysis on Wetting Deformation Properties of Silty Clay

    Directory of Open Access Journals (Sweden)

    Xinrong Liu

    2014-06-01

    Full Text Available Changes in water level that cause deformation and stability problems often occur in foundation pit engineering. Water damage is one of the main problems that will lead to disasters in foundation pit engineering. Research findings with regard to properties of wetting deformation due to water damage can be applied not only in foundation pit engineering, slope engineering, hydraulic engineering, and mining engineering but also in related issues in the field of theoretical research and practice. In this study, the characteristics of silty clay deformation after wetting are examined from the perspective of the effect of wetting on the side wall of foundation pit, and wetting experiments on silty clay of a selected area’s stratum located in Chongqing Municipality are conducted under different confining pressures and stress levels through a multi-function triaxial apparatus. Then, laws of silty clay wetting deformation are obtained, and the relationship between wetting stress level and wetting deformation amount is also figured out. The study reveals that the maximum values of wetting deformation under different confining pressures have appear at a particular stress level; therefore, the related measures should be taken to avoid this deformation in the process of construction.

  6. A q-deformed nonlinear map

    International Nuclear Information System (INIS)

    Jaganathan, Ramaswamy; Sinha, Sudeshna

    2005-01-01

    A scheme of q-deformation of nonlinear maps is introduced. As a specific example, a q-deformation procedure related to the Tsallis q-exponential function is applied to the logistic map. Compared to the canonical logistic map, the resulting family of q-logistic maps is shown to have a wider spectrum of interesting behaviours, including the co-existence of attractors-a phenomenon rare in one-dimensional maps

  7. Recrystallization of deformed copper - kinetics and microstructural evolution

    DEFF Research Database (Denmark)

    Lin, Fengxiang

    The objective of this study is to investigate the recrystallization kinetics and microstructural evolution in copper deformed to high strains, including copper deformed by cold-rolling and copper deformed by dynamic plastic deformation (DPD). Various characterization techniques were used, including...... electron backscatter diffraction (EBSD), Vickers hardness test, 3D X-ray diffraction (3DXRD) and differential scanning calorimetry (DSC). For the cold-rolled samples, a series of initial parameters was investigated for their effects on the recrystallization kinetics and textures, including initial grain...

  8. Deep Adaptive Log-Demons: Diffeomorphic Image Registration with Very Large Deformations

    Directory of Open Access Journals (Sweden)

    Liya Zhao

    2015-01-01

    Full Text Available This paper proposes a new framework for capturing large and complex deformation in image registration. Traditionally, this challenging problem relies firstly on a preregistration, usually an affine matrix containing rotation, scale, and translation and afterwards on a nonrigid transformation. According to preregistration, the directly calculated affine matrix, which is obtained by limited pixel information, may misregistrate when large biases exist, thus misleading following registration subversively. To address this problem, for two-dimensional (2D images, the two-layer deep adaptive registration framework proposed in this paper firstly accurately classifies the rotation parameter through multilayer convolutional neural networks (CNNs and then identifies scale and translation parameters separately. For three-dimensional (3D images, affine matrix is located through feature correspondences by a triplanar 2D CNNs. Then deformation removal is done iteratively through preregistration and demons registration. By comparison with the state-of-the-art registration framework, our method gains more accurate registration results on both synthetic and real datasets. Besides, principal component analysis (PCA is combined with correlation like Pearson and Spearman to form new similarity standards in 2D and 3D registration. Experiment results also show faster convergence speed.

  9. The deformation record of olivine in mylonitic peridotites from the Finero Complex, Ivrea Zone: Separate deformation cycles during exhumation

    Science.gov (United States)

    Matysiak, Agnes K.; Trepmann, Claudia A.

