WorldWideScience

Sample records for deformation features pdfs

  1. Orientation of Planar Deformation Features (PDFs) in quartz

    Science.gov (United States)

    Langenhorst, F.; Deutsch, A.

    1993-01-01

    Differently oriented single crystal quartz was shocked experimentally at pressures of 20 to 32 GPa and pre-shock temperatures up to 630 C. Based on this systematic investigation, we can demonstrate that the orientation of planar deformation features in quartz is not only dependent on shock pressure but also on pre-shock temperature and shock direction. Moreover, the orientation of Planar Deformation Features (PDF's) is strongly influenced by the set-up in recovery experiments. PDF's in quartz are defined as optically recognizable, planar microstructures diagnostically produced by shock compression. PDF's differ from all kinds of microstructures found in volcanic environment and therefore, their presence is a primary criterion for recognizing impact craters and ejecta layers such as the K/T boundary. Because experiments have shown a pressure dependence of the orientation of PDF's, this property is used extensively for shock wave barometry in natural impact sites. However, the unreflected application of experimental results neglects that parameters such as pre-shock temperature, shock direction, or the experimental arrangement may influence the spatial distribution of PDF's. In order to test this assumption, shock experiments on single crystal quartz at pre-shock temperatures of 20, 275, 540, and 630 C, and with shock directions (1010) and (0001) were performed. Most of the recovery experiments were carried out by using a reverberation technique, whereas in only one experiment a single shock was produced (impedance method). In the former case 0.5 mm thin discs of single crystal quartz were used, in the latter a 15 mm thick cylinder. The orientation of PDF's was measured by means of a conventional universal stage and the results are given. Effects of the experimentation technique can be derived showing the orientation of PDF's in quartz shocked at 27.5 GPa. In comparison to the well defined peaks at (1012) found in samples from reverberation experiments, the impedance

  2. Distinction between amorphous and healed planar deformation features in shocked quartz using composite color scanning electron microscope cathodoluminescence (SEM-CL) imaging

    NARCIS (Netherlands)

    Hamers, Maartje F.; Pennock, Gill M.; Herwegh, Marco; Drury, Martyn R.

    2016-01-01

    Planar deformation features (PDFs) in quartz are one of the most reliable and most widely used forms of evidence for hypervelocity impact. PDFs can be identified in scanning electron microscope cathodoluminescence (SEM-CL) images, but not all PDFs show the same CL behavior: there are nonluminescent

  3. Distinction between amorphous and healed planar deformation features in shocked quartz using composite color scanning electron microscope cathodoluminescence (SEM-CL) imaging

    Science.gov (United States)

    Hamers, Maartje F.; Pennock, Gill M.; Herwegh, Marco; Drury, Martyn R.

    2016-10-01

    Planar deformation features (PDFs) in quartz are one of the most reliable and most widely used forms of evidence for hypervelocity impact. PDFs can be identified in scanning electron microscope cathodoluminescence (SEM-CL) images, but not all PDFs show the same CL behavior: there are nonluminescent and red luminescent PDFs. This study aims to explain the origin of the different CL emissions in PDFs. Focused ion beam (FIB) thin foils were prepared of specific sample locations selected in composite color SEM-CL images and were analyzed in a transmission electron microscope (TEM). The FIB preparation technique allowed a direct, often one-to-one correlation between the CL images and the defect structure observed in TEM. This correlation shows that composite color SEM-CL imaging allows distinction between amorphous PDFs on one hand and healed PDFs and basal Brazil twins on the other: nonluminescent PDFs are amorphous, while healed PDFs and basal Brazil twins are red luminescent, with a dominant emission peak at 650 nm. We suggest that the red luminescence is the result of preferential beam damage along dislocations, fluid inclusions, and twin boundaries. Furthermore, a high-pressure phase (possibly stishovite) in PDFs can be detected in color SEM-CL images by its blue luminescence.

  4. Scanning electron microscope cathodoluminescence imaging of subgrain boundaries, twins and planar deformation features in quartz

    Science.gov (United States)

    Hamers, M. F.; Pennock, G. M.; Drury, M. R.

    2016-11-01

    The study of deformation features has been of great importance to determine deformation mechanisms in quartz. Relevant microstructures in both growth and deformation processes include dislocations, subgrains, subgrain boundaries, Brazil and Dauphiné twins and planar deformation features (PDFs). Dislocations and twin boundaries are most commonly imaged using a transmission electron microscope (TEM), because these cannot directly be observed using light microscopy, in contrast to PDFs. Here, we show that red-filtered cathodoluminescence imaging in a scanning electron microscope (SEM) is a useful method to visualise subgrain boundaries, Brazil and Dauphiné twin boundaries. Because standard petrographic thin sections can be studied in the SEM, the observed structures can be directly and easily correlated to light microscopy studies. In contrast to TEM preparation methods, SEM techniques are non-destructive to the area of interest on a petrographic thin section.

  5. Feature-driven deformation for dense correspondence

    Science.gov (United States)

    Ghosh, Deboshmita; Sharf, Andrei; Amenta, Nina

    2009-02-01

    Establishing reliable correspondences between object surfaces is a fundamental operation, required in many contexts such as cleaning up and completing imperfect captured data, texture and deformation trans- fer, shape-space analysis and exploration, and the automatic generation of realistic distributions of objects. We present a method for matching a template to a collection of possibly target meshes. Our method uses a very small number of user-placed landmarks, which we augment with automatically detected feature correspondences, found using spin images. We deform the template onto the data using an ICP-like framework, smoothing the noisy correspondences at each step so as to produce an averaged motion. The deformation uses a dierential representation of the mesh, with which the deformation can be computed at each iteration by solving a sparse linear system. We have applied our algorithm to a variety of data sets. Using only 11 landmarks between a template and one of the scans from the CEASAR data set, we are able to deform the template, and correctly identify and transfer distinctive features, which are not identied by user-supplied landmarks. We have also successfully established correspondences between several scans of monkey skulls, which have dangling triangles, non-manifold vertices, and self intersections. Our algorithm does not require a clean target mesh, and can even generate correspondence without trimming our extraneous pieces from the target mesh, such as scans of teeth.

  6. Constraining nuclear PDFs with CMS

    CERN Document Server

    Chapon, Emilien

    2017-01-01

    Nuclear parton distribution functions are essential to the understanding of proton-lead collisions. We will review several measurements from CMS that are particularly sensitive to nPDFs. W and Z bosons are medium-blind probes of the initial state of the collisions, and we will present the measurements of their production cross sections in pPb collisions at 5.02 TeV, and as well a asymmetries with an increased sensitivity to nPDFs. We will also report measurements of charmonium production, including the nuclear modification factor of J/psi and psi(2S) in pPb collisions at 5.02 TeV, though other cold nuclear matter effects may also be at play in those processes. At last, we will present measurements of the pseudo-rapidity of dijets in pPb collisions at 5.02 TeV.

  7. Update of HKN Nuclear PDFs

    CERN Document Server

    Hirai, Masanori

    2016-01-01

    We discuss consistency of the nuclear effects between the electromagnetic and weak interactions. In order to study a possibility of different nuclear effects in the neutrino DIS process, double differential cross section data are compared with these values obtained by the HKN07 nuclear parton distribution functions (nPDFs). Discrepancies are found in the small and large-$x$ regions, and difference of kinematical value $y$ dependence exists between the $\

  8. Shatter cones and planar deformation features confirm Santa Marta in Piauí State, Brazil, as an impact structure

    Science.gov (United States)

    Oliveira, Grace Juliana Gonçalves; Vasconcelos, Marcos Alberto Rodrigues; Crósta, Alvaro Penteado; Reimold, Wolf Uwe; Góes, Ana Maria; Kowitz, Astrid

    2014-10-01

    A total of 184 confirmed impact structures are known on Earth to date, as registered by the Earth Impact Database. The discovery of new impact structures has progressed in recent years at a rather low rate of about two structures per year. Here, we introduce the discovery of the approximately 10 km diameter Santa Marta impact structure in Piauí State in northeastern Brazil. Santa Marta is a moderately sized complex crater structure, with a raised rim and an off-center, approximately 3.2 km wide central elevated area interpreted to coincide with the central uplift of the impact structure. The Santa Marta structure was first recognized in remote sensing imagery and, later, by distinct gravity and magnetic anomalies. Here, we provide results obtained during the first detailed ground survey. The Bouguer anomaly map shows a transition from a positive to a negative anomaly within the structure along a NE-SW trend, which may be associated with the basement signature and in parts with the signature developed after the crater was formed. Macroscopic evidence for impact in the form of shatter cones has been found in situ at the base around the central elevated plateau, and also in the interior of fractured conglomerate boulders occurring on the floor of the surrounding annular basin. Planar deformation features (PDFs) are abundant in sandstones of the central elevated plateau and at scattered locations in the inner part of the ring syncline. Together, shatter cones and PDFs provide definitive shock evidence that confirms the impact origin of Santa Marta. Crystallographic orientations of PDFs occurring in multiple sets in quartz grains are indicative of peak shock pressures of 20-25 GPa in the rocks exposed at present in the interior of the crater. In contrast to recent studies that have used additional, and sometimes highly controversial, alleged shock recognition features, Santa Marta was identified based on well-understood, traditional shock evidence.

  9. Structural features of plastic deformation in bulk metallic glasses

    Energy Technology Data Exchange (ETDEWEB)

    Scudino, S., E-mail: s.scudino@ifw-dresden.de; Shakur Shahabi, H.; Stoica, M.; Kühn, U. [IFW Dresden, Institut für Komplexe Materialien, D-01069 Dresden (Germany); Kaban, I.; Escher, B.; Eckert, J. [IFW Dresden, Institut für Komplexe Materialien, D-01069 Dresden (Germany); TU Dresden, Institut für Werkstoffwissenschaft, D-01062 Dresden (Germany); Vaughan, G. B. M. [European Synchrotron Radiation Facilities ESRF, BP220, 38043 Grenoble (France)

    2015-01-19

    Spatially resolved strain maps of a plastically deformed bulk metallic glass (BMG) have been created by using high-energy X-ray diffraction. The results reveal that plastic deformation creates a spatially heterogeneous atomic arrangement, consisting of strong compressive and tensile strain fields. In addition, significant shear strain is introduced in the samples. The analysis of the eigenvalues and eigenvectors of the strain tensor indicates that considerable structural anisotropy occurs in both the magnitude and direction of the strain. These features are in contrast to the behavior observed in elastically deformed BMGs and represent a distinctive structural sign of plastic deformation in metallic glasses.

  10. The new ABMP16 PDFs

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, Sergey [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Institute for High Energy Physics, Protvino (Russian Federation); Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Moch, Sven-Olaf [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Placakyte, Ringaile [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-09-15

    We present an update of the ABM12 PDF analysis including improved constraints due to the final version of the inclusive DIS HERA data, the Tevatron and LHC data on the W- and Z-production and those on heavy-quark production in the electron- and neutrino-induced DIS at HERA and the fixed-target experiments NOMAD and CHORUS. We also check the impact of the Tevatron and LHC top-quark production data on the PDFs and the strong coupling constant. We obtain α{sub s}(M{sub Z})=0.1145(9) and 0.1147(8) with and without the top-quark data included, respectively.

  11. The Keurusselkä impact structure, Finland-Impact origin confirmed by characterization of planar deformation features in quartz grains

    Science.gov (United States)

    Ferrière, Ludovic; Raiskila, Selen; Osinski, Gordon R.; Pesonen, Lauri J.; Lehtinen, Martti

    2010-03-01

    Although the meteorite impact origin of the Keurusselkä impact structure (central Finland) has been established on the basis of the occurrence of shatter cones, no detailed microscopic examination of the impactites from this structure has so far been made. Previous microscope investigations of in situ rocks did not yield any firm evidence of shock features (Raiskila et al. 2008; Kinnunen and Hietala 2009). We have carried out microscopic observations on petrographic thin sections from seven in situ shatter cone samples and report here the discovery of planar fractures (PFs) and planar deformation features (PDFs) in quartz and feldspar grains. The detection and characterization of microscopic shock metamorphic features in the investigated samples substantiates a meteorite impact origin for the Keurusselkä structure. The crystallographic orientations of 372 PDF sets in 276 quartz grains were measured, using a universal stage (U-stage) microscope, for five of the seven distinct shatter cone samples. Based on our U-stage results, we estimate that investigated shatter cone samples from the Keurusselkä structure have experienced peak shock pressures from approximately 2 GPa to slightly less than 20 GPa for the more heavily shocked samples. The decoration of most of the PDFs with fluid inclusions also indicates that these originally amorphous shock features were altered by postimpact processes. Finally, our field observations indicate that the exposed surface corresponds to the crater floor; it is, however, difficult to estimate the exact diameter of the structure and the precise amount of material that has been eroded since its formation.

  12. Craniofacial features of children with spinal deformities

    Directory of Open Access Journals (Sweden)

    Végh András

    2008-12-01

    Full Text Available Abstract Background The objective of this epidemiological study is to map the dentofacial anomalies that can be correlated to the two most frequent spinal diseases responsible for postural abnormalities and that can be clinically identified by the orthodontic examination. Methods Twenty-three children with Scheuermann's disease participated in the study (mean age: 14Y8M; SD: 1Y8M, 28 with Scoliosis (mean age: 14Y7M; SD: 2Y3M and a control group of 68 orthopedically healthy children (mean age: 14Y8M; SD: 0Y11M. Standardized orthodontic screening protocols were used to map the occlusal relations in the sagittal, vertical, and transversal dimensions, space relations of the maxillary and mandibular frontal segment, and the TMJ status and function. The examinations for the children with orthopedic disorders were supplemented by the evaluation of routine orthodontic radiograms – lateral cephalograms and panoramic X-rays. Results The majority of the dentofacial features examined revealed more and greater abnormalities among patients in the Scheuermann's disease group than in the scoliosis group. In the latter group the proportion of the TMJ symptoms and the consecutive functional deviations were greater. When comparing the values of the two spinal-disorder groups and the control group, statistically significant differences (p p Conclusion The more extended treatment of the malocclusions closely correlated to postural disorders draws attention to the indicators of a higher frequency and severity occurring in the case of the dentofacial deviations in the patients of the MSCH group who had previously been less examined.

  13. Nuclear PDFs from neutrino deep inelastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    I. Schienbein; J. Y. Yu; C. Keppel; J. G. Morfin; F. Olness; J.F. Owens

    2007-11-13

    We study nuclear effects in charged current deep inelastic neutrino--iron scattering in the framework of a chi^2-analysis of parton distribution functions. We extract a set of iron PDFs and show that under reasonable assumptions it is possible to constrain the valence, light sea and strange quark distributions. We compare our results with nuclear parton distribution functions from the literature and find good agreement. Our iron PDFs are used to compute nuclear correction factors which are required in global analyses of free nucleon PDFs.

  14. Coordinated Mapping of Sea Ice Deformation Features with Autonomous Vehicles

    Science.gov (United States)

    Maksym, T.; Williams, G. D.; Singh, H.; Weissling, B.; Anderson, J.; Maki, T.; Ackley, S. F.

    2016-12-01

    Decreases in summer sea ice extent in the Beaufort and Chukchi Seas has lead to a transition from a largely perennial ice cover, to a seasonal ice cover. This drives shifts in sea ice production, dynamics, ice types, and thickness distribution. To examine how the processes driving ice advance might also impact the morphology of the ice cover, a coordinated ice mapping effort was undertaken during a field campaign in the Beaufort Sea in October, 2015. Here, we present observations of sea ice draft topography from six missions of an Autonomous Underwater Vehicle run under different ice types and deformation features observed during autumn freeze-up. Ice surface features were also mapped during coordinated drone photogrammetric missions over each site. We present preliminary results of a comparison between sea ice surface topography and ice underside morphology for a range of sample ice types, including hummocked multiyear ice, rubble fields, young ice ridges and rafts, and consolidated pancake ice. These data are compared to prior observations of ice morphological features from deformed Antarctic sea ice. Such data will be useful for improving parameterizations of sea ice redistribution during deformation, and for better constraining estimates of airborne or satellite sea ice thickness.

  15. Deformation-based freeform feature reconstruction in reverse engineering

    Institute of Scientific and Technical Information of China (English)

    Qing WANG; Jiang-xiong LI; Ying-lin KE

    2008-01-01

    For reconstructing a freeform feature from point cloud,a deformation-based method is proposed in this paper.The freeform feature consists of a secondary surface and a blending surface.The secondary surface plays a role in substituting a local region of a given primary surface.The blending surface acts as a bridge to smoothly connect the unchanged region of the primary surface with the secondary surface.The secondary surface is generated by surface deformation subjected to line constraints,I.e.,character lines and limiting lines,not designed by conventional methotis.The lines are used to represent the underlying information of the freeform feature in point cloud.where the character lines depict the feature's shape,and the limiting lines determine its location and orientation.The configuration of the character lines and the extraction of the limiting lines are discussed in detail.The blending surface is designed by the traditional modeling method.whose intrinsic parameters are recovered from point cloud through a series of steps,namely,point cloud slicing,circle fitting and regression analysis.The proposed method is used not only to effectively and efficiently reconstruct the freeform feature,but also to modify it by manipulating the line constraints.Typical examples are given to verify our method.

  16. Specialized minimal PDFs for optimized LHC calculations.

    Science.gov (United States)

    Carrazza, Stefano; Forte, Stefano; Kassabov, Zahari; Rojo, Juan

    2016-01-01

    We present a methodology for the construction of parton distribution functions (PDFs) designed to provide an accurate representation of PDF uncertainties for specific processes or classes of processes with a minimal number of PDF error sets: specialized minimal PDF sets, or SM-PDFs. We construct these SM-PDFs in such a way that sets corresponding to different input processes can be combined without losing information, specifically as regards their correlations, and that they are robust upon smooth variations of the kinematic cuts. The proposed strategy never discards information, so that the SM-PDF sets can be enlarged by the addition of new processes, until the prior PDF set is eventually recovered for a large enough set of processes. We illustrate the method by producing SM-PDFs tailored to Higgs, top-quark pair, and electroweak gauge boson physics, and we determine that, when the PDF4LHC15 combined set is used as the prior, around 11, 4, and 11 Hessian eigenvectors, respectively, are enough to fully describe the corresponding processes.

  17. Specialized minimal PDFs for optimized LHC calculations

    CERN Document Server

    Carrazza, Stefano; Kassabov, Zahari; Rojo, Juan

    2016-01-01

    We present a methodology for the construction of parton distribution functions (PDFs) designed to provide an accurate representation of PDF uncertainties for specific processes or classes of processes with a minimal number of PDF error sets: specialized minimal PDF sets, or SM-PDFs. We construct these SM-PDFs in such a way that sets corresponding to different input processes can be combined without losing information, specifically on their correlations, and that they are robust upon smooth variations of the kinematic cuts. The proposed strategy never discards information, so that the SM-PDF sets can be enlarged by the addition of new processes, until the prior PDF set is eventually recovered for a large enough set of processes. We illustrate the method by producing SM-PDFs tailored to Higgs, top quark pair, and electroweak gauge boson physics, and determine that, when the PDF4LHC15 combined set is used as the prior, around 11, 4 and 11 Hessian eigenvectors respectively are enough to fully describe the corresp...

  18. On the Impact of Lepton PDFs

    CERN Document Server

    Bertone, Valerio; Pagani, Davide; Zaro, Marco

    2015-01-01

    In this paper we discuss the effect of the complete leading-order QED corrections to the DGLAP equations in the perturbative evolution of parton distribution functions (PDFs). This requires the extension of the purely QCD DGLAP evolution, including a PDF for the photons and, consistently, also for the charged leptons $e^{\\pm}$, $\\mu^\\pm$ and $\\tau^\\pm$. We present the implementation of the QED-corrected DGLAP evolution in the presence of photon and lepton PDFs in the APFEL program and, by means of different assumptions for the initial scale PDFs, we produce for the first time PDF sets containing charged lepton distributions. We also present phenomenological studies that aim to assess the impact of the presence of lepton PDFs in the proton for some relevant SM (and BSM) processes at the LHC at 13 TeV and the FCC-hh at 100 TeV. The impact of the photon PDF is also outlined for those processes.

  19. Iris-based medical analysis by geometric deformation features.

    Science.gov (United States)

    Ma, Lin; Zhang, D; Li, Naimin; Cai, Yan; Zuo, Wangmeng; Wang, Kuanguan

    2013-01-01

    Iris analysis studies the relationship between human health and changes in the anatomy of the iris. Apart from the fact that iris recognition focuses on modeling the overall structure of the iris, iris diagnosis emphasizes the detecting and analyzing of local variations in the characteristics of irises. This paper focuses on studying the geometrical structure changes in irises that are caused by gastrointestinal diseases, and on measuring the observable deformations in the geometrical structures of irises that are related to roundness, diameter and other geometric forms of the pupil and the collarette. Pupil and collarette based features are defined and extracted. A series of experiments are implemented on our experimental pathological iris database, including manual clustering of both normal and pathological iris images, manual classification by non-specialists, manual classification by individuals with a medical background, classification ability verification for the proposed features, and disease recognition by applying the proposed features. The results prove the effectiveness and clinical diagnostic significance of the proposed features and a reliable recognition performance for automatic disease diagnosis. Our research results offer a novel systematic perspective for iridology studies and promote the progress of both theoretical and practical work in iris diagnosis.

  20. Progressive deformation of feldspar recording low-barometry impact processes, Tenoumer impact structure, Mauritania

    Science.gov (United States)

    Jaret, Steven J.; Kah, Linda C.; Harris, R. Scott

    2014-06-01

    The Tenoumer impact structure is a small, well-preserved crater within Archean to Paleoproterozoic amphibolite, gneiss, and granite of the Reguibat Shield, north-central Mauritania. The structure is surrounded by a thin ejecta blanket of crystalline blocks (granitic gneiss, granite, and amphibolite) and impact-melt rocks. Evidence of shock metamorphism of quartz, most notably planar deformation features (PDFs), occurs exclusively in granitic clasts entrained within small bodies of polymict, glass-rich breccia. Impact-related deformation features in oligoclase and microcline grains, on the other hand, occur both within clasts in melt-breccia deposits, where they co-occur with quartz PDFs, and also within melt-free crystalline ejecta, in the absence of co-occurring quartz PDFs. Feldspar deformation features include multiple orientations of PDFs, enhanced optical relief of grain components, selective disordering of alternate twins, inclined lamellae within alternate twins, and combinations of these individual textures. The distribution of shock features in quartz and feldspar suggests that deformation textures within feldspar can record a wide range of average pressures, starting below that required for shock deformation of quartz. We suggest that experimental analysis of feldspar behavior, combined with detailed mapping of shock metamorphism of feldspar in natural systems, may provide critical data to constrain energy dissipation within impact regimes that experienced low average shock pressures.

  1. Design Features of Hardening Turners with Outstripping Plastic Deformation

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2014-01-01

    Full Text Available An efficiency of the cutting method with outstripping plastic deformation (OPD in lathe works is defined in many respects by design features of the add-on devices for mechanical hardening of a cut-off layer material in the course of cutting. Applied on lathes, deforming OPD devices can have differing dimensions, placement on the lathe, drive type (manual, electric, hydraulic, pneumatic, pneumohydraulic, electromagnetic, and autonomy degree towards the metalcutting equipment and industrial equipment.At the same time there are a number of inherent design features of work-hardening devices the modernized lathes with OPD use for machining. Now the OPD standard devices implement two principle construction options: loading device is placed on the machine or on the OPD slide support separate of the tool, or it is structurally aligned with the cutting tool. In the latter case the OPD device for turning is called a tool mandrel, which is mounted in a tool post of the machine or, at large dimensions, such a mandrel is mounted on the machine instead of the tool mandrel.When designing the OPD devices, is important to take into consideration production requirements and recommendations for the technological equipment, developed in the course of creation, working off and introduction of such installations for mechanical hardening of material. In compliance with it, OPD devices, their placement on the machine, and working displacements shouldn't limit technological capabilities of the applied metal-cutting equipment. OPD stresses have to be smoothly regulated, with maximum loads being limited to admissible values for the machine model to be modernized. It is necessary to ensure synchronized longitudinal and cross displacements of the cutting tool and OPD hardener with respect to the axis of billet rotation to enable regulation and readjustment of the hardener and tool placement. It ought to foresee the increased mobile components rigidity and manufacturing

  2. Drell-Yan measurement at COMPASS: a place to test the TMD PDFs universality

    Science.gov (United States)

    Andrieux, Vincent

    2017-01-01

    For the first time ever, the COMPASS experiment (CERN, SPS) collected in 2015 Drell-Yan (DY) data using a 190 GeV/ c pion beam on a transversely polarized NH3 target. The azimuthal modulations of the DY cross-section give access to the set of transverse momentum dependent (TMD) parton distribution functions (PDFs), which describe the spin structure of the nucleon. Those PDFs were already measured in semi-inclusive deep inelastic scattering (SIDIS) by several experiments and especially COMPASS, which dedicated several campaigns between 2002 and 2010 to measure spin (in)dependent azimuthal asymmetries using a 160 GeV/ c polarized muon beam on a transversely polarized 6LiD or NH3 target. A key interest of extracting those TMD PDFs from different processes is to check the universality and the process-dependent features of TMD PDFs. In this aim, COMPASS is a unique place to test the predicted sign-change of the TMD PDFs using a similar experimental setup and comparable kinematic domain. The main focus of this talk will be set on the physics aspects of the COMPASS polarized Drell-Yan program and related SIDIS results. on behalf of the COMPASS collaboration.

  3. Updates of the MMHT2014 PDFs

    CERN Document Server

    Harland-Lang, L A; Thorne, R S

    2016-01-01

    We briefly discuss some of the developments since the publication of the MMHT14 parton distributions. In particular we explore the impact of recent LHC data for $W^\\pm,Z$ and $t\\bar{t}$ production, and perform a preliminary new analysis including these data. In this re-fit (which we tentatively call `MMHT16') there are few changes of significance in the central values of the PDFs, but some data reduce the uncertainties, mainly in the strange and valence quark distributions. We find that an extended $\\bar{d}-\\bar{u}$ parametrization only leads to minor changes, with the difference going to zero as $x \\to 0$. We comment on the determination of the photon PDF.

  4. Shock Deformation Features in Monazite: Implications for Dating Impacts

    Science.gov (United States)

    Erickson, T. M.; Cavosie, A. J.; Timms, N. E.; Pearce, M. A.; Kirkland, C. L.; Tohver, E.; Reddy, S. M.

    2016-08-01

    This study presents detailed microstructural and U-Th-Pb analyses of shock deformed monazites from the Vredefort Dome, South Africa and Araguainha, Brazil impact structures, with significant insights on its use as impact indicator and geochronometer.

  5. Nuclear PDFs in the beginning of the LHC era

    CERN Document Server

    Paukkunen, Hannu

    2014-01-01

    The status of the global fits of nuclear parton distributions (nPDFs) is reviewed. In addition to comparing the contemporary analyses of nPDFs, difficulties and controversies posed by the neutrino-nucleus deeply inelastic scattering data is overviewed. At the end, the first dijet data from the LHC proton+lead collisions is briefly discussed.

  6. Nuclear PDFs in the beginning of the LHC era

    Energy Technology Data Exchange (ETDEWEB)

    Paukkunen, Hannu, E-mail: hannu.paukkunen@jyu.fi [Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 (Finland); Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FI-00014 (Finland)

    2014-06-15

    The status of the global fits of nuclear parton distributions (nPDFs) is reviewed. In addition to comparing the contemporary analyses of nPDFs, difficulties and controversies posed by the neutrino–nucleus deeply inelastic scattering data is overviewed. At the end, the first dijet data from the LHC proton+lead collisions are briefly discussed.

  7. ANIE: A Mathematical Algorithm for Automated Indexing of Planar Deformation Features in Shocked Quartz

    Science.gov (United States)

    Huber, M. S.; Ferrière, L.; Losiak, A.; Koeberl, C.

    2011-03-01

    A mathematical method of indexing planar deformation features in quartz and a Microsoft Excel macro for automated indexing is presented, allowing for more rapid and accurate results than the previously used manual method.

  8. A critical appraisal and evaluation of modern PDFs

    Science.gov (United States)

    Accardi, A.; Alekhin, S.; Blümlein, J.; Garzelli, M. V.; Lipka, K.; Melnitchouk, W.; Moch, S.; Owens, J. F.; Plačakytė, R.; Reya, E.; Sato, N.; Vogt, A.; Zenaiev, O.

    2016-08-01

    We review the present status of the determination of parton distribution functions (PDFs) in the light of the precision requirements for the LHC in Run 2 and other future hadron colliders. We provide brief reviews of all currently available PDF sets and use them to compute cross sections for a number of benchmark processes, including Higgs boson production in gluon-gluon fusion at the LHC. We show that the differences in the predictions obtained with the various PDFs are due to particular theory assumptions made in the fits of those PDFs. We discuss PDF uncertainties in the kinematic region covered by the LHC and on averaging procedures for PDFs, such as advocated by the PDF4LHC15 sets, and provide recommendations for the usage of PDF sets for theory predictions at the LHC.

  9. A critical appraisal and evaluation of modern PDFs

    Energy Technology Data Exchange (ETDEWEB)

    Accardi, A. [Hampton University, Hampton, VA (United States); Jefferson Lab, Newport News, VA (United States); Alekhin, S. [Universitaet Hamburg, II. Institut fuer Theoretische Physik, Hamburg (Germany); Institute for High Energy Physics, Protvino, Moscow region (Russian Federation); Bluemlein, J. [Deutsches Elektronensynchrotron DESY, Zeuthen (Germany); Garzelli, M.V.; Moch, S. [Universitaet Hamburg, II. Institut fuer Theoretische Physik, Hamburg (Germany); Lipka, K.; Placakyte, R.; Zenaiev, O. [Deutsches Elektronensynchrotron DESY, Hamburg (Germany); Melnitchouk, W.; Sato, N. [Jefferson Lab, Newport News, VA (United States); Owens, J.F. [Florida State University, Tallahassee, FL (United States); Reya, E. [Technische Universitaet Dortmund, Institut fuer Physik, Dortmund (Germany); Vogt, A. [University of Liverpool, Department of Mathematical Sciences, Liverpool (United Kingdom)

    2016-08-15

    We review the present status of the determination of parton distribution functions (PDFs) in the light of the precision requirements for the LHC in Run 2 and other future hadron colliders. We provide brief reviews of all currently available PDF sets and use them to compute cross sections for a number of benchmark processes, including Higgs boson production in gluon-gluon fusion at the LHC. We show that the differences in the predictions obtained with the various PDFs are due to particular theory assumptions made in the fits of those PDFs. We discuss PDF uncertainties in the kinematic region covered by the LHC and on averaging procedures for PDFs, such as advocated by the PDF4LHC15 sets, and provide recommendations for the usage of PDF sets for theory predictions at the LHC. (orig.)

  10. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes.

    Science.gov (United States)

    Zhong, Zichun; Guo, Xiaohu; Cai, Yiqi; Yang, Yin; Wang, Jing; Jia, Xun; Mao, Weihua

    2016-01-01

    By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT) scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs) are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs) of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  11. 3D-2D Deformable Image Registration Using Feature-Based Nonuniform Meshes

    Directory of Open Access Journals (Sweden)

    Zichun Zhong

    2016-01-01

    Full Text Available By using prior information of planning CT images and feature-based nonuniform meshes, this paper demonstrates that volumetric images can be efficiently registered with a very small portion of 2D projection images of a Cone-Beam Computed Tomography (CBCT scan. After a density field is computed based on the extracted feature edges from planning CT images, nonuniform tetrahedral meshes will be automatically generated to better characterize the image features according to the density field; that is, finer meshes are generated for features. The displacement vector fields (DVFs are specified at the mesh vertices to drive the deformation of original CT images. Digitally reconstructed radiographs (DRRs of the deformed anatomy are generated and compared with corresponding 2D projections. DVFs are optimized to minimize the objective function including differences between DRRs and projections and the regularity. To further accelerate the above 3D-2D registration, a procedure to obtain good initial deformations by deforming the volume surface to match 2D body boundary on projections has been developed. This complete method is evaluated quantitatively by using several digital phantoms and data from head and neck cancer patients. The feature-based nonuniform meshing method leads to better results than either uniform orthogonal grid or uniform tetrahedral meshes.

  12. Sparse Representation of Photometric Redshift PDFs: Preparing for Petascale Astronomy

    CERN Document Server

    Kind, M Carrasco

    2014-01-01

    One of the consequences of entering the era of precision cosmology is the widespread adoption of photometric redshift probability density functions (PDFs). Both current and future photometric surveys are expected to obtain images of billions of distinct galaxies. As a result, storing and analyzing all of these PDFs will be non-trivial and even more severe if a survey plans to compute and store multiple different PDFs. In this paper we propose the use of a sparse basis representation to fully represent individual photo-$z$ PDFs. By using an Orthogonal Matching Pursuit algorithm and a combination of Gaussian and Voigt basis functions, we demonstrate how our approach is superior to a multi-Gaussian fitting, as we require approximately half of the parameters for the same fitting accuracy with the additional advantage that an entire PDF can be stored by using a 4-byte integer per basis function, and we can achieve better accuracy by increasing the number of bases. By using data from the CFHTLenS, we demonstrate th...

  13. Parton distributions in the LHC era: MMHT 2014 PDFs.

    Science.gov (United States)

    Harland-Lang, L A; Martin, A D; Motylinski, P; Thorne, R S

    We present LO, NLO and NNLO sets of parton distribution functions (PDFs) of the proton determined from global analyses of the available hard scattering data. These MMHT2014 PDFs supersede the 'MSTW2008' parton sets, but they are obtained within the same basic framework. We include a variety of new data sets, from the LHC, updated Tevatron data and the HERA combined H1 and ZEUS data on the total and charm structure functions. We also improve the theoretical framework of the previous analysis. These new PDFs are compared to the 'MSTW2008' parton sets. In most cases the PDFs, and the predictions, are within one standard deviation of those of MSTW2008. The major changes are the [Formula: see text] valence quark difference at small [Formula: see text] due to an improved parameterisation and, to a lesser extent, the strange quark PDF due to the effect of certain LHC data and a better treatment of the [Formula: see text] branching ratio. We compare our MMHT PDF sets with those of other collaborations; in particular with the NNPDF3.0 sets, which are contemporary with the present analysis.

  14. PDFs, $\\alpha_s$, and quark masses from global fits

    CERN Document Server

    Alekhin, S; Moch, S; Placakyte, R

    2016-01-01

    The strong coupling constant $\\alpha_s$ and the heavy-quark masses, $m_c$, $m_b$, $m_t$ are extracted simultaneosly with the parton distribution functions (PDFs) in the updated ABM12 fit including recent data from CERN-SPS, HERA, Tevatron, and the LHC. The values of \\begin{eqnarray} \

  15. Parton distributions in the LHC era: MMHT 2014 PDFs

    CERN Document Server

    Harland-Lang, L A; Motylinski, P; Thorne, R S

    2014-01-01

    We present LO, NLO and NNLO sets of parton distribution functions (PDFs) of the proton determined from global analyses of the available hard scattering data. These MMHT2014 PDFs supersede the `MSTW2008' parton sets, but are obtained within the same basic framework. We include a variety of new data sets, from the LHC, updated Tevatron data and the HERA combined H1 and ZEUS data on the total and charm structure functions. We also improve the theoretical framework of the previous analysis. These new PDFs are compared to the `MSTW2008' parton sets. Almost always the PDFs, and the predictions, are within one standard deviation of those of MSTW2008. The major changes are the $u-d$ valence quark difference at small $x$ due to an improved parameterisation and, to a lesser extent, the strange quark PDF due to the effect of some LHC data and a better treatment of the $D \\to \\mu$ branching ratio. We compare our MMHT PDF sets with those of other collaborations; in particular with the NNPDF3.0 sets, which are contemporary...

  16. Parton distributions in the LHC era: MMHT 2014 PDFs

    Science.gov (United States)

    Harland-Lang, L. A.; Martin, A. D.; Motylinski, P.; Thorne, R. S.

    2015-05-01

    We present LO, NLO and NNLO sets of parton distribution functions (PDFs) of the proton determined from global analyses of the available hard scattering data. These MMHT2014 PDFs supersede the `MSTW2008' parton sets, but they are obtained within the same basic framework. We include a variety of new data sets, from the LHC, updated Tevatron data and the HERA combined H1 and ZEUS data on the total and charm structure functions. We also improve the theoretical framework of the previous analysis. These new PDFs are compared to the `MSTW2008' parton sets. In most cases the PDFs, and the predictions, are within one standard deviation of those of MSTW2008. The major changes are the valence quark difference at small due to an improved parameterisation and, to a lesser extent, the strange quark PDF due to the effect of certain LHC data and a better treatment of the branching ratio. We compare our MMHT PDF sets with those of other collaborations; in particular with the NNPDF3.0 sets, which are contemporary with the present analysis.

  17. The effect of LHC jet data on MSTW PDFs.

    Science.gov (United States)

    Watt, B J A; Motylinski, P; Thorne, R S

    We consider the effect on LHC jet cross sections on partons distribution functions (PDFs), in particular the MSTW2008 set of PDFs. We first compare the published inclusive jet data to the predictions using MSTW2008, finding a very good description. We also use the parton distribution reweighting procedure to estimate the impact of these new data on the PDFs, finding that the combined ATLAS 2.76 and 7 TeV data, and CMS 7 TeV data have some significant impact. We then also investigate the impact of ATLAS, CMS and DØ dijet data using the same techniques. In this case we investigate the effect of using different scale choices for the NLO cross section calculation. We find that the dijet data is generally not completely compatible with the corresponding inclusive jet data, often tending to pull PDFs, particularly the gluon distribution, away from the default values. However, the effect depends on the dijet dataset used as well as the scale choice. We also note that conclusions may be affected by limiting the pull on the data luminosity chosen by the best fit, which is sometimes a number of standard deviations. Finally we include the inclusive jet data in a new PDF fit explicitly. This enables us to check the consistency of the exact result with that obtained from the reweighting procedure. There is generally good, but not full quantitative agreement. Hence, the conclusion remains that MSTW2008 PDFs already fit the published jet data well, but the central values and uncertainties are altered and improved, respectively, to a significant, but not dramatic extent by inclusion of these data.

  18. Deformable MR Prostate Segmentation via Deep Feature Learning and Sparse Patch Matching.

    Science.gov (United States)

    Guo, Yanrong; Gao, Yaozong; Shen, Dinggang

    2016-04-01

    Automatic and reliable segmentation of the prostate is an important but difficult task for various clinical applications such as prostate cancer radiotherapy. The main challenges for accurate MR prostate localization lie in two aspects: (1) inhomogeneous and inconsistent appearance around prostate boundary, and (2) the large shape variation across different patients. To tackle these two problems, we propose a new deformable MR prostate segmentation method by unifying deep feature learning with the sparse patch matching. First, instead of directly using handcrafted features, we propose to learn the latent feature representation from prostate MR images by the stacked sparse auto-encoder (SSAE). Since the deep learning algorithm learns the feature hierarchy from the data, the learned features are often more concise and effective than the handcrafted features in describing the underlying data. To improve the discriminability of learned features, we further refine the feature representation in a supervised fashion. Second, based on the learned features, a sparse patch matching method is proposed to infer a prostate likelihood map by transferring the prostate labels from multiple atlases to the new prostate MR image. Finally, a deformable segmentation is used to integrate a sparse shape model with the prostate likelihood map for achieving the final segmentation. The proposed method has been extensively evaluated on the dataset that contains 66 T2-wighted prostate MR images. Experimental results show that the deep-learned features are more effective than the handcrafted features in guiding MR prostate segmentation. Moreover, our method shows superior performance than other state-of-the-art segmentation methods.

  19. Contour Propagation Using Feature-Based Deformable Registration for Lung Cancer

    Directory of Open Access Journals (Sweden)

    Yuhan Yang

    2013-01-01

    Full Text Available Accurate target delineation of CT image is a critical step in radiotherapy treatment planning. This paper describes a novel strategy for automatic contour propagation, based on deformable registration, for CT images of lung cancer. The proposed strategy starts with a manual-delineated contour in one slice of a 3D CT image. By means of feature-based deformable registration, the initial contour in other slices of the image can be propagated automatically, and then refined by active contour approach. Three algorithms are employed in the strategy: the Speeded-Up Robust Features (SURF, Thin-Plate Spline (TPS, and an adapted active contour (Snake, used to refine and modify the initial contours. Five pulmonary cancer cases with about 400 slices and 1000 contours have been used to verify the proposed strategy. Experiments demonstrate that the proposed strategy can improve the segmentation performance in the pulmonary CT images. Jaccard similarity (JS mean is about 0.88 and the maximum of Hausdorff distance (HD is about 90%. In addition, delineation time has been considerably reduced. The proposed feature-based deformable registration method in the automatic contour propagation improves the delineation efficiency significantly.

  20. HERAFitter - An Open Source framework to determine PDFs

    CERN Document Server

    Camarda, Stefano

    2015-01-01

    The HERAFitter project provides a framework for the determination of parton distribution functions (PDFs), and tools for assessing the impact of new data on PDFs. In this contribution, HERAFitter is used for a QCD analysis of the legacy measurements of the $W$-boson charge asymmetry and of the $Z$-boson production cross sections, performed at the Tevatron collider in Run II by the D0 and CDF collaborations. The Tevatron measurements are included in a PDF fit performed at next-to-leading order, and compared to the predictions obtained using other PDF sets from different groups. The measurements are in good agreement with NLO QCD theoretical predictions. The Tevatron data provide significant constraints on the $d$-valence quark distribution.

  1. An unbiased Hessian representation for Monte Carlo PDFs

    Energy Technology Data Exchange (ETDEWEB)

    Carrazza, Stefano; Forte, Stefano [Universita di Milano, TIF Lab, Dipartimento di Fisica, Milan (Italy); INFN, Sezione di Milano (Italy); Kassabov, Zahari [Universita di Milano, TIF Lab, Dipartimento di Fisica, Milan (Italy); Universita di Torino, Dipartimento di Fisica, Turin (Italy); INFN, Sezione di Torino (Italy); Latorre, Jose Ignacio [Universitat de Barcelona, Departament d' Estructura i Constituents de la Materia, Barcelona (Spain); Rojo, Juan [University of Oxford, Rudolf Peierls Centre for Theoretical Physics, Oxford (United Kingdom)

    2015-08-15

    We develop a methodology for the construction of a Hessian representation of Monte Carlo sets of parton distributions, based on the use of a subset of the Monte Carlo PDF replicas as an unbiased linear basis, and of a genetic algorithm for the determination of the optimal basis. We validate the methodology by first showing that it faithfully reproduces a native Monte Carlo PDF set (NNPDF3.0), and then, that if applied to Hessian PDF set (MMHT14) which was transformed into a Monte Carlo set, it gives back the starting PDFs with minimal information loss. We then show that, when applied to a large Monte Carlo PDF set obtained as combination of several underlying sets, the methodology leads to a Hessian representation in terms of a rather smaller set of parameters (MC-H PDFs), thereby providing an alternative implementation of the recently suggested Meta-PDF idea and a Hessian version of the recently suggested PDF compression algorithm (CMC-PDFs). The mc2hessian conversion code is made publicly available together with (through LHAPDF6) a Hessian representations of the NNPDF3.0 set, and the MC-H PDF set. (orig.)

  2. An Unbiased Hessian Representation for Monte Carlo PDFs

    CERN Document Server

    Carrazza, Stefano; Kassabov, Zahari; Latorre, Jose Ignacio; Rojo, Juan

    2015-01-01

    We develop a methodology for the construction of a Hessian representation of Monte Carlo sets of parton distributions, based on the use of a subset of the Monte Carlo PDF replicas as an unbiased linear basis, and of a genetic algorithm for the determination of the optimal basis. We validate the methodology by first showing that it faithfully reproduces a native Monte Carlo PDF set (NNPDF3.0), and then, that if applied to Hessian PDF set (MMHT14) which was transformed into a Monte Carlo set, it gives back the starting PDFs with minimal information loss. We then show that, when applied to a large Monte Carlo PDF set obtained as combination of several underlying sets, the methodology leads to a Hessian representation in terms of a rather smaller set of parameters (CMC-H PDFs), thereby providing an alternative implementation of the recently suggested Meta-PDF idea and a Hessian version of the recently suggested PDF compression algorithm (CMC-PDFs). The mc2hessian conversion code is made publicly available togethe...

  3. Using Drell-Yan $A_{FB}$ to constrain PDFs

    CERN Document Server

    Bodek, A; Khukhunaishvili, A; Sakumoto, W

    2015-01-01

    We show that measurements of the forward-backward charge asymmetry ($A_{FB}(M,y)$) of Drell-Yan dilepton events produced at hadron colliders provide a new powerful tool to constrain Parton Distribution Functions (PDFs). PDF uncertainties are the dominant source of systematic error in precision measurements at hadron colliders (e.g. $\\chi^2$ values of fits to extract $\\sin^2\\theta_{eff}^{lept}(M_Z)$ from $A_{FB}(M,y)$ with different PDF replicas can be used to place additional constraints on PDFs.In turn, using these constrained PDFs significantly reduces the PDF errors in precision measurements of electroweak parameters. The measurement of the on-shell $\\sin^2\\theta_{W}=1-M_W^2/M_Z^2$ is equivalent to an indirect measurement of the W mass. The errors in this indirect measurement of the W mass are competitive with direct measurements. For example, with 200 fb$^{-1}$ at 13 TeV, the expected error in the indirect measurement of the W mass is $\\pm$9 MeV.

  4. Relationship between molecular cloud structure and density PDFs

    CERN Document Server

    Stanchev, Orlin; Veltchev, Todor V; Shetty, Rahul

    2013-01-01

    Volume and column density PDFs in molecular clouds are important diagnostics for understanding their general structure. We developed a novel approach to trace the cloud structure by varying the lower PDF cut-off and exploring a suggested mass-density relationship with a power-law index $x^\\prime$. The correspondence of x' as a function of spatial scale to the slope of the high-density PDF tail is studied. To validate the proposed model, we use results from hydrodynamical simulations of a turbulent self-gravitating cloud and recent data on dust continuum emission from the Planck mission.

  5. Factorization at the LHC: From PDFs to Initial State Jets

    CERN Document Server

    Stewart, Iain W; Waalewijn, Wouter J

    2009-01-01

    We study proton-(anti)proton collisions at the LHC or Tevatron in the presence of experimental restrictions on the hadronic final state and for generic parton momentum fractions. At the scale Q of the hard interaction, factorization does not yield standard parton distribution functions (PDFs) for the initial state. The measurement restricting the hadronic final state introduces a new scale \\mu_B Xl+l- where X is restricted to have no central jets. We comment on the extension to cases where the hadronic final state contains a certain number of isolated central jets.

  6. Exhausting the Information: Novel Bayesian Combination of Photometric Redshift PDFs

    CERN Document Server

    Kind, M Carrasco

    2014-01-01

    The estimation and utilization of photometric redshift (photo-z) PDFs has become increasingly important over the last few years. Primarily this is because of the prominent role photo-z PDFs play in enabling photometric survey data to be used to make cosmological constraints, especially when compared to single estimates. Currently there exist a wide variety of algorithms to compute photo-z's, each with their own strengths and weaknesses. In this paper, we present a novel and efficient Bayesian framework that combines the results from different photo-z techniques into a more powerful and robust estimate by maximizing the information from the photometric data. To demonstrate this we use a supervised machine learning technique based on prediction trees and a random forest, an unsupervised method based on self organizing maps and a random atlas, and a standard template fitting method but can be easily extend to other existing techniques. We use data from the DEEP2 survey and more than $10^6$ galaxies from the SDSS...

  7. Investigating small scale transient deformation features in convergent settings- Insights from analogue modeling

    Science.gov (United States)

    Santimano, T. N.; Rosenau, M.; Oncken, O.

    2013-12-01

    provides an avenue to visualizing the minute deformation features that may shed more insight into the mechanics of orogenic belts.

  8. Experimental constraints on shock-induced microstructures in naturally deformed silicates

    Science.gov (United States)

    Huffman, Alan R.; Reimold, W. Uwe

    1996-05-01

    Planar deformation features (PDFs) in various minerals have long been accepted as evidence of impact-induced deformation. The uniqueness of this association was challenged in the context of the {K}/{T} Boundary extinction debate, after mosaicism and microstructures similar to PDFs were reported from the products of explosive volcanism. As a result of this debate, a significant volume of new experimental and observational data on the development of shock-induced microstructures has become available over the last ten years. The results reveal that factors such as pre-shock temperature, pulse duration, and crystallographic orientation of target minerals to the shock wave have a primary influence on how these microstructures develop. Data from diamond anvil cell and high-pressure friction experiments reveal that the same solid-state amorphization process that produces shock-induced PDFs at low temperatures also occurs at much lower strain rates in static experiments. The experimental data indicate that the amorphization process is thermally activated and that the character of the resulting PDFs is a function of the applied strain rate. Shock-induced amorphization occurs along those crystallographic planes that are most readily transformed to the high-pressure phase during very short pulse durations and produces PDFs that are visible at the optical scale. Lower strain rate deformation produces TEM scale amorphization with orientations that are more homogeneously distributed throughout the target mineral and produces no optically visible PDFs. The data confirm the uniqueness of multiple intersecting sets of optically visible PDFs as a diagnostic indicator of hypervelocity impact. The data also support the hypothesis that the amorphization process can occur at a wide range of strain rates, and that the limiting pressure for the process is controlled by the phase stability of the target mineral under the applied loading conditions, not by the HEL. The data also suggest

  9. A novel scheme for automatic nonrigid image registration using deformation invariant feature and geometric constraint

    Science.gov (United States)

    Deng, Zhipeng; Lei, Lin; Zhou, Shilin

    2015-10-01

    Automatic image registration is a vital yet challenging task, particularly for non-rigid deformation images which are more complicated and common in remote sensing images, such as distorted UAV (unmanned aerial vehicle) images or scanning imaging images caused by flutter. Traditional non-rigid image registration methods are based on the correctly matched corresponding landmarks, which usually needs artificial markers. It is a rather challenging task to locate the accurate position of the points and get accurate homonymy point sets. In this paper, we proposed an automatic non-rigid image registration algorithm which mainly consists of three steps: To begin with, we introduce an automatic feature point extraction method based on non-linear scale space and uniform distribution strategy to extract the points which are uniform distributed along the edge of the image. Next, we propose a hybrid point matching algorithm using DaLI (Deformation and Light Invariant) descriptor and local affine invariant geometric constraint based on triangulation which is constructed by K-nearest neighbor algorithm. Based on the accurate homonymy point sets, the two images are registrated by the model of TPS (Thin Plate Spline). Our method is demonstrated by three deliberately designed experiments. The first two experiments are designed to evaluate the distribution of point set and the correctly matching rate on synthetic data and real data respectively. The last experiment is designed on the non-rigid deformation remote sensing images and the three experimental results demonstrate the accuracy, robustness, and efficiency of the proposed algorithm compared with other traditional methods.

  10. Tracking facial features in video sequences using a deformable-model-based approach

    Science.gov (United States)

    Malciu, Marius; Preteux, Francoise J.

    2000-10-01

    This paper addresses the issue of computer vision-based face motion capture as an alternative to physical sensor-based technologies. The proposed method combines a deformable template-based tracking of mouth and eyes in arbitrary video sequences with a single speaking person with a global 3D head pose estimation procedure yielding robust initializations. Mathematical principles underlying deformable template matching together with definition and extraction of salient image features are presented. Specifically, interpolating cubic B-splines between the MPEG-4 Face Animation Parameters (FAPs) associated with the mouth and eyes are used as template parameterization. Modeling the template a network of springs interconnecting with the mouth and eyes FAPs, the internal energy is expressed as a combination of elastic and symmetry local constraints. The external energy function, which allows to enforce interactions with image data, involves contour, texture and topography properties properly combined within robust potential functions. Template matching is achieved by applying the downhill simplex method for minimizing the global energy cost. Stability and accuracy of the results are discussed on a set of 2000 frames corresponding to 5 video sequences of speaking people.

  11. Features of deformation localization in stable austenitic steel under thermomechanical treatment

    Science.gov (United States)

    Litovchenko, I. Yu.; Akkuzin, S. A.; Polekhina, N. A.; Tyumentsev, A. N.

    2016-11-01

    Features of structural states of Fe-18Cr-14Ni-Mo austenitic steel after thermomechanical treatment, including low-temperature and warm rolling deformation, were investigated by means of transmission electron microscopy. It is shown that mechanical twinning in multiple systems and strain localization bands contribute to grain fragmentation with the formation of the submicrocrystalline austenitic structure. These bands lie in the microtwin structure, have high-angle (≈60°-90°, ) misorientations of the crystal lattice relative to the matrix and localize significant (up to ≈1) shear strain. In areas of the bands, structural states with high (tens of deg/μm) curvature of the crystal lattice and high local internal stresses are observed. The internal structure of the bands is presented by nanoscale fragments of austenite and α'-martensite. The presence of specific misorientations and fragments of martensite means that the formation mechanism of localized deformation bands are direct plus reverse (γ → α' → γ) martensitic transformations with the reverse transformation follows by an alternative path. These structural states provide high strength properties of steel: the yield strength is up to 1150 MPa.

  12. SOMz: photometric redshift PDFs with self organizing maps and random atlas

    CERN Document Server

    Kind, M Carrasco

    2013-01-01

    In this paper we explore the applicability of the unsupervised machine learning technique of Self Organizing Maps (SOM) to estimate galaxy photometric redshift probability density functions (PDFs). This technique takes a spectroscopic training set, and maps the photometric attributes, but not the redshifts, to a two dimensional surface by using a process of competitive learning where neurons compete to more closely resemble the training data multidimensional space. The key feature of a SOM is that it retains the topology of the input set, revealing correlations between the attributes that are not easily identified. We test three different 2D topological mapping: rectangular, hexagonal, and spherical, by using data from the DEEP2 survey. We also explore different implementations and boundary conditions on the map and also introduce the idea of a random atlas where a large number of different maps are created and their individual predictions are aggregated to produce a more robust photometric redshift PDF. We a...

  13. ABM11 PDFs and the cross section benchmarks in NNLO

    CERN Document Server

    Alekhin, S; Moch, S -O

    2013-01-01

    We report an updated version of the ABKM09 NNLO PDF fit, which includes the most recent HERA collider data on the inclusive cross sections and an improved treatment of the heavy-quark contribution to deep-inelastic scattering using advantages of the running-mass definition for the heavy quarks. The ABM11 PDFs obtained from the updated fit are in a good agreement with the recent LHC data on the W- and Z-production within the experimental and PDF uncertainties. We also perform a determination of the strong coupling constant \\alpha_s in a variant of the ABM11 fit insensitive to the influence of the higher twist terms and find the value of \\alpha_s=0.1133(11) which is in good agreement with the nominal ABM11 one and our earlier determination.

  14. Wilson Lines off the Light-cone in TMD PDFs

    CERN Document Server

    Mulders, P J

    2014-01-01

    Transverse Momentum Dependent (TMD) parton distribution functions (PDFs) also take into account the transverse momentum ($p_T$) of the partons. The $p_T$-integrated analogues can be linked directly to quark and gluon matrix elements using the operator product expansion in QCD, involving operators of definite twist. TMDs also involve operators of higher twist, which are not suppressed by powers of the hard scale, however. Taking into account gauge links that no longer are along the light-cone, one finds that new distribution functions arise. They appear at leading order in the description of azimuthal asymmetries in high-energy scattering processes. In analogy to the collinear operator expansion, we define a universal set of TMDs of definite rank and point out the importance for phenomenology.

  15. Impact-derived features of the Xiuyan meteorite crater

    Institute of Scientific and Technical Information of China (English)

    CHEN Ming

    2008-01-01

    Up to now, 176 meteorite impact craters have been found on the Earth. Among these craters, none of them lies in China. The Xiuyan crater is located in the Liaodong Peninsula of China. This bowl-shaped crater has a diameter of 1.8 km and depth of about 150 m. The impact-derived features include planar deformation features (PDFs) in quartz, shatter cones, impact breccia, and radial valleys on the wall of rim. It is the first confirmed meteorite impact crater in China.

  16. Features of deformation of metal body surfaces under impact of a water jet

    Science.gov (United States)

    Aganin, A. A.; Khismatullina, N. A.

    2016-01-01

    The paper presents a mathematical model and computational results on dynamics of a perfect elastic-plastic body under the load arising during impact of a high-velocity liquid jet with the hemispherical end. The body is simulated by the isotropic linearly-elastic semi-space, its plastic state is described by the von Mises condition. The dependence of features of the body surface deformation on the body material is studied. The problem is considered in the axisymmetric statement. The axis of symmetry is that of the jet. The loaded domain is a circle with its radius rapidly growing from zero to the jet radius. The pressure in the loaded domain is non-uniform both in time and space. Three metal alloys (aluminium, copper-nickel and steel) are considered as the body material. The loading of the body surface in all the cases corresponds to the impact of a water jet with the radius 100 pm and the velocity 300 m/s. It has been shown that under such impact a nanometer pit arises on the body surface at the center of the domain of the jet action. The profile of the pit and its maximal depth depend on the body material.

  17. The Effect of Final HERA inclusive Cross Section Data on MMHT2014 PDFs

    CERN Document Server

    Thorne, R S; Martin, A D; Motylinski, P

    2015-01-01

    We investigate the effect of including the HERA run I + II combined cross section data on the MMHT2014 PDFs. We present the fit quality within the context of the global fit and when only the HERA data are included. We examine the changes in both the central values and uncertainties in the PDFs. We find that the prediction for the data is good, and only relatively small improvements in $\\chi^2$ and changes in the PDFs are obtained with a refit at both NLO and NNLO. PDF uncertainties are slightly reduced. There is a small dependence of the fit quality on the value of $Q^2_{\\min}$.

  18. The Features of Microstructure and Mechanical Properties of Metastable Austenitic Steel Subjected to Low-Temperature and Subsequent Warm Deformation

    Science.gov (United States)

    Litovchenko, I. Yu.; Akkuzin, S. A.; Polekhina, N. A.; Tyumentsev, A. N.; Naiden, E. P.

    2016-10-01

    The features of microstructure and phase composition of metastable austenitic steel subjected to thermomechanical treatment, including low-temperature processing accompanied by warm rolling deformation, are investigated. Direct (γ → α΄) and reverse strain-induced martensitic transformations are shown to take place, followed by the formation of submicrocrystalline states and 3-4-fold increase in the yield point values. The mechanisms of formation of submicrocrystalline states and the reasons for increased strength are discussed.

