WorldWideScience

Sample records for deforestation fire emissions

  1. Climate regulation of fire emissions and deforestation in equatorial Asia

    NARCIS (Netherlands)

    van der Werf, G. R.; Dempewolf, J.; Trigg, S. N.; Randerson, J. T.; Kasibhatla, P. S.; Giglio, L.; Murdiyarso, D.; Peters, W.; Morton, D. C.; Collatz, G. J.; Dolman, A. J.; Defries, R. S.

    2008-01-01

    Drainage of peatlands and deforestation have led to large-scale fires in equatorial Asia, affecting regional air quality and global concentrations of greenhouse gases. Here we used several sources of satellite data with biogeochemical and atmospheric modeling to better understand and constrain fire

  2. 21st Century drought-related fires counteract the decline of Amazon deforestation carbon emissions.

    Science.gov (United States)

    Aragão, Luiz E O C; Anderson, Liana O; Fonseca, Marisa G; Rosan, Thais M; Vedovato, Laura B; Wagner, Fabien H; Silva, Camila V J; Silva Junior, Celso H L; Arai, Egidio; Aguiar, Ana P; Barlow, Jos; Berenguer, Erika; Deeter, Merritt N; Domingues, Lucas G; Gatti, Luciana; Gloor, Manuel; Malhi, Yadvinder; Marengo, Jose A; Miller, John B; Phillips, Oliver L; Saatchi, Sassan

    2018-02-13

    Tropical carbon emissions are largely derived from direct forest clearing processes. Yet, emissions from drought-induced forest fires are, usually, not included in national-level carbon emission inventories. Here we examine Brazilian Amazon drought impacts on fire incidence and associated forest fire carbon emissions over the period 2003-2015. We show that despite a 76% decline in deforestation rates over the past 13 years, fire incidence increased by 36% during the 2015 drought compared to the preceding 12 years. The 2015 drought had the largest ever ratio of active fire counts to deforestation, with active fires occurring over an area of 799,293 km 2 . Gross emissions from forest fires (989 ± 504 Tg CO 2 year -1 ) alone are more than half as great as those from old-growth forest deforestation during drought years. We conclude that carbon emission inventories intended for accounting and developing policies need to take account of substantial forest fire emissions not associated to the deforestation process.

  3. Integrating remotely sensed fires for predicting deforestation for REDD.

    Science.gov (United States)

    Armenteras, Dolors; Gibbes, Cerian; Anaya, Jesús A; Dávalos, Liliana M

    2017-06-01

    Fire is an important tool in tropical forest management, as it alters forest composition, structure, and the carbon budget. The United Nations program on Reducing Emissions from Deforestation and Forest Degradation (REDD+) aims to sustainably manage forests, as well as to conserve and enhance their carbon stocks. Despite the crucial role of fire management, decision-making on REDD+ interventions fails to systematically include fires. Here, we address this critical knowledge gap in two ways. First, we review REDD+ projects and programs to assess the inclusion of fires in monitoring, reporting, and verification (MRV) systems. Second, we model the relationship between fire and forest for a pilot site in Colombia using near-real-time (NRT) fire monitoring data derived from the Moderate Resolution Imaging Spectroradiometer (MODIS). The literature review revealed fire remains to be incorporated as a key component of MRV systems. Spatially explicit modeling of land use change showed the probability of deforestation declined sharply with increasing distance to the nearest fire the preceding year (multi-year model area under the curve [AUC] 0.82). Deforestation predictions based on the model performed better than the official REDD early-warning system. The model AUC for 2013 and 2014 was 0.81, compared to 0.52 for the early-warning system in 2013 and 0.68 in 2014. This demonstrates NRT fire monitoring is a powerful tool to predict sites of forest deforestation. Applying new, publicly available, and open-access NRT fire data should be an essential element of early-warning systems to detect and prevent deforestation. Our results provide tools for improving both the current MRV systems, and the deforestation early-warning system in Colombia. © 2017 by the Ecological Society of America.

  4. GHG emissions due to deforestation

    International Nuclear Information System (INIS)

    Croezen, H.; Van Valkengoed, M.

    2009-05-01

    An assessment was made for the magnitude of greenhouse gas emissions resulting from deforestation and forest degradation in tropical forests in Malaysia and Indonesia related to Dutch economic activities. Greenhouse gas emissions (GHG) are calculated in relation to (1) the emissions related to vegetation removal sec; and (2) the emissions related to removal and more long term effects related to assimilation of CO2 in forest regrowth and changes in organic material in soils. Emissions related to vegetation removal and aggregated emissions for both vegetation removal and long term effects are reported separately. Soil organic carbon stock changes are considered by Greenpeace as more uncertain, so the emphasis will be on the direct emissions. Changes in carbon stocks and N2O emissions and actually also changes in vegetation all are events that occur gradually, rather than immediately. Only removal of existing vegetation and possible burning of this vegetation and associated emissions related to both activities are immediate by nature. Carbon stocks and N2O emissions change to a new level within several decades after deforestation or forest degradation. Removed vegetation can grow back or be replaced eventually by other vegetation, thereby changing the net greenhouse gas (GHG) emissions related to deforestation or forest degradation. Vegetation extracted for commercial purposes such as timber or pulp will also take years or decades to become waste and be converted into CO2. In IPCC and LCA's all these emissions are taken into account - or at least all emissions occurring within a period of 20 years, as required by IPCC. Soil organic carbon stock changes are also considered by Greenpeace as more uncertain, so the emphasis will be on the direct emmissions.

  5. Fire and Deforestation Dynamics in South America over the Past 50 Years

    Science.gov (United States)

    van Marle, M.; Field, R. D.; van der Werf, G.

    2015-12-01

    Fires play an important role in the Earth system and are one of the major sources of greenhouse gases and aerosols. Satellites have been key to understand their spatial and temporal variability in space and time, but the most frequently used satellite datasets start only in 1995. There are still large uncertainties about the frequency and intensity of fires in the pre-satellite time period, especially in regions with active deforestation, which may have changed dramatically in intensity in the past decades influencing fire dynamics. We used two datasets to extend the record of fires and deforestation in the Amazon region back in time: 1) annual forest loss rates starting in 1990 derived from Vegetation Optical Depth (VOD), which is a satellite-based vegetation product that can be used as proxy for forest loss, and 2) horizontal visibility as proxy for fire emissions, reported by weather stations and airports in the Amazon, which started around 1940, and having widespread coverage since 1973. We show that these datasets overlap with fire emission estimates from the Global Fire Emissions Database (GFED) enabling us to estimate fire emissions over the last 50 years. We will discuss how fires have varied over time in this region with globally significant emissions, how droughts have influenced fire activity and deforestation rates, and what the impact is of land-use change caused by fire on emissions in the Amazon region.

  6. Reserves protect against deforestation fires in the Amazon.

    Directory of Open Access Journals (Sweden)

    J Marion Adeney

    Full Text Available BACKGROUND: Reserves are the principal means to conserve forests and biodiversity, but the question of whether reserves work is still debated. In the Amazon, fires are closely linked to deforestation, and thus can be used as a proxy for reserve effectiveness in protecting forest cover. We ask whether reserves in the Brazilian Amazon provide effective protection against deforestation and consequently fires, whether that protection is because of their location or their legal status, and whether some reserve types are more effective than others. METHODOLOGY/PRINCIPAL FINDINGS: Previous work has shown that most Amazonian fires occur close to roads and are more frequent in El Niño years. We quantified these relationships for reserves and unprotected areas by examining satellite-detected hot pixels regressed against road distance across the entire Brazilian Amazon and for a decade with 2 El Niño-related droughts. Deforestation fires, as measured by hot pixels, declined exponentially with increasing distance from roads in all areas. Fewer deforestation fires occurred within protected areas than outside and the difference between protected and unprotected areas was greatest near roads. Thus, reserves were especially effective at preventing these fires where they are known to be most likely to burn; but they did not provide absolute protection. Even within reserves, at a given distance from roads, there were more deforestation fires in regions with high human impact than in those with low impact. The effect of El Niño on deforestation fires was greatest outside of reserves and near roads. Indigenous reserves, limited-use reserves, and fully protected reserves all had fewer fires than outside areas and did not appear to differ in their effectiveness. CONCLUSIONS/SIGNIFICANCE: Taking time, regional factors, and climate into account, our results show that reserves are an effective tool for curbing destructive burning in the Amazon.

  7. Reserves Protect against Deforestation Fires in the Amazon

    Science.gov (United States)

    Adeney, J. Marion; Christensen, Norman L.; Pimm, Stuart L.

    2009-01-01

    Background Reserves are the principal means to conserve forests and biodiversity, but the question of whether reserves work is still debated. In the Amazon, fires are closely linked to deforestation, and thus can be used as a proxy for reserve effectiveness in protecting forest cover. We ask whether reserves in the Brazilian Amazon provide effective protection against deforestation and consequently fires, whether that protection is because of their location or their legal status, and whether some reserve types are more effective than others. Methodology/Principal Findings Previous work has shown that most Amazonian fires occur close to roads and are more frequent in El Niño years. We quantified these relationships for reserves and unprotected areas by examining satellite-detected hot pixels regressed against road distance across the entire Brazilian Amazon and for a decade with 2 El Niño-related droughts. Deforestation fires, as measured by hot pixels, declined exponentially with increasing distance from roads in all areas. Fewer deforestation fires occurred within protected areas than outside and the difference between protected and unprotected areas was greatest near roads. Thus, reserves were especially effective at preventing these fires where they are known to be most likely to burn; but they did not provide absolute protection. Even within reserves, at a given distance from roads, there were more deforestation fires in regions with high human impact than in those with low impact. The effect of El Niño on deforestation fires was greatest outside of reserves and near roads. Indigenous reserves, limited-use reserves, and fully protected reserves all had fewer fires than outside areas and did not appear to differ in their effectiveness. Conclusions/Significance Taking time, regional factors, and climate into account, our results show that reserves are an effective tool for curbing destructive burning in the Amazon. PMID:19352423

  8. Deforestation fires versus understory fires in the Amazon Basin: What can we learn from satellite-based CO measurements?

    Science.gov (United States)

    Martinez-Alonso, S.; Deeter, M. N.; Worden, H. M.; Gille, J. C.; Clerbaux, C.; George, M.

    2014-12-01

    Deforestation fires in the Amazon Basin abound during the dry season (July to October) and are mostly associated with "slash and burn" agricultural practices. Understory fires occur when fires escape from deforested areas into neighboring standing forests; they spread slowly below the canopy, affecting areas that may be comparable or even larger than clear-cut areas. The interannual variabilities of understory fires and deforestation rates appear to be uncorrelated. Areas burned in understory fires are particularly extensive during droughts. Because they progress below a canopy of living trees, understory fires and their effects are not as easily identifiable from space as deforestation fires. Here we analyze satellite remote sensing products for CO and fire to investigate differences between deforestation fires and understory fires in the Amazon Basin under varying climatic conditions. The MOPITT (Measurements Of Pollution In The Troposphere) instrument on board NASA's Terra satellite has been measuring tropospheric CO since 2000, providing the longest global CO record to date. IASI (the Infrared Atmospheric Sounding Interferometer) A and B are two instruments on board METOP-A and -B, respectively, measuring, among others, CO since 2006 and 2012. MODIS (the Moderate Resolution Imaging Spectroradiometer) instruments on board NASA's Terra and Aqua satellites provide, among other products, a daily record of fires and their effects since 2000 and 2002, respectively. The temporal extent of all these datasets allows for the detailed analysis of drought versus non-drought years. Initial results indicate that MOPITT CO emissions during the dry season peaked in 2005, 2007, and 2010. Those were draught years and coincide with peaks in area affected by understory fires.

  9. Simulating fire regimes in the Amazon in response to climate change and deforestation.

    Science.gov (United States)

    Silvestrini, Rafaella Almeida; Soares-Filho, Britaldo Silveira; Nepstad, Daniel; Coe, Michael; Rodrigues, Hermann; Assunção, Renato

    2011-07-01

    Fires in tropical forests release globally significant amounts of carbon to the atmosphere and may increase in importance as a result of climate change. Despite the striking impacts of fire on tropical ecosystems, the paucity of robust spatial models of forest fire still hampers our ability to simulate tropical forest fire regimes today and in the future. Here we present a probabilistic model of human-induced fire occurrence for the Amazon that integrates the effects of a series of anthropogenic factors with climatic conditions described by vapor pressure deficit. The model was calibrated using NOAA-12 night satellite hot pixels for 2003 and validated for the years 2002, 2004, and 2005. Assessment of the fire risk map yielded fitness values > 85% for all months from 2002 to 2005. Simulated fires exhibited high overlap with NOAA-12 hot pixels regarding both spatial and temporal distributions, showing a spatial fit of 50% within a radius of 11 km and a maximum yearly frequency deviation of 15%. We applied this model to simulate fire regimes in the Amazon until 2050 using IPCC's A2 scenario climate data from the Hadley Centre model and a business-as-usual (BAU) scenario of deforestation and road expansion from SimAmazonia. Results show that the combination of these scenarios may double forest fire occurrence outside protected areas (PAs) in years of extreme drought, expanding the risk of fire even to the northwestern Amazon by midcentury. In particular, forest fires may increase substantially across southern and southwestern Amazon, especially along the highways slated for paving and in agricultural zones. Committed emissions from Amazon forest fires and deforestation under a scenario of global warming and uncurbed deforestation may amount to 21 +/- 4 Pg of carbon by 2050. BAU deforestation may increase fires occurrence outside PAs by 19% over the next four decades, while climate change alone may account for a 12% increase. In turn, the combination of climate change

  10. Deforestation and Forest Fires in Roraima and Their Relationship with Phytoclimatic Regions in the Northern Brazilian Amazon

    Science.gov (United States)

    Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio

    2015-05-01

    Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 103 km2 (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 103 km2 (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.

  11. Deforestation and forest fires in Roraima and their relationship with phytoclimatic regions in the northern Brazilian Amazon.

    Science.gov (United States)

    Barni, Paulo Eduardo; Pereira, Vaneza Barreto; Manzi, Antonio Ocimar; Barbosa, Reinaldo Imbrozio

    2015-05-01

    Deforestation and forest fires in the Brazilian Amazon are a regional-scale anthropogenic process related to biomass burning, which has a direct impact on global warming due to greenhouse gas emissions. Containment of this process requires characterizing its spatial distribution and that of the environmental factors related to its occurrence. The aim of this study is to investigate the spatial and temporal distribution of deforested areas and forest fires in the State of Roraima from 2000 to 2010. We mapped deforested areas and forest fires using Landsat images and associated their occurrence with two phytoclimatic zones: zone with savanna influence (ZIS), and zone without savanna influence (ZOS). Total deforested area during the interval was estimated at 3.06 × 10(3) km(2) (ZIS = 55 %; ZOS = 45 %) while total area affected by forest fires was estimated at 3.02 × 10(3) km(2) (ZIS = 97.7 %; ZOS = 2.3 %). Magnitude of deforestation in Roraima was not related to the phytoclimatic zones, but small deforested areas (≤17.9 ha) predominated in ZOS while larger deforestation classes (>17.9 ha) predominated in ZIS, which is an area with a longer history of human activities. The largest occurrence of forest fires was observed in the ZIS in years with El Niño events. Our analysis indicates that the areas most affected by forest fires in Roraima during 2000-2010 were associated with strong climatic events and the occurrence these fires was amplified in ZIS, a sensitive phytoclimatic zone with a higher risk of anthropogenic fires given its drier climate and open forest structure.

  12. A vicious circle of fire, deforestation and climate change: an integrative study for the Amazon region

    Science.gov (United States)

    Thonicke, K.; Rammig, A.; Gumpenberger, M.; Vohland, K.; Poulter, B.; Cramer, W.

    2009-04-01

    The Amazon rainforest is threatened by deforestation due to wood extraction and agricultural production leading to increasing forest fragmentation and forest degradation. These changes in land surface characteristics and water fluxes are expected to further reduce convective precipitation. Under future climate change the stability of the Amazon rainforest is likely to decrease thus leading to forest dieback (savannization) or forest degradation (secondarization). This puts the Amazon rainforest at risk to reduce the generation of precipitation, to act as a carbon sink and biodiversity hotspot. Fires increased in the past during drought years and in open vegetation thereby further accelerating forest degradation. Deforestation as a result of socioeconomic development in the Amazon basin is projected to further increase in the 21st century and brings climate-induced changes forward. Combined effects of deforestation vs. climate change on the stability of the Amazon rainforest and the role of fire in this system need to be quantified in an integrated study. We present simulation results from future climate (AR4) and deforestation (SimAmazon) experiments using the LPJmL-SPITFIRE vegetation model. Land use change is the main driving factor of forest degradation before 2050, whereas extreme climate change scenarios lead to forest degradation by the end of 2100. Forest fires increase with increasing drought conditions during the 21st century. The resulting effects on vegetation secondarization and savannization and their feedbacks on fire spread and emissions will be presented. The effect of wildfires and intentional burning on forest degradation under future climate and socioeconomic change will be discussed, and recommendations for an integrated land use and fire management are given.

  13. Modeling fire-driven deforestation potential in Amazonia under current and projected climate conditions

    NARCIS (Netherlands)

    Le Page, Y.; van der Werf, G.R.; Morton, D.C.; Pereira, J.M.C.

    2010-01-01

    Fire is a widely used tool to prepare deforested areas for agricultural use in Amazonia. Deforestation is currently concentrated in seasonal forest types along the arc of deforestation, where dry-season conditions facilitate burning of clear-felled vegetation. Interior Amazon forests, however, are

  14. Carbon emissions risk map from deforestation in the tropical Amazon

    Science.gov (United States)

    Ometto, J.; Soler, L. S.; Assis, T. D.; Oliveira, P. V.; Aguiar, A. P.

    2011-12-01

    Assis, Pedro Valle This work aims to estimate the carbon emissions from tropical deforestation in the Brazilian Amazon associated to the risk assessment of future land use change. The emissions are estimated by incorporating temporal deforestation dynamics, accounting for the biophysical and socioeconomic heterogeneity in the region, as well secondary forest growth dynamic in abandoned areas. The land cover change model that supported the risk assessment of deforestation, was run based on linear regressions. This method takes into account spatial heterogeneity of deforestation as the spatial variables adopted to fit the final regression model comprise: environmental aspects, economic attractiveness, accessibility and land tenure structure. After fitting a suitable regression models for each land cover category, the potential of each cell to be deforested (25x25km and 5x5 km of resolution) in the near future was used to calculate the risk assessment of land cover change. The carbon emissions model combines high-resolution new forest clear-cut mapping and four alternative sources of spatial information on biomass distribution for different vegetation types. The risk assessment map of CO2 emissions, was obtained by crossing the simulation results of the historical land cover changes to a map of aboveground biomass contained in the remaining forest. This final map represents the risk of CO2 emissions at 25x25km and 5x5 km until 2020, under a scenario of carbon emission reduction target.

  15. Stratifying Tropical Fires by Land Cover: Insights into Amazonian Fires, Aerosol Loading, and Regional Deforestation

    Science.gov (United States)

    TenHoeve, J. E.; Remer, L. A.; Jacobson, M. Z.

    2010-01-01

    This study analyzes changes in the number of fires detected on forest, grass, and transition lands during the 2002-2009 biomass burning seasons using fire detection data and co-located land cover classifications from the Moderate Resolution Imaging Spectroradiometer (MODIS). We find that the total number of detected fires correlates well with MODIS mean aerosol optical depth (AOD) from year to year, in accord with other studies. However, we also show that the ratio of forest to savanna fires varies substantially from year to year. Forest fires have trended downward, on average, since the beginning of 2006 despite a modest increase in 2007. Our study suggests that high particulate matter loading detected in 2007 was likely due to a large number of savanna/agricultural fires that year. Finally, we illustrate that the correlation between annual Brazilian deforestation estimates and MODIS fires is considerably higher when fires are stratified by MODIS-derived land cover classifications.

  16. Estimating the opportunity costs of reducing carbon dioxide emissions via avoided deforestation, using integrated assessment modelling

    NARCIS (Netherlands)

    Overmars, K.P.; Stehfest, E.; Tabeau, A.A.; Meijl, van J.C.M.; Beltran, A.M.; Kram, T.

    2014-01-01

    Estimates show that, in recent years, deforestation and forest degradation accounted for about 17% of global greenhouse gas emissions. The implementation of REDD (Reducing Emissions from Deforestation and Forest Degradation in Developing Countries) is suggested to provide substantial emission

  17. Clearing the Way for Reducing Emissions from Tropical Deforestation

    NARCIS (Netherlands)

    Skutsch, Margaret; Bird, N.; Trines, E.; Dutschke, M.; Frumhoff, P.; de Jong, B.H.J.; van Laake, P.E.; Masera, O.; Murdiyarso, D.

    2007-01-01

    Carbon emissions from tropical deforestation account for about 25% of all anthropogenic carbon dioxide emissions but cannot be credited under current climate change agreements. In the discussions around the architecture of the post-2012 climate regime, the possibility of including credits for

  18. Deforestation

    OpenAIRE

    Meyfroidt, Patrick

    2013-01-01

    Forests are sources of wood, food, and other non-timber forest products. They provide multiple ecosystem services including carbon sink and storage, habitats for biodiversity, preservation of soils, regulation of hydrological cycles, and micro-and regional climates. Deforestation is the largest single anthropogenic transformation of natural ecosystems, with large impacts on all these goods and services. Concern about forests and deforestation has long been framed through the issue of sustaini...

  19. Clearing the way for reducing emissions from tropical deforestation

    International Nuclear Information System (INIS)

    Skutsch, M.; Bird, N.; Trines, E.; Dutschke, M.; Frumhoff, P.; Jong, B.H.J. de; Laake, P. van; Masera, O.; Murdiyarso, D.

    2007-01-01

    Carbon emissions from tropical deforestation account for about 25% of all anthropogenic carbon dioxide emissions but cannot be credited under current climate change agreements. In the discussions around the architecture of the post-2012 climate regime, the possibility of including credits for reduced emissions from deforestation arises. The paper reviews two approaches for this, compensated reductions (CR) as proposed by Santilli et al. and the Joint Research Centre proposal that combine voluntary commitments by non-Annex I countries to reduce emissions from deforestation with carbon market financing. Both approaches have the clear advantages of simplicity and the possibility of fitting to an evolving greenhouse gas emission reduction regime. The authors consider the strengths and limitations of each proposal and build upon them to address several implementation challenges and options for improvement. Given the urgency of avoiding dangerous climate change, the timely development of technically sound, politically acceptable, cost-effective and practicable measures to reduce emissions from deforestation and forest degradation is essential. These two approaches take us a step closer to this goal, but they need to be refined rapidly to enable this goal to be realised

  20. Clearing the way for reducing emissions from tropical deforestation

    Energy Technology Data Exchange (ETDEWEB)

    Skutsch, M. [Department of Technology and Sustainable Development, University of Twente, P.O. Box 217, 7500 AE Enschede (Netherlands); Bird, N. [Joanneum Research, Elizabethstrasse 5/1, A-8010 Graz (Austria); Trines, E. [Gramserweg 2, 3711 AW Austerlitz (Netherlands); Dutschke, M. [Biocarbon, Badstrasse 41, 77652 Offenburg (Germany); Frumhoff, P. [Union of Concerned Scientists, 2 Brattle Square, Cambridge, MA 02238-9105 (United States); De Jong, B.H.J. [El Colegio de la Frontera Sur, Unidad Villahermosa, Carr. Vhsa-Reforma Km. 15.5, C.P. 86280, Ra Guineo 2da Secc, Villahermosa, Tabasco (Mexico); Van Laak, P. [ITC, Department of Natural Resources, P.O. Box 6, 7500 AA Enschede (Netherlands); Masera, O. [Centro de Investigaciones en Ecosistemas, UNAMAP 27-3 Xangari 58089, Morelia, Michoacan (Mexico); Murdiyarso, D. [Center for International Forestry Research, Jl. CIFOR, Situ Gede Sindangbarang, Bogor 16680 (Indonesia)

    2007-06-15

    Carbon emissions from tropical deforestation account for about 25% of all anthropogenic carbon dioxide emissions but cannot be credited under current climate change agreements. In the discussions around the architecture of the post-2012 climate regime, the possibility of including credits for reduced emissions from deforestation arises. The paper reviews two approaches for this, compensated reductions (CR) as proposed by Santilli et al. and the Joint Research Centre proposal that combine voluntary commitments by non-Annex I countries to reduce emissions from deforestation with carbon market financing. Both approaches have the clear advantages of simplicity and the possibility of fitting to an evolving greenhouse gas emission reduction regime. The authors consider the strengths and limitations of each proposal and build upon them to address several implementation challenges and options for improvement. Given the urgency of avoiding dangerous climate change, the timely development of technically sound, politically acceptable, cost-effective and practicable measures to reduce emissions from deforestation and forest degradation is essential. These two approaches take us a step closer to this goal, but they need to be refined rapidly to enable this goal to be realised.

  1. Emissions and Deforestation Associated with Household Fuel Wood ...

    African Journals Online (AJOL)

    Fuel wood is regarded as a major source of energy around the world, particularly in developing nations where it forms part of the energy mix. Most rural communities around the world, consider forests a repository of stored energy. This paper focuses on the role of fuel wood in deforestation and the emission of greenhouse ...

  2. Baseline Map of Carbon Emissions from Deforestation in Tropical Regions

    Science.gov (United States)

    Harris, Nancy L.; Brown, Sandra; Hagen, Stephen C.; Saatchi, Sassan S.; Petrova, Silvia; Salas, William; Hansen, Matthew C.; Potapov, Peter V.; Lotsch, Alexander

    2012-06-01

    Policies to reduce emissions from deforestation would benefit from clearly derived, spatially explicit, statistically bounded estimates of carbon emissions. Existing efforts derive carbon impacts of land-use change using broad assumptions, unreliable data, or both. We improve on this approach using satellite observations of gross forest cover loss and a map of forest carbon stocks to estimate gross carbon emissions across tropical regions between 2000 and 2005 as 0.81 petagram of carbon per year, with a 90% prediction interval of 0.57 to 1.22 petagrams of carbon per year. This estimate is 25 to 50% of recently published estimates. By systematically matching areas of forest loss with their carbon stocks before clearing, these results serve as a more accurate benchmark for monitoring global progress on reducing emissions from deforestation.

  3. Baseline map of carbon emissions from deforestation in tropical regions.

    Science.gov (United States)

    Harris, Nancy L; Brown, Sandra; Hagen, Stephen C; Saatchi, Sassan S; Petrova, Silvia; Salas, William; Hansen, Matthew C; Potapov, Peter V; Lotsch, Alexander

    2012-06-22

    Policies to reduce emissions from deforestation would benefit from clearly derived, spatially explicit, statistically bounded estimates of carbon emissions. Existing efforts derive carbon impacts of land-use change using broad assumptions, unreliable data, or both. We improve on this approach using satellite observations of gross forest cover loss and a map of forest carbon stocks to estimate gross carbon emissions across tropical regions between 2000 and 2005 as 0.81 petagram of carbon per year, with a 90% prediction interval of 0.57 to 1.22 petagrams of carbon per year. This estimate is 25 to 50% of recently published estimates. By systematically matching areas of forest loss with their carbon stocks before clearing, these results serve as a more accurate benchmark for monitoring global progress on reducing emissions from deforestation.

  4. Deforestation and greenhouse gas emissions associated with fuelwood consumption of the brick making industry in Sudan

    International Nuclear Information System (INIS)

    Alam, Syed Ashraful; Starr, Mike

    2009-01-01

    The study focuses on the role of the fired clay brick making industry (BMI) on deforestation and greenhouse gas (GHG) emissions in Sudan. The BMI is based on numerous kilns that use biomass fuel, mainly wood which is largely harvested unsustainably. This results in potential deforestation and land degradation. Fuelwood consumption data was collected using interviews and questionnaires from 25 BMI enterprises in three administrative regions, namely Khartoum, Kassala and Gezira. Annual fuelwood consumption data (t dm yr -1 ) was converted into harvested biomass (m 3 ) using a wood density value of 0.65 t dm m -3 . For annual GHG estimations, the methodological approach outlined by the Intergovernmental Panel on Climate Change (IPCC) was used. According to our results, the annual deforestation associated with the BMI for the whole of Sudan is 508.4 x 10 3 m 3 of wood biomass, including 267.6 x 10 3 m 3 round wood and 240.8 x 10 3 m 3 branches and small trees. Total GHG emissions from the Sudanese BMI are estimated at 378 028 t CO 2 , 15 554 t CO, 1778 t CH 4 , 442 t NO X , 288 t NO and 12 t N 2 O per annum. The combined CO 2 -equivalent (global warming potential for 100-year time horizon) of the GHG emissions (excluding NO X and NO) is 455 666 t yr -1 . While these emissions form only a small part of Sudan's total GHG emissions, the associated deforestation and land degradation is of concern and effort should be made for greater use of sustainable forest resources and management

  5. Structuring economic incentives to reduce emissions from deforestation within Indonesia.

    Science.gov (United States)

    Busch, Jonah; Lubowski, Ruben N; Godoy, Fabiano; Steininger, Marc; Yusuf, Arief A; Austin, Kemen; Hewson, Jenny; Juhn, Daniel; Farid, Muhammad; Boltz, Frederick

    2012-01-24

    We estimate and map the impacts that alternative national and subnational economic incentive structures for reducing emissions from deforestation (REDD+) in Indonesia would have had on greenhouse gas emissions and national and local revenue if they had been in place from 2000 to 2005. The impact of carbon payments on deforestation is calibrated econometrically from the pattern of observed deforestation and spatial variation in the benefits and costs of converting land to agriculture over that time period. We estimate that at an international carbon price of $10/tCO(2)e, a "mandatory incentive structure," such as a cap-and-trade or symmetric tax-and-subsidy program, would have reduced emissions by 163-247 MtCO(2)e/y (20-31% below the without-REDD+ reference scenario), while generating a programmatic budget surplus. In contrast, a "basic voluntary incentive structure" modeled after a standard payment-for-environmental-services program would have reduced emissions nationally by only 45-76 MtCO(2)e/y (6-9%), while generating a programmatic budget shortfall. By making four policy improvements--paying for net emission reductions at the scale of an entire district rather than site-by-site; paying for reductions relative to reference levels that match business-as-usual levels; sharing a portion of district-level revenues with the national government; and sharing a portion of the national government's responsibility for costs with districts--an "improved voluntary incentive structure" would have been nearly as effective as a mandatory incentive structure, reducing emissions by 136-207 MtCO(2)e/y (17-26%) and generating a programmatic budget surplus.

  6. Structuring economic incentives to reduce emissions from deforestation within Indonesia

    Science.gov (United States)

    Busch, Jonah; Lubowski, Ruben N.; Godoy, Fabiano; Steininger, Marc; Yusuf, Arief A.; Austin, Kemen; Hewson, Jenny; Juhn, Daniel; Farid, Muhammad; Boltz, Frederick

    2012-01-01

    We estimate and map the impacts that alternative national and subnational economic incentive structures for reducing emissions from deforestation (REDD+) in Indonesia would have had on greenhouse gas emissions and national and local revenue if they had been in place from 2000 to 2005. The impact of carbon payments on deforestation is calibrated econometrically from the pattern of observed deforestation and spatial variation in the benefits and costs of converting land to agriculture over that time period. We estimate that at an international carbon price of $10/tCO2e, a “mandatory incentive structure,” such as a cap-and-trade or symmetric tax-and-subsidy program, would have reduced emissions by 163–247 MtCO2e/y (20–31% below the without-REDD+ reference scenario), while generating a programmatic budget surplus. In contrast, a “basic voluntary incentive structure” modeled after a standard payment-for-environmental-services program would have reduced emissions nationally by only 45–76 MtCO2e/y (6–9%), while generating a programmatic budget shortfall. By making four policy improvements—paying for net emission reductions at the scale of an entire district rather than site-by-site; paying for reductions relative to reference levels that match business-as-usual levels; sharing a portion of district-level revenues with the national government; and sharing a portion of the national government's responsibility for costs with districts—an “improved voluntary incentive structure” would have been nearly as effective as a mandatory incentive structure, reducing emissions by 136–207 MtCO2e/y (17–26%) and generating a programmatic budget surplus. PMID:22232665

  7. Interactions between rainfall, deforestation and fires during recent years in the Brazilian Amazonia.

    Science.gov (United States)

    Aragão, Luiz Eduardo O C; Malhi, Yadvinder; Barbier, Nicolas; Lima, Andre; Shimabukuro, Yosio; Anderson, Liana; Saatchi, Sassan

    2008-05-27

    Understanding the interplay between climate and land-use dynamics is a fundamental concern for assessing the vulnerability of Amazonia to climate change. In this study, we analyse satellite-derived monthly and annual time series of rainfall, fires and deforestation to explicitly quantify the seasonal patterns and relationships between these three variables, with a particular focus on the Amazonian drought of 2005. Our results demonstrate a marked seasonality with one peak per year for all variables analysed, except deforestation. For the annual cycle, we found correlations above 90% with a time lag between variables. Deforestation and fires reach the highest values three and six months, respectively, after the peak of the rainy season. The cumulative number of hot pixels was linearly related to the size of the area deforested annually from 1998 to 2004 (r2=0.84, p=0.004). During the 2005 drought, the number of hot pixels increased 43% in relation to the expected value for a similar deforested area (approx. 19000km2). We demonstrated that anthropogenic forcing, such as land-use change, is decisive in determining the seasonality and annual patterns of fire occurrence. Moreover, droughts can significantly increase the number of fires in the region even with decreased deforestation rates. We may expect that the ongoing deforestation, currently based on slash and burn procedures, and the use of fires for land management in Amazonia will intensify the impact of droughts associated with natural climate variability or human-induced climate change and, therefore, a large area of forest edge will be under increased risk of fires.

  8. Negative emissions from stopping deforestation and forest degradation, globally.

    Science.gov (United States)

    Houghton, Richard A; Nassikas, Alexander A

    2018-01-01

    Forest growth provides negative emissions of carbon that could help keep the earth's surface temperature from exceeding 2°C, but the global potential is uncertain. Here we use land-use information from the FAO and a bookkeeping model to calculate the potential negative emissions that would result from allowing secondary forests to recover. We find the current gross carbon sink in forests recovering from harvests and abandoned agriculture to be -4.4 PgC/year, globally. The sink represents the potential for negative emissions if positive emissions from deforestation and wood harvest were eliminated. However, the sink is largely offset by emissions from wood products built up over the last century. Accounting for these committed emissions, we estimate that stopping deforestation and allowing secondary forests to grow would yield cumulative negative emissions between 2016 and 2100 of about 120 PgC, globally. Extending the lifetimes of wood products could potentially remove another 10 PgC from the atmosphere, for a total of approximately 130 PgC, or about 13 years of fossil fuel use at today's rate. As an upper limit, the estimate is conservative. It is based largely on past and current practices. But if greater negative emissions are to be realized, they will require an expansion of forest area, greater efficiencies in converting harvested wood to long-lasting products and sources of energy, and novel approaches for sequestering carbon in soils. That is, they will require current management practices to change. © 2017 John Wiley & Sons Ltd.

  9. Carbon Emissions from Deforestation in the Brazilian Amazon Region

    Science.gov (United States)

    Potter, C.; Klooster, S.; Genovese, V.

    2009-01-01

    A simulation model based on satellite observations of monthly vegetation greenness from the Moderate Resolution Imaging Spectroradiometer (MODIS) was used to estimate monthly carbon fluxes in terrestrial ecosystems of Brazilian Amazon and Cerrado regions over the period 2000-2002. The NASA-CASA (Carnegie Ames Stanford Approach) model estimates of annual forest production were used for the first time as the basis to generate a prediction for the standing pool of carbon in above-ground biomass (AGB; gC/sq m) for forested areas of the Brazilian Amazon region. Plot-level measurements of the residence time of carbon in wood in Amazon forest from Malhi et al. (2006) were interpolated by inverse distance weighting algorithms and used with CASA to generate a new regional map of AGB. Data from the Brazilian PRODES (Estimativa do Desflorestamento da Amazonia) project were used to map deforested areas. Results show that net primary production (NPP) sinks for carbon varied between 4.25 Pg C/yr (1 Pg=10(exp 15)g) and 4.34 Pg C for the region and were highest across the eastern and northern Amazon areas, whereas deforestation sources of CO2 flux from decomposition of residual woody debris were higher and less seasonal in the central Amazon than in the eastern and southern areas. Increased woody debris from past deforestation events was predicted to alter the net ecosystem carbon balance of the Amazon region to generate annual CO2 source fluxes at least two times higher than previously predicted by CASA modeling studies. Variations in climate, land cover, and forest burning were predicted to release carbon at rates of 0.5 to 1 Pg C/yr from the Brazilian Amazon. When direct deforestation emissions of CO2 from forest burning of between 0.2 and 0.6 Pg C/yr in the Legal Amazon are overlooked in regional budgets, the year-to-year variations in this net biome flux may appear to be large, whereas our model results implies net biome fluxes had actually been relatively consistent from

  10. Attribution of CO2 emissions from Brazilian deforestation to domestic and international drivers

    Science.gov (United States)

    Karstensen, J.; Peters, G.

    2011-12-01

    Efforts to address extensive deforestation to reduce climate change and save primary forests are taking place on a global scale. Whilst several studies have estimated the emissions occurring from deforestation in large rainforests, few studies have investigated the domestic and international drivers sustaining and increasing the deforestation rates. Brazil, having the largest rainforest in the world and one of the highest deforestation rates, is also currently one of the world's largest exporters of soybeans and beef. In this case study we establish the link between Brazilian deforestation and cattle and soybean production, and further attribute emissions to countries and economic sectors through export and import of Brazilian commodities. The emissions from deforestation can therefore be allocated to the countries and sectors consuming goods and services produced on deforested land in Brazil. A land-use change model and deforestation data is coupled with a carbon cycle model to create yearly emission estimates and different emission allocation schemes, depending on emission amortizations and discounting functions for past deforestation. We use an economic multi-regional input-output model (with 112 regions and 57 sectors) to distribute these emissions along agricultural trade routes, through domestic and international consumption in 2004. With our implementation we find that around 80 % of emissions from deforested land is due to cattle grazing, while agricultural transition effects suggests soy beans are responsible for about 20 % of the emissions occurring in 2004. Nearly tree quarters of the soy beans are consumed outside Brazil, of which China, Germany and France are the biggest consumers. Soy beans are consumed by a variety of sectors in the food industry. Brazil exports about 30 % of the cattle it produces, where Russia, USA and Germany are among the largest consumers. Cattle consumption mainly occurs in the meat sectors. In this study we estimate the CO2

  11. Tropical protected areas reduced deforestation carbon emissions by one third from 2000-2012.

    Science.gov (United States)

    Bebber, Daniel P; Butt, Nathalie

    2017-10-25

    Tropical deforestation is responsible for around one tenth of total anthropogenic carbon emissions, and tropical protected areas (PAs) that reduce deforestation can therefore play an important role in mitigating climate change and protecting biodiversity and ecosystem services. While the effectiveness of PAs in reducing deforestation has been estimated, the impact on global carbon emissions remains unquantified. Here we show that tropical PAs overall reduced deforestation carbon emissions by 4.88 Pg, or around 29%, between 2000 and 2012, when compared to expected rates of deforestation controlling for spatial variation in deforestation pressure. The largest contribution was from the tropical Americas (368.8 GgC y -1 ), followed by Asia (25.0 GgC y -1 ) and Africa (12.7 GgC y -1 ). Variation in PA effectiveness is largely driven by local factors affecting individual PAs, rather than designations assigned by governments.

  12. Estimates of wildland fire emissions

    Science.gov (United States)

    Yongqiang Liu; John J. Qu; Wanting Wang; Xianjun Hao

    2013-01-01

    Wildland fire missions can significantly affect regional and global air quality, radiation, climate, and the carbon cycle. A fundamental and yet challenging prerequisite to understanding the environmental effects is to accurately estimate fire emissions. This chapter describes and analyzes fire emission calculations. Various techniques (field measurements, empirical...

  13. Earth observations for estimating greenhouse gas emissions from deforestation in developing countries

    International Nuclear Information System (INIS)

    DeFries, Ruth; Achard, Frederic; Brown, Sandra; Herold, Martin; Murdiyarso, Daniel; Schlamadinger, Bernhard; Souza, Carlos de

    2007-01-01

    In response to the United Nations Framework Convention on Climate Change (UNFCCC) process investigating the technical issues surrounding the ability to reduce greenhouse gas (GHG) emissions from deforestation in developing countries, this paper reviews technical capabilities for monitoring deforestation and estimating emissions. Implementation of policies to reduce emissions from deforestation require effective deforestation monitoring systems that are reproducible, provide consistent results, meet standards for mapping accuracy, and can be implemented at the national level. Remotely sensed data supported by ground observations are key to effective monitoring. Capacity in developing countries for deforestation monitoring is well-advanced in a few countries and is a feasible goal in most others. Data sources exist to determine base periods in the 1990s as historical reference points. Forest degradation (e.g. from high impact logging and fragmentation) also contribute to greenhouse gas emissions but it is more technically challenging to measure than deforestation. Data on carbon stocks, which are needed to estimate emissions, cannot currently be observed directly over large areas with remote sensing. Guidelines for carbon accounting from deforestation exist and are available in approved Intergovernmental Panel on Climate Change (IPCC) reports and can be applied at national scales in the absence of forest inventory or other data. Key constraints for implementing programs to monitor greenhouse gas emissions from deforestation are international commitment of resources to increase capacity, coordination of observations to ensure pan-tropical coverage, access to free or low-cost data, and standard and consensual protocols for data interpretation and analysis

  14. Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon

    International Nuclear Information System (INIS)

    Numata, Izaya; Cochrane, Mark A; Souza, Carlos M Jr; Sales, Marcio H

    2011-01-01

    Forest-fragmentation-related edge effects are one of the major causes of forest degradation in Amazonia and their spatio-temporal dynamics are highly influenced by annual deforestation patterns. Rapid biomass collapse due to edge effects in forest fragments has been reported in the Brazilian Amazon; however the collective impacts of this process on Amazonian carbon fluxes are poorly understood. We estimated biomass loss and carbon emissions from deforestation and forest fragmentation related to edge effects on the basis of the INPE (Brazilian National Space Research Institute) PRODES deforestation data and forest biomass volume data. The areas and ages of edge forests were calculated annually and the corresponding biomass loss and carbon emissions from these forest edges were estimated using published rates of biomass decay and decomposition corresponding to the areas and ages of edge forests. Our analysis estimated carbon fluxes from deforestation (4195 Tg C) and edge forest (126-221 Tg C) for 2001-10 in the Brazilian Amazon. The impacts of varying rates of deforestation on regional forest fragmentation and carbon fluxes were also investigated, with the focus on two periods: 2001-5 (high deforestation rates) and 2006-10 (low deforestation rates). Edge-released carbon accounted for 2.6-4.5% of deforestation-related carbon emissions. However, the relative importance of carbon emissions from forest fragmentation increased from 1.7-3.0% to 3.3-5.6% of the respective deforestation emissions between the two contrasting deforestation rates. Edge-related carbon fluxes are of increasing importance for basin-wide carbon accounting, especially as regards ongoing reducing emissions from deforestation and forest degradation (REDD) efforts in Brazilian Amazonia.

  15. Carbon emissions from deforestation and forest fragmentation in the Brazilian Amazon

    Science.gov (United States)

    Numata, Izaya; Cochrane, Mark A.; Souza, Carlos M., Jr.; Sales, Marcio H.

    2011-10-01

    Forest-fragmentation-related edge effects are one of the major causes of forest degradation in Amazonia and their spatio-temporal dynamics are highly influenced by annual deforestation patterns. Rapid biomass collapse due to edge effects in forest fragments has been reported in the Brazilian Amazon; however the collective impacts of this process on Amazonian carbon fluxes are poorly understood. We estimated biomass loss and carbon emissions from deforestation and forest fragmentation related to edge effects on the basis of the INPE (Brazilian National Space Research Institute) PRODES deforestation data and forest biomass volume data. The areas and ages of edge forests were calculated annually and the corresponding biomass loss and carbon emissions from these forest edges were estimated using published rates of biomass decay and decomposition corresponding to the areas and ages of edge forests. Our analysis estimated carbon fluxes from deforestation (4195 Tg C) and edge forest (126-221 Tg C) for 2001-10 in the Brazilian Amazon. The impacts of varying rates of deforestation on regional forest fragmentation and carbon fluxes were also investigated, with the focus on two periods: 2001-5 (high deforestation rates) and 2006-10 (low deforestation rates). Edge-released carbon accounted for 2.6-4.5% of deforestation-related carbon emissions. However, the relative importance of carbon emissions from forest fragmentation increased from 1.7-3.0% to 3.3-5.6% of the respective deforestation emissions between the two contrasting deforestation rates. Edge-related carbon fluxes are of increasing importance for basin-wide carbon accounting, especially as regards ongoing reducing emissions from deforestation and forest degradation (REDD) efforts in Brazilian Amazonia.

  16. Annual Carbon Emissions from Deforestation in the Amazon Basin between 2000 and 2010.

    Science.gov (United States)

    Song, Xiao-Peng; Huang, Chengquan; Saatchi, Sassan S; Hansen, Matthew C; Townshend, John R

    2015-01-01

    Reducing emissions from deforestation and forest degradation (REDD+) is considered one of the most cost-effective strategies for mitigating climate change. However, historical deforestation and emission rates-critical inputs for setting reference emission levels for REDD+-are poorly understood. Here we use multi-source, time-series satellite data to quantify carbon emissions from deforestation in the Amazon basin on a year-to-year basis between 2000 and 2010. We first derive annual deforestation indicators by using the Moderate Resolution Imaging Spectroradiometer Vegetation Continuous Fields (MODIS VCF) product. MODIS indicators are calibrated by using a large sample of Landsat data to generate accurate deforestation rates, which are subsequently combined with a spatially explicit biomass dataset to calculate committed annual carbon emissions. Across the study area, the average deforestation and associated carbon emissions were estimated to be 1.59 ± 0.25 M ha•yr(-1) and 0.18 ± 0.07 Pg C•yr(-1) respectively, with substantially different trends and inter-annual variability in different regions. Deforestation in the Brazilian Amazon increased between 2001 and 2004 and declined substantially afterwards, whereas deforestation in the Bolivian Amazon, the Colombian Amazon, and the Peruvian Amazon increased over the study period. The average carbon density of lost forests after 2005 was 130 Mg C•ha(-1), ~11% lower than the average carbon density of remaining forests in year 2010 (144 Mg C•ha(-1)). Moreover, the average carbon density of cleared forests increased at a rate of 7 Mg C•ha(-1)•yr(-1) from 2005 to 2010, suggesting that deforestation has been progressively encroaching into high-biomass lands in the Amazon basin. Spatially explicit, annual deforestation and emission estimates like the ones derived in this study are useful for setting baselines for REDD+ and other emission mitigation programs, and for evaluating the performance of such efforts.

  17. Effect of oil palm sustainability certification on deforestation and fire in Indonesia.

    Science.gov (United States)

    Carlson, Kimberly M; Heilmayr, Robert; Gibbs, Holly K; Noojipady, Praveen; Burns, David N; Morton, Douglas C; Walker, Nathalie F; Paoli, Gary D; Kremen, Claire

    2018-01-02

    Many major corporations and countries have made commitments to purchase or produce only "sustainable" palm oil, a commodity responsible for substantial tropical forest loss. Sustainability certification is the tool most used to fulfill these procurement policies, and around 20% of global palm oil production was certified by the Roundtable on Sustainable Palm Oil (RSPO) in 2017. However, the effect of certification on deforestation in oil palm plantations remains unclear. Here, we use a comprehensive dataset of RSPO-certified and noncertified oil palm plantations (∼188,000 km 2 ) in Indonesia, the leading producer of palm oil, as well as annual remotely sensed metrics of tree cover loss and fire occurrence, to evaluate the impact of certification on deforestation and fire from 2001 to 2015. While forest loss and fire continued after RSPO certification, certified palm oil was associated with reduced deforestation. Certification lowered deforestation by 33% from a counterfactual of 9.8 to 6.6% y -1 Nevertheless, most plantations contained little residual forest when they received certification. As a result, by 2015, certified areas held less than 1% of forests remaining within Indonesian oil palm plantations. Moreover, certification had no causal impact on forest loss in peatlands or active fire detection rates. Broader adoption of certification in forested regions, strict requirements to avoid all peat, and routine monitoring of clearly defined forest cover loss in certified and RSPO member-held plantations appear necessary if the RSPO is to yield conservation and climate benefits from reductions in tropical deforestation. Copyright © 2017 the Author(s). Published by PNAS.

  18. Effect of oil palm sustainability certification on deforestation and fire in Indonesia

    Science.gov (United States)

    Gibbs, Holly K.; Noojipady, Praveen; Burns, David N.; Morton, Douglas C.; Walker, Nathalie F.; Paoli, Gary D.; Kremen, Claire

    2018-01-01

    Many major corporations and countries have made commitments to purchase or produce only “sustainable” palm oil, a commodity responsible for substantial tropical forest loss. Sustainability certification is the tool most used to fulfill these procurement policies, and around 20% of global palm oil production was certified by the Roundtable on Sustainable Palm Oil (RSPO) in 2017. However, the effect of certification on deforestation in oil palm plantations remains unclear. Here, we use a comprehensive dataset of RSPO-certified and noncertified oil palm plantations (∼188,000 km2) in Indonesia, the leading producer of palm oil, as well as annual remotely sensed metrics of tree cover loss and fire occurrence, to evaluate the impact of certification on deforestation and fire from 2001 to 2015. While forest loss and fire continued after RSPO certification, certified palm oil was associated with reduced deforestation. Certification lowered deforestation by 33% from a counterfactual of 9.8 to 6.6% y−1. Nevertheless, most plantations contained little residual forest when they received certification. As a result, by 2015, certified areas held less than 1% of forests remaining within Indonesian oil palm plantations. Moreover, certification had no causal impact on forest loss in peatlands or active fire detection rates. Broader adoption of certification in forested regions, strict requirements to avoid all peat, and routine monitoring of clearly defined forest cover loss in certified and RSPO member-held plantations appear necessary if the RSPO is to yield conservation and climate benefits from reductions in tropical deforestation. PMID:29229857

  19. Evaluating the effectiveness of conservation and development investments in reducing deforestation and fires in Ankeniheny-Zahemena Corridor, Madagascar.

    Science.gov (United States)

    Tabor, Karyn; Jones, Kelly W; Hewson, Jennifer; Rasolohery, Andriambolantsoa; Rambeloson, Andoniaina; Andrianjohaninarivo, Tokihenintsoa; Harvey, Celia A

    2017-01-01

    Forest conservation and REDD+ projects invest millions of dollars each year to reduce local communities' dependence on forests and prevent forest loss and degradation. However, to date, there is limited evidence on whether these investments are effective at delivering conservation outcomes. We explored the relationships between 600+ small-scale conservation and development investments that occurred from 2007 to 2014 and conservation outcomes (deforestation rates and fire detections) within Ankeniheny-Zahamena Corridor in Madagascar using linear fixed effects panel regressions. We derived annual changes in forest cover and fires from satellite remote sensing. We found a statistically significant correlation between presence of any investment and reduced deforestation rates in 2010 and 2011 -years with accelerated deforestation elsewhere in the study area. This result indicated investments abated deforestation rates during times of political instability and lack of governance following a 2009 coup in Madagascar. We also found a statistically significant relationship between presence of any investment and reduced fire detections in the study area, suggesting investments had an impact on reducing burning of forest for agriculture. For both outcomes (i.e., deforestation rates and fire detections), we found that more dollars invested led to greater conservation outcomes (i.e. fewer fires or less deforestation), particularly when funding was sustained for one to two years. Our findings suggest that conservation and development investments can reduce deforestation and fire incidence, but also highlight the many challenges and complexities in assessing relationships between investments and conservation outcomes in a dynamic landscape and a volatile political context.

  20. Committed carbon emissions, deforestation, and community land conversion from oil palm plantation expansion in West Kalimantan, Indonesia.

    Science.gov (United States)

    Carlson, Kimberly M; Curran, Lisa M; Ratnasari, Dessy; Pittman, Alice M; Soares-Filho, Britaldo S; Asner, Gregory P; Trigg, Simon N; Gaveau, David A; Lawrence, Deborah; Rodrigues, Hermann O

    2012-05-08

    Industrial agricultural plantations are a rapidly increasing yet largely unmeasured source of tropical land cover change. Here, we evaluate impacts of oil palm plantation development on land cover, carbon flux, and agrarian community lands in West Kalimantan, Indonesian Borneo. With a spatially explicit land change/carbon bookkeeping model, parameterized using high-resolution satellite time series and informed by socioeconomic surveys, we assess previous and project future plantation expansion under five scenarios. Although fire was the primary proximate cause of 1989-2008 deforestation (93%) and net carbon emissions (69%), by 2007-2008, oil palm directly caused 27% of total and 40% of peatland deforestation. Plantation land sources exhibited distinctive temporal dynamics, comprising 81% forests on mineral soils (1994-2001), shifting to 69% peatlands (2008-2011). Plantation leases reveal vast development potential. In 2008, leases spanned ∼65% of the region, including 62% on peatlands and 59% of community-managed lands, yet carbon emissions. Intact forest cover declines to 4%, and the proportion of emissions sourced from peatlands increases 38%. Prohibiting intact and logged forest and peatland conversion to oil palm reduces emissions only 4% below BAU, because of continued uncontrolled fire. Protecting logged forests achieves greater carbon emissions reductions (21%) than protecting intact forests alone (9%) and is critical for mitigating carbon emissions. Extensive allocated leases constrain land management options, requiring trade-offs among oil palm production, carbon emissions mitigation, and maintaining community landholdings.

  1. Deforestation and agriculture in the tropics: carbon emissions and options for mitigation

    NARCIS (Netherlands)

    Carter, Sarah

    2018-01-01

    Agriculture is the largest driver of deforestation globally, and this conversion of land from forests to agriculture, results in emissions which are contributing to climate change. This thesis focuses on exploring agriculture-driven deforestation at the country level, from the perspective of

  2. Attribution of CO2 emissions from Brazilian deforestation to consumers between 1990 and 2010

    International Nuclear Information System (INIS)

    Karstensen, Jonas; Peters, Glen P; Andrew, Robbie M

    2013-01-01

    Efforts to reduce deforestation to mitigate climate change and to conserve biodiversity are taking place on a global scale. While many studies have estimated the emissions occurring from deforestation, few studies have quantified the domestic and international drivers sustaining deforestation rates. In this study we establish the link between Brazilian deforestation and production of cattle and soybeans, and allocate emissions between 1990 and 2010 along the global supply chain to the countries that consume products dependent on Brazilian deforestation. We find that 30% of the carbon emissions associated with deforestation were exported from Brazil in the last decade, of which 29% were due to soybean production and 71% cattle ranching. The share exported is growing, with industrialized nations and emerging markets (especially Russia and China) greatly increasing imports. We find a correlation between exports (and hence global consumption) of Brazilian cattle and soybeans and emissions from deforestation. We conclude that trade is emerging as a key driver of deforestation in Brazil, and this may indirectly contribute to loss of the forests that industrialized countries are seeking to protect through international agreements. (letter)

  3. Increasing beef production could lower greenhouse gas emissions in Brazil if decoupled from deforestation

    Science.gov (United States)

    de Oliveira Silva, R.; Barioni, L. G.; Hall, J. A. J.; Folegatti Matsuura, M.; Zanett Albertini, T.; Fernandes, F. A.; Moran, D.

    2016-05-01

    Recent debate about agricultural greenhouse gas emissions mitigation highlights trade-offs inherent in the way we produce and consume food, with increasing scrutiny on emissions-intensive livestock products. Although most research has focused on mitigation through improved productivity, systemic interactions resulting from reduced beef production at the regional level are still unexplored. A detailed optimization model of beef production encompassing pasture degradation and recovery processes, animal and deforestation emissions, soil organic carbon (SOC) dynamics and upstream life-cycle inventory was developed and parameterized for the Brazilian Cerrado. Economic return was maximized considering two alternative scenarios: decoupled livestock-deforestation (DLD), assuming baseline deforestation rates controlled by effective policy; and coupled livestock-deforestation (CLD), where shifting beef demand alters deforestation rates. In DLD, reduced consumption actually leads to less productive beef systems, associated with higher emissions intensities and total emissions, whereas increased production leads to more efficient systems with boosted SOC stocks, reducing both per kilogram and total emissions. Under CLD, increased production leads to 60% higher emissions than in DLD. The results indicate the extent to which deforestation control contributes to sustainable intensification in Cerrado beef systems, and how alternative life-cycle analytical approaches result in significantly different emission estimates.

  4. Agriculture-driven deforestation in the tropics from 1990-2015: emissions, trends and uncertainties

    Science.gov (United States)

    Carter, Sarah; Herold, Martin; Avitabile, Valerio; de Bruin, Sytze; De Sy, Veronique; Kooistra, Lammert; Rufino, Mariana C.

    2018-01-01

    Limited data exists on emissions from agriculture-driven deforestation, and available data are typically uncertain. In this paper, we provide comparable estimates of emissions from both all deforestation and agriculture-driven deforestation, with uncertainties for 91 countries across the tropics between 1990 and 2015. Uncertainties associated with input datasets (activity data and emissions factors) were used to combine the datasets, where most certain datasets contribute the most. This method utilizes all the input data, while minimizing the uncertainty of the emissions estimate. The uncertainty of input datasets was influenced by the quality of the data, the sample size (for sample-based datasets), and the extent to which the timeframe of the data matches the period of interest. Area of deforestation, and the agriculture-driver factor (extent to which agriculture drives deforestation), were the most uncertain components of the emissions estimates, thus improvement in the uncertainties related to these estimates will provide the greatest reductions in uncertainties of emissions estimates. Over the period of the study, Latin America had the highest proportion of deforestation driven by agriculture (78%), and Africa had the lowest (62%). Latin America had the highest emissions from agriculture-driven deforestation, and these peaked at 974 ± 148 Mt CO2 yr-1 in 2000-2005. Africa saw a continuous increase in emissions between 1990 and 2015 (from 154 ± 21-412 ± 75 Mt CO2 yr-1), so mitigation initiatives could be prioritized there. Uncertainties for emissions from agriculture-driven deforestation are ± 62.4% (average over 1990-2015), and uncertainties were highest in Asia and lowest in Latin America. Uncertainty information is crucial for transparency when reporting, and gives credibility to related mitigation initiatives. We demonstrate that uncertainty data can also be useful when combining multiple open datasets, so we recommend new data

  5. Reducing emissions from deforestation and degradation: What contribution from carbon markets?

    OpenAIRE

    Bellassen , Valentin; Crassous , R.; Dietzsch , L.; Schwartzman , S.

    2008-01-01

    Tropical deforestation is responsible for 15-20% of total man-made emissions of greenhouse gases. In December 2007, at the international conference of Bali, the United Nations acknowledged that a viable solution to climate change must include a mechanism to limit deforestation and forest degradation. Today, the most widely used economic tool to reduce emissions is carbon markets: caps on emitters, and trade allowed between emitters and reducers, drive a price signal on carbon and provide ince...

  6. Potential biodiversity benefits from international programs to reduce carbon emissions from deforestation.

    Science.gov (United States)

    Siikamäki, Juha; Newbold, Stephen C

    2012-01-01

    Deforestation is the second largest anthropogenic source of carbon dioxide emissions and options for its reduction are integral to climate policy. In addition to providing potentially low cost and near-term options for reducing global carbon emissions, reducing deforestation also could support biodiversity conservation. However, current understanding of the potential benefits to biodiversity from forest carbon offset programs is limited. We compile spatial data on global forest carbon, biodiversity, deforestation rates, and the opportunity cost of land to examine biodiversity conservation benefits from an international program to reduce carbon emissions from deforestation. Our results indicate limited geographic overlap between the least-cost areas for retaining forest carbon and protecting biodiversity. Therefore, carbon-focused policies will likely generate substantially lower benefits to biodiversity than a more biodiversity-focused policy could achieve. These results highlight the need to systematically consider co-benefits, such as biodiversity in the design and implementation of forest conservation programs to support international climate policy.

  7. Including carbon emissions from deforestation in the carbon footprint of Brazilian beef.

    Science.gov (United States)

    Cederberg, Christel; Persson, U Martin; Neovius, Kristian; Molander, Sverker; Clift, Roland

    2011-03-01

    Effects of land use changes are starting to be included in estimates of life-cycle greenhouse gas (GHG) emissions, so-called carbon footprints (CFs), from food production. Their omission can lead to serious underestimates, particularly for meat. Here we estimate emissions from the conversion of forest to pasture in the Legal Amazon Region (LAR) of Brazil and present a model to distribute the emissions from deforestation over products and time subsequent to the land use change. Expansion of cattle ranching for beef production is a major cause of deforestation in the LAR. The carbon footprint of beef produced on newly deforested land is estimated at more than 700 kg CO(2)-equivalents per kg carcass weight if direct land use emissions are annualized over 20 years. This is orders of magnitude larger than the figure for beef production on established pasture on non-deforested land. While Brazilian beef exports have originated mainly from areas outside the LAR, i.e. from regions not subject to recent deforestation, we argue that increased production for export has been the key driver of the pasture expansion and deforestation in the LAR during the past decade and this should be reflected in the carbon footprint attributed to beef exports. We conclude that carbon footprint standards must include the more extended effects of land use changes to avoid giving misleading information to policy makers, retailers, and consumers.

  8. Fire-induced deforestation in drought-prone Mediterranean forests : drivers and unknowns from leaves to communities

    NARCIS (Netherlands)

    Karavani, Asaf; Boer, Matthias M.; Baudena, Mara|info:eu-repo/dai/nl/340303867; Colinas, Carlos; Díaz-Sierra, Rubén; Pemán, Jesús; de Luis, Martín; Enríquez-de-Salamanca, Álvaro; Resco de Dios, Víctor

    Over the past 15 years, 3 million hectares of forests have been converted into shrublands or grasslands in the Mediterranean countries of the European Union. Fire and drought are the main drivers underlying this deforestation. Here we present a conceptual framework for the process of fire-induced

  9. Historic Emissions from Deforestation and Forest Degradation in Mato Grosso, Brazil: 1. Source Data Uncertainties

    Science.gov (United States)

    Morton, Douglas C.; Sales, Marcio H.; Souza, Carlos M., Jr.; Griscom, Bronson

    2011-01-01

    Historic carbon emissions are an important foundation for proposed efforts to Reduce Emissions from Deforestation and forest Degradation and enhance forest carbon stocks through conservation and sustainable forest management (REDD+). The level of uncertainty in historic carbon emissions estimates is also critical for REDD+, since high uncertainties could limit climate benefits from mitigation actions. Here, we analyzed source data uncertainties based on the range of available deforestation, forest degradation, and forest carbon stock estimates for the Brazilian state of Mato Grosso during 1990-2008. Results: Deforestation estimates showed good agreement for multi-year trends of increasing and decreasing deforestation during the study period. However, annual deforestation rates differed by >20% in more than half of the years between 1997-2008, even for products based on similar input data. Tier 2 estimates of average forest carbon stocks varied between 99-192 Mg C/ha, with greatest differences in northwest Mato Grosso. Carbon stocks in deforested areas increased over the study period, yet this increasing trend in deforested biomass was smaller than the difference among carbon stock datasets for these areas. Conclusions: Patterns of spatial and temporal disagreement among available data products provide a roadmap for future efforts to reduce source data uncertainties for estimates of historic forest carbon emissions. Specifically, regions with large discrepancies in available estimates of both deforestation and forest carbon stocks are priority areas for evaluating and improving existing estimates. Full carbon accounting for REDD+ will also require filling data gaps, including forest degradation and secondary forest, with annual data on all forest transitions.

  10. Evaluating the effectiveness of conservation and development investments in reducing deforestation and fires in Ankeniheny-Zahemena Corridor, Madagascar

    Science.gov (United States)

    Jones, Kelly W.; Hewson, Jennifer; Rasolohery, Andriambolantsoa; Rambeloson, Andoniaina; Andrianjohaninarivo, Tokihenintsoa; Harvey, Celia A.

    2017-01-01

    Forest conservation and REDD+ projects invest millions of dollars each year to reduce local communities’ dependence on forests and prevent forest loss and degradation. However, to date, there is limited evidence on whether these investments are effective at delivering conservation outcomes. We explored the relationships between 600+ small-scale conservation and development investments that occurred from 2007 to 2014 and conservation outcomes (deforestation rates and fire detections) within Ankeniheny-Zahamena Corridor in Madagascar using linear fixed effects panel regressions. We derived annual changes in forest cover and fires from satellite remote sensing. We found a statistically significant correlation between presence of any investment and reduced deforestation rates in 2010 and 2011 –years with accelerated deforestation elsewhere in the study area. This result indicated investments abated deforestation rates during times of political instability and lack of governance following a 2009 coup in Madagascar. We also found a statistically significant relationship between presence of any investment and reduced fire detections in the study area, suggesting investments had an impact on reducing burning of forest for agriculture. For both outcomes (i.e., deforestation rates and fire detections), we found that more dollars invested led to greater conservation outcomes (i.e. fewer fires or less deforestation), particularly when funding was sustained for one to two years. Our findings suggest that conservation and development investments can reduce deforestation and fire incidence, but also highlight the many challenges and complexities in assessing relationships between investments and conservation outcomes in a dynamic landscape and a volatile political context. PMID:29267356

  11. Influence of deforestation, logging, and fire on malaria in the Brazilian Amazon.

    Science.gov (United States)

    Hahn, Micah B; Gangnon, Ronald E; Barcellos, Christovam; Asner, Gregory P; Patz, Jonathan A

    2014-01-01

    Malaria is a significant public health threat in the Brazilian Amazon. Previous research has shown that deforestation creates breeding sites for the main malaria vector in Brazil, Anopheles darlingi, but the influence of selective logging, forest fires, and road construction on malaria risk has not been assessed. To understand these impacts, we constructed a negative binomial model of malaria counts at the municipality level controlling for human population and social and environmental risk factors. Both paved and unpaved roadways and fire zones in a municipality increased malaria risk. Within the timber production states where 90% of deforestation has occurred, compared with areas without selective logging, municipalities where 0-7% of the remaining forests were selectively logged had the highest malaria risk (1.72, 95% CI 1.18-2.51), and areas with higher rates of selective logging had the lowest risk (0.39, 95% CI 0.23-0.67). We show that roads, forest fires, and selective logging are previously unrecognized risk factors for malaria in the Brazilian Amazon and highlight the need for regulation and monitoring of sub-canopy forest disturbance.

  12. Influence of deforestation, logging, and fire on malaria in the Brazilian Amazon.

    Directory of Open Access Journals (Sweden)

    Micah B Hahn

    Full Text Available Malaria is a significant public health threat in the Brazilian Amazon. Previous research has shown that deforestation creates breeding sites for the main malaria vector in Brazil, Anopheles darlingi, but the influence of selective logging, forest fires, and road construction on malaria risk has not been assessed. To understand these impacts, we constructed a negative binomial model of malaria counts at the municipality level controlling for human population and social and environmental risk factors. Both paved and unpaved roadways and fire zones in a municipality increased malaria risk. Within the timber production states where 90% of deforestation has occurred, compared with areas without selective logging, municipalities where 0-7% of the remaining forests were selectively logged had the highest malaria risk (1.72, 95% CI 1.18-2.51, and areas with higher rates of selective logging had the lowest risk (0.39, 95% CI 0.23-0.67. We show that roads, forest fires, and selective logging are previously unrecognized risk factors for malaria in the Brazilian Amazon and highlight the need for regulation and monitoring of sub-canopy forest disturbance.

  13. Elements for the expected mechanisms on 'reduced emissions from deforestation and degradation, REDD' under UNFCCC

    Science.gov (United States)

    Mollicone, D.; Freibauer, A.; Schulze, E. D.; Braatz, S.; Grassi, G.; Federici, S.