    2015-12-01

    Mylonitic peridotites from the Finero complex are investigated to detect characteristic olivine microfabrics that can resolve separate deformation cycles at different metamorphic conditions. The heterogeneous olivine microstructures are characterized by deformed porphyroclasts surrounded by varying amounts of recrystallized grains. A well-developed but only locally preserved foam structure is present in recrystallized grain aggregates. This indicates an early stage of dynamic recrystallization and subsequent recovery and recrystallization at quasi-static stress conditions, where the strain energy was reduced such that a reduction in surface energy controlled grain boundary migration. Ultramylonites record a renewed stage of localized deformation and recrystallization by a second generation of recrystallized grains that do not show a foam structure. This second generation of recrystallized grains as well as sutured grain and kink band boundaries of porphyroclasts indicate that these microstructures developed during a stage of localized deformation after development of the foam structure. The heterogeneity of the microfabrics is interpreted to represent several (at least two) cycles of localized deformation separated by a marked hiatus with quasi-static recrystallization and recovery and eventually grain growth. The second deformation cycle did not only result in reactivation of preexisting shear zones but instead also locally affected the host rock that was not deformed in the first stage. Such stress cycles can result from sudden increases in differential stress imposed by seismic events, i.e., high stress-loading rates, during exhumation of the Finero complex.

  10. Micromechanical modeling of the deformation of HCP metals

    Energy Technology Data Exchange (ETDEWEB)

    Graff, S. [GKSS-Forschungszentrum Geesthacht GmbH (Germany). Inst. fuer Materialforschung

    2008-12-04

    Nowadays, intense research is conducted to understand the relation between microstructural features and mechanical properties of hexagonal close-packed (hcp) metals. Due to their hexagonal structure, hcp metals exhibit mechanical properties such as strong anisotropy, which is more pronounced than for construction metals with cubic crystal structure, and tension/compression asymmetry. Deformation mechanisms in hcp metals, dislocation motion on specific slip systems and activation of twinning, are not yet completely understood. The purpose of this work is to link the physical mechanisms developing during deformation of magnesium (Mg) on the microscale with the macroscopic yielding properties of texture Mg samples. It will be shown that the mechanical behavior of hcp metals may be understood and reproduced with the help of a visco-plastic model for crystal plasticity and a phenomenological yield criterion with appropriate hardening behavior. The study of single crystal specimens subjected to channel die compression tests reveals the active slip systems and twinning systems of the material considered. The material anisotropy at mesoscale is reproduced by using adequate critical resolved shear stresses (CRSS) for the considered deformation mechanisms. In order to describe the macroscopic behavior, texture is incorporated into polycrystalline Representative Volume Elements (RVEs) and various mechanical properties of extruded bars and rolled plates can be predicted. For RVEs exhibiting the texture of rolled plates the numerical results reveal the plate's anisotropic yielding and hardening behavior on a mesoscale. In order to extend the modeling possibilities to process simulations and to allow for time-saving simulations of structural behavior, a phenomenological yield surface accounting for anisotropy and tension/compression asymmetry has been established and implemented in a finite element code. Its numerous model parameters are calibrated by an optimization

  11. Deformations of spacetime and internal symmetries

    Directory of Open Access Journals (Sweden)

    Gresnigt Niels G.

    2017-01-01

    Full Text Available Algebraic deformations provide a systematic approach to generalizing the symmetries of a physical theory through the introduction of new fundamental constants. The applications of deformations of Lie algebras and Hopf algebras to both spacetime and internal symmetries are discussed. As a specific example we demonstrate how deforming the classical flavor group S U(3 to the quantum group S Uq(3 ≡ U q (su(3 (a Hopf algebra and taking into account electromagnetic mass splitting within isospin multiplets leads to new and exceptionally accurate baryon mass sum rules that agree perfectly with experimental data.

  12. κ-deformed Dirac oscillator in an external magnetic field

    Science.gov (United States)

    Chargui, Y.; Dhahbi, A.; Cherif, B.

    2018-04-01

    We study the solutions of the (2 + 1)-dimensional κ-deformed Dirac oscillator in the presence of a constant transverse magnetic field. We demonstrate how the deformation parameter affects the energy eigenvalues of the system and the corresponding eigenfunctions. Our findings suggest that this system could be used to detect experimentally the effect of the deformation. We also show that the hidden supersymmetry of the non-deformed system reduces to a hidden pseudo-supersymmetry having the same algebraic structure as a result of the κ-deformation.

