WorldWideScience

Sample records for deflection flexural response

  1. Nonlinear flexural waves and chaos behavior in finite-deflection Timoshenko beam

    Institute of Scientific and Technical Information of China (English)

    Shan-yuan ZHANG; Zhi-fang LIU

    2010-01-01

    Based on the Timoshenko beam theory,the finite-deflection and the axial inertia are taken into account,and the nonlinear partial differential equations for flexural waves in a beam are derived. Using the traveling wave method and integration skills,the nonlinear partial differential equations can be converted into an ordinary differential equation. The qualitative analysis indicates that the corresponding dynamic system has a heteroclinic orbit under a certain condition. An exact periodic solution of the nonlinear wave equation is obtained using the Jacobi elliptic function expansion. When the modulus of the Jacobi elliptic function tends to one in the degenerate case,a shock wave solution is given. The small perturbations are further introduced,arising from the damping and the external load to an original Hamilton system,and the threshold condition of the existence of the transverse heteroclinic point is obtained using Melnikov's method. It is shown that the perturbed system has a chaotic property under the Smale horseshoe transform.

  2. The effect of openings on the long term deflection and flexural capacity of laminated veneer lumber (LVL)

    Science.gov (United States)

    Mancini, Matthew L.

    In most residential construction projects, laminated veneer lumber (LVL) beams are used to help support floor systems, and span doorways or garage door openings, amongst other applications. Because of its diverse application, it is not uncommon that openings are drilled through LVL beams to allow for the passage of utilities. This research evaluates the effects these openings have on long term deflection and flexural capacity, and looks to determine if current provisions for openings need to be amended. Two separate tests were conducted to analyze these behaviors. A long term flexural test was completed to determine the relative creep behavior, and an ultimate load test was conducted to determine the failure load under bending. A total of 26 beams (13 total samples) were tested in the long term test, which included beams with 5 different hole patterns loaded to either 50% or 75% of the allowable load set by the manufacturer. Each beam was loaded for over a year, and its midspan deflection and moisture content was monitored periodically. The environmental conditions such as relative humidity and temperature were also carefully monitored to determine if there was a correlation between relative humidity and long term deflection. Seven of the samples from the long term test were used in the ultimate load test, which included a control sample that was loaded to 60% of the predicted ultimate load so that it could continue being used as a control for the long term test. During the ultimate load test the midpsan and quarterspan deflections were recorded using LVDTs, and the total load was monitored via 4 load cells evenly spaced along the sample. This study found that 2" diameter openings placed in the middle third of the beam length and depth do not significantly affect the long term deflection or flexural capacity of LVL beams. However, as the 2" diameter openings are shifted away from the beam centroid, there is an evident decrease in overall performance in terms of

  3. Continuum Plate Theory and Atomistic Modeling to Find the Flexural Rigidity of a Graphene Sheet Interacting with a Substrate

    Directory of Open Access Journals (Sweden)

    M. W. Roberts

    2010-01-01

    Full Text Available Using a combination of continuum modeling, atomistic simulations, and numerical optimization, we estimate the flexural rigidity of a graphene sheet. We consider a rectangular sheet that is initially parallel to a rigid substrate. The sheet interacts with the substrate by van der Waals forces and deflects in response to loading on a pair of opposite edges. To estimate the flexural rigidity, we model the graphene sheet as a continuum and numerically solve an appropriate differential equation for the transverse deflection. This solution depends on the flexural rigidity. We then use an optimization procedure to find the value of the flexural rigidity that minimizes the difference between the numerical solutions and the deflections predicted by atomistic simulations. This procedure predicts a flexural rigidity of 0.26 nN nm=1.62 eV.

  4. Deflection-based method for seismic response analysis of concrete walls: Benchmarking of CAMUS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Basu, Prabir C. [Civil and Structural Engineering Division, Atomic Energy Regulatory Board (India)]. E-mail: pcb@aerb.gov.in; Roshan, A.D. [Civil and Structural Engineering Division, Atomic Energy Regulatory Board (India)

    2007-07-15

    A number of shake table tests had been conducted on the scaled down model of a concrete wall as part of CAMUS experiment. The experiments were conducted between 1996 and 1998 in the CEA facilities in Saclay, France. Benchmarking of CAMUS experiments was undertaken as a part of the coordinated research program on 'Safety Significance of Near-Field Earthquakes' organised by International Atomic Energy Agency (IAEA). Technique of deflection-based method was adopted for benchmarking exercise. Non-linear static procedure of deflection-based method has two basic steps: pushover analysis, and determination of target displacement or performance point. Pushover analysis is an analytical procedure to assess the capacity to withstand seismic loading effect that a structural system can offer considering the redundancies and inelastic deformation. Outcome of a pushover analysis is the plot of force-displacement (base shear-top/roof displacement) curve of the structure. This is obtained by step-by-step non-linear static analysis of the structure with increasing value of load. The second step is to determine target displacement, which is also known as performance point. The target displacement is the likely maximum displacement of the structure due to a specified seismic input motion. Established procedures, FEMA-273 and ATC-40, are available to determine this maximum deflection. The responses of CAMUS test specimen are determined by deflection-based method and analytically calculated values compare well with the test results.

  5. Cupula displacement, hair bundle deflection, and physiological responses in the transparent semicircular canal of young eel.

    Science.gov (United States)

    Rüsch, A; Thurm, U

    1989-03-01

    The transparent labyrinth of young eels (Anguilla anguilla L.) was used in toto for studying the configuration of cupula displacement, deflection of the hair bundle, and correlated changes in transepithelial voltage (delta TEV) and nerve activity (delta NA) in the semicircular canal. Microcapillaries were introduced into the canal through holes produced by a microthermocauter. Mechanical stimulation was applied either by injection of fluid into the ampulla or by electromagnetically displacing ferrofluid as a piston within the canal. Motion of individual kinocilia, stained cupulae or the ferrofluid piston was analysed by double-exposed microphotographs, photodiodes, or a video-system. The three-dimensional cupula displacement configuration was found to be piston- to diaphragm-like. Hair bundles at different sites on the crista exhibit differences in amplitude and time course of deflection. The transfer factor between shifts of the canal fluid and the tips of the kinocilia is 0.4-0.6. Displacements in opposite directions induce delta TEV and delta NA of opposite sign. Various tests confirmed delta TEV to reflect receptor potential responses. Nerve activity adapts to a tonic response with a time constant of 6.4 s. No similar adaptation occurred in delta TEV. Stimulus-response curves of TEV- and NA-responses are similar and sigmoid in shape with saturation at ciliary deflections of roughly +6 degrees and -3 degrees.

  6. Transient deflection response in microcantilever array integrated with polydimethylsiloxane (PDMS) microfluidics.

    Science.gov (United States)

    Anderson, Ryan R; Hu, Weisheng; Noh, Jong Wook; Dahlquist, William C; Ness, Stanley J; Gustafson, Timothy M; Richards, Danny C; Kim, Seunghyun; Mazzeo, Brian A; Woolley, Adam T; Nordin, Gregory P

    2011-06-21

    We report the integration of a nanomechanical sensor consisting of 16 silicon microcantilevers with polydimethylsiloxane (PDMS) microfluidics. For microcantilevers positioned near the bottom of a microfluidic flow channel, a transient differential analyte concentration for the top versus bottom surface of each microcantilever is created when an analyte-bearing fluid is introduced into the flow channel (which is initially filled with a non-analyte containing solution). We use this effect to characterize a bare (nonfunctionalized) microcantilever array in which the microcantilevers are simultaneously read out with our recently developed high sensitivity in-plane photonic transduction method. We first examine the case of non-specific binding of bovine serum albumin (BSA) to silicon. The average maximum transient microcantilever deflection in the array is -1.6 nm, which corresponds to a differential surface stress of only -0.23 mN m(-1). This is in excellent agreement with the maximum differential surface stress calculated based on a modified rate equation in conjunction with finite element simulation. Following BSA adsorption, buffer solutions with different pH are introduced to further study microcantilever array transient response. Deflections of 20-100 nm are observed (2-14 mN m(-1) differential surface stress). At a flow rate of 5 μL min(-1), the average measured temporal width (FWHM) of the transient response is 5.3 s for BSA non-specific binding and 0.74 s for pH changes.

  7. Modeling the time-dependent flexural response of wood-plastic composite materials

    Science.gov (United States)

    Hamel, Scott E.

    Wood-plastic composites (WPCs) are moisture sensitive bimodal anisotropic nonlinear viscoelastic materials, with time and temperature having the greatest effect on mechanical behavior. As WPC producers seek to manufacture structural bending members, such as beams and joists, it is important that the material's time and temperature-dependent mechanical behavior be understood and characterized. The complicated time-dependent behavior means that WPC bending deflections cannot be adequately predicted for even practical design purposes using simple linear-elastic models. Instead, mechanics-based models that incorporate the observed time-dependent and nonlinear responses are necessary. This dissertation presents an experimental and modeling program used to test and characterize the axial and shear behaviors of seven different WPC products (primarily polyethylene and polypropylene) subjected to both quasi-static and creep loading at multiple temperatures. These data were used to develop a mechanics based model that can predict bending deflections of complex sections at any time or temperature. Additionally, a practical design method and standardized test procedures were created for use in typical long-term bending situations. A mechanical model for WPCs must combine time-dependent material characterization with a tool that can simulate mode dependence, temperature dependence, changing neutral axis location, and nonlinear axial stress distributions that vary over the length of a member and evolve with time. Finite-element (FE) modeling was chosen as the most practical way to satisfy these requirements. The model developed in this study uses an FE model with a custom-designed material model. Bending deflection predictions from the model were compared to experimental testing and the model showed some success despite the difficulties created by the material variability. The practical method created for designing WPC structural bending members utilizes four material constants

  8. Design and Performance Optimization of Large Stroke Spatial Flexures

    NARCIS (Netherlands)

    Wiersma, D.H.; Boer, S.E.; Aarts, R.G.K.M.; Brouwer, D.M.

    2013-01-01

    Flexure hinges inherently lose stiffness in supporting directions when deflected. In this paper a method is presented for optimizing the geometry of flexure hinges, which aims at maximizing supporting stiffnesses. In addition, the new ∞ -flexure hinge design is presented. The considered hinges are

  9. Optimization of process variables on flexural properties of epoxy/organo-montmorillonite nanocomposite by response surface methodology

    Directory of Open Access Journals (Sweden)

    2008-01-01

    Full Text Available This study attempted to investigate the preparation and optimization of the flexural properties for epoxy/organomontmorillonite (OMMT nanocomposites. In-situ polymerization method was used to prepare epoxy/OMMT nanocomposites. The diglycidyl ether bisphenol A (DGEBA and curing agent were mixed first, followed by the addition of OMMT. In this study, computer aided statistical methods of experimental design (Response Surface Methodology, RSM was used to investigate the process variables on the flexural properties of epoxy/4wt% OMMT nanocomposites. Speed of mechanical stirrer, post-curing time and post-curing temperature were chosen as process variables in the experimental design. Results showed that the speed of mechanical stirrer, post-curing time and post-curing temperature were able to influence the flexural modulus and flexural yield stress of epoxy/4 wt% OMMT nanocomposites. The results of optimization showed that the design of experiment (DOE has six combination of operating variables which have been obtained in order to attain the greatest overall desirability.

  10. Base deflection and microleakage of composite restorations.

    Science.gov (United States)

    Paulillo, L A; de Goes, M F; Consani, S

    1994-06-01

    The flexural deflections of human dentin, Herculite XR, Dycal, Vidrion F, zinc phosphate base, and combinations of composite-base were determined. The influence of the flexural deflections in the marginal microleakage was also determined for the composite-base combinations. The flexural deflection test for dentin showed no statistically significant differences between the two floor cavity depths studied. There were significant differences among cements when the thickness of the base was 1 mm whereas no differences occurred at 2 mm. The composite-base combinations did not present statistical differences. There were no statistically significant differences in the microleakage levels among loaded and non-loaded specimens; however, dye penetration was visually greater in loaded samples.

  11. Modeling of the flexural behavior of ceramic-matrix composites

    Science.gov (United States)

    Kuo, Wen-Shyong; Chou, Tsu-Wei

    1990-01-01

    This paper examines the effects of matrix cracking and fiber breakage on the flexural behavior of ceramic composite beams. A model has been proposed to represent the damage evolution of the beam, of which the matrix fracture strain is smaller than that of the fibers. Close form solutions of the critical loads for the initiation of matrix cracking and fiber breakage in the tension side of the beam have been found. The effects of thermal residual stresses and fiber/matrix debonding have been taken into account. The initial deviation of the load-deflection curve from linearity is due to matrix cracking, while fiber breakages are responsible for the drop in the load carrying capacity of the beam. The proportional limit as well as the nonlinear behavior of the beam deflection have been identified. The growth of the damaged zone has also been predicted. A three-point bending case is given as a numerical example.

  12. Aerodynamic response of an airfoil section undergoing pitch motion and trailing edge flap deflection: a comparison of simulation methods

    DEFF Research Database (Denmark)

    Bergami, Leonardo; Riziotis, Vasilis A.; Gaunaa, Mac

    2015-01-01

    –inviscid interaction method and an engineering dynamic stall model suitable for implementation in aeroelastic codes based on blade element momentum theory. The aerodynamic integral forces and pitching moment coefficients are first determined in steady conditions, at angles of attack spanning from attached flow...... generated by the airfoil undergoing harmonic pitching motions and harmonic flap deflections. The unsteady aerodynamic coefficients exhibit significant variations over the corresponding steady-state values. The dynamic characteristics of the unsteady response are predicted with an excellent agreement among...

  13. Thin elastic shells with variable thickness for lithospheric flexure of one-plate planets

    CERN Document Server

    Beuthe, Mikael

    2007-01-01

    Planetary topography can either be modeled as a load supported by the lithosphere, or as a dynamical effect due to lithospheric flexure caused by mantle convection. In both cases the response of the lithosphere to external forces can be calculated with the theory of thin elastic plates or shells. On one-plate planets the spherical geometry of the lithospheric shell plays an important role in the flexure mechanism. So far the equations governing the deformations and stresses of a spherical shell have only been derived under the assumption of a shell of constant thickness. However local studies of gravity and topography data suggest large variations in the thickness of the lithosphere. In this article we obtain the scalar flexure equations governing the deformations of a thin spherical shell with variable thickness or variable Young's modulus. The resulting equations can be solved in succession, except for a system of two simultaneous equations, the solutions of which are the transverse deflection and an associ...

  14. Elliptical flexure hinges

    Science.gov (United States)

    Smith, Stuart T.; Badami, Vivek G.; Dale, Jami S.; Xu, Ying

    1997-03-01

    This paper presents closed form equations based on a modification of those originally derived by Paros and Weisbord in 1965, for the mechanical compliance of a simple monolithic flexure hinge of elliptic cross section, the geometry of which is determined by the ratio ɛ of the major and minor axes. It is shown that these equations converge at ɛ=1 to the Paros and Weisbord equations for a hinge of circular section and at ɛ ⇒∞ to the equations predicted from simple beam bending theory for the compliance of a cantilever beam. These equations are then assessed by comparison with results from finite element analysis over a range of geometries typical of many hinge designs. Based on the finite element analysis, stress concentration factors for the elliptical hinge are also presented. As a further verification of these equations, a number of elliptical hinges were manufactured on a CNC milling machine. Experimental data were produced by applying a bending moment using dead weight loading and measuring subsequent angular deflections with a laser interferometer. In general, it was found that predictions for the compliance of elliptical hinges are likely to be within 12% for a range of geometries with the ratio βx(=t/2ax) between 0.06 and 0.2 and for values of ɛ between 1 and 10.

  15. Impact analyses for negative flexural responses (hogging) in railway prestressed concrete sleepers

    Science.gov (United States)

    Kaewunruen, S.; Ishida, T.; Remennikov, AM

    2016-09-01

    By nature, ballast interacts with railway concrete sleepers in order to provide bearing support to track system. Most train-track dynamic models do not consider the degradation of ballast over time. In fact, the ballast degradation causes differential settlement and impact forces acting on partial and unsupported tracks. Furthermore, localised ballast breakages underneath railseat increase the likelihood of centrebound cracks in concrete sleepers due to the unbalanced support under sleepers. This paper presents a dynamic finite element model of a standard-gauge concrete sleeper in a track system, taking into account the tensionless nature of ballast support. The finite element model was calibrated using static and dynamic responses in the past. In this paper, the effects of centre-bound ballast support on the impact behaviours of sleepers are highlighted. In addition, it is the first to demonstrate the dynamic effects of sleeper length on the dynamic design deficiency in concrete sleepers. The outcome of this study will benefit the rail maintenance criteria of track resurfacing in order to restore ballast profile and appropriate sleeper/ballast interaction.

  16. Deflection Control in Rigid Pavements

    Science.gov (United States)

    Varunkrishna, Nulu; Jayasankar, R.

    2017-07-01

    The need for modern transportation systems together with the high demand for perpetual pavements under the drastically increasing applied loads has led to a great deal of research on concrete as a pavement material worldwide. This research indeed instigated many modifications in concrete aiming for improving the concrete properties. Pavement Quality Concrete requires higher flexural strength and fewer deflections in hardened state. Fiber reinforcement and latex modification are two reliable approaches serving the required purposes. The concrete made with these two modifications is called Polymer-modified Fiber-reinforced concrete. The present study deals with the usage of polypropylene as fiber and SBR (Styrene Butadiene Rubber) Latex as polymer. M30 grade concrete was modified by replacing cement with two different percentages of fiber (0.5%, 1.0% of weight of cement) and with three different percentages of SBR latex (10%, 15% & 20% of weight of cement).

  17. THE EFFECT OF FLY ASH ON FLEXURAL CAPACITY CONCRETE BEAMS

    Directory of Open Access Journals (Sweden)

    Amir Mohammad Amiri

    2016-06-01

    Full Text Available This paper presents the flexural response of Reinforced Geopolymer Concrete (RGPC beam. A commercial finite element (FE software ABAQUS has been used to perform a structural behavior of RGPC beam. Using parameters such: stress, strain, Young’s modulus, and Poisson’s ratio obtained from experimental results, a beam model has been simulated in ABAQUS. The results from experimental test and ABAQUS simulation were compared. Due to friction forces at the supports and loading rollers; slip occurring, the actual deflection of RGPC beam from experimental test results were slightly different from the results of ABAQUS. And there is good agreement between the crack patterns of fly-ash based geopolymer concrete generated by FE analysis using ABAQUS, and those in experimental data.

  18. Shape memory alloy flexures

    Energy Technology Data Exchange (ETDEWEB)

    Bellouard, Yves; Clavel, Reymond

    2003-07-25

    Flexures are used in precision engineering where highly accurate, wear-free, smooth and repeatable motion is desired. Flexures are based on deformation of material to achieve a motion between elastically joined parts. They are used in a variety of precision mechanisms such as high-resolution balances or high accuracy optical positioning stages. Shape memory alloys (SMA) are an attractive option in designing flexures. Superelastic flexures can withstand larger deformations for the same weight as a conventional flexure. In addition, the damping properties of SMA, controllable through the phase transformation, offer new design opportunities for adaptive compliant mechanisms. The martensitic phase transformation can also be used to shift the natural frequency of flexures adding useful functionalities such as vibration rejection. This paper presents design principles of SMA flexures based on non-linear beam theory. Results show a good agreement between measured and predicted data. In addition, experimental results on phase transformation effects on damping behavior are also presented. Both, natural-frequency shift and increased damping were observed in bulk-micro machined flexures using the R-phase transformation. These results demonstrate the feasibility of natural-frequency-tunable flexures.

  19. Study on the causes and methods of influencing concrete deflection

    Science.gov (United States)

    Zhou, Ying; Zhou, Xiang; Tang, Jinyu

    2017-09-01

    Under the long-term effect of static load on reinforced concrete beam, the stiffness decreases and the deformation increases with time. Therefore, the calculation of deflection is more complicated. According to the domestic and foreign research results by experiment the flexural deflection of reinforced concrete, creep, age, the thickness of the protective layer, the relative slip, the combination of steel yielding factors of reinforced concrete deflection are summarized, analyzed the advantages and disadvantages of the traditional direct measurement of deflection, that by increasing the beam height, increasing the moment of inertia, ncrease prestressed reinforcement ratio, arching, reduce the load, and other measures to reduce the deflection of prestressed construction, improve the reliability of structure.

  20. Performance evaluation of HSC beams with low flexural reinforcement

    Directory of Open Access Journals (Sweden)

    T.M. Elrakib

    2013-04-01

    Full Text Available The main objective of the current research is to establish experimental data for minimum flexural reinforcement, ρmin, of high strength concrete (HSC rectangular beams. Nine full-scale singly reinforced beams with flexural reinforcement ratios varying from 50% to 100% of the minimum limit specified by the ACI 363R-35were tested in flexure. Concrete compressive strengths of 52, 73 and 96.5 MPa were used. The test results including crack patterns, deflections and strains in the tensile flexural steel bars show that a 25% reduction of the ACI 363R-35 limit for the ρmin would result in a satisfactory flexural beam behavior with a reserve flexural parameter (Py,/Pcr ⩾ 1.29 and a displacement ductility index λΔ > 5 for all concrete grades which may lead to good savings in the amount of the flexural reinforcement. Also, it was noted that the displacement ductility index λΔ increased as the concrete compressive strength increased for the same ratio (ρ/ρmin up to 75 MPa and then decreases as fcu increases. For the same concrete compressive strength with low values of flexural reinforcement ratio, ρ, the displacement ductility index λΔ increased as ρ increased. The experimental results of this study were compared with the limits specified by available codes and researches.

  1. Cyclic loading effect on the flexural properties of commercial mdf and particleboard panels

    Directory of Open Access Journals (Sweden)

    Cláudio Henrique Soares Del Menezzi

    2011-09-01

    Full Text Available This paper aimed at evaluating the effect of fatigue through different loading cycles (20,0000; 40,000 and 80,000 cycles on deflection and flexural properties of commercial MDF and particleboard panels. A 2.2 seconds (0.45 Hz cyclic loading was employed and the applied load about 25% of modulus of rupture was used. After the tests, final deflection (with load, residual deflection (without load and flexural properties of the panels were evaluated. According to the results, the flexural properties for both kinds of panels were not affected by the loading cycles tested. However, it was identified that the MDF residual deflection was affected between 20,000 and 80,000 loading cycles.

  2. Investigation on the Flexural Creep Stiffness Behavior of PC-ABS Material Processed by Fused Deposition Modeling Using Response Surface Definitive Screening Design

    Science.gov (United States)

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2017-03-01

    The resistance of polymeric materials to time-dependent plastic deformation is an important requirement of the fused deposition modeling (FDM) design process, its processed products, and their application for long-term loading, durability, and reliability. The creep performance of the material and part processed by FDM is the fundamental criterion for many applications with strict dimensional stability requirements, including medical implants, electrical and electronic products, and various automotive applications. Herein, the effect of FDM fabrication conditions on the flexural creep stiffness behavior of polycarbonate-acrylonitrile-butadiene-styrene processed parts was investigated. A relatively new class of experimental design called "definitive screening design" was adopted for this investigation. The effects of process variables on flexural creep stiffness behavior were monitored, and the best suited quadratic polynomial model with high coefficient of determination ( R 2) value was developed. This study highlights the value of response surface definitive screening design in optimizing properties for the products and materials, and it demonstrates its role and potential application in material processing and additive manufacturing.

  3. Investigation on the Flexural Creep Stiffness Behavior of PC-ABS Material Processed by Fused Deposition Modeling Using Response Surface Definitive Screening Design

    Science.gov (United States)

    Mohamed, Omar Ahmed; Masood, Syed Hasan; Bhowmik, Jahar Lal

    2016-12-01

    The resistance of polymeric materials to time-dependent plastic deformation is an important requirement of the fused deposition modeling (FDM) design process, its processed products, and their application for long-term loading, durability, and reliability. The creep performance of the material and part processed by FDM is the fundamental criterion for many applications with strict dimensional stability requirements, including medical implants, electrical and electronic products, and various automotive applications. Herein, the effect of FDM fabrication conditions on the flexural creep stiffness behavior of polycarbonate-acrylonitrile-butadiene-styrene processed parts was investigated. A relatively new class of experimental design called "definitive screening design" was adopted for this investigation. The effects of process variables on flexural creep stiffness behavior were monitored, and the best suited quadratic polynomial model with high coefficient of determination (R 2) value was developed. This study highlights the value of response surface definitive screening design in optimizing properties for the products and materials, and it demonstrates its role and potential application in material processing and additive manufacturing.

  4. COMPARISON OF ELASTIC OF POROUS CORDIERITE BY FLEXURE AND DYNAMIC TEST METHODS

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, Randall [Cummins, Inc; Golovin, K. B. [Cummins, Inc; Dickinson, A. [Cummins, Inc; Watkins, Thomas R [ORNL; Shyam, Amit [ORNL; Lara-Curzio, Edgar [ORNL

    2012-01-01

    Previous work showed differences in apparent elastic modulus between mechanical flexure testing and resonance methods. Flexure tests have been conducted using non-contact optical systems to directly measure deflection for calculation of elastic modulus. Dynamic test methods for elastic modulus measurement were conducted on the same material for comparison. The results show significant difference in the apparent elastic modulus for static flexure versus dynamic methods. The significance of the difference in apparent elastic modulus on thermal stress and the hypotheses for these differences will be discussed. Dynamic measurement (resonance) and static measurement (mechanical) produce different values for elastic modulus of porous cordierite ceramic. The elastic modulus from resonance is a measure of the material response at very low strain which is different from the material response in a mechanical test with relatively large strain. The apparent elastic moduli for dynamic versus static test methods in this study are different by a factor of two. This result has significant impact on calculated stress and life in an aftertreatment component.

  5. Flexure-based nanomagnetic actuators

    Science.gov (United States)

    Vasquez, Daniel James

    Nanometer-scale actuators powered through applied-magnetic fields have been designed, fabricated, and tested. These actuators consist of one or more ferromagnetic elements attached to a mechanical flexure. Two types of flexures were studied including a cantilever beam that is fixed on one end, and free on the other. The free end of the cantilever is attached to a, ferromagnetic element allowing a bending torque to be applied by a magnetic field. The second type of actuator design uses a set of torsion beams that are each anchored on one end, and attached to the magnetic element on the other end. The torsion beams are designed such that the application of a magnetic field will result in a twist along the long axis of the beam with little to no bending. The smallest fabricated and tested device is a cantilever-based ferromagnetic actuator that consists of a single 1.5-mum-long, 338-nm-wide, and 50-nm-thick nickel element, and a 2.2-mum-long, 110-nm-wide, and 30-nm-thick gold cantilever beam. A deflection of over 17° was measured for this actuator, while a similar one with a 10.1-mum long cantilever beam experienced measured deflections up to 57°. Torsion-based ferromagnetic actuators have been fabricated and tested with 110-nm-wide, and 50-rim-thick magnetic elements. Such magnetic elements contain only a single saturated magnetic domain. The ultimate scalability of ferromagnetic actuation is limited by the ability of thermal noise to affect the temporal stability of a nanometer-scale magnet. Theory to describe thermal noise and ultimate scalability of the ferromagnetic actuators has been developed. The size of the ferromagnetic actuators studied in this manuscript are smaller than most plant and animal cells. This enables the possibility of such actuators to manipulate a, living cell on an intracellular level. Other potential applications of such small actuators include MHz, to GHz frequency resonators, and tunable optical filters.