    2007-10-01

    Carbon emissions from deforestation and degradation account for about 20% of global anthropogenic emissions. Strategies and incentives for reduced emissions from deforestation and degradation (REDD) have emerged as one of the most active areas in the international climate change negotiations under the United Nations Framework Convention on Climate Change (UNFCCC). While the current negotiations focus on a REDD mechanism in developing countries, it should be recognized that risks of carbon losses from forests occur in all climate zones and also in industrialized countries. A future climate change agreement would be more effective if it included all carbon losses and gains from land use in all countries and climate zones. The REDD mechanism will be an important step towards reducing emissions from land use change in developing countries, but needs to be followed by steps in other land use systems and regions. A national approach to REDD and significant coverage globally are needed to deal with the risk that deforestation and degradation activities are displaced rather than avoided. Favourable institutional and governance conditions need to be established that guarantee in the long-term a stable incentive and control system for maintaining forest carbon stocks. Ambitious emission reductions from deforestation and forest degradation need sustained financial incentives, which go beyond positive incentives for reduced emissions but also give incentives for sustainable forest management. Current data limitations need—and can be—overcome in the coming years to allow accurate accounting of reduced emissions from deforestation and degradation. A proper application of the conservativeness approach in the REDD context could allow a simplified reporting of emissions from deforestation in a first phase, consistent with the already agreed UNFCCC reporting principles.

  14. Elements for the expected mechanisms on 'reduced emissions from deforestation and degradation, REDD' under UNFCCC

    International Nuclear Information System (INIS)

    Mollicone, D; Freibauer, A; Schulze, E D; Braatz, S; Grassi, G; Federici, S

    2007-01-01

    Carbon emissions from deforestation and degradation account for about 20% of global anthropogenic emissions. Strategies and incentives for reduced emissions from deforestation and degradation (REDD) have emerged as one of the most active areas in the international climate change negotiations under the United Nations Framework Convention on Climate Change (UNFCCC). While the current negotiations focus on a REDD mechanism in developing countries, it should be recognized that risks of carbon losses from forests occur in all climate zones and also in industrialized countries. A future climate change agreement would be more effective if it included all carbon losses and gains from land use in all countries and climate zones. The REDD mechanism will be an important step towards reducing emissions from land use change in developing countries, but needs to be followed by steps in other land use systems and regions. A national approach to REDD and significant coverage globally are needed to deal with the risk that deforestation and degradation activities are displaced rather than avoided. Favourable institutional and governance conditions need to be established that guarantee in the long-term a stable incentive and control system for maintaining forest carbon stocks. Ambitious emission reductions from deforestation and forest degradation need sustained financial incentives, which go beyond positive incentives for reduced emissions but also give incentives for sustainable forest management. Current data limitations need-and can be-overcome in the coming years to allow accurate accounting of reduced emissions from deforestation and degradation. A proper application of the conservativeness approach in the REDD context could allow a simplified reporting of emissions from deforestation in a first phase, consistent with the already agreed UNFCCC reporting principles

  15. Comparing climate and cost impacts of reference levels for reducing emissions from deforestation

    Energy Technology Data Exchange (ETDEWEB)

    Busch, Jonah [Center for Applied Biodiversity Science, Conservation International, 2011 Crystal Drive, Suite 500, Arlington, VA (United States); Strassburg, Bernardo [Center for Social and Economic Research on the Global Environment, University of East Anglia, Norwich NR4 7TJ (United Kingdom); Cattaneo, Andrea [Woods Hole Research Center, 149 Woods Hole Road, Falmouth, MA 02540-1644 (United States); Lubowski, Ruben [Environmental Defense Fund, 1875 Connecticut Avenue NW, Washington, DC (United States); Bruner, Aaron; Rice, Richard; Boltz, Frederick [Conservation International, 2011 Crystal Drive, Suite 500, Arlington, VA (United States); Creed, Anna; Ashton, Ralph, E-mail: jbusch@conservation.or [Terrestrial Carbon Group, 900 17th Street NW, Suite 700, Washington, DC (United States)

    2009-10-15

    The climate benefit and economic cost of an international mechanism for reducing emissions from deforestation and degradation (REDD) will depend on the design of reference levels for crediting emission reductions. We compare the impacts of six proposed reference level designs on emission reduction levels and on cost per emission reduction using a stylized partial equilibrium model (the open source impacts of REDD incentives spreadsheet; OSIRIS). The model explicitly incorporates national incentives to participate in an international REDD mechanism as well as international leakage of deforestation emissions. Our results show that a REDD mechanism can provide cost-efficient climate change mitigation benefits under a broad range of reference level designs. We find that the most effective reference level designs balance incentives to reduce historically high deforestation emissions with incentives to maintain historically low deforestation emissions. Estimates of emission reductions under REDD depend critically on the degree to which demand for tropical frontier agriculture generates leakage. This underscores the potential importance to REDD of complementary strategies to supply agricultural needs outside of the forest frontier.

  16. Comparing climate and cost impacts of reference levels for reducing emissions from deforestation

    International Nuclear Information System (INIS)

    Busch, Jonah; Strassburg, Bernardo; Cattaneo, Andrea; Lubowski, Ruben; Bruner, Aaron; Rice, Richard; Boltz, Frederick; Creed, Anna; Ashton, Ralph

    2009-01-01

    The climate benefit and economic cost of an international mechanism for reducing emissions from deforestation and degradation (REDD) will depend on the design of reference levels for crediting emission reductions. We compare the impacts of six proposed reference level designs on emission reduction levels and on cost per emission reduction using a stylized partial equilibrium model (the open source impacts of REDD incentives spreadsheet; OSIRIS). The model explicitly incorporates national incentives to participate in an international REDD mechanism as well as international leakage of deforestation emissions. Our results show that a REDD mechanism can provide cost-efficient climate change mitigation benefits under a broad range of reference level designs. We find that the most effective reference level designs balance incentives to reduce historically high deforestation emissions with incentives to maintain historically low deforestation emissions. Estimates of emission reductions under REDD depend critically on the degree to which demand for tropical frontier agriculture generates leakage. This underscores the potential importance to REDD of complementary strategies to supply agricultural needs outside of the forest frontier.

  17. Estimating the costs of reducing CO2 emission via avoided deforestation with integrated assessment modelling

    NARCIS (Netherlands)

    Overmars, K.P.; Tabeau, A.A.; Stehfest, E.; Meijl, van J.C.M.

    2012-01-01

    Estimates for deforestation and forest degradation were shown to account for about 17% of greenhouse gas emissions. The implementation of REDD is suggested to provide substantial emission reductions at low costs. Proper calculation of such a costs requires integrated modeling approach involving

  18. Cost-effectiveness of reducing emissions from tropical deforestation, 2016-2050

    Science.gov (United States)

    Busch, Jonah; Engelmann, Jens

    2017-12-01

    Reducing tropical deforestation is potentially a large-scale and low-cost strategy for mitigating climate change. Yet previous efforts to project the cost-effectiveness of policies to reduce greenhouse gas emissions from future deforestation across the tropics were hampered by crude available data on historical forest loss. Here we use recently available satellite-based maps of annual forest loss between 2001-2012, along with information on topography, accessibility, protected status, potential agricultural revenue, and an observed inverted-U-shaped relationship between forest cover loss and forest cover, to project tropical deforestation from 2016-2050 under alternative policy scenarios and to construct new marginal abatement cost curves for reducing emissions from tropical deforestation. We project that without new forest conservation policies 289 million hectares of tropical forest will be cleared from 2016-2050, releasing 169 GtCO2. A carbon price of US20/tCO2 (50/tCO2) across tropical countries would avoid 41 GtCO2 (77 GtCO2) from 2016-2050. By comparison, we estimate that Brazil’s restrictive policies in the Amazon between 2004-2012 successfully decoupled potential agricultural revenue from deforestation and reduced deforestation by 47% below what would have otherwise occurred, preventing the emission of 5.2 GtCO2. All tropical countries enacting restrictive anti-deforestation policies as effective as those in the Brazilian Amazon between 2004-2012 would avoid 58 GtCO2 from 2016-2050.

  19. Synergistic impacts of deforestation, climate change and fire on the future biomes distribution in Amazonia

    Science.gov (United States)

    Sampaio, G.; Cardoso, M. F.; Nobre, C. A.; Salazar, L. F.

    2013-05-01

    Several studies indicate future increase of environmental risks for the ecosystems in the Amazon region as a result of climate and land-use change, and their synergistic interactions. Modeling studies (e.g. Oyama and Nobre 2004, Salazar et al. 2007, Malhi et al. 2008) project rapid and irreversible replacement of forests by savannas with large-scale losses of biodiversity and livelihoods for people in the region. This process is referred to as the Amazon Dieback, where accelerated plant mortality due to environmental changes lead to forest collapse and savannas expansion after "tipping points" in climate and land surface changes are achieved. In this study we performed new analyses to quantify how deforestation, climate change and fire may combine to affect the distribution of major biomes in Amazonia. Changes in land use consider deforestation scenarios of 0%, 20%, 40%, and 50% (Sampaio et al., 2007), with and without fires (Cardoso et al., 2008), under the two greenhouse gases scenarios B1 and A2 and three "representative concentration pathways" (RCPs): 2.6, 4.5 and 8.5, for years 2015-2034 and 2040-2059 ("2025" and "2050" time-slices), from IPCC AR4 and CMIP5. The results show that the area affected in scenarios A2 and RCP 8.5 is larger than in the climate scenario B1 and RCP 2.6, and in both cases the effect is progressively higher in time. Most important changes occur in the East and South of the Amazon, with replacement of tropical forest by seasonal forest and savanna. The effect of fire in this region is important in all scenarios. The Northwest Amazon presents the smallest changes in the area of tropical forest, indicating that even for substantial land-use modifications and global climate change, the resulting atmospheric conditions would still support tropical forest in the region. In summary, we conclude that the synergistic combination of deforestation, climate change resulting from global warming, and the potential for higher fire occurrence may lead

  20. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon.

    Science.gov (United States)

    Galford, Gillian L; Melillo, Jerry M; Kicklighter, David W; Cronin, Timothy W; Cerri, Carlos E P; Mustard, John F; Cerri, Carlos C

    2010-11-16

    The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso.

  1. Biomass fuel burning and its implications: Deforestation and greenhouse gases emissions in Pakistan

    International Nuclear Information System (INIS)

    Tahir, S.N.A.; Rafique, M.; Alaamer, A.S.

    2010-01-01

    Pakistan is facing problem of deforestation. Pakistan lost 14.7% of its forest habitat between 1990 and 2005 interval. This paper assesses the present forest wood consumption rate by 6000 brick kilns established in the country and its implications in terms of deforestation and emission of greenhouse gases. Information regarding consumption of forest wood by the brick kilns was collected during a manual survey of 180 brick kiln units conducted in eighteen provincial divisions of country. Considering annual emission contributions of three primary GHGs i.e., CO 2 , CH 4 and N 2 O, due to burning of forest wood in brick kiln units in Pakistan and using IPCC recommended GWP indices, the combined CO 2 -equivalent has been estimated to be 533019 t y -1 . - Consumption of forest wood in the brick industry poses the problem of deforestation in Pakistan in addition to release of GHGs in the environment owing to biomass burning.

  2. Geospatial characterization of deforestation, fragmentation and forest fires in Telangana state, India: conservation perspective.

    Science.gov (United States)

    Sudhakar Reddy, C; Vazeed Pasha, S; Jha, C S; Dadhwal, V K

    2015-07-01

    Conservation of biodiversity has been put to the highest priority throughout the world. The process of identifying threatened ecosystems will search for different drivers related to biodiversity loss. The present study aimed to generate spatial information on deforestation and ecological degradation indicators of fragmentation and forest fires using systematic conceptual approach in Telangana state, India. Identification of ecosystems facing increasing vulnerability can help to safeguard the extinctions of species and useful for conservation planning. The technological advancement of satellite remote sensing and Geographical Information System has increased greatly in assessment and monitoring of ecosystem-level changes. The areas of threat were identified by creating grid cells (5 × 5 km) in Geographical Information System (GIS). Deforestation was assessed using multi-source data of 1930, 1960, 1975, 1985, 1995, 2005 and 2013. The forest cover of 40,746 km(2), 29,299 km(2), 18,652 km(2), 18,368 km(2), 18,006 km(2), 17,556 km(2) and 17,520 km(2) was estimated during 1930, 1960, 1975, 1985, 1995, 2005 and 2013, respectively. Historical evaluation of deforestation revealed that major changes had occurred in forests of Telangana and identified 1095 extinct, 397 critically endangered, 523 endangered and 311 vulnerable ecosystem grid cells. The fragmentation analysis has identified 307 ecosystem grid cells under critically endangered status. Forest burnt area information was extracted using AWiFS data of 2005 to 2014. Spatial analysis indicates total fire-affected forest in Telangana as 58.9% in a decadal period. Conservation status has been recorded depending upon values of threat for each grid, which forms the basis for conservation priority hotspots. Of existing forest, 2.1% grids had severe ecosystem collapse and had been included under the category of conservation priority hotspot-I, followed by 27.2% in conservation priority hotspot-II and 51.5% in conservation

  3. Understorey fire propagation and tree mortality on adjacent areas to an Amazonian deforestation fire

    Science.gov (United States)

    J.A. Carvalho; C.A. Gurgel Veras; E.C. Alvarado; D.V. Sandberg; S.J. Leite; R. Gielow; E.R.C. Rabelo; J.C. Santos

    2010-01-01

    Fire characteristics in tropical ecosystems are poorly documented quantitatively in the literature. This paper describes an understorey fire propagating across the edges of a biomass burn of a cleared primary forest. The experiment was carried out in 2001 in the Amazon forest near Alta Floresta, state of Mato Grosso, Brazil, as part of biomass burning experiments...

  4. Quantifying rate of deforestation and CO2 emission in Peninsular Malaysia using Palsar imageries

    Science.gov (United States)

    Hamdan, O.; Abd Rahman, K.; Samsudin, M.

    2016-06-01

    Increasing human population and the rapid growth of Malaysia's economy are often associated with various environmental disturbances which have been contributing to depletion of natural resources and climate change. The need for more spaces for numerous land development activities has made the existing forests suffer deforestation. The study was carried out in Peninsular Malaysia, which currently has about 5.9 million ha of forests. Phased array type L-band SAR (Palsar) and Palsar-2 images over the years 2010 and 2015, respectively were used to identify forest cover and deforestation occurrences resulted from various conversion of forests to other land uses. Forests have been identified from horizontal-vertical (HV) polarization and then classified into three major categories, which are inland, peat swamp and mangrove. Pixel subtraction technique was used to determine areas that have been changing from forests to other land uses. Forest areas have been found declined from about 6.1 million ha in year 2010 to some 5.9 million ha in 2015 due to conversion of forests to other land uses. Causes of deforestation have been identified and the amount of carbon dioxide (CO2) that has been emitted due to the deforestation activity has been determined in this study. Oil palm and rubber plantations expansion has been found the most prominent factor that caused deforestation in Peninsular Malaysia, especially in the states of Pahang, Terengganu, Johor and Kelantan. The rate of deforestation in the period was at 0.66% yr-1, which amounted a total of about 200,225 ha over the five years. Carbon loss was estimated at about 30.2 million Mg C, which has resulted in CO2 emission accounted at about 110.6 million Mg CO2. The rate of CO2 emission that has been resulted from deforestation was estimated at 22.1 million Mg CO2 yr-1. The study found that the use of a series of Palsar and Palsar-2 images, with a consistent, cloud-free images, are the most appropriate sensors to be used for

  5. A modelling approach to estimate carbon emissions from D.R.C. deforestation

    Science.gov (United States)

    Najdovski, Nicolas; Poulter, Benjamin; Defourny, Pierre; Moreau, Inès; Maignan, Fabienne; Ciais, Philippe; Verhegghen, Astrid; Kibambe Lubamba, Jean-Paul; Jungers, Quentin; De Weirdt, Marjolein; Verbeeck, Hans; MacBean, Natasha; Peylin, Philippe

    2014-05-01

    With its 1.8 million squared kilometres, the Congo basin dense forest represents the second largest contiguous forest of the world. These extensive forest ecosystems play a significant role in the regulation of global climate by their potential carbon dioxide emissions and carbon storage. Under a stable climate, the vegetation, assumed to be at the equilibrium, is known to present neutral emissions over a year with seasonal variations. However, modifications in temperatures, precipitations, CO2 atmospheric concentrations have the potential to modify this balance leading to higher or lower biomass storage. In addition, deforestation and forest degradation have played a significant role over the past several decades and are expected to become increasingly important in the future. Here, we quantify the relative effects of deforestation and 21st century climate change on carbon emissions in Congo Basin over the next three decades (2005-2035). Carbon dioxide emissions are estimated using a series of moderate resolution (10 km) vegetation maps merged with spatially explicit deforestation projections and developed to work with a prognostic carbon cycle model. The inversion of the deforestation model allowed hindcast land-use patterns back to 1800 by using land cover change rates based on the HYDE database. Simulations were made over the Democratic Republic of Congo (DRC) using the ORCHIDEE dynamic global vegetation model with climate forcing from the CMIP5 Representative Concentration Pathway 8.5 scenario for the HadGEM2. Two simulations were made, a reference simulation with land cover fixed at 2005 and a land cover change simulation with changing climate and CO2, to quantify the net land cover change emissions and climate emissions directly. Because of the relatively high resolution of the model simulations, the spatial patterns of human-driven carbon losses can be tracked in the context of climate change, providing information for mitigation and vulnerability

  6. Can carbon emissions from tropical deforestation drop by 50% in 5 years?

    Science.gov (United States)

    Zarin, Daniel J; Harris, Nancy L; Baccini, Alessandro; Aksenov, Dmitry; Hansen, Matthew C; Azevedo-Ramos, Claudia; Azevedo, Tasso; Margono, Belinda A; Alencar, Ane C; Gabris, Chris; Allegretti, Adrienne; Potapov, Peter; Farina, Mary; Walker, Wayne S; Shevade, Varada S; Loboda, Tatiana V; Turubanova, Svetlana; Tyukavina, Alexandra

    2016-04-01

    Halving carbon emissions from tropical deforestation by 2020 could help bring the international community closer to the agreed goal of deforestation at 2.270 Gt CO2 yr(-1). Brazil did not sign the NYDF, yet from 2001 to 2013, Brazil ranks first for both carbon emissions from gross tropical deforestation and reductions in those emissions - its share of the total declined from a peak of 69% in 2003 to a low of 20% in 2012. Indonesia, an NYDF signatory, is the second highest emitter, peaking in 2012 at 0.362 Gt CO2 yr(-1) before declining to 0.205 Gt CO2 yr(-1) in 2013. The other 14 NYDF tropical country signatories were responsible for a combined average of 0.317 Gt CO2 yr(-1) , while the other 86 tropical country non-signatories were responsible for a combined average of 0.688 Gt CO2 yr(-1). We outline two scenarios for achieving the 50% emission reduction target by 2020, both emphasizing the critical role of Brazil and the need to reverse the trends of increasing carbon emissions from gross tropical deforestation in many other tropical countries that, from 2001 to 2013, have largely offset Brazil's reductions. Achieving the target will therefore be challenging, even though it is in the self-interest of the international community. Conserving rather than cutting down tropical forests requires shifting economic development away from a dependence on natural resource depletion toward recognition of the dependence of human societies on the natural capital that tropical forests represent and the goods and services they provide. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  7. Biomass fuel burning and its implications: deforestation and greenhouse gases emissions in Pakistan.

    Science.gov (United States)

    Tahir, S N A; Rafique, M; Alaamer, A S

    2010-07-01

    Pakistan is facing problem of deforestation. Pakistan lost 14.7% of its forest habitat between 1990 and 2005 interval. This paper assesses the present forest wood consumption rate by 6000 brick kilns established in the country and its implications in terms of deforestation and emission of greenhouse gases. Information regarding consumption of forest wood by the brick kilns was collected during a manual survey of 180 brick kiln units conducted in eighteen provincial divisions of country. Considering annual emission contributions of three primary GHGs i.e., CO(2), CH(4) and N(2)O, due to burning of forest wood in brick kiln units in Pakistan and using IPCC recommended GWP indices, the combined CO(2)-equivalent has been estimated to be 533019 t y(-1). Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  8. Reducing Emissions from Deforestation and Degradation in Cameroon. Assessing costs and benefits

    International Nuclear Information System (INIS)

    Bellassen, Valentin; Gitz, Vincent

    2008-01-01

    A new momentum is underway to account for emissions from 'avoided deforestation and degradation' at the United Nations Framework Convention on Climate Change (UNFCCC). This paper assesses the feasibility of one of the Reducing Emissions from Deforestation and Degradation (REDD) mechanisms currently discussed, namely that of 'Compensated Reduction', in the case of Cameroon. Here we assess the differential revenues that a farmer could get from 1 ha of land out of two alternative land-uses: shifting cultivation, the traditional land-use pattern in southern Cameroon, or carbon credits as compensation for the conservation of primary forest. It is found that a break-even price of USD 2.85/t of carbon dioxide equivalent would level shifting cultivation with 'Compensated Reduction'. This result suggests that at current carbon prices, and independently form variations in the discount rate, it could already be more profitable to preserve the primary forest rather than to log it in order to grow crops. (author)

  9. Cattle ranching intensification in Brazil can reduce global greenhouse gas emissions by sparing land from deforestation.

    Science.gov (United States)

    Cohn, Avery S; Mosnier, Aline; Havlík, Petr; Valin, Hugo; Herrero, Mario; Schmid, Erwin; O'Hare, Michael; Obersteiner, Michael

    2014-05-20

    This study examines whether policies to encourage cattle ranching intensification in Brazil can abate global greenhouse gas (GHG) emissions by sparing land from deforestation. We use an economic model of global land use to investigate, from 2010 to 2030, the global agricultural outcomes, land use changes, and GHG abatement resulting from two potential Brazilian policies: a tax on cattle from conventional pasture and a subsidy for cattle from semi-intensive pasture. We find that under either policy, Brazil could achieve considerable sparing of forests and abatement of GHGs, in line with its national policy targets. The land spared, particularly under the tax, is far less than proportional to the productivity increased. However, the tax, despite prompting less adoption of semi-intensive ranching, delivers slightly more forest sparing and GHG abatement than the subsidy. This difference is explained by increased deforestation associated with increased beef consumption under the subsidy and reduced deforestation associated with reduced beef consumption under the tax. Complementary policies to directly limit deforestation could help limit these effects. GHG abatement from either the tax or subsidy appears inexpensive but, over time, the tax would become cheaper than the subsidy. A revenue-neutral combination of the policies could be an element of a sustainable development strategy for Brazil and other emerging economies seeking to balance agricultural development and forest protection.

  10. Characterizing sources of emissions from wildland fires

    Science.gov (United States)

    Roger D. Ottmar; Ana Isabel Miranda; David V. Sandberg

    2009-01-01

    Smoke emissions from wildland fire can be harmful to human health and welfare, impair visibility, and contribute to greenhouse gas emissions. The generation of emissions and heat release need to be characterized to estimate the potential impacts of wildland fire smoke. This requires explicit knowledge of the source, including size of the area burned, burn period,...

  11. Modeling regional-scale wildland fire emissions with the wildland fire emissions information system

    Science.gov (United States)

    Nancy H.F. French; Donald McKenzie; Tyler Erickson; Benjamin Koziol; Michael Billmire; K. Endsley; Naomi K.Y. Scheinerman; Liza Jenkins; Mary E. Miller; Roger Ottmar; Susan Prichard

    2014-01-01

    As carbon modeling tools become more comprehensive, spatial data are needed to improve quantitative maps of carbon emissions from fire. The Wildland Fire Emissions Information System (WFEIS) provides mapped estimates of carbon emissions from historical forest fires in the United States through a web browser. WFEIS improves access to data and provides a consistent...

  12. Vulnerability and Resilience of Temperate Forest Landscapes to Broad-Scale Deforestation in Response to Changing Fire Regimes and Altered Post-Fire Vegetation Dynamics

    Science.gov (United States)

    Tepley, A. J.; Veblen, T. T.; Perry, G.; Anderson-Teixeira, K. J.

    2015-12-01

    In the face of on-going climatic warming and land-use change, there is growing concern that temperate forest landscapes could be near a tipping point where relatively small changes to the fire regime or altered post-fire vegetation dynamics could lead to extensive conversion to shrublands or savannas. To evaluate vulnerability and resilience to such conversion, we develop a simple model based on three factors we hypothesize to be key in predicting temperate forest responses to changing fire regimes: (1) the hazard rate (i.e., the probability of burning in the next year given the time since the last fire) in closed-canopy forests, (2) the hazard rate for recently-burned, open-canopy vegetation, and (3) the time to redevelop canopy closure following fire. We generate a response surface representing the proportions of the landscape potentially supporting closed-canopy forest and non-forest vegetation under nearly all combinations of these three factors. We then place real landscapes on this response surface to assess the type and magnitude of changes to the fire regime that would drive extensive forest loss. We show that the deforestation of much of New Zealand that followed initial human colonization and the introduction of a new ignition source ca. 750 years ago was essentially inevitable due to the slow rate of forest recovery after fire and the high flammability of post-fire vegetation. In North America's Pacific Northwest, by contrast, a predominantly forested landscape persisted despite two periods of widespread burning in the recent past due in large part to faster post-fire forest recovery and less pronounced differences in flammability between forests and the post-fire vegetation. We also assess the factors that could drive extensive deforestation in other regions to identify where management could reduce this potential and to guide field and modeling work to better understand the responses and ecological feedbacks to changing fire regimes.

  13. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan

    International Nuclear Information System (INIS)

    Marlier, Miriam E; DeFries, Ruth S; Kim, Patrick S; Koplitz, Shannon N; Jacob, Daniel J; Gaveau, David L A; Mickley, Loretta J; Margono, Belinda A; Myers, Samuel S

    2015-01-01

    Fire emissions associated with land cover change and land management contribute to the concentrations of atmospheric pollutants, which can affect regional air quality and climate. Mitigating these impacts requires a comprehensive understanding of the relationship between fires and different land cover change trajectories and land management strategies. We develop future fire emissions inventories from 2010–2030 for Sumatra and Kalimantan (Indonesian Borneo) to assess the impact of varying levels of forest and peatland conservation on air quality in Equatorial Asia. To compile these inventories, we combine detailed land cover information from published maps of forest extent, satellite fire radiative power observations, fire emissions from the Global Fire Emissions Database, and spatially explicit future land cover projections using a land cover change model. We apply the sensitivities of mean smoke concentrations to Indonesian fire emissions, calculated by the GEOS-Chem adjoint model, to our scenario-based future fire emissions inventories to quantify the different impacts of fires on surface air quality across Equatorial Asia. We find that public health impacts are highly sensitive to the location of fires, with emissions from Sumatra contributing more to smoke concentrations at population centers across the region than Kalimantan, which had higher emissions by more than a factor of two. Compared to business-as-usual projections, protecting peatlands from fires reduces smoke concentrations in the cities of Singapore and Palembang by 70% and 40%, and by 60% for the Equatorial Asian region, weighted by the population in each grid cell. Our results indicate the importance of focusing conservation priorities on protecting both forested (intact or logged) peatlands and non-forested peatlands from fire, even after considering potential leakage of deforestation pressure to other areas, in order to limit the impact of fire emissions on atmospheric smoke concentrations

  14. Regional air quality impacts of future fire emissions in Sumatra and Kalimantan

    Science.gov (United States)

    Marlier, Miriam E.; DeFries, Ruth S.; Kim, Patrick S.; Gaveau, David L. A.; Koplitz, Shannon N.; Jacob, Daniel J.; Mickley, Loretta J.; Margono, Belinda A.; Myers, Samuel S.

    2015-05-01

    Fire emissions associated with land cover change and land management contribute to the concentrations of atmospheric pollutants, which can affect regional air quality and climate. Mitigating these impacts requires a comprehensive understanding of the relationship between fires and different land cover change trajectories and land management strategies. We develop future fire emissions inventories from 2010-2030 for Sumatra and Kalimantan (Indonesian Borneo) to assess the impact of varying levels of forest and peatland conservation on air quality in Equatorial Asia. To compile these inventories, we combine detailed land cover information from published maps of forest extent, satellite fire radiative power observations, fire emissions from the Global Fire Emissions Database, and spatially explicit future land cover projections using a land cover change model. We apply the sensitivities of mean smoke concentrations to Indonesian fire emissions, calculated by the GEOS-Chem adjoint model, to our scenario-based future fire emissions inventories to quantify the different impacts of fires on surface air quality across Equatorial Asia. We find that public health impacts are highly sensitive to the location of fires, with emissions from Sumatra contributing more to smoke concentrations at population centers across the region than Kalimantan, which had higher emissions by more than a factor of two. Compared to business-as-usual projections, protecting peatlands from fires reduces smoke concentrations in the cities of Singapore and Palembang by 70% and 40%, and by 60% for the Equatorial Asian region, weighted by the population in each grid cell. Our results indicate the importance of focusing conservation priorities on protecting both forested (intact or logged) peatlands and non-forested peatlands from fire, even after considering potential leakage of deforestation pressure to other areas, in order to limit the impact of fire emissions on atmospheric smoke concentrations and

  15. Measuring Carbon Emissions from Deforestation at Donggala Regency, Central Sulawesi Province, Indonesia

    Science.gov (United States)

    Nahib, I.; Suryanta, J.

    2018-02-01

    Forest is a natural resource that is very important and beneficial for the livelihood either directly or indirectly. Forest has a variety of ecological functions. One of forest functions is to maintain the amount of stored carbon. The forest area changes into non-forest area resulted in reducing forest functions as a provider of environmental services. This study aims: 1) to determine the deforestation during the period of 2000-2011, 2) to make model of the landcover change using logistic regression model, 3) to measurecarbon emissions and valuation based on impact of deforestation. The materials used in this study are : a) Indonesian Topographic Map at Scale 1: 50,000, Geospatial Information Agency (BIG), b) landcover map (year of 2000 and 2011), scale 1 : 250,000, produced by director general of forestry planning, ministry of environment and forestry, 3) environmental variables (dependent variable) such as : distance from roads, distance from streams, elevation and slope. The spatial analysis is done by land change modeler which is module in Idrisi Terrset. Meanwhile calculations of carbon storage and economic value which are done by ecosystem service modelers also as a Idrisi Terrset. The results show that the rate of deforestation during the period of 2000-2011 at Donggala as high as13,448.07 ha or about 1,222.55 ha per year. The impact of the forest cover changes resulted in the decrease of carbon storage up to 3.66 million tons or equivalent to 13.42 million tons of carbon emissions. Economic losses caused carbon emission in period 2000-2011 up to US 38,188,465 (net present value, NPV)

  16. Biomass consumption and CO2, CO and main hydrocarbon gas emissions in an Amazonian forest clearing fire

    Science.gov (United States)

    T. G. Soares Neto; J. A. Carvalho; C. A. G. Veras; E. C. Alvarado; R. Gielow; E. N. Lincoln; T. J. Christian; R. J. Yokelson; J. C. Santos

    2009-01-01

    Biomass consumption and CO2, CO and hydrocarbon gas emissions in an Amazonian forest clearing fire are presented and discussed. The experiment was conducted in the arc of deforestation, near the city of Alta Floresta, state of Mato Grosso, Brazil. The average carbon content of dry biomass was 48% and the estimated average moisture content of fresh biomass was 42% on...

  17. Global carbon stocks and potential emissions due to mangrove deforestation from 2000 to 2012

    Science.gov (United States)

    Hamilton, Stuart E.; Friess, Daniel A.

    2018-03-01

    Mangrove forests store high densities of organic carbon, which, when coupled with high rates of deforestation, means that mangroves have the potential to contribute substantially to carbon emissions. Consequently, mangroves are strong candidates for inclusion in nationally determined contributions (NDCs) to the United Nations Framework Convention on Climate Change (UNFCCC), and payments for ecosystem services (PES) programmes that financially incentivize the conservation of forested carbon stocks. This study quantifies annual mangrove carbon stocks from 2000 to 2012 at the global, national and sub-national levels, and global carbon emissions resulting from deforestation over the same time period. Globally, mangroves stored 4.19 Pg of carbon in 2012, with Indonesia, Brazil, Malaysia and Papua New Guinea accounting for more than 50% of the global stock. 2.96 Pg of the global carbon stock is contained within the soil and 1.23 Pg in the living biomass. Two percent of global mangrove carbon was lost between 2000 and 2012, equivalent to a maximum potential of 316,996,250 t of CO2 emissions.

  18. Landscape dynamics in northwestern Amazonia: an assessment of pastures, fire and illicit crops as drivers of tropical deforestation.

    Science.gov (United States)

    Armenteras, Dolors; Rodríguez, Nelly; Retana, Javier

    2013-01-01

    Many studies have identified drivers of deforestation throughout the tropics and, in most cases, have recognised differences in the level of threat. However, only a few have also looked at the temporal and spatial dynamics by which those drivers act, which is critical for assessing the conservation of biodiversity as well as for landscape planning. In this study, we analyse land cover change between 2000 and 2009 in north-western Colombian Amazonia to identify the interactions between the use of fire, cultivation of illicit crops and establishment of pastures, and their impacts on the loss of forest in the region. Yearly analyses were undertaken at randomly selected sample areas to quantify the average areas of transition of land cover types under different landscape compositions: forest-dominated mosaics, pasture mosaics, fire mosaics, and illicit crop mosaics. Our results indicate that despite the fact that forest areas were well-preserved, deforestation occurred at a low annual rate (0.06%). Conversion to pasture was the main factor responsible for forest loss (the area of pastures tripled within forest mosaics over 8 years), and this process was independent of the landscape matrix in which the forests were located. In fire mosaics, burning is a common tool for forest clearing and conversion to pasture. Thus, forests in fire mosaics were highly disturbed and frequently transformed from primary to secondary forests. The use of fire for illicit cropping was not detected, partly due to the small size of common illicit crops. Forest regeneration from pastures and secondary vegetation was observed in areas with large amounts of natural forest. Overall, assuming the continuation of the observed pasture conversion trend and the use of forest fire, we suggest that our results should be incorporated into a spatially explicit and integrated decision support tool to target and focus land-planning activities and policies.

  19. Future fire emissions associated with projected land use change in Indonesia

    Science.gov (United States)

    Marlier, M. E.; DeFries, R. S.; Pennington, D.; Ordway, E.; Nelson, E.; Mickley, L.; Koplitz, S.

    2013-12-01

    Indonesia has experienced rapid land use change in past decades as forests and peatlands are cleared for agricultural development, including oil palm and timber plantations1. Fires are the predominant method of clearing and the subsequent emissions can have important public health impacts by contributing to regional particulate matter and ozone concentrations2. This regional haze was dramatically seen in Singapore during June 2013 due to the transport of emissions from fires in Sumatra. Our study is part of a larger project that will quantify the public health impact of various land use development scenarios for Sumatra over the coming decades. Here, we describe how we translate economic projections of land use change into future fire emissions inventories for GEOS-Chem atmospheric transport simulations. We relate past GFED3 fire emissions3 to detailed 1-km land use change data and MODIS fire radiative power observations, and apply these relationships to future estimates of land use change. The goal of this interdisciplinary project is to use modeling results to interact with policy makers and influence development strategies in ways that protect public health. 1Miettinen et al. 2011. Deforestation rates in insular Southeast Asia between 2000 and 2010. Glob. Change Biol.,17 (7), 2261-2270. 2Marlier et al. 2013. El Niño and health risks from landscape fire emissions in southeast Asia. Nature Clim. Change, 3, 131-136. 3van der Werf et al. 2010. Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997-2009). Atmos. Chem. Physics, 10 (23), 11707-11735.

  20. Reductions in emissions from deforestation from Indonesia’s moratorium on new oil palm, timber, and logging concessions

    Science.gov (United States)

    Busch, Jonah; Ferretti-Gallon, Kalifi; Engelmann, Jens; Wright, Max; Austin, Kemen G.; Stolle, Fred; Turubanova, Svetlana; Potapov, Peter V.; Margono, Belinda; Hansen, Matthew C.; Baccini, Alessandro

    2015-01-01

    To reduce greenhouse gas emissions from deforestation, Indonesia instituted a nationwide moratorium on new license areas (“concessions”) for oil palm plantations, timber plantations, and logging activity on primary forests and peat lands after May 2011. Here we indirectly evaluate the effectiveness of this policy using annual nationwide data on deforestation, concession licenses, and potential agricultural revenue from the decade preceding the moratorium. We estimate that on average granting a concession for oil palm, timber, or logging in Indonesia increased site-level deforestation rates by 17–127%, 44–129%, or 3.1–11.1%, respectively, above what would have occurred otherwise. We further estimate that if Indonesia’s moratorium had been in place from 2000 to 2010, then nationwide emissions from deforestation over that decade would have been 241–615 MtCO2e (2.8–7.2%) lower without leakage, or 213–545 MtCO2e (2.5–6.4%) lower with leakage. As a benchmark, an equivalent reduction in emissions could have been achieved using a carbon price-based instrument at a carbon price of $3.30–7.50/tCO2e (mandatory) or $12.95–19.45/tCO2e (voluntary). For Indonesia to have achieved its target of reducing emissions by 26%, the geographic scope of the moratorium would have had to expand beyond new concessions (15.0% of emissions from deforestation and peat degradation) to also include existing concessions (21.1% of emissions) and address deforestation outside of concessions and protected areas (58.7% of emissions). Place-based policies, such as moratoria, may be best thought of as bridge strategies that can be implemented rapidly while the institutions necessary to enable carbon price-based instruments are developed. PMID:25605880

  1. Reducing emissions from deforestation and forest degradation (REDD+): game changer or just another quick fix?

    Science.gov (United States)

    Venter, Oscar; Koh, Lian Pin

    2012-02-01

    Reducing emissions from deforestation and forest degradation (REDD+) provides financial compensation to land owners who avoid converting standing forests to other land uses. In this paper, we review the main opportunities and challenges for REDD+ implementation, including expectations for REDD+ to deliver on multiple environmental and societal cobenefits. We also highlight a recent case study, the Norway-Indonesia REDD+ agreement and discuss how it might be a harbinger of outcomes in other forest-rich nations seeking REDD+ funds. Looking forward, we critically examine the fundamental assumptions of REDD+ as a solution for the atmospheric buildup of greenhouse gas emissions and tropical deforestation. We conclude that REDD+ is currently the most promising mechanism driving the conservation of tropical forests. Yet, to emerge as a true game changer, REDD+ must still demonstrate that it can access low transaction cost and high-volume carbon markets or funds, while also providing or complimenting a suite of nonmonetary incentives to encourage a developing nation's transition from forest losing to forest gaining, and align with, not undermine, a globally cohesive attempt to mitigate anthropogenic climate change. © 2012 New York Academy of Sciences.

  2. Chemical composition of wildland fire emissions

    Science.gov (United States)

    Shawn P. Urbanski; Wei Min Hao; Stephen Baker

    2009-01-01

    Wildland fires are major sources of trace gases and aerosol, and these emissions are believed to significantly influence the chemical composition of the atmosphere and the earth's climate system. The wide variety of pollutants released by wildland fire include greenhouse gases, photochemically reactive compounds, and fine and coarse particulate matter. Through...

  3. The Role of Temporal Evolution in Modeling Atmospheric Emissions from Tropical Fires

    Science.gov (United States)

    Marlier, Miriam E.; Voulgarakis, Apostolos; Shindell, Drew T.; Faluvegi, Gregory S.; Henry, Candise L.; Randerson, James T.

    2014-01-01

    Fire emissions associated with tropical land use change and maintenance influence atmospheric composition, air quality, and climate. In this study, we explore the effects of representing fire emissions at daily versus monthly resolution in a global composition-climate model. We find that simulations of aerosols are impacted more by the temporal resolution of fire emissions than trace gases such as carbon monoxide or ozone. Daily-resolved datasets concentrate emissions from fire events over shorter time periods and allow them to more realistically interact with model meteorology, reducing how often emissions are concurrently released with precipitation events and in turn increasing peak aerosol concentrations. The magnitude of this effect varies across tropical ecosystem types, ranging from smaller changes in modeling the low intensity, frequent burning typical of savanna ecosystems to larger differences when modeling the short-term, intense fires that characterize deforestation events. The utility of modeling fire emissions at a daily resolution also depends on the application, such as modeling exceedances of particulate matter concentrations over air quality guidelines or simulating regional atmospheric heating patterns.

  4. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires

    Science.gov (United States)

    Gaveau, David L. A.; Salim, Mohammad A.; Hergoualc'h, Kristell; Locatelli, Bruno; Sloan, Sean; Wooster, Martin; Marlier, Miriam E.; Molidena, Elis; Yaen, Husna; Defries, Ruth; Verchot, Louis; Murdiyarso, Daniel; Nasi, Robert; Holmgren, Peter; Sheil, Douglas

    2014-08-01

    Trans-boundary haze events in Southeast Asia are associated with large forest and peatland fires in Indonesia. These episodes of extreme air pollution usually occur during drought years induced by climate anomalies from the Pacific (El Niño Southern Oscillation) and Indian Oceans (Indian Ocean Dipole). However, in June 2013 - a non-drought year - Singapore's 24-hr Pollutants Standards Index reached an all-time record 246 (rated ``very unhealthy''). Here, we show using remote sensing, rainfall records and other data, that the Indonesian fires behind the 2013 haze followed a two-month dry spell in a wetter-than-average year. These fires were short-lived (one week) and limited to a localized area in Central Sumatra (1.6% of Indonesia): burning an estimated 163,336 ha, including 137,044 ha (84%) on peat. Most burning was confined to deforested lands (82%; 133,216 ha). The greenhouse gas (GHG) emissions during this brief, localized event were considerable: 172 +/- 59 Tg CO2-eq (or 31 +/- 12 Tg C), representing 5-10% of Indonesia's mean annual GHG emissions for 2000-2005. Our observations show that extreme air pollution episodes in Southeast Asia are no longer restricted to drought years. We expect major haze events to be increasingly frequent because of ongoing deforestation of Indonesian peatlands.

  5. Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires.

    Science.gov (United States)

    Gaveau, David L A; Salim, Mohammad A; Hergoualc'h, Kristell; Locatelli, Bruno; Sloan, Sean; Wooster, Martin; Marlier, Miriam E; Molidena, Elis; Yaen, Husna; DeFries, Ruth; Verchot, Louis; Murdiyarso, Daniel; Nasi, Robert; Holmgren, Peter; Sheil, Douglas

    2014-08-19

    Trans-boundary haze events in Southeast Asia are associated with large forest and peatland fires in Indonesia. These episodes of extreme air pollution usually occur during drought years induced by climate anomalies from the Pacific (El Niño Southern Oscillation) and Indian Oceans (Indian Ocean Dipole). However, in June 2013--a non-drought year--Singapore's 24-hr Pollutants Standards Index reached an all-time record 246 (rated "very unhealthy"). Here, we show using remote sensing, rainfall records and other data, that the Indonesian fires behind the 2013 haze followed a two-month dry spell in a wetter-than-average year. These fires were short-lived (one week) and limited to a localized area in Central Sumatra (1.6% of Indonesia): burning an estimated 163,336 ha, including 137,044 ha (84%) on peat. Most burning was confined to deforested lands (82%; 133,216 ha). The greenhouse gas (GHG) emissions during this brief, localized event were considerable: 172 ± 59 Tg CO2-eq (or 31 ± 12 Tg C), representing 5-10% of Indonesia's mean annual GHG emissions for 2000-2005. Our observations show that extreme air pollution episodes in Southeast Asia are no longer restricted to drought years. We expect major haze events to be increasingly frequent because of ongoing deforestation of Indonesian peatlands.

  6. Long-term deforestation in NW Spain: linking the Holocene fire history to vegetation change and human activities

    Science.gov (United States)

    Kaal, Joeri; Carrión Marco, Yolanda; Asouti, Eleni; Martín Seijo, Maria; Martínez Cortizas, Antonio; Costa Casáis, Manuela; Criado Boado, Felipe

    2011-01-01

    The Holocene fire regime is thought to have had a key role in deforestation and shrubland expansion in Galicia (NW Spain) but the contribution of past societies to vegetation burning remains poorly understood. This may be, in part, due to the fact that detailed fire records from areas in close proximity to archaeological sites are scarce. To fill this gap, we performed charcoal analysis in five colluvial soils from an archaeological area (Campo Lameiro) and compared the results to earlier studies from this area and palaeo-ecological literature from NW Spain. This analysis allowed for the reconstruction of the vegetation and fire dynamics in the area during the last ca 11 000 yrs. In the Early Holocene, Fabaceae and Betula sp. were dominant in the charcoal record. Quercus sp. started to replace these species around 10 000 cal BP, forming a deciduous forest that prevailed during the Holocene Thermal Maximum until ˜5500 cal BP. Following that, several cycles of potentially fire-induced forest regression with subsequent incomplete recovery eventually led to the formation of an open landscape dominated by shrubs (Erica sp. and Fabaceae). Major episodes of forest regression were (1) ˜5500-5000 cal BP, which marks the mid-Holocene cooling after the Holocene Thermal Maximum, but also the period during which agropastoral activities in NW Spain became widespread, and (2) ˜2000-1500 cal BP, which corresponds roughly to the end of the Roman Warm Period and the transition from the Roman to the Germanic period. The low degree of chronological precision, which is inherent in fire history reconstructions from colluvial soils, made it impossible to distinguish climatic from human-induced fires. Nonetheless, the abundance of synanthropic pollen indicators (e.g. Plantago lanceolata and Urtica dioica) since at least ˜6000 cal BP strongly suggests that humans used fire to generate and maintain pasture.

  7. A comparison of baseline methodologies for 'Reducing Emissions from Deforestation and Degradation'

    Directory of Open Access Journals (Sweden)

    Kok Kasper

    2009-07-01

    Full Text Available Abstract Background A mechanism for emission reductions from deforestation and degradation (REDD is very likely to be included in a future climate agreement. The choice of REDD baseline methodologies will crucially influence the environmental and economic effectiveness of the climate regime. We compare three different historical baseline methods and one innovative dynamic model baseline approach to appraise their applicability under a future REDD policy framework using a weighted multi-criteria analysis. Results The results show that each baseline method has its specific strengths and weaknesses. Although the dynamic model allows for the best environmental and for comparatively good economic performance, its high demand for data and technical capacity limit the current applicability in many developing countries. Conclusion The adoption of a multi-tier approach will allow countries to select the baseline method best suiting their specific capabilities and data availability while simultaneously ensuring scientific transparency, environmental effectiveness and broad political support.

  8. El Nino and Health Risks from Landscape Fire Emissions in Southeast Asia

    Science.gov (United States)

    Marlier, Miriam E.; Defries, Ruth S.; Voulgarakis, Apostolos; Kinney, Patrick L.; Randerson, James T.; Shindell, Drew T.; Chen, Yang; Faluvegi, Greg

    2013-01-01

    Emissions from landscape fires affect both climate and air quality. Here, we combine satellite-derived fire estimates and atmospheric modelling to quantify health effects from fire emissions in southeast Asia from 1997 to 2006. This region has large interannual variability in fire activity owing to coupling between El Nino-induced droughts and anthropogenic land-use change. We show that during strong El Nino years, fires contribute up to 200 micrograms per cubic meter and 50 ppb in annual average fine particulate matter (PM2.5) and ozone surface concentrations near fire sources, respectively. This corresponds to a fire contribution of 200 additional days per year that exceed the World Health Organization 50 micrograms per cubic metre 24-hr PM(sub 2.5) interim target and an estimated 10,800 (6,800-14,300)-person (approximately 2 percent) annual increase in regional adult cardiovascular mortality. Our results indicate that reducing regional deforestation and degradation fires would improve public health along with widely established benefits from reducing carbon emissions, preserving biodiversity and maintaining ecosystem services.

  9. Implementing REDD+ (Reducing Emissions from Deforestation and Degradation): evidence on governance, evaluation and impacts from the REDD-ALERT project

    NARCIS (Netherlands)

    Matthews, R.B.; Noordwijk, van M.; Lambin, E.; Meyfroidt, P.; Gupta, J.; Verschot, L.; Hergoualc'h, K.; Veldkamp, E.

    2014-01-01

    Abstract The REDD-ALERT (Reducing Emissions from Deforestation and Degradation from Alternative Land Uses in the Rainforests of the Tropics) project started in 2009 and finished in 2012, and had the aim of evaluating mechanisms that translate international-level agreements into instruments that

  10. Implementing REDD+ (Reducing Emissions from Deforestation and Degradation): evidence on governance, evaluation and impacts from the REDD-ALERT project

    NARCIS (Netherlands)

    Mathews, R.B.; van Noordwijk, M.; Lambin, E.; Meyfroidt, P.; Gupta, J.; Verchot, L.; Hergoualc'h, K.; Veldkamp, E.

    2014-01-01

    The REDD-ALERT (Reducing Emissions from Deforestation and Degradation from Alternative Land Uses in the Rainforests of the Tropics) project started in 2009 and finished in 2012, and had the aim of evaluating mechanisms that translate international-level agreements into instruments that would help

  11. Coal fired flue gas mercury emission controls

    CERN Document Server

    Wu, Jiang; Pan, Weiguo; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of

  12. Emissions from forest fires near Mexico City

    Directory of Open Access Journals (Sweden)

    R. J. Yokelson

    2007-11-01

    Full Text Available The emissions of NOx (defined as NO (nitric oxide + NO2 (nitrogen dioxide and hydrogen cyanide (HCN, per unit amount of fuel burned, from fires in the pine forests that dominate the mountains surrounding Mexico City (MC are about 2 times higher than normally observed for forest burning. The ammonia (NH3 emissions are about average for forest burning. The upper limit for the mass ratio of NOx to volatile organic compounds (VOC for these MC-area mountain fires was ~0.38, which is similar to the NOx/VOC ratio in the MC urban area emissions inventory of 0.34, but much larger than the NOx/VOC ratio for tropical forest fires in Brazil (~0.068. The nitrogen enrichment in the fire emissions may be due to deposition of nitrogen-containing pollutants in the outflow from the MC urban area. This effect may occur worldwide wherever biomass burning coexists with large urban areas (e.g. the tropics, southeastern US, Los Angeles Basin. The molar emission ratio of HCN to carbon monoxide (CO for the mountain fires was 0.012±0.007, which is 2–9 times higher than widely used literature values for biomass burning. The ambient molar ratio HCN/CO in the MC-area outflow is about 0.003±0.0003. Thus, if only mountain fires emit significant amounts of HCN, these fires may be contributing about 25% of the CO production in the MC-area (~98–100 W and 19–20 N. Comparing the PM10/CO and PM2.5/CO mass ratios in the MC Metropolitan Area emission inventory (0.0115 and 0.0037 to the PM1/CO mass ratio for the mountain fires (0.133 then suggests that these fires could produce as much as ~79–92% of the primary fine particle mass generated in the MC-area. Considering both the uncertainty in the HCN/CO ratios and secondary aerosol formation in the urban and fire emissions implies that about 50±30% of the "aged" fine particle mass in the March 2006 MC-area outflow could be from these fires.

  13. Wildland fire emissions, carbon, and climate: Emission factors

    Science.gov (United States)

    Shawn Urbanski

    2014-01-01

    While the vast majority of carbon emitted by wildland fires is released as CO2, CO, and CH4, wildland fire smoke is nonetheless a rich and complex mixture of gases and aerosols. Primary emissions include significant amounts of CH4 and aerosol (organic aerosol and black carbon), which are short-lived climate forcers. In addition to CO2 and short-lived climate forcers,...

  14. Coal fired flue gas mercury emission controls

    International Nuclear Information System (INIS)

    Wu, Jiang; Pan, Weiguo; Cao, Yan; Pan, Weiping

    2015-01-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  15. Coal fired flue gas mercury emission controls

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Jiang; Pan, Weiguo [Shanghai Univ. of Electric Power (China); Cao, Yan; Pan, Weiping [Western Kentucky Univ., Bowling Green, KY (United States)

    2015-05-01

    Mercury (Hg) is one of the most toxic heavy metals, harmful to both the environment and human health. Hg is released into the atmosphere from natural and anthropogenic sources and its emission control has caused much concern. This book introduces readers to Hg pollution from natural and anthropogenic sources and systematically describes coal-fired flue gas mercury emission control in industry, especially from coal-fired power stations. Mercury emission control theory and experimental research are demonstrated, including how elemental mercury is oxidized into oxidized mercury and the effect of flue gas contents on the mercury speciation transformation process. Mercury emission control methods, such as existing APCDs (air pollution control devices) at power stations, sorbent injection, additives in coal combustion and photo-catalytic methods are introduced in detail. Lab-scale, pilot-scale and full-scale experimental studies of sorbent injection conducted by the authors are presented systematically, helping researchers and engineers to understand how this approach reduces the mercury emissions in flue gas and to apply the methods in mercury emission control at coal-fired power stations.

  16. An assessment of monitoring requirements and costs of 'Reduced Emissions from Deforestation and Degradation'

    Directory of Open Access Journals (Sweden)

    McCallum Ian

    2009-08-01

    Full Text Available Abstract Background Negotiations on a future climate policy framework addressing Reduced Emissions from Deforestation and Degradation (REDD are ongoing. Regardless of how such a framework will be designed, many technical solutions of estimating forest cover and forest carbon stock change exist to support policy in monitoring and accounting. These technologies typically combine remotely sensed data with ground-based inventories. In this article we assess the costs of monitoring REDD based on available technologies and requirements associated with key elements of REDD policy. Results We find that the design of a REDD policy framework (and specifically its rules can have a significant impact on monitoring costs. Costs may vary from 0.5 to 550 US$ per square kilometre depending on the required precision of carbon stock and area change detection. Moreover, they follow economies of scale, i.e. single country or project solutions will face relatively higher monitoring costs. Conclusion Although monitoring costs are relatively small compared to other cost items within a REDD system, they should be shared not only among countries but also among sectors, because an integrated monitoring system would have multiple benefits for non-REDD management. Overcoming initialization costs and unequal access to monitoring technologies is crucial for implementation of an integrated monitoring system, and demands for international cooperation.

  17. Splitting the Difference: A Proposal for Benefit Sharing in Reduced Emissions from Deforestation and Forest Degradation (REDD+

    Directory of Open Access Journals (Sweden)

    Arturo Balderas Torres

    2012-03-01

    Full Text Available The objective of REDD+ is to create incentives for the reduction of emissions from deforestation and forest degradation and for the increase of carbon stocks through the enhancement, conservation and sustainable management of forests in developing countries. As part of the international negotiations under the United Nations Framework Convention on Climate Change (UNFCCC, compensation would be estimated in relation to national performance but how these incentives will be channeled within countries has not been specified and there are concerns about how the benefits will be shared among different stakeholders. One central issue is that under the national approach good performance in one region can be offset by underperformance in other regions of the country thus preventing the generation of predictable local incentives. Other issues relate to the need to provide incentives to a wide range of stakeholders and to avoid perverse reactions. To address these and other issues we propose separating the accounting of reduced deforestation, reduced degradation and enhancement of forests. The local attribution of credits would be easier for carbon enhancement, and possibly reduced degradation, than for reduced deforestation, since carbon gains can, in principle, be measured locally in the first two cases, while estimating achievements in reduced deforestation requires a regional approach. This separation in attribution of rewards can help to create adequate incentives for the different stakeholders and overcome some of the problems associated with the design and implementation of national REDD+ programs.

  18. Biomass Burning Emissions from Fire Remote Sensing

    Science.gov (United States)

    Ichoku, Charles

    2010-01-01

    Knowledge of the emission source strengths of different (particulate and gaseous) atmospheric constituents is one of the principal ingredients upon which the modeling and forecasting of their distribution and impacts depend. Biomass burning emissions are complex and difficult to quantify. However, satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP), which has a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. In this presentation, we will show how the satellite measurement of FRP is facilitating the quantitative characterization of biomass burning and smoke emission rates, and the implications of this unique capability for improving our understanding of smoke impacts on air quality, weather, and climate. We will also discuss some of the challenges and uncertainties associated with satellite measurement of FRP and how they are being addressed.

  19. Reduced Deforestation and Economic Growth

    OpenAIRE

    Patrick Doupe

    2014-01-01

    The clearing of forests for agricultural land and other marketable purposes is a well-trodden path of economic development. With these private benefits from deforestation come external costs: emissions from deforestation currently account for 12 per cent of global carbon emissions. A widespread intervention in reducing emissions from deforestation will affect the paths of agricultural expansion and economic growth of lower income nations. To investigate these processes, this paper presents a ...

  20. Wildland fire emissions, carbon, and climate: U.S. emissions inventories

    Science.gov (United States)

    Narasimhan K. Larkin; Sean M. Raffuse; Tara M. Strand

    2014-01-01

    Emissions from wildland fire are both highly variable and highly uncertain over a wide range of temporal and spatial scales. Wildland fire emissions change considerably due to fluctuations from year to year with overall fire season severity, from season to season as different regions pass in and out of wildfire and prescribed fire periods, and from day to day as...

  1. Fire in the Vegetation and Peatlands of Borneo, 1997-2007: Patterns, Drivers and Emissions from Biomass Burning

    Science.gov (United States)

    Spessa, Allan; Weber, Ulrich; Langner, Andreas; Siegert, Florian; Heil, Angelika

    2010-05-01

    The peatland forests of equatorial SE Asia cover over 20 Mha with most located in Indonesia. Indonesian peatlands are globally one of the largest near-surface reserves of terrestrial organic carbon, with peat deposits of up to 20m thick and an estimated carbon storage of 55-61 Gt. The destructive fires in Indonesia during the exceptionally strong drought of late 1997 and early 1998 mark some of the largest peak emissions events in recorded history of global fires. Past studies estimate that about 1Gt of carbon was released to the atmosphere from the Indonesian fires in 1997- equivalent to 14% of the average global annual fossil fuel emissions released during the 1990s. Previous studies have established a non-linear negative correlation between fires and antecedent rainfall in Borneo, with ENSO-driven droughts being identified as the main cause of below-average rainfall events over the past decade or so. However, while these studies suggest that this non-linear relationship is mediated by ignitions associated with land use and land cover change (LULCC), they have not demonstrated it. A clear link between fires and logging in Borneo has been reported, but this work was restricted to eastern Kalimantan and the period 1997-98. The relationship between fires, emissions, rainfall and LULCC across the island of Borneo therefore remains to be examined using available fine resolution data over a multi-year period. Using rainfall data, up-to-date peat maps and state-of-the art satellite sensor data to determine burnt area and deforestation patterns over the decade 1997-2007, we show at a pixel working resolution of 0.25 degrees the following: Burning across Borneo predominated in southern Kalimantan. Fire activity is negatively and non-linearly correlated to rainfall mainly in pixels that have undergone a significant reduction in forest cover, and that the bigger the reduction, the stronger the correlation. Such pixels occur overwhelmingly in southern Kalimantan. These

  2. Historic global biomass burning emissions for CMIP6 (BB4CMIP based on merging satellite observations with proxies and fire models (1750–2015

    Directory of Open Access Journals (Sweden)

    M. J. E. van Marle

    2017-09-01

    Full Text Available Fires have influenced atmospheric composition and climate since the rise of vascular plants, and satellite data have shown the overall global extent of fires. Our knowledge of historic fire emissions has progressively improved over the past decades due mostly to the development of new proxies and the improvement of fire models. Currently, there is a suite of proxies including sedimentary charcoal records, measurements of fire-emitted trace gases and black carbon stored in ice and firn, and visibility observations. These proxies provide opportunities to extrapolate emission estimates back in time based on satellite data starting in 1997, but each proxy has strengths and weaknesses regarding, for example, the spatial and temporal extents over which they are representative. We developed a new historic biomass burning emissions dataset starting in 1750 that merges the satellite record with several existing proxies and uses the average of six models from the Fire Model Intercomparison Project (FireMIP protocol to estimate emissions when the available proxies had limited coverage. According to our approach, global biomass burning emissions were relatively constant, with 10-year averages varying between 1.8 and 2.3 Pg C yr−1. Carbon emissions increased only slightly over the full time period and peaked during the 1990s after which they decreased gradually. There is substantial uncertainty in these estimates, and patterns varied depending on choices regarding data representation, especially on regional scales. The observed pattern in fire carbon emissions is for a large part driven by African fires, which accounted for 58 % of global fire carbon emissions. African fire emissions declined since about 1950 due to conversion of savanna to cropland, and this decrease is partially compensated for by increasing emissions in deforestation zones of South America and Asia. These global fire emission estimates are mostly suited for global analyses and

  3. Global Fire Emissions Database, Version 3.1

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set provides monthly burned area, and monthly, and annual fire emissions data from July 1996 to February 2012. Emissions data are available for carbon (C),...

  4. GLOBAL FIRE EMISSIONS DATABASE, VERSION 3.1

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set provides monthly burned area, and monthly, and annual fire emissions data from July 1996 to February 2012. Emissions data are available for...

  5. LNG pool fire spectral data and calculation of emissive power

    International Nuclear Information System (INIS)

    Raj, Phani K.

    2007-01-01

    Spectral description of thermal emission from fires provides a fundamental basis on which the fire thermal radiation hazard assessment models can be developed. Several field experiments were conducted during the 1970s and 1980s to measure the thermal radiation field surrounding LNG fires. Most of these tests involved the measurement of fire thermal radiation to objects outside the fire envelope using either narrow-angle or wide-angle radiometers. Extrapolating the wide-angle radiometer data without understanding the nature of fire emission is prone to errors. Spectral emissions from LNG fires have been recorded in four test series conducted with LNG fires on different substrates and of different diameters. These include the AGA test series of LNG fires on land of diameters 1.8 and 6 m, 35 m diameter fire on an insulated concrete dike in the Montoir tests conducted by Gaz de France, a 1976 test with 13 m diameter and the 1980 tests with 10 m diameter LNG fire on water carried out at China Lake, CA. The spectral data from the Montoir test series have not been published in technical journals; only recently has some data from this series have become available. This paper presents the details of the LNG fire spectral data from, primarily, the China Lake test series, their analysis and results. Available data from other test series are also discussed. China Lake data indicate that the thermal radiation emission from 13 m diameter LNG fire is made up of band emissions of about 50% of energy by water vapor (band emission), about 25% by carbon dioxide and the remainder constituting the continuum emission by luminous soot. The emissions from the H 2 O and CO 2 bands are completely absorbed by the intervening atmosphere in less than about 200 m from the fire, even in the relatively dry desert air. The effective soot radiation constitutes only about 23% during the burning period of methane and increases slightly when other higher hydrocarbon species (ethane, propane, etc.) are

  6. Deforestation and climate change

    OpenAIRE

    Bosetti V.; Lubowski Ruben N. (Ruben Noah)

    2010-01-01

    "Deforestation and forest degradation have long been recognized as environmental problems, with concerns over conservation of natural habitats and biological diversity capturing both scientific and public attention. More recently, the debate over tropical forest conservation has radically shifted to the approximately fifteen percent of global greenhouse gas emissions that are caused by deforestation and forest degradation, and to the potential synergies from integrating forest management with...

  7. Studies of emissions from oil fires

    International Nuclear Information System (INIS)

    Fingas, M.; Lambert, L.; Wang, Z.; Li, K.; Ackerman, F.; Goldthorp, M.

    2001-01-01

    The use of in situ burning as a cleanup method for oil spills on water has received limited acceptance despite the fact that the method has been tried for more than 30 years. This lack of acceptance is mainly due to a poor understanding about combustion products and the issues involving the combustibility of oil-on-water. This paper presents results of a collaborative effort of several agencies in the United States and Canada to extensively research the many facets of burning oil. More than 45 mesoscale burns were conducted to examine the various aspects of diesel and crude oil burning in-situ. Sampling and monitoring of these burns was conducted at downwind stations, upwind stations and in the smoke plumes. This research effort has resulted in data which has led to a broader acceptance of in-situ burning as a viable spill countermeasure alternative. However, the concern over atmospheric emissions is the biggest barrier to the widespread use of burning. Emissions include the smoke plume, particulate matter precipitation, combustion gases, unburned hydrocarbons, organic compounds and the residue soot left at the burning pool site. A complete analysis of the emissions was performed by measuring all of these components. Particulate samples were taken in the air and analyzed for polycyclic aromatic hydrocarbons (PAHs). PAHs were found to be lower in the soot than in the starting oil, but higher concentrations of the larger molecular PAHs were found in the soot and residue, particularly for diesel burns. In general, between 92 to 98 per cent of the PAHs were destroyed. Diesel fires were found to emit more particulate matter and have longer danger zones. Combustion gases were found to be below exposure level maximums. Volatile organic compounds emissions were extensive from the fires, but the levels were less than from an evaporating oil spill. This paper included several tables indicating the 140 compounds that were identified and quantified. Prediction equations were

  8. Wildland fire emissions, carbon and climate: Characterizing wildland fuels

    Science.gov (United States)

    David R. Weise; Clinton S. Wright

    2013-01-01

    Smoke from biomass fires makes up a substantial portion of global greenhouse gas, aerosol, and black carbon (GHG/A/BC) emissions. Understanding how fuel characteristics and conditions affect fire occurrence and extent, combustion dynamics, and fuel consumption is critical for making accurate, reliable estimates of emissions production at local, regional, national, and...

  9. Direct carbon emissions from Canadian forest fires, 1959-1999

    International Nuclear Information System (INIS)

    Amiro, B. D.; Todd, J. B.; Flannigan, M. D.; Hirsch, K. G.; Wotton, B. M.; Logan, K. A.; Stocks, B. J.; Mason, J. A.; Martell, D. L.

    2001-01-01

    Fire is recognised as driving most of the boreal forest carbon balance in North America, therefore fires not only impact on carbon sequestration by forests, but emit greenhouse gases that have the potential to affect the environment. In this paper direct emissions of carbon from Canadian forest fires were estimated for all of Canada and for each ecozone for the period 1959 to 1999. Estimates were based on large fires ; fuel consumption for each fire was calculated using the Canadian Forest Fire Behaviour Prediction System. There were about 11,400 forest fires, averaging 2 x 10 6 hectare per year during this period. Boreal and taiga areas experienced the greatest area burned, releasing most of the carbon. The mean area-weighted fuel consumption for all fires was 2.6 kg of dry fuel per m 2 (1.3 kg carbon per m 2 ) varying from 1.8 kg to 3.9 kg per m 2 among ecozones. The mean annual direct carbon emission was estimated at 27 + or - 6 Tg carbon per year, or about 18 per cent of current carbon dioxide emissions from the Canadian energy sector, on average. This excludes post-fire effects, which cause an additional loss of carbon; changes to the forest also affect the strength of the forest carbon sink. Fire emissions have shown an increase over the past two decades and are likely to remain high due to anticipated changes in fire weather resulting from climate warming. 48 refs., 3 tabs., 6 figs

  10. Biogenic volatile organic compound emissions from vegetation fires.

    Science.gov (United States)

    Ciccioli, Paolo; Centritto, Mauro; Loreto, Francesco

    2014-08-01

    The aim of this paper was to provide an overview of the current state of the art on research into the emission of biogenic volatile organic compounds (BVOCs) from vegetation fires. Significant amounts of VOCs are emitted from vegetation fires, including several reactive compounds, the majority belonging to the isoprenoid family, which rapidly disappear in the plume to yield pollutants such as secondary organic aerosol and ozone. This makes determination of fire-induced BVOC emission difficult, particularly in areas where the ratio between VOCs and anthropogenic NOx is favourable to the production of ozone, such as Mediterranean areas and highly anthropic temperate (and fire-prone) regions of the Earth. Fire emissions affecting relatively pristine areas, such as the Amazon and the African savannah, are representative of emissions of undisturbed plant communities. We also examined expected BVOC emissions at different stages of fire development and combustion, from drying to flaming, and from heatwaves coming into contact with unburned vegetation at the edge of fires. We conclude that forest fires may dramatically change emission factors and the profile of emitted BVOCs, thereby influencing the chemistry and physics of the atmosphere, the physiology of plants and the evolution of plant communities within the ecosystem. © 2014 The Authors. Plant, Cell & Environment published by John Wiley & Sons Ltd.

  11. Seasonal and inter-annual variations in methyl mercury concentrations in zooplankton from boreal lakes impacted by deforestation or natural forest fires.