  13. Phonon operators for deformed nuclei

    International Nuclear Information System (INIS)

    Solov'ev, V.G.

    1982-01-01

    The mathematical formalism with the phonon operators independent of the signature of the angular momentum projection turns out to be inadequate for describing excited states of deformed nuclei. New phonon operators are introduced which depend on the signature of the angular momentum projection on the symmetry axis of a deformed nucleus. It is shown that the calculations with the new phonons take correctly into account the Pauli principle in two-phonon components of wave functions. The results obtained differ from those given by the phonons independent of the signature of the angular momentum projection. The new phonons must be used in deformed nuclei at taking systematically the Pauli principle into account and in calculations involving wave functions of excited states having components with more than one-phonon operator

  14. Deformations of vector-scalar models

    Science.gov (United States)

    Barnich, Glenn; Boulanger, Nicolas; Henneaux, Marc; Julia, Bernard; Lekeu, Victor; Ranjbar, Arash

    2018-02-01

    Abelian vector fields non-minimally coupled to uncharged scalar fields arise in many contexts. We investigate here through algebraic methods their consistent deformations ("gaugings"), i.e., the deformations that preserve the number (but not necessarily the form or the algebra) of the gauge symmetries. Infinitesimal consistent deformations are given by the BRST cohomology classes at ghost number zero. We parametrize explicitly these classes in terms of various types of global symmetries and corresponding Noether currents through the characteristic cohomology related to antifields and equations of motion. The analysis applies to all ghost numbers and not just ghost number zero. We also provide a systematic discussion of the linear and quadratic constraints on these parameters that follow from higher-order consistency. Our work is relevant to the gaugings of extended supergravities.

  15. Deformation properties of lead isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Tolokonnikov, S. V.; Borzov, I. N.; Lutostansky, Yu. S.; Saperstein, E. E., E-mail: saper43-7@mail.ru [National Research Center Kurchatov Institute (Russian Federation)

    2016-01-15

    The deformation properties of a long lead isotopic chain up to the neutron drip line are analyzed on the basis of the energy density functional (EDF) in the FaNDF{sup 0} Fayans form. The question of whether the ground state of neutron-deficient lead isotopes can have a stable deformation is studied in detail. The prediction of this deformation is contained in the results obtained on the basis of the HFB-17 and HFB-27 Skyrme EDF versions and reported on Internet. The present analysis reveals that this is at odds with experimental data on charge radii and magnetic moments of odd lead isotopes. The Fayans EDF version predicts a spherical ground state for all light lead isotopes, but some of them (for example, {sup 180}Pb and {sup 184}Pb) prove to be very soft—that is, close to the point of a phase transition to a deformed state. Also, the results obtained in our present study are compared with the predictions of some other Skyrme EDF versions, including SKM*, SLy4, SLy6, and UNE1. By and large, their predictions are closer to the results arising upon the application of the Fayans functional. For example, the SLy4 functional predicts, in just the same way as the FaNDF{sup 0} functional, a spherical shape for all nuclei of this region. The remaining three Skyrme EDF versions lead to a deformation of some light lead isotopes, but their number is substantially smaller than that in the case of the HFB-17 and HFB-27 functionals. Moreover, the respective deformation energy is substantially lower, which gives grounds to hope for the restoration of a spherical shape upon going beyond the mean-field approximation, which we use here. Also, the deformation properties of neutron-rich lead isotopes are studied up to the neutron drip line. Here, the results obtained with the FaNDF{sup 0} functional are compared with the predictions of the HFB-17, HFB-27, SKM*, and SLy4 Skyrme EDF versions. All of the EDF versions considered here predict the existence of a region where neutron

  16. Microstructures and mechanical properties of Cu-Sn alloy subjected to elevated-temperature heat deformation

    Science.gov (United States)