  6. Nonlinear Coupled Dynamics of a Rod Fastening Rotor under Rub-Impact and Initial Permanent Deflection

    Directory of Open Access Journals (Sweden)

    Liang Hu

    2016-10-01

    Full Text Available A nonlinear coupled dynamic model of a rod fastening rotor under rub-impact and initial permanent deflection was developed in this paper. The governing motion equation was derived by the D’Alembert principle considering the contact characteristic between disks, nonlinear oil-film force, rub-impact force, unbalance mass, etc. The contact effects between disks was modeled as a flexural spring with cubical nonlinear stiffness. The coupled nonlinear dynamic phenomena of the rub-impact rod fastening rotor bearing system with initial permanent deflection were investigated by the fourth-order Runge-Kutta method. Bifurcation diagram, vibration waveform, frequency spectrum, shaft orbit and Poincaré map are used to illustrate the rich diversity of the system response with complicated dynamics. The studies indicate that the coupled dynamic responses of the rod fastening rotor bearing system under rub-impact and initial permanent deflection exhibit a rich nonlinear dynamic diversity, synchronous periodic-1 motion, multiple periodic motion, quasi-periodic motion and chaotic motion can be observed under certain conditions. Larger radial stiffness of the stator will simplify the system motion and make the oil whirl weaker or even disappear at a certain rotating speed. With the increase of initial permanent deflection length, the instability speed of the system gradually rises, and the chaotic motion region gets smaller and smaller. The corresponding results can provide guidance for the fault diagnosis of a rub-impact rod fastening rotor with initial permanent deflection and contribute to the further understanding of the nonlinear dynamic characteristics of the rod fastening rotor bearing system.

  7. Short Communication: Flexure delicacies

    Directory of Open Access Journals (Sweden)

    S. Henein

    2012-01-01

    Full Text Available Flexures are nowadays enjoying a new boom in numerous high-precision and extreme-environment applications. The paper presents some delicate issues concerning stiffness compensation, large reduction ratios, as well as rectilinear and circular movements in compliant mechanisms. Novel concrete technical solutions to these well-known issues are described, giving a glimpse into the vast and still largely unexploited potential of flexure mechanisms manufactured by wire-electrical-discharge machining.

  8. Fault Geometry Evolution and the Flexural Isostatic Response to Faulting in the Ocean-Continent Transition of Magma-Poor Rifted Margins

    Science.gov (United States)

    Gómez-Romeu, J.; Kusznir, N.; Manatschal, G.; Roberts, A.

    2016-12-01

    Extensional fault geometry and the response to extensional faulting during rifted margin formation are controversial. During the formation of magma-poor rifted margins, lithosphere stretching and thinning progressively evolves through continental rifting, crustal necking, hyper-extension, mantle exhumation and eventual magmatic sea-floor spreading (Mohn et al., 2012). Initially lithosphere extensional faulting is achieved by steep normal faults rheologically decoupled from mantle deformation but, as crustal thickness decreases, extensional faults couple into the mantle. We use a kinematic forward model to examine the evolution of fault geometry and its flexural isostatic response during the formation of the ocean-continent transition at magma-poor rifted margins. In particular we study how this response controls the structural development of hyper-extended crust, exhumed mantle and the resulting sedimentary record. At slow spreading ocean ridges, large extensional faults lead to the isostatic rotation of exhumed footwall (Buck, 1988) and produce sub-horizontal fault footwall and low fault emergence angle (15°-20°). The same process (the rolling-hinge model) is used to explain the formation of extensional allochthon blocks at magma-poor rifted margins, which requires a very low flexural strength (Te < 1km) consistent with work at slow spreading ocean ridges (Smith et al., 2008; Schouten et al., 2010) and low fault footwall emergence angle. Field observations at magma-poor rifted margins suggest that the dimensions of allochthon blocks in the dip sense are not greater than approximately 2-3 km, which is supported by our modelling. One of many remaining questions concerns the geometry of extensional faults within distal hyper-extended continental crust is; are the seismically observed extensional fault blocks in this region allochthons underlain by extensional detachments or are the extensional faults coupled into the mantle?

  9. Flexural Behavior of Aluminum Honeycomb Core Sandwich Structure

    Science.gov (United States)

    Matta, Vidyasagar; Kumar, J. Suresh; Venkataraviteja, Duddu; Reddy, Guggulla Bharath Kumar

    2017-05-01

    This project is concerned with the fabrication and flexural testing of aluminium honey comb sandwich structure which is a special case of composite materials that is fabricated by attaching two thin but stiff skins to a light weight but thick core. The core material is normally low density material but its high thickness provide the sandwich composite with high bonding stiffness. Honeycomb core are classified into two types based on the materials and structures. Hexagonal shape has a unique properties i.e has more bonding strength and less formation time based on the cell size and sheet thickness. Sandwich structure exhibit different properties such as high load bearing capacity at low weight and has excellent thermal insulation. By considering the above properties it has tendency to minimize the structural problem. So honey comb sandwich structure is choosed. The core structure has a different applications such as aircraft, ship interiors, construction industries. As there is no proper research on strength characteristics of sandwich structure. So, we use light weight material to desire the strength. There are different parameters involved in this structure i.e cell size, sheet thickness and core height. In this project we considered 3 level of comparison among the 3 different parameters cell size of 4, 6 and 8 mm, sheet thickness of 0.3, 0.5 and 0.7 mm, and core height of 20,25 and 30 mm. In order to reduce the number of experiment we use taguchi design of experiment, and we select the L8 orthogonal array is the best array for this type of situation, which clearly identifies the parameters by independent of material weight to support this we add the minitab software, to identify the main effective plots and regression equation which involves the individual response and corresponding parameters. Aluminium material is used for the fabrication of Honeycomb sandwich structure among the various grades of aluminium we consider the AL6061 which is light weight material

  10. Intrinsic low pass filtering improves signal-to-noise ratio in critical-point flexure biosensors

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Ankit; Alam, Muhammad Ashraful, E-mail: alam@purdue.edu [School of ECE, Purdue University, West Lafayette, Indiana 47906 (United States)

    2014-08-25

    A flexure biosensor consists of a suspended beam and a fixed bottom electrode. The adsorption of the target biomolecules on the beam changes its stiffness and results in change of beam's deflection. It is now well established that the sensitivity of sensor is maximized close to the pull-in instability point, where effective stiffness of the beam vanishes. The question: “Do the signal-to-noise ratio (SNR) and the limit-of-detection (LOD) also improve close to the instability point?”, however remains unanswered. In this article, we systematically analyze the noise response to evaluate SNR and establish LOD of critical-point flexure sensors. We find that a flexure sensor acts like an effective low pass filter close to the instability point due to its relatively small resonance frequency, and rejects high frequency noise, leading to improved SNR and LOD. We believe that our conclusions should establish the uniqueness and the technological relevance of critical-point biosensors.

  11. Flexural Properties of WeftKnitted Fabric Reinforced Composites

    Institute of Scientific and Technical Information of China (English)

    龙海如; 冯勋伟

    2001-01-01

    Several different kinds of weft knitted fabrics from glass fiber yarns were used as reinforcement to make fabric/polyester composite laminates. Flexural tests were carried out to examine stress- deflection process and compare the mechanical properties in course and wale directions of these composites. The experimental results indicate that the numbers of load-bearing yarn in course and wale direction and the fabric density are the main factors influencing the ultimate tensile strength and initial elastic modulus of specimens.

  12. Flexural and Impact Resistance of FRC/Bamboo Laminate

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The flexural and impact resistance of a newly developed FRC/bamboo laminate have been investigated. The laminate considered in this study was combined with reformed bamboo plate and extruded fiber reinforced cementitious (FRC)sheet. Innovated from the raw bamboo, reformed bamboo showed high tensile strength and high strength to weight ratio. It can not only remarkably strengthen the FRC sheet but also reduce the total weight of the laminate. Flexural and impact load, broken energy, deflection and duration were measured. Test results showed that the flexural strength value for the laminate can be improved to greater than 90 MPa, while the impact resistance is increased more than 10 times for the laminate when compared with the FRC sheet only.

  13. Flexural eczema versus atopic dermatitis

    DEFF Research Database (Denmark)

    Jacob, Sharon E; Goldenberg, Alina; Nedorost, Susan

    2015-01-01

    Flexural eczema and atopic dermatitis are frequently synonymized. As respiratory atopy is rarely tested for and found in these patients, systematically equating a flexural distribution of dermatitis with atopic dermatitis may too frequently result in misclassified diagnoses and potentially missed...

  14. Flexural Behavior of Posttensioned Flat Plates Depending on Tendon Layout

    Directory of Open Access Journals (Sweden)

    Min Sook Kim

    2016-01-01

    Full Text Available This paper discusses the experimental results on the flexural behavior and deflections of posttensioned concrete flat plates depending on tendon layout. One reinforced concrete flat plate and two posttensioned concrete flat plates were manufactured and tested. One-way posttensioning layout and two-way posttensioning layout were considered in this paper. The load-deflection behavior and modes of crack are presented from the test results. Posttension systems effectively controlled crack and deflection. One-way and two-way posttensioning layouts both showed similar maximum load. However, serviceability improved with two-way posttensioning layout compared to one-way posttensioning layout. Also, the yield-line theory was applied to predict the ultimate load for the posttensioned flat plates. The comparison between the test results and estimation by yield-line analysis generally showed good agreement.

  15. The Deflection Question

    Science.gov (United States)

    Greenberg, A. H.; Nesvold, E.; van Heerden, E.; Erasmus, N.; Marchis, F.

    2016-12-01

    On 15 February, 2013, a 15 m diameter asteroid entered the Earth's atmosphere over Russia. The resulting shockwave injured nearly 1500 people, and incurred 33 million (USD) in infrastructure damages. The Chelyabinsk meteor served as a forceful demonstration of the threat posed to Earth by the hundreds of potentially hazardous objects (PHOs) that pass near the Earth every year. Although no objects have yet been discovered on an impact course for Earth, an impact is virtually statistically guaranteed at some point in the future. While many impactor deflection technologies have been proposed, humanity has yet to demonstrate the ability to divert an impactor when one is found. Developing and testing any single proposed technology will require significant research time and funding. This leaves open an obvious question - towards which technologies should funding and research be directed, in order to maximize our preparedness for when an impactor is eventually found? To help answer this question, we have created a detailed framework for analyzing various deflection technologies and their effectiveness. Using an n-body integrator (REBOUND), we have simulated the attempted deflections of a population of Earth-impacting objects with a variety of velocity perturbations (∂Vs), and measured the effects that these perturbations had on impact probability. We then mapped the ∂Vs applied in the orbital simulations to the technologies capable of achieving those perturbations, and analyzed which set of technologies would be most effective at preventing a PHO from impacting the earth. As a final step, we used the results of these simulations to train a machine learning algorithm. This algorithm, combined with a simulated PHO population, can predict which technologies are most likely to be needed. The algorithm can also reveal which impactor observables (mass, spin, orbit, etc.) have the greatest effect on the choice of deflection technology. These results can be used as a tool to

  16. Numerical modeling of polyurea coated cementitious materials for flexure and impact loads

    Science.gov (United States)

    Pothula, Naga Deepika

    The research focuses on predicting the mechanical properties of various cementitious based materials coated with polyurea using the finite element program ABAQUS. To determine the effect of the polyurea coated systems, simple finite element analyses are performed on the beam model for flexure and the concrete slab model for impact. The experimental results carried out by Hyungjoo Choi [1, 2] are used to validate the model and to study the effect of the coating conditions of polyurea (plain, top, bottom, both). The load-displacement curves are plotted. Results show that using polyurea coating increases of deflection and load at failure (ductility), ultimate strength and strain, of Poly (Vinyl Butyral) (PVB) and Poly (Vinyl Alcohol) (PVA) fiber reinforced specimens. The simulation response for various models matched the experimental results very closely. Impact models depict the stresses developed and show that applying polyurea coating on the bottom seems to produce the best results.

  17. FLEXURAL TOUGHNESS OF STEEL FIBER REINFORCED CONCRETE

    Directory of Open Access Journals (Sweden)

    Fehmi ÇİVİCİ

    2006-02-01

    Full Text Available Fiber concrete is a composite material which has mechanical and physical characteristics unlike plain concrete. One of the important mechanical characteristics of fiber concrete is its energy absorbing capability. This characteristics which is also called toughness, is defined as the total area under the load-deflection curve. A number of composite characteristics such as crack resistance, ductility and impact resistance are related to the energy absorbtion capacity. According to ASTM C 1018 and JSCE SF-4 the calculation of toughness is determined by uniaxial flexural testing. Fiber concrete is often used in plates such as bridge decks, airport pavements, parking areas, subjected to cavitation and erosion. In this paper, toughness has been determined according to ASTM C 1018 and JSCE SF-4 methods by testing beam specimens. Energy absorbing capacities of plain and steel fiber reinforced concrete has been compared by evaluating the results of two methods. Also plain and steel fiber reinforced plate specimens behaviors subjected to biaxial flexure are compared by the loaddeflection curves of each specimen.

  18. Contribution of intracolumnar layer 2/3-to-layer 2/3 excitatory connections in shaping the response to whisker deflection in rat barrel cortex.

    Science.gov (United States)

    Sarid, Leora; Feldmeyer, Dirk; Gidon, Albert; Sakmann, Bert; Segev, Idan

    2015-04-01

    This computational study integrates anatomical and physiological data to assess the functional role of the lateral excitatory connections between layer 2/3 (L2/3) pyramidal cells (PCs) in shaping their response during early stages of intracortical processing of a whisker deflection (WD). Based on in vivo and in vitro recordings, and 3D reconstructions of connected pairs of L2/3 PCs, our model predicts that: 1) AMPAR and NMDAR conductances/synapse are 0.52 ± 0.24 and 0.40 ± 0.34 nS, respectively; 2) following WD, connection between L2/3 PCs induces a composite EPSPs of 7.6 ± 1.7 mV, well below the threshold for action potential (AP) initiation; 3) together with the excitatory feedforward L4-to-L2/3 connection, WD evoked a composite EPSP of 16.3 ± 3.5 mV and a probability of 0.01 to generate an AP. When considering the variability in L4 spiny neurons responsiveness, it increased to 17.8 ± 11.2 mV; this 3-fold increase in the SD yielded AP probability of 0.35; 4) the interaction between L4-to-L2/3 and L2/3-to-L2/3 inputs is highly nonlinear; 5) L2/3 dendritic morphology significantly affects L2/3 PCs responsiveness. We conclude that early stages of intracortical signaling of WD are dominated by a combination of feedforward L4-L2/3 and L2/3-L2/3 lateral connections. © The Author 2013. Published by Oxford University Press.

  19. Nonlinear flexural response of a slender cantilever beam of constant thickness and linearly-varying width to a primary resonance excitation

    Science.gov (United States)

    Silva, Clodoaldo J.; Daqaq, Mohammed F.

    2017-02-01

    Despite the shear amount of research studies on nonlinear flexural dynamics of cantilever beams, very few efforts address the practical geometry involving a constant thickness and linearly-varying width. This stems from the nature of the associated linear eigenvalue problem which cannot be easily solved in closed form. In this paper, we present a closed-form solution to this particular linear eigenvalue problem in the form of a general Meijer-G differential equation for which a solution is readily available in the shape of the Meijer-G functions. Using this approach, the exact linear modal frequencies and shapes are obtained and used in the discretization of the nonlinear partial-differential equation describing the dynamics of the system. The discretized system of ordinary-differential equations is then solved using the method of multiple scales to obtain an approximate analytical solution describing the primary resonance behavior of a given vibration mode. An analytical expression for the modal effective nonlinearity is obtained and used to analyze the influence of the beam's tapering on the nonlinear primary resonance behavior of the response (softening/hardening). Results are then compared to a finite element (FE) solution of the linear eigenvalue problem in which the modal shapes obtained using the FE method are fit into a set of orthogonal polynomial functions and used to discretize the nonlinear problem. It is shown that, while the modal frequencies obtained using the FE method approximate those obtained analytically with negligible error (less than 1%), there is a substantial error in the resulting estimates of the modal effective nonlinearity. This indicates that, even negligible errors in the approximate solution of the linear problem, can propagate to become significant when analyzing the nonlinear problem further reinforcing the importance of the exact solution.

  20. Flexural Behavior of RC Members Using Externally Bonded Aluminum-Glass Fiber Composite Beams

    Directory of Open Access Journals (Sweden)

    Ki-Nam Hong

    2014-03-01

    Full Text Available This study concerns improvement of flexural stiffness/strength of concrete members reinforced with externally bonded, aluminum-glass fiber composite (AGC beams. An experimental program, consisting of seven reinforced concrete slabs and seven reinforced concrete beams strengthened in flexure with AGC beams, was initiated under four-point bending in order to evaluate three parameters: the cross-sectional shape of the AGC beam, the glass fiber fabric array, and the installation of fasteners. The load-deflection response, strain distribution along the longitudinal axis of the beam, and associated failure modes of the tested specimens were recorded. It was observed that the AGC beam led to an increase of the initial cracking load, yielding load of the tension steels and peak load. On the other hand, the ductility of some specimens strengthened was reduced by more than 50%. The A-type AGC beam was more efficient in slab specimens than in beam specimens and the B-type was more suitable for beam specimens than for slabs.

  1. Deflection of elastic beam with SMA wires eccentrically inserted

    Science.gov (United States)

    Jamian, S.; Nik Mohamed, N. A.; Ihsan, A. K. A. Mohd; Ismail, A. E.; Nor, M. K. Mohd; Kamarudin, K. A.; Nor, N. H. Muhd

    2017-08-01

    This research is intended to investigate the ability of shape memory alloys (SMA), through its activation, in generating loads to control beam deflection. An elastic beam is formed by sandwiching eccentrically SMA wires between two elastic plates. SMA wires are activated by electrical current from the power supply. Laser displacement meter (LDM) is used to measures deflection of sample. Results show that the deflection of the beam is dependent on the temperature change. The temperature-deflection response also shows the existence of hysteresis.

  2. Laboratory experiments on arc deflection and instability

    Energy Technology Data Exchange (ETDEWEB)

    Zweben, S.; Karasik, M.

    2000-03-21

    This article describes experiments on arc deflection instability carried out during the past few years at the Princeton University Plasma Physics Laboratory (PPPL). The approach has been that of plasma physicists interested in arcs, but they believe these results may be useful to engineers who are responsible for controlling arc behavior in large electric steel furnaces.

  3. On mechanical properties of planar flexure hinges of compliant mechanisms

    Directory of Open Access Journals (Sweden)

    F. Dirksen

    2011-06-01

    Full Text Available The synthesis of compliant mechanisms yield optimized topologies that combine several stiff parts with highly elastic flexure hinges. The hinges are often represented in finite element analysis by a single node (one-node hinge leaving doubts on the physical meaning as well as an uncertainty in the manufacturing process.

    To overcome this one-node hinge problem of optimized compliant mechanisms' topologies, one-node hinges need to be replaced by real flexure hinges providing desired deflection range and the ability to bear internal loads without failure. Therefore, several common types of planar flexure hinges with different geometries are characterized and categorized in this work providing a comprehensive guide with explicit analytical expressions to replace one-node hinges effectively.

    Analytical expressions on displacements, stresses, maximum elastic deformations, bending stiffness, center of rotation and first natural frequencies are derived in this work. Numerical simulations and experimental studies are performed validating the analytical results. More importance is given to practice-oriented flexure hinge types in terms of cost-saving manufacturability, i.e. circular notch type hinges and rectangular leaf type hinges.

  4. Experiments on Deflecting & Oscillating Waterjet

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    A new type jet,the oscillating & deflecting jet ,is put forward and its oscillating and deflecting characteristics are investigated.The nozzle of the self-oscillating & deflecting water jet consists of an upstream nozzle,a downstream nozzle,an oscillating chamber and two switches,It is experimentally shown that the deflective angle may reach 9.53 degeree,the generated pressure fluctuation is very regular and the jet can efficiently increase the ability for bradking and cutting by eliminating the water cushion effect associated with a continuous jet.

  5. Electric Deflection of Rotating Molecules

    CERN Document Server

    Gershnabel, E

    2010-01-01

    We provide a theory of the deflection of polar and non-polar rotating molecules by inhomogeneous static electric field. Rainbow-like features in the angular distribution of the scattered molecules are analyzed in detail. Furthermore, we demonstrate that one may efficiently control the deflection process with the help of short and strong femtosecond laser pulses. In particular the deflection process may by turned-off by a proper excitation, and the angular dispersion of the deflected molecules can be substantially reduced. We study the problem both classically and quantum mechanically, taking into account the effects of strong deflecting field on the molecular rotations. In both treatments we arrive at the same conclusions. The suggested control scheme paves the way for many applications involving molecular focusing, guiding, and trapping by inhomogeneous fields.

  6. Flexural eczema versus atopic dermatitis.

    Science.gov (United States)

    Jacob, Sharon E; Goldenberg, Alina; Nedorost, Susan; Thyssen, Jacob P; Fonacier, Luz; Spiewak, Radoslaw

    2015-01-01

    Flexural eczema and atopic dermatitis are frequently synonymized. As respiratory atopy is rarely tested for and found in these patients, systematically equating a flexural distribution of dermatitis with atopic dermatitis may too frequently result in misclassified diagnoses and potentially missed opportunity for intervention toward improving patients' symptoms and quality of life. We present a critical review of the available evidence for the atopic dermatitis diagnosis and discuss the similarities between atopic dermatitis and allergic contact dermatitis. Because neither flexural predilection nor atopy is specific for atopic dermatitis, we conclude that the term atopic dermatitis is a misnomer and propose an etymologic reclassification of atopic dermatitis to "atopy-related" dermatitis. Allergic contact dermatitis can induce an atopic dermatitis-like phenotype, and thus, flexural dermatitis cannot be assumed as atopic without further testing. Patch testing should at least be considered in cases of chronic or recurrent eczema regardless of the working diagnosis.

  7. Effect of Nanoclay on the Flexural Creep Behavior of Wood/Plastic Composites

    Science.gov (United States)

    Kord, B.; Sheykholeslami, A.; Najafi, A.

    2016-01-01

    The effect of nanoclay on the short-term flexural creep behavior of polypropylene/wood flour composites was investigated. The results obtained showed that the flexural strength and modulus increased with contentt of nanoclay up to 3 phc and then decreased. The fractional deflection and relative creep decreased with increasing content of nanoclay. X-ray diffraction patterns and transmission electron microscopy revealed that the nanocomposites formed were intercalated. Morphological findings testified that the samples containing 3 phc of nanoclay had the highest degree of intercalation and dispersion.

  8. 75 FR 12981 - Eligibility for Commercial Flats Failing Deflection

    Science.gov (United States)

    2010-03-18

    ... and June 2010. Retain current deflection standards for six more months and enlist the assistance of a Lean Six-Sigma group. Response to Comments The prices proposed in our December 2009 proposal...

  9. Control of deflection deformation of plate-shape castings in solidification

    Institute of Scientific and Technical Information of China (English)

    郑贤淑; 金英达

    2003-01-01

    The deformation mechanism during the solidification was analyzed based on the experimental results ofthe castings. An approximate quadratic differential equation and its discrete model of calculation deflection were pro-posed. The model indicates that the key factors leading to the deflection deformation are the thermal bending mo-ment M and the flexural rigidity E.J. The smaller the former and the larger the latter is, the smaller the deflectiondeformation will be. The experiments are carried out at various technical conditions, and their results appear good a-greement with calculation ones. A method was proposed to predict and control the casting deformation.

  10. High accuracy flexural hinge development

    Science.gov (United States)

    Santos, I.; Ortiz de Zárate, I.; Migliorero, G.

    2005-07-01

    This document provides a synthesis of the technical results obtained in the frame of the HAFHA (High Accuracy Flexural Hinge Assembly) development performed by SENER (in charge of design, development, manufacturing and testing at component and mechanism levels) with EADS Astrium as subcontractor (in charge of doing an inventory of candidate applications among existing and emerging projects, establishing the requirements and perform system level testing) under ESA contract. The purpose of this project has been to develop a competitive technology for a flexural pivot, usuable in highly accurate and dynamic pointing/scanning mechanisms. Compared with other solutions (e.g. magnetic or ball bearing technologies) flexural hinges are the appropriate technology for guiding with accuracy a mobile payload over a limited angular ranges around one rotation axes.

  11. Broadband cloaking for flexural waves

    CERN Document Server

    Zareei, Ahmad

    2016-01-01

    The governing equation for elastic waves in flexural plates is not form invariant, and hence designing a cloak for such waves faces a major challenge. Here, we present the design of a perfect broadband cloak for flexural waves through the use of a nonlinear transformation, and by matching term-by-term the original and transformed equations. For a readily achievable flexural cloak in a physical setting, we further present an approximate adoption of our perfect cloak under more restrictive physical constraints. Through direct simulation of the governing equations, we show that this cloak, as well, maintains a consistently high cloaking efficiency over a broad range of frequencies. The methodology developed here may be used for steering waves and designing cloaks in other physical systems with non form-invariant governing equations.

  12. An experimental study on flexural strength enhancement of concrete by means of small steel fibers

    Directory of Open Access Journals (Sweden)

    Abdoullah Namdar

    2013-10-01

    Full Text Available Cost effective improvement of the mechanical performances of structural materials is an important goal in construction industry. To improve the flexural strength of plain concrete so as to reduce construction costs, the addition of fibers to the concrete mixture can be adopted. The addition of small steel fibers with different lengths and proportion have experimentally been analyzed in terms of concrete flexural strength enhancement. The main objectives of the present study are related to the evaluation of the influence of steel fibers design on the increase of concrete flexural characteristics and on the mode of failure. Two types of beams have been investigated. The force level, deflection and time to failure of beams have been measured. The shear crack, flexural crack and intermediate shear-flexural crack have been studied. The steel fiber content controlled crack morphology. Flexural strength and time to failure of fiber reinforce concrete could be further enhanced if, instead of smooth steel fibers, corrugated fibers were used.

  13. Cumulative Effect of Crumb Rubber and Steel Fiber on the Flexural Toughness of Concrete

    Directory of Open Access Journals (Sweden)

    B. H. Abu Bakar

    2017-02-01

    Full Text Available Concrete properties, such as toughness and ductility, are enhanced to resist different impacts or blast loads. Rubberized concrete, which could be considered a green material, is produced from recycled waste tires grinded into different crumb rubber particle sizes and mixed with concrete. In this study, the behavior of rubberized steel fiber-reinforced concrete is investigated. Flexural performance of concrete beams (400×100×100 mm manufactured from plain, steel fiber, crumb rubber and combination crumb rubber and steel fiber are also evaluated. Similarly, concrete slabs (500×500×50 mm are also tested under flexural loading. Flexural performance of the SFRRC mixtures was significantly enhanced. The toughness and maximum deflection of specimens with rubber were considerably improved. Steel fiber/crumb rubber-reinforced concrete can be used for practical application, which requires further studies.

  14. Flexural performance of foam concrete containing pulverized bone as partial replacement of cement

    Directory of Open Access Journals (Sweden)

    Efe Ikponmwosa

    2014-01-01

    Full Text Available This paper presents the results of a study conducted to investigate the flexural behaviour of foam concrete containing pulverised bone as partial replacement of cement. A total of sixty reinforced beams (150×150×750 mm were used to investigate the flexural behaviour of the specimens. For reinforcement of the beams, hot-rolled, deformed 10-mm-diameter bars with yield and ultimate stresses of 478.10 N/mm2 and 710.81 N/mm2 respectively were used. The cement constituent of the mix was partly replaced with up to 20% of pulverised bone. The flexural parameters investigated are crack formation and its pattern, failure mode, ul timate load, theoretical and experimental ultimate moments, deflection and stiffness. From the results of this investigation, it is concluded that the provision of the design standard in relation to shear and flexural design of beams can be considered as adequate for the design of reinforced foam concrete. It is further concluded that the stiffness is not affected by the inclusion of pulverised bone in the mix at up to 15% cement replacement level , and neither is the deflection pattern of the uncracked sections of the specimens affected by the inclusion of pulverised bone. The bending moments of the specimens,however, decreased with increase in pulverised bone.