  19. CTEQ-TEA PDFs and HERA run I+II Combined Data

    CERN Document Server

    Hou, Tie-Jiun; Gao, Jun; Guzzi, Marco; Huston, Joey; Nadolsky, Pavel; Pumplin, Jon; Schmidt, Carl; Stump, Daniel; Yuan, C -P

    2016-01-01

    We analyze the impact of the recent HERA run I+II combination of inclusive deep inelastic scattering cross-section data on the CT14 global analysis of PDFs. New PDFs at NLO and NNLO, called CT14$_{\\textrm{HERA2}}$, are obtained by a refit of the CT14 data ensembles, in which the HERA run I combined measurements are replaced by the new HERA run I+II combination. The CT14 functional parametrization of PDFs is flexible enough to allow good descriptions of different flavor combinations, so we use the same parametrization for CT14$_{\\textrm{HERA2}}$ but with an additional shape parameter for describing the strange quark PDF. We find that the HERA I+II data can be fit reasonably well, and both CT14 and CT14$_{\\textrm{HERA2}}$ PDFs can describe equally well the non-HERA data included in our global analysis. Because the CT14 and CT14$_{\\textrm{HERA2}}$ PDFs agree well within the PDF errors, we continue to recommend CT14 PDFs for the analysis of LHC Run 2 experiments.

  20. Early fetal akinesia deformation sequence: a case report with unusual autoptic features.

    Science.gov (United States)

    Giordano, Giovanna; Gnetti, Letizia; Froio, Elisabetta; Ricci, Roberto

    2005-05-01

    In this paper we report a case of early onset fetal akinesia, with unusual pathological findings. This is a product of medical abortion of young, healthy, unrelated parents. The mother's obstetrical history revealed two previous early miscarriages and a suspicion of FADS in the second previous gestation. At 17 weeks of gestation, an ultrasound examination disclosed absence of fetal movements, fixed extended knees and deformation of the feet. Amniocentesis showed a normal 46, XX karyotype. Hydrops fetalis and multiple skin webs (pterygia), which are usually present in cases of early fetal akinesia, were absent. A diagnosis of arthrogryposis was made and the pregnancy was terminated at 17 weeks of gestation. Postmortem examination was performed according to the necropsy technique suggested by Langley. Thus, body weight and external measurement, including crown-rump, crown-heel, foot lengths, head, thorax and abdominal circumferences were estimated and compared with standard values for assessment of fetal growth. External dysmorphic features were evaluated prior to the evisceration. On internal examination the location and shape of every organ was evaluated. Every organ, skin, muscles from different parts of the body, the brain and spinal cord were sampled and histologically examined. External examination revealed a female fetus with marked muscular hypoplasia of upper and lower extremities with thin arms and legs and multiple joint contractures of lower extremities. The face showed a flattened nose, micrognatia, hypertelorism, cleft palate and low-set ears. There was also a small nuchal fold. The abdomen was distended with a very thin and almost transparent wall. Histologically, muscles were characterized by severe fibrosis with fatty infiltration and by moderate variability in diameter of muscle fibers. The spinal cord disclosed a paucity of anterior horn motor neurons. We suggest multiple pterygium as a diagnosis. Lethal multiple pterygium syndrome (LMPS) is only a

  1. Rare causes of scoliosis and spine deformity: experience and particular features

    Directory of Open Access Journals (Sweden)

    Pliarchopoulou Fani M

    2007-10-01

    Full Text Available Abstract Background Spine deformity can be idiopathic (more than 80% of cases, neuromuscular, congenital or neurofibromatosis-related. However, there are many disorders that may also be involved. We present our experience treating patients with scoliosis or other spine deformities related to rare clinical entities. Methods A retrospective study of the records of a school-screening study in North-West Greece was performed, covering a 10-year period (1992–2002. The records were searched for patients with deformities related to rare disorders. These patients were reviewed as regards to characteristics of underlying disorder and spine deformity, treatment and results, complications, intraoperative and anaesthesiologic difficulties particular to each case. Results In 13 cases, the spine deformity presented in relation to rare disorders. The underlying disorder was rare neurological disease in 2 cases (Rett syndrome, progressive hemidystonia, muscular disorders (facioscapulohumeral muscular dystrophy, arthrogryposis in 2 patients, osteogenesis imperfecta in 2 cases, Marfan syndrome, osteopetrosis tarda, spondyloepiphyseal dysplasia congenita, cleidocranial dysplasia and Noonan syndrome in 1 case each. In 2 cases scoliosis was related to other congenital anomalies (phocomelia, blindness. Nine of these patients were surgically treated. Surgery was avoided in 3 patients. Conclusion This study illustrates the fact that different disorders are related with curves with different characteristics, different accompanying problems and possible complications. Investigation and understanding of the underlying pathology is an essential part of the clinical evaluation and preoperative work-up, as clinical experience at any specific center is limited.

  2. Features of energy impact on a billet material when cutting with outstripping plastic deformation

    Directory of Open Access Journals (Sweden)

    V. M. Yaroslavtsev

    2014-01-01

    Full Text Available In the last decades the so-called combined machining methods based on parallel, serial or parallelserial combination of different types of energy impacts on the billet are designed and developed. Combination of two or more sources of external energy in one method of machining can be directed to the solution of different technological tasks, such as: improvement of a basic method to enhance technicaland-economic and technological indicators of machining, expansion of technological capabilities of the method, increase of reliability and stability of technological process to produce details, etc. Besides, the combined methods of machining are considered as one of the means, which enables reducing the number of operations in technological process, allows the growth of workforce productivity.When developing the combined technologies, one of the main scientific tasks is to define the general regularities of interaction and mutual influence of the energy fluxes brought to the zone of machining. The result of such mutual influence becomes apparent from the forming technological parameters of machining and determines the most rational operating conditions of technological process.In the context of conducted in BMSTU researches on the combined cutting method with outstripping plastic deformation (OPD the mutual influence of the energetic components of machining has been quantitatively assessed. The paper shows a direct relationship between the rational ratio of the two types of the mechanical energy brought in the machining zone, the machining conditions, and the optimum operating conditions.The paper offers a physical model of chip formation when machining with OPD. The essence of model is that specific works spent on material deformation of a cut-off layer are quantitatively compared at usual cutting and at cutting with OPD. It is experimentally confirmed that the final strain-deformed material states of a cut-off layer, essentially, coincide in both

  3. [Specific clinical and functional features in the patients presenting with neurologic manifestations of deforming dorsopathies and concomitant osteoarthrosis].

    Science.gov (United States)

    Miriutova, N F; Zaĭtsev, A A; Popova, A V

    2012-01-01

    The present study has revealed some specific clinical and functional features in the patients presenting with neurologic manifestations of deforming dorsopathies and concomitant osteoarthrosis. The negative influence of the latter condition on the pain intensity, microcirculation, and duration of the exacerbation of neurologic syndrome has been demonstrated based on the analysis of correlational relationships between the severity of referred projectional nerve root pain and articular pain syndrome. Special emphasis is laid on the interrelation between the duration of pain syndrome and characteristics of microcirculation.

  4. Shift- and deformation-robust optical character recognition based on parallel extraction of simple features

    Science.gov (United States)

    Jang, Ju-Seog; Shin, Dong-Hak

    1997-03-01

    For a flexible pattern recognition system that is robust to the input variations, a feature extraction approach is investigated. Two types of features are extracted: one is line orientations, and the other is the eigenvectors of the covariance matrix of the patterns that cannot be distinguished with the line orientation features alone. For the feature extraction, the Vander Lugt-type filters are used, which are recorded in a small spot of holographic recording medium by use of multiplexing techniques. A multilayer perceptron implemented in a computer is trained with a set of optically extracted features, so that it can recognize the input patterns that are not used in the training. Through preliminary experiments, where English character patterns composed of only straight line segments were tested, the feasibility of our approach is demonstrated.

  5. The impact of the final HERA combined data on PDFs obtained from a global fit

    Energy Technology Data Exchange (ETDEWEB)

    Harland-Lang, L.A.; Motylinski, P.; Thorne, R.S. [University College London, Department of Physics and Astronomy, London (United Kingdom); Martin, A.D. [Durham University, Institute for Particle Physics Phenomenology, Durham (United Kingdom)

    2016-04-15

    We investigate the effect of including the HERA run I + II combined cross section data on the MMHT2014 PDFs. We present the fit quality within the context of the global fit and when only the HERA data are included. We examine the changes in both the central values and the uncertainties in the PDFs. We find that the prediction for the data is good, and only relatively small improvements in χ{sup 2} and changes in the PDFs are obtained with a refit at both NLO and NNLO. PDF uncertainties are slightly reduced. There is a small dependence of the fit quality on the value of Q{sup 2}{sub min}. This can be improved by phenomenologically motived corrections to F{sub L}(x, Q{sup 2}) which parametrically are largely in the form of higher-twist type contributions. (orig.)

  6. Extended Parameterisations for MSTW PDFs and their effect on Lepton Charge Asymmetry from W Decays

    CERN Document Server

    Martin, A D; Stirling, W J; Thorne, R S; Watt, B J A; Watt, G

    2012-01-01

    We investigate the effect of extending the standard MSTW parameterisation of input parton distribution functions (PDFs) using Chebyshev polynomials. We find evidence that, at most, four powers in the polynomial are sufficient for extremely high precision. Applying this to valence and sea quarks we find an improvement in the global fit, but a significant change only in the small-$x$ valence up-quark PDF, $u_V$. We investigate the effect of also extending, and making more flexible, the `nuclear' correction to deuteron structure functions. The extended `Chebyshev' parameterisation results in an improved stability in the deuteron corrections that are required for the best fit to the `global' data. The resulting PDFs have a significantly, but not dramatically, altered valence down-quark distribution, $d_V$. For the extended set of MSTW PDFs, their uncertainties can be obtained using 23, rather than the usual 20, orthogonal `uncertainty' eigenvectors. Since the dominant effect is on the valence quarks, we present a...

  7. The impact of the final HERA combined data on PDFs obtained from a global fit

    CERN Document Server

    Harland-Lang, L A; Motylinski, P; Thorne, R S

    2016-01-01

    We investigate the effect of including the HERA run I + II combined cross section data on the MMHT2014 PDFs. We present the fit quality within the context of the global fit and when only the HERA data are included. We examine the changes in both the central values and uncertainties in the PDFs. We find that the prediction for the data is good, and only relatively small improvements in $\\chi^2$ and changes in the PDFs are obtained with a refit at both NLO and NNLO. PDF uncertainties are slightly reduced. There is a small dependence of the fit quality on the value of $Q^2_{\\min}$. This can be improved by phenomenologically motived corrections to $F_L(x,Q^2)$ which parametrically are largely in the form of higher-twist type contributions.

  8. The impact of the final HERA combined data on PDFs obtained from a global fit

    Science.gov (United States)

    Harland-Lang, L. A.; Martin, A. D.; Motylinski, P.; Thorne, R. S.

    2016-04-01

    We investigate the effect of including the HERA run I + II combined cross section data on the MMHT2014 PDFs. We present the fit quality within the context of the global fit and when only the HERA data are included. We examine the changes in both the central values and the uncertainties in the PDFs. We find that the prediction for the data is good, and only relatively small improvements in χ ^2 and changes in the PDFs are obtained with a refit at both NLO and NNLO. PDF uncertainties are slightly reduced. There is a small dependence of the fit quality on the value of Q^2_{min}. This can be improved by phenomenologically motived corrections to F_L(x,Q^2) which parametrically are largely in the form of higher-twist type contributions.

  9. Multifractal analysis of the fat-tail PDFs observed in fully developed turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Arimitsu, T [Graduate School of Pure and Applied Sciences, University of Tsukuba, Ibaraki 305-8571 (Japan); Arimitsu, N [Graduate School of Environment and Information Sciences, Yokohama Nat' l. University, Yokohama 240-8501 (Japan)

    2005-01-01

    The fundamentals of the multifractal analysis (MFA) is given, which is a unified statistical mechanical theory that treats the systems containing intermittent phenomena and representing fat-tail probability density functions (PDFs) for appropriate observables. MFA utilizes two distinct Tsallis-type MaxEnt distribution functions, one for the tail part of PDF and the other for its center part. It is shown that A and A model within MFA can explain the recently observed PDFs of turbulence in the highest accuracy superior to the analyses based on other multifractal models such as the log-normal model and the p model.

  10. Some Features of Scattering Problem in a $\\kappa$-Deformed Minkowski Spacetime

    CERN Document Server

    Khodadi, Mohsen

    2016-01-01

    The doubly special relativity (DSR) theories are suggested in order to incorporate an observer-independent length scale in special theory of relativity. The Magueijo-Smolin proposal of DSR is realizable through a particular form of the noncommutative (NC) spacetime (known as $\\kappa$-Minkowski spacetime) in which the Lorentz symmetry is preserved. In this framework, the NC parameter $\\kappa$ provides the origin of natural cutoff energy scale. Using a nonlinear deformed relativistic dispersion relation along with the Lorentz transformations, we investigate some phenomenological facets of two-body collision problem (without creation of new particles) in a $\\kappa$-Minkowski spacetime. By treating an elastic scattering problem, we study effects of the Planck scale energy cutoff on some relativistic kinematical properties of this scattering problem. The results are challenging in the sense that as soon as one turns on the $\\kappa$-spacetime extension, the nature of the two-body collision alters from elastic to in...

  11. Deformable Registration of Feature-Endowed Point Sets Based on Tensor Fields

    Science.gov (United States)

    Wassermann, Demian; Ross, James; Washko, George; Wells, William M.; San Jose-Estepar, Raul

    2014-01-01

    The main contribution of this work is a framework to register anatomical structures characterized as a point set where each point has an associated symmetric matrix. These matrices can represent problem-dependent characteristics of the registered structure. For example, in airways, matrices can represent the orientation and thickness of the structure. Our framework relies on a dense tensor field representation which we implement sparsely as a kernel mixture of tensor fields. We equip the space of tensor fields with a norm that serves as a similarity measure. To calculate the optimal transformation between two structures we minimize this measure using an analytical gradient for the similarity measure and the deformation field, which we restrict to be a diffeomorphism. We illustrate the value of our tensor field model by comparing our results with scalar and vector field based models. Finally, we evaluate our registration algorithm on synthetic data sets and validate our approach on manually annotated airway trees. PMID:25473253

  12. Nuclear PDFs at NLO - status report and review of the EPS09 results

    Energy Technology Data Exchange (ETDEWEB)

    Eskola, K.J. [Department of Physics, P.O. Box 35, FI-40014 University of Jyvaeskylae (Finland); Helsinki Institute of Physics, P.O. Box 64, FI-00014 University of Helsinki (Finland); Paukkunen, H.; Salgado, C.A. [Departamento de Fisica de Particulas and IGFAE, Universidade de Santiago de Compostela (Spain)

    2011-04-01

    We review the current status of the global DGLAP analysis of nuclear parton distribution functions, nPDFs, focusing on the recent EPS09 analysis [K.J. Eskola, H. Paukkunen, C.A. Salgado, JHEP 0904 (2009) 065. [ (arXiv:0902.4154 [hep-ph])

  13. Nuclear PDFs at NLO - status report and review of the EPS09 results

    Science.gov (United States)

    Eskola, K. J.; Paukkunen, H.; Salgado, C. A.

    2011-04-01

    We review the current status of the global DGLAP analysis of nuclear parton distribution functions, nPDFs, focusing on the recent EPS09 analysis [K.J. Eskola, H. Paukkunen, C.A. Salgado, JHEP 0904 (2009) 065. [ arXiv:0902.4154 [hep-ph

  14. Bayesian reweighting of nuclear PDFs and constraints from proton-lead collisions at the LHC

    CERN Document Server

    Armesto, Nestor; Salgado, Carlos A; Zurita, Pia

    2013-01-01

    New hard-scattering measurements from the LHC proton-lead run have the potential to provide important constraints on the nuclear parton distributions and thus contributing to a better understanding of the initial state in heavy ion collisions. In order to quantify these constraints, as well as to assess the compatibility with available nuclear data from fixed target experiments and from RHIC, the traditional strategy is to perform a global fit of nuclear PDFs. This procedure is however time consuming and technically challenging, and moreover can only be performed by the PDF fitters themselves. In the case of proton PDFs, an alternative approach has been suggested that uses Bayesian inference to propagate the effects of new data into the PDFs without the need of refitting. In this work, we apply this reweighting procedure to study the impact on nuclear PDFs of low-mass Drell-Yan and single-inclusive hadroproduction pseudo-data from proton-lead collisions at the LHC as representative examples. In the hadroprodu...

  15. MORPHOLOGICAL FEATURES OF RODORETTO VALLEY DEEP-SEATED GRAVITATIONAL SLOPE DEFORMATIONS

    Directory of Open Access Journals (Sweden)

    Maria Gabriella Forno

    2012-01-01

    Full Text Available A new, detailed survey of the Rodoretto Valley (Western Alps, Italy has been conducted resulting in the production of a new morphological and quaternary geological map of the area. The authors used the innovative Solid (True Ortho-Photo (STOP technology integrated with navigation sensors (Global Navigation Satellite System-GNSS/Inertial Measurement Unit-IMU. This state-of-the-art procedure has demonstrated several operational advantages during both the land survey and the post-processing phases. The survey highlighted remarkable glacial evidences and landforms probably connected with Deep-Seated Gravitational Slope Deformations (DSGSDs phenomena. The glacial forms which have been detected consist of diffuse relics of cirques, glacial slopes, small lateral and frontal moraines and some outwash incisions. The deposits associated with the relics are lodgment till, flowtill and outwash sediments, respectively. The gravitational evidences and the very fractured bedrock that has been recognized on both sides of the Rodoretto Valley, suggest the presence of two DSGSDs which are confirmed also by the occurrence of some doubled ridges in the higher elevation band of the slopes. Moreover, several minor scarps and many longitudinal and transversal trenches, of various size, occur in the intermediate band. Extended landslide bodies have been recognized in the lower altimetric band. The major new geological element detected and interpreted after the survey and the map production is represented by the identification of a well defined WNW-ESE trend of fractured rocks and gravitational landforms. The observed fractures are not limited to the Rodoretto Valley, suggesting the possible connection of the described gravitational landforms with a tectonic discontinuity with the same WNW-ESE trend. This tectonic discontinuity crosses the Cenischia-Nizza System in a zone highlighted by a portion of intensively fractured rocks.

  16. [The features of myocardial deformation of left ventricle in patients with ischemic heart disease defined by the two dimensional strain method].

    Science.gov (United States)

    Galimskaia, V A; Donchenko, I A; Romanovskaia, E M; Oleĭnikov, V É

    2014-01-01

    Aim of this study was to assess qualitative and quantitative features of deformation parameters of left ventricular myocardium in patients with ischemic heart disease (IHD) with and without history of myocardial infarction (MI) using two-dimensional strain imaging. We examined 30 patients with clinical IHD with (group 1, n = 15) and without (group 2, n = 15) history of MI and 20 healthy volunteers. Compared with healthy subjects IHD patients of both groups had reduced longitudinal and circular myocardial deformation. There were no significant differences between patients with IHD and controls in parameters of radial, global, and regional deformation.

  17. Dijets in p+Pb collisions and their quantitative constraints for nuclear PDFs

    CERN Document Server

    Paukkunen, Hannu; Salgado, Carlos

    2014-01-01

    We present a perturbative QCD analysis concerning the production of high-pT dijets in p+Pb collisions at the LHC. The next-to-leading order corrections, scale variations and free-proton PDF uncertainties are found to have only a relatively small influence on the normalized dijet rapidity distributions. Interestingly, however, these novel observables prove to retain substantial sensitivity to the nuclear effects in the PDFs. Especially, they serve as a more robust probe of the nuclear gluon densities at $x>0.01$, than e.g. the inclusive hadron production. We confront our calculations with the recent data by the CMS collaboration. These preliminary data lend striking support to the gluon antishadowing similar to that in the EPS09 nuclear PDFs.

  18. Dijets in p + Pb collisions and their quantitative constraints for nuclear PDFs

    Energy Technology Data Exchange (ETDEWEB)

    Paukkunen, Hannu, E-mail: hannu.paukkunen@jyu.fi [Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä (Finland); Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FI-00014 (Finland); Eskola, Kari J., E-mail: kari.eskola@jyu.fi [Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä (Finland); Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FI-00014 (Finland); Salgado, Carlos, E-mail: carlos.salgado@usc.es [Departamento de Física de Partículas and IGFAE, Universidade de Santiago de Compostela, E-15782 Galicia (Spain)

    2014-11-15

    We present a perturbative QCD analysis concerning the production of high-pT dijets in p + Pb collisions at the LHC. The next-to-leading order corrections, scale variations and free-proton PDF uncertainties are found to have only a relatively small influence on the normalized dijet rapidity distributions. Interestingly, however, these novel observables prove to retain substantial sensitivity to the nuclear effects in the PDFs. Especially, they serve as a more robust probe of the nuclear gluon densities at x>0.01, than e.g. the inclusive hadron production. We confront our calculations with the recent data by the CMS Collaboration. These preliminary data lend striking support to the gluon antishadowing similar to that in the EPS09 nuclear PDFs.

  19. Nuclear PDFs at NLO - status report and review of the EPS09 results

    CERN Document Server

    Eskola, K J; Salgado, C A

    2010-01-01

    We review the current status of the global DGLAP analysis of nuclear parton distribution functions, nPDFs, focusing on the recent EPS09 analysis, whose output, EPS09NLO, is the best-constrained NLO nPDF set on the market. Collinear factorization is found to work very well in the kinematical region studied. With the error sets released in the EPS09 package one can compute how the nPDF-related uncertainties propagate into factorizable nuclear hard-process cross sections. A comparison with the other existing NLO nPDF sets is shown, and the BRAHMS forward-$\\eta$ hadron data from d+Au collisions are discussed in the light of the EPS09 nPDFs and their error sets.

  20. Sensitivities to PDFs in parton shower MC generator reweighting and tuning

    CERN Document Server

    Buckley, Andy

    2016-01-01

    Evaluating parton density systematic uncertainties in Monte~Carlo event generator predictions has long been achieved by reweighting between the original and systematic PDFs for the initial state configurations of the individual simulated events. This weighting is now pre-emptively performed in many generators, providing convenient weight factors for PDF and scale systematics -- including for NLO calculations where counterterms make the weight calculation complex. This note attempts a pedagogical discussion and empirical study of the consequences of neglecting the effects of PDF variations on the beyond-fixed-order components of MC models, and the implications for parton shower & MPI tuning strategies. We confirm that the effects are usually small, for well-understood reasons, and discuss the connected issue of consistent treatment of the strong coupling between PDFs and parton showers, where motivations from physical principles and the need for good data-description are not always well-aligned.

  1. A first unbiased global determination of polarized PDFs and their uncertainties

    CERN Document Server

    Nocera, Emanuele R; Forte, Stefano; Ridolfi, Giovanni; Rojo, Juan

    2014-01-01

    We present a first global determination of spin-dependent parton distribution functions (PDFs) and their uncertainties using the NNPDF methodology: NNPDFpol1.1. Longitudinally polarized deep-inelastic scattering data, already used for the previous NNPDFpol1.0 PDF set, are supplemented with the most recent polarized hadron collider data for inclusive jet and $W$ boson production from the STAR and PHENIX experiments at RHIC, and with open-charm production data from the COMPASS experiment, thereby allowing for a separate determination of the polarized quark and anti-quark PDFs, and an improved determination of the medium- and large-$x$ polarized gluon PDF. We study the phenomenological implications of the NNPDFpol1.1 set, and we provide predictions for the longitudinal double-spin asymmetry for semi-inclusive pion production at RHIC.

  2. Sea-ice deformation in a coupled ocean-sea-ice model and in satellite remote sensing data

    Science.gov (United States)

    Spreen, Gunnar; Kwok, Ron; Menemenlis, Dimitris; Nguyen, An T.

    2017-07-01

    A realistic representation of sea-ice deformation in models is important for accurate simulation of the sea-ice mass balance. Simulated sea-ice deformation from numerical simulations with 4.5, 9, and 18 km horizontal grid spacing and a viscous-plastic (VP) sea-ice rheology are compared with synthetic aperture radar (SAR) satellite observations (RGPS, RADARSAT Geophysical Processor System) for the time period 1996-2008. All three simulations can reproduce the large-scale ice deformation patterns, but small-scale sea-ice deformations and linear kinematic features (LKFs) are not adequately reproduced. The mean sea-ice total deformation rate is about 40 % lower in all model solutions than in the satellite observations, especially in the seasonal sea-ice zone. A decrease in model grid spacing, however, produces a higher density and more localized ice deformation features. The 4.5 km simulation produces some linear kinematic features, but not with the right frequency. The dependence on length scale and probability density functions (PDFs) of absolute divergence and shear for all three model solutions show a power-law scaling behavior similar to RGPS observations, contrary to what was found in some previous studies. Overall, the 4.5 km simulation produces the most realistic divergence, vorticity, and shear when compared with RGPS data. This study provides an evaluation of high and coarse-resolution viscous-plastic sea-ice simulations based on spatial distribution, time series, and power-law scaling metrics.

  3. Spatial features of dose-surface maps from deformably-registered plans correlate with late gastrointestinal complications

    Science.gov (United States)

    Moulton, Calyn R.; House, Michael J.; Lye, Victoria; Tang, Colin I.; Krawiec, Michele; Joseph, David J.; Denham, James W.; Ebert, Martin A.

    2017-05-01

    This study investigates the associations between spatial distribution of dose to the rectal surface and observed gastrointestinal toxicities after deformably registering each phase of a combined external beam radiotherapy (EBRT)/high-dose-rate brachytherapy (HDRBT) prostate cancer treatment. The study contains data for 118 patients where the HDRBT CT was deformably-registered to the EBRT CT. The EBRT and registered HDRBT TG43 dose distributions in a reference 2 Gy/fraction were 3D-summed. Rectum dose-surface maps (DSMs) were obtained by virtually unfolding the rectum surface slice-by-slice. Associations with late peak gastrointestinal toxicities were investigated using voxel-wise DSM analysis as well as parameterised spatial patterns. The latter were obtained by thresholding DSMs from 1-80 Gy (increment  =  1) and extracting inferior-superior extent, left-right extent, area, perimeter, compactness, circularity and ellipse fit parameters. Logistic regressions and Mann-Whitney U-tests were used to correlate features with toxicities. Rectal bleeding, stool frequency, diarrhoea and urgency/tenesmus were associated with greater lateral and/or longitudinal spread of the high doses near the anterior rectal surface. Rectal bleeding and stool frequency were also influenced by greater low-intermediate doses to the most inferior 20% of the rectum and greater low-intermediate-high doses to 40-80% of the rectum length respectively. Greater low-intermediate doses to the superior 20% and inferior 20% of the rectum length were associated with anorectal pain and urgency/tenesmus respectively. Diarrhoea, completeness of evacuation and proctitis were also related to greater low doses to the posterior side of the rectum. Spatial features for the intermediate-high dose regions such as area, perimeter, compactness, circularity, ellipse eccentricity and confinement to ellipse fits were strongly associated with toxicities other than anorectal pain. Consequently, toxicity is

  4. Features of plastic deformation and fracture of dispersion-strengthened V–Cr–Zr–W alloy depending on temperature of tension

    Energy Technology Data Exchange (ETDEWEB)

    Ditenberg, Ivan A.; Grinyaev, Konstantin V.; Tyumentsev, Alexander N. [National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Siberian Physical-Technical Institute, Tomsk, 634050 (Russian Federation); Smirnov, Ivan V., E-mail: smirnov-iv@bk.ru [National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Siberian Physical-Technical Institute, Tomsk, 634050 (Russian Federation); Pinzhin, Yury P. [National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Institute of Strength Physics and Materials Science SB RAS, Tomsk, 634055 (Russian Federation); Tsverova, Anastasiya S. [National Research Tomsk State University, Tomsk, 634050 (Russian Federation); Chernov, Vyacheslav M. [A.A. Bochvar High Technology Research Institute of Inorganic Materials, Moscow, 123098 (Russian Federation)

    2015-10-27

    Influence of tension temperature on features of plastic deformation and fracture of V–4.23Cr–1.69Zr–7.56W alloy was investigated by scanning and transmission electron microscopy. It is shown that temperature increase leads to activation of the recovery processes, which manifests in the coarsening of microstructure elements, reducing the dislocation density, relaxation of continuous misorientations.

  5. The Present Space-Time Motion and Deformation Features of the Northeastern Margin of the Qinghai-Xizang(Tibet) Block and Its Adjacent Area

    Institute of Scientific and Technical Information of China (English)

    Zhang Xiaoliang; Jiang Zaisen; Wang Shuangxu; Zhang Xi; Wang Qi; Chen Bing

    2004-01-01

    On the basis of Discontinuous Deformation Analysis (DDA), and considering the moderate intrusion of specific block boundaries to different extents, the first-order block motion model is established for the northeastern margin of Qinghai-Xizang(Tibet) block and the kinematical model for depicting deformation of small regions as well by using GPS observations of three periods (1991, 1999 and 2001 ). By simulating, we obtained the motion features of the firstorder blocks between the large WWN faults on the sides of the studied region, the distribution features of the principal strain rate field and the inhomogeneous motion features with spacetime of the faults in the northern boundary of the Qinghai-Xizang (Tibet) block.

  6. Special Features of Structure Formation in an Explosion-Welded Magnesium-Aluminum Composite Under Deformation and Subsequent Heat Treatment

    Science.gov (United States)

    Gurevich, L. M.; Arisova, V. N.; Trykov, Yu. P.; Ponomareva, I. A.; Trudov, A. F.

    2016-07-01

    The effect of bending deformation and subsequent heat treatment on the variation of microhardness and structure of explosion-welded magnesium-aluminum layered composite material MA2-1 - AD1 is studied.

  7. Late Variscan deformation in the Iberian Peninsula; a late feature in the Laurentia-Gondwana dextral collision

    Science.gov (United States)

    Dias, R.; Moreira, N.; Ribeiro, A.; Basile, C.

    2017-03-01

    The Late Variscan deformation event in Iberia is characterized by an intraplate deformation regime induced by the dextral oblique collision between Laurentia and Gondwana. This episode in Iberia is characterized by NNE-SSW brittle to brittle-ductile strike-slip faults, which are considered by the classic works as sinistral strike-slip faults. However, the absence of Mesozoic formations constraining the age of this sinistral kinematics led some authors to consider it as the result of Alpine reworking. Structural studies in Almograve and Ponta Ruiva sectors (SW Portugal) show that NNE-SSW faults have a sinistral kinematics and are occasionally associated with E-W dextral shears. Moreover, this kinematics is related to the late deformation episodes of Variscan orogeny. In Almograve sector, the Late Variscan structures are characterized by NNE-SSW sinistral kink bands, spatially associated with E-W dextral faults. These structures are contemporaneous and affect the previously deformed Carboniferous units. The Ponta Ruiva Sector constrains the age of deformation because the E-W dextral shears affect the Late Carboniferous (late Moscovian) units, but not the overlying Triassic series. The new data show that the NNE-SSW and the E-W faults are dynamically associated and result from the Late Variscan deformation episode. The NNE-SSW sinistral faults could be considered as second-order domino structures related to first-order E-W dextral shears, linked to Laurentia-Gondwana collision during Late Carboniferous-Permian times.

  8. The influence of nanostructurizing deformation-thermal treatment on strain-ing and fracture features of quenched grade 50 steel upon static and cyclic loading

    OpenAIRE

    Саврай, Р. А.; Макаров, А. В.; Малыгина, И. Ю.; Давыдова, Н. А.

    2014-01-01

    Straining and fracture features upon static and cyclic loading of quenched grade 50 steel (with 0.51 wt.% of C) subjected to nanostructurizing deformation-thermal treatment, which includes frictional treatment and optimized tem-pering at temperature of 350°С have been investigated. It is established that combined nanostructurizing treatment alters the character of development of a plastic yielding upon loading and makes it more uniform. This is expressed in disappearance of the yield point el...

  9. SPECIFIC FEATURES OF DEFORMATION OF THE CONTINENTAL AND OCEANIC LITHOSPHERE AS A RESULT OF THE EARTH CORE NORTHERN DRIFT

    Directory of Open Access Journals (Sweden)

    Mikhail A. Goncharov

    2015-09-01

    Full Text Available Drifting and submeridional compression of the continental and oceanic lithosphere, both with the northward vector (Figure 1 are revealed at the background of various directions of horizontal displacement combined with deformations of horizontal extension, compression and shear of the lithosphere (Figures 7–14. Among various structural forms and their paragenezises, indicators of such compression, the north vergence thrusts play the leading role (Figures 15–17, 19, and 22–24. This process was discontinuous, manifested discretely in time, and superimposed on processes of collisional orogenesis and platform deformations of the continental lithosphere and accretion of the oceanic lithosphere in spreading zones. Three main stages of submeridional compression of the oceanic lithosphere are distinguished as follows: Late Jurassic-Late Cretaceous, Late Miocene, and the contemporary stages.Based on the concept of balanced tectonic flow in the Earth’s body, a model of meridional convection (Figure 25 is proposed. In this case, meridional convection is considered as an integral element of the overglobal convective geodynamic system of the largest-scale rank, which also includes the western component of the lithosphere drift (Figure 6 and the Earth’s ‘wrenching’. At the background of this system, geodynamic systems of smaller scale ranks are functioning (Table 1; Figures 2, and 3. The latters are responsible for the periodic creation and break-up of supercontinents, plate tectonics and regional geodynamical processes; they also produce the ‘structural background’, in the presence of which it is challenging to reveal the above mentioned submeridional compression structures. Formation of such structures is caused by the upper horizontal flow of meridional convection.Meridional convection occurs due to drifting of the Earth core towards the North Pole (which is detected by a number of independent methods and resistance of the mantle to

  10. Burst testing of condoms. I. Basic features of the force-deformation curve of latex-rubber condoms.

    Science.gov (United States)

    Wilson, T W; Andrady, A L

    1992-01-01

    Inflation of a rubber condom involves biaxial deformation of the material which can be modeled by the use of an appropriate strain-energy function. Force versus deformation data for uniaxial extension of strips of condoms were used to determine the parameters for Ogden's form of a strain-energy function. These parameters were then used to fit experimentally obtained burst test data to a stress-strain equation formulated for inflation of condoms in a burst test. Experimental data on inflation of condoms agree well with theoretical curves verifying the applicability of the biaxial stress-strain equation to the particular strain-energy function on which it is based.

  11. Determination of Polarized PDFs from a QCD Analysis of Inclusive and Semi-inclusive Deep Inelastic Scattering Data

    CERN Document Server

    Leader, Elliot; Stamenov, Dimiter B

    2010-01-01

    A new combined NLO QCD analysis of the polarized inclusive and semi-inclusive DIS data is presented. In contrast to previous combined analyses, the 1/Q^2 terms (kinematic - target mass corrections, and dynamic - higher twist corrections) in the expression for the nucleon spin structure function g_1 are taken into account. The new COMPASS data are included in the analysis. The impact of the semi-inclusive data on the polarized parton densities (PDFs) and on the higher twist corrections is discussed. The new results for the PDFs are compared to both the LSS'06 PDFs, obtained from the fit to the inclusive DIS data alone, and to those obtained from the DSSV global analysis.

  12. Study of the Relation Between the Features of Fault Deformation Tendency Anomaly and Earthquake Activity in the West of China

    Institute of Scientific and Technical Information of China (English)

    Chen Bing; Jiang Zaisen; Zhao Zhencai

    2000-01-01

    Using the tendentious accumulation rate of crustal deformation, Dc, the spatial distributionfeatures of deformation across fault in the West of China was studied; the regional patterns ofdeformation accumulation induced by fault activity was established and its seismogenicmeaning was discussed. The types of fault deformation evolution in the time domain and thefeatures of change of large extent anomaly in fault deformation which occurred in 1995 ~ 1996was analyzed comprehensively. It was indicated definitely that 1995~ 1996 is the turningpoint of fault network activity in the West of China since the 1990s; it is closely related to thechange of main seismic active regions in the West of China, i.e., the alternation of strong/weak stages and the change of action range of tectonic stress field in the Qinghai-Tibet blockand its environs; and hence it is of medium- and short-term precursor meaning for the changeof the overall pattern of earthquake activity in the West of China in the year 1996. On such abasis, a preliminary investigation of the mechanical mechanism and block movementbackground was made. We hold that the formation of NE-trending band of Ms6.0earthquakes in 1988~1996 and NW-trending band of Ms5.0 earthquakes in 1997~1999 canprove in mechanics that the West of China is now in a state that the N-S stress weakensrelatively but E-W stress strengthens relatively and predominates.

  13. Strange Quark PDFs and Implications for Drell-Yan Boson Production at the LHC

    CERN Document Server

    Kusina, A; Berge, S; Olness, F I; Schienbein, I; Kovarik, K; Jezo, T; Yu, J Y; Park, K

    2012-01-01

    Global analyses of Parton Distribution Functions (PDFs) have provided incisive constraints on the up and down quark components of the proton, but constraining the other flavor degrees of freedom is more challenging. Higher-order theory predictions and new data sets have contributed to recent improvements. Despite these efforts, the strange quark PDF has a sizable uncertainty, particularly in the small x region. We examine the constraints from experiment and theory, and investigate the impact of this uncertainty on LHC observables. In particular, we study W/Z production to see how the s-quark uncertainty propagates to these observables, and examine the extent to which precise measurements at the LHC can provide additional information on the proton flavor structure.

  14. TPZ : Photometric redshift PDFs and ancillary information by using prediction trees and random forests

    CERN Document Server

    Kind, M Carrasco

    2013-01-01

    With the growth of large photometric surveys, accurately estimating photometric redshifts, preferably as a probability density function (PDF), and fully understanding the implicit systematic uncertainties in this process has become increasingly important. In this paper, we present a new, publicly available, parallel, machine learning algorithm that generates photometric redshift PDFs by using prediction trees and random forest techniques, which we have named TPZ. This new algorithm incorporates measurement errors into the calculation while also dealing efficiently with missing values in the data. In addition, our implementation of this algorithm provides supplementary information regarding the data being analyzed, including unbiased estimates of the accuracy of the technique without resorting to a validation data set, identification of poor photometric redshift areas within the parameter space occupied by the spectroscopic training data, a quantification of the relative importance of the variables used to con...

  15. PDFs, α{sub s}, and quark masses from global fits

    Energy Technology Data Exchange (ETDEWEB)

    Alekhin, Sergey [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Institute for High Energy Physics (IHEP), Protvino (Russian Federation); Bluemlein, Johannes [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Moch, Sven-Olaf [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik; Placakyte, Ringaile [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)

    2016-09-15

    The strong coupling constant α{sub s} and the heavy-quark masses, m{sub c}, m{sub b}, m{sub t} are extracted simultaneously with the parton distribution functions (PDFs) in the updated ABM12 fit including recent data from CERN-SPS, HERA, Tevatron, and the LHC. The values of α{sub s}(M{sub Z})=0.1147±0.0008(exp.), m{sub c}(m{sub c})=1.252±0.018(exp.) GeV, m{sub b}(m{sub b})=3.83±0.12(exp.) GeV, m{sub t}(m{sub t})=160.9±1.1(exp.) GeV are obtained with the MS heavy-quark mass definition being employed throughout the analysis.

  16. CT14QED PDFs from Isolated Photon Production in Deep Inelastic Scattering

    CERN Document Server

    Schmidt, Carl; Stump, Daniel; Yuan, C -P

    2015-01-01

    We describe the implementation of Quantum Electrodynamic (QED) evolution at Leading Order (LO) along with Quantum Chromodynamic (QCD) evolution at Next-to-Leading Order (NLO) in the CTEQ-TEA Global analysis package. The photon Parton Distribution Function (PDF) is described by a two-parameter ansatz, coming from radiation off the valence quarks, and based on the CT14 NLO PDFs. Setting the two parameters equal, allows us to completely specify the photon PDF in terms of the momentum fraction carried by the photon, $p_0^\\gamma$, at the initial scale $Q_0=1.295$ GeV. We obtain constraints on the photon PDF by comparing with ZEUS data~\\cite{Chekanov:2009dq} on the production of isolated photons in deep inelastic scattering, $ep\\rightarrow e\\gamma+X$. For this comparison we present a new perturbative calculation of the process that consistently combines the photon-initiated contribution with the quark-initiated contribution. Comparison with the data allows us to put a constraint at the 90% confidence level of $p_0^...

  17. Vector boson production in proton-lead and lead-lead collisions at the LHC and its impact on nCTEQ15 PDFs

    CERN Document Server

    Kusina, A; Clark, D B; Godat, E; Jezo, T; Kovarik, K; Olness, F I; Schienbein, I; Yu, J Y

    2016-01-01

    We provide a comprehensive comparison of W/Z vector boson production data in proton-lead and lead-lead collisions at the LHC with predictions obtained using the nCTEQ15 PDFs. We identify the measurements which have the largest potential impact on the PDFs, and estimate the effect of including these data using a Monte Carlo reweighting method. We find this data set can provide information about both the nuclear corrections and the heavy flavor (strange) PDF components. As the proton flavor determination is dependent on nuclear corrections (from heavy target DIS, for example), this information can also help improve the proton PDFs.

  18. Quantification of global myocardial function by cine MRI deformable registration-based analysis: Comparison with MR feature tracking and speckle-tracking echocardiography

    Energy Technology Data Exchange (ETDEWEB)

    Lamacie, Mariana M. [University Health Network, Department of Medical Imaging, Toronto, Ontario (Canada); Thavendiranathan, Paaladinesh [University Health Network, Department of Medical Imaging, Toronto, Ontario (Canada); University of Toronto, Department of Medicine, Division of Cardiology, Toronto, Ontario (Canada); Hanneman, Kate [University Health Network, Department of Medical Imaging, Toronto, Ontario (Canada); University of Toronto, Department of Medical Imaging, Toronto, Ontario (Canada); Greiser, Andreas [Siemens Healthcare, Erlangen (Germany); Jolly, Marie-Pierre [Medical Imaging Technologies, Siemens Healthcare, Princeton, NJ (United States); Ward, Richard [University of Toronto, Department of Medicine, Division of Cardiology, Toronto, Ontario (Canada); Wintersperger, Bernd J. [University Health Network, Department of Medical Imaging, Toronto, Ontario (Canada); University of Toronto, Department of Medical Imaging, Toronto, Ontario (Canada); Toronto General Hospital, Department of Medical Imaging, Toronto, Ontario (Canada)

    2017-04-15

    To evaluate deformable registration algorithms (DRA)-based quantification of cine steady-state free-precession (SSFP) for myocardial strain assessment in comparison with feature-tracking (FT) and speckle-tracking echocardiography (STE). Data sets of 28 patients/10 volunteers, undergoing same-day 1.5T cardiac MRI and echocardiography were included. LV global longitudinal (GLS), circumferential (GCS) and radial (GRS) peak systolic strain were assessed on cine SSFP data using commercially available FT algorithms and prototype DRA-based algorithms. STE was applied as standard of reference for accuracy, precision and intra-/interobserver reproducibility testing. DRA showed narrower limits of agreement compared to STE for GLS (-4.0 [-0.9,-7.9]) and GCS (-5.1 [1.1,-11.2]) than FT (3.2 [11.2,-4.9]; 3.8 [13.9,-6.3], respectively). While both DRA and FT demonstrated significant differences to STE for GLS and GCS (all p<0.001), only DRA correlated significantly to STE for GLS (r=0.47; p=0.006). However, good correlation was demonstrated between MR techniques (GLS:r=0.74; GCS:r=0.80; GRS:r=0.45, all p<0.05). Comparing DRA with FT, intra-/interobserver coefficient of variance was lower (1.6 %/3.2 % vs. 6.4 %/5.7 %) and intraclass-correlation coefficient was higher. DRA GCS and GRS data presented zero variability for repeated observations. DRA is an automated method that allows myocardial deformation assessment with superior reproducibility compared to FT. (orig.)

  19. Alternating augite-plagioclase wedges in basement dolerites of Lockne impact structure, Sweden: A new shock wave-induced deformation feature

    Science.gov (United States)

    Agarwal, A.; Reznik, B.; Alva-Valdivia, L. M.; Srivastava, D. C.

    2017-03-01

    This paper reports peculiar alternating augite-plagioclase wedges in basement dolerites of Lockne impact structure, Sweden. The combined microscopic and spectroscopic studies of the micro/nanoscale wedges reveal that these are deformation-induced features. First, samples showing wedges, 12 out of 18 studied, are distributed in the impact structure within a radius of up to 10 km from the crater center. Second, the margins between the augite and labradorite wedges are sharp and the {110} prismatic cleavage of augite develops into fractures and thereafter into wedges. The fractures are filled with molten labradorite pushed from the neighboring bulk labradorite grain. Third, compared to the bulk labradorite, the dislocation density and the residual strain in the labradorite wedges are significantly higher. A possible mechanism of genesis of the wedges is proposed. The mechanism explains that passing of the shock waves in the basement dolerite induced (i) formation of microfractures in augite and labradorite; (ii) development of the augite prismatic cleavages into the wedges, which overprint the microfracture in the labradorite wedges; and (iii) thereafter, infilling of microfractures in the augite wedges by labradorite.

  20. Quantification of global myocardial function by cine MRI deformable registration-based analysis: Comparison with MR feature tracking and speckle-tracking echocardiography.

    Science.gov (United States)

    Lamacie, Mariana M; Thavendiranathan, Paaladinesh; Hanneman, Kate; Greiser, Andreas; Jolly, Marie-Pierre; Ward, Richard; Wintersperger, Bernd J

    2017-04-01

    To evaluate deformable registration algorithms (DRA)-based quantification of cine steady-state free-precession (SSFP) for myocardial strain assessment in comparison with feature-tracking (FT) and speckle-tracking echocardiography (STE). Data sets of 28 patients/10 volunteers, undergoing same-day 1.5T cardiac MRI and echocardiography were included. LV global longitudinal (GLS), circumferential (GCS) and radial (GRS) peak systolic strain were assessed on cine SSFP data using commercially available FT algorithms and prototype DRA-based algorithms. STE was applied as standard of reference for accuracy, precision and intra-/interobserver reproducibility testing. DRA showed narrower limits of agreement compared to STE for GLS (-4.0 [-0.9,-7.9]) and GCS (-5.1 [1.1,-11.2]) than FT (3.2 [11.2,-4.9]; 3.8 [13.9,-6.3], respectively). While both DRA and FT demonstrated significant differences to STE for GLS and GCS (all ptracking (FT) methods. • Cine MR DRA and FT analysis demonstrate differences to speckle-tracking echocardiography • DRA demonstrated better correlation with STE than FT for MR-derived global strain data.

  1. High redshift galaxies in the ALHAMBRA survey . I. Selection method and number counts based on redshift PDFs

    Science.gov (United States)

    Viironen, K.; Marín-Franch, A.; López-Sanjuan, C.; Varela, J.; Chaves-Montero, J.; Cristóbal-Hornillos, D.; Molino, A.; Fernández-Soto, A.; Vilella-Rojo, G.; Ascaso, B.; Cenarro, A. J.; Cerviño, M.; Cepa, J.; Ederoclite, A.; Márquez, I.; Masegosa, J.; Moles, M.; Oteo, I.; Pović, M.; Aguerri, J. A. L.; Alfaro, E.; Aparicio-Villegas, T.; Benítez, N.; Broadhurst, T.; Cabrera-Caño, J.; Castander, J. F.; Del Olmo, A.; González Delgado, R. M.; Husillos, C.; Infante, L.; Martínez, V. J.; Perea, J.; Prada, F.; Quintana, J. M.

    2015-04-01

    Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so-called dropout technique or Ly-α selection. However, the availability of multifilter data now allows the dropout selections to be replaced by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims: Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing to the study of the brightest, least frequent, high redshift galaxies. Methods: The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reaching both a complete and clean sample with this method is challenging. Hence, a method to derive statistical properties by summing the zPDFs of all the galaxies in the redshift bin of interest is introduced. Results: Using this methodology we derive the galaxy rest frame UV number counts in five redshift bins centred at z = 2.5,3.0,3.5,4.0, and 4.5, being complete up to the limiting magnitude at mUV(AB) = 24, where mUV refers to the first ALHAMBRA filter redwards of the Ly-α line. With the wide field ALHAMBRA data we especially contribute to the study of the brightest ends of these counts, accurately sampling the surface densities down to mUV(AB) = 21-22. Conclusions: We show that using the zPDFs it is easy to select a very clean sample of high redshift galaxies. We also show that it is better to do statistical analysis of the properties of galaxies using a probabilistic approach, which takes into account both the incompleteness and contamination issues in a

  2. Detecting and diagnosing faults in dynamic stochastic distributions using a rational B-splines approximation to output PDFs

    Institute of Scientific and Technical Information of China (English)

    Hong WANG; Hong YUE

    2003-01-01

    This paper presents a novel approach to detect and diagnose faults in the dynanmic part of a chis of stochastic sys-tems. the Such a group of systems are subjected to a set of crisp inputs but the outputs considered are the measurable probability density functions (PDFs) of the system output, rather than thie system output alone. A new approximation model is developed for the output probability density functions so that the dynamic part of the system is decoupled fron the output probability density functions. A nonlinear adaptive observer is constructed to detect and diagnose the fault in the dynamic part of the system. Convergency analysis is perfomed for the error dynamics raised from the fault detection and diagnosis phase and an applicability study on the detection and diagnosis of the unexpected changes in the 2D grmmage distributions in a paper forming process is included.

  3. High redshift galaxies in the ALHAMBRA survey: I. selection method and number counts based on redshift PDFs

    CERN Document Server

    Viironen, K; López-Sanjuan, C; Varela, J; Chaves-Montero, J; Cristóbal-Hornillos, D; Molino, A; Fernández-Soto, A; Ascaso, B; Cenarro, A J; Cerviño, M; Cepa, J; Ederoclite, A; Márquez, I; Masegosa, J; Moles, M; Oteo, I; Pović, M; Aguerri, J A L; Alfaro, E; Aparicio-Villegas, T; Benítez, N; Broadhurst, T; Cabrera-Caño, J; Castander, J F; Del Olmo, A; Delgado, R M González; Husillos, C; Infante, L; Martínez, V J; Perea, J; Prada, F; Quintana, J M

    2015-01-01

    Context. Most observational results on the high redshift restframe UV-bright galaxies are based on samples pinpointed using the so called dropout technique or Ly-alpha selection. However, the availability of multifilter data allows now replacing the dropout selections by direct methods based on photometric redshifts. In this paper we present the methodology to select and study the population of high redshift galaxies in the ALHAMBRA survey data. Aims. Our aim is to develop a less biased methodology than the traditional dropout technique to study the high redshift galaxies in ALHAMBRA and other multifilter data. Thanks to the wide area ALHAMBRA covers, we especially aim at contributing in the study of the brightest, less frequent, high redshift galaxies. Methods. The methodology is based on redshift probability distribution functions (zPDFs). It is shown how a clean galaxy sample can be obtained by selecting the galaxies with high integrated probability of being within a given redshift interval. However, reach...

  4. 基于特征映射的义齿表面三维变形设计方法%3D Deformation Design Method for Prosthetic Dental Surface Based on Feature Mapping

    Institute of Scientific and Technical Information of China (English)

    郑淑贤; 李佳; 孙庆丰

    2011-01-01

    The prosthetic tooth surface design is an important issue in dental computer aided design systems(CAD). The designed tooth shape should fit to the patient's tooth articulation environment and keep the topological features of the generic teeth. Aiming at the problem, a 3D deformation approach for prosthetic dental surface design based on feature mapping is presented. The main idea is by identifying the corresponding feature points between the preparation tooth and the standard tooth firstly, using a suitable radial basis function to define the feature mapping relations in both teeth, then through the corresponding features alignment and the surface interpolation deformation, the prosthetic tooth surface deformation is realized. The result of case study of the first molar in lower jaw shows that the design process is simple, the standard tooth surface deformation is reasonable, the surface distortion can be avoided and the final inlay surface matches well with the preparation tooth. The feature mapping design method provides a new way for clinic application in dental CAD.%义齿表面设计是牙科计算机辅助设计和制造系统的一个重要环节,设计的义齿形状必须符合患者的口腔咬合环境并能保持牙齿的拓扑结构特征.针对这一问题,在此提出一种基于特征映射的义齿表面三维变形设计方法.该方法主要思想是首先识别预备体与同名标准牙的重要特征点,采用径向基函数建立两者的特征映射关系,再通过对应特征点的位置对齐和表面的插值变形,实现义齿表面的变形设计.下颌第一磨牙嵌体的设计案例结果表明,该方法设计程序简单,标准牙曲面变形合理,能有效地避免曲面失真,最终生成的嵌体与预备体匹配良好,为牙科计算机辅助设计和制造系统的临床应用提供一种新的方法.

  5. Analysis of the forward and backward in time pair-separation PDFs for inertial particles in isotropic turbulence

    CERN Document Server

    Bragg, Andrew D

    2016-01-01

    In this paper we investigate, using theory and Direct Numerical Simulations (DNS), the Forward In Time (FIT) and Backward In Time (BIT) Probability Density Functions (PDFs) of the separation of inertial particle-pairs in isotropic turbulence. In agreement with our earlier study (Bragg \\emph{et al.}, Phys. Fluids \\textbf{28}, 013305 (2016)), where we compared the FIT and BIT mean-square separations, we find that inertial particles separate much faster BIT than FIT, with the strength of the irreversibility depending upon the final/initial separation of the particle-pair and their Stokes number $St$. However, we also find that the irreversibility shows up in subtle ways in the behavior of the full PDF that it does not in the mean-square separation. In the theory, we derive new predictions, including a prediction for the BIT/FIT PDF for ${St\\geq O(1)}$, and for final/initial separations in the dissipation regime. The prediction shows how caustics in the particle relative velocities in the dissipation range affect...

  6. The simulated features of heliospheric cosmic-ray modulation with a time-dependent drift model. IV - The role of heliospheric neutral sheet deformation

    Science.gov (United States)

    Le Roux, J. A.; Potgieter, M. S.

    1992-01-01

    Previous calculations with a time-dependent drift model revealed the model to be less successful in describing time-dependent modulation during periods of moderate to large solar activity. In this paper, it is argued that a major reason for this is that the previously used wavy heliospheric neutral sheet (HNS) description was based on an idealized HNS not subject to any spatial evolution while propagating radially outward. It is suggested that the deformation and compression of HNS wave peaks will lead to significant increases in the crossfield diffusion across these peaks (short-circuiting). The cosmic rays will effectively experience reduced tilt angles and therefore a reduction in the integrated HNS modulation effect between an observer and the heliospheric boundary. During periods of moderate to large solar activity these HNS deformation processes are progressively more frequent and should lead to a significant reduction in time-dependent modulation as predicted by drift models. Calculations done with radially propagating tilt angles that effectively decrease with radial distance give the expected reduction which improves the general description of modulation from 1987-1988.

  7. Deformation of Man Made Objects

    KAUST Repository

    Ibrahim, Mohamed

    2012-07-01

    We introduce a framework for 3D object deformation with primary focus on man-made objects. Our framework enables a user to deform a model while preserving its defining characteristics. Moreover, our framework enables a user to set constraints on a model to keep its most significant features intact after the deformation process. Our framework supports a semi-automatic constraint setting environment, where some constraints could be automatically set by the framework while others are left for the user to specify. Our framework has several advantages over some state of the art deformation techniques in that it enables a user to add new features to the deformed model while keeping its general look similar to the input model. In addition, our framework enables the rotation and extrusion of different parts of a model.

  8. Contracture deformity

    Science.gov (United States)

    Deformity - contracture ... Contracture can be caused by any of the following: Brain and nervous system disorders, such as cerebral ... Follow your health care provider's instructions for treating contracture at home. Treatments may include: Doing exercises and ...

  9. Constraining nPDFs with inclusive pions and direct photons at forward rapidities in p+Pb collisions at the LHC

    CERN Document Server

    Helenius, Ilkka; Paukkunen, Hannu

    2014-01-01

    In this talk, we present NLO pQCD predictions for inclusive pion and direct photon nuclear modifications in p+Pb collisions at mid- and forward rapidities at the LHC. In addition to the minimum bias predictions, we also address the centrality dependence with spatially dependent nuclear PDFs. To understand which regions of the nuclear momentum fraction $x_2$ these observables predominantly probe, we present also the underlying $x_2$ distributions at different rapidities. We are led to conclude that the isolated photons at forward rapidities are more sensitive to the small-$x_2$ dynamics than the inclusive pions.

  10. Deformable Simplicial Complexes

    DEFF Research Database (Denmark)

    Misztal, Marek Krzysztof

    In this dissertation we present a novel method for deformable interface tracking in 2D and 3D|deformable simplicial complexes (DSC). Deformable interfaces are used in several applications, such as fluid simulation, image analysis, reconstruction or structural optimization. In the DSC method......, the interface (curve in 2D; surface in 3D) is represented explicitly as a piecewise linear curve or surface. However, the domain is also subject to discretization: triangulation in 2D; tetrahedralization in 3D. This way, the interface can be alternatively represented as a set of edges/triangles separating...... demonstrate those strengths in several applications. In particular, a novel, DSC-based fluid dynamics solver has been developed during the PhD project. A special feature of this solver is that due to the fact that DSC maintains an explicit interface representation, surface tension is more easily dealt with...

  11. Deformation microstructures

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Hughes, D.A.

    2004-01-01

    Microstructural characterization and modeling has shown that a variety of metals deformed by different thermomechanical processes follows a general path of grain subdivision, by dislocation boundaries and high angle boundaries. This subdivision has been observed to very small structural scales...... of the order of 10 nm, produced by deformation under large sliding loads. Limits to the evolution of microstructural parameters during monotonic loading have been investigated based on a characterization by transmission electron microscopy. Such limits have been observed at an equivalent strain of about 10...

  12. Localization of plastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Rice, J R

    1976-04-01

    The localization of plastic deformation into a shear band is discussed as an instability of plastic flow and a precursor to rupture. Experimental observations are reviewed, a general theoretical framework is presented, and specific calculations of critical conditions are carried out for a variety of material models. The interplay between features of inelastic constitutive description, especially deviations from normality and vertex-like yielding, and the onset of localization is emphasized.

  13. Haglund's Deformity

    Science.gov (United States)

    ... to follow the surgeon’s instructions for postsurgical care. Prevention To help prevent a recurrence of Haglund’s deformity: wear appropriate shoes; avoid shoes with a rigid heel back use arch supports or orthotic devices perform stretching exercises to prevent the Achilles tendon from tightening ...