    Hui, Jun; Feng, Zaixin; Fan, Wenxin; Wang, Pengfei

    2018-04-01

    Cu-Sn alloy was subjected to elevated-temperature isothermal compression with 0.01 s‑1 strain rate and 500 ∼ 700 °C temperature range. The thermal compression curve reflected a competing process of work hardening versus dynamic recovery (DRV) and recrystallization, which exhibited an obvious softening trend. Meanwhile, high-temperature deformation and microstructural features in different regions of the alloy was analyzed through EBSD. The results show that grains grow as the temperature rises, competition among recrystallization, substructural, and deformation regions tends to increase with the increase of temperature, and distribution frequency of recrystallization regions gradually increases and then drops suddenly at 650 °C. At 500 ∼ 550 °C, preferentially oriented texturing phenomenon occurs, low angle boundaries(LABs) are gradually transformed into high angle boundaries (HABs) and the Σ (CSL) boundaries turn gradually into Σ3 boundaries. In tensile test of tin bronze, elongation at break increases slowly, whereas yield strength (YS) and ultimate tensile strength (TS) decrease gradually.

  17. q-deformed conformal superalgebra and its Hopf subalgebras

    International Nuclear Information System (INIS)

    Dobrev, V.K.; Lukierski, J.; Sobczyk, J.; Tolstoy, V.N.

    1992-07-01

    We present in detail a Hopf superalgebra U q (su(2,2/2)) which is a q-deformation of the conformal superalgebra su(2,2/1). The superalgebra U q (su(2,2/1)) contains as a subalgebra a q-deformed super-Poincare algebra and as Hopf subalgebras two conjugate 16-generator q-deformed super-Weyl algebras, which are q-deformation of parabolic subalgebras of su(2,2/1). We use several (anti-) involutions, including the standard Cartan involution and a *-antiinvolution under which the super-Weyl algebras are *-subalgebras of U q (su(2,2/1)). The q-deformed Lorentz algebra is Hopf subalgebra of both Weyl algebras and is preserved by all (anti-) involutions considered. (author). 26 refs

  18. Jaynes-Cummings model and the deformed-oscillator algebra

    International Nuclear Information System (INIS)

    Crnugelj, J.; Martinis, M.; Mikuta-Martinis, V.

    1994-01-01

    We study the time evolution of the deformed Jaynes-Cummings model (DJCM). It is shown that the standard JCM and its recent non-linear generalizations involving the intensity-dependent coupling and/or the multiphoton coupling are only particular cases of the DJCM. The time evolution of the mean phonon number and the population inversion are evaluated. A special case of the q-deformed JCM is analyzed explicitly. The long time quasi-periodic revival effects of the q-deformed JCM are observed for q∼1 and an initially large mean photon number. For other values of the deformation parameter q we observe chaotic-like behaviour of the population inversion. Photons are assumed to be initially in the deformed coherent state. ((orig.))

  19. Dynamic deformation theory of spherical and deformed light and heavy nuclei with A = 12-240

    International Nuclear Information System (INIS)

    Kumar, Krishna.

    1979-01-01

    Deformation dependent wave functions are calculated for different types of even-even nuclei (spherical, transitional, deformed; light, medium, heavy) without any fitting parameters. These wave functions are employed for the energies, B(E2)'s, quadrupole and magnetic moments of selected nuclei with A = 12-240 (with special emphasis on 56 Fe, 154 Gd), and for neutron cross sections of 148 Sm, 152 Sm

  20. Localized deformation of zirconium-liner tube

    International Nuclear Information System (INIS)

    Nagase, Fumihisa; Uchida, Masaaki

    1988-03-01

    Zirconium-liner tube has come to be used in BWR. Zirconium liner mitigates the localized stress produced by the pellet-cladding interaction (PCI). In this study, simulating the ridging, stresses were applied to the inner surfaces of zirconium-liner tubes and Zircaloy-2 tubes, and, to investigate the mechanism and the extent of the effect, the behavior of zirconium liner was examined. As the result of examination, stress was concentrated especially at the edge of the deformed region, where zirconium liner was highly deformed. Even after high stress was applied, the deformation of Zircaloy part was small, since almost the concentrated stress was mitigated by the deformation of zirconium liner. In addition, stress and strain distributions in the cross section of specimen were calculated with a computer code FEMAXI-III. The results also showed that zirconium liner mitigated the localized stress in Zircaloy, although the affected zone was restricted to the region near the boundary between zirconium liner and Zircaloy. (author)