  15. Long-Term Flexural Behaviors of GFRP Reinforced Concrete Beams Exposed to Accelerated Aging Exposure Conditions

    Directory of Open Access Journals (Sweden)

    Yeonho Park

    2014-06-01

    Full Text Available This study investigates the impact of accelerated aging conditions on the long-term flexural behavior and ductility of reinforced concrete (RC members with glass fiber-reinforced polymer (GFRP bars (RC-GFRP specimen and steel bars (RC-steel specimen. A total of thirty six specimens were designed with different amounts of reinforcement with three types of reinforcing bars (i.e., helically wrapped GFRP, sand-coated surface GFRP and steel. Eighteen specimens were subjected to sustained loads and accelerated aging conditions (i.e., 47 °C and 80% relative humidity in a chamber. The flexural behavior of specimens under 300-day exposure was compared to that of the companion specimens without experiencing accelerated aging conditions. Results indicate that the accelerated aging conditions reduced flexural capacity in not only RC-steel, but also RC-GFRP specimens, with different rates of reduction. Different types of GFRP reinforcement exhibited different rates of degradation of the flexural capacity when embedded in concrete under the same exposure conditions. Several existing models were compared with experimental results for predicting the deflection and deformability index for specimens. Bischoff and Gross’s model exhibited an excellent prediction of the time-dependent deflections. Except for the deformability index proposed by Jaeger, there was no general trend related to the aging duration. This study recommends the need for further investigation on the prediction of the deformability index.

  16. Benchmarking Asteroid-Deflection Experiment

    Science.gov (United States)

    Remington, Tane; Bruck Syal, Megan; Owen, John Michael; Miller, Paul L.

    2016-10-01

    An asteroid impacting Earth could have devastating consequences. In preparation to deflect or disrupt one before it reaches Earth, it is imperative to have modeling capabilities that adequately simulate the deflection actions. Code validation is key to ensuring full confidence in simulation results used in an asteroid-mitigation plan. We are benchmarking well-known impact experiments using Spheral, an adaptive smoothed-particle hydrodynamics code, to validate our modeling of asteroid deflection. We describe our simulation results, compare them with experimental data, and discuss what we have learned from our work. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-695540

  17. Geometric formula for prism deflection

    Indian Academy of Sciences (India)

    Apoorva G Wagh; Veer Chand Rakhecha

    2004-08-01

    While studying neutron deflections produced by a magnetic prism, we have stumbled upon a simple `geometric' formula. For a prism of refractive index close to unity, the deflection simply equals the product of the refractive power − 1 and the base-to-height ratio of the prism, regardless of the apex angle. The base and height of the prism are measured respectively along and perpendicular to the direction of beam propagation within the prism. The geometric formula greatly simplifies the optimisation of prism parameters to suit any specific experiment.

  18. Relativistic Stern-Gerlach Deflection

    CERN Document Server

    Talman, Richard

    2016-01-01

    Modern advances in polarized beam control should make it possible to accurately measure Stern-Gerlach (S-G) deflection of relativistic beams. Toward this end a relativistically covariant S-G formalism is developed that respects the opposite behavior under inversion of electric and magnetic fields. Not at all radical, or even new, this introduces a distinction between electric and magnetic fields that is not otherwise present in pure Maxwell theory. Experimental configurations (mainly using polarized electron beams passing through magnetic or electric quadrupoles) are described. Electron beam preparation and experimental methods needed to detect the extremely small deflections are discussed.

  19. Experimental Study on Full-Scale Beams Made by Reinforced Alkali Activated Concrete Undergoing Flexure

    Directory of Open Access Journals (Sweden)

    Linda Monfardini

    2016-08-01

    Full Text Available Alkali Activated Concrete (AAC is an alternative kind of concrete that uses fly ash as a total replacement of Portland cement. Fly ash combined with alkaline solution and cured at high temperature reacts to form a binder. Four point bending tests on two full scale beams made with AAC are described in this paper. Companion small material specimens were also casted with the aim of properly characterizing this new tailored material. The beam’s length was 5000 mm and the cross section was 200 mm × 300 mm. The AAC consisted of fly ash, water, sand 0–4 mm and coarse aggregate 6–10 mm; and the alkaline solution consisted of sodium hydroxide mixed with sodium silicate. No cement was utilized. The maximum aggregate size was 10 mm; fly ash was type F, containing a maximum calcium content of 2%. After a rest period of two days, the beam was cured at 60 °C for 24 h. Data collected and critically discussed included beam deflection, crack patterns, compressive and flexural strength and elastic modulus. Results show how AAC behavior is comparable with Ordinary Portland Cement (OPC based materials. Nonlinear numerical analyses are finally reported, promoting a better understanding of the structural response.

  20. AIDA: Asteroid Impact & Deflection Assessment

    Science.gov (United States)

    Cheng, A. F.; Galvez, A.; Carnelli, I.; Michel, P.; Rivkin, A.; Reed, C.

    2012-12-01

    To protect the Earth from a hazardous asteroid impact, various mitigation methods have been proposed, including deflection of the asteroid by a spacecraft impact. AIDA, consisting of two mission elements, the Double Asteroid Redirection Test (DART) and the Asteroid Impact Monitoring (AIM) mission, is a demonstration of asteroid deflection. To date, there has been no such demonstration, and there is major uncertainty in the result of a spacecraft impact onto an asteroid, that is, the amount of deflection produced by a given momentum input from the impact. This uncertainty is in part due to unknown physical properties of the asteroid surface, such as porosity and strength, and in part due to poorly understood impact physics such that the momentum carried off by ejecta is highly uncertain. A first mission to demonstrate asteroid deflection would not only be a major step towards gaining the capability to mitigate an asteroid hazard, but in addition it would return unique information on an asteroid's strength, other surface properties, and internal structure. This information return would be highly relevant to future human exploration of asteroids. We report initial results of the AIDA joint mission concept study undertaken by the Johns Hopkins Applied Physics Laboratory and ESA with support from NASA centers including Goddard, Johnson and Jet Propulsion Laboratory. For AIDA, the DART spacecraft impactor study is coordinated with an ESA study of the AIM mission, which would rendezvous with the same asteroid to measure effects of the impact. Unlike the previous Don Quijote mission study performed by ESA in 2005-2007, DART envisions an impactor spacecraft to intercept the secondary member of a binary near-Earth asteroid. DART includes ground-based observations to measure the deflection independently of the rendezvous spacecraft observations from AIM, which also measures deflection and provides detailed characterization of the target asteroid. The joint mission AIDA

  1. Elevator deflections on the icing process

    Science.gov (United States)

    Britton, Randall K.

    1990-01-01

    The effect of elevator deflection of the horizontal stabilizer for certain icing parameters is investigated. Elevator deflection can severely change the lower and upper leading-edge impingement limits, and ice can accrete on the elevator itself. Also, elevator deflection had practically no effect on the maximum local collection efficiency. It is shown that for severe icing conditions (large water droplets), elevator deflections that increase the projected height of the airfoil can significantly increase the total collection efficiency of the airfoil.

  2. Flexural modulus identification of thin polymer sheets

    Science.gov (United States)

    Gluhihs, S.; Kovalovs, A.; Tishkunovs, A.; Chate, A.

    2011-06-01

    The method of determination of the flexural Young's modulus is based on a solution to the problem of compression of a thin-walled cylindrical specimen by two parallel planes (TWCS method). This method was employed to calculate the flexural modulus for PET polymer compositions. The flexural modules received by TWCS method were verified by comparing the experimentally measured eigenfrequencies by Polytec vibrometer with numerical results from ANSYS program.

  3. Flexural modulus identification of thin polymer sheets

    Energy Technology Data Exchange (ETDEWEB)

    Gluhihs, S; Kovalovs, A; Tishkunovs, A; Chate, A, E-mail: s_gluhih@inbox.lv [Riga Technical University, Institute of Materials and Structures, Azenes 16/22, LV-1048, Riga (Latvia)

    2011-06-23

    The method of determination of the flexural Young's modulus is based on a solution to the problem of compression of a thin-walled cylindrical specimen by two parallel planes (TWCS method). This method was employed to calculate the flexural modulus for PET polymer compositions. The flexural modules received by TWCS method were verified by comparing the experimentally measured eigenfrequencies by Polytec vibrometer with numerical results from ANSYS program.

  4. THE HELIOCENTRIC DISTANCE WHERE THE DEFLECTIONS AND ROTATIONS OF SOLAR CORONAL MASS EJECTIONS OCCUR

    Energy Technology Data Exchange (ETDEWEB)

    Kay, C.; Opher, M., E-mail: ckay@bu.edu [Astronomy Department, Boston University, Boston, MA 02215 (United States)

    2015-10-01

    Understanding the trajectory of a coronal mass ejection (CME), including any deflection from a radial path, and the orientation of its magnetic field is essential for space weather predictions. Kay et al. developed a model, Forecasting a CME’s Altered Trajectory (ForeCAT), of CME deflections and rotation due to magnetic forces, not including the effects of reconnection. ForeCAT is able to reproduce the deflection of observed CMEs. The deflecting CMEs tend to show a rapid increase of their angular momentum close to the Sun, followed by little to no increase at farther distances. Here we quantify the distance at which the CME deflection is “determined,” which we define as the distance after which the background solar wind has negligible influence on the total deflection. We consider a wide range in CME masses and radial speeds and determine that the deflection and rotation of these CMEs can be well-described by assuming they propagate with constant angular momentum beyond 10 R{sub ⊙}. The assumption of constant angular momentum beyond 10 R{sub ⊙} yields underestimates of the total deflection at 1 AU of only 1%–5% and underestimates of the rotation of 10%. Since the deflection from magnetic forces is determined by 10 R{sub ⊙}, non-magnetic forces must be responsible for any observed interplanetary deflections or rotations where the CME has increasing angular momentum.

  5. Analysis of flexural wave cloaks

    Directory of Open Access Journals (Sweden)

    Alfonso Climente

    2016-12-01

    Full Text Available This work presents a comprehensive study of the cloak for bending waves theoretically proposed by Farhat et al. [see Phys. Rev. Lett. 103, 024301 (2009] and later on experimentally realized by Stenger et al. [see Phys. Rev. Lett. 108, 014301 (2012]. This study uses a semi-analytical approach, the multilayer scattering method, which is based in the Kirchoff-Love wave equation for flexural waves in thin plates. Our approach was unable to reproduce the predicted behavior of the theoretically proposed cloak. This disagreement is here explained in terms of the simplified wave equation employed in the cloak design, which employed unusual boundary conditions for the cloaking shell. However, our approach reproduces fairly well the measured displacement maps for the fabricated cloak, indicating the validity of our approach. Also, the cloak quality has been here analyzed using the so called averaged visibility and the scattering cross section. The results obtained from both analysis let us to conclude that there is room for further improvements of this type of flexural wave cloak by using better design procedures.

  6. Analysis of flexural wave cloaks

    Science.gov (United States)

    Climente, Alfonso; Torrent, Daniel; Sánchez-Dehesa, José

    2016-12-01

    This work presents a comprehensive study of the cloak for bending waves theoretically proposed by Farhat et al. [see Phys. Rev. Lett. 103, 024301 (2009)] and later on experimentally realized by Stenger et al. [see Phys. Rev. Lett. 108, 014301 (2012)]. This study uses a semi-analytical approach, the multilayer scattering method, which is based in the Kirchoff-Love wave equation for flexural waves in thin plates. Our approach was unable to reproduce the predicted behavior of the theoretically proposed cloak. This disagreement is here explained in terms of the simplified wave equation employed in the cloak design, which employed unusual boundary conditions for the cloaking shell. However, our approach reproduces fairly well the measured displacement maps for the fabricated cloak, indicating the validity of our approach. Also, the cloak quality has been here analyzed using the so called averaged visibility and the scattering cross section. The results obtained from both analysis let us to conclude that there is room for further improvements of this type of flexural wave cloak by using better design procedures.

  7. Experimental Study On The Flexural And Shear Analysis Of Concrete Beams Rein Forced With Glass Fiber -Reinforced (Gfrp Bars

    Directory of Open Access Journals (Sweden)

    Edgaras Atutis

    2013-12-01

    Full Text Available The paper analyzes experimental studies examining the flexuraland shear analysis of the beams reinforced with GFRP bars. Atesting program consisted of two beams reinforced with longitudinalprestressed GFRP tendons, two beams reinforced withlongitudinal GFRP bars and two beams reinforced with longitudinalsteel reinforcement and shear reinforcement of GFRP bars.The experimental flexural and shear strength of concrete beamswere compared with theoretical strength calculated according toa number of design recommendations, and the significance ofprestressing for deflection and cracking was analyzed.

  8. Thermal Flexure Measurement and Inverse Characterization for a Tri-layer Thin Plate

    Institute of Scientific and Technical Information of China (English)

    HuaLu; Alireza Shirazi; Ahmad Varvani-Farahani

    2011-01-01

    The paper presents a new study on a tri-layer thin plate.Shadow moiré implemented with an advanced phase unwrapping technique is employed to obtain actual flexural deformation of a real-life plate sample subjected to thermal loads.An analytical model is re-formulated to provide the plate with global closed-form solutions of the plate deflection as well as the interfacial stress and strain.With the measurements and the solutions available,an inverse iterative approach is developed to evaluate and maximize the correlation between the measured and the predicted thermal flexure,leading to ascertained materials' constitutive and thermal behaviour.The inverse search algorithm starts with estimated ranges of material property parameters and progressively updates them to finally approach the respective true values.The established model solutions along with the optimized material properties matrix enable an accurate evaluation of the interfacial stresses/strains for the specific plate sample.

  9. Field distribution analysis in deflecting structures

    Energy Technology Data Exchange (ETDEWEB)

    Paramonov, V.V. [Joint Inst. for Nuclear Research, Moscow (Russian Federation)

    2013-02-15

    Deflecting structures are used now manly for bunch rotation in emittance exchange concepts, bunch diagnostics and to increase the luminosity. The bunch rotation is a transformation of a particles distribution in the six dimensional phase space. Together with the expected transformations, deflecting structures introduce distortions due to particularities - aberrations - in the deflecting field distribution. The distributions of deflecting fields are considered with respect to non linear additions, which provide emittance deteriorations during a transformation. The deflecting field is treated as combination of hybrid waves HE{sub 1} and HM{sub 1}. The criteria for selection and formation of deflecting structures with minimized level of aberrations are formulated and applied to known structures. Results of the study are confirmed by comparison with results of numerical simulations.

  10. Sagnac interferometer for photothermal deflection spectroscopy.

    Science.gov (United States)

    Shiokawa, Naoyuki; Mizuno, Yuki; Tsuchiya, Harumasa; Tokunaga, Eiji

    2012-07-01

    Photothermal deflection spectroscopy is combined with a Sagnac interferometer to enhance the sensitivity of the absorption measurement by converting the photothermal beam deflection effect into the light intensity change by the interference effect. Because of stable light interference due to the common path, the signal intensity can be amplified without increasing the noise by extending the optical path length between a sample and a photodetector. The sensitivity is further improved by the use of focusing optics and double-pass geometry. This makes photothermal deflection spectroscopy applicable to any kind of material in the whole visible region with a xenon lamp for excitation and water or air as a deflection medium.

  11. On guided versus deflected fields in controlled-source electromagnetics

    Science.gov (United States)

    Swidinsky, Andrei

    2015-06-01

    The detection of electrically resistive targets in applied geophysics is of interest to the hydrocarbon, mining and geotechnical industries. Elongated thin resistive bodies have been extensively studied in the context of offshore hydrocarbon exploration. Such targets guide electromagnetic fields in a process which superficially resembles seismic refraction. On the other hand, compact resistive bodies deflect current in a process which has more similarities to diffraction and scattering. The response of a real geological structure is a non-trivial combination of these elements-guiding along the target and deflection around its edges. In this note the electromagnetic responses of two end-member models are compared: a resistive layer, which guides the electromagnetic signal, and a resistive cylinder, which deflects the fields. Results show that the response of a finite resistive target tends to saturate at a much lower resistivity than a resistive layer, under identical survey configurations. Furthermore, while the guided electromagnetic fields generated by a buried resistive layer contain both anomalous horizontal and vertical components, the process of electromagnetic deflection from a buried resistive cylinder creates mainly anomalous vertical fields. Finally, the transmitter orientation with respect to the position of a finite body is an important survey parameter: when the distance to the target is much less than the host skin depth, a transmitter pointing towards the resistive cylinder will produce a stronger signal than a transmitter oriented azimuthally with respect to the cylinder surface. The opposite situation is observed when the distance to the target is greater than the host skin depth.

  12. Electro-optical approach to pavement deflection management

    Science.gov (United States)

    Rish, Jeff W., III; Adcock, Avery D.; Tuan, Christopher Y.; Baker, Samuel L.; Welker, Hugh W., II; Johnson, Roger F.

    1995-07-01

    A prototype continuous deflection device, referred to as a rolling weight deflectometer (RWD), has been developed as a nondestructive evaluation tool for airfield pavements. The system consists of a rigid trailer equipped with specially designed optical triangulation pavement sensors, a high-speed data acquisition system, and a high-pressure tire/load platform assembly. Pavement sensors are mounted on a rigid box beam equipped with an internal sensor system that corrects, in real time, the relative pavement height position measurements for displacements induced in the beam by mechanical vibrations, changes in temperature, or nonuniform dynamic loads at points where the beam attaches to the frame. The device produces continuous deflection profiles that show pavement response to a moving loaded wheel along the path of travel. These deflection profiles, combined with multiple passes along a lane, provide a far more detailed picture of the pavement structural integrity than has ever before been possible, because existing evaluation tools only produce response information at discrete points. Preliminary results show deflections measured by the RWD are in general agreement with the expected pavement response for various loads. A discussion of the device configuration, preliminary data, and potential as a pavement management tool is presented.

  13. Influence of geometrical parameters on the flexural rigidity of the LHC dipole cold mass assembly

    CERN Document Server

    Bajko, M; Pardons, A

    2002-01-01

    In order to predict the mechanical behavior of the LHC dipole cold mass in situations such as handling, transport and cool down, a number of important structural parameters are required. The dipole's flexural rigidity determines entirely the mechanical elastic behavior of the cold mass. Therefore, models of a bent cold mass were created to calculate its rigidity. This paper presents a simplified parametric finite element model, created to study the deflection of the cold mass in different situations and supporting conditions. The sensitivity of the models to the supporting conditions is computed. To provide the finite element and the analytical models with input, the deflection of the cold mass under discrete loads in normal condition and then 90-degrees rotated were measured with a laser tracker. By comparing models with measurements, the vertical and transversal rigidity of the cold mass assembly are determined. Additionally, the paper reports on the plastic behavior of the cold mass assembly in the range o...

  14. Control of Compliant Mechanisms with Large Deflections

    Science.gov (United States)

    Kern, D.; Bauer, J.; Seemann, W.

    Very often elastic joints are used in high precision applications. In the case of rotational joints flexure hinges do have some advantages compared to conventional ones. However, the most important disadvantages are the complicated and complex kinematics and kinetics. As consequence, the control of mechanisms comprised of flexure hinges gets more difficult. The strategy pursued here is to reduce flexure hinges to pseudo rigid-body systems that fit into the elaborated framework of multi-body dynamics, in particular pre-control in combination with a feedback controller. The inherent deviations of these reduced models are described as uncertainties. Methods from robust control are used to synthesize controllers for such systems with uncertainty. The procedure is illustrated by examining an example of a single flexure hinge (leaf spring type).

  15. Flexural strengths of conventional and nanofilled fiber-reinforced composites: a three-point bending test.

    Science.gov (United States)

    Sfondrini, Maria Francesca; Massironi, Sarah; Pieraccini, Giulia; Scribante, Andrea; Vallittu, Pekka K; Lassila, Lippo V; Gandini, Paola

    2014-02-01

    The purpose of this study was to evaluate the effect of the introduction of nanofillers on the mechanical properties of fiber-reinforced composites (FRCs) for stabilization and conservative treatment of multiple traumatized anterior teeth. In particular, the aim of the research was to point out the force levels of two sizes (diameters 0.6 and 0.9 mm) of both conventional and nanofilled FRCs. Eighty FRCs samples were divided into eight groups, each consisting of 10 specimens. Conventional (groups 1, 2, 3, and 4) and nanofilled (groups 5, 6, 7, and 8) FRC samples were evaluated. Each FRC was tested in two diameters (0.6 and 0.9 mm) and under two deflections (1 and 2 mm). Each sample was polymerized with the same halogen curing unit and then evaluated with a 3-point bending test on a universal testing machine after 48 h of dry storage. Nanofilled FRCs showed significantly higher load values than conventional FRCs. Moreover, 0.9-mm-diameter FRCs showed significantly higher load value than 0.6-mm-diameter FRCs. Specimens tested at 2-mm deflection showed significantly higher load values than those tested at 1-mm deflection. Nanofilled FRCs showed significantly higher load values than conventional FRCs. Higher flexural strength values were recorded with 1-mm deflection for both FRC tested. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  16. Directed energy deflection laboratory measurements

    Science.gov (United States)

    Brashears, Travis; Lubin, Phillip; Hughes, Gary B.; Meinhold, Peter; Suen, Jonathan; Batliner, Payton; Motta, Caio; Griswold, Janelle; Kangas, Miikka; Johansson, Isbella; Alnawakhtha, Yusuf; Prater, Kenyon; Lang, Alex; Madajian, Jonathan

    2015-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DESTAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  17. Childhood flexural comedones: a new entity.

    Science.gov (United States)

    Larralde, Margarita; Abad, María Eugenia; Muñoz, Andrea Santos; Luna, Paula

    2007-07-01

    Comedones are usually found in acne and involve the seborrheic areas of the skin. Disseminated comedones can be found in other skin disorders. Flexural comedones are characterized by double orifices connected by a thin layer of epidermis that reveals the comedo content below it. To the best of our knowledge, flexural comedones have not been previously described as an entity. Our objective was to characterize this disorder. A cross-sectional descriptive study was performed from April 2004 to July 2006. We included 40 pediatric and adolescent patients with flexural comedones; 21 were female (52%), and 19 were male (48%) (mean age, 6.2 years). In 29 cases the lesions were single (72%) and in 32 cases (80%) unilateral. The lesions were located in the axilla in 88% of the patients. We performed biopsies of skin samples in 6 cases. To our knowledge, flexural comedones have not been previously described as an entity, and we felt that they deserved attention owing to the relative frequency of cases in our clinical practice. Because of its clinical appearance, flexural localization, and age distribution, we named this disorder childhood flexural comedones. Further investigation and follow-up of a larger number of patients is needed.

  18. Time-Dependent Flexural Deformation Beneath the Emperor Seamounts

    Science.gov (United States)

    Wessel, P.; Watts, A. B.; Kim, S. S.

    2014-12-01

    The Hawaii-Emperor seamount chain stretches over 6000 km from the Big Island of Hawaii to the subduction cusp off Kamchatka and represents a near-continuous record of hotspot volcanism since the Late Cretaceous. The load of these seamounts and islands has caused the underlying lithosphere to deform, developing a flexural flanking moat that is now largely filled with volcanoclastic sediments. Because the age differences between the seafloor and the seamounts vary by an order of magnitude or more along the chain, the Hawaii-Emperor chain and surrounding area is considered a natural laboratory for lithospheric flexure and has been studied extensively in order to infer the rheology of the oceanic lithosphere. While most investigations have focused on the Hawaiian Islands and proximal seamounts (where data sets are more complete, including seismic reflection and refraction, swath bathymetry and even mapping and dating of drowned reef terraces), far fewer studies have examined the flexural deformation beneath the remote Emperor chain. Preliminary analysis of satellite altimetry data shows the flexural moats to be associated with very large negative gravity anomalies relative to the magnitudes of the positive anomalies over the loads, suggesting considerable viscous or viscoelastic relaxation since the loads were emplaced 50-80 Myr ago. In our study, we will attempt to model the Emperor seamount chain load as a superposition of individual elliptical Gaussian seamounts with separate loading histories. We use Optimal Robust Separation (ORS) techniques to extract the seamount load from the regional background bathymetry and partition the residual load into a set of individual volcanoes. The crustal age grid and available seamount dates are used to construct a temporal loading model and evaluate the flexural response of the lithosphere beneath the Emperor seamounts. We explore a variety of rheological models and loading scenarios that are compatible with the inferred load

  19. Isostasy, flexure, and dynamic topography

    Science.gov (United States)

    Gvirtzman, Zohar; Faccenna, Claudio; Becker, Thorsten W.

    2016-06-01

    A fundamental scientific question is, what controls the Earth's topography? Although the theoretical principles of isostasy, flexure, and dynamic topography are widely discussed, the parameters needed to apply these principles are frequently not available. Isostatic factors controlling lithospheric buoyancy are frequently uncertain and non-isostatic factors, such as lithospheric bending towards subduction zones and dynamic topography, are hard to distinguish. The question discussed here is whether a set of simple rules that relate topography to lithospheric structure in various tectonic environments can be deduced in a way that missing parameters can be approximated; or does each area behave differently, making generalizations problematic. We contribute to this issue analyzing the Asia-Africa-Arabia-Europe domain following a top-down strategy. We compile a new crustal thickness map and remove the contribution of the crust from the observed elevation. Then, the challenge is to interpret the residual topography in terms of mantle lithosphere buoyancy and dynamics. Based on systematic relationships between tectonic environments and factors controlling topography, we argue that crustal buoyancy and mantle lithospheric density can be approximated from available geological data and that regions near mantle upwelling or downwelling are easily identified by their extreme residual topography. Yet, even for other areas, calculating lithospheric thickness from residual topography is problematic, because distinguishing variations in mantle lithosphere thickness from sub-lithospheric dynamics is difficult. Fortunately, the area studied here provides an opportunity to examine this issue. Based on the conjunction between the Afar Plume and the mid-ocean ridge in the nearby Gulf of Aden and southern Red Sea, we constrain the maximal amplitude of dynamic topography to ~ 1 km. This estimate is based on a narrow definition of dynamic topography that only includes sub

  20. Large Deflections of Elastic Rectangular Plates

    Science.gov (United States)

    Razdolsky, A. G.

    2015-11-01

    It is known that elastic large deflections of thin plates are governed by von Karman nonlinear equations. The analytical solution of these equations in the general case is unfeasible. Samuel Levy, in 1942, showed that large deflections of the rectangular plate can be expressed as a double series of sine-shaped harmonics (deflection harmonics). However, this method gave no way of creating the computer algorithm of solving the problem. The stress function expression taken in the Levy's method must be revised to find the approach that takes into account of all possible products of deflection coefficients. The algorithm of solving the problem for the rectangular plate with an arbitrary aspect ratio under the action of the lateral distributed load is reported in this paper. The approximation of the plate deflection is taken in the form of double series proposed by Samuel Levy. However, the expression for the stress function is presented in the form that incorporates products of deflection coefficients in the explicit form in distinction to the Levy's expression. The number of harmonics in the deflection expression may be arbitrary. The algorithm provides composing the system of governing cubic equations, which includes the deflection coefficients in the explicit form. Solving the equation system is based on using the principle of minimum potential energy. A method of the gradient descent is applied to find the equilibrium state of the plate as the minimum point of the potential energy. A computer program is developed on the basis of the present algorithm. Numerical examples carried out for the plate model with 16 deflection harmonics illustrate the potentialities of the program. The results of solving the examples are presented in the graphical form for the plates with a different aspect ratio and may be used under designing thin-walled elements of airplane and ship structures.

  1. Ion Beam Shepherd for Asteroid Deflection

    CERN Document Server

    Bombardelli, C

    2011-01-01

    We present a novel concept to impart a continuous thrust to an Earth threatening asteroid from a hovering spacecraft without need for physical attachment nor gravitational interaction with the asteroid. The concept involves an ion thruster placed at a distance of a few asteroid diameters directing a stream of quasi-neutral plasma against the asteroid surface resulting into a net transferred momentum. As the transmitted force is independent of the asteroid mass and size the method allows deflecting subkilometer asteroids with a spacecraft much lighter when compared to a gravity tractor spacecraft of equal deflection capability. The finding could make low-cost asteroid deflection missions possible in the coming years.

  2. Alaska North-South Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' surface deflection of the vertical grid for Alaska is the DEFLEC96 model. The computation used about 1.1 million terrestrial and marine gravity data...