    Science.gov (United States)

    Garcia, Edenise; Carignan, Richard; Lean, David R S

    2007-08-01

    We compared the effects of natural and anthropogenic watershed disturbances on methyl mercury (MeHg) concentration in bulk zooplankton from boreal Shield lakes. MeHg in zooplankton was monitored for three years in nine lakes impacted by deforestation, in nine lakes impacted by wildfire, and in twenty lakes with undisturbed catchments. Lakes were sampled during spring, mid- and late summer. MeHg in zooplankton showed a seasonal trend: concentrations were the lowest in spring, then peaked in mid-summer and decreased in late summer. Over the three study years, MeHg concentrations observed in mid-summer in zooplankton from forest harvested lakes were significantly higher than in reference and fire-impacted lakes, whereas differences between these two groups of lakes were not significant. The pattern of distribution of MeHg in zooplankton during the different seasons paralleled that of dissolved organic carbon (DOC), which is known as a vector of Hg from watershed soils to lake water. Besides DOC, MeHg in zooplankton also showed a positive significant correlation with epilimnetic temperature and sulfate concentrations. An inter-annual decreasing trend in MeHg was observed in zooplankton from reference and fire-impacted lakes. In forest harvested lakes, however, MeHg concentrations remained higher and nearly constant over three years following the impact. Overall these results indicate that the MeHg pulse observed in zooplankton following deforestation by harvesting is relatively long-lived, and may have repercussions to the accumulation of MeHg along the food chain. Therefore, potential effects of deforestation on the Hg contamination of fish should be taken into account in forest management practices.

  12. Building local institutions for national conservation programs: lessons for developing Reducing Emissions from Deforestation and Forest Degradation (REDD+ programs

    Directory of Open Access Journals (Sweden)

    Wain Collen

    2016-06-01

    Full Text Available For programs that aim to promote forest conservation and poverty alleviation, such as Reducing Emissions from Deforestation and Forest Degradation (REDD+, the participation of indigenous communities is essential to meet program goals. Using Ostrom's theory of collective action for common pool resource management, we evaluated the institutions governing indigenous participation in the Programa Socio Bosque incentive-based conservation program in Ecuador. We conducted structured interviews with 94 members in 4 communities to assess community institutions for 6 of Ostrom's principles, using 12 measures we developed for the principles. We found substantial variation between communities in terms of their institutional performance. The best-performing community performed well (>50% of interviewees reported successfully meeting the measure on 8 of the 12 measures. The weakest performed well on only 2 out of 12 measures. Overall, our results indicate that there is stronger performance for constitutional-level institutions, which determine who gets to make the rules, and some collective-choice institutions, which determine how local rules are made. We identified specific challenges with the day-to-day operational institutions that arise from participation in nation state-community conservation programs, such as restricted resource appropriation, monitoring and compliance, and conflict resolution. We found that top-down policy making has an important role to play in supporting communities to establish constitutional-level and some collective-choice institutions. However, developing operational institutions may take more time and depend on local families' day-to-day use of resources, and thus may require a more nuanced policy approach. As some countries and donors find a jurisdictional REDD+ approach increasingly attractive, complementing top-down policy measures with bottom-up institutional development could provide a stronger platform to achieve the

  13. Global Burned Area and Biomass Burning Emissions from Small Fires

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; vanderWerf, G. R.; Rogers, B. M.; Morton, D. C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often generate thermal anomalies that can be detected by satellites, their contributions to burned area and carbon fluxes have not been systematically quantified across different regions and continents. Here we developed a preliminary method for combining 1-km thermal anomalies (active fires) and 500 m burned area observations from the Moderate Resolution Imaging Spectroradiometer (MODIS) to estimate the influence of these fires. In our approach, we calculated the number of active fires inside and outside of 500 m burn scars derived from reflectance data. We estimated small fire burned area by computing the difference normalized burn ratio (dNBR) for these two sets of active fires and then combining these observations with other information. In a final step, we used the Global Fire Emissions Database version 3 (GFED3) biogeochemical model to estimate the impact of these fires on biomass burning emissions. We found that the spatial distribution of active fires and 500 m burned areas were in close agreement in ecosystems that experience large fires, including savannas across southern Africa and Australia and boreal forests in North America and Eurasia. In other areas, however, we observed many active fires outside of burned area perimeters. Fire radiative power was lower for this class of active fires. Small fires substantially increased burned area in several continental-scale regions, including Equatorial Asia (157%), Central America (143%), and Southeast Asia (90%) during 2001-2010. Globally, accounting for small fires increased total burned area by approximately by 35%, from 345 Mha/yr to 464 Mha/yr. A formal quantification of uncertainties was not possible, but sensitivity

  14. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA experiment

    Directory of Open Access Journals (Sweden)

    G. Pereira

    2016-06-01

    simulation driven by 3BEM and FINN typically underestimate the smoke particle loading in the eastern region of Amazon forest, while 3BEM_FRP estimations to the area tend to overestimate fire emissions. The daily regional CO emission fluxes from 3BEM and FINN have linear correlation coefficients of 0.75–0.92, with typically 20–30 % higher emission fluxes in FINN. The daily regional CO emission fluxes from 3BEM_FRP and GFAS show linear correlation coefficients between 0.82 and 0.90, with a particularly strong correlation near the arc of deforestation in the Amazon rainforest. In this region, GFAS has a tendency to present higher CO emissions than 3BEM_FRP, while 3BEM_FRP yields more emissions in the area of soybean expansion east of the Amazon forest. Atmospheric aerosol optical thickness is simulated by using the emission inventories with two operational atmospheric chemistry transport models: the IFS from Monitoring Atmospheric Composition and Climate (MACC and the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modelling System (CCATT-BRAMS. Evaluation against MODIS observations shows a good representation of the general patterns of the AOT550 nm time series. However, the aerosol emissions from fires with particularly high biomass consumption still lead to an underestimation of the atmospheric aerosol load in both models.

  15. Assessment of fire emission inventories during the South American Biomass Burning Analysis (SAMBBA) experiment

    Science.gov (United States)

    Pereira, Gabriel; Siqueira, Ricardo; Rosário, Nilton E.; Longo, Karla L.; Freitas, Saulo R.; Cardozo, Francielle S.; Kaiser, Johannes W.; Wooster, Martin J.

    2016-06-01

    typically underestimate the smoke particle loading in the eastern region of Amazon forest, while 3BEM_FRP estimations to the area tend to overestimate fire emissions. The daily regional CO emission fluxes from 3BEM and FINN have linear correlation coefficients of 0.75-0.92, with typically 20-30 % higher emission fluxes in FINN. The daily regional CO emission fluxes from 3BEM_FRP and GFAS show linear correlation coefficients between 0.82 and 0.90, with a particularly strong correlation near the arc of deforestation in the Amazon rainforest. In this region, GFAS has a tendency to present higher CO emissions than 3BEM_FRP, while 3BEM_FRP yields more emissions in the area of soybean expansion east of the Amazon forest. Atmospheric aerosol optical thickness is simulated by using the emission inventories with two operational atmospheric chemistry transport models: the IFS from Monitoring Atmospheric Composition and Climate (MACC) and the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modelling System (CCATT-BRAMS). Evaluation against MODIS observations shows a good representation of the general patterns of the AOT550 nm time series. However, the aerosol emissions from fires with particularly high biomass consumption still lead to an underestimation of the atmospheric aerosol load in both models.

  16. [Measurement model of carbon emission from forest fire: a review].

    Science.gov (United States)

    Hu, Hai-Qing; Wei, Shu-Jing; Jin, Sen; Sun, Long

    2012-05-01

    Forest fire is the main disturbance factor for forest ecosystem, and an important pathway of the decrease of vegetation- and soil carbon storage. Large amount of carbonaceous gases in forest fire can release into atmosphere, giving remarkable impacts on the atmospheric carbon balance and global climate change. To scientifically and effectively measure the carbonaceous gases emission from forest fire is of importance in understanding the significance of forest fire in the carbon balance and climate change. This paper reviewed the research progress in the measurement model of carbon emission from forest fire, which covered three critical issues, i. e., measurement methods of forest fire-induced total carbon emission and carbonaceous gases emission, affecting factors and measurement parameters of measurement model, and cause analysis of the uncertainty in the measurement of the carbon emissions. Three path selections to improve the quantitative measurement of the carbon emissions were proposed, i. e., using high resolution remote sensing data and improving algorithm and estimation accuracy of burned area in combining with effective fuel measurement model to improve the accuracy of the estimated fuel load, using high resolution remote sensing images combined with indoor controlled environment experiments, field measurements, and field ground surveys to determine the combustion efficiency, and combining indoor controlled environment experiments with field air sampling to determine the emission factors and emission ratio.

  17. Reducing emissions from deforestation and degradation in developing countries (REDD): insights from the UNFCCC COP-13 in Bali

    International Nuclear Information System (INIS)

    Wertz-Kanounnikoff, S.

    2007-01-01

    At the 10. anniversary of the Kyoto Protocol, the goal to reduce greenhouse gas (GHG) emissions that cause climate change remains of alarming importance. According to the Intergovernmental Panel on Climate Change, these emissions have grown by 70% since 1970; and in 2005 the concentration of the most important GHG, carbon dioxide (CO 2 ), peaked at its highest level for 650,000 years (IPCC 2007). The proposal to compensate reduced emissions from deforestation and degradation in developing countries (REDD), as an additional element in the international climate regime, was put forward to address the so far ignored up to 20% of global GHG emissions arising from forestry. Although excluded from the first commitment period of the Kyoto Protocol, the idea was submitted by Papua New Guinea and Costa Rica, on behalf of the Coalition of Rain forest Nations, at the 11. Conference of Parties (COP-11) to the UN Framework Convention on Climate Change in Montreal in 2005. The proposal has initiated a two year examination process, facilitated by the UNFCCC, and has attracted extremely high participation levels of the concerned stakeholders. As the examination process on REDD took place between 2005 and 2007, several points of agreement and disagreement were being revealed among the different country proposals. Points of agreement included inter alia: that REDD would need to play a role in future climate regimes; that there was a need to take into account national circumstances to successfully integrate developing countries; and capacity-building and pilot or demonstration activities (prior to 2012) are crucial to enable developing countries to effectively participate and benefit from REDD. Points of contention consisted in inter alia: the potential financing systems (market- or fund/ODA-based), the scope of activity (deforestation only or with forest degradation or with forest conservation), and the scale of implementation (national or project level). Decisive advance on the

  18. Global Fire Emissions Indicators, Grids: 1997-2015

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Fire Emissions Indicators, Grids: 1997-2015 contain a time-series of rasters from 1997 to 2015 for total area burned (hectares) and total carbon content...

  19. Global Fire Emissions Database, Version 2.1

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set consists of 1 degree x 1 degree gridded monthly burned area, fuel loads, combustion completeness, and fire emissions of carbon (C), carbon...

  20. Ecology: The Tropical Deforestation Debt.

    Science.gov (United States)

    Norris, Ken

    2016-08-22

    Tropical deforestation is a significant cause of global carbon emissions and biodiversity loss. A new study shows that deforestation today leaves a carbon and biodiversity debt to be paid over subsequent years. This has potentially profound implications for forest conservation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Integrating the avoided deforestation in a new agreement on climate. Comments on the current debate related to the reduction of emissions induced by deforestation and forest degradation (REDD) in developing countries

    International Nuclear Information System (INIS)

    Wertz-Kanounnikoff, S.; Tubiana, L.

    2007-01-01

    The authors propose some reflections about the current debate related to the reduction of emissions induced by deforestation and forest degradation (REDD) in developing countries. The author comments the two possibilities about one of the issues in this debate: to decide whether this mechanism must be financed by means of mandatory markets or voluntary funds. She also comments the issue on the institutional framework: to integrate REDD implementation in the framework foreseen by Kyoto beyond 2012, or to integrate it in a distinct agreement or protocol. She discusses the variety of national specificities and expectations, and tries to identify perspectives

  2. Improving global fire carbon emissions estimates by combining moderate resolution burned area and active fire observations

    Science.gov (United States)

    Randerson, J. T.; Chen, Y.; Giglio, L.; Rogers, B. M.; van der Werf, G.

    2011-12-01

    In several important biomes, including croplands and tropical forests, many small fires exist that have sizes that are well below the detection limit for the current generation of burned area products derived from moderate resolution spectroradiometers. These fires likely have important effects on greenhouse gas and aerosol emissions and regional air quality. Here we developed an approach for combining 1km thermal anomalies (active fires; MOD14A2) and 500m burned area observations (MCD64A1) to estimate the prevalence of these fires and their likely contribution to burned area and carbon emissions. We first estimated active fires within and outside of 500m burn scars in 0.5 degree grid cells during 2001-2010 for which MCD64A1 burned area observations were available. For these two sets of active fires we then examined mean fire radiative power (FRP) and changes in enhanced vegetation index (EVI) derived from 16-day intervals immediately before and after each active fire observation. To estimate the burned area associated with sub-500m fires, we first applied burned area to active fire ratios derived solely from within burned area perimeters to active fires outside of burn perimeters. In a second step, we further modified our sub-500m burned area estimates using EVI changes from active fires outside and within of burned areas (after subtracting EVI changes derived from control regions). We found that in northern and southern Africa savanna regions and in Central and South America dry forest regions, the number of active fires outside of MCD64A1 burned areas increased considerably towards the end of the fire season. EVI changes for active fires outside of burn perimeters were, on average, considerably smaller than EVI changes associated with active fires inside burn scars, providing evidence for burn scars that were substantially smaller than the 25 ha area of a single 500m pixel. FRP estimates also were lower for active fires outside of burn perimeters. In our

  3. Toxic fluoride gas emissions from lithium-ion battery fires.

    Science.gov (United States)

    Larsson, Fredrik; Andersson, Petra; Blomqvist, Per; Mellander, Bengt-Erik

    2017-08-30

    Lithium-ion battery fires generate intense heat and considerable amounts of gas and smoke. Although the emission of toxic gases can be a larger threat than the heat, the knowledge of such emissions is limited. This paper presents quantitative measurements of heat release and fluoride gas emissions during battery fires for seven different types of commercial lithium-ion batteries. The results have been validated using two independent measurement techniques and show that large amounts of hydrogen fluoride (HF) may be generated, ranging between 20 and 200 mg/Wh of nominal battery energy capacity. In addition, 15-22 mg/Wh of another potentially toxic gas, phosphoryl fluoride (POF 3 ), was measured in some of the fire tests. Gas emissions when using water mist as extinguishing agent were also investigated. Fluoride gas emission can pose a serious toxic threat and the results are crucial findings for risk assessment and management, especially for large Li-ion battery packs.

  4. PCDD/F EMISSIONS FROM FOREST FIRE SIMULATIONS

    Science.gov (United States)

    Polychlorinated dibenzo-p-dioxin and polychlorinated dibenzofuran (PCDD/F) emissions from combustion of forest biomass were sampled to obtain an estimated emission factor for forest fires. An equal composition of live shoot and litter biomass from Oregon and North Carolina was b...

  5. Projecting deforestation trends on Espiritu Santo island, Vanuatu, using a spatial modeling approach : a case study to develop a spatially explicit forest reference emission level for REDD+

    OpenAIRE

    Méndez Zeballos, Dorys

    2015-01-01

    As agreed under United Nations Framework Convention on Climate Change, activities reducing emissions from deforestation, forest degradation, sustainable management of forests, enhancement and conservation of forest carbon stocks (REDD+) provide financial incentives to countries mitigating climate change. Countries are requested to develop so-called national forest reference levels (FRLs) as a benchmark to measure performance of land-use policy adjustments. FRLs are constructed combining infor...

  6. AP-42 Emissions Factors (WebFIRE)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Emissions factors have long been the fundamental tool in developing national, regional, state, and local emissions inventories for air quality management decisions...

  7. New Approach in Modelling Indonesian Peat Fire Emission

    Science.gov (United States)

    Putra, E. I.; Cochrane, M. A.; Saharjo, B.; Yokelson, R. J.; Stockwell, C.; Vetrita, Y.; Zhang, X.; Hagen, S. C.; Nurhayati, A. D.; Graham, L.

    2017-12-01

    Peat fires are a serious problem for Indonesia, producing devastating environmental effects and making the country the 3rd largest emitter of CO2. Extensive fires ravaged vast areas of peatlands in Sumatra, Kalimantan and Papua during the pronounced El-Nino of 2015, causing international concern when the resultant haze blanketed Indonesia and neighboring countries, severely impacting the health of millions of people. Our recent unprecedented in-situ studies of aerosol and gas emissions from 35 peat fires of varying depths near Palangka Raya, Central Kalimantan have documented the range and variability of emissions from these major fires. We strongly suggest revisions to previously recommended IPPC's emission factors (EFs) from peat fires, notably: CO2 (-8%), CH4 (-55%), NH3 (-86%), and CO (+39%). Our findings clearly showed that Indonesian carbon equivalent measurements (100 years) might have been 19% less than what current IPCC emission factors indicate. The results also demonstrate the toxic air quality in the area with HCN, which is almost only emitted by biomass burning, accounting for 0.28% and the carcinogenic compound formaldehyde 0.04% of emissions. However, considerable variation in emissions may exist between peat fires of different Indonesian peat formations, illustrating the need for additional regional field emissions measurements for parameterizing peatland emissions models for all of Indonesia's major peatland areas. Through the continuous mutual research collaboration between the Indonesian and USA scientists, we will implement our standardized field-based analyses of fuels, hydrology, peat burning characteristics and fire emissions to characterize the three major Indonesian peatland formations across four study provinces (Central Kalimantan, Riau, Jambi and West Papua). We will provide spatial and temporal drivers of the modeled emissions and validate them at a national level using biomass burning emissions estimations derived from Visible

  8. Global fire emissions estimates during 1997–2016

    Directory of Open Access Journals (Sweden)

    G. R. van der Werf

    2017-09-01

    Full Text Available Climate, land use, and other anthropogenic and natural drivers have the potential to influence fire dynamics in many regions. To develop a mechanistic understanding of the changing role of these drivers and their impact on atmospheric composition, long-term fire records are needed that fuse information from different satellite and in situ data streams. Here we describe the fourth version of the Global Fire Emissions Database (GFED and quantify global fire emissions patterns during 1997–2016. The modeling system, based on the Carnegie–Ames–Stanford Approach (CASA biogeochemical model, has several modifications from the previous version and uses higher quality input datasets. Significant upgrades include (1 new burned area estimates with contributions from small fires, (2 a revised fuel consumption parameterization optimized using field observations, (3 modifications that improve the representation of fuel consumption in frequently burning landscapes, and (4 fire severity estimates that better represent continental differences in burning processes across boreal regions of North America and Eurasia. The new version has a higher spatial resolution (0.25° and uses a different set of emission factors that separately resolves trace gas and aerosol emissions from temperate and boreal forest ecosystems. Global mean carbon emissions using the burned area dataset with small fires (GFED4s were 2.2  ×  1015 grams of carbon per year (Pg C yr−1 during 1997–2016, with a maximum in 1997 (3.0 Pg C yr−1 and minimum in 2013 (1.8 Pg C yr−1. These estimates were 11 % higher than our previous estimates (GFED3 during 1997–2011, when the two datasets overlapped. This net increase was the result of a substantial increase in burned area (37 %, mostly due to the inclusion of small fires, and a modest decrease in mean fuel consumption (−19 % to better match estimates from field studies, primarily in savannas and

  9. Tropical Deforestation.

    Science.gov (United States)

    Raven, Peter H.

    1988-01-01

    Outlines the deforestation problem and some efforts for solving the problem. Considers the impact of population growth, poverty, and ignorance. Includes a discussion of the current rapid decline in tropical forests, the consequences of destruction, and an outlook for the future. (YP)

  10. Predicting the emissive power of hydrocarbon pool fires

    International Nuclear Information System (INIS)

    Munoz, Miguel; Planas, Eulalia; Ferrero, Fabio; Casal, Joaquim

    2007-01-01

    The emissive power (E) of a flame depends on the size of the fire and the type of fuel. In fact, it changes significantly over the flame surface: the zones of luminous flame have high emittance, while those covered by smoke have low E values. The emissive power of each zone (that is, the luminous or clear flame and the non-luminous or smoky flame) and the portion of total flame area they occupy must be assessed when a two-zone model is used. In this study, data obtained from an experimental set-up were used to estimate the emissive power of fires and its behaviour as a function of pool size. The experiments were performed using gasoline and diesel oil as fuel. Five concentric circular pools (1.5, 3, 4, 5 and 6 m in diameter) were used. Appropriate instruments were employed to determine the main features of the fires. By superimposing IR and VHS images it was possible to accurately identify the luminous and non-luminous zones of the fire. Mathematical expressions were obtained that give a more accurate prediction of E lum , E soot and the average emissive power of a fire as a function of its luminous and smoky zones. These expressions can be used in a two-zone model to obtain a better prediction of the thermal radiation. The value of the radiative fraction was determined from the thermal flux measured with radiometers. An expression is also proposed for estimating the radiative fraction

  11. The future of forests and orangutans (Pongo abelii) in Sumatra: predicting impacts of oil palm plantations, road construction, and mechanisms for reducing carbon emissions from deforestation

    International Nuclear Information System (INIS)

    Gaveau, David L A; Leader-Williams, Nigel; Wich, Serge; Epting, Justin; Juhn, Daniel; Kanninen, Markku

    2009-01-01

    Payments for reduced carbon emissions from deforestation (RED) are now attracting attention as a way to halt tropical deforestation. Northern Sumatra comprises an area of 65 000 km 2 that is both the site of Indonesia's first planned RED initiative, and the stronghold of 92% of remaining Sumatran orangutans. Under current plans, this RED initiative will be implemented in a defined geographic area, essentially a newly established, 7500 km 2 protected area (PA) comprising mostly upland forest, where guards will be recruited to enforce forest protection. Meanwhile, new roads are currently under construction, while companies are converting lowland forests into oil palm plantations. This case study predicts the effectiveness of RED in reducing deforestation and conserving orangutans for two distinct scenarios: the current plan of implementing RED within the specific boundary of a new upland PA, and an alternative scenario of implementing RED across landscapes outside PAs. Our satellite-based spatially explicit deforestation model predicts that 1313 km 2 of forest would be saved from deforestation by 2030, while forest cover present in 2006 would shrink by 22% (7913 km 2 ) across landscapes outside PAs if RED were only to be implemented in the upland PA. Meanwhile, orangutan habitat would reduce by 16% (1137 km 2 ), resulting in the conservative loss of 1384 orangutans, or 25% of the current total population with or without RED intervention. By contrast, an estimated 7824 km 2 of forest could be saved from deforestation, with maximum benefit for orangutan conservation, if RED were to be implemented across all remaining forest landscapes outside PAs. Here, RED payments would compensate land users for their opportunity costs in not converting unprotected forests into oil palm, while the construction of new roads to service the marketing of oil palm would be halted. Our predictions suggest that Indonesia's first RED initiative in an upland PA may not significantly reduce

  12. The future of forests and orangutans (Pongo abelii) in Sumatra: predicting impacts of oil palm plantations, road construction, and mechanisms for reducing carbon emissions from deforestation

    Science.gov (United States)

    Gaveau, David L. A.; Wich, Serge; Epting, Justin; Juhn, Daniel; Kanninen, Markku; Leader-Williams, Nigel

    2009-09-01

    Payments for reduced carbon emissions from deforestation (RED) are now attracting attention as a way to halt tropical deforestation. Northern Sumatra comprises an area of 65 000 km2 that is both the site of Indonesia's first planned RED initiative, and the stronghold of 92% of remaining Sumatran orangutans. Under current plans, this RED initiative will be implemented in a defined geographic area, essentially a newly established, 7500 km2 protected area (PA) comprising mostly upland forest, where guards will be recruited to enforce forest protection. Meanwhile, new roads are currently under construction, while companies are converting lowland forests into oil palm plantations. This case study predicts the effectiveness of RED in reducing deforestation and conserving orangutans for two distinct scenarios: the current plan of implementing RED within the specific boundary of a new upland PA, and an alternative scenario of implementing RED across landscapes outside PAs. Our satellite-based spatially explicit deforestation model predicts that 1313 km2 of forest would be saved from deforestation by 2030, while forest cover present in 2006 would shrink by 22% (7913 km2) across landscapes outside PAs if RED were only to be implemented in the upland PA. Meanwhile, orangutan habitat would reduce by 16% (1137 km2), resulting in the conservative loss of 1384 orangutans, or 25% of the current total population with or without RED intervention. By contrast, an estimated 7824 km2 of forest could be saved from deforestation, with maximum benefit for orangutan conservation, if RED were to be implemented across all remaining forest landscapes outside PAs. Here, RED payments would compensate land users for their opportunity costs in not converting unprotected forests into oil palm, while the construction of new roads to service the marketing of oil palm would be halted. Our predictions suggest that Indonesia's first RED initiative in an upland PA may not significantly reduce

  13. The future of forests and orangutans (Pongo abelii) in Sumatra: predicting impacts of oil palm plantations, road construction, and mechanisms for reducing carbon emissions from deforestation

    Energy Technology Data Exchange (ETDEWEB)

    Gaveau, David L A; Leader-Williams, Nigel [Durrell Institute of Conservation and Ecology, University of Kent, Canterbury, Kent CT2 7NR (United Kingdom); Wich, Serge [Great Apes Trust of Iowa, 4200 SE 44th Avenue, Des Moines, IA 50320 (United States); Epting, Justin; Juhn, Daniel [Center for Applied Biodiversity Science, Conservation International, 2011 Crystal Drive, Suite 500, Arlington, VA 22202 (United States); Kanninen, Markku, E-mail: dgaveau@yahoo.co.u, E-mail: swich@greatapetrust.or, E-mail: justep22@myfastmail.co, E-mail: d.juhn@conservation.or, E-mail: m.kanninen@cgiar.or, E-mail: n.leader-williams@kent.ac.u [Center for International Forestry Research, Jalan CIFOR, Situ Gede, Sidang Barang, Bogor, West Java (Indonesia)

    2009-09-15

    Payments for reduced carbon emissions from deforestation (RED) are now attracting attention as a way to halt tropical deforestation. Northern Sumatra comprises an area of 65 000 km{sup 2} that is both the site of Indonesia's first planned RED initiative, and the stronghold of 92% of remaining Sumatran orangutans. Under current plans, this RED initiative will be implemented in a defined geographic area, essentially a newly established, 7500 km{sup 2} protected area (PA) comprising mostly upland forest, where guards will be recruited to enforce forest protection. Meanwhile, new roads are currently under construction, while companies are converting lowland forests into oil palm plantations. This case study predicts the effectiveness of RED in reducing deforestation and conserving orangutans for two distinct scenarios: the current plan of implementing RED within the specific boundary of a new upland PA, and an alternative scenario of implementing RED across landscapes outside PAs. Our satellite-based spatially explicit deforestation model predicts that 1313 km{sup 2} of forest would be saved from deforestation by 2030, while forest cover present in 2006 would shrink by 22% (7913 km{sup 2}) across landscapes outside PAs if RED were only to be implemented in the upland PA. Meanwhile, orangutan habitat would reduce by 16% (1137 km{sup 2}), resulting in the conservative loss of 1384 orangutans, or 25% of the current total population with or without RED intervention. By contrast, an estimated 7824 km{sup 2} of forest could be saved from deforestation, with maximum benefit for orangutan conservation, if RED were to be implemented across all remaining forest landscapes outside PAs. Here, RED payments would compensate land users for their opportunity costs in not converting unprotected forests into oil palm, while the construction of new roads to service the marketing of oil palm would be halted. Our predictions suggest that Indonesia's first RED initiative in an

  14. The Fire Locating and Modeling of Burning Emissions (FLAMBE) Project

    Science.gov (United States)

    Reid, J. S.; Prins, E. M.; Westphal, D.; Richardson, K.; Christopher, S.; Schmidt, C.; Theisen, M.; Eck, T.; Reid, E. A.

    2001-12-01

    The Fire Locating and Modeling of Burning Emissions (FLAMBE) project was initiated by NASA, the US Navy and NOAA to monitor biomass burning and burning emissions on a global scale. The idea behind the mission is to integrate remote sensing data with global and regional transport models in real time for the purpose of providing the scientific community with smoke and fire products for planning and research purposes. FLAMBE is currently utilizing real time satellite data from GOES satellites, fire products based on the Wildfire Automated Biomass Burning Algorithm (WF_ABBA) are generated for the Western Hemisphere every 30 minutes with only a 90 minute processing delay. We are currently collaborating with other investigators to gain global coverage. Once generated, the fire products are used to input smoke fluxes into the NRL Aerosol Analysis and Prediction System, where advection forecasts are performed for up to 6 days. Subsequent radiative transfer calculations are used to estimate top of atmosphere and surface radiative forcing as well as surface layer visibility. Near real time validation is performed using field data collected by Aerosol Robotic Network (AERONET) Sun photometers. In this paper we fully describe the FLAMBE project and data availability. Preliminary result from the previous year will also be presented, with an emphasis on the development of algorithms to determine smoke emission fluxes from individual fire products. Comparisons to AERONET Sun photometer data will be made.

  15. Laboratory investigation of fire radiative energy and smoke aerosol emissions

    Science.gov (United States)

    Charles Ichoku; J. Vanderlei Martins; Yoram J. Kaufman; Martin J. Wooster; Patrick H. Freeborn; Wei Min Hao; Stephen Baker; Cecily A. Ryan; Bryce L. Nordgren

    2008-01-01

    Fuel biomass samples from southern Africa and the United States were burned in a laboratory combustion chamber while measuring the biomass consumption rate, the fire radiative energy (FRE) release rate (Rfre), and the smoke concentrations of carbon monoxide (CO), carbon dioxide (CO2), and particulate matter (PM). The PM mass emission rate (RPM) was quantified from...

  16. Query deforestation

    OpenAIRE

    Grust, Torsten; Scholl, Marc H.

    1998-01-01

    The construction of a declarative query engine for a DBMS includes the challenge of compiling algebraic queries into efficient execution plans that can be run on top of the persistent storage. This work pursues the goal of employing foldr-build deforestation for the derivation of efficient streaming programs - programs that do not allocate intermediate data structures to perform their task - from algebraic (combinator) query plans. The query engine is based on the insertion representation of ...

  17. New global fire emission estimates and evaluation of volatile organic compounds

    Science.gov (United States)

    C. Wiedinmyer; L. K. Emmons; S. K. Akagi; R. J. Yokelson; J. J. Orlando; J. A. Al-Saadi; A. J. Soja

    2010-01-01

    A daily, high-resolution, global fire emissions model has been built to estimate emissions from open burning for air quality modeling applications: The Fire INventory from NCAR (FINN version 1). The model framework uses daily fire detections from the MODIS instruments and updated emission factors, specifically for speciated non-methane organic compounds (NMOC). Global...

  18. Hazardous air emissions potential from a wood-fired furnace

    International Nuclear Information System (INIS)

    Hubbard, A.J.

    1995-01-01

    During the first week of April, 1991 the Wisconsin Department of Natural Resources (WDNR) conducted a series of air emissions tests of a small industrial wood-fired boiler in northern Wisconsin. The boiler was firing a virgin hogged wood/wood waste fuel with a moisture content of about 35 percent. The pollutants measured were particulates, nitrogen oxides (NOx), carbon monoxide (GO), total hydrocarbons (THC), benzene, formaldehyde (CHOH), polycyclic organic matter (POM, e.g. Benzo (a) pyrene), aldehydes, and trace metals (As, Ba, Cu, Pb, Mn, Ni, K, Se, Na, and Zn). For two and a half days continuous emissions data were recorded by laboratory-certified continuous emissions monitors for CO, NOx, 0-2, THC, and COq2 while the EPA reference method stack tests were being conducted for the other pollutants. In addition, a WDNR test team measured CO, 0-2, and flue gas temperature with a Rosemount portable combustion analyzer for several hours over the course of those two and a half days. The principal purpose behind the study was to evaluate the hazardous air emissions potential of a small industrial furnace firing a virgin wood fuel. To that end, it was hoped that a surrogate pollutant could be identified which would represent the levels of hazardous air emissions (e.g., benzene) present in the wood-fired furnace flue gases. If a readily monitorable pollutant could be identified, then a regulatory strategy of measuring one representative pollutant could be put in place to continually assess the hazardous emissions potential of virgin wood combustion. (UK)

  19. EARTH, WIND AND FIRE: BUILDING METEOROLOGICALLY-SENSITIVE BIOGENIC AND WILDLAND FIRE EMISSION ESTIMATES FOR AIR QUALITY MODELS

    Science.gov (United States)

    Emission estimates are important for ensuring the accuracy of atmospheric chemical transport models. Estimates of biogenic and wildland fire emissions, because of their sensitivity to meteorological conditions, need to be carefully constructed and closely linked with a meteorolo...

  20. Heterogeneity of experts’ opinion regarding opportunities and challenges of tackling deforestation in the tropics: a Q methodology application

    NARCIS (Netherlands)

    Nijnik, M.; Nijnik, A.; Bergsma, E.; Matthews, R.

    2014-01-01

    Making the concept of Reducing Emissions from Deforestation and Degradation (REDD+) ready to be a mechanism to combat tropical deforestation and associated greenhouse gas (GHG) emissions by compensating developing countries for income foregone in reducing their rates of deforestation, requires

  1. Cooking with Fire: The Mutagenicity- and PAH-Emission ...

    Science.gov (United States)

    Emissions from solid fuels used for cooking cause ~4 million premature deaths per year. Advanced solid-fuel cookstoves are a potential solution, but they should be assessed by appropriate performance indicators, including biological effects. We evaluated two categories of solid-fuel cookstoves for 8 pollutant- and 4 mutagenicity-emission factors, correlated the mutagenicity-emission factors, and compared them to those of other combustion emissions. We burned red oak in a 3-stone fire (TSF), a natural-draft stove (NDS), and a forced-draft stove (FDS); we combusted propane as a liquified petroleum gas control fuel. We determined emission factors based on useful energy (megajoules delivered, MJd) for carbon monoxide, nitrogen oxides (NOx), black carbon, methane, total hydrocarbons, 32 polycyclic aromatic hydrocarbons, PM2.5, levoglucosan (a wood-smoke marker), and mutagenicity in Salmonella. Other than NOx the emission factors per MJd correlated highly among each other (r2 ≥ 0.92); NOx correlated 0.58-0.76 with the other emission factors. Excluding NOx, the NDS and FDS reduced the emission factors on average 68 and 92%, respectively, relative to the TSF. Nonetheless, the mutagenicity-emission factor based on fuel energy used (MJthermal) for the most efficient stove (FDS) was intermediate to that of a large diesel bus engine and a small diesel generator. Both mutagenicity- and pollutant-emission factors may be informative for characterizing cookstove

  2. Emissions and removals from land-use, land use change and forestry activities in a post-Kyoto regime - quantitative analysis of a framework for reducing deforestation; Beruecksichtigung von Treibhausgasemissionen und -festlegungen durch Landnutzungsmassnahmen (LULUCF) im Post-Kioto-Regime - quantitative Analyse zur Einbeziehung von reduzierter Entwaldung in ein kuenftiges Klimaregime

    Energy Technology Data Exchange (ETDEWEB)

    Herold, Anke; Scheffler, Margarethe [Oeko-Institut e.V., Freiburg (Germany); Cunha Zeri, Gisleine; Dietz, Johannes; Freibauer, Annette; Huettner, Michael; Mollicone, Danilo [Max-Planck Institut fuer Biogeochemie, Jena (Germany); Jung, Martina [ECOFYS GmbH, Koeln (Germany)

    2008-11-15

    Some developing countries (Papua New Guinea, Costa Rica and others) proposed to include emission reductions from reduced deforestation in a post-2012 climate regime. This proposal has gained broad support under the UNFCCC negotiations. This report aims at assessing the implications and implementation needs of a future international regime that provides compensation for reducing emissions from deforestation in developing countries. This assessment includes an analysis of data availability for deforestation and forest area changes and related losses of biomass and GHG emissions, an attempt to quantify the relationship between deforestation drivers and deforestation rates; a detailed discussion of options related to the establishment of reference emission levels and accounting issues for reducing deforestation; an approximation of the possible magnitude of credits from a RED mechanism and a discussion of approaches to implement a compensation scheme for reducing emissions in a post-2012 climate regime. (orig.)

  3. Trace metal emissions from the Estonian oil shale fired power

    DEFF Research Database (Denmark)

    Aunela-Tapola, Leena A.; Frandsen, Flemming; Häsänen, Erkki K.

    1998-01-01

    Emission levels of selected trace metals from the Estonian oil shale fired power plant were studied. The plant is the largest single power plant in Estonia with an electricity production capacity of 1170 MWe (1995). Trace metals were sampled from the flue gases by a manual method incorporating...... in the flue gases of the studied oil shale plant contribute, however, to clearly higher total trace metal emission levels compared to modern coal fired power plants. Although the old electrostatic precipitators in the plant have been partly replaced by state-of-the-art electrostatic precipitators...... a two-fraction particle sampling and subsequent absorption of the gaseous fraction. The analyses were principally performed with ICP-MS techniques. The trace metal contents of Estonian oil shale were found to be in the same order of magnitude as of coal on average. The high total particle concentrations...

  4. Net Carbon Emissions from Deforestation in Bolivia during 1990-2000 and 2000-2010: Results from a Carbon Bookkeeping Model.

    Science.gov (United States)

    Andersen, Lykke E; Doyle, Anna Sophia; del Granado, Susana; Ledezma, Juan Carlos; Medinaceli, Agnes; Valdivia, Montserrat; Weinhold, Diana

    2016-01-01

    Accurate estimates of global carbon emissions are critical for understanding global warming. This paper estimates net carbon emissions from land use change in Bolivia during the periods 1990-2000 and 2000-2010 using a model that takes into account deforestation, forest degradation, forest regrowth, gradual carbon decomposition and accumulation, as well as heterogeneity in both above ground and below ground carbon contents at the 10 by 10 km grid level. The approach permits detailed maps of net emissions by region and type of land cover. We estimate that net CO2 emissions from land use change in Bolivia increased from about 65 million tons per year during 1990-2000 to about 93 million tons per year during 2000-2010, while CO2 emissions per capita and per unit of GDP have remained fairly stable over the sample period. If we allow for estimated biomass increases in mature forests, net CO2 emissions drop to close to zero. Finally, we find these results are robust to alternative methods of calculating emissions.

  5. [Emission characteristics of fine particles from grate firing boilers].

    Science.gov (United States)

    Wang, Shu-Xiao; Zhao, Xiu-Juan; Li, Xing-Hua; Wei, Wei; Hao, Ji-Ming

    2009-04-15

    Grate firing boilers are the main type of Chinese industrial boilers, which accounts for 85% of the industrial boilers and is one of the most important emission sources of primary air pollutants in China. In this study, five boilers in three cities were selected and tested to measure the emission characteristics of PM2.5, and gaseous pollutants were applied by a compact dilution sampling system, which was developed for this field study. Results showed that particles mass size distributions for the five industrial boilers presented single peak or double peak, former peaks near 0.14 microm and the later peaks after 1.0 microm; the cyclone dust remover and wet scrubber dust remover had effective removal efficiencies not only to PM2.5, but also to PM1.0; and under the condition of same control techniques, grate firing boiler with high capacity has less PM2.5 emission than the boiler with low capacity. In the PM2.5 collected from flue gases, SO4(2-) was the most abundant ion, accounted for 20%-40% of the PM2.5; and C was the most abundant element (7.5%-31.8%), followed by S (8.4%-18.7%). Carbon balance method was applied to calculate the emission factors of these pollutants. The emission factors of PM2.5, NO, and SO2 were in the range of 0.046-0.486 g x kg(-1), 1.63-2.47 g x kg(-1), 1.35-9.95 g x kg(-1) respectively. The results are useful for the emission inventory development of industrial boilers and the source analysis of PM2.5 in atmospheric environment.

  6. Does the Pressure of Population and Poverty cause Deforestation?

    OpenAIRE

    Widiaryanto, Pungky

    2012-01-01

    Deforestation has created several negative impacts such as reducing biodiversity, decreasing life support system and increasing green house gases emission. Identifying the causes of deforestation is a key to tackle this problem. Various studies have been conducted to investigate the driver of deforestation in the world. Some experts believe that the pressure of population and poverty cause deforestation. On the other hand, the others argue that there is no relationship among the pressure of p...

  7. Direct estimation of diffuse gaseous emissions from coal fires: current methods and future directions

    Science.gov (United States)

    Engle, Mark A.; Olea, Ricardo A.; O'Keefe, Jennifer M. K.; Hower, James C.; Geboy, Nicholas J.

    2013-01-01

    Coal fires occur in nature spontaneously, contribute to increases in greenhouse gases, and emit atmospheric toxicants. Increasing interest in quantifying coal fire emissions has resulted in the adaptation and development of specialized approaches and adoption of numerical modeling techniques. Overview of these methods for direct estimation of diffuse gas emissions from coal fires is presented in this paper. Here we take advantage of stochastic Gaussian simulation to interpolate CO2 fluxes measured using a dynamic closed chamber at the Ruth Mullins coal fire in Perry County, Kentucky. This approach allows for preparing a map of diffuse gas emissions, one of the two primary ways that gases emanate from coal fires, and establishing the reliability of the study both locally and for the entire fire. Future research directions include continuous and automated sampling to improve quantification of gaseous coal fire emissions.

  8. Ecosystem Carbon Emissions from 2015 Forest Fires in Interior Alaska

    Science.gov (United States)

    Potter, Christopher S.

    2018-01-01

    In the summer of 2015, hundreds of wildfires burned across the state of Alaska, and consumed more than 1.6 million ha of boreal forest and wetlands in the Yukon-Koyukuk region. Mapping of 113 large wildfires using Landsat satellite images from before and after 2015 indicated that nearly 60% of this area was burned at moderate-to-high severity levels. Field measurements near the town of Tanana on the Yukon River were carried out in July of 2017 in both unburned and 2015 burned forested areas (nearly adjacent to one-another) to visually verify locations of different Landsat burn severity classes (low, moderate, or high). Results: Field measurements indicated that the loss of surface organic layers in boreal ecosystem fires is a major factor determining post-fire soil temperature changes, depth of thawing, and carbon losses from the mineral topsoil layer. Measurements in forest sites showed that soil temperature profiles to 30 cm depth at burned forest sites increased by an average of 8o - 10o C compared to unburned forest sites. Sampling and laboratory analysis indicated a 65% reduction in soil carbon content and a 58% reduction in soil nitrogen content in severely burned sample sites compared to soil mineral samples from nearby unburned spruce forests. Conclusions: Combined with nearly unprecedented forest areas severely burned in the Interior region of Alaska in 2015, total ecosystem fire emission of carbon to the atmosphere exceeded most previous estimates for the state.

  9. Acoustic emission of fire damaged fiber reinforced concrete

    Science.gov (United States)

    Mpalaskas, A. C.; Matikas, T. E.; Aggelis, D. G.

    2016-04-01

    The mechanical behavior of a fiber-reinforced concrete after extensive thermal damage is studied in this paper. Undulated steel fibers have been used for reinforcement. After being exposed to direct fire action at the temperature of 850°C, specimens were subjected to bending and compression in order to determine the loss of strength and stiffness in comparison to intact specimens and between the two types. The fire damage was assessed using nondestructive evaluation techniques, specifically ultrasonic pulse velocity (UPV) and acoustic emission (AE). Apart from the strong, well known, correlation of UPV to strength (both bending and compressive), AE parameters based mainly on the frequency and duration of the emitted signals after cracking events showed a similar or, in certain cases, better correlation with the mechanical parameters and temperature. This demonstrates the sensitivity of AE to the fracture incidents which eventually lead to failure of the material and it is encouraging for potential in-situ use of the technique, where it could provide indices with additional characterization capability concerning the mechanical performance of concrete after it subjected to fire.

  10. Quantifying greenhouse gas emissions from coal fires using airborne and ground-based methods

    Science.gov (United States)

    Engle, Mark A.; Radke, Lawrence F.; Heffern, Edward L.; O'Keefe, Jennifer M.K.; Smeltzer, Charles; Hower, James C.; Hower, Judith M.; Prakash, Anupma; Kolker, Allan; Eatwell, Robert J.; ter Schure, Arnout; Queen, Gerald; Aggen, Kerry L.; Stracher, Glenn B.; Henke, Kevin R.; Olea, Ricardo A.; Román-Colón, Yomayara

    2011-01-01

    Coal fires occur in all coal-bearing regions of the world and number, conservatively, in the thousands. These fires emit a variety of compounds including greenhouse gases. However, the magnitude of the contribution of combustion gases from coal fires to the environment is highly uncertain, because adequate data and methods for assessing emissions are lacking. This study demonstrates the ability to estimate CO2 and CH4 emissions for the Welch Ranch coal fire, Powder River Basin, Wyoming, USA, using two independent methods: (a) heat flux calculated from aerial thermal infrared imaging (3.7–4.4 t d−1 of CO2 equivalent emissions) and (b) direct, ground-based measurements (7.3–9.5 t d−1 of CO2 equivalent emissions). Both approaches offer the potential for conducting inventories of coal fires to assess their gas emissions and to evaluate and prioritize fires for mitigation.

  11. ALOKASI PENDAPATAN DARI JASA PENGURANGAN EMISI MELALUI PENCEGAHAN DEFORESTASI: SEBUAH TINJAUAN ALOKASI BENEFIT DAN KERANGKA HUKUM FISKAL (Alocation of Benefit from Emission Reduction Service Through Deforestation Avoided: An Overview of Benefit

    Directory of Open Access Journals (Sweden)

    Mamat Rahmat

    2010-07-01

    Full Text Available ABSTRAK Deforestasi menyumbang emisi gas rumah kaca sebesar 18% dari total emisi gas rumah kaca per tahun. REDD (Reducing Emission from Deforestation and Forests Degradation adalah mekanisme yang dikembangkan untuk mengurangi emisi gas rumah kaca akibat deforestasi dan degradasi hutan. Para pihak menginginkan agar REDD juga berperan dalam pengentasan kemiskinan masyarakat sekitar hutan di negara berkembang. Masyarakat sekitar hutan merupakan salah satu pihak yang berhak untuk memperoleh alokasi dari pendapatan tersebut. Peraturan perundangan yang mengatur alokasi pendapatan dari REDD hingga saat ini belum tersedia. Paper ini mengemukakan gagasan mengenai proporsi alokasi pendapatan dari REDD. Upaya ini diharapkan dapat menjadi bahan pertimbangan bagi pemangku kebijakan dalam menyusun peraturan perundangan yang diperlukan. Proporsi hipotetik alokasi pendapatan yang dikemukakan di sini diupayakan untuk mengakomodir para pihak, antara lain: pemerintah pusat, pemerintah daerah dan masyarakat sekitar hutan. Proporsi hipotetik tersebut merupakan hasil tinjauan terhadap kerangka hukum fiskal yang tersedia dan azas alokasi benefit.   ABSTRACT Deforestation contributed to green house gas emission until 18% of total emission per year. REDD (Reducing Emission from Deforestation and Forests Degradation is a mechanism developed for reducing green house gas emission from deforestation and forest degradation. Annex 1 countries insist Non Annex 1 countries (developing countries to implement REDD as well as poverty eradication of local community. Local community is a considered stakeholder to get benefit from deforestation avoided service. On the other hand, the legal status of benefit allocation mechanism is unavailable. This paper contributed a hypothetical allocation to stakeholders. The stakeholders involve in this mechanism are: national government, local government and local community. The hypothetical proportion has been resulted by an overview of recent

  12. PCDD/F and Aromatic Emissions from Simulated Forest and Grassland Fires

    Science.gov (United States)

    Emissions of polychlorinated dibenzodioxin and polychlorinated dibenzofuran (PCDD/F) from simulated grassland and forest fires were quantitatively sampled to derive emission factors in support of PCDD/F inventory development. Grasses from Kentucky and Minnesota; forest shrubs fro...

  13. Fire emissions and regional air quality impacts from fires in oil palm, timber, and logging concessions in Indonesia

    International Nuclear Information System (INIS)

    Marlier, Miriam E; DeFries, Ruth S; Kim, Patrick S; Koplitz, Shannon N; Jacob, Daniel J; Mickley, Loretta J; Myers, Samuel S

    2015-01-01

    Fires associated with agricultural and plantation development in Indonesia impact ecosystem services and release emissions into the atmosphere that degrade regional air quality and contribute to greenhouse gas concentrations. In this study, we estimate the relative contributions of the oil palm, timber (for wood pulp and paper), and logging industries in Sumatra and Kalimantan to land cover change, fire activity, and regional population exposure to smoke concentrations. Concessions for these three industries cover 21% and 49% of the land area in Sumatra and Kalimantan respectively, with the highest overall area in lowlands on mineral soils instead of more carbon-rich peatlands. In 2012, most remaining forest area was located in logging concessions for both islands, and for all combined concessions, there was higher remaining lowland and peatland forest area in Kalimantan (45% and 46%, respectively) versus Sumatra (20% and 27%, respectively). Emissions from all combined concessions comprised 41% of total fire emissions (within and outside of concession boundaries) in Sumatra and 27% in Kalimantan for the 2006 burning season, which had high fire activity relative to decadal emissions. Most fire emissions were observed in concessions located on peatlands and non-forested lowlands, the latter of which could include concessions that are currently under production, cleared in preparation for production, or abandoned lands. For the 2006 burning season, timber concessions from Sumatra (47% of area and 88% of emissions) and oil palm concessions from Kalimantan (33% of area and 67% of emissions) contributed the most to concession-related fire emissions from each island. Although fire emissions from concessions were higher in Kalimantan, emissions from Sumatra contributed 63% of concession-related smoke concentrations for the population-weighted region because fire sources were located closer to population centers. In order to protect regional public health, our results

  14. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type

    Energy Technology Data Exchange (ETDEWEB)

    England, G.C.; McGrath, T.P. [GE-Energy and Environmental Research Corp., Irvine, CA (United States); Gilmer, L. [Equilon Enterprises, Bellaire, TX (United States); Seebold, J.G. [Chevron Research and Technology Co., Richmond, CA (United States); Lev-On, M. [ARCO, Los Angeles, CA (United States); Hunt, T. [American Petroleum Institute, Washington, DC (United States)

    2001-07-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NO{sub x} emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. (author)

  15. Hazardous air pollutant emissions from gas-fired combustion sources: emissions and the effects of design and fuel type

    International Nuclear Information System (INIS)

    England, G.C.; McGrath, T.P.; Gilmer, L.; Seebold, J.G.; Lev-On, M.; Hunt, T.

    2001-01-01

    Air emissions from gas-fired combustion devices such as boilers, process heaters, gas turbines and stationary reciprocating engines contain hazardous air pollutants (HAPs) subjected to consideration under the federal clean air act (CAA). This work presents a recently completed major research project to develop an understanding of HAP emissions from gas-fired boilers and process heaters and new HAP emission factors based on field emission tests of gas-fired external combustion devices used in the petroleum industry. The effect of combustion system design and operating parameters on HAP emissions determined by both field and research tests are discussed. Data from field tests of gas-fired petroleum industry boilers and heaters generally show very low emission levels of organic HAPs. A comparison of the emission data for boilers and process heaters, including units with and without various forms of NO x emission controls, showed no significant difference in organic HAP emission characteristics due to process or burner design. This conclusion is also supported by the results of research tests with different burner designs. Based on field tests of units fired with natural gas and various petroleum industry process gases and research tests in which gas composition was intentionally varied, organic HAP emissions were not determined to be significantly affected by the gas composition. Research data indicate that elevated organic HAP emission levels are found only under extreme operating conditions (starved air or high excess air combustion) associated with poor combustion. (author)

  16. Model comparisons for estimating carbon emissions from North American wildland fire

    Science.gov (United States)

    Nancy H.F. French; William J. de Groot; Liza K. Jenkins; Brendan M. Rogers; Ernesto Alvarado; Brian Amiro; Bernardus De Jong; Scott Goetz; Elizabeth Hoy; Edward Hyer; Robert Keane; B.E. Law; Donald McKenzie; Steven G. McNulty; Roger Ottmar; Diego R. Perez-Salicrup; James Randerson; Kevin M. Robertson; Merritt. Turetsky

    2011-01-01

    Research activities focused on estimating the direct emissions of carbon from wildland fires across North America are reviewed as part of the North American Carbon Program disturbance synthesis. A comparison of methods to estimate the loss of carbon from the terrestrial biosphere to the atmosphere from wildland fires is presented. Published studies on emissions from...

  17. Aerosol emissions from prescribed fires in the United States: A synthesis of laboratory and aircraft measurements

    Science.gov (United States)

    A. A. May; G. R. McMeeking; T. Lee; J. W. Taylor; J. S. Craven; I. Burling; A. P. Sullivan; S. Akagi; J. L. Collett; M. Flynn; H. Coe; S. P. Urbanski; J. H. Seinfeld; R. J. Yokelson; S. M. Kreidenweis

    2014-01-01

    Aerosol emissions from prescribed fires can affect air quality on regional scales. Accurate representation of these emissions in models requires information regarding the amount and composition of the emitted species. We measured a suite of submicron particulate matter species in young plumes emitted from prescribed fires (chaparral and montane ecosystems in California...

  18. Cost-Effectiveness of Emission Reduction for the Indonesian Coal-Fired Power Plants

    NARCIS (Netherlands)

    Handayani, Kamia; Krozer, Yoram

    2014-01-01

    This paper presents the result of research on the cost-effectiveness of emission reduction in the selected coal-fired power plants (CFPPs) in Indonesia. The background of this research is the trend of more stringent environmental regulation regarding air emission from coal-fired power plants (CFPPs)

  19. Satellite, climatological, and theoretical inputs for modeling of the diurnal cycle of fire emissions

    Science.gov (United States)

    Hyer, E. J.; Reid, J. S.; Schmidt, C. C.; Giglio, L.; Prins, E.

    2009-12-01

    The diurnal cycle of fire activity is crucial for accurate simulation of atmospheric effects of fire emissions, especially at finer spatial and temporal scales. Estimating diurnal variability in emissions is also a critical problem for construction of emissions estimates from multiple sensors with variable coverage patterns. An optimal diurnal emissions estimate will use as much information as possible from satellite fire observations, compensate known biases in those observations, and use detailed theoretical models of the diurnal cycle to fill in missing information. As part of ongoing improvements to the Fire Location and Monitoring of Burning Emissions (FLAMBE) fire monitoring system, we evaluated several different methods of integrating observations with different temporal sampling. We used geostationary fire detections from WF_ABBA, fire detection data from MODIS, empirical diurnal cycles from TRMM, and simple theoretical diurnal curves based on surface heating. Our experiments integrated these data in different combinations to estimate the diurnal cycles of emissions for each location and time. Hourly emissions estimates derived using these methods were tested using an aerosol transport model. We present results of this comparison, and discuss the implications of our results for the broader problem of multi-sensor data fusion in fire emissions modeling.

  20. Emissions from Biomass Burning in the Yucatan

    Science.gov (United States)

    Yokelson, R.; Crounse, J. D.; DeCarlo, P. F.; Karl, T.; Urbanski, S.; Atlas, E.; Campos, T.; Shinozuka, Y.; Kapustin, V.; Clarke, A. D.; hide

    2009-01-01

    In March 2006 two instrumented aircraft made the first detailed field measurements of biomass burning (BB) emissions in the Northern Hemisphere tropics as part of the MILAGRO project. The aircraft were the National Center for Atmospheric Research C-130 and a University of Montana/US Forest Service Twin Otter. The initial emissions of up to 49 trace gas or particle species were measured from 20 deforestation and crop residue fires on the Yucatan peninsula. This included two trace gases useful as indicaters of BB (HCN and acetonitrile) and several rarely, or never before, measured species: OH, peroxyacetic acid, propanoic acid, hydrogen peroxide, methane sulfonic acid, and sulfuric acid. Crop residue fires emitted more organic acids and ammonia than deforestation fires, but the emissions from the main fire types were otherwise fairly similar. The Yucatan fires emitted unusually amounts of SO2 and particle chloride, likely due to a strong marine influence on the peninsula.

  1. Emissions from coal-fired electric stations : environmental health effects and reduction options

    International Nuclear Information System (INIS)

    Love, P.; Lourie, B.; Pengelly, D.; Labatt, S.; Ogilvie, K.; Kelly, B.

    1998-01-01

    Findings of a study on the environmental effects of current emissions from coal-fired electric stations were summarized. Current and projected emissions from coal-fired electric stations for five emission reduction scenarios were estimated for Ontario, Eastern Canada, Ohio Valley/Great Lakes, and the U.S. northeast regions. Coal-fired electric stations generate a wide range of environmentally significant air emissions. The five pollutants selected - sulphur dioxide, nitrogen oxides, particulate matter (less than 10 micrometres in size), mercury, and carbon dioxide - are considered to impact most on environmental health. This report focused on 312 coal-fired electric stations in the regions named above. They were selected based on the likelihood that long-range transport of the emissions from these coal-fired utilities would have an impact on human health and the environment. 55 refs., 10 tabs., 8 figs

  2. Particulate emissions from a mid-latitude prescribed chaparral fire

    Science.gov (United States)

    Cofer, Wesley R., III; Levine, Joel S.; Sebacher, Daniel I.; Winstead, Edward L.; Riggin, Philip J.; Brass, James A.; Ambrosia, Vincent G.

    1988-01-01

    Particulate emission from a 400-acre prescribed chaparral fire in the San Dimas Experimental Forest was investigated by collecting smoke aerosol on Teflon and glass-fiber filters from a helicopter, and using SEM and EDAX to study the features of the particles. Aerosol particles ranged in size from about 0.1 to 100 microns, with carbon, oxygen, magnesium, aluminum, silicon, calcium, and iron as the primary elements. The results of ion chromatographic analysis of aerosol-particle extracts (in water-methanol) revealed the presence of significant levels of NO2(-), NO3(-), SO4(2-), Cl(-), PO4(3-), C2O4(2-), Na(+), NH4(+), and K(+). The soluble ionic portion of the aerosol was estimated to be about 2 percent by weight.

  3. Emissions of trace gases from Australian temperate forest fires: emission factors and dependence on modified combustion efficiency

    Science.gov (United States)

    Guérette, Elise-Andrée; Paton-Walsh, Clare; Desservettaz, Maximilien; Smith, Thomas E. L.; Volkova, Liubov; Weston, Christopher J.; Meyer, Carl P.

    2018-03-01

    We characterised trace gas emissions from Australian temperate forest fires through a mixture of open-path Fourier transform infrared (OP-FTIR) measurements and selective ion flow tube mass spectrometry (SIFT-MS) and White cell FTIR analysis of grab samples. We report emission factors for a total of 25 trace gas species measured in smoke from nine prescribed fires. We find significant dependence on modified combustion efficiency (MCE) for some species, although regional differences indicate that the use of MCE as a proxy may be limited. We also find that the fire-integrated MCE values derived from our in situ on-the-ground open-path measurements are not significantly different from those reported for airborne measurements of smoke from fires in the same ecosystem. We then compare our average emission factors to those measured for temperate forest fires elsewhere (North America) and for fires in another dominant Australian ecosystem (savanna) and find significant differences in both cases. Indeed, we find that although the emission factors of some species agree within 20 %, including those of hydrogen cyanide, ethene, methanol, formaldehyde and 1,3-butadiene, others, such as acetic acid, ethanol, monoterpenes, ammonia, acetonitrile and pyrrole, differ by a factor of 2 or more. This indicates that the use of ecosystem-specific emission factors is warranted for applications involving emissions from Australian forest fires.

  4. LOCAL IMPACTS OF MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, D.D.; MORRIS, S.M.; BANDO, A.; ET AL.

    2004-03-30

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. There are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows (Lopez et al. 2003)). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg(0) in power plant plumes and the role of water chemistry in the relationship between Hg

  5. Trends and Variability of Global Fire Emissions Due To Historical Anthropogenic Activities

    Science.gov (United States)

    Ward, Daniel S.; Shevliakova, Elena; Malyshev, Sergey; Rabin, Sam

    2018-01-01

    Globally, fires are a major source of carbon from the terrestrial biosphere to the atmosphere, occurring on a seasonal cycle and with substantial interannual variability. To understand past trends and variability in sources and sinks of terrestrial carbon, we need quantitative estimates of global fire distributions. Here we introduce an updated version of the Fire Including Natural and Agricultural Lands model, version 2 (FINAL.2), modified to include multiday burning and enhanced fire spread rate in forest crowns. We demonstrate that the improved model reproduces the interannual variability and spatial distribution of fire emissions reported in present-day remotely sensed inventories. We use FINAL.2 to simulate historical (post-1700) fires and attribute past fire trends and variability to individual drivers: land use and land cover change, population growth, and lightning variability. Global fire emissions of carbon increase by about 10% between 1700 and 1900, reaching a maximum of 3.4 Pg C yr-1 in the 1910s, followed by a decrease to about 5% below year 1700 levels by 2010. The decrease in emissions from the 1910s to the present day is driven mainly by land use change, with a smaller contribution from increased fire suppression due to increased human population and is largest in Sub-Saharan Africa and South Asia. Interannual variability of global fire emissions is similar in the present day as in the early historical period, but present-day wildfires would be more variable in the absence of land use change.

  6. Evaluation of NOX emissions from TVA coal-fired power plants

    International Nuclear Information System (INIS)

    Jones, J.W.; Stamey-Hall, S.

    1991-01-01

    The paper gives results of a preliminary evaluation of nitrogen oxide (NOx) emissions from 11 Tennessee Valley Authority (TVA) coal-fired power plants. Current EPA AP-42 emission factors for NOx from coal-fired utility boilers do not account for variations either in these emissions as a function of generating unit load, or in designs of boilers of the same general type, particularly wall-fired boilers. The TVA has compiled short-term NOx emissions data from 30 units at 11 TVA coal-fired plants. These units include cyclone, cell burner, single wall, opposed wall, single tangential, and twin tangential boiler firing designs. Tests were conducted on 29 of the 30 units at high load; 18 were also tested at reduced load. NOx emissions rates were calculated for each test and compared to the calculated rate for each boiler type using AP-42. Preliminary analysis indicates that: (1) TVA cyclone-fired units emit more NOx than estimated using AP-42; (2) TVA cell burner units emit considerably more NOx than estimated; (3) most TVA single-wall-fired units emit slightly more NOx than estimated; (4) most TVA single-furnace tangentially fired units emit less NOx than estimated at high load, but the same as (or more than) estimated at reduced load; and (5) most TVA twin-furnace tangentially fired units, at high load, emit slightly more NOx than estimated using AP-42

  7. Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US

    Science.gov (United States)

    S. P. Urbanski

    2013-01-01

    In the US, wildfires and prescribed burning present significant challenges to air regulatory agencies attempting to achieve and maintain compliance with air quality regulations. Fire emission factors (EF) are essential input for the emission models used to develop wildland fire emission inventories. Most previous studies quantifying wildland fire EF of temperate...

  8. Implications of emission inventory choice for modeling fire-related pollution in the U.S.

    Science.gov (United States)

    Koplitz, S. N.; Nolte, C. G.; Pouliot, G.

    2017-12-01

    Wildland fires are a major source of fine particulate matter (PM2.5), one of the most harmful ambient pollutants for human health globally. Within the U.S., wildland fires can account for more than 30% of total annual PM2.5 emissions. In order to represent the influence of fire emissions on atmospheric composition, regional and global chemical transport models (CTMs) rely on fire emission inventories developed from estimates of burned area (i.e. fire size and location). Burned area can be estimated using a range of top-down and bottom-up approaches, including satellite-derived remote sensing and on-the-ground incident reports. While burned area estimates agree with each other reasonably well in the western U.S. (within 20-30% for most years during 2002-2014), estimates for the southern U.S. vary by more than a factor of 3. Differences in burned area estimation methods lead to significant variability in the spatial and temporal allocation of emissions across fire emission inventory platforms. In this work, we implement fire emission estimates for 2011 from three different products - the USEPA National Emission Inventory (NEI), the Fire INventory of NCAR (FINN), and the Global Fire Emission Database (GFED4s) - into the Community Multiscale Air Quality (CMAQ) model to quantify and characterize differences in simulated fire-related PM2.5 and ozone concentrations across the contiguous U.S. due solely to the emission inventory used. Preliminary results indicate that the estimated contribution to national annual average PM2.5 from wildland fire in 2011 is highest using GFED4s emissions (1.0 µg m-3) followed by NEI (0.7 µg m-3) and FINN (0.3 µg m-3), with comparisons varying significantly by region and season. Understanding the sensitivity of modeling fire-related PM2.5 and ozone in the U.S. to fire emission inventory choice will inform future efforts to assess the implications of present and future fire activity for air quality and human health at national and global

  9. Influence of daily versus monthly fire emissions on atmospheric model applications in the tropics

    Science.gov (United States)

    Marlier, M. E.; Voulgarakis, A.; Faluvegi, G.; Shindell, D. T.; DeFries, R. S.

    2012-12-01

    Fires are widely used throughout the tropics to create and maintain areas for agriculture, but are also significant contributors to atmospheric trace gas and aerosol concentrations. However, the timing and magnitude of fire activity can vary strongly by year and ecosystem type. For example, frequent, low intensity fires dominate in African savannas whereas Southeast Asian peatland forests are susceptible to huge pulses of emissions during regional El Niño droughts. Despite the potential implications for modeling interactions with atmospheric chemistry and transport, fire emissions have commonly been input into global models at a monthly resolution. Recognizing the uncertainty that this can introduce, several datasets have parsed fire emissions to daily and sub-daily scales with satellite active fire detections. In this study, we explore differences between utilizing the monthly and daily Global Fire Emissions Database version 3 (GFED3) products as inputs into the NASA GISS-E2 composition climate model. We aim to understand how the choice of the temporal resolution of fire emissions affects uncertainty with respect to several common applications of global models: atmospheric chemistry, air quality, and climate. Focusing our analysis on tropical ozone, carbon monoxide, and aerosols, we compare modeled concentrations with available ground and satellite observations. We find that increasing the temporal frequency of fire emissions from monthly to daily can improve correlations with observations, predominately in areas or during seasons more heavily affected by fires. Differences between the two datasets are more evident with public health applications: daily resolution fire emissions increases the number of days exceeding World Health Organization air quality targets.

  10. Variability of fire behavior, fire effects, and emissions in Scotch pine forests of central Siberia

    Science.gov (United States)

    D. J. McRae; Susan Conard; G. A. Ivanova; A. I. Sukhinin; Steve Baker; Y. N. Samsonov; T. W. Blake; V. A. Ivanov; A. V. Ivanov; T. V. Churkina; WeiMin Hao; K. P. Koutzenogij; Nataly Kovaleva

    2006-01-01

    As part of the Russian FIRE BEAR (Fire Effects in the Boreal Eurasia Region) Project, replicated 4-ha experimental fires were conducted on a dry Scotch pine (Pinus sylvestris)/lichen (Cladonia sp.)/feathermoss (Pleurozeum schreberi) forest site in central Siberia. Observations from the initial seven surface fires (2000-2001) ignited under a range of burning...

  11. Wildland fire emissions, carbon, and climate: Wildfire–climate interactions

    Science.gov (United States)

    Yongqiang Liu; Scott Goodrick; Warren Heilman

    2014-01-01

    Increasing wildfire activity in recent decades, partially related to extended droughts, along with concern over potential impacts of future climate change on fire activity has resulted in increased attention on fire–climate interactions. Findings from studies published in recent years have remarkably increased our understanding of fire–climate interactions and improved...

  12. Characterization of wildfire NOx emissions using MODIS fire radiative power and OMI tropospheric NO2 columns

    Directory of Open Access Journals (Sweden)

    R. C. Cohen

    2011-06-01

    Full Text Available We use observations of fire radiative power (FRP from the Moderate Resolution Imaging Spectroradiometer~(MODIS and tropospheric NO2 column measurements from the Ozone Monitoring Instrument (OMI to derive NO2 wildfire emission coefficients (g MJ−1 for three land types over California and Nevada. Retrieved emission coefficients were 0.279±0.077, 0.342±0.053, and 0.696±0.088 g MJ−1 NO2 for forest, grass and shrub fuels, respectively. These emission coefficients reproduce ratios of emissions with fuel type reported previously using independent methods. However, the magnitude of these coefficients is lower than prior estimates. While it is possible that a negative bias in the OMI NO2 retrieval over regions of active fire emissions is partly responsible, comparison with several other studies of fire emissions using satellite platforms indicates that current emission factors may overestimate the contributions of flaming combustion and underestimate the contributions of smoldering combustion to total fire emissions. Our results indicate that satellite data can provide an extensive characterization of the variability in fire NOx emissions; 67 % of the variability in emissions in this region can be accounted for using an FRP-based parameterization.