  1. Nuclear masses, deformations and shell effects

    International Nuclear Information System (INIS)

    Hirsch, Jorge G; Barbero, César A; Mariano, Alejandro E

    2011-01-01

    We show that the Liquid Drop Model is best suited to describe the masses of prolate deformed nuclei than of spherical nuclei. To this end three Liquid Drop Mass formulas are employed to describe nuclear masses of eight sets of nuclei with similar quadrupole deformations. It is shown that they are able to fit the measured masses of prolate deformed nuclei with an RMS smaller than 750 keV, while for the spherical nuclei the RMS is, in the three cases, larger than 2000 keV. The RMS of the best fit of the masses of semi-magic nuclei is also larger than 2000 keV. The parameters of the three models are studied, showing that the surface symmetry term is the one which varies the most from one group of nuclei to another. In one model, isospin dependent terms are also found to exhibit strong changes. The inclusion of shell effects allows for better fits, which continue to be better in the prolate deformed nuclei region.

  2. Three-dimensional deformation of orthodontic brackets

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire–bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design. PMID:23762201

  3. Three-dimensional deformation of orthodontic brackets.

    Science.gov (United States)

    Melenka, Garrett W; Nobes, David S; Major, Paul W; Carey, Jason P

    2013-01-01

    Braces are used by orthodontists to correct the misalignment of teeth in the mouth. Archwire rotation is a particular procedure used to correct tooth inclination. Wire rotation can result in deformation to the orthodontic brackets, and an orthodontic torque simulator has been designed to examine this wire-bracket interaction. An optical technique has been employed to measure the deformation due to size and geometric constraints of the orthodontic brackets. Images of orthodontic brackets are collected using a stereo microscope and two charge-coupled device cameras, and deformation of orthodontic brackets is measured using a three-dimensional digital image correlation technique. The three-dimensional deformation of orthodontic brackets will be evaluated. The repeatability of the three-dimensional digital image correlation measurement method was evaluated by performing 30 archwire rotation tests using the same bracket and archwire. Finally, five Damon 3MX and five In-Ovation R self-ligating brackets will be compared using this technique to demonstrate the effect of archwire rotation on bracket design.

  4. Effect of plastic deformation on the niobium thermal expansion

    International Nuclear Information System (INIS)

    Savitskij, E.M.; Bychkova, M.I.; Kanikovskij, V.B.

    1978-01-01

    Using dilatometric method the effect of plastic deformation on change of thermal expansion coefficient (TEC) of niobium of different purity was studied. It was shown that deformation affected the TEC in different ways. At first the deformation degree rising causes linear decrease of the TEC and then linear increase. Carbon intensifies the TEC decrease of deformed niobium. The linear correlation was established between the TEC and the value of macroscopic stresses in plastic deformed niobium. The expression indicating the metal TEC change under loading was defined for case of strain hardening

  5. Compensation of deformations in 3D cone beam tomography

    International Nuclear Information System (INIS)

    Desbat, L.; Roux, S.; Roux, S.; Grangeat, P.

    2006-01-01

    In dynamic tomography, the measured objects or organs are no-longer supposed to be static in the scanner during the acquisition but are supposed to move or to be deformed. Our approach is the analytic deformation compensation during the reconstruction. Our work concentrates on 3-dimensional cone beam tomography. We introduce a new large class of deformations preserving the 3-dimensional cone beam geometry. We show that deformations from this class can be analytically compensated. We present numerical experiments on phantoms showing the compensation of these deformations in 3-dimensional cone beam tomography. (authors)

  6. Inelastic deformations of fault and shear zones in granitic rock

    International Nuclear Information System (INIS)

    Wilder, D.G.