  14. Measurement of photon and photon+jet production cross sections at $\\sqrt{s}$ = 7 TeV and constraints to PDFs

    CERN Document Server

    Cantero, J; The ATLAS collaboration

    2014-01-01

    Measurement of the inclusive photon production performed by the ATLAS collaboration using 4.6 fb-1 of sqrt(s)=7 TeV collision data is reported. Comparisons to the data of nextto-leading order QCD calculations MCFM and JetPhox with different PDFs are presented. The theoretical uncertainties, including scale, strong coupling, and PDF uncertainties are evaluated. The compatibility between data and theory is assessed by q2 evaluation, taking into account the correlations between systematic uncertainties. The cross sections for photons produced in association with jets are also measured by the ATLAS collaboration at sqrt(s)=7 TeV as functions of photon and jet kinematics and are compared to next-to-leading-order QCD calculations.

  15. 浸泡-风干循环作用对砂岩变形及破坏特征影响研究%Influence of immersion-air dry circulation function on deformation and fracture features of sandstone

    Institute of Scientific and Technical Information of China (English)

    邓华锋; 李建林; 刘杰; 朱敏; 罗骞; 原先凡

    2012-01-01

    In the process of impoundment and normal operation of reservoirs, the water level will rise and fall periodically in a planned way. As a result, the immersion-air dry function will lead to the degeneration of mechanical properties of rock mass in variable amplitude zone with time, and then affect the slope stability. Based on these, the immersion-air dry circulation function tests considering the change of water pressure of sand rock are designed, and the deformation and fracture features of rock samples are studied. The test results indicate that the rise or decline of water pressure and the immersion-air dry circulation function have cumulative and irreversible damage to the samples. In the process of circulation, the stress-strain curves of the sand rock samples become slow gradually, the compaction segment gradually becomes long, the gradient of the elastic deformation section decreases gradually, elastic modulus reduces gradually, yield step gradually becomes long, the axial strain corresponding to the peak intensity increases gradually, and the fracture angle of the samples decreases gradually. The stress-strain curves of the sand rock samples show that the samples have a distinct trend of softening. Moreover, the more the cycle times of the immersion-air dry, the more the serious damage to the rock mass. The results of important reference value in the studies on the deformation and fracture laws of the variable amplitude rock in reservoir banks will provide a favorable evidence for the long-term stability analysis of reservoir bank slopes.%水库正常运营后,库水位将按计划周期性的上升或下降,浸泡-风干循环作用将导致库岸边坡变幅带岩体性质逐渐劣化,进而影响库岸边坡的稳定性,基于此,设计了考虑水压力升、降变化的砂岩浸泡-风干循环作用试验,重点研究了砂岩试样的变形及破坏特征。研究结果表明:水压力升、降变化和浸泡-风干循环作用对岩

  16. Poland综合征常见的上肢及手畸形的临床特征%Clinical features of common deformities of the upper limb and hand in Poland syndrome

    Institute of Scientific and Technical Information of China (English)

    于龙彪; 田文; 张国安

    2014-01-01

    Poland syndrome ( PS ), also called pectoralis major muscle defect, brachydactyly and syndactylia syndrome, is a rare congenital anomaly characterized by unilateral chest wall hypoplasia and ipsilateral upper limb and hand abnormalities in different degrees. The clinical manifestations are various, especially the upper limb and hand deformities, with great individual differences. This article reviewed the domestic and foreign literatures in recent years and summarized the various deformities of the upper limb and hand in the PS patients. ( 1 ) The PS patients with upper limb deformities may have the following symptoms, including various degrees of short or even defected upper limb, congenital radioulnar synostosis, congenital high scapula, ulnar longitudinal dysplasia, posterior dislocation of the radial head and so on. ( 2 ) The PS patients with wrist deformities may have the following symptoms, including one or more pairs of intercarpal fusion, delay of carpal ossiifcation, disharmonious ossiifcation between the carpal and tubular bone, abnormal carpal morphology, absence of carpal bones and so on. ( 3 ) The PS patients with hand deformities may have the following symptoms, including volume decrease of the ipsilateral hand such as brachydactyly, ectrodactyly, split hand and acheiria, partially or completely soft tissue syndactyly, dysplasia or absence of the middle phalanx, contracture of the metacarpophalangeal joint and the interphalangeal joint, finger lateral deformity, congenital constriction band deformity and so on.

  17. Geometric Total Variation for Texture Deformation

    DEFF Research Database (Denmark)

    Bespalov, Dmitriy; Dahl, Anders Lindbjerg; Shokoufandeh, Ali

    2010-01-01

    of features in texture images leads to significant improvements in localization of these features, when textures undergo geometrical transformations. Accurate localization of features in the presense of unkown deformations is a crucial property for texture characterization methods, and we intend to expoit...

  18. (120) and (122-bar) monazite deformation twins

    Energy Technology Data Exchange (ETDEWEB)

    Hay, R.S

    2003-10-20

    Unusual features of (120) and (122-bar) deformation twins in monazite (monoclinic LaPO{sub 4}) are described and analyzed. These features are kinks and other irregularities in (120) twins, and V-shaped indentations on (120) and (122-bar) twin planes. Twinning shear analysis suggests that the kinks are a type II deformation twin mode with shear direction ({eta}{sub 1}) of [21-bar0]. This complements previous analysis based on atom shuffling considerations. Shear strain compatibility requires extensive plastic deformation in the kink. The V-shaped indentations may be analogous to similar structures in b.c.c metal deformation twins. Deformation mechanisms that may be associated with these structures are discussed.

  19. Nanoscale Deformable Optics

    Science.gov (United States)

    Strauss, Karl F.; Sheldon, Douglas J.

    2011-01-01

    Several missions and instruments in the conceptual design phase rely on the technique of interferometry to create detectable fringe patterns. The intimate emplacement of reflective material upon electron device cells based upon chalcogenide material technology permits high-speed, predictable deformation of the reflective surface to a subnanometer or finer resolution with a very high degree of accuracy. In this innovation, a layer of reflective material is deposited upon a wafer containing (perhaps in the millions) chalcogenic memory cells with the reflective material becoming the front surface of a mirror and the chalcogenic material becoming a means of selectively deforming the mirror by the application of heat to the chalcogenic material. By doing so, the mirror surface can deform anywhere from nil to nanometers in spots the size of a modern day memory cell, thereby permitting realtime tuning of mirror focus and reflectivity to mitigate aberrations caused elsewhere in the optical system. Modern foundry methods permit the design and manufacture of individual memory cells having an area of or equal to the Feature (F) size of the design (assume 65 nm). Fabrication rules and restraints generally require the instantiation of one memory cell to another no closer than 1.5 F, or, for this innovation, 90 nm from its neighbor in any direction. Chalcogenide is a semiconducting glass compound consisting of a combination of chalcogen ions, the ratios of which vary according to properties desired. It has been shown that the application of heat to cells of chalcogenic material cause a large alteration in resistance to the range of 4 orders of magnitude. It is this effect upon which chalcogenidebased commercial memories rely. Upon removal of the heat source, the chalcogenide rapidly cools and remains frozen in the excited state. It has also been shown that the chalcogenide expands in volume because of the applied heat, meaning that the coefficient of expansion of chalcogenic

  20. PDFs from nucleons to nuclei

    CERN Document Server

    Accardi, Alberto

    2016-01-01

    I review recent progress in the extraction of unpolarized parton distributions in the proton and in nuclei from a unified point of view that highlights how the interplay between high energy particle physics and lower energy nuclear physics can be of mutual benefit to either field. Areas of overlap range from the search for physics beyond the standard model at the LHC, to the study of the non perturbative structure of nucleons and the emergence of nuclei from quark and gluon degrees of freedom, to the interaction of colored probes in a cold nuclear medium.

  1. Theory of photoinduced deformation of molecular films

    DEFF Research Database (Denmark)

    Gaididei, Yuri B.; Christiansen, Peter Leth; Ramanujam, P.S.

    2002-01-01

    Azobenzene-containing polymers exhibit strong surface-relief features when irradiated with polarized light. Currently proposed theories do not explain all the observed features. Here we propose a theory based on elastic deformation of the polymer due to interaction between dipoles ordered through...

  2. Deformations of crystal frameworks

    CERN Document Server

    Borcea, Ciprian S

    2011-01-01

    We apply our deformation theory of periodic bar-and-joint frameworks to tetrahedral crystal structures. The deformation space is investigated in detail for frameworks modelled on quartz, cristobalite and tridymite.

  3. Deformed General Relativity

    CERN Document Server

    Bojowald, Martin

    2013-01-01

    Deformed special relativity is embedded in deformed general relativity using the methods of canonical relativity and loop quantum gravity. Phase-space dependent deformations of symmetry algebras then appear, which in some regimes can be rewritten as non-linear Poincare algebras with momentum-dependent deformations of commutators between boosts and time translations. In contrast to deformed special relativity, the deformations are derived for generators with an unambiguous physical role, following from the relationship between canonical constraints of gravity with stress-energy components. The original deformation does not appear in momentum space and does not give rise to non-locality issues or problems with macroscopic objects. Contact with deformed special relativity may help to test loop quantum gravity or restrict its quantization ambiguities.

  4. Rheology elasticity determined by deformation of stretchable molecular trains

    Institute of Scientific and Technical Information of China (English)

    肖建华

    2008-01-01

    The average stretching direction,local rotation angular,and stretching ratio parameters of molecular trains were used to express the rheology deformation.Based on this micro geometrical deformation,the macro deformation of medium was expressed.Then,using intrinsic elasticity concept,the stress-strain relation was obtained.In this theoretic formulation,the response functions of extension ratio and rotation angular were used to express the rheology feature of medium.For medium composed by incompressible molecular trains,the local rotation angular divides rheology deformation into three kinds:viscoelastic deformation or elasticity enhancement,viscoplastic deformation or elasticity degenerate and constant elasticity range.These results explain the experimental features of rheology deformation well.

  5. 基于PS-InSAR技术的断裂带近场变形特征提取%The extraction of the near-field deformation features along the faulted zone based on PS-InSAR survey

    Institute of Scientific and Technical Information of China (English)

    李凌婧; 姚鑫; 张永双; 王桂杰; 郭长宝

    2015-01-01

    断裂带近场变形特征不仅对新构造研究、地震预测等具有重要意义,对于直接服务于工程也具有很强的实用性。以鲜水河断裂八美—道孚段为研究区,选用多期L波段的雷达数据,采用永久散射体干涉测量技术(PS-InSAR,Persistent Scatterer Inter⁃ferometric Synthetic Aperture Radar)进行了2007—2011年的变形测量,结合其他资料综合分析了断裂带近场复杂的变形规律:①断裂间震期变形以负值为主,速率南段大于北段,两侧LOS东向运动速率差有所区别,南西侧速率大于北东侧速率,远离断裂带速度差明显,靠近断裂带速度差小,反映了断裂的整体东向运动和左旋相对运动;②断裂带附近,PS(Persistent Scatterer)点变形以较小的负值和正值为主,反映了地表的抬升,所在位置主要为湿地、山脚地下水出露点、河岸沟壑,推测原因为气候变暖—冰川融化—地下水抬升使地表发生鼓胀变形,季节性冻胀导致的湿地趋势抬升增长,断裂带附近的破碎岩土体具有一定的膨胀性;③断裂带中古—八美段表现出大范围的升高变形为断裂在近场的逆冲抬升作用,以及宽大韧性剪切带的存在以此来吸收协调鲜水河断裂的整体变形;④在斜坡带上高变形PS“点团”,反映了斜坡的重力变形作用,尤其在道孚—松林口段、乾宁盆地—龙灯坝段非常显著,体现了活动断裂带的地质灾害效应;⑤PS-InSAR高精度观测结果表明,活动断裂的变形是复杂的,在不同时期、不同分段、不同构造部位变形量和变形范围具有较大差异,不能简单考虑以断裂带为界的整体平移或升降。%The near-field deformation is not only important for earthquake forecast and Neotectonics study but also important for the service to engineering geology. Adopting PS-InSAR(Persistent Scatterer Interferometric Synthetic

  6. About the article by M.A. Goncharov, Yu.N. Raznitsin, Yu.V. Barkin «SPECIFIC FEATURES OF DEFORMATION OF THE CONTINENTAL AND OCEANIC LITHOSPHERE AS A RESULT OF THE EARTH CORE NORTHERN DRIFT»

    Directory of Open Access Journals (Sweden)

    Yuri G. Leonov

    2015-09-01

    Full Text Available The review summary states that studies of the hierarchical subordination of geodynamic systems is top in the scientific agenda, and researches of orientation of the Earth’s surface deformation structures in relation to the elements of the stress field are important. It is noted that the proposed classification of geological objects by ranks is ambiguous, and there is a need for a geodynamic model to provide a basis for studying relationships between the fields of forces, stresses and strains on the surface and processes which take place deep in the core and mantle of the Earth.

  7. Deformation and Development Tendency of Shiliushubao Landslide by Numerical Modeling

    Institute of Scientific and Technical Information of China (English)

    LI Xiuzhen; KONG Jiming; XU Qiang

    2006-01-01

    On the basis of analysing basic features of Shiliushubao landslide, the landslide's deformation and development tendency are quantitatively studied by using FLAC3D program. The results accord with monitoring results. The results are indicated that reservoir impounding accelerates the landslide's deformation, and the variation of reservoir water level is key factor of affecting the deformation; The landslide has the characters of pull-behind movement according to the displacement of the landslide body gradually reducing from leading edge to trailing edge; Excavating and deloading slow down the landslide's deformation in the certain degree. On the basis, the deformation developmental tendency of Shiliushubao landslide is predicted by the established simulating model.

  8. Deformable Nanolaminate Optics

    Energy Technology Data Exchange (ETDEWEB)

    Olivier, S S; Papavasiliou, A P; Barbee, T W; Miles, R R; Walton, C C; Cohn, M B; Chang, K

    2006-05-12

    We are developing a new class of deformable optic based on electrostatic actuation of nanolaminate foils. These foils are engineered at the atomic level to provide optimal opto-mechanical properties, including surface quality, strength and stiffness, for a wide range of deformable optics. We are combining these foils, developed at Lawrence Livermore National Laboratory (LLNL), with commercial metal processing techniques to produce prototype deformable optics with aperture sizes up to 10 cm and actuator spacing from 1 mm to 1 cm and with a range of surface deformation designed to be as much as 10 microns. The existing capability for producing nanolaminate foils at LLNL, coupled with the commercial metal processing techniques being used, enable the potential production of these deformable optics with aperture sizes of over 1 m, and much larger deformable optics could potentially be produced by tiling multiple deformable segments. In addition, based on the fabrication processes being used, deformable nanolaminate optics could potentially be produced with areal densities of less than 1 kg per square m for applications in which lightweight deformable optics are desirable, and deformable nanolaminate optics could potentially be fabricated with intrinsically curved surfaces, including aspheric shapes. We will describe the basic principles of these devices, and we will present details of the design, fabrication and characterization of the prototype deformable nanolaminate optics that have been developed to date. We will also discuss the possibilities for future work on scaling these devices to larger sizes and developing both devices with lower areal densities and devices with curved surfaces.

  9. 龙门山北段阳平关地区构造变形序列特征%Longmen Mountains region north deformation sequence features over Yangpingguan zone

    Institute of Scientific and Technical Information of China (English)

    任清军; 刘顺

    2011-01-01

    Yangpingguan area is located between the Longmen Mountain orogenic belt and Micang Mountain orogenic belt, which are well known as mainland of orogenic belts. The tectonic deformation of Yangpingguan faults is effected obviously by above two orogenic belts during the faults formation. Based on research on the plates and fault plane of Yangpingguan fault, tectonic deformation times and regional tectonic stress field were discussed. It is concluded that there are six tectonic stress field, such as the first period with EN - SW squeeze, the second period with NW - SE squeeze, the third period with S - N squeeze, the fourth period with EN - SW squeeze , the fifth issue period with NW - SE squeeze and the sixth period with EN - SW stretch. Tectonic deformation of Yangpingguan region continued progressed from late In-dosinian to Himalayan periods.%龙门山造山带和米仓山造山带是中国大陆颇有影响力的造山带.阳平关地区位于前两者之间,阳平关断层的形成以及后期的构造变形均受这二者的明显控制和影响.通过对阳平关断层上盘、断层面以及下盘的实测研究,对阳平关地区的构造变形期次与区域构造应力场作了探讨.认为主要区域构造应力场有六期,第一期为NE - SW向挤压,第二期为NW- SE向挤压,第三期为S-N向挤压,第四期为NE - SW向挤压,第五期为NW - SE向挤压,第六期NE - SW向拉伸.阳平关地区构造变形从印支晚期一直持续到喜马拉雅期.

  10. A statistical analysis of the elastic distortion and dislocation density fields in deformed crystals

    KAUST Repository

    Mohamed, Mamdouh S.

    2015-05-18

    The statistical properties of the elastic distortion fields of dislocations in deforming crystals are investigated using the method of discrete dislocation dynamics to simulate dislocation structures and dislocation density evolution under tensile loading. Probability distribution functions (PDF) and pair correlation functions (PCF) of the simulated internal elastic strains and lattice rotations are generated for tensile strain levels up to 0.85%. The PDFs of simulated lattice rotation are compared with sub-micrometer resolution three-dimensional X-ray microscopy measurements of rotation magnitudes and deformation length scales in 1.0% and 2.3% compression strained Cu single crystals to explore the linkage between experiment and the theoretical analysis. The statistical properties of the deformation simulations are analyzed through determinations of the Nye and Kröner dislocation density tensors. The significance of the magnitudes and the length scales of the elastic strain and the rotation parts of dislocation density tensors are demonstrated, and their relevance to understanding the fundamental aspects of deformation is discussed.

  11. -Deformed nonlinear maps

    Indian Academy of Sciences (India)

    Ramaswamy Jaganathan; Sudeshna Sinha

    2005-03-01

    Motivated by studies on -deformed physical systems related to quantum group structures, and by the elements of Tsallis statistical mechanics, the concept of -deformed nonlinear maps is introduced. As a specific example, a -deformation procedure is applied to the logistic map. Compared to the canonical logistic map, the resulting family of -logistic maps is shown to have a wider spectrum of interesting behaviours, including the co-existence of attractors – a phenomenon rare in one-dimensional maps.

  12. Alar Rim Deformities.

    Science.gov (United States)

    Totonchi, Ali; Guyuron, Bahman

    2016-01-01

    The alar rim plays an important role in nasal harmony. Alar rim flaws are common following the initial rhinoplasty. Classification of the deformities helps with diagnosis and successful surgical correction. Diagnosis of the deformity requires careful observation of the computerized or life-sized photographs. Techniques for treatment of these deformities can easily be learned with attention to detail. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Fluctuations as stochastic deformation

    Science.gov (United States)

    Kazinski, P. O.

    2008-04-01

    A notion of stochastic deformation is introduced and the corresponding algebraic deformation procedure is developed. This procedure is analogous to the deformation of an algebra of observables like deformation quantization, but for an imaginary deformation parameter (the Planck constant). This method is demonstrated on diverse relativistic and nonrelativistic models with finite and infinite degrees of freedom. It is shown that under stochastic deformation the model of a nonrelativistic particle interacting with the electromagnetic field on a curved background passes into the stochastic model described by the Fokker-Planck equation with the diffusion tensor being the inverse metric tensor. The first stochastic correction to the Newton equations for this system is found. The Klein-Kramers equation is also derived as the stochastic deformation of a certain classical model. Relativistic generalizations of the Fokker-Planck and Klein-Kramers equations are obtained by applying the procedure of stochastic deformation to appropriate relativistic classical models. The analog of the Fokker-Planck equation associated with the stochastic Lorentz-Dirac equation is derived too. The stochastic deformation of the models of a free scalar field and an electromagnetic field is investigated. It turns out that in the latter case the obtained stochastic model describes a fluctuating electromagnetic field in a transparent medium.

  14. Deformed discrete symmetries

    Science.gov (United States)

    Arzano, Michele; Kowalski-Glikman, Jerzy

    2016-09-01

    We construct discrete symmetry transformations for deformed relativistic kinematics based on group valued momenta. We focus on the specific example of κ-deformations of the Poincaré algebra with associated momenta living on (a sub-manifold of) de Sitter space. Our approach relies on the description of quantum states constructed from deformed kinematics and the observable charges associated with them. The results we present provide the first step towards the analysis of experimental bounds on the deformation parameter κ to be derived via precision measurements of discrete symmetries and CPT.

  15. Rolling contact deformation of 1100 aluminum disks

    Science.gov (United States)

    Hahn, G. T.; Huang, Q.

    1986-09-01

    The plastic deformation produced by pure, two dimensional, rolling contacts has been studied by subjecting 1100 aluminum disks to repeated contacts with well-defined relative peak contact pressures in the range 2 ≤ P 0/ k c ≤ 6.8. Two microstructural conditions are examined: as-received (warm worked) and annealed, displaying cyclic softening and cyclic hardening, respectively. Measurements of the distortion of wire markers imbedded in the rims, microhardness values of the plastically deformed layer, and changes in disk radius and width are reported. These are used to evaluate the plastic circumferential, radial, and axial displacements of the rim surface and the depth of the plastically deformed layer. These features are compared with the classical, elastic-quasi plastic analysis of rolling, and with recent elastic-plastic finite element calculations. The results show that the rim deformation state approaches plane strain when the disk width-to-Hertzian half contact width-ratio B/w ≥ 200. The presence of a solid lubricant has no detectable influence on the character of the plane strain deformation. The measurements of the per cycle forward (circumferential) displacements for the two conditions are self-consistent and agree with the finite element calculations when the resistance to plastic deformation is attributed to the instantaneous cyclic yield stress, but not when the resistance is identified with the initial monotonie yield stress. At the same time, the extent of the plastic zone is 5× greater than predicted by the analyses. These and other results can be rationalized by drawing on the special features of the resistance to cyclic deformation. They support the view that the deformation produced by the N th rolling contact is governed by the shape of the stress-strain hysteresis loop after the corresponding number of stress-strain cycles which depends on the cycle strain amplitude, degree of reversibility, and the strain path imposed by the contact

  16. Late surgical treatment of posttraumatic mandibular deformity

    NARCIS (Netherlands)

    Boffano, P.; Gallesio, C.; Roccia, F.; Forouzanfar, T.

    2013-01-01

    Delays in treatment may complicate the treatment of mandibular trauma, leading to a bone healing in an abnormal position and to a posttraumatic mandibular deformity such as malunion, malocclusion, and asymmetry. All these features may make delayed treatment a challenging issue. Therefore, early redu

  17. Intracrystalline deformation of calcite

    NARCIS (Netherlands)

    de Bresser, Hans

    1991-01-01

    It is well established from observations on natural calcite tectonites that intracrystalline plastic mechanisms are important during the deformation of calcite rocks in nature. In this thesis, new data are presented on fundamental aspects of deformation behaviour of calcite under conditions where 'd

  18. Resurgent deformation quantisation

    Energy Technology Data Exchange (ETDEWEB)

    Garay, Mauricio, E-mail: garay91@gmail.com [Institut für Mathematik, FB 08 Physik, Mathematik und Informatik, Johannes Gutenberg-Universität, 55099 Mainz (Germany); Goursac, Axel de, E-mail: Axelmg@melix.net [Chargé de Recherche au F.R.S.-FNRS, IRMP, Université Catholique de Louvain, Chemin du Cyclotron, 2, B-1348 Louvain-la-Neuve (Belgium); Straten, Duco van, E-mail: straten@mathematik.uni-mainz.de [Institut für Mathematik, FB 08 Physik, Mathematik und Informatik, Johannes Gutenberg-Universität, 55099 Mainz (Germany)

    2014-03-15

    We construct a version of the complex Heisenberg algebra based on the idea of endless analytic continuation. The algebra would be large enough to capture quantum effects that escape ordinary formal deformation quantisation. -- Highlights: •We construct resurgent deformation quantisation. •We give integral formulæ. •We compute examples which show that hypergeometric functions appear naturally in quantum computations.

  19. The Analysis of the Dam Deformation Feature Extraction Base on an Improved LMD%基于改进LMD的大坝变形特征提取分析

    Institute of Scientific and Technical Information of China (English)

    罗亦泳; 董正坤; 张立亭; 周世健

    2015-01-01

    局域均值分解( LMD)方法采用滑动平均法不断平滑由极值点构成的局部均值线段和局部幅值线段,从而获得连续光滑的局部均值函数和包络估计函数。其中平滑步长具有主观性,而且会影响运算时间及计算效率。进而,采用一种新的LMD方法,确定并采用所有相邻极值点之间距离大小的平均值的1/3作为滑动平均步长,建立改进-LMD分解方法。最后,将多项式插值-LMD、3次样条插值-LMD( CBI-LMD )、分段3次插值-LMD( CHI-LMD)以及传统-LMD多种插值函数分解方法进行对比分析,通过仿真信号与丰满大坝变形数据实验结果分析表明,改进-LMD分解方法的正交指数较小,且完备性较好,能有效提取大坝变形信号特征。%The local mean decomPosition( LMD)uses the moving average method. Firstly,in order to get the local mean amPlitude segment and local segment,the extreme Point was adoPted,the local amPlitude continuous smooth function and enveloPe estimation function were obtained by sliding the local mean amPlitude segment and local segment. Where smooth sliding steP is subjective,and it will also affect the comPutation time and comPutational efficiency. Furthermore,we use a comPromise aP-Proach. First,confirming the size of all the distance between adjacent extrema,and then determining the size of the third value on the average of all distances,next to moving average value as the steP size,and finally creating a new and imProving-LMD decomPosition method. Finally,the Polynomial interPolation-LMD,cubic sPline interPolation-LMD( CBI-LMD),Piecewise cubic interPolation-LMD ( CHI-LMD)as well as a variety of traditional-LMD interPolation function decomPosition,these were analyzed in several ways. It Shows that the imProved method of orthogonal decomPosition-LMD index is smaller and better equiPPed,this method just through simulation data signal and PlumP dam de-formation analysis of the ex

  20. Deformations of Superconformal Theories

    CERN Document Server

    Cordova, Clay; Intriligator, Kenneth

    2016-01-01

    We classify possible supersymmetry-preserving relevant, marginal, and irrelevant deformations of unitary superconformal theories in $d \\geq 3$ dimensions. Our method only relies on symmetries and unitarity. Hence, the results are model independent and do not require a Lagrangian description. Two unifying themes emerge: first, many theories admit deformations that reside in multiplets together with conserved currents. Such deformations can lead to modifications of the supersymmetry algebra by central and non-central charges. Second, many theories with a sufficient amount of supersymmetry do not admit relevant or marginal deformations, and some admit neither. The classification is complicated by the fact that short superconformal multiplets display a rich variety of sporadic phenomena, including supersymmetric deformations that reside in the middle of a multiplet. We illustrate our results with examples in diverse dimensions. In particular, we explain how the classification of irrelevant supersymmetric deformat...

  1. Massey products and deformations

    CERN Document Server

    Fuchs, D; Fuchs, Dmitry; Lang, Lynelle

    1996-01-01

    The classical deformation theory of Lie algebras involves different kinds of Massey products of cohomology classes. Even the condition of extendibility of an infinitesimal deformation to a formal one-parameter deformation of a Lie algebra involves Massey powers of two dimensional cohomology classes which are not powers in the usual definition of Massey products in the cohomology of a differential graded Lie algebra. In the case of deformations with other local bases, one deals with other, more specific Massey products. In the present work a construction of generalized Massey products is given, depending on an arbitrary graded commutative, associative algebra. In terms of these products, the above condition of extendibility is generalized to deformations with arbitrary local bases. Dually, a construction of generalized Massey products on the cohomology of a differential graded commutative associative algebra depends on a nilpotent graded Lie algebra. For example, the classical Massey products correspond to the...

  2. Deformation mechanisms in experimentally deformed Boom Clay

    Science.gov (United States)

    Desbois, Guillaume; Schuck, Bernhard; Urai, Janos

    2016-04-01

    Bulk mechanical and transport properties of reference claystones for deep disposal of radioactive waste have been investigated since many years but little is known about microscale deformation mechanisms because accessing the relevant microstructure in these soft, very fine-grained, low permeable and low porous materials remains difficult. Recent development of ion beam polishing methods to prepare high quality damage free surfaces for scanning electron microscope (SEM) is opening new fields of microstructural investigation in claystones towards a better understanding of the deformation behavior transitional between rocks and soils. We present results of Boom Clay deformed in a triaxial cell in a consolidated - undrained test at a confining pressure of 0.375 MPa (i.e. close to natural value), with σ1 perpendicular to the bedding. Experiments stopped at 20 % strain. As a first approximation, the plasticity of the sample can be described by a Mohr-Coulomb type failure envelope with a coefficient of cohesion C = 0.117 MPa and an internal friction angle ϕ = 18.7°. After deformation test, the bulk sample shows a shear zone at an angle of about 35° from the vertical with an offset of about 5 mm. We used the "Lamipeel" method that allows producing a permanent absolutely plane and large size etched micro relief-replica in order to localize and to document the shear zone at the scale of the deformed core. High-resolution imaging of microstructures was mostly done by using the BIB-SEM method on key-regions identified after the "Lamipeel" method. Detailed BIB-SEM investigations of shear zones show the following: the boundaries between the shear zone and the host rock are sharp, clay aggregates and clastic grains are strongly reoriented parallel to the shear direction, and the porosity is significantly reduced in the shear zone and the grain size is smaller in the shear zone than in the host rock but there is no evidence for broken grains. Comparison of microstructures

  3. Fingerprinting Molecular Relaxation in Deformed Polymers

    Science.gov (United States)

    Wang, Zhe; Lam, Christopher N.; Chen, Wei-Ren; Wang, Weiyu; Liu, Jianning; Liu, Yun; Porcar, Lionel; Stanley, Christopher B.; Zhao, Zhichen; Hong, Kunlun; Wang, Yangyang

    2017-07-01

    The flow and deformation of macromolecules is ubiquitous in nature and industry, and an understanding of this phenomenon at both macroscopic and microscopic length scales is of fundamental and practical importance. Here, we present the formulation of a general mathematical framework, which could be used to extract, from scattering experiments, the molecular relaxation of deformed polymers. By combining and modestly extending several key conceptual ingredients in the literature, we show how the anisotropic single-chain structure factor can be decomposed by spherical harmonics and experimentally reconstructed from its cross sections on the scattering planes. The resulting wave-number-dependent expansion coefficients constitute a characteristic fingerprint of the macromolecular deformation, permitting detailed examinations of polymer dynamics at the microscopic level. We apply this approach to survey a long-standing problem in polymer physics regarding the molecular relaxation in entangled polymers after a large step deformation. The classical tube theory of Doi and Edwards predicts a fast chain retraction process immediately after the deformation, followed by a slow orientation relaxation through the reptation mechanism. This chain retraction hypothesis, which is the keystone of the tube theory for macromolecular flow and deformation, is critically examined by analyzing the fine features of the two-dimensional anisotropic spectra from small-angle neutron scattering by entangled polystyrenes. We show that the unique scattering patterns associated with the chain retraction mechanism are not experimentally observed. This result calls for a fundamental revision of the current theoretical picture for nonlinear rheological behavior of entangled polymeric liquids.

  4. The Spherical Deformation Model

    DEFF Research Database (Denmark)

    Hobolth, Asgar

    2003-01-01

    Miller et al. (1994) describe a model for representing spatial objects with no obvious landmarks. Each object is represented by a global translation and a normal deformation of a sphere. The normal deformation is defined via the orthonormal spherical-harmonic basis. In this paper we analyse...... the spherical deformation model in detail and describe how it may be used to summarize the shape of star-shaped three-dimensional objects with few parameters. It is of interest to make statistical inference about the three-dimensional shape parameters from continuous observations of the surface and from...

  5. Calcaneo-valgus deformity.

    Science.gov (United States)

    Evans, D

    1975-08-01

    A discussion of the essential deformity in calcaneo-valgus feet develops a theme originally put forward in 1961 on the relapsed club foot (Evans 1961). Whereas in the normal foot the medial and lateral columns are about equal in length, in talipes equino-varus the lateral column is longer and in calcaneo-valgus shorter than the medial column. The suggestion is that in the treatment of both deformities the length of the columns be made equal. A method is described of treating calcaneo-valgus deformity by inserting cortical bone grafts taken from the tibia to elongate the anterior end of the calcaneus.

  6. Measurement of the inclusive photon and photon+jet production cross-sections at $\\sqrt{s}$ = 7 TeV with the ATLAS detector and constraints to PDFs

    CERN Document Server

    Saimpert, Matthias; The ATLAS collaboration

    2015-01-01

    Measurements of the inclusive photon production performed by the ATLAS collaboration using an integrated luminosity of 4.5~fb$^{-1}$ are reported as a function of the photon transverse energy in different fiducial regions covering a wide acceptance. A comparison to the data of next-to-leading order QCD calculation JETPHOX with different PDFs is presented. The impact of the measurements to constraint the gluon PDF is also evaluated. The cross sections for photons produced in association with a jet are also measured by the ATLAS collaboration using an integrated luminosity of 37~pb$^{-1}$ as functions of photon and jet kinematics and are compared to JETPHOX calculation. The theoretical uncertainties, including scale, strong coupling, and PDF uncertainties are evaluated for all predictions. Data and theory usually show a good agreement within uncertainties, except for the azimuthal angle in the photon + jet case.

  7. Extremely deformable structures

    CERN Document Server

    2015-01-01

    Recently, a new research stimulus has derived from the observation that soft structures, such as biological systems, but also rubber and gel, may work in a post critical regime, where elastic elements are subject to extreme deformations, though still exhibiting excellent mechanical performances. This is the realm of ‘extreme mechanics’, to which this book is addressed. The possibility of exploiting highly deformable structures opens new and unexpected technological possibilities. In particular, the challenge is the design of deformable and bi-stable mechanisms which can reach superior mechanical performances and can have a strong impact on several high-tech applications, including stretchable electronics, nanotube serpentines, deployable structures for aerospace engineering, cable deployment in the ocean, but also sensors and flexible actuators and vibration absorbers. Readers are introduced to a variety of interrelated topics involving the mechanics of extremely deformable structures, with emphasis on ...

  8. Deformations of singularities

    CERN Document Server

    Stevens, Jan

    2003-01-01

    These notes deal with deformation theory of complex analytic singularities and related objects. The first part treats general theory. The central notion is that of versal deformation in several variants. The theory is developed both in an abstract way and in a concrete way suitable for computations. The second part deals with more specific problems, specially on curves and surfaces. Smoothings of singularities are the main concern. Examples are spread throughout the text.

  9. Diffeomorphic Statistical Deformation Models

    DEFF Research Database (Denmark)

    Hansen, Michael Sass; Hansen, Mads/Fogtman; Larsen, Rasmus

    2007-01-01

    In this paper we present a new method for constructing diffeomorphic statistical deformation models in arbitrary dimensional images with a nonlinear generative model and a linear parameter space. Our deformation model is a modified version of the diffeomorphic model introduced by Cootes et al. Th...... with ground truth in form of manual expert annotations, and compared to Cootes's model. We anticipate applications in unconstrained diffeomorphic synthesis of images, e.g. for tracking, segmentation, registration or classification purposes....

  10. Deformation in nanocrystalline metals

    OpenAIRE

    Helena Van Swygenhoven; Julia R. Weertman

    2006-01-01

    It is now possible to synthesize polycrystalline metals made up of grains that average less than 100 nm in size. Such nanocrystalline metals contain a significant volume fraction of interfacial regions separated by nearly perfect crystals. The small sizes involved limit the conventional operation of dislocation sources and thus a fundamental question arises: how do these materials deform plastically? We review the current views on deformation mechanisms in nanocrystalline, face-centered cubic...

  11. FEATURES OF FLUVIAL LANDFORM AND CRUST DEFORMATIONS ALONG THE NANPANJIANG RIVER-HONGSHUIHE RIVER(MIDDLE SEGMENT)%南盘江-红水河(中段)的河流地貌特征与地壳变形

    Institute of Scientific and Technical Information of China (English)

    张沛全; 孙杰; 刘小汉; 左天惠

    2013-01-01

    River-Hongshuihe River basin,is flowing through the northwest section of Youjiang River-Nanpanjiang River's Passive Margin Belt.The researches of its fluvial landforms are not only a means to comprehend the neo-tectonic movements of the old orogenic belts but also to investigate the long-ranged effects of Tibetan Plateau's activities in the Cenozoie Era.After investigations of subbasin Ⅱ,it appears seriously basin asymmetry between the left and the right banks.The near-EW arc drainage divide appears in the south of subbasin Ⅱ from Longlin to Tian'e.Both the knick-point section and the reversedS-type river network in RN3 emerge in Nanpanjiang River channel along Longlin area from Basuo to Nagong.Landform transition can also be seen in the northern boundary of the reversed-S-shape river network.Both the growth of the NE fault,near-EW arc fault and arc tributary emerge in Longlin area from Basuo to Nagong.There are reversed-knick-point in the channel of Hongshuihe River near Tian'e.It appears the NE-arc-spread in Buliuhe River near Tian'e.In this paper,we introduce the concepts of Synformal Tectonic System and the Rotation Block Tectonic System(RBTS) to explain the landforms and the tectonic movements.The researches show that the asymmetric subbasin,the EW arc drainage divide,the NE fault,the near-EW arc fault and arc tributary spread are all controlled by the pre-existed Synformal Tectonic System.The fluvial landforms of knick-point,landform transition,reversed-Stype river network along Longlin area are the responses to the succeeding tectonic system activities.The succeeding tectonic activities are inherited from the Synformal Tectonic System.As the rotation centre,the Xiangbo block (A) deforms the tectonic in the surrounding to form the RBTS.The reversed-knick-point in Tian'e is not only resulted by the different hydraulic conditions of the upstream and downstream but also by the tectonic uplift.But there are still no geochronology constraints for the start-up time

  12. Realistic face modeling based on multiple deformations

    Institute of Scientific and Technical Information of China (English)

    GONG Xun; WANG Guo-yin

    2007-01-01

    On the basis of the assumption that the human face belongs to a linear class, a multiple-deformation model is proposed to recover face shape from a few points on a single 2D image. Compared to the conventional methods, this study has the following advantages. First, the proposed modified 3D sparse deforming model is a noniterative approach that can compute global translation efficiently and accurately. Subsequently, the overfitting problem can be alleviated based on the proposed multiple deformation model. Finally, by keeping the main features, the texture generated is realistic. The comparison results show that this novel method outperforms the existing methods by using ground truth data and that realistic 3D faces can be recovered efficiently from a single photograph.

  13. Deformation quantization of principal bundles

    CERN Document Server

    Aschieri, Paolo

    2016-01-01

    We outline how Drinfeld twist deformation techniques can be applied to the deformation quantization of principal bundles into noncommutative principal bundles, and more in general to the deformation of Hopf-Galois extensions. First we twist deform the structure group in a quantum group, and this leads to a deformation of the fibers of the principal bundle. Next we twist deform a subgroup of the group of authomorphisms of the principal bundle, and this leads to a noncommutative base space. Considering both deformations we obtain noncommutative principal bundles with noncommutative fiber and base space as well.

  14. Pattern of seismic deformation in the Western Mediterranean

    Directory of Open Access Journals (Sweden)

    S. Pondrelli

    1999-06-01

    Full Text Available The seismic deformation of the Western Mediterranean was studied with the aim of defining the strain pattern that characterizes the Africa-Eurasia plate boundary in this area. Within different sections along the boundary the cumulative moment tensor was computed over 90 years of seismological data. The results were compared with NUVELlA plate motion model and geodetic data. A stable agreement was found along Northern Africa to Sicily, where only Africa and Eurasia plates are involved. In this zone it is evident that changes in the strike of the boundary correspond to variations in the prevailing geometry of deformation, tectonic features and in the percentage of seismic with respect to total expected deformation. The geometry of deformation of periadriatic sections (Central to Southern Apennines, Eastern Alps and the Eastern Adriatic area agrees well with VLBI measurements and with regional geological features. Seismicity seems to account for low rates, from 3% to 31%, of total expected deformation. Only in the Sicily Strait, characterized by extensional to strike slip deformation, does the ratio reach a higher value (79%. If the amount of deformation deduced from seismicity seems low, because 90 years are probably not representative of the recurrence seismic cycle of the Western Mediterranean, the strain pattern we obtain from cumulative moment tensors is more representative of the kinematics of this area than global plate motion models and better identifies lower scale geodynamic features.

  15. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  16. Autogenous Deformation of Concrete

    DEFF Research Database (Denmark)

    Autogenous deformation of concrete can be defined as the free deformation of sealed concrete at a constant temperature. A number of observed problems with early age cracking of high-performance concretes can be attributed to this phenomenon. During the last 10 years , this has led to an increased...... focus on autogenous deformation both within concrete practice and concrete research. Since 1996 the interest has been significant enough to hold international, yearly conferences entirely devoted to this subject. The papers in this publication were presented at two consecutive half-day sessions...... at the American Concrete Institute’s Fall Convention in Phoenix, Arizona, October 29, 2002. All papers have been reviewed according to ACI rules. This publication, as well as the sessions, was sponsored by ACI committee 236, Material Science of Concrete. The 12 presentations from 8 different countries indicate...

  17. Post-laminectomy deformities

    Directory of Open Access Journals (Sweden)

    Fabiano Stumpf Lutz

    2014-12-01

    Full Text Available Objective: To present the deformities and evaluate the results of their treatment. Methods: Retrospective study of patients with deformity following surgical access to the spinal canal. Fifteen patients who met the inclusion criteria were included. Patients without complete data in medical records were excluded. Results: Fourteen patients underwent surgical treatment and one patient received conservative treatment with vest type TLSO. The average angle of kyphosis correction was 87° preoperatively to 38° postoperatively, while the associated scoliosis correction was 69° preoperatively to 23° postoperatively. Conclusions: The prevention of deformity should be emphasized to avoid laminectomy alone, while laminoplasty should be the procedure of choice for canal access in surgeries where there is no need for resection of the posterior elements.

  18. Deformation of C isotopes

    CERN Document Server

    Kanada-Enyo, Y

    2004-01-01

    Systematic analysis of the deformations of proton and neutron densities in even-even C isotopes was done based on the method of antisymmetrized molecular dynamics. The $E2$ transition strength was discussed in relation to the deformation. We analyze the $B(E2;2^+_1\\to 0^+_1)$ in $^{16}$C, which has been recently measured to be abnormally small. The results suggest the difference of the deformations between proton and neutron densities in the neutron-rich C isotopes. It was found that stable proton structure in C isotopes plays an important role in the enhancement the neutron skin structure as well as in the systematics of $B(E2)$ in the neutron-rich C.

  19. Deformation in nanocrystalline metals

    Directory of Open Access Journals (Sweden)

    Helena Van Swygenhoven

    2006-05-01

    Full Text Available It is now possible to synthesize polycrystalline metals made up of grains that average less than 100 nm in size. Such nanocrystalline metals contain a significant volume fraction of interfacial regions separated by nearly perfect crystals. The small sizes involved limit the conventional operation of dislocation sources and thus a fundamental question arises: how do these materials deform plastically? We review the current views on deformation mechanisms in nanocrystalline, face-centered cubic metals based on insights gained by atomistic computer simulations. These insights are discussed with reference to recent striking experimental observations that can be compared with predictions made by the simulations.

  20. Heat treatment deformations

    Energy Technology Data Exchange (ETDEWEB)

    Bavaro, A. (Soliveri SpA, Caravaggio (Italy))

    1990-02-01

    Types and causes of heat treatement derived isotropic and anisotropic dilatancies in ferrous materials are reviewed. The concepts are developed in such a way as to allow extension to all materials exhibiting martensitic tempering behaviour. This paper intends to illustrate the basic processes of dimensional variations undergone by the materials under heat treatments. The parametric analysis includes an analysis of the interactions amongst the parameters themselves. The relative importance of each parameter is assessed in order to determine methods to attenuate deformation action. Simplified examples are offered to provide technicians explanations as to why specific deformations occur and indications on improved materials working techniques.

  1. Marginally Deformed Starobinsky Gravity

    DEFF Research Database (Denmark)

    Codello, A.; Joergensen, J.; Sannino, Francesco

    2015-01-01

    We show that quantum-induced marginal deformations of the Starobinsky gravitational action of the form $R^{2(1 -\\alpha)}$, with $R$ the Ricci scalar and $\\alpha$ a positive parameter, smaller than one half, can account for the recent experimental observations by BICEP2 of primordial tensor modes....

  2. Shear wave splitting and subcontinental mantle deformation

    Science.gov (United States)

    Silver, Paul G.; Chan, W. Winston

    1991-09-01

    We have made measurements of shear wave splitting in the phases SKS and SKKS at 21 broadband stations in North America, South America, Europe, Asia, and Africa. Measurements are made using a retrieval scheme that yields the azimuth of the fast polarization direction ϕ and delay time δt of the split shear wave plus uncertainties. Detectable anisotropy was found at most stations, suggesting that it is a general feature of the subcontinental mantle. Delay times range from 0.65 s to 1.70 s and average about 1 s. Somewhat surprisingly, the largest delay time is found in the 2.7 b.y.-old Western Superior Province of the Canadian Shield. The splitting observations are interpreted in terms of the strain-induced lattice preferred orientation of mantle minerals, especially olivine. We consider three hypotheses concerning the origin of the continental anisotropy: (1) strain associated with absolute plate motion, as in the oceanic upper mantle, (2) crustal stress, and (3) the past and present internal deformation of the subcontinental upper mantle by tectonic episodes. It is found that the last hypothesis is the most successful, namely that the most recent significant episode of internal deformation appears to be the best predictor of ϕ. For stable continental regions, this is interpreted as "fossil" anisotropy, whereas for presently active regions, such as Alaska, the anisotropy reflects present-day tectonic activity. In the stable portion of North America there is a good correlation between delay time and lithospheric thickness; this is consistent with the anisotropy being localized in the subcontinental lithosphere and suggests that intrinsic anisotropy is approximately constant. The acceptance of this hypothesis has several implications for subcontinental mantle deformation. First, it argues for coherent deformation of the continental lithosphere (crust and mantle) during orogenies. This implies that the anisotropic portion of the lithosphere was present since the

  3. Elastic Analysis of Physisorption-Induced Substrate Deformation

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ji-Qiao; PAN Xia-Hui; YU Shou-Wen; FENG Xi-Qiao

    2008-01-01

    Physisorption may cause a dimple on a deformable solid surface due to adsorbate-substrate interaction.The interactive force between the adsorbate and the crystal atoms depends on their distances,which may change with substrate deformation.This feature of displacement-dependence indicates that the equilibrium problem is a force-deformation coupled nonlinear procedure.In the present study,a continuum mechanics model,in which the force is considered as a function of the displacement field of the medium,is presented to calculate the physisorption-inducad deformation in a semi-infinite elastic medium.It is found that the nonlinear effect due to force-deformation coupling should be taken in consideration in the adsorbate-substrate interaction analysis.

  4. Deformed Algebras and Generalizations of Independence on Deformed Exponential Families

    Directory of Open Access Journals (Sweden)

    Hiroshi Matsuzoe

    2015-08-01

    Full Text Available A deformed exponential family is a generalization of exponential families. Since the useful classes of power law tailed distributions are described by the deformed exponential families, they are important objects in the theory of complex systems. Though the deformed exponential families are defined by deformed exponential functions, these functions do not satisfy the law of exponents in general. The deformed algebras have been introduced based on the deformed exponential functions. In this paper, after summarizing such deformed algebraic structures, it is clarified how deformed algebras work on deformed exponential families. In fact, deformed algebras cause generalization of expectations. The three kinds of expectations for random variables are introduced in this paper, and it is discussed why these generalized expectations are natural from the viewpoint of information geometry. In addition, deformed algebras cause generalization of independences. Whereas it is difficult to check the well-definedness of deformed independence in general, the κ-independence is always well-defined on κ-exponential families. This is one of advantages of κ-exponential families in complex systems. Consequently, we can well generalize the maximum likelihood method for the κ-exponential family from the viewpoint of information geometry.

  5. Deformation of chlorite in naturally deformed low-grade rocks

    NARCIS (Netherlands)

    Bons, A.J.

    1988-01-01

    The intracrystalline deformation of chlorite in naturally deformed low-grade rocks was investigated with transmission electron microscopy (TEM). As in other phyllosilicates, the deformation of chlorite is dominated by the (001) slip plane. Slip along this plane is very easy through the generation an

  6. Understanding Legacy Features with Featureous

    DEFF Research Database (Denmark)

    Olszak, Andrzej; Jørgensen, Bo Nørregaard

    2011-01-01

    Feature-centric comprehension of source code is essential during software evolution. However, such comprehension is oftentimes difficult to achieve due the discrepancies between structural and functional units of object-oriented programs. We present a tool for feature-centric analysis of legacy...

  7. Learning a hierarchical deformable template for rapid deformable object parsing.

    Science.gov (United States)

    Zhu, Long Leo; Chen, Yuanhao; Yuille, Alan

    2010-06-01

    In this paper, we address the tasks of detecting, segmenting, parsing, and matching deformable objects. We use a novel probabilistic object model that we call a hierarchical deformable template (HDT). The HDT represents the object by state variables defined over a hierarchy (with typically five levels). The hierarchy is built recursively by composing elementary structures to form more complex structures. A probability distribution--a parameterized exponential model--is defined over the hierarchy to quantify the variability in shape and appearance of the object at multiple scales. To perform inference--to estimate the most probable states of the hierarchy for an input image--we use a bottom-up algorithm called compositional inference. This algorithm is an approximate version of dynamic programming where approximations are made (e.g., pruning) to ensure that the algorithm is fast while maintaining high performance. We adapt the structure-perceptron algorithm to estimate the parameters of the HDT in a discriminative manner (simultaneously estimating the appearance and shape parameters). More precisely, we specify an exponential distribution for the HDT using a dictionary of potentials, which capture the appearance and shape cues. This dictionary can be large and so does not require handcrafting the potentials. Instead, structure-perceptron assigns weights to the potentials so that less important potentials receive small weights (this is like a "soft" form of feature selection). Finally, we provide experimental evaluation of HDTs on different visual tasks, including detection, segmentation, matching (alignment), and parsing. We show that HDTs achieve state-of-the-art performance for these different tasks when evaluated on data sets with groundtruth (and when compared to alternative algorithms, which are typically specialized to each task).

  8. Postural deformities in Parkinson's disease

    NARCIS (Netherlands)

    Doherty, K.M.; Warrenburg, B.P.C. van de; Peralta, M.C.; Silveira-Moriyama, L.; Azulay, J.P.; Gershanik, O.S.; Bloem, B.R.

    2011-01-01

    Postural deformities are frequent and disabling complications of Parkinson's disease (PD) and atypical parkinsonism. These deformities include camptocormia, antecollis, Pisa syndrome, and scoliosis. Recognition of specific postural syndromes might have differential diagnostic value in patients prese

  9. Nonperturbative effects in deformation quantization

    CERN Document Server

    Periwal, V

    2000-01-01

    The Cattaneo-Felder path integral form of the perturbative Kontsevich deformation quantization formula is used to explicitly demonstrate the existence of nonperturbative corrections to na\\"\\i ve deformation quantization.

  10. Site Features

    Data.gov (United States)

    U.S. Environmental Protection Agency — This dataset consists of various site features from multiple Superfund sites in U.S. EPA Region 8. These data were acquired from multiple sources at different times...

  11. Feature Extraction

    CERN Document Server

    CERN. Geneva

    2015-01-01

    Feature selection and reduction are key to robust multivariate analyses. In this talk I will focus on pros and cons of various variable selection methods and focus on those that are most relevant in the context of HEP.

  12. Solar Features

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Collection includes a variety of solar feature datasets contributed by a number of national and private solar observatories located worldwide.

  13. Nanoscale deformation mechanisms in bone.

    Science.gov (United States)

    Gupta, Himadri S; Wagermaier, Wolfgang; Zickler, Gerald A; Raz-Ben Aroush, D; Funari, Sérgio S; Roschger, Paul; Wagner, H Daniel; Fratzl, Peter

    2005-10-01

    Deformation mechanisms in bone matrix at the nanoscale control its exceptional mechanical properties, but the detailed nature of these processes is as yet unknown. In situ tensile testing with synchrotron X-ray scattering allowed us to study directly and quantitatively the deformation mechanisms at the nanometer level. We find that bone deformation is not homogeneous but distributed between a tensile deformation of the fibrils and a shearing in the interfibrillar matrix between them.

  14. Non-associative deformations of geometry in double field theory

    Energy Technology Data Exchange (ETDEWEB)

    Blumenhagen, Ralph; Fuchs, Michael [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805 München (Germany); Haßler, Falk [Arnold Sommerfeld Center for Theoretical Physics,LMU, Theresienstr. 37, 80333 München (Germany); Lüst, Dieter [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805 München (Germany); Arnold Sommerfeld Center for Theoretical Physics,LMU, Theresienstr. 37, 80333 München (Germany); Sun, Rui [Max-Planck-Institut für Physik (Werner-Heisenberg-Institut),Föhringer Ring 6, 80805 München (Germany)

    2014-04-23

    Non-geometric string backgrounds were proposed to be related to a non-associative deformation of the space-time geometry. In the flux formulation of double field theory (DFT), the structure of mathematically possible non-associative deformations is analyzed in detail. It is argued that on-shell there should not be any violation of associativity in the effective DFT action. For imposing either the strong or the weaker closure constraint we discuss two possible non-associative deformations of DFT featuring two different ways how on-shell associativity can still be kept.

  15. Cosmetic and Functional Nasal Deformities

    Science.gov (United States)

    ... nasal complaints. Nasal deformity can be categorized as “cosmetic” or “functional.” Cosmetic deformity of the nose results in a less ... taste , nose bleeds and/or recurrent sinusitis . A cosmetic or functional nasal deformity may occur secondary to ...

  16. [Babies with cranial deformity].

    Science.gov (United States)

    Feijen, Michelle M W; Claessens, Edith A W M Habets; Dovens, Anke J Leenders; Vles, Johannes S; van der Hulst, Rene R W J

    2009-01-01

    Plagiocephaly was diagnosed in a baby aged 4 months and brachycephaly in a baby aged 5 months. Positional or deformational plagio- or brachycephaly is characterized by changes in shape and symmetry of the cranial vault. Treatment options are conservative and may include physiotherapy and helmet therapy. During the last two decades the incidence of positional plagiocephaly has increased in the Netherlands. This increase is due to the recommendation that babies be laid on their backs in order to reduce the risk of sudden infant death syndrome. We suggest the following: in cases of positional preference of the infant, referral to a physiotherapist is indicated. In cases of unacceptable deformity of the cranium at the age 5 months, moulding helmet therapy is a possible treatment option.

  17. Acoustic Emission of Deformation Twinning in Magnesium

    Directory of Open Access Journals (Sweden)

    Chengyang Mo

    2016-08-01

    Full Text Available The Acoustic Emission of deformation twinning in Magnesium is investigated in this article. Single crystal testing with combined full field deformation measurements, as well as polycrystalline testing inside the scanning electron microscope with simultaneous monitoring of texture evolution and twin nucleation were compared to testing at the laboratory scale with respect to recordings of Acoustic Emission activity. Single crystal testing revealed the formation of layered twin boundaries in areas of strain localization which was accompanied by distinct changes in the acoustic data. Testing inside the microscope directly showed twin nucleation, proliferation and growth as well as associated crystallographic reorientations. A post processing approach of the Acoustic Emission activity revealed the existence of a class of signals that appears in a strain range in which twinning is profuse, as validated by the in situ and ex situ microscopy observations. Features extracted from such activity were cross-correlated both with the available mechanical and microscopy data, as well as with the Acoustic Emission activity recorded at the laboratory scale for similarly prepared specimens. The overall approach demonstrates that the method of Acoustic Emission could provide real time volumetric information related to the activation of deformation twinning in Magnesium alloys, in spite of the complexity of the propagation phenomena, the possible activation of several deformation modes and the challenges posed by the sensing approach itself when applied in this type of materials evaluation approach.

  18. Canny edge-based deformable image registration

    Science.gov (United States)

    Kearney, Vasant; Huang, Yihui; Mao, Weihua; Yuan, Baohong; Tang, Liping

    2017-02-01

    This work focuses on developing a 2D Canny edge-based deformable image registration (Canny DIR) algorithm to register in vivo white light images taken at various time points. This method uses a sparse interpolation deformation algorithm to sparsely register regions of the image with strong edge information. A stability criterion is enforced which removes regions of edges that do not deform in a smooth uniform manner. Using a synthetic mouse surface ground truth model, the accuracy of the Canny DIR algorithm was evaluated under axial rotation in the presence of deformation. The accuracy was also tested using fluorescent dye injections, which were then used for gamma analysis to establish a second ground truth. The results indicate that the Canny DIR algorithm performs better than rigid registration, intensity corrected Demons, and distinctive features for all evaluation matrices and ground truth scenarios. In conclusion Canny DIR performs well in the presence of the unique lighting and shading variations associated with white-light-based image registration.

  19. Cathodoluminescence of natural, plastically deformed pink diamonds.

    Science.gov (United States)

    Gaillou, E; Post, J E; Rose, T; Butler, J E

    2012-12-01

    The 49 type I natural pink diamonds examined exhibit color restricted to lamellae or bands oriented along {111} that are created by plastic deformation. Pink diamonds fall into two groups: (1) diamonds from Argyle in Australia and Santa Elena in Venezuela are heavily strained throughout and exhibit pink bands alternating with colorless areas, and (2) diamonds from other localities have strain localized near the discrete pink lamellae. Growth zones are highlighted by a blue cathodoluminescence (CL) and crosscut by the pink lamellae that emit yellowish-green CL that originates from the H3 center. This center probably forms by the recombination of nitrogen-related centers (A-aggregates) and vacancies mobilized by natural annealing in the Earth's mantle. Twinning is the most likely mechanism through which plastic deformation is accommodated for the two groups of diamonds. The plastic deformation creates new centers visible through spectroscopic methods, including the one responsible for the pink color, which remains unidentified. The differences in the plastic deformation features, and resulting CL properties, for the two groups might correlate to the particular geologic conditions under which the diamonds formed; those from Argyle and Santa Elena are deposits located within Proterozoic cratons, whereas most diamonds originate from Archean cratons.