  13. Near-field emission profiling of tropical forest and Cerrado fires in Brazil during SAMBBA 2012

    Science.gov (United States)

    Hodgson, Amy K.; Morgan, William T.; O'Shea, Sebastian; Bauguitte, Stéphane; Allan, James D.; Darbyshire, Eoghan; Flynn, Michael J.; Liu, Dantong; Lee, James; Johnson, Ben; Haywood, Jim M.; Longo, Karla M.; Artaxo, Paulo E.; Coe, Hugh

    2018-04-01

    We profile trace gas and particulate emissions from near-field airborne measurements of discrete smoke plumes in Brazil during the 2012 biomass burning season. The South American Biomass Burning Analysis (SAMBBA) Project conducted during September and October 2012 sampled across two distinct fire regimes prevalent in the Amazon Basin. Combined measurements from a Compact Time-of-Flight Aerosol Mass Spectrometer (C-ToF-AMS) and a Single Particle Soot Photometer (SP2) are reported for the first time in a tropical biomass burning environment. Emissions from a mostly smouldering tropical forest wildfire in Rondônia state and numerous smaller flaming Cerrado fires in Tocantins state are presented. While the Cerrado fires appear to be representative of typical fire conditions in the existing literature, the tropical forest wildfire likely represents a more extreme example of biomass burning with a bias towards mostly smouldering emissions. We determined fire-integrated modified combustion efficiencies, emission ratios and emission factors for trace gas and particulate components for these two fire types, alongside aerosol microphysical properties. Seven times more black carbon was emitted from the Cerrado fires per unit of fuel combustion (EFBC of 0.13 ± 0.04 g kg-1) compared to the tropical forest fire (EFBC of 0.019 ± 0.006 g kg-1), and more than 6 times the amount of organic aerosol was emitted from the tropical forest fire per unit of fuel combustion (EFOM of 8.00 ± 2.53 g kg-1, EFOC of 5.00 ± 1.58 g kg-1) compared to the Cerrado fires (EFOM of 1.31 ± 0.42 g kg-1, EFOC of 0.82 ± 0.26 g kg-1). Particulate-phase species emitted from the fires sampled are generally lower than those reported in previous studies and in emission inventories, which is likely a combination of differences in fire combustion efficiency and fuel mixture, along with different measurement techniques. Previous modelling studies focussed on the biomass burning season in tropical South

  14. New Tropical Peatland Gas and Particulate Emissions Factors Indicate 2015 Indonesian Fires Released Far More Particulate Matter (but Less Methane than Current Inventories Imply

    Directory of Open Access Journals (Sweden)

    Martin J. Wooster

    2018-03-01

    Full Text Available Deforestation and draining of the peatlands in equatorial SE Asia has greatly increased their flammability, and in September–October 2015 a strong El Niño-related drought led to further drying and to widespread burning across parts of Indonesia, primarily on Kalimantan and Sumatra. These fires resulted in some of the worst sustained outdoor air pollution ever recorded, with atmospheric particulate matter (PM concentrations exceeding those considered “extremely hazardous to health” by up to an order of magnitude. Here we report unique in situ air quality data and tropical peatland fire emissions factors (EFs for key carbonaceous trace gases (CO2, CH4 and CO and PM2.5 and black carbon (BC particulates, based on measurements conducted on Kalimantan at the height of the 2015 fires, both at locations of “pure” sub-surface peat burning and spreading vegetation fires atop burning peat. PM2.5 are the most significant smoke constituent in terms of human health impacts, and we find in situ PM2.5 emissions factors for pure peat burning to be 17.8 to 22.3 g·kg−1, and for spreading vegetation fires atop burning peat 44 to 61 g·kg−1, both far higher than past laboratory burning of tropical peat has suggested. The latter are some of the highest PM2.5 emissions factors measured worldwide. Using our peatland CO2, CH4 and CO emissions factors (1779 ± 55 g·kg−1, 238 ± 36 g·kg−1, and 7.8 ± 2.3 g·kg−1 respectively alongside in situ measured peat carbon content (610 ± 47 g-C·kg−1 we provide a new 358 Tg (± 30% fuel consumption estimate for the 2015 Indonesian fires, which is less than that provided by the GFEDv4.1s and GFASv1.2 global fire emissions inventories by 23% and 34% respectively, and which due to our lower EFCH4 produces far less (~3× methane. However, our mean in situ derived EFPM2.5 for these extreme tropical peatland fires (28 ± 6 g·kg−1 is far higher than current emissions inventories assume, resulting in our total

  15. Fire increases the risk of higher soil N2O emissions from Mediterranean Macchia ecosystems

    DEFF Research Database (Denmark)

    Karhu, Kristiina; Dannenmann, M.; Kitzler, B.

    2015-01-01

    on climate change. However, the potential importance of indirect GHG emissions due to changes in soil biological and chemical properties after fire is less well known. Increased soil mineral nitrogen (N) concentrations after fire pose a risk for increased emissions of gaseous N, but studies on the post......-fire N2O production and soil N turnover rates (mineralization, nitrification, microbial immobilization, denitrification) are still rare. We determined N2O production, rates of N turnover and pathways for N2O production from the soil of burned and unburned plots of a Macchia shrubland in central Spain...... using a 15N labelling approach. Measurements were initiated before the controlled burning and continued for up to half a year after fire. Fire markedly increased the risk of N2O emissions from soil through denitrification (N2O production rate was 3 to ≈30 times higher in burned soils compared to control...

  16. Indigenous burning as conservation practice: neotropical savanna recovery amid agribusiness deforestation in Central Brazil.

    Science.gov (United States)

    Welch, James R; Brondízio, Eduardo S; Hetrick, Scott S; Coimbra, Carlos E A

    2013-01-01

    International efforts to address climate change by reducing tropical deforestation increasingly rely on indigenous reserves as conservation units and indigenous peoples as strategic partners. Considered win-win situations where global conservation measures also contribute to cultural preservation, such alliances also frame indigenous peoples in diverse ecological settings with the responsibility to offset global carbon budgets through fire suppression based on the presumed positive value of non-alteration of tropical landscapes. Anthropogenic fire associated with indigenous ceremonial and collective hunting practices in the Neotropical savannas (cerrado) of Central Brazil is routinely represented in public and scientific conservation discourse as a cause of deforestation and increased CO2 emissions despite a lack of supporting evidence. We evaluate this claim for the Xavante people of Pimentel Barbosa Indigenous Reserve, Brazil. Building upon 23 years of longitudinal interdisciplinary research in the area, we used multi-temporal spatial analyses to compare land cover change under indigenous and agribusiness management over the last four decades (1973-2010) and quantify the contemporary Xavante burning regime contributing to observed patterns based on a four year sample at the end of this sequence (2007-2010). The overall proportion of deforested land remained stable inside the reserve (0.6%) but increased sharply outside (1.5% to 26.0%). Vegetation recovery occurred where reserve boundary adjustments transferred lands previously deforested by agribusiness to indigenous management. Periodic traditional burning by the Xavante had a large spatial distribution but repeated burning in consecutive years was restricted. Our results suggest a need to reassess overreaching conservation narratives about the purported destructiveness of indigenous anthropogenic fire in the cerrado. The real challenge to conservation in the fire-adapted cerrado biome is the long

  17. Forest fires in Mediterranean countries: CO2 emissions and mitigation possibilities through prescribed burning

    OpenAIRE

    Fernandes, Paulo; Terhi, Vilén

    2011-01-01

    Forest fires are integral to the Mediterranean Basin but fire incidence has increased dramatically during the past decades and fire is expected to become more prevalent in the future due to climate change. Fuel modification by prescribed burning reduces the spread and intensity potential of subsequent wildfires. We used the most recent published data to calculate the average annual wildfire CO2 emissions in France, Greece, Italy, Portugal and Spain following the IPCC guidelines. The effect of...

  18. Quantifying fire severity, carbon, and nitrogen emissions in Alaska's boreal forest

    Science.gov (United States)

    Leslie A. Boby; Edward A.G. Schuur; Michelle C. Mack; David Verbyla; Jill F. Johnstone

    2010-01-01

    The boreal region stores a large proportion of the world's terrestrial carbon (C) and is subject to high-intensity, stand-replacing wildfires that release C and nitrogen (N) stored in biomass and soils through combustion. While severity and extent of fires drives overall emissions, methods for accurately estimating fire severity are poorly tested in this unique...

  19. Global Fire Emissions Indicators, Country-Level Tabular Data: 1997-2015

    Data.gov (United States)

    National Aeronautics and Space Administration — The Global Fire Emissions Indicators, Country-Level Tabular Data: 1997-2015 contains country tabulations from 1997 to 2015 for the total area burned (hectares) and...

  20. Intercomparison of Fire Size, Fuel Loading, Fuel Consumption, and Smoke Emissions Estimates on the 2006 Tripod Fire, Washington, USA

    Science.gov (United States)

    Stacy A. Drury; Narasimhan Larkin; Tara T. Strand; ShihMing Huang; Scott J. Strenfel; Theresa E. O' Brien; Sean M. Raffuse

    2014-01-01

    Land managers rely on prescribed burning and naturally ignited wildfires for ecosystem management, and must balance trade-offs of air quality, carbon storage, and ecosystem health. A current challenge for land managers when using fire for ecosystem management is managing smoke production. Smoke emissions are a potential human health hazard due to the production of fine...

  1. Soil humic-like organic compounds in prescribed fire emissions using nuclear magnetic resonance spectroscopy

    International Nuclear Information System (INIS)

    Chalbot, M.-C.; Nikolich, G.; Etyemezian, V.; Dubois, D.W.; King, J.; Shafer, D.; Gamboa da Costa, G.; Hinton, J.F.; Kavouras, I.G.

    2013-01-01

    Here we present the chemical characterization of the water-soluble organic carbon fraction of atmospheric aerosol collected during a prescribed fire burn in relation to soil organic matter and biomass combustion. Using nuclear magnetic resonance spectroscopy, we observed that humic-like substances in fire emissions have been associated with soil organic matter rather than biomass. Using a chemical mass balance model, we estimated that soil organic matter may contribute up to 41% of organic hydrogen and up to 27% of water-soluble organic carbon in fire emissions. Dust particles, when mixed with fresh combustion emissions, substantially enhances the atmospheric oxidative capacity, particle formation and microphysical properties of clouds influencing the climatic responses of atmospheric aeroso. Owing to the large emissions of combustion aerosol during fires, the release of dust particles from soil surfaces that are subjected to intense heating and shear stress has, so far, been lacking. -- Highlights: •We characterized the water-soluble organic carbon (WSOC) of fire emissions by NMR. •Distinct patterns were observed for soil dust and vegetation combustion emissions. •Soil organic matter accounted for most of WSOC in early prescribed burn emissions. -- Humic-like soil organic matter may be an important component of particulate emissions in the early stages of wildfires

  2. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    Science.gov (United States)

    R. J. Yokelson; I. R. Burling; J. B. Gilman; C. Warneke; C. E. Stockwell; J. de Gouw; S. K. Akagi; S. P. Urbanski; P. Veres; J. M. Roberts; W. C. Kuster; J. Reardon; D. W. T. Griffith; T. J. Johnson; S. Hosseini; J. W. Miller; D. R. Cocker; H. Jung; D. R. Weise

    2013-01-01

    An extensive program of experiments focused on biomass burning emissions began with a laboratory phase in which vegetative fuels commonly consumed in prescribed fires were collected in the southeastern and southwestern US and burned in a series of 71 fires at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions...

  3. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires [Discussions

    Science.gov (United States)

    R. J. Yokelson; I. R. Burling; J. B. Gilman; C. Warneke; C. E. Stockwell; J. de Gouw; S. K. Akagi; S. P. Urbanski; P. Veres; J. M. Roberts; W. C. Kuster; J. Reardon; D. W. T. Griffith; T. J. Johnson; S. Hosseini; J. W. Miller; D. R. Cocker III; H. Jung; D. R. Weise

    2012-01-01

    An extensive program of experiments focused on biomass burning emissions began with a laboratory phase in which vegetative fuels commonly consumed in prescribed fires were collected in the southeastern and southwestern US and burned in a series 5 of 71 fires at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions...

  4. Deforestation intensifies hot days

    Science.gov (United States)

    Stoy, Paul C.

    2018-05-01

    Deforestation often increases land-surface and near-surface temperatures, but climate models struggle to simulate this effect. Research now shows that deforestation has increased the severity of extreme heat in temperate regions of North America and Europe. This points to opportunities to mitigate extreme heat.

  5. Gas emissions, minerals, and tars associated with three coal fires, Powder River Basin, USA.

    Science.gov (United States)

    Engle, Mark A; Radke, Lawrence F; Heffern, Edward L; O'Keefe, Jennifer M K; Hower, James C; Smeltzer, Charles D; Hower, Judith M; Olea, Ricardo A; Eatwell, Robert J; Blake, Donald R; Emsbo-Mattingly, Stephen D; Stout, Scott A; Queen, Gerald; Aggen, Kerry L; Kolker, Allan; Prakash, Anupma; Henke, Kevin R; Stracher, Glenn B; Schroeder, Paul A; Román-Colón, Yomayra; ter Schure, Arnout

    2012-03-15

    Ground-based surveys of three coal fires and airborne surveys of two of the fires were conducted near Sheridan, Wyoming. The fires occur in natural outcrops and in abandoned mines, all containing Paleocene-age subbituminous coals. Diffuse (carbon dioxide (CO(2)) only) and vent (CO(2), carbon monoxide (CO), methane, hydrogen sulfide (H(2)S), and elemental mercury) emission estimates were made for each of the fires. Additionally, gas samples were collected for volatile organic compound (VOC) analysis and showed a large range in variation between vents. The fires produce locally dangerous levels of CO, CO(2), H(2)S, and benzene, among other gases. At one fire in an abandoned coal mine, trends in gas and tar composition followed a change in topography. Total CO(2) fluxes for the fires from airborne, ground-based, and rate of fire advancement estimates ranged from 0.9 to 780mg/s/m(2) and are comparable to other coal fires worldwide. Samples of tar and coal-fire minerals collected from the mouth of vents provided insight into the behavior and formation of the coal fires. Published by Elsevier B.V.

  6. Radionuclide emissions from a coal-fired power plant

    International Nuclear Information System (INIS)

    Amin, Y.M.; Uddin Khandaker, Mayeen; Shyen, A.K.S.; Mahat, R.H.; Nor, R.M.; Bradley, D.A.

    2013-01-01

    Current study concerns measurement of radioactivity levels in areas surrounding a 2420 MW thermal power plant fueled predominantly by bituminous coal. The concentrations of 226 Ra, 232 Th and 40 K in onsite bottom-ash were found to be 139 Bq/kg, 108 Bq/kg and 291 Bq/kg, respectively, the levels for these radiolnuclides in soil decreasing with distance from the power plant. At the plant perimeter the respective radionuclide concentrations were 87 Bq/kg, 74 Bq/kg and 297 Bq/kg. In a nearby town, the corresponding concentrations were 104 Bq/kg, 52 Bq/kg and 358 Bq/kg, suggestive of use of TENORM affected soils. The mean radium equivalent activities (Ra eq ) in soil and ash sample in the town were 205 Bq/kg and 316 Bq/kg, respectively. The Kapar plant ash/slag appears to contain a higher level of TENORM than the world average. The degree of contamination is much higher inside the town where slag has been mixed with topsoil as landfill or as simple domestic waste. For the prevailing levels of exposure and a worst case senario, the predicted committed effective dose due to ingestion and inhalation for intake durations of 1- and 30 years would be 4.2 μSv and 220 μSv, respectively. - Highlights: • Detailed studies on naturally occuring radionuclide emissions due to a 2420 MW coal-fired power plant in Malaysia. • Assessment of radiation exposures to the public around the power plant due to an intake of the radionuclides. • The Kapar plant ash/slag appears to contain a higher level of TENORM than the world average. • The degree of contamination is much higher inside the town where slag has been mixed with topsoil as landfill or as simple domestic waste

  7. Wildland fire emissions, carbon, and climate: Modeling fuel consumption

    Science.gov (United States)

    Roger D. Ottmar

    2014-01-01

    Fuel consumption specifies the amount of vegetative biomass consumed during wildland fire. It is a two-stage process of pyrolysis and combustion that occurs simultaneously and at different rates depending on the characteristics and condition of the fuel, weather, topography, and in the case of prescribed fire, ignition rate and pattern. Fuel consumption is the basic...

  8. Global burned area and biomass burning emissions from small fires

    NARCIS (Netherlands)

    Randerson, J.T; Chen, Y.; van der Werf, G.R.; Rogers, B.M.; Morton, D.C.

    2012-01-01

    In several biomes, including croplands, wooded savannas, and tropical forests, many small fires occur each year that are well below the detection limit of the current generation of global burned area products derived from moderate resolution surface reflectance imagery. Although these fires often

  9. Measurement of trace emissions and combustion characteristics for a mass fire

    International Nuclear Information System (INIS)

    Susott, R.A.; Ward, D.E.; Babbitt, R.E.; Latham, D.J.

    1991-01-01

    Results are presented of a continuing study of research that was started in 1988. A new sampling system was designed to provide fire dynamics data from within the fire. This chapter describes the sampling system, the measurements it provided on one biomass fire, and some valuable parameters that can be calculated such as emission factors, combustion efficiency, and rate of fuel consumption. The large prescribed fire in Ontario, Canada, provided a practical test of this package that can be used to assess the application of the monitoring concept to a broad range of biomass fires. Measurements of wind vectors, temperature, and emissions of CO 2 , CO and particulates are reported for a 40-minute period from ignition through the critical period of maximum release of heat to the near extinction of the smoldering combustion phase

  10. Comparative Evaluation of Five Fire Emissions Datasets Using the GEOS-5 Model

    Science.gov (United States)

    Ichoku, C. M.; Pan, X.; Chin, M.; Bian, H.; Darmenov, A.; Ellison, L.; Kucsera, T. L.; da Silva, A. M., Jr.; Petrenko, M. M.; Wang, J.; Ge, C.; Wiedinmyer, C.

    2017-12-01

    Wildfires and other types of biomass burning affect most vegetated parts of the globe, contributing 40% of the annual global atmospheric loading of carbonaceous aerosols, as well as significant amounts of numerous trace gases, such as carbon dioxide, carbon monoxide, and methane. Many of these smoke constituents affect the air quality and/or the climate system directly or through their interactions with solar radiation and cloud properties. However, fire emissions are poorly constrained in global and regional models, resulting in high levels of uncertainty in understanding their real impacts. With the advent of satellite remote sensing of fires and burned areas in the last couple of decades, a number of fire emissions products have become available for use in relevant research and applications. In this study, we evaluated five global biomass burning emissions datasets, namely: (1) GFEDv3.1 (Global Fire Emissions Database version 3.1); (2) GFEDv4s (Global Fire Emissions Database version 4 with small fires); (3) FEERv1 (Fire Energetics and Emissions Research version 1.0); (4) QFEDv2.4 (Quick Fire Emissions Dataset version 2.4); and (5) Fire INventory from NCAR (FINN) version 1.5. Overall, the spatial patterns of biomass burning emissions from these inventories are similar, although the magnitudes of the emissions can be noticeably different. The inventories derived using top-down approaches (QFEDv2.4 and FEERv1) are larger than those based on bottom-up approaches. For example, global organic carbon (OC) emissions in 2008 are: QFEDv2.4 (51.93 Tg), FEERv1 (28.48 Tg), FINN v1.5 (19.48 Tg), GFEDv3.1 (15.65 Tg) and GFEDv4s (13.76 Tg); representing a factor of 3.7 difference between the largest and the least. We also used all five biomass-burning emissions datasets to conduct aerosol simulations using the NASA Goddard Earth Observing System Model, Version 5 (GEOS-5), and compared the resulting aerosol optical depth (AOD) output to the corresponding retrievals from MODIS

  11. Incorrectly Interpreting the Carbon Mass Balance Technique Leads to Biased Emissions Estimates from Global Vegetation Fires

    Science.gov (United States)

    Surawski, N. C.; Sullivan, A. L.; Roxburgh, S. H.; Meyer, M.; Polglase, P. J.

    2016-12-01

    Vegetation fires are a complex phenomenon and have a range of global impacts including influences on climate. Even though fire is a necessary disturbance for the maintenance of some ecosystems, a range of anthropogenically deleterious consequences are associated with it, such as damage to assets and infrastructure, loss of life, as well as degradation to air quality leading to negative impacts on human health. Estimating carbon emissions from fire relies on a carbon mass balance technique which has evolved with two different interpretations in the fire emissions community. Databases reporting global fire emissions estimates use an approach based on `consumed biomass' which is an approximation to the biogeochemically correct `burnt carbon' approach. Disagreement between the two methods occurs because the `consumed biomass' accounting technique assumes that all burnt carbon is volatilized and emitted. By undertaking a global review of the fraction of burnt carbon emitted to the atmosphere, we show that the `consumed biomass' accounting approach overestimates global carbon emissions by 4.0%, or 100 Teragrams, annually. The required correction is significant and represents 9% of the net global forest carbon sink estimated annually. To correctly partition burnt carbon between that emitted to the atmosphere and that remaining as a post-fire residue requires the post-burn carbon content to be estimated, which is quite often not undertaken in atmospheric emissions studies. To broaden our understanding of ecosystem carbon fluxes, it is recommended that the change in carbon content associated with burnt residues be accounted for. Apart from correctly partitioning burnt carbon between the emitted and residue pools, it enables an accounting approach which can assess the efficacy of fire management operations targeted at sequestering carbon from fire. These findings are particularly relevant for the second commitment period for the Kyoto protocol, since improved landscape fire

  12. No Smoke Without Fire: the hidden costs of early life exposure to landscape fire emissions in Indonesia

    Science.gov (United States)

    Jina, A.; Marlier, M. E.

    2012-12-01

    Air pollution from landscape fire emissions can have devastating effects upon public health. The consequent health costs place a burden upon the economies of many nations, particularly in developing countries. Recent research has assessed contemporaneous mortality due to respiratory infections or cardiovascular disease, but little has looked at the potential long-term consequences and hidden costs of exposure to fire pollution at a population scale. The difficulty of quantifying these costs is partly due to incomplete or inaccurate health data in many developing countries, and is further compounded by sparse air pollution monitoring data. While satellite data partially compensates for this, there can still be significant gaps in data availability and difficulty in retrieving surface concentrations. In this study, we demonstrate the dramatic long-term health and human development consequences of fine particulate matter (PM2.5) exposure by using modeled PM2.5 to quantify repeated exposure to landscape fire emissions in Indonesia, which is prone to large, catastrophic fires during El Niño conditions. Surface PM2.5 concentrations at 2x2.5° resolution are obtained from GISS-E2-Puccini (the new version of the NASA GISS ModelE general circulation model), run with monthly fire emissions from the Global Fire Emissions Database version 3 (GFED3). 24-hour ambient PM2.5 concentrations across Indonesia are matched to geographically and socioeconomically representative longitudinal surveys conducted by the Indonesian government. We find important medium- to long-term morbidity associated with early life exposure to ambient air pollution from fire emissions. Our analysis indicates that children exposed to high levels of PM2.5 in utero are more likely to suffer from impaired physical and cognitive development. A one standard deviation increase in ambient air pollution, derived from the GISS-E2-Puccini model, leads to effects that are directly comparable to those from indoor air

  13. Mega fire emissions in Siberia: potential supply of bioavailable iron from forests to the ocean

    Directory of Open Access Journals (Sweden)

    A. Ito

    2011-06-01

    Full Text Available Significant amounts of carbon and nutrients are released to the atmosphere due to large fires in forests. Characterization of the spatial distribution and temporal variation of the intense fire emissions is crucial for assessing the atmospheric loadings of trace gases and aerosols. This paper discusses issues of the representation of forest fires in the estimation of emissions and the application to an atmospheric chemistry transport model (CTM. The potential contribution of forest fires to the deposition of bioavailable iron (Fe into the ocean is highlighted, with a focus on mega fires in eastern Siberia.

    Satellite products of burned area, active fire, and land cover are used to estimate biomass burning emissions in conjunction with a biogeochemical model. Satellite-derived plume height from MISR is used for the injection height of boreal forest fire emissions. This methodology is applied to quantify fire emission rates in each three-dimensional grid location in the high latitude Northern Hemisphere (>30° N latitude over a 5-yr period from 2001 to 2005. There is large interannual variation in forest burned area during 2001–2005 (13–49 × 103 km2 yr−1 which results in a corresponding variation in the annual emissions of carbon monoxide (CO (14–81 Tg CO y−1. Satellite observations of CO column from MOPITT are used to evaluate the model performance in simulating the spatial distribution and temporal variation of the fire emissions. The model results for CO enhancements due to eastern Siberian fires are in good agreement with MOPITT observations. These validation results suggest that the model using emission rates estimated in this work is able to describe the interannual changes in CO due to intense forest fires.

    Bioavailable iron is derived from atmospheric processing of relatively insoluble iron from desert sources by anthropogenic pollutants (mainly sulfuric acid formed

  14. Control of mercury emissions from coal fired electric uitlity boilers: An update

    Science.gov (United States)

    Coal-fired power plants in the U.S. are known to be the major anthropogenic source of domestic mercury emissions. The Environmental Protection Agency (EPA) has recently proposed to reduce emissions of mercury from these plants. In March 2005, EPA plans to promulgate final regulat...

  15. Technology for controlling emissions from power plants fired with fossil fuel

    Energy Technology Data Exchange (ETDEWEB)

    Slack, A V

    1981-04-01

    Emission control technologies for fossil-fuel-fired power plants are examined. Acid rain, impaired visibility, and health effects of respirable particulates have combined to raise concerns from the local to the regional level. This report discusses advantages, disadvantages, and costs of technologies associated with emissions of sulfur oxides, nitrogen oxides, and particulate matter. Coal, oil and natural gas fuels are discussed. 7 refs.

  16. CO(2), CO, and Hg emissions from the Truman Shepherd and Ruth Mullins coal fires, eastern Kentucky, USA.

    Science.gov (United States)

    O'Keefe, Jennifer M K; Henke, Kevin R; Hower, James C; Engle, Mark A; Stracher, Glenn B; Stucker, J D; Drew, Jordan W; Staggs, Wayne D; Murray, Tiffany M; Hammond, Maxwell L; Adkins, Kenneth D; Mullins, Bailey J; Lemley, Edward W

    2010-03-01

    Carbon dioxide (CO(2)), carbon monoxide (CO), and mercury (Hg) emissions were quantified for two eastern Kentucky coal-seam fires, the Truman Shepherd fire in Floyd County and the Ruth Mullins fire in Perry County. This study is one of the first to estimate gas emissions from coal fires using field measurements at gas vents. The Truman Shepherd fire emissions are nearly 1400t CO(2)/yr and 16kg Hg/yr resulting from a coal combustion rate of 450-550t/yr. The sum of CO(2) emissions from seven vents at the Ruth Mullins fire is 726+/-72t/yr, suggesting that the fire is consuming about 250-280t coal/yr. Total Ruth Mullins fire CO and Hg emissions are estimated at 21+/-1.8t/yr and >840+/-170g/yr, respectively. The CO(2) emissions are environmentally significant, but low compared to coal-fired power plants; for example, 3.9x10(6)t CO(2)/yr for a 514-MW boiler in Kentucky. Using simple calculations, CO(2) and Hg emissions from coal-fires in the U.S. are estimated at 1.4x10(7)-2.9x10(8)t/yr and 0.58-11.5t/yr, respectively. This initial work indicates that coal fires may be an important source of CO(2), CO, Hg and other atmospheric constituents.

  17. Deforestation, Leakage and Avoided Deforestation Policies: A Spatial Analysis

    OpenAIRE

    Philippe Delacote; Elizabeth J. Z. Robinson; Sébastien Roussel

    2015-01-01

    This paper analyses the impact of several avoided deforestation policies within a patchy forested landscape. Central is the idea that one neighbour's deforestation actions may impact the returns to deforestation in nearby patches. We determine the impact of each policy in terms of avoided deforestation and leakage levels at the landscape scale through modelling and simulations. Avoided deforestation policies at a landscape level are respectively: two Payment for Environmental Services (PES) p...

  18. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    Science.gov (United States)

    Fofrich, R.; Shearer, C.; Davis, S. J.

    2017-12-01

    India represents a critical unknown in global projections of future CO2 emissions due to its growing population, industrializing economy, and large coal reserves. In this study, we assess existing and proposed construction of coal-fired power plants in India and evaluate their implications for future energy production and emissions in the country. In 2016, India had 369 coal-fired power plants under development totaling 243 gigawatts (GW) of generating capacity. These coal-fired power plants would increase India's coal-fired generating capacity by 123% and would exceed India's projected electricity demand. Therefore, India's current proposals for new coal-fired power plants would be forced to retire early or operate at very low capacity factors and/or would prevent India from meeting its goal of producing at least 40% of its power from renewable sources by 2030. In addition, future emissions from proposed coal-fired power plants would exceed India's climate commitment to reduce its 2005 emissions intensity 33% - 35% by 2030.

  19. Evaluating Greenhouse Gas Emissions Reporting Systems for Agricultural Waste Burning Using MODIS Active Fires

    Science.gov (United States)

    Lin, H.; Jin, Y.; Giglio, L.; Foley, J. A.; Randerson, J. T.

    2010-12-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CO2, CH4 and N2O from these fires annually. We evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries and the consistency of emissions reporting among countries. We also evaluated the success of the individual countries in capturing interannual variability and long-term trends in agricultural fire activity. We combined global crop maps with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) active fire detections. At a global scale, we recommend adding ground nuts, cocoa, cotton and oil palm, and removing potato, oats, pulse other and rye from the UNFCCC list of 14 crops. This leads to an overall increase of 6% of the active fires covered by the reporting system. Optimization led to a different recommended list for Annex 1 countries. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 10% to 20%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico and Nigeria) would capture over 58% of active fires in croplands worldwide. Analyses of interannual trends from the U.S. and Australia showed the importance of both intensity of fire use and crop production in controlling year-to-year variations in agricultural fire emissions. Remote sensing provides an efficient tool for an independent assessment of current UNFCCC emissions reporting system; and, if combined with census data, field experiments and expert opinion, has the potential for improving the robustness of the next generation inventory

  20. Radiative effects of interannually varying vs. interannually invariant aerosol emissions from fires

    Directory of Open Access Journals (Sweden)

    B. S. Grandey

    2016-11-01

    Full Text Available Open-burning fires play an important role in the earth's climate system. In addition to contributing a substantial fraction of global emissions of carbon dioxide, they are a major source of atmospheric aerosols containing organic carbon, black carbon, and sulfate. These “fire aerosols” can influence the climate via direct and indirect radiative effects. In this study, we investigate these radiative effects and the hydrological fast response using the Community Atmosphere Model version 5 (CAM5. Emissions of fire aerosols exert a global mean net radiative effect of −1.0 W m−2, dominated by the cloud shortwave response to organic carbon aerosol. The net radiative effect is particularly strong over boreal regions. Conventionally, many climate modelling studies have used an interannually invariant monthly climatology of emissions of fire aerosols. However, by comparing simulations using interannually varying emissions vs. interannually invariant emissions, we find that ignoring the interannual variability of the emissions can lead to systematic overestimation of the strength of the net radiative effect of the fire aerosols. Globally, the overestimation is +23 % (−0.2 W m−2. Regionally, the overestimation can be substantially larger. For example, over Australia and New Zealand the overestimation is +58 % (−1.2 W m−2, while over Boreal Asia the overestimation is +43 % (−1.9 W m−2. The systematic overestimation of the net radiative effect of the fire aerosols is likely due to the non-linear influence of aerosols on clouds. However, ignoring interannual variability in the emissions does not appear to significantly impact the hydrological fast response. In order to improve understanding of the climate system, we need to take into account the interannual variability of aerosol emissions.

  1. Committed CO2 Emissions of China's Coal-fired Power Plants

    Science.gov (United States)

    Suqin, J.

    2016-12-01

    The extent of global warming is determined by the cumulative effects of CO2 in the atmosphere. Coal-fired power plants, the largest anthropogenic source of CO2 emissions, produce large amount of CO2 emissions during their lifetimes of operation (committed emissions), which thus influence the future carbon emission space under specific targets on mitigating climate change (e.g., the 2 degree warming limit relative to pre-industrial levels). Comprehensive understanding of committed CO2 emissions for coal-fired power generators is urgently needed in mitigating global climate change, especially in China, the largest global CO2emitter. We calculated China's committed CO2 emissions from coal-fired power generators installed during 1993-2013 and evaluated their impact on future emission spaces at the provincial level, by using local specific data on the newly installed capacities. The committed CO2 emissions are calculated as the product of the annual coal consumption from newly installed capacities, emission factors (CO2emissions per unit crude coal consumption) and expected lifetimes. The sensitivities about generators lifetimes and the drivers on provincial committed emissions are also analyzed. Our results show that these relatively recently installed coal-fired power generators will lead to 106 Gt of CO2 emissions over the course of their lifetimes, which is more than three times the global CO2 emissions from fossil fuels in 2010. More than 80% (85 Gt) of their total committed CO2 will be emitted after 2013, which are referred to as the remaining emissions. Due to the uncertainties of generators lifetime, these remaining emissions would increase by 45 Gt if the lifetimes of China's coal-fired power generators were prolonged by 15 years. Furthermore, the remaining emissions are very different among various provinces owing to local developments and policy disparities. Provinces with large amounts of secondary industry and abundant coal reserves have higher committed

  2. The Environmental Legacy of Modern Tropical Deforestation.

    Science.gov (United States)

    Rosa, Isabel M D; Smith, Matthew J; Wearn, Oliver R; Purves, Drew; Ewers, Robert M

    2016-08-22

    Tropical deforestation has caused a significant share of carbon emissions and species losses, but historical patterns have rarely been explicitly considered when estimating these impacts [1]. A deforestation event today leads to a time-delayed future release of carbon, from the eventual decay either of forest products or of slash left at the site [2]. Similarly, deforestation often does not result in the immediate loss of species, and communities may exhibit a process of "relaxation" to their new equilibrium over time [3]. We used a spatially explicit land cover change model [4] to reconstruct the annual rates and spatial patterns of tropical deforestation that occurred between 1950 and 2009 in the Amazon, in the Congo Basin, and across Southeast Asia. Using these patterns, we estimated the resulting gross vegetation carbon emissions [2, 5] and species losses over time [6]. Importantly, we accounted for the time lags inherent in both the release of carbon and the extinction of species. We show that even if deforestation had completely halted in 2010, time lags ensured there would still be a carbon emissions debt of at least 8.6 petagrams, equivalent to 5-10 years of global deforestation, and an extinction debt of more than 140 bird, mammal, and amphibian forest-specific species, which if paid, would increase the number of 20(th)-century extinctions in these groups by 120%. Given the magnitude of these debts, commitments to reduce emissions and biodiversity loss are unlikely to be realized without specific actions that directly address this damaging environmental legacy. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  3. Deforestation in Portugal

    Directory of Open Access Journals (Sweden)

    João Branco

    2014-01-01

    Full Text Available Deforestation is not a new problem although world-wide population awareness is increasing. This issue has terrible environmental, social and economic consequences due to the over-exploitation of the natural resources and to alternative land uses which are more profitable in the short term. The combat and mitigation of deforestation is one of the biggest challenges for the 21st Century in order to achieve the Millennium Goals and a global sustainable development at all levels of human activities. Therefore, this paper will address this concerns focusing on the causes and consequences of deforestation as well as on the actions carried out by the decision makers in order to provide solutions for this increasingly and alarming problem. This paper will also approach the concepts of sustainability as well as the economy and management of the natural resources aiming an insight of the past deforestation in Portugal, the present situation and a sustainable perspective regarding the future.

  4. Deforestation Hydrological Effects

    International Nuclear Information System (INIS)

    Poveda J, G.; Mesa S, O.J.

    1995-01-01

    Deforestation causes strong disturbances in ecosystems and in hydrological cycle, increasing or reducing wealths. Particularly in this work, effects of feed back between interface processes land - atmosphere are discussed and is demonstrated that losses of water by evaporation-transpiration are thoroughly indispensable to maintain the balance of hydrological regime. It's concluded that as a rule the effect of deforestation is to reduce wealth middle and to increase extreme wealth with consequent stronger and more frequent droughts or flood effects. Other deforestation effects as increase in superficial temperature, increase in atmospherical pressure, decrease in soil moisture, decrease in evaporation-transpiration, decrease of soil ruggedness, decrease of thickness of atmospherical cap limit, decrease of clouds, decrease of rain in both medium and long term and the consequent decrease of rivers wealth middle are explained. Of other side, the basins with greater deforestation affectation in Colombia are indicated. Finally, it's demonstrated the need of implementing reforestation programs

  5. Hazardous emissions, operating practices, and air regulations at industrial wood-fired facilities in Wisconsin

    International Nuclear Information System (INIS)

    Hubbard, A.J.

    1993-01-01

    Since October of 1988 the State of Wisconsin Department of Natural Resources has regulated over four hundred substances as hazardous air pollutants. The rule regulates new as well as existing sources of air pollution in Wisconsin. Consequently, all permits to operate an air pollution source in Wisconsin must address the hazardous air emissions potential of the source. While widely perceived as a clean-burning fuel, wood is often burned in a manner which clearly results in significant emissions of very hazardous air pollutants. Research conducted on a 20 million BTU per hour wood-fired spreader stoker boiler in northern Wisconsin showed that this boiler has the potential to emit 0.022 pound of benzene and 0.012 pound of formaldehyde per ton (lb/ton) of wood fired. Recent stack tests at more than a dozen other small industrial wood-fired facilities in Wisconsin show a range of formaldehyde emissions of 0.0007--0.1950 lb/ton. Work at Birchwood Lumber ampersand Veneer showed that the benzene and formaldehyde emission rates under good firing conditions are an order of magnitude lower than the benzene and formaldehyde emission rates under poor firing conditions. This finding has supported Wisconsin's regulatory approach of encouraging wood-fired facilities to enhance the quality of the combustion process as a technique to minimize the hazardous air pollution potential of industrial wood combustion. The Wisconsin strategy is to define open-quotes good combustion technologyclose quotes through easily measurable combustion parameters rather than emission standards. This paper presents several techniques in use in Wisconsin to comply with open-quotes good combustion technologyclose quotes for industrial wood-fired furnaces. These techniques include fuel blending overfire air, furnace insulation, and proper grate design

  6. Deforestation in Portugal

    OpenAIRE

    João Branco; Márcia Oliveira; Orlanda Povoa

    2014-01-01

    Deforestation is not a new problem although world-wide population awareness is increasing. This issue has terrible environmental, social and economic consequences due to the over-exploitation of the natural resources and to alternative land uses which are more profitable in the short term. The combat and mitigation of deforestation is one of the biggest challenges for the 21st Century in order to achieve the Millennium Goals and a global sustainable development at all levels of human activiti...

  7. Forest Understory Fire in the Brazilian Amazon in ENSO and Non-ENSO Years: Area Burned and Committed Carbon Emissions

    Science.gov (United States)

    Alencar, A.; Nepstad, D.; Ver-Diaz, M. Del. C.

    2004-01-01

    "Understory fires" that burn the floor of standing forests are one of the most important types of forest impoverishment in the Amazon, especially during the severe droughts of El Nino Southern Oscillation (ENSO) episodes. However, we are aware of no estimates of the areal extent of these fires for the Brazilian Amazon and, hence, of their contribution to Amazon carbon fluxes to the atmosphere. We calculated the area of forest understory fires for the Brazilian Amazon region during an El Nino (1998) and a non El Nino (1995) year based on forest fire scars mapped with satellite images for three locations in eastern and southern Amazon, where deforestation is concentrated. The three study sites represented a gradient of both forest types and dry season severity. The burning scar maps were used to determine how the percentage of forest that burned varied with distance from agricultural clearings. These spatial functions were then applied to similar forest/climate combinations outside of the study sites to derive an initial estimate for the Brazilian Amazon. Ninety-one percent of the forest area that burned in the study sites was within the first kilometer of a clearing for the non ENSO year and within the first four kilometers for the ENSO year. The area of forest burned by understory forest fire during the severe drought (ENSO) year (3.9 millions of hectares) was 13 times greater than the area burned during the average rainfall year (0.2 million hectares), and twice the area of annual deforestation rate. Dense forest was, proportionally, the forest area most affected by understory fires during the El Nino year, while understory fires were concentrated in transitional forests during the year of average rainfall. Our estimate of aboveground tree biomass killed by fire ranged from 0.06 Pg to 0.38 Pg during the ENSO and from 0,004 Pg to 0,024 Pg during the non ENSO.

  8. Estimation of CO{sub 2}-emissions from Fires in Dwellings, Schools and Cars in the Nordic Countries

    Energy Technology Data Exchange (ETDEWEB)

    Blomqvist, Per; Simonson McNamee, Margaret

    2009-07-01

    Updated estimates of emissions from fires in dwellings, schools, pre schools and cars are presented for the Nordic countries with the exception of Iceland. The updated emissions are calculated based on fire statistics from 2007 and are compared to results previously presented for 1994 in Sweden. To put the fire emissions data into perspective they are also compared to national estimates of CO{sub 2} emissions as reported by the Swedish EPA to the EU in their National Inventory Report for 2007. The statistical data on fires for Sweden for 2007 is more reliable compared with the data for 1994, which strengthens the updated emission estimate. The major uncertainty in the fire data used for the emission estimate is the interpretation of fire spread which is based on rather crude assumptions. In particular in the case of houses the fire spread area used for the estimate may be an exaggeration thereby giving a possible overestimation of the estimated emissions. Data indicates that the total emission of CO{sub 2} from fires in dwellings (including single family homes, semi-detached houses, summer houses and apartments) in Sweden 2007 is 15,5 kton. Similar values for Denmark (4,1 kton), Finland (6,9 kton) and Norway (6,4 kton). Similar data for school/preschool and car fires indicate that emissions in Sweden are higher than in the other Nordic countries for these categories as well although not by as great an amount. Finally, a comparison between emissions data from other sources of CO{sub 2} and those from fires indicate that emissions of CO{sub 2} from fires are minor compared to most other sources. The previous study based on statistics from 1994 also concluded that fires are a minor source of CO{sub 2} but a relatively significant source of, e.g., particulate matter, VOC, PAH and other large organic species

  9. Gaseous emissions and toxic hazards associated with plastics in fire situations: A literature review

    Science.gov (United States)

    Junod, T. L.

    1976-01-01

    The hazards of plastics in fire situations, the gases emitted, the factors influencing the nature of these emissions, the characteristics of toxic gases, and the results of laboratory studies, are discussed. The literature pertaining to the pyrolysis and oxidation of plastics was reviewed. An effort was made to define the state of the art for determining the toxic gases emitted by plastics under fire conditions. Recommendations are made and research needs defined as a result of this review.

  10. Daily and 3-hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    Science.gov (United States)

    Mu, M.; Randerson, J. T.; vanderWerf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; hide

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We disaggregated monthly GFED3 emissions during 2003.2009 to a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS) ]derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) Wildfire Automated Biomass Burning Algorithm (WF_ABBA) active fire observations. Daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of burning in savannas. These patterns were consistent with earlier field and modeling work characterizing fire behavior dynamics in different ecosystems. On diurnal timescales, our analysis of the GOES WF_ABBA active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top ]down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from

  11. Simulating smoke transport from wildland fires with a regional-scale air quality model: sensitivity to spatiotemporal allocation of fire emissions.

    Science.gov (United States)

    Garcia-Menendez, Fernando; Hu, Yongtao; Odman, Mehmet T

    2014-09-15

    Air quality forecasts generated with chemical transport models can provide valuable information about the potential impacts of fires on pollutant levels. However, significant uncertainties are associated with fire-related emission estimates as well as their distribution on gridded modeling domains. In this study, we explore the sensitivity of fine particulate matter concentrations predicted by a regional-scale air quality model to the spatial and temporal allocation of fire emissions. The assessment was completed by simulating a fire-related smoke episode in which air quality throughout the Atlanta metropolitan area was affected on February 28, 2007. Sensitivity analyses were carried out to evaluate the significance of emission distribution among the model's vertical layers, along the horizontal plane, and into hourly inputs. Predicted PM2.5 concentrations were highly sensitive to emission injection altitude relative to planetary boundary layer height. Simulations were also responsive to the horizontal allocation of fire emissions and their distribution into single or multiple grid cells. Additionally, modeled concentrations were greatly sensitive to the temporal distribution of fire-related emissions. The analyses demonstrate that, in addition to adequate estimates of emitted mass, successfully modeling the impacts of fires on air quality depends on an accurate spatiotemporal allocation of emissions. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Mercury emissions from South Africa’s coal-fired power stations

    Directory of Open Access Journals (Sweden)

    Belinda L. Garnham

    2016-12-01

    Full Text Available Mercury is a persistent and toxic substance that can be bio-accumulated in the food chain. Natural and anthropogenic sources contribute to the mercury emitted in the atmosphere. Eskom’s coal-fired power stations in South Africa contributed just under 93% of the total electricity produced in 2015 (Eskom 2016. Trace amounts of mercury can be found in coal, mostly combined with sulphur, and can be released into the atmosphere upon combustion. Coal-fired electricity generation plants are the highest contributors to mercury emissions in South Africa. A major factor affecting the amount of mercury emitted into the atmosphere is the type and efficiency of emission abatement equipment at a power station. Eskom employs particulate emission control technology at all its coal-fired power stations, and new power stations will also have sulphur dioxide abatement technology. A co-beneficial reduction of mercury emissions exists as a result of emission control technology. The amount of mercury emitted from each of Eskom’s coal-fired power stations is calculated, based on the amount of coal burnt and the mercury content in the coal. Emission Reduction Factors (ERF’s from two sources are taken into consideration to reflect the co-benefit received from the emission control technologies at the stations. Between 17 and 23 tons of mercury is calculated to have been emitted from Eskom’s coal-fired power stations in 2015. On completion of Eskom’s emission reduction plan, which includes fabric filter plant retrofits at two and a half stations and a flue gas desulphurisation retrofit at one power station, total mercury emissions from the fleet will potentially be reduced by 6-13% by 2026 relative to the baseline. Mercury emission reduction is perhaps currently not the most pressing air quality problem in South Africa. While the focus should then be on reducing emissions of other pollutants which have a greater impact on human health, mercury emission reduction

  13. PM2.5 and Carbon Emissions from Prescribed Fire in a Longleaf Pine Ecosystem

    Science.gov (United States)

    Strenfel, S. J.; Clements, C. B.; Hiers, J. K.; Kiefer, C. M.

    2008-12-01

    Prescribed fires are a frequently utilized land-management tool in the Southeastern US. In order to better characterize emissions and impacts from prescribed fire in longleaf pine ecosystems, in situ data were obtained within the burn perimeter using a 10-m instrumented flux tower. Turbulence and temperature data at 10-m were sampled at 10 Hz using a sonic anemometer and fine-wire thermocouples respectively. Measurements of PM2.5, CO and CO2 emissions were sampled at 10-m within the burn perimeter and PM2.5 and Black Carbon PM2.5 were sampled 0.5 km downwind of the fire front using a 2-m instrumented tripod. Preliminary results indicate PM2.5 and carbon emissions significantly increased during the fire-front passage, and downwind PM concentrations were amplified beyond pre-fire ambient concentrations. In addition, the considerable amount a heat release and flux data gathered from these prescribed fires suggests that near surface atmospheric conditions were directly impacted by increased turbulence generation.

  14. Environmental radioactivity and radiation exposure by radioactive emissions of coal-fired power plants

    International Nuclear Information System (INIS)

    Jacobi, W.

    1981-03-01

    On the basis of measurements of the radioactive emissions of a 300 MW coal-fired power plant and of a 600 MW lignite-fired power plant the expected activity increase in air and soil in the environment of both plants is estimated and compared with the normal, natural activity level. Due to these emissions it results for the point of maximum immission a committed effective dose equivalent per GW x a of about 0.2 mrem = 0.002 mSv for the coal-fired plant and of about 0.04 mrem = 0.0004 mSv for the lignite-fired plant. This dose is caused to nearly equal parts by inhalation, ingestion and external γ-radiation. The normalized effective dose equivalent in the environment of the modern coal-fired power plant is in the same order of magnitude like that of a modern pressurized water reactor. The total, collective effective dose equivalent commitment by the annual radioactive emissions of coal-fired power plants in the F.R.Germany is estimated to 2000-6000 Man x rem = 20-60 Man x Sv. This corresponds to a mean per caput-dose in the population of the F.R.Germany of about 0.03-0.1 mrem = 0.0003-0.001 mSv; this is about 0.02-0.06% of the mean normal natural radiation exposure of the population. (orig.) [de

  15. ESTIMATION OF NEAR SUBSURFACE COAL FIRE GAS EMISSIONS BASED ON GEOPHYSICAL INVESTIGATIONS

    Science.gov (United States)

    Chen-Brauchler, D.; Meyer, U.; Schlömer, S.; Kus, J.; Gundelach, V.; Wuttke, M.; Fischer, C.; Rueter, H.

    2009-12-01

    Spontaneous and industrially caused subsurface coal fires are worldwide disasters that destroy coal resources, cause air pollution and emit a large amount of green house gases. Especially in developing countries, such as China, India and Malaysia, this problem has intensified over the last 15 years. In China alone, 10 to 20 million tons of coal are believed to be lost in uncontrolled coal fires. The cooperation of developing countries and industrialized countries is needed to enforce internationally concerted approaches and political attention towards the problem. The Clean Development Mechanism (CDM) under the framework of the Kyoto Protocol may provide an international stage for financial investment needed to fight the disastrous situation. A Sino-German research project for coal fire exploration, monitoring and extinction applied several geophysical approaches in order to estimate the annual baseline especially of CO2 emissions from near subsurface coal fires. As a result of this project, we present verifiable methodologies that may be used in the CDM framework to estimate the amount of CO2 emissions from near subsurface coal fires. We developed three possibilities to approach the estimation based on (1) thermal energy release, (2) geological and geometrical determinations as well as (3) direct gas measurement. The studies involve the investigation of the physical property changes of the coal seam and bedrock during different burning stages of a underground coal fire. Various geophysical monitoring methods were applied from near surface to determine the coal volume, fire propagation, temperature anomalies, etc.

  16. Near-field emission profiling of tropical forest and Cerrado fires in Brazil during SAMBBA 2012

    Directory of Open Access Journals (Sweden)

    A. K. Hodgson

    2018-04-01

    Full Text Available We profile trace gas and particulate emissions from near-field airborne measurements of discrete smoke plumes in Brazil during the 2012 biomass burning season. The South American Biomass Burning Analysis (SAMBBA Project conducted during September and October 2012 sampled across two distinct fire regimes prevalent in the Amazon Basin. Combined measurements from a Compact Time-of-Flight Aerosol Mass Spectrometer (C-ToF-AMS and a Single Particle Soot Photometer (SP2 are reported for the first time in a tropical biomass burning environment. Emissions from a mostly smouldering tropical forest wildfire in Rondônia state and numerous smaller flaming Cerrado fires in Tocantins state are presented. While the Cerrado fires appear to be representative of typical fire conditions in the existing literature, the tropical forest wildfire likely represents a more extreme example of biomass burning with a bias towards mostly smouldering emissions. We determined fire-integrated modified combustion efficiencies, emission ratios and emission factors for trace gas and particulate components for these two fire types, alongside aerosol microphysical properties. Seven times more black carbon was emitted from the Cerrado fires per unit of fuel combustion (EFBC of 0.13 ± 0.04 g kg−1 compared to the tropical forest fire (EFBC of 0.019 ± 0.006 g kg−1, and more than 6 times the amount of organic aerosol was emitted from the tropical forest fire per unit of fuel combustion (EFOM of 8.00 ± 2.53 g kg−1, EFOC of 5.00 ± 1.58 g kg−1 compared to the Cerrado fires (EFOM of 1.31 ± 0.42 g kg−1, EFOC of 0.82 ± 0.26 g kg−1. Particulate-phase species emitted from the fires sampled are generally lower than those reported in previous studies and in emission inventories, which is likely a combination of differences in fire combustion efficiency and fuel mixture, along with different measurement techniques. Previous

  17. Fire-induced Carbon Emissions and Regrowth Uptake in Western U.S. Forests: Documenting Variation Across Forest Types, Fire Severity, and Climate Regions

    Science.gov (United States)

    Ghimire, Bardan; Williams, Christopher A.; Collatz, George James; Vanderhoof, Melanie

    2012-01-01

    The forest area in the western United States that burns annually is increasing with warmer temperatures, more frequent droughts, and higher fuel densities. Studies that examine fire effects for regional carbon balances have tended to either focus on individual fires as examples or adopt generalizations without considering how forest type, fire severity, and regional climate influence carbon legacies. This study provides a more detailed characterization of fire effects and quantifies the full carbon impacts in relation to direct emissions, slow release of fire-killed biomass, and net carbon uptake from forest regrowth. We find important variations in fire-induced mortality and combustion across carbon pools (leaf, live wood, dead wood, litter, and duff) and across low- to high-severity classes. This corresponds to fire-induced direct emissions from 1984 to 2008 averaging 4 TgC/yr and biomass killed averaging 10.5 TgC/yr, with average burn area of 2723 sq km/yr across the western United States. These direct emission and biomass killed rates were 1.4 and 3.7 times higher, respectively, for high-severity fires than those for low-severity fires. The results show that forest regrowth varies greatly by forest type and with severity and that these factors impose a sustained carbon uptake legacy. The western U.S. fires between 1984 and 2008 imposed a net source of 12.3 TgC/yr in 2008, accounting for both direct fire emissions (9.5 TgC/yr) and heterotrophic decomposition of fire-killed biomass (6.1 TgC yr1) as well as contemporary regrowth sinks (3.3 TgC/yr). A sizeable trend exists toward increasing emissions as a larger area burns annually.

  18. Air quality and human health improvements from reduced deforestation in Brazil

    Science.gov (United States)

    Reddington, C.; Butt, E. W.; Ridley, D. A.; Artaxo, P.; Morgan, W.; Coe, H.; Spracklen, D. V.

    2015-12-01

    Significant areas of the Brazilian Amazon have been deforested over the past few decades, with fire being the dominant method through which forests and vegetation are cleared. Fires emit large quantities of particulate matter into the atmosphere, degrading air quality and negatively impacting human health. Since 2004, Brazil has achieved substantial reductions in deforestation rates and associated deforestation fires. Here we assess the impact of this reduction on air quality and human health. We show that dry season (August - October) aerosol optical depth (AOD) retrieved by satellite over southwest Brazil and Bolivia is positively related to Brazil's annual deforestation rate (r=0.96, Pannually across South America. Future increases in Brazil's deforestation rates and associated fires may threaten the improved air quality reported here.

  19. Hazardous air pollutants emission from coal and oil-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    Deepak Pudasainee; Jeong-Hun Kim; Sang-Hyeob Lee; Ju-Myon Park; Ha-Na Jang; Geum-Ju Song; Yong-Chil Seo [Yonsei University, Wonju (Republic of Korea). Department of Environmental Engineering

    2010-03-15

    Hazardous air pollutants (HAPs) emission characteristics from coal (anthracite, bituminous) and oil-fired power plants were studied in order to control pollutants by formulating US maximum achievable control technology (MACT)-like regulation in Korea. Sampling and analysis were carried out according to either Korean standard test method or US EPA method. Relatively lower levels of NOx and SOx were emitted from plants burning bituminous than the anthracite coal. Less dust was emitted from oil-fired power plants. Mercury, lead, and chromium were dominant in coal-fired power plants, following which, nickel and chromium were emitted from oil-fired power plants. The major volatile organic compounds (VOCs) emitted from coal-fired plants were 1,2-dichloroethane, benzene, carbon tetrachloride, chloroform, trichloro-ethylene. The emission of mercury and other heavy metals in flue gas was attributed to fuel types, operating conditions, residence time in the control devices and the type of air pollution control devices. After emission tests in the field and on analysis of the continuous emission monitoring data collected from facilities under operation and consideration of other various factors, management guidelines will be suggested with special reference to US MACT-like regulation.

  20. The Characteristics of Peats and Co2 Emission Due to Fire in Industrial Plant Forests

    Science.gov (United States)

    Ratnaningsih, Ambar Tri; Rayahu Prasytaningsih, Sri

    2017-12-01

    Riau Province has a high threat to forest fire in peat soils, especially in industrial forest areas. The impact of fires will produce carbon (CO2) emissions in the atmosphere. The magnitude of carbon losses from the burning of peatlands can be estimated by knowing the characteristics of the fire peat and estimating CO2 emissions produced. The objectives of the study are to find out the characteristics of fire-burning peat, and to estimate carbon storage and CO2 emissions. The location of the research is in the area of industrial forest plantations located in Bengkalis Regency, Riau Province. The method used to measure peat carbon is the method of lost in ignation. The results showed that the research location has a peat depth of 600-800 cm which is considered very deep. The Peat fiber content ranges from 38 to 75, classified as hemic peat. The average bulk density was 0.253 gram cm-3 (0.087-0,896 gram cm-3). The soil ash content is 2.24% and the stored peat carbon stock with 8 meter peat thickness is 10723,69 ton ha-1. Forest fire was predicted to burn peat to a depth of 100 cm and produced CO2 emissions of 6,355,809 tons ha-1.

  1. Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia

    Directory of Open Access Journals (Sweden)

    H.-H. Lee

    2018-05-01

    Full Text Available Severe haze events in Southeast Asia caused by particulate pollution have become more intense and frequent in recent years. Widespread biomass burning occurrences and particulate pollutants from human activities other than biomass burning play important roles in degrading air quality in Southeast Asia. In this study, numerical simulations have been conducted using the Weather Research and Forecasting (WRF model coupled with a chemistry component (WRF-Chem to quantitatively examine the contributions of aerosols emitted from fire (i.e., biomass burning versus non-fire (including fossil fuel combustion, and road dust, etc. sources to the degradation of air quality and visibility over Southeast Asia. These simulations cover a time period from 2002 to 2008 and are driven by emissions from (a fossil fuel burning only, (b biomass burning only, and (c both fossil fuel and biomass burning. The model results reveal that 39 % of observed low-visibility days (LVDs can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. Analysis of an 24 h PM2.5 air quality index (AQI indicates that the case with coexisting fire and non-fire PM2.5 can substantially increase the chance of AQI being in the moderate or unhealthy pollution level from 23 to 34 %. The premature mortality in major Southeast Asian cities due to degradation of air quality by particulate pollutants is estimated to increase from  ∼  4110 per year in 2002 to  ∼  6540 per year in 2008. In addition, we demonstrate the importance of certain missing non-fire anthropogenic aerosol sources including anthropogenic fugitive and industrial dusts in causing urban air quality degradation. An experiment of using machine learning algorithms to forecast the occurrence of haze events in Singapore is

  2. Impacts of air pollutants from fire and non-fire emissions on the regional air quality in Southeast Asia

    Science.gov (United States)

    Lee, Hsiang-He; Iraqui, Oussama; Gu, Yefu; Hung-Lam Yim, Steve; Chulakadabba, Apisada; Yiu-Ming Tonks, Adam; Yang, Zhengyu; Wang, Chien

    2018-05-01

    Severe haze events in Southeast Asia caused by particulate pollution have become more intense and frequent in recent years. Widespread biomass burning occurrences and particulate pollutants from human activities other than biomass burning play important roles in degrading air quality in Southeast Asia. In this study, numerical simulations have been conducted using the Weather Research and Forecasting (WRF) model coupled with a chemistry component (WRF-Chem) to quantitatively examine the contributions of aerosols emitted from fire (i.e., biomass burning) versus non-fire (including fossil fuel combustion, and road dust, etc.) sources to the degradation of air quality and visibility over Southeast Asia. These simulations cover a time period from 2002 to 2008 and are driven by emissions from (a) fossil fuel burning only, (b) biomass burning only, and (c) both fossil fuel and biomass burning. The model results reveal that 39 % of observed low-visibility days (LVDs) can be explained by either fossil fuel burning or biomass burning emissions alone, a further 20 % by fossil fuel burning alone, a further 8 % by biomass burning alone, and a further 5 % by a combination of fossil fuel burning and biomass burning. Analysis of an 24 h PM2.5 air quality index (AQI) indicates that the case with coexisting fire and non-fire PM2.5 can substantially increase the chance of AQI being in the moderate or unhealthy pollution level from 23 to 34 %. The premature mortality in major Southeast Asian cities due to degradation of air quality by particulate pollutants is estimated to increase from ˜ 4110 per year in 2002 to ˜ 6540 per year in 2008. In addition, we demonstrate the importance of certain missing non-fire anthropogenic aerosol sources including anthropogenic fugitive and industrial dusts in causing urban air quality degradation. An experiment of using machine learning algorithms to forecast the occurrence of haze events in Singapore is also explored in this study. All of these

  3. Daily and Hourly Variability in Global Fire Emissions and Consequences for Atmospheric Model Predictions of Carbon Monoxide

    Science.gov (United States)

    Mu, M.; Randerson, J. T.; van der Werf, G. R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G. J.; DeFries, R. S.; Hyer, E. J.; Prins, E. M.; hide

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic- and diurnal-scale temporal variability in fire emissions for the Global Fire Emissions Database version 3 (GFED3). We distributed monthly GFED3 emissions during 2003-2009 on a daily time step using Moderate Resolution Imaging Spectroradiometer (MODIS)-derived measurements of active fires from Terra and Aqua satellites. In parallel, mean diurnal cycles were constructed from Geostationary Operational Environmental Satellite (GOES) active fire observations. We found that patterns of daily variability in fires varied considerably across different biomes, with short but intense periods of daily emissions in boreal ecosystems and lower intensity (but more continuous) periods of bunting in savannas. On diurnal timescales, our analysis of the GOES active fires indicated that fires in savannas, grasslands, and croplands occurred earlier in the day as compared to fires in nearby forests. Comparison with Total Carbon Column Observing Network (TCCON) and Measurements of Pollution in the Troposphere (MOPITT) column CO observations provided evidence that including daily variability in emissions moderately improved atmospheric model simulations, particularly during the fire season and near regions with high levels of biomass burning. The high temporal resolution estimates of fire emissions developed here may ultimately reduce uncertainties related to fire contributions to atmospheric trace gases and aerosols. Important future directions include reconciling top-down and bottom up estimates of fire radiative power and integrating burned area and active fire time series from multiple satellite sensors to improve daily emissions estimates.

  4. Emission Characteristics of Gas-Fired Boilers based on Category-Specific Emission Factor from Field Measurements in Beijing, China

    Science.gov (United States)

    Itahashi, S.; Yan, X.; Song, G.; Yan, J.; Xue, Y.

    2017-12-01

    Gas-fired boilers will become the main stationary sources of NOx in Beijing. However, the knowledge of gas-fired boilers in Beijing is limited. In the present study, the emission characteristics of NOx, SO2, and CO from gas-fired boilers in Beijing were established using category-specific emission factors (EFs) from field measurements. In order to obtain category-specific EFs, boilers were classified through influence analysis. Factors such as combustion mode, boiler type, and installed capacity were considered critical for establishing EFs because they play significant roles in pollutant formation. The EFs for NOx, CO, and SO2 ranged from 1.42-6.86 g m-3, 0.05-0.67 g m-3 and 0.03-0.48 g m-3. The emissions of NOx, SO2, and CO for gas-fired boilers in Beijing were 11121 t, 468 t, and 222 t in 2014, respectively. The emissions were spatially allocated into grid cells with a resolution of 1 km × 1 km, and the results indicated that top emitters were in central Beijing. The uncertainties were quantified using a Monte Carlo simulation. The results indicated high uncertainties in CO (-157% to 154%) and SO2 (-127% to 182%) emissions, and relatively low uncertainties (-34% to 34%) in NOx emission. Furthermore, approximately 61.2% and 96.8% of the monitored chamber combustion boilers (CCBs) met the standard limits for NOx and SO2, respectively. Concerning NOx, low-NOx burners and NOx emission control measures are urgently needed for implementing of stricter standards. Adopting terminal control measures is unnecessary for SO2, although its concentration occasionally exceeds standard limits, because reduction of its concentration can be achieved thorough control of the sulfur content of natural gas at a stable low level. Furthermore, the atmospheric combustion boilers (ACBs) should be substituted with CCBs, because ACBs have a higher emission despite lower gross installed capacity. The results of this study will enable in understanding and controlling emissions from gas-fired

  5. Temperature and burning history affect emissions of greenhouse gases and aerosol particles from tropical peatland fire

    Science.gov (United States)

    Kuwata, Mikinori; Kai, Fuu Ming; Yang, Liudongqing; Itoh, Masayuki; Gunawan, Haris; Harvey, Charles F.

    2017-01-01

    Tropical peatland burning in Asia has been intensifying over the last decades, emitting huge amounts of gas species and aerosol particles. Both laboratory and field studies have been conducted to investigate emission from peat burning, yet a significant variability in data still exists. We conducted a series of experiments to characterize the gas and particulate matter emitted during burning of a peat sample from Sumatra in Indonesia. Heating temperature of peat was found to regulate the ratio of CH4 to CO2 in emissions (ΔCH4/ΔCO2) as well as the chemical composition of particulate matter. The ΔCH4/ΔCO2 ratio was larger for higher temperatures, meaning that CH4 emission is more pronounced at these conditions. Mass spectrometric analysis of organic components indicated that aerosol particles emitted at higher temperatures had more unsaturated bonds and ring structures than that emitted from cooler fires. The result was consistently confirmed by nuclear magnetic resonance analysis. In addition, CH4 emitted by burning charcoal, which is derived from previously burned peat, was lower by at least an order of magnitude than that from fresh peat. These results highlight the importance of both fire history and heating temperature for the composition of tropical peat-fire emissions. They suggest that remote sensing technologies that map fire histories and temperatures could provide improved estimates of emissions.

  6. Atmospheric CH4 and CO2 enhancements and biomass burning emission ratios derived from satellite observations of the 2015 Indonesian fire plumes

    Directory of Open Access Journals (Sweden)

    R. J. Parker

    2016-08-01

    Full Text Available The 2015–2016 strong El Niño event has had a dramatic impact on the amount of Indonesian biomass burning, with the El Niño-driven drought further desiccating the already-drier-than-normal landscapes that are the result of decades of peatland draining, widespread deforestation, anthropogenically driven forest degradation and previous large fire events. It is expected that the 2015–2016 Indonesian fires will have emitted globally significant quantities of greenhouse gases (GHGs to the atmosphere, as did previous El Niño-driven fires in the region. The form which the carbon released from the combustion of the vegetation and peat soils takes has a strong bearing on its atmospheric chemistry and climatological impacts. Typically, burning in tropical forests and especially in peatlands is expected to involve a much higher proportion of smouldering combustion than the more flaming-characterised fires that occur in fine-fuel-dominated environments such as grasslands, consequently producing significantly more CH4 (and CO per unit of fuel burned. However, currently there have been no aircraft campaigns sampling Indonesian fire plumes, and very few ground-based field campaigns (none during El Niño, so our understanding of the large-scale chemical composition of these extremely significant fire plumes is surprisingly poor compared to, for example, those of southern Africa or the Amazon.Here, for the first time, we use satellite observations of CH4 and CO2 from the Greenhouse gases Observing SATellite (GOSAT made in large-scale plumes from the 2015 El Niño-driven Indonesian fires to probe aspects of their chemical composition. We demonstrate significant modifications in the concentration of these species in the regional atmosphere around Indonesia, due to the fire emissions.Using CO and fire radiative power (FRP data from the Copernicus Atmosphere Service, we identify fire-affected GOSAT soundings and show that peaks in fire activity are followed by

  7. Assessment of nitrogen oxide emission for designing boilers fired with coal dust

    Energy Technology Data Exchange (ETDEWEB)

    Kotler, V.R.; Gusev, L.N.; Babii, V.I.

    1983-09-01

    A method for forecasting emission of nitrogen oxides from steam boilers fired with coal is described. The method produces accurate results when nitrogen oxide emission from furnaces with straight-flow burners and turbulent-type burners fired with coal dusts is forecast. Oxides formed by decomposition of chemical compounds in coal (so-called 'fuel' nitrogen oxides) and nitrogen oxides formed by oxidation of molecular nitrogen by atomic oxygen (so-called 'thermal' nitrogen oxides) are evaluated. Zones in which the two types of nitrogen oxide are formed in flames are characterized. Factors which influence formation of nitrogen oxides in a furnace are evaluated: excess air, flue gas recirculation, design of a furnace and burners, movement of air and coal dust mixture in a furnace, temperature, methods for coal dust preparation, coal dust properties. Equations for forecasting emission of nitrogen oxides from furnaces are derived. Nomograms for easy calculation of emission are also given. Examples of using the method for forecasting emission of nitrogen oxides from furnaces fired with coal from the Kuzbass, the Donbass and Ehkibastuz are discussed. Comparisons of emission of nitrogen oxides calculated on the basis of the method and emission determined experimentally show that forecasting accuracy is high and errors do not exceed 10%. 5 references.