    1986-02-01

    Deformations during heating and cooling of three drifts in granitic rock were influenced by the presence of faults and shear zones. Thermal deformations were significantly larger in sheared and faulted zones than where the rock was jointed, but neither sheared nor faulted. Furthermore, thermal deformations in faulted or sheared rock were not significantly recovered during subsequent cooling, thus a permanent deformation remained. This inelastic response is in contrast with elastic behavior identified in unfaulted and unsheared rock segments. A companion paper indicates that deformations in unsheared or unfaulted rock were effectively modeled as an elastic response. We conclude that permanent deformations occurred in fractures with crushed minerals and fracture filling or gouge materials. Potential mechanisms for this permanent deformation are asperity readjustments during thermal deformations, micro-shearing, asperity crushing and crushing of the secondary fracture filling minerals. Additionally, modulus differences in sheared or faulted rock as compared to more intact rock would result in greater deformations in response to the same thermal loads

  7. {kappa}-deformed realization of D=4 conformal algebra

    Energy Technology Data Exchange (ETDEWEB)

    Klimek, M. [Technical Univ. of Czestochowa, Inst. of Mathematics and Computer Science, Czestochowa (Poland); Lukierski, J. [Universite de Geneve, Department de Physique Theorique, Geneve (Switzerland)

    1995-07-01

    We describe the generators of {kappa}-conformal transformations, leaving invariant the {kappa}-deformed d`Alembert equation. In such a way one obtains the conformal extension of-shell spin spin zero realization of {kappa}-deformed Poincare algebra. Finally the algebraic structure of {kappa}-deformed conformal algebra is discussed. (author). 23 refs.

  8. The influences of deformation velocity and temperature on localized deformation of zircaloy-4 in tensile tests

    International Nuclear Information System (INIS)

    Boratto, F.J.M.

    1973-01-01

    A new parameter to describe the necking stability in zircaloy-4 during tensile tests is introduced. The parameter is defined as: s = ∂Ln (dσ/dε)/∂Ln ((1/L)dL/dt) for constant temperature, deformation and history. Measures of stress strain rate sensitivity n, reduction of the area at fracture, and deformation profiles of tensile fracture, are done. A complete description of the curve of non-uniform deformation variation with the temperature, is presented. The results are compared with existing data for pure commercially titanium. The influence of strain rate and history on s and n parameters, in the temperature range from 100-700 0 C). (author) [pt

  9. Cyclic Plastic Deformation and Welding Simulation

    NARCIS (Netherlands)

    Ten Horn, C.H.L.J.

    2003-01-01

    One of the concerns of a fitness for purpose analysis is the quantification of the relevant material properties. It is known from experiments that the mechanical properties of a material can change due to a monotonic plastic deformation or a cyclic plastic deformation. For a fitness for purpose

  10. Deformed metals - structure, recrystallisation and strength

    DEFF Research Database (Denmark)

    Hansen, Niels; Juul Jensen, Dorte

    2011-01-01

    It is shown how new discoveries and advanced experimental techniques in the last 25 years have led to paradigm shifts in the analysis of deformation and annealing structures of metals and in the way the strength of deformed samples is related to structural parameters. This is described in three...

  11. An experimental study of plastic deformation of materials

    DEFF Research Database (Denmark)

    Knudsen, Tine

    The thesis falls in three parts, focusing on different aspects of plastic deformation of metals. Part I investigates the dislocation structures induced by hot deformation and compares these with the structures after cold deformation. In particular, it is shown that the dislocation structures...... after cold deformation by calorimetry and by analysis of the dislocation structure. The stored energy measured by calorimetry is found to be larger than that determined from the dislocation structure by a factor between 1.9 and 2.7, and this factor decreases with the plastic strain. Part III aimed...

  12. Continental deformation accommodated by non-rigid passive bookshelf faulting: An example from the Cenozoic tectonic development of northern Tibet

    Science.gov (United States)