  3. Mexico East-West Deflections (DMEX97)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for Mexico, and North-Central is the DMEX97 model. The computation used about one million terrestrial and marine...

  4. Alaska East-West Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' x 4' surface deflection of the vertical grid for Alaska is the DEFLEC96 model. The computation used about 1.1 millionterrestrial and marine gravity data held...

  5. Mexico North-South Deflections (DMEX97)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for Mexico, and North-Central is the DMEX97 model. The computation used about one million terrestrial and marine...

  6. Study of Vertical Seismic Response of Concrete Self-Anchored Suspension Bridges

    Institute of Scientific and Technical Information of China (English)

    刘春城; 石磊; 张哲

    2004-01-01

    Based on the variational prineiple of incomplete generalized potential energy with large deflection, the vertical nonlinear vibrational differential equation of self-anchored suspension bridge is presented by taking the effect of coupling of flexural and axial action into consideration. The linear vertical equation is obtained by omitting the nonlinear term, and the pseudo excitation method(PEM). Taking the self-anchored concrete suspension bridge over Lanqi Songhua river for an example, the expected peak responses of main beam, towers and cables are calculated. And the seismic spatial effects on vertical seismic response of self-anchored suspension bridges are discussed.

  7. Ice shelf flexures modeled with a 2-D elastic flow line model

    Directory of Open Access Journals (Sweden)

    Y. V. Konovalov

    2011-10-01

    Full Text Available Ice shelf flexures modeling was performed using a 2-D finite-difference elastic model, which takes into account sub-ice-shelf sea water flow. The sub-ice water flow was described by the wave equation for the sub-ice-shelf pressure perturbations (Holdsworth and Glynn, 1978. In the model ice shelf flexures result from variations in ocean pressure due to changes in prescribed sea levels. The numerical experiments were performed for a flow line down one of the fast flowing ice streams of the Academy of Sciences Ice Cap. The profile includes a part of the adjacent ice shelf. The numerical experiments were carried out for harmonic incoming pressure perturbations P' and the ice shelf flexures were obtained for a wide spectrum of the pressure perturbations frequencies, ranging from tidal periods down to periods of a few seconds (0.004..0.02 Hz. The amplitudes of the ice shelf deflections obtained by the model achieve a maxima at about T ≈ 165 s in concordance with previous investigations of the impact of waves on Antarctic ice shelves (Bromirski et al., 2010. The explanation of the effect is found in the solution of the corresponding eigenvalue problem revealing the existence of a resonance at these high frequencies.

  8. Flexural Toughness Characteristics of Steel Synthetic Fibers-Lightweight Aggregate Concrete

    Directory of Open Access Journals (Sweden)

    Rajai

    2016-06-01

    Full Text Available In general, the steel synthetic fibers improve the durability of concrete by providing crackarresting mechanism and minimizing it’s possible to cracking. In this study, an experimental program was undertaken to investigate the effect of steel synthetic fibers content volume fractions on the compressive, tensile, modulus of elasticity, and flexural toughness of lightweight aggregate concrete (LAWC. The tested specimens were divided into five groups based on steel synthetic fibers content volume fractions (0, 0.3, 0.6, 0.9 and 1.2%. The experimental results show that steel synthetic fibers content volume fractions considerably enhanced the mechanical properties of concrete in terms of compressive strength (2.8 for 0.3% fiber to 11.3% for 1.2% fiber, splitting tensile strength (3.9 for 0.3% fiber to 35.9% for 1.2% fiber, and flexural strength (21.8 for 0.3% fiber to 56.8% for 1.2% fiber. Also, the tested results show that the flexural toughness indexes and post-cracking toughness especially on the first crack and failure deflections were extensively enhanced by the addition of fibers. The improvement in post-cracking toughness could be due to the crack arresting effect of steel synthetic fibers because it continued to exhibit residual strength after the first crack creation and needed higher energy for the fiber pull out.

  9. Flexural performance of woven hybrid composites

    Science.gov (United States)

    Maslinda, A. B.; Majid, M. S. Abdul; Dan-mallam, Y.; Mazawati, M.

    2016-07-01

    This paper describes the experimental investigation of the flexural performance of natural fiber reinforced polymer composites. Hybrid composites consist of interwoven kenaf/jute and kenaf/hemp fibers was prepared by infusion process using epoxy as polymer matrix. Woven kenaf, jute and hemp composites were also prepared for comparison. Both woven and hybrid composites were subjected to three point flexural test. From the result, bending resistance of hybrid kenaf/jute and kenaf/hemp composites was higher compared to their individual fiber. Hybridization with high strength fiber such as kenaf enhanced the capability of jute and hemp fibers to withstand bending load. Interlocking between yarns in woven fabric make pull out fibers nearly impossible and increase the flexural performance of the hybrid composites.

  10. Flexure and rheology of Pacific oceanic lithosphere

    Science.gov (United States)

    Hunter, Johnny; Watts, Tony

    2016-04-01

    The idea of a rigid lithosphere that supports loads through flexural isostasy was first postulated in the late 19th century. Since then, there has been much effort to investigate the spatial and temporal variation of the lithosphere's flexural rigidity, and to understand how these variations are linked to its rheology. We have used flexural modelling to first re-assess the variation in the rigidity of oceanic lithosphere with its age at the time of loading, and then to constrain mantle rheology by testing the predictions of laboratory-derived flow laws. A broken elastic plate model was used to model trench-normal, ensemble-averaged profiles of satellite-derived gravity at the trench-outer rise system of circum-Pacific subduction zones, where an inverse procedure was used to find the best-fit Te and loading conditions. The results show a first-order increase in Te with plate age, which is best fit by the depth to the 400 ± 35°C plate-cooling isotherm. Fits to the observed gravity are significantly improved by an elastic plate that weakens landward of the outer rise, which suggests that bending-induced plate weakening is a ubiquitous feature of circum-Pacific subduction zones. Two methods were used to constrain mantle rheology. In the first, the Te derived by modelling flexural observations was compared to the Te predicted by laboratory-derived yield strength envelopes. In the second, flexural observations were modelled using elastic-plastic plates with laboratory-derived, depth-dependent yield strength. The results show that flow laws for low-temperature plasticity of dry olivine provide a good fit to the observations at circum-Pacific subduction zones, but are much too strong to fit observations of flexure in the Hawaiian Islands region. We suggest that this discrepancy can be explained by differences in the timescale of loading combined with moderate thermal rejuvenation of the Hawaiian lithosphere.

  11. Rotation flexure with temperature controlled modal frequency

    Energy Technology Data Exchange (ETDEWEB)

    Salas, Theodore E.; Barney, Patrick S.; Ison, Aaron M.; Akau, Ronald L; Weir, Nathan

    2017-09-12

    A flexure bearing includes an inner race, an outer race, and a plurality of substantially planar radially extending blades coupled between the inner and outer race. The blades have a thickness that is thinner than a thickness of the inner and outer races. The inner race, outer race, and blades have substantially the same height. At least one heating element is coupled to the inner race and/or the outer race. The heating element is configured to apply heat to the race that it is coupled to in order to tune the flexure bearing.

  12. Free Vibration Analysis of Rectangular Orthotropic Membranes in Large Deflection

    Directory of Open Access Journals (Sweden)

    Zheng Zhou-Lian

    2009-01-01

    Full Text Available This paper reviewed the research on the vibration of orthotropic membrane, which commonly applied in the membrane structural engineering. We applied the large deflection theory of membrane to derive the governing vibration equations of orthotropic membrane, solved it, and obtained the power series formula of nonlinear vibration frequency of rectangular membrane with four edges fixed. The paper gave the computational example and compared the two results from the large deflection theory and the small one, respectively. Results obtained from this paper provide some theoretical foundation for the measurement of pretension by frequency method; meanwhile, the results provide some theoretical foundation for the research of nonlinear vibration of membrane structures and the response solving of membrane structures under dynamic loads.

  13. A Modified Model for Deflection Calculation of Reinforced Concrete Beam with Deformed GFRP Rebar

    Directory of Open Access Journals (Sweden)

    Minkwan Ju

    2016-01-01

    Full Text Available The authors carried out experimental and analytical research to evaluate the flexural capacity and the moment-deflection relationship of concrete beams reinforced with GFRP bars. The proposed model to predict the effective moment of inertia for R/C beam with GFRP bars was developed empirically, based on Branson’s equation to have better accuracy and a familiar approach to a structural engineer. For better prediction of the moment-deflection relationship until the ultimate strength is reached, a nonlinear parameter (k was also considered. This parameter was introduced to reduce the effect of the cracked moment of inertia for the reinforced concrete member, including a lower reinforcement ratio and modulus of elasticity of the GFRP bar. In a comparative study using six equations suggested by others, the proposed model showed better agreement with the experimental test results. It was confirmed that the empirical modification based on Branson’s equation was valid for predicting the effective moment of inertia of R/C beams with GFRP bar in this study. To evaluate the generality of the proposed model, a comparative study using previous test results from the literature and the results from this study was carried out. It was found that the proposed model had better accuracy and was a familiar approach to structural engineers to predict and evaluate the deflection behavior.

  14. Deflection determination of concrete structures considering nonlinearity based on long-gauge strain sensors

    Science.gov (United States)

    Hong, Wan; Lv, Kui; Li, Bing; Jiang, Yuchen; Hu, Xiamin; Qu, Qizhong

    2017-10-01

    Deflection determination of concrete structures using distributed long-gauge strain sensors is investigated in this paper. Firstly, the relationship between deflection and distributed long-gauge strain of concrete beams is presented, and the method is independent of external load and takes account of structural nonlinearity. The deflection distribution along the span of a beam-like structure can be predicted from strain response for the whole process of loading (elastic stage, concrete cracking stage and steel yielding stage). Secondly, experiment of a reinforced concrete beam has been conducted to verify the accuracy of the method. Experimental results show that the relative error between the estimated and actual deflection can be controlled within about 5% while the error can reach up to about 70% if structural nonlinearity is not considered. Finally, the influence of error of material parameters and sensor gauge length on deflection estimation has been analyzed. The error of concrete compression strength has a limited influence on deflection prediction while the contribution of tensile concrete should be considered before concrete cracking. The error of area of tensile bars will affect the deflection accuracy after concrete cracking.

  15. Application of bamboo for flexural and shear reinforcement in concrete beams

    Science.gov (United States)

    Schneider, Nathan Alan

    As the developing world is industrializing and people migrate to cities, the need for infrastructure is growing quickly and concrete has become one of the most widely used construction materials. One poor construction practice observed widely across the developing world is the minimal use of reinforcement for concrete structures due to the high cost of steel. As a low-cost, high-performance material with good mechanical properties, bamboo has been investigated as an alternative to steel for reinforcing concrete. The goal of this research is to add to the knowledge base of bamboo reinforced concrete (BRC) by investigating a unique stirrup design and testing the lap-splicing of flexural bamboo reinforcement in concrete beams. Component tests on the mechanical properties of Moso bamboo (Phyllostachys edulis) were performed, including tensile tests and pull-out tests. The results of the component tests were used to design and construct 13 BRC beams which were tested under monotonic gravity loading in 3 and 4-point bending tests. Three types of beams were designed and tested, including shear controlled, flexure controlled, and lap-spliced flexure controlled beams. The test results indicated that bamboo stirrups increased unreinforced concrete beam shear capacities by up to 259%. The flexural bamboo increased beam capacities by up to 242% with an optimal reinforcement ratio of up to 3.9%, assuming sufficient shear capacity. Limitations of the bamboo reinforcement included water absorption as well as poor bonding capability to the concrete. The test results show that bamboo is a viable alternative to steel as tensile reinforcement for concrete as it increases the ultimate capacity of the concrete, allows for high deflections and cracks, and provides warning of impending structural failure.

  16. Pretreatment of Woven Jute FRP Composite and Its Use in Strengthening of Reinforced Concrete Beams in Flexure

    Directory of Open Access Journals (Sweden)

    Tara Sen

    2013-01-01

    Full Text Available Environmental awareness motivates researchers worldwide to perform studies of natural fibre reinforced polymer composites, as they come with many advantages and are primarily sustainable. The present study aims at evaluating the mechanical characteristics of natural woven jute fibre reinforced polymer (FRP composite subjected to three different pretreatments, alkali, benzyl chloride, and lastly heat treatment. It was concluded that heat treatment is one of the most suitable treatment methods for enhancing mechanical properties of jute FRP. Durability studies on Jute FRP pertaining to some common environmental conditions were also carried out such as effect of normal water and thermal aging on the tensile strength of jute FRP followed by fire flow test. The heat treated woven jute FRP composites were subsequently used for flexural strengthening of reinforced concrete beams in full and strip wrapping configurations. The study includes the effect of flexural strengthening provided by woven jute FRP, study of different failure modes, load deflection behavior, effect on the first crack load, and ultimate flexural strength of concrete beams strengthened using woven jute FRP subjected to bending loads. The study concludes that woven jute FRP is a suitable material which can be used for flexural upgradation of reinforced concrete beams.

  17. Flexural strength and ductility of reinforced concrete beams

    OpenAIRE

    Kwan, AKH; Ho, JCM; Pam, HJ

    2002-01-01

    In the design of reinforced concrete beams, especially those made of high-strength concrete and those in earthquake-resistant structures, both the flexural strength and ductility need to be considered. From the numerical results obtained in a previous study on the post-peak behaviour and flexural ductility of reinforced concrete beams, the interrelation between the flexural strength and the flexural ductility that could be simultaneously achieved was evaluated and plotted in the form of chart...

  18. Flexural waves focusing through shunted piezoelectric patches

    Science.gov (United States)

    Yi, K.; Collet, M.; Ichchou, M.; Li, L.

    2016-07-01

    In this paper, we designed and analyzed a piezo-lens to focus flexural waves in thin plates. The piezo-lens is comprised of a host plate and piezoelectric arrays bonded on the surfaces of the plate. The piezoelectric patches are shunted with negative capacitance circuits. The effective refractive indexes inside the piezo-lens are designed to fit a hyperbolic secant distribution by tuning the negative capacitance values. A homogenized model of a piezo-mechanical system is adopted in the designing process of the piezo-lens. The wave focusing effect is studied by the finite element method. Numerical results show that the piezo-lens can focus flexural waves by bending their trajectories, and is effective in a large frequency band. The piezo-lens has the ability to focus flexural waves at different locations by tuning the shunting negative capacitance values. The piezo-lens is shown to be effective for flexural waves generated by different types of sources.

  19. Flexural Properties of Eastern Hardwood Pallet Parts

    Science.gov (United States)

    John A. McLeod; Marshall S. White; Paul A. Ifju; Philip A. Araman

    1991-01-01

    Accurate estimates of the flexural properties of pallet parts are critical to the safe, yet efficient, design of wood pallets. To develop more accurate data for hardwood pallet parts, 840 stringers and 2,520 deckboards, representing 14 hardwood species, were sampled from 35 mills distributed throughout the Eastern United States. The parts were sorted by species,...

  20. Psoriasis of the face and flexures.

    NARCIS (Netherlands)

    Kerkhof, P.C.M. van de; Murphy, G.M.; Austad, J.; Ljungberg, A.; Cambazard, F.; Duvold, L.B.

    2007-01-01

    Facial and flexural psoriasis may impair the quality of life of psoriatic patients considerably. For the adequate management of psoriasis it is important to pay attention to lesions at these sensitive sites, which require an approach different to that for lesions on other sites in several respects.

  1. Psoriasis of the face and flexures.

    NARCIS (Netherlands)

    Kerkhof, P.C.M. van de; Murphy, G.M.; Austad, J.; Ljungberg, A.; Cambazard, F.; Duvold, L.B.

    2007-01-01

    Facial and flexural psoriasis may impair the quality of life of psoriatic patients considerably. For the adequate management of psoriasis it is important to pay attention to lesions at these sensitive sites, which require an approach different to that for lesions on other sites in several respects.

  2. Flexural buckling of fire exposed aluminium columns

    NARCIS (Netherlands)

    Maljaars, J.; Twilt, L.; Soetens, F.

    2009-01-01

    In order to study buckling of fire exposed aluminium columns, a finite element model is developed. The results of this model are verified with experiments. Based on a parametric study with the finite element model, it is concluded that the simple calculation model for flexural buckling of fire expos

  3. Small angle electron diffraction and deflection

    Directory of Open Access Journals (Sweden)

    T. Koyama

    2012-03-01

    Full Text Available Electron optical system is constructed in order to obtain small angle diffraction and Lorentz deflection of electrons at the order of down to 10-6 radian in the reciprocal space. Long-distance camera length up to 3000 m is achieved in a conventional transmission electron microscope with LaB6 thermal emission type. The diffraction pattern at 5 × 10-6 radian is presented in a carbon replica grating with 500 nm lattice spacing while the magnetic deflection pattern at 2 × 10-5 radian is exhibited in Permalloy elements. A simultaneous recording of electron diffraction and Lorentz deflection is also demonstrated in 180 degree striped magnetic domains of La0.825Sr0.175MnO3.

  4. Mechanical radiation detection via sub-Brownian lever deflections

    Science.gov (United States)

    Hammig, Mark David

    2005-07-01

    A micromechanical lever that deflects in response to the impacts of charged particles is proposed as a means of improving upon the capabilities of existing radiation detection technology. When a particle strikes an object, momentum is transferred to the impacted body. The resulting body motion can be correlated to the energy of the incident particle. The momentum detector offers promise as a highly discriminating, high-resolution tool for ion sensing. Advances required to successfully realize a spectroscopic capability have been completed; specifically, techniques for reproducibly fabricating micromechanical structures have been optimized, and an instrument that measures miniscule deflections has been developed. Even absent substantial refinement efforts, the novel coupled-cavity optical detector can resolve lever motions on the order of 1--10 picometers. A method by which the Brownian motion of the lever can be stilled has been proven which elicits reductions sufficient to measure heavy-ion impact, the deflections from which may be several orders of magnitude below the thermal vibration amplitude. Using active forcing techniques, the Brownian vibration of the microlevers has been reduced from room temperature (288 K) to sub-Kelvin temperatures, for levers vibrating in air. The mechanical factors that limit the noise reduction magnitude are discussed and methods of surmounting those limitations are identified.

  5. Application of photothermal deflection spectroscopy to electrochemical interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rudnicki, J.D.; McLarnon, F.R.; Cairns, E.J.

    1992-03-01

    This dissertation discusses the theory and practice of Photothermal Deflection Spectroscopy (PDS, which is also known as probe beam deflection spectroscopy, PBDS, probe deflection technique, and mirage effect spectroscopy) with respect to electrochemical systems. Much of the discussion is also relevant to non-electrochemical systems. PDS can measure the optical absorption spectrum of interfaces and concentration gradients in the electrolyte adjacent to the electrode. These measurements can be made on a wide variety of electrode surfaces and can be performed under dynamic conditions. The first three chapters discuss the theory of the phenomena that can be detected by PDS, and the equipment used in a PDS system. A ``secondary gradient technique`` is proposed, which places the probe beam on the back of an electrode. The results of a numerical model yield a method for determining the offset of the probe beam from the electrode surface based on the frequency response of the PDS signal. The origin and control of noise in the PDS signal are discussed. A majority of the signal noise appears to be acoustic in origin. The electrochemical oxidation of platinum is used to demonstrate that PDS has sub-monolayer sensitivity necessary to study interfacial chemistry. The results allow us to propose a two-reaction oxidation mechanism: the platinum is electrochemically oxidized to form platinum dihydroxide and dehydrated by a non-electrochemical second-order reaction. The final chapter discusses the relation of PDS to similar and competing techniques, and considers possibilities for the future of the technique.

  6. Simulations of directed energy comet deflection

    Science.gov (United States)

    Zhang, Qicheng; Lubin, Philip M.; Hughes, Gary B.

    2016-09-01

    Earth-crossing asteroids and comets pose a long-term hazard to life and property on Earth. Schemes to mitigate the impact threat have been studied extensively but tend to focus on asteroid diversion while neglecting the possibility of a comet threat. Such schemes often demand physically intercepting the target by spacecraft, a task feasible only for targets identified decades in advance in a restricted range of orbits. A threatening comet is unlikely to satisfy these criteria and so necessitates a fundamentally different approach for diversion. Comets are naturally perturbed from purely gravitational trajectories through solar heating of their surfaces which activates sublimation-driven jets. Artificial heating of a comet, such as by a high-powered laser array in Earth orbit, may supplement natural heating by the Sun to purposefully manipulate its path to avoid an impact. The effectiveness of any particular laser array for a given comet depends on the comet's heating response which varies dramatically depending on factors including nucleus size, orbit and dynamical history. These factors are incorporated into a numerical orbital model using established models of nongravitational perturbations to evaluate the effectiveness and feasibility of using high-powered laser arrays in Earth orbit or on the ground to deflect a variety of comets. Simulation results suggest that orbital arrays of 500m and 10GW operating for 10 min=d over 1 yr may be adequate for mitigating impacts by comets up to 500m in diameter. Continuously operating ground-based arrays of 100m and 10GW may be similarly effective when appropriately located.

  7. The importance of being elastic: deflection of a badminton racket during a stroke.

    Science.gov (United States)

    Kwan, Maxine; Rasmussen, John

    2010-03-01

    The deflection profiles of a badminton racket during strokes performed by elite and world-class badminton players were recorded by strain gauges and subsequently analysed to determine the role of shaft stiffness in racket performance. Deflection behaviour was consistent in all strokes across all players, suggesting a controlled use of racket elasticity. In addition, all impacts occurred within 100 ms of each other, a duration in which deflection velocity provides an increase in racket velocity, indicating that the players were able to use racket elasticity to their advantage. Since deflection behaviour is a product of the racket-player interaction, further work is required to determine the effects of different racket properties and player techniques on the elastic response of rackets during strokes.

  8. Impeller deflection and modal finite element analysis.

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Nathan A.

    2013-10-01

    Deflections of an impeller due to centripetal forces are calculated using finite element analysis. The lateral, or out of plane, deflections are an important design consideration for this particular impeller because it incorporates an air bearing with critical gap tolerances. The target gap distance is approximately 10 microns at a rotational velocity of 2500 rpm. The centripetal forces acting on the impeller cause it deflect in a concave fashion, decreasing the initial gap distance as a function of radial position. This deflection is characterized for a previous and updated impeller design for comparative purposes. The impact of design options such as material selection, geometry dimensions, and operating rotational velocity are also explored, followed by a sensitivity study with these parameters bounded by specific design values. A modal analysis is also performed to calculate the impeller's natural frequencies which are desired to be avoided during operation. The finite element modeling techniques continue to be exercised by the impeller design team to address specific questions and evaluate conceptual designs, some of which are included in the Appendix.

  9. Flexural vibration band gaps in thin plates with two-dimensional binary locally resonant structures

    Institute of Scientific and Technical Information of China (English)

    Yu Dian-Long; Wang Gang; Liu Yao-Zong; Wen Ji-Hong; Qiu Jing

    2006-01-01

    The complete flexural vibration band gaps are studied in the thin plates with two-dimensional binary locally resonant structures, i.e. the composite plate consisting of soft rubber cylindrical inclusions periodically placed in a host material. Numerical simulations show that the low-frequency gaps of flexural wave exist in the thin plates. The width of the first gap decreases monotonically as the matrix density increases. The frequency response of the finite periodic thin plates is simulated by the finite element method, which provides attenuations of over 20dB in the frequency range of the band gaps. The findings will be significant in the application of phononic crystals.

  10. On the significance of microtubule flexural behavior in cytoskeletal mechanics.

    Directory of Open Access Journals (Sweden)

    Mehrdad Mehrbod

    exceed the axial energy of microtubules by 40 folds. A modification to tensegrity model is, therefore, proved necessary in order to take into account the flexural response of microtubules. The concept of "bendo-tensegrity" is proposed as a modification to contemporary cytoskeletal tensegrity models.

  11. Ductility of Reinforced Concrete Structures in Flexure

    DEFF Research Database (Denmark)

    Hestbech, Lars

    2013-01-01

    In this thesis, a rotational capacity model for flexural reinforced concrete elements is presented. The model is based on the general assumption, that any other failure mode than bending is prevented by proper design. This includes failure due to shear, anchorage, concentrated loads etc. Likewise......, beams governed by failure described by Kani’s Valley are not covered by the presented model. Hence, the model is delimited to shear reinforced elements failing in flexure. The rotational capacity model is divided into the following calculation procedures. 1. A cross sectional analysis of the critical...... are not necessarily so. An example shows the applicability of the model and a parametric study shows the advantages of the model compared with code provisions. Finally, improvements of the compression zone modelling is performed in order to include a better performance when concrete crushing is the failure criterion...

  12. Flexural Mie Resonances: Localized Surface Platonic Modes

    CERN Document Server

    Farhat, M; Chen, P Y; Salama, K N; Bagci, H

    2016-01-01

    Surface plasmons polaritons were thought to exist only in metals near their plasma frequencies. The concept of spoof plasmons extended the realms of plasmonics to domains such as radio frequencies, magnetism, or even acoustic waves. Here, we introduce the concept of localized surface platonic modes (SPMs). We demonstrate that they can be generated on a two-dimensional clamped (or stress-free) cylindrical surface, in a thin elastic plate, with subwavelength corrugations under excitation by an incident flexural plane wave. Our results show that the corrugated rigid surface is elastically equivalent to a cylindrical scatterer with negatively uniform and dispersive flexural rigidity. This, indeed, suggests that plasmonic-like platonic materials can be engineered with potential applications in various areas including earthquake sensing, or elastic imaging and cloaking.

  13. Flexural creep behaviour of jute polypropylene composites

    Science.gov (United States)

    Chandekar, Harichandra; Chaudhari, Vikas

    2016-09-01

    Present study is about the flexural creep behaviour of jute fabric reinforced polypropylene (Jute-PP) composites. The PP sheet and alkali treated jute fabric is stacked alternately and hot pressed in compression molding machine to get Jute-PP composite laminate. The flexural creep study is carried out on dynamic mechanical analyzer. The creep behaviour of the composite is modeled using four-parameter Burgers model. Short-term accelerated creep testing is conducted which is later used to predict long term creep behaviour. The feasibility of the construction of a master curve using the time-temperature superposition (TTS) principle to predict long term creep behavior of unreinforced PP and Jute-PP composite is investigated.

  14. Deflection of uncooperative targets using laser ablation

    Science.gov (United States)

    Thiry, Nicolas; Vasile, Massimiliano

    2015-09-01

    Owing to their ability to move a target in space without requiring propellant, laser-based deflection methods have gained attention among the research community in the recent years. With laser ablation, the vaporized material is used to push the target itself allowing for a significant reduction in the mass requirement for a space mission. Specifically, this paper addresses two important issues which are thought to limit seriously the potential efficiency of a laser-deflection method: the impact of the tumbling motion of the target as well as the impact of the finite thickness of the material ablated in the case of a space debris. In this paper, we developed a steady-state analytical model based on energetic considerations in order to predict the efficiency range theoretically allowed by a laser deflection system in absence of the two aforementioned issues. A numerical model was then implemented to solve the transient heat equation in presence of vaporization and melting and account for the tumbling rate of the target. This model was also translated to the case where the target is a space debris by considering material properties of an aluminium 6061-T6 alloy and adapting at every time-step the size of the computational domain along with the recession speed of the interface in order to account for the finite thickness of the debris component. The comparison between the numerical results and the analytical predictions allow us to draw interesting conclusions regarding the momentum coupling achievable by a given laser deflection system both for asteroids and space debris in function of the flux, the rotation rate of the target and its material properties. In the last section of this paper, we show how a reasonably small spacecraft could deflect a 56m asteroid with a laser system requiring less than 5kW of input power.