  20. Deformation twinning in monazite

    Energy Technology Data Exchange (ETDEWEB)

    Hay, R.S.; Marshall, D.B

    2003-10-20

    Polycrystalline monazite (LaPO{sub 4}) was deformed at room temperature by a spherical indenter. Deformation twins were identified by TEM in 70 grains. Five twin planes were found: (100) was by far the most common; (001) and (120) were less common; (122-bar)was rare, and kinks in (120) twins were identified as irrational '(483)' twin planes. The twinning modes on these planes were inferred from the expression of twinning shear at free surfaces, predictions of classical deformation twinning theory, and various considerations of twin morphology and crystal structure. Atomic shuffle calculations that allow formation of either a glide plane or a mirror plane at the twin interface were used to analyze twin modes. The inferred twin modes all have small atomic shuffles. For (001) twins, the smallest shuffles were obtained with a glide plane at the interface, with displacement vector R=((1)/(2))[010]. The results do not uniquely define a twin mode on (100), leaving open the possibility of more than one mode operating on this plane. Factors that may determine the operative deformation twinning modes are discussed. Crystal structure considerations suggest that the relative abundance of twinning modes may correlate with low shear modulus on the twin plane in the direction of twinning shear, and with a possible low-energy interface structure consisting of a layer of xenotime of one half-unit-cell thickness that could form at (100) and (001) twins. The three most common twins have low strains to low {sigma} coincidence site lattices (CSLs)

  1. Sprengels deformity: anaesthesia management.

    Directory of Open Access Journals (Sweden)

    Dave S

    2000-04-01

    Full Text Available A 28 years old lady presented with Sprengels deformity and hemivertebrae for Fothergills surgery. Clinically there were no anomalies of the nervous, renal or the cardiovascular systems. She had a short neck and score on modified Mallapati test was grade 2. She was successfully anaesthetised using injection Propofol as a total intravenous anaesthetic agent after adequate premedication with injection Midazolam and injection Pentazocine. Patient had an uneventful intraoperative and postoperative course.

  2. Surface dislocation nucleation controlled deformation of Au nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Roos, B.; Kapelle, B.; Volkert, C. A., E-mail: volkert@ump.gwdg.de [Institute of Materials Physics, Georg August University, Göttingen 37077 (Germany); Richter, G. [Max-Plank-Institute for Intelligent Systems, Stuttgart 70569 (Germany)

    2014-11-17

    We investigate deformation in high quality Au nanowires under both tension and bending using in-situ transmission electron microscopy. Defect evolution is investigated during: (1) tensile deformation of 〈110〉 oriented, initially defect-free, single crystal nanowires with cross-sectional widths between 30 and 300 nm, (2) bending deformation of the same wires, and (3) tensile deformation of wires containing coherent twin boundaries along their lengths. We observe the formation of twins and stacking faults in the single crystal wires under tension, and storage of full dislocations after bending of single crystal wires and after tension of twinned wires. The stress state dependence of the deformation morphology and the formation of stacking faults and twins are not features of bulk Au, where deformation is controlled by dislocation interactions. Instead, we attribute the deformation morphologies to the surface nucleation of either leading or trailing partial dislocations, depending on the Schmid factors, which move through and exit the wires producing stacking faults or full dislocation slip. The presence of obstacles such as neutral planes or twin boundaries hinder the egress of the freshly nucleated dislocations and allow trailing and leading partial dislocations to combine and to be stored as full dislocations in the wires. We infer that the twins and stacking faults often observed in nanoscale Au specimens are not a direct size effect but the result of a size and obstacle dependent transition from dislocation interaction controlled to dislocation nucleation controlled deformation.

  3. Dental informatics to characterize patients with dentofacial deformities.

    Directory of Open Access Journals (Sweden)

    Seoung Bum Kim

    Full Text Available Relevant statistical modeling and analysis of dental data can improve diagnostic and treatment procedures. The purpose of this study is to demonstrate the use of various data mining algorithms to characterize patients with dentofacial deformities. A total of 72 patients with skeletal malocclusions who had completed orthodontic and orthognathic surgical treatments were examined. Each patient was characterized by 22 measurements related to dentofacial deformities. Clustering analysis and visualization grouped the patients into three different patterns of dentofacial deformities. A feature selection approach based on a false discovery rate was used to identify a subset of 22 measurements important in categorizing these three clusters. Finally, classification was performed to evaluate the quality of the measurements selected by the feature selection approach. The results showed that feature selection improved classification accuracy while simultaneously determining which measurements were relevant.

  4. THE PROBLEM OF LARGE DEFORMATION IN SOFTROCK ENGINEERING AND PRACTICAL ANALYSIS OF FLOOR-HEAVING

    Institute of Scientific and Technical Information of China (English)

    何满潮; 彭涛

    1994-01-01

    At present, the mechanics theories studying softrock engineering gcnerally depend on linear small-deformation hypothesis of classical mechanics, Although these theories can be considered with the physical non-linear features of softrock, it is still an approximate theory of geometric small-deformation. Because of the specific characteristics of medium environment, the problem of softrock engineering should be thought as large deformation. This article will prove the advantages of large deformation theory in solving softroek problem with an example of the No. 2 pit of NaLong Coal Mine. This will provide a bencflcal method for the studying of large deformation mechanics of softroek engineering.

  5. Localized scleroderma: imaging features

    Energy Technology Data Exchange (ETDEWEB)

    Liu, P. (Dept. of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON (Canada)); Uziel, Y. (Div. of Rheumatology, Hospital for Sick Children, Toronto, ON (Canada)); Chuang, S. (Dept. of Diagnostic Imaging, Hospital for Sick Children, Toronto, ON (Canada)); Silverman, E. (Div. of Rheumatology, Hospital for Sick Children, Toronto, ON (Canada)); Krafchik, B. (Div. of Dermatology, Dept. of Pediatrics, Hospital for Sick Children, Toronto, ON (Canada)); Laxer, R. (Div. of Rheumatology, Hospital for Sick Children, Toronto, ON (Canada))

    1994-06-01

    Localized scleroderma is distinct from the diffuse form of scleroderma and does not show Raynaud's phenomenon and visceral involvement. The imaging features in 23 patients ranging from 2 to 17 years of age (mean 11.1 years) were reviewed. Leg length discrepancy and muscle atrophy were the most common findings (five patients), with two patients also showing modelling deformity of the fibula. One patient with lower extremity involvement showed abnormal bone marrow signals on MR. Disabling joint contracture requiring orthopedic intervention was noted in one patient. In two patients with ''en coup de sabre'' facial deformity, CT and MR scans revealed intracranial calcifications and white matter abnormality in the ipsilateral frontal lobes, with one also showing migrational abnormality. In a third patient, CT revealed white matter abnormality in the ipsilateral parietal lobe. In one patient with progressive facial hemiatrophy, CT and MR scans showed the underlying hypoplastic left maxillary antrum and cheek. Imaging studies of areas of clinical concern revealed positive findings in half our patients. (orig.)

  6. RECENT TECTONIC DEFORMATION ANOMALY ANDEARTHQUAKES IN GANSU-NINGXIA-QINGHAI AREA

    Institute of Scientific and Technical Information of China (English)

    WangShuangxu; ZhangXi; ZhangSixin; XueFuping

    2003-01-01

    By processing and analyzing geodetic data of vertical deformation, fault deformation and horizontal deformation by GPS in Gansu-Ningxia-Qinghai area and by comparing them with geological structures and many medium to strong earthquake activities in this area, some features of recent tectonic deformation anomaly and the development of medium to strong earthquakes are studied. The results show that: ①Near the main faults tectonic deformations are relatively large. The amount of vertical movement and the deformation status evolve with time. The horizontal movement and deformation show obvious compressional strike-slip character. ②Thedominant stress of tectonic deformation and seismic development in this area comes from the persistent northeastward compression of Qinghai-Tibet block;The time-spatial distribution evolution of tectonic deformation and seismic activities are closely related to dynamic evolution of block motion and regional tectonic stress field. ③The abnormal uplift and high-gradient deformation belts and remarkable fault deformation anormaly on the borders of regional tectonic blocks are indicators of developing moderate-to-strong earthquakes but earthquakes may not necessarily take place in the position of maxium deformation, it usually occurred in the region where fault deformation anormaly shows “trend accumulation-acceleration-turn ” variation character or nearby. On the basis of above study, a preliminary prediction for strong earthquake risk in this area is given.

  7. Dynamic Recrystallization: The Dynamic Deformation Regime

    Science.gov (United States)

    Murr, L. E.; Pizaña, C.

    2007-11-01

    Severe plastic deformation (PD), especially involving high strain rates (>103 s 1), occurs through solid-state flow, which is accommodated by dynamic recrystallization (DRX), either in a continuous or discontinuous mode. This flow can be localized in shear instability zones (or adiabatic shear bands (ASBs)) with dimensions smaller than 5 μ, or can include large volumes with flow zone dimensions exceeding centimeters. This article illustrates these microstructural features using optical and electron metallography to examine a host of dynamic deformation examples: shaped charge jet formation, high-velocity and hypervelocity impact crater formation, rod penetration into thick targets (which includes rod and target DRX flow and mixing), large projectile-induced target plug formation and failure, explosive welding, and friction-stir welding and processing. The DRX is shown to be a universal mechanism that accommodates solid-state flow in extreme (or severe) PD regimes.

  8. Variable-intercept panel model for deformation zoning of a super-high arch dam.

    Science.gov (United States)

    Shi, Zhongwen; Gu, Chongshi; Qin, Dong

    2016-01-01

    This study determines dam deformation similarity indexes based on an analysis of deformation zoning features and panel data clustering theory, with comprehensive consideration to the actual deformation law of super-high arch dams and the spatial-temporal features of dam deformation. Measurement methods of these indexes are studied. Based on the established deformation similarity criteria, the principle used to determine the number of dam deformation zones is constructed through entropy weight method. This study proposes the deformation zoning method for super-high arch dams and the implementation steps, analyzes the effect of special influencing factors of different dam zones on the deformation, introduces dummy variables that represent the special effect of dam deformation, and establishes a variable-intercept panel model for deformation zoning of super-high arch dams. Based on different patterns of the special effect in the variable-intercept panel model, two panel analysis models were established to monitor fixed and random effects of dam deformation. Hausman test method of model selection and model effectiveness assessment method are discussed. Finally, the effectiveness of established models is verified through a case study.

  9. Quantizing Earth surface deformations

    Directory of Open Access Journals (Sweden)

    C. O. Bowin

    2015-03-01

    Full Text Available The global analysis of Bowin (2010 used the global 14 absolute Euler pole set (62 Myr history from Gripp and Gordon (1990 and demonstrated that plate tectonics conserves angular momentum. We herein extend that analysis using the more detailed Bird (2003 52 present-day Euler pole set (relative to a fixed Pacific plate for the Earth's surface, after conversion to absolute Euler poles. Additionally, new analytical results now provide new details on upper mantle mass anomalies in the outer 200 km of the Earth, as well as an initial quantizing of surface deformations.

  10. Importance of Mantle Viscosity in Interseismic Deformation

    Science.gov (United States)

    Wang, K.; He, J.; Hu, Y.

    2012-12-01

    The role of mantle viscosity in subduction earthquake cycles was postulated when the plate tectonics theory had just gained wide acceptance. The process was described using Elsasser's 1-D model for diffusion of stress from the subduction boundary to the plate interior. Main features of interseismic surface deformation predicted by this elegantly simple model were later verified by GPS observations following giant subduction earthquakes. However, and intriguingly, the vast majority of interseismic deformation models developed in the era of space geodesy assume an elastic Earth, incorrectly regarding interseismic deformation as a subdued mirror image of coseismic deformation. The reason is four-fold. (1) The 1-D model and subsequent 2-D viscoelastic models failed to recognize the role of rupture length in the strike direction and could not self-consistently explain deformation following medium and small earthquakes. (2) Based on global mantle viscosity models derived from glacial isostatic adjustment studies, the viscoelastic mantle should indeed behave elastically in earthquake cycles of a few hundred years. (3) The effect of viscous mantle deformation can often be equivalently described by deep fault creep in a purely elastic Earth. (4) The use of an elastic model provides convenience in inverting geodetic data to determine fault locking and creep. Here we use 3D finite element models to show that the main characteristics of surface deformation following subduction earthquakes of all sizes can be explained with a viscoelastic Earth in which the mantle wedge is less viscous than global upper-mantle average of 1020 - 1021 Pa s by one to two orders of magnitude. Following giant earthquakes, such as 1700 Cascadia, 1960 Chile, 1964 Alaska, 2004 Sumatra, and 2011 Japan, upper-plate land deformation undergoes phases of wholesale seaward motion, opposing motion of coastal and inland areas, and wholesale landward motion. The "speed" of the evolution scales inversely with

  11. Space Deformations, Surface Deformations and the Opportunities In-Between

    Institute of Scientific and Technical Information of China (English)

    Daniel Cohen-Or

    2009-01-01

    In recent years we have witnessed a large interest in surface deformation techniques. This has been a reaction that can be attributed to the ability to develop techniques which are detail-preserving. Space deformation techniques, on the other hand, received less attention, but nevertheless they have many advantages over surface-based techniques. This paper explores the potential of these two approaches to deformation and discusses the opportunities that the fusion of the two may lead to.

  12. Formation and subdivision of deformation structures during plastic deformation

    DEFF Research Database (Denmark)

    Jakobsen, B.; Poulsen, H.F.; Lienert, U.;

    2006-01-01

    During plastic deformation of metals and alloys, dislocations arrange in ordered patterns. How and when these self-organization processes take place have remained elusive, because in situ observations have not been feasible. We present an x-ray diffraction method that provided data on the dynamics...... of individual, deeply embedded dislocation structures. During tensile deformation of pure copper, dislocation-free regions were identified. They showed an unexpected intermittent dynamics, for example, appearing and disappearing with proceeding deformation and even displaying transient splitting behavior....... Insight into these processes is relevant for an understanding of the strength and work-hardening of deformed materials....

  13. Impact of ATLAS measurements on PDFs

    Directory of Open Access Journals (Sweden)

    Orlando Nicola

    2015-01-01

    Full Text Available A review of the ATLAS measurements sensitive to parton distribution functions is presented. The analyses use proton–proton collision data at center–of–mass–energy √s = 7 TeV collected at the Large Hadron Collider between April and November 2011. When included in QCD fits, the ATLAS data allow for improving the experimental constraints on the gluon and strange–quark parton density functions of the proton.

  14. A global DGLAP analysis of nuclear PDFs

    Science.gov (United States)

    Eskola, K. J.; Kolhinen, V. J.; Paukkunen, H.; Salgado, C. A.

    2008-05-01

    In this talk, we shortly report results from our recent global DGLAP analysis of nuclear parton distributions. This is an extension of our former EKS98-analysis improved with an automated χ2 minimization procedure and uncertainty estimates. Although our new analysis show no significant deviation from EKS98, a sign of a significantly stronger gluon shadowing could be seen in the RHIC BRAHMS data.

  15. Implication of CMS data on photon PDFs

    CERN Document Server

    Ababekri, Mamut; Isaacson, Joshua; Schmidt, Carl; Yuan, C -P

    2016-01-01

    Through the use of the CMS measurement of $W$-pair production via photon fusion, constraints on the photon parton distribution function are able to be placed on those from the CTEQ, MRST, and NNPDF collaborations. Furthermore, this data is able to rule out one of the MRST parton distribution sets, and the central prediction from NNPDF. After the announcement of the diphoton excess seen by both ATLAS and CMS, there was a proposal that this excess could be explained by a scalar produced via photon fusion. With the new constraints from the CMS data, the relationship between the total width and the branching ratio for such an object is updated to reflect the newly allowed region.

  16. Mathematical textbook of deformable neuroanatomies.

    Science.gov (United States)

    Miller, M I; Christensen, G E; Amit, Y; Grenander, U

    1993-12-15

    Mathematical techniques are presented for the transformation of digital anatomical textbooks from the ideal to the individual, allowing for the representation of the variabilities manifest in normal human anatomies. The ideal textbook is constructed on a fixed coordinate system to contain all of the information currently available about the physical properties of neuroanatomies. This information is obtained via sensor probes such as magnetic resonance, as well as computed axial and emission tomography, along with symbolic information such as white- and gray-matter tracts, nuclei, etc. Human variability associated with individuals is accommodated by defining probabilistic transformations on the textbook coordinate system, the transformations forming mathematical translation groups of high dimension. The ideal is applied to the individual patient by finding the transformation which is consistent with physical properties of deformable elastic solids and which brings the coordinate system of the textbook to that of the patient. Registration, segmentation, and fusion all result automatically because the textbook carries symbolic values as well as multisensor features.

  17. Rotary deformity in degenerative spondylolisthesis

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Sung Gwon; Kim, Jeong; Kho, Hyen Sim; Yun, Sung Su; Oh, Jae Hee; Byen, Ju Nam; Kim, Young Chul [Chosun University College of Medicine, Gwangju (Korea, Republic of)

    1994-05-15

    We studied to determine whether the degenerative spondylolisthesis has rotary deformity in addition to forward displacement. We have made analysis of difference of rotary deformity between the 31 study groups of symptomatic degenerative spondylolisthesis and 31 control groups without any symptom, statistically. We also reviewed CT findings in 15 study groups. The mean rotary deformity in study groups was 6.1 degree(the standard deviation is 5.20), and the mean rotary deformity in control groups was 2.52 degree(the standard deviation is 2.16)(p < 0.01). The rotary deformity can be accompanied with degenerative spondylolisthesis. We may consider the rotary deformity as a cause of symptomatic degenerative spondylolisthesis in case that any other cause is not detected.

  18. Deformation analysis: The Fredericton approach

    OpenAIRE

    Vrečko, Anja; Ambrožič, Tomaž

    2013-01-01

    In this article, the Fredericton approach to deformation analysis is presented. It is possible to use several deformation models to determine the differences between the geodetic observations or between the coordinates of points in geodetic network in more epochs. The most appropriate deformation model has been chosen based on statistical testing and available information about dynamics at the area of interest. First, a theoretical background of the approach ...

  19. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles

    CERN Document Server

    Kononova, Olga; Marx, Kenneth A; Wuite, Gijs J L; Roos, Wouter H; Barsegov, Valeri

    2015-01-01

    We present a new theory for modeling forced indentation spectral lineshapes of biological particles, which considers non-linear Hertzian deformation due to an indenter-particle physical contact and bending deformations of curved beams modeling the particle structure. The bending of beams beyond the critical point triggers the particle dynamic transition to the collapsed state, an extreme event leading to the catastrophic force drop as observed in the force (F)-deformation (X) spectra. The theory interprets fine features of the spectra: the slope of the FX curves and the position of force-peak signal, in terms of mechanical characteristics --- the Young's moduli for Hertzian and bending deformations E_H and E_b, and the probability distribution of the maximum strength with the strength of the strongest beam F_b^* and the beams' failure rate m. The theory is applied to successfully characterize the $FX$ curves for spherical virus particles --- CCMV, TrV, and AdV.

  20. Extending the geometric deformation: New black hole solutions

    Science.gov (United States)

    Ovalle, Jorge

    2016-03-01

    By using the extension of the Minimal Geometric Deformation approach, recently developed to investigate the exterior spacetime of a self-gravitating system in the Braneworld, we identified a master solution for the deformation undergone by the radial metric component when time deformations are produced by bulk gravitons. A specific form for the temporal deformation is used to generate a new exterior solution with a tidal charge Q. The main feature of this solution is the presence of higher-order terms in the tidal charge, thus generalizing the well known tidally charged solution. The horizon of the black hole lies inside the Schwarzschild radius, h < rs = 2ℳ, indicating that extra-dimensional effects weaken the gravitational field.

  1. Extending the geometric deformation: New black hole solutions

    CERN Document Server

    Ovalle, J

    2015-01-01

    We use the extension of the Minimal Geometric Deformation approach, recently developed to investigate the exterior of a self-gravitating system in the Braneworld, to identified a master solution for the deformation undergone by the radial metric component when time deformations are produced by bulk gravitons. A specific form for the temporal deformation is used to generate a new exterior solution with a tidal charge $Q$. The main feature of this solution is the presence of higher-order terms in the tidal charge, thus generalizing the well known tidally charged solution. The horizon of the black hole lies inside the Schwarzschild radius, $h

  2. Facial Animation Based on Feature Points

    Directory of Open Access Journals (Sweden)

    Beibei Li

    2013-01-01

    Full Text Available This paper presents a hybrid method for synthesizing natural animation of facial expression with data from motion capture. The captured expression was transferred from the space of source performance to that of a 3D target face using an accurate mapping process in order to realize the reuse of motion data. The transferred animation was then applied to synthesize the expression of the target model through a framework of two-stage deformation. A local deformation technique preliminarily considered a set of neighbor feature points for every vertex and their impact on the vertex. Furthermore, the global deformation was exploited to ensure the smoothness of the whole facial mesh. The experimental results show our hybrid mesh deformation strategy was effective, which could animate different target face without complicated manual efforts required by most of facial animation approaches.

  3. Deformable paper origami optoelectronic devices

    KAUST Repository

    He, Jr-Hau

    2017-01-19

    Deformable optoelectronic devices are provided, including photodetectors, photodiodes, and photovoltaic cells. The devices can be made on a variety of paper substrates, and can include a plurality of fold segments in the paper substrate creating a deformable pattern. Thin electrode layers and semiconductor nanowire layers can be attached to the substrate, creating the optoelectronic device. The devices can be highly deformable, e.g. capable of undergoing strains of 500% or more, bending angles of 25° or more, and/or twist angles of 270° or more. Methods of making the deformable optoelectronic devices and methods of using, e.g. as a photodetector, are also provided.

  4. Deformation Mechanisms of Carrara Marble Under Increasing Temperatures from 300℃ to 550℃

    Institute of Scientific and Technical Information of China (English)

    Ma Lijie; Liu Junlai; Li Haifeng; Wang Xiaoyong; Zhong Xinyong

    2000-01-01

    Deformation experiments of Carrara marble were conducted under increasing temperatures (temperatures 300℃~550℃ , confining pressure 0.5Mpa, strain - rate 5 × 10- 6 s-1). The experiments reveal that calcite rocks show different deformation behaviors and corresponding microstructural characteristics under different temperatures. By analyzing microstructural characteristics, preferred grain shape orientation variation of the primary rocks and deformed specimen, the deformation features of Carrara marble are summarized: twinning, fracturing dominates deformation of the rocks at temperatures between300℃ and 450℃; dynamic recrystallization occurs in the temperature range of 450~550℃; the brittle to crystalline plasticity transition deformation is observed at around 450℃, twinning and crystal - plastic deformation become dominant with further increasing temperature.

  5. Fingerprint Identification - Feature Extraction, Matching and Database Search

    NARCIS (Netherlands)

    Bazen, Asker Michiel

    2002-01-01

    Presents an overview of state-of-the-art fingerprint recognition technology for identification and verification purposes. Three principal challenges in fingerprint recognition are identified: extracting robust features from low-quality fingerprints, matching elastically deformed fingerprints and eff

  6. Supergravity background of the lambda-deformed AdS_3 x S^3 supercoset

    CERN Document Server

    Chervonyi, Yuri

    2016-01-01

    We construct the solution of type IIB supergravity describing the integrable lambda-deformation of the AdS_3 x S^3 supercoset. While the geometry corresponding to the deformation of the bosonic coset has been found in the past, our background is more natural for studying superstrings, and several interesting features distinguish our solution from its bosonic counterpart. We also report progress towards constructing the lambda-deformation of the AdS_5 x S^5 supercoset.

  7. On the activity of deforming medium

    Science.gov (United States)

    Zuev, L. B.; Gorbatenko, V. V.

    2016-11-01

    A new approach to the problem of the plastic flow of solid crystals is proposed. This approach is based on studying the macroscopic localization patterns of plastic deformation, which can be considered as different types of autowave processes of defect self-organization. An unambiguous correspondence between the localization patterns and stages of plastic flow in metals is established. A new model is proposed to describe the development of plastic flow localization. A change-over in the patterns of autowave processes of plastic flow evolution and a transition to fracture are attributed to the specific features of the interaction between information and dynamic subsystems.

  8. Influence of deposit architecture on intrastratal deformation, slope deposits of the Tres Pasos Formation, Chile

    Science.gov (United States)

    Auchter, Neal C.; Romans, Brian W.; Hubbard, Stephen M.

    2016-07-01

    Slope sediments on passive and active margins deform and fail across a broad range of scales ranging from loading and sediment remobilization near the sediment-water interface to submarine landslides and mass movements that incorporate significant volumes of slope deposits. Deformational styles are characterized by updip extension and downdip compressional features that occur above a detachment surface. Conditions for failure and deformation include the presence of weak layer(s) that serve as a detachment surface, competency contrasts that allow for detachment and downslope movement, deformation above a detachment surface, and a triggering mechanism(s) that initiates failure. Slope failure processes and products are well documented at scales resolvable by seismic-reflection surveys and in instances of extensive downslope failure, but the processes and products associated with intermediate-scale slope deformation are poorly understood. Intrastratal deformation is defined as stratigraphically isolated zones of deformation bounded above and below by concordant and undeformed strata. In this study, outcrop examples of intrastratal deformation from the Upper Cretaceous Tres Pasos Formation are used to elucidate the influence of depositional architecture on slope deformation. The facies distribution associated with compensational stacking of lobe deposits is shown to have a first-order control on the location and style of deformation. Detachment planes that form in mudstone deposits associated with lobe fringe and interlobe deposits are spatially limited and deformation is restricted to interbedded sandstone and mudstone associated with off-axial lobe positions. Downslope translation was arrested by stratigraphic buttresses associated with more sandstone-prone axial deposits. Emplacement of a regionally extensive mass transport deposit is interpreted as the triggering mechanism for contemporaneous intrastratal deformation of > 60 m of underlying stratigraphy. A vertical

  9. A non-parametric 2D deformable template classifier

    DEFF Research Database (Denmark)

    Schultz, Nette; Nielsen, Allan Aasbjerg; Conradsen, Knut;

    2005-01-01

    We introduce an interactive segmentation method for a sea floor survey. The method is based on a deformable template classifier and is developed to segment data from an echo sounder post-processor called RoxAnn. RoxAnn collects two different measures for each observation point, and in this 2D...... feature space the ship-master will be able to interactively define a segmentation map, which is refined and optimized by the deformable template algorithms. The deformable templates are defined as two-dimensional vector-cycles. Local random transformations are applied to the vector-cycles, and stochastic...... relaxation in a Bayesian scheme is used. In the Bayesian likelihood a class density function and its estimate hereof is introduced, which is designed to separate the feature space. The method is verified on data collected in Øresund, Scandinavia. The data come from four geographically different areas. Two...

  10. Survey of Reflection-Asymmetric Nuclear Deformations

    Science.gov (United States)

    Olsen, Erik; Cao, Yuchen; Nazarewicz, Witold; Schunck, Nicolas

    2016-09-01

    Due to spontaneous symmetry breaking it is possible for a nucleus to have a deformed shape in its ground state. It is theorized that atoms whose nuclei have reflection-asymmetric or pear-like deformations could have non-zero electric dipole moments (EDMs). Such a trait would be evidence of CP-violation, a feature that goes beyond the Standard Model of Physics. It is the purpose of this project to predict which nuclei exhibit a reflection-asymmetric deformation and which of those would be the best candidates for an EDM measuring experiment. Using nuclear Density Functional Theory along with the new computer code AxialHFB and massively parallel computing we calculated ground state nuclear properties for thousands of even-even nuclei across the nuclear chart: from light to superheavy and from stable to short-lived systems. Six different Energy Density Functionals (EDFs) were used to assess systematic errors in our calculations. These results are to be added to the website Massexplorer (http://massexplorer.frib.msu.edu/) which contains results from earlier mass table calculations and information on single quasiparticle energies.

  11. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.

    Directory of Open Access Journals (Sweden)

    Olga Kononova

    2016-01-01

    Full Text Available The mechanical properties of virus capsids correlate with local conformational dynamics in the capsid structure. They also reflect the required stability needed to withstand high internal pressures generated upon genome loading and contribute to the success of important events in viral infectivity, such as capsid maturation, genome uncoating and receptor binding. The mechanical properties of biological nanoparticles are often determined from monitoring their dynamic deformations in Atomic Force Microscopy nanoindentation experiments; but a comprehensive theory describing the full range of observed deformation behaviors has not previously been described. We present a new theory for modeling dynamic deformations of biological nanoparticles, which considers the non-linear Hertzian deformation, resulting from an indenter-particle physical contact, and the bending of curved elements (beams modeling the particle structure. The beams' deformation beyond the critical point triggers a dynamic transition of the particle to the collapsed state. This extreme event is accompanied by a catastrophic force drop as observed in the experimental or simulated force (F-deformation (X spectra. The theory interprets fine features of the spectra, including the nonlinear components of the FX-curves, in terms of the Young's moduli for Hertzian and bending deformations, and the structural damage dependent beams' survival probability, in terms of the maximum strength and the cooperativity parameter. The theory is exemplified by successfully describing the deformation dynamics of natural nanoparticles through comparing theoretical curves with experimental force-deformation spectra for several virus particles. This approach provides a comprehensive description of the dynamic structural transitions in biological and artificial nanoparticles, which is essential for their optimal use in nanotechnology and nanomedicine applications.

  12. Featuring animacy

    Directory of Open Access Journals (Sweden)

    Elizabeth Ritter

    2015-01-01

    Full Text Available Algonquian languages are famous for their animacy-based grammatical properties—an animacy based noun classification system and direct/inverse system which gives rise to animacy hierarchy effects in the determination of verb agreement. In this paper I provide new evidence for the proposal that the distinctive properties of these languages is due to the use of participant-based features, rather than spatio-temporal ones, for both nominal and verbal functional categories (Ritter & Wiltschko 2009, 2014. Building on Wiltschko (2012, I develop a formal treatment of the Blackfoot aspectual system that assumes a category Inner Aspect (cf. MacDonald 2008, Travis 1991, 2010. Focusing on lexical aspect in Blackfoot, I demonstrate that the classification of both nouns (Seinsarten and verbs (Aktionsarten is based on animacy, rather than boundedness, resulting in a strikingly different aspectual system for both categories. 

  13. Permanent deformation of asphalt mixes

    NARCIS (Netherlands)

    Muraya, P.M.

    2007-01-01

    This dissertation describes the results of a research that was conducted on the permanent deformation of asphalt mixtures. Central to this research was the separate characterization of the contribution of the aggregate skeleton and the bituminous mortar towards resistance to permanent deformation. T

  14. Deformation of the ABJM Theory

    OpenAIRE

    Faizal, Mir

    2012-01-01

    In this paper we analyse the ABJM theory on deformed spacetime. We show that this theory reduces to a deformed super-Yang-Mills theory when one of the scalar superfields is given a non-vanishing vacuum expectation value. Our analyse is done in N=1 superspace formulism.

  15. Fraktalnist deformational relief polycrystalline aluminum

    Directory of Open Access Journals (Sweden)

    М.В. Карускевич

    2006-02-01

    Full Text Available  The possibility of the fractal geometry method application for the analisys of surface deformation structures under cyclic loading is presented.It is shown, that deformation relief of the alclad aluminium alloyes meets the criteria of the fractality. For the fractal demention estimation the method of  “box-counting”can be applied.

  16. Metastable vacua and geometric deformations

    CERN Document Server

    Amariti, A; Girardello, L; Mariotti, A

    2008-01-01

    We study the geometric interpretation of metastable vacua for systems of D3 branes at non isolated toric deformable singularities. Using the L^{aba} examples, we investigate the relations between the field theoretic susy breaking and restoration and the complex deformations of the CY singularities.

  17. Humeral lengthening and deformity correction in Ollier's disease: distraction osteogenesis with a multiaxial correction frame.

    Science.gov (United States)

    Tellisi, Nazzar; Ilizarov, Svetlana; Fragomen, Austin T; Rozbruch, S Robert

    2008-05-01

    A case of Ollier's disease with deformity and shortening of the humerus is presented. Lengthening of 9 cm and deformity correction of 50 degrees were accomplished with excellent functional and cosmetic results. Unique features of this case were the use of a multiaxial correction monolateral frame and the formation of normal bone within the region of diseased Ollier's bone.

  18. DEFORMATION AND FRACTURE MICROPROCESSES OF EXPLOSIVELY LOADED LOW-CARBON STEELS UNDER TENSION

    OpenAIRE

    Larionov, V; Yakovleva, S.

    1991-01-01

    The mechanism of strength properties formation in low-carbon steels subjected to explosive treatment is investigated. With this aim in view, the features inherent to plastic deformation and fracture microprocesses have been studied. A quantitative analysis of the microinhomogeneous plastic deformation characteristics has been carried out.

  19. Diffuse plexiform neurofibroma with unusual features

    Directory of Open Access Journals (Sweden)

    Raghu T

    2003-03-01

    Full Text Available A 52 and 15-year-old father and son respectively presented with multiple neurofibromas. On detailed examination diffuse plexiform neurofibroma was noticed in son. Its presence over the lower extremity (a rare site, genu valgum deformity and splenic hamartoma were the interesting features in our case.

  20. Diffuse plexiform neurofibroma with unusual features

    Directory of Open Access Journals (Sweden)

    Raghu T

    2003-01-01

    Full Text Available A 52 and 15-year-old father and son respectively presented with multiple neurofibromas. On detailed examination diffuse plexiform neurofibroma was noticed in son. Its presence over the lower extremity (a rare site, genu valgum deformity and splenic hamartoma were the interesting features in our case.

  1. Clinical Features of Osteogenesis Imperfecta in Taiwan

    Directory of Open Access Journals (Sweden)

    Hsiang-Yu Lin

    2009-07-01

    Conclusion: Nine of the 11 clinical features examined—height, weight, BMD, dentinogenesis imperfecta, bone deformity, scoliosis, walking ability, fracture rate, and family history—were significantly different among the three types of OI patients. This finding may be of help in evaluating patients and establishing their prognosis.

  2. Making Deformable Template Models Operational

    DEFF Research Database (Denmark)

    Fisker, Rune

    2000-01-01

    Deformable template models are a very popular and powerful tool within the field of image processing and computer vision. This thesis treats this type of models extensively with special focus on handling their common difficulties, i.e. model parameter selection, initialization and optimization...... published during the Ph.D. project. To put these articles into the general context of deformable template models and to pass on an overview of the deformable template model literature, the thesis starts with a compact survey of the deformable template model literature with special focus on representation....... A proper handling of the common difficulties is essential for making the models operational by a non-expert user, which is a requirement for intensifying and commercializing the use of deformable template models. The thesis is organized as a collection of the most important articles, which has been...

  3. Deformation of the Arctic Ocean Sea Ice Cover Between November 1996 and April 1997: A Survey

    Science.gov (United States)

    Kwok, R.

    2000-01-01

    Quasi-linear features of the scale of kilometers to hundreds of kilometers can be observed in the high-resolution deformation fields of the sea ice cover produced by the RADARSAT Geophysical Processor System.

  4. Supersymmetric q-deformed quantum mechanics

    Energy Technology Data Exchange (ETDEWEB)

    Traikia, M. H.; Mebarki, N. [Laboratoire de Physique Mathematique et Subatomique, Mentouri University, Constantine (Algeria)

    2012-06-27

    A supersymmetric q-deformed quantum mechanics is studied in the weak deformation approximation of the Weyl-Heisenberg algebra. The corresponding supersymmetric q-deformed hamiltonians and charges are constructed explicitly.

  5. Involvement of valgus hindfoot deformity in hallux valgus deformity in rheumatoid arthritis.

    Science.gov (United States)

    Yamada, Shutaro; Hirao, Makoto; Tsuboi, Hideki; Akita, Shosuke; Matsushita, Masato; Ohshima, Shiro; Saeki, Yukihiko; Hashimoto, Jun

    2014-09-01

    The involvement of valgus hindfoot deformity in hallux valgus deformity was confirmed in a rheumatoid arthritis case with a destructive valgus hindfoot deformity. Correction of severe valgus, calcaneal lateral offset, and pronated foot deformity instantly normalized hallux valgus deformities postoperatively. Thus, careful hindfoot status evaluation is important when assessing forefoot deformity, including hallux valgus, in rheumatoid arthritis cases.

  6. High resolution, large deformation 3D traction force microscopy.

    Science.gov (United States)

    Toyjanova, Jennet; Bar-Kochba, Eyal; López-Fagundo, Cristina; Reichner, Jonathan; Hoffman-Kim, Diane; Franck, Christian

    2014-01-01

    Traction Force Microscopy (TFM) is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D) imaging and traction force analysis (3D TFM) have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients.

  7. High resolution, large deformation 3D traction force microscopy.

    Directory of Open Access Journals (Sweden)

    Jennet Toyjanova

    Full Text Available Traction Force Microscopy (TFM is a powerful approach for quantifying cell-material interactions that over the last two decades has contributed significantly to our understanding of cellular mechanosensing and mechanotransduction. In addition, recent advances in three-dimensional (3D imaging and traction force analysis (3D TFM have highlighted the significance of the third dimension in influencing various cellular processes. Yet irrespective of dimensionality, almost all TFM approaches have relied on a linear elastic theory framework to calculate cell surface tractions. Here we present a new high resolution 3D TFM algorithm which utilizes a large deformation formulation to quantify cellular displacement fields with unprecedented resolution. The results feature some of the first experimental evidence that cells are indeed capable of exerting large material deformations, which require the formulation of a new theoretical TFM framework to accurately calculate the traction forces. Based on our previous 3D TFM technique, we reformulate our approach to accurately account for large material deformation and quantitatively contrast and compare both linear and large deformation frameworks as a function of the applied cell deformation. Particular attention is paid in estimating the accuracy penalty associated with utilizing a traditional linear elastic approach in the presence of large deformation gradients.

  8. Inelastic deformation in crystalline rocks

    Science.gov (United States)

    Rahmani, H.; Borja, R. I.

    2011-12-01

    The elasto-plastic behavior of crystalline rocks, such as evaporites, igneous rocks, or metamorphic rocks, is highly dependent on the behavior of their individual crystals. Previous studies indicate that crystal plasticity can be one of the dominant micro mechanisms in the plastic deformation of crystal aggregates. Deformation bands and pore collapse are examples of plastic deformation in crystalline rocks. In these cases twinning within the grains illustrate plastic deformation of crystal lattice. Crystal plasticity is governed by the plastic deformation along potential slip systems of crystals. Linear dependency of the crystal slip systems causes singularity in the system of equations solving for the plastic slip of each slip system. As a result, taking the micro-structure properties into account, while studying the overall behavior of crystalline materials, is quite challenging. To model the plastic deformation of single crystals we use the so called `ultimate algorithm' by Borja and Wren (1993) implemented in a 3D finite element framework to solve boundary value problems. The major advantage of this model is that it avoids the singularity problem by solving for the plastic slip explicitly in sub steps over which the stress strain relationship is linear. Comparing the results of the examples to available models such as Von Mises we show the significance of considering the micro-structure of crystals in modeling the overall elasto-plastic deformation of crystal aggregates.

  9. Perceptual transparency from image deformation.

    Science.gov (United States)

    Kawabe, Takahiro; Maruya, Kazushi; Nishida, Shin'ya

    2015-08-18

    Human vision has a remarkable ability to perceive two layers at the same retinal locations, a transparent layer in front of a background surface. Critical image cues to perceptual transparency, studied extensively in the past, are changes in luminance or color that could be caused by light absorptions and reflections by the front layer, but such image changes may not be clearly visible when the front layer consists of a pure transparent material such as water. Our daily experiences with transparent materials of this kind suggest that an alternative potential cue of visual transparency is image deformations of a background pattern caused by light refraction. Although previous studies have indicated that these image deformations, at least static ones, play little role in perceptual transparency, here we show that dynamic image deformations of the background pattern, which could be produced by light refraction on a moving liquid's surface, can produce a vivid impression of a transparent liquid layer without the aid of any other visual cues as to the presence of a transparent layer. Furthermore, a transparent liquid layer perceptually emerges even from a randomly generated dynamic image deformation as long as it is similar to real liquid deformations in its spatiotemporal frequency profile. Our findings indicate that the brain can perceptually infer the presence of "invisible" transparent liquids by analyzing the spatiotemporal structure of dynamic image deformation, for which it uses a relatively simple computation that does not require high-level knowledge about the detailed physics of liquid deformation.

  10. Saturation of Deformation and Identical Bands in Very-Neutron Rich Sr Isotopes

    CERN Multimedia

    2002-01-01

    The present proposal aims at establishing nuclear properties in an isotopic chain showing unique features. These features include the saturation of ground state deformation at its onset and the existence of ground state identical bands in neighbouring nuclei with the same deformation. The measurements should help to elucidate the role played by the proton-neutron residual interaction between orbitals with large spatial overlap, i.e. $\\pi g _{9/2} \

  11. Deforming tachyon kinks and tachyon potentials

    OpenAIRE

    Afonso, V. I.; Bazeia, D.; Brito, F. A.

    2006-01-01

    In this paper we investigate deformation of tachyon potentials and tachyon kink solutions. We consider the deformation of a DBI type action with gauge and tachyon fields living on D1-brane and D3-brane world-volume. We deform tachyon potentials to get other consistent tachyon potentials by using properly a deformation function depending on the gauge field components. Resolutions of singular tachyon kinks via deformation and applications of deformed tachyon potentials to scalar cosmology scena...

  12. Low-Temperature Plasticity of Naturally Deformed Calcite Rocks

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    Optical, cathodoluminescence and transmission electron microscope (TEM) analyses were conducted onfour groups of calcite fault rocks, a cataclastic limestone, cataclastic coarse-grained marbles from two fault zones, and afractured mylonite. These fault rocks show similar microstructural characteristics and give clues to similar processes ofrock deformation. They are characterized by the structural contrast between macroscopic cataclastic (brittle) andmicroscopic mylonitic (ductile) microstructures. Intragranular deformation microstructures (i.e. deformation twins, kinkbands and microfractures) are well preserved in the deformed grains in clasts or in primary rocks. The matrix materials areof extremely fine grains with diffusive features. Dislocation microstructures for co-existing brittle deformation andcrystalline plasticity were revealed using TEM. Tangled dislocations are often preserved at the cores of highly deformedclasts, while dislocation walls form in the transitions to the fine-grained matrix materials and free dislocations, dislocationloops and dislocation dipoles are observed both in the deformed clasts and in the fine-grained matrix materials. Dynamicrecrystallization grains from subgrain rotation recrystallization and subsequent grain boundary migration constitute themajor parts of the matrix materials. Statistical measurements of densities of free dislocations, grain sizes of subgrains anddynamically recrystallized grains suggest an unsteady state of the rock deformation. Microstructural andcathodoluminescence analyses prove that fluid activity is one of the major parts of faulting processes. Low-temperatureplasticity, and thereby induced co-existence of macroscopic brittle and microscopic ductile microstmctures are attributedto hydrolytic weakening due to the involvement of fluid phases in deformation and subsequent variation of rock rheology.During hydrolytic weakening, fluid phases, e.g. water, enhance the rate of dislocation slip and climb, and

  13. Shape Deformations in Atomic Nuclei

    CERN Document Server

    Hamamoto, Ikuko

    2011-01-01

    The ground states of some nuclei are described by densities and mean fields that are spherical, while others are deformed. The existence of non-spherical shape in nuclei represents a spontaneous symmetry breaking.

  14. Plastic Deformation of Metal Surfaces

    DEFF Research Database (Denmark)

    Hansen, Niels; Zhang, Xiaodan; Huang, Xiaoxu

    2013-01-01

    parameters by TEM and EBSD and apply strength-structural relationships established for the bulk metal deformed to high strains. This technique has been applied to steel deformed by high energy shot peening and a calculated stress gradient at or near the surface has been successfully validated by hardness......Plastic deformation of metal surfaces by sliding and abrasion between moving parts can be detrimental. However, when the plastic deformation is controlled for example by applying different peening techniques hard surfaces can be produced which can increase the fracture resistance and fatigue life...... of metal components. An optimization of processes and material parameters must be based on a quantification of stress and strain gradients at the surface and in near surface layer where the structural scale can reach few tens of nanometers. For such fine structures it is suggested to quantify structural...

  15. Deformed two center shell model

    CERN Document Server

    Gherghescu, R A

    2003-01-01

    A highly specialized two-center shell model has been developed accounting for the splitting of a deformed parent nucleus into two ellipsoidaly deformed fragments. The potential is based on deformed oscillator wells in direct correspondance with the shape change of the nuclear system. For the first time a potential responsible for the necking part between the fragments is introduced on potential theory basis. As a direct consequence, spin-orbit {\\bf ls} and {\\bf l$^2$} operators are calculated as shape dependent. Level scheme evolution along the fission path for pairs of ellipsoidaly deformed fragments is calculated. The Strutinsky method yields the shell corrections for different mass asymmetries from the superheavy nucleus $^{306}$122 and $^{252}$Cf all along the splitting process.

  16. ROCK DEFORMATION. Final Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    2002-05-24

    The Gordon Research Conference (GRC) on ROCK DEFORMATION was held at II Ciocco from 5/19/02 thru 5/24/02. Emphasis was placed on current unpublished research and discussion of the future target areas in this field.

  17. Non-linear elastic deformations

    CERN Document Server

    Ogden, R W

    1997-01-01

    Classic in the field covers application of theory of finite elasticity to solution of boundary-value problems, analysis of mechanical properties of solid materials capable of large elastic deformations. Problems. References.

  18. Deformed Calabi-Yau Completions

    CERN Document Server

    Keller, Bernhard

    2009-01-01

    We define and investigate deformed n-Calabi-Yau completions of homologically smooth differential graded (=dg) categories. Important examples are: deformed preprojective algebras of connected non Dynkin quivers, Ginzburg dg algebras associated to quivers with potentials and dg categories associated to the category of coherent sheaves on the canonical bundle of a smooth variety. We show that deformed Calabi-Yau completions do have the Calabi-Yau property and that their construction is compatible with derived equivalences and with localizations. In particular, Ginzburg dg algebras have the Calabi-Yau property. We show that deformed 3-Calabi-Yau completions of algebras of global dimension at most 2 are quasi-isomorphic to Ginzburg dg algebras and apply this to the study of cluster-tilted algebras and to the construction of derived equivalences associated to mutations of quivers with potentials. In the appendix, Michel Van den Bergh uses non commutative differential geometry to give an alternative proof of the fac...

  19. Nonlinear Deformable-body Dynamics

    CERN Document Server

    Luo, Albert C J

    2010-01-01

    "Nonlinear Deformable-body Dynamics" mainly consists in a mathematical treatise of approximate theories for thin deformable bodies, including cables, beams, rods, webs, membranes, plates, and shells. The intent of the book is to stimulate more research in the area of nonlinear deformable-body dynamics not only because of the unsolved theoretical puzzles it presents but also because of its wide spectrum of applications. For instance, the theories for soft webs and rod-reinforced soft structures can be applied to biomechanics for DNA and living tissues, and the nonlinear theory of deformable bodies, based on the Kirchhoff assumptions, is a special case discussed. This book can serve as a reference work for researchers and a textbook for senior and postgraduate students in physics, mathematics, engineering and biophysics. Dr. Albert C.J. Luo is a Professor of Mechanical Engineering at Southern Illinois University, Edwardsville, IL, USA. Professor Luo is an internationally recognized scientist in the field of non...

  20. Deformation behavior during nanoindentation in Ce-based bulk metallic glasses

    Institute of Scientific and Technical Information of China (English)

    ZHANG Lingchen; XING Dongmei; ZHANG Taihua; WEI Bingchen; LI Weihuo; WANG Yuren

    2006-01-01

    The deformation behavior and the effect of the loading rate on the plastic deformation in Ce-based bulk metallic glasses (BMGs) were investigated through nanoindentation tests. The results showed that the loading rate dependence of plastic deformation during nanoindentation measurements in the Ce-based BMGs is quite unique in contrast to that of other BMG alloys. The load-displacement (P-h)curves of Ce60Al15Cu10Ni15 BMG exhibit a homogeneous plastic deformation at low loading rates, and a prominent serrated flow at high strain rates, whereas,the P-h curves of Ce65Al10Cu10Ni10Nb5 exhibit homogenous plastic deformation at all studied loading rates. The room temperature creep behavior could clearly be observed in these two alloys. The mechanism of the unique plastic deformation feature in the Ce-based BMGs was studied.

  1. Shepherd's Crook Deformity of Polyostotic Fibrous Dysplasia Treated with Corrective Osteotomy and Dynamic Hip Screw

    Directory of Open Access Journals (Sweden)

    Wei-Jen Chen

    2005-07-01

    Full Text Available Fibrous dysplasia, a condition in which the skeleton fails to develop normally, is characterized by fibroblastic stroma and immature bone. Bowing of the long bones occurs frequently in the polyostotic form, and stress fractures often result. Shepherd's crook deformity is a characteristic feature of fibrous dysplasia. The goal of its treatment is to obtain normal walking ability and relieve pain due to pathologic fracture secondary to the deformity; however, correction of the deformity is a surgical challenge. We present 2 cases of shepherd's crook deformity treated with corrective osteotomy and a dynamic hip screw. Both cases showed good bone healing and no recurrent deformity. The gross deformities were corrected, and both patients were pain-free after operation.

  2. DEFORMATIONS OF THE PROXIMAL FEMUR CONSEQUENTLY BENIGN TUMORS IN CHILDREN AND ADOLESCENTS

    Directory of Open Access Journals (Sweden)

    I. E. Shpilevsky

    2010-01-01

    Full Text Available Benign tumors are affecting the proximal part of the femur in 19% of all cases. Their distinctive feature is the relatively late diagnosis, which requiring the necessity, in addition to removing the tumor and bone grafting, to solve the problem of deformations correction. We have discovered the reasons of deformity appearance of the 31 patients aged 3-16 years. The following types of deformation were defined: ductile (12, after pathological fracture (12 and as a result of growth plate dysfunction (7. The correction of deformation, along with the tumour removing was performed at 15 patients: 3 - Oilier disease, 6 - fibrous dysplasia, 4 - bone cysts, 2 - exostotic chondrodysplasia. In 2 cases the correction of deformity was supposed unreasonable by its severity and accompanying pathology, and in 14 - the deformities were considered as permissible, that not required operative adjustment.

  3. Bilateral cleft lip nasal deformity

    OpenAIRE

    Singh Arun; Nandini R.

    2009-01-01

    Bilateral cleft lip nose deformity is a multi-factorial and complex deformity which tends to aggravate with growth of the child, if not attended surgically. The goals of primary bilateral cleft lip nose surgery are, closure of the nasal floor and sill, lengthening of the columella, repositioning of the alar base, achieving nasal tip projection, repositioning of the lower lateral cartilages, and reorienting the nares from horizontal to oblique position. The multiplicity of procedures in the li...

  4. Symmetries in Connection Preserving Deformations

    Directory of Open Access Journals (Sweden)

    Christopher M. Ormerod

    2011-05-01

    Full Text Available e wish to show that the root lattice of Bäcklund transformations of the q-analogue of the third and fourth Painlevé equations, which is of type (A_2+A_1^{(1}, may be expressed as a quotient of the lattice of connection preserving deformations. Furthermore, we will show various directions in the lattice of connection preserving deformations present equivalent evolution equations under suitable transformations. These transformations correspond to the Dynkin diagram automorphisms.

  5. Properties of deformed Λ hypernuclei

    Institute of Scientific and Technical Information of China (English)

    ZHOU Xian-Rong

    2009-01-01

    The properties of Be and B isotopes and the corresponding Λ hypernuclei are studied by using a deformed Skyrme Hartree-Fock approach with realistic nucleonic Skyrme forces, pairing correlations, and a microscopically determined lambda-nucleon interaction based on Brueckner-Hartree-Fock calculations of hypernuclear matter. The results suggest that the core nuclei and the corresponding hypernuclei have similar deformations with the same sign.

  6. Analysis of Mining Terrain Deformation Characteristics with Deformation Information System

    Science.gov (United States)

    Blachowski, Jan; Milczarek, Wojciech; Grzempowski, Piotr

    2014-05-01

    Mapping and prediction of mining related deformations of the earth surface is an important measure for minimising threat to surface infrastructure, human population, the environment and safety of the mining operation itself arising from underground extraction of useful minerals. The number of methods and techniques used for monitoring and analysis of mining terrain deformations is wide and increasing with the development of geographical information technologies. These include for example: terrestrial geodetic measurements, global positioning systems, remote sensing, spatial interpolation, finite element method modelling, GIS based modelling, geological modelling, empirical modelling using the Knothe theory, artificial neural networks, fuzzy logic calculations and other. The aim of this paper is to introduce the concept of an integrated Deformation Information System (DIS) developed in geographic information systems environment for analysis and modelling of various spatial data related to mining activity and demonstrate its applications for mapping and visualising, as well as identifying possible mining terrain deformation areas with various spatial modelling methods. The DIS concept is based on connected modules that include: the spatial database - the core of the system, the spatial data collection module formed by: terrestrial, satellite and remote sensing measurements of the ground changes, the spatial data mining module for data discovery and extraction, the geological modelling module, the spatial data modeling module with data processing algorithms for spatio-temporal analysis and mapping of mining deformations and their characteristics (e.g. deformation parameters: tilt, curvature and horizontal strain), the multivariate spatial data classification module and the visualization module allowing two-dimensional interactive and static mapping and three-dimensional visualizations of mining ground characteristics. The Systems's functionality has been presented on

  7. Preferred orientation in experimentally deformed stishovite: implications for deformation mechanisms

    Science.gov (United States)

    Kaercher, P. M.; Zepeda-Alarcon, E.; Prakapenka, V.; Kanitpanyacharoen, W.; Smith, J.; Sinogeikin, S. V.; Wenk, H. R.

    2014-12-01

    The crystal structure of the high pressure SiO2 polymorph stishovite has been studied in detail, yet little is known about its deformation mechanisms. Information about how stishovite deforms under stress is important for understanding subduction of quartz-bearing crustal rocks into the mantle. Particularly, stishovite is elastically anisotropic and thus development of crystallographic preferred orientation (CPO) during deformation may contribute to seismic anomalies in the mantle. We converted a natural sample of flint to stishovite in a laser heated diamond anvil cell and compressed the stishovite aggregate up to 38 GPa. Diffraction patterns were collected in situ in radial geometry at the Advanced Light Source (ALS) and the Advanced Photon Source (APS) to examine development of CPO during deformation. We find that (001) poles preferentially align with the compression direction and infer deformation mechanisms leading to the observed CPO with visco-plastic self consistent (VPSC) polycrystal plasticity models. Our results show pyramidal and basal slip are most likely active at high pressure and ambient temperature, in agreement with transmission electron microscopy (TEM) studies of rutile (TiO2) and paratellurite (TeO2), which are isostructural to stishovite. Conversely other TEM studies of stishovite done at higher temperature suggest dominant prismatic slip. This indicates that a variety of slip systems may be active in stishovite, depending on conditions. As a result, stishovite's contribution to the seismic signature in the mantle may vary as a function of pressure and temperature and thus depth.

  8. Droplets on a deformable membrane with uniform and anistropic tension

    Science.gov (United States)

    Schulman, Rafael; Ledesma-Alonso, René; Salez, Thomas; Raphaël, Elie; Dalnoki-Veress, Kari

    We examine the deformation produced by micro-droplets atop thin elastomeric free-standing films. Under the action of surface tension, the droplets deform the membrane thereby forming a bulge. For films with isotropic tension, we measure the contact angles of the droplet and bulge relative to the planar film surrounding the droplet as a function of membrane tension. We find the measured contact angles to be in excellent agreement with a model which features a force balance at the contact line. Experiments are also performed on membranes with anisotropic tension and compared to theory. In this case, droplets are non-spherical and generate significant deformation of the surrounding film which becomes non-planar.

  9. Bilateral cleft lip nasal deformity

    Directory of Open Access Journals (Sweden)

    Singh Arun

    2009-01-01

    Full Text Available Bilateral cleft lip nose deformity is a multi-factorial and complex deformity which tends to aggravate with growth of the child, if not attended surgically. The goals of primary bilateral cleft lip nose surgery are, closure of the nasal floor and sill, lengthening of the columella, repositioning of the alar base, achieving nasal tip projection, repositioning of the lower lateral cartilages, and reorienting the nares from horizontal to oblique position. The multiplicity of procedures in the literature for correction of this deformity alludes to the fact that no single procedure is entirely effective. The timing for surgical intervention and its extent varies considerably. Early surgery on cartilage may adversely affect growth and development; at the same time, allowing the cartilage to grow in an abnormal position and contributing to aggravation of deformity. Some surgeons advocate correction of deformity at an early age. However, others like the cartilages to grow and mature before going in for surgery. With peer pressure also becoming an important consideration during the teens, the current trend is towards early intervention. There is no unanimity in the extent of nasal dissection to be done at the time of primary lip repair. While many perform limited nasal dissection for the fear of growth retardation, others opt for full cartilage correction at the time of primary surgery itself. The value of naso-alveolar moulding (NAM too is not universally accepted and has now more opponents than proponents. Also most centres in the developing world have neither the personnel nor the facilities for the same. The secondary cleft nasal deformity is variable and is affected by the extent of the original abnormality, any prior surgeries performed and alteration due to nasal growth. This article reviews the currently popular methods for correction of nasal deformity associated with bilateral cleft lip, it′s management both at the time of cleft lip repair

  10. Deformation of second and third quantization

    Science.gov (United States)

    Faizal, Mir

    2015-03-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  11. Deformation of Second and Third Quantization

    CERN Document Server

    Faizal, Mir

    2015-01-01

    In this paper, we will deform the second and third quantized theories by deforming the canonical commutation relations in such a way that they become consistent with the generalized uncertainty principle. Thus, we will first deform the second quantized commutator and obtain a deformed version of the Wheeler-DeWitt equation. Then we will further deform the third quantized theory by deforming the third quantized canonical commutation relation. This way we will obtain a deformed version of the third quantized theory for the multiverse.