    Zuza, Andrew V.; Yin, An

    2016-05-01

    Collision-induced continental deformation commonly involves complex interactions between strike-slip faulting and off-fault deformation, yet this relationship has rarely been quantified. In northern Tibet, Cenozoic deformation is expressed by the development of the > 1000-km-long east-striking left-slip Kunlun, Qinling, and Haiyuan faults. Each have a maximum slip in the central fault segment exceeding 10s to ~ 100 km but a much smaller slip magnitude (~bookshelf-fault model for the Cenozoic tectonic development of northern Tibet. Our model, quantitatively relating discrete left-slip faulting to distributed off-fault deformation during regional clockwise rotation, explains several puzzling features, including the: (1) clockwise rotation of east-striking left-slip faults against the northeast-striking left-slip Altyn Tagh fault along the northwestern margin of the Tibetan Plateau, (2) alternating fault-parallel extension and shortening in the off-fault regions, and (3) eastward-tapering map-view geometries of the Qimen Tagh, Qaidam, and Qilian Shan thrust belts that link with the three major left-slip faults in northern Tibet. We refer to this specific non-rigid bookshelf-fault system as a passive bookshelf-fault system because the rotating bookshelf panels are detached from the rigid bounding domains. As a consequence, the wallrock of the strike-slip faults deforms to accommodate both the clockwise rotation of the left-slip faults and off-fault strain that arises at the fault ends. An important implication of our model is that the style and magnitude of Cenozoic deformation in northern Tibet vary considerably in the east-west direction. Thus, any single north-south cross section and its kinematic reconstruction through the region do not properly quantify the complex deformational processes of plateau formation.

  13. Quantum deformations of conformal algebras with mass-like deformation parameters

    International Nuclear Information System (INIS)

    Frydryszak, Andrzej; Lukierski, Jerzy; Mozrzymas, Marek; Minnaert, Pierre

    1998-01-01

    We recall the mathematical apparatus necessary for the quantum deformation of Lie algebras, namely the notions of coboundary Lie algebras, classical r-matrices, classical Yang-Baxter equations (CYBE), Froebenius algebras and parabolic subalgebras. Then we construct the quantum deformation of D=1, D=2 and D=3 conformal algebras, showing that this quantization introduce fundamental mass parameters. Finally we consider with more details the quantization of D=4 conformal algebra. We build three classes of sl(4,C) classical r-matrices, satisfying CYBE and depending respectively on 8, 10 and 12 generators of parabolic subalgebras. We show that only the 8-dimensional r-matrices allow to impose the D=4 conformal o(4,2)≅su(2,2) reality conditions. Weyl reflections and Dynkin diagram automorphisms for o(4,2) define the class of admissible bases for given classical r-matrices

  14. Deformed lattice states in a Zn{sub 0.9}V{sub 0.1}Se cubic crystal

    Energy Technology Data Exchange (ETDEWEB)

    Maksimov, V. I., E-mail: kokailo@rambler.ru; Dubinin, S. F.; Surkova, T. P.; Parkhomenko, V. D. [Russian Academy of Sciences, Institute of Metal Physics, Ural Branch (Russian Federation)

    2016-01-15

    Neutron scattering patterns have been recorded for a bulk Zn{sub 0.9}V{sub 0.1}Se cubic crystal at room temperature; they are indicative of macroscopic deformation in the material and its significant inhomogeneity. Specific features of the previously found state, preceding the fcc ↔ hcp structural transformation of the sphalerite lattice upon strong destabilization induced by vanadium ions in the doped ZnSe matrix, are discussed taking into account the data obtained.

  15. Non-uniform plastic deformation of micron scale objects

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2003-01-01

    Significant increases in apparent flow strength are observed when non-uniform plastic deformation of metals occurs at the scale ranging from roughly one to ten microns. Several basic plane strain problems are analyzed numerically in this paper based on a new formulation of strain gradient...... plasticity. The problems are the tangential and normal loading of a finite rectangular block of material bonded to rigid platens and having traction-free ends, and the normal loading of a half-space by a flat, rigid punch. The solutions illustrate fundamental features of plasticity at the micron scale...... that are not captured by conventional plasticity theory. These include the role of material length parameters in establishing the size dependence of strength and the elevation of resistance to plastic flow resulting from constraint on plastic flow at boundaries. Details of the finite element method employed...

  16. Granular deformation mechanisms in semi-solid alloys

    International Nuclear Information System (INIS)

    Gourlay, C.M.; Dahle, A.K.; Nagira, T.; Nakatsuka, N.; Nogita, K.; Uesugi, K.; Yasuda, H.