  15. Flexural Free Vibrations of Multistep Nonuniform Beams

    Directory of Open Access Journals (Sweden)

    Guojin Tan

    2016-01-01

    Full Text Available This paper presents an exact approach to investigate the flexural free vibrations of multistep nonuniform beams. Firstly, one-step beam with moment of inertia and mass per unit length varying as I(x=α11+βxr+4 and m(x=α21+βxr was studied. By using appropriate transformations, the differential equation for flexural free vibration of one-step beam with variable cross section is reduced to a four-order differential equation with constant coefficients. According to different types of roots for the characteristic equation of four-order differential equation with constant coefficients, two kinds of modal shape functions are obtained, and the general solutions for flexural free vibration of one-step beam with variable cross section are presented. An exact approach to solve the natural frequencies and modal shapes of multistep beam with variable cross section is presented by using transfer matrix method, the exact general solutions of one-step beam, and iterative method. Numerical examples reveal that the calculated frequencies and modal shapes are in good agreement with the finite element method (FEM, which demonstrates the solutions of present method are exact ones.

  16. Tachykinin receptors in the equine pelvic flexure.

    Science.gov (United States)

    Sonea, I M; Wilson, D V; Bowker, R M; Robinson, N E

    1997-07-01

    Tachykinins, of which substance P (SP) is the prototype, are neuropeptides which are widely distributed in the nervous systems. In the equine gut, SP is present in enteric nerves and is a powerful constrictor of enteric muscle; in other species, SP is also known to have potent vasodilatory and pro-inflammatory effects. The specific effects of SP are determined by the subtype of receptor present in the target tissue. There are 3 known subtypes of tachykinin receptors, distinguished by their relative affinities for SP and other tachykinins. The distribution of SP binding sites in the equine pelvic flexure was determined using 125I-Bolton Hunter SP (I-BHSP) autoradiography. Most I-BHSP binding sites were determined to be saturable and specific, therefore presumably representing tachykinin receptors. The greatest degree of I-BHSP binding occurred over very small vessels, and over the muscularis mucosae; I-BHSP binding was also intense over the circular muscle of the muscularis externa and mucosa, and present, although less intense, over the longitudinal muscle of the muscularis externa. Competition of I-BHSP with specific receptor agonists for binding sites in the equine pelvic flexure were used to determine the subtypes of tachykinin receptors present. The neurokinin-1 receptor subtype predominated in the equine pelvic flexure, followed by the neurokinin-3 receptor subtype.

  17. Flexural Strength of Functionally Graded Nanotube Reinforced Sandwich Spherical Panel

    Science.gov (United States)

    Mahapatra, Trupti R.; Mehar, Kulmani; Panda, Subrata K.; Dewangan, S.; Dash, Sushmita

    2017-02-01

    The flexural behaviour of the functionally graded sandwich spherical panel under uniform thermal environment has been investigated in the present work. The face sheets of the sandwich structure are made by the functionally graded carbon nanotube reinforced material and the core face is made by the isotropic and homogeneous material. The material properties of both the fiber and matrix are assumed to be temperature dependent. The sandwich panel model is developed in the framework of the first order shear deformation theory and the governing equation of motion is derived using the variational principle. For the discretization purpose a suitable shell element has been employed from the ANSYS library and the responses are computed using a parametric design language (APDL) coding. The performance and accuracy of the developed model has been established through the convergence and validation by comparing the obtained results with previously published results. Finally, the influence of different geometrical parameters and material properties on the flexural behaviour of the sandwich spherical panel in thermal environment has been investigated through various numerical illustrations and discussed in details.

  18. Flexural Behavior of Continuous Bubbled Reinforced Reactive Powder Concrete Flat Slab

    Directory of Open Access Journals (Sweden)

    Mohammad Redha K. Mahmood

    2017-05-01

    Full Text Available This paper presents an experimental investigation on flexural behavior of continuous bubbled reinforced Reactive Powder Concrete (RPC flat slabs. Bubbled slab is one of the various types of voided slabs. It consist of bubbles placed inside a concrete slab which will reduce the self-weight of the structure by about 35% (Tina Lai 2009. On the other hand, using RPC make it possible for structural member to have smaller dimensions due to the great strength of this type of concrete. In this study these two method are used to increase the building spaces dimensions by reducing self-weigh of the structure by using bubbled slabs and to decrease the structural members' dimensions by using RPC have been investigated together. To study the flexural behavior of continuous bubbled flat slabs such as the ultimate load carrying capacity, central deflection and slabs crack pattern at the ultimate load, seven types of slabs were tested. The parameters of the study were type of concrete (RPC and Normal Concrete (NC, bubbles diameter to slab thickness ratio (D/t of (0.6 and 0.7, type of loading (distributed and line load and solid slab. The test results show that the crack pattern and ultimate load capacity as well as maximum deflection depends on all of the mentioned parameters, were by increasing (D/t ratio the ultimate load capacity increases about (7.36%, 5.46% and 16.52% for RPC slabs under distributed load, line load and NC slabs, respectively. The solid slab increases the ultimate load about (4.05% compare to bubbled slab. Also, the line load decreases the ultimate load compare to distributed load by (3.45-5.16% for different (D/t ratio, and using the NC also decreases the ultimate load compare to RPC by (48-52.13% for different (D/t ratio

  19. Deflection by kinetic impact: Sensitivity to asteroid properties

    Science.gov (United States)

    Bruck Syal, Megan; Michael Owen, J.; Miller, Paul L.

    2016-05-01

    Impacting an asteroid with a spacecraft traveling at high speed delivers an impulsive change in velocity to the body. In certain circumstances, this strategy could be used to deflect a hazardous asteroid, moving its orbital path off of an Earth-impacting course. However, the efficacy of momentum delivery to asteroids by hypervelocity impact is sensitive to both the impact conditions (particularly velocity) and specific characteristics of the target asteroid. Here we numerically model asteroid response to kinetic impactors under a wide range of initial conditions, using an Adaptive Smoothed Particle Hydrodynamics code. Impact velocities spanning 1-30 km/s were investigated, yielding, for a particular set of assumptions about the modeled target material, a power-law dependence consistent with a velocity-scaling exponent of μ = 0.44. Target characteristics including equation of state, strength model, porosity, rotational state, and shape were varied, and corresponding changes in asteroid response were documented. The kinetic-impact momentum-multiplication factor, β, decreases with increasing asteroid cohesion and increasing porosity. Although increased porosity lowers β, larger porosities result in greater deflection velocities, as a consequence of reduced target masses for asteroids of fixed size. Porosity also lowers disruption risk for kinetic impacts near the threshold of disruption. Including fast (P = 2.5 h) and very fast (P = 100 s) rotation did not significantly alter β but did affect the risk of disruption by the impact event. Asteroid shape is found to influence the efficiency of momentum delivery, as local slope conditions can change the orientation of the crater ejecta momentum vector. These results emphasize the need for asteroid characterization studies to bracket the range of target conditions expected at near-Earth asteroids while also highlighting some of the principal uncertainties associated with the kinetic-impact deflection strategy.

  20. Study on Flexural Behaviour of Ternary Blended Reinforced Self Compacting Concrete Beam with Conventional RCC Beam

    Science.gov (United States)

    Marshaline Seles, M.; Suryanarayanan, R.; Vivek, S. S.; Dhinakaran, G.

    2017-07-01

    The conventional concrete when used for structures having dense congested reinforcement, the problems such as external compaction and vibration needs special attention. In such case, the self compacting concrete (SCC) which has the properties like flow ability, passing and filling ability would be an obvious answer. All those SCC flow behavior was governed by EFNARC specifications. In present study, the combination type of SCC was prepared by replacing cement with silica fume (SF) and metakaolin (MK) along with optimum dosages of chemical admixtures. From the fresh property test, cube compressive strength and cylinder split tensile strength, optimum ternary mix was obtained. In order to study the flexural behavior, the optimum ternary mix was taken in which beam specimens of size 1200 mm x 100 mm x 200 mm was designed as singly reinforced section according to IS: 456-2000, Limit state method. Finally the comparative experimental analysis was made between conventional RCC and SCC beams of same grade in terms of flexural strength namely yield load & ultimate load, load- deflection curve, crack size and pattern respectively.

  1. Comparative Study on Flexural Strengthening of RC Beams using CFRP Laminate by Different Techniques

    Science.gov (United States)

    Jeevan, N.; Jagannatha Reddy, H. N.

    2017-08-01

    This paper presents a detailed study on flexural behaviour of RC beams strengthened using Carbon Fiber Reinforced Polymer (CFRP) laminate. A detailed study was made on strengthened beam using Externally Bonded Laminate (EBL) and Internally Bonded Laminate (IBL) techniques. In IBL technique the laminate is sandwiched between the layers of epoxy mounted on the cover portion by the groove. The beams were designed as under-reinforced section. Totally six beams were casted, out of this two beams were control beams. Strengthened beams were divided into two sets (IBL and EBL) of two beams each. The main aim of this work is to delay the debonding failure in order to enhance the ultimate load carrying capacity for strengthened beams. Four-point bending flexural tests were conducted on specimens up to failure. The experimental results illustrate that, the strengthened beams significantly increases the cracking, working and ultimate load when compared with control beams. IBL technique shows the significant increase in the debonding strain by delaying the beam from debonding failure which in turn enhances the ultimate load by almost 73% compared with control beam and 39% with EBL technique. All the deflection values from the experiments are within the limit of codal provisions. The IBL technique was emerged as the better strengthening technique, which increases almost 41% of working load (Pw) compared with strengthening codes.

  2. Dark matter prospects in deflected mirage mediation

    Energy Technology Data Exchange (ETDEWEB)

    Holmes, Michael; Nelson, Brent D., E-mail: holmes.mi@neu.edu, E-mail: b.nelson@neu.edu [Department of Physics, Northeastern University, Boston, MA 02115 (United States)

    2009-07-01

    The recently introduced deflected mirage mediation (DMM) model is a string-motivated paradigm in which all three of the major supersymmetry-breaking transmission mechanisms are operative. We begin a systematic exploration of the parameter space of this rich model context, paying special attention to the pattern of gaugino masses which arise. In this work we focus on the dark matter phenomenology of the DMM model as such signals are the least influenced by the model-dependent scalar masses. We find that a large portion of the parameter space in which the three mediation mechanisms have a similar effective mass scale of 1 TeV or less will be probed by future direct and indirect detection experiments. Distinguishing deflected mirage mediation from the mirage model without gauge mediation will prove difficult without collider input, though we indicate how gamma ray signals may provide an opportunity for distinguishing between the two paradigms.

  3. Surface effects on large deflection of nanowires

    Institute of Scientific and Technical Information of China (English)

    杨帆

    2015-01-01

    Surface effects play an important role in the mechanical behavior of nanosized structural elements owing to the increased ratio of surface area to volume. The surface effects on the large deflection of nanowires were considered. Both geometric nonlinearity in finite deformation and surface effects at nanoscale were taken into account to analyze the bending of nanowires subjected to a concentrated force. For simply supported beams and clamped-clamped beams, the influence of surface effects and geometric nonlinearity were discussed in detail. It is found that both surface effects and geometric nonlinearity tend to decrease the deflection of bending nanowires and thus increase the effective elastic modulus of nanowires. Surface effects yield the size dependent behavior of nanowires.

  4. Optical forces through guided light deflections

    DEFF Research Database (Denmark)

    Palima, Darwin; Bañas, Andrew Rafael; Vizsnyiczai, Gaszton;

    2013-01-01

    Optical trapping and manipulation typically relies on shaping focused light to control the optical force, usually on spherical objects. However, one can also shape the object to control the light deflection arising from the light-matter interaction and, hence, achieve desired optomechanical effects....... In this work we look into the object shaping aspect and its potential for controlled optical manipulation. Using a simple bent waveguide as example, our numerical simulations show that the guided deflection of light efficiently converts incident light momentum into optical force with one order...... show that the force on the waveguide exceeds the combined forces on spherical trapping handles. Furthermore, it shows that static illumination can exert a constant force on a moving structure, unlike the position-dependent forces from harmonic potentials in conventional trapping....

  5. Deflection analysis of rectangular spatial coverage truss

    Directory of Open Access Journals (Sweden)

    M.N. Kirsanov

    2015-02-01

    Full Text Available An elastic spatial statically determinate truss of regular type, simulating the rectangular in plan coverage was considered. In the plane of the base the truss has two axes of symmetry. Four support structures (spherical hinge, cylindrical hinge and two vertical rods are located at its corners. An analytic solution was found for forces in the rods of the truss. Using the Maxwell-Mohr’s formula, the dependence of the deflection of the center was discovered in the truss under the influence of the concentrated force. There are five parameters of the problem in this formula: three linear dimensions, and the numbers of hinges on its lateral sides. To determine the desired patterns by means of the computer mathematics system Maple the recursion task by two parameters was solved. It was shown that dependence of the deflection on the number of panels and height of the truss detects a minimum, allowing optimizing the size of the structure.

  6. Deflection of proton beams by crystal miscut surface

    CERN Document Server

    Babaev, A A; Dabagov, S B

    2014-01-01

    First computer experiment results on proton beam deflection by the crystal miscut surface are presented. The phenomenology of proton channeling and quasichanneling has been applied to describe new features of the beam deflection. The analysis predicts efficient beam deflection by the acute crystal end due to repelling miscut potential.

  7. Deflection rheoevolution of lithosphere under subduction

    Institute of Scientific and Technical Information of China (English)

    韩玉英; 王维襄

    1997-01-01

    Along the continental margin, the tectonic system consisting of trench, island arc, back arc basin and outer rise is often known as a convergent transitional belt between the oceanic lithosphere and the continental litho-sphere. The occurrence, development and activity of trench and outer rise bear closely on the underthrusting process of the oceanic lithosphere. A generalized analytical theory of deflection rheoevolution of lithosphere under subduction is established, and solutions with universal significance have been obtained.

  8. [Pliability and deflection of diagnostic catheters].

    Science.gov (United States)

    Pelyhe, Liza; Bognár, Eszter

    2014-09-28

    The cardiac catheter is an intravascular catheter, which is introduced or implanted into the heart for diagnostic or therapeutic reasons. The catheters may break or king during their introduction and/or removal. The aim of the authors was to study the pliability of two catheters with the same material but different diameters according to the Food and Drug Administration's recommendation. The bending points, diameter decrease, deflection, and their correlation and dependence on the distance from the tip, as well as the influence of the initial diameter of the catheters were determined. The bending of catheters was performed on 9 bending points (120-280 mm from the tip by 20 mm) on 16 gauges with different radius (10-2.5 mm by 0.5 mm). A linear dependency between the diameter decrease and deflection was observed, which was independent from the placement of the measurement in both catheters examined. The larger initial diameter had significant (p = 0.05) greater diameter decrease than the smaller, but the curves characteristic of the diameter decrease and deflection were similar. The applied method seems to be useful for the examination of weak points of cardiac catheters.

  9. Application of photothermal deflection spectroscopy to electrochemical interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rudnicki, J.D.; McLarnon, F.R.; Cairns, E.J.

    1992-03-01

    This dissertation discusses the theory and practice of Photothermal Deflection Spectroscopy (PDS, which is also known as probe beam deflection spectroscopy, PBDS, probe deflection technique, and mirage effect spectroscopy) with respect to electrochemical systems. Much of the discussion is also relevant to non-electrochemical systems. PDS can measure the optical absorption spectrum of interfaces and concentration gradients in the electrolyte adjacent to the electrode. These measurements can be made on a wide variety of electrode surfaces and can be performed under dynamic conditions. The first three chapters discuss the theory of the phenomena that can be detected by PDS, and the equipment used in a PDS system. A secondary gradient technique'' is proposed, which places the probe beam on the back of an electrode. The results of a numerical model yield a method for determining the offset of the probe beam from the electrode surface based on the frequency response of the PDS signal. The origin and control of noise in the PDS signal are discussed. A majority of the signal noise appears to be acoustic in origin. The electrochemical oxidation of platinum is used to demonstrate that PDS has sub-monolayer sensitivity necessary to study interfacial chemistry. The results allow us to propose a two-reaction oxidation mechanism: the platinum is electrochemically oxidized to form platinum dihydroxide and dehydrated by a non-electrochemical second-order reaction. The final chapter discusses the relation of PDS to similar and competing techniques, and considers possibilities for the future of the technique.

  10. Effect of the Fiber Type and Axial Stiffness of FRCM on the Flexural Strengthening of RC Beams

    Directory of Open Access Journals (Sweden)

    Abdulla Jabr

    2017-01-01

    Full Text Available The use of externally-bonded fiber-reinforced polymer (FRP sheets has been successfully used in the repair and strengthening of both the shear and flexural capacities of reinforced concrete (RC beams, slabs and columns since the 1990s. However, the externally-bonded FRP reinforcements still present many disadvantages, such as poor performance in elevated temperature and fire, lack of permeability and strength degradation when exposed to ultraviolet radiation. To remedy such drawbacks, the fiber-/fabric-reinforced cementitious matrix (FRCM has been recently introduced. The FRCM system consists of a fiber mesh or grid embedded in a cementitious bonding material. The present research investigates the flexural strengthening of reinforced concrete (RC beams with FRCM. The experimental testing included eight large-scale concrete beams, 150 mm × 250 mm × 2400 mm, internally reinforced with steel bars and strengthened in flexure with FRCM. The investigated parameters were the internal steel reinforcement ratio and the FRCM systems. Two steel reinforcement ratios of 0.18 and 0.36 of the balanced reinforcement ratio, as well as three FRCM systems using glass, carbon and PBO fibers were investigated. Test results are presented in terms of load-deflection, load-strain and load-crack width relationships. The test results indicated that the PBO FRCM significantly increased the ultimate capacity of the strengthened RC beams with both low and moderate internal reinforcement ratios compared to the glass and carbon FRCM.

  11. Free flexural vibration of functionally graded size-dependent nanoplates

    CERN Document Server

    Natarajan, S; Thangavel, M

    2012-01-01

    In this paper, the linear free flexural vibration behaviour of functionally graded (FG) size-dependent nanoplates are investigated using the finite element method. The field variables are approximated by non-uniform rational B-splines. The size-dependent FG nanoplate is investigated by using Eringen's differential form of nonlocal elasticity theory. The material properties are assumed to vary only in the thickness direction and the effective properties for FG nanoplate are computed using Mori-Tanaka homogenization scheme. The accuracy of the present formulation is tested considering the problems for which solutions are available. A detailed numerical study is carried out to examine the effect of material gradient index, the characteristic internal length, the plate thickness, the plate aspect ratio and the boundary conditions on the global response of FG nanoplate.

  12. Flexure and isostasy of lunar mascons

    Science.gov (United States)

    Peters, S. T. M.; Foing, B. H.

    2009-04-01

    A mascon is a region of a planet's or moon's crust that contains an excess positive gravity anomaly, indicating the presence of additional mass in this area. Mascons on the Moon coincide with the locations of circular basins and hence a related origin for both is likely. The formation of a circular basin includes the excavation of the upper parts of the crust and subsequent upwelling of the lower parts as a result of isostatic compensation [1]. Afterwards, filling of the basins by mare basalts leads to concentrations of dense rocks and is hence suggested as the origin of the mascon. The present day presence of mascons indicates that there was no subsequent isostasy leading to downward migration of the moho and that they are hence supported by an elastic layer on the surface of the Moon. The interaction between mascons and this elastic shell is the main topic of our modeling. Since they were discovered by Muller and Sjogren (1968), the origin of mascons and their interaction with the crust became clearer. As we point out below, several questions have however remained unsolved. Our contribution includes the usage of recent gravity and topography models that have not been applied in mascon studies yet. Mascons act like a dense load on the lunar lithosphere and hence flexure it. Flexure profiles of circular basins have been made by previous authors [2], however, only a single-layered crust was considered until now. Our modeling includes the two-layered crustal model preferred by Wieczorek and Phillips (1997) which explains the gravity to topography ratios of the lunar highlands. On the hand of previously existing data it has been suggested that rings of negative gravity anomalies surround the mascons [3]. Whereas this observation was first questionable, prereleases of the high-resolution KAGUYA gravity measurements recently clearly confirmed the presence of these features. Part of our modeling focuses on the location and extent of the negative anomalies in respect to

  13. Derivation of a poroelastic flexural shell model

    CERN Document Server

    Mikelic, Andro

    2015-01-01

    In this paper we investigate the limit behavior of the solution to quasi-static Biot's equations in thin poroelastic flexural shells as the thickness of the shell tends to zero and extend the results obtained for the poroelastic plate by Marciniak-Czochra and Mikeli\\'c. We choose Terzaghi's time corresponding to the shell thickness and obtain the strong convergence of the three-dimensional solid displacement, fluid pressure and total poroelastic stress to the solution of the new class of shell equations. The derived bending equation is coupled with the pressure equation and it contains the bending moment due to the variation in pore pressure across the shell thickness. The effective pressure equation is parabolic only in the normal direction. As additional terms it contains the time derivative of the middle-surface flexural strain. Derivation of the model presents an extension of the results on the derivation of classical linear elastic shells by Ciarlet and collaborators to the poroelastic shells case. The n...

  14. Research on differences and correlation between tensile, compression and flexural moduli of cement stabilized macadam

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-07-01

    Full Text Available In order to reveal the differences and conversion relations between the tensile, compressive and flexural moduli of cement stabilized macadam, in this paper, we develop a new test method for measuring three moduli simultaneously. By using the materials testing system, we test three moduli of the cement stabilized macadam under different loading rates, propose a flexural modulus calculation formula which considers the shearing effect, reveal the change rules of the tensile, compression and flexural moduli with the loading rate and establish the conversion relationships between the three moduli. The results indicate that: three moduli become larger with the increase of the loading rate, showing a power function pattern; with the shear effect considered, the flexural modulus is increased by 47% approximately over that in the current test method; the tensile and compression moduli of cement stabilized macadam are significantly different. Therefore, if only the compression modulus is used as the structural design parameter of asphalt pavement, there will be a great deviation in the analysis of the load response. In order to achieve scientific design and calculation, the appropriate design parameters should be chosen based on the actual stress state at each point inside the pavement structure.

  15. Characterisation of a Mechanical Deflection Sensor

    CSIR Research Space (South Africa)

    Miyambo, M

    2012-10-01

    Full Text Available ). REFERENCES Snyman, I.M. and Reinecke, J.D. 2006. Measuring the impulse from an explosive charge, Ballistics Symposium South Africa, Denel-OTB, Bredasdorp, 15?16 Aug 2006. Miyambo, M.E. and Pandelani, T. 2012. The Mechanical Deflection Sensor Test... Mechanical Defl ection Sensor M MIYAMBO AND T PANDELANI CSIR Defence, Peace, Safety and Security, PO Box 395, Pretoria, South Africa, 0001 Email: mmiyambo@csir.co.za ? www.csir.co.za INTRODUCTION The CSIR Defence, Peace, Safety and Security (DPSS...

  16. Investigation of the crossed flexure pivot and the dynamics of the momentum management system spacecraft control component and the dynamically tuned gyroscope

    Science.gov (United States)

    Cain, Jeffrey Stuart

    1999-11-01

    The Momentum Management System (MMS) is a novel concept which incorporates the rate sensing capabilities of the Dynamically Tuned Gyro (DTG) and the actuation ability of a gimballed momentum wheel. The mechanical components of the MMS and DTG consist of a rotor, gimbal and shaft which are connected using crossed flexure pivots. This document presents a static and vibration analysis of the crossed flexure pivot and a kinematic and dynamic analysis of the Dynamically Tuned Gyroscope and the Momentum Management System. Hamilton's principle of minimum energy is used to develop static and vibrational models of the crossed flexure pivot. These models were used to design the pivots used in the MMS. Comparisons are made between the static model results and those found in the literature. A discussion of the effects of large angle deflections and wide pivot strips is also included. In order to provide additional experimental validation of the static equations, a pivot was designed and tested and the results compared to the theoretical model. The static model showed that the torsional stiffness of the crossed flexure pivot is dependent on the applied loads and that the buckling load is lower than previously thought. The vibration analysis was used to find the unforced, fundamental frequencies of the crossed flexure pivots used in the MMS. A two body stability analysis of the DTG and MMS involving the gimbal and rotor was performed using small angle equations. This included a study of the effect of using bearings instead of the crossed flexure pivots. The DTG and MMS were found to be unstable only in extreme cases. The dynamic equations were derived using Lagrange's Equations and Hamilton's Canonical Equations. The dynamic equations are used in a numerical simulation which allows the MMS to be modelled. The results show that the three body analysis involving the rotor, gimbal and shaft is more accurate than the standard two body analysis seen in the literature, especially when

  17. A Bridge Deflection Monitoring System Based on CCD

    Directory of Open Access Journals (Sweden)

    Baohua Shan

    2016-01-01

    Full Text Available For long-term monitoring of the midspan deflection of Songjiazhuang cloverleaf junction on 309 national roads in Zibo city, this paper proposes Zhang’s calibration-based DIC deflection monitoring method. CCD cameras are used to track the change of targets’ position, Zhang’s calibration algorithm is introduced to acquire the intrinsic and extrinsic parameters of CCD cameras, and the DIC method is combined with Zhang’s calibration algorithm to measure bridge deflection. The comparative test between Zhang’s calibration and scale calibration is conducted in lab, and experimental results indicate that the proposed method has higher precision. According to the deflection monitoring scheme, the deflection monitoring software for Songjiazhuang cloverleaf junction is developed by MATLAB, and a 4-channel CCD deflection monitoring system for Songjiazhuang cloverleaf junction is integrated in this paper. This deflection monitoring system includes functions such as image preview, simultaneous collection, camera calibration, deflection display, and data storage. In situ deflection curves show a consistent trend; this suggests that the proposed method is reliable and is suitable for the long-term monitoring of bridge deflection.

  18. LOADS INFLUENCE ANALYSIS ON NOVEL HIGH PRECISION FLEXURE PARALLEL POSITIONER

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    A large workspace flexure parallel positioner system is developed, which can attain sub-micron scale accuracy over cubic centimeter motion range for utilizing novel wide-range flexure hinges instead of the conventional mechanism joints. Flexure hinges eliminate backlash and friction, but on the other hand their deformation caused by initial loads influences the positioning accuracy greatly, so discussions about loads' influence analysis on this flexure parallel positioner is very necessary. The stiffness model of the whole mechanism is presented via stiffness assembly method based on the stiffness model of individual flexure hinge. And the analysis results are validated by the finite element analysis (FEA) simulation and experiment tests, which provide essential data to the practical application of this positioner system.

  19. Enhanced Deflection of Light Ray by Atomic Ensemble on Coherent Population Oscillation

    Institute of Scientific and Technical Information of China (English)

    LU Jing; ZHOU Lan; KUANG Le-Man

    2009-01-01

    In recent experiments [e.g., Nature Physics 2 (2006) 332], the enhanced light deflection in an atomic ensemble due to inhomogeneous fields is demonstrated by the electromagnetically induced transparency (EIT) based mechanism. In this paper, we explore a different mechanism for the similar phenomenon of the enhanced light deflection.This mechanism is based on the coherent population oscillation, which leads to the hole burning in the absorption spectrum. The medium causing the deflection of probe light is an ensemble of two-level atoms manipulated by a strong controlled field on the two photon resonances. In the large detuning condition, the response of the medium to the pump field and signal field is obtained with steady state approximation. And it is found that after the probe field travels across the medium, the signal ray bends due to the spatial-dependent profile of the control beam.

  20. Continuum Mechanics of Beam and Plate Flexure

    DEFF Research Database (Denmark)

    Jönsson, Jeppe

    This text has been written and used during the spring of 1995 for a course on flexural mechanics of beams and plates at Aalborg University. The idea has been to concentrate on basic principles of the theories, which are of importance to the modern structural engineer. Today's structural engineer...... must be acquainted with the classic beam and plate theories, when reading manuals and using modern software tools such as the finite element method. Each chapter includes supplementary theory and derivations enabling consultation of the notes also at a later stage of study. A preliminary chapter...... analysis of beam structures is presented and includes both upper and lower-bound solution techniques. The remaining chapters are devoted to plates. The classic elastic plate theories are presented. The plastic yield line theory for plates is presented including both upper and lower-bound techniques...