  12. Deformation Mechanisms of Gum Metals Under Nanoindentation

    Science.gov (United States)

    Sankaran, Rohini Priya

    defect structures to applied loading, we perform ex-situ nanoindentation. Nanoindentation is a convenient method as the plastic deformation is localized and probes a nominally defect free volume of the material. We subsequently characterize the defect structures in these alloys with both conventional TEM and advanced techniques such as HAADF HRSTEM and nanoprobe diffraction. These advanced techniques allow for a more thorough understanding of the observed deformation features. The main findings from this investigation are as follows. As expected we observe that a non-equilibrium phase, o, is present in the leaner beta-stabilized alloy, ST Ref-1. We do not find any direct evidence of secondary phases in STGM, and we find the beta phase in CWGM, along with lath microstructure with subgrain structure consisting of dislocation cell networks. Upon nanoindentation, we find twinning accompanied by beta nucleation on the twin boundary in ST Ref-1 samples. This result is consistent with previous findings and is reasonable considering the alloy is unstable with respect to beta transformation. We find deformation nanotwinning in cold worked gum metals under nanoindentation, which is initially surprising. We argue that when viewed as a nanocrystalline material, such a deformation mechanism is consistent with previous work, and furthermore, a deformation nanotwinned structure does not preclude an ideal shear mechanism from operating in the alloy. Lastly, we observe continuous lattice rotations in STGM under nanoindentation via nanoprobe diffraction. With this technique, for the first time we can demonstrate that the lattice rotations are truly continuous at the nanoscale. We can quantify this lattice rotation, and find that even though the rotation is large, it may be mediated by a reasonable geometrically necessary dislocation density, and note that similar rotations are typically observed in other materials under nanoindentation. HRSTEM and conventional TEM data confirm the

  13. Electrohydrodynamic deformation of drops and bubbles at large Reynolds numbers

    Science.gov (United States)

    Schnitzer, Ory

    2015-11-01

    In Taylor's theory of electrohydrodynamic drop deformation by a uniform electric field, inertia is neglected at the outset, resulting in fluid velocities that scale with E2, E being the applied-field magnitude. When considering strong fields and low viscosity fluids, the Reynolds number predicted by this scaling may actually become large, suggesting the need for a complementary large-Reynolds-number analysis. Balancing viscous and electrical stresses reveals that the velocity scales with E 4 / 3. Considering a gas bubble, the external flow is essentially confined to two boundary layers propagating from the poles to the equator, where they collide to form a radial jet. Remarkably, at leading order in the Capillary number the unique scaling allows through application of integral mass and momentum balances to obtain a closed-form expression for the O (E2) bubble deformation. Owing to a concentrated pressure load at the vicinity of the collision region, the deformed profile features an equatorial dimple which is non-smooth on the bubble scale. The dynamical importance of internal circulation in the case of a liquid drop leads to an essentially different deformation mechanism. This is because the external boundary layer velocity attenuates at a short distance from the interface, while the internal boundary-layer matches with a Prandtl-Batchelor (PB) rotational core. The dynamic pressure associated with the internal circulation dominates the interfacial stress profile, leading to an O (E 8 / 3) deformation. The leading-order deformation can be readily determined, up to the PB constant, without solving the circulating boundary-layer problem. To encourage attempts to verify this new scaling, we shall suggest a favourable experimental setup in which inertia is dominant, while finite-deformation, surface-charge advection, and gravity effects are negligible.

  14. Interactive Streamline Exploration and Manipulation Using Deformation

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Xin; Chen, Chun-Ming; Shen, Han-Wei; Wong, Pak C.

    2015-01-12

    Occlusion presents a major challenge in visualizing three-dimensional flow fields with streamlines. Displaying too many streamlines at once makes it difficult to locate interesting regions, but displaying too few streamlines risks missing important features. A more ideal streamline exploration model is to allow the viewer to freely move across the field that has been populated with interesting streamlines and pull away the streamlines that cause occlusion so that the viewer can inspect the hidden ones in detail. In this paper, we present a streamline deformation algorithm that supports such user-driven interaction with three-dimensional flow fields. We define a view-dependent focus+context technique that moves the streamlines occluding the focus area using a novel displacement model. To preserve the context surrounding the user-chosen focus area, we propose two shape models to define the transition zone for the surrounding streamlines, and the displacement of the contextual streamlines is solved interactively with a goal of preserving their shapes as much as possible. Based on our deformation model, we design an interactive streamline exploration tool using a lens metaphor. Our system runs interactively so that users can move their focus and examine the flow field freely.

  15. Deformed symmetries in noncommutative and multifractional spacetimes

    Science.gov (United States)

    Calcagni, Gianluca; Ronco, Michele

    2017-02-01

    We clarify the relation between noncommutative spacetimes and multifractional geometries, two quantum-gravity-related approaches where the fundamental description of spacetime is not given by a classical smooth geometry. Despite their different conceptual premises and mathematical formalisms, both research programs allow for the spacetime dimension to vary with the probed scale. This feature and other similarities led to ask whether there is a duality between these two independent proposals. In the absence of curvature and comparing the symmetries of both position and momentum space, we show that κ -Minkowski spacetime and the commutative multifractional theory with q -derivatives are physically inequivalent but they admit several contact points that allow one to describe certain aspects of κ -Minkowski noncommutative geometry as a multifractional theory and vice versa. Contrary to previous literature, this result holds without assuming any specific measure for κ -Minkowski. More generally, no well-defined ⋆-product can be constructed from the q -theory, although the latter does admit a natural noncommutative extension with a given deformed Poincaré algebra. A similar no-go theorem may be valid for all multiscale theories with factorizable measures. Turning gravity on, we write the algebras of gravitational first-class constraints in the multifractional theories with q - and weighted derivatives and discuss their differences with respect to the deformed algebras of κ -Minkowski spacetime and of loop quantum gravity.

  16. Mixing of discontinuously deforming media

    Science.gov (United States)

    Smith, L. D.; Rudman, M.; Lester, D. R.; Metcalfe, G.

    2016-02-01

    Mixing of materials is fundamental to many natural phenomena and engineering applications. The presence of discontinuous deformations—such as shear banding or wall slip—creates new mechanisms for mixing and transport beyond those predicted by classical dynamical systems theory. Here, we show how a novel mixing mechanism combining stretching with cutting and shuffling yields exponential mixing rates, quantified by a positive Lyapunov exponent, an impossibility for systems with cutting and shuffling alone or bounded systems with stretching alone, and demonstrate it in a fluid flow. While dynamical systems theory provides a framework for understanding mixing in smoothly deforming media, a theory of discontinuous mixing is yet to be fully developed. New methods are needed to systematize, explain, and extrapolate measurements on systems with discontinuous deformations. Here, we investigate "webs" of Lagrangian discontinuities and show that they provide a template for the overall transport dynamics. Considering slip deformations as the asymptotic limit of increasingly localised smooth shear, we also demonstrate exactly how some of the new structures introduced by discontinuous deformations are analogous to structures in smoothly deforming systems.

  17. Deformation and fracture of echinoderm collagen networks

    CERN Document Server

    Ovaska, Markus; Miksic, Amandine; Sugni, Michela; Di Benedetto, Cristiano; Ferrario, Cinzia; Leggio, Livio; Guidetti, Luca; Alava, Mikko J; La Porta, Caterina A M; Zapperi, Stefano

    2016-01-01

    Collagen networks provide the main structural component of most tissues and represent an important ingredient for bio-mimetic materials for bio-medical applications. Here we study the mechanical properties of stiff collagen networks derived from three different echinoderms and show that they exhibit non-linear stiffening followed by brittle fracture. The disordered nature of the network leads to strong sample-to-sample fluctuations in elasticity and fracture strength. We perform numerical simulations of a three dimensional model for the deformation of a cross-linked elastic fibril network which is able to reproduce the macroscopic features of the experimental results and provide insights into the internal mechanics of stiff collagen networks. Our numerical model provides an avenue for the design of collagen membranes with tunable mechanical properties.

  18. View-Dependent Streamline Deformation and Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Tong, Xin; Edwards, John; Chen, Chun-Ming; Shen, Han-Wei; Johnson, Chris R.; Wong, Pak Chung

    2016-07-01

    Occlusion presents a major challenge in visualizing 3D flow and tensor fields using streamlines. Displaying too many streamlines creates a dense visualization filled with occluded structures, but displaying too few streams risks losing important features. We propose a new streamline exploration approach by visually manipulating the cluttered streamlines by pulling visible layers apart and revealing the hidden structures underneath. This paper presents a customized view-dependent deformation algorithm and an interactive visualization tool to minimize visual cluttering for visualizing 3D vector and tensor fields. The algorithm is able to maintain the overall integrity of the fields and expose previously hidden structures. Our system supports both mouse and direct-touch interactions to manipulate the viewing perspectives and visualize the streamlines in depth. By using a lens metaphor of different shapes to select the transition zone of the targeted area interactively, the users can move their focus and examine the vector or tensor field freely.

  19. Measurement of transient deformation by color encoding.

    Science.gov (United States)

    Mares, C; Barrientos, B; Blanco, A

    2011-12-05

    We present a method based on color encoding for measurement of transient 3D deformation in diffuse objects. The object is illuminated by structured light that consists of a fringe pattern with cyan fringes embedded in a white background. Color images are registered and information on each color channel is then separated. Surface features appear on the blue channel while fringes on the red channel. The in-plane components of displacement are calculated via digital correlation of the texture images. Likewise, the resulting fringes serve for the measuring of the out-of-plane component. As crossing of information between signals is avoided, the accuracy of the method is high. This is confirmed by a series of displacement measurements of an aluminum plate.

  20. Mixing of discontinuously deforming media

    CERN Document Server

    Smith, Lachlan D; Lester, Daniel R; Metcalfe, Guy

    2016-01-01

    Mixing of materials is fundamental to many natural phenomena and engineering applications. The presence of discontinuous deformations - such as shear banding or wall slip - creates new mechanisms for mixing and transport beyond those predicted by classical dynamical systems theory. Here we show how a novel mixing mechanism combining stretching with cutting and shuffling yields exponential mixing rates, quantified by a positive Lyapunov exponent, an impossibility for systems with cutting and shuffling alone or bounded systems with stretching alone, and demonstrate it in a fluid flow. While dynamical systems theory provides a framework for understanding mixing in smoothly deforming media, a theory of discontinuous mixing is yet to be fully developed. New methods are needed to systematize, explain and extrapolate measurements on systems with discontinuous deformations. Here we investigate 'webs' of Lagrangian discontinuities and show that they provide a template for the overall transport dynamics. Considering sl...

  1. Shock metamorphism of deformed quartz

    Science.gov (United States)

    Gratz, Andrew J.; Christie, John; Tyburczy, James; Ahrens, Thomas; Pongratz, Peter

    1988-01-01

    The effect produced by shock loading (to peak pressures of 12 and 24) on deformed synthetic quartz containing a dislocation and abundant bubbles and small inclusions was investigated, and the relationships between preexisting dislocation density shock lamellae in the target material were examined. The resultant material was found to be inhomogeneously deformed and extremely fractured. Results of TEM examinations indicate that no change in dislocation density was caused by shock loading except in regions containing shock lamellae, where the dislocation density was lowered. The shock-induced defects tend to nucleate on and be controlled by preexisting stress concentrators; shock lamellae, glassy veins, and most curviplanar defects form in tension, presumably during release. An extremely mobile silica fluid is formed and injected into fractures during release, which forcibly removes crystalline fragments from vein walls. It is concluded that shock deformation in quartz is dominated by fracture and melting.

  2. Finite Deformation of Magnetoelastic Film

    Energy Technology Data Exchange (ETDEWEB)

    Barham, Matthew Ian [Univ. of California, Berkeley, CA (United States)

    2011-05-31

    A nonlinear two-dimensional theory is developed for thin magnetoelastic lms capable of large deformations. This is derived directly from three-dimensional theory. Signi cant simpli cations emerge in the descent from three dimensions to two, permitting the self eld generated by the body to be computed a posteriori. The model is specialized to isotropic elastomers with two material models. First weak magnetization is investigated leading to a free energy where magnetization and deformation are un-coupled. The second closely couples the magnetization and deformation. Numerical solutions are obtained to equilibrium boundary-value problems in which the membrane is subjected to lateral pressure and an applied magnetic eld. An instability is inferred and investigated for the weak magnetization material model.

  3. On deformations of triangulated models

    CERN Document Server

    De Deken, Olivier

    2012-01-01

    This paper is the first part of a project aimed at understanding deformations of triangulated categories, and more precisely their dg and A infinity models, and applying the resulting theory to the models occurring in the Homological Mirror Symmetry setup. In this first paper, we focus on models of derived and related categories, based upon the classical construction of twisted objects over a dg or $A_{\\infty}$-algebra. For a Hochschild 2 cocycle on such a model, we describe a corresponding "curvature compensating" deformation which can be entirely understood within the framework of twisted objects. We unravel the construction in the specific cases of derived A infinity and abelian categories, homotopy categories, and categories of graded free qdg-modules. We identify a purity condition on our models which ensures that the structure of the model is preserved under deformation. This condition is typically fulfilled for homotopy categories, but not for unbounded derived categories.

  4. Discrete kinematic modeling of the 3-D deformation of sedimentary basins; Modelisation cinematique discrete de la deformation 3D des bassins sedimentaires

    Energy Technology Data Exchange (ETDEWEB)

    Cornu, T.

    2001-01-01

    The present work deals with three-dimensional deformation of sedimentary basins. The main goal of the work was to propose new ways to study tectonic deformation and to insert it into basin-modeling environment for hydrocarbon migration applications. To handle the complexity of the deformation, the model uses kinematic laws, a discrete approach, and the construction of a code that allows the greatest diversity in the deformation mechanisms we can take into account. The 3-D-volume deformation is obtained through the calculation of the behavior of the neutral surface of each basin layer. The main idea is to deform the neutral surface of each layer with the help of geometrical laws and to use the result to rebuild the volume deformation of the basin. The constitutive algorithm includes three characteristic features. The first one deals with the mathematical operator we use to describe the flexural-slip mechanism which is a combination of the translation of the neutral surface nodes and the rotation of the vertical edges attached to these nodes. This performs the reversibility that was required for the basin modeling. The second one is about. the use of a discrete approach, which gives a better description of the global deformation and offers to locally control volume evolutions. The knowledge of volume variations can become a powerful tool in structural geology analysis and the perfect complement for a field study. The last one concerns the modularity of the developed code. Indeed, the proposed model uses three main mechanisms of deformation. But the architecture of the code allows the insertion of new mechanisms or a better interaction between them. The model has been validated first with 2-D cases, then with 3-D natural cases. They give good results from a qualitative point of view. They also show the capacity of the model to provide a deformation path that is geologically acceptable, and its ability to control the volume variations of the basin through the

  5. Tracking of deformable objects

    Science.gov (United States)

    Aswani, Parimal; Wong, K. K.; Chong, Man N.

    2000-12-01

    Tracking of moving-objects in image sequences is needed for several video processing applications such as content-based coding, object oriented compression, object recognition and more recently for video object plane extraction in MPEG-4 coding. Tracking is a natural follow-up of motion-based segmentation. It is a fast and efficient method to achieve coherent motion segments along the temporal axis. Segmenting out moving objects for each and every frame in a video sequence is a computationally expensive approach. Thus, for better performance, semi-automatic segmentation is an acceptable compromise as automatic segmentation approaches rely heavily on prior assumptions. In semi-automatic segmentation approaches, motion-segmentation is performed only on the initial frame and the moving object is tracked in subsequent frames using tracking algorithms. In this paper, a new model for object tracking is proposed, where the image features -- edges, intensity pattern, object motion and initial keyed-in contour (by the user) form the prior and likelihood model of a Markov Random Field (MRF) model. Iterated Conditional Mode (ICM) is used for the minimization of the global energy for the MRF model. The motion segment for each frame is initialized using the segment information from the previous frame. For the initial frame, the motion segment is obtained by manually keying in the object contour. The motion-segments obtained using the proposed model are coherent and accurate. Experimental results on tracking using the proposed algorithm for different sequences -- Bream, Alexis and Claire are presented in this paper. The results obtained are accurate and can be used for a variety of applications including MPEG-4 Video Object Plane (VOP) extraction.

  6. Deformable mirror with thermal actuators.

    Science.gov (United States)

    Vdovin, Gleb; Loktev, Mikhail

    2002-05-01

    Low-cost adaptive optics is applied in lasers, scientific instrumentation, ultrafast sciences, and ophthalmology. These applications demand that the deformable mirrors used be simple, inexpensive, reliable, and efficient. We report a novel type of ultralow-cost deformable mirror with thermal actuators. The device has a response time of ~5 s , an actuator stroke of ~6mum , and temporal stability of ~lambda/10 rms in the visible range and can be used for correction of rather large aberrations with slow-changing amplitude.

  7. Computing layouts with deformable templates

    KAUST Repository

    Peng, Chihan

    2014-07-27

    In this paper, we tackle the problem of tiling a domain with a set of deformable templates. A valid solution to this problem completely covers the domain with templates such that the templates do not overlap. We generalize existing specialized solutions and formulate a general layout problem by modeling important constraints and admissible template deformations. Our main idea is to break the layout algorithm into two steps: a discrete step to lay out the approximate template positions and a continuous step to refine the template shapes. Our approach is suitable for a large class of applications, including floorplans, urban layouts, and arts and design. Copyright © ACM.

  8. Cavity coalescence in superplastic deformation

    Energy Technology Data Exchange (ETDEWEB)

    Stowell, M.J.; Livesey, D.W.; Ridley, N.

    1984-01-01

    An analysis of the probability distribution function of particles randomly dispersed in a solid has been applied to cavitation during superplastic deformation and a method of predicting cavity coalescence developed. Cavity size distribution data were obtained from two microduplex nickel-silver alloys deformed superplastically to various extents at elevated temperature, and compared to theoretical predictions. Excellent agreement occurred for small void sizes but the model underestimated the number of voids in the largest size groups. It is argued that the discrepancy results from a combination of effects due to non-random cavity distributions and to enhanced growth rates and incomplete spheroidization of the largest cavities.

  9. Fourth order deformed general relativity

    CERN Document Server

    Cuttell, Peter D

    2014-01-01

    Whenever the condition of anomaly freedom is imposed within the framework of effective approaches to loop quantum cosmology, one seems to conclude that a deformation of general covariance is required. Here, starting from a general deformation we regain an effective gravitational Lagrangian including terms up to fourth order in extrinsic curvature. We subsequently constrain the form of the corrections, and then investigate the conditions for the occurrence of a big bounce and the realisation of an inflationary era, in the presence of a perfect fluid or scalar field.

  10. Deforming baryons into confining strings

    CERN Document Server

    Hartnoll, S A; Hartnoll, Sean A.; Portugues, Ruben

    2004-01-01

    We find explicit probe D3-brane solutions in the infrared of the Maldacena-Nunez background. The solutions describe deformed baryon vertices: q external quarks are separated in spacetime from the remaining N-q. As the separation is taken to infinity we recover known solutions describing infinite confining strings in ${\\mathcal{N}}=1$ gauge theory. We present results for the mass of finite confining strings as a function of length. We also find probe D2-brane solutions in a confining type IIA geometry, the reduction of a G_2 holonomy M theory background. The interpretation of these solutions as deformed baryons/confining strings is not as straightforward.

  11. Online feature selection with streaming features.

    Science.gov (United States)

    Wu, Xindong; Yu, Kui; Ding, Wei; Wang, Hao; Zhu, Xingquan

    2013-05-01

    We propose a new online feature selection framework for applications with streaming features where the knowledge of the full feature space is unknown in advance. We define streaming features as features that flow in one by one over time whereas the number of training examples remains fixed. This is in contrast with traditional online learning methods that only deal with sequentially added observations, with little attention being paid to streaming features. The critical challenges for Online Streaming Feature Selection (OSFS) include 1) the continuous growth of feature volumes over time, 2) a large feature space, possibly of unknown or infinite size, and 3) the unavailability of the entire feature set before learning starts. In the paper, we present a novel Online Streaming Feature Selection method to select strongly relevant and nonredundant features on the fly. An efficient Fast-OSFS algorithm is proposed to improve feature selection performance. The proposed algorithms are evaluated extensively on high-dimensional datasets and also with a real-world case study on impact crater detection. Experimental results demonstrate that the algorithms achieve better compactness and higher prediction accuracy than existing streaming feature selection algorithms.

  12. RECENT TECTONIC DEFORMATION ANOMALY AND EARTHQUAKES IN GANSU-NINGXIA-QINGHAI AREA

    Institute of Scientific and Technical Information of China (English)

    Wang Shuangxu; Zhang Xi; Zhang Sixin; Xue Fuping

    2003-01-01

    By processing and analyzing geodetic data of vertical deformation, fault deforma tion and horizontal deformation by GPS in Gansu-Ningxia-Qinghai area and by comparing them with geological structures and many medium to strong earthquake activities in this area, some features of recent tectonic deformation anomaly and the development of medium to strong earthtively large. The amount of vertical movement and the deformation status evolve with time. The dominant stress of tectonic deformation and seismic development in this area comes from the persistent northeastward compression of Qinghai-Tibet block;The time-spatial distribution evolution of tectonic deformation and seismic activities are closely related to dynamic evolution of block moand remarkable fault deformation anormaly on the borders of regional tectonic blocks are indicators of developing moderate-to-strong earthquakes but earthquakes may not necessarily take place in the position of maxium deformation, it usually occurred in the region where fault deformation anormaly shows "trend accumulation-acceleration-turn" variation character or nearby. On the basis of above study, a preliminary prediction for strong earthquake risk in this area is given.

  13. Evaluation of microstructure anisotropy on room and medium temperature ECAP deformed F138 steel

    Energy Technology Data Exchange (ETDEWEB)

    De Vincentis, N.S., E-mail: devincentis@ifir-conicet.gov.ar [Instituto de Física Rosario, FCEIA-UNR-CONICET, Bv. 27 de Febrero 210 bis, S2000EZP Rosario (Argentina); Kliauga, A.; Ferrante, M. [Departamento de Engenharia de Materiais — Universidade Federal de São Carlos, Rodovia Washington Luís, km 235 — SP-310, São Carlos, SP 13565-905 (Brazil); Avalos, M. [Instituto de Física Rosario, FCEIA-UNR-CONICET, Bv. 27 de Febrero 210 bis, S2000EZP Rosario (Argentina); Brokmeier, H.-G. [Institut für Werkstoffkunde und Werkstofftechnik, TU Clausthal, Agricolastr.6, 38678 Clausthal-Zellerfeld. Helmholtz-Zentrum Geesthacht, GEMS Outstation, Notkestr. 85, 22607 Hamburg (Germany); Bolmaro, R.E. [Instituto de Física Rosario, FCEIA-UNR-CONICET, Bv. 27 de Febrero 210 bis, S2000EZP Rosario (Argentina)

    2015-09-15

    The microstructure developed during severe plastic deformation results in improved mechanical properties because of the decrease in domain sizes and accumulation of defects, mainly dislocation arrays. The characteristic deformation stages observed in low stacking fault energy (SFE) face centered cubic (FCC) materials are highly influenced by the development of the primary and secondary twinning that compete with dislocation glide. In this paper, a low SFE F138 stainless steel is deformed by equal channel angular pressing (ECAP) up to 4 passes at room temperature (RT) and at 300 °C to compare the grain refinement and twin boundary development with increasing deformation. Tensile tests were performed to determine the deformation stages reached by the material before and after ECAP deformation, and the resulting microstructure was observed by TEM. X-ray diffraction and EBSD, average technique the first and local the second one, were used to quantify the microstructural changes, allowing the determination of diffraction domain sizes, dislocation and stacking fault densities and misorientation indices, which lead to a complete analysis of the deformation introduced in the material, with comparative correlations between various microstructural parameters. - Highlights: • The microstructure of ECAP pressed F138 steel was studied using TEM, EBSD and XRD. • Increasing deformation reduced domain sizes and increased dislocation densities. • Dislocation array compactness and misorientation increased with higher deformation. • Largest dislocation densities, mostly screw, match with simultaneous activation of twins. • Several correlations among microstructural features and parameters have been disclosed.

  14. Deformations of the Almheiri-Polchinski model

    Science.gov (United States)

    Kyono, Hideki; Okumura, Suguru; Yoshida, Kentaroh

    2017-03-01

    We study deformations of the Almheiri-Polchinski (AP) model by employing the Yang-Baxter deformation technique. The general deformed AdS2 metric becomes a solution of a deformed AP model. In particular, the dilaton potential is deformed from a simple quadratic form to a hyperbolic function-type potential similarly to integrable deformations. A specific solution is a deformed black hole solution. Because the deformation makes the spacetime structure around the boundary change drastically and a new naked singularity appears, the holographic interpretation is far from trivial. The Hawking temperature is the same as the undeformed case but the Bekenstein-Hawking entropy is modified due to the deformation. This entropy can also be reproduced by evaluating the renormalized stress tensor with an appropriate counter-term on the regularized screen close to the singularity.

  15. Space-based monitoring of ground deformation

    Science.gov (United States)

    Nobakht Ersi, Fereydoun; Safari, Abdolreza; Gamse, Sonja

    2016-07-01

    Ground deformation monitoring is valuable to understanding of the behaviour of natural phenomena. Space-Based measurement systems such as Global Positioning System are useful tools for continuous monitoring of ground deformation. Ground deformation analysis based on space geodetic techniques have provided a new, more accurate, and reliable source of information for geodetic positioning which is used to detect deformations of the Ground surface. This type of studies using displacement fields derived from repeated measurments of space-based geodetic networks indicates how crucial role the space geodetic methods play in geodynamics. The main scope of this contribution is to monitor of ground deformation by obtained measurements from GPS sites. We present ground deformation analysis in three steps: a global congruency test on daily coordinates of permanent GPS stations to specify in which epochs deformations occur, the localization of the deformed GPS sites and the determination of deformations.

  16. Study on the deformation and fracture feature of steep inclined coal seam roof based on the theory of thin plates%基于薄板理论的急倾斜工作面顶板初次变形破断特征研究

    Institute of Scientific and Technical Information of China (English)

    屠洪盛; 屠世浩; 陈芳; 王沉; 冯宇峰

    2014-01-01

    Based on the geological occurrence conditions of roof and floor steep coal working face and the characteristics of middle and lower caving gangue filling of goaf, the force model of steep coal working face is established by using theory of elastic thin plate, flexure deformation characteristics un-der overlying strata and inferior goaf filling gangue are studied, and the theoretical calculation formula of goaf filling width and deflection equation of roof deformation is obtained. In light of the field para-meter at Xintie mine of Long Mine group in Qitaihe branch, the study have shown that in the steep in-clined working face, there is a larger deformation in the roof in the upper part and less deformation in the lower part;maximum deflection is 24 m away from working face end, with maximum deformation 320 mm;In the working surface of coal wall in the front and rear upper coal wall, roof and upper part of caving rock contact office will first appear to stretch or cause shear failure, finally will form an “U”type breaking. Research results conform to actual roof deformation.%根据急倾斜煤层工作面顶底板地质赋存条件以及冒落矸石对工作面中下部采空区的充填特征,利用弹性薄板小挠度理论,建立了急倾斜工作面顶板的受力力学模型,研究了顶板在上覆岩层和下方充填矸石作用下顶板挠曲变形特征,得到急倾斜工作面下部采空区充填带宽度的理论计算公式和顶板变形挠度方程,结合龙煤集团七台河新铁煤矿工作面实际开采参数,分析出急倾斜工作面中上部顶板受力变形较大,下部顶板变形较小,最大挠度点距工作面上端头24 m处,最大变形量为320 mm,工作面中上部前方煤壁和后方煤壁处、上部顶板和中下部冒落矸石接触处将首先出现拉伸或剪切破坏,最后将形成“U”字型破断。研究结果与实际顶板受力变形相符。

  17. The petrography features of impact breccias in the Western Taihu Lake,Jiangsu,China%太湖西缘击变角砾岩的岩相学特征及其研究意义--太湖冲击成因又添新证据

    Institute of Scientific and Technical Information of China (English)

    王鹤年; 钱汉东; 黄钟谨; 施贵军

    2015-01-01

    冲击变质作用是变质作用的一种新类型,是指由陨石或彗星高速降落所产生的高压冲击波,瞬间经过或穿过靶岩所引起的岩石及矿物中的所有变化,击变岩是冲击变质作用的典型产物。近年来国外在这一领域发展很快,但国内尚无详细的研究成果报道。近期在太湖西缘发现了这类击变角砾岩。根据国外研究总结提出的诊断性特征和有效的岩相学研究方法,本文对击变角砾岩中面型微裂隙(PFs)、面型微页理(PDFs)、击变矿物玻璃(diaplectic glass)、击变高温矿物玻璃及熔体(焦石英lechatelierite)及岩石相的转变(岩石熔融)等标志性特征的研究,确证了太湖西缘这类击变岩的存在。研究对推动国内击变岩的研究和发展将起到积极促进作用,并为“太湖冲击事件”增添新的证据。%Impact metamorphism is a new type of metamorphism.It refers to all changes in rocks caused by high-speed impact of meteorite or comet,during which high-pressure shockwaves passed by or penetrated through these target rocks.Impactite is a typical product of impact metamorphism.Research of this field has developed rapidly in some countries,yet no detailed research result was reported in China.In recent years the present authors found some impact breccias in the western margin of Taihu Lake.Petrographic features of these impact breccias are studied based on the identification criteria summarized from previous research experience,together with effective petrographic research methods.Some distinguishing characteristics,e.g.planar fissures(PFs),planar deformation features(PDFs),diaplectic glass,impact-induced high-temperature glasses and melts (lechatelierite),and the phase change of rocks (melting)are recognized,which confirm the existence of impactite in western Taihu area.The present study not only provides new evidence for the existence of the “Taihu Lake impact event”,but also actively promotes

  18. Non-uniform plastic deformation of micron scale objects

    DEFF Research Database (Denmark)

    Niordson, Christian Frithiof; Hutchinson, J. W.

    2003-01-01

    Significant increases in apparent flow strength are observed when non-uniform plastic deformation of metals occurs at the scale ranging from roughly one to ten microns. Several basic plane strain problems are analyzed numerically in this paper based on a new formulation of strain gradient plastic...... in the numerical analysis of the higher order gradient theory will be discussed and related to prior formulations having some of the same features....

  19. Paleohydrologic controls on soft-sediment deformation in the Navajo Sandstone

    Science.gov (United States)

    Bryant, Gerald; Cushman, Robert; Nick, Kevin; Miall, Andrew

    2016-10-01

    Many workers have noted the presence of contorted cross-strata in the Navajo Sandstone and other ancient eolianites, and have recognized their significance as indicators of sediment saturation during the accumulation history. Horowitz (1982) proposed a general model for the production of such features in ancient ergs by episodic, seismically induced liquefaction of accumulated sand. A key feature of that popular model is the prevalence of a flat water table, characteristic of a hyper-arid climatic regime, during deformation. Under arid climatic conditions, the water table is established by regional flow and liquefaction is limited to the saturated regions below the level of interdune troughs. However, various paleohydrological indicators from Navajo Sandstone outcrops point toward a broader range of water table configurations during the deformation history of that eolianite. Some outcrops reveal extensive deformation complexes that do not appear to have extended to the contemporary depositional surface. These km-scale zones of deformation, affecting multiple sets of cross-strata, and grading upward into undeformed crossbeds may represent deep water table conditions, coupled with high intensity triggers, which produced exclusively intrastratal deformation. Such occurrences contrast with smaller-scale complexes formed within the zone of interaction between the products of soft-sediment deformation and surface processes of deposition and erosion. The Horowitz model targets the smaller-scale deformation morphologies produced in this near-surface environment. This study examines the implications of a wet climatic regime for the Horowitz deformation model. It demonstrates how a contoured water table, characteristic of humid climates, may have facilitated deformation within active bedforms, as well as in the accumulation. Intra-dune deformation would enable deflation of deformation features during the normal course of dune migration, more parsimoniously accounting for

  20. Switching deformation mode during natural faulting in Carrara marbles.

    Science.gov (United States)

    Molli, Giancarlo

    2010-05-01

    A study on meso- and microstructural features of a high angle normal fault observed in the Alpi Apuane NW Tuscany (Italy) is presented to document switching in the deformation mode during different evolutionary stages of a fault zone growth in naturally deformed Carrara marble. The studied fault was formed at c.3 Km of depth and belongs to structures related to the most recent deformation history of the Alpi Apuane metamorphic core (from c.4 Ma until now, Fellin et al. 2007; Molli, 2008). On the basis of deformation mechanisms and their chronology interpreted from cross-cutting relationships, different stages of the fault zone evolution have been recognized. An early stage of deformation (stage 1) was associated with extensional and shear veins now observable in both hangingwall and footwall blocks as part of the deformation zone developed at decameter-scale. Geochemical data indicate vein-development in a locally closed system where a "stationary" fluid phase migrates over meter scale distances (Molli et al., in press). During stage 2, a localization of the deformation, possibly in precursory coarse grained calcite/quartz shear veins of stage 1, took place. During this second stage crystal-plastic deformation affected areas at the head and along the hanging wall rim of fractures accommodating fault tip distorsions in a way recalling the mode-II geometry of stable crack propagation (Atkinson, 1987; Vermilye and Scholtz, 1993; Kim et al., 2004). Following pervasive cataclasis (stage 3) characterizes a plurimeter-wide dilational jog between two non-parallel main slip surfaces with brecciation and far-derived fluids channelling leading to significant geochemical alteration of the fault rocks with respect to the protolith (Molli et al., in press). Cataclastic deformation produced a grain size refinement and a decimetric thick fault core asymmetrically bounded by the upper main slip surface. Deformation was then localized within ultracataclasite of the fault core where

  1. Deformable Models for Eye Tracking

    DEFF Research Database (Denmark)

    Vester-Christensen, Martin; Leimberg, Denis; Ersbøll, Bjarne Kjær;

    2005-01-01

    A deformable template method for eye tracking on full face images is presented. The strengths of the method are that it is fast and retains accuracy independently of the resolution. We compare the me\\$\\backslash\\$-thod with a state of the art active contour approach, showing that the heuristic...

  2. Spatiotemporal deformations of reflectionless potentials

    Science.gov (United States)

    Horsley, S. A. R.; Longhi, S.

    2017-08-01

    Reflectionless potentials for classical or matter waves represent an important class of scatteringless systems encountered in different areas of physics. Here we mathematically demonstrate that there is a family of non-Hermitian potentials that, in contrast to their Hermitian counterparts, remain reflectionless even when deformed in space or time. These are the profiles that satisfy the spatial Kramers-Kronig relations. We start by considering scattering of matter waves for the Schrödinger equation with an external field, where a moving potential is observed in the Kramers-Henneberger reference frame. We then generalize this result to the case of electromagnetic waves, by considering a slab of reflectionless material that both is scaled and has its center displaced as an arbitrary function of position. We analytically and numerically demonstrate that the backscattering from these profiles remains zero, even for extreme deformations. Our results indicate the supremacy of non-Hermitian Kramers-Kronig potentials over reflectionless Hermitian potentials in keeping their reflectionless property under deformation and could find applications to, e.g., reflectionless optical coatings of highly deformed surfaces based on perfect absorption.

  3. Bethe ansatz and Isomonodromic deformations

    CERN Document Server

    Talalaev, D

    2008-01-01

    We study symmetries of the Bethe equations for the Gaudin model appeared naturally in the framework of the geometric Langlands correspondence under the name of Hecke operators and under the name of Schlesinger transformations in the theory of isomonodromic deformations, and particularly in the theory of Painlev\\'e transcendents.

  4. Pre-Lie Deformation Theory

    NARCIS (Netherlands)

    Dotsenko, V.; Shadrin, S.; Vallette, B.

    2016-01-01

    In this paper, we develop the deformation theory controlled by pre-Lie algebras; the main tool is a new integration theory for preLie algebras. The main field of application lies in homotopy algebra structures over a Koszul operad; in this case, we provide a homotopical description of the associated

  5. Highly deformable nanofilaments in flow

    Science.gov (United States)

    Pawłowska, S.

    2016-10-01

    Experimental analysis of hydrogel nanofilaments conveyed by flow is conducted to help in understanding physical phenomena responsible for transport properties and shape deformations of long bio-objects, like DNA or proteins. Investigated hydrogel nanofilaments exhibit typical macromolecules-like behavior, as spontaneous conformational changes and cross-flow migration. Results of the experiments indicate critical role of thermal fluctuations behavior of single filaments.

  6. The Hopf algebra structure of the h-deformed Z3-graded quantum supergroup GLh,j(1|1)

    Science.gov (United States)

    Yasar, Ergün

    2016-07-01

    In this work, we define a new proper singular g matrix to construct a Z3-graded calculus on the h-deformed quantum superplane. Using the obtained calculus, we construct a new h-deformed Z3-graded quantum supergroup and give some features of it. Finally, we build up the Hopf algebra structure of this supergroup.

  7. Deformation patterns and surface morphology in a minimal model of amorphous plasticity

    Science.gov (United States)

    Sandfeld, Stefan; Zaiser, Michael

    2014-03-01

    We investigate a minimal model of the plastic deformation of amorphous materials. The material elements are assumed to exhibit ideally plastic behavior (J2 plasticity). Structural disorder is considered in terms of random variations of the local yield stresses. Using a finite element implementation of this simple model, we simulate the plane strain deformation of long thin rods loaded in tension. The resulting strain patterns are statistically characterized in terms of their spatial correlation functions. Studies of the corresponding surface morphology reveal a non-trivial Hurst exponent H ≈ 0.8, indicating the presence of long-range correlations in the deformation patterns. The simulated deformation patterns and surface morphology exhibit persistent features which emerge already at the very onset of plastic deformation, while subsequent evolution is characterized by growth in amplitude without major morphology changes. The findings are compared to experimental observations.

  8. Analysis of related factors on the deformity correction of balloon kyphoplasty.

    Science.gov (United States)

    Xu, C; Liu, H-X; Xu, H-Z

    2014-01-01

    Balloon kyphoplasty is a minimally invasive surgical approach for treating vertebral compression fractures, including osteoporotic vertebral compression fractures. The purpose of this study was to determine the effect of balloon inflation and postural reduction on balloon kyphoplasty for the deformity correction of vertebral compression fractures and to explore the correlative factors affecting the deformity correction. A retrospective study of 72 patients (75 levels) who had undergone balloon kyphoplasty was conducted. Imaging data and clinical features were collected and analyzed. Independent-samples t test analysis was used to find the possible factors affecting deformity correction. Postural correction in the overextending position significantly increased anterior middle vertebral height, kyphotic angle, and Cobb angle (each P postural reduction and balloon dilation (each P > .05). The improvement on the Visual Analog Scale was notable (P correction. The deformity correction was attributed to postural reduction with cement strengthening. The most significant factors affecting deformity correction were the fracture type and bone cement injected volume.

  9. Deformation behavior of Fe-based bulk metallic glass during nanoindentation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Fe-based bulk metallic glasses (BMGs) normally exhibit super high strength but significant brittleness at ambient temperature. Therefore,it is difficult to investigate the plastic deformation behavior and mechanism in these alloys through conven-tional tensile and compressive tests due to lack of distinct macroscopic plastic strain. In this work,the deformation behavior of Fe52Cr15Mo9Er3C15B6 BMG was in-vestigated through instrumented nanoindentation and uniaxial compressive tests. The results show that serrated flow,the typical plastic deformation feature of BMGs,could not be found in as-cast and partially crystallized samples during nanoinden-tation. In addition,the deformation behavior and mechanical properties of the alloy are insensitive to the applied loading rate. The mechanism for the appearance of the peculiar deformation behavior in the Fe-based BMG is discussed in terms of the temporal and spatial characteristics of shear banding during nanoindentation.

  10. Deformation mechanism maps of magnesium lithium alloy and their experimental application

    Institute of Scientific and Technical Information of China (English)

    曹富荣; 崔建忠; 温景林

    2002-01-01

    Deformation mechanism maps for binary Mg-(8~9)Li(mass fraction, %) alloy at 423~623K were constructed in order to elucidate the internal meaning of mechanical experimental data at elevated temperatures. The models and data source used for constructing maps and constructed results are presented. It is determined through comparison of mechanical experimental data with constructed deformation mechanism maps that the dominant deformation mechanism for such alloy at 423~623K is lattice diffusion controlled grain boundary sliding. The difference of such deformation mechanism maps from former ones is that dislocation quantity inside the grains participates in the model calculation, which reveals the dislocation features of different deformation mechanisms.

  11. Relationships between phase morphology and deformation mechanisms in polymer nanocomposite nanofibres prepared by an electrospinning process.

    Science.gov (United States)

    Kim, G M; Lach, R; Michler, G H; Pötschke, P; Albrecht, K

    2006-02-28

    Relationships between phase morphology and mechanical deformation processes in various electrospun polymer nanocomposite nanofibres (PNCNFs) containing different types of one-, two- and three-dimensional nanofiller have been investigated by transmission electron microscopy using in situ tensile techniques. From the study of the phase structure of electrospun PNCNFs, two morphological standard types are classified for the analysis of deformation mechanisms: the binary system (polymer matrix and nanofillers), and the ternary system (polymer matrix, nanofillers and nanopores on the fibres surface). According to these categories, deformation processes have been characterized, and different schematic models for these processes are proposed. The finding of importance in the present work is a brittle-to-ductile transition in polymer nanocomposite fibres during in situ tensile deformation processes. This unique feature in the deformation behaviour of electrospun PNCNFs provides an optimal balance of stiffness, strength and toughness for use as reinforcing elements in a polymer based composite of a new kind.

  12. Deformation behavior of Fe-based bulk metallic glass during nanoindentation

    Institute of Scientific and Technical Information of China (English)

    LI Lei; LIU Yuan; ZHANG TaiHua; GU JianSheng; WEI BingChen

    2008-01-01

    Fe-based bulk metallic glasses (BMGs) normally exhibit super high strength but significant brittleness at ambient temperature. Therefore, it is difficult to investigate the plastic deformation behavior and mechanism in these alloys through conven-tional tensile and compressive tests due to lack of distinct macroscopic plastic strain. In this work, the deformation behavior of Fe52Cr15Mo9Er3C15B6 BMG was in-vestigated through instrumented nanoindentation and uniaxial compressive tests. The results show that serrated flow, the typical plastic deformation feature of BMGs, could not be found in as-cast and partially crystallized samples during nanoinden-tation. In addition, the deformation behavior and mechanical properties of the alloy are insensitive to the applied loading rate. The mechanism for the appearance of the peculiar deformation behavior in the Fe-based BMG is discussed in terms of the temporal and spatial characteristics of shear banding during nanoindentation.

  13. Slip as the basic mechanism for formation of deformation relief structural elements

    Science.gov (United States)

    Lychagin, D. V.; Alfyorova, E. A.

    2017-07-01

    The experimental results of investigation of the nickel single crystal surface morphology after compression deformation are presented. The quasi-periodic character of the deformation profile, common for shear deformation of different types of relief structural elements, is found. It is demonstrated that the morphological manifestation of these structural elements is determined by local shear systems along octahedral planes. The regularities of the deformation structure in these regions defining the material extrusion and intrusion regions and the specific features of disorientation accumulation are established. If reorientation of local regions takes part in the relief element formation, along with octahedral slip, much stronger growth of the surface area is observed. The possibility of application of two-dimensional and three-dimensional surface roughness parameters for description of deformation relief is considered.

  14. Thorax deformity, joint hypermobility, and anxiety disorders.

    Science.gov (United States)

    Gulsun, Murat; Yilmaz, Mehmet B; Pinar, Murat; Tonbul, Murat; Celik, Cemil; Ozdemir, Barbaros; Dumlu, Kemal; Erbas, Mevlut

    2007-12-01

    To evaluate the association between thorax deformities, panic disorder, and joint hypermobility The study includes 52 males diagnosed with thorax deformity, and 40 healthy male controls without thorax deformity, in Tatvan Bitlis and Isparta, Turkey. The study was carried out from 2004 to 2006. The teleradiographic and thoracic lateral images of the subjects were evaluated to obtain the Beighton scores; subjects' psychiatric conditions were evaluated using the Structured Clinical Interview for DSM-IV Axis I Disorders (SCID-1), and the Hamilton Anxiety Scale (HAM-A) was applied in order to determine the anxiety levels. Both the subjects and controls were compared in sociodemographic, anxiety levels, and joint mobility levels. In addition, males with joint hypermobility and thorax deformity were compared to the group with thorax deformity without joint hypermobility. A significant difference in HAM-A scores was found between the groups with thorax deformity and without. In addition, 21 subjects with thorax deformity met the joint hypermobility criteria in the group with thorax deformity, and 7 subjects without thorax deformity met the joint hypermobility criteria in the group without thorax deformity, according to Beighton scoring. The Beighton scores of the subjects with thorax deformity were significantly different from those of the group without deformity. Additionally, anxiety scores of the males with thorax deformity and joint hypermobility were found higher than males with thorax deformity without joint hypermobility. Anxiety disorders, particularly panic disorder, have a significantly higher distribution in male subjects with thorax deformity compared to the healthy control group. In addition, the anxiety level of males with thorax deformity and joint hypermobility is higher than males with thorax deformity without joint hypermobility.

  15. 3D High Resolution Mesh Deformation Based on Multi Library Wavelet Neural Network Architecture

    Science.gov (United States)

    Dhibi, Naziha; Elkefi, Akram; Bellil, Wajdi; Amar, Chokri Ben

    2016-12-01

    This paper deals with the features of a novel technique for large Laplacian boundary deformations using estimated rotations. The proposed method is based on a Multi Library Wavelet Neural Network structure founded on several mother wavelet families (MLWNN). The objective is to align features of mesh and minimize distortion with a fixed feature that minimizes the sum of the distances between all corresponding vertices. New mesh deformation method worked in the domain of Region of Interest (ROI). Our approach computes deformed ROI, updates and optimizes it to align features of mesh based on MLWNN and spherical parameterization configuration. This structure has the advantage of constructing the network by several mother wavelets to solve high dimensions problem using the best wavelet mother that models the signal better. The simulation test achieved the robustness and speed considerations when developing deformation methodologies. The Mean-Square Error and the ratio of deformation are low compared to other works from the state of the art. Our approach minimizes distortions with fixed features to have a well reconstructed object.

  16. Highly deformable bones: unusual deformation mechanisms of seahorse armor.

    Science.gov (United States)

    Porter, Michael M; Novitskaya, Ekaterina; Castro-Ceseña, Ana Bertha; Meyers, Marc A; McKittrick, Joanna

    2013-06-01

    Multifunctional materials and devices found in nature serve as inspiration for advanced synthetic materials, structures and robotics. Here, we elucidate the architecture and unusual deformation mechanisms of seahorse tails that provide prehension as well as protection against predators. The seahorse tail is composed of subdermal bony plates arranged in articulating ring-like segments that overlap for controlled ventral bending and twisting. The bony plates are highly deformable materials designed to slide past one another and buckle when compressed. This complex plate and segment motion, along with the unique hardness distribution and structural hierarchy of each plate, provide seahorses with joint flexibility while shielding them against impact and crushing. Mimicking seahorse armor may lead to novel bio-inspired technologies, such as flexible armor, fracture-resistant structures or prehensile robotics.

  17. Prediction of deformity in spinal tuberculosis

    NARCIS (Netherlands)

    Jutte, Paul; Wuite, Sander; The, Bertram; van Altena, Richard; Veldhuizen, Albert

    2007-01-01

    Tuberculosis of the spine may cause kyphosis, which may in turn cause late paraplegia, respiratory compromise, and unsightly deformity. Surgical correction therefore may be considered for large or progressive deformities. We retrospectively analyzed clinical and radiographic parameters to predict th

  18. Deformation mechanisms in nanotwinned metal nanopillars.

    Science.gov (United States)

    Jang, Dongchan; Li, Xiaoyan; Gao, Huajian; Greer, Julia R

    2012-09-01

    Nanotwinned metals are attractive in many applications because they simultaneously demonstrate high strength and high ductility, characteristics that are usually thought to be mutually exclusive. However, most nanotwinned metals are produced in polycrystalline forms and therefore contain randomly oriented twin and grain boundaries making it difficult to determine the origins of their useful mechanical properties. Here, we report the fabrication of arrays of vertically aligned copper nanopillars that contain a very high density of periodic twin boundaries and no grain boundaries or other microstructural features. We use tension experiments, transmission electron microscopy and atomistic simulations to investigate the influence of diameter, twin-boundary spacing and twin-boundary orientation on the mechanical responses of individual nanopillars. We observe a brittle-to-ductile transition in samples with orthogonally oriented twin boundaries as the twin-boundary spacing decreases below a critical value (∼3-4 nm for copper). We also find that nanopillars with slanted twin boundaries deform via shear offsets and significant detwinning. The ability to decouple nanotwins from other microstructural features should lead to an improved understanding of the mechanical properties of nanotwinned metals.

  19. A mechanism for tectonic deformation on Venus

    Science.gov (United States)

    Phillips, Roger J.

    1986-01-01

    In the absence of identifiable physiographic features directly associated with plate tectonics, alternate mechanisms are sought for the intense tectonic deformation observed in radar images of Venus. One possible mechanism is direct coupling into an elastic lithosphere of the stresses associated with convective flow in the interior. Spectral Green's function solutions have been obtained for stresses in an elastic lithosphere overlying a Newtonian interior with an exponential depth dependence of viscosity, and a specified surface-density distribution driving the flow. At long wavelengths and for a rigid elastic/fluid boundary condition, horizontal normal stresses in the elastic lid are controlled by the vertical shear stress gradient and are directly proportional to the depth of the density disturbance in the underlying fluid. The depth and strength of density anomalies in the Venusian interior inferred by analyses of long wavelength gravity data suggest that stresses in excess of 100 MPa would be generated in a 10 km thick elastic lid unless a low viscosity channel occurring beneath the lid or a positive viscosity gradient uncouples the flow stresses. The great apparent depth of compensation of topographic features argues against this, however, thus supporting the importance of the coupling mechanism. If there is no elastic lid, stresses will also be very high near the surface, providing also that the viscosity gradient is negative.

  20. Finite Element Surface Layer Inheritable Condition Residual Stresses Model in Surface Plastic Deformation Processes

    Science.gov (United States)

    Mahalov, M. S.; Blumenstein, V. Yu

    2016-04-01

    The residual stresses (RS) research and computational algorithms creation in complex types of loading on the product lifecycle stages relevance is shown. The RS forming finite element model at surface plastic deformation strengthening machining, including technological inheritance effect, is presented. A model feature is the production previous stages obtained transformation properties consideration, as well as these properties evolution during metal particles displacement through the deformation space in the present loading step.

  1. Horizontal crustal deformation in Chinese Mainland analyzed by CMONOC GPS data from 2009–2013

    Directory of Open Access Journals (Sweden)

    Wang Wei

    2014-08-01

    Full Text Available In this study, we analyze the regional GPS data of Crustal Movement Observation Network of China (CMONOC observed from 2009–2013 using the BERNESE GPS software, and then the preliminary results of horizontal velocity field and strain rate field are presented, which could reflect the overall deformation features in the Chinese mainland from 2009–2013. Besides, the velocity error and the probable factors that could influence the estimate of long-term deformation are also discussed.

  2. Rock deformation processes in the Karakoram fault zone, Eastern Karakoram, Ladakh, NW India

    Science.gov (United States)

    Rutter, E. H.; Faulkner, D. R.; Brodie, K. H.; Phillips, R. J.; Searle, M. P.

    2007-08-01

    The Karakoram fault shows a full range of fault rocks from ductile (deformation by intracrystalline plasticity) mylonites to low temperature brittle fault rocks along the trace of the fault in the Eastern Karakoram, Ladakh, NW India. The Karakoram fault is a prominent feature on satellite images and has estimated long-term average slip rates between 3 and 11 mm/year, based on U-Pb geochronology of mapped offset markers, notably mid-Miocene leucogranites. Mylonitic marbles, superimposed by cataclastic deformation and clay-bearing fault gouges and late fracturing were found on a presently active strand of the fault, and testify to progressive deformation from plastic through brittle deformation during unroofing and cooling. From microstructural analysis we confirmed the right-lateral strike slip character of the fault, estimated peak differential stresses of ca. 200 MPa at the transition from plastic to brittle deformation, and found microstructural features to be consistent with inferences from the extrapolation of deformation behaviour from experimental rock deformation studies. Implied long-term averaged slip rates from microstructural constraints were found to be broadly consistent with estimates from geochronologic and geodetic studies.

  3. Core-mantle boundary deformations and J2 variations resulting from the 2004 Sumatra earthquake

    CERN Document Server

    Cannelli, V; De Michelis, P; Piersanti, A; Florindo, F

    2007-01-01

    The deformation at the core-mantle boundary produced by the 2004 Sumatra earthquake is investigated by means of a semi-analytic theoretical model of global coseismic and postseismic deformation, predicting a millimetric coseismic perturbation over a large portion of the core-mantle boundary. Spectral features of such deformations are analysed and discussed. The time-dependent postseismic evolution of the elliptical part of the gravity field (J2) is also computed for different asthenosphere viscosity models. Our results show that, for asthenospheric viscosities smaller than 10^18 Pa s, the postseismic J2 variation in the next years is expected to leave a detectable signal in geodetic observations.

  4. Deformation characteristics of mechanical expanding of thin-walled cylindrical parts

    Institute of Scientific and Technical Information of China (English)

    郭宝锋; 聂绍珉; 金淼; 李群; 吴生富

    2003-01-01

    Mechanical expanding is one of the finishing processes in cylindrical part forming.The distribution of stress and strain shows clearly regional features.FEA simulation and experiments show that the deformation process can be divided into three phases called as rounding phase,expanding phase and unloading phase in turn,in which the main types of deformation are wall bending,circumference elongating and thickness reducing,and spring back respectively.And the longitudinal section can be divided into three portions.expanding region,transition region and rigid region.The plastic deformation occurs regionally in suspended portion.A regional convex in transitional portion is inevitable.

  5. Protein transfer to membranes upon shape deformation

    NARCIS (Netherlands)

    Sagis, L.M.C.; Bijl, E.; Antono, L.; Ruijter, de N.C.A.; Valenberg, van H.J.F.

    2013-01-01

    Red blood cells, milk fat droplets, or liposomes all have interfaces consisting of lipid membranes. These particles show significant shape deformations as a result of flow. Here we show that these shape deformations can induce adsorption of proteins to the membrane. Red blood cell deformability is a

  6. Airborne Repeat Pass Interferometry for Deformation Measurements

    NARCIS (Netherlands)

    Groot, J.; Otten, M.; Halsema, E. van

    2000-01-01

    In ground engineering the need for deformation measurements is urgent. SAR interferometry can be used to measure small (sub-wavelength) deformations. An experiment to investigate this for dike deformations was set up, using the C-band SAR system PHARUS (PHased ARray Universal SAR). This paper descri

  7. Variational approach and deformed derivatives

    Science.gov (United States)

    Weberszpil, J.; Helayël-Neto, J. A.

    2016-05-01

    Recently, we have demonstrated that there exists a possible relationship between q-deformed algebras in two different contexts of Statistical Mechanics, namely, the Tsallis' framework and the Kaniadakis' scenario, with a local form of fractional-derivative operators for fractal media, the so-called Hausdorff derivatives, mapped into a continuous medium with a fractal measure. Here, in this paper, we present an extension of the traditional calculus of variations for systems containing deformed-derivatives embedded into the Lagrangian and the Lagrangian densities for classical and field systems. The results extend the classical Euler-Lagrange equations and the Hamiltonian formalism. The resulting dynamical equations seem to be compatible with those found in the literature, specially with mass-dependent and with nonlinear equations for systems in classical and quantum mechanics. Examples are presented to illustrate applications of the formulation. Also, the conserved ​Noether current is worked out.

  8. Variational Approach and Deformed Derivatives

    CERN Document Server

    Weberszpil, José

    2015-01-01

    Recently, we have demonstrated that there exists a possible relationship between q-deformed algebras in two different contexts of Statistical Mechanics, namely, the Tsallis' framework and the Kaniadakis' scenario, with a local form of fractional-derivative operators for fractal media, the so-called Hausdorff derivatives, mapped into a continuous medium with a fractal measure. Here, in this paper, we present an extension of the traditional calculus of variations for systems containing deformed-derivatives embedded into the Lagrangian and the Lagrangian densities for classical and field systems. The results extend the classical Euler-Lagrange equations and the Hamiltonian formalism. The resulting dynamical equations seem to be compatible with those found in the literature, specially with mass-dependent and with nonlinear equations for systems in classical and quantum mechanics. Examples are presented to illustrate applications of the formulation. Also, the conserved Nether current, are worked out.

  9. Molecular deformation mechanisms in polyethylene

    CERN Document Server

    Coutry, S

    2001-01-01

    adjacent labelled stems is significantly larger when the DPE guest is a copolymer molecule. Our comparative studies on various types of polyethylene lead to the conclusion that their deformation behaviour under drawing has the same basis, with additional effects imputed to the presence of tie-molecules and branches. Three major points were identified in this thesis. The changes produced by drawing imply (1) the crystallisation of some of the amorphous polymer and the subsequent orientation of the newly formed crystals, (2) the re-orientation of the crystalline ribbons and (3) the beginning of crystallite break-up. However, additional effects were observed for the high molecular weight linear sample and the copolymer sample and were attributed, respectively, to the presence of tie-molecules and of branches. It was concluded that both the tie-molecules and the branches are restricting the molecular movement during deformation, and that the branches may be acting as 'anchors'. This work is concerned with details...

  10. Deformation quantization and Nambu mechanics

    CERN Document Server

    Dito, G; Sternheimer, D; Takhtajan, L A; Dito, Giuseppe; Flato, Moshe; Sternheimer, Daniel; Takhtajan, Leon

    1996-01-01

    Starting from deformation quantization (star-products), the quantization problem of Nambu Mechanics is investigated. After considering some impossibilities and pushing some analogies with field quantization, a solution to the quantization problem is presented in what we call the Zariski quantization of fields (observables, functions, in this case polynomials). This quantization is based on the factorization over {\\Bbb R} of polynomials in several real variables. We quantize the algebra of fields generated by the polynomials by defining a deformation of this algebra which is Abelian, associative and distributive. This procedure is then adapted to derivatives (needed for the Nambu brackets), which ensures the validity of the Fundamental Identity of Nambu Mechanics also at the quantum level. Our construction is in fact more general than the particular case considered here: it can be utilized for quite general defining identities and for much more general star-products.

  11. Deformation of noncommutative quantum mechanics

    Science.gov (United States)

    Jiang, Jian-Jian; Chowdhury, S. Hasibul Hassan

    2016-09-01

    In this paper, the Lie group GNC α , β , γ , of which the kinematical symmetry group GNC of noncommutative quantum mechanics (NCQM) is a special case due to fixed nonzero α, β, and γ, is three-parameter deformation quantized using the method suggested by Ballesteros and Musso [J. Phys. A: Math. Theor. 46, 195203 (2013)]. A certain family of QUE algebras, corresponding to GNC α , β , γ with two of the deformation parameters approaching zero, is found to be in agreement with the existing results of the literature on quantum Heisenberg group. Finally, we dualize the underlying QUE algebra to obtain an expression for the underlying star-product between smooth functions on GNC α , β , γ .