    2011-01-01

    Deformation mechanisms in equiaxed, partially solid Al-15 wt.% Cu are studied in situ by coupling shear-cell experiments with synchrotron X-ray radiography. Direct evidence is presented for granular deformation mechanisms in both globular and equiaxed-dendritic samples at solid fractions shortly after crystal impingement. It is demonstrated that dilatancy, arching and jamming occur at the crystal scale, and that these can cause stick-slip flow due to periodic dilation and compaction at low displacement rate. Granular deformation is found to be similar in globular and equiaxed-dendritic samples if length is scaled by the crystal size and packing is considered to occur among crystal envelopes. Rheological differences between the morphologies are discussed in terms of the competition between crystal rearrangement and crystal deformation.

  17. On Deformations and Contractions of Lie Algebras

    Directory of Open Access Journals (Sweden)

    Marc de Montigny

    2006-05-01

    Full Text Available In this contributed presentation, we discuss and compare the mutually opposite procedures of deformations and contractions of Lie algebras. We suggest that with appropriate combinations of both procedures one may construct new Lie algebras. We first discuss low-dimensional Lie algebras and illustrate thereby that whereas for every contraction there exists a reverse deformation, the converse is not true in general. Also we note that some Lie algebras belonging to parameterized families are singled out by the irreversibility of deformations and contractions. After reminding that global deformations of the Witt, Virasoro, and affine Kac-Moody algebras allow one to retrieve Lie algebras of Krichever-Novikov type, we contract the latter to find new infinite dimensional Lie algebras.

  18. Pollybeak Deformity in Middle Eastern Rhinoplasty: Prevention and Treatment.

    Science.gov (United States)

    Hussein, Wael K A; Foda, Hossam M T

    2016-08-01

    The pollybeak deformity is one of the commonest causes of revision rhinoplasty. The Middle Eastern nose has certain criteria that predispose to the development of pollybeak deformity. The aim of this study is to detect the factors contributing to the development of pollybeak deformity in the Middle Eastern nose and methods used to prevent as well as to treat such deformity. Out of the 1,160 revision patients included in this study, 720 (62%) patients had a pollybeak deformity. The commonest contributing factors included underprojected tip with poor support in 490 (68%) patients, excessive supratip scarring in 259 (36%) patients, overresected bony dorsum in 202 (28%) patients, and high anterior septal angle in 173 (24%) patients. The methods used by the authors to treat the pollybeak deformity are described, along with the local steroid injection protocol used to guard against the recurrence of pollybeak deformity. Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

  19. Deformation Microstructure in Beta-Titanium After Deformation at Low Temperatures

    National Research Council Canada - National Science Library

    Humphreys, F. J; Bate, P. S; Brough, I

    2005-01-01

    .... The contractor shall use a beta Ti alloy that is stable and single-phase at room temperature. The contractor shall evaluate the microstructure of the material after deformation at room temperature and at temperatures up to ̃400C...

  20. Scale covariant physics: a 'quantum deformation' of classical electrodynamics

    International Nuclear Information System (INIS)

    Knoll, Yehonatan; Yavneh, Irad

    2010-01-01

    We present a deformation of classical electrodynamics, continuously depending on a 'quantum parameter', featuring manifest gauge, Poincare and scale covariance. The theory, dubbed extended charge dynamics (ECD), associates a certain length scale with each charge which, due to scale covariance, is an attribute of a solution, not a parameter of the theory. When the EM field experienced by an ECD charge is slowly varying over that length scale, the dynamics of the charge reduces to classical dynamics, its emitted radiation reduces to the familiar Lienard-Wiechert potential and the above length scale is identified as the charge's Compton length. It is conjectured that quantum mechanics describes statistical aspects of ensembles of ECD solutions, much like classical thermodynamics describes statistical aspects of ensembles of classical solutions. A unique 'remote sensing' feature of ECD, supporting that conjecture, is presented, along with an explanation for the illusion of a photon within a classical treatment of the EM field. Finally, a novel conservation law associated with the scale covariance of ECD is derived, indicating that the scale of a solution may 'drift' with time at a constant rate, much like translation covariance implies a uniform drift of the (average) position.