  8. A new emission inventory for nonagricultural open fires in Asia from 2000 to 2009

    Energy Technology Data Exchange (ETDEWEB)

    Song Yu; Chang Di; Liu Bing; Miao Weijie; Zhu Lei; Zhang Yuanhang, E-mail: songyu@pku.edu.c, E-mail: yhzhang@pku.edu.c [State Key Joint Laboratory of Environmental Simulation and Pollution Control, Department of Environmental Sciences, Peking University, Beijing 100871 (China)

    2010-01-15

    Open fires play a significant role in atmospheric pollution and climatic change. This work aims to develop an emission inventory for nonagricultural open fires in Asia using the newly released MODIS (Moderate Resolution Imaging Spectroradiometer) burned area product (MCD45A1), as the MODIS sensor cannot efficiently detect field crop residue burning. Country-level or province-specific biomass density data were used as fuel loads. Moisture contents were taken into account when calculating combustion factors for grass fuel. During the nine fire years 2000-2008, both burned areas and fire emissions clearly presented spatial and seasonal variations. Extensive nonagricultural open fires were concentrated in the months of February and March, while another peak was between August and October. Indonesia was the most important contributor to fire emission, which was largely attributable to peat burning. Myanmar, India, and Cambodia together contributed approximately half of the total burned area and emission. The annual emissions for CO{sub 2}, CO, CH{sub 4}, NMHC{sub s}, NO{sub x}, NH{sub 3}, SO{sub 2}, BC, OC, PM{sub 2.5}, and PM{sub 10} were 83 (69-103), 6.1 (4.6-8.2), 0.38 (0.24-0.57), 0.64 (0.36-1.0), 0.085 (0.074-0.10), 0.31 (0.17-0.48), 0.030 (0.024-0.037), 0.023 (0.020-0.028), 0.27 (0.22-0.33), 2.0 (1.6-2.6), and 2.2 (1.7-2.9) Tg yr{sup -1}, respectively. This inventory has a daily temporal resolution and 500 m spatial resolution, and covers a long period, from April 2000 to February 2009. It could be used in global and regional air quality modeling.

  9. A new emission inventory for nonagricultural open fires in Asia from 2000 to 2009

    International Nuclear Information System (INIS)

    Song Yu; Chang Di; Liu Bing; Miao Weijie; Zhu Lei; Zhang Yuanhang

    2010-01-01

    Open fires play a significant role in atmospheric pollution and climatic change. This work aims to develop an emission inventory for nonagricultural open fires in Asia using the newly released MODIS (Moderate Resolution Imaging Spectroradiometer) burned area product (MCD45A1), as the MODIS sensor cannot efficiently detect field crop residue burning. Country-level or province-specific biomass density data were used as fuel loads. Moisture contents were taken into account when calculating combustion factors for grass fuel. During the nine fire years 2000-2008, both burned areas and fire emissions clearly presented spatial and seasonal variations. Extensive nonagricultural open fires were concentrated in the months of February and March, while another peak was between August and October. Indonesia was the most important contributor to fire emission, which was largely attributable to peat burning. Myanmar, India, and Cambodia together contributed approximately half of the total burned area and emission. The annual emissions for CO 2 , CO, CH 4 , NMHC s , NO x , NH 3 , SO 2 , BC, OC, PM 2.5 , and PM 10 were 83 (69-103), 6.1 (4.6-8.2), 0.38 (0.24-0.57), 0.64 (0.36-1.0), 0.085 (0.074-0.10), 0.31 (0.17-0.48), 0.030 (0.024-0.037), 0.023 (0.020-0.028), 0.27 (0.22-0.33), 2.0 (1.6-2.6), and 2.2 (1.7-2.9) Tg yr -1 , respectively. This inventory has a daily temporal resolution and 500 m spatial resolution, and covers a long period, from April 2000 to February 2009. It could be used in global and regional air quality modeling.

  10. Environmental concerns of deforestation

    International Nuclear Information System (INIS)

    Rahman, A.

    1995-01-01

    The loss of forests as a result of deforestation is a serious problem in Pakistan as well as in other developing world. The forests play important role in environmental protection through soil conservation, regulation of hydrological cycles and micro climate amelioration. At the global scale, forests act as carbon sinks, maintain biodiversity and regulate climate, especially in the context of greenhouse effect. The deforestation should be countered through enforcement of strict laws and elaborating environmental role of forests through media and local councils. Various economic analysis indicate that tropical forests have greater overall benefits if left intact, rather than destroying them for timber. (author)

  11. Volatile and semivolatile organic compounds in laboratory peat fire emissions

    Data.gov (United States)

    U.S. Environmental Protection Agency — Supporting information Tables S3 and S4 list emission factors in g/kg of speciated volatile and particulate organic compounds emitted from peat burning. Peat samples...

  12. Emission spectroscopy for coal-fired cyclone furnace diagnostics

    Energy Technology Data Exchange (ETDEWEB)

    Wehrmeyer, J.A.; Boll, D.E.; Smith, R. [Vanderbilt University, Nashville, TN (United States). Dept. of Mechanical Engineering

    2003-08-01

    Using a spectrograph and charge-coupled device (CCD) camera, ultraviolet and visible light emission spectra were obtained from a coal-burning electric utility's cyclone furnaces operating at either fuel-rich or fuel-lean conditions. The aim of this effort is to identify light emission signals that can be related to a cyclone furnace's operating condition in order to adjust its air/fuel ratio to minimize pollutant production. Emission spectra at the burner and outlet ends of cyclone furnaces were obtained. Spectra from all cyclone burners show emission lines for the trace elements Li, Na, K, and Rb, as well as the molecular species OH and CaOH. The Ca emission line is detected at the burner end of both the fuel-rich and fuellean cyclone furnaces but is not detected at the outlet ends of either furnace type. Along with the disappearance of Ca is a concomitant increase in the CaOH signal at the outlet end of both types of furnaces. The OH signal strength is in general stronger when viewing at the burner end rather than the exhaust end of both the fuel-rich and fuel-lean cyclone furnaces, probably due to high, non-equilibrium amounts of OH present inside the furnace. Only one molecular species was detected that could be used as a measure of air/fuel ratio: MgOH. It was detected at the burner end of fuel-rich cyclone furnaces but not detected in fuel-lean cyclone furnaces. More direct markers of air/fuel ratio, such as CO and 02 emission, were not detected, probably due to the generally weak nature of molecular emission relative to ambient blackbody emission present in the cyclone furnaces, even at ultraviolet wavelengths.

  13. Recent advances in prediction of emission of hazardous air pollutants from coal-fired power plants

    International Nuclear Information System (INIS)

    Senior, C.L.; Helble, J.J.; Sarofim, A.F.

    2000-01-01

    Coal-fired power plants are a primary source of mercury discharge into the atmosphere along with fine particulates containing arsenic, selenium, cadmium, and other hazardous air pollutants. Information regarding the speciation of these toxic metals is necessary to accurately predict their atmospheric transport and fate in the environment. New predictive tools have been developed to allow utilities to better estimate the emissions of toxic metals from coal-fired power plants. These prediction equations are based on fundamental physics and chemistry and can be applied to a wide variety of fuel types and combustion conditions. The models have significantly improved the ability to predict the emissions of air toxic metals in fine particulate and gas-phase mercury. In this study, the models were successfully tested using measured mercury speciation and mass balance information collected from coal-fired power plants

  14. Effects of active forest fire on terrestrial ecosystem production and greenhouse gas emissions

    Science.gov (United States)

    Sannigrahi, Srikanta; Rahmat, Shahid; Bhatt, Sandeep; Rana, Virendra

    2017-04-01

    Uttarakhand) due to the subtle water stress condition with lesser soil moisture content into the ground. Among the 13 districts, the maximum net emissions of carbon and nitrogen compounds have been observed in 7 districts (accounting for high biomass and forest cover loss by the 2016 forest fire), whereas, the rest of the 6 districts acts as the sequester of greenhouse compounds. This new approach having the potentiality of quantifying the losses of ecosystem productivity due to forest fires and could be used in broader aspects if more accurate field based observation can be obtained in the near future.

  15. Forest Fire Smoldering Emissions from Ponderosa Pine Duff in Central Washington

    Science.gov (United States)

    Baker, S. P.; Lincoln, E.; Page, W.; Richardson, M.

    2017-12-01

    Forest fire smoldering combustion is a significant contribution to pollution and carbon emissions. Smoldering combustion produces the majority of carbon monoxide (CO), methane (CH4), volatile organic compounds (VOC), and fine particulate matter (PM2.5) emitted by forest fires when it occurs. The emission factor for PM2.5 and many VOCs are correlated with the modified combustion efficiency (MCE), which is the ratio of CO2 emitted, to the sum of emitted CO2 and CO. MCE is a measure of the relative ratio of flaming and smoldering combustion, but its relationship to the physical fire process is poorly studied. We measured carbon emission rates and individual emission factors for CO, CO2, CH4, and VOC's from smoldering combustion on Ponderosa pine /Douglas-Fir forest sites in central Washington. The emission factor results are linked with concurrent thermal measurements made at various depths in the duff and surface IR camera imagery. The MCE value ranged from .80 to .91 and are correlated with emission factors for 24 carbon compounds. Other data collected were fuel moistures and duff temperatures at depth increments. This goal of this research is the creation of a database to better predict the impacts of air pollution resulting from burns leading to smoldering combustion.

  16. Global vegetation-fire pattern under different land use and climate conditions

    Science.gov (United States)

    Thonicke, K.; Poulter, B.; Heyder, U.; Gumpenberger, M.; Cramer, W.

    2008-12-01

    Fire is a process of global significance in the Earth System influencing vegetation dynamics, biogeochemical cycling and biophysical feedbacks. Naturally ignited wildfires have long history in the Earth System. Humans have been using fire to shape the landscape for their purposes for many millenia, sometimes influencing the status of the vegetation remarkably as for example in Mediterranean-type ecosystems. Processes and drivers describing fire danger, ignitions, fire spread and effects are relatively well-known for many fire-prone ecosystems. Modeling these has a long tradition in fire-affected regions to predict fire risk and behavior for fire-fighting purposes. On the other hand, the global vegetation community realized the importance of disturbances to be recognized in their global vegetation models with fire being globally most important and so-far best studied. First attempts to simulate fire globally considered a minimal set of drivers, whereas recent developments attempt to consider each fire process separately. The process-based fire model SPITFIRE (SPread and InTensity of FIRE) simulates these processes embedded in the LPJ DGVM. Uncertainties still arise from missing measurements for some parameters in less-studied fire regimes, or from broad PFT classifications which subsume different fire-ecological adaptations and tolerances. Some earth observation data sets as well as fire emission models help to evaluate seasonality and spatial distribution of simulated fire ignitions, area burnt and fire emissions within SPITFIRE. Deforestation fires are a major source of carbon released to the atmosphere in the tropics; in the Amazon basin it is the second-largest contributor to Brazils GHG emissions. How ongoing deforestation affects fire regimes, forest stability and biogeochemical cycling in the Amazon basin under present climate conditions will be presented. Relative importance of fire vs. climate and land use change is analyzed. Emissions resulting from

  17. NOX EMISSION CONTROL OPTIONS FOR COAL-FIRED ELECTRIC UTILITY BOILERS

    Science.gov (United States)

    The paper reviews NOx control options for coal-fired electric utility boilers. (NOTE: Acid Rain NOx regulations, the Ozone Transport Commission's NOx Budget Program, revision of the New Source Performance Standards (NSPS) for NOx emissions from utility sources, and Ozone Transpor...

  18. NORM emissions from heavy oil and natural gas fired power plants in Syria

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Haddad, Kh.

    2012-01-01

    Naturally occurring radioactive materials (NORM) have been determined in fly and bottom ash collected from four major Syrian power plants fired by heavy oil and natural gas. 210 Pb and 210 Po were the main NORM radionuclides detected in the fly and bottom ash. 210 Pb activity concentrations have reached 3393 ± 10 Bq kg −1 and 4023 ± 7 Bq kg −1 in fly ash and bottom ash, respectively; lower values of 210 Po were observed due to its high volatility. In addition, 210 Po and 210 Pb annual emissions in bottom ash from mixed (heavy oil and natural gas) fired power plants varied between 2.7 × 10 9 –7.95 × 10 9 Bq and 3.5 × 10 9 –10 10 Bq, respectively; higher emissions of 210 Po and 210 Pb from gas power plants being observed. However, the present study showed that 210 Po and 210 Pb emissions from thermal power plants fired by natural gas are much higher than the coal power plants operated in the World. - Highlights: ► NORM have been determined in fly and bottom ash collected from Syrian power plants fired by heavy oil and natural gas. ► 210 Pb and 210 Po were the main NORM radionuclides detected in the fly and bottom ash. ► 210 Po and 210 Pb annual emissions from these power plants were estimated.

  19. CONTROL OF NOX EMISSIONS FROM U.S. COAL-FIRED ELECTRIC UTILITY BOILERS

    Science.gov (United States)

    The paper discusses the control of nitrogen oxide (NOx) emissions from U.S. coal-fired electric utility boilers. (NOTE: In general, NOx control technologies are categorized as being either primary or secondary control technologies. Primary technologies reduce the amount of NOx pr...

  20. Dioxin and furan emissions from landfill gas-fired combustion units

    International Nuclear Information System (INIS)

    Caponi, F.R.; Wheless, E.; Frediani, D.

    1998-01-01

    The 1990 Federal Clean Air Act Amendments require the development of maximum achievable control technology standards (MACT) for sources of hazardous air pollutants, including landfill gas-fired combustion sources. The Industrial Combustion Coordinated Rulemaking (ICCR) Federal Advisory Committee is a group of stakeholders from the public and private sector whose charge is to develop recommendations for a unified set of federal toxic air emissions regulations. Specifically, the group will establish MACT standards for industrial-commercial-institutional combustion sources. The ICCR proceedings have given rise to considerable interest in potential dioxin and furan emissions from landfill gas-fired combustion units. In order to establish the potential of dioxin and furan emissions from this group of combustion sources, a world-wide literature search was conducted. A total of 22 references were evaluated. The references covered a wide range of test programs, testing methodologies and combustion equipment type. The most abundant data were for landfill gas-fired flares (shrouded and afterburners) and I.C. engines. Because of limitations in obtaining actual test reports with complete lab data and QA/QC results, and a lack of knowledge as to the exact types of waste received at the European landfills, the test data from these sources, for the purposes of this paper, are considered qualitative. The conclusion reached from review of the test data is that there is a potential for dioxin and furan emissions from landfill gas-fired combustion units, but at very low levels for well operated systems

  1. Wildland fire emissions, carbon, and climate: Science overview and knowledge needs

    Science.gov (United States)

    William T. Sommers; Rachel A. Loehman; Colin C. Hardy

    2014-01-01

    Wildland fires have influenced the global carbon cycle for 420 million years of Earth history, interacting with climate to define vegetation characteristics and distributions, trigger abrupt ecosystem shifts, and move carbon among terrestrial and atmospheric pools. Carbon dioxide (CO2) is the dominant driver of ongoing climate change and the principal emissions...

  2. Deforestation scenarios for the Bolivian lowlands.

    Science.gov (United States)

    Tejada, Graciela; Dalla-Nora, Eloi; Cordoba, Diana; Lafortezza, Raffaele; Ovando, Alex; Assis, Talita; Aguiar, Ana Paula

    2016-01-01

    all Bolivian lowlands reaching 37,944,434 ha and leaves small forest patches in a few PAs. These deforestation scenarios are not meant to predict the future but to show how current and future decisions carried out by the neo-extractivist practices of MAS government could affect deforestation and carbon emission trends. In this perspective, recognizing land use systems as open and dynamic systems is a central challenge in designing efficient land use policies and managing a transition towards sustainable land use. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Improving the Fire Emissions Inventory: A Dive in to the MODIS Fire Detections

    Science.gov (United States)

    Biomass burning has been identified as an important contributor to the degradation of air quality because of its impact on ozone and particulate matter. EPA’s National Emission Inventory (NEI) relies on the SMARTFIRE information system to develop estimates of emissions from...

  4. Changing patterns of fire occurrence in proximity to forest edges, roads and rivers between NW Amazonian countries

    Science.gov (United States)

    Armenteras, Dolors; Barreto, Joan Sebastian; Tabor, Karyn; Molowny-Horas, Roberto; Retana, Javier

    2017-06-01

    Tropical forests in NW Amazonia are highly threatened by the expansion of the agricultural frontier and subsequent deforestation. Fire is used, both directly and indirectly, in Brazilian Amazonia to propagate deforestation and increase forest accessibility. Forest fragmentation, a measure of forest degradation, is also attributed to fire occurrence in the tropics. However, outside the Brazilian Legal Amazonia the role of fire in increasing accessibility and forest fragmentation is less explored. In this study, we compared fire regimes in five countries that share this tropical biome in the most north-westerly part of the Amazon Basin (Venezuela, Colombia, Ecuador, Peru and Brazil). We analysed spatial differences in the timing of peak fire activity and in relation to proximity to roads and rivers using 12 years of MODIS active fire detections. We also distinguished patterns of fire in relation to forest fragmentation by analysing fire distance to the forest edge as a measure of fragmentation for each country. We found significant hemispheric differences in peak fire occurrence with the highest number of fires in the south in 2005 vs. 2007 in the north. Despite this, both hemispheres are equally affected by fire. We also found difference in peak fire occurrence by country. Fire peaked in February in Colombia and Venezuela, whereas it peaked in September in Brazil and Peru, and finally Ecuador presented two fire peaks in January and October. We confirmed the relationship between fires and forest fragmentation for all countries and also found significant differences in the distance between the fire and the forest edge for each country. Fires were associated with roads and rivers in most countries. These results can inform land use planning at the regional, national and subnational scales to minimize the contribution of road expansion and subsequent access to the Amazonian natural resources to fire occurrence and the associated deforestation and carbon emissions.

  5. FIRE

    International Nuclear Information System (INIS)

    Brtis, J.S.; Hausheer, T.G.

    1990-01-01

    FIRE, a microcomputer based program to assist engineers in reviewing and documenting the fire protection impact of design changes has been developed. Acting as an electronic consultant, FIRE is designed to work with an experienced nuclear system engineer, who may not have any detailed fire protection expertise. FIRE helps the engineer to decide if a modification might adversely affect the fire protection design of the station. Since its first development, FIRE has been customized to reflect the fire protection philosophy of the Commonwealth Edison Company. That program is in early production use. This paper discusses the FIRE program in light of its being a useful application of expert system technologies in the power industry

  6. Technology Roadmap: High-Efficiency, Low-Emissions Coal-Fired Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-07-01

    Coal is the largest source of power globally and, given its wide availability and relatively low cost, it is likely to remain so for the foreseeable future. The High-Efficiency, Low-Emissions Coal-Fired Power Generation Roadmap describes the steps necessary to adopt and further develop technologies to improve the efficiency of the global fleet of coal. To generate the same amount of electricity, a more efficient coal-fired unit will burn less fuel, emit less carbon, release less local air pollutants, consume less water and have a smaller footprint. High-efficiency, low emissions (HELE) technologies in operation already reach a thermal efficiency of 45%, and technologies in development promise even higher values. This compares with a global average efficiency for today’s fleet of coal-fired plants of 33%, where three-quarters of operating units use less efficient technologies and more than half is over 25 years old. A successful outcome to ongoing RD&D could see units with efficiencies approaching 50% or even higher demonstrated within the next decade. Generation from older, less efficient technology must gradually be phased out. Technologies exist to make coal-fired power generation much more effective and cleaner burning. Of course, while increased efficiency has a major role to play in reducing emissions, particularly over the next 10 years, carbon capture and storage (CCS) will be essential in the longer term to make the deep cuts in carbon emissions required for a low-carbon future. Combined with CCS, HELE technologies can cut CO2 emissions from coal-fired power generation plants by as much as 90%, to less than 100 grams per kilowatt-hour. HELE technologies will be an influential factor in the deployment of CCS. For the same power output, a higher efficiency coal plant will require less CO2 to be captured; this means a smaller, less costly capture plant; lower operating costs; and less CO2 to be transported and stored.

  7. Predictive emission monitoring system (PEMS) for emission control in biomass fired plants; Predikterande emissionsmaetsystem (PEMS) foer emissionskontroll i biobraensleeldade foerbraenningsanlaeggningar

    Energy Technology Data Exchange (ETDEWEB)

    Harnevie, H; Sarkoezi, L; Trenkle, S

    1996-08-01

    An alternative method for estimation of NO{sub x}-emissions from biomass fired plants has been investigated. The method, `Predictive emission monitoring` (PEMS), implicates the creation of a mathematical formula. The formula expresses the relations between NO{sub x}-emissions and various operating and external parameters, such as flue gas temperature, excess combustion air and heat load. In this study the applicability of PEMS has been tested for two plants both of type travelling stokers. The most important results of the study are: PEMS is suitable for emission monitoring for some types of biomass fired plants (for example travelling stokers) even if the plant is fired with fuel with varying water content. In most cases it should be sufficient if the relation is based on oxygen level in the flue gas and plant load, with the possible addition of flue gas temperature and/or furnace temperature rate. These parameters are usually measured in any case, which means that no additional investment in instrumentation is necessary. In this study many measured parameters (for example the throttle levels) did not affect the NO{sub x}-emissions. A PEMS relation is only applicable for a specific plant and for a fixed validity range. Thus the function should be performed in such a way that it covers the limits of the operating parameters of the plant. Usage of different fuels or drift optimization can only be done within the validity range. Good combustion conditions could be necessary to receive a usable PEMS-function. Before creating the PEMS-function the combustion and the emission levels must be optimized. In plants with very fluctuating combustion, for example fixed stokers, it is possible that PEMS leads to not satisfying results. The total cost for a PEM-function can be calculated to be about 50-70% compared to a CEM during a period of a decade. 8 refs, 13 figs, 15 tabs, 8 appendices

  8. Disentangling the drivers of coarse woody debris behavior and carbon gas emissions during fire

    Science.gov (United States)

    Zhao, Weiwei; van der Werf, Guido R.; van Logtestijn, Richard S. P.; van Hal, Jurgen R.; Cornelissen, Johannes H. C.

    2016-04-01

    The turnover of coarse woody debris, a key terrestrial carbon pool, plays fundamental roles in global carbon cycling. Biological decomposition and fire are two main fates for dead wood turnover. Compared to slow decomposition, fire rapidly transfers organic carbon from the earth surface to the atmosphere. Both a-biotic environmental factors and biotic wood properties determine coarse wood combustion and thereby its carbon gas emissions during fire. Moisture is a key inhibitory environmental factor for fire. The properties of dead wood strongly affect how it burns either directly or indirectly through interacting with moisture. Coarse wood properties vary between plant species and between various decay stages. Moreover, if we put a piece of dead wood in the context of a forest fuel bed, the soil and wood contact might also greatly affect their fire behavior. Using controlled laboratory burns, we disentangled the effects of all these driving factors: tree species (one gymnosperms needle-leaf species, three angiosperms broad-leaf species), wood decay stages (freshly dead, middle decayed, very strongly decayed), moisture content (air-dried, 30% moisture content in mass), and soil-wood contact (on versus 3cm above the ground surface) on dead wood flammability and carbon gas efflux (CO2 and CO released in grams) during fire. Wood density was measured for all coarse wood samples used in our experiment. We found that compared to other drivers, wood decay stages have predominant positive effects on coarse wood combustion (for wood mass burned, R2=0.72 when air-dried and R2=0.52 at 30% moisture content) and associated carbon gas emissions (for CO2andCO (g) released, R2=0.55 when air-dried and R2=0.42 at 30% moisture content) during fire. Thus, wood decay accelerates wood combustion and its CO2 and CO emissions during fire, which can be mainly attributed to the decreasing wood density (for wood mass burned, R2=0.91 when air-dried and R2=0.63 at 30% moisture content) as wood

  9. Illegal deforestation in Zambia

    OpenAIRE

    Travis, A.J.

    2005-01-01

    Dr. Dale Lewis, a co-PI on the grant and the originator of the COMACO model, points out recent illegal deforestation in one of Zambia's National Forests to Dr. Alfonso Torres, another co-PI on the grant (from Cornell). LTRA-2 (An Agricultural Markets Model for Biodiversity Conservation)

  10. Concept selection for advanced low-emission coal fired boiler

    Energy Technology Data Exchange (ETDEWEB)

    Gorrell, R.L. [Babcock and Wilcox Co., Barberton, OH (United States); Rodgers, L.W.; Farthing, G.A. [Babcock and Wilcox Co., Alliance, OH (United States)

    1993-12-31

    The Babcock & Wilcox Company (B&W), under contract to the US Department of Energy (DOE) with subcontract to Physical Sciences, Inc. (PSIT), the Massachusetts Institute of Technology (MIT) and United Engineers and Constructors (UE&C) has begun development of an advanced low-emission boiler system (LEBS). The initial phase of this multi-phase program required a thorough review and assessment of potential advanced technologies and techniques for control of combustion and flue gas emissions. Results of this assessment are presented in this paper.

  11. Evaluating greenhouse gas emissions inventories for agricultural burning using satellite observations of active fires.

    Science.gov (United States)

    Lin, Hsiao-Wen; Jin, Yufang; Giglio, Louis; Foley, Jonathan A; Randerson, James T

    2012-06-01

    Fires in agricultural ecosystems emit greenhouse gases and aerosols that influence climate on multiple spatial and temporal scales. Annex 1 countries of the United Nations Framework Convention on Climate Change (UNFCCC), many of which ratified the Kyoto Protocol, are required to report emissions of CH4 and N2O from these fires annually. In this study, we evaluated several aspects of this reporting system, including the optimality of the crops targeted by the UNFCCC globally and within Annex 1 countries, and the consistency of emissions inventories among different countries. We also evaluated the success of individual countries in capturing interannual variability and long-term trends in agricultural fire activity. In our approach, we combined global high-resolution maps of crop harvest area and production, derived from satellite maps and ground-based census data, with Terra and Aqua Moderate Resolution Imaging Spectroradiometer (MODIS) measurements of active fires. At a global scale, we found that adding ground nuts (e.g., peanuts), cocoa, cotton and oil palm, and removing potato, oats, rye, and pulse other from the list of 14 crops targeted by the UNFCCC increased the percentage of active fires covered by the reporting system by 9%. Optimization led to a different recommended list for Annex 1 countries, requiring the addition of sunflower, cotton, rapeseed, and alfalfa and the removal of beans, sugarcane, pulse others, and tuber-root others. Extending emissions reporting to all Annex 1 countries (from the current set of 19 countries) would increase the efficacy of the reporting system from 6% to 15%, and further including several non-Annex 1 countries (Argentina, Brazil, China, India, Indonesia, Thailand, Kazakhstan, Mexico, and Nigeria) would capture over 55% of active fires in croplands worldwide. Analyses of interannual trends from the United States and Australia showed the importance of both intensity of fire use and crop production in controlling year

  12. Multiplatform inversion of the 2013 Rim Fire smoke emissions using regional-scale modeling: important nocturnal fire activity, air quality, and climate impacts

    Science.gov (United States)

    Saide, P. E.; Peterson, D. A.; da Silva, A. M., Jr.; Ziemba, L. D.; Anderson, B.; Diskin, G. S.; Sachse, G. W.; Hair, J. W.; Butler, C. F.; Fenn, M. A.; Jimenez, J. L.; Campuzano Jost, P.; Dibb, J. E.; Yokelson, R. J.; Toon, B.; Carmichael, G. R.

    2014-12-01

    Large wildfire events are increasingly recognized for their adverse effects on air quality and visibility, thus providing motivation for improving smoke emission estimates. The Rim Fire, one of the largest events in California's history, produced a large smoke plume that was sampled by the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) DC-8 aircraft with a full suite of in-situ and remote sensing measurements on 26-27 August 2013. We developed an inversion methodology which uses the WRF-Chem modeling system to constrain hourly fire emissions, using as initial estimates the NASA Quick Fire Emissions Dataset (QFED). This method differs from the commonly performed top-down estimates that constrain daily (or longer time scale) emissions. The inversion method is able to simultaneously improve the model fit to various SEAC4RS airborne measurements (e.g., organic aerosol, carbon monoxide (CO), aerosol extinction), ground based measurements (e.g., AERONET aerosol optical depth (AOD), CO), and satellite data (MODIS AOD) by modifying fire emissions and utilizing the information content of all these measurements. Preliminary results show that constrained emissions for a 6 day period following the largest fire growth are a factor 2-4 higher than the initial top-down estimates. Moreover, there is a tendency to increase nocturnal emissions by factors sometimes larger than 20, indicating that vigorous fire activity continued during the night. This deviation from a typical diurnal cycle is confirmed using geostationary satellite data. The constrained emissions also have a larger day-to-day variability than the initial emissions and correlate better to daily area burned estimates as observed by airborne infrared measurements (NIROPS). Experiments with the assimilation system show that performing the inversion using only satellite AOD data produces much smaller correction factors than when using all available data

  13. Ultra-Low Carbon Emissions from Coal-Fired Power Plants through Bio-Oil Co-Firing and Biochar Sequestration.

    Science.gov (United States)

    Dang, Qi; Mba Wright, Mark; Brown, Robert C

    2015-12-15

    This study investigates a novel strategy of reducing carbon emissions from coal-fired power plants through co-firing bio-oil and sequestering biochar in agricultural lands. The heavy end fraction of bio-oil recovered from corn stover fast pyrolysis is blended and co-fired with bituminous coal to form a bio-oil co-firing fuel (BCF). Life-cycle greenhouse gas (GHG) emissions per kWh electricity produced vary from 1.02 to 0.26 kg CO2-eq among different cases, with BCF heavy end fractions ranging from 10% to 60%, which corresponds to a GHG emissions reduction of 2.9% to 74.9% compared with that from traditional bituminous coal power plants. We found a heavy end fraction between 34.8% and 37.3% is required to meet the Clean Power Plan's emission regulation for new coal-fired power plants. The minimum electricity selling prices are predicted to increase from 8.8 to 14.9 cents/kWh, with heavy end fractions ranging from 30% to 60%. A minimum carbon price of $67.4 ± 13 per metric ton of CO2-eq was estimated to make BCF power commercially viable for the base case. These results suggest that BCF co-firing is an attractive pathway for clean power generation in existing power plants with a potential for significant reductions in carbon emissions.

  14. AVHRR for monitoring global tropical deforestation

    Science.gov (United States)

    Malingreau, J. P.; Laporte, N.; Tucker, C. J.

    1989-01-01

    Advanced Very High Resolution Radiometer (AVHRR) data have been used to assess the dynamics of forest trnsformations in three parts of the tropical belt. A large portion of the Amazon Basin has been systematically covered by Local Area Coverage (LAC) data in the 1985-1987 period. The analysis of the vegetation index and thermal data led to the identification and measurement of large areas of active deforestation. The Kalimantan/Borneo forest fires were monitored and their impact was evaluated using the Global Area Coverage (GAC) 4 km resolution data. Finally, High Resolution Picture Transmission (HRPT) data have provided preliminary information on current activities taking place at the boundary between the savanna and the forest in the Southern part of West Africa. The AVHRR approach is found to be a highly valuable means for carrying out deforestation assessments in regional and global perspectives.

  15. Emission characteristics and axial flame temperature distribution of producer gas fired premixed burner

    Energy Technology Data Exchange (ETDEWEB)

    Bhoi, P.R. [Department of Mechanical Engineering, L and T-Sargent and Lundy Limited, L and T Energy Centre, Near Chhani Jakat Naka, Baroda 390 002 (India); Channiwala, S.A. [Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Deemed University, Ichchhanath, Surat 395 007, Gujarat (India)

    2009-03-15

    This paper presents the emission characteristics and axial flame temperature distribution of producer gas fired premixed burner. The producer gas fired premixed burner of 150 kW capacity was tested on open core throat less down draft gasifier system in the present study. A stable and uniform flame was observed with this burner. An instrumented test set up was developed to evaluate the performance of the burner. The conventional bluff body having blockage ratio of 0.65 was used for flame stabilization. With respect to maximum flame temperature, minimum pressure drop and minimum emissions, a swirl angle of 60 seems to be optimal. The experimental results also showed that the NO{sub x} emissions are inversely proportional to swirl angle and CO emissions are independent of swirl angle. The minimum emission levels of CO and NO{sub x} are observed to be 0.167% and 384 ppm respectively at the swirl angle of 45-60 . The experimental results showed that the maximum axial flame temperature distribution was achieved at A/F ratio of 1.0. The adiabatic flame temperature of 1653 C was calculated theoretically at A/F ratio of 1.0. Experimental results are in tune with theoretical results. It was also concluded that the CO and UHC emissions decreases with increasing A/F ratio while NO{sub x} emissions decreases on either side of A/F ratio of 1.0. (author)

  16. Emissions of Selected Semivolatile Organic Chemicals from Forest and Savannah Fires.

    Science.gov (United States)

    Wang, Xianyu; Thai, Phong K; Mallet, Marc; Desservettaz, Maximilien; Hawker, Darryl W; Keywood, Melita; Miljevic, Branka; Paton-Walsh, Clare; Gallen, Michael; Mueller, Jochen F

    2017-02-07

    The emission factors (EFs) for a broad range of semivolatile organic chemicals (SVOCs) from subtropical eucalypt forest and tropical savannah fires were determined for the first time from in situ investigations. Significantly higher (t test, P fire (7,000 ± 170) compared to the tropical savannah fires (1,600 ± 110), due to the approximately 60-fold higher EFs for 3-ring PAHs from the former. EF data for many PAHs from the eucalypt forest fire were comparable with those previously reported from pine and fir forest combustion events. EFs for other SVOCs including polychlorinated biphenyl (PCB), polychlorinated naphthalene (PCN), and polybrominated diphenyl ether (PBDE) congeners as well as some pesticides (e.g., permethrin) were determined from the subtropical eucalypt forest fire. The highest concentrations of total suspended particles, PAHs, PCBs, PCNs, and PBDEs, were typically observed in the flaming phase of combustion. However, concentrations of levoglucosan and some pesticides such as permethrin peaked during the smoldering phase. Along a transect (10-150-350 m) from the forest fire, concentration decrease for PCBs during flaming was faster compared to PAHs, while levoglucosan concentrations increased.

  17. Seasonal forecasting of fire over Kalimantan, Indonesia

    Science.gov (United States)

    Spessa, A. C.; Field, R. D.; Pappenberger, F.; Langner, A.; Englhart, S.; Weber, U.; Stockdale, T.; Siegert, F.; Kaiser, J. W.; Moore, J.

    2015-03-01

    Large-scale fires occur frequently across Indonesia, particularly in the southern region of Kalimantan and eastern Sumatra. They have considerable impacts on carbon emissions, haze production, biodiversity, health, and economic activities. In this study, we demonstrate that severe fire and haze events in Indonesia can generally be predicted months in advance using predictions of seasonal rainfall from the ECMWF System 4 coupled ocean-atmosphere model. Based on analyses of long, up-to-date series observations on burnt area, rainfall, and tree cover, we demonstrate that fire activity is negatively correlated with rainfall and is positively associated with deforestation in Indonesia. There is a contrast between the southern region of Kalimantan (high fire activity, high tree cover loss, and strong non-linear correlation between observed rainfall and fire) and the central region of Kalimantan (low fire activity, low tree cover loss, and weak, non-linear correlation between observed rainfall and fire). The ECMWF seasonal forecast provides skilled forecasts of burnt and fire-affected area with several months lead time explaining at least 70% of the variance between rainfall and burnt and fire-affected area. Results are strongly influenced by El Niño years which show a consistent positive bias. Overall, our findings point to a high potential for using a more physical-based method for predicting fires with several months lead time in the tropics rather than one based on indexes only. We argue that seasonal precipitation forecasts should be central to Indonesia's evolving fire management policy.

  18. CHALLENGES AND OPPORTUNITIES FOR EMISSION REDUCTIONS FROM THE COAL-FIRED POWER SECTOR IN GROWING ECONOMIES: THE CASE OF COAL-FIRED ELECTRIC UTILITY PLANTS IN RUSSIA

    Science.gov (United States)

    China, Russia and India together contribute over one-fourth of the total global greenhouse gas emissions from the combustion of fossil-fuels. This paper focuses on the Russian coal-fired power sector, and identifies potential opportunities for reducing emissions. The Russian powe...

  19. The drivers of tropical deforestation: a comprehensive review

    Science.gov (United States)

    Sanford, T. J.; Boucher, D.; Elias, P.; Lininger, K.; May-Tobin, C.; Roquemore, S.; Saxon, E.; Martin, J.; Mulik, K.

    2011-12-01

    Tropical forests are disappearing around the world. This clearing causes around 15% of global carbon emissions, leads to the rapid loss of biodiversity, and destroys the livelihoods of many indigenous peoples. We comprehensively reviewed the literature on drivers of tropical deforestation and found a number of trends. While deforestation was predominately driven by small farmers and government action in the 1970s and 1980s, since the 1990s most deforestation has been driven by large scale commercial agriculture. In Latin America, and Brazil in particular, forest clearing has mostly been due to expansion of cattle pastures and for a period in the late 1990s and early 2000s soy bean expansion. In Southeast Asia, deforestation has mainly been due to expansion of oil palm plantations and timber harvesting. In Africa small farmers and wood fuel collection still play a role, although deforestation rates are considerably lower there than in other regions. Additionally, increased urbanization and trends toward a diet based on meat, particularly beef, have help drive deforestation. Biofuels policies around the world are also adding demand, both directly for vegetable oil, and by expanding demand for competing crops such as corn. We examine the extent to which biofuels demand directly and indirectly acts as a driver of deforestation, and the policies that can mitigate this problem by analyzing alternative scenarios of biofuel expansion and their impact on land use change, commodity prices and green house gas emissions.

  20. The development of an ultra-low-emission gas-fired cyclonic combustor

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Coppin, W.P.

    1991-01-01

    A gas-fired cyclonic combustor has been developed for relatively low-temperature direct-air heating applications that require ultra-low pollutant emissions. High-lean premixed combustion with a flame stabilizer is adopted to achieve ultra-low emissions and high turndown operation. On the basis of analytical studies and cold modeling, a 350-kW test combustor was designed and successfully tested. Experimental results obtained using natural gas and ambient air demonstrated that the test combustor can operate steadily at high excess air up to 80% to 100% over a large turndown range up to 40:1. At design operating conditions, NO x emissions as low as 0.6 vppm and CO and total hydrocarbon (THC) emissions below 3 vppm were achieved. Over the full operating range, NO x emissions from 0.3 to 1.0 vppm and CO and THC emissions below 4 vppm were demonstrated. In all tests, concentrations of NO 2 were less than 40% of the total NO x emissions -- lower than the level of NO 2 emissions from combustion processes required for good indoor air quality (0.5 vppm). This paper presents the concept of high-lean premixed ultra-low-emission cyclonic combustion, design specifications for the combustion system, and the major experimental results, including flame stability, emissions, and turndown performance. 13 refs., 12 figs., 1 tab

  1. Future CO2 emissions and electricity generation from proposed coal-fired power plants in India

    Science.gov (United States)

    Shearer, Christine; Fofrich, Robert; Davis, Steven J.

    2017-04-01

    With its growing population, industrializing economy, and large coal reserves, India represents a critical unknown in global projections of future CO2 emissions. Here, we assess proposed construction of coal-fired power plants in India and evaluate their implications for future emissions and energy production in the country. As of mid-2016, 243 gigawatts (GW) of coal-fired generating capacity are under development in India, including 65 GW under construction and an additional 178 GW proposed. These under-development plants would increase the coal capacity of India's power sector by 123% and, when combined with the country's goal to produce at least 40% of its power from non-fossil sources by 2030, exceed the country's projected future electricity demand. The current proposals for new coal-fired plants could therefore either "strand" fossil energy assets (i.e., force them to retire early or else operate at very low capacity factors) and/or ensure that the goal is not met by "locking-out" new, low-carbon energy infrastructure. Similarly, future emissions from the proposed coal plants would also exceed the country's climate commitment to reduce its 2005 emissions intensity 33% to 35% by 2030, which—when combined with the commitments of all other countries—is itself not yet ambitious enough to meet the international goal of holding warming well below 2°C relative to the pre-industrial era.

  2. Control of mercury emissions from coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.S.; Livengood, C.D.

    1992-09-01

    This project at Argonne is designed to investigate new concepts leading to advanced control technologies for fossil-energy systems. The objective of this new task on air toxics control is to develop new or improved, cost-effective control technology for the abatement of emissions of hazardous air pollutants (HAPs) from fossil-fuel combustion plants and to evaluate the possible effects of any captured species on waste disposal. The HAPs to be investigated initially in this task include mercury and arsenic compounds.

  3. Control of mercury emissions from coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Huang, H.S.; Livengood, C.D.

    1992-01-01

    This project at Argonne is designed to investigate new concepts leading to advanced control technologies for fossil-energy systems. The objective of this new task on air toxics control is to develop new or improved, cost-effective control technology for the abatement of emissions of hazardous air pollutants (HAPs) from fossil-fuel combustion plants and to evaluate the possible effects of any captured species on waste disposal. The HAPs to be investigated initially in this task include mercury and arsenic compounds.

  4. [Deforestation and overpopulation].

    Science.gov (United States)

    Rivera, A A

    1995-07-01

    Ecological damage and irrational deforestation in El Salvador are very serious problems with potentially catastrophic consequences in the near future. Each year the amount of rainfall declines precipitously, the rivers lose volume, temperatures rise to levels unheard of in the rainy season, and ecological balance is disturbed, with disappearance of entire species of plants and animals. Desertification threatens future generations of Salvadorans. The causes of deforestation are multiple, but ill-conceived urbanization policy and immoderate population growth are two important factors. The increased population requires new housing, electric lines, aqueducts, clinics, and schools. When conditions are unfavorable, marginal zones or squatter settlements lacking all these basic services proliferate. With their concentrations of waste and environmental degradation, they are converted into foci of infectious disease and social pathology. Much scarce agricultural land has been lost to urban development as the population grows uncontrollably in the nation's small area.

  5. Deforestation reduction initiative

    International Nuclear Information System (INIS)

    Sanchez, P.A.

    1990-01-01

    This paper reports on major adverse effects of global warming predicted for the United States and other mid- latitude countries. Within that, 15 to 25% of global warming results from clearing of tropical rainforests. Third world population growth forces landless rural populations to migrate and over exploit tropical rainforests, a problem exacerbated by government colonization policies in such countries as Brazil, Peru, and Indonesia. The resulting agriculture is unsustainable and leads to further deforestation and migration to urban centers. Research has shown that these trends can be reversed. An integrated approach consisting of development and application of sustainable management technologies for tropical soils and appropriate government policies will eliminate the pressure for further deforestation. Some management technologies are available and other evolving which allow continuous production. For every hectare put under sustainable management five to ten hectares of forest are saved each year

  6. Online deforestation detection

    OpenAIRE

    Diaz, Emiliano

    2017-01-01

    Deforestation detection using satellite images can make an important contribution to forest management. Current approaches can be broadly divided into those that compare two images taken at similar periods of the year and those that monitor changes by using multiple images taken during the growing season. The CMFDA algorithm described in Zhu et al. (2012) is an algorithm that builds on the latter category by implementing a year-long, continuous, time-series based approach to monitoring images...

  7. Implementation of avoided deforestation in a post-2012 climate regime

    Energy Technology Data Exchange (ETDEWEB)

    Soederblom, Johan

    2009-01-15

    The awareness of the global warming has increased the last few years and a majority of the world's scientists believes that anthropogenic emissions of carbon dioxide are the strongest contributing cause. Greenhouse gas emissions due to clearing of tropical rain forest has so far been given little attention, even though deforestation is responsible for 20-25 percent of the anthropogenic emissions of greenhouse gases and is the second largest sector of emissions after energy production. Forest ecosystems contain large amounts of carbon, and in total there is more carbon stored in forests on earth than what is held in form of carbon dioxide in earth's atmosphere. During the latest years the rate of deforestation has been about 13 million hectares annually, which is calculated to release almost 6 Gton of carbon dioxide each year. The underlying causes of deforestation are normally depending on present as well as historical circumstances and the drivers of deforestation can vary substantially between different countries. This study describes the proceedings of deforestation and discusses the carbon balance for possible scenarios when a forest has been cleared. The amount of emissions can vary substantially depending on the land use after deforestation and the usage of the harvested biomass. The carbon balance in soil is also of importance for the carbon emissions. Uncertainties regarding carbon emissions from soil are however large and is therefore often neglected in estimations of carbon emissions due to deforestation, the figures mentioned above included. Reducing the emissions of carbon dioxide through REDD (Reducing Emissions from Deforestation in Developing countries) is considered to be cost effective. In this study a Marginal abatement cost (MAC) curve is created to illustrate how the cost of REDD will increase with time. A selection of reports that estimate the total cost of REDD is also reviewed. These estimates are all more or less uncertain and in

  8. An ensemble approach to simulate CO2 emissions from natural fires

    Science.gov (United States)

    Eliseev, A. V.; Mokhov, I. I.; Chernokulsky, A. V.

    2014-06-01

    This paper presents ensemble simulations with the global climate model developed at the A. M. Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences (IAP RAS CM). These simulations are forced by historical reconstructions of concentrations of well-mixed greenhouse gases (CO2, CH4, and N2O), sulfate aerosols (both in the troposphere and stratosphere), extent of crops and pastures, and total solar irradiance for AD 850-2005 (hereafter all years are taken as being AD) and by the Representative Concentration Pathway (RCP) scenarios for the same forcing agents until the year 2300. Our model implements GlobFIRM (Global FIRe Model) as a scheme for calculating characteristics of natural fires. Comparing to the original GlobFIRM model, in our implementation, the scheme is extended by a module accounting for CO2 release from soil during fires. The novel approach of our paper is to simulate natural fires in an ensemble fashion. Different ensemble members in the present paper are constructed by varying the values of parameters of the natural fires module. These members are constrained by the GFED-3.1 data set for the burnt area and CO2 release from fires and further subjected to Bayesian averaging. Our simulations are the first coupled model assessment of future changes in gross characteristics of natural fires. In our model, the present-day (1998-2011) global area burnt due to natural fires is (2.1 ± 0.4) × 106 km2 yr-1 (ensemble mean and intra-ensemble standard deviation are presented), and the respective CO2 emissions to the atmosphere are (1.4 ± 0.2) Pg C yr-1. The latter value is in agreement with the corresponding GFED estimates. The area burnt by natural fires is generally larger than the GFED estimates except in boreal Eurasia, where it is realistic, and in Australia, where it is smaller than these estimates. Regionally, the modelled CO2 emissions are larger (smaller) than the GFED estimates in Europe (in the tropics and north-eastern Eurasia). From

  9. GREENHOUSE GAS EMISSIONS CONTROL BY OXYGEN FIRING IN CIRCULATING FLUIDIZED BED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Nsakala ya Nsakala; Gregory N. Liljedahl

    2003-05-15

    Given that fossil fuel fired power plants are among the largest and most concentrated producers of CO{sub 2} emissions, recovery and sequestration of CO{sub 2} from the flue gas of such plants has been identified as one of the primary means for reducing anthropogenic CO{sub 2} emissions. In this study, ALSTOM Power Inc. (ALSTOM) has investigated several coal fired power plant configurations designed to capture CO{sub 2} from effluent gas streams for use or sequestration. Burning fossil fuels in mixtures of oxygen and recirculated flue gas (made principally of CO{sub 2}) essentially eliminates the presence of atmospheric nitrogen in the flue gas. The resulting flue gas is comprised primarily of CO{sub 2}. Oxygen firing in utility scale Pulverized Coal (PC) fired boilers has been shown to be a more economical method for CO{sub 2} capture than amine scrubbing (Bozzuto, et al., 2001). Additionally, oxygen firing in Circulating Fluid Bed Boilers (CFB's) can be more economical than in PC or Stoker firing, because recirculated gas flow can be reduced significantly. Oxygen-fired PC and Stoker units require large quantities of recirculated flue gas to maintain acceptable furnace temperatures. Oxygen-fired CFB units, on the other hand, can accomplish this by additional cooling of recirculated solids. The reduced recirculated gas flow with CFB units results in significant Boiler Island cost savings. Additionally, ALSTOM has identified several advanced/novel plant configurations, which improve the efficiency and cost of the CO{sub 2} product cleanup and compression process. These advanced/novel concepts require long development efforts. An economic analysis indicates that the proposed oxygen-firing technology in circulating fluidized boilers could be developed and deployed economically in the near future in enhanced oil recovery (EOR) applications or enhanced gas recovery (EGR), such as coal bed methane recovery. ALSTOM received a Cooperative Agreement from the US

  10. The development of an ultra-low-emission gas-fired combustor for space heaters

    International Nuclear Information System (INIS)

    Xiong, Tian-yu; Khinkis, M.J.; Coppin, W.P.

    1991-01-01

    An ultra-low-emission as-fired combustor has been developed for relatively low-temperature direct-air heating applications. High-lean premixed cyclonic combustion with a flame stabilizer is employed to achieve ultra-low emissions and high turndown operation. On the basis of analytical studies and cold modeling a 350-kW test combustor was designed and successfully tested. Experimental results obtained using natural gas and ambient air demonstrated that the test combustor can operate steadily at high excess air up to 80% to 100% over a large turndown range up to 40:1. At design operating conditions, NO x emissions as low as 0.6 vppm and CO and total hydrocarbon (THC) emissions below 3 vppm were achieved. Over the full operating range, NO x emissions from 0.3 to 1.0 vppm and CO and THC emissions below 4 vppm were demonstrated. In all tests, concentrations of NO 2 were less than 40% of the total NO 2 emissions from combustion processes required for good indoor air quality (0.5 vppm). This paper presents the concept of high-lean premixed ultra-low-emission cyclonic combustion, design specifications for the combustion system, and the major experimental results, including flame stability, emissions, and turndown performance. 15 refs., 10 figs., 1 tab

  11. UNEP Demonstrations of Mercury Emission Reduction at Two Coal-fired Power Plants in Russia

    Directory of Open Access Journals (Sweden)

    Jozewicz W.

    2013-04-01

    Full Text Available The United Nations Environment Programme (UNEP partnership area “Mercury releases from coal combustion” (The UNEP Coal Partnership has initiated demonstrations of mercury air emission reduction at two coal-fired power plants in Russia. The first project has modified the wet particulate matter (PM scrubber installed in Toliatti thermal plant to allow for addition of chemical reagents (oxidants into the closedloop liquid spray system. The addition of oxidant resulted in significant improvement of mercury capture from 20% total mercury removal (without the additive up to 60% removal (with the additive. It demonstrates the effectiveness of sorbent injection technologies in conjunction with an electrostatic precipitator (ESP. ESPs are installed at 60%, while wet PM scrubbers are installed at 30% of total coal-fired capacity in Russia. Thus, the two UNEP Coal Partnership projects address the majority of PM emission control configurations occurring in Russia.

  12. Emissions from three wood-fired domestic central heating boilers - heat load dependence

    International Nuclear Information System (INIS)

    Karlsson, M.L.

    1992-01-01

    The flue gases from three wood-fired domestic central heating boilers have been characterized. Measurements were made at three part loads; 3, 7 and 15 kW. Two of the boilers were modern multi-fuel boilers, with inverse firing and natural draught. The third boiler was a single-fuel wood boiler, with inverse firing and combustion air supply through a fan. All boilers were environmentally approved; the tar emissions were below 30 mg/MJ at nominal heat load. The following parameters were measured: - CO, CO 2 , NO x , total hydrocarbons (THC), - tar and particulates, - twelve volatile organic compounds (VOC). The limit value for tar emission was heavily exceeded for all three boilers at the part loads at which they were tested. For the two multi-fuel boilers the tar emissions decreased with increasing load level, while the opposite was found for the wood boiler with a fan. The NO x emissions varied between 20 and 120 mg/MJ. The multi-fuel boilers showed increasing NO x emissions with increasing heat load. The single-fuel wood boiler showed NO x emissions at about 60 mg/MJ, independent of load level. The CO and THC levels in general were high. The CO levels varied between 1000 and 2000 mg/MJ. While the THC levels varied between 300 and 4000 mg/MJ. Broadly speaking, the CO and THC levels decreased with increasing load levels for the multi-fuel boilers. For the single-fuel wood boiler the CO and THC levels were roughly the same at all load levels. Out of the twelve VOC compounds which were measured, the following could be detected and quantified. With FTIR analysis: Methane, ethylene, propene and acetylene. With GC analysis: Methanol, phenol and acetic acid. (1 ref., 31 figs., 7 tabs.)

  13. Particulate and trace gas emissions from large biomass fires in North America

    International Nuclear Information System (INIS)

    Radke, L.F.; Hegg, D.A.; Hobbs, P.V.; Nance, J.D.; Lyons, J.H.; Laursen, K.K.; Weiss, R.E.; Riggan, P.J.; Ward, D.E.

    1991-01-01

    In this chapter the authors describe the results of airborne studies of smokes from 17 biomass fuel fires, including 14 prescribed fires and 3 wildfires, burned primarily in the temperature zone of North America between 34 degree and 49 degree N latitude. The prescribed fires were in forested lands and logging debris and varied in areas burned from 10 to 700 hectares (ha) (over a few hours). One of the wildfires ultimately consumed 20,000 h a and burned over a period of weeks. The larger fires produced towering columns of smoke and capping water clouds. As an indication of scale, the prescribed fires were visible only as small features in meteorological satellite imagery, but one of the wildfires studied produced a persistent, visible plume more than 1,000 kilometers (km) long. The studies have focused on factors that could impact global climate through alteration of the earth's radiation balance. These include emissions of trace gases and smoke particles from biomass burning, the optical properties of the smoke, and the interaction of the smoke particles with clouds

  14. Characteristics of smoke emissions from biomass fires of the Amazon region--Base-A experiment

    International Nuclear Information System (INIS)

    Ward, D.E.; Setzer, A.W.; Kaufman, Y.J.; Rasmussen, R.A.

    1991-01-01

    An airborne sampling system was used to collect grab samples of smokes for analysis of both in-plume smoke characteristics and ambient air in Brazil. In addition to the emission measurements, the chemical composition of the forest biomass burned by one fire in the Amazon region of Brazil was compared to the fuel composition for biomass burned in North America. The limited data set suggests that combustion efficiencies for tropical biomass combustion are higher than those of temperature forest fuels, as are emission factors for carbon dioxide

  15. Forest fires in Mediterranean countries: CO2 emissions and mitigation possibilities through prescribed burning.

    Science.gov (United States)

    Vilén, Terhi; Fernandes, Paulo M

    2011-09-01

    Forest fires are an integral part of the ecology of the Mediterranean Basin; however, fire incidence has increased dramatically during the past decades and fire is expected to become more prevalent in the future due to climate change. Fuel modification by prescribed burning reduces the spread and intensity potential of subsequent wildfires. We used the most recently published data to calculate the average annual wildfire CO(2) emissions in France, Greece, Italy, Portugal and Spain following the IPCC guidelines. The effect of prescribed burning on emissions was calculated for four scenarios of prescribed burning effectiveness based on data from Portugal. Results show that prescribed burning could have a considerable effect on the carbon balance of the land use, land-use change and forestry (LULUCF) sector in Mediterranean countries. However, uncertainty in emission estimates remains large, and more accurate data is needed, especially regarding fuel load and fuel consumption in different vegetation types and fuel layers and the total area protected from wildfire per unit area treated by prescribed burning, i.e. the leverage of prescribed burning.

  16. Temporal trends and spatial variation characteristics of primary air pollutants emissions from coal-fired industrial boilers in Beijing, China

    International Nuclear Information System (INIS)

    Xue, Yifeng; Tian, Hezhong; Yan, Jing; Zhou, Zhen; Wang, Junling; Nie, Lei; Pan, Tao; Zhou, Junrui; Hua, Shenbing; Wang, Yong; Wu, Xiaoqing

    2016-01-01

    Coal-fired combustion is recognized as a significant anthropogenic source of atmospheric compounds in Beijing, causing heavy air pollution events and associated deterioration in visibility. Obtaining an accurate understanding of the temporal trends and spatial variation characteristics of emissions from coal-fired industrial combustion is essential for predicting air quality changes and evaluating the effectiveness of current control measures. In this study, an integrated emission inventory of primary air pollutants emitted from coal-fired industrial boilers in Beijing is developed for the period of 2007–2013 using a technology-based approach. Future emission trends are projected through 2030 based on current energy-related and emission control policies. Our analysis shows that there is a general downward trend in primary air pollutants emissions because of the implementation of stricter local emission standards and the promotion by the Beijing municipal government of converting from coal-fired industrial boilers to gas-fired boilers. However, the ratio of coal consumed by industrial boilers to total coal consumption has been increasing, raising concerns about the further improvement of air quality in Beijing. Our estimates indicate that the total emissions of PM 10 , PM 2.5 , SO 2 , NO x , CO and VOCs from coal-fired industrial boilers in Beijing in 2013 are approximately 19,242 t, 13,345 t, 26,615 t, 22,965 t, 63,779 t and 1406 t, respectively. Under the current environmental policies and relevant energy savings and emission control plans, it may be possible to reduce NO x and other air pollutant emissions by 94% and 90% by 2030, respectively, if advanced flue gas purification technologies are implemented and coal is replaced with natural gas in the majority of existing boilers. - Highlights: • A unit-based emission inventory of coal-fired industrial boilers is developed. • Temporal trend of historical period 2007–2013 and the future till 2030 is

  17. Center for Corporate Climate Leadership: Direct Fugitive Emissions from Refrigeration, Air Conditioning, Fire Suppression, and Industrial Gases

    Science.gov (United States)

    This guidance document focuses on several fugitive emissions sources that are common for organizations in many sectors: refrigeration and air conditioningsystems, fire suppression systems, and the purchase and release of industrial gases.

  18. ASSESSMENT OF CONTROL TECHNOLOGIES FOR REDUCING EMISSIONS OF SO2 AND NOX FROM EXISTING COAL-FIRED UTILITY BOILERS

    Science.gov (United States)

    The report reviews information and estimated costs on 15 emissioncontrol technology categories applicable to existing coal-fired electric utility boilers. he categories include passive controls such as least emission dispatching, conventional processes, and emerging technologies ...

  19. A large source of dust missing in Particulate Matter emission inventories? Wind erosion of post-fire landscapes

    Directory of Open Access Journals (Sweden)

    N.S. Wagenbrenner

    2017-02-01

    Full Text Available Wind erosion of soils burned by wildfire contributes substantial particulate matter (PM in the form of dust to the atmosphere, but the magnitude of this dust source is largely unknown. It is important to accurately quantify dust emissions because they can impact human health, degrade visibility, exacerbate dust-on-snow issues (including snowmelt timing, snow chemistry, and avalanche danger, and affect ecological and biogeochemical cycles, precipitation regimes, and the Earth’s radiation budget. We used a novel modeling approach in which local-scale winds were used to drive a high-resolution dust emission model parameterized for burned soils to provide a first estimate of post-fire PM emissions. The dust emission model was parameterized with dust flux measurements from a 2010 fire scar. Here we present a case study to demonstrate the ability of the modeling framework to capture the onset and dynamics of a post-fire dust event and then use the modeling framework to estimate PM emissions from burn scars left by wildfires in U.S. western sagebrush landscapes during 2012. Modeled emissions from 1.2 million ha of burned soil totaled 32.1 Tg (11.7–352 Tg of dust as PM10 and 12.8 Tg (4.68–141 Tg as PM2.5. Despite the relatively large uncertainties in these estimates and a number of underlying assumptions, these first estimates of annual post-fire dust emissions suggest that post-fire PM emissions could substantially increase current annual PM estimates in the U.S. National Emissions Inventory during high fire activity years. Given the potential for post-fire scars to be a large source of PM, further on-site PM flux measurements are needed to improve emission parameterizations and constrain these first estimates.

  20. Assessing the Greenhouse Gas Emissions from Natural Gas Fired Power Plants

    Science.gov (United States)

    Hajny, K. D.; Shepson, P. B.; Rudek, J.; Stirm, B. H.; Kaeser, R.; Stuff, A. A.

    2017-12-01

    Natural gas is often discussed as a "bridge fuel" to transition to renewable energy as it only produces 51% the amount of CO2 per unit energy as coal. This, coupled with rapid increases in production fueled by technological advances, has led to a near tripling of natural gas used for electricity generation since 2005. One concern with this idea of a "bridge fuel" is that methane, the primary component of natural gas, is itself a potent greenhouse gas with 28 and 84 times the global warming potential of CO2 based on mass over a 100 and 20 year period, respectively. Studies have estimated that leaks from the point of extraction to end use of 3.2% would offset the climate benefits of natural gas. Previous work from our group saw that 3 combined cycle power plants emitted unburned CH4 from the stacks and leaked additional CH4 from equipment on site, but total loss rates were still less than 2.2%. Using Purdue's Airborne Laboratory for Atmospheric Research (ALAR) we completed additional aircraft based mass balance experiments combined with passes directly over power plant stacks to expand on the previous study. In this work, we have measured at 12 additional natural gas fired power plants including a mix of operation types (baseload, peaking, intermediate) and firing methods (combined cycle, simple thermal, combustion turbine). We have also returned to the 3 plants previously sampled to reinvestigate emissions for each of those, to assess reproducibility of the results. Here we report the comparison of reported continuous emissions monitoring systems (CEMS) data for CO2 to our emission rates calculated from mass balance experiments, as well as a comparison of calculated CH4 emission rates to estimated emission rates based on the EPA emission factor of 1 g CH4/mmbtu natural gas and CEMS reported heat input. We will also discuss emissions from a coal-fired plant which has been sampled by the group in the past and has since converted to natural gas. Lastly, we discuss the

  1. Estimating Landscape Fire Particulate Matter (PM) Emissions over Southern Africa using MSG-SEVIRI Fire Radiative Power (FRP) and MODIS Aerosol Optical Thickness Observations

    Science.gov (United States)

    Mota, Bernardo; Wooster, Martin J.

    2016-04-01

    The approach to estimating landscape fire fuel consumption based on the remotely sensed fire radiative power (FRP) thermal energy release rate, as opposed to burned area, is now relatively widely used in studies of fire emissions, including operationally within the Copernicus Atmosphere Monitoring Service (CAMS). Nevertheless, there are still limitations to the approach, including uncertainties associated with using only the few daily overpasses typically provided by polar orbiting satellite systems, the conversion between FRP and smoke emissions, and the increased likelihood that the more frequent data from geostationary systems fails to detect the (probably highly numerous) smaller (i.e. low FRP) component of a regions fire regime. In this study, we address these limitations to directly estimate fire emissions of Particular Matter (PM; or smoke aerosols) by presenting an approach combining the "bottom-up" FRP observations available every 15 minutes across Africa from the Meteosat Spinning Enhanced Visible and Infrared Imager (SEVIRI) Fire Radiative Product (FRP) processed at the EUMETSAT LSA SAF, and the "top-down" aerosol optical thickness (AOT) measures of the fire plumes themselves as measured by the Moderate-resolution Imaging Spectro-radiometer (MODIS) sensors aboard the Terra (MOD04_L2) and Aqua (MYD04_L2) satellites. We determine PM emission coefficients that relate directly to FRP measures by combining these two datasets, and the use of the almost continuous geostationary FRP observations allows us to do this without recourse to (uncertain) data on wind speed at the (unknown) height of the matching plume. We also develop compensation factors to address the detection limitations of small/low intensity (low FRP) fires, and remove the need to estimate fuel consumption by going directly from FRP to PM emissions. We derive the smoke PM emissions coefficients per land cover class by comparing the total fire radiative energy (FRE) released from individual fires

  2. Emissions and encapsulation of cadmium in CdTe PV modules during fires

    Energy Technology Data Exchange (ETDEWEB)

    Fthenakis, V.M.; Fuhrmann, M.; Heiser, J.; Fitts, J.; Wang, W. [Brookhaven National Laboratory, Upton, NY (United States). Environmental Sciences Dept.; Lanzirotti, A. [University of Chicago, Chicago, IL (United States). Consortium for Advanced Radiation Resources

    2005-12-15

    Fires in residential and commercial properties are not uncommon. If such fires involve the roof, photovoltaic arrays mounted on the roof will be exposed to the flames. The amount of cadmium that can be released in fires involving CdTe PV and the magnitude of associated health risks has been debated. The current study aims in delineating this issue. Previous thermogravimetric studies of CdTe, involved pure CdTe and single-glass PV modules. The current study is based on glass-glass CdTe PV modules which are the only ones in the market. Pieces of commercial CdTe photovoltaic (PV) modules, sizes 25x3 cm, were heated to temperatures up to 1100{sup o}C to simulate exposure to residential and commercial building fires. The temperature rate and duration in these experiments were defined according to standard protocols. Four different types of analysis were performed to investigate emissions and redistribution of elements in the matrix of heated CdTe PV modules: (1) measurements of sample weight loss as a function of temperature; (2) analyses of Cd and Te in the gaseous emissions; (3) Cd distribution in the heated glass using synchrotron X-ray fluorescence microprobe analysis; and (4) chemical analysis for Cd and Te in the acid-digested glass. These experiments showed that almost all (i.e., 99.5%) of the cadmium content of CdTe PV modules was encapsulated in the molten glass matrix; a small amount of Cd escaped from the perimeter of the samples before the two sheets of glass melted together. Adjusting for this loss in full-size modules, results in 99.96% retention of Cd. Multiplying this with the probability of occurrence for residential fires in wood-frame houses in the US (e.g., 10{sup -4}), results in emissions of 0.06 mg/GWh; the probability of sustained fires and subsequent emissions in adequately designed and maintained utility systems appears to be zero. (Author)

  3. ULTRA LOW NOx INTEGRATED SYSTEM FOR NOx EMISSION CONTROL FROM COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    Galen H. Richards; Charles Q. Maney; Richard W. Borio; Robert D. Lewis

    2002-12-30

    ALSTOM Power Inc.'s Power Plant Laboratories, working in concert with ALSTOM Power's Performance Projects Group, has teamed with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to conduct a comprehensive study to develop/evaluate low-cost, efficient NOx control technologies for retrofit to pulverized coal fired utility boilers. The objective of this project was to develop retrofit NOx control technology to achieve less than 0.15 lb/MMBtu NOx (for bituminous coals) and 0.10 lb/MMBtu NOx (for subbituminous coals) from existing pulverized coal fired utility boilers at a cost which is at least 25% less than SCR technology. Efficient control of NOx is seen as an important, enabling step in keeping coal as a viable part of the national energy mix in this century, and beyond. Presently 57% of U.S. electrical generation is coal based, and the Energy Information Agency projects that coal will maintain a lead in U.S. power generation over all other fuel sources for decades (EIA 1998 Energy Forecast). Yet, coal-based power is being strongly challenged by society's ever-increasing desire for an improved environment and the resultant improvement in health and safety. The needs of the electric-utility industry are to improve environmental performance, while simultaneously improving overall plant economics. This means that emissions control technology is needed with very low capital and operating costs. This project has responded to the industry's need for low NOx emissions by evaluating ideas that can be adapted to present pulverized coal fired systems, be they conventional or low NOx firing systems. The TFS 2000{trademark} firing system has been the ALSTOM Power Inc. commercial offering producing the lowest NOx emission levels. In this project, the TFS 2000{trademark} firing system served as a basis for comparison to other low NOx systems evaluated and was the foundation upon which refinements were made to further

  4. Life cycle assessment of coal-fired power plants and sensitivity analysis of CO2 emissions from power generation side

    Science.gov (United States)

    Yin, Libao; Liao, Yanfen; Zhou, Lianjie; Wang, Zhao; Ma, Xiaoqian

    2017-05-01

    The life cycle assessment and environmental impacts of a 1000MW coal-fired power plant were carried out in this paper. The results showed that the operation energy consumption and pollutant emission of the power plant are the highest in all sub-process, which accounts for 93.93% of the total energy consumption and 92.20% of the total emission. Compared to other pollutant emissions from the coal-fired power plant, CO2 reached up to 99.28%. Therefore, the control of CO2 emission from the coal-fired power plants was very important. Based on the BP neural network, the amount of CO2 emission from the generation side of coal-fired power plants was calculated via carbon balance method. The results showed that unit capacity, coal quality and unit operation load had great influence on the CO2 emission from coal-fired power plants in Guangdong Province. The use of high volatile and high heat value of coal also can reduce the CO2 emissions. What’s more, under higher operation load condition, the CO2 emissions of 1 kWh electric energy was less.