  1. Continuum Mechanics of Beam and Plate Flexure

    DEFF Research Database (Denmark)

    Jönsson, Jeppe

    This text has been written and used during the spring of 1995 for a course on flexural mechanics of beams and plates at Aalborg University. The idea has been to concentrate on basic principles of the theories, which are of importance to the modern structural engineer. Today's structural engineer...... must be acquainted with the classic beam and plate theories, when reading manuals and using modern software tools such as the finite element method. Each chapter includes supplementary theory and derivations enabling consultation of the notes also at a later stage of study. A preliminary chapter...... introduces the modern notation used in textbooks and in research today. It further gives an introduction to three-dimensional continuum mechanics of elastic bodies and the related principles of virtual work. The ideas to give the students a basic understanding of the stresses and strains, the equilibrium...

  2. Influence of moisture absorption on the flexural properties of composites made of epoxy resin reinforced with low-content iron particles

    Indian Academy of Sciences (India)

    E SIDERIDIS; J VENETIS; E KYRIAZI; V KYTOPOULOS

    2017-08-01

    In this work, the effect of moisture absorption on the mechanical properties of particulate composite materials isstudied. Moisture absorption constitutes a main parameter affecting the thermomechanical behaviour of composites, since itcauses plasticization of the polymer matrix with a concurrent swelling. In the present work, the influence of water absorptionon the flexural properties of particle-reinforced composites was thoroughly investigated. It was found that during the processof moisture absorption there exists a variation of the flexural properties closely related to the degradation of the mechanicalbehaviour of the composite, as well as the percentage amount of moisture absorbed. Experiments were carried out withcomposite made of epoxy resin reinforced with low-content iron particles. The variation of ultimate stress, breaking strain,deflection, elastic modulus and Poisson ratio due to water absorption was examined.

  3. Multi-objective optimization of flexure hinge mechanism considering thermal–mechanical coupling deformation and natural frequency

    Directory of Open Access Journals (Sweden)

    Lufan Zhang

    2017-01-01

    Full Text Available Flexure hinge mechanism plays a key part in realization of terminal nano-positioning. The performance of flexure hinge mechanism is determined by its positioning design. Based on the actual working conditions, its finite element model is built and calculated in ANSYS. Moreover, change trends of deformation and natural frequency with positioning design parameters are revealed. And sensitivity analysis is performed for exploration response to these parameters. These parameters are used to build four objective functions. To solve it conveniently, the multi-objective optimization problem is transferred to the form of single-objective function with constraints. An optimal mechanism is obtained by an optimization method combining ANSYS with MATLAB. Finite element numerical simulation has been carried out to demonstrate the superiority of the optimal flexure hinge mechanism, and the superiority can be further verified by experiment. Measurements and tests have been conducted at varying accelerations, velocities, and displacements, to quantify and characterize the amount of acceleration responses obtained from flexure hinge mechanism before and after optimization. Both time- and frequency-domain analyses of experimental data show that the optimal flexure hinge mechanism has superior effectiveness. It will provide a basic for realizing high acceleration and high precision positioning of macro–micro motion platform.

  4. A Limited Deflection Routing Algorithm Based on Burst Loss Threshold in OBS Networks

    Institute of Scientific and Technical Information of China (English)

    WANG Ru-yan; LONG Ke-ping; WU Wei; YANG Xiao-long; ZHU Wei-le

    2005-01-01

    The deflection routing protocol is an effective contention resolution in Optical Burst Switching network. However, it can worsen loss performance of non-deflected burst on the deflection route. To improve the burst loss performance, a limited deflection routing scheme based on burst loss threshold is proposed to prevent injudicious deflection routing. By using threshold check function, it restrainedly allows the deflected burst to preemptive network resource, consequently, improve the QoS performance of non-deflected burst. Simulation results show that the scheme can efficiently prevent deflected burst contending with non-deflected burst on deflection route, and effectively improve the burst loss performance of entire networks.

  5. Deflections of Nanowires with Consideration of Surface Effects

    Institute of Scientific and Technical Information of China (English)

    LI He; YANG Zhou; ZHANG Yi-Min; WEN Bang-Chun

    2010-01-01

    @@ The elementary beam model is modified to include the surface effects and used to analyze the deflections of nanowires under different boundary conditions.The results show that compared to deflections of nanowires without consideration of surface effects,the surface effects can enlarge or reduce deflections of nanowires,and nanowire buckling occurs under certaJn conditions.This study might be helpful for design of nanowire-based nanoelectromechanical systems.

  6. Self-contained instrument for measuring subterranean tunnel wall deflection

    Science.gov (United States)

    Rasmussen, Donald Edgar; Hof, Jr., Peter John

    1978-01-01

    The deflection of a subterranean tunnel is measured with a rod-like, self-contained instrument that is adapted to be inserted into a radially extending bore of the tunnel adjacent an end of the tunnel where the tunnel is being dug. One end of the instrument is anchored at the end of the bore remote from the tunnel wall, while the other end of the intrument is anchored adjacent the end of the wall in proximity to the tunnel wall. The two ends of the instrument are linearly displaceable relative to each other; the displacement is measured by a transducer means mounted on the instrument. Included in the instrument is a data storage means including a paper tape recorder periodically responsive to a parallel binary signal indicative of the measured displacement.

  7. Photon deflection by a Coulomb field in noncommutative QED

    Energy Technology Data Exchange (ETDEWEB)

    Pires, C A de S [Departamento de FIsica, Universidade Federal da ParaIba, Caixa Postal 5008, 58059-970, Joao Pessoa, PB (Brazil)

    2004-12-01

    In noncommutative QED photons present self-interactions in the form of triple and quartic interactions. The triple interaction implies that, even though the photon is electrically neutral, it will deflect when in the presence of an electromagnetic field. If detected, such deflection would be undoubted evidence of noncommutative space-time. In this work we derive a general expression for the deflection of a photon by any electromagnetic field. As an application we consider the case of the deflection of a photon by an external static Coulomb field. (brief report)

  8. Photon deflection by a Coulomb field in noncommutative QED

    CERN Document Server

    De Pires, C A S

    2004-01-01

    In noncommutative QED photons present self-interactions in the form of triple and quartic interactions. The triple interaction implies that, even though the photon is electrically neutral, it will deflect when in the presence of an electromagnetic field. If detected, such deflection would be an undoubted signal of noncommutative space-time. In this work we derive the general expression for the deflection of a photon by any electromagnetic field. As an application we consider the case of the deflection of a photon by an external static Coulomb field.

  9. Ice-Shelf Flexure and Tidal Forcing of Bindschadler Ice Stream, West Antarctica

    Science.gov (United States)

    Walker, Ryan T.; Parizek, Bryron R.; Alley, Richard B.; Brunt, Kelly M.; Anandakrishnan, Sridhar

    2014-01-01

    Viscoelastic models of ice-shelf flexure and ice-stream velocity perturbations are combined into a single efficient flowline model to study tidal forcing of grounded ice. The magnitude and timing of icestream response to tidally driven changes in hydrostatic pressure and/or basal drag are found to depend significantly on bed rheology, with only a perfectly plastic bed allowing instantaneous velocity response at the grounding line. The model can reasonably reproduce GPS observations near the grounding zone of Bindschadler Ice Stream (formerly Ice Stream D) on semidiurnal time scales; however, other forcings such as tidally driven ice-shelf slope transverse to the flowline and flexurally driven till deformation must also be considered if diurnal motion is to be matched

  10. Flexural strength and microhardness of anterior composites after accelerated aging

    Science.gov (United States)

    Pala, Kanşad; Tuncer, Safa; Demirci, Mustafa; Öznurhan, Fatih; Serim, Merve

    2017-01-01

    Background This study aimed to evaluate the flexural strength and microhardness of three different anterior composites after 10 000 thermocycles. Material and Methods The mechanical properties of a nano-fill composite (Filtek Ultimate Universal Restorative (FUR) (Enamel)), a nano-hybrid composite (Clearfil Majesty ES2 (ES2) (Enamel)), and a micro-hybrid composite (G Aenial Anterior (GAA)) were investigated in this study. For the microhardness test, 8-mm diameter and 2-mm thickness composite discs were used (n = 10), and for the flexural strength test, 25x2x2 mm bar-shaped specimens were prepared (n = 13). The specimens were tested at 24 h and after 10 000 thermocycles. Data were analyzed using two-way analysis of variance and the post-hoc Tukey test (p .05). Pearson correlation analysis revealed that there was a negative relationship between the mean hardness and flexural strength values (correlation coefficient = -0.367, p = .043). After 10 000 thermocycles, microhardness values of each material and flexural strength of ES2 and GAA decreased significantly according to 24 h. Conclusions The nano-fill composite FUR displayed significantly higher microhardness values. However, each resin composite was statistically similar for flexural strength values. Ten thousand thermocycles significantly affected microhardness and flexural strength. Key words:Flexural strength, microhardness, anterior composites. PMID:28298986

  11. Effect of electrospun nanofibers on flexural properties of fiberglass composites

    Science.gov (United States)

    White, Fatima T.

    In the present study, sintered electrospun TEOS nanofibers were interleaved in S2 fiberglass woven fabric layers, and composite panels were fabricated using the heated vacuum assisted resin transfer molding (H-VARTM) process. Cured panels were water jet cut to obtain the flexural test coupons. Flexural coupons were then tested using ASTM D7264 standard. The mechanical properties such as flexural strength, ultimate flexural failure strains, flexural modulus, and fiber volume fraction were measured. The S-2 fiberglass composite with the sintered TEOS electrospun nanofibers displayed lower flexural stiffness and strength as compared to the composites that were fabricated using S-2 fiberglass composite without the TEOS electrospun nanofibers. The present study also indicated that the composites fabricated with sintered TEOS electrospun nanofibers have larger failure strains as compared to the ones that were fabricated without the presence of electrospun nanofibers. The study indicates that the nanoengineered composites have better energy absorbing mechanism under flexural loading as compared to conventional fiberglass composites without presence of nanofibers.

  12. A large workspace flexure hinge-based parallel manipulator system

    Institute of Scientific and Technical Information of China (English)

    Dong Wei; Du Zhijiang; Sun Lining

    2005-01-01

    Parallel manipulator systems as promising precision devices are used widely in current researches. A novel large workspace flexure parallel manipulator system utilizing wide-range flexure hinges as passive joints is proposed in this paper, which can attain sub-micron-scale precision over the cubic centimeter motion range. This paper introduces the mechanical system architecture based on the wide-range flexure hinges, analyzes the kinematics via stiffness matrices, presents the control system configuration and control strategy, and finally gives the system performance test results.

  13. Thermoelastic dissipation in MEMS/NEMS flexural mode resonators.

    Science.gov (United States)

    Yan, Jize; Seshia, Ashwin A

    2009-02-01

    Understanding the energy dissipation mechanisms in single-crystal silicon MEMS/NEMS resonators are particularly important to maximizing an important figure of merit relevant for miniature sensor and signal processing applications: the Quality factor (Q) of resonance. This paper discusses thermoelastic dissipation (TED) as the dominant internal-friction mechanism in flexural mode MEMS/NEMS resonators. Criteria for optimizing the geometrical design of flexural mode MEMS/NEMS resonators are theoretically established with a view towards minimizing the TED for single-crystal silicon MEMS/NEMS flexural mode resonators.

  14. Flexure bearing support, with particular application to stirling machines

    Science.gov (United States)

    Beckett, Carl D.; Lauhala, Victor C.; Neely, Ron; Penswick, Laurence B.; Ritter, Darren C.; Nelson, Richard L.; Wimer, Burnell P.

    1996-01-01

    The use of flexures in the form of flat spiral springs cut from sheet metal materials provides support for coaxial nonrotating linear reciprocating members in power conversion machinery, such as Stirling cycle engines or heat pumps. They permit operation with little or no rubbing contact or other wear mechanisms. The relatively movable members include one member having a hollow interior structure within which the flexures are located. The flexures permit limited axial movement between the interconnected members, but prevent adverse rotational movement and radial displacement from their desired coaxial positions.

  15. Sensitivity Analysis of MEMS Flexure FET with Multiple Gates

    Directory of Open Access Journals (Sweden)

    K.Spandana

    2016-02-01

    Full Text Available This paper deals with the design and modelling of Flexure FET and the FETs are the one of the important fundamental devices in electronic devices.. In this paper we are going analyse one of the MEMS Flexure Gate Field Effect Transistors. Here we will design gate of the FLEXURE FET with different type of materials and with different structure and we made the comparison between all the structures. We apply pull-in voltage to the Gate with respect to the change in the gate voltage the respective displacement of the gate changes which reflect the change in the drain current and sensitivity.

  16. Teach Deflection Concepts with Hacksaw Blades and Rubber Bands

    Science.gov (United States)

    Roman, Harry T.

    2013-01-01

    Technology and engineering educators can use a simple hacksaw blade to help students learn about deflection, as that which occurs in a beam. Here the beam is fixed at one end and allowed to deflect in a manner that is easy to see and measure--the hacksaw blade represents a cantilever, an overhanging structure. This simple and very inexpensive…

  17. Analysis of flexural wave propagation in poroelastic composite ...

    African Journals Online (AJOL)

    DR OKE

    of flexural vibrations of poroelastic composite hollow cylinder is obtained. ... The equations of motion of a homogeneous, isotropic poroelastic solid (Biot 1956) in the presence of dissipation b are: 2. 2. 11. 12. 2 ...... Vibration and Control, Vol.

  18. predicting flexural strength river gravel using multi ravel using multi ...

    African Journals Online (AJOL)

    eobe

    s building a multi-layer perception neural network model which uses expe layer perception neural ..... using flexural testing machine. 3.2.2 Regression Model ... Training the network (learning) could be supervised or unsupervised training.

  19. Notch flexure hinges: An effective theory

    Science.gov (United States)

    Tseytlin, Yakov M.

    2002-09-01

    This article presents effective tractable equations for rotational compliance (stiffness) of a simple monolithic flexure hinge with circular (radius R and crosspiece thickness t), elliptical [at semiaxis ax, ay, elliptical ratio epsilon (=ax/ay)] and other cross sections. These equations and the method by inverse conformal mapping of circular approximating contour used to derive them are different from the known and widely used theoretical equations originally derived in 1965 by Paros and Weisbord for circular notch hinges. Later it was found that the circular hinge represents the worst case error between known theoretical and finite element models. The conformal mapping equations data presented in this article are likely to be much closer (within less than 10%) to the finite element analysis and experimental data than other theoretical equations. In particular this is the case for circular notch hinges at relative thickness beta(=t/2R) in the range 0.01 to 0.3 and for elliptical hinges at the elliptical ratio epsilon=1 to 10. The derived general equation is common for all types of notch hinges whose profiles can be approximated by two shifted contiguous circles and includes material parameters with Young's modulus and Poisson's ratio. The latter is totally omitted in known theoretical solutions by other authors. New tractable equations are derived from the general equation on the basis of trigonometric functions' simplified series expansion in certain ranges of hinge crosspiece relative thickness. The corresponding graphs are presented. Experimental data were received by holographic interference and autocollimator measurement.

  20. Flexural vibrations of finite composite poroelastic cylinders

    Indian Academy of Sciences (India)

    Sandhya Rani Bandari; Srisailam Aleti; Malla Reddy Perati

    2015-04-01

    This paper deals with the flexural vibrations of composite poroelastic solid cylinder consisting of two cylinders that are bonded end to end. Poroelastic materials of the two cylinders are different. The frequency equations for pervious and impervious surfaces are obtained in the framework of Biot’s theory of wave propagation in poroelastic solids. The gauge invariance property is used to eliminate one arbitrary constant in the solution of the problem. This would lower the number of boundary conditions actually required. If the wavelength is infinite, frequency equations are degenerated as product of two determinants pertaining to extensional vibrations and shear vibrations. In this case, it is seen that the nature of the surface does not have any influence over shear vibrations unlike in the case of extensional vibrations. For illustration purpose, three composite cylinders are considered and then discussed. Of the three, two are sandstone cylinders and the third one is resulted when a cylindrical bone is implanted with Titanium. In either case, phase velocity is computed against aspect ratios.

  1. Impacts of Deflection Nose on Ballistic Trajectory Control Law

    Directory of Open Access Journals (Sweden)

    Bo Zhang

    2014-01-01

    Full Text Available The deflection of projectile nose is aimed at changing the motion of the projectile in flight with the theory of motion control and changing the exterior ballistics so as to change its range and increase its accuracy. The law of external ballistics with the deflectable nose is considered as the basis of the design of a flight control system and an important part in the process of projectile development. Based on the existing rigid external ballistic model, this paper establishes an external ballistic calculation model for deflectable nose projectile and further establishes the solving programs accordingly. Different angle of attack, velocity, coefficients of lift, resistance, and moment under the deflection can be obtained in this paper based on the previous experiments and emulation researches. In the end, the author pointed out the laws on the impaction of external ballistic trajectory by the deflection of nose of the missile.

  2. Modeling and Simulating Dynamics of Missiles with Deflectable Nose Control

    Institute of Scientific and Technical Information of China (English)

    Gao Yuan; Gu Liangxian; Pan Lei

    2009-01-01

    This article investigates the dynamic characteristics of deflectable nose missiles with rotary single-channel control. After introduction of effective attack and sideslip angles as well as quasi-body coordinates based on the spin characteristics of the missile's body, an integrated rigid kinetic model of missile with deflectable nose control is set up in the quasi-body coordinates considering the interaction between the missile's nose and body by using rootless multi-rigid-body system dynamics and is linearized. Then an analysis with simulation is conducted to investigate the coupling characteristics between the channels, the influences of nose deflection on the body and the dynamic characteristics of missile's body. The results indicate that various channels of missiles with deflectable nose control are coupled cross-linked; the nose deflection tends to make the body move in the opposite direction and, finally, evidences the correctness and reasonability of the kinetic model proposed by this article.

  3. AIDA: the Asteroid Impact & Deflection Assessment mission

    Science.gov (United States)

    Vincent, Jean-Baptiste

    2016-07-01

    The Asteroid Impact & Deflection Assessment (AIDA) mission is a joint cooperation between European and US space agencies that consists of two separate and independent spacecraft that will be launched to a binary asteroid system, the near-Earth asteroid Didymos, to assess the possibility of deflecting an asteroid trajectory by using a kinetic impactor. The European Asteroid Impact Mission (AIM) is under Phase A/B1 study at ESA from March 2015 until summer 2016. AIM is set to rendez-vous with the asteroid system a few months prior to the impact by the US Double Asteroid Redirection Test (DART) spacecraft to fully characterize the smaller of the two binary components. AIM is a unique mission as it will be the first time that a spacecraft will investigate the surface, subsurface, and internal properties of a small binary near Earth asteroid. In addition it will perform various important technology demonstrations that can serve other space missions: AIM will release a set of CubeSats in deep space and a lander on the surface of the smaller asteroid and for the first time, deep-space inter-satellite linking will be demonstrated between the main spacecraft, the CubeSats, and the lander, and data will also be transmitted from interplanetary space to Earth by a laser communication system. The knowledge obtained by this mission will have great implications for our understanding of the history of the Solar System. Small asteroids are believed to result from collisions and other processes (e.g., spinup, shaking) that made them what they are now. Having direct information on their surface and internal properties will allow us to understand how these processes work and transform these small bodies as well as, for this particular case, how a binary system forms. So far, our understanding of the collisional process and the validation of numerical simulations of the impact process rely on impact experiments at laboratory scales. With DART, thanks to the characterization of the

  4. Flexural, Impact Properties and Sem Analysis of Bamboo and Glass Fiber Reinforced Polyester Hybrid Composites

    Directory of Open Access Journals (Sweden)

    Raghavendra Rao. H

    2014-08-01

    Full Text Available The Flexural, Impact properties and Scanning electron microscope analysis of Bamboo/glass fibers Reinforced polyester Hybrid composites were studied. The effect of alkali treatment of the bamboo fibers on these properties was also studied. It was observed that the Flexural, impact properties of the hybrid composite increase with glass fiber content. These properties found to be higher when alkali treated bamboo fibers were used in the hybrid composites. The elimination of amorphous hemi-cellulose with alkali treated leading to higher crystallinity of the bamboo fibers with alkali treatment may be responsible for these observations. The author investigated the interfacial bonding between Glass/Bamboo reinforced polyester composites. The effect of alkali treatment on the bonding between Glass/Bamboo composites was also studied.

  5. Some comments on the experimental behavior of FRC beams in flexure

    Science.gov (United States)

    Campione, Giuseppe; La Mendola, Lidia; Mangiavillano, Maria Letizia; Papia, Maurizio

    2008-07-01

    In the present paper the experimental results, recently obtained by the authors, regarding the monotonic and the cyclic flexural response of normal and high-strength concrete beams reinforced with steel bars and discontinuous fibers, are shown. From the experimental results, all referred to low values of shear-to-depth ratios, it emerges clearly that the shear failure is brittle especially under cyclic actions highlighting the role of the fibers in the flexural behavior of the beams. The cyclic action produces a significant decay in the stiffness and in the strength capacity of the beams, and the addition of fibers reduces these negative effects. Form theoretical point of view good agreement can be found utilizing the recent analytical model proposed by the authors.

  6. Flexural testing of weld site and HVOF coating characteristics

    CERN Document Server

    Yilbas, Bekir Sami; Sahin, Ahmet

    2014-01-01

    This book provides fundamental understanding and practical application of characteristics of flexural motion in the assessment of the weld size and coating thickness. Some formulations of heat transfer and flexural motion are introduced while displacement and load correlation are used to estimate elastic modules and the size of the heat affected zone as well as the coating thickness. The case studies presented give a practical understanding of weld size and coating thickness characterizations.

  7. Modeling the Flexural Carrying Capacity of Corroded RC Beam

    Institute of Scientific and Technical Information of China (English)

    WANG Xiao-hui; LIU Xi-la

    2008-01-01

    Considering the change of bond strength between corroded steel and concrete, flexural carrying ca-pacity of corroded reinforced concrete (RC) beam was calculated. On the basis of the condition of equilibriumof forces and compatibility of deformations for the whole beam, a model for the prediction of flexural carryingcapacity of the corroded RC beam was proposed. Comparison of the model's predictions with the experimentalresults published in the literature shows the practicality of the proposed method.

  8. Thermal noise of a gram-scale cantilever flexure

    CERN Document Server

    Nguyen, Thanh T-H; Miller, John; Mow-Lowry, Conor M; Goßler, Stefan; Shaddock, Daniel A; McClelland, David E

    2015-01-01

    Measured thermal noise displacement spectra from low frequency to $3\\,$kHz of Niobium and Aluminium flexures are presented. With a simple thermal noise model dominated by structural and thermoelastic losses, the agreement between the theory and measurement has been robust. The thermal noise spectra were recorded up to an order of magnitude below and above the fundamental resonance, with the fundamental resonances for both Aluminium and Niobium flexures within the range of $50\\,$Hz to $300\\,$Hz

  9. Load Deflection Characteristics of Nickel Titanium Initial Archwires

    Directory of Open Access Journals (Sweden)

    Hossein Aghili

    2016-05-01

    Full Text Available Objectives: The aim of this study was to assess and compare the characteristics of commonly used initial archwires by their load deflection graphs.Materials and Methods: This study tested three wire designs namely copper nickel titanium (CNT, nickel titanium (NiTi, and multi-strand NiTi (MSNT archwires engaged in passive self-ligating (PSL brackets, active self-ligating (ASL brackets or conventional brackets. To evaluate the mechanical characteristics of the specimens, a three-point bending test was performed. The testing machine vertically applied force on the midpoint of the wire between the central incisor and canine teeth to obtain 2 and 4mm of deflection. The force level at maximum deflection and characteristics of plateau (the average plateau load and the plateau length were recorded. Two-way ANOVA and Tukey’s test were used at P <0.05 level of significance.Results: Force level at maximum deflection and plateau length were significantly affected by the amount of deflection. The type of archwires and brackets had significant effects on force level at maximum deflection, and plateau length. However, the bracket type had no significant effect on the average plateau force.Conclusion: With any type of brackets in deflections of 2 and 4mm, MSNT wire exerted the lowest while NiTi wire exerted the highest force level at maximum deflection and plateau phase. The force level at maximum deflection and the plateau length increased with raising the amount of primary deflection; however the average plateau force did not change significantly.

  10. Optimized frequency dependent photothermal beam deflection spectroscopy

    Science.gov (United States)

    Korte, D.; Cabrera, H.; Toro, J.; Grima, P.; Leal, C.; Villabona, A.; Franko, M.

    2016-12-01

    In the letter the optimization of the experimental setup for photothermal beam deflection spectroscopy is performed by analyzing the influence of its geometrical parameters (detector and sample position, probe beam radius and its waist position etc) on the detected signal. Furthermore, the effects of the fluid’s thermo-optical properties, for optimized geometrical configuration, on the measurement sensitivity and uncertainty determination of sample thermal properties is also studied. The examined sample is a recently developed CuFeInTe3 material. It is seen from the obtained results, that it is a complex problem to choose the proper geometrical configuration as well as sensing fluid to enhance the sensitivity of the method. A signal enhancement is observed at low modulation frequencies by placing the sample in acetonitrile (ACN), while at high modulation frequencies the sensitivity is higher for measurements made in air. For both, detection in air and acetonitrile the determination of CuFeInTe3 thermal properties is performed. The determined values of thermal diffusivity and thermal conductivity are (0.048  ±  0.002)  ×  10-4 m2 s-1 and 4.6  ±  0.2 W m-1 K-1 and (0.056  ±  0.005)  ×  10-4 m2 s-1 and 4.8  ±  0.4 W m-1 K-1 for ACN and air, respectively. It is seen, that the determined values agree well within the range of their measurement uncertainties for both cases, although the measurement uncertainty is two times lower for the measurements in ACN providing more accurate results. The analysis is performed by the use of recently developed theoretical description based on the complex geometrical optics. It is also shown, how the presented work fits into the current status of photothermal beam deflection spectroscopy.

  11. Asymmetric flexural behavior from bamboo's functionally graded hierarchical structure: underlying mechanisms.

    Science.gov (United States)

    Habibi, Meisam K; Samaei, Arash T; Gheshlaghi, Behnam; Lu, Jian; Lu, Yang

    2015-04-01

    As one of the most renewable resources on Earth, bamboo has recently attracted increasing interest for its promising applications in sustainable structural purposes. Its superior mechanical properties arising from the unique functionally-graded (FG) hierarchical structure also make bamboo an excellent candidate for bio-mimicking purposes in advanced material design. However, despite its well-documented, impressive mechanical characteristics, the intriguing asymmetry in flexural behavior of bamboo, alongside its underlying mechanisms, has not yet been fully understood. Here, we used multi-scale mechanical characterizations assisted with advanced environmental scanning electron microscopy (ESEM) to investigate the asymmetric flexural responses of natural bamboo (Phyllostachys edulis) strips under different loading configurations, during "elastic bending" and "fracture failure" stages, with their respective deformation mechanisms at microstructural level. Results showed that the gradient distribution of the vascular bundles along the thickness direction is mainly responsible for the exhibited asymmetry, whereas the hierarchical fiber/parenchyma cellular structure plays a critical role in alternating the dominant factors for determining the distinctly different failure mechanisms. A numerical model has been likewise adopted to validate the effective flexural moduli of bamboo strips as a function of their FG parameters, while additional experiments on uniaxial loading of bamboo specimens were performed to assess the tension-compression asymmetry, for further understanding of the microstructure evolution of bamboo's outer and innermost layers under different bending states. This work could provide insights to help the processing of novel bamboo-based composites and enable the bio-inspired design of advanced structural materials with desired flexural behavior.