  12. Early diagnosis of diabetic vascular complications: impairment of red blood cell deformability

    Science.gov (United States)

    Shin, Sehyun; Ku, Yunhee; Park, Cheol-Woo; Suh, Jang-Soo

    2006-02-01

    Reduced deformability of red blood cells (RBCs) may play an important role on the pathogenesis of chronic vascular complications of diabetes mellitus. However, available techniques for measuring RBC deformability often require washing process after each measurement, which is not optimal for day-to-day clinical use at point of care. The objectives of the present study are to develop a device and to delineate the correlation of impaired RBC deformability with diabetic nephropathy. We developed a disposable ektacytometry to measure RBC deformability, which adopted a laser diffraction technique and slit rheometry. The essential features of this design are its simplicity (ease of operation and no moving parts) and a disposable element which is in contact with the blood sample. We studied adult diabetic patients divided into three groups according to diabetic complications. Group I comprised 57 diabetic patients with normal renal function. Group II comprised 26 diabetic patients with chronic renal failure (CRF). Group III consisted of 30 diabetic subjects with end-stage renal disease (ESRD) on hemodialysis. According to the renal function for the diabetic groups, matched non-diabetic groups were served as control. We found substantially impaired red blood cell deformability in those with normal renal function (group I) compared to non-diabetic control (P = 0.0005). As renal function decreases, an increased impairment in RBC deformability was found. Diabetic patients with chronic renal failure (group II) when compared to non-diabetic controls (CRF) had an apparently greater impairment in RBC deformability (P = 0.07). The non-diabetic cohort (CRF), on the other hand, manifested significant impairment in red blood cell deformability compared to healthy control (P = 0.0001). The newly developed slit ektacytometer can measure the RBC deformability with ease and accuracy. In addition, progressive impairment in cell deformability is associated with renal function loss in all

  13. Deformed matter bounce with dark energy epoch

    Science.gov (United States)

    Odintsov, S. D.; Oikonomou, V. K.

    2016-09-01

    We extend the loop quantum cosmology matter bounce scenario in order to include a dark energy era, which ends abruptly at a rip singularity where the scale factor and the Hubble rate diverge. In the "deformed matter bounce scenario," the Universe is contracting from an initial noncausal matter dominated era until it reaches a minimal radius. After that it expands in a decelerating way, until at late times, where it expands in an accelerating way, and thus the model is described by a dark energy era that follows the matter dominated era. Depending on the choice of the free parameters of the model, the dark energy era is quintessential as what follows the matter domination era, and eventually it crosses the phantom divide line and becomes phantom. At the end of the dark energy era, a rip singularity exists, where the scale factor and Hubble rate diverge; however, the physical system cannot reach the singularity, since the effective energy density and pressure become complex. This indicates two things, first that the ordinary loop quantum cosmology matter bounce evolution stops, thus ending the infinite repetition of the ordinary matter bounce scenario. Second, the fact that both the pressure and the density become complex probably indicates that the description of the cosmic evolution within the theoretical context of loop quantum cosmology ceases to describe the physics of the system and possibly a more fundamental theory of quantum gravity is needed near the would be rip singularity. We describe the qualitative features of the model, and we also investigate how this cosmology could be realized by a viscous fluid in the context of loop quantum cosmology. In addition to this, we show how this deformed model can be realized by a canonical scalar field filled Universe, in the context of loop quantum cosmology. Finally, we demonstrate how the model can be generated by a vacuum F (R ) gravity.

  14. Deformation behavior of open-cell stainless steel foams

    Energy Technology Data Exchange (ETDEWEB)

    Kaya, A.C., E-mail: a.kaya@campus.tu-berlin.de; Fleck, C.

    2014-10-06

    This study presents the deformation and cell collapse behavior of open-cell stainless steel foams. 316L stainless-steel open-cell foams with two porosities (30 and 45 pores per inch, ppi) were produced with the pressureless powder metallurgical method, and tested in quasi-static compression. As a result of the manufacturing technique, 316L stainless steel open-cell foams have a high amount of microporosity. The deformation behavior was investigated on a macroscopic scale by digital image correlation (DIC) evaluation of light micrographs and on the microscopic scale by in situ loading of cells in the scanning electron microscope. The deformation behavior of the metal foams was highly affected by microstructural features, such as closed pores and their distribution throughout the foam specimen. Moreover, the closed pores made a contribution to the plateau stress of the foams through cell face stretching. Strut buckling and bending are the dominant mechanisms in cell collapse. Although there are edge defects on the struts, the struts have an enormous plastic deformation capability. The cell size of the steel foams had no significant effect on the mechanical properties. Due to the inhomogeneities in the microstructure, the measured plateau stresses of the foams showed about 20% scatter at the same relative density.

  15. Eggs illusion: Local shape deformation generated by a grid pattern.

    Science.gov (United States)

    Qian, Kun; Mitsudo, Hiroyuki

    2016-12-01

    In this study, we report a new visual shape illusion, the eggs illusion, in which circular disks located at the midpoints between adjacent grid intersections are perceived as being deformed to ellipses. In Experiment 1, we examined the eggs illusion by using a matching method and found that grid luminance and patch size play a critical role in producing the illusory deformation. In Experiment 2, we employed several types of elliptic or circular patches to examine the conditions in which the illusory deformation was cancelled or weakened. We observed that the illusory deformation was dependent on local grid orientation. Based on these results, we found several common features between the eggs illusion and the scintillating grid illusion. This resemblance suggests a possibility that similar mechanisms underlie the two phenomena. In addition to the scintillating grid illusion, we also considered several known perceptual phenomena that might be related to the eggs illusion, i.e., the apparent size illusion, the shape-contrast effect, and the Orbison illusion. Finally, we discuss the role of orientation processing in generating the eggs illusion.

  16. Deformations of extremal toric manifolds

    CERN Document Server

    Rollin, Yann

    2012-01-01

    Let $X$ be a compact toric extremal K\\"ahler manifold. Using the work of Sz\\'ekelyhidi, we provide a simple criterion on the fan describing $X$ to ensure the existence of complex deformations of $X$ that carry extremal metrics. As an example, we find new CSC metrics on 4-points blow-ups of $\\C\\P^1\\times\\C\\P^1$.

  17. Spinal deformities in tall girls.

    Science.gov (United States)

    Skogland, L B; Steen, H; Trygstad, O

    1985-04-01

    In a prospective study, 62 girls who consulted the paediatric department because of tall stature were examined for spinal deformities. Thirteen cases of scoliosis measuring 10 degrees or more were found. Eighteen girls had a thoracic kyphosis of more than 40 degrees and 11 had additional vertebral abnormalities indicating Scheuermann's disease. The incidence of scoliosis and Scheuermann's disease was much higher in our material than normal.

  18. Constructal Hypothesis for Mechanical Deformation

    Directory of Open Access Journals (Sweden)

    Atanu Chatterjee

    2012-08-01

    Full Text Available Mild Steel specimen, when subjected to tensile forces shows considerable plastic deformation before fracture. A cross-section of the fractured specimen has the familiar cup – cone form and shows traces of a three – dimensional parabolic geometry. The morphing of the steel specimen from a volume to a point as a spontaneous, entropy producing or energy dispersing process is analysed using the Constructal law.

  19. Deformation Driven Alloying and Transformation

    Science.gov (United States)

    2015-03-03

    Rolling, Acta Materiala (08 2014) Zhe Wang , John H Perepezko, David Larson, David Reinhard. Mixing Behaviors in Cu/Ni and Ni/V Multilayers Induced...by Cold Rolling, Journal of Alloys and Compounds (07 2014) Zhe Wang , John H. Perepezko. Deformation-Induced Nanoscale Mixing Reactions in Cu/Ni...FTE Equivalent: Total Number: Discipline Zhe Wang 0.50 0.50 1 Names of Post Doctorates Names of Faculty Supported Names of Under Graduate students

  20. Deformation characteristics of surrounding rock of broken and soft rock roadway

    Energy Technology Data Exchange (ETDEWEB)

    Jin-xi Wang; Ming-yue Lin; Duan-xin Tian; Cun-liang Zhao [Hebei University of Engineering, Handan (China)

    2009-03-15

    A similar material model and a numerical simulation were constructed and are described. The deformation and failure of surrounding rock of broken and soft roadway are studied by using these models. The deformation of the roof and floor, the relative deformation of the two sides and the deformation of the deep surrounding rock are predicted using the model. Measurements in a working mine are compared to the results of the models. The results show that the surrounding rock shows clear rheological features under high stress conditions. Deformation is unequally distributed across the whole section. The surrounding rock exhibited three deformation stages: displacement caused by stress concentration, rheological displacement after the digging effects had stabilized and displacement caused by supporting pressure of the roadway. Floor heave was serious, accounting for 65% of the total deformation of the roof and floor. Floor heave is the main reason for failure of the surrounding rock. The reasons for deformation of the surrounding rock are discussed based on the similar material and numerical simulations. 12 refs., 4 figs., 3 tabs.

  1. Surface Deformation in Quetta Valley, Balochistan, Pakistan

    Science.gov (United States)

    Huang, J.; Shuhab, K.; Wulamu, A.; Crupa, W.; Khan, A. S.; Kakar, D. M.; Kasi, A.

    2015-12-01

    In February 2011, several ground fissures up to ~1.8 km in length appeared in the Quetta Valley, Balochsitan, Pakistan. It is not clear what caused the sudden occurrence of these fissures. The region is tectonically active and bounded to the west by several regional strike-slip faults including the north-south striking left-lateral Chaman fault system that slips at ~10 mm per year. Several large earthquakes have occurred recently in this area, one fatal 6.4 magnitude (Mw) earthquake occurred on October 28th, 2008. Some parts of Quetta Valley are subsiding; GPS data from two stations in Quetta that span mid-2006 - 2009 recorded subsidence rates of ~10 cm per year. Although subsidence in urban areas is generally attributed to groundwater depletion, it is not clear whether ground fissures are caused by water withdrawal or related to tectonics of the region. This study is designed to quantify and assess the source of surface deformation in Quetta Valley using InSAR, GPS, seismic and earthquake centroid moment tensor data. To detect and map the spatial-temporal features of the processes that led to the surface deformation, we used two time series, i.e., 15 European Remote Sensing (ERS-1/2) satellite images from 1992 - 1999 and 27 ENVISAT images spanning 2003 - 2010. A Differential Interferometric Synthetic Aperture Radar (DInSAR) Small Baseline Subset (SBAS) technique was used to investigate surface deformation. Eleven continuous-GPS stations within the InSAR antenna footprint were compared with the InSAR time series for quality control. Preliminary InSAR results revealed that the areas in and around the fissures are subsiding at 5 cm per year. Five seismic lines totaling ~60 km, acquired in 2003, were used to interpret faults beneath Holocene alluvium in the Quetta Valley. One of the blind faults is a north-south striking thrust fault mapped north into the Takatu range. However, a focal mechanism for the 2008 earthquake in this region indicated northwest

  2. Fractality feature in oil price fluctuations

    CERN Document Server

    Momeni, M; Talebi, K

    2008-01-01

    The scaling properties of oil price fluctuations are described as a non-stationary stochastic process realized by a time series of finite length. An original model is used to extract the scaling exponent of the fluctuation functions within a non-stationary process formulation. It is shown that, when returns are measured over intervals less than 10 days, the Probability Density Functions (PDFs) exhibit self-similarity and monoscaling, in contrast to the multifractal behavior of the PDFs at macro-scales (typically larger than one month). We find that the time evolution of the distributions are well fitted by a Levy distribution law at micro-scales. The relevance of a Levy distribution is made plausible by a simple model of nonlinear transfer

  3. Integrable Deformations of T -Dual σ Models

    Science.gov (United States)

    Borsato, Riccardo; Wulff, Linus

    2016-12-01

    We present a method to deform (generically non-Abelian) T duals of two-dimensional σ models, which preserves classical integrability. The deformed models are identified by a linear operator ω on the dualized subalgebra, which satisfies the 2-cocycle condition. We prove that the so-called homogeneous Yang-Baxter deformations are equivalent, via a field redefinition, to our deformed models when ω is invertible. We explain the details for deformations of T duals of principal chiral models, and present the corresponding generalization to the case of supercoset models.

  4. Stochastic deformation of a thermodynamic symplectic structure

    Science.gov (United States)

    Kazinski, P. O.

    2009-01-01

    A stochastic deformation of a thermodynamic symplectic structure is studied. The stochastic deformation is analogous to the deformation of an algebra of observables such as deformation quantization, but for an imaginary deformation parameter (the Planck constant). Gauge symmetries of thermodynamics and corresponding stochastic mechanics, which describes fluctuations of a thermodynamic system, are revealed and gauge fields are introduced. A physical interpretation to the gauge transformations and gauge fields is given. An application of the formalism to a description of systems with distributed parameters in a local thermodynamic equilibrium is considered.

  5. Loop-deformed Poincar\\'e algebra

    CERN Document Server

    Mielczarek, Jakub

    2013-01-01

    In this essay we present evidence suggesting that loop quantum gravity leads to deformation of the local Poincar\\'e algebra within the limit of high energies. This deformation is a consequence of quantum modification of effective off-shell hypersurface deformation algebra. Surprisingly, the form of deformation suggests that the signature of space-time changes from Lorentzian to Euclidean at large curvatures. We construct particular realization of the loop-deformed Poincar\\'e algebra and find that it can be related to curved momentum space, which indicates the relationship with recently introduced notion of relative locality. The presented findings open a new way of testing loop quantum gravity effects.

  6. Quantification and validation of soft tissue deformation

    DEFF Research Database (Denmark)

    Mosbech, Thomas Hammershaimb; Ersbøll, Bjarne Kjær; Christensen, Lars Bager

    2009-01-01

    markers are easy to distinguish from the surrounding soft tissue in 3D computed tomography images. By tracking corresponding markers using methods from point-based registration, we are able to accurately quantify the magnitude and propagation of the induced deformation. The deformation is parameterised......We present a model for soft tissue deformation derived empirically from 10 pig carcases. The carcasses are subjected to deformation from a known single source of pressure located at the skin surface, and the deformation is quantified by means of steel markers injected into the tissue. The steel...

  7. Deformation bands in porous sandstones their microstructure and petrophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Torabi, Anita

    2007-12-15

    deformation bands are characterized by strain hardening, these new bands feature a central slip surface, which indicates late strain softening. They lack the characteristic compaction envelop, and are typified by higher porosity and lower permeability than previously-described cataclastic deformation bands. Intense background fracturing of the host rock and significant initial porosity are considered to be important in creating these newly-discovered deformation bands. In a related study, we investigate, for millimeter- wide deformation bands, the scale limitation inherent in laboratory measurements of porosity and permeability. The scale limitations imposed by the deformation band relative to the physical sample size motivated us to develop a new method for determining porosity and permeability based on image processing. While plug measurements measure the effective permeability across a 25.4 mm (1 inch) long sample, which includes both host rock and deformation band, the method presented here provides a means to estimate porosity and permeability of deformation band on microscale. This method utilizes low-order (one- and two orders) spatial correlation functions to analyze high-resolution, high-magnification backscatter images, to estimate the porosity and specific surface area of the pore-grain interface in the deformed sandstones. Further, this work demonstrates the use of a modified version of the Kozeny-Carmen relation to calculate permeability by using porosity and specific surface area obtained through the image processing. The result shows that permeability difference between the band and the host rock is up to four orders of magnitude. Moreover, the porosities and permeabilities estimated from image processing are lower than those obtained from their plug measurements; hence the traditional laboratory measurements have been overestimating permeability because of the previously-unrecognized scale problem. In addition, the image processing results clearly show that

  8. Deformation bands in porous sandstones their microstructure and petrophysical properties

    Energy Technology Data Exchange (ETDEWEB)

    Torabi, Anita

    2007-12-15

    deformation bands are characterized by strain hardening, these new bands feature a central slip surface, which indicates late strain softening. They lack the characteristic compaction envelop, and are typified by higher porosity and lower permeability than previously-described cataclastic deformation bands. Intense background fracturing of the host rock and significant initial porosity are considered to be important in creating these newly-discovered deformation bands. In a related study, we investigate, for millimeter- wide deformation bands, the scale limitation inherent in laboratory measurements of porosity and permeability. The scale limitations imposed by the deformation band relative to the physical sample size motivated us to develop a new method for determining porosity and permeability based on image processing. While plug measurements measure the effective permeability across a 25.4 mm (1 inch) long sample, which includes both host rock and deformation band, the method presented here provides a means to estimate porosity and permeability of deformation band on microscale. This method utilizes low-order (one- and two orders) spatial correlation functions to analyze high-resolution, high-magnification backscatter images, to estimate the porosity and specific surface area of the pore-grain interface in the deformed sandstones. Further, this work demonstrates the use of a modified version of the Kozeny-Carmen relation to calculate permeability by using porosity and specific surface area obtained through the image processing. The result shows that permeability difference between the band and the host rock is up to four orders of magnitude. Moreover, the porosities and permeabilities estimated from image processing are lower than those obtained from their plug measurements; hence the traditional laboratory measurements have been overestimating permeability because of the previously-unrecognized scale problem. In addition, the image processing results clearly show that

  9. Using multi-matching system based on a simplified deformable model of the human iris for iris recognition

    Institute of Scientific and Technical Information of China (English)

    MING Xing; XU Tao; WANG Zheng-xuan

    2004-01-01

    A new method for iris recognition using a multi-matching system based on a simplified deformable model of the human iris was proposed. The method defined iris feature points and formed the feature space based on a wavelet transform. In the matching stage it worked in a crude manner. Driven by a simplified deformable iris model, the crude matching was refined. By means of such multi-matching system, the task of iris recognition was accomplished. This process can preserve the elastic deformation between an input iris image and a template and improve precision for iris recognition. The experimental results indicate the validity of this method.

  10. Geometric correction of deformed chromosomes for automatic Karyotyping.

    Science.gov (United States)

    Khan, Shadab; DSouza, Alisha; Sanches, João; Ventura, Rodrigo

    2012-01-01

    Automatic Karyotyping is the process of classifying chromosomes from an unordered karyogram into their respective classes to create an ordered karyogram. Automatic karyotyping algorithms typically perform geometrical correction of deformed chromosomes for feature extraction; these features are used by classifier algorithms for classifying the chromosomes. Karyograms of bone marrow cells are known to have poor image quality. An example of such karyograms is the Lisbon-K(1) (LK(1)) dataset that is used in our work. Thus, to correct the geometrical deformation of chromosomes from LK(1), a robust method to obtain the medial axis of the chromosome was necessary. To address this problem, we developed an algorithm that uses the seed points to make a primary prediction. Subsequently, the algorithm computes the distance of boundary from the predicted point, and the gradients at algorithm-specified points on the boundary to compute two auxiliary predictions. Primary prediction is then corrected using auxiliary predictions, and a final prediction is obtained to be included in the seed region. A medial axis is obtained this way, which is further used for geometrical correction of the chromosomes. This algorithm was found capable of correcting geometrical deformations in even highly distorted chromosomes with forked ends.

  11. Revisiting the deformed high shoreline of Lake Bonneville

    Science.gov (United States)

    Chen, Christine Y.; Maloof, Adam C.

    2017-03-01

    Since G. K. Gilbert's foundational work in the eastern Great Basin during the late 1800s, the late Pleistocene Lake Bonneville (30-10 ka) has been recognized as a natural laboratory for various Quaternary studies, including lithospheric deformation due to surface loading and climate-forced water balance changes. Such studies rely on knowledge of the elevations of Lake Bonneville's paleoshoreline features and depositional landforms, which record a complex history of lake level variations induced by deglacial climate change. In this paper, we present (1) a new compilation of 178 elevation measurements of shoreline features marking Lake Bonneville's greatest areal extent measured using high-precision differential GPS (dGPS), and (2) a reconstructed outline of the highest shoreline based on dGPS measurements, submeter-resolution aerial imagery, topographic digital elevation models (DEMs), and field observations. We also (3) devise a simplified classification scheme and method for standardizing shoreline elevation measurement for different shoreline morphologies that includes constraints on the position of the still water level (SWL) relative to each feature type. The deformation pattern described by these shoreline features can help resolve the relative effects of local hydro-isostasy due to the lake load and regional solid earth deflection due to the Laurentide ice sheet, with potential implications for Earth rheology, glacial isostatic adjustment, and eustatic sea level change.

  12. Occurrence of oral deformities in larval anurans

    Science.gov (United States)

    Drake, D.L.; Altig, R.; Grace, J.B.; Walls, S.C.

    2007-01-01

    We quantified deformities in the marginal papillae, tooth rows, and jaw sheaths of tadpoles from 13 population samples representing three families and 11 sites in the southeastern United States. Oral deformities were observed in all samples and in 13.5-98% of the specimens per sample. Batrachochytrium dendrobatidis (chytrid) infections were detected in three samples. There was high variability among samples in the pattern and number of discovered deformities. Pairwise associations between oral structures containing deformities were nonrandom for several populations, especially those with B. dendrobatidis infections or high total numbers of deformities. Comparisons of deformities among samples using multivariate analyses revealed that tadpole samples grouped together by family. Analyses of ordination indicated that three variables, the number of deformities, the number of significant associations among deformity types within populations, and whether populations were infected with B. dendrobatidis, were significantly correlated with the pattern of deformities. Our data indicate that the incidence of oral deformities can be high in natural populations and that phylogeny and B. dendrobatidis infection exert a strong influence on the occurrence and type of oral deformities in tadpoles. ?? by the American Society of Ichthyologists and Herperologists.

  13. Helium release during shale deformation: Experimental validation

    Science.gov (United States)

    Bauer, Stephen J.; Gardner, W. Payton; Heath, Jason E.

    2016-07-01

    This work describes initial experimental results of helium tracer release monitoring during deformation of shale. Naturally occurring radiogenic 4He is present in high concentration in most shales. During rock deformation, accumulated helium could be released as fractures are created and new transport pathways are created. We present the results of an experimental study in which confined reservoir shale samples, cored parallel and perpendicular to bedding, which were initially saturated with helium to simulate reservoir conditions, are subjected to triaxial compressive deformation. During the deformation experiment, differential stress, axial, and radial strains are systematically tracked. Release of helium is dynamically measured using a helium mass spectrometer leak detector. Helium released during deformation is observable at the laboratory scale and the release is tightly coupled to the shale deformation. These first measurements of dynamic helium release from rocks undergoing deformation show that helium provides information on the evolution of microstructure as a function of changes in stress and strain.

  14. Designing using manufacturing features

    Science.gov (United States)

    Szecsi, T.; Hoque, A. S. M.

    2012-04-01

    This paper presents a design system that enables the composition of a part using manufacturing features. Features are selected from feature libraries. Upon insertion, the system ensures that the feature does not contradict the design-for-manufacture rules. This helps eliminating costly manufacturing problems. The system is developed as an extension to a commercial CAD/CAM system Pro/Engineer.

  15. Features of the Bible

    Institute of Scientific and Technical Information of China (English)

    刘隽

    2008-01-01

    Every literature has its features in some aspects,so is the Bible,one of the greatest literary works in the world that has great impact on western literature.This paper summarizes two features of the Bible,namely,cultural feature and literary feature.

  16. Black hole remnants due to Planck-length deformed QFT

    Science.gov (United States)

    Dirkes, Alain R. P.; Maziashvili, Michael; Silagadze, Zurab K.

    2016-10-01

    It was argued in a number of papers that the gravitational potential calculated by using the modified QFT that follows from the Planck-length deformed uncertainty relation implies the existence of black hole (BH) remnants of the order of the Planck mass. Usually, this sort of QFTs are endowed with two specific features, the modified dispersion relation, which is universal, and the concept of minimum length, which, however, is not universal. While the emergence of the minimum length most readily leads to the idea of the BH remnants, here, we examine the behavior of the potential that follows from the Planck-length deformed QFT in the absence of the minimum length and show that it might also lead to the formation of the Planck mass BHs in some particular cases. The calculations are made for higher-dimensional case as well. Such BH remnants might be considered as a possible candidates for the dark-matter.

  17. Geoid, topography, and convection-driven crustal deformation on Venus

    Science.gov (United States)

    Simons, Mark; Hager, Bradford H.; Solomon, Sean C.

    1993-01-01

    High-resolution Magellan images and altimetry of Venus reveal a wide range of styles and scales of surface deformation that cannot readily be explained within the classical terrestrial plate tectonic paradigm. The high correlation of long-wavelength topography and gravity and the large apparent depths of compensation suggest that Venus lacks an upper-mantle low-viscosity zone. A key difference between Earth and Venus may be the degree of coupling between the convecting mantle and the overlying lithosphere. Mantle flow should then have recognizable signatures in the relationships between the observed surface topography, crustal deformation, and the gravity field. Therefore, comparison of model results with observational data can help to constrain such parameters as crustal and thermal boundary layer thicknesses as well as the character of mantle flow below different Venusian features. We explore in this paper the effects of this coupling by means of a finite element modelling technique.

  18. Feature-Aware Verification

    CERN Document Server

    Apel, Sven; Wendler, Philipp; von Rhein, Alexander; Beyer, Dirk

    2011-01-01

    A software product line is a set of software products that are distinguished in terms of features (i.e., end-user--visible units of behavior). Feature interactions ---situations in which the combination of features leads to emergent and possibly critical behavior--- are a major source of failures in software product lines. We explore how feature-aware verification can improve the automatic detection of feature interactions in software product lines. Feature-aware verification uses product-line verification techniques and supports the specification of feature properties along with the features in separate and composable units. It integrates the technique of variability encoding to verify a product line without generating and checking a possibly exponential number of feature combinations. We developed the tool suite SPLverifier for feature-aware verification, which is based on standard model-checking technology. We applied it to an e-mail system that incorporates domain knowledge of AT&T. We found that feat...

  19. Unsupervised Feature Subset Selection

    DEFF Research Database (Denmark)

    Søndberg-Madsen, Nicolaj; Thomsen, C.; Pena, Jose

    2003-01-01

    This paper studies filter and hybrid filter-wrapper feature subset selection for unsupervised learning (data clustering). We constrain the search for the best feature subset by scoring the dependence of every feature on the rest of the features, conjecturing that these scores discriminate some...... irrelevant features. We report experimental results on artificial and real data for unsupervised learning of naive Bayes models. Both the filter and hybrid approaches perform satisfactorily....

  20. Leukocyte deformability: finite element modeling of large viscoelastic deformation.

    Science.gov (United States)

    Dong, C; Skalak, R

    1992-09-21

    An axisymmetric deformation of a viscoelastic sphere bounded by a prestressed elastic thin shell in response to external pressure is studied by a finite element method. The research is motivated by the need for understanding the passive behavior of human leukocytes (white blood cells) and interpreting extensive experimental data in terms of the mechanical properties. The cell at rest is modeled as a sphere consisting of a cortical prestressed shell with incompressible Maxwell fluid interior. A large-strain deformation theory is developed based on the proposed model. General non-linear, large strain constitutive relations for the cortical shell are derived by neglecting the bending stiffness. A representation of the constitutive equations in the form of an integral of strain history for the incompressible Maxwell interior is used in the formulation of numerical scheme. A finite element program is developed, in which a sliding boundary condition is imposed on all contact surfaces. The mathematical model developed is applied to evaluate experimental data of pipette tests and observations of blood flow.

  1. Detection and tracking of facial features

    Science.gov (United States)

    De Silva, Liyanage C.; Aizawa, Kiyoharu; Hatori, Mitsutoshi

    1995-04-01

    Detection and tracking of facial features without using any head mounted devices may become required in various future visual communication applications, such as teleconferencing, virtual reality etc. In this paper we propose an automatic method of face feature detection using a method called edge pixel counting. Instead of utilizing color or gray scale information of the facial image, the proposed edge pixel counting method utilized the edge information to estimate the face feature positions such as eyes, nose and mouth in the first frame of a moving facial image sequence, using a variable size face feature template. For the remaining frames, feature tracking is carried out alternatively using a method called deformable template matching and edge pixel counting. One main advantage of using edge pixel counting in feature tracking is that it does not require the condition of a high inter frame correlation around the feature areas as is required in template matching. Some experimental results are shown to demonstrate the effectiveness of the proposed method.

  2. Large deformation micromechanics of particle filled acrylics at elevated temperatures

    Science.gov (United States)

    Gunel, Eray Mustafa

    The main aim of this study is to investigate stress whitening and associated micro-deformation mechanism in thermoformed particle filled acrylic sheets. For stress whitening quantification, a new index was developed based on image histograms in logarithmic scale of gray level. Stress whitening levels in thermoformed acrylic composites was observed to increase with increasing deformation limit, decreasing forming rate and increasing forming temperatures below glass transition. Decrease in stress whitening levels above glass transition with increasing forming temperature was attributed to change in micro-deformation behavior. Surface deformation feature investigated with scanning electron microscopy showed that source of stress whitening in thermoformed samples was a combination of particle failure and particle disintegration depending on forming rate and temperature. Stress whitening level was strongly correlated to intensity of micro-deformation features. On the other hand, thermoformed neat acrylics displayed no surface discoloration which was attributed to absence of micro-void formation on the surface of neat acrylics. Experimental damage measures (degradation in initial, secant, unloading modulus and strain energy density) have been inadequate in describing damage evolution in successive thermoforming applications on the same sample at different levels of deformation. An improved version of dual-mechanism viscoplastic material model was proposed to predict thermomechanical behavior of neat acrylics under non-isothermal conditions. Simulation results and experimental results were in good agreement and failure of neat acrylics under non-isothermal conditions ar low forming temperatures were succesfully predicted based on entropic damage model. Particle and interphase failure observed in acrylic composites was studied in a multi-particle unit cell model with different volume fractions. Damage evolution due to particle failure and interphase failure was simulated

  3. Modeling of friction-induced deformation and microstructures.

    Energy Technology Data Exchange (ETDEWEB)

    Michael, Joseph Richard; Prasad, Somuri V.; Jungk, John Michael; Cordill, Megan J. (University of Minnesota); Bammann, Douglas J.; Battaile, Corbett Chandler; Moody, Neville Reid; Majumdar, Bhaskar Sinha (New Mexico Institure of Mining and Technology)

    2006-12-01

    Frictional contact results in surface and subsurface damage that could influence the performance, aging, and reliability of moving mechanical assemblies. Changes in surface roughness, hardness, grain size and texture often occur during the initial run-in period, resulting in the evolution of subsurface layers with characteristic microstructural features that are different from those of the bulk. The objective of this LDRD funded research was to model friction-induced microstructures. In order to accomplish this objective, novel experimental techniques were developed to make friction measurements on single crystal surfaces along specific crystallographic surfaces. Focused ion beam techniques were used to prepare cross-sections of wear scars, and electron backscattered diffraction (EBSD) and TEM to understand the deformation, orientation changes, and recrystallization that are associated with sliding wear. The extent of subsurface deformation and the coefficient of friction were strongly dependent on the crystal orientation. These experimental observations and insights were used to develop and validate phenomenological models. A phenomenological model was developed to elucidate the relationships between deformation, microstructure formation, and friction during wear. The contact mechanics problem was described by well-known mathematical solutions for the stresses during sliding friction. Crystal plasticity theory was used to describe the evolution of dislocation content in the worn material, which in turn provided an estimate of the characteristic microstructural feature size as a function of the imposed strain. An analysis of grain boundary sliding in ultra-fine-grained material provided a mechanism for lubrication, and model predictions of the contribution of grain boundary sliding (relative to plastic deformation) to lubrication were in good qualitative agreement with experimental evidence. A nanomechanics-based approach has been developed for characterizing the

  4. Gradient Domain Mesh Deformation - A Survey

    Institute of Scientific and Technical Information of China (English)

    Wei-Wei Xu; Kun Zhou

    2009-01-01

    This survey reviews the recent development of gradient domain mesh deformation method. Different to other deformation methods, the gradient domain deformation method is a surface-based, variational optimization method. It directly encodes the geometric details in differential coordinates, which are also called Laplacian coordinates in literature. By preserving the Laplacian coordinates, the mesh details can be well preserved during deformation. Due to the locality of the Laplacian coordinates, the variational optimization problem can be casted into a sparse linear system. Fast sparse linear solver can be adopted to generate deformation result interactively, or even in real-time. The nonlinear nature of gradient domain mesh deformation leads to the development of two categories of deformation methods: linearization methods and nonlinear optimization methods. Basically, the linearization methods only need to solve the linear least-squares system once. They are fast, easy to understand and control, while the deformation result might be suboptimal. Nonlinear optimization methods can reach optimal solution of deformation energy function by iterative updating. Since the computation of nonlinear methods is expensive, reduced deformable models should be adopted to achieve interactive performance. The nonlinear optimization methods avoid the user burden to input transformation at deformation handles, and they can be extended to incorporate various nonlinear constraints, like volume constraint, skeleton constraint, and so on. We review representative methods and related approaches of each category comparatively and hope to help the user understand the motivation behind the algorithms. Finally, we discuss the relation between physical simulation and gradient domain mesh deformation to reveal why it can achieve physically plausible deformation result.

  5. A two-dimensional deformable phantom for quantitatively verifying deformation algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Kirby, Neil; Chuang, Cynthia; Pouliot, Jean [Department of Radiation Oncology, University of California San Francisco, San Francisco, California 94143-1708 (United States)

    2011-08-15

    Purpose: The incorporation of deformable image registration into the treatment planning process is rapidly advancing. For this reason, the methods used to verify the underlying deformation algorithms must evolve equally fast. This manuscript proposes a two-dimensional deformable phantom, which can objectively verify the accuracy of deformation algorithms, as the next step for improving these techniques. Methods: The phantom represents a single plane of the anatomy for a head and neck patient. Inflation of a balloon catheter inside the phantom simulates tumor growth. CT and camera images of the phantom are acquired before and after its deformation. Nonradiopaque markers reside on the surface of the deformable anatomy and are visible through an acrylic plate, which enables an optical camera to measure their positions; thus, establishing the ground-truth deformation. This measured deformation is directly compared to the predictions of deformation algorithms, using several similarity metrics. The ratio of the number of points with more than a 3 mm deformation error over the number that are deformed by more than 3 mm is used for an error metric to evaluate algorithm accuracy. Results: An optical method of characterizing deformation has been successfully demonstrated. For the tests of this method, the balloon catheter deforms 32 out of the 54 surface markers by more than 3 mm. Different deformation errors result from the different similarity metrics. The most accurate deformation predictions had an error of 75%. Conclusions: The results presented here demonstrate the utility of the phantom for objectively verifying deformation algorithms and determining which is the most accurate. They also indicate that the phantom would benefit from more electron density heterogeneity. The reduction of the deformable anatomy to a two-dimensional system allows for the use of nonradiopaque markers, which do not influence deformation algorithms. This is the fundamental advantage of this

  6. Deformation-specific and deformation-invariant visual object recognition: pose vs identity recognition of people and deforming objects

    Directory of Open Access Journals (Sweden)

    Tristan J Webb

    2014-04-01

    Full Text Available When we see a human sitting down, standing up, or walking, we can recognise one of these poses independently of the individual, or we can recognise the individual person, independently of the pose. The same issues arise for deforming objects. For example, if we see a flag deformed by the wind, either blowing out or hanging languidly, we can usually recognise the flag, independently of its deformation; or we can recognise the deformation independently of the identity of the flag. We hypothesize that these types of recognition can be implemented by the primate visual system using temporo-spatial continuity as objects transform as a learning principle. In particular, we hypothesize that pose or deformation can be learned under conditions in which large numbers of different people are successively seen in the same pose, or objects in the same deformation. We also hypothesize that person-specific representations that are independent of pose, and object-specific representations that are independent of deformation and view, could be built, when individual people or objects are observed successively transforming from one pose or deformation and view to another. These hypotheses were tested in a simulation of the ventral visual system, VisNet, that uses temporal continuity, implemented in a synaptic learning rule with a short-term memory trace of previous neuronal activity, to learn invariant representations. It was found that depending on the statistics of the visual input, either pose-specific or deformation-specific representations could be built that were invariant with respect to individual and view; or that identity-specific representations could be built that were invariant with respect to pose or deformation and view. We propose that this is how pose-specific and pose-invariant, and deformation-specific and deformation-invariant, perceptual representations are built in the brain.

  7. Strain localization in usnaturated soils with large deformation

    Science.gov (United States)

    Song, X.; Borja, R. I.

    2014-12-01

    Strain localization is a ubiquitous feature of granular materials undergoing nonhomogeneous deformation. In unsaturated porous media, how the localized deformation band is formed depends crucially on the degree of saturation, since fluid in the pores of a solid imposes a volume constraint on the deformation of the solid. When fluid flow is involved, the inception of the localized deformation band also depends on the heterogeneity of a material, which is quantified in terms of the spatial variation of density, the degree of saturation, and matric suction. We present a mathematical framework for coupled solid-deformation/fluid-diffusion in unsaturated porous media that takes into account material and geometric nonlinearities [1, 2]. The framework relies on the continuum principle of thermodynamics to identify an effective, or constitutive, stress for the solid matrix, and a water retention law that highlights the interdependence of degree of saturation, suction, and porosity of the material. We discuss the role of heterogeneity, quantified either deterministically or stochastically, on the development of a persistent shear band. We derive bifurcation conditions [3] governing the initiation of such a shear band. This research is inspired by current testing techniques that allow nondestructive and non-invasive measurement of density and the degree of saturation through high-resolution imaging [4]. The numerical simulations under plane strain condition demonstrate that the bifurcation not only manifests itself on the loading response curve and but also in the space of the degree of saturation, specific volume and suction stress. References[1] Song X, Borja RI, Mathematical framework for unsaturated flow in the finite deformation range. Int. J. Numer. Meth. Engng 2014; 97: 658-686. [2] Song X, Borja RI, Finite deformation and fluid flow in unsaturated soils with random heterogeneity. Vadose Zone Journal 2014; doi:10.2136/vzj2013.07.0131. [3] Song X, Borja RI, Instability

  8. The Origin of Lueders's Bands in Deformed Rock

    Energy Technology Data Exchange (ETDEWEB)

    Olsson, W.A.

    1999-03-31

    Lueders' bands are shear deformation features commonly observed in rock specimens that have been deformed experimentally in the brittle-ductile transition regime. For specimens that contain both faults (shear fractures that separate the specimen) and bands, the bands form earlier in the deformation history and their orientations are often different from the fault These differences pose the question of the relationship between these two structures. Understanding the origin of these features may shed light on the genesis of apparent natural analogues, and on the general process of rock deformation and fracture in the laboratory. This paper presents a hypothesis for the formation of Lueders' bands in laboratory specimens based on deformation localization theory considered in the context of the nonuniform stress distribution of the conventional triaxial experiment Lueders' bands and faults appear to be equivalent reflections of the localization process as it is controlled by nonuniform distributions of stress and evolution of incremental constitutive parameters resulting from increasing damage. To relate conditions for localization in laboratory specimens to natural settings, it will be necessary to design new experiments that create uniform stress and deformation fields, or to extract constitutive data indirectly from standard experiments using computational means.

  9. 3D facial geometric features for constrained local model

    NARCIS (Netherlands)

    Cheng, Shiyang; Zafeiriou, Stefanos; Asthana, Akshay; Pantic, Maja

    2014-01-01

    We propose a 3D Constrained Local Model framework for deformable face alignment in depth image. Our framework exploits the intrinsic 3D geometric information in depth data by utilizing robust histogram-based 3D geometric features that are based on normal vectors. In addition, we demonstrate the fusi

  10. Augmented Reality Marker Hiding with Texture Deformation.

    Science.gov (United States)

    Kawai, Norihiko; Sato, Tomokazu; Nakashima, Yuta; Yokoya, Naokazu

    2016-10-19

    Augmented reality (AR) marker hiding is a technique to visually remove AR markers in a real-time video stream. A conventional approach transforms a background image with a homography matrix calculated on the basis of a camera pose and overlays the transformed image on an AR marker region in a real-time frame, assuming that the AR marker is on a planar surface. However, this approach may cause discontinuities in textures around the boundary between the marker and its surrounding area when the planar surface assumption is not satisfied. This paper proposes a method for AR marker hiding without discontinuities around texture boundaries even under nonplanar background geometry without measuring it. For doing this, our method estimates the dense motion in the marker's background by analyzing the motion of sparse feature points around it, together with a smooth motion assumption, and deforms the background image according to it. Our experiments demonstrate the effectiveness of the proposed method in various environments with different background geometries and textures.

  11. Deformable Registration of Digital Images

    Institute of Scientific and Technical Information of China (English)

    管伟光; 解林; 等

    1998-01-01

    is paper proposes a novel elastic model and presents a deformable registration method based on the model.The method registers images without the need to extract reatures from the images,and therefore works directly on grey-level images.A new similarity metric is given on which the formation of external forces is based.The registration method,taking the coarse-to-fine strategy,constructs external forces in larger scales for the first few iterations to rely more on global evidence,and ther in smaller scales for later iterations to allow local refinements.The stiffness of the elastic body decreases as the process proceeds.To make it widely applicable,the method is not restricted to any type of transformation.The variations between images are thought as general free-form deformations.Because the elastic model designed is linearized,it can be solved very efficiently with high accuracy.The method has been successfully tested on MRI images.It will certainly find other uses such as matching time-varying sequences of pictures for motion analysis,fitting templates into images for non-rigid object recognition,matching stereo images for shape recovery,etc.

  12. Physics of Deformed Special Relativity

    CERN Document Server

    Girelli, F; Girelli, Florian; Livine, Etera R.

    2004-01-01

    In many different ways, Deformed Special Relativity (DSR) has been argued to provide an effective limit of quantum gravity in almost-flat regime. Unfortunately DSR is up to now plagued by many conceptual problems (in particular how it describes macroscopic objects) which forbids a definitive physical interpretation and clear predictions. Here we propose a consistent framework to interpret DSR. We extend the principle of relativity: the same way that Special Relativity showed us that the definition of a reference frame requires to specify its speed, we show that DSR implies that we must also take into account its mass. We further advocate a 5-dimensional point of view on DSR physics and the extension of the kinematical symmetry from the Poincare group to the Poincare-de Sitter group (ISO(4,1)). This leads us to introduce the concept of a pentamomentum and to take into account the renormalization of the DSR deformation parameter kappa. This allows the resolution of the "soccer ball problem" (definition of many-...

  13. Deep PDF parsing to extract features for detecting embedded malware.

    Energy Technology Data Exchange (ETDEWEB)

    Munson, Miles Arthur; Cross, Jesse S. (Missouri University of Science and Technology, Rolla, MO)

    2011-09-01

    The number of PDF files with embedded malicious code has risen significantly in the past few years. This is due to the portability of the file format, the ways Adobe Reader recovers from corrupt PDF files, the addition of many multimedia and scripting extensions to the file format, and many format properties the malware author may use to disguise the presence of malware. Current research focuses on executable, MS Office, and HTML formats. In this paper, several features and properties of PDF Files are identified. Features are extracted using an instrumented open source PDF viewer. The feature descriptions of benign and malicious PDFs can be used to construct a machine learning model for detecting possible malware in future PDF files. The detection rate of PDF malware by current antivirus software is very low. A PDF file is easy to edit and manipulate because it is a text format, providing a low barrier to malware authors. Analyzing PDF files for malware is nonetheless difficult because of (a) the complexity of the formatting language, (b) the parsing idiosyncrasies in Adobe Reader, and (c) undocumented correction techniques employed in Adobe Reader. In May 2011, Esparza demonstrated that PDF malware could be hidden from 42 of 43 antivirus packages by combining multiple obfuscation techniques [4]. One reason current antivirus software fails is the ease of varying byte sequences in PDF malware, thereby rendering conventional signature-based virus detection useless. The compression and encryption functions produce sequences of bytes that are each functions of multiple input bytes. As a result, padding the malware payload with some whitespace before compression/encryption can change many of the bytes in the final payload. In this study we analyzed a corpus of 2591 benign and 87 malicious PDF files. While this corpus is admittedly small, it allowed us to test a system for collecting indicators of embedded PDF malware. We will call these indicators features throughout

  14. Deep PDF parsing to extract features for detecting embedded malware.

    Energy Technology Data Exchange (ETDEWEB)

    Munson, Miles Arthur; Cross, Jesse S. (Missouri University of Science and Technology, Rolla, MO)

    2011-09-01

    The number of PDF files with embedded malicious code has risen significantly in the past few years. This is due to the portability of the file format, the ways Adobe Reader recovers from corrupt PDF files, the addition of many multimedia and scripting extensions to the file format, and many format properties the malware author may use to disguise the presence of malware. Current research focuses on executable, MS Office, and HTML formats. In this paper, several features and properties of PDF Files are identified. Features are extracted using an instrumented open source PDF viewer. The feature descriptions of benign and malicious PDFs can be used to construct a machine learning model for detecting possible malware in future PDF files. The detection rate of PDF malware by current antivirus software is very low. A PDF file is easy to edit and manipulate because it is a text format, providing a low barrier to malware authors. Analyzing PDF files for malware is nonetheless difficult because of (a) the complexity of the formatting language, (b) the parsing idiosyncrasies in Adobe Reader, and (c) undocumented correction techniques employed in Adobe Reader. In May 2011, Esparza demonstrated that PDF malware could be hidden from 42 of 43 antivirus packages by combining multiple obfuscation techniques [4]. One reason current antivirus software fails is the ease of varying byte sequences in PDF malware, thereby rendering conventional signature-based virus detection useless. The compression and encryption functions produce sequences of bytes that are each functions of multiple input bytes. As a result, padding the malware payload with some whitespace before compression/encryption can change many of the bytes in the final payload. In this study we analyzed a corpus of 2591 benign and 87 malicious PDF files. While this corpus is admittedly small, it allowed us to test a system for collecting indicators of embedded PDF malware. We will call these indicators features throughout

  15. Effect of body deformability on microswimming

    CERN Document Server

    Pande, Jayant; Krüger, Timm; Harting, Jens; Smith, Ana-Sunčana

    2016-01-01

    In this work we consider the following question: given a mechanical microswimming mechanism, does increased deformability of the swimmer body hinder or promote the swimming? To answer this we run immersed boundary lattice Boltzmann simulations of a microswimmer comprised of three vesicular beads connected by springs and increase systematically the deformability of the beads. We impose the forces driving the motion and allow the swimming stroke to emerge on its own. The simulations show that both `deformability-enhanced' and `deformability-hindered' regimes of microswimming exist. To understand the occurrence of these regimes, we assume a model where the amplitudes of the surface oscillations of the beads in the swimmer are much smaller than the other length scales. This results in only the driving frequency mode of the surface deformations contributing to the velocity. The theory predicts that the dominant elasticity of the swimming mechanism dictates the deformability-based regime in which the swimming occur...

  16. Deformation Models Tracking, Animation and Applications

    CERN Document Server

    Torres, Arnau; Gómez, Javier

    2013-01-01

    The computational modelling of deformations has been actively studied for the last thirty years. This is mainly due to its large range of applications that include computer animation, medical imaging, shape estimation, face deformation as well as other parts of the human body, and object tracking. In addition, these advances have been supported by the evolution of computer processing capabilities, enabling realism in a more sophisticated way. This book encompasses relevant works of expert researchers in the field of deformation models and their applications.  The book is divided into two main parts. The first part presents recent object deformation techniques from the point of view of computer graphics and computer animation. The second part of this book presents six works that study deformations from a computer vision point of view with a common characteristic: deformations are applied in real world applications. The primary audience for this work are researchers from different multidisciplinary fields, s...

  17. Deformations of three-dimensional metrics

    Science.gov (United States)

    Pugliese, Daniela; Stornaiolo, Cosimo

    2015-03-01

    We examine three-dimensional metric deformations based on a tetrad transformation through the action the matrices of scalar field. We describe by this approach to deformation the results obtained by Coll et al. (Gen. Relativ. Gravit. 34:269, 2002), where it is stated that any three-dimensional metric was locally obtained as a deformation of a constant curvature metric parameterized by a 2-form. To this aim, we construct the corresponding deforming matrices and provide their classification according to the properties of the scalar and of the vector used in Coll et al. (Gen Relativ Gravit 34:269, 2002) to deform the initial metric. The resulting causal structure of the deformed geometries is examined, too. Finally we apply our results to a spherically symmetric three geometry and to a space sector of Kerr metric.

  18. Deformable mirrors development program at ESO

    Science.gov (United States)

    Stroebele, Stefan; Vernet, Elise; Brinkmann, Martin; Jakob, Gerd; Lilley, Paul; Casali, Mark; Madec, Pierre-Yves; Kasper, Markus

    2016-07-01

    Over the last decade, adaptive optics has become essential in different fields of research including medicine and industrial applications. With this new need, the market of deformable mirrors has expanded a lot allowing new technologies and actuation principles to be developed. Several E-ELT instruments have identified the need for post focal deformable mirrors but with the increasing size of the telescopes the requirements on the deformable mirrors become more demanding. A simple scaling up of existing technologies from few hundred actuators to thousands of actuators will not be sufficient to satisfy the future needs of ESO. To bridge the gap between available deformable mirrors and the future needs for the E-ELT, ESO started a development program for deformable mirror technologies. The requirements and the path to get the deformable mirrors for post focal adaptive optics systems for the E-ELT is presented.

  19. Coupling codes including deformation exchange suitable for non conforming and unstructured large meshes

    Energy Technology Data Exchange (ETDEWEB)

    Duplex, B., E-mail: benjamin.duplex@gmail.fr [CEA, DEN, DANS/DM2S/STMF, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Grandotto, M. [CEA, DEN, DANS/DM2S/STMF, Cadarache, F-13108 Saint-Paul-lez-Durance (France); Perdu, F. [CEA, DEN, DANS/DM2S/STMF, 17 rue des Martyrs, F-38054 Grenoble (France); Daniel, M.; Gesquiere, G. [Aix-Marseille University, CNRS, LSIS, UMR 7296, case postale 925, 163 Avenue de Luminy, F-13288 Marseille cedex 09 (France)

    2012-12-15

    Highlights: Black-Right-Pointing-Pointer A function of deformation transfer on meshes is proposed. Black-Right-Pointing-Pointer Large meshes sharing a common geometry or common borders are treated. Black-Right-Pointing-Pointer We show the deformation transfer impact on simulation results. - Abstract: The paper proposes a method to couple computation codes and focuses on the transfer of mesh deformations between these codes. The deformations can concern a single object or different objects in contact along common boundaries. The method is designed to allow a wide range of mesh types and to manage large volumes of data. To reach these objectives, a mesh simplification step is first achieved and is followed by the deformation characterisation through a continuous function defined by a network of compact support radial basis functions (RBFs). A test case featuring adjacent geometries in a material testing reactor (MTR) is presented to assess the method. Two solids close together are subject to a deformation by a thermal dilatation, and are cooled by a liquid flowing between them. The results demonstrate the effectiveness of the method and show how the deformation transfer modifies the thermalhydraulic solution.

  20. 3D geodetic monitoring slope deformations

    Directory of Open Access Journals (Sweden)

    Weiss Gabriel

    1996-06-01

    Full Text Available For plenty of slope failures that can be found in Slovakia is necessary and very important their geodetic monitoring (because of their activity, reactivisations, checks. The paper gives new methodologies for these works, using 3D terrestrial survey technologies for measurements in convenient deformation networks. The design of an optimal type of deformation model for various kinds of landslides and their exact processing with an efficient testing procedure to determine the kinematics of the slope deformations are presented too.

  1. Smooth Crossed Products of Rieffel's Deformations

    Science.gov (United States)

    Neshveyev, Sergey

    2014-03-01

    Assume is a Fréchet algebra equipped with a smooth isometric action of a vector group V, and consider Rieffel's deformation of . We construct an explicit isomorphism between the smooth crossed products and . When combined with the Elliott-Natsume-Nest isomorphism, this immediately implies that the periodic cyclic cohomology is invariant under deformation. Specializing to the case of smooth subalgebras of C*-algebras, we also get a simple proof of equivalence of Rieffel's and Kasprzak's approaches to deformation.

  2. Deformation effects in Giant Monopole Resonance

    CERN Document Server

    Kvasil, J; Repko, A; Bozik, D; Kleinig, W; Reinhard, P -G

    2014-01-01

    The isoscalar giant monopole resonance (GMR) in Samarium isotopes (from spherical $^{144}$Sm to deformed $^{148-154}$Sm) is investigated within the Skyrme random-phase-approximation (RPA) for a variety of Skyrme forces. The exact RPA and its separable version (SRPA) are used for spherical and deformed nuclei, respectively. The quadrupole deformation is shown to yield two effects: the GMR broadens and attains a two-peak structure due to the coupling with the quadrupole giant resonance.

  3. Integrable Deformations of the XXZ Spin Chain

    CERN Document Server

    Beisert, Niklas; de Leeuw, Marius; Loebbert, Florian

    2013-01-01

    We consider integrable deformations of the XXZ spin chain for periodic and open boundary conditions. In particular, we classify all long-range deformations and study their impact on the spectrum. As compared to the XXX case, we have the z-spin at our disposal, which induces two additional deformations: the short-range magnetic twist and a new long-range momentum-dependent twist.

  4. Deformed self-dual magnetic monopoles

    Energy Technology Data Exchange (ETDEWEB)

    Bazeia, D. [Departamento de Física, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba (Brazil); Departamento de Física, Universidade Federal de Campina Grande, 58109-970, Campina Grande (Brazil); Casana, R.; Ferreira, M.M. [Departamento de Física, Universidade Federal do Maranhão, 65085-580, São Luís, Maranhão (Brazil); Hora, E. da, E-mail: edahora.ufma@gmail.com [Departamento de Física, Universidade Federal do Maranhão, 65085-580, São Luís, Maranhão (Brazil); Coordenadoria do Curso Interdisciplinar em Ciência e Tecnologia, Universidade Federal do Maranhão, 65080-805, São Luís, Maranhão (Brazil); Losano, L. [Departamento de Física, Universidade Federal da Paraíba, 58051-900, João Pessoa, Paraíba (Brazil); Departamento de Física, Universidade Federal de Campina Grande, 58109-970, Campina Grande (Brazil)

    2013-12-18

    We develop a deformation method for attaining new magnetic monopole analytical solutions consistent with generalized Yang–Mills–Higgs model introduced recently. The new solutions fulfill the usual radially symmetric ansatz and the boundary conditions suitable to assure finite energy configurations. We verify our prescription by studying some particular cases involving both exactly and partially analytical initial configurations whose deformation leads to new analytic BPS monopoles. The results show consistency among the models, the deformation procedure and the profile of the new solutions.

  5. Deformed self-dual magnetic monopoles

    CERN Document Server

    Bazeia, D; Ferreira, M M; da Hora, E; Losano, L

    2013-01-01

    We develop a deformation method for attaining new magnetic monopole analytical solutions consistent with generalized Yang-Mills-Higgs model introduced recently. The new solutions fulfill the usual radially symmetric ansatz and the boundary conditions suitable to assure finite energy configurations. We verify our prescription by studying some particular cases involving both exactly and partially analytical initial configurations whose deformation leads to new analytic BPS monopoles. The results show consistency among the models, the deformation procedure and the profile of the new solutions.

  6. Deformed self-dual magnetic monopoles

    Science.gov (United States)

    Bazeia, D.; Casana, R.; Ferreira, M. M.; da Hora, E.; Losano, L.

    2013-12-01

    We develop a deformation method for attaining new magnetic monopole analytical solutions consistent with generalized Yang-Mills-Higgs model introduced recently. The new solutions fulfill the usual radially symmetric ansatz and the boundary conditions suitable to assure finite energy configurations. We verify our prescription by studying some particular cases involving both exactly and partially analytical initial configurations whose deformation leads to new analytic BPS monopoles. The results show consistency among the models, the deformation procedure and the profile of the new solutions.

  7. Deformation Twinning During Nanoindentation of Nanocrystalline Ta

    OpenAIRE

    Wang, Y. M.; Hodge, A. M.; Biener, J.; Hamza, A.V.; Barnes, D E; Liu, Kai; Nieh, T. G.

    2005-01-01

    The deformation mechanism of body-centered cubic (bcc) nanocrystalline tantalum with grain sizes of 10–30 nm is investigated by nanoindentation, scanning electron microscopy and high-resolution transmission electron microscopy. In a deviation from molecular dynamics simulations and existing experimental observations on other bcc nanocrystalline metals, the plastic deformation of nanocrystalline Ta during nanoindentation is controlled by deformation twinning. The observation of multiple twin i...

  8. Self-adjointness of deformed unbounded operators

    Energy Technology Data Exchange (ETDEWEB)

    Much, Albert [Instituto de Ciencias Nucleares, UNAM, México D.F. 04510 (Mexico)

    2015-09-15

    We consider deformations of unbounded operators by using the novel construction tool of warped convolutions. By using the Kato-Rellich theorem, we show that unbounded self-adjoint deformed operators are self-adjoint if they satisfy a certain condition. This condition proves itself to be necessary for the oscillatory integral to be well-defined. Moreover, different proofs are given for self-adjointness of deformed unbounded operators in the context of quantum mechanics and quantum field theory.

  9. A framework for coupling flow and deformation of the porous solid

    CERN Document Server

    Turner, D Z; Martinez, M J

    2013-01-01

    In this paper, we consider the flow of an incompressible fluid in a deformable porous solid. We present a mathematical model using the framework offered by the theory of interacting continua. In its most general form, this framework provides a mechanism for capturing multiphase flow, deformation, chemical reactions and thermal processes, as well as interactions between the various physics in a conveniently implemented fashion. To simplify the presentation of the framework, results are presented for a particular model than can be seen as an extension of Darcy's equation (which assumes that the porous solid is rigid) that takes into account elastic deformation of the porous solid. The model also considers the effect of deformation on porosity. We show that using this model one can recover identical results as in the framework proposed by Biot and Terzaghi. Some salient features of the framework are as follows: (a) It is a consistent mixture theory model, and adheres to the laws and principles of continuum therm...

  10. Modeling of the deformation of a liquid droplet impinging upon a flat surface

    Science.gov (United States)

    Fukai, J.; Zhao, Z.; Poulikakos, D.; Megaridis, C. M.; Miyatake, O.

    1993-11-01

    This article presents a theoretical study of the deformation of a spherical liquid droplet impinging upon a flat surface. The study accounts for the presence of surface tension during the spreading process. The theoretical model is solved numerically utilizing deforming finite elements and grid generation to simulate accurately the large deformations, as well as the domain nonuniformities characteristic of the spreading process. The results document the effects of impact velocity, droplet diameter, surface tension, and material properties on the fluid dynamics of the deforming droplet. Two liquids with markedly different thermophysical properties, water and liquid tin, are utilized in the numerical simulations because of their relevance in the industrial processes of spray cooling and spray deposition, respectively. The occurrence of droplet recoiling and mass accumulation around the splat periphery are standout features of the numerical simulations and yield a nonmonotonic dependence of the maximum splat radius on time.