  5. Control strategies of atmospheric mercury emissions from coal-fired power plants in China.

    Science.gov (United States)

    Tian, Hezhong; Wang, Yan; Cheng, Ke; Qu, Yiping; Hao, Jiming; Xue, Zhigang; Chai, Fahe

    2012-05-01

    Atmospheric mercury (Hg) emission from coal is one of the primary sources of anthropogenic discharge and pollution. China is one of the few countries in the world whose coal consumption constitutes about 70% of total primary energy, and over half of coals are burned directly for electricity generation. Atmospheric emissions of Hg and its speciation from coal-fired power plants are of great concern owing to their negative impacts on regional human health and ecosystem risks, as well as long-distance transport. In this paper, recent trends of atmospheric Hg emissions and its species split from coal-fired power plants in China during the period of 2000-2007 are evaluated, by integrating each plant's coal consumption and emission factors, which are classified by different subcategories of boilers, particulate matter (PM) and sulfur dioxide (SO2) control devices. Our results show that the total Hg emissions from coal-fired power plants have begun to decrease from the peak value of 139.19 t in 2005 to 134.55 t in 2007, though coal consumption growing steadily from 1213.8 to 1532.4 Mt, which can be mainly attributed to the co-benefit Hg reduction by electrostatic precipitators/fabric filters (ESPs/FFs) and wet flue gas desulfurization (WFGD), especially the sharp growth in installation of WFGD both in the new and existing power plants since 2005. In the coming 12th five-year-plan, more and more plants will be mandated to install De-NO(x) (nitrogen oxides) systems (mainly selective catalytic reduction [SCR] and selective noncatalytic reduction [SNCR]) for minimizing NO(x) emission, thus the specific Hg emission rate per ton of coal will decline further owing to the much higher co-benefit removal efficiency by the combination of SCR + ESPs/FFs + WFGD systems. Consequently, SCR + ESPs/FFs + WFGD configuration will be the main path to abate Hg discharge from coal-fired power plants in China in the near future. However advanced specific Hg removal technologies are necessary

  6. [Emission Characteristics of Water-Soluble Ions in Fumes of Coal Fired Boilers in Beijing].

    Science.gov (United States)

    Hu, Yue-qi; Ma, Zhao-hui; Feng, Ya-jun; Wang, Chen; Chen, Yuan-yuan; He, Ming

    2015-06-01

    Selecting coal fired boilers with typical flue gas desulfurization and dust extraction systems in Beijing as the study objects, the issues and characteristics of the water-soluble ions in fumes of coal fired boilers and theirs influence factors were analyzed and evaluated. The maximum mass concentration of total water-soluble ions in fumes of coal fired boilers in Beijing was 51.240 mg x m(-3) in the benchmark fume oxygen content, the minimum was 7.186 mg x m(-3), and the issues of the water-soluble ions were uncorrelated with the fume moisture content. SO4(2-) was the primary characteristic water-soluble ion for desulfurization reaction, and the rate of contribution of SO4(2-) in total water-soluble ions ranged from 63.8% to 81.0%. F- was another characteristic water-soluble ion in fumes of thermal power plant, and the rate of contribution of F- in total water-soluble ions ranged from 22.2% to 32.5%. The fume purification technologies significantly influenced the issues and the emission characteristics of water-soluble ions in fumes of coal fired boilers. Na+ was a characteristic water-soluble ion for the desulfurizer NaOH, NH4+ and NO3+ were characteristic for the desulfurizer NH4HCO3, and Mg2+ was characteristic for the desulfurizer MgO, but the Ca2+ emission was not increased by addition of the desulfurizer CaO or CaCO3 The concentrations of NH4+ and NO3- in fumes of thermal power plant were lower than those in fumes of industrial or heating coal fired boilers. The form of water-soluble ions was significantly correlated with fume temperature. The most water-soluble ions were in superfine state at higher fume temperature and were not easily captured by the filter membrane.

  7. Techniques for Estimating Emissions Factors from Forest Burning: ARCTAS and SEAC4RS Airborne Measurements Indicate which Fires Produce Ozone

    Science.gov (United States)

    Chatfield, Robert B.; Andreae, Meinrat O.

    2016-01-01

    Previous studies of emission factors from biomass burning are prone to large errors since they ignore the interplay of mixing and varying pre-fire background CO2 levels. Such complications severely affected our studies of 446 forest fire plume samples measured in the Western US by the science teams of NASA's SEAC4RS and ARCTAS airborne missions. Consequently we propose a Mixed Effects Regression Emission Technique (MERET) to check techniques like the Normalized Emission Ratio Method (NERM), where use of sequential observations cannot disentangle emissions and mixing. We also evaluate a simpler "consensus" technique. All techniques relate emissions to fuel burned using C(burn) = delta C(tot) added to the fire plume, where C(tot) approximately equals (CO2 = CO). Mixed-effects regression can estimate pre-fire background values of C(tot) (indexed by observation j) simultaneously with emissions factors indexed by individual species i, delta, epsilon lambda tau alpha-x(sub I)/C(sub burn))I,j. MERET and "consensus" require more than emissions indicators. Our studies excluded samples where exogenous CO or CH4 might have been fed into a fire plume, mimicking emission. We sought to let the data on 13 gases and particulate properties suggest clusters of variables and plume types, using non-negative matrix factorization (NMF). While samples were mixtures, the NMF unmixing suggested purer burn types. Particulate properties (b scant, b abs, SSA, AAE) and gas-phase emissions were interrelated. Finally, we sought a simple categorization useful for modeling ozone production in plumes. Two kinds of fires produced high ozone: those with large fuel nitrogen as evidenced by remnant CH3CN in the plumes, and also those from very intense large burns. Fire types with optimal ratios of delta-NOy/delta- HCHO associate with the highest additional ozone per unit Cburn, Perhaps these plumes exhibit limited NOx binding to reactive organics. Perhaps these plumes exhibit limited NOx binding to

  8. Measurements of nitrous oxide emissions from P.F. fired power stations

    Science.gov (United States)

    Sloan, S. A.; Laird, C. K.

    Nitrous oxide (N 2O) was measured in the flue gas from four wall-fired and three corner-fired 500 MW boilers, fitted with either conventional or low-NO x burners, at four C.E.G.B. power stations. Measurements were made both by on-line non-dispersive infra red (NDIR) monitors and by extractive sampling for later laboratory analysis by electron capture gas chromatography (ECD GC). It was found that the on-line and laboratory methods were in good agreement for samples analyzed within 1-3 h of sampling, but that the nitrous oxide concentration in the stored samples had a tendency to increase with time, which was dependent on the concentration of water in the sample. Experiments with synthetic mixtures showed that the increase in nitrous oxide concentration was consistent with the overall reaction2NO+SO 2→N 2O+SO 3 in which nitric oxide is reduced by sulphur dioxide. The highest average N 2O concentration measured by the on-line analyzer was 16 vpm, and for most of the boilers monitored the concentration was less than 10 vpm. There was no statistically significant difference between the measured N 2O emissions from normal boilers and those fitted with low-NO x burners. It is suggested that these values are close to the true levels of N 2O emissions from p.f. fired boilers and that recent reports of high levels (up to 200 vpm) are likely to be an artefact resulting from the observed generation of N 2O in stored samples. A consequence of these measurements of N 2O is that current estimates of the contribution of emissions from p.f. fired boilers to the global N 2O budget are likely to be too high.

  9. Semi-quantitative characterisation of ambient ultrafine aerosols resulting from emissions of coal fired power stations

    International Nuclear Information System (INIS)

    Hinkley, J.T.; Bridgman, H.A.; Buhre, B.J.P.; Gupta, R.P.; Nelson, P.F.; Wall, T.F.

    2008-01-01

    Emissions from coal fired power stations are known to be a significant anthropogenic source of fine atmospheric particles, both through direct primary emissions and secondary formation of sulfate and nitrate from emissions of gaseous precursors. However, there is relatively little information available in the literature regarding the contribution emissions make to the ambient aerosol, particularly in the ultrafine size range. In this study, the contribution of emissions to particles smaller than 0.3 μm in the ambient aerosol was examined at a sampling site 7 km from two large Australian coal fired power stations equipped with fabric filters. A novel approach was employed using conditional sampling based on sulfur dioxide (SO 2 ) as an indicator species, and a relatively new sampler, the TSI Nanometer Aerosol Sampler. Samples were collected on transmission electron microscope (TEM) grids and examined using a combination of TEM imaging and energy dispersive X-ray (EDX) analysis for qualitative chemical analysis. The ultrafine aerosol in low SO 2 conditions was dominated by diesel soot from vehicle emissions, while significant quantities of particles, which were unstable under the electron beam, were observed in the high SO 2 samples. The behaviour of these particles was consistent with literature accounts of sulfate and nitrate species, believed to have been derived from precursor emissions from the power stations. A significant carbon peak was noted in the residues from the evaporated particles, suggesting that some secondary organic aerosol formation may also have been catalysed by these acid seed particles. No primary particulate material was observed in the minus 0.3 μm fraction. The results of this study indicate the contribution of species more commonly associated with gas to particle conversion may be more significant than expected, even close to source

  10. The Net Climate Impact of Coal-Fired Power Plant Emissions

    Science.gov (United States)

    Shindell, D.; Faluvegi, G.

    2010-01-01

    Coal-fired power plants influence climate via both the emission of long-lived carbon dioxide (CO2) and short-lived ozone and aerosol precursors. Using a climate model, we perform the first study of the spatial and temporal pattern of radiative forcing specifically for coal plant emissions. Without substantial pollution controls, we find that near-term net global mean climate forcing is negative due to the well-known aerosol masking of the effects of CO2. Imposition of pollution controls on sulfur dioxide and nitrogen oxides leads to a rapid realization of the full positive forcing from CO2, however. Long-term global mean forcing from stable (constant) emissions is positive regardless of pollution controls. Emissions from coal-fired power plants until 1970, including roughly 1/3 of total anthropogenic CO2 emissions, likely contributed little net global mean climate forcing during that period though they may have induce weak Northern Hemisphere mid-latitude (NHml) cooling. After that time many areas imposed pollution controls or switched to low sulfur coal. Hence forcing due to emissions from 1970 to 2000 and CO2 emitted previously was strongly positive and contributed to rapid global and especially NHml warming. Most recently, new construction in China and India has increased rapidly with minimal application of pollution controls. Continuation of this trend would add negative near-term global mean climate forcing but severely degrade air quality. Conversely, following the Western and Japanese pattern of imposing air quality pollution controls at a later time could accelerate future warming rates, especially at NHmls. More broadly, our results indicate that due to spatial and temporal inhomogeneities in forcing, climate impacts of multi-pollutant emissions can vary strongly from region to region and can include substantial effects on maximum rate-of-change, neither of which are captured by commonly used global metrics. The method we introduce here to estimate

  11. Pan-tropical monitoring of deforestation

    International Nuclear Information System (INIS)

    Achard, F; DeFries, R; Eva, H; Hansen, M; Mayaux, P; Stibig, H-J

    2007-01-01

    This paper reviews the technical capabilities for monitoring deforestation from a pan-tropical perspective in response to the United Nations Framework Convention on Climate Change (UNFCCC) process, which is studying the technical issues surrounding the ability to reduce greenhouse gas emissions from deforestation in developing countries. The successful implementation of such policies requires effective forest monitoring systems that are reproducible, provide consistent results, meet standards for mapping accuracy, and can be implemented from national to pan-tropical levels. Remotely sensed data, supported by ground observations, are crucial to such efforts. Recent developments in global to regional monitoring of forests can contribute to reducing the uncertainties in estimates of emissions from deforestation. Monitoring systems at national levels in developing countries can also benefit from pan-tropical and regional observations, mainly by identifying hot spots of change and prioritizing areas for monitoring at finer spatial scales. A pan-tropical perspective is also required to ensure consistency between different national monitoring systems. Data sources already exist to determine baseline periods in the 1990s as historical reference points. Key requirements for implementing such monitoring programs, both at pan-tropical and at national scales, are international commitment of resources to increase capacity, coordination of observations to ensure pan-tropical coverage, access to free or low-cost data, and standardized, consensus protocols for data interpretation and analysis

  12. The challenge of assessing social dimensions of avoided deforestation

    DEFF Research Database (Denmark)

    Pasgaard, Maya

    2013-01-01

    Reduced Emissions from Deforestation and Forest Degradation in developing countries (REDD +) has moved to the central stage of the climate change debate by being promoted as a significant, cheap, and quick win–win strategy to reduce greenhouse gas emissions and thereby mitigate climate change...

  13. Computational intelligence approach for NOx emissions minimization in a coal-fired utility boiler

    International Nuclear Information System (INIS)

    Zhou Hao; Zheng Ligang; Cen Kefa

    2010-01-01

    The current work presented a computational intelligence approach used for minimizing NO x emissions in a 300 MW dual-furnaces coal-fired utility boiler. The fundamental idea behind this work included NO x emissions characteristics modeling and NO x emissions optimization. First, an objective function aiming at estimating NO x emissions characteristics from nineteen operating parameters of the studied boiler was represented by a support vector regression (SVR) model. Second, four levels of primary air velocities (PA) and six levels of secondary air velocities (SA) were regulated by using particle swarm optimization (PSO) so as to achieve low NO x emissions combustion. To reduce the time demanding, a more flexible stopping condition was used to improve the computational efficiency without the loss of the quality of the optimization results. The results showed that the proposed approach provided an effective way to reduce NO x emissions from 399.7 ppm to 269.3 ppm, which was much better than a genetic algorithm (GA) based method and was slightly better than an ant colony optimization (ACO) based approach reported in the earlier work. The main advantage of PSO was that the computational cost, typical of less than 25 s under a PC system, is much less than those required for ACO. This meant the proposed approach would be more applicable to online and real-time applications for NO x emissions minimization in actual power plant boilers.

  14. Deforestation near Rio Branco, Brazil

    Science.gov (United States)

    2001-01-01

    Settlement and deforestation surrounding the Brazilian town of Rio Branco are seen here in the striking 'herring bone' deforestation patterns that cut through the rainforest. Rio Brancois the capital of the Brazilian state of Acre and is situated near the border with northeastern Bolivia. The town is a center for the distribution of goods, including rubber, metals, medicinal plants, Brazil nuts and timber. Colonization projects in the region are supported by farming, logging activities, and extensive cattle ranching. Much of the surrounding terrain is of a poorly-draining clay hardpan soil, and heavy rainfall periodically converts parts of the forested region to swamp.The large overview image was acquired by the Multi-angle Imaging SpectroRadiometer's vertical-viewing (nadir) camera on July 28, 2000, and covers an area of 336 kilometers x 333 kilometers. A plume of smoke is visible north of the Rio Branco road, which roughly parallels the slender, twisting Rio Abuna. Most of the major rivers in the image provide reference points for state or international (Bolivia-Brazil) boundaries, and flow northeast to the Rio Madeira (east of the smoke plume). The border between Acre and the Bolivian department of Pando is marked by the Rio Abuna. Pando's southern boundary with the department of Beni is marked by the Rio Madre de Dios, the large river in the lower half of the image.The two higher-resolution inset images highlight a settled area north of the town of Rio Branco. These nadir views cover an area of 60 kilometers x 67 kilometers, and were acquired eleven months apart during Terra orbits 3251 and 8144. In the later image, more haze is present, possibly due to smoke from fires on that day. Comparing the two images provides a method of measuring the changes and expansion in the area of cleared land. One newly cleared patch is apparent near the middle of the later image, slightly off to the right. This polygon represents an area of about 16 square kilometers, or 4000

  15. Intelligent emissions controller for substance injection in the post-primary combustion zone of fossil-fired boilers

    Science.gov (United States)

    Reifman, Jaques; Feldman, Earl E.; Wei, Thomas Y. C.; Glickert, Roger W.

    2003-01-01

    The control of emissions from fossil-fired boilers wherein an injection of substances above the primary combustion zone employs multi-layer feedforward artificial neural networks for modeling static nonlinear relationships between the distribution of injected substances into the upper region of the furnace and the emissions exiting the furnace. Multivariable nonlinear constrained optimization algorithms use the mathematical expressions from the artificial neural networks to provide the optimal substance distribution that minimizes emission levels for a given total substance injection rate. Based upon the optimal operating conditions from the optimization algorithms, the incremental substance cost per unit of emissions reduction, and the open-market price per unit of emissions reduction, the intelligent emissions controller allows for the determination of whether it is more cost-effective to achieve additional increments in emission reduction through the injection of additional substance or through the purchase of emission credits on the open market. This is of particular interest to fossil-fired electrical power plant operators. The intelligent emission controller is particularly adapted for determining the economical control of such pollutants as oxides of nitrogen (NO.sub.x) and carbon monoxide (CO) emitted by fossil-fired boilers by the selective introduction of multiple inputs of substances (such as natural gas, ammonia, oil, water-oil emulsion, coal-water slurry and/or urea, and combinations of these substances) above the primary combustion zone of fossil-fired boilers.

  16. Greenhouse gas emission measurement and economic analysis of Iran natural gas fired power plants

    International Nuclear Information System (INIS)

    Shahsavari Alavijeh, H.; Kiyoumarsioskouei, A.; Asheri, M.H.; Naemi, S.; Shahsavari Alavije, H.; Basirat Tabrizi, H.

    2013-01-01

    This study attempts to examine the natural gas fired power plants in Iran. The required data from natural gas fired power plants were gathered during 2008. The characteristics of thirty two gas turbine power plants and twenty steam power plants have been measured. Their emission factor values were then compared with the standards of Energy Protection Agency, Euro Union and World Bank. Emission factors of gas turbine and steam power plants show that gas turbine power plants have a better performance than steam power plants. For economic analysis, fuel consumption and environmental damages caused by the emitted pollutants are considered as cost functions; and electricity sales revenue are taken as benefit functions. All of these functions have been obtained according to the capacity factor. Total revenue functions show that gas turbine and steam power plants are economically efficient at 98.15% and 90.89% of capacity factor, respectively; this indicates that long operating years of power plants leads to reduction of optimum capacity factor. The stated method could be implemented to assess the economic status of a country’s power plants where as efficient capacity factor close to one means that power plant works in much better condition. - Highlights: • CO 2 and NO x emissions of Iran natural gas fired power plants have been studied. • CO 2 and NO x emission factors are compared with EPA, EU and World Bank standards. • Costs and benefit as economic functions are obtained according to capacity factor. • Maximum economic profit is obtained for gas turbine and steam power plants. • Investment in CO 2 reduction is recommended instead of investment in NO x reduction

  17. DEVELOPMENT OF FINE PARTICULATE EMISSION FACTORS AND SPECIATION PROFILES FOR OIL AND GAS FIRED COMBUSTION SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    Glenn England; Oliver Chang; Stephanie Wien

    2002-02-14

    This report provides results from the second year of this three-year project to develop dilution measurement technology for characterizing PM2.5 (particles with aerodynamic diameter smaller than 2.5 micrometers) and precursor emissions from stationary combustion sources used in oil, gas and power generation operation. Detailed emission rate and chemical speciation tests results for a gas turbine, a process heater, and a commercial oil/gas fired boiler are presented. Tests were performed using a research dilution sampling apparatus and traditional EPA methods. A series of pilot tests were conducted to identify the constraints to reduce the size of current research dilution sampler for future stack emission tests. Based on the test results, a bench prototype compact dilution sampler developed and characterized in GE EER in August 2002.

  18. A study of toxic emissions from a coal-fired gasification plant

    Energy Technology Data Exchange (ETDEWEB)

    Williams, A.; Behrens, G. [Radian Corporation, Austin, TX (United States)

    1995-11-01

    Toxic emissions were measured in the gaseous, solid and aqueous effluent streams in a coal-fired gasification plant. Several internal process streams were also characterized to assess pollution control device effectiveness. The program, consisted of three major phases. Phase I was the toxics emission characterization program described above. phase II included the design, construction and shakedown testing of a high-temperature, high-pressure probe for collecting representative trace composition analysis of hot (1200{degrees}F) syngas. Phase III consisted of the collection of hot syngas samples utilizing the high-temperature probe. Preliminary results are presented which show the emission factors and removal efficiencies for several metals that are on the list of compounds defined by the Clean Air Act Amendments of 1990.

  19. Mercury emissions and coal-fired power plants: Understanding the problems and identifying solutions

    International Nuclear Information System (INIS)

    Davis, S.E.

    1997-01-01

    Electric utility emissions contribute to an array of air quality concerns, most notably ground-level ozone, acid deposition, global warming, and fine particulate pollution. More recently, electric utility emissions of air toxics such as mercury have been linked to serious ecological health effects, especially in fish-eating birds. Another issue that is gaining attention is that of eutrophication in marine waters from nitrogen oxide emissions. Coal-fired power plants warrant special consideration, particularly in regards to mercury. Coal-fired power plants currently represent over 30% of controllable anthropogenic emissions in the US and are expected to emit nearly half of all anthropogenic emissions in the US by 2010. However, because the human health threshold for mercury is not known with certainty and mercury control technologies such as activated carbon injection are extremely expensive, mercury emissions from electric utilities have not been addressed in the US through either regulation or voluntary initiatives. The Center is beginning to evaluate the viability of no- or low-regrets measures that may be more consistent with the current state of the science on human and ecological health effects. The Center is also looking at options to reduce eutophication. Specifically, the Center has: hosted a workshop to assess the viability of low-cost mercury control options for electric utilities, developed a proposal to undertake a mercury banking initiative, worked to reduce compliance costs associated with multiple and conflicting regulations, and investigated the potential benefits and workability of NOx trading between air and water sources These activities are described in greater detail in the Center's paper

  20. Application of a Monte Carlo framework with bootstrapping for quantification of uncertainty in baseline map of carbon emissions from deforestation in Tropical Regions

    Science.gov (United States)

    William Salas; Steve Hagen

    2013-01-01

    This presentation will provide an overview of an approach for quantifying uncertainty in spatial estimates of carbon emission from land use change. We generate uncertainty bounds around our final emissions estimate using a randomized, Monte Carlo (MC)-style sampling technique. This approach allows us to combine uncertainty from different sources without making...

  1. Researching illegal logging and deforestation

    NARCIS (Netherlands)

    Boekhout van Solinge, T.

    2014-01-01

    Tropical deforestation such as in the Amazon can be studied well from a green criminological perspective. Ethnographic research methods form a useful way to get insight into the dynamics and complexity of tropical deforestation, which often is illegal. This article gives an account of various

  2. Tropical deforestation : an economic perspective

    NARCIS (Netherlands)

    van Soest, D.P.

    1998-01-01

    The main aim of this study is to increase insight in the underlying causes of deforestation and forest degradation by analysing the factors that induce unsustainable land use. Several types of actors involved in the deforestation process are taken into account: the decision-making processes of

  3. Deforestation in the Brazilian Amazon

    NARCIS (Netherlands)

    Boekhout van Solinge, T.|info:eu-repo/dai/nl/156696207

    2015-01-01

    This essay takes a (green) criminological and multidisciplinary perspective on deforestation in the Brazilian Amazon, by focusing on the crimes and damages that are associated with Amazonian deforestation. The analysis and results are partly based on longer ethnographic stays in North Brazil (Amazon

  4. Time evolution and emission factors of aerosol particles from day and night time savannah fires

    Science.gov (United States)

    Vakkari, Ville; Beukes, Johan Paul; Tiitta, Petri; Venter, Andrew; Jaars, Kerneels; Josipovic, Miroslav; van Zyl, Pieter; Kulmala, Markku; Laakso, Lauri

    2013-04-01

    The largest uncertainties in the current global climate models originate from aerosol particle effects (IPCC, 2007) and at the same time aerosol particles also pose a threat to human health (Pope and Dockery, 2006). In southern Africa wild fires and prescribed burning are one of the most important sources of aerosol particles, especially during the dry season from June to September (e.g. Swap et al., 2003; Vakkari et al., 2012). The aerosol particle emissions from savannah fires in southern Africa have been studied in several intensive campaigns such as SAFARI 1992 and 2000 (Swap et al., 2003). However, all previous measurements have been carried out during the daytime, whereas most of the prescribed fires in southern Africa are lit up only after sunset. Furthermore, the previous campaigns followed the plume evolution for up to one hour after emission only. In this study, combining remote sensing fire observations to ground-based long-term measurements of aerosol particle and trace gas properties at the Welgegund measurement station (www.welgegund.org), we have been able to follow the time evolution of savannah fire plumes up to several hours in the atmosphere. For the first time the aerosol particle size distribution measurements in savannah fire plumes cover both day and night time plumes and also the ultrafine size range below 100 nm. During the period from May 20th 2010 to April 15th 2012 altogether 61 savannah fire plumes were observed at Welgegund. The evolution of the aerosol size distribution remained rapid for at least five hours after the fire: during this period the growth rate of the aerosol particle count mean diameter (size range 12 to 840 nm) was 24 nm h-1 for daytime plumes and 8 nm h-1 for night time plumes. The difference in the day and night time growth rate shows that photochemical reactions significantly increase the condensable vapour concentration in the plume. Furthermore, the condensable vapour concentration was found to affect both the

  5. Do emission ceilings ruin coal-fired power plants?; Emissieplafonds nekken kolencentrales?

    Energy Technology Data Exchange (ETDEWEB)

    Wijmenga, J. [Ministerie van Infrastructuur en Milieu, Den Haag (Netherlands)

    2011-04-15

    The case of the new coal-fired power plants has already racked the brains of many. The advice offered to the court by the attorney-general constitutes the next step in this process. A temporary solution has been found for the coal-fired plants, but one question remains unanswered so far: how should an emission ceiling be used as a test instrument for permits? This article provides a direction in which a solution can be found. [Dutch] De zaak betreffende de nieuwe kolencentrales heeft al tot heel wat hoofdbrekens geleid. Het advies dat de advocaat-generaal heeft uitgebracht aan het hof is een volgende stap in dit proces. Voor de kolencentrales is een tijdelijke oplossing gevonden, maar de vraag is nog niet beantwoord hoe een emissieplafond moet worden gebruikt als toetsinstrument voor vergunningen. In dit artikel wordt aangegeven in welke richting een oplossing kan worden gezocht.

  6. Measurements of dioxin emissions during co-firing in a fluidised bed

    Energy Technology Data Exchange (ETDEWEB)

    I. Gulyurtlu; A.T. Crujeira; P. Abelha; I. Cabrita [INETI, Lisbon (Portugal). Departamento de Engenharia Energetica e Controle Ambiental

    2007-09-15

    The emissions of dioxins could be considerable when fuels with high chlorine content are used, particularly in fluidised beds due to constraints to use temperatures in the range 800-900{sup o}C for other considerations. However, mixing of fuels with different characteristics may lead to a reduction in dioxin emissions. Studies are currently being undertaken at the above-mentioned department in mixing fuels of varying chlorine and sulphur contents to monitor the emissions of dioxins both in the gas and solid phases. Furthermore, the influence of certain elements like Cu in the ash in the emissions of dioxins is also studied to verify the catalytic effect. The INETI pilot-scale test facility is used for the combustion work. Two different coals, namely Colombian and Polish, are used as the base fuel. The supplementary fuels for co-firing include MBM and straw pellets. The combustion temperature is maintained at about 800-830{sup o}C range without any limestone addition. The residence time of over 2 s is respected. Results obtained by far suggest that the presence of sulphur in both fuels have a very strong effect on the eventual emissions of dioxins and the synergy regarding to reduce the dioxins below the levels permitted is possible by mixing fuels based on their characteristics. The paper reports the results obtained and evaluates the effect of fuel nature and operating conditions on the emissions of dioxins. 34 refs., 8 figs., 12 tabs.

  7. Current and future emissions of primary pollutants from coal-fired power plants in Shaanxi, China.

    Science.gov (United States)

    Xu, Yong; Hu, Jianlin; Ying, Qi; Hao, Hongke; Wang, Dexiang; Zhang, Hongliang

    2017-10-01

    A high-resolution inventory of primary atmospheric pollutants from coal-fired power plants in Shaanxi in 2012 was built based on a detailed database compiled at unit level involving unit capacity, boiler size and type, commission time, corresponding control technologies, and average coal quality of 72 power plants. The pollutants included SO 2 , NO x , fine particulate matter (PM 2.5 ), inhalable particulate matter (PM 10 ), organic carbon (OC), elemental carbon (EC), carbon monoxide (CO) and non-methane volatile organic compounds (NMVOC). Emission factors for SO 2 , NO x , PM 2.5 and PM 10 were adopted from standardized official promulgation, supplemented by those from local studies. The estimated annual emissions of SO 2 , NO x , PM 2.5 , PM 10 , EC, OC, CO and NMVOC were 152.4, 314.8, 16.6, 26.4, 0.07, 0.27, 64.9 and 2.5kt, respectively. Small units (emission rates compared to medium (≥100MW and emissions were decontamination efficiency, sulfur content and ash content of coal. Weinan and Xianyang were the two cities with the highest emissions, and Guanzhong Plain had the largest emission density. Despite the projected growth of coal consumption, emissions would decrease in 2030 due to improvement in emission control technologies and combustion efficiencies. SO 2 and NO x emissions would experience significant reduction by ~81% and ~84%, respectively. PM 2.5 , PM 10 , EC and OC would be decreased by ~43% and CO and NMVOC would be reduced by ~16%. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Environmental risk assessment of airborne emission from chinese coal-fired power plants with public health detriment criteria

    International Nuclear Information System (INIS)

    He Huimin; Pan Ziqiang; Zhang Yongxing; Xia Yihua

    1997-01-01

    On the basis of investigation of types of dust removers and their efficiency in Chinese coal-fired power plants, human health detriment of airborne non-radioactive and radioactive emissions from the power plants is assessed with public health detriment assessment method. The results show that the risk is primarily from airborne non-radioactive emission

  9. Daily and 3-hourly variability in global fire emissions and consequences for atmospheric model predictions of carbon monoxide

    NARCIS (Netherlands)

    Mu, M.; Randerson, J.T; van der Werf, G.R.; Giglio, L.; Kasibhatla, P.; Morton, D.; Collatz, G.J.; DeFries, R.S.; Hyer, E.J.; Prins, E.M.; Griffith, D.; Wunch, D.; Toon, G.C.; Sherlock, V.; Wennberg, P.O.

    2011-01-01

    Attribution of the causes of atmospheric trace gas and aerosol variability often requires the use of high resolution time series of anthropogenic and natural emissions inventories. Here we developed an approach for representing synoptic-and diurnal-scale temporal variability in fire emissions for

  10. Particulate matter and black carbon optical properties and emission factors from prescribed fires in the southeastern United States

    Science.gov (United States)

    The aerosol emissions from prescribed fires in the Southeastern United States were measured and compared to emissions from laboratory burns with fuels collected from the site. Fine particulate matter (PM2.5), black carbon, and aerosol light scattering and absorption were characte...

  11. Global mapping of vertical injection profiles of wild-fire emission

    Science.gov (United States)

    Sofiev, M.; Vankevich, R.; Ermakova, T.; Hakkarainen, J.

    2012-08-01

    A problem of a characteristic vertical profile of smoke released from wild-land fires is considered. A methodology for bottom-up evaluation of this profile is suggested and a corresponding global dataset is calculated. The profile estimation is based on: (i) a semi-empirical formula for plume-top height recently suggested by the authors, (ii) MODIS satellite observations of active wild-land fires, and (iii) meteorological conditions evaluated at each fireplace using output of ECMWF weather prediction model. Plumes from all fires recorded globally during two arbitrarily picked years 2001 and 2008 are evaluated and their smoke injection profiles are estimated with a time step of 3 h. The resulting 4-dimensional dataset is split to day- and night-time subsets. Each of the subsets is projected to global grid with resolution 1° × 1° × 500 m, averaged to monthly level, and normalised with total emission. Evaluation of the obtained dataset was performed at several levels. Firstly, the quality of the semi-empirical formula for plume-top computations was evaluated using recent additions to the MISR fire plume-height dataset. Secondly, the obtained maps of injection profiles are compared with another global distribution available from literature. Thirdly, the upper percentiles of the profiles are compared with an independent dataset of space-based lidar CALIOP. Finally, the stability of the calculated profiles with regard to inter-annual variations of the fire activity and meteorological conditions is roughly estimated by comparing the sub-sets for 2001 and 2008.

  12. Improved NOx emissions and combustion characteristics for a retrofitted down-fired 300-MWe utility boiler.

    Science.gov (United States)

    Li, Zhengqi; Ren, Feng; Chen, Zhichao; Liu, Guangkui; Xu, Zhenxing

    2010-05-15

    A new technique combining high boiler efficiency and low-NO(x) emissions was employed in a 300MWe down-fired boiler as an economical means to reduce NO(x) emissions in down-fired boilers burning low-volatile coals. Experiments were conducted on this boiler after the retrofit with measurements taken of gas temperature distributions along the primary air and coal mixture flows and in the furnace, furnace temperatures along the main axis and gas concentrations such as O(2), CO and NO(x) in the near-wall region. Data were compared with those obtained before the retrofit and verified that by applying the combined technique, gas temperature distributions in the furnace become more reasonable. Peak temperatures were lowered from the upper furnace to the lower furnace and flame stability was improved. Despite burning low-volatile coals, NO(x) emissions can be lowered by as much as 50% without increasing the levels of unburnt carbon in fly ash and reducing boiler thermal efficiency.

  13. [Emission characteristics of PM10 from coal-fired industrial boiler].

    Science.gov (United States)

    Li, Chao; Li, Xing-Hua; Duan, Lei; Zhao, Meng; Duan, Jing-Chun; Hao, Ji-Ming

    2009-03-15

    Through ELPI (electrical low-pressure impactor) based dilution sampling system, the emission characteristics of PM10 and PM2.5 was studied experimentally at the inlet and outlet of dust catchers at eight different coal-fired industrial boilers. Results showed that a peak existed at around 0.12-0.20 microm of particle size for both number size distribution and mass size distribution of PM10 emitted from most of the boilers. Chemical composition analysis indicated that PM2.5 was largely composed of organic carbon, elementary carbon, and sulfate, with mass fraction of 3.7%-21.4%, 4.2%-24.6%, and 1.5%-55.2% respectively. Emission factors of PM10 and PM2.5 measured were 0.13-0.65 kg x t(-1) and 0.08-0.49 kg x t(-1) respectively for grate boiler using raw coal, and 0.24 kg x t(-1) and 0.22 kg x t(-1) for chain-grate boiler using briquette. In comparison, the PM2.5 emission factor of fluidized bed boiler is 1.14 kg x t(-1), much her than that of grate boiler. Due to high coal consumption and low efficiency of dust separator, coal-fired industrial boiler may become the most important source of PM10, and should be preferentially controlled in China.

  14. Estimation of Black Carbon Emissions from Dry Dipterocarp Forest Fires in Thailand

    Directory of Open Access Journals (Sweden)

    Ubonwan Chaiyo

    2014-12-01

    Full Text Available This study focused on the estimation of black carbon emissions from dry dipterocarp forest fires in Thailand. Field experiments were set up at the natural forest, Mae Nam Phachi wildlife sanctuary, Ratchaburi Province, Thailand. The dead leaves were the main component consumed of the surface biomass with coverage higher than 90% in volume and mass. The dead leaves load was 342 ± 190 g∙m−2 and followed by a little mass load of twig, 100 g∙m−2. The chemical analysis of the dead leaves showed that the carbon content in the experimental biomass fuel was 45.81 ± 0.04%. From the field experiments, it was found that 88.38 ± 2.02% of the carbon input was converted to carbon released to the atmosphere, while less than 10% were left in the form of residues, and returned to soil. The quantity of dead leaves consumed to produce each gram of carbon released was 2.40 ± 0.02 gdry biomass burned. From the study, the emissions factor of carbon dioxide, carbon monoxide, particulate matter (PM2.5 and black carbon amounted 1329, 90, 26.19 and 2.83 g∙kg−1dry biomass burned, respectively. In Thailand, the amount of black carbon emissions from dry dipterocarp forest fires amounted 17.43 tonnes∙y−1.

  15. Predicting the deforestation-trend under different carbon-prices

    Directory of Open Access Journals (Sweden)

    Obersteiner Michael

    2006-12-01

    Full Text Available Abstract Background Global carbon stocks in forest biomass are decreasing by 1.1 Gt of carbon annually, owing to continued deforestation and forest degradation. Deforestation emissions are partly offset by forest expansion and increases in growing stock primarily in the extra-tropical north. Innovative financial mechanisms would be required to help reducing deforestation. Using a spatially explicit integrated biophysical and socio-economic land use model we estimated the impact of carbon price incentive schemes and payment modalities on deforestation. One payment modality is adding costs for carbon emission, the other is to pay incentives for keeping the forest carbon stock intact. Results Baseline scenario calculations show that close to 200 mil ha or around 5% of todays forest area will be lost between 2006 and 2025, resulting in a release of additional 17.5 GtC. Today's forest cover will shrink by around 500 million hectares, which is 1/8 of the current forest cover, within the next 100 years. The accumulated carbon release during the next 100 years amounts to 45 GtC, which is 15% of the total carbon stored in forests today. Incentives of 6 US$/tC for vulnerable standing biomass payed every 5 year will bring deforestation down by 50%. This will cause costs of 34 billion US$/year. On the other hand a carbon tax of 12 $/tC harvested forest biomass will also cut deforestation by half. The tax income will, if enforced, decrease from 6 billion US$ in 2005 to 4.3 billion US$ in 2025 and 0.7 billion US$ in 2100 due to decreasing deforestation speed. Conclusion Avoiding deforestation requires financial mechanisms that make retention of forests economically competitive with the currently often preferred option to seek profits from other land uses. Incentive payments need to be at a very high level to be effective against deforestation. Taxes on the other hand will extract budgetary revenues from the regions which are already poor. A combination of

  16. Historical and future emission of hazardous air pollutants (HAPs) from gas-fired combustion in Beijing, China.

    Science.gov (United States)

    Xue, Yifeng; Nie, Lei; Zhou, Zhen; Tian, Hezhong; Yan, Jing; Wu, Xiaoqing; Cheng, Linglong

    2017-07-01

    The consumption of natural gas in Beijing has increased in the past decade due to energy structure adjustments and air pollution abatement. In this study, an integrated emission inventory of hazardous air pollutants (HAPs) emitted from gas-fired combustion in Beijing was developed for the period from 2000 to 2014 using a technology-based approach. Future emission trends were projected through 2030 based on current energy-related and emission control policies. We found that emissions of primary HAPs exhibited an increasing trend with the rapid increase in natural gas consumption. Our estimates indicated that the total emissions of NO X , particulate matter (PM) 10 , PM 2.5 , CO, VOCs, SO 2 , black carbon, Pb, Cd, Hg, As, Cr, Cu, Ni, Zn, polychlorinated dibenzo-p-dioxins and dibenzofurans, and benzo[a]pyrene from gas-fired combustion in Beijing were approximately 22,422 t, 1042 t, 781 t, 19,097 t, 653 t, 82 t, 19 t, 0.6 kg, 0.1 kg, 43 kg, 52 kg, 0.3 kg, 0.03 kg, 4.3 kg, 0.6 kg, 216 μg, and 242 g, respectively, in 2014. To mitigate the associated air pollution and health risks caused by gas-fired combustion, stricter emission standards must be established. Additionally, combustion optimization and flue gas purification system could be used for lowering NO X emissions from gas-fired combustion, and gas-fired facilities should be continuously monitored based on emission limits. Graphical abstract Spatial distribution and typical live photos of gas-fired boiler in Beijing.

  17. Modernisation of a lignite-fired steam generator. Reduction of NO{sub x} emission

    Energy Technology Data Exchange (ETDEWEB)

    Kriegeskotte, Ralf; Thierbach, Hans-Ulrich; Zimmermann, Bernhard [Steinmueller Engineering GmbH, Gummersbach (Germany); Di Ferdinando, Quinto [ContourGlobal Maritsa East 3 AD, Sofia (Bulgaria)

    2013-11-01

    ContourGlobal Maritsa East 3 is a lignite-fired power plant with an electrical total output of 4 x 227 MW. The four steam generators of Russian design have a steam capacity up to 730 t/h each and were commissioned between 1978 and 1981. According to EU requirements, the NO{sub x} emissions have to be reduced reliably by 2015. The consortium Steinmueller Engineering GmbH Gummersbach and Siemens EOOD, Sofia, successfully redesigned the furnace of boiler 4. (orig.)

  18. JV Task 98 - Controlling Mercury Emissions for Utilities Firing Lignites from North America

    Energy Technology Data Exchange (ETDEWEB)

    Steven Benson

    2007-06-15

    This project compiled and summarized the findings and conclusions of research, development, and demonstration projects on controlling mercury from lignite coals. A significant amount of work has been conducted since 1994 on mercury in lignite, mercury measurement in flue gases, sorbent, sorbent enhancement additives, oxidation agent development, and full-scale demonstration of mercury control technologies. This report is focused on providing the lignite industry with an understanding of mercury issues associated with the combustion of lignite, as well as providing vital information on the methods to control mercury emissions in coal-fired power plants.

  19. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS

    Energy Technology Data Exchange (ETDEWEB)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO{sub x} in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO{sub x} emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames--particularly under low NO{sub x} conditions. A CO/H{sub 2}/O{sub 2}/N{sub 2} flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state {sup 13}C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  20. MINIMIZATION OF NO EMISSIONS FROM MULTI-BURNER COAL-FIRED BOILERS; FINAL

    International Nuclear Information System (INIS)

    E.G. Eddings; A. Molina; D.W. Pershing; A.F. Sarofim; T.H. Fletcher; H. Zhang; K.A. Davis; M. Denison; H. Shim

    2002-01-01

    The focus of this program is to provide insight into the formation and minimization of NO(sub x) in multi-burner arrays, such as those that would be found in a typical utility boiler. Most detailed studies are performed in single-burner test facilities, and may not capture significant burner-to-burner interactions that could influence NO(sub x) emissions. Thus, investigations of such interactions were made by performing a combination of single and multiple burner experiments in a pilot-scale coal-fired test facility at the University of Utah, and by the use of computational combustion simulations to evaluate full-scale utility boilers. In addition, fundamental studies on nitrogen release from coal were performed to develop greater understanding of the physical processes that control NO formation in pulverized coal flames-particularly under low NO(sub x) conditions. A CO/H(sub 2)/O(sub 2)/N(sub 2) flame was operated under fuel-rich conditions in a flat flame reactor to provide a high temperature, oxygen-free post-flame environment to study secondary reactions of coal volatiles. Effects of temperature, residence time and coal rank on nitrogen evolution and soot formation were examined. Elemental compositions of the char, tar and soot were determined by elemental analysis, gas species distributions were determined using FTIR, and the chemical structure of the tar and soot was analyzed by solid-state(sup 13)C NMR spectroscopy. A laminar flow drop tube furnace was used to study char nitrogen conversion to NO. The experimental evidence and simulation results indicated that some of the nitrogen present in the char is converted to nitric oxide after direct attack of oxygen on the particle, while another portion of the nitrogen, present in more labile functionalities, is released as HCN and further reacts in the bulk gas. The reaction of HCN with NO in the bulk gas has a strong influence on the overall conversion of char-nitrogen to nitric oxide; therefore, any model that

  1. An assessment of mercury emissions and health risks from a coal-fired power plant

    Energy Technology Data Exchange (ETDEWEB)

    Fthenakis, V.M.; Lipfert, F.W.; Moskowitz, P.D.; Saroff, L. [Brookhaven National Laboratory, Upton, NY (United States)

    1995-12-01

    Title III of the 1990 Clean Air Act Amendments (CAAA) directed the US Environmental Protection Agency (EPA) to evaluate the rate and effect of mercury emissions in the atmosphere and technologies to control the emissions. The US DOE sponsored a risk assessment project at Brookhaven (BNL) to evaluate health risks of mercury emissions from coal combustion. Methylmercury (MeHg) is the compound predominantly responsible for human exposure to atmospheric mercury in the United States, through fish ingestion. In the BNL study, health risks to adults resulting from Hg emissions from a hypothetical coal-fired power plant were estimated using probabilistic risk assessment techniques. This study showed that the effects of emissions of a single large power plant may double the background exposures to MeHg resulting from consuming fish obtained from a localized are near the power plant. Even at these more elevated exposure levels, the attributable incidence in mild neurological symptoms (paresthesia) was estimated to be quite small, especially when compared with the estimated background incidence in the population. 29 refs., 5 figs., 2 tabs.

  2. An assessment of mercury emissions and health risks from a coal-fired power plant

    International Nuclear Information System (INIS)

    Fthenakis, V.M.; Lipfert, F.W.; Moskowitz, P.D.; Saroff, L.

    1995-01-01

    Title III of the 1990 Clean Air Act Amendments (CAAA) directed the US Environmental Protection Agency (EPA) to evaluate the rate and effect of mercury emissions in the atmosphere and technologies to control the emissions. The US DOE sponsored a risk assessment project at Brookhaven (BNL) to evaluate health risks of mercury emissions from coal combustion. Methylmercury (MeHg) is the compound predominantly responsible for human exposure to atmospheric mercury in the United States, through fish ingestion. In the BNL study, health risks to adults resulting from Hg emissions from a hypothetical coal-fired power plant were estimated using probabilistic risk assessment techniques. This study showed that the effects of emissions of a single large power plant may double the background exposures to MeHg resulting from consuming fish obtained from a localized are near the power plant. Even at these more elevated exposure levels, the attributable incidence in mild neurological symptoms (paresthesia) was estimated to be quite small, especially when compared with the estimated background incidence in the population. 29 refs., 5 figs., 2 tabs

  3. Mitigating Satellite-Based Fire Sampling Limitations in Deriving Biomass Burning Emission Rates: Application to WRF-Chem Model Over the Northern sub-Saharan African Region

    Science.gov (United States)

    Wang, Jun; Yue, Yun; Wang, Yi; Ichoku, Charles; Ellison, Luke; Zeng, Jing

    2018-01-01

    Largely used in several independent estimates of fire emissions, fire products based on MODIS sensors aboard the Terra and Aqua polar-orbiting satellites have a number of inherent limitations, including (a) inability to detect fires below clouds, (b) significant decrease of detection sensitivity at the edge of scan where pixel sizes are much larger than at nadir, and (c) gaps between adjacent swaths in tropical regions. To remedy these limitations, an empirical method is developed here and applied to correct fire emission estimates based on MODIS pixel level fire radiative power measurements and emission coefficients from the Fire Energetics and Emissions Research (FEER) biomass burning emission inventory. The analysis was performed for January 2010 over the northern sub-Saharan African region. Simulations from WRF-Chem model using original and adjusted emissions are compared with the aerosol optical depth (AOD) products from MODIS and AERONET as well as aerosol vertical profile from CALIOP data. The comparison confirmed an 30-50% improvement in the model simulation performance (in terms of correlation, bias, and spatial pattern of AOD with respect to observations) by the adjusted emissions that not only increases the original emission amount by a factor of two but also results in the spatially continuous estimates of instantaneous fire emissions at daily time scales. Such improvement cannot be achieved by simply scaling the original emission across the study domain. Even with this improvement, a factor of two underestimations still exists in the modeled AOD, which is within the current global fire emissions uncertainty envelope.

  4. Amazon Fund: financing deforestation avoidance

    Directory of Open Access Journals (Sweden)

    Jacques Marcovitch

    2014-06-01

    Full Text Available The Amazon Fund, created in 2008 by the Brazilian Federal Government, is managed by Banco Nacional de Desenvolvimento Econômico e Social (BNDES. It is a pioneering initiative to fundraise and manage financial resources to cut back deforestation and support sustainable development for 30 million inhabitants in the Amazon Biome. The Amazon Fund has already received more than R$ 1.7 billion in grants (about USD 787 million. This essay analyzes the Amazon Fund's governance and management with focus on its operation and from its stakeholders' perspectives. A combination of research methods includes: documental research, in-depth interviews, and speech analysis. The study offers a comparative analysis of strengths and weaknesses related to its governance. Furthermore, it proposes ways to improve its management towards greater effectiveness. The essay also includes an assessment of the government of Norway, a major donor to the fund. The governments of Norway and Germany, in partnership with Brazil, reveal how important it is to experiment with new means of international cooperation to successfully reduce greenhouse gas emissions through rainforest preservation.

  5. Deforestation trend in North Sumatra over 1990-2015

    Science.gov (United States)

    Basyuni, M.; Sulistiyono, N.; Wati, R.; Hayati, R.

    2018-02-01

    Deforestation and forest degradation have been previously reported to contributing greenhouse gas emission, the primary driver of global warming. The present paper studies deforestation and reforestation trend in North Sumatra, Indonesia using land-use/land-cover change from 1990-2015. The land-use consists of three classes derived from forest land (primary and secondary dry land forest, primary and secondary swamp forest, primary and secondary mangrove forest). Non-Forest (shrub, oil palm plantation, forest plantation, settlement, barren land, swamp shrub, dry land farming, mixed dry land farming, paddy field, aquaculture, airport, transmigration, and mining), and water body (water and swamp). Results showed that from 33 regencies/city in North Sumatra, among them, 25 districts deforested, which was the highest deforestation rate in Labuhanbatu and South Labuhanbatu (2,238.08 and 1,652.55 ha/year, respectively), only one area reforested, and seven districts showed no deforestation or reforestation. During 25 years observed, the forest has been deforested 22.92%, while nonforest has been increased 11.33% of land-use. The significant increasing loss of North Sumatran forest implies conservation efforts and developing sustainable forest management.

  6. The Tropical Forest and Fire Emissions Experiment: method evaluation of volatile organic compound emissions measured by PTR-MS, FTIR, and GC from tropical biomass burning

    Directory of Open Access Journals (Sweden)

    T. G. Karl

    2007-11-01

    Full Text Available Volatile Organic Compound (VOC emissions from fires in tropical forest fuels were quantified using Proton-Transfer-Reaction Mass Spectrometry (PTRMS, Fourier Transform Infrared Spectroscopy (FTIR and gas chromatography (GC coupled to PTRMS (GC-PTR-MS. We investigated VOC emissions from 19 controlled laboratory fires at the USFS (United States Forest Service Fire Sciences Laboratory and 16 fires during an intensive airborne field campaign during the peak of the burning season in Brazil in 2004. The VOC emissions were dominated by oxygenated VOCs (OVOC (OVOC/NMHC ~4:1, NMHC: non-methane hydrocarbons The specificity of the PTR-MS instrument, which measures the mass to charge ratio of VOCs ionized by H3O+ ions, was validated by gas chromatography and by intercomparing in-situ measurements with those obtained from an open path FTIR instrument. Emission ratios for methyl vinyl ketone, methacrolein, crotonaldehyde, acrylonitrile and pyrrole were measured in the field for the first time. Our measurements show a higher contribution of OVOCs than previously assumed for modeling purposes. Comparison of fresh (<15 min and aged (>1 h–1 d smoke suggests altered emission ratios due to gas phase chemistry for acetone but not for acetaldehyde and methanol. Emission ratios for numerous, important, reactive VOCs with respect to acetonitrile (a biomass burning tracer are presented.

  7. Experimental investigation of the creation of a fire-rod by Langmuir and emissive probes

    International Nuclear Information System (INIS)

    Gyergyek, T.; Cercek, M.

    2000-01-01

    Positive voltage steps are applied to a plane electrode immersed in a weakly magnetized discharge plasma column with its surface perpendicular to the magnetic field lines. Steps of different amplitude are applied at various neutral gas pressures. If the amplitude of the voltage step and the gas pressure are high enough, additional discharge occurs in front of the anode and a fire-rod is created. In this work time development of the electron distribution function is measured using Langmuir and emissive probes. The formation of the anode plasma electron population is followed on the derivatives of the probe characteristics. Results obtained by Langmuir and emissive probes are compared and are found to be in good agreement. (author)

  8. Local Impacts of Mercury Emissions from the Three Pennsylvania Coal Fired Power Plants.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan,T.; Adams,J.; Bender, M.; Bu, C.; Piccolo, N.; Campbell, C.

    2008-02-01

    The Clean Air Interstate Rule (CAIR) and the Clean Air Mercury Rule (CAMR) as proposed by the U.S. Environmental Protection Agency (EPA) when fully implemented will lead to reduction in mercury emissions from coal-fired power plants by 70 percent to fifteen tons per year by 2018. The EPA estimates that mercury deposition would be reduced 8 percent on average in the Eastern United States. The CAMR permits cap-and-trade approach that requires the nationwide emissions to meet the prescribed level, but do not require controls on each individual power plant. This has led to concerns that there may be hot-spots of mercury contamination near power plants. Partially because of this concern, many states including Pennsylvania have implemented, or are considering, state regulations that are stricter on mercury emissions than those in the CAMR. This study examined the possibility that coal-fired power plants act as local sources leading to mercury 'hot spots'. Soil and oak leaf samples from around three large U.S. coal-fired power plants in Western Pennsylvania were collected and analyzed for evidence of 'hot spots'. These three plants (Conemaugh, Homer City, and Keystone) are separated by a total distance of approximately 30 miles. Each emits over 500 pounds of mercury per year which is well above average for mercury emissions from coal plants in the U.S. Soil and oak leaf sampling programs were performed around each power plant. Sampling rings one-mile apart were used with eight or nine locations on each ring. The prevailing winds in the region are from the west. For this reason, sampling was conducted out to 10 miles from the Conemaugh plant which is southeast of the others. The other plants were sampled to a distance of five miles. The objectives were to determine if local mercury hot spots exist, to determine if they could be attributed to deposition of coal-fired power plant emissions, and to determine if they correlated with wind patterns. The study

  9. Detecting and monitoring deforestation and forest degradation: Issues and obstacles for Southeast Asia

    Science.gov (United States)

    Douglas Muchoney; Sharon Hamann

    2013-01-01

    Forest degradation can be defined as the loss of forest volume, biomass and/or forest productivity caused by natural or human influences. Achieving Reduced Emissions from Deforestation and Forest Degradation (REDD+) requires that deforestation and degradation can be efficiently, reliably, and cost-effectively detected and quantified, often where ground and aerial...

  10. Quantitative Evaluation of MODIS Fire Radiative Power Measurement for Global Smoke Emissions Assessment

    Science.gov (United States)

    Ichoku, Charles; Ellison, Luke

    2011-01-01

    Satellite remote sensing is providing us tremendous opportunities to measure the fire radiative energy (FRE) release rate or power (FRP) from open biomass burning, which affects many vegetated regions of the world on a seasonal basis. Knowledge of the biomass burning characteristics and emission source strengths of different (particulate and gaseous) smoke constituents is one of the principal ingredients upon which the assessment, modeling, and forecasting of their distribution and impacts depend. This knowledge can be gained through accurate measurement of FRP, which has been shown to have a direct relationship with the rates of biomass consumption and emissions of major smoke constituents. Over the last decade or so, FRP has been routinely measured from space by both the MODIS sensors aboard the polar orbiting Terra and Aqua satellites, and the SEVIRI sensor aboard the Meteosat Second Generation (MSG) geostationary satellite. During the last few years, FRP has steadily gained increasing recognition as an important parameter for facilitating the development of various scientific studies and applications relating to the quantitative characterization of biomass burning and their emissions. To establish the scientific integrity of the FRP as a stable quantity that can be measured consistently across a variety of sensors and platforms, with the potential of being utilized to develop a unified long-term climate data record of fire activity and impacts, it needs to be thoroughly evaluated, calibrated, and validated. Therefore, we are conducting a detailed analysis of the FRP products from MODIS to evaluate the uncertainties associated with them, such as those due to the effects of satellite variable observation geometry and other factors, in order to establish their error budget for use in diverse scientific research and applications. In this presentation, we will show recent results of the MODIS FRP uncertainty analysis and error mitigation solutions, and demonstrate

  11. Life assessment and emissions monitoring of Indian coal-fired power plants

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    At the request of the Pittsburgh Energy Technology Center (PETC) of the United States Department of Energy (USDOE), the traveler, along with Dr. R. P. Krishnan, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee spent three weeks in India planning and performing emissions monitoring at the coal-fired Vijayawada Thermal Power Station (VTPS). The coordination for the Indian participants was provided by BHEL, Trichy and CPRI, Bangalore. The trip was sponsored by the PETC under the United States Agency for International Development (USAID)/Government of India (GOI)P Alternate Energy Resources Development (AERD) Project. The AERD Project is managed by PETC, and ORNL is providing the technical coordination and support for four coal projects that are being implemented with BHEL, Trichy. The traveler, after briefing the USAID mission in New Delhi visited BHEL, Trichy and CPRI, Bangalore to coordinate and plan the emissions test program. The site selection was made by BHEL, CPRI, TVA, and PETC. Monitoring was performed for 4 days on one of the 4 existing 210 MW coal-fired boilers at the VTPS, 400 km north of Madras, India.

  12. Life assessment and emissions monitoring of Indian coal-fired power plants. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1992-07-01

    At the request of the Pittsburgh Energy Technology Center (PETC) of the United States Department of Energy (USDOE), the traveler, along with Dr. R. P. Krishnan, Oak Ridge National Laboratory (ORNL), Oak Ridge, Tennessee spent three weeks in India planning and performing emissions monitoring at the coal-fired Vijayawada Thermal Power Station (VTPS). The coordination for the Indian participants was provided by BHEL, Trichy and CPRI, Bangalore. The trip was sponsored by the PETC under the United States Agency for International Development (USAID)/Government of India (GOI)P Alternate Energy Resources Development (AERD) Project. The AERD Project is managed by PETC, and ORNL is providing the technical coordination and support for four coal projects that are being implemented with BHEL, Trichy. The traveler, after briefing the USAID mission in New Delhi visited BHEL, Trichy and CPRI, Bangalore to coordinate and plan the emissions test program. The site selection was made by BHEL, CPRI, TVA, and PETC. Monitoring was performed for 4 days on one of the 4 existing 210 MW coal-fired boilers at the VTPS, 400 km north of Madras, India.

  13. Heavy metal atmospheric emissions from coal-fired power plants - Assessment and uncertainties

    International Nuclear Information System (INIS)

    Lecuyer, I.; Ungar, A.; Peter, H.; Karl, U.

    2004-01-01

    Power generation using fossil fuel combustion (coal and fuel-oil) participates, with other sectors, to heavy metal atmospheric emissions. The dispersion of these hazardous pollutants throughout the environment is more and more regulated. In order to assess the annual flows emitted from EDF coal-fired power plants, a computerized tool has been developed, based on the methodology defined by IFARE/DFIU in 1997. The heavy metal partition factors within the plant unit are determined according to the type of unit and the coal characteristics. Heavy metals output flows, and especially those emitted with flue gas at the stack, are then deduced from the actual coal consumption and chemical composition. A first inventory of heavy metal emissions from EDF coal-fired power plants has been achieved for year 2001. Values are accurate (± 40 %) for nonvolatile elements (Cr, Cu, Co, Mn, Ni, V) and for PM 10 and PM 2.5 (particulate matter below 10 μm and 2.5 μm). The uncertainty is higher (± 80 %) for volatile elements (As, Pb, Zn). Excess indicative values are given for elements which are both volatile and at low concentrations in coal (Hg, Se, Cd). (author)

  14. Emission during the firing of chrome-magnesite products in tunnel kilns

    Energy Technology Data Exchange (ETDEWEB)

    Krechin, Yu.V.; Telegin, S.V.; Ivanov, N.M.; Kasimov, A.M.; Plichko, E.P.; Sverkov, Yu.M.; Maksimov, B.N.

    1986-11-01

    When chrome-magnesite products are fired in tunnel furnaces, the concentration in the effluent gas of dust is 110-150; of Cr/sub 7/O/sub 3/, 5-7; NO/sub x/, 20-35; CO, 100-125; SO/sub 2/, 25-40; and SO/sub 3/, 30-70 mg/m/sup 3/. The emission dust is finely dispersed. The average size of the particles of dust is 0.3, the minimum 0.05, and the maximum 1 ..mu..m. There is no hydrogen sulfide, NO/sub 2/, or CrO/sub 3/ in the emission. Dust and nitrogen oxides are formed in the firing zone of the kiln. The formation of dust and NO/sub 2/ depends on the air-consumption coefficient. The use of the pipe-in-pipe type of ports does not provide good gas combustion. To improve the operation of the kiln and the combustion of the natural gas it is recommended that instead of the obsolescent tube-in-tube ports, the ports developed by the Eastern Institute of Refractories be installed since they have given good results in tests. To improve the scattering effect of the removal of dust in the existing equipment it is recommended that the height of the flue stacks be increased to 40-50 m.

  15. Integrated Active Fire Retrievals and Biomass Burning Emissions Using Complementary Near-Coincident Ground, Airborne and Spaceborne Sensor Data

    Science.gov (United States)

    Schroeder, Wilfrid; Ellicott, Evan; Ichoku, Charles; Ellison, Luke; Dickinson, Matthew B.; Ottmar, Roger D.; Clements, Craig; Hall, Dianne; Ambrosia, Vincent; Kremens, Robert

    2013-01-01

    Ground, airborne and spaceborne data were collected for a 450 ha prescribed fire implemented on 18 October 2011 at the Henry W. Coe State Park in California. The integration of various data elements allowed near coincident active fire retrievals to be estimated. The Autonomous Modular Sensor-Wildfire (AMS) airborne multispectral imaging system was used as a bridge between ground and spaceborne data sets providing high quality reference information to support satellite fire retrieval error analyses and fire emissions estimates. We found excellent agreement between peak fire radiant heat flux data (less than 1% error) derived from near-coincident ground radiometers and AMS. Both MODIS and GOES imager active fire products were negatively influenced by the presence of thick smoke, which was misclassified as cloud by their algorithms, leading to the omission of fire pixels beneath the smoke, and resulting in the underestimation of their retrieved fire radiative power (FRP) values for the burn plot, compared to the reference airborne data. Agreement between airborne and spaceborne FRP data improved significantly after correction for omission errors and atmospheric attenuation, resulting in as low as 5 difference between AquaMODIS and AMS. Use of in situ fuel and fire energy estimates in combination with a collection of AMS, MODIS, and GOES FRP retrievals provided a fuel consumption factor of 0.261 kg per MJ, total energy release of 14.5 x 10(exp 6) MJ, and total fuel consumption of 3.8 x 10(exp 6) kg. Fire emissions were calculated using two separate techniques, resulting in as low as 15 difference for various species

  16. South American smoke coverage and flux estimations from the Fire Locating and Modeling of Burning Emissions (FLAMBE') system.

    Science.gov (United States)

    Reid, J. S.; Westphal, D. L.; Christopher, S. A.; Prins, E. M.; Gasso, S.; Reid, E.; Theisen, M.; Schmidt, C. C.; Hunter, J.; Eck, T.

    2002-05-01

    The Fire Locating and Modeling of Burning Emissions (FLAMBE') project is a joint Navy, NOAA, NASA and university project to integrate satellite products with numerical aerosol models to produce a real time fire and emissions inventory. At the center of the program is the Wildfire Automated Biomass Burning Algorithm (WF ABBA) which provides real-time fire products and the NRL Aerosol Analysis and Prediction System to model smoke transport. In this presentation we give a brief overview of the system and methods, but emphasize new estimations of smoke coverage and emission fluxes from the South American continent. Temporal and smoke patterns compare reasonably well with AERONET and MODIS aerosol optical depth products for the 2000 and 2001 fire seasons. Fluxes are computed by relating NAAPS output fields and MODIS optical depth maps with modeled wind fields. Smoke emissions and transport fluxes out of the continent can then be estimated by perturbing the modeled emissions to gain agreement with the satellite and wind products. Regional smoke emissions are also presented for grass and forest burning.

  17. Characterization of atmospheric emissions produced by live gun firing : test on the M777 155 mm Howitzer

    Energy Technology Data Exchange (ETDEWEB)

    Quemarais, B. [Defence Research and Development Canada, Toronto, ON (Canada); Diaz, E.; Poulin, I.; Marois, A. [Defence Research and Development Canada, Valcartier, PQ (Canada)

    2007-10-15

    This study analyzed the atmospheric emissions produced by the live firing of a 155 mm Howitzer gun. The study was conducted during a live firing training exercise at a Canadian Forces Base. Air emissions were sampled continuously for 3 hours. Particles and chemicals were accumulated on sampling media during the firing of 69 rounds. A single round was fired using 4 bags of propellants, and an additional 3 rounds were fired using 5 bags of propellant. Samples included particulate matter; hydrogen cyanide; polycyclic aromatic hydrocarbons (PAHs); dinitrotoluene compounds; benzene; toluene; ethylbenzene; xylene; metals; aldehydes; nitric acid; nitric oxide; nitrogen dioxide; hydrogen sulphide; and sulphur dioxide. Samples were collected at 8 m to the left of the gun as well as at 22 m in front of the gun muzzle in the line of fire. Results of the study showed that 60 per cent of the particles were below 10 {mu}m. Formaldehyde concentrations of 7.1 and 3.6 {mu}g/m{sup 3} for the left and front sampling locations were also detected. It was concluded that live firing may pose health risks to artillery soldiers. 26 refs., 9 tabs., 7 figs.

  18. Combustion efficiency and emission factors for wildfire-season fires in mixed conifer forests of the northern Rocky Mountains, US

    Directory of Open Access Journals (Sweden)

    S. P. Urbanski

    2013-07-01

    Full Text Available In the US, wildfires and prescribed burning present significant challenges to air regulatory agencies attempting to achieve and maintain compliance with air quality regulations. Fire emission factors (EF are essential input for the emission models used to develop wildland fire emission inventories. Most previous studies quantifying wildland fire EF of temperate ecosystems have focused on emissions from prescribed burning conducted outside of the wildfire season. Little information is available on EF for wildfires in temperate forests of the conterminous US. The goal of this work is to provide information on emissions from wildfire-season forest fires in the northern Rocky Mountains, US. In August 2011, we deployed airborne chemistry instruments and sampled emissions over eight days from three wildfires and a prescribed fire that occurred in mixed conifer forests of the northern Rocky Mountains. We measured the combustion efficiency, quantified as the modified combustion efficiency (MCE, and EF for CO2, CO, and CH4. Our study average values for MCE, EFCO2, EFCO, and EFCH4 were 0.883, 1596 g kg−1, 135 g kg−1, 7.30 g kg−1, respectively. Compared with previous field studies of prescribed fires in temperate forests, the fires sampled in our study had significantly lower MCE and EFCO2 and significantly higher EFCO and EFCH4. The fires sampled in this study burned in areas reported to have moderate to heavy components of standing dead trees and down dead wood due to insect activity and previous fire, but fuel consumption data was not available. However, an analysis of MCE and fuel consumption data from 18 prescribed fires reported in the literature indicates that the availability of coarse fuels and conditions favorable for the combustion of these fuels favors low MCE fires. This analysis suggests that fuel composition was an important factor contributing to the low MCE of the fires measured in this study. This study only measured EF for CO2, CO

  19. Measuring Environmental and Socio-economic Impact of Deforestation at Kalimantan Island

    Science.gov (United States)

    Nahib, Irmadi; Trenggana, Soma; Turmudi; Suryanta, Jaka; Lestari Munajati, Sri; Windiastuti, Rizka

    2018-05-01

    Indonesia’s forests in the period of 2000-2009 has been deforested by about 15.158 million ha out of 103.309 milion ha. Deforestation caused carbon emissions. One method for measuring emissions from deforestation and forest degradation is GeOSIRIS model. A modeled GeOSIRIS policy used a carbon payment system to incentivize emission reductions. Data used in this study were maps of forest cover in 2005 and 2010, map of deforestation 2005-2010, carbon and agricultural price and driver variables for deforestation such as slope, elevation, logarithmic distance to the nearest road or provincial capital, or the amount of area per pixel included in a national park, or a timber plantation. The result of this study showed rate of deforestation was 1.417 million ha/5 years (observed). The REDD policy could decrease deforestation in Kalimantan Island by 0.170 million ha (16.70%), with assumption that international carbon price of US 10/tCO2e. The change of emissions due to REDD was 22.29%, or reduced emissions by 245.03 million tCO2e/5 years. Finally, Gross National Revenue from carbon payments (NPV 5 years) was US 2,450.34 billion, where incentivize emission reductions to sub-national entities (NPV, 5 years) was US 2,150.07 million and net central government surplus from carbon payments was US 300.26 million (NPV, 5 years).