  12. Deflection of a vibrissa leads to a gradient of strain across mechanoreceptors in a mystacial follicle.

    Science.gov (United States)

    Whiteley, Samuel J; Knutsen, Per M; Matthews, David W; Kleinfeld, David

    2015-07-01

    Rodents use their vibrissae to detect and discriminate tactile features during active exploration. The site of mechanical transduction in the vibrissa sensorimotor system is the follicle sinus complex and its associated vibrissa. We study the mechanics within the ring sinus (RS) of the follicle in an ex vivo preparation of the mouse mystacial pad. The sinus region has a relatively dense representation of Merkel mechanoreceptors and longitudinal lanceolate endings. Two-photon laser-scanning microscopy was used to visualize labeled cell nuclei in an ∼ 100-nl vol before and after passive deflection of a vibrissa, which results in localized displacements of the mechanoreceptor cells, primarily in the radial and polar directions about the vibrissa. These displacements are used to compute the strain field across the follicle in response to the deflection. We observe compression in the lower region of the RS, whereas dilation, with lower magnitude, occurs in the upper region, with volumetric strain ΔV/V ∼ 0.01 for a 10° deflection. The extrapolated strain for a 0.1° deflection, the minimum angle that is reported to initiate a spike by primary neurons, corresponds to the minimum strain that activates Piezo2 mechanoreceptor channels.

  13. Coupler induced monopole component and its minimization in deflecting cavities

    Directory of Open Access Journals (Sweden)

    P. K. Ambattu

    2013-06-01

    Full Text Available Deflecting cavities are used in particle accelerators for the manipulation of charged particles by deflecting or crabbing (rotating them. For short deflectors, the effect of the power coupler on the deflecting field can become significant. The particular power coupler type can introduce multipole rf field components and coupler-specific wakefields. Coupler types that would normally be considered like standard on-cell coupler, waveguide coupler, or mode-launcher coupler could have one or two rf feeds. The major advantage of a dual-feed coupler is the absence of monopole and quadrupole rf field components in the deflecting structure. However, a dual-feed coupler is mechanically more complex than a typical single-feed coupler and needs a splitter. For most applications, deflecting structures are placed in regions where there is small space hence reducing the size of the structure is very desirable. This paper investigates the multipole field components of the deflecting mode in single-feed couplers and ways to overcome the effect of the monopole component on the beam. Significant advances in performance have been demonstrated. Additionally, a novel coupler design is introduced which has no monopole field component to the deflecting mode and is more compact than the conventional dual-feed coupler.

  14. FLEXURAL PROPERTIES AND ORTHOTROPIC SWELLING BEHAVIOR OF BAGASSE/THERMOPLASTIC COMPOSITES

    Directory of Open Access Journals (Sweden)

    Seyed Majid Zabihzadeh

    2010-05-01

    Full Text Available The flexural properties of commercial bagasse-filled polyethylene (PE and polypropylene (PP composites were determined as a function of strain rate at room temperature. The applied strain rates were 1.5 ×10-4, 3.75×10-4, 7.5×10-4, and 1.5×10-3 s-1. The flexural modulus tended to increase linearly for the two types of composites with the logarithm of strain rate. The bending strength of polypropylene composite also behaved in a similar manner, but the polyethylene composite exhibited different behavior in which the MOR values of polyethylene composite didn’t alter appreciably as a function of strain rate. The flexural response of a polypropylene-based composite was found to exhibit higher dependency on strain rate than a polyethylene-based composite. Water absorption of both composites followed the kinetics of a Fickian diffusion process. Water absorption and dimensional instability of PE-based composites were lower than those of PP-based composites. The highest swelling took place in the thickness of the samples, followed by the width and length, respectively.

  15. An experimental approach for the determination of axial and flexural wavenumbers in circular exponentially tapered bars

    Science.gov (United States)

    Kalkowski, Michał K.; Muggleton, Jen M.; Rustighi, Emiliano

    2017-03-01

    Whilst the dynamics of tapered structures have been extensively studied numerically and analytically, very few experimental results have been presented to date. The main aim of this paper is to derive and demonstrate an experimental method enabling both axial and flexural wavenumbers in exponentially tapered bars to be estimated. Our particular interest in this type of tapering is motivated by its occurrence in naturally grown structures such as tree roots, with an outlook towards remote root mapping. Decomposing a dynamic response into a sum of contributing waves, we propose a method in which two independent wavenumbers can be calculated from five equispaced measurements. The approach was demonstrated in an experiment on a freely suspended wooden specimen supported by theoretical modelling. For axial waves we used the well-established elementary rod theory, whereas for flexural waves we build a piecewise uniform model based on the Timoshenko beam theory. The estimates calculated from the experimental data were compared with the analytical and numerical results and showed good agreement. The limitations of the method include an appropriate choice of sensor spacing, the effect of sensor misalignments and the assumption of small wavenumber variation for flexural waves.

  16. Topography of Beethoven and Tolstoj Basins, Mercury: Implications for Lithospheric Flexure

    Science.gov (United States)

    Andre, S. L.; Watters, T. R.

    2005-12-01

    Interior structures of two mercurian basins, Beethoven and Tolstoj, are characterized using topography derived from Mariner 10 stereo images. The topography of the two mercurian basins is similar to that of lunar mare-filled basins, such as Serenitatis. In addition to topography, the tectonic features within Beethoven and Tolstoj basins are compared to those of lunar basins. Beethoven and Tolstoj basins exhibit little evidence of deformation compared to Caloris basin and their lunar counterparts. Well-developed basin-concentric wrinkle ridges and arcuate graben are characteristic of many lunar basins and are thought to result from lithospheric flexure in response to the superisostatic load from the mare basalts. The presence of wrinkle ridges in the floor of Caloris basin suggests that the basin interior has undergone compression, possibly the result of subsidence of the interior fill. Because both Beethoven and Tolstoj lack basin-concentric wrinkle ridges and arcuate graben, we suggest that either Mercury's elastic lithosphere was too strong for significant lithospheric flexure and subsidence to occur, or the basin fill material provides little density contrast and thus exerts little net load on the mercurian lithosphere. Compositional evidence from color-derived parameter images of Tolstoj basin indicates that the basin fill has an FeO abundance comparable to that of average mercurian crust. This suggests that the basin fill has a similar density to the surrounding crustal material and that the load may be insufficient to induce flexure.

  17. Heavy colored SUSY partners from deflected anomaly mediation

    CERN Document Server

    Wang, Fei; Yang, Jin Min; Zhang, Yang

    2015-01-01

    We propose a deflected anomaly mediation scenario from SUSY QCD which can lead to both positive and negative deflection parameters (there is a smooth transition between these two deflection parameter regions by adjusting certain couplings). Such a scenario can naturally give a SUSY spectrum in which all the colored sparticles are heavy while the sleptons are light. As a result, the discrepancy between the Brookheaven $g_\\mu-2$ experiment and LHC data can be reconciled in this scenario. We also find that the parameter space for explaining the $g_\\mu-2$ anomaly at $1\\sigma$ level can be fully covered by the future LUX-ZEPLIN 7.2 Ton experiment.

  18. The role of Ca2+ in deflection-induced excitation of motile, mechanoresponsive balancer cilia in the ctenophore statocyst.

    Science.gov (United States)

    Lowe, B

    1997-06-01

    Motile, mechanoresponsive cilia (balancers) in ctenophore statocysts, like vertebrate hair cells, are excited or inhibited depending upon the direction in which they are deflected. Balancers, however, may become either excited (beat rapidly) or inhibited (beat slowly) by deflection in the same direction, depending on the sign of ctenophore geotaxis (positive or negative). The beat frequency of many cilia is controlled by concentrations of Ca2+, membrane potential and neural input. How these factors affect deflection-induced ciliary beating in balancers was investigated. Deflection-induced excitation of balancers in whole Mnemiopsis leidyi larvae and dissected adult (Mnemiopsis leidyi, Pleurobrachia pileus) statocysts was reversibly inhibited by the Ca2+ channel inhibitors Co2+, Mg2+, Ni2+, and Mn2+. Deflection-induced excitation in balancers of isolated adult M. leidyi balancer groups was also inhibited by Co2+ or by Ca(2+)-free medium. Isolated balancer group cilia, like balancer cilia of intact ctenophores, exhibited responses to either sign of geotaxis and graded responses to deflection. Isolated balancers that were chemically depolarized in high-[K+], Ca(2+)-free medium were excited by local application of Ca2+ onto the ciliary bases, but not onto the cell bases or the ciliary tips. It is proposed that deflection-induced excitation of balancers is due to influx of Ca2+ through stretch- and voltage-activated channel activity. The sign of geotaxis of whole larvae and dissected adult statocysts was switched by electrical stimulation. Thus, neural input may participate in reversing the directional sensitivity of balancer cells.

  19. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    Energy Technology Data Exchange (ETDEWEB)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif

    2016-06-01

    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1–10 Hz) at various laser fluences ranging from 0.2 to 11 J cm{sup −2} is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He–Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm{sup −2} and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm{sup −2}. The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  20. Nanosecond pulsed laser ablation of Ge investigated by employing photoacoustic deflection technique and SEM analysis

    Science.gov (United States)

    Yaseen, Nazish; Bashir, Shazia; Shabbir, Muhammad Kaif; Jalil, Sohail Abdul; Akram, Mahreen; Hayat, Asma; Mahmood, Khaliq; Haq, Faizan-ul; Ahmad, Riaz; Hussain, Tousif

    2016-06-01

    Nanosecond pulsed laser ablation phenomena of single crystal Ge (100) has been investigated by employing photoacoustic deflection as well as SEM analysis techniques. Nd: YAG laser (1064 nm, 10 ns, 1-10 Hz) at various laser fluences ranging from 0.2 to 11 J cm-2 is employed as pump beam to ablate Ge targets. In order to evaluate in-situe ablation threshold fluence of Ge by photoacoustic deflection technique, Continuous Wave (CW) He-Ne laser (632 nm, power 10 mW) is employed as a probe beam. It travels parallel to the target surface at a distance of 3 mm and after passing through Ge plasma it causes deflection due to density gradient of acoustic waves. The deflected signal is detected by photodiode and is recorded by oscilloscope. The threshold fluence of Ge, the velocity of ablated species and the amplitude of the deflected signal are evaluated. The threshold fluence of Ge comes out to be 0.5 J cm-2 and is comparable with the analytical value. In order to compare the estimated value of threshold with ex-situe measurements, the quantitative analysis of laser irradiated Ge is performed by using SEM analysis. For this purpose Ge is exposed to single and multiple shots of 5, 10, 50 and 100 at various laser fluences ranging from 0.2 to 11 J cm-2. The threshold fluence for single and multiple shots as well as incubation coefficients are evaluated. It is observed that the value of incubation co-efficient decreases with increasing number of pulses and is therefore responsible for lowering the threshold fluence of Ge. SEM analysis also reveals the growth of various features such as porous structures, non-uniform ripples and blisters on the laser irradiated Ge. It is observed that both the fluence as well as number of laser shots plays a significant role for the growth of these structures.

  1. Effect of Banana Fibers on the Compressive and Flexural Strength of Compressed Earth Blocks

    Directory of Open Access Journals (Sweden)

    Marwan Mostafa

    2015-03-01

    Full Text Available Sustainable development of the built environment in developing countries is a major challenge in the 21st century. The use of local materials in construction of buildings is one of the potential ways to support sustainable development in both urban and rural areas. Building with Compressed Earthen Blocks (CEBs is becoming more popular due to their low cost and relative abundance of materials. The proposed Green-Compressed Earth Block (GCEB consists of ordinary CEB ingredients plus Banana fibers, which will be the focus of this study. Banana fibers are widely available worldwide as agricultural waste from Banana cultivation. Banana fibers are environmentally friendly and present important attributes, such as low density, light weight, low cost, high tensile strength, as well as being water and fire resistant. This kind of waste has a greater chance of being utilized for different application in construction and building materials. This focused on the use of banana fiber and its effect on the compressive and flexural strength in CEB. The deflection at the mid-span of the blocks studied was calculated using the Linear Variable Differential Transformer (LVDT. The results of this study will highlight general trends in the strength properties of different soil mixes for CEBs. These efforts are necessary to ensure that GCEB technology becomes more widely accepted in the world of building materials and is considered a reliable option for providing low-cost housing.

  2. Flexural Strength of Carbon Fiber Reinforced Polymer Repaired Cracked Rectangular Hollow Section Steel Beams

    Directory of Open Access Journals (Sweden)

    Tao Chen

    2015-01-01

    Full Text Available The flexural behavior of rectangular hollow section (RHS steel beams with initial crack strengthened externally with carbon fiber reinforced polymer (CFRP plates was studied. Eight specimens were tested under three-point loading to failure. The experimental program included three beams as control specimens and five beams strengthened with CFRP plates with or without prestressing. The load deflection curves were graphed and failure patterns were observed. The yield loads and ultimate loads with or without repairing were compared together with the strain distributions of the CFRP plate. It was concluded that yield loads of cracked beams could be enhanced with repairing. Meanwhile, the ultimate loads were increased to some extent. The effect of repair became significant with the increase of the initial crack depth. The failure patterns of the repaired specimens were similar to those of the control ones. Mechanical clamping at the CFRP plate ends was necessary to avoid premature peeling between the CFRP plate and the steel beam. The stress levels in CFRP plates were relatively low during the tests. The use of prestressing could improve the utilization efficiency of CFRP plates. It could be concluded that the patching repair could be used to restore the load bearing capacity of the deficient steel beams.

  3. FLEXURAL VIBRATIONS BAND GAPS IN PERIODIC BEAMS INCLUDING ROTARY INERTIA AND SHEAR DEFORMATION EFFECTS

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    With the idea of the phononic crystals, the beams with periodic structure are designed.Flexural vibration through such periodic beams composed of two kinds of materials is studied. The emphasis is laid on the effects of rotary inertia and shear deformation. Based on the vibration equation, plane wave expansion method is provided. The acceleration frequency responses of such beams with finite structure are simulated by the finite element method. The frequency ranges of sharp drops in the calculated acceleration frequency response curves are in good agreement with those in the band structures. The findings will be significant in the application of the periodic beams.

  4. Development of Experimental Device for Compression Load Deflection of Car Door Seals

    Institute of Scientific and Technical Information of China (English)

    赵建才; 朱训生; 万德安

    2003-01-01

    A new experimental device has been developed for analyzing compression load deflection of the door seal by using stereovision theory. Precision instruments of optical grating and force sensor are also integrated in this device. Force-displacement response characteristics of compression at varied speed can be controlled. Solid foundations for characteristic and structure as well as optimization design of the car door seal are elucidated.

  5. Metal cap flexural transducers for air-coupled ultrasonics

    Science.gov (United States)

    Eriksson, T. J. R.; Dixon, S.; Ramadas, S. N.

    2015-03-01

    Ultrasonic generation and detection in fluids is inefficient due to the large difference in acoustic impedance between the piezoelectric element and the propagation medium, leading to large internal reflections and energy loss. One way of addressing the problem is to use a flexural transducer, which uses the bending modes in a thin plate or membrane. As the plate bends, it displaces the medium in front of it, hence producing sound waves. A piezoelectric flexural transducer can generate large amplitude displacements in fluid media for relatively low excitation voltages. Commercially available flexural transducers for air applications operate at 40 kHz, but there exists ultrasound applications that require significantly higher frequencies, e.g. flow measurements. Relatively little work has been done to date to understand the underlying physics of the flexural transducer, and hence how to design it to have specific properties suitable for particular applications. This paper investigates the potential of the flexural transducer and its operating principles. Two types of actuation methods are considerd: piezoelectric and electrodynamic. The piezoelectrically actuated transducer is more energy efficient and intrinsically safe, but the electrodynamic transducer has the advantage of being less sensitive to high temperature environments. The theory of vibrating plates is used to predict transducer frequency in addition to front face amplitude, which shows good correlation with experimental results.

  6. Flexural-torsional buckling behavior of aluminum alloy beams

    Institute of Scientific and Technical Information of China (English)

    Xiaonong GUO; Zhe XIONG; Zuyan SHEN

    2015-01-01

    This paper presents an investigation on the flexural-torsional buckling behavior of aluminum alloy beams (AAB). First, based on the tests of 14 aluminum alloy beams under concentrated loads, the failure pattern, load- deformation curves, bearing capacity and flexural-torsional buckling factor are studied. It is found that all the beam specimens collapsed in the flexuml-torsional buckling with excessive deformation pattern. Moreover, the span, loading location and slenderness ratio influence the flexural-torsional buckling capacity of beams significantly. Secondly, besides the experiments, a finite element method (FEM) analysis on the flexural-torsional buckling behavior of AAB is also conducted. The main parameters in the FEM analysis are initial imperfection, material property, cross-section and loading scheme. According to the analytical results, it is indicated that the FEM is reasonable to capture mechanical behavior of AAB. Finally, on the basis of the experimental and analytical results, theoretical formulae to estimate the flexural- torsional buckling capacity of AAB are proposed, which could improve the application of present codes for AAB.

  7. Geoid Height and Deflection of the Vertical Models

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Office of the National Geodetic Survey has produced a series of high-resolution gravimetric geoid models, hybrid geoid models, and associated deflection of the...

  8. Deflection measurements of LABAN canister sections in horizontal attitude

    Energy Technology Data Exchange (ETDEWEB)

    Wakeman, W.

    1985-01-08

    Deflection measurements made on the LABAN canister sections indicate that the apparent stiffness of its frames, with all the diagnostics experiments installed, is not significantly different from the stiffness of the bare frames.

  9. U.S. East-West Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for the conterminous United States is the DEFLEC96 model. The computationused about 1.8 million terrestrial and...

  10. U.S. North-South Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for the conterminous United States is the DEFLEC96 model. The computationused about 1.8 million terrestrial and...

  11. Hawaiian Islands North-South Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for the Principal Hawaiian Islands is the DEFLEC96 model. The computation used about 61,000 terrestrial and marine...

  12. Hawaiian Islands East-West Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for the Principal Hawaiian Islands is the DEFLEC96 model. The computation used about 61,000 terrestrial and marine...

  13. PR/VI North-South Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for Puerto Rico and the Virgin Islands is distributed as the DEFLEC96 model. The computation used about 26,000...

  14. Possible influences on bullet trajectory deflection in ballistic gelatine.

    Science.gov (United States)

    Riva, Fabiano; Kerkhoff, Wim; Bolck, Annabel; Mattijssen, Erwin J A T

    2017-02-01

    The influence of the distance to the top and bottom of a gelatine block and to bullet tracks from previously fired shots on a bullet's trajectory, when passing through ballistic gelatine, was studied. No significant difference in deflection was found when trajectories of 9mm Luger bullets, fired at a 3.5cm distance to the top and bottom of a gelatine block and to bullet tracks from previously fired shots, were compared to trajectories of bullets fired 7cm or more away from any of the aforementioned aspects. A surprisingly consistent 6.5° absolute deflection angle was found when these bullets passed through 22.5 to 23.5cm of ballistic gelatine. The projection angle, determined by the direction of the deflection, appeared to be random. The consistent absolute angle, in combination with the random projection angle, resulted in a cone-like deflection pattern.

  15. PR/VI East-West Deflections (DEFLEC96)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This 2' surface deflection of the vertical grid for Puerto Rico and the Virgin Islands is distributed as the DEFLEC96 model. The computation used about 26,000...

  16. Deflection and Rotation of CMEs from Active Region 11158

    Science.gov (United States)

    Kay, Christina; Gopalswamy, Nat; Xie, Hong; Yashiro, Seiji

    2017-06-01

    Between 13 and 16 February 2011, a series of coronal mass ejections (CMEs) erupted from multiple polarity inversion lines within active region 11158. For seven of these CMEs we employ the graduated cylindrical shell (GCS) flux rope model to determine the CME trajectory using both Solar Terrestrial Relations Observatory (STEREO) extreme ultraviolet (EUV) and coronagraph images. We then use the model called Forecasting a CME's Altered Trajectory (ForeCAT) for nonradial CME dynamics driven by magnetic forces to simulate the deflection and rotation of the seven CMEs. We find good agreement between ForeCAT results and reconstructed CME positions and orientations. The CME deflections range in magnitude between 10^{circ } and 30^{circ}. All CMEs are deflected to the north, but we find variations in the direction of the longitudinal deflection. The rotations range between 5^{circ} and 50^{circ} with both clockwise and counterclockwise rotations. Three of the CMEs begin with initial positions within 2^{circ} from one another. These three CMEs are all deflected primarily northward, with some minor eastward deflection, and rotate counterclockwise. Their final positions and orientations, however, differ by 20^{circ} and 30^{circ}, respectively. This variation in deflection and rotation results from differences in the CME expansion and radial propagation close to the Sun, as well as from the CME mass. Ultimately, only one of these seven CMEs yielded discernible in situ signatures near Earth, although the active region faced toward Earth throughout the eruptions. We suggest that the differences in the deflection and rotation of the CMEs can explain whether each CME impacted or missed Earth.

  17. Influence of Carbon & Glass Fiber Reinforcements on Flexural Strength of Epoxy Matrix Polymer Hybrid Composites

    Directory of Open Access Journals (Sweden)

    T.D. Jagannatha

    2015-04-01

    Full Text Available Hybrid composite materials are more attracted by the engineers because of their properties like stiffness and high specific strength which leads to the potential application in the area of aerospace, marine and automobile sectors. In the present investigation, the flexural strength and flexural modulus of carbon and glass fibers reinforced epoxy hybrid composites were studied. The vacuum bagging technique was adopted for the fabrication of polymer hybrid composite materials. The hardness, flexural strength and flexural modulus of the hybrid composites were determined as per ASTM standards. The hardness, flexural strength and flexural modulus were improved as the fiber reinforcement contents increased in the epoxy matrix material.

  18. Tensile and Flexural Properties of Ultra High Toughness Cemontious Composite

    Institute of Scientific and Technical Information of China (English)

    LI Hedong; XU Shilang; Christopher K Y Leung

    2009-01-01

    The tensile and flexural properties of polyvinyl alcohol(PVA)fiber reinforced ultra high toughness cementitious composite(UHTCC)were investigated.The composite,tested at the age of 14 d,28 d and 56 d,shows extremely remarkable pseudo strain hardening behavior,saturated mul-tiple cracking and ultra high ultimate strain capacity above 4%under uniaxial loading.Also,the cor-responding crack widths are controlled under 50 μm even at 56 days age.In the third point bending tests on thin plate specimens,the composite shows ultra high flexural ductility and multiple cracking on the tension surface.The high ultimate flexural strength/first tensile strength ratio of about 5 verifies the pseudo strain hardening behavior of UHTCC.SEM observation on fracture surfaces provides in-direct evidence of optimal design for the composite.

  19. Flexural Fatigue Behavior of Polypropylene Fiber Reinforeed Segment Conerete

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    The influence of polypropylene fiber on the flexural fatigue performance of high- strength concrete (HSC), which could be used as cover of reinforcement of segment, was investigate by three-point load bending tests. Also, the flexural fatigue equations of high-strength concrete with and without polypropylene fiber were established through test analysis. The experimental results indicate that the addition of polypropylene fiber can improve the static bending strength of segment concrete, and the important is that it can markedly increase the flexural fatigue performance of the HSC subjected to cyclic bending load. Especially when with 1.37 kg/m3 addition of the fiber was corporate with silica fume and slag powder, the fatigue life of the HSC can be increased by 43.4% compared to that of the segment concrete without fiber,silica fume and slag.

  20. Pengaruh Penggunaan Serat Baja Terhadap Flexural Toughness Reactive Powder Concrete

    Directory of Open Access Journals (Sweden)

    Widodo Kushartomo

    2016-08-01

    Full Text Available This research present flexural toughness behavior of local steel fiber reinforced reactive powder concrete produced with different steel fibers volume fraction and aspect ratio. Prismatic concrete specimens of 100 x 100 x 350 mm were prepared with and without steel fiber. Steel fiber was used of 0% (control, 1,0%, 1,5%, and 2,0% by volume and 75, 100 and 125 as aspect ratio. Specimens were de-molded after 24 hours and cured in water until 3 days, after that the speciments were cure by steam curing for 8 hours at 90°C. Flexural toughness of the prisms has been defined at 28 day old. The result show that the effects of fibre volume and aspec ratio on flexural toughness of reactive powder concrete are very significant.

  1. A simple damage detection indicator using operational deflection shapes

    Science.gov (United States)

    Sampaio, R. P. C.; Maia, N. M. M.; Almeida, R. A. B.; Urgueira, A. P. V.

    2016-05-01

    Catastrophic structural failure of aircrafts, bridges, buildings and other structures in modern societies has always been of primary concern because of the loss of human lifes and of negative economic impact. The aging of the structures, the growing dependency on their role in our networks of transportation, energy and comunications, the smaller construction tolerances, the bigger power demanded and the media and society awardness to catastrophic events are sufficient motivations for the growing field of structural health monitoring, which aims at assessing the actual condition of a structure and to identify incipient damage. Damage identification can be considered as a two step process, the detection and the diagnosis. The former, and fundamental step, is the confirmation of an efective damage existence. When the response is affirmative, the latter step begins with the diagnosis, and then the questions are: where?, how much?, what type?, when will it fail? In this paper the authors propose a simple method to detect and relatively quantify structural damage by using measured vibrations data, specifically the operational deflections shapes. Numerical simulations and experimental tests are presented to validate the proposed method.

  2. Flexural-slip during visco-elastic buckle folding

    Science.gov (United States)

    Damasceno, Davi R.; Eckert, Andreas; Liu, Xiaolong

    2017-07-01

    Flexural-slip is considered as an important mechanism during folding and a general conceptual and qualitative understanding has been provided by various field studies. However, quantitative evidence of the importance of the flexural-slip mechanism during fold evolution is sparse due to the lack of suitable strain markers. In this study, 2D finite element analysis is used to overcome these disadvantages and to simulate flexural-slip during visco-elastic buckle folding. Variations of single and multilayer layer fold configurations are investigated, showing that flexural-slip is most likely to occur in effective single layer buckle folds, where slip occurs between contacts of competent layers. Based on effective single layer buckle folds, the influence of the number of slip surfaces, the degree of mechanical coupling (based on the friction coefficient), and layer thickness, on the resulting slip distribution are investigated. The results are in agreement with the conceptual flexural-slip model and show that slip is initiated sequentially during the deformation history and is maximum along the central slip surface of the fold limb. The cumulative amount of slip increases as the number of slip surfaces is increased. For a lower degree of mechanical coupling increased slip results in different fold shapes, such as box folds, during buckling. In comparison with laboratory experiments, geometrical relationships and field observations, the numerical modeling results show similar slip magnitudes. It is concluded that flexural-slip should represent a significant contribution during buckle folding, affecting the resulting fold shape for increased amounts of slip.

  3. Flexural strength of acrylic resins polymerized by different cycles

    Directory of Open Access Journals (Sweden)

    Débora Barros Barbosa

    2007-10-01

    Full Text Available Despite the large number of studies addressing the effect of microwave polymerization on the properties of acrylic resin, this method has received limited clinical acceptance. This study evaluated the influence of microwave polymerization on the flexural strength of a denture base resin. A conventional heat-polymerized (Clássico, a microwave-polymerized (Onda-Cryl and a autopolymerizing acrylic (Jet resins were used. Five groups were established, according to polymerization cycles: A, B and C (Onda-Cryl, short cycle - 500W/3 min, long - 90W/13 min + 500W/90 sec, and manufacturing microwave cycle - 320W/3 min + 0W/3 min + 720W/3 min; T (Clássico, water bath cycle - 74ºC/9h and Q (Jet, press chamber cycle - 50ºC/15 min at 2 bar. Ten specimens (65 x 10 x 3.3mm were prepared for each cycle. The flexural strength of the five groups was measured using a three-point bending test at a cross-head speed of 5 mm/min. Flexural strength values were analyzed by one-way ANOVA and the Tukey's test was performed to identify the groups that were significantly different at 5% level. The microwave-polymerized groups showed the highest means (p<0.05 for flexural strength (MPa (A = 106.97 ± 5.31; B = 107.57 ± 3.99; C = 109.63 ± 5.19, and there were no significant differences among them. The heat-polymerized group (T showed the lowest flexural strength means (84.40 ± 1.68, and differ significantly from all groups. The specimens of a microwavable denture base resin could be polymerized by different microwave cycles without risk of decreasing the flexural strength.