  11. On the q-deformed differential operators and induced su(n)-Toda field theory

    CERN Document Server

    Hssaini, M; Maroufi, B; Sedra, M B

    2000-01-01

    We build in this paper the algebra of q-deformed pseudo-differential operators shown to be an essential step towards setting a q-deformed integrability program. In fact, using the results of this q-deformed algebra, we derive the q-analogues of the generalised KdV hierarchy. We focus in particular the first leading orders of this q-deformed hierarchy namely the q-KdV and q- Boussinesq integrable systems. We present also the q-generalisation of the conformal transformations of the currents and discuss the primarity condition of the fields by using the Volterra gauge group transformations for the q-covariant Lax operators. An induced su(n)-Toda(su(2)-Liouville) field theory construction is discussed and other important features are presented.

  12. A non-linear elastic constitutive framework for replicating plastic deformation in solids.

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Scott Alan; Schunk, Peter Randall

    2014-02-01

    Ductile metals and other materials typically deform plastically under large applied loads; a behavior most often modeled using plastic deformation constitutive models. However, it is possible to capture some of the key behaviors of plastic deformation using only the framework for nonlinear elastic mechanics. In this paper, we develop a phenomenological, hysteretic, nonlinear elastic constitutive model that captures many of the features expected of a plastic deformation model. This model is based on calculating a secant modulus directly from a materials stress-strain curve. Scalar stress and strain values are obtained in three dimensions by using the von Mises invariants. Hysteresis is incorporated by tracking an additional history variable and assuming an elastic unloading response. This model is demonstrated in both single- and multi-element simulations under varying strain conditions.

  13. D\\'{e}formations isospectrales non compactes et th\\'{e}orie quantique des champs

    CERN Document Server

    Gayral, V

    2005-01-01

    The aim of this thesis is to study the isopectral deformations from the point of view of Alain Connes' noncommutative geometry. This class of quantum spaces constituts a curved space generalisation of Moyal planes and noncommutative tori. First of all, we look at the construction of non-unital spectral triples, for which we propose modified axioms. We then check that Moyal planes fit into this axiomatic framework, and give the keypoints for the construction of non-unital spectral triples from generic non-compact isospectral deformations. To this end, numerous analytical tools on non-compact Riemannian manifolds are developped. Thanks to Dixmier traces computations, we show that their spectral and classical dimensions coincide. In a second time, we study certain features of quantum fields theory on curved isospectral deformations, with a particular view on the ultraviolet infrared mixing phenomenon. We show its intrinsic nature for all such quantum spaces (compacts or not, periodic or not deformations), and we...

  14. A Case Study on the Strata Movement Mechanism and Surface Deformation Regulation in Chengchao Underground Iron Mine

    Science.gov (United States)

    Cheng, Guanwen; Chen, Congxin; Ma, Tianhui; Liu, Hongyuan; Tang, Chunan

    2017-04-01

    The regular pattern of surface deformation and the mechanism of underground strata movement, especially in iron mines constructed with the block caving method, have a great influence on infrastructure on the surface, so they are an important topic for research. Based on the engineering geology conditions and the surface deformation and fracture features in Chengchao Iron Mine, the mechanism of strata movement and the regular pattern of surface deformation in the footwall were studied by the geomechanical method, and the following conclusions can be drawn: I. The surface deformation process is divided into two stages over time, i.e., the chimney caving development stage and the post-chimney deformation stage. Currently, the surface deformation in Chengchao Iron Mine is at the post-chimney deformation stage. II. At the post-chimney deformation stage, the surface deformation and geological hazards in Chengchao Iron Mine are primarily controlled by the NWW-trending joints, with the phenomenon of toppling deformation and failure on the surface. Based on the surface deformation characteristics in Chengchao Iron Mine, the surface deformation area can be divided into the following four zones: the fracture extension zone, the fracture closure zone, the fracture formation zone and the deformation accumulation zone. The zones on the surface can be determined by the surface deformation characteristics. III. The cantilever beams near the chimney caving area, caused by the NWW-trending joints, have been subjected to toppling failure. This causes the different deformation and failure mechanisms in different locations of the deep rock mass. The deep rock can be divided into four zones, i.e., the fracture zone, fracture transition zone, deformation zone and undisturbed zone, according to the different deformation and failure mechanisms. The zones in the deep rock are the reason for the zones on the surface, so they can be determined by the zones on the surface. Through these

  15. Effect of high temperature deformation on the structure of Ni based superalloy

    Directory of Open Access Journals (Sweden)

    A. Nowotnik

    2008-04-01

    the phase components, in order to complete and confirm obtained results it is recommended to perform further analysis of the alloy by using transmission electron microscopy technique (TEM.Practical implications: Interaction of precipitation process developed during deformation below solvus temperature and heterogenuos deformation (flow localization can become a significant aspect of high temperature performance of precipitation hardenable alloys and may perhaps also allow produce specific microstructures of such deformed materials.Originality/value: It is a scarcity of data which are to describe specific features of phase transformation processes in precipitation hardenable alloys. In addition, existing data do not allow to simplify structural features of dynamic precipitation and simplifying structural description of the process. The compression tests on age hardenable alloys and the analysis of dynamic precipitation process have got a practical meaning.

  16. Metric Gauge Fields in Deformed Special Relativity

    CERN Document Server

    Cardone, F; Petrucci, A

    2014-01-01

    We show that, in the framework of Deformed Special Relativity (DSR), namely a (four-dimensional) generalization of the (local) space-time struc- ture based on an energy-dependent "deformation" of the usual Minkowski geometry, two kinds of gauge symmetries arise, whose spaces either coin- cide with the deformed Minkowski space or are just internal spaces to it. This is why we named them "metric gauge theories". In the case of the internal gauge ?elds, they are a consequence of the deformed Minkowski space (DMS) possessing the structure of a generalized Lagrange space. Such a geometrical structure allows one to de?ne curvature and torsion in the DMS.

  17. Rigidity Constraints for Large Mesh Deformation

    Institute of Scientific and Technical Information of China (English)

    Yong Zhao; Xin-Guo Liu; Qun-Sheng Peng; Hu-Jun Bao

    2009-01-01

    It is a challenging problem of surface-based deformation to avoid apparent volumetric distortions around largely deformed areas. In this paper, we propose a new rigidity constraint for gradient domain mesh deformation to address this problem. Intuitively the proposed constraint can be regarded as several small cubes defined by the mesh vertices through mean value coordinates. The user interactively specifies the cubes in the regions which are prone to volumetric distortions, and the rigidity constraints could make the mesh behave like a solid object during deformation. The experimental results demonstrate that our constraint is intuitive, easy to use and very effective.

  18. Origami-enabled deformable silicon solar cells

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Rui; Huang, Hai; Liang, Hanshuang; Liang, Mengbing [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); Tu, Hongen; Xu, Yong [Electrical and Computer Engineering, Wayne State University, 5050 Anthony Wayne Dr., Detroit, Michigan 48202 (United States); Song, Zeming; Jiang, Hanqing, E-mail: hanqing.jiang@asu.edu [School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, Arizona 85287 (United States); Yu, Hongyu, E-mail: hongyu.yu@asu.edu [School of Electrical, Computer and Energy Engineering, Arizona State University, Tempe, Arizona 85287 (United States); School of Earth and Space Exploration, Arizona State University, Tempe, Arizona 85287 (United States)

    2014-02-24

    Deformable electronics have found various applications and elastomeric materials have been widely used to reach flexibility and stretchability. In this Letter, we report an alternative approach to enable deformability through origami. In this approach, the deformability is achieved through folding and unfolding at the creases while the functional devices do not experience strain. We have demonstrated an example of origami-enabled silicon solar cells and showed that this solar cell can reach up to 644% areal compactness while maintaining reasonable good performance upon cyclic folding/unfolding. This approach opens an alternative direction of producing flexible, stretchable, and deformable electronics.

  19. Advantages of formulating an evolution equation directly for elastic distortional deformation in finite deformation plasticity

    Science.gov (United States)

    Rubin, M. B.; Cardiff, P.

    2017-06-01

    Simo (Comput Methods Appl Mech Eng 66:199-219, 1988) proposed an evolution equation for elastic deformation together with a constitutive equation for inelastic deformation rate in plasticity. The numerical algorithm (Simo in Comput Methods Appl Mech Eng 68:1-31, 1988) for determining elastic distortional deformation was simple. However, the proposed inelastic deformation rate caused plastic compaction. The corrected formulation (Simo in Comput Methods Appl Mech Eng 99:61-112, 1992) preserves isochoric plasticity but the numerical integration algorithm is complicated and needs special methods for calculation of the exponential map of a tensor. Alternatively, an evolution equation for elastic distortional deformation can be proposed directly with a simplified constitutive equation for inelastic distortional deformation rate. This has the advantage that the physics of inelastic distortional deformation is separated from that of dilatation. The example of finite deformation J2 plasticity with linear isotropic hardening is used to demonstrate the simplicity of the numerical algorithm.

  20. 2012 ROCK DEFORMATION: FEEDBACK PROCESSES IN ROCK DEFORMATION GORDON RESEARCH CONFERENCE, AUGUST 19-24, 2012

    Energy Technology Data Exchange (ETDEWEB)

    Kelemen, Peter

    2012-08-24

    Topics covered include: Failure At High Confining Pressure; Fluid-assisted Slip, Earthquakes & Fracture; Reaction-driven Cracking; Fluid Transport, Deformation And Reaction; Localized Fluid Transport And Deformation; Earthquake Mechanisms; Subduction Zone Dynamics And Crustal Growth.

  1. MODELING OF NONLINEAR DEFORMATION AND BUCKLING OF ELASTIC INHOMOGENEOUS SHELLS

    Directory of Open Access Journals (Sweden)

    Bazhenov V.A.

    2014-06-01

    Full Text Available The paper outlines the fundamentals of the method of solving static problems of geometrically nonlinear deformation, buckling, and postbuckling behavior of thin thermoelastic inhomogeneous shells with complex-shaped mid-surface, geometrical features throughout the thickness, and multilayer structure under complex thermomechanical loading. The method is based on the geometrically nonlinear equations of three-dimensional thermoelasticity and the moment finiteelement scheme. The method is justified numerically. Comparing solutions with those obtained by other authors and by software LIRA and SCAD is conducted.

  2. Hierarchical Non-linear Image Registration Integrating Deformable Segmentation

    Institute of Scientific and Technical Information of China (English)

    RAN Xin; QI Fei-hu

    2005-01-01

    A hierarchical non-linear method for image registration was presented, which integrates image segmentation and registration under a variational framework. An improved deformable model is used to simultaneously segment and register feature from multiple images. The objects in the image pair are segmented by evolving a single contour and meanwhile the parameters of affine registration transformation are found out. After that, a contour-constrained elastic registration is applied to register the images correctly. The experimental results indicate that the proposed approach is effective to segment and register medical images.

  3. Deformable two-dimensional photonic crystal slab for cavity optomechanics

    CERN Document Server

    Antoni, T; Briant, T; Cohadon, P -F; Heidmann, A; Braive, R; Beveratos, A; Abram, I; Gatiet, L Le; Sagnes, I; Robert-Philip, I

    2011-01-01

    We have designed photonic crystal suspended membranes with optimized optical and mechanical properties for cavity optomechanics. Such resonators sustain vibration modes in the megahertz range with quality factors of a few thousand. Thanks to a two-dimensional square lattice of holes, their reflectivity at normal incidence at 1064 nm reaches values as high as 95%. These two features, combined with the very low mass of the membrane, open the way to the use of such periodic structures as deformable end-mirrors in Fabry-Perot cavities for the investigation of cavity optomechanical effects

  4. Individual Grain Orientation and Heterogeneous Deformation in Cold-deformed Interstitial-Free Sheet Steel

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The cold rolling deformation textural evolution of an interstitial-free (IF) steel sheet is investigated by experiment and simulation. The microstructure of the IF steel is observed by transmission electron microscopy (TEM). The relationship between the deformation behavior of individual grain and the grain orientation are connected by Taylor factor M. The results show that the grains with higher Taylor factor are deformed slighter than those with lower ones. By considering the heterogeneous deformation, the texture simulation result can be greatly improved.

  5. The Hot Deformation Activation Energy of 7050 Aluminum Alloy under Three Different Deformation Modes

    OpenAIRE

    Deli Sang; Ruidong Fu; Yijun Li

    2016-01-01

    In this study, the hot deformation activation energy values of 7050-T7451 aluminum alloy, calculated with two different methods under three deformation modes, were compared. The results showed that the hot deformation activation energy values obtained with the classical constitutive equation are nearly equivalent under the hot tensile, compression, and shear-compression deformation modes. Average values exhibited an obvious increase when calculated with the modified constitutive equation beca...

  6. Swimming near a deformable interface

    Science.gov (United States)

    Dias, Marcelo; Powers, Thomas

    2013-03-01

    It is a known fact that swimmers behave differently near deformable soft tissues than when near a rigid surface. Motivated by this class of problems, we investigate swimming microorganisms near flexible walls. We calculate the speed of a n infinitely long swimmer near an interface between two viscous fluids. Part of the calculation of the speed is the calculation of the shape of the free boundary. The swimming speed is controlled by the competition between surface and viscous effects, where two limits are observed. When the surface tension vanishes, we get Taylor's result for a swimmer with no walls. When the surface tension is infinite, the problem is like that of a swimmer near a rigid wall.

  7. Deformation of Linked Polymer Coils

    Institute of Scientific and Technical Information of China (English)

    董朝霞; 李明远; 吴肇亮; 林梅钦

    2003-01-01

    Linked polymer solution (LPS) is defined as the solution of linked polymer coils (LPCs) dispersed in water, composed of low concentration partially hydrolyzed polyacrylamide (HPAM) and aluminum citrate (crosslinker). In the work, the conformational changes of LPCs under different conditions were investigated by the methods of membrane filtering under low pressure, dynamic light scattering and core flooding experiments. The results showed that in some conditions the LPCs could be compressed mechanically to 1/158.5 of their original volume because of relatively lower HPAM cross-linking. The hydration property of LPCs was similar to that of normal polymer coils. The deformation of LPCs was more restricted than that of ordinary polymer coils under the flow shear stress or the shift of hydration equilibrium caused in the variation of the electrolyte concentration which is responsible for the effective plugging in the throats of porous media when LPCs are used for deep diverting.

  8. κ-deformed Fourier transform

    Science.gov (United States)

    Scarfone, A. M.

    2017-08-01

    We present a new formulation of Fourier transform in the picture of the κ-algebra derived in the framework of the κ-generalized statistical mechanics. The κ-Fourier transform is obtained from a κ-Fourier series recently introduced by Scarfone (2013). The kernel of this transform, that reduces to the usual exponential phase in the κ → 0 limit, is composed by a κ-deformed phase and a damping factor that gives a wavelet-like behaviour. We show that the κ-Fourier transform is isomorph to the standard Fourier transform through a changing of time and frequency variables. Nevertheless, the new formalism is useful to study, according to Fourier analysis, those functions defined in the realm of the κ-algebra. As a relevant application, we discuss the central limit theorem for the κ-sum of n-iterate statistically independent random variables.

  9. Plastic deformation of nanocrystalline nickel

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    A high-resolution electron microscopy study has uncovered the plastic behavior of accommodating large strains in nanocrystalline (NC) Ni subject to cold rolling at liquid nitrogen temperature. The activation of grain-boundary-mediated-plasticity is evidenced in NC-Ni, including twinning and formation of stacking fault via partial dislocation slips from the grain boundary. The formation and storage of 60? full dislocations are observed inside NC-grains. The grain/twin boundaries act as the barriers of dislocation slips, leading to dislocation pile-up, severe lattice distortion, and formation of sub-grain boundary. The vicinity of grain/twin boundary is where defects preferentially accumulate and likely the favorable place for onset of plastic deformation. The present results indicate the heterogeneous and multiple natures of accommodating plastic strains in NC-grains.

  10. Plastic deformation of nanocrystalline nickel

    Institute of Scientific and Technical Information of China (English)

    WU XiaoLei

    2009-01-01

    A high-resolution electron microscopy study has uncovered the plastic behavior of accommodating large strains in nanocrystalline(NC)Ni subject to cold rolling at liquid nitrogen temperature.The acti vation of grain-boundary-mediated-plasticity is evidenced in NC-Ni,including twinning and formation of stacking fault via partial dislocation slips from the grain boundary.The formation and storage of 60° full dislocations are observed inside NC-grains.The grain/twin boundaries act as the barriers of dislocation slips,leading to dislocation pile-up,severe lattice distortion,and formation of sub-grain boundary.The vicinity of grain/twin boundary is where defects preferentially accumulate and likely the favorable place for onset of plastic deformation.The present results indicate the heterogeneous and multiple natures of accommodating plastic strains in NC-grains.

  11. Challenges of β-deformation

    Science.gov (United States)

    Morozov, A. Yu.

    2012-10-01

    We briefly review problems arising in the study of the beta deformation, which turns out to be the most difficult element in a number of modern problems: the deviation of β from unity is connected with the "exit from the free-fermion point" in two-dimensional conformal theories, from the symmetric graviphoton field with ∈2 = -∈1 in instanton sums in four-dimensional supersymmetric Yang-Mills theories, with the transition from matrix models to beta ensembles, from HOMFLY polynomials to superpolynomials in the Chern-Simons theory, from quantum groups to elliptic and hyperbolic algebras, and so on. We mainly attend to issues related to the Alday-Gaiotto-Tachikawa correspondence and its possible generalizations.

  12. Deformation in the continental lithosphere

    Science.gov (United States)

    The Physical Properties of Earth Materials Committee, a technical committee of AGU's Tectonophysics Section, is organizing a dinner/colloquium as part of the Fall Meeting in San Francisco, Calif. This event will be held Monday, December 3rd, in the Gold Rush Room of the Holiday Inn Golden Gateway Hotel at 1500 Van Ness St. There will be a no-host bar from 6:30 to 7:30 P.M., followed by dinner from 7:30 to 8:30 P.M. Paul Tapponnier will deliver the after-dinner talk, “Large-Scale Deformation Mechanisms in the Continental Lithosphere: Where Do We Stand?” It will start at 8:30 P.M. and a business meeting will follow at 9:30 P.M.

  13. A Vision-Based Methodology to Dynamically Track and Describe Cell Deformation during Cell Micromanipulation

    Science.gov (United States)

    Karimirad, Fatemeh; Shirinzadeh, Bijan; Yan, Wenyi; Fatikow, Sergej

    2013-02-01

    The main objective of this article is to mechanize the procedure of tracking and describing the various phases of deformation of a biological circular cell during micromanipulation. The devised vision-based methodology provides a real-time strategy to track and describe the cell deformation by extracting a geometric feature called dimple angle. An algorithm based on Snake was established to acquire the boundary of the indenting cell and measure the aforementioned feature. Micromanipulation experiments were conducted for zebrafish embryos. Experimental results were used to characterize the deformation of the manipulating embryo by the devised geometric parameter. The results demonstrated the high capability of the methodology. The proposed method is applicable to the micromanipulation of other circular biological embryos such as injection of the mouse oocyte/embryo. Supplemental materials are available for this article. Go to the publisher's online edition of the International Journal of Optomechatronics to view the supplemental files.

  14. Sorption and deformation of coals in liquid and gas medium

    Energy Technology Data Exchange (ETDEWEB)

    S.A. Aipshtein; D.L. Shirochin; V.I. Minaev; A.V. Bunin; A.A. Belyi [Moscow State University of Mining (MSMU), Moscow (Russian Federation)

    2007-07-01

    The collection of coals from Kuznetsk and Donetsk basins was selected with the following criteria: a) different rank; b) different genetic types. Sorption and deformation of coals have been investigated in the medium of carbonic gas and at interaction with dimethylformaldehyde (DMFA). The experimental data on the gas sorption were obtained through a laser method. Such method allows to measure the dependence of adsorption values {zeta} and sorption deformations x (t) simultaneously on the same sample in wide interval of gas pressure P (from 10{sup 2} Pa up to 10 MPa). Sorption processes of carbon dioxide on different rank coals of identical genotypes were investigated. The influence of rank on coal sorption and deformation was established. Differences in structures of isometamorphic coals of different genetic types were established. Using the independent analytical methods with investigation of sorption DMFA by coals have been allowed to establish feature of structure of isometamorphic coals of different genotype types. It was established, the sorption DMFA by coals of 'a'- genotype led to essential transformation coals' organic substance. 8 refs., 5 figs., 5 tabs.

  15. Gait Patterns in Hemiplegic Patients with Equinus Foot Deformity

    Directory of Open Access Journals (Sweden)

    M. Manca

    2014-01-01

    Full Text Available Equinus deformity of the foot is a common feature of hemiplegia, which impairs the gait pattern of patients. The aim of the present study was to explore the role of ankle-foot deformity in gait impairment. A hierarchical cluster analysis was used to classify the gait patterns of 49 chronic hemiplegic patients with equinus deformity of the foot, based on temporal-distance parameters and joint kinematic measures obtained by an innovative protocol for motion assessment in the sagittal, frontal, and transverse planes, synthesized by parametrical analysis. Cluster analysis identified five subgroups of patients with homogenous levels of dysfunction during gait. Specific joint kinematic abnormalities were found, according to the speed of progression in each cluster. Patients with faster walking were those with less ankle-foot complex impairment or with reduced range of motion of ankle-foot complex, that is with a stiff ankle-foot complex. Slow walking was typical of patients with ankle-foot complex instability (i.e., larger motion in all the planes, severe equinus and hip internal rotation pattern, and patients with hip external rotation pattern. Clustering of gait patterns in these patients is helpful for a better understanding of dysfunction during gait and delivering more targeted treatment.

  16. A large deformation viscoelastic model for double-network hydrogels

    Science.gov (United States)

    Mao, Yunwei; Lin, Shaoting; Zhao, Xuanhe; Anand, Lallit

    2017-03-01

    We present a large deformation viscoelasticity model for recently synthesized double network hydrogels which consist of a covalently-crosslinked polyacrylamide network with long chains, and an ionically-crosslinked alginate network with short chains. Such double-network gels are highly stretchable and at the same time tough, because when stretched the crosslinks in the ionically-crosslinked alginate network rupture which results in distributed internal microdamage which dissipates a substantial amount of energy, while the configurational entropy of the covalently-crosslinked polyacrylamide network allows the gel to return to its original configuration after deformation. In addition to the large hysteresis during loading and unloading, these double network hydrogels also exhibit a substantial rate-sensitive response during loading, but exhibit almost no rate-sensitivity during unloading. These features of large hysteresis and asymmetric rate-sensitivity are quite different from the response of conventional hydrogels. We limit our attention to modeling the complex viscoelastic response of such hydrogels under isothermal conditions. Our model is restricted in the sense that we have limited our attention to conditions under which one might neglect any diffusion of the water in the hydrogel - as might occur when the gel has a uniform initial value of the concentration of water, and the mobility of the water molecules in the gel is low relative to the time scale of the mechanical deformation. We also do not attempt to model the final fracture of such double-network hydrogels.

  17. Features added in new release of SRFYDO - February 2009

    Energy Technology Data Exchange (ETDEWEB)

    Anderson-cook, Christine M [Los Alamos National Laboratory; Klamann, Richard M [Los Alamos National Laboratory

    2009-01-01

    Version 2.0 of SRFYDO, released in February 2009, has a number of new features. This document describes these additions and is designed to complement the document 'Calculating System Reliability with SRFYDO: A User Guide' (Los Alamos National Laboratory Technical Report LA-UR 08-06161). The new features include: (1) Reliability Estimates for Combinations of Components - Users can now estimate the reliability of collections of components, such as a sections or sub-systems. This optional feature is activated via a new table, SectionDef, which is used to define names and component associations for the section or sub-system aggregate. If the SectionDef table is present, section plots and tabulated reliabilities will be created during the SRY3 phase. For more details see section 1. (2) Plots of System or Component Reliability Priors - SRFYDO now creates reliability plots for each system (if system priors were given) or each component (if component priors were given) during the SRY1 phase. These plots, written in the directory 'priorPDFs', are provided to help users visualize the impact of their estimates on the final reliability calculation. For more details see section 2. (3) Convenient Exclusion of Lifecycle Covariates - Both GUI and command-line interfaces to SRFYDO now allow the user to exclude one or both of the lifecycle covariates without requiring modification to the spreadsheet. With this capability users can readily explore the effect of adding or removing lifecycle measures on the resulting statistical analysis. Note that excluding a lifecycle covariate is not the same as setting its rate (-b or -c) to zero. For more details see section 3. (4) MCMC Diagnostic Plots - Diagnostic or 'trace' plots may optionally be created for each of the statistical parameters generated during the Monte Carlo phase (SRY2). These plots can help the user determine if (1) appropriate lifecycle variable choices have been made, (2) more sampling

  18. Parallel Feature Extraction System

    Institute of Scientific and Technical Information of China (English)

    MAHuimin; WANGYan

    2003-01-01

    Very high speed image processing is needed in some application specially for weapon. In this paper, a high speed image feature extraction system with parallel structure was implemented by Complex programmable logic device (CPLD), and it can realize image feature extraction in several microseconds almost with no delay. This system design is presented by an application instance of flying plane, whose infrared image includes two kinds of feature: geometric shape feature in the binary image and temperature-feature in the gray image. Accordingly the feature extraction is taken on the two kind features. Edge and area are two most important features of the image. Angle often exists in the connection of the different parts of the target's image, which indicates that one area ends and the other area begins. The three key features can form the whole presentation of an image. So this parallel feature extraction system includes three processing modules: edge extraction, angle extraction and area extraction. The parallel structure is realized by a group of processors, every detector is followed by one route of processor, every route has the same circuit form, and works together at the same time controlled by a set of clock to realize feature extraction. The extraction system has simple structure, small volume, high speed, and better stability against noise. It can be used in the war field recognition system.

  19. Improved Porosity and Permeability Models with Coal Matrix Block Deformation Effect

    Science.gov (United States)

    Zhou, Yinbo; Li, Zenghua; Yang, Yongliang; Zhang, Lanjun; Qi, Qiangqiang; Si, Leilei; Li, Jinhu

    2016-09-01

    Coal permeability is an important parameter in coalbed methane (CBM) exploration and greenhouse gas storage. A reasonable theoretical permeability model is helpful for analysing the influential factors of gas flowing in a coalbed. As an unconventional reservoir, the unique feature of a coal structure deformation determines the state of gas seepage. The matrix block and fracture change at the same time due to changes in the effective stress and adsorption; the porosity and permeability also change. Thus, the matrix block deformation must be ignored in the theoretical model. Based on the cubic model, we analysed the characteristics of matrix block deformation and fracture deformation. The new models were developed with the change in matrix block width a. We compared the new models with other models, such as the Palmer-Manson (P-M) model and the Shi-Durucan (S-D) model, and used a constant confining stress. By matching the experimental data, our model matches quite well and accurately predicts the evolution of permeability. The sorption-induced strain coefficient f differs between the strongly adsorbing gases and weakly adsorbing gases because the matrix block deformation is more sensitive for the weakly adsorbing gases and the coefficient f is larger. The cubic relationship between porosity and permeability overlooks the importance of the matrix block deformation. In our model, the matrix block deformation suppresses the permeability ratio growth. With a constant confining stress, the weight of the matrix block deformation for the strongly adsorbing gases is larger than that for weakly adsorbing gases. The weight values increase as the pore pressure increases. It can be concluded that the matrix block deformation is an important phenomenon for researching coal permeability and can be crucial for the prediction of CBM production due to the change in permeability.

  20. TORSIONAL DEFORMITIES OF LOWER LIMBS IN PATIENTS WITH INFANTILE CEREBRAL PALSY (LITERATURE REVIEW

    Directory of Open Access Journals (Sweden)

    Никита Олегович Хусаинов

    2014-03-01

    Full Text Available The article highlights the literature devoted to the problem of torsional deformities of the lower limbs in patients with infantile cerebral palsy. It also describes biomechanical features peculiar to the patients with infantile cerebral palsy, as well as long-term results of performed surgical interventions.

  1. Tailoring dislocation structures and mechanical properties of nanostructured metals produced by plastic deformation

    DEFF Research Database (Denmark)

    Huang, Xiaoxu

    2009-01-01

    The presence of a dislocation structure associated with low-angle dislocation boundaries and interior dislocations is a common and characteristic feature in nanostructured metals produced by plastic deformation, and plays an important role in determining both the strength and ductility of the nan...

  2. Regularities of Macroscopic Localization of Plastic Deformation in the Stretching of a Low-Carbon Steel

    Science.gov (United States)

    Barannikova, S. A.; Kosinov, D. A.; Nadezhkin, M. V.; Lunev, A. G.; Gorbatenko, V. V.; Zuev, L. B.; Gromov, V. E.

    2014-07-01

    The special features of plastic deformation localization in the stretching of polycrystals of low-carbon steel 08 ss after hot rolling and electrolytic saturation with hydrogen are investigated. The main types and parameters of plastic flow localization in different stages of strain hardening are determined by the method of double-exposure speckle photography.

  3. Cyclic Plastic Deformation and Welding Simulation

    NARCIS (Netherlands)

    Ten Horn, C.H.L.J.

    2003-01-01

    One of the concerns of a fitness for purpose analysis is the quantification of the relevant material properties. It is known from experiments that the mechanical properties of a material can change due to a monotonic plastic deformation or a cyclic plastic deformation. For a fitness for purpose anal

  4. Structural refinement and coarsening in deformed metals

    DEFF Research Database (Denmark)

    Hansen, N.; Huang, X.; Xing, Q.

    2005-01-01

    The microstructural refinement by plastic deformation is analysed in terms of key parameters, the spacing between and the misorientation angle across the boundaries subdividing the structure. Coarsening of such structures by annealing is also characterised. For both deformed and annealed structur...

  5. Einstein-Riemann Gravity on Deformed Spaces

    Directory of Open Access Journals (Sweden)

    Julius Wess

    2006-12-01

    Full Text Available A differential calculus, differential geometry and the E-R Gravity theory are studied on noncommutative spaces. Noncommutativity is formulated in the star product formalism. The basis for the gravity theory is the infinitesimal algebra of diffeomorphisms. Considering the corresponding Hopf algebra we find that the deformed gravity is based on a deformation of the Hopf algebra.

  6. Initialization and Optimation of Deformable Models

    DEFF Research Database (Denmark)

    Jensen, Rune Fisker; Carstensen, Jens Michael; Madsen, Kaj

    1999-01-01

    The deformable model literature has in general been very focused on the formulation and development of new models or the solution of a specific application. Teh final and crucial steps of initialization and optimazation of the deformable model, needed for making inference, have received very little...

  7. Cyclic Shearing Deformation Behavior of Saturated Clays

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The apparatus for static and dynamic universal triaxial and torsional shear soil testing is employed to perform stress-controlled cyclic single-direction torsional shear tests and two-direction coupled shear tests under unconsolidated-undrained conditions. Through a series of tests on saturated clay, the effects of initial shear stress and stress reversal on the clay's strain-stress behavior are examined, and the behavior of pore water pressure is studied. The experimental results indicate that the patterns of stress-strain relations are distinctly influenced by the initial shear stress in the cyclic single-direction shear tests. When the initial shear stress is large and no stress reversal occurs, the predominant deformation behavior is characterized by an accumulative effect. When the initial shear stress is zero and symmetrical cyclic stress occurs, the predominant deformation behavior is characterized by a cyclic effect. The pore water pressure fluctuates around the confining pressure with the increase of cycle number. It seems that the fluctuating amplitude increases with the increase of the cyclic stress. But a buildup of pore water pressure does not occur. The deformations of clay samples under the complex initial and the cyclic coupled stress conditions include the normal deviatoric deformation and horizontal shear deformation, the average deformation and cyclic deformation. A general strain failure criterion taking into account these deformations is recommended and is proved more stable and suitable compared to the strain failure criteria currently used.

  8. Deformation Wave Hardening of Metallic Materials

    Directory of Open Access Journals (Sweden)

    A.V. Kirichek

    2014-07-01

    Full Text Available The article deals with the machine parts hardening by means of deformation waves generated by the impact system with a waveguide as an intermediary member. The conditions for the efficient use of impact energy for elastoplastic deformation of the processed material and creation of the deep hardened surface layer.

  9. Deformed metals - structure, recrystallisation and strength

    DEFF Research Database (Denmark)

    Hansen, Niels; Juul Jensen, Dorte

    2011-01-01

    It is shown how new discoveries and advanced experimental techniques in the last 25 years have led to paradigm shifts in the analysis of deformation and annealing structures of metals and in the way the strength of deformed samples is related to structural parameters. This is described in three...... sections: structural evolution by grain subdivision, recovery and recrystallisation and strength-structure relationships....

  10. Deformation of cylindrical shells under thermal shock

    Energy Technology Data Exchange (ETDEWEB)

    Aptukov, V.N. (Institut Mekhaniki Sploshnykh Sred, Perm (USSR))

    1990-06-01

    The deformation and fracture behavior of cylindrical shells under conditions of a nonsymmetric thermal shock is investigated numerically using a two-dimensional formulation. In particular, attention is given to the effect of the shell thickness on the deformation and fracture characteristics. Some computational difficulties associated with the solution of problems of this type are examined. 16 refs.

  11. On the deformation analysis of point fields

    NARCIS (Netherlands)

    Velsink, H.

    2015-01-01

    A new approach to determine a multi-point deformation of the earth’s surface or objects upon it, represented by point fields measured in two epochs, is presented. The problem of determining, which points have been deformed, is not approached by testing point-by-point, but by formulating alternative

  12. Bimodules and branes in deformation quantization

    CERN Document Server

    Calaque, Damien; Ferrario, Andrea; Rossi, Carlo A

    2009-01-01

    We prove a version of Kontsevich's formality theorem for two subspaces (branes) of a vector space $X$. The result implies in particular that the Kontsevich deformation quantizations of $\\mathrm{S}(X^*)$ and $\\wedge(X)$ associated with a quadratic Poisson structure are Koszul dual. This answers an open question in Shoikhet's recent paper on Koszul duality in deformation quantization.

  13. Acquired nasal deformities in fighter pilots.

    Science.gov (United States)

    Schreinemakers, Joyce R C; van Amerongen, Pieter; Kon, Moshe

    2010-07-01

    Fighter pilots may develop slowly progressive deformities of their noses during their flying careers. The spectrum of deformities that may be acquired ranges from soft tissue to osseous changes. The main cause is the varying pressure exerted by the oxygen mask on the skin and bony pyramid of the nose during flying.

  14. On parameter estimation in deformable models

    DEFF Research Database (Denmark)

    Fisker, Rune; Carstensen, Jens Michael

    1998-01-01

    Deformable templates have been intensively studied in image analysis through the last decade, but despite its significance the estimation of model parameters has received little attention. We present a method for supervised and unsupervised model parameter estimation using a general Bayesian...... method is based on a modified version of the EM algorithm. Experimental results for a deformable template used for textile inspection are presented...

  15. [Longitudinal stent deformation during bifurcation lesion treatment].

    Science.gov (United States)

    Mami, Z; Monsegu, J

    2014-12-01

    Longitudinal stent deformation is defined as a compression of stent length after its implantation. It's a rare complication but dangerous seen with several stents. We reported a case of longitudinal stent deformation during bifurcation lesion treatment with a Promus Element(®) and we perform a short review of this complication.

  16. Complementary energy principle for large elastic deformation

    Institute of Scientific and Technical Information of China (English)

    GAO; Yuchen

    2006-01-01

    Using the "base forces" as the fundamental unknowns to determine the state of an elastic system, the complementary energy principle for large elastic deformation is constructed for the conjugate quantities being displacement gradients, which possesses exactly the same form as that of classical linear elasticity. It is revealed that the complementary energy contains deformation part and rotation part.

  17. ACCUMULATED DEFORMATION MODELING OF PERMANENT WAY BASED ON ENTROPY SYSTEM

    Directory of Open Access Journals (Sweden)

    D. M. Kurhan

    2015-07-01

    Full Text Available Purpose. The work provides a theoretical research about the possibility of using methods that determine the lifetime of a railway track not only in terms of total stresses, and accounting its structure and dynamic characteristics. The aim of these studies is creation the model of deformations accumulation for assessment of service life of a railway track taking into account these features. Methodology. To simulate a gradual change state during the operation (accumulation of deformations the railway track is presented as a system that consists of many particles of different materials collected in a coherent design. It is appropriate to speak not about the appearance of deformations of a certain size in a certain section of the track, and the probability of such event on the site. If to operate the probability of occurrence of deviations, comfortable state of the system is characterized by the number of breaks of the conditional internal connections. The same state of the system may correspond to different combinations of breaks. The more breaks, the more the number of options changes in the structure of the system appropriate to its current state. Such a process can be represented as a gradual transition from an ordered state to a chaotic one. To describe the characteristics of the system used the numerical value of the entropy. Findings. Its entropy is constantly increasing at system aging. The growth of entropy is expressed by changes in the internal energy of the system, which can be determined using mechanical work forces, which leads to deformation. This gives the opportunity to show quantitative indication of breaking the bonds in the system as a consequence of performing mechanical work. According to the results of theoretical research methods for estimation of the timing of life cycles of railway operation considering such factors as the structure of the flow of trains, construction of the permanent way, the movement of trains at high

  18. Some deformations of U[sl(2)] and their representations

    CERN Document Server

    Ky, N A

    2003-01-01

    Some one- and two-parametric deformations of U[sl(2)] and their representations are considered. Interestingly, a newly introduced two-parametric deformation admits a class of infinite - dimensional representations which have no classical (non-deformed) and one-parametric deformation analogues, even at generic deformation parameters.

  19. The deformed uncertainty relation and the corresponding beam quality factor

    CERN Document Server

    Li, K; Wang, S M; Li, Kang; Zhao, Dao Mu; Wang, Shao Min

    1996-01-01

    By using the theory of deformed quantum mechanics, we study the deformed light beam theoretically. The deformed beam quality factor M_q^2 is given explicitly under the case of deformed light in coherent state. When the deformation parameter q being a root of unity, the beam quality factor M_q^2 \\leq 1.

  20. Non-rigid Reconstruction of Casting Process with Temperature Feature

    Science.gov (United States)

    Lin, Jinhua; Wang, Yanjie; Li, Xin; Wang, Ying; Wang, Lu

    2017-09-01

    Off-line reconstruction of rigid scene has made a great progress in the past decade. However, the on-line reconstruction of non-rigid scene is still a very challenging task. The casting process is a non-rigid reconstruction problem, it is a high-dynamic molding process lacking of geometric features. In order to reconstruct the casting process robustly, an on-line fusion strategy is proposed for dynamic reconstruction of casting process. Firstly, the geometric and flowing feature of casting are parameterized in manner of TSDF (truncated signed distance field) which is a volumetric block, parameterized casting guarantees real-time tracking and optimal deformation of casting process. Secondly, data structure of the volume grid is extended to have temperature value, the temperature interpolation function is build to generate the temperature of each voxel. This data structure allows for dynamic tracking of temperature of casting during deformation stages. Then, the sparse RGB features is extracted from casting scene to search correspondence between geometric representation and depth constraint. The extracted color data guarantees robust tracking of flowing motion of casting. Finally, the optimal deformation of the target space is transformed into a nonlinear regular variational optimization problem. This optimization step achieves smooth and optimal deformation of casting process. The experimental results show that the proposed method can reconstruct the casting process robustly and reduce drift in the process of non-rigid reconstruction of casting.

  1. Brachydactylia As A Phenotypic Feature of Mitochondrial Disorder

    Directory of Open Access Journals (Sweden)

    Walter Strobl

    2012-12-01

    Full Text Available Mitochondrial disorders (MIDs may occasionaly go along with dysmorphism but hand deformities, as in the following case, have been only rarely reported. A 72 year old female with ptosis, hypoacusis, tremor, myopathy, diabetes mellitus, arterial hypertension, severe cardiac disease, pulmonary hypertension, gastric carcinoid, hepatopathy, generalised atherosclerosis, anemia, polyarthrosis, and hyperlipidemia, additionally presented with brachydactylia. Upon neurological work-up a MID was suspected. The family history was positive for diabetes but negative for brachydactylia or other features of a MID. MIDs may be associated with brachydactylia. Skeletal deformities may be a phenotypic manifestation of MIDs

  2. Large deformations of a soft porous material

    CERN Document Server

    MacMinn, Christopher W; Wettlaufer, John S

    2015-01-01

    Compressing a porous material will decrease the volume of pore space, driving fluid out. Similarly, injecting fluid into a porous material can drive mechanical deformation, distorting the solid skeleton. This poromechanical coupling has applications ranging from cell and tissue mechanics to geomechanics and hydrogeology. The classical theory of linear poroelasticity captures this coupling by combining Darcy's law with linear elasticity and then further linearizing in the strain. This is a good model for very small deformations, but it becomes increasingly inappropriate as deformations grow larger, and moderate to large deformations are common in the context of phenomena such as swelling or damage, or for materials that are extremely soft. Here, we first review a rigorous Eulerian framework for large-deformation poromechanics. We then compare the predictions of linear poroelasticity with those of fully nonlinear poromechanics in the context of two uniaxial model problems: Fluid outflow driven by an applied mec...

  3. Deformation Measurements of Smart Aerodynamic Surfaces

    Science.gov (United States)

    Fleming, Gary A.; Burner, Alpheus

    2005-01-01

    Video Model Deformation (VMD) and Projection Moire Interferometry (PMI) were used to acquire wind tunnel model deformation measurements of the Northrop Grumman-built Smart Wing tested in the NASA Langley Transonic Dynamics Tunnel. The F18-E/F planform Smart Wing was outfitted with embedded shape memory alloys to actuate a seamless trailing edge aileron and flap, and an embedded torque tube to generate wing twist. The VMD system was used to obtain highly accurate deformation measurements at three spanwise locations along the main body of the wing, and at spanwise locations on the flap and aileron. The PMI system was used to obtain full-field wing shape and deformation measurements over the entire wing lower surface. Although less accurate than the VMD system, the PMI system revealed deformations occurring between VMD target rows indistinguishable by VMD. This paper presents the VMD and PMI techniques and discusses their application in the Smart Wing test.

  4. Hot deformation behavior of FGH96 superalloys

    Institute of Scientific and Technical Information of China (English)

    Jiantao Liu; Guoquan Liu; Benfu Hu; Yuepeng Song; Ziran Qin; Yiwen Zhang

    2006-01-01

    The hot deformation behavior of FGH96 superalloys at 1070-1170℃ and 5×10-4-2×10-1 s-1 were investigated by means of the isothermal compression tests at a Gleeble-1500 thermal mechanical simulator. The results show that dynamic recovery acts as the main softening mechanism below 2×10-3 s-1, whereas dynamic recrystallization acts as the main softening mechanism above 2×10-3 s-1during deformation; the temperature increase caused by the deformation and the corresponding softening stress is negligible; the thermal-mechanical constitutive model to describe the hot deformation behavior is given, and the value of the apparent deformation activation energy (Qdef) is determined to be 354.93 kJ/mol.

  5. M-theory and Deformation Quantization

    CERN Document Server

    Minic, D

    1999-01-01

    We discuss deformation quantization of the covariant, light-cone and conformal gauge-fixed p-brane actions (p>1) which are closely related to the structure of the classical and quantum Nambu brackets. It is known that deformation quantization of the Nambu bracket is not of the usual Moyal type. Yet the Nambu bracket can be quantized using the Zariski deformation quantization (discovered by Dito, Flato, Sternheimer and Takhtajan) which is based on factorization of polynomials in several real variables. We discuss a particular application of the Zariski deformed quantization in M-theory by considering the problem of a covariant formulation of Matrix theory. We propose that the problem of a covariant formulation of Matrix theory can be solved using the formalism of Zariski deformed quantization of the triple Nambu bracket.

  6. The properties of Q-deformed hyperbolic and trigonometric functions in quantum deformation

    Energy Technology Data Exchange (ETDEWEB)

    Deta, U. A., E-mail: utamaalan@yahoo.co.id, E-mail: utamadeta@unesa.ac.id [Department of Physics, the State University of Surabaya (Unesa), Jl. Ketintang, Surabaya 60231 (Indonesia); Suparmi [Departmet of Physics, Sebelas Maret University, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126 (Indonesia)

    2015-09-30

    Quantum deformation has been studied due to its relation with applications in nuclear physics, conformal field theory, and statistical-quantum theory. The q-deformation of hyperbolic function was introduced by Arai. The application of q-deformed functions has been widely used in quantum mechanics. The properties of this two kinds of system explained in this paper including their derivative. The graph of q-deformed functions presented using Matlab. The special case is given for modified Poschl-Teller plus q-deformed Scarf II trigonometry potentials.

  7. Molecular deformation mechanisms of the wood cell wall material.

    Science.gov (United States)

    Jin, Kai; Qin, Zhao; Buehler, Markus J

    2015-02-01

    Wood is a biological material with outstanding mechanical properties resulting from its hierarchical structure across different scales. Although earlier work has shown that the cellular structure of wood is a key factor that renders it excellent mechanical properties at light weight, the mechanical properties of the wood cell wall material itself still needs to be understood comprehensively. The wood cell wall material features a fiber reinforced composite structure, where cellulose fibrils act as stiff fibers, and hemicellulose and lignin molecules act as soft matrix. The angle between the fiber direction and the loading direction has been found to be the key factor controlling the mechanical properties. However, how the interactions between theses constitutive molecules contribute to the overall properties is still unclear, although the shearing between fibers has been proposed as a primary deformation mechanism. Here we report a molecular model of the wood cell wall material with atomistic resolution, used to assess the mechanical behavior under shear loading in order to understand the deformation mechanisms at the molecular level. The model includes an explicit description of cellulose crystals, hemicellulose, as well as lignin molecules arranged in a layered nanocomposite. The results obtained using this model show that the wood cell wall material under shear loading deforms in an elastic and then plastic manner. The plastic regime can be divided into two parts according to the different deformation mechanisms: yielding of the matrix and sliding of matrix along the cellulose surface. Our molecular dynamics study provides insights of the mechanical behavior of wood cell wall material at the molecular level, and paves a way for the multi-scale understanding of the mechanical properties of wood.

  8. On the scaling features of magnetic field fluctuations at non-MHD scales in turbulent space plasmas

    Science.gov (United States)

    Consolini, G.; Giannattasio, F.; Yordanova, E.; Vörös, Z.; Marcucci, M. F.; Echim, M.; Chang, T.

    2016-11-01

    In several different contexts space plasmas display intermittent turbulence at magneto-hydro-dynamic (MHD) scales, which manifests in anomalous scaling features of the structure functions of the magnetic field increments. Moving to smaller scales, i.e. below the ion-cyclotron and/or ion inertial length, these scaling features are still observed, even though its is not clear if these scaling features are still anomalous or not. Here, we investigate the nature of scaling properties of magnetic field increments at non-MHD scales for a period of fast solar wind to investigate the occurrence or not of multifractal features and collapsing of probability distribution functions (PDFs) using the novel Rank-Ordered Multifractal Analysis (ROMA) method, which is more sensitive than the traditional structure function approach. We find a strong evidence for the occurrence of a near mono-scaling behavior, which suggests that the observed turbulent regime at non-MHD scales mainly displays a mono-fractal nature of magnetic field increments. The results are discussed in terms of a non-compact fractal structure of the dissipation field.

  9. Large Deformations of a Soft Porous Material

    Science.gov (United States)

    MacMinn, Christopher W.; Dufresne, Eric R.; Wettlaufer, John S.

    2016-04-01

    Compressing a porous material will decrease the volume of the pore space, driving fluid out. Similarly, injecting fluid into a porous material can expand the pore space, distorting the solid skeleton. This poromechanical coupling has applications ranging from cell and tissue mechanics to geomechanics and hydrogeology. The classical theory of linear poroelasticity captures this coupling by combining Darcy's law with Terzaghi's effective stress and linear elasticity in a linearized kinematic framework. Linear poroelasticity is a good model for very small deformations, but it becomes increasingly inappropriate for moderate to large deformations, which are common in the context of phenomena such as swelling and damage, and for soft materials such as gels and tissues. The well-known theory of large-deformation poroelasticity combines Darcy's law with Terzaghi's effective stress and nonlinear elasticity in a rigorous kinematic framework. This theory has been used extensively in biomechanics to model large elastic deformations in soft tissues and in geomechanics to model large elastoplastic deformations in soils. Here, we first provide an overview and discussion of this theory with an emphasis on the physics of poromechanical coupling. We present the large-deformation theory in an Eulerian framework to minimize the mathematical complexity, and we show how this nonlinear theory simplifies to linear poroelasticity under the assumption of small strain. We then compare the predictions of linear poroelasticity with those of large-deformation poroelasticity in the context of two uniaxial model problems: fluid outflow driven by an applied mechanical load (the consolidation problem) and compression driven by a steady fluid throughflow. We explore the steady and dynamical errors associated with the linear model in both situations, as well as the impact of introducing a deformation-dependent permeability. We show that the error in linear poroelasticity is due primarily to kinematic

  10. Sea Ice Deformation State From Synthetic Aperture Radar Imagery - Part II: Effects of Spatial Resolution and Noise Level

    DEFF Research Database (Denmark)

    Dierking, Wolfgang; Dall, Jørgen

    2008-01-01

    . The areal fraction at C-band remains constant. The retrieved average distance between deformation features increases both at C- and L-bands, as the image resolution gets coarser. The influence of noise becomes noticeable if its level is equal or larger than the average intensity backscattered from the level......C- and L-band airborne synthetic aperture radar (SAR) imagery acquired at like- and cross-polarization over sea ice under winter conditions is examined with the objective to study the discrimination between level ice and ice deformation features. High-resolution low-noise data were analysed....... The signal-to-noise ratio is varied between typical noise levels for airborne imagery and satellite data. Areal fraction of deformed ice and average deformation distance are determined for each image product. At L-band, the retrieved values of the areal fraction get larger as the image resolution is degraded...

  11. Application of terrestrial laser scanning for detection of ground surface deformation in small mud volcano (Murono, Japan)

    Science.gov (United States)

    Hayakawa, Yuichi S.; Kusumoto, Shigekazu; Matta, Nobuhisa

    2016-07-01

    We perform terrestrial laser scanning (TLS) to detect changes in surface morphology of a mud volcano in Murono, north-central Japan. The study site underwent significant deformation by a strong earthquake in 2011, and the surface deformation has continued in the following years. The point cloud datasets were obtained by TLS at three different times in 2011, 2013 and 2014. Those point clouds were aligned by cloud-based registration, which minimizes the closest point distance of point clouds of unchanged ground features, and the TLS-based point cloud data appear to be suitable for detecting centimeter-order deformations in the central domain of the mud volcano, as well as for measurements of topographic features including cracks of paved ground surface. The spatial patterns and accumulative amount of the vertical deformation during 2011-2014 captured by TLS correspond well with those previously reported based on point-based leveling surveys, supporting the validity of TLS survey.

  12. An On-Chip RBC Deformability Checker Significantly Improves Velocity-Deformation Correlation

    Directory of Open Access Journals (Sweden)

    Chia-Hung Dylan Tsai

    2016-10-01

    Full Text Available An on-chip deformability checker is proposed to improve the velocity–deformation correlation for red blood cell (RBC evaluation. RBC deformability has been found related to human diseases, and can be evaluated based on RBC velocity through a microfluidic constriction as in conventional approaches. The correlation between transit velocity and amount of deformation provides statistical information of RBC deformability. However, such correlations are usually only moderate, or even weak, in practical evaluations due to limited range of RBC deformation. To solve this issue, we implemented three constrictions of different width in the proposed checker, so that three different deformation regions can be applied to RBCs. By considering cell responses from the three regions as a whole, we practically extend the range of cell deformation in the evaluation, and could resolve the issue about the limited range of RBC deformation. RBCs from five volunteer subjects were tested using the proposed checker. The results show that the correlation between cell deformation and transit velocity is significantly improved by the proposed deformability checker. The absolute values of the correlation coefficients are increased from an average of 0.54 to 0.92. The effects of cell size, shape and orientation to the evaluation are discussed according to the experimental results. The proposed checker is expected to be useful for RBC evaluation in medical practices.

  13. Rapid Measurement of Tectonic Deformation Using Structure-from-Motion

    Science.gov (United States)

    Pickering, A.; DeLong, S.; Lienkaemper, J. J.; Hecker, S.; Prentice, C. S.; Schwartz, D. P.; Sickler, R. R.

    2016-12-01

    Rapid collection and distribution of accurate surface slip data after earthquakes can support emergency response, help coordinate scientific response, and constrain coseismic slip that can be rapidly overprinted by postseismic slip, or eliminated as evidence of surface deformation is repaired or obscured. Analysis of earthquake deformation can be achieved quickly, repeatedly and inexpensively with the use of Structure-from-Motion (SfM) photogrammetry. Traditional methods of measuring surface slip (e.g. manual measurement with tape measures) have proven inconsistent and irreproducible, and sophisticated methods such as laser scanning require specialized equipment and longer field time. Here we present a simple, cost-effective workflow for rapid, three-dimensional imaging and measurement of features affected by earthquake rupture. As part of a response drill performed by the USGS and collaborators on May 11, 2016, geologists documented offset cultural features along the creeping Hayward Fault in northern California, in simulation of a surface-rupturing earthquake. We present several photo collections from smart phones, tablets, and DSLR cameras from a number of locations along the fault collected by users with a range of experience. Using professionally calibrated photogrammetric scale bars we automatically and accurately scale our 3D models to 1 mm accuracy for precise measurement in three dimensions. We then generate scaled 3D point clouds and extract offsets from manual measurement and multiple linear regression for comparison with collected terrestrial scanner data. These results further establish dense photo collection and SfM processing as an important, low-cost, rapid means of quantifying surface deformation in the critical hours after a surface-rupturing earthquake and emphasize that researchers with minimal training can rapidly collect three-dimensional data that can be used to analyze and archive the surface effects of damaging earthquakes.

  14. Evaluation of desiccated and deformed diaspores from natural building materials

    Directory of Open Access Journals (Sweden)

    Tamás Henn

    2015-03-01

    Full Text Available With the increasing sophistication of paleoethnobotanical methods, it is now possible to reconstruct new aspects of the day-to-day life of past peoples, and, ultimately, gain information about their cultivated plants, land-use practices, architecture, diet, and trade. Reliable identification of plant remains, however, remains essential to the study of paleoethnobotany, and there is still much to learn about precise identification. This paper describes and evaluates the most frequent types of deformed desiccated diaspores revealed from adobe bricks used in buildings in Southwestern Hungary that were built primarily between 1850 and 1950. A total of 24,634 diaspores were recovered from 333.05 kg adobe samples. These seeds and fruits belong to 303 taxa, and the majority were arable and ruderal weed species. A total of 98.97% of the diaspores were identified to species. In other cases, identification was possible only to genus or family (0.93% and 0.10% of diaspores, respectively. Difficulties in identification were caused mainly by morphological changes in the size, shape, color, and surface features of diaspores. Most diaspores were darker in color and significantly smaller than fresh or recently desiccated seeds and fruits. Surface features were often absent or fragmented. The most problematic seeds to identify were those of Centaurea cyanus, Consolida regalis, Scleranthus annuus and Daucus carota ssp. carota, which are discussed in detail. Our research aids archaeobotanists in the identification of desiccated and deformed diaspores.

  15. Data-Adaptive Detection of Transient Deformation in GNSS Networks

    Science.gov (United States)

    Calais, E.; Walwer, D.; Ghil, M.

    2014-12-01

    Dense Global Navigation Satellite System (GNSS) networks have recently been developed in actively deforming regions and elsewhere. Their operation is leading to a rapidly increasing amount of data, and position time series are now routinely provided by several high-quality services. These networks often capture transient-deformation features of geophysical origin that are difficult to separate from the background noise or from seasonal residuals in the time series. In addition, because of the very large number of stations now available, it has become impossible to systematically inspect each time series and visually compare them at all neighboring sites. In order to overcome these limitations, we adapt Multichannel Singular Spectrum Analysis (M-SSA), a method derived from the analysis of dynamical systems, to the spatial and temporal analysis of GNSS position time series in dense networks. We show that this data-adaptive method — previously applied to climate, bio-medical and macro-economic indicators — allows us to extract spatio-temporal features of geophysical interest from GPS time series without a priori knowledge of the system's dynamics or of the data set's noise characteristics. We illustrate our results with examples from seasonal signals in Alaska and from micro-inflation/deflation episodes at an Aleutian-arc volcano.

  16. Mismatched feature detection with finer granularity for emotional speaker recognition

    Institute of Scientific and Technical Information of China (English)

    Li CHEN; Ying-chun YANG; Zhao-hui WU

    2014-01-01

    The shapes of speakers’ vocal organs change under their different emotional states, which leads to the deviation of the emotional acoustic space of short-time features from the neutral acoustic space and thereby the degradation of the speaker recognition performance. Features deviating greatly from the neutral acoustic space are considered as mismatched features, and they negatively affect speaker recognition systems. Emotion variation produces different feature deformations for different phonemes, so it is reasonable to build a fi ner model to detect mismatched features under each phoneme. However, given the difficulty of phoneme recognition, three sorts of acoustic class recognition- phoneme classes, Gaussian mixture model (GMM) tokenizer, and probabilistic GMM tokenizer- are proposed to replace phoneme recognition. We propose feature pruning and feature regulation methods to process the mismatched features to improve speaker recognition performance. As for the feature regulation method, a strategy of maximizing the between-class distance and minimizing the within-class distance is adopted to train the transformation matrix to regulate the mismatched features. Experiments conducted on the Mandarin affective speech corpus (MASC) show that our feature pruning and feature regulation methods increase the identifi cation rate (IR) by 3.64% and 6.77%, compared with the baseline GMM-UBM (universal background model) algorithm. Also, corresponding IR increases of 2.09% and 3.32% can be obtained with our methods when applied to the state-of-the-art algorithm i-vector.