  20. A study of toxic emissions from a coal-fired gasification plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    Under the Fine Particulate Control/Air Toxics Program, the US Department of Energy (DOE) has been performing comprehensive assessments of toxic substance emissions from coal-fired electric utility units. An objective of this program is to provide information to the US Environmental Protection Agency (EPA) for use in evaluating hazardous air pollutant emissions as required by the Clean Air Act Amendments (CAAA) of 1990. The Electric Power Research Institute (EPRI) has also performed comprehensive assessments of emissions from many power plants and provided the information to the EPA. The DOE program was implemented in two. Phase 1 involved the characterization of eight utility units, with options to sample additional units in Phase 2. Radian was one of five contractors selected to perform these toxic emission assessments.Radian`s Phase 1 test site was at southern Company Service`s Plant Yates, Unit 1, which, as part of the DOE`s Clean Coal Technology Program, was demonstrating the CT-121 flue gas desulfurization technology. A commercial-scale prototype integrated gasification-combined cycle (IGCC) power plant was selected by DOE for Phase 2 testing. Funding for the Phase 2 effort was provided by DOE, with assistance from EPRI and the host site, the Louisiana Gasification Technology, Inc. (LGTI) project This document presents the results of that effort.

  1. Reducing CO2 Emissions in the Production of Porous Fired Clay Bricksks

    Directory of Open Access Journals (Sweden)

    Mikuláš ŠVEDA

    2017-08-01

    Full Text Available A plan to reduce CO2 emissions is a priority these days. Brick industry contributes to the increase of these emissions mainly through the use of combustible pore-forming agents such as sawdust, cellulose, and coal sludge. These agents are used to improve the thermal insulation properties of brick products, and the suppliers regularly increase the prices of these agents based on their high consumption. Therefore, in an effort to reduce raw material expenses and CO2 emissions, brick manufacturers are looking for new possibilities while maintaining the quality of their products. This article discusses the possibility of using industrially manufactured product Vuppor as an additive as a replacement for combustible pore-forming agents. The presence of this additive in the fired clay body increases the proportion of pores, especially with a size range between 0.1 and 5 µm, having a positive impact on the reduction of its thermal conductivity. With a 0.5 wt.% dose of Vuppor additive, the brick production costs and thermal conductivity can be reduced by 20 % and 12 %, respectively, while also achieving reductions in CO2 emissions over 60 %. Consequently, the combustible pore-forming agents can be used in a more environmentally friendly manner, for example in the furniture industry, the biogas production, and the like.DOI: http://dx.doi.org/10.5755/j01.ms.23.2.15103

  2. Visualizing the Impacts of Deforestation.

    Science.gov (United States)

    Fortner, Rosanne W.

    1992-01-01

    Presents two activities with investigation procedures to aid students in examining the extent and impact of biomass burning and deforestation in Brazil as an example of the global problem. Provides background information, tables, and diagrams. (five references) (MCO)

  3. Land use change emissions from oil palm expansion in Pará, Brazil depend on proper policy enforcement on deforested lands

    Science.gov (United States)

    Yui, Sahoko; Yeh, Sonia

    2013-12-01

    Brazil aims to increase palm oil production to meet the growing national and global demand for edible oil and biodiesel while preserving environmentally and culturally significant areas. As land use change (LUC) is the result of complex interactions between socio-economic and biophysical drivers operating at multiple temporal and spatial scales, the type and location of LUC depend on drivers such as neighboring land use, conversion elasticity, access to infrastructure, distance to markets, and land suitability. The purpose of this study is to develop scenarios to measure the impact of land conversion under three different enforcement scenarios (none, some, and strict enforcement). We found that converting 22.5 million hectares of land can produce approximately 29 billion gallons (110 billion liters) of biodiesel a year. Of that, 22-71% of the area can come from forest land, conservation units, wetland and indigenous areas, emitting 14-84 gCO2e MJ-1. This direct land use emission alone can be higher than the carbon intensity of diesel that it intends to displace for lowering greenhouse gas emissions. This letter focuses narrowly on GHG emissions and does not address socio-economic-ecological prospects for these degraded lands for palm oil or for other purposes. Future studies should carefully evaluate these tradeoffs.

  4. Land use change emissions from oil palm expansion in Pará, Brazil depend on proper policy enforcement on deforested lands

    International Nuclear Information System (INIS)

    Yui, Sahoko; Yeh, Sonia

    2013-01-01

    Brazil aims to increase palm oil production to meet the growing national and global demand for edible oil and biodiesel while preserving environmentally and culturally significant areas. As land use change (LUC) is the result of complex interactions between socio-economic and biophysical drivers operating at multiple temporal and spatial scales, the type and location of LUC depend on drivers such as neighboring land use, conversion elasticity, access to infrastructure, distance to markets, and land suitability. The purpose of this study is to develop scenarios to measure the impact of land conversion under three different enforcement scenarios (none, some, and strict enforcement). We found that converting 22.5 million hectares of land can produce approximately 29 billion gallons (110 billion liters) of biodiesel a year. Of that, 22–71% of the area can come from forest land, conservation units, wetland and indigenous areas, emitting 14–84 gCO 2 e MJ −1 . This direct land use emission alone can be higher than the carbon intensity of diesel that it intends to displace for lowering greenhouse gas emissions. This letter focuses narrowly on GHG emissions and does not address socio-economic–ecological prospects for these degraded lands for palm oil or for other purposes. Future studies should carefully evaluate these tradeoffs. (letter)

  5. Deforestation in Sub- Sahara Africa

    OpenAIRE

    Diarrassouba, Malick; Boubacar, Inoussa

    2009-01-01

    According to FAO (2005) about 13 million hectares of the word’s forest are lost due to deforestation. Naoto (2006) found Africa to lead the list of countries with the highest rate of deforestation. This worrisome situation is further aggravated by the possible negative impacts of climate change due to an increase in the mean global temperature. Evidence supports that Africa is most likely to suffer the most the devastating impacts of natural calamities such as droughts and floods. This paper ...

  6. Researching illegal logging and deforestation

    OpenAIRE

    Boekhout van Solinge, T.

    2014-01-01

    Tropical deforestation such as in the Amazon can be studied well from a green criminological perspective. Ethnographic research methods form a useful way to get insight into the dynamics and complexity of tropical deforestation, which often is illegal. This article gives an account of various ethnographic visits to the rainforests of the Amazon in the period 2003-2014. Ethnographic methods provide insight into the overlap between the legal and illegal, the functioning (or not) of state instit...

  7. Deforestation Profile of Regency Level In Sumatra

    OpenAIRE

    Rijal, Syamsu

    2016-01-01

    Deforestation Profile Sumatera Islands is an island with the highest deforestation rate in Indonesia for the of period 1990???2010, even in Southeast Asia. Deforestation assessment based solely on value of deforestation rate. Deforestation rate was not able to be explained and distinguished at areas that still covering a lot of forest, even at areas that less or no forest. The lowest rate results or zero (0) will be significantly better or assessed as undeforested area. This study was deve...

  8. Economic analysis of atmospheric mercury emission control for coal-fired power plants in China.

    Science.gov (United States)

    Ancora, Maria Pia; Zhang, Lei; Wang, Shuxiao; Schreifels, Jeremy; Hao, Jiming

    2015-07-01

    Coal combustion and mercury pollution are closely linked, and this relationship is particularly relevant in China, the world's largest coal consumer. This paper begins with a summary of recent China-specific studies on mercury removal by air pollution control technologies and then provides an economic analysis of mercury abatement from these emission control technologies at coal-fired power plants in China. This includes a cost-effectiveness analysis at the enterprise and sector level in China using 2010 as a baseline and projecting out to 2020 and 2030. Of the control technologies evaluated, the most cost-effective is a fabric filter installed upstream of the wet flue gas desulfurization system (FF+WFGD). Halogen injection (HI) is also a cost-effective mercury-specific control strategy, although it has not yet reached commercial maturity. The sector-level analysis shows that 193 tons of mercury was removed in 2010 in China's coal-fired power sector, with annualized mercury emission control costs of 2.7 billion Chinese Yuan. Under a projected 2030 Emission Control (EC) scenario with stringent mercury limits compared to Business As Usual (BAU) scenario, the increase of selective catalytic reduction systems (SCR) and the use of HI could contribute to 39 tons of mercury removal at a cost of 3.8 billion CNY. The economic analysis presented in this paper offers insights on air pollution control technologies and practices for enhancing atmospheric mercury control that can aid decision-making in policy design and private-sector investments. Copyright © 2015. Published by Elsevier B.V.

  9. Ten-Year Landsat Classification of Deforestation and Forest Degradation in the Brazilian Amazon

    OpenAIRE

    Jr, Carlos Souza,; Siqueira, João; Sales, Marcio; Fonseca, Antônio; Ribeiro, Júlia; Numata, Izaya; Cochrane, Mark; Barber, Christopher; Roberts, Dar; Barlow, Jos

    2013-01-01

    Forest degradation in the Brazilian Amazon due to selective logging and forest fires may greatly increase the human footprint beyond outright deforestation. We demonstrate a method to quantify annual deforestation and degradation simultaneously across the entire region for the years 2000–2010 using high-resolution Landsat satellite imagery. Combining spectral mixture analysis, normalized difference fraction index, and knowledge-based decision tree classification, we mapped and assessed the ac...

  10. Investigating fire emissions and smoke transport during the Summer of 2013 using an operational smoke modeling system and chemical transport model

    Science.gov (United States)

    ONeill, S. M.; Chung, S. H.; Wiedinmyer, C.; Larkin, N. K.; Martinez, M. E.; Solomon, R. C.; Rorig, M.

    2014-12-01

    Emissions from fires in the Western US are substantial and can impact air quality and regional climate. Many methods exist that estimate the particulate and gaseous emissions from fires, including those run operationally for use with chemical forecast models. The US Forest Service Smartfire2/BlueSky modeling framework uses satellite data and reported information about fire perimeters to estimate emissions of pollutants to the atmosphere. The emission estimates are used as inputs to dispersion models, such as HYSPLIT, and chemical transport models, such as CMAQ and WRF-Chem, to assess the chemical and physical impacts of fires on the atmosphere. Here we investigate the use of Smartfire2/BlueSky and WRF-Chem to simulate emissions from the 2013 fire summer fire season, with special focus on the Rim Fire in northern California. The 2013 Rim Fire ignited on August 17 and eventually burned more than 250,000 total acres before being contained on October 24. Large smoke plumes and pyro-convection events were observed. In this study, the Smartfire2/BlueSky operational emission estimates are compared to other estimation methods, such as the Fire INventory from NCAR (FINN) and other global databases to quantify variations in emission estimation methods for this wildfire event. The impact of the emissions on downwind chemical composition is investigated with the coupled meteorology-chemistry WRF-Chem model. The inclusion of aerosol-cloud and aerosol-radiation interactions in the model framework enables the evaluation of the downwind impacts of the fire plume. The emissions and modeled chemistry can also be evaluated with data collected from the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) aircraft field campaign, which intersected the fire plume.

  11. Non-greenhouse gas emissions from coal-fired power plants in China

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2012-04-15

    Within the Twelth Five-Year Plan, the Chinese Government has made addressing air quality problems a key environmental priority, with an intention to accelerate the development of systems, institutions and a technical knowledge base for sustained improvement. A major focus is on the coal power sector for which standards have been introduced that require the installation of modern, very high efficiency SO2, NOx and particulates emissions control systems. Nine key regions, which are facing very significant air quality challenges, are the three major economic zones around the cities of Beijing, Shanghai (Yangtze River Delta) and Guangzhou (Pearl River Delta), together with six areas around the cities of Shenyang, Changsha, Wuhan, Chengdu Chongqing, the Shandong peninsula, and the coastal area west of the Taiwan strait. These regions comprise the population and economic centres of the country, accounting for 64% of national GDP, 43% of total energy use, and 39% of the population. In these locations, all existing and new coal-fired power plants will have to achieve particulate, SO2 and NOx emissions limits of 20, 50 and 100 mg/m3 respectively, with new plants expected to meet the standards from 1 January 2012 and existing plants by 1 July 2014. At the same time, there will be an increasing emphasis on limiting any new coal-fired power plants in these regions. For the rest of the country, the standards are not quite so strict and the SO2 limits for existing plants are less severe than for new plants. The new pollutant that will be regulated on coal-fired power plants is mercury and its compounds, for which the limit has been set at a level that represents a core control. This means that providing the power plant operator meets the new particulate, SO2 and NOx standards then the mercury standard should be met without the need to introduce an additional capture device, although the emissions level will have to be measured on a regular basis. From a global perspective, this

  12. Emission of nitrogen oxides from small biomass-fired grate boilers - a literature survey

    International Nuclear Information System (INIS)

    Olsson, Daniel

    1999-05-01

    A literature study has been carried out to find mechanisms for control of nitrogen oxide emissions from small-scale biomass fired combustion devices. The underlying nitrogen chemistry has been studied. Three paths of nitrogen oxide formation has been identified: 1. Thermal NO x , 2, Prompt NO x , and, 3. Fuel NO x . Out of these three mechanisms only fuel NO x is of interest, and the others are neglected at the temperature level concerned. The results from this study have been used to identify limitations and possibilities for NO x and CO abatement. A beacon has been to find efficient methods for NO x abatement at the same time as complete burn-out of the fuel is of greatest importance. The NO x abatement work of many of the Swedish manufacturers of small-scale combustion devices is described. This gives valuable insight in the practical possibilities and limitations in strive for low NOx emissions. From the literature and the contacts with manufacturers some factors of great importance for NO x emission control have been identified. These are: * The fuel (nitrogen content, shape, size, the height of the fuel layer and the tendency of the fuel to stick), * The stoichiometry in the volume above the fuel bed (should be 0.6 - 0.8), * The mixing of the gases above the fuel bed, * The mixing of tertiary air into the main gas flow, and * The thermal load of the combustion chamber (residence time). All the secondary measures studied but selective catalytic reduction have been rejected. Selective catalytic reduction could be a possible solution to the NO x emission problem if it is necessary to further lower the emissions from these small-scale biomass combustion devices despite the cost Project report from the program: Small scale combustion of biofuels. 22 refs, 30 figs, 4 tabs

  13. Particulate and un burned carbon emissions reduction from oil fired boilers using combustion promoters

    Energy Technology Data Exchange (ETDEWEB)

    Balsiger, Andreas; Carvalho, Jose Guilherme de [ACOTEQ, Rio de Janeiro, RJ (Brazil)

    1993-12-31

    This paper describes the results obtained in the tests carried out with a combustion promoter on a 530 MW utility boiler, in order to reduce solid particle emissions in steady state and transient operations. Tests have been performed at Unit II of Bahia de Algeciras Power Station, owned by Sevillana de Electricidad. Sevillana de Electricidad activities include the production, transmission and distribution of electric power. The distribution area is 40000 square miles (aprox. 20% of peninsular Spains territory).Companys total capacity is 4400 MW, of which 1476 are fuel-oil fired. The demand for electricity in the market served by Sevillana has been 18345 GWh in 1989. Fuel-oil plants output was only 1,6% of total demand in accordance with Spanish energy policy guidelines. Along tests described in this paper, steady state emission, are expected to be reduced due to depletion of the un burned carbon content in particulates. Transient operation emissions should also be reduced if the boiler is kept clean to eliminating soot blowing requirements. (author) 9 refs., 6 figs., 5 tabs.

  14. Evaluation of radioactive emissions of lignite-fired power plants in Turkey using the Analytic Hierarchy Process

    International Nuclear Information System (INIS)

    Bueke, Tayfun

    2013-01-01

    Radioactive emissions of 13 lignite-fired power plants in Turkey are of great concern to the public and to scientists alike. The purpose of this study is to evaluate these power plants, according to their radioactive emissions by using the Analytic Hierarchy Process. Control criteria are in particular 226 Ra, 232 Th, 40 K and 238 U emissions from the power plants. These control criteria are weighted according to the objective assessment. The calculations are repeated for three different objective assessments of control criteria namely the mortality risk coefficients for inhalation, ingestion, external exposure of 226 Ra, 232 Th, 40 K and 238 U. It has been calculated that the Can lignite-fired power plant is ranking first while the Soma-B plant is ranking last according to the radioactive emissions of the power plants when the average of three different objective control criteria are used in the calculations. (orig.)

  15. Evaluation of radioactive emissions of lignite-fired power plants in Turkey using the Analytic Hierarchy Process

    Energy Technology Data Exchange (ETDEWEB)

    Bueke, Tayfun [Mugla Sitki Kocman Univ., Mugla (Turkey). Dept. of Energy Systems Engineering

    2013-11-15

    Radioactive emissions of 13 lignite-fired power plants in Turkey are of great concern to the public and to scientists alike. The purpose of this study is to evaluate these power plants, according to their radioactive emissions by using the Analytic Hierarchy Process. Control criteria are in particular {sup 226}Ra, {sup 232}Th, {sup 40}K and {sup 238}U emissions from the power plants. These control criteria are weighted according to the objective assessment. The calculations are repeated for three different objective assessments of control criteria namely the mortality risk coefficients for inhalation, ingestion, external exposure of {sup 226}Ra, {sup 232}Th, {sup 40}K and {sup 238}U. It has been calculated that the Can lignite-fired power plant is ranking first while the Soma-B plant is ranking last according to the radioactive emissions of the power plants when the average of three different objective control criteria are used in the calculations. (orig.)

  16. The use of the long-range alpha detector (LRAD) for alpha emission surveys at active and inactive firing sites

    International Nuclear Information System (INIS)

    Mason, C.F.V.; Allander, K.S.; Bounds, J.A.; Garner, S.E.; Walter, K.J.

    1994-01-01

    Surveys were carried out at five different firing sites at Los Alamos National Laboratory to measure residual alpha emissions in earth contaminated with natural and depleted uranium. This contamination is caused by controlled experimental explosions during testing of the non fissile components of nuclear weapons. Two conclusions were reached: the first is that post shot clearing of the experimental areas is effective at removing contamination and the second is that the diminution of alpha emissions due to aging is small

  17. Emission of CO2 Gas and Radioactive Pollutant from Coal Fired Power Plant

    International Nuclear Information System (INIS)

    Ida, N.Finahari; Djati-HS; Heni-Susiati

    2006-01-01

    Energy utilization for power plant in Indonesia is still depending on burning fossil fuel such as coal, oil and gaseous fuel. The direct burning of coal produces CO 2 gas that can cause air pollution, and radioactive pollutant that can increase natural radioactive dosage. Natural radionuclide contained in coal is in the form of kalium, uranium, thorium and their decay products. The amount of CO 2 gas emission produced by coal fired power plant can be reduced by equipping the plant with waste-gas treatment facility. At this facility, CO 2 gas is reacted with calcium hydroxide producing calcium carbonate. Calcium carbonate then can be used as basic material in food, pharmaceutical and construction industries. The alternative method to reduce impact of air pollution is by replacing coal fuel with nuclear fuel or new and renewable fuel. (author)

  18. Comprehensive assessment of toxic emissions from coal-fired power plants

    International Nuclear Information System (INIS)

    Brown, T.D.; Schmidt, C.E.; Radziwon, A.S.

    1991-01-01

    The Pittsburgh Energy Technology Center (PETC) of the US Department of Energy (DOE) has two current investigations, initiated before passage of the Clean Air Act Amendment (CAAA), that will determine the air toxic emissions from coal-fired electric utilities. DOE has contracted with Battelle Memorial Institute and Radian corporation to conduct studies focusing on the potential air toxics, both organic and inorganic, associated with different size fractions of fine particulate matter emitted from power plant stacks. Table 2 indicates the selected analytes to be investigated during these studies. PETC is also developing guidance on the monitoring of Hazardous Air Pollutants (HAPS) to be incorporated in the Environmental Monitoring plans for the demonstration projects in its Clean Coal Technology Program

  19. Emission performance and combustion efficiency of a conical fluidized-bed combustor firing various biomass fuels

    International Nuclear Information System (INIS)

    Permchart, W.; Kouprianov, V.I.

    2004-01-01

    This paper summarizes the results of an experimental study on combustion of three distinct biomass fuels (sawdust, rice husk and pre-dried sugar cane bagasse) in a single fluidized-bed combustor (FBC) with a conical bed using silica sand as the inert bed material. Temperature, CO, NO and O 2 concentrations along the combustor height as well as in flue (stack) gas were measured in the experimental tests. The effects of fuel properties and operating conditions (load and excess air) on these variables were investigated. Both CO and NO axial profiles were found to have a maximum whose location divides conventionally the combustor volume into formation (lower) and reduction (upper) regions for these pollutants. Based on CO emission and unburned carbon content in fly ash, the combustion efficiency of the conical FBC was quantified for the selected biomass fuels fired under different operating conditions. (Author)

  20. In the line of fire: the peatlands of Southeast Asia.

    Science.gov (United States)

    Page, S E; Hooijer, A

    2016-06-05

    Peatlands are a significant component of the global carbon (C) cycle, yet despite their role as a long-term C sink throughout the Holocene, they are increasingly vulnerable to destabilization. Nowhere is this shift from sink to source happening more rapidly than in Southeast Asia, and nowhere else are the combined pressures of land-use change and fire on peatland ecosystem C dynamics more evident nor the consequences more apparent. This review focuses on the peatlands of this region, tracing the link between deforestation and drainage and accelerating C emissions arising from peat mineralization and fire. It focuses on the implications of the recent increase in fire occurrence for air quality, human health, ecosystem resilience and the global C cycle. The scale and controls on peat-driven C emissions are addressed, noting that although fires cause large, temporary peaks in C flux to the atmosphere, year-round emissions from peat mineralization are of a similar magnitude. The review concludes by advocating land management options to reduce future fire risk as part of wider peatland management strategies, while also proposing that this region's peat fire dynamic could become increasingly relevant to northern peatlands in a warming world.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  1. Estimation of mercury emissions from forest fires, lakes, regional and local sources using measurements in Milwaukee and an inverse method

    Directory of Open Access Journals (Sweden)

    B. de Foy

    2012-10-01

    Full Text Available Gaseous elemental mercury is a global pollutant that can lead to serious health concerns via deposition to the biosphere and bio-accumulation in the food chain. Hourly measurements between June 2004 and May 2005 in an urban site (Milwaukee, WI show elevated levels of mercury in the atmosphere with numerous short-lived peaks as well as longer-lived episodes. The measurements are analyzed with an inverse model to obtain information about mercury emissions. The model is based on high resolution meteorological simulations (WRF, hourly back-trajectories (WRF-FLEXPART and a chemical transport model (CAMx. The hybrid formulation combining back-trajectories and Eulerian simulations is used to identify potential source regions as well as the impacts of forest fires and lake surface emissions. Uncertainty bounds are estimated using a bootstrap method on the inversions. Comparison with the US Environmental Protection Agency's National Emission Inventory (NEI and Toxic Release Inventory (TRI shows that emissions from coal-fired power plants are properly characterized, but emissions from local urban sources, waste incineration and metal processing could be significantly under-estimated. Emissions from the lake surface and from forest fires were found to have significant impacts on mercury levels in Milwaukee, and to be underestimated by a factor of two or more.

  2. Emissions from vegetation fires and their influence on atmospheric composition over the Amazon Basin (Invited)

    Science.gov (United States)

    Andreae, M. O.; Artaxo, P.; Bela, M. M.; de Freitas, S. R.; Gerbig, C.; Longo, K. M.; Wiedemann, K. T.; Wofsy, S. C.

    2010-12-01

    Over the past decades, several campaigns have been conducted in the Amazon Basin, during which the emissions from biomass burning were characterized. Other campaigns, as well as remote sensing studies, have produced clear evidence that the budget of traces gases (including CO2) and aerosols over the Basin are strongly perturbed by vegetation fires. We will briefly review these studies and present some recent measurements made during the the Balanço Atmosférico Regional de Carbono na Amazônia (BARCA) aircraft measurement program, which consisted of two aircraft campaigns during November-December 2008 (BARCA-A) and May-June 2009 (BARCA-B). The measurements covered the altitude range from the surface up to about 4500 m, and spanned across the Amazon Basin. While our results confirm the importance of biomass burning for the atmospheric composition over the Amazon Basin in general, they also highlight some complexities. One is the influence of transatlantic transport: Amazonia is downwind of massive fire regions in Africa, and depending on season and locality, these can make an important contribution to the trace gas and aerosol burden over the Amazon Basin. Another difficulty arises from the fact that representative emission ratios for CO relative to CO2 are difficult to obtain in the field, owing to the influence of biospheric exchange on the distribution of CO2 concentrations. The consequences of these and other uncertainties for a quantitative assessment of the sources of trace gases over Amazonia and for the estimation of carbon exchange with the biosphere will be discussed.

  3. Understorey fire frequency and the fate of burned forests in southern Amazonia.

    Science.gov (United States)

    Morton, D C; Le Page, Y; DeFries, R; Collatz, G J; Hurtt, G C

    2013-06-05

    Recent drought events underscore the vulnerability of Amazon forests to understorey fires. The long-term impact of fires on biodiversity and forest carbon stocks depends on the frequency of fire damages and deforestation rates of burned forests. Here, we characterized the spatial and temporal dynamics of understorey fires (1999-2010) and deforestation (2001-2010) in southern Amazonia using new satellite-based estimates of annual fire activity (greater than 50 ha) and deforestation (greater than 10 ha). Understorey forest fires burned more than 85 500 km(2) between 1999 and 2010 (2.8% of all forests). Forests that burned more than once accounted for 16 per cent of all understorey fires. Repeated fire activity was concentrated in Mato Grosso and eastern Pará, whereas single fires were widespread across the arc of deforestation. Routine fire activity in Mato Grosso coincided with annual periods of low night-time relative humidity, suggesting a strong climate control on both single and repeated fires. Understorey fires occurred in regions with active deforestation, yet the interannual variability of fire and deforestation were uncorrelated, and only 2.6 per cent of forests that burned between 1999 and 2008 were deforested for agricultural use by 2010. Evidence from the past decade suggests that future projections of frontier landscapes in Amazonia should separately consider economic drivers to project future deforestation and climate to project fire risk.

  4. The Fire INventory from NCAR (FINN: a high resolution global model to estimate the emissions from open burning

    Directory of Open Access Journals (Sweden)

    C. Wiedinmyer

    2011-07-01

    Full Text Available The Fire INventory from NCAR version 1.0 (FINNv1 provides daily, 1 km resolution, global estimates of the trace gas and particle emissions from open burning of biomass, which includes wildfire, agricultural fires, and prescribed burning and does not include biofuel use and trash burning. Emission factors used in the calculations have been updated with recent data, particularly for the non-methane organic compounds (NMOC. The resulting global annual NMOC emission estimates are as much as a factor of 5 greater than some prior estimates. Chemical speciation profiles, necessary to allocate the total NMOC emission estimates to lumped species for use by chemical transport models, are provided for three widely used chemical mechanisms: SAPRC99, GEOS-CHEM, and MOZART-4. Using these profiles, FINNv1 also provides global estimates of key organic compounds, including formaldehyde and methanol. Uncertainties in the emissions estimates arise from several of the method steps. The use of fire hot spots, assumed area burned, land cover maps, biomass consumption estimates, and emission factors all introduce error into the model estimates. The uncertainty in the FINNv1 emission estimates are about a factor of two; but, the global estimates agree reasonably well with other global inventories of biomass burning emissions for CO, CO2, and other species with less variable emission factors. FINNv1 emission estimates have been developed specifically for modeling atmospheric chemistry and air quality in a consistent framework at scales from local to global. The product is unique because of the high temporal and spatial resolution, global coverage, and the number of species estimated. FINNv1 can be used for both hindcast and forecast or near-real time model applications and the results are being critically evaluated with models and observations whenever possible.

  5. Effects of salvage logging and pile-and-burn on fuel loading, potential fire behaviour, fuel consumption and emissions

    Science.gov (United States)

    Morris C. Johnson; Jessica E. Halofsky; David L. Peterson

    2013-01-01

    We used a combination of field measurements and simulation modelling to quantify the effects of salvage logging, and a combination of salvage logging and pile-and-burn fuel surface fuel treatment (treatment combination), on fuel loadings, fire behaviour, fuel consumption and pollutant emissions at three points in time: post-windstorm (before salvage logging), post-...

  6. Emission analysis of the best available wood-fired central heating boilers on the market

    International Nuclear Information System (INIS)

    Axell, M.; Gustavsson, Lennart; Persson, Henrik; Leckner, B.

    1998-01-01

    The purpose of the present project is to study the emissions from some of the best available wood-fired central heating boilers on the market. The aim is to identify the critical factors which determine the emission levels by means of emission measurements as well as temperature measurements in the combustion chamber. Four boilers with different design characteristics have been included in the project. All boilers use reversed combustion and fan-assisted combustion air supply, and have shown low tar emissions in earlier environmental tests. Boiler A is a boiler with a rather large mass of ceramics in the grate and in the burn-out zone, and a large volume of water. Boiler B has a smaller mass in the cast-iron grate and in the burn-out zone and a small water volume. Boiler C is a boiler with tertiary air and an incorporated accumulator tank. Boiler D has a zirconia-cell probe for continuous control of the air-excess ratio. The measurements have been made with the boilers in accumulator operation, i.e. at maximum heat output, since they are intended for this type of operation. Tests have, in addition to normal operating conditions, been made with high fuel moisture contents, high draught and a low boiler temperature at the start of the test. Measurements have been made of excess-air ratios, contents of CO, total hydrocarbons (THC), NO x and a number of volatile organic compounds (VOC) in the flue gases as well as of combustion temperatures below the grate

  7. Potential Fuel Loadings, Fire Ignitions, and Smoke Emissions from Nuclear Bursts in Megacities

    Science.gov (United States)

    Turco, R. P.; Toon, O. B.; Robock, A.; Bardeen, C.; Oman, L.; Stenchikov, G. L.

    2006-12-01

    We consider the effects of "small" nuclear detonations in modern "megacities," focusing on the possible extent of fire ignitions, and the properties of corresponding smoke emissions. Explosive devices in the multi-kiloton yield range are being produced by a growing number of nuclear states (Toon et al., 2006), and such weapons may eventually fall into the hands of terrorists. The numbers of nuclear weapons that might be used in a regional conflict, and their potential impacts on population and infrastructure, are discussed elsewhere. Here, we estimate the smoke emissions that could lead to widespread environmental effects, including large-scale climate anomalies. We find that low-yield weapons, which emerging nuclear states have been stockpiling, and which are likely to be targeted against cities in a regional war, can generate up to 100 times as much smoke per kiloton of yield as the high-yield weapons once associated with a superpower nuclear exchange. The fuel loadings in modern cities are estimated using a variety of data, including extrapolations from earlier detailed studies. The probability of ignition and combustion of fuels, smoke emission factors and radiative properties, and prompt scavenging and dispersion of the smoke are summarized. We conclude that a small regional nuclear war might generate up to 5 teragrams of highly absorbing particles in urban firestorms, and that this smoke could initially be injected into the middle and upper troposphere. These results are used to develop smoke emission scenarios for a climate impact analysis reported by Oman et al. (2006). Uncertainties in the present smoke estimates are outlined. Oman, L., A. Robock, G. L. Stenchikov, O. B. Toon, C. Bardeen and R. P. Turco, "Climatic consequences of regional nuclear conflicts," AGU, Fall 2006. Toon, O. B., R. P. Turco, A. Robock, C. Bardeen, L. Oman and G. L. Stenchikov, "Consequences of regional scale nuclear conflicts and acts of individual nuclear terrorism," AGU, Fall

  8. Mercury emission and speciation of coal-fired power plants in China

    Science.gov (United States)

    Wang, S. X.; Zhang, L.; Li, G. H.; Wu, Y.; Hao, J. M.; Pirrone, N.; Sprovieri, F.; Ancora, M. P.

    2010-02-01

    Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR), electrostatic precipitators (ESP), and flue gas desulfurization (FGD) using the Ontario Hydro Method (OHM). The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92-27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66-94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  9. Mercury emission and speciation of coal-fired power plants in China

    Directory of Open Access Journals (Sweden)

    S. X. Wang

    2010-02-01

    Full Text Available Comprehensive field measurements are needed to understand the mercury emissions from Chinese power plants and to improve the accuracy of emission inventories. Characterization of mercury emissions and their behavior were measured in six typical coal-fired power plants in China. During the tests, the flue gas was sampled simultaneously at inlet and outlet of Selective Catalytic Reduction (SCR, electrostatic precipitators (ESP, and flue gas desulfurization (FGD using the Ontario Hydro Method (OHM. The pulverized coal, bottom ash, fly ash and gypsum were also sampled in the field. Mercury concentrations in coal burned in the measured power plants ranged from 17 to 385 μg/kg. The mercury mass balances for the six power plants varied from 87 to 116% of the input coal mercury for the whole system. The total mercury concentrations in the flue gas from boilers were at the range of 1.92–27.15 μg/m3, which were significantly related to the mercury contents in burned coal. The mercury speciation in flue gas right after the boiler is influenced by the contents of halogen, mercury, and ash in the burned coal. The average mercury removal efficiencies of ESP, ESP plus wet FGD, and ESP plus dry FGD-FF systems were 24%, 73% and 66%, respectively, which were similar to the average removal efficiencies of pollution control device systems in other countries such as US, Japan and South Korea. The SCR system oxidized 16% elemental mercury and reduced about 32% of total mercury. Elemental mercury, accounting for 66–94% of total mercury, was the dominant species emitted to the atmosphere. The mercury emission factor was also calculated for each power plant.

  10. A two-step combination of top-down and bottom-up fire emission estimates at regional and global scales: strengths and main uncertainties

    Science.gov (United States)

    Sofiev, Mikhail; Soares, Joana; Kouznetsov, Rostislav; Vira, Julius; Prank, Marje

    2016-04-01

    Top-down emission estimation via inverse dispersion modelling is used for various problems, where bottom-up approaches are difficult or highly uncertain. One of such areas is the estimation of emission from wild-land fires. In combination with dispersion modelling, satellite and/or in-situ observations can, in principle, be used to efficiently constrain the emission values. This is the main strength of the approach: the a-priori values of the emission factors (based on laboratory studies) are refined for real-life situations using the inverse-modelling technique. However, the approach also has major uncertainties, which are illustrated here with a few examples of the Integrated System for wild-land Fires (IS4FIRES). IS4FIRES generates the smoke emission and injection profile from MODIS and SEVIRI active-fire radiative energy observations. The emission calculation includes two steps: (i) initial top-down calibration of emission factors via inverse dispersion problem solution that is made once using training dataset from the past, (ii) application of the obtained emission coefficients to individual-fire radiative energy observations, thus leading to bottom-up emission compilation. For such a procedure, the major classes of uncertainties include: (i) imperfect information on fires, (ii) simplifications in the fire description, (iii) inaccuracies in the smoke observations and modelling, (iv) inaccuracies of the inverse problem solution. Using examples of the fire seasons 2010 in Russia, 2012 in Eurasia, 2007 in Australia, etc, it is pointed out that the top-down system calibration performed for a limited number of comparatively moderate cases (often the best-observed ones) may lead to errors in application to extreme events. For instance, the total emission of 2010 Russian fires is likely to be over-estimated by up to 50% if the calibration is based on the season 2006 and fire description is simplified. Longer calibration period and more sophisticated parameterization

  11. MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS LOCAL IMPACTS ON HUMAN HEALTH RISK.

    Energy Technology Data Exchange (ETDEWEB)

    SULLIVAN, T.M.; BOWERMAN, B.; ADAMS, J.; LIPFERT, F.; MORRIS, S.M.; BANDO, A.; PENA, R.; BLAKE, R.

    2005-12-01

    A thorough quantitative understanding of the processes of mercury emissions, deposition, and translocation through the food chain is currently not available. Complex atmospheric chemistry and dispersion models are required to predict concentration and deposition contributions, and aquatic process models are required to predict effects on fish. However, there are uncertainties in all of these predictions. Therefore, the most reliable method of understanding impacts of coal-fired power plants on Hg deposition is from empirical data. A review of the literature on mercury deposition around sources including coal-fired power plants found studies covering local mercury concentrations in soil, vegetation, and animals (fish and cows). There is strong evidence of enhanced local deposition within 3 km of the chlor-alkali plants, with elevated soil concentrations and estimated deposition rates of 10 times background. For coal-fired power plants, the data show that atmospheric deposition of Hg may be slightly enhanced. On the scale of a few km, modeling suggests that wet deposition may be increased by a factor of two or three over background. The measured data suggest lower increases of 15% or less. The effects of coal-fired plants seem to be less than 10% of total deposition on a national scale, based on emissions and global modeling. The following summarizes our findings from published reports on the impacts of local deposition. In terms of excesses over background the following increments have been observed within a few km of the plant: (1) local soil concentration Hg increments of 30%-60%, (2) sediment increments of 18-30%, (3) wet deposition increments of 11-12%, and (4) fish Hg increments of about 5-6%, based on an empirical finding that fish concentrations are proportional to the square root of deposition. Important uncertainties include possible reductions of RGM to Hg{sub 0} in power plant plumes and the role of water chemistry in the relationship between Hg

  12. Estimation of carbon emission from peatland fires using Landsat-8 OLI imagery in Siak District, Riau Province

    Science.gov (United States)

    Aisyah Fadhillah Hafni, Dinda; Syaufina, Lailan; Puspaningsih, Nining; Prasasti, Indah

    2018-05-01

    The study was conducted in three land cover conditions (secondary peat forest, shrub land, and palm plantation) that were burned in the Siak District, Riau Province, Indonesia year 2015. Measurement and calculation carbon emission from soil and vegetation of peatland should be done accurately to be implemented on climate change mitigation or greenhouse gases mitigation. The objective of the study was to estimate the carbon emission caused peatland fires in the Siak District, Riau Province, Indonesia year 2015. Estimated carbon emissions were performed using visual method and digital method. The visual method was a method that uses on-screen digitization assisted by hotspot data, the presence of smoke, and fire suppression data. The digital method was a method that uses the Normalized Burn Ratio (NBR) index. The estimated carbon emissions were calculated using the equation that was developed from IPCC 2006 in Verified Carbon Standard 2015. The results showed that the estimation of carbon emissions from fires from above the peat soil surface were higher than the carbon emissions from the peat soil. Carbon emissions above the peat soil surface of 1376.51 ton C/ha were obtained by visual method while 3984.33 ton C/ha were obtained by digital method. Peatland carbon emissions of 6.6 x 10-4 ton C/ha were obtained by visual method, whereas 2.84 x 10-3 ton C/ha was obtained by digital method. Visual method and digital method using remote sensing must be combined and developed in order to carbon emission values will be more accurate.

  13. The effects of fire on biogenic emissions of methane and nitric oxide from wetlands

    Science.gov (United States)

    Levine, Joel S.; Cofer, Wesley R., III; Sebacher, Daniel I.; Rhinehart, Robert P.; Winstead, Edward L.; Sebacher, Shirley; Hinkle, C. Ross; Schmalzer, Paul A.; Koller, Albert M., Jr.

    1990-01-01

    Enhanced emissions of methane (CH4) and nitric oxide (NO) were measured following three controlled burns in a Florida wetlands in 1987 and 1988. Wetlands are the major global source of methane resulting from metabolic activity of methanogenic bacteria. Methanogens require carbon dioxide, acetate, or formate for their growth and the metabolic production of methane. All three water-soluble compounds are produced in large concentrations during biomass burning. Postfire methane emissions exceeded 0.15 g CH 4/sq m per day. Preburn and postburn measurements of soil nutrients indicate significant postburn increases in soil ammonium, from 8.35 to 13.49 parts per million (ppm) in the upper 5 cm of the Juncus marsh and from 8.83 to 23.75 ppm in the upper 5 cm of the Spartina marsh. Soil nitrate concentrations were found to decrease in both marshes after the fire. These measurements indicate that the combustion products of biomass burning exert an important 'fertilizing' effect on the biosphere and on the biogenic production of environmentally significant atmospheric gases.

  14. Migration and Deforestation in Indonesia

    OpenAIRE

    Rivayani Darmawan; Stephan Klasen; Nunung Nuryartono

    2015-01-01

    Indonesia now has the highest deforestation rate in the world, with an average increase of about 47,600 ha per year. As a result, the nation is one of the largest emitters of greenhouse gases in the world and is putting its rich biodiversity at risk. Although the literature discussing the political economy of Indonesia commercial's logging is growing, only a small amount focuses on the relation-ship between migration and deforestation. Migration may contribute to the forest cover change, as m...

  15. New fuel air control strategy for reducing NOx emissions from corner-fired utility boilers at medium-low loads

    DEFF Research Database (Denmark)

    Zhao, Sinan; Fang, Qingyan; Yin, Chungen

    2017-01-01

    Due to the rapidly growing renewable power, the fossil fuel power plants have to be increasingly operated under large and rapid load change conditions, which can induce various challenges. This work aims to reduce NOx emissions of large-scale corner-fired boilers operated at medium–low loads....... The combustion characteristics and NOx emissions from a 1000 MWe corner-fired tower boiler under different loads are investigated experimentally and numerically. A new control strategy for the annular fuel air is proposed and implemented in the boiler, in which the secondary air admitted to the furnace through...... the air annulus around each coal nozzle tip is controlled by the boiler load, instead of being controlled by the output of the connected mill as commonly used in this kind of power plant. Both the experimental and simulation results show that the new control strategy reduces NOx emissions at the entrance...

  16. A systematic approach to assessing measurement uncertainty for CO2 emissions from coal-fired power plants

    DEFF Research Database (Denmark)

    Wagner, Claas; Esbensen, Kim

    2011-01-01

    An augmented measurement uncertainty approach for CO2 emissions from coal-fired power plants with a focus on the often forgotten contributions from sampling errors occurring over the entire fuel-to-emission pathway is presented. Current methods for CO2 emission determination are evaluated in detail......, from which a general matrix scheme is developed that includes all factors and stages needed for total CO2 determination, which is applied to the monitoring plan of a representative medium-sized coal-fired power plant. In particular sampling involved significant potential errors, as identified...... of these three materials were also given full attention. A systematic error (bias) is present in the current sampling approach, which increases the present uncertainty estimate unnecessarily. For both primary sampling and analytical sample extraction steps, random variations, which hitherto only have been...

  17. Effect of kind of solid fuel onto noxious compound emissions in the firing up process of a low output water boiler

    International Nuclear Information System (INIS)

    Wilk, R.; Szymczyk, J.; Zielinski, Z.; Wystemp, E.

    1992-01-01

    NO x , SO 2 , CO and polynuclear aromatic hydrocarbon emission tests were carried out during the firing up process of a low output boiler for three kinds of smokeless solid fuels and boiler coal. It has been stated that the use of low emissive fuels in low output boilers did not protect against noxious compound emissions during firing up the boiler. (author). 13 refs, 8 figs, 4 tabs

  18. A methodology to estimate impacts of domestic policies on deforestation: Compensated Successful Efforts for “avoided deforestation” (REDD)

    OpenAIRE

    Pascale Combes Motel; Romain Pirard; Jean-Louis Combes

    2011-01-01

    Climate change mitigation would benefit from Reduced Emissions from Deforestation and Degradation (REDD) in developing countries. The REDD mechanism is in charge of distilling the right incentives for fostering forest conservation with appropriate compensation of foregone revenues, which in turn is related to avoided deforestation (how many hectares of forests are saved). Although any prediction of deforestation rates (i.e. business-as-usual scenarios) is challenging, and any negotiated targe...

  19. 500 MW demonstration of advanced wall-fired combustion techniques for the reduction of nitrogen oxide emissions from coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    Sorge, J.N.; Larrimore, C.L.; Slatsky, M.D.; Menzies, W.R.; Smouse, S.M.; Stallings, J.W.

    1997-12-31

    This paper discusses the technical progress of a US Department of Energy Innovative Clean Coal Technology project demonstrating advanced wall-fired combustion techniques for the reduction of nitrogen oxide (NOx) emissions from coal-fired boilers. The primary objectives of the demonstration is to determine the long-term NOx reduction performance of advanced overfire air (AOFA), low NOx burners (LNB), and advanced digital control optimization methodologies applied in a stepwise fashion to a 500 MW boiler. The focus of this paper is to report (1) on the installation of three on-line carbon-in-ash monitors and (2) the design and results to date from the advanced digital control/optimization phase of the project.

  20. POTENTIAL HEALTH RISK REDUCTION ARISING FROM REDUCED MERCURY EMISSIONS FROM COAL FIRED POWER PLANTS.

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, T. M.; Lipfert, F. W.; Morris, S. C.; Moskowitz, P. D.

    2001-09-01

    The U.S. Environmental Protection Agency (EPA) has announced plans to regulate mercury (Hg) emissions from coal-fired power plants. EPA has not prepared a quantitative assessment of the reduction in risk that could be achieved through reduction in coal plant emissions of Hg. To address this issue, Brookhaven National Laboratory (BNL) with support from the U.S. Department of Energy Office of Fossil Energy (DOE FE) prepared a quantitative assessment of the reduction in human health risk that could be achieved through reduction in coal plant emissions of Hg. The primary pathway for Hg exposure is through consumption of fish. The most susceptible population to Hg exposure is the fetus. Therefore the risk assessment focused on consumption of fish by women of child-bearing age. Dose response factors were generated from studies on loss of cognitive abilities (language skills, motor skills, etc.) by young children whose mothers consumed large amounts of fish with high Hg levels. Population risks were estimated for the general population in three regions of the country, (the Midwest, Northeast, and Southeast) that were identified by EPA as being heavily impacted by coal emissions. Three scenarios for reducing Hg emissions from coal plants were considered: (1) A base case using current conditions; (2) A 50% reduction; and, (3) A 90% reduction. These reductions in emissions were assumed to translate linearly into a reduction in fish Hg levels of 8.6% and 15.5%, respectively. Population risk estimates were also calculated for two subsistence fisher populations. These groups of people consume substantially more fish than the general public and, depending on location, the fish may contain higher Hg levels than average. Risk estimates for these groups were calculated for the three Hg levels used for the general population analyses. Analysis shows that the general population risks for exposure of the fetus to Hg are small. Estimated risks under current conditions (i.e., no

  1. Long-term Health and Socioeconomic Impacts of Landscape Fire Emissions in Indonesia

    Science.gov (United States)

    Jina, A.; Marlier, M. E.

    2013-12-01

    Among natural disasters, wildfires are perhaps the most complex case of a coupled human-natural system, with both direct and indirect costs to society. A major contributor to these indirect costs is the impact upon health in the short- and long-term. Air pollution from fires is associated with more deaths from cardio-pulmonary diseases, yet little or no research has looked beyond the short-term mortality and morbidity associated with wildfire pollution, particularly in developing countries where impacts may be greatest but monitoring presents a constant challenge. We address this by using an interdisciplinary approach combining modeled air pollution with econometric methods to identify the long-term effects of air pollution on health and cognitive ability. These impacts will persist in society, and can lead to decreased education, loss of earnings, and a suppression of economic activity. We take the case of Indonesia, which is prone to large, catastrophic fires during El Niño conditions. Satellite data partially compensate for the lack of monitoring data for air pollution, but there are still significant gaps in data availability and difficulty in retrieving surface concentrations. In this study, surface fine particulate matter (PM2.5) concentrations at 2x2.5° resolution are obtained from GISS-E2-Puccini (the new version of the NASA GISS ModelE General Circulation Model (GCM)), run with monthly fire emissions from the Global Fire Emissions Database version 3 (GFED3). 24-hour ambient PM2.5 concentrations across Indonesia are matched to geographically and socioeconomic surveys. We find that exposure to high levels of PM2.5 at birth (and in utero) has negative impacts upon physical development of infants. This is associated with health problems later in life, as well as lower educational and labor market outcomes. A one standard deviation increase in ambient air pollution exposure leads to effects comparable to those from indoor air pollution. We also find a

  2. Deforestation in Amazonia impacts riverine carbon dynamics

    Science.gov (United States)

    Langerwisch, Fanny; Walz, Ariane; Rammig, Anja; Tietjen, Britta; Thonicke, Kirsten; Cramer, Wolfgang

    2016-12-01

    Fluxes of organic and inorganic carbon within the Amazon basin are considerably controlled by annual flooding, which triggers the export of terrigenous organic material to the river and ultimately to the Atlantic Ocean. The amount of carbon imported to the river and the further conversion, transport and export of it depend on temperature, atmospheric CO2, terrestrial productivity and carbon storage, as well as discharge. Both terrestrial productivity and discharge are influenced by climate and land use change. The coupled LPJmL and RivCM model system (Langerwisch et al., 2016) has been applied to assess the combined impacts of climate and land use change on the Amazon riverine carbon dynamics. Vegetation dynamics (in LPJmL) as well as export and conversion of terrigenous carbon to and within the river (RivCM) are included. The model system has been applied for the years 1901 to 2099 under two deforestation scenarios and with climate forcing of three SRES emission scenarios, each for five climate models. We find that high deforestation (business-as-usual scenario) will strongly decrease (locally by up to 90 %) riverine particulate and dissolved organic carbon amount until the end of the current century. At the same time, increase in discharge leaves net carbon transport during the first decades of the century roughly unchanged only if a sufficient area is still forested. After 2050 the amount of transported carbon will decrease drastically. In contrast to that, increased temperature and atmospheric CO2 concentration determine the amount of riverine inorganic carbon stored in the Amazon basin. Higher atmospheric CO2 concentrations increase riverine inorganic carbon amount by up to 20 % (SRES A2). The changes in riverine carbon fluxes have direct effects on carbon export, either to the atmosphere via outgassing or to the Atlantic Ocean via discharge. The outgassed carbon will increase slightly in the Amazon basin, but can be regionally reduced by up to 60 % due to

  3. A study of particulate emissions during 23 major industrial fires: Implications for human health.

    Science.gov (United States)

    Griffiths, Simon D; Chappell, Philip; Entwistle, Jane A; Kelly, Frank J; Deary, Michael E

    2018-03-01

    Public exposure to significantly elevated levels of particulate matter (PM) as a result of major fires at industrial sites is a worldwide problem. Our paper describes how the United Kingdom developed its Air Quality in Major Incidents (AQinMI) service to provide fire emission plume concentration data for use by managers at the time of the incident and to allow an informed public health response. It is one of the first civilian services of its type anywhere in the world. Based on the involvement of several of the authors in the AQinMI service, we describe the service's function, detail the nature of fires covered by the service, and report for the first time on the concentration ranges of PM to which populations may be exposed in major incident fires. We also consider the human health impacts of short-term exposure to significantly elevated PM concentrations and reflect on the appropriateness of current short-term guideline values in providing public health advice. We have analysed monitoring data for airborne PM (≤10μm, PM 10 ;≤2.5μm, PM 2.5 and ≤1.0μm, PM 1 ) collected by AQinMI teams using an Osiris laser light scattering monitor, the UK Environment Agency's 'indicative standard' equipment, during deployment to 23 major incident industrial fires. In this context, 'indicative' is applied to monitoring equipment that provides confirmation of the presence of particulates and indicates a measured mass concentration value. Incident-averaged concentrations ranged from 38 to 1450μgm -3 for PM 10 and 7 to 258μgm -3 for PM 2.5 . Of concern was that, for several incidents, 15-min averaged concentrations reached >6500μgm -3 for PM 10 and 650μgm -3 for PM 2.5 , though such excursions tended to be of relatively short duration. In the absence of accepted very short-term (15-min to 1-h) guideline values for PM 10 and PM 2.5, we have analysed the relationship between the 1-h and 24-h threshold values and whether the former can be used as a predictor of longer

  4. Impact of deforestation on biomass burning in the tropics

    International Nuclear Information System (INIS)

    Hao, W.M.; Liu, M.H.; Ward, D.E.

    1994-01-01

    Fires are widely used for various land use practices in tropical countries. Large amounts of trace gases and aerosol particles are produced during the fires. It is important to assess the potential impact of these gases and particulate matter on the chemistry of the atmosphere and global climate. One of the largest uncertainties in quantifying the effects is the lack of information on the source strengths. The authors quantify the amount of biomass burned due to deforestation in each tropical country on basis of the deforestation rate, the above ground density, and the fraction of above ground biomass burned. Approximately 725 Tg of biomass were burned in 1980 and 984 Tg were burned in 1990. The 36% increase took place mostly in Latin America and tropical Asia. The largest source was Brazil, contributing about 29% of the total biomass burned in the tropics. The second largest source was Indonesia accounting for 10%, followed by Zaire accounting for about 8%. The burning of biomass due to increased deforestation has resulted in an additional 33 Tg CO and 2.5 Tg CH 4 emitted annually to the atmosphere from 1980 to 1990

  5. Deforestation since independence: A quantitative assessment of ...

    African Journals Online (AJOL)

    Deforestation since independence: A quantitative assessment of four decades of land-cover change in Malawi. ... pressure and demographic factors are important predictors of deforestation rate within our study area. Keywords: afforestation, Africa, deforestation, drivers, land-use change, reforestation, rural, urban ...

  6. Implications of deforestation and desertification on sustainable ...

    African Journals Online (AJOL)

    This paper examines the implications of deforestation and desertification in sustainable agriculture. The problems of deforestation and desertification were examined as they affect land and agricultural productivity. The socio-economic implications of deforestation and desertification in sustainable agriculture were equally ...

  7. Carbon emissions and sequestration in forests: Case studies from seven developing countries. Volume 4: Mexico: Draft

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, W.; Sathaye, J. [eds.] [Lawrence Berkeley Lab., CA (United States); Cerutti, O.M.; Ordonez, M.J.; Minjarez, R.D. [Universidad Nacional Autonoma de Mexico, Mexico City (Mexico) Centro de Ecologia

    1992-08-01

    Estimates of carbon emissions from deforestation in Mexico are derived for the year 1985 and for two contrasting scenarios in 2025. Carbon emissions are calculated through an in-depth review of the existing information on forest cover deforestation mtes and area affected by forest fires as well as on forests` carbon-related biological characteristics. The analysis covers both tropical -- evergreen and deciduous -- and temperate -- coniferous and broadleaf -- closed forests. Emissions from the forest sector are also compared to those from energy and industry. Different policy options for promoting the sustainable management of forest resources in the country are discussed. The analysis indicates that approximately 804,000 hectares per year of closed forests suffered from major perturbations in the mid 1980`s in Mexico, leading to an annual deforestation mte of 668,000 hectares. Seventy five percent of total deforestation is concentrated in tropical forests. The resulting annual carbon balance is estimated in 53.4 million tons per year, and the net committed emissions in 45.5 million tons or 41% and 38%, respectively, of the country`s total for 1985--87. The annual carbon balance from the forest sector in 2025 is expected to decline to 16.5 million tons in the low emissions scenario and to 22.9 million tons in the high emissions scenario. Because of the large uncertainties in some of the primary sources of information, the stated figures should be taken as preliminary estimates.

  8. Carbon emissions and sequestration in forests: Case studies from seven developing countries

    Energy Technology Data Exchange (ETDEWEB)

    Makundi, W.; Sathaye, J. (eds.) (Lawrence Berkeley Lab., CA (United States)); Cerutti, O.M.; Ordonez, M.J.; Minjarez, R.D. (Universidad Nacional Autonoma de Mexico, Mexico City (Mexico) Centro de Ecologia)

    1992-08-01

    Estimates of carbon emissions from deforestation in Mexico are derived for the year 1985 and for two contrasting scenarios in 2025. Carbon emissions are calculated through an in-depth review of the existing information on forest cover deforestation mtes and area affected by forest fires as well as on forests' carbon-related biological characteristics. The analysis covers both tropical -- evergreen and deciduous -- and temperate -- coniferous and broadleaf -- closed forests. Emissions from the forest sector are also compared to those from energy and industry. Different policy options for promoting the sustainable management of forest resources in the country are discussed. The analysis indicates that approximately 804,000 hectares per year of closed forests suffered from major perturbations in the mid 1980's in Mexico, leading to an annual deforestation mte of 668,000 hectares. Seventy five percent of total deforestation is concentrated in tropical forests. The resulting annual carbon balance is estimated in 53.4 million tons per year, and the net committed emissions in 45.5 million tons or 41% and 38%, respectively, of the country's total for 1985--87. The annual carbon balance from the forest sector in 2025 is expected to decline to 16.5 million tons in the low emissions scenario and to 22.9 million tons in the high emissions scenario. Because of the large uncertainties in some of the primary sources of information, the stated figures should be taken as preliminary estimates.

  9. Better Fire Emissions Estimates for Tricky Species Illustrated with a Simple Empirical Burn-to-Sample Plume Mode

    Science.gov (United States)

    Chatfield, R. B.; Andreae, M. O.; Lareau, N.

    2017-12-01

    Methodologies for estimating emission factors (EFs) and broader emission relationship (ERs) (for e.g., O3 production or aerosol absorption) have been difficult to make accurate and convincing; this is largely due to non-fire effects on both CO2 and also fire-emitted trace species. We present a new view of these multiple effects as they affect downwind tracer samples observed by aircraft in NASA's ARCTAS and SEAC4RS airborne missions. This view leads to our method for estimates of ERs and EFs that allow spatially detailed views focusing on individual samples, a Mixed Effects Emission Ratio Technique (MERET). We concentrate on presenting a generalized viewpoint: a simple idealized model of a fire plume entraining air from near-flames upward and then outward to a sampling point, a view base on observations of typical situations. Actual evolution of a plume can depend intricately on the fully history of entrainment, entraining concentration levels of CO2 and tracer species, and mixing. Observations suggest that our simple plume model with just two (analyzed) values for entrained CO2 and one or potentially two values for environmental concentrations for each tracer can serve surprisingly well for mixed-effects regression estimates. Such details appears imperative for long-lived gases like CH4, CO, and N2O. In particular, it is difficult to distinguish fire-sourced emissions from air entrained near the flames, entrained in a way proportional to fire intensity. These entraining concentrations may vary significantly from those later in plume evolution. In addition, such detail also highlights behavior of emissions that react on the path to sampling, e.g. fire-sourced or entrained urban NOx. Some caveats regarding poor sampling situations, and some warning signs, based on this empirical plume description and on MERET analyses, are demonstrated. Some information is available when multiple tracers are analyzed. MERET estimates for ERs of short and these long-lived species are

  10. Carbon stock loss from deforestation through 2013 in Brazilian Amazonia.

    Science.gov (United States)

    Nogueira, Euler Melo; Yanai, Aurora M; Fonseca, Frederico O R; Fearnside, Philip Martin

    2015-03-01

    The largest carbon stock in tropical vegetation is in Brazilian Amazonia. In this ~5 million km(2) area, over 750,000 km(2) of forest and ~240,000 km(2) of nonforest vegetation types had been cleared through 2013. We estimate current carbon stocks and cumulative gross carbon loss from clearing of premodern vegetation in Brazil's 'Legal Amazonia' and 'Amazonia biome' regions. Biomass of 'premodern' vegetation (prior to major increases in disturbance beginning in the 1970s) was estimated by matching vegetation classes mapped at a scale of 1 : 250,000 and 29 biomass means from 41 published studies for vegetation types classified as forest (2317 1-ha plots) and as either nonforest or contact zones (1830 plots and subplots of varied size). Total biomass (above and below-ground, dry weight) underwent a gross reduction of 18.3% in Legal Amazonia (13.1 Pg C) and 16.7% in the Amazonia biome (11.2 Pg C) through 2013, excluding carbon loss from the effects of fragmentation, selective logging, fires, mortality induced by recent droughts and clearing of forest regrowth. In spite of the loss of carbon from clearing, large amounts of carbon were stored in stands of remaining vegetation in 2013, equivalent to 149 Mg C ha(-1) when weighted by the total area covered by each vegetation type in Legal Amazonia. Native vegetation in Legal Amazonia in 2013 originally contained 58.6 Pg C, while that in the Amazonia biome contained 56 Pg C. Emissions per unit area from clearing could potentially be larger in the future because previously cleared areas were mainly covered by vegetation with lower mean biomass than the remaining vegetation. Estimates of original biomass are essential for estimating losses to forest degradation. This study offers estimates of cumulative biomass loss, as well as estimates of premodern carbon stocks that have not been represented in recent estimates of deforestation impacts. © 2014 John Wiley & Sons Ltd.

  11. Deforestation and climate feedbacks threaten the ecological integrity of south-southeastern Amazonia.

    Science.gov (United States)

    Coe, Michael T; Marthews, Toby R; Costa, Marcos Heil; Galbraith, David R; Greenglass, Nora L; Imbuzeiro, Hewlley M A; Levine, Naomi M; Malhi, Yadvinder; Moorcroft, Paul R; Muza, Michel Nobre; Powell, Thomas L; Saleska, Scott R; Solorzano, Luis A; Wang, Jingfeng

    2013-06-05

    A mosaic of protected areas, including indigenous lands, sustainable-use production forests and reserves and strictly protected forests is the cornerstone of conservation in the Amazon, with almost 50 per cent of the region now protected. However, recent research indicates that isolation from direct deforestation or degradation may not be sufficient to maintain the ecological integrity of Amazon forests over the next several decades. Large-scale changes in fire and drought regimes occurring as a result of deforestation and greenhouse gas increases may result in forest degradation, regardless of protected status. How severe or widespread these feedbacks will be is uncertain, but the arc of deforestation in south-southeastern Amazonia appears to be particularly vulnerable owing to high current deforestation rates and ecological sensitivity to climate change. Maintaining forest ecosystem integrity may require significant strengthening of forest conservation on private property, which can in part be accomplished by leveraging existing policy mechanisms.

  12. Zero deforestation and low emissions development

    NARCIS (Netherlands)

    Pacheco, Pablo; Hospes, O.; Dermawan, A.

    2017-01-01

    Debates on the challenges and opportunities for sustainable agricultural production and natural resources management - mainly of land, water, and forests - have intensified in recent years. This is due not only to a more prominent climate change agenda, aimed at mitigating greenhouse gas (GHG)

  13. Reducing Emissions from Deforestation and Forest Degradation

    African Journals Online (AJOL)

    It combines a multi - temporal remote sensing approach incorporating satellite sensors from medium to very high resolution with a terrestrial cluster sampling design, which proved to be operational for the whole spectrum from highly fragmented to pristine forest areas. This combination was implemented by a multi - phase ...

  14. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    J.A. Withum; S.C. Tseng; J.E. Locke

    2005-11-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dryer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the seventh in a series of topical reports, describes the results and analysis of mercury sampling performed on a 1,300 MW unit burning a bituminous coal containing three percent sulfur. The unit was equipped with an ESP and a limestone-based wet FGD to control particulate and SO2 emissions, respectively. At the time of sampling an SCR was not installed on this unit. Four sampling tests were performed in September 2003. Flue gas mercury speciation and concentrations were determined at the ESP outlet (FGD inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. The results show that the FGD inlet flue gas oxidized:elemental mercury ratio was roughly 2:1, with 66% oxidized mercury and 34% elemental mercury. Mercury removal, on a coal

  15. Numerical investigation on the flow, combustion, and NOX emission characteristics in a 660 MWe tangential firing ultra-supercritical boiler

    Directory of Open Access Journals (Sweden)

    Wenjing Sun

    2016-02-01

    Full Text Available A three-dimensional numerical simulation was carried out to study the pulverized-coal combustion process in a tangentially fired ultra-supercritical boiler. The realizable k-ε model for gas coupled with discrete phase model for coal particles, P-1 radiation model for radiation, two-competing-rates model for devolatilization, and kinetics/diffusion-limited model for combustion process are considered. The characteristics of the flow field, particle motion, temperature distribution, species components, and NOx emissions were numerically investigated. The good agreement of the measurements and predictions implies that the applied simulation models are appropriate for modeling commercial-scale coal boilers. It is found that an ideal turbulent flow and particle trajectory can be observed in this unconventional pulverized-coal furnace. With the application of over-fire air and additional air, lean-oxygen combustion takes place near the burner sets region and higher temperature at furnace exit is acquired for better heat transfer. Within the limits of secondary air, more steady combustion process is achieved as well as the reduction of NOx. Furthermore, the influences of the secondary air, over-fire air, and additional air on the NOx emissions are obtained. The numerical results reveal that NOx formation attenuates with the decrease in the secondary air ratio (γ2nd and the ratio of the additional air to the over-fire air (γAA/γOFA was within the limits.

  16. Characterizing mercury emissions from a coal-fired power plant utilizing a venturi wet FGD system

    International Nuclear Information System (INIS)

    Vann Bush, P.; Dismukes, E.B.; Fowler, W.K.

    1995-01-01

    Southern Research Institute (SRI) conducted a test program at a coal-fired utility plant from October 24 to October 29, 1994. The test schedule was chosen to permit us to collect samples during a period of consecutive days with a constant coal source. SRI collected the samples required to measured concentrations of anions and trace elements around two scrubber modules and in the stack. Anions of interest were CI - , F - , and SO 4 = . We analyzed samples for five major elements (Al, Ca, Fe, Mg, and Ti) and 16 trace elements (As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and V). SRI made measurements across two scrubber modules, each treating nominally 20% of the total effluent from the boiler. Across one module we examined the effects of changes in the liquid-to-gas ratio (L/G) on the efficiency with which the scrubber removes trace elements and anions from the flue gas. Across another module we examined the effects of slurry pH on the removal of trace elements and anions from the flue gas. Measurements in the stack quantified emissions rates of anions and trace elements

  17. Characterizing mercury emissions from a coal-fired power plant utilizing a venturi wet FGD system

    Energy Technology Data Exchange (ETDEWEB)

    Vann Bush, P.; Dismukes, E.B.; Fowler, W.K.

    1995-11-01

    Southern Research Institute (SRI) conducted a test program at a coal-fired utility plant from October 24 to October 29, 1994. The test schedule was chosen to permit us to collect samples during a period of consecutive days with a constant coal source. SRI collected the samples required to measured concentrations of anions and trace elements around two scrubber modules and in the stack. Anions of interest were CI{sup -}, F{sup -}, and SO{sub 4}{sup =}. We analyzed samples for five major elements (Al, Ca, Fe, Mg, and Ti) and 16 trace elements (As, B, Ba, Be, Cd, Co, Cr, Cu, Hg, Mn, Mo, Ni, Pb, Sb, Se, and V). SRI made measurements across two scrubber modules, each treating nominally 20% of the total effluent from the boiler. Across one module we examined the effects of changes in the liquid-to-gas ratio (L/G) on the efficiency with which the scrubber removes trace elements and anions from the flue gas. Across another module we examined the effects of slurry pH on the removal of trace elements and anions from the flue gas. Measurements in the stack quantified emissions rates of anions and trace elements.

  18. Emissions from mesoscale in-situ oil (diesel) fires: the Mobile 1994 experiments

    International Nuclear Information System (INIS)

    Fingas, M.; Ackerman, F.; Lambert, P.; Zhendi, W.; Nelson, R.; Goldthorp, M.; Wang, D.; Steenkammer, A.; Turpin, R.; Campagna, P.; Graham, L.; Hiltabrand, R.

    1996-01-01

    The various aspects of in-situ burning of diesel oil were studied in a series of three mesoscale burns. The burn was conducted in a 15 X 15 m steel pan with an outer berm filled with salt water pumped from Mobile Bay. The diesel fuel which was released and floated on 0.6 metre of water, was ignited and left to burn for about 25 minutes, after-which the water under the burns was analyzed. Four downwind ground stations were set up to conduct extensive sampling and monitoring of the smoke plumes in order to determine their emissions. Particulate samples from the air were analysed for polycyclic aromatic hydrocarbons (PAHs); these were found to be lower in the soot than in the starting oil. Particulates in the air were found to be greater than recommended exposure levels only up to 100 metres downwind at ground level. The study showed that diesel burns produced about 4 times more particulate matter than a similar-sized crude oil burn. The particulate matter was distributed exponentially downwind from the fire. Volatile organic compounds (VOCs) were measured using multiple gas chromatographic techniques. The results of 148 substance analyses were presented. 6 refs., 32 tabs., 12 figs

  19. Isotopic Tracing of Thallium Contamination in Soils Affected by Emissions from Coal-Fired Power Plants.

    Science.gov (United States)

    Vaněk, Aleš; Grösslová, Zuzana; Mihaljevič, Martin; Trubač, Jakub; Ettler, Vojtěch; Teper, Leslaw; Cabala, Jerzy; Rohovec, Jan; Zádorová, Tereza; Penížek, Vít; Pavlů, Lenka; Holubík, Ondřej; Němeček, Karel; Houška, Jakub; Drábek, Ondřej; Ash, Christopher

    2016-09-20

    Here, for the first time, we report the thallium (Tl) isotope record in moderately contaminated soils with contrasting land management (forest and meadow soils), which have been affected by emissions from coal-fired power plants. Our findings clearly demonstrate that Tl of anthropogenic (high-temperature) origin with light isotope composition was deposited onto the studied soils, where heavier Tl (ε(205)Tl ∼ -1) naturally occurs. The results show a positive linear relationship (R(2) = 0.71) between 1/Tl and the isotope record, as determined for all the soils and bedrocks, also indicative of binary Tl mixing between two dominant reservoirs. We also identified significant Tl isotope variations within the products from coal combustion and thermo-desorption experiments with local Tl-rich coal pyrite. Bottom ash exhibited the heaviest Tl isotope composition (ε(205)Tl ∼ 0), followed by fly ash (ε(205)Tl between -2.5 and -2.8) and volatile Tl fractions (ε(205)Tl between -6.2 and -10.3), suggesting partial Tl isotope fractionations. Despite the evident role of soil processes in the isotope redistributions, we demonstrate that Tl contamination can be traced in soils and propose that the isotope data represent a possible tool to aid our understanding of postdepositional Tl dynamics in surface environments for the future.

  20. Benefit-cost framework for analysis of trace element emissions from coal-fired power plants. [103 references

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-11-01

    The major conclusions of this report may be summarized in the following four points: (1) It is probable that atmospheric emissions of trace elements from Southwestern coal-fired power plants will not cause major problems over the next 20 years. But monitoring for trace element build-up (especially mercury, selenium, and arsenic) in the mountains of southern Colorado, Navajo Reservoir, and other local hot spots would be an important and desirable step. (2) It appears that damage from trace elements in disposed ash is more likely than damage from atmospheric trace element emissions. But whether damage from disposed ash will actually occur is highly uncertain. We recommend that additional research be conducted on the entire range of issues surrounding ash disposal. (3) In the area of legislation and regulation, there may be some need for review of regulations concerning trace element atmospheric emissions. Present regulation of ash disposal is very likely to need revision and extension. (4) Future research on the environmental problems of coal-fired power plants should place emphasis on atmospheric emissions of sulfur and nitrogen oxides; consequent problems of acid precipitation also need exploration. Environmental research on coal-fired power plants does not need to exclude other problems. But issues surrounding sulfur emissions, nitrogen emissions, sulfate transformations, and acid precipitation appear to merit major emphasis. Perhaps the most important aspect of the preceding list of conclusions is that more questions are raised than are answered. As work on the subject proceeded, it became apparent that an important task was to point future research in the right direction.

  1. Human impacts on 20th century fire dynamics and implications for global carbon and water trajectories

    Science.gov (United States)

    Li, Fang; Lawrence, David M.; Bond-Lamberty, Ben

    2018-03-01

    Fire is a fundamental Earth system process and the primary ecosystem disturbance on the global scale. It affects carbon and water cycles through changing terrestrial ecosystems, and at the same time, is regulated by weather and climate, vegetation characteristics, and, importantly, human ignitions and suppression (i.e., the direct human effect on fire). Here, we utilize the Community Land Model version 4.5 (CLM4.5) to quantify the impacts of changes in human ignition and suppression on fire dynamics and associated carbon and water cycles. We find that the impact is to significantly reduce the 20th century global burned area by a century average of 38 Mha/yr and by 103 Mha/yr at the end of the century. Land carbon gain is weakened by 17% over the 20th century, mainly due to increased human deforestation fires and associated escape fires (i.e., degradation fires) in the tropical humid forests, even though the decrease in burned area in many other regions due to human fire suppression acts to increase land carbon gain. The direct human effect on fire weakens the upward trend in global runoff throughout the century by 6% and enhances the upward trend in global evapotranspiration since 1945 by 7%. In addition, the above impacts in densely populated, highly developed (if population density > 0.1 person/km2), or moderately populated and developed regions are of opposite sign to those in other regions. Our study suggests that particular attention should be paid to human deforestation and degradation fires in the tropical humid forests when reconstructing and projecting fire carbon emissions and net atmosphere-land carbon exchange and estimating resultant impacts of direct human effect on fire.

  2. Human impacts on 20th century fire dynamics and implications for global carbon and water trajectories

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fang; Lawrence, David M.; Bond-Lamberty, Ben

    2018-03-01

    Fire is a fundamental Earth system process and the primary ecosystem disturbance on the global scale. It affects carbon and water cycles through changing terrestrial ecosystems, and at the same time, is regulated by weather and climate, vegetation characteristics, and, importantly, human ignitions and suppression (i.e., the direct human effect on fire). Here, we utilize the Community Land Model version 4.5 (CLM4.5) to quantify the impacts of changes in human ignition and suppression on fire dynamics and associated carbon and water cycles. We find that the impact is to significantly reduce the 20th century global burned area by a century average of 38 Mha/yr and by 103 Mha/yr at the end of the century. Land carbon gain is weakened by 17% over the 20th century, mainly due to increased human deforestation fires and associated escape fires (i.e., degradation fires) in the tropical humid forests, even though the decrease in burned area in many other regions due to human fire suppression acts to increase land carbon gain. The direct human effect on fire weakens the upward trend in global runoff throughout the century by 6% and enhances the upward trend in global evapotranspiration since ~ 1945 by 7%. In addition, the above impacts in densely populated, highly developed (if population density > 0.1 person/km2), or moderately populated and developed regions are of opposite sign to those in other regions. Our study suggests that particular attention should be paid to human deforestation and degradation fires in the tropical humid forests when reconstructing and projecting fire carbon emissions and net atmosphere-land carbon exchange and estimating resultant impacts of direct human effect on fire.

  3. [Engineering development of advanced coal-fired low-emission boiler systems]. Technical progress report, October--December 1995

    Energy Technology Data Exchange (ETDEWEB)

    Wesnor, J.D.; Bakke, E. [ABB Environmental Systems, Birmingham, AL (United States); Bender, D.J.; Kaminski, R.S. [Raytheon Engineers and Constructors, Inc., Philadelphia, PA (United States)

    1995-12-31

    The overall objective of the Project is the expedited commercialization of advanced coal-fired low-emisssion boiler systems. The primary objectives are: NO{sub x} emissions, lb/million Btu; SO{sub 2} emissions, lb/million Btu; particulate emissions, lb/million Btu; and net plant efficiency, not less than 42%. The secondary objectives are: improved ash disposability; reduced waste generation; and reduced air toxics emissions. Accomplishments to date are summarized for the following tasks: task 1, project planning and management; task 7, component development and optimization; task 8, preliminary POC test facility design; task 9, subsystem test design and plan; task 10, subsystem test unit construction; and task 11, subsystem test operation and evaluation.

  4. Particle Emission Characteristics of Modern and Old-Type Residential Boilers Fired with Wood Logs and Wood Pellets

    International Nuclear Information System (INIS)

    Johansson, L.S.; Gustavsson, L.; Tullin, C.; Potter, A.; Leckner, B.

    2005-01-01

    Residential biofuel combustion for heating can be performed in two ways: in a stove heating the surrounding room, or in a boiler heating water to be circulated through a piping system to heat an entire house. In contrast to stoves, wood boilers can be connected to heat storage tanks, which is an advantage from an emission point of view. The present work focuses on comparing emissions from old-type and modern boilers by means of systematic variation of combustion device, fuel quality, firing behaviour, and the influence of heat storage tank. User habits are simulated in a schematic way. The purpose of the comparison is to determine the emission differences between old-type and modern residential biofuel boilers and to quantify emission characteristics of different kind of biofuel combustion

  5. Point defects and the blue emission in fired quartz at high doses: a comparative luminescence and EPR study

    International Nuclear Information System (INIS)

    Woda, C.; Schilles, T.; Riser, U.; Mangini, A.; Wagner, G.A.

    2002-01-01

    The dose response of the 375 deg/ C, 470 nm TL peak in fired quartz is studied by using thermoluminescence emission spectra and monochromatic glow curves. The blue emission displays a significant sensitivity increase for doses in excess of 1000 Gy, subsequent saturation at 16 kGy and a pre-dose effect over the entire dose range. Comparison with the growth of the known electron paramagnetic resonance centres and radioluminescence emission spectra indicates that the [AlO 4 ] centre is the recombination site for the blue emission, whereas the electron trap remains unknown. The sensitivity change seems to be linked to the dose-induced reduction of the [GeO 4 /Li] centre. Possible mechanisms for the observed dose response are discussed. (author)

  6. Major gaseous and PAH emissions from a fluidized-bed combustor firing rice husk with high combustion efficiency

    International Nuclear Information System (INIS)

    Janvijitsakul, Kasama; Kuprianov, Vladimir I.

    2008-01-01

    This experimental work investigated major gaseous (CO and NO x ) and PAH emissions from a 400 kW th fluidized-bed combustor with a cone-shaped bed (referred to as 'conical FBC') firing rice husk with high, over 99%, combustion efficiency. Experimental tests were carried out at the fuel feed rate of 80 kg/h for different values of excess air (EA). As revealed by the experimental results, EA had substantial effects on the axial CO and NO x concentration profiles and corresponding emissions from the combustor. The concentration (mg/kg-ash) and specific emission (μg/kW h) of twelve polycyclic aromatic hydrocarbons (PAHs), acenaphthylene, fluorene, phenanthrene, fluoranthene, pyrene, benz[a]anthracene, chrysene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenz[a,h]anthracene and indeno[1,2,3-cd]pyrene, were quantified in this work for different size fractions of ash emitted from the conical FBC firing rice husk at EA = 20.9%. The total PAHs emission was found to be predominant for the coarsest ash particles, due to the effects of a highly developed internal surface in a particle volume. The highest emission was shown by acenaphthylene, 4.1 μg/kW h, when the total yield of PAHs via fly ash was about 10 μg/kW h. (author)

  7. Conference on alternatives for pollution control from coal-fired low emission sources, Plzen, Czech Republic. Plzen Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    The Conference on Alternatives for Pollution Control from Coal-Fired Emission Sources presented cost-effective approaches for pollution control of low emission sources (LES). It also identified policies and strategies for implementation of pollution control measures at the local level. Plzen, Czech Republic, was chosen as the conference site to show participants first hand the LES problems facing Eastern Europe today. Collectively, these Proceedings contain clear reports on: (a) methods for evaluating the cost effectiveness of alternative approaches to control pollution from small coal-fired boilers and furnaces; (b) cost-effective technologies for controlling pollution from coal-fired boilers and furnaces; (c) case studies of assessment of cost effective pollution control measures for selected cities in eastern Europe; and (d) approaches for actually implementing pollution control measures in cities in Eastern Europe. It is intended that the eastern/central European reader will find in these Proceedings useful measures that can be applied to control emissions and clean the air in his city or region. The conference was sponsored by the United States Agency for International Development (AID), the United States Department of Energy (DOE), and the Czech Ministry of Industry and Trade. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  8. Direct and indirect effects of fires on the carbon balance of tropical forest ecosystems (Invited)

    Science.gov (United States)

    Randerson, J. T.; Tosca, M. G.; Ward, D. S.; Kasibhatla, P. S.; Mahowald, N. M.; Hess, P. G.

    2013-12-01

    Fires influence the carbon budget of tropical forests directly because they account for a significant component of net emissions from deforestation and forest degradation. They also have indirect effects on nearby intact forests by modifying regional climate, atmospheric composition, and patterns of nutrient deposition. These latter pathways are not well understood and are often ignored in climate mitigation efforts such as the United Nations Program on Reducing Emissions from Deforestation and forest Degradation (REDD+). Here we used the Community Atmosphere Model (CAM5) and the Global Fire Emissions Database (GFED3) to quantify the impacts of fire-emitted aerosols on the productivity of tropical forests. Across the tropical forest biome, fire-emitted aerosols reduced surface temperatures and increased the diffuse solar insolation fraction. These changes in surface meteorology increased gross primary production (GPP) in the Community Land Model. However, these drivers were more than offset in many regions by reductions in soil moisture and total solar radiation. The net effect of fire aerosols caused GPP to decrease by approximately 8% in equatorial Asia and 6% in the central Africa. In the Amazon, decreases in photosynthesis in the western part of the basin were nearly balanced by increases in the south and east. Using additional CAM5 and GEOS-Chem model simulations, we estimated fire contributions to surface concentrations of ozone. Using empirical relationships between ozone exposure and GPP from field studies and models, we estimated how tropical forest GPP was further modified by fire-induced ozone. Our results suggest that efforts to reduce the fire component of tropical land use fluxes may have sustainability benefits that extend beyond the balance sheet for greenhouse gases.

  9. Chemical and dispersal characteristics of particulate emissions from forest fires in Siberia

    Science.gov (United States)

    Y. N. Samsonov; V. A. Ivanov; D. J. McRae; S. P. Baker

    2012-01-01

    Approximately 20 experimental fires were conducted on forest plots of 1-4 ha each in 2000-07 in two types of boreal forests in central Siberia, and 18 on 6 x 12-m plots in 2008-10. These experiments were designed to mimic wildfires under similar burning conditions. The fires were conducted in prescribed conditions including full documentation on pre-fire weather, pre-...

  10. Researching Illegal Logging and Deforestation

    Directory of Open Access Journals (Sweden)

    Tim Boekhout van Solinge

    2014-08-01

    Full Text Available Tropical deforestation such as in the Amazon can be studied well from a green criminological perspective. Ethnographic research methods form a useful way to get insight into the dynamics and complexity of tropical deforestation, which often is illegal. This article gives an account of various ethnographic visits to the rainforests of the Amazon in the period 2003-2014. Ethnographic methods provide insight into the overlap between the legal and illegal, the functioning (or not of state institutions, the power of (corporate lobbies, and why tropical deforestation correlates with crimes such as corruption and violence. The use of ethnographic methods in forest areas where trustworthy state actors and institutions are not very present can also present danger and raise ethical issues (such as when the researcher, for reasons of safety, does not present as a criminological researcher. However, a large advantage of ethnographic visits to tropical rainforests is that they allow the gathering of local views and voices, which rarely reach the international level. These local views lead to interesting contradictions at the international level where corporate views and lobbies dominate.

  11. Deforestation and avian infectious diseases.

    Science.gov (United States)

    Sehgal, R N M

    2010-03-15

    In this time of unprecedented global change, infectious diseases will impact humans and wildlife in novel and unknown ways. Climate change, the introduction of invasive species, urbanization, agricultural practices and the loss of biodiversity have all been implicated in increasing the spread of infectious pathogens. In many regards, deforestation supersedes these other global events in terms of its immediate potential global effects in both tropical and temperate regions. The effects of deforestation on the spread of pathogens in birds are largely unknown. Birds harbor many of the same types of pathogens as humans and in addition can spread infectious agents to humans and other wildlife. It is thought that avifauna have gone extinct due to infectious diseases and many are presently threatened, especially endemic island birds. It is clear that habitat degradation can pose a direct threat to many bird species but it is uncertain how these alterations will affect disease transmission and susceptibility to disease. The migration and dispersal of birds can also change with habitat degradation, and thus expose populations to novel pathogens. Some recent work has shown that the results of landscape transformation can have confounding effects on avian malaria, other haemosporidian parasites and viruses. Now with advances in many technologies, including mathematical and computer modeling, genomics and satellite tracking, scientists have tools to further research the disease ecology of deforestation. This research will be imperative to help predict and prevent outbreaks that could affect avifauna, humans and other wildlife worldwide.

  12. Importance of transboundary transport of biomass burning emissions to regional air quality in Southeast Asia during a high fire event

    Science.gov (United States)

    Aouizerats, B.; van der Werf, G. R.; Balasubramanian, R.; Betha, R.

    2015-01-01

    Smoke from biomass and peat burning has a notable impact on ambient air quality and climate in the Southeast Asia (SEA) region. We modeled a large fire-induced haze episode in 2006 stemming mostly from Indonesia using the Weather Research and Forecasting model coupled with chemistry (WRF-Chem). We focused on the evolution of the fire plume composition and its interaction with the urbanized area of the city state of Singapore, and on comparisons of modeled and measured aerosol and carbon monoxide (CO) concentrations. Two simulations were run with WRF-Chem using the complex volatility basis set (VBS) scheme to reproduce primary and secondary aerosol evolution and concentration. The first simulation referred to as WRF-FIRE included anthropogenic, biogenic and biomass burning emissions from the Global Fire Emissions Database (GFED3) while the second simulation referred to as WRF-NOFIRE was run without emissions from biomass burning. To test model performance, we used three independent data sets for comparison including airborne measurements of particulate matter (PM) with a diameter of 10 μm or less (PM10) in Singapore, CO measurements in Sumatra, and aerosol optical depth (AOD) column observations from four satellite-based sensors. We found reasonable agreement between the model runs and both ground-based measurements of CO and PM10. The comparison with AOD was less favorable and indicated the model underestimated AOD, although the degree of mismatch varied between different satellite data sets. During our study period, forest and peat fires in Sumatra were the main cause of enhanced aerosol concentrations from regional transport over Singapore. Analysis of the biomass burning plume showed high concentrations of primary organic aerosols (POA) with values up to 600 μg m-3 over the fire locations. The concentration of POA remained quite stable within the plume between the main burning region and Singapore while the secondary organic aerosol (SOA) concentration

  13. Emissions of forest floor and mineral soil carbon, nitrogen and mercury pools and relationships with fire severity for the Pagami Creek Fire in the Boreal Forest of northern Minnesota

    Science.gov (United States)

    Randall K. Kolka; Brian R. Sturtevant; Jessica R. Miesel; Aditya Singh; Peter T. Wolter; Shawn Fraver; Thomas M. DeSutter; Phil A. Townsend

    2017-01-01

    Forest fires cause large emissions of C (carbon), N (nitrogen) and Hg (mercury) to the atmosphere and thus have important implications for global warming (e.g. via CO2 and N2O emissions), anthropogenic fertilisation of natural ecosystems (e.g. via N deposition), and bioaccumulation of harmful metals in aquatic and...

  14. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; S. C. Tseng; J. E. Locke

    2006-01-31

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that these data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the ninth in a series of topical reports, describes the results and analysis of mercury sampling performed on Unit 1 at Plant 7, a 566 MW unit burning a bituminous coal containing 3.6% sulfur. The unit is equipped with a SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO

  15. Evaluation of Mercury Emissions from Coal-Fired Facilities with SCR and FGD Systems

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; J. E. Locke

    2006-02-01

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) and the Electric Power Research Institute (EPRI), is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP)--wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The principal purpose of this work is to develop a better understanding of the potential mercury removal ''co-benefits'' achieved by NO{sub x}, and SO{sub 2} control technologies. It is expected that this data will provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. Ultimately, this insight could help to design and operate SCR and FGD systems to maximize mercury removal. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of SCR catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on mercury speciation and the efficacy of different FGD technologies for mercury capture. This document, the tenth in a series of topical reports, describes the results and analysis of mercury sampling performed on two 468 MW units burning bituminous coal containing 1.3-1.7% sulfur. Unit 2 is equipped with an SCR, ESP, and wet FGD to control NO{sub x}, particulate, and SO{sub 2} emissions

  16. EVALUATION OF MERCURY EMISSIONS FROM COAL-FIRED FACILITIES WITH SCR AND FGD SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    J. A. Withum; S.C. Tseng; J. E. Locke

    2004-10-31

    CONSOL Energy Inc., Research & Development (CONSOL), with support from the U.S. Department of Energy, National Energy Technology Laboratory (DOE) is evaluating the effects of selective catalytic reduction (SCR) on mercury (Hg) capture in coal-fired plants equipped with an electrostatic precipitator (ESP) - wet flue gas desulfurization (FGD) combination or a spray dyer absorber--fabric filter (SDA-FF) combination. In this program CONSOL is determining mercury speciation and removal at 10 coal-fired facilities. The objectives are (1) to evaluate the effect of SCR on mercury capture in the ESP-FGD and SDA-FF combinations at coal-fired power plants, (2) evaluate the effect of catalyst degradation on mercury capture; (3) evaluate the effect of low load operation on mercury capture in an SCR-FGD system, and (4) collect data that could provide the basis for fundamental scientific insights into the nature of mercury chemistry in flue gas, the catalytic effect of SCR systems on Hg speciation and the efficacy of different FGD technologies for Hg capture. This document, the second in a series of topical reports, describes the results and analysis of mercury sampling performed on a 330 MW unit burning a bituminous coal containing 1.0% sulfur. The unit is equipped with a SCR system for NOx control and a spray dryer absorber for SO{sub 2} control followed by a baghouse unit for particulate emissions control. Four sampling tests were performed in March 2003. Flue gas mercury speciation and concentrations were determined at the SCR inlet, air heater outlet (ESP inlet), and at the stack (FGD outlet) using the Ontario Hydro method. Process stream samples for a mercury balance were collected to coincide with the flue gas measurements. Due to mechanical problems with the boiler feed water pumps, the actual gross output was between 195 and 221 MW during the tests. The results showed that the SCR/air heater combination oxidized nearly 95% of the elemental mercury. Mercury removal, on a

  17. Interactions of Reduced Deforestation and the Carbon Market: The Role of Market Regulations and Future Commitments

    OpenAIRE

    Anger, Niels; Dixon, Alistair; Livengood, Erich

    2009-01-01

    Reducing emissions from deforestation and degradation (REDD) has been proposed as a potentially inexpensive and plentiful source of emission abatement to supplement other longterm climate policies. However, critics doubt that REDD credits are environmentally equivalent to domestic emission reductions, and suggest an excess supply may disrupt carbon markets. In this context, we investigate the economic implications of emissions market regulations and future emissions reduction commitments, as ...

  18. Electron beam technology for multipollutant emissions control from heavy fuel oil-fired boiler.

    Science.gov (United States)

    Chmielewski, Andrzej G; Ostapczuk, Anna; Licki, Janusz

    2010-08-01

    The electron beam treatment technology for purification of exhaust gases from the burning of heavy fuel oil (HFO) mazout with sulfur content approximately 3 wt % was tested at the Institute of Nuclear Chemistry and Technology laboratory plant. The parametric study was conducted to determine the sulfur dioxide (SO2), oxides of nitrogen (NO(x)), and polycyclic aromatic hydrocarbon (PAH) removal efficiency as a function of temperature and humidity of irradiated gases, absorbed irradiation dose, and ammonia stoichiometry process parameters. In the test performed under optimal conditions with an irradiation dose of 12.4 kGy, simultaneous removal efficiencies of approximately 98% for SO2, and 80% for NO(x) were recorded. The simultaneous decrease of PAH and one-ringed aromatic hydrocarbon (benzene, toluene, and xylenes [BTX]) concentrations was observed in the irradiated flue gas. Overall removal efficiencies of approximately 42% for PAHs and 86% for BTXs were achieved with an irradiation dose 5.3 kGy. The decomposition ratio of these compounds increased with an increase of absorbed dose. The decrease of PAH and BTX concentrations was followed by the increase of oxygen-containing aromatic hydrocarbon concentrations. The PAH and BTX decomposition process was initialized through the reaction with hydroxyl radicals that formed in the electron beam irradiated flue gas. Their decomposition process is based on similar principles as the primary reaction concerning SO2 and NO(x) removal; that is, free radicals attack organic compound chains or rings, causing volatile organic compound decomposition. Thus, the electron beam flue gas treatment (EBFGT) technology ensures simultaneous removal of acid (SO2 and NO(x)) and organic (PAH and BTX) pollutants from flue gas emitted from burning of HFO. This technology is a multipollutant emission control technology that can be applied for treatment of flue gas emitted from coal-, lignite-, and HFO-fired boilers. Other thermal processes such

  19. Greenhouse gas emissions from tropical forest degradation: an underestimated source

    Directory of Open Access Journals (Sweden)

    Timothy R. H. Pearson

    2017-02-01

    Full Text Available Abstract Background The degradation of forests in developing countries, particularly those within tropical and subtropical latitudes, is perceived to be an important contributor to global greenhouse gas emissions. However, the impacts of forest degradation are understudied and poorly understood, largely because international emission reduction programs have focused on deforestation, which is easier to detect and thus more readily monitored. To better understand and seize opportunities for addressing climate change it will be essential to improve knowledge of greenhouse gas emissions from forest degradation. Results Here we provide a consistent estimation of forest degradation emissions between 2005 and 2010 across 74 developing countries covering 2.2 billion hectares of forests. We estimated annual emissions of 2.1 billion tons of carbon dioxide, of which 53% were derived from timber harvest, 30% from woodfuel harvest and 17% from forest fire. These percentages differed by region: timber harvest was as high as 69% in South and Central America and just 31% in Africa; woodfuel harvest was 35% in Asia, and just 10% in South and Central America; and fire ranged from 33% in Africa to only 5% in Asia. Of the total emissions from deforestation and forest degradation, forest degradation accounted for 25%. In 28 of the 74 countries, emissions from forest degradation exceeded those from deforestation. Conclusions The results of this study clearly demonstrate the importance of accounting greenhouse gases from forest degradation by human activities. The scale of emissions presented indicates that the exclusion of forest degradation from national and international GHG accounting is distorting. This work helps identify where emissions are likely significant, but policy developments are needed to guide when and how accounting should be undertaken. Furthermore, ongoing research is needed to create and enhance cost-effective accounting approaches.

  20. Strengthening community participation in reducing GHG emission from forest and peatland fire

    Science.gov (United States)

    Thoha, A. S.; Saharjo, B. H.; Boer, R.; Ardiansyah, M.

    2018-02-01

    Strengthening community participation is needed to find solutions to encourage community more participate in reducing Green House Gas (GHG) from forest and peatland fire. This research aimed to identify stakeholders that have the role in forest and peatland fire control and to formulate strengthening model of community participation through community-based early warning fire. Stakeholder mapping and action research were used to determine stakeholders that had potential influence and interest and to formulate strengthening model of community participation in reducing GHG from forest and peatland fire. There was found that position of key players in the mapping of stakeholders came from the government institution. The existence of community-based fire control group can strengthen government institution through collaborating with stakeholders having strong interest and influence. Moreover, it was found several local knowledge in Kapuas District about how communities predict drought that have potential value for developing the community-based early warning fire system. Formulated institutional model in this research also can be further developed as a model institution in the preservation of natural resources based on local knowledge. In conclusion, local knowledge and community-based fire groups can be integrated within strengthening model of community participation in reducing GHG from forest and peatland fire.

  1. Emissions of volatile organic compounds and particulate matter from small-scale peat fires

    Science.gov (United States)

    Air pollution emitted from peat fires can negatively impact regional air quality, visibility, climate, and human health. Peat fires can smolder over long periods of time and, therefore, can release significantly greater amounts of carbon into the atmosphere per unit area compared...

  2. Multi-Sensor Constrained Time Varying Emissions Estimation of Black Carbon: Attributing Urban and Fire Sources Globally

    Science.gov (United States)

    Cohen, J. B.

    2015-12-01

    The short lifetime and heterogeneous distribution of Black Carbon (BC) in the atmosphere leads to complex impacts on radiative forcing, climate, and health, and complicates analysis of its atmospheric processing and emissions. Two recent papers have estimated the global and regional emissions of BC using advanced statistical and computational methods. One used a Kalman Filter, including data from AERONET, NOAA, and other ground-based sources, to estimate global emissions of 17.8+/-5.6 Tg BC/year (with the increase attributable to East Asia, South Asia, Southeast Asia, and Eastern Europe - all regions which have had rapid urban, industrial, and economic expansion). The second additionally used remotely sensed measurements from MISR and a variance maximizing technique, uniquely quantifying fire and urban sources in Southeast Asia, as well as their large year-to-year variability over the past 12 years, leading to increases from 10% to 150%. These new emissions products, when run through our state-of-the art modelling system of chemistry, physics, transport, removal, radiation, and climate, match 140 ground stations and satellites better in both an absolute and a temporal sense. New work now further includes trace species measurements from OMI, which are used with the variance maximizing technique to constrain the types of emissions sources. Furthermore, land-use change and fire estimation products from MODIS are also included, which provide other constraints on the temporal and spatial nature of the variations of intermittent sources like fires or new permanent sources like expanded urbanization. This talk will introduce a new, top-down constrained, weekly varying BC emissions dataset, show that it produces a better fit with observations, and draw conclusions about the sources and impacts from urbanization one hand, and fires on another hand. Results specific to the Southeast and East Asia will demonstrate inter- and intra-annual variations, such as the function of

  3. Estimation of the aerosol optical thickness distribution in the Northeast Asian forest fire episode in May 2003: Possible missing emissions

    Science.gov (United States)

    In, Hee-Jin; Kim, Yong Pyo

    2010-11-01

    During the study of the enhancement of aerosol optical thickness (AOT) which was derived by Community Multi-scale Air Quality (CMAQ) model for an active forest fire episode in Northeast Asia for May 2003 (In et al., 2009), it was found that CMAQ underestimated and overestimated AOT sporadically compared to the multiple satellite observations. Based on the AERONET surface AOT observation result, the WMO Global Telecommunications System (GTS) SYNOP system smoke/fire reports, and surface aerosol concentration data in Korea, it was found that these errors were resulted from missing of biomass burning emissions and coarse aerosols originating from soil. An inconsistency between surface observed and CMAQ estimate AOT and MODIS hot spot detects was found, which suggests that accuracy of MODIS fire products needs to be assessed in East Russian, China, and Korea in order to utilize them for national scale fire management in the region. The implement of origin and transport process of wind blown dust in current CMAQ is necessary to extend CMAQ capability in Northeast Asia.

  4. Deforestation and its impacts on district Abbottabad

    International Nuclear Information System (INIS)

    Siddique, M.; Shahzadi, I.; Yousaf, S.

    2005-01-01

    In District Abbottabad, area cover under forests is 76148 ha, which is 5.4% of the forest resources of the province. The study areas have sufficient natural resources but these natural resources are depleting very rapidly. The present study showed that most of the population living especially near the mountain range is poor, illiterate and having no other means of income generation. Therefore they cut forests trees for the fuel and timber not only to fulfill their domestic needs but also on commercial scale. There are no other alternatives of fuel wood in the area. They mostly depend of forest for fuel wood. People of the area get timber mainly from the nearby forests for construction. Agriculture is the backbone of local economy in the area. The forest trees near the agriculture area are cut down to extend their agricultural land. Soil erosion and flooding is increased because of clearing of land for agriculture. People of the area graze their livestock freely in the rangelands and forests without taking care of their carrying capacity. The political administration and forest department cannot take any step to prevent overgrazing and deforestation activities in the area. Some times the local people damage the plants by cutting or putting them in fire, which causes severe damage to the plants. Lack of awareness among local communities about the importance of natural resources i.e. forest and wildlife. The people considered the wildlife, as free gift of nature there is no restriction on hunting from government or other agency. (author)

  5. Seasonal Variation and Ecosystem Dependence of Emission Factors for Selected Trace Gases and PM2.5 for Southern African Savanna Fires

    Science.gov (United States)

    Korontzi, S.; Ward, D. E.; Susott, R. A.; Yokelson, R. J.; Justice, C. O.; Hobbs, P. V.; Smithwick, E. A. H.; Hao, W. M.

    2003-01-01

    In this paper we present the first early dry season (early June-early August) emission factor measurements for carbon dioxide (CO2), carbon monoxide (CO), methane (Ca), nonmethane hydrocarbons (NMHC), and particulates with a diameter less than 2.5 microns (pM2.5) for southern African grassland and woodland fires. Seasonal emission factors for grassland fires correlate linearly with the proportion of green grass, used as a surrogate for the fuel moisture content, and are higher for products of incomplete combustion in the early part of the dry season compared with later in the dry season. Models of emission factors for NMHC and PM(sub 2.5) versus modified combustion efficiency (MCE) are statistically different in grassland compared with woodland ecosystems. We compare predictions based on the integration of emissions factors from this study, from the southern African Fire-Atmosphere Research Initiative 1992 (SAFARI-92), and from SAFARI-2000 with those based on the smaller set of ecosystem-specific emission factors to estimate the effects of using regional-average rather than ecosystem-specific emission factors. We also test the validity of using the SAFARI-92 models for emission factors versus MCE to predict the early dry season emission factors measured in this study. The comparison indicates that the largest discrepancies occur at the low end (0.907) and high end (0.972) of MCE values measured in this study. Finally, we combine our models of MCE versus proportion of green grass for grassland fires with emission factors versus MCE for selected oxygenated volatile organic compounds measured in the SAFARI-2000 campaign to derive the first seasonal emission factors for these compounds. The results of this study demonstrate that seasonal variations in savanna fire emissions are important and should be considered in modeling emissions at regional to continental scales.

  6. Low cost combustion tuning and fuel nozzles modification to reduce NOx emission in large coal-fired boilers

    Energy Technology Data Exchange (ETDEWEB)

    B. Chudnovsky; L. Levin; A. Talanker; E. Bar-Ziv; A. Vikhansky; A.F. Sarofim [Israel Electric Corporation (IEC), Haifa (Israel)

    2003-07-01

    This work focuses on low-cost combustion tuning to reduce NOx emission in coal-fired tangential boilers, testing the furnace in various operation modes. We have also experimented different coal nozzle types. The measurements were accompanied by computer simulations of the combustion process. We also used an on-line supervision system. The data obtained from 575 MW boilers show that with tuning and modified nozzles NOx was considerably reduced. The emission of NOx was reduced from 1200 to 570 mg/dNm{sup 3} at 6% O{sub 2} for South African coal at full load. At partial load NOx emission dropped from 1400 to 750-850 mg/dNm{sup 3} at 6% O{sub 2}. High volatile coal firing led to additional NOx reduction. A series of tests were performed with Colombian and Indonesian coals as well, dropping NOx emission to 400-450 mg/dNm{sup 3} at6% O{sub 2} at full load. Sootblowing optimization using the supervision system enabled us to further reduce NOx emission by approximately 10%. The boiler and unit performance was not influenced by any of the techniques used for NOx reduction. In such a manner, the results presented in this work clearly show that technological methods for reduction NOx are available and capable of obtaining the required NOx emission. We believe that the conclusions of the present study are general and may be applied to other utility boilers as well. 13 refs., 12 figs., 7 tabs.

  7. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    Energy Technology Data Exchange (ETDEWEB)

    Yokelson, R. J.; Burling, I. R.; Gilman, J. B.; Warneke, C.; Stockwell, C. E.; de Gouw, J.; Akagi, S. K.; Urbanski, S. P.; Veres, P.; Roberts, J. M.; Kuster, W. C.; Reardon, J.; Griffith, D. W. T.; Johnson, T. J.; Hosseini, S.; Miller, J. W.; Cocker III, D. R.; Jung, H.; Weise, D. R.

    2013-01-01

    Vegetative fuels commonly consumed in prescribed fires were collected from five locations in the southeastern and southwestern U.S. and burned in a series of 77 fires at the U.S. Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5) emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC), organic carbon (OC), and 38 elements. The trace gas emissions were measured with a large suite of state-of-the-art instrumentation including an open-path Fourier transform infrared (OP FTIR) spectrometer, proton-transfer-reaction mass spectrometry (PTR-MS), proton-transfer ion-trap mass spectrometry (PIT-MS), negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS), and gas chromatography with MS detection (GC-MS). 204 trace gas species (mostly non-methane organic compounds (NMOC)) were identified and quantified with the above instruments. An additional 152 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species. As phase II of this study, we conducted airborne and ground-based sampling of the emissions from real prescribed fires mostly in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5) was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. These extensive field measurements of emission factors (EF) for temperate biomass burning are useful both for modeling and to examine the representativeness of our lab fire EF. The lab/field EF ratio for the pine understory fuels was not statistically different from one, on average. However, our lab EF for “smoldering compounds” emitted by burning the semi

  8. Impact of forest fires, biogenic emissions and high temperatures on the elevated Eastern Mediterranean ozone levels during the hot summer of 2007

    Directory of Open Access Journals (Sweden)

    Ø. Hodnebrog

    2012-09-01

    Full Text Available The hot summer of 2007 in southeast Europe has been studied using two regional atmospheric chemistry models; WRF-Chem and EMEP MSC-W. The region was struck by three heat waves and a number of forest fire episodes, greatly affecting air pollution levels. We have focused on ozone and its precursors using state-of-the-art inventories for anthropogenic, biogenic and forest fire emissions. The models have been evaluated against measurement data, and processes leading to ozone formation have been quantified. Heat wave episodes are projected to occur more frequently in a future climate, and therefore this study also makes a contribution to climate change impact research.

    The plume from the Greek forest fires in August 2007 is clearly seen in satellite observations of CO and NO2 columns, showing extreme levels of CO in and downwind of the fires. Model simulations reflect the location and influence of the fires relatively well, but the modelled magnitude of CO in the plume core is too low. Most likely, this is caused by underestimation of CO in the emission inventories, suggesting that the CO/NOx ratios of fire emissions should be re-assessed. Moreover, higher maximum values are seen in WRF-Chem than in EMEP MSC-W, presumably due to differences in plume rise altitudes as the first model emits a larger fraction of the fire emissions in the lowermost model layer. The model results are also in fairly good agreement with surface ozone measurements.

    Biogenic VOC emissions reacting with anthropogenic NOx emissions are calculated to contribute significantly to the levels of ozone in the region, but the magnitude and geographical distribution depend strongly on the model and biogenic emission module used. During the July and August heat waves, ozone levels increased substantially due to a combination of forest fire emissions and the effect of high temperatures. We found that the largest temperature impact on

  9. Reduction of NOx emission in tangential fired - furnace by changing the, mode of operation

    International Nuclear Information System (INIS)

    Chudnovsky, B.; Talanker, A.; Levin, L.; Kahana, S

    1998-01-01

    The present work analyses tile results of tests on 575 MW units with tangential firing furnace arrangement in sub-stoichiometric combustion. Tangential firing provides good conditions for implementing sub-stoichiometric combustion owing to the delivery scheme of pulverized coal and air. The furnace was tested in several different modes of operation (Over Fire Air, Bunkers Out Of Service, Excess air, Tilt etc.) to achieve low cost NOx reduction. Actual performance data are presented based on experiments made on lEC's boiler in M.D. 'B' power station

  10. Modeling the Emission of CO from Wood Fires using Detailed Chemical Kinetics

    DEFF Research Database (Denmark)

    Dederichs, Anne

    Carbon monoxide is treated as one of the most common and dangerous of gases evolving in fires. Modeling the formation of the toxic gas CO from in fire enclosures using detailed chemical kinetics is the topic of this manuscript. A semi-empirical model is developed to study the formation of CO from......, the model separately treats the process of pyrolysis and combustion. For under ventilated conditions and at high temperatures during pyrolysis it is found that the process of pyrolysation strongly influences the formation of CO in fire. CO2 follows the same trend....

  11. Effect of selective catalytic reduction (SCR) on fine particle emission from two coal-fired power plants in China

    Science.gov (United States)

    Li, Zhen; Jiang, Jingkun; Ma, Zizhen; Wang, Shuxiao; Duan, Lei

    2015-11-01

    Nitrogen oxides (NOx) emission abatement of coal-fired power plants (CFPPs) requires large-scaled installation of selective catalytic reduction (SCR), which would reduce secondary fine particulate matter (PM2.5) (by reducing nitrate aerosol) in the atmosphere. However, our field measurement of two CFPPs equipped with SCR indicates a significant increase of SO42- and NH4+ emission in primary PM2.5, due to catalytic enhancement of SO2 oxidation to SO3 and introducing of NH3 as reducing agent. The subsequent formation of (NH4)2SO4 or NH4HSO4 aerosol is commonly concentrated in sub-micrometer particulate matter (PM1) with a bimodal pattern. The measurement at the inlet of stack also showed doubled primary PM2.5 emission by SCR operation. This effect should therefore be considered when updating emission inventory of CFPPs. By rough estimation, the enhanced primary PM2.5 emission from CFPPs by SCR operation would offset 12% of the ambient PM2.5 concentration reduction in cities as the benefit of national NOx emission abatement, which should draw attention of policy-makers for air pollution control.

  12. Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires

    Directory of Open Access Journals (Sweden)

    R. J. Yokelson

    2013-01-01

    Full Text Available An extensive program of experiments focused on biomass burning emissions began with a laboratory phase in which vegetative fuels commonly consumed in prescribed fires were collected in the southeastern and southwestern US and burned in a series of 71 fires at the US Forest Service Fire Sciences Laboratory in Missoula, Montana. The particulate matter (PM2.5 emissions were measured by gravimetric filter sampling with subsequent analysis for elemental carbon (EC, organic carbon (OC, and 38 elements. The trace gas emissions were measured by an open-path Fourier transform infrared (OP-FTIR spectrometer, proton-transfer-reaction mass spectrometry (PTR-MS, proton-transfer ion-trap mass spectrometry (PIT-MS, negative-ion proton-transfer chemical-ionization mass spectrometry (NI-PT-CIMS, and gas chromatography with MS detection (GC-MS. 204 trace gas species (mostly non-methane organic compounds (NMOC were identified and quantified with the above instruments. Many of the 182 species quantified by the GC-MS have rarely, if ever, been measured in smoke before. An additional 153 significant peaks in the unit mass resolution mass spectra were quantified, but either could not be identified or most of the signal at that molecular mass was unaccounted for by identifiable species.

    In a second, "field" phase of this program, airborne and ground-based measurements were made of the emissions from prescribed fires that were mostly located in the same land management units where the fuels for the lab fires were collected. A broad variety, but smaller number of species (21 trace gas species and PM2.5 was measured on 14 fires in chaparral and oak savanna in the southwestern US, as well as pine forest understory in the southeastern US and Sierra Nevada mountains of California. The field measurements of emission factors (EF are useful both for modeling and to examine the representativeness of our lab fire EF. The lab EF/field EF ratio for

  13. Development of the GEM-MACH-FireWork System: An Air Quality Model with On-line Wildfire Emissions within the Canadian Operational Air Quality Forecast System

    Science.gov (United States)

    Pavlovic, Radenko; Chen, Jack; Beaulieu, Paul-Andre; Anselmp, David; Gravel, Sylvie; Moran, Mike; Menard, Sylvain; Davignon, Didier

    2014-05-01

    A wildfire emissions processing system has been developed to incorporate near-real-time emissions from wildfires and large prescribed burns into Environment Canada's real-time GEM-MACH air quality (AQ) forecast system. Since the GEM-MACH forecast domain covers Canada and most of the U.S.A., including Alaska, fire location information is needed for both of these large countries. During AQ model runs, emissions from individual fire sources are injected into elevated model layers based on plume-rise calculations and then transport and chemistry calculations are performed. This "on the fly" approach to the insertion of the fire emissions provides flexibility and efficiency since on-line meteorology is used and computational overhead in emissions pre-processing is reduced. GEM-MACH-FireWork, an experimental wildfire version of GEM-MACH, was run in real-time mode for the summers of 2012 and 2013 in parallel with the normal operational version. 48-hour forecasts were generated every 12 hours (at 00 and 12 UTC). Noticeable improvements in the AQ forecasts for PM2.5 were seen in numerous regions where fire activity was high. Case studies evaluating model performance for specific regions and computed objective scores will be included in this presentation. Using the lessons learned from the last two summers, Environment Canada will continue to work towards the goal of incorporating near-real-time intermittent wildfire emissions into the operational air quality forecast system.

  14. Proposition of primary methods for nitrogen oxides emissions reduction at coal-fired 200 MW power unit (Yugoslavia)

    International Nuclear Information System (INIS)

    Repic, B.; Mladenovic, R.; Crnomarkovic, N.

    1997-01-01

    The combustion of coal is followed by increased pollution of the environment with toxic products. Together with the generation of other pollutants, the emission of nitrogen oxides (NO x ) represents, due to its high toxicity, a great environmental risk. Appropriate measures must be taken for lowering NO x emission, both on new facilities and those already in operation. Basic technologies (primary reduction methods) of several generations, developed until now and used in practice, are presented in the paper. The technologies applicable on domestic facilities and adjusted to domestic coals have been given particular consideration. Proposition of primary methods for NO x emission reduction at coal-fired 200 MW power unit at TPS 'Nikola Tesla' is analyzed. The following methods have been considered in detail: flue gases recirculation, multi-stage combustion, low-NO x burners, additional over-fire air, multi-stage air intake into the furnace, staged fuel injection, grinding fineness increase, etc. Considerations were performed according to existing constructive characteristics of the furnace and the burners, and characteristics of used fuels, i. e. lignites from Kolubara pit. (Author)

  15. An integrated framework for evaluating the effects of deforestation on ecosystem services

    International Nuclear Information System (INIS)

    Song, X P; Huang, C; Townshend, J R

    2014-01-01

    Deforestation often results in massive carbon emissions and loss of ecosystem services. The objective of this paper is to develop an integrated approach to quantitatively derive changes in forest carbon stock and changes in the economic value of forest carbon due to deforestation. Combining the best available remote sensing and socioeconomic datasets, this approach establishes a comprehensive baseline of deforestation in terms of area, carbon and monetary value change. We applied this end-to-end evaluation method in the Brazilian state of Rondonia to assess the ecological and economic effects of its recent deforestation from 2000 to 2005. Our results suggest that deforestation occurred at an average rate of 2834 km 2 /yr during the study period, leading to 31 TgC/yr ''committed carbon emissions'' from deforestation. Coupling with the social cost of carbon at $23/tC and a market discount rate at 7%, this translates to $622 million U.S. dollars/yr loss in the economic value of forest carbon

  16. High-resolution inventory of technologies, activities, and emissions of coal-fired power plants in China from 1990 to 2010

    Energy Technology Data Exchange (ETDEWEB)

    Liu, F.; Zheng, B.; He, K.B. [Tsinghua Univ., Beijing (China). State Key Joint Laboratory of Environment Simulation and Pollution Control; Zhang, Q. [Tsinghua Univ., Beijing (China). Ministry of Education Key Laboratory for Earth System Modeling; Tong, D.; Li, M. [Tsinghua Univ., Beijing (China). Ministry of Education Key Laboratory for Earth System Modeling; Tsinghua Univ., Beijing (China). State Key Joint Laboratory of Environment Simulation and Pollution Control; Huo, H. [Tsinghua Univ., Beijing (China). Inst. of Energy, Environment and Economy

    2015-07-01

    This paper, which focuses on emissions from China's coal-fired power plants during 1990-2010, is the second in a series of papers that aims to develop a high-resolution emission inventory for China. This is the first time that emissions from China's coal-fired power plants were estimated at unit level for a 20-year period. This inventory is constructed from a unit-based database compiled in this study, named the China coal-fired Power plant Emissions Database (CPED), which includes detailed information on the technologies, activity data, operation situation, emission factors, and locations of individual units and supplements with aggregated data where unit-based information is not available. Between 1990 and 2010, compared to a 479 % growth in coal consumption, emissions from China's coal-fired power plants increased by 56, 335, and 442 % for SO{sub 2}, NO{sub x}, and CO{sub 2}, respectively, and decreased by 23 and 27 % for PM{sub 2.5} and PM{sub 10} respectively. Driven by the accelerated economic growth, large power plants were constructed throughout the country after 2000, resulting in a dramatic growth in emissions. The growth trend of emissions has been effectively curbed since 2005 due to strengthened emission control measures including the installation of flue gas desulfurization (FGD) systems and the optimization of the generation fleet mix by promoting large units and decommissioning small ones. Compared to previous emission inventories, CPED significantly improved the spatial resolution and temporal profile of the power plant emission inventory in China by extensive use of underlying data at unit level. The new inventory developed in this study will enable a close examination of temporal and spatial variations of power plant emissions in China and will help to improve the performances of chemical transport models by providing more accurate emission data.

  17. Increasing deforestation at the Arc of Deforestation in Brazil

    Science.gov (United States)

    Silva, Maria Elisa; Pereira, Gabriel; Rocha, Rosmeri

    2013-04-01

    In this study we investigated the impact on regional climate due to the deforestation of Amazonian region. The deforestation was applied specifically to the area at the edge of the Amazonian region in Brazil, named Arc of Deforestation, where the deforestation actually occurs. The numerical experiments were conducted with the regional climate model RegCM3, used by many scientific groups around the world. The simulations performed by the model were conducted for the Brazil's central-southeast region rainy season, which can be defined between October and March. Each rainy season was separately simulated, being July-1st always the first day and March-31th the last one. Some alterations were made in the model specifications in order to better simulate the climate over South America. Land cover information was updated by more recent data. The older data compiled for 1992 was replaced by that compiled for 2005 (GLCC2005). Besides the global coverage updating, Cerrado information over Brazil obtained from the Brazilian Environmental Ministry was included to cover information. Based on results from others studies, carried out to South America, we changed the root and total soil layers depth, they were enlarged to 3.0 and 4.5 meters, respectively. This change can provide more humidity to the atmosphere and then increase the amount of convective precipitation. The spatial and time resolution considered for all simulations were, respectively, 50 km and 30 min. The domain was defined considering the South America region centered in 55W e 22S, with 160 and 120 points in longitudinal and latitudinal directions, respectively. The vertical resolution was described by 18 levels. The convective precipitation was computed by Grell scheme. Initial and boundary conditions were defined by Reanalysis I dataset. Sea surface temperature was those compiled by NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, and was obtained from their Web site. Spatial patterns of simulated air temperature at low

  18. Control of SO2 and NOx emissions from fossil fuel-fired power plants: Research and practice of TPRI

    International Nuclear Information System (INIS)

    Ming-Chuan Zhang.

    1993-01-01

    The generation of electric power in China has been dominated by coal for many years. By the end of 1990, total installed generating capacity reached 135 GW, of which fossil fuel-fired plants accounted for 74 percent. The total electricity generated reached 615 TWh, with fossil fuels accounting for 80.5 percent. About 276 million tons of raw coal are consumed in these fossil fuel-burning units per year, accounting for about 25 percent of the total output of the country. According to the government, by the year 2000, the total installed capacity of Chinese power systems should be at least 240 GW, of which fossil fuels will account for about 77 percent. The coal required for power generation will increase to about 530 million tons per year, accounting for about 38 percent of the total coal output. So, it is obvious that coal consumed in coal-fired power plants occupies a very important place in the national fuel balance. The current environmental protection standards, which are based on ground-level concentrations of pollutants, do not effectively lead to the control of pollution emission concentrations or total SO 2 emissions. Due to the practical limitations of the Chinese economy, there is a limited capability to introduce advanced sulfur emission control technologies. Thus, except for the two 360 MW units imported from Japan for the Luohuang Power Plant in Shichuan province, all the other fossil fuel-fired units have not yet adopted any kind of SO 2 removal measures. The Luohuang units are equipped with Mitsubishi limestone flue gas desulfurization systems. Because of the lack of effective pollution control technologies, large areas of the country have been seriously polluted by SO 2 , and some of them even by acid rain

  19. Prehistoric deforestation at Chaco Canyon?

    Science.gov (United States)

    Wills, W H; Drake, Brandon L; Dorshow, Wetherbee B

    2014-08-12

    Ancient societies are often used to illustrate the potential problems stemming from unsustainable land-use practices because the past seems rife with examples of sociopolitical "collapse" associated with the exhaustion of finite resources. Just as frequently, and typically in response to such presentations, archaeologists and other specialists caution against seeking simple cause-and effect-relationships in the complex data that comprise the archaeological record. In this study we examine the famous case of Chaco Canyon, New Mexico, during the Bonito Phase (ca. AD 860-1140), which has become a prominent popular illustration of ecological and social catastrophe attributed to deforestation. We conclude that there is no substantive evidence for deforestation at Chaco and no obvious indications that the depopulation of the canyon in the 13th century was caused by any specific cultural practices or natural events. Clearly there was a reason why these farming people eventually moved elsewhere, but the archaeological record has not yet produced compelling empirical evidence for what that reason might have been. Until such evidence appears, the legacy of Ancestral Pueblo society in Chaco should not be used as a cautionary story about socioeconomic failures in the modern world.

  20. Linking requirements with capabilities for deforestation monitoring in the context of the UNFCCC-REDD process

    International Nuclear Information System (INIS)

    Herold, Martin; Johns, Tracy

    2007-01-01

    As the United Nations Framework Convention on Climate Change nears the end of a two-year period of evaluation of the issue of reducing emissions from deforestation in developing countries, participating countries have agreed on the need to address this globally important source of greenhouse gas emissions. Negotiations on policy frameworks to monitor and reduce deforestation rely on an understanding of the scientific and technical capacity to support these efforts. Current UNFCCC programs to improve observation of land and forest cover change can provide valuable input to a future policy mechanism focusing on deforestation emissions from developing countries. Countries participating in the current debate have officially referenced the value of remote sensing tools and methods for deforestation monitoring, and have identified specific needs and goals related to their implementation. Based on these identified needs, this paper outlines recommendations for a monitoring framework that can be globally applied with sufficient levels of accuracy and certainty. This framework can serve as a starting point for monitoring programs, and can be modified in response to expected progress in establishing an international policy framework for reducing emissions from deforestation

  1. Climate controls on fire pattern in African and Australian continents

    Science.gov (United States)

    Zubkova, M.; Boschetti, L.; Abatzoglou, J. T.

    2017-12-01

    Studies have primarily attributed the recent decrease in global fire activity in many savanna and grassland regions as detected by the Global Fire Emission Database (GFEDv4s) to anthropogenic changes such as deforestation and cropland expansion (Andela et al. 2017, van der Werf et al. 2008). These changes have occurred despite increases in fire weather season length (Jolly et al. 2015). Efforts to better resolve retrospective and future changes in fire activity require refining the host of influences on societal and environmental factors on fire activity. In this study, we analyzed how climate variability influences interannual fire activity in Africa and Australia, the two continents most affected by fire and responsible for over half of the global pyrogenic emissions. We expand on the analysis presented in Andela et al. (2017) by using the most recent Collection 6 MODIS MCD64 Burned Area Product and exploring the explanatory power of a broader suite of climate variables that have been previously shown to explain fire variability (Bowman et al. 2017). We examined which climate metrics show a strong interannual relationship with the amount of burned area and fire size accounting for antecedent and in-season atmospheric conditions. Fire characteristics were calculated using the 500m resolution MCD64A1 product (2002-2016); the analysis was conducted at the ecoregion scale, and further stratified by landcover using a broad aggregation (forest, shrublands and grasslands) of the Landcover CCI maps (CCI-LC, 2014); all agricultural areas fires were excluded from the analysis. The results of the analysis improve our knowledge of climate controls on fire dynamics in the most fire-prone places in the world which is critical for statistical fire and vegetation models. Being able to predict the impact of climate on fire activity has a strategic importance in designing future fire management scenarios, help to avoid degradation of biodiversity and ecosystem services and improve

  2. Community owned solutions for fire management in tropical ecosystems: case studies from Indigenous communities of South America.

    Science.gov (United States)

    Mistry, Jayalaxshmi; Bilbao, Bibiana A; Berardi, Andrea

    2016-06-05

    Fire plays an increasingly significant role in tropical forest and savanna ecosystems, contributing to greenhouse gas emissions and impacting on biodiversity. Emerging research shows the potential role of Indigenous land-use practices for controlling deforestation and reducing CO2 emissions. Analysis of satellite imagery suggests that Indigenous lands have the lowest incidence of wildfires, significantly contributing to maintaining carbon stocks and enhancing biodiversity. Yet acknowledgement of Indigenous peoples' role in fire management and control is limited, and in many cases dismissed, especially in policy-making circles. In this paper, we review existing data on Indigenous fire management and impact, focusing on examples from tropical forest and savanna ecosystems in Venezuela, Brazil and Guyana. We highlight how the complexities of community owned solutions for fire management are being lost as well as undermined by continued efforts on fire suppression and firefighting, and emerging approaches to incorporate Indigenous fire management into market- and incentive-based mechanisms for climate change mitigation. Our aim is to build a case for supporting Indigenous fire practices within all scales of decision-making by strengthening Indigenous knowledge systems to ensure more effective and sustainable fire management.This article is part of the themed issue 'The interaction of fire and mankind'. © 2016 The Author(s).

  3. Small farmers and deforestation in Amazonia

    Science.gov (United States)

    Brondízio, Eduardo S.; Cak, Anthony; Caldas, Marcellus M.; Mena, Carlos; Bilsborrow, Richard; Futemma, Celia T.; Ludewigs, Thomas; Moran, Emilio F.; Batistella, Mateus

    This chapter discusses the relationship between small farmers' land use and deforestation, with particular attention paid to the past 30 years of Amazonian colonization in Brazil and Ecuador. Our analysis calls attention to common features uniting different social groups as small farmers (e.g., social identity, access to land and resources, technology, market, and credit), as well as the variability between small farmers in terms of time in the region (from native populations to recent colonists), contribution to regional deforestation, types of land use systems. At a regional level, small farmers contribute to the majority of deforestation events, but are responsible for only a fraction of the total deforested area in Amazonia. We discuss three misconceptions that have been used to define small farmers and their contribution to the regional economy, development, and deforestation: (1) small farmers have backward land use systems associated with low productivity and extensive deforestation and subsistence production, (2) small farmers contribute to Amazonian deforestation as much as large farmers, and (3) small farmers, particularly colonist farmers, follow an inexorable path of deforestation unless curbed by government action. We conclude the chapter discussing their growing regional importance and the need for more inclusive public policies concerning infrastructure and services and valorization of resources produced in rural areas of Amazonia.

  4. Impact of Amazonian deforestation on atmospheric chemistry

    NARCIS (Netherlands)

    Ganzeveld, L.N.; Lelieveld, J.

    2004-01-01

    A single-column chemistry and climate model has been used to study the impact of deforestation in the Amazon Basin on atmospheric chemistry. Over deforested areas, daytime ozone deposition generally decreases strongly except when surface wetness decreases through reduced precipitation, whereas

  5. Atmospheric emissions of F, As, Se, Hg, and Sb from coal-fired power and heat generation in China.

    Science.gov (United States)

    Chen, Jian; Liu, Guijian; Kang, Yu; Wu, Bin; Sun, Ruoyu; Zhou, Chuncai; Wu, Dun

    2013-02-01

    Coal is one of the major energy resources in China, with nearly half of produced Chinese coal used for power and heat generation. The large use of coal for power and heat generation in China may result in significant atmospheric emissions of toxic volatile trace elements (i.e. F, As, Se, Hg, and Sb). For the purpose of estimating the atmospheric emissions from coal-fired power and heat generation in China, a simple method based on coal consumption, concentration and emission factor of trace element was adopted to calculate the gaseous emissions of elements F, As, Se, Hg, and Sb. Results indicate that about 162161, 236, 637, 172, and 33 t F, As, Se, Hg, and Sb, respectively, were introduced into atmosphere from coal combustion by power and heat generation in China in 2009. The atmospheric emissions of F, As, Se, Hg, and Sb by power and heat generation increased from 2005 to 2009 with increasing coal consumptions. Crown Copyright © 2012. Published by Elsevier Ltd. All rights reserved.

  6. Evaluation of Biogenic and Fire Emissions in a Global Chemistry Model with NOMADSS, DC3 and SEAC4RS observations

    Science.gov (United States)

    Emmons, L. K.; Wiedinmyer, C.; Park, M.; Kaser, L.; Apel, E. C.; Guenther, A. B.

    2014-12-01

    Numerous measurements of compounds produced by biogenic and fire emissions were made during several recent field campaigns in the southeast United States, providing a unique data set for emissions and chemical model evaluation. The NCAR Community Atmosphere Model with Chemistry (CAM-chem) is coupled to the Community Land Model (CLM), which includes the biogenic emissions model MEGAN-v2.1, allowing for online calculation of emissions from vegetation for 150 compounds. Simulations of CAM-chem for summers 2012 and 2013 are evaluated with the aircraft and ground-based observations from DC3, NOMADSS and SEAC4RS. Comparison of directly emitted biogenic species, such as isoprene, terpenes, methanol and acetone, are used to evaluate the MEGAN emissions. Evaluation of oxidation products, including methyl vinyl ketone (MVK), methacrolein, formaldehyde, and other oxygenated VOCs are used to test the model chemistry mechanism. In addition, several biomass burning inventories are used in the model, including FINN, QFED, and FLAMBE, and are compared for their impact on atmospheric composition and ozone production, and evaluated with the aircraft observations.

  7. Life-cycle comparison of greenhouse gas emissions and water consumption for coal and shale gas fired power generation in China

    International Nuclear Information System (INIS)

    Chang, Yuan; Huang, Runze; Ries, Robert J.; Masanet, Eric

    2015-01-01

    China has the world's largest shale gas reserves, which might enable it to pursue a new pathway for electricity generation. This study employed hybrid LCI (life cycle inventory) models to quantify the ETW (extraction-to-wire) GHG (greenhouse gas) emissions and water consumption per kWh of coal- and shale gas-fired electricity in China. Results suggest that a coal-to-shale gas shift and upgrading coal-fired power generation technologies could provide pathways to less GHG and water intensive power in China. Compared to different coal-fired generation technologies, the ETW GHG emissions intensity of gas-fired CC (combined cycle) technology is 530 g CO 2 e/kWh, which is 38–45% less than China's present coal-fired electricity. Gas-fired CT (combustion turbine) technology has the lowest ETW water consumption intensity at 960 g/kWh, which is 34–60% lower than China's present coal-fired electricity. The GHG-water tradeoff of the two gas-fired power generation technologies suggests that gas-fired power generation technologies should be selected based on regional-specific water resource availabilities and electricity demand fluctuations in China. However, the low price of coal-fired electricity, high cost of shale gas production, insufficient pipeline infrastructures, and multiple consumers of shale gas resources may serve as barriers to a coal-to-shale gas shift in China's power sector in the near term. - Highlights: • The GHG and water footprints of coal- and shale gas-fired electricity are estimated. • A coal-to-shale gas shift can enable less GHG and water intensive power in China. • The GHG emissions of shale gas-fired combined cycle technology is 530 g CO 2 e/kWh. • The water consumption of shale gas-fired combustion turbine technology is 960 g/kWh. • Shale gas-fired power generation technologies selection should be regional-specific

  8. Fatigue characteristics of high strength fire resistance steel for frame structure and time-frequency analysis its acoustic emission signal

    International Nuclear Information System (INIS)

    Kim, Hyun Soo; Nam, Ki Woo; Kang, Chang Young

    2000-01-01

    Demand for now nondestructive evaluation are growing to detect fatigue crack growth behavior to predict long term performance of materials and structure in aggressive environments, especially when they are in non-visible area. Acoustic emission technique is well suited to these problems and has drawn a keen interests because of its dynamic detection ability, extreme sensitivity and location of growing defects. In this study, we analysed acoustic emission signals obtained in fatigue and tensile test of high strength fire resistance steel for frame structure with time-frequency analysis methods. The main frequency range is different in the noise and the fatigue crack propagation. It could be classified that it were also generated by composite fracture mechanics of cleavage, dimple, inclusion separation etc

  9. Biomass co-firing in coal power plants in the Netherlands. Effects on performance and air pollutant emissions

    Energy Technology Data Exchange (ETDEWEB)

    Smekens, K. [ECN Policy Studies, Petten (Netherlands)

    2013-07-15

    This note is intended for use in the UNECE (United Nations Economic Commission for Europe)-EGTEI (Expert Group on Techno-Economic Issues) work related to cost of emission reduction technologies for large combustion plants (LCP). This work is coordinated by KIT (Karlsruhe) and CITEPA (Paris). As the Netherlands is considered to be a valuable country for data regarding biomass co-firing in large coal fired power plants, EGTEI expressed its interest on data ECN has available. For this purpose, based on available data from annual environmental reports of power plants, ECN has looked into the relationship between the percentage of co -firing and the plant performance. It should be noted that the evaluation has been based on annual data, not on real-time simultaneous measurements of the different parameters mentioned in this note. Cumulative annual data give no insights in e.g. the effects of the load factor, of start-ups or shut-downs, seasonal circumstances, fuel qualities, etc. Therefore, the findings in this report should be treated with due care and not be generalised.

  10. [Estimation of carbonaceous gases emission from forest fires in Xiao Xing'an Mountains of Northeast China in 1953-2011].

    Science.gov (United States)

    Hu, Hai-Qing; Luo, Bi-Zhen; Wei, Shu-Jing; Sun, Long; Wei, Shu-Wei; Wen, Zheng-Min

    2013-11-01

    Based on the forest resources investigation data and the forest fire inventory in 1953-2011, in combining with our field research in burned areas and our laboratory experiments, this paper estimated the carbonaceous gases carbon dioxide (CO2), carbon monoxide (CO), methane (CH4), and nonmethane hydrocarbons (NMHC) emission from the forest fires in Xiao Xing' an Mountains of Heilongjiang Province, Northeast China in 1953-2011. The total carbon emission from the forest fires in the Xiao Xing'an Mountains in 1953-2011 was 1.12 x 10(7) t, and the annual emission was averagely 1.90 x10(5) t, accounting for 1.7% of the annual average total carbon emission from the forest fires in China. The emission of CO2, CO, CH4, and NMHC was 3.39 x 10(7), 1.94 x 10(5), 1.09 x 10(5), and 7.46 x 10(4) t, respectively, and the corresponding annual average emission was 5.74 x 10(5), 3.29 x 10(4), 1.85 x 10(3), and 1.27 x 10(3) t, accounting for 1.4%, 1.2%, 1.7%, and 1.1% of the annual carbonaceous gases emitted from the forest fires in China, respectively. The combustion efficiency and the carbon emission per unit burned area of different forest types decreased in order of coniferous forest > broad-leaved forest > coniferous broadleaved mixed forest. Some rational forest fire management measures were put forward.

  11. Particulate and PCDD/F emissions from coal co-firing with solid biofuels in a bubbling fluidised bed reactor

    Energy Technology Data Exchange (ETDEWEB)

    H. Lopes; I. Gulyurtlu; P. Abelha; T. Crujeira; D. Salema; M. Freire; R. Pereira; I. Cabrita [INETI, Lisbon (Portugal). DEECA

    2009-12-15

    In the scope of the COPOWER project SES6-CT-2004 to investigate potential synergies of co-combustion of different biofuels with coal, a study of emissions of particulate matter and PCDD/F was carried out. The biofuels tested were meat and bone meal (MBM), sewage sludge biopellets (BP), straw pellets (SP), olive bagasse (OB) and wood pellets (WP). The tests performed include co-firing of 5%, 15% and 25% by weight of biofuels with coals of different origin. Both monocombustion and co-firing were carried out. Combustion tests were performed on a pilot fluidised bed, equipped with cyclones and air staging was used in order to achieve almost complete combustion of fuels with high volatile contents and to control gaseous emissions. Particulate matter emissions were isokinetically sampled in the stack and their particle size analysis was performed with a cascade impactor (Mark III). The results showed that most particles emitted were below 10 {mu}m (PM10) for all the tests, however, with the increasing share of biofuels and also during combustion of pure biofuels, especially olive bagasse, straw and MBM, very fine particles, below about 1 {mu}m were present. With the exception of sewage sludge, greater amounts of biofuels appeared to give rise to the decrease in particulate mean diameters and increase in PM percentages below 1 {mu}m. The formation of very fine particles could be related with the presence of aerosol forming elements such as K, Na (in the case of MBM) and Cl in biofuels, which even resulted in higher PM emissions when the ash content of fuels decreased. A correlation wasverified between the increase of PCDD/F with the decrease of PM mean diameter. This may be due to higher specific surface area and greater Cu concentration in the fly ashes. 33 refs., 11 figs., 4 tabs.

  12. Impacts of an extreme cyclone event on landscape-scale savanna fire, productivity and greenhouse gas emissions

    International Nuclear Information System (INIS)

    Hutley, L B; Maier, S W; Evans, B J; Beringer, J; Cook, G D; Razon, E

    2013-01-01

    North Australian tropical savanna accounts for 12% of the world’s total savanna land cover. Accordingly, understanding processes that govern carbon, water and energy exchange within this biome is critical to global carbon and water budgeting. Climate and disturbances drive ecosystem carbon dynamics. Savanna ecosystems of the coastal and sub-coastal of north Australia experience a unique combination of climatic extremes and are in a state of near constant disturbance from fire events (1 in 3 years), storms resulting in windthrow (1 in 5–10 years) and mega-cyclones (1 in 500–1000 years). Critically, these disturbances occur over large areas creating a spatial and temporal mosaic of carbon sources and sinks. We quantify the impact on gross primary productivity (GPP) and