  17. Micro-deformation mechanisms in thermoformed alumina trihydrate reinforced poly(methyl methacrylate)

    Energy Technology Data Exchange (ETDEWEB)

    Gunel, E.M., E-mail: emgunel@buffalo.edu [Civil, Structural and Environmental Engineering, State University of New York at Buffalo, Buffalo, NY 14260 (United States); Basaran, C., E-mail: cjb@buffalo.edu [Civil, Structural and Environmental Engineering, State University of New York at Buffalo, Buffalo, NY 14260 (United States)

    2009-10-15

    Micro-deformation mechanisms involved in thermoforming of alumina trihydrate (ATH) reinforced poly(methyl methacrylate) (PMMA) was investigated in a new experimental method replicating industrial heavy-gage thermoforming procedure. Uniaxial tension tests under non-steady thermal conditions were carried out at different forming rates and forming temperatures. Stress-strain curves and load-displacement histories of thermoformed samples were studied in terms of specimen temperature at different forming conditions. Neat PMMA samples were stretched to 50% strain under identical thermoforming conditions as PMMA/ATH for comparison purposes. Stress whitening in thermoformed PMMA/ATH samples was monitored with optical microscope and degree of stress whitening was characterized by an index obtained from optical image histograms. Micro-deformation features on the surface of PMMA and PMMA/ATH samples were examined by scanning electron microscopy (SEM). Micro-deformation in neat PMMA was in the form of homogenous drawing and did not include any type of void formation. SEM images of PMMA/ATH samples showed that particle cracking is the dominant deformation mechanism at low-forming temperatures, while at high-forming temperatures, combined particle disintegration and interfacial failure are dominant mechanisms. Stress whitening was not observed in neat PMMA which was attributed to absence of micro-voids or craze-like structures. On the other hand, PMMA/ATH samples displayed different levels of stress whitening depending on density, size and type of micro-deformation features.

  18. Microstructure evolution of casting Mg alloy AM60B subjected to compression deformation

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In order to research the microstructure evolution of casting Mg alloy AM60B after compression, the isothermally compressive deformation of different compression ratios followed by metallographic observation was performed. The influence of grain boundaries and second phases on the deformation and recrystallization behavior of the alloy was investigated with optical microscopy, followed by transmission electron microscopy (TEM) to gain an insight into the interplay between the dislocations and microstructure features. The investigation results show that the deformation structure featured by refined grains forms first at as-castgrain boundary when the compression ratio is low, and then spreads throughout the whole cross-section of the casting when the deformation ratio approaches 70%. TEM observation indicates that, dislocations preferentially distribute in the region next to the grain boundaries and second phases, which leads first to the recrystallization occurring there and bounds the recrystallization process in later deformation. Therefore, the grain boundaries and second phases are beneficial to keeping the recrystallized microstructure with fine grains, and may contribute to the formation of an inhomogeneous grain size distribution on the cross-section of the alloy.

  19. Capillary Deformations of Bendable Films

    KAUST Repository

    Schroll, R. D.

    2013-07-01

    We address the partial wetting of liquid drops on ultrathin solid sheets resting on a deformable foundation. Considering the membrane limit of sheets that can relax compression through wrinkling at negligible energetic cost, we revisit the classical theory for the contact of liquid drops on solids. Our calculations and experiments show that the liquid-solid-vapor contact angle is modified from the Young angle, even though the elastic bulk modulus (E) of the sheet is so large that the ratio between the surface tension γ and E is of molecular size. This finding indicates a new elastocapillary phenomenon that stems from the high bendability of very thin elastic sheets rather than from material softness. We also show that the size of the wrinkle pattern that emerges in the sheet is fully predictable, thus resolving a puzzle in modeling "drop-on-a-floating-sheet" experiments and enabling a quantitative, calibration-free use of this setup for the metrology of ultrathin films. © 2013 American Physical Society.

  20. Weak associativity and deformation quantization

    Directory of Open Access Journals (Sweden)

    V.G. Kupriyanov

    2016-09-01

    Full Text Available Non-commutativity and non-associativity are quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-geometric backgrounds. In this paper, working in the framework of deformation quantization, we study the violation of associativity imposing the condition that the associator of three elements should vanish whenever each two of them are equal. The corresponding star products are called alternative and satisfy important for physical applications properties like the Moufang identities, alternative identities, Artin's theorem, etc. The condition of alternativity is invariant under the gauge transformations, just like it happens in the associative case. The price to pay is the restriction on the non-associative algebra which can be represented by the alternative star product, it should satisfy the Malcev identity. The example of nontrivial Malcev algebra is the algebra of imaginary octonions. For this case we construct an explicit expression of the non-associative and alternative star product. We also discuss the quantization of Malcev–Poisson algebras of general form, study its properties and provide the lower order expression for the alternative star product. To conclude we define the integration on the algebra of the alternative star products and show that the integrated associator vanishes.

  1. Weak associativity and deformation quantization

    CERN Document Server

    Kupriyanov, V G

    2016-01-01

    Non-commutativity is quite natural in string theory. For open strings it appears due to the presence of non-vanishing background two-form in the world volume of Dirichlet brane, while in closed string theory the flux compactifications with non-vanishing three-form also lead to non-commutativity. Except for some specific cases, like the constant $B$-field in open strings, the string coordinates are not only non-commutative, but also non-associative. It manifests the non-geometric nature of the consistent string vacua. The aim of this paper is to study the mathematical tools necessary to deal with non-associativity in physics. Working in the framework of deformation quantization we admit non-associative star products, but keep the violation of associativity under control. We require that the star associator of three functions should vanish whenever each two of them are iqual. Such a star product is called alternative. This condition imposes the restriction on non-associative algebras, the star commutator should...

  2. Mass-deformed Brane Tilings

    CERN Document Server

    Bianchi, Massimo; Hanany, Amihay; Morales, Jose Francisco; Pacifici, Daniel Ricci; Seong, Rak-Kyeong

    2014-01-01

    We study renormalization group flows among N=1 SCFTs realized on the worldvolume of D3-branes probing toric Calabi-Yau singularities, thus admitting a brane tiling description. The flows are triggered by masses for adjoint or vector-like pairs of bifundamentals and are generalizations of the Klebanov-Witten construction of the N=1 theory for the conifold starting from the N=2 theory for the C^2/Z_2 orbifold. In order to preserve the toric condition pairs of masses with opposite signs have to be switched on. We offer a geometric interpretation of the flows as complex deformations of the Calabi-Yau singularity preserving the toric condition. For orbifolds, we support this interpretation by an explicit string amplitude computation of the gauge invariant mass terms generated by imaginary self-dual 3-form fluxes in the twisted sector. In agreement with the holographic a-theorem, the volume of the Sasaki-Einstein 5-base of the Calabi-Yau cone always increases along the flow.

  3. Deformed soft matter under constraints

    Science.gov (United States)

    Bertrand, Martin

    In the last few decades, an increasing number of physicists specialized in soft matter, including polymers, have turned their attention to biologically relevant materials. The properties of various molecules and fibres, such as DNA, RNA, proteins, and filaments of all sorts, are studied to better understand their behaviours and functions. Self-assembled biological membranes, or lipid bilayers, are also the focus of much attention as many life processes depend on these. Small lipid bilayers vesicles dubbed liposomes are also frequently used in the pharmaceutical and cosmetic industries. In this thesis, work is presented on both the elastic properties of polymers and the response of lipid bilayer vesicles to extrusion in narrow-channels. These two areas of research may seem disconnected but they both concern deformed soft materials. The thesis contains four articles: the first presenting a fundamental study of the entropic elasticity of circular chains; the second, a simple universal description of the effect of sequence on the elasticity of linear polymers such as DNA; the third, a model of the symmetric thermophoretic stretch of a nano-confined polymer; the fourth, a model that predicts the final sizes of vesicles obtained by pressure extrusion. These articles are preceded by an extensive introduction that covers all of the essential concepts and theories necessary to understand the work that has been done.

  4. Influence of the tempurature and rate conditions of deformation on the mechanical properties of 15Kh5M steel

    Energy Technology Data Exchange (ETDEWEB)

    Muckhin, V.N.; Nikulina, O.A.; Teplova, N.I.; Vatnik, L.E.

    1986-10-01

    This paper studies the influence of temperature and rate conditions of deformation of 15Kh5M steel on its mechanical properties for the purpose of determination of the sensitivity of the steel to deform rate, features of the change in uniform and concentrated plasticity, and the deformation capacity in long operating times, since 15Kh steel is widely used for production of the tubular coils of furnances of catalytic reformers of gasolines, which operate at temperatures up to 873 K and a pressure up to 6 MPa in a dangerously explosive medium.

  5. Influence of deformation bands on sandstone porosity: A case study using three-dimensional microtomography

    Science.gov (United States)

    Rodrigues, Mérolyn Camila Naves de Lima; Trzaskos, Barbara; Lopes, Angela Pacheco

    2015-03-01

    This study presents a qualitative and quantitative analysis of porosity in deformation bands by applying X-ray micro-computed tomography in conjunction with microstructural analysis. Samples of compactional cataclastic bands and shear compactional bands identified in Early Cretaceous aeolian sandstones of the Paraná Basin were analyzed. The application of X-ray micro-computed tomography expanded the view of features in the porous framework of each type of deformation band studied and provided information that are not clear or was not observable with optical microscopy. The compactional cataclastic bands and shear compactional bands differ in geometry, thickness, microstructures and, mainly, in the distribution, shape and orientation of the remaining pores. Porosity analysis was also performed by comparing values of porosity (total, open and closed pores) of the parental rock and the deformation band in each sample. Results of these analyses show a reduction of total porosity and open pores and therefore an increase in the amount of closed pores in all types of deformation bands in relation to parental rock. In addition, it is observed that changes in porosity characteristics are related to the effect of different deformation mechanisms that operated in each type of deformation band.

  6. Analysis of Deformation of the Human Ear and Canal Caused by Mandibular Movement

    DEFF Research Database (Denmark)

    Darkner, Sune; Paulsen, Rasmus Reinhold; Larsen, Rasmus

    2007-01-01

    Many hearing aid users experience physical discomfort when wearing their device. The main contributor to this problem is believed to be deformation of the ear and ear canal caused by movement of the mandible. Physical discomfort results from added pressure on soft tissue areas in the ear. Identif......Many hearing aid users experience physical discomfort when wearing their device. The main contributor to this problem is believed to be deformation of the ear and ear canal caused by movement of the mandible. Physical discomfort results from added pressure on soft tissue areas in the ear....... Identifying features that can predict potential deformation is therefore important for identifying problematic cases in advance. A study on the physical deformation of the human ear and canal due to movement of the mandible is presented. The study is based on laser scannings of 30 pairs of ear impressions...... and propagated to the shape model, enabling the building of a deformation model in the reference frame of the shape model. A relationship between the two models is established, showing that the shape variation can explain approximately 50% of the variation in the deformation model. An hypothesis test...

  7. Thermal image analysis of plastic deformation and fracture behavior by a thermo-video measurement system

    Science.gov (United States)

    Ohbuchi, Yoshifumi; Sakamoto, Hidetoshi; Nagatomo, Nobuaki

    2016-12-01

    The visualization of the plastic region and the measurement of its size are necessary and indispensable to evaluate the deformation and fracture behavior of a material. In order to evaluate the plastic deformation and fracture behavior in a structural member with some flaws, the authors paid attention to the surface temperature which is generated by plastic strain energy. The visualization of the plastic deformation was developed by analyzing the relationship between the extension of the plastic deformation range and the surface temperature distribution, which was obtained by an infrared thermo-video system. Furthermore, FEM elasto-plastic analysis was carried out with the experiment, and the effectiveness of this non-contact measurement system of the plastic deformation and fracture process by a thermography system was discussed. The evaluation method using an infrared imaging device proposed in this research has a feature which does not exist in the current evaluation method, i.e. the heat distribution on the surface of the material has been measured widely by noncontact at 2D at high speed. The new measuring technique proposed here can measure the macroscopic plastic deformation distribution on the material surface widely and precisely as a 2D image, and at high speed, by calculation from the heat generation and the heat propagation distribution.

  8. Discrete element simulation of localized deformation in stochastic distributed granular materials

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The deformation in granular material under loading conditions is a problem of great interest currently. In this paper,the micro-mechanism of the localized deformations in stochastically distributed granular materials is investigated based on the modi-fied distinct element method under the plane strain conditions,and the influences of the confining pressure,the initial void ratio and the friction coefficient on the localized deformation and the stability of granular materials are also studied. It is concluded,based on the numerical simulation testing,that two crossed shear sliding planes may occur inside the granular assembly,and deformation patterns vary with the increasing of transverse strain. These conclusions are in good agreement with the present experimental results. By tangential velocity profiles along the direction normal to the two shear sliding planes,it can be found that there are two different shear deformation patterns: one is the fluid-like shear mode and the other is the solid-like shear mode. At last,the influences of various material parameters or factors on localized deformation features and patterns of granular materials are discussed in detail.

  9. Microstructure and low-temperature plastic deformation of Al-Li alloy

    Science.gov (United States)

    Isaev, N. V.; Zabrodin, P. A.; Spuskanyuk, V. Z.; Davydenko, A. A.; Pustovalov, V. V.; Fomenko, V. S.; Braude, I. S.

    2012-01-01

    Features of the plastic deformation of solid Al-Li solutions with microstructures formed by direct and angular hydroextrusion are studied under tension at temperatures of 4.2-350 K. It is found that the grain size reductions, increases in the average density of defects, and changes in the orientational textures during combined hydroextrusion lead to increased strength and reduced plasticity of the microcrystalline alloy relative to initially large-grained samples. The high yield stress of the microcrystalline alloy is explained by a higher grain density and the evolution of an orientational texture. The strong temperature dependence of the yield stress is typical of thermally activated interactions between dislocations and local obstacles in the form of deformation defects produced during hydroextrusion. The low plasticity of the microcrystalline alloy, which already shows up as a localization of plastic deformation with small deformations, is caused by a low rate of work hardening owing to enhanced dynamic recovery of fine grains even at low temperatures. The rate of dynamic recovery decreases, while uniform deformation increases, at temperatures of 77 K and below. Based on data on the high stress rate sensitivity at temperatures above 77 K and the low activation volume for plastic deformation of microcrystalline Al-Li, it is proposed that high-angle grain boundaries may serve as highly efficient sources and sinks of mobile dislocations.

  10. Discrete element simulation of localized deformation in stochastic distributed granular materials

    Institute of Scientific and Technical Information of China (English)

    WANG DengMing; ZHOU YouHe

    2008-01-01

    The deformation in granular material under loading conditions is a problem of great interest currently. In this paper, the micro-mechanism of the localized deformations in stochastically distributed granular materials is investigated based on the modi-fied distinct element method under the plane strain conditions, and the influences of the confining pressure, the initial void ratio and the friction coefficient on the localized deformation and the stability of granular materials are also studied. It is concluded, based on the numerical simulation testing, that two crossed shear sliding planes may occur inside the granular assembly, and deformation patterns vary with the increasing of transverse strain. These conclusions are in good agreement with the present experimental results. By tangential velocity profiles along the direction normal to the two shear sliding planes, it can be found that there are two different shear deformation patterns: one is the fluid-like shear mode and the other is the solid-like shear mode. At last, the influences of various material parameters or factors on localized deformation features and patterns of granular materials are discussed in detail.

  11. Shear Creep Simulation of Structural Plane of Rock Mass Based on Discontinuous Deformation Analysis

    Directory of Open Access Journals (Sweden)

    Guoxin Zhang

    2017-01-01

    Full Text Available Numerical simulations of the creep characteristics of the structural plane of rock mass are very useful. However, most existing simulation methods are based on continuum mechanics and hence are unsuitable in the case of large displacements and deformations. The discontinuous deformation analysis method proposed by Genhua is a discrete one and has a significant advantage when simulating the contacting problem of blocks. In this study, we combined the viscoelastic rheological model of Burgers with the discontinuous deformation analysis (DDA method. We also derived the recurrence formula for the creep deformation increment with the time step during numerical simulations. Based on the minimum potential energy principle, the general equilibrium equation was derived, and the shear creep deformation in the structural plane was considered. A numerical program was also developed and its effectiveness was confirmed based on the curves obtained by the creep test of the structural plane of a rock mass under different stress levels. Finally, the program was used to analyze the mechanism responsible for the creep features of the structural plane in the case of the toppling deformation of the rock slope. The results showed that the extended DDA method is an effective one.

  12. Cyclic mechanical deformation stimulates human lung fibroblast proliferation and autocrine growth factor activity.

    Science.gov (United States)

    Bishop, J E; Mitchell, J J; Absher, P M; Baldor, L; Geller, H A; Woodcock-Mitchell, J; Hamblin, M J; Vacek, P; Low, R B

    1993-08-01

    Cellular hypertrophy and hyperplasia and increased extracellular matrix deposition are features of tissue hypertrophy resulting from increased work load. It is known, for example, that mechanical forces play a critical role in lung development, cardiovascular remodeling following pressure overload, and skeletal muscle growth. The mechanisms involved in these processes, however, remain unclear. Here we examined the effect of mechanical deformation on fibroblast function in vitro. IMR-90 human fetal lung fibroblasts grown on collagen-coated silastic membranes were subjected to cyclical mechanical deformation (10% increase in culture surface area; 1 Hz) for up to 5 days. Cell number was increased by 39% after 2 days of deformation (1.43 +/- .01 x 10(5) cells/membrane compared with control, 1.03 +/- 0.02 x 10(5) cells; mean +/- SEM; P < 0.02) increasing to 163% above control by 4 days (2.16 +/- 0.16 x 10(5) cells compared with 0.82 +/- 0.03 x 10(5) cells; P < 0.001). The medium from mechanically deformed cells was mitogenic for IMR-90 cells, with maximal activity in the medium from cells mechanically deformed for 2 days (stimulating cell replication by 35% compared with media control; P < 0.002). These data suggest that mechanical deformation stimulates human lung fibroblast replication and that this effect is mediated by the release of autocrine growth factors.

  13. Origin and evolution of phyllosilicate deformation bands in the poorly lithified sandstones of the Rio do Peixe Basin, NE Brazil

    Science.gov (United States)

    Nogueira, Francisco; Nicchio, Matheus; Balsamo, Fabrizio; Bezerra, Francisco; Souza, Jorge; Carvalho, Bruno; Storti, Fabrizio

    2017-04-01

    indicates that the only external element present in phyllosilicate deformation bands formed by clay authigenesis is iron oxide. This feature suggests formation at very shallow depth, in the vadose zone where fluid flow preferentially occurs by capillarity in deformation band cores. Petrophysical analysis shows that both types of phyllosilicate deformation bands have high sealing potential. Clay smearing deformation bands reduce rock permeability by three orders of magnitude whereas phyllosilicate deformation bands formed by authigenesis causes permeability reduction of about two orders of magnitude with respect to the corresponding host rock.

  14. Infinitesimal deformations of a formal symplectic groupoid

    CERN Document Server

    Karabegov, Alexander

    2010-01-01

    Given a formal symplectic groupoid $G$ over a Poisson manifold $(M, \\pi_0)$, we define a new object, an infinitesimal deformation of $G$, which can be thought of as a formal symplectic groupoid over the manifold $M$ equipped with an infinitesimal deformation $\\pi_0 + \\varepsilon \\pi_1$ of the Poisson bivector field $\\pi_0$. The source and target mappings of a deformation of $G$ are deformations of the source and target mappings of $G$. To any pair of natural star products $(\\ast, \\tilde\\ast)$ having the same formal symplectic groupoid $G$ we relate an infinitesimal deformation of $G$. We call it the deformation groupoid of the pair $(\\ast, \\tilde\\ast)$. We give explicit formulas for the source and target mappings of the deformation groupoid of a pair of star products with separation of variables on a Kaehler- Poisson manifold. Finally, we give an algorithm for calculating the principal symbols of the components of the logarithm of a formal Berezin transform of a star product with separation of variables. This...

  15. Craniofacial neurofibromatosis: treatment of the midface deformity.

    Science.gov (United States)

    Singhal, Dhruv; Chen, Yi-Chieh; Tsai, Yueh-Ju; Yu, Chung-Chih; Chen, Hung Chang; Chen, Yu-Ray; Chen, Philip Kuo-Ting

    2014-07-01

    Craniofacial Neurofibromatosis is a benign but devastating disease. While the most common location of facial involvement is the orbito-temporal region, patients often present with significant mid-face deformities. We reviewed our experience with Craniofacial Neurofibromatosis from June 1981 to June 2011 and included patients with midface soft tissue deformities defined as gross alteration of nasal or upper lip symmetry. Data reviewed included the medical records and photobank. Over 30 years, 52 patients presented to and underwent surgical management for Craniofacial Neurofibromatosis at the Chang Gung Craniofacial Center. 23 patients (43%) demonstrated gross mid-facial deformities at initial evaluation. 55% of patients with lip deformities and 28% of patients with nasal deformities demonstrated no direct tumour involvement. The respective deformity was solely due to secondary gravitational effects from neurofibromas of the cheek subunit. Primary tumour infiltration of the nasal and/or labial subunits was treated with excision followed by various methods of reconstruction including lower lateral cartilage repositioning, forehead flaps, free flaps, and/or oral commissure suspension. Soft tissue deformities of the midface are very common in patients with Craniofacial Neurofibromatosis and profoundly affect overall aesthetic outcomes. Distinguishing primary from secondary involvement of the midface assists in surgical decision making. Copyright © 2013 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  16. From labyrinthine aplasia to otocyst deformity

    Energy Technology Data Exchange (ETDEWEB)

    Giesemann, Anja Maria; Goetz, Friedrich; Lanfermann, Heinrich [Hannover Medical School, Department of Diagnostic and Interventional Neuroradiology, Hannover (Germany); Neuburger, Juergen; Lenarz, Thomas [Hannover Medical School, Department of Otorhinolaryngology, Hannover (Germany)

    2010-02-15

    Inner ear malformations (IEMs) are rare and it is unusual to encounter the rarest of them, namely labyrinthine aplasia (LA) and otocyst deformity. They do, however, provide useful pointers as to the early embryonic development of the ear. LA is characterised as a complete absence of inner ear structures. While some common findings do emerge, a clear definition of the otocyst deformity does not exist. It is often confused with the common cavity first described by Edward Cock. Our purpose was to radiologically characterise LA and otocyst deformity. Retrospective analysis of CT and MRI data from four patients with LA or otocyst deformity. Middle and inner ear findings were categorised by two neuroradiologists. The bony carotid canal was found to be absent in all patients. Posterior located cystic structures were found in association with LA and otocyst deformity. In the most severe cases, only soft tissue was present at the medial border of the middle ear cavity. The individuals with otocyst deformity also had hypoplasia of the petrous apex bone. These cases demonstrate gradual changes in the two most severe IEMs. Clarification of terms was necessary and, based on these findings, we propose defining otocyst deformity as a cystic structure in place of the inner ear, with the cochlea, IAC and carotid canal absent. This condition needs to be differentiated from the common cavity described by Edward Cook. A clear definition of inner ear malformations is essential if outcomes following cochlear implantation are to be compared. (orig.)

  17. Detection and Analysis of Deep Seated Gravitational Slope Deformation and Relations with the Active Tectonics

    Science.gov (United States)

    Moro, M.; Saroli, M.; Lancia, M.; Albano, M.; Lo Sardo, L.; Stramondo, S.

    2015-12-01

    Modern geomorphological investigations focused on the definition of major factors conditioning the landscape evolution. The interaction of some of these factors as the litho-structural setting, the local relief, the tectonic activity, the climatic conditions and the seismicity plays a key-role in determining large scale slope instability phenomena which display the general morphological features of deep seated gravitational deformations (DSGD). The present work aims to detect the large scale gravitational deformation and relations with the active tectonics affecting the Abruzzo Region and to provide a description of the morphologic features of the deformations by means of aerial photograph interpretation, geological/geomorphological field surveys and DInSAR data. The investigated areas are morphologically characterized by significant elevation changes due to the presence of high mountain peaks, separated from surrounding depressed areas by steep escarpments, frequently represented by active faults. Consequently, relief energy favours the development of gravity-driven deformations. These deformations seem to be superimposed on and influenced by the inherited structural and tectonic pattern, related to the sin- and post-thrusting evolution. The morphological evidences of these phenomena, are represented by landslides, sackungen or rock-flows, lateral spreads and block slides. DInSAR analysis measured deformation of the large scale gravitative phenomena previously identified through aerial-photo analysis. DSGD may evolve in rapid, catastrophic mass movements and this paroxistic evolution of the deformations may be triggered by high magnitude seismic events. These assumptions point out the great importance of mapping in detail large scale slope instability phenomena in relation to the active faults, in a perspective of land-use planning such as the Abruzzo Region characterized by a high magnitude historical seismicity.

  18. SPINAL DEFORMITIES AFTER SELECTIVE DORSAL RHIZOTOMY

    Directory of Open Access Journals (Sweden)

    PATRICIO PABLO MANZONE

    Full Text Available ABSTRACT Objective: Selective dorsal rhizotomy (SDR used for spasticity treatment could worsen or develop spinal deformities. Our goal is to describe spinal deformities seen in patients with cerebral palsy (CP after being treated by SDR. Methods: Retrospective study of patients operated on (SDR between January/1999 and June/2012. Inclusion criteria: spinal Rx before SDR surgery, spinography, and assessment at follow-up. We evaluated several factors emphasizing level and type of SDR approach, spinal deformity and its treatment, final Risser, and follow-up duration. Results: We found 7 patients (6 males: mean age at SDR 7.56 years (4.08-11.16. Mean follow-up: 6.64 years (2.16-13, final age: 14.32 years (7.5-19. No patient had previous deformity. GMFCS: 2 patients level IV, 2 level III, 3 level II. Initial walking status: 2 community walkers, 2 household walkers, 2 functional walkers, 1 not ambulant, at the follow-up, 3 patients improved, and 4 kept their status. We found 4 TL/L laminotomies, 2 L/LS laminectomies, and 1 thoracic laminectomy. Six spinal deformities were observed: 2 sagittal, 3 mixed, and 1 scoliosis. There was no association among the type of deformity, final gait status, topographic type, GMFCS, age, or SDR approach. Three patients had surgery indication for spinal deformity at skeletal maturity, while those patients with smaller deformities were still immature (Risser 0 to 2/3 although with progressive curves. Conclusions: After SDR, patients should be periodically evaluated until they reach Risser 5. The development of a deformity does not compromise functional results but adds morbidity because it may require surgical treatment.

  19. Procedure selection for the flexible adult acquired flatfoot deformity.

    Science.gov (United States)

    Hentges, Matthew J; Moore, Kyle R; Catanzariti, Alan R; Derner, Richard

    2014-07-01

    Adult acquired flatfoot represents a spectrum of deformities affecting the foot and the ankle. The flexible, or nonfixed, deformity must be treated appropriately to decrease the morbidity that accompanies the fixed flatfoot deformity or when deformity occurs in the ankle joint. A comprehensive approach must be taken, including addressing equinus deformity, hindfoot valgus, forefoot supinatus, and medial column instability. A combination of osteotomies, limited arthrodesis, and medial column stabilization procedures are required to completely address the deformity.

  20. Spinal Deformity Associated with Chiari Malformation.

    Science.gov (United States)

    Kelly, Michael P; Guillaume, Tenner J; Lenke, Lawrence G

    2015-10-01

    Despite the frequency of Chiari-associated spinal deformities, this disease process remains poorly understood. Syringomyelia is often present; however, this is not necessary and scoliosis has been described in the absence of a syrinx. Decompression of the hindbrain is often recommended. In young patients (<10 years old) and/or those with small coronal Cobb measurements (<40°), decompression of the hindbrain may lead to resolution of the spinal deformity. Spinal fusion is reserved for those curves that progress to deformities greater than 50°. Further research is needed to understand the underlying pathophysiology to improve prognostication and treatment of this patient population.

  1. On the thermocapillary motion of deformable droplets

    CERN Document Server

    Berejnov, V V

    2001-01-01

    In studies on Marangoni type motion of particles the surface tension is often approximated as a linear function of temperature. For deformable particles in a linear external temperature gradient far from the reference point this approximation yields a negative surface tension which is physically unrealistic. It is shown that H.Zhou and R.H.Davis J. Colloid Interface Sci., n.181,60,1996 presented calculation where the leading deformable drop moved into a region of negative surface tension. With respect numerical studies the restriction of the migration of two deformable drops is given in terms of the drift time.

  2. Cubic wavefunction deformation of compressed atoms

    CERN Document Server

    Portela, Pedro Calvo

    2015-01-01

    We hypothesize that in a non-metallic crystalline structure under extreme pressures, atomic wavefunctions deform to adopt a reduced rotational symmetry consistent with minimizing interstitial space in the crystal. We exemplify with a simple numeric variational calculation that yields the energy cost of this deformation for Helium to 25%. Balancing this with the free energy gained by tighter packing we obtain the pressures required to effect such deformation. The consequent modification of the structure suggests a decrease in the resistance to tangential stress, and an associated decrease of the crystal's shear modulus. The atomic form factor is also modified. We also compare with neutron matter in the interior of compact stars.

  3. String theory of the Omega deformation

    CERN Document Server

    Hellerman, Simeon; Reffert, Susanne

    2011-01-01

    In this article, we want to turn on real masses for the fields in the effective low energy gauge theory describing the motion of a stack of D2-branes. We do so by placing the D2-branes into the T-dual of a fluxbrane background. We furthermore show that the fluxbrane background is the string theory realization of an Omega-deformation of flat space in the directions transverse to the branes where the deformation parameters satisfy epsilon_1 = - epsilon_2. This Omega-deformation therefore serves to give real masses to the chiral fields of the gauge theory.

  4. Deformation of vanadium and niobium during hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Geld, P.V.; Kats, M.IA.; Spivak, L.V.

    1986-01-01

    The deformation behavior of polycrystalline vanadium and niobium during hydrogenation is investigated experimentally using a torsional pendulum to load 0.5-mm-diameter, 80-mm-long wire specimens. It is found that under conditions of isothermal hydrogenation, the macrodeformation of the V and Nb specimens is determined by the contributions of the following two components: deformation due to changes in the shear modulus of the system metal-hydrogen and deformation due to the oriented growth of the hydride phase in an applied stress field. 9 references.

  5. Atomistic deformation mechanisms in twinned copper nanospheres.

    Science.gov (United States)

    Bian, Jianjun; Niu, Xinrui; Zhang, Hao; Wang, Gangfeng

    2014-01-01

    In the present study, we perform molecular dynamic simulations to investigate the compression response and atomistic deformation mechanisms of twinned nanospheres. The relationship between load and compression depth is calculated for various twin spacing and loading directions. Then, the overall elastic properties and the underlying plastic deformation mechanisms are illuminated. Twin boundaries (TBs) act as obstacles to dislocation motion and lead to strengthening. As the loading direction varies, the plastic deformation transfers from dislocations intersecting with TBs, slipping parallel to TBs, and then to being restrained by TBs. The strengthening of TBs depends strongly on the twin spacing.

  6. Deformation mechanisms of plasticized starch materials.

    Science.gov (United States)

    Mikus, P-Y; Alix, S; Soulestin, J; Lacrampe, M F; Krawczak, P; Coqueret, X; Dole, P

    2014-12-19

    The aim of this paper is to understand the influence of plasticizer and plasticizer amount on the mechanical and deformation behaviors of plasticized starch. Glycerol, sorbitol and mannitol have been used as plasticizers. After extrusion of the various samples, dynamic mechanical analyses and video-controlled tensile tests have been performed. It was found that the nature of plasticizer, its amount as well as the aging of the material has an impact on the involved deformation mechanism. The variations of volume deformation could be explained by an antiplasticization effect (low plasticizer amount), a phase-separation phenomenon (excess of plasticizer) and/or by the retrogradation of starch.

  7. Research on monitoring system for slope deformation

    Institute of Scientific and Technical Information of China (English)

    LIU Xiao-sheng; ZHANG Xue-zhuang; WANG Ai-gong

    2007-01-01

    The monitoring system for slope deformation which bases on Leica (TCA series)was researched and developed. This system consists of electronic total stations, high precision thermometer, digital barometer, photoelectric frequency adjustor and other related instruments and data collection and processing software. The system can monitor a series of targets automatically to obtain accurate data of distance at predetermined time, besides,it can timely display targets' coordinates and deformation value, velocity, etc. in graph as well. To compare of the results of different monitoring time, we can find the problems of mine slope deformation rapidly and accurately.

  8. On deformation theory of quantum vertex algebras

    CERN Document Server

    Grosse, H; Grosse, Harald; Schlesinger, Karl-Georg

    2005-01-01

    We study an algebraic deformation problem which captures the data of the general deformation problem for a quantum vertex algebra. We derive a system of coupled equations which is the counterpart of the Maurer-Cartan equation on the usual Hochschild complex of an assocative algebra. We show that this system of equations results from an action principle. This might be the starting point for a perturbative treatment of the deformation problem of quantum vertex algebras. Our action generalizes the action of the Kodaira-Spencer theory of gravity and might therefore also be of relevance for applications in string theory.

  9. Peterson's Deformations of Higher Dimensional Quadrics

    Science.gov (United States)

    Dinca, Ion I.

    2010-01-01

    We provide the first explicit examples of deformations of higher dimensional quadrics: a straightforward generalization of Peterson's explicit 1-dimensional family of deformations in C3 of 2-dimensional general quadrics with common conjugate system given by the spherical coordinates on the complex sphere S2 ⊂ C3 to an explicit (n-1)-dimensional family of deformations in C2n-1 of n-dimensional general quadrics with common conjugate system given by the spherical coordinates on the complex sphere Sn ⊂ Cn+1 and non-degenerate joined second fundamental forms. It is then proven that this family is maximal.

  10. Liquid Droplets on a Highly Deformable Membrane

    Science.gov (United States)

    Schulman, Rafael D.; Dalnoki-Veress, Kari

    2015-11-01

    We examine the deformation produced by microdroplets atop thin elastomeric and glassy free-standing films. Because of the Laplace pressure, the droplets deform the elastic membrane thereby forming a bulge. Thus, two angles define the droplet or membrane geometry: the angles the deformed bulge and the liquid surface make with the film. These angles are measured as a function of the film tension, and are in excellent agreement with a force balance at the contact line. Finally, we find that if the membrane has an anisotropic tension, the droplets are no longer spherical but become elongated along the direction of high tension.

  11. Liquid Droplets on a Highly Deformable Membrane

    Science.gov (United States)

    Schulman, Rafael; Dalnoki-Veress, Kari

    2015-11-01

    We present measurements of the deformation produced by micro-droplets atop thin elastomeric and glassy free-standing films. Due to the Laplace pressure, the droplets deform the elastic membrane thereby forming a bulge. Thus, there are two angles that define the droplet/membrane geometry: the angle the liquid surface makes with the film and the angle the deformed bulge makes with the film. The contact line geometry is well captured by a Neumann construction which includes contributions from interfacial and mechanical tensions. Finally, we show that a droplet atop a film with biaxial tension assumes an equilibrium shape which is elongated along the axis of high tension.

  12. Adsorption-Induced Deformation of Mesoporous Solids

    CERN Document Server

    Gor, Gennady Yu

    2010-01-01

    The Derjaguin - Broekhoff - de Boer theory of capillary condensation is employed to describe deformation of mesoporous solids in the course of adsorption-desorption hysteretic cycles. We suggest a thermodynamic model, which relates the mechanical stress induced by adsorbed phase with the adsorption isotherm. Analytical expressions are derived for the dependence of the solvation pressure on the vapor pressure. The proposed method provides a semi-quantitative description of non-monotonic hysteretic deformation during capillary condensation without invoking any adjustable parameters. The method is showcased drawing on the examples of literature experimental data on adsorption deformation of porous glass and SBA-15 silica.

  13. Deformations of GR and BH thermodynamics

    CERN Document Server

    Krasnov, Kirill

    2015-01-01

    In four space-time dimensions General Relativity can be non-trivially deformed. Deformed theories continue to describe two propagating degrees of freedom, as GR. We study Euclidean black hole thermodynamics in these deformations. We use the recently developed formulation that works with SO(3) connections as well as certain matrices M of auxiliary fields. We show that the black hole entropy is given by one quarter of the horizon area as measured by the Lie algebra valued two-form MF, where F is the connection curvature. This coincides with the horizon area as measured by the metric only for the case of General Relativity.

  14. Optical tweezer for probing erythrocyte membrane deformability

    CERN Document Server

    Khan, Manas; Sood, A K; 10.1063/1.3272269

    2010-01-01

    We report that the average rotation speed of optically trapped crenated erythrocytes is direct signature of their membrane deformability. When placed in hypertonic buffer, discocytic erythrocytes are subjected to crenation. The deformation of cells brings in chirality and asymmetry in shape that make them rotate under the scattering force of a linearly polarized optical trap. A change in the deformability of the erythrocytes, due to any internal or environmental factor, affects the rotation speed of the trapped crenated cells. Here we show how the increment in erythrocyte membrane rigidity with adsorption of $Ca^{++}$ ions can be exhibited through this approach.

  15. Numerical modelling of stresses and deformations in casting processes

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    1997-01-01

    Keywords: Stresses and deformations, casting, governing equations, thermal strain, control volume method......Keywords: Stresses and deformations, casting, governing equations, thermal strain, control volume method...

  16. Numerical modelling of stresses and deformations in casting processes

    DEFF Research Database (Denmark)

    Hattel, Jesper Henri

    1997-01-01

    Keywords: Stresses and deformations, casting, governing equations, thermal strain, control volume method......Keywords: Stresses and deformations, casting, governing equations, thermal strain, control volume method...

  17. Landscape evolution in relation with occurrence of gravitational slope deformation and catastrophic landslides

    Science.gov (United States)

    Tsou, Ching-Ying; Chigira, Masahiro; Matsushi, Yuki; Chen, Su-Chin

    2013-04-01

    The Central Range of Taiwan is an example of a tectonically active orogen. The topography of a mountainous catchment of the Dahan River in northern side of the Central Range exhibits V-shaped inner valleys where landsliding is the dominant process of hillslope erosion and bedrock rivers are incising into the landscape. We take two approaches including (i) the study of present day morphostructural features of gravitationally deformed slopes and (ii) the study of the relationship between the gravitational slope deformation and fluvial incision to research the linkage of gravitational slope deformations, catastrophic landslides, and landscape evolution for the prediction of potential sites of future landslides. Mapped deep-seated gravitational slope deformations and scars of rainfall-induced rock/debris avalanches imply that their distributions are closely related to three series of convex slope breaks relating to the rejuvenation of topography by a three-phase fluvial incision leaded by three series of knickpoints migration. Many shallow rock/debris avalanches have occurred below the lowest slope break. By contrast, majority of gravitational slope deformations have occurred at the margins of the highest slope break around the paleosurface remnants, suggesting that the rejuvenation caused debuttressing of hillslopes and subsequent stress-release led to large scale slope destabilization, resulting in gravitational slope deformations. Catastrophic landslides in many locations deem to be preceded by gravitational slope deformation of rocks with adverse geological structures, many of which are buckling of alternating beds of sandstone and mudstone, and toppling of argillite and slate. The gravitationally deformed slopes change the topography and remain for a long time, and commonly accompany with some other types of mass movements (e.g. debris flows, rock/debris avalanches, and rockfalls). The results suggest that landslides are strongly controlled by geomorphology and

  18. JCE Feature Columns

    Science.gov (United States)

    Holmes, Jon L.

    1999-05-01

    The Features area of JCE Online is now readily accessible through a single click from our home page. In the Features area each column is linked to its own home page. These column home pages also have links to them from the online Journal Table of Contents pages or from any article published as part of that feature column. Using these links you can easily find abstracts of additional articles that are related by topic. Of course, JCE Online+ subscribers are then just one click away from the entire article. Finding related articles is easy because each feature column "site" contains links to the online abstracts of all the articles that have appeared in the column. In addition, you can find the mission statement for the column and the email link to the column editor that I mentioned above. At the discretion of its editor, a feature column site may contain additional resources. As an example, the Chemical Information Instructor column edited by Arleen Somerville will have a periodically updated bibliography of resources for teaching and using chemical information. Due to the increase in the number of these resources available on the WWW, it only makes sense to publish this information online so that you can get to these resources with a simple click of the mouse. We expect that there will soon be additional information and resources at several other feature column sites. Following in the footsteps of the Chemical Information Instructor, up-to-date bibliographies and links to related online resources can be made available. We hope to extend the online component of our feature columns with moderated online discussion forums. If you have a suggestion for an online resource you would like to see included, let the feature editor or JCE Online (jceonline@chem.wisc.edu) know about it. JCE Internet Features JCE Internet also has several feature columns: Chemical Education Resource Shelf, Conceptual Questions and Challenge Problems, Equipment Buyers Guide, Hal's Picks, Mathcad

  19. Time Varying Feature Data

    Science.gov (United States)

    Echterhoff, J.; Simonis, I.; Atkinson, R.

    2012-04-01

    The infrastructure to gather, store and access information about our environment is improving and growing rapidly. The increasing amount of information allows us to get a better understanding of the current state of our environment, historical processes and to simulate and predict the future state of the environment. Finer grained spatial and temporal data and more reliable communications make it easier to model dynamic states and ephemeral features. The exchange of information within and across geospatial domains is facilitated through the use of harmonized information models. The Observations & Measurements (O&M) developed through OGC and standardised by ISO is an example of such a cross-domain information model. It is used in many domains, including meteorology, hydrology as well as the emergency management. O&M enables harmonized representation of common metadata that belong to the act of determining the state of a feature property, whether by sensors, simulations or humans. In addition to the resulting feature property value, information such as the result quality but especially the time that the result applies to the feature property can be represented. Temporal metadata is critical to modelling past and future states of a feature. The features, and the semantics of each property, are defined in domain specific Application Schema using the General Feature Model (GFM) from ISO 19109 and usually encoded following ISO 19136. However, at the moment these standards provide only limited support for the representation and handling of time varying feature data. Features like rivers, wildfires or gas plumes have a defined state - for example geographic extent - at any given point in time. To keep track of changes, a more complex model for example using time-series coverages is required. Furthermore, the representation and management of feature property value changes via the service interfaces defined by OGC and ISO - namely: WFS and WCS - would be rather complex

  20. Deformation Behavior of Nanoporous Metals

    Energy Technology Data Exchange (ETDEWEB)

    Biener, J; Hodge, A M; Hamza, A V

    2007-11-28

    of free surfaces can no longer be neglected. As the material becomes more and more constraint by the presence of free surfaces, length scale effects on plasticity become more and more important and bulk properties can no longer be used to describe the material properties. Even the elastic properties may be affected as the reduced coordination of surface atoms and the concomitant redistribution of electrons may soften or stiffen the material. If, and to what extend, such length scale effects control the mechanical behavior of nanoporous materials depends strongly on the material and the characteristic length scale associated with its plastic deformation. For example, ductile materials such as metals which deform via dislocation-mediated processes can be expected to exhibit pronounced length scale effects in the sub-micron regime where free surfaces start to constrain efficient dislocation multiplication. In this chapter we will limit our discussion to our own area of expertise which is the mechanical behavior of nanoporous open-cell gold foams as a typical example of nanoporous metal foams. Throughout this chapter we will review our current understanding of the mechanical properties of nanoporous open-cell foams including both experimental and theoretical studies.

  1. Fishtail deformity - a delayed complication of distal humeral fractures in children

    Energy Technology Data Exchange (ETDEWEB)

    Narayanan, Srikala [Massachusetts General Hospital, Department of Radiology, Division of Pediatric Imaging, Boston, MA (United States); University of Pittsburgh Medical Center, Department of Radiology, Pittsburgh, PA (United States); Shailam, Randheer; Nimkin, Katherine [Massachusetts General Hospital, Department of Radiology, Division of Pediatric Imaging, Boston, MA (United States); Grottkau, Brian E. [Massachusetts General Hospital, Department of Orthopaedics, Pediatric Orthopaedics, Boston, MA (United States)

    2015-06-15

    Concavity in the central portion of the distal humerus is referred to as fishtail deformity. This entity is a rare complication of distal humeral fractures in children. The purpose of this study is to describe imaging features of post-traumatic fishtail deformity and discuss the pathophysiology. We conducted a retrospective analysis of seven cases of fishtail deformity after distal humeral fractures. Seven children ages 7-14 years (five boys, two girls) presented with elbow pain and history of distal humeral fracture. Four of the seven children had limited range of motion. Five children had prior grade 3 supracondylar fracture treated with closed reduction and percutaneous pinning. One child had a medial condylar fracture and another had a lateral condylar fracture; both had been treated with conservative casting. All children had radiographs, five had CT and three had MRI. All children had a concave central defect in the distal humerus. Other imaging features included joint space narrowing with osteophytes and subchondral cystic changes in four children, synovitis in one, hypertrophy or subluxation of the radial head in three and proximal migration of the ulna in two. Fishtail deformity of the distal humerus is a rare complication of distal humeral fractures in children. This entity is infrequently reported in the radiology literature. Awareness of the classic imaging features can result in earlier diagnosis and appropriate treatment. (orig.)

  2. The rate sensitivity and plastic deformation of nanocrystalline tantalum films at nanoscale

    Directory of Open Access Journals (Sweden)

    Huang Yongli

    2011-01-01

    Full Text Available Abstract Nanoindentation creep and loading rate change tests were employed to examine the rate sensitivity (m and hardness of nanocrystalline tetragonal Ta films. Experimental results suggested that the m increased with the decrease of feature scale, such as grain size and indent depth. The magnitude of m is much less than the corresponding grain boundary (GB sliding deformation with m of 0.5. Hardness softening behavior was observed for smaller grain size, which supports the GB sliding mechanism. The rate-controlling deformation was interpreted by the GB-mediated processes involving atomic diffusion and the generation of dislocation at GB.

  3. A new refined theory of plates with transverse shear deformation for moderately thick and thick plates

    CERN Document Server

    Valle, Jose Miguel Martinez

    2015-01-01

    In this paper we propose a new refined shear deformation plate theory which possesses a series of desirable features, the most salient of which are as follows: (i) The loads, which are generally considered to be applied on the middle surface of the plate, act on the upper surface of the plate; (ii) The equations are applicable to the calculation of the stresses in isotropic plates and provide the same order of accuracy as several theories with second order shear deformation effects; (iii) It constitutes a theory, in the sense defined by Love, since it gives easy expressions for application to problems in different fields in architecture and civil engineering

  4. Phase field crystal study of deformation and plasticity in nanocrystalline materials.

    Science.gov (United States)

    Stefanovic, Peter; Haataja, Mikko; Provatas, Nikolas

    2009-10-01

    We introduce a modified phase field crystal (MPFC) technique that self-consistently incorporates rapid strain relaxation alongside the usual plastic deformation and multiple crystal orientations featured by the traditional phase field crystal (PFC) technique. Our MPFC formalism can be used to study a host of important phase transformation phenomena in material processing that require rapid strain relaxation. We apply the MPFC model to study elastic and plastic deformations in nanocrystalline materials, focusing on the "reverse" Hall-Petch effect. Finally, we introduce a multigrid algorithm for efficient numerical simulations of the MPFC model.

  5. Unusual pseudo-Hermiticity in two-sided deformation of Heisenberg algebra

    CERN Document Server

    Gavrilik, A M

    2016-01-01

    The recently introduced by us two- and three-parameter (p,q)- and (p,q,\\mu)-deformed extensions of the Heisenberg algebra were explored under the condition of their connectedness with the respective (nonstandard) deformed quantum oscillator algebras. In this paper we show that such connectedness dictates certain \\eta(N)-pseudo-Hemitian conjugation (with \\eta(N) depending on the particle number operator N) between the creation and annihilation operators. Likewise, proper \\eta(N)-pseudo-Hemiticity characterizes position and momentum operators, while the involved Hamiltonian is Hermitian. Different possible cases are analyzed, and some interesting features stemming from the use of such \\eta(N)-based conjugation are emphasized.

  6. On the spectrum and weakly effective operator for Dirichlet Laplacian in thin deformed tubes

    OpenAIRE

    de Oliveira, Cesar R.; Verri, Alessandra A.

    2011-01-01

    We study the Laplacian in deformed thin (bounded or unbounded) tubes in ?$\\R^3$, i.e., tubular regions along a curve $r(s)$ whose cross sections are multiplied by an appropriate deformation function $h(s)> 0$. One the main requirements on $h(s)$ is that it has a single point of global maximum. We find the asymptotic behaviors of the eigenvalues and weakly effective operators as the diameters of the tubes tend to zero. It is shown that such behaviors are not influenced by some geometric featur...

  7. Deformable meshes for medical image segmentation accurate automatic segmentation of anatomical structures

    CERN Document Server

    Kainmueller, Dagmar

    2014-01-01

    ? Segmentation of anatomical structures in medical image data is an essential task in clinical practice. Dagmar Kainmueller introduces methods for accurate fully automatic segmentation of anatomical structures in 3D medical image data. The author's core methodological contribution is a novel deformation model that overcomes limitations of state-of-the-art Deformable Surface approaches, hence allowing for accurate segmentation of tip- and ridge-shaped features of anatomical structures. As for practical contributions, she proposes application-specific segmentation pipelines for a range of anatom

  8. Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation.

    Directory of Open Access Journals (Sweden)

    J Farley Norman

    Full Text Available It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped "glaven" for 12 seconds and were required to indicate which of 12 (for bell peppers or 8 (for glavens simultaneously visible objects possessed the same shape. The initial single object's shape was defined either by boundary contours alone (i.e., presented as a silhouette, specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions-e.g., the participants' performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions. The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision.

  9. Perceiving Object Shape from Specular Highlight Deformation, Boundary Contour Deformation, and Active Haptic Manipulation

    Science.gov (United States)

    Cheeseman, Jacob R.; Thomason, Kelsey E.; Ronning, Cecilia; Behari, Kriti; Kleinman, Kayla; Calloway, Autum B.; Lamirande, Davora

    2016-01-01

    It is well known that motion facilitates the visual perception of solid object shape, particularly when surface texture or other identifiable features (e.g., corners) are present. Conventional models of structure-from-motion require the presence of texture or identifiable object features in order to recover 3-D structure. Is the facilitation in 3-D shape perception similar in magnitude when surface texture is absent? On any given trial in the current experiments, participants were presented with a single randomly-selected solid object (bell pepper or randomly-shaped “glaven”) for 12 seconds and were required to indicate which of 12 (for bell peppers) or 8 (for glavens) simultaneously visible objects possessed the same shape. The initial single object’s shape was defined either by boundary contours alone (i.e., presented as a silhouette), specular highlights alone, specular highlights combined with boundary contours, or texture. In addition, there was a haptic condition: in this condition, the participants haptically explored with both hands (but could not see) the initial single object for 12 seconds; they then performed the same shape-matching task used in the visual conditions. For both the visual and haptic conditions, motion (rotation in depth or active object manipulation) was present in half of the trials and was not present for the remaining trials. The effect of motion was quantitatively similar for all of the visual and haptic conditions–e.g., the participants’ performance in Experiment 1 was 93.5 percent higher in the motion or active haptic manipulation conditions (when compared to the static conditions). The current results demonstrate that deforming specular highlights or boundary contours facilitate 3-D shape perception as much as the motion of objects that possess texture. The current results also indicate that the improvement with motion that occurs for haptics is similar in magnitude to that which occurs for vision. PMID:26863531

  10. Cenozoic intracontinental deformation of the Kopeh Dagh Belt, Northeastern Iran

    Science.gov (United States)

    Chu, Yang; Wan, Bo; Chen, Ling; Talebian, Morteza

    2016-04-01

    Compressional intracontinental orogens represent large tectonic zones far from plate boundaries. Since intracontinental mountain belts cannot be framed in the conventional plate tectonics theory, several hypotheses have been proposed to account for the formations of these mountain belts. The far-field effect of collision/subduction at plate margins is now well accepted for the origin and evolution of the intracontinental crust thickening, as exemplified by the Miocene tectonics of central Asia. In northern Iran, the Binalud-Alborz mountain belt witnessed the Triassic tectonothermal events (Cimmerian orogeny), which are interpreted as the result of the Paleotethys Ocean closure between the Eurasia and Central Iran blocks. The Kopeh Dagh Belt, located to the north of the Binalud-Alborz Belt, has experienced two significant tectonic phases: (1) Jurassic to Eocene rifting with more than 7 km of sediments; and (2) Late Eocene-Early Oligocene to Quaternary continuous compression. Due to the high seismicity, deformation associated with earthquakes has received more and more attention; however, the deformation pattern and architecture of this range remain poorly understood. Detailed field observations on the Cenozoic deformation indicate that the Kopeh Dagh Belt can be divided into a western zone and an eastern zone, separated by a series of dextral strike-slip faults, i.e. the Bakharden-Quchan Fault System. The eastern zone characterized by km-scale box-fold structures, associated with southwest-dipping reverse faults and top-to-the NE kinematics. In contrast, the western zone shows top-to-the SW kinematics, and the deformation intensifies from NE to SW. In the northern part of this zone, large-scale asymmetrical anticlines exhibit SW-directed vergence with subordinate thrusts and folds, whereas symmetrical anticlines are observed in the southern part. In regard to its tectonic feature, the Kopeh Dagh Belt is a typical Cenozoic intracontinental belt without ophiolites or

  11. Driver ASICs for Advanced Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The program leverages on our extensive expertise in developing high-performance driver ASICs for deformable mirror systems and seeks to expand the capacities of the...

  12. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This proposal describes a plan to build a prototype small stroke, high precision deformable mirror suitable for space-based operation in systems for high-resolution...

  13. Zika Linked to Deformed Limbs in Newborns

    Science.gov (United States)

    ... page: https://medlineplus.gov/news/fullstory_160324.html Zika Linked to Deformed Limbs in Newborns Cause isn' ... 2016 TUESDAY, Aug. 9, 2016 (HealthDay News) -- The Zika virus has already been linked to serious birth ...

  14. High Resolution Silicon Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — In this proposal we describe a plan to build a deformable mirror suitable for space-based operation in systems for high-resolution imaging. The prototype DM will be...

  15. True or false GPS-derived deformations?

    Energy Technology Data Exchange (ETDEWEB)

    Riguzzi, F.; Pietrantonio, G.; Anzidei, M. [Istituto Nazionale di Geofisica e Vulcanologia, Rome (Italy); Crespi, M. [Rome Univ. La Sapienza, Rome (Italy). Dipartimento di Idraulica, Trasporti e Strade

    2001-06-01

    In this paper it was focused on the question whether GPS networks born with cartographic aims can be safely used in crustal deformation control. It was carried out a test on a network of five vertices located in the Rome district, comparing two data sets, the first coming from the adjustment of the survey carried out in 1994 in the frame of the IGM95 project, the second coming from the surveys carried out in 1996 and 1999 by the Department of Hydraulics, Transport Systems and Roads of La Sapienza University of Rome. The analysis shows how the detection of crustal deformation becomes extremely critical in absence of significant seismicity or when deformation events are limited. In other words, it is possible to find false deformations due to residual systematic effects affecting the coordinate estimates.

  16. Noncommutative principal bundles through twist deformation

    CERN Document Server

    Aschieri, Paolo; Pagani, Chiara; Schenkel, Alexander

    2016-01-01

    We construct noncommutative principal bundles deforming principal bundles with a Drinfeld twist (2-cocycle). If the twist is associated with the structure group then we have a deformation of the fibers. If the twist is associated with the automorphism group of the principal bundle, then we obtain noncommutative deformations of the base space as well. Combining the two twist deformations we obtain noncommutative principal bundles with both noncommutative fibers and base space. More in general, the natural isomorphisms proving the equivalence of a closed monoidal category of modules and its twist related one are used to obtain new Hopf-Galois extensions as twists of Hopf-Galois extensions. A sheaf approach is also considered, and examples presented.

  17. Deformation Crossover: from nano to meso scale

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Sheng [ORNL; Stoica, Alexandru Dan [ORNL; Wang, Xun-Li [ORNL; Liu, Chain T [ORNL; Horton Jr, Joe A [ORNL; Brown, Donald [Los Alamos National Laboratory (LANL); Clausen, B [Los Alamos National Laboratory (LANL); Liaw, Peter K [University of Tennessee, Knoxville (UTK)

    2009-01-01

    By investigating intergranular strains using in-situ high-energy x-ray and neutron diffraction, we demonstrate significantly different deformation behavior from previously observed in nanocrystalline and ultrafine-grained Ni. Little intergranular strain or texture change was found in nanocrystalline Ni indicating a grain boundary mediated deformation mechanism. A remarkable intergranular strain build-up was observed in ultrafine-grained Ni, which was attributed to dislocation activities, but the unusual angular dependence of intergranular strains gave evidence of stress relaxation by deformation twinning, as confirmed by TEM observations. From the intergranular strain evolution and the texture change, clear evidence of deformation crossovers is presented in Ni with grain sizes from nano to meso scale.

  18. Crustal deformation in northern Central America

    Science.gov (United States)

    Cáceres, Diego; Monterroso, David; Tavakoli, Behrooz

    2005-07-01

    Evaluation of the seismic moment tensor for earthquakes on plate boundary is a standard procedure to determine the relative velocity of plates, which controls the seismic deformation rate predicted from the slip on a single fault. The moment tensor is also decomposed into an isotropic and a deviatoric part to discover the relationship between the average strain rate and the relative velocity between two plates. We utilize this procedure to estimate the rates of deformation in northern Central America where plate boundaries are seismically well defined. Four different tectonic environments are considered for modelling of the plate motions. The deformation rates obtained here compare well with those predicted from the plate motions models and are in good agreement with actual observations. Deformation rates on faults are increasingly being used to estimate earthquake recurrence from information on fault slip rate and more on how we can incorporate our current understanding into seismic hazard analyses.

  19. Driver ASICs for Advanced Deformable Mirrors Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The overall goal of the SBIR program is to develop a new Application Specified Integrated Circuit (ASIC) driver to be used in driver electronics of a deformable...

  20. Deformed and twisted black holes with NUTs

    CERN Document Server

    Krtous, Pavel; Frolov, Valeri P; Kolar, Ivan

    2015-01-01

    We construct a new class of vacuum black hole solutions whose geometry is deformed and twisted by the presence of NUT charges. The solutions are obtained by `unspinning' the general Kerr-NUT-(A)dS spacetimes, effectively switching off some of their rotation parameters. The resulting geometry has a structure of warped space with the Kerr-like Lorentzian part warped to a Euclidean metric of deformed and/or twisted sphere, with the deformation and twist characterized by the `Euclidean NUT' parameters. In the absence of NUTs, the solution reduces to a well known Kerr-(A)dS black hole with several rotations switched off. New geometries inherit the original symmetry of the Kerr-NUT-(A)dS family, namely, they possess the full Killing tower of hidden and explicit symmetries. As expected, for vanishing NUT, twist, and deformation parameters, the symmetry is further enlarged.