  4. Characterization of flexure hinges for the French watt balance experiment

    Directory of Open Access Journals (Sweden)

    Pinot Patrick

    2014-01-01

    Full Text Available In the French watt balance experiment, the translation and rotation functions must have no backlash, no friction, nor the need for lubricants. In addition errors in position and movement must be below 100 nm. Flexure hinges can meet all of these criteria. Different materials, profile shapes and machining techniques have been studied. The flexure pivots have been characterized using three techniques: 1 an optical microscope and, if necessary, a SEM to observe the surface inhomogeneities; 2 a mass comparator to determine the bending stiffness of unloaded pivots; 3 a loaded beam oscillating freely under vacuum to study the dynamic behavior of loaded pivots.

  5. Flexural-Phonon Scattering Induced by Electrostatic Gating in Graphene

    DEFF Research Database (Denmark)

    Gunst, Tue; Kaasbjerg, Kristen; Brandbyge, Mads

    2017-01-01

    Graphene has an extremely high carrier mobility partly due to its planar mirror symmetry inhibiting scattering by the highly occupied acoustic flexural phonons. Electrostatic gating of a graphene device can break the planar mirror symmetry, yielding a coupling mechanism to the flexural phonons.......We examine the effect of the gate-induced one-phonon scattering on the mobility for several gate geometries and dielectric environments using first-principles calculations based on density functional theory and the Boltzmann equation. We demonstrate that this scattering mechanism can be a mobility...

  6. Flexural waves induced by electro-impulse deicing forces

    Science.gov (United States)

    Gien, P. H.

    1990-01-01

    The generation, reflection and propagation of flexural waves created by electroimpulsive deicing forces are demonstrated both experimentally and analytically in a thin circular plate and a thin semicylindrical shell. Analytical prediction of these waves with finite element models shows good correlation with acceleration and displacement measurements at discrete points on the structures studied. However, sensitivity to spurious flexural waves resulting from the spatial discretization of the structures is shown to be significant. Consideration is also given to composite structures as an extension of these studies.

  7. Characterization of flexure hinges for the French watt balance experiment

    Science.gov (United States)

    Pinot, Patrick; Genevès, Gérard

    2014-08-01

    In the French watt balance experiment, the translation and rotation functions must have no backlash, no friction, nor the need for lubricants. In addition errors in position and movement must be below 100 nm. Flexure hinges can meet all of these criteria. Different materials, profile shapes and machining techniques have been studied. The flexure pivots have been characterized using three techniques: 1) an optical microscope and, if necessary, a SEM to observe the surface inhomogeneities; 2) a mass comparator to determine the bending stiffness of unloaded pivots; 3) a loaded beam oscillating freely under vacuum to study the dynamic behavior of loaded pivots.

  8. A Transverse Dynamic Deflection Model for Thin Plate Made of Saturated Porous Materials

    Science.gov (United States)

    Feng-xi, Zhou; Xiao-lin, Cao

    2016-10-01

    In this article, a transverse dynamic deflection model is established for thin plate made of saturated porous materials. Based on the Biot's model for fluid-saturated porous media, using the Love-Kirchhoff hypothesis, the governing equations of transverse vibrations of fluid-saturated poroelastic plates are derived in detail, which take the inertial, fluid viscous, mechanical couplings, compressibility of solid, and fluid into account. The free vibration and forced vibration response of a simply supported poroelastic rectangular plate is obtained by Fourier series expansion method. Through numerical examples, the effect of porosity and permeability on the dynamic response, including the natural frequency, amplitude response, and the resonance areas is assessed.

  9. Clustering mechanism of ethanol-water mixtures investigated with photothermal microfluidic cantilever deflection spectroscopy

    Science.gov (United States)

    Ghoraishi, M. S.; Hawk, J. E.; Phani, Arindam; Khan, M. F.; Thundat, T.

    2016-04-01

    The infrared-active (IR) vibrational mode of ethanol (EtOH) associated with the asymmetrical stretching of the C-C-O bond in pico-liter volumes of EtOH-water binary mixtures is calorimetrically measured using photothermal microfluidic cantilever deflection spectroscopy (PMCDS). IR absorption by the confined liquid results in wavelength dependent cantilever deflections, thus providing a complementary response to IR absorption revealing a complex dipole moment dependence on mixture concentration. Solvent-induced blue shifts of the C-C-O asymmetric vibrational stretch for both anti and gauche conformers of EtOH were precisely monitored for EtOH concentrations ranging from 20–100% w/w. Variations in IR absorption peak maxima show an inverse dependence on induced EtOH dipole moment (μ) and is attributed to the complex clustering mechanism of EtOH-water mixtures.

  10. Challenges of deflecting an asteroid or comet nucleus with a nuclear burst

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Paul A [Los Alamos National Laboratory; Plesko, Cathy S [Los Alamos National Laboratory; Clement, Ryan R. C. [Los Alamos National Laboratory; Conlon, Le Ann M [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Guzik, Joyce A [Los Alamos National Laboratory; Pritchett - Sheets, Lori A [Los Alamos National Laboratory; Huebner, Walter F [SWRI

    2009-01-01

    There are many natural disasters that humanity has to deal with over time. These include earthquakes, tsunamis, hurricanes, floods, asteroid strikes, and so on. Some of these disasters occur slowly enough that some advance warning is possible for affected areas. In this case, the response is to evacuate the affected area and deal wilh the damage later. The Katrina and Rita hurricane evacuations on the U.S. Gulf Coasl in 2005 demonstrated the chaos that can result from such a response. In contrast with other natural disasters, it is likely that an asteroid or comet nucleus on a collision course with Earth will be detected with enough warning time to possibly deflect it away. Thanks to Near-Earth Object (NED) surveys, people are working towards a goal of cataloging at least 90% of all near-Earth objects with diameters larger than {approx} 140 meters in the next fifteen years. The important question then, is how to mitigate the threat from an asteroid or comet nucleus found to be on a collision course with Earth. In this paper. we briefly review some possible deflection methods, describe their good and bad points, and then embark on a more detailed description of using nuclear munitions in a standoff mode to deflect the asteroid or comet nucleus before it can hit Earth.

  11. Deflection load characteristics of laser-welded orthodontic wires.

    Science.gov (United States)

    Watanabe, Etsuko; Stigall, Garrett; Elshahawy, Waleed; Watanabe, Ikuya

    2012-07-01

    To compare the deflection load characteristics of homogeneous and heterogeneous joints made by laser welding using various types of orthodontic wires. Four kinds of straight orthodontic rectangular wires (0.017 inch × 0.025 inch) were used: stainless-steel (SS), cobalt-chromium-nickel (Co-Cr-Ni), beta-titanium alloy (β-Ti), and nickel-titanium (Ni-Ti). Homogeneous and heterogeneous end-to-end joints (12 mm long each) were made by Nd:YAG laser welding. Two types of welding methods were used: two-point welding and four-point welding. Nonwelded wires were also used as a control. Deflection load (N) was measured by conducting the three-point bending test. The data (n  =  5) were statistically analyzed using analysis of variance/Tukey test (P welded specimens showed lower deflection loads compared to corresponding control wires and exhibited higher deflection loads compared to heterogeneously welded combinations. For homogeneous combinations, Co-Cr-Ni/Co-Cr-Ni showed a significantly (P welded groups. In heterogeneous combinations, SS/Co-Cr-Ni and β-Ti/Ni-Ti showed higher deflection loads than those of the remaining heterogeneously welded combinations (significantly higher for SS/Co-Cr-Ni). Significance (P welding method). However, no significant difference in deflection load was found between four-point and two-point welding in each homogeneous or heterogeneous combination. Heterogeneously laser-welded SS/Co-Cr-Ni and β-Ti/Ni-Ti wires provide a deflection load that is comparable to that of homogeneously welded orthodontic wires.

  12. Large deflection analysis of cantilever beam under end point and distributed load

    DEFF Research Database (Denmark)

    Kimiaeifar, Amin; Tolou, N; Barari, Amin;

    2014-01-01

    Although the deflection of beams has been studied for decades, the solutions were either linearized (i.e. small deflection) or based on elliptic integrals or functions (large deflection). The latter one includes the geometric nonlinearity but calculation of the deflection along the beam length re...

  13. Flexure of the Indian plate and intraplate earthquakes

    Indian Academy of Sciences (India)

    Roger Bilham; Rebecca Bendick; Kali Wallace

    2003-09-01

    The flexural bulge in central India resulting from India's collision with Tibet has a wavelength of approximately 670 km. It is manifest topographically and in the free-air gravity anomaly and the geoid. Calculations of the stress distribution within a flexed Indian plate reveal spatial variations throughout the depth of the plate and also a function of distance from the Himalaya. The wave- length (and therefore local gradient) of stress variation is a function of the effective elastic thickness of the plate, estimates of which have been proposed to lie in the range 40-120 km. The imposition of this stress field on the northward moving Indian plate appears fundamental to explaining the current distribution of intraplate earthquakes and their mechanisms. The current study highlights an outer trough south of the flexural bulge in central India where surface stresses are double the contiguous compressional stresses to the north and south. The Bhuj, Latur and Koyna earthquakes and numerous other recent reverse faulting events occurred in this compressional setting. The N/S spatial gradient of stress exceeds 2 bars/km near the flexural bulge. The overall flexural stress distribution provides a physical basis for earthquake hazard mapping and suggests that areas of central India where no historic earthquakes are recorded may yet be the locus of future damaging events.

  14. Effect of silica coating on flexural strength of fiber posts

    NARCIS (Netherlands)

    Valandro, LF; Ozcan, M; de Melo, RM; Galhano, GAP; Baldissara, P; Scotti, R; Bottino, MA

    2006-01-01

    Purpose: Fiber-reinforced composite (FRC) posts can be air-abraded to obtain good attachment to the resin cement. This study tested the effect of silica coating on the flexural strength of carbon, opaque, and translucent quartz FRC posts. Materials and Methods: Six experimental groups of FRC posts (

  15. Substructural Identification of Flexural Rigidity for Beam-Like Structures

    Directory of Open Access Journals (Sweden)

    Ki-Young Koo

    2015-01-01

    Full Text Available This study proposes a novel substructural identification method based on the Bernoulli-Euler beam theory with a single variable optimization scheme to estimate the flexural rigidity of a beam-like structure such as a bridge deck, which is one of the major structural integrity indices of a structure. In ordinary bridges, the boundary condition of a superstructure can be significantly altered by aging and environmental variations, and the actual boundary conditions are generally unknown or difficult to be estimated correctly. To efficiently bypass the problems related to boundary conditions, a substructural identification method is proposed to evaluate the flexural rigidity regardless of the actual boundary conditions by isolating an identification region within the internal substructure. The proposed method is very simple and effective as it utilizes the single variable optimization based on the transfer function formulated utilizing Bernoulli Euler beam theory for the inverse analysis to obtain the flexural rigidity. This novel method is also rigorously investigated by applying it for estimating the flexural rigidity of a simply supported beam model with different boundary conditions, a concrete plate-girder bridge model with different length of an internal substructure, a cantilever-type wind turbine tower structure with different type of excitation, and a steel box-girder bridge model with internal structural damages.

  16. Effect of Finger Joint on Flexural Strength of Teak Wood

    Directory of Open Access Journals (Sweden)

    Bharatesh A. Danawade

    2014-01-01

    Full Text Available This paper presents the flexural properties of rectangular Burma teak wood beam without finger joint and with finger joint. Finger joints enable full utilization of wood. Finger jointing technique is also used to eliminate wood defects which weaken the strength of wood. This paper considers finger joint as defined defect and its effect on the flexural strength is determined. Teakwood is hard and heavy, seasons rapidly and has good durability. The specimens were studied under three point bending test. Both edge wise and flat wise tests were carried out. It is observed that Burma teakwood beam without finger joint is stronger than beams with finger joints. Because of finger jointing the flexural strength reduces. It can be concluded that the strength loss can improved upon by selecting suitable geometry of finger joint and a suitable adhesive. It is recognized that further studies are necessary on jointing techniques of wood and type of adhesive so as to equal the flexural strength properties of clear teak wood beams.

  17. Synthesis and Optimisation of Large Stroke Flexure Hinges

    NARCIS (Netherlands)

    Grootens, Martijn; Aarts, Ronald; Brouwer, Dannis; Wenger, Philippe; Flores, Paulo

    2016-01-01

    Flexure hinges are advantageous for use in high-precision applications because of their lack of hysteresis, friction and backlash. However, their range of motion is limited due to increasing stresses and a decreasing support stiffness at large strokes. Currently available hinges are typically design

  18. Strengthening of Steel Columns under Load: Torsional-Flexural Buckling

    Directory of Open Access Journals (Sweden)

    Martin Vild

    2016-01-01

    Full Text Available The paper presents experimental and numerical research into the strengthening of steel columns under load using welded plates. So far, the experimental research in this field has been limited mostly to flexural buckling of columns and the preload had low effect on the column load resistance. This paper focuses on the local buckling and torsional-flexural buckling of columns. Three sets of three columns each were tested. Two sets corresponding to the base section (D and strengthened section (E were tested without preloading and were used for comparison. Columns from set (F were first preloaded to the load corresponding to the half of the load resistance of the base section (D. Then the columns were strengthened and after they cooled, they were loaded to failure. The columns strengthened under load (F had similar average resistance as the columns welded without preloading (E, meaning the preload affects even members susceptible to local buckling and torsional-flexural buckling only slightly. This is the same behaviour as of the tested columns from previous research into flexural buckling. The study includes results gained from finite element models of the problem created in ANSYS software. The results obtained from the experiments and numerical simulations were compared.

  19. Needle deflection estimation using fusion of electromagnetic trackers.

    Science.gov (United States)

    Sadjadi, H; Hashtrudi-Zaad, K; Fichtinger, G

    2012-01-01

    We present a needle deflection estimation method to compensate for needle bending during insertion into deformable tissue. We combine a kinematic needle deflection estimation model, electromagnetic (EM) trackers, and a Kalman filter (KF). We reduce the impact of error from the needle deflection estimation model by using the fusion of two EM trackers to report the approximate needle tip position in real-time. One reliable EM tracker is installed on the needle base, and estimates the needle tip position using the kinematic needle deflection model. A smaller but much less reliable EM tracker is installed on the needle tip, and estimates the needle tip position through direct noisy measurements. Using a KF, the sensory information from both EM trackers is fused to provide a reliable estimate of the needle tip position with much reduced variance in the estimation error. We then implement this method to compensate for needle deflection during simulated prostate cancer brachytherapy needle insertion. At a typical maximum insertion depth of 15 cm, needle tip mean estimation error was reduced from 2.39 mm to 0.31 mm, which demonstrates the effectiveness of our method, offering a clinically practical solution.

  20. Flexural strength and fracture toughness of dental core ceramics.

    Science.gov (United States)

    Yilmaz, Handan; Aydin, Cemal; Gul, Basak E

    2007-08-01

    Many different strengthened all-ceramic core materials are available. In vitro study of their mechanical properties, such as flexural strength and fracture toughness, is necessary before they are used clinically. The purpose of this study was to evaluate and compare the mechanical properties of 6 commonly used all-ceramic core materials using biaxial flexural strength and indentation fracture toughness tests. Specimens of 6 ceramic core materials (Finesse, Cergo, IPS Empress, In-Ceram Alumina, In-Ceram Zirconia, and Cercon Zirconia) were fabricated (n=25) with a diameter of 15 mm and width of 1.2 +/- 0.2 mm. For each group, the specimens were tested to compare their biaxial flexural strength (piston on 3 balls) (n=15), Weibull modulus, and indentation fracture toughness (n=10) (IF method). The data were analyzed with 1-way ANOVA test (a=.05). The Tamhane multiple comparison test was used for post hoc analysis. Mean (SD) of biaxial flexural strength values (MPa) and Weibull modulus (m) results were: Finesse (F): 88.04 (31.61), m=3.17; Cergo (C): 94.97 (13.62), m=7.94; IPS Empress (E): 101.18 (13.49), m=10.13; In-Ceram Alumina (ICA): 341.80 (61.13), m=6.96; In-Ceram Zirconia (ICZ): 541.80 (61.10), m=10.17; and Cercon Zirconia (CZ): 1140.89 (121.33), m=13.26. The indentation fracture toughness results showed that there were significant differences between the tested ceramics. The highest fracture toughness values (MPa x m(0.5)) were obtained with the zirconia-based ceramic core materials. Significant differences were found in strength and toughness values of the materials evaluated. Cercon Zirconia core material showed high values of biaxial flexural strength and indentation fracture toughness when compared to the other ceramics studied.

  1. CMUT With Substrate-Embedded Springs For Non-Flexural Plate Movement.

    Science.gov (United States)

    Nikoozadeh, Amin; Khuri-Yakub, Pierre T

    2010-01-01

    A conventional capacitive micromachined ultrasonic transducer (CMUT) is composed of many cells connected in parallel. Since the plate in each CMUT cell is anchored at its perimeter, the average displacement is several times smaller than the displacement of an equivalent ideal piston transducer. In addition, the post areas, where the plates are anchored to, are non-active and, thus, do not contribute to the transduction. We propose a CMUT structure that resembles an ideal capacitive piston transducer, where the movable top plate only undergoes translation rather than deflection. Our proposed CMUT structure is composed of a rigid plate connected to a substrate using relatively long and narrow posts, providing the spring constant for the movement of the plate. Rather than the flexure of the plate as in a conventional CMUT, this device operates based on the compression of the compliant posts. For a capacitive transducer, a thin electrostatic gap is provided under the top plate. We used finite element analysis (FEA) to design and verify the structure's functionality. The simulation results show a fractional bandwidth of over 100% in immersion for all the designs. They also confirm that the average displacement of the top plate is above 90% of its peak displacement. We fabricated the first prototype based on this idea, which only requires a simple 3-mask fabrication process. In addition to 128-element 1-D arrays, we fabricated a variety of 240 μm × 240 μm, single-element transducers with different post configurations. We successfully measured the electrical input impedance of the fabricated devices and confirmed their resonant behavior in air. Further, we measured the acoustic pressure using a calibrated hydrophone at a known distance. Using this measurement, we calculated a peak-to-peak pressure of 1.5 MPa at the face of the transducer. Our results show that it is possible to fabricate CMUTs that exhibit ideal piston-like plate movement. Because of the substrate

  2. Ultrafast optical beam deflection in a pump probe configuration

    Science.gov (United States)

    Liang, Lingliang; Tian, Jinshou; Wang, Tao; Wu, Shengli; Li, Fuli; Wang, Junfeng; Gao, Guilong

    2016-09-01

    Propagation of a signal beam in an AlGaAs/GaAs waveguide multiple-prism light deflector is theoretically investigated by solving the scalar Helmholtz equation to obtain the dependences of the temporal and spatial resolvable characteristics of the ultrafast deflector on the material dispersion of GaAs including group velocity dispersion and angular dispersion, interface reflection, and interface scattering of multiple-prism deflector. Furthermore, we experimentally confirm that, in this ultrafast beam deflection device, the deflecting angle of the signal light beam is linear with the pump fluence and the temporal resolution of the ultrafast deflection is 10 ps. Our results show that the improvement of the temporal and spatial resolvable performances is possible by properly choosing the structural parameters and enhancing the quality of the device. Project supported by the National Natural Science Foundation of China (Grant Nos. 11274377 and 61176006) and the State Major Research Equipment Project, China (Grant No. ZDY2011-2).

  3. ABRUPT DEFLECTED SUPERCRITICAL WATER FLOW IN SLOPED CHANNELS

    Institute of Scientific and Technical Information of China (English)

    LIU Ya-kun; NI Han-gen

    2008-01-01

    The effect of the bottom slope on abrupt deflected supercritical water flow was experimentally and theoretically studied. Model tests were conducted in a flume of 1.2 m wide and 2.6 m long with sloped bottom at an angle 35.54o, its length of deflector was 0.2 m and the deflection angles were 15o and 30o. An approximate method for calculatjng the shock wave angle and depth ratio of the abrupt deflected supercritical water flow was suggested, and a correction coefficient for the hydrodynamic pressure was introduced to generalize the momentum equation in the direction perpendicular to the shock front. It must be noticed that in the sloped channel the shock wave angle and the depth ratio are no longer constant as those in the horizontal channels, but slowly change along the shock front. The calculated results are in good agreement with measured data.

  4. Linearizing Intra-Train Beam-Beam Deflection Feedback

    Energy Technology Data Exchange (ETDEWEB)

    Smith, S.R.; /SLAC

    2006-02-22

    Beam-beam deflection feedback acting within the crossing time of a single bunch train may be needed to keep linear collider beams colliding at high luminosity. In a short-pulse machine such as the Next Linear Collider (NLC) this feedback must converge quickly to be useful. The non-linear nature of beam-beam deflection vs. beam-beam offset in these machines precludes obtaining both rapid convergence and a stable steady-state lock to beam offsets with a linear feedback algorithm. We show that a simply realizable programmable non-linear amplifier in the feedback loop can linearize the feedback loop, approximately compensating the beam-beam deflection non-linearity. Performance of a prototype non-linear amplifier is shown. Improvement of convergence and stability of the beam-beam feedback loop is simulated.

  5. Smart earthquake-resistant materials: using time-released adhesives for damping, stiffening, and deflection control

    Science.gov (United States)

    Dry, Carolyn M.

    1996-04-01

    Preventing buildings and bridges from damage from severe dynamic loading events is a primary goal of civil infrastructure. Present designs attempt to control structural response by making the structures more massive, by increasing lateral stiffness through bracing, and by damping technology such as mass damping and base-isolation. These attempts affect portions of the governing equation: for an idealized building frame or bridge, the free vibrational behavior is described by Mu + cu + ku equals -mug(t) where m equals mass, c equals damping coefficient, k equals lateral stiffness, u equals deflection, and ug(t) equals ground acceleration. The use of adhesive released internally in a material based way of addressing the problem. The time release of low modulus adhesive chemicals would assist the damping characteristics of the structure, use of a stiffer adhesive would allow the damaged structure to regain some lateral stiffness (k) and adjustment of the set times of the adhesives would act to control the deflection. These can be thought of as potential new method of controlling vibration of behavior in case of a dynamic loading event. In past experiments, self-healing concrete matrices were shown to increase post-yield deflection and load carrying capability by the release and setting of adhesives. The results were promising in resisting damage of dynamic loads applied to frames. This indicates that self-healing concrete would be extremely valuable in civil engineering structures that were subjected to failure-inducing loads such as earthquakes.

  6. Novel deflecting cavity design for eRHIC

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Q.; Belomestnykh, S.; Ben-Zvi, I.

    2011-07-25

    To prevent significant loss of the luminosity due to large crossing angle in the future ERL based Electron Ion Collider at BNL (eRHIC), there is a demand for crab cavities. In this article, we will present a novel design of the deflecting/crabbing 181 MHz superconducting RF cavity that will fulfil the requirements of eRHIC. The quarter-wave resonator structure of the new cavity possesses many advantages, such as compact size, high R{sub t}/Q, the absence of the same order mode and lower order mode, and easy higher order mode damping. We will present the properties and characteristics of the new cavity in detail. As the accelerator systems grow in complexity, developing compact and efficient deflecting cavities is of great interest. Such cavities will benefit situations where the beam line space is limited. The future linac-ring type electron-ion collider requires implementation of a crab-crossing scheme for both beams at the interaction region. The ion beam has a long bunches and high rigidity. Therefore, it requires a low frequency, large kicking angle deflector. The frequency of the deflecting mode for the current collider design is 181 MHz, and the deflecting angle is {approx}5 mrad for each beam. At such low frequency, the previous designs of the crab cavities will have very large dimensions, and also will be confronted by typical problems of damping the Lower Order Mode (LOM), the Same Order Mode (SOM), and as usual, the Higher Order Modes (HOM). In this paper we describe how one can use the concept of a quarter-wave (QW) resonator for a deflecting/crabbing cavity, and use its fundamental mode to deflect the beam. The simplicity of the cavity geometry and the large separation between its fundamental mode and the first HOM make it very attractive.

  7. Two-mode polarized traveling wave deflecting structure

    Institute of Scientific and Technical Information of China (English)

    谭建豪; 顾强; 方文程; 童德春; 赵振堂

    2015-01-01

    In this paper, we propose a two-mode polarizable deflecting structure, as a new concept for bunch measure-ment and beam control. With two modes of HEM11 and HEM12 operating in the same structure on horizontal and vertical directions, respectively, the operation status can be switched between the two polarization modes. They can be operated simultaneously with two independent input power sources. With two-mode deflecting structure, the bunch distortion caused by the geometric wake-fields in the accelerating structure can be mea-sured by one structure.

  8. Nuclear cycler: An incremental approach to the deflection of asteroids

    Science.gov (United States)

    Vasile, Massimiliano; Thiry, Nicolas

    2016-04-01

    This paper introduces a novel deflection approach based on nuclear explosions: the nuclear cycler. The idea is to combine the effectiveness of nuclear explosions with the controllability and redundancy offered by slow push methods within an incremental deflection strategy. The paper will present an extended model for single nuclear stand-off explosions in the proximity of elongated ellipsoidal asteroids, and a family of natural formation orbits that allows the spacecraft to deploy multiple bombs while being shielded by the asteroid during the detonation.

  9. Multiplexed Force and Deflection Sensing Shell Membranes for Robotic Manipulators

    Science.gov (United States)

    Park, Yong-Lae; Black, Richard; Moslehi, Behzad; Cutkosky, Mark; Chau, Kelvin

    2012-01-01

    Force sensing is an essential requirement for dexterous robot manipulation, e.g., for extravehicular robots making vehicle repairs. Although strain gauges have been widely used, a new sensing approach is desirable for applications that require greater robustness, design flexibility including a high degree of multiplexibility, and immunity to electromagnetic noise. This invention is a force and deflection sensor a flexible shell formed with an elastomer having passageways formed by apertures in the shell, with an optical fiber having one or more Bragg gratings positioned in the passageways for the measurement of force and deflection.

  10. Research on network failure handling technology based on deflection routing

    Institute of Scientific and Technical Information of China (English)

    Tao YU; Shanzhi CHEN; Xin LI; Zhen QIN

    2008-01-01

    A new deflection routing scheme is proposed to overcome the drawback of existing deflection routing scheme that cannot handle node failure and suffer from routing loops.A new algorithm for computing the backup shortest path tree(SPT)is proposed and a set of procedures are defined for utilizing the backup SPT in case of node or link failure.The failure can be handled swiftly and the backup routes are guaranteed to be loop-free.Experimental results show that the backup routes calculated by proposed scheme are close to the optimal routes by totally re-computing.

  11. The 1919 measurement of the deflection of light

    CERN Document Server

    Will, Clifford M

    2014-01-01

    The measurement of the deflection of starlight during a total solar eclipse on May 29, 1919 was the first verification of general relativity by an external team of scientists, brought Einstein and his theory to the attention of the general public, and left a legacy of experimental testing that continues today. The discovery of gravitational lenses turned Einstein's deflection into an important tool for astronomy and cosmology. This article reviews the history of the 1919 measurement and other eclipse measurements, describes modern measurements of the effect using radio astronomy, and of its cousin, the Shapiro time delay, and discusses gravitational lenses.

  12. In-situ stress analysis of the Zr/ZrO2 system as studied by Raman spectroscopy and deflection test in monofacial oxidation techniques

    Science.gov (United States)

    Kurpaska, L.; Favergeon, J.; Grosseau-Poussard, J.-L.; Lahoche, L.; Moulin, G.

    2016-11-01

    A comparison of measurements performed in in-situ conditions using Raman spectroscopy and Deflection Test in Monofacial Oxidation techniques were employed to study stress states developed in zirconia films grown at 500 °C is presented. The results show a good correlation between recorded Raman peak displacement and sample deflection angle. Considering analyzed volume of the material, Raman analysis represents a local measurement while the deflection test is a global response of the material. Reported stress components: (i) hydrostatic - resulted from Raman spectroscopy and (ii) in-plane - resulted from deflection test technique have been analyzed in comparison to each of the described techniques and aim to explain the behavior of zirconia at high temperatures.

  13. Experimental research and finite element analysis of bridge piers failed in flexure-shear modes

    Institute of Scientific and Technical Information of China (English)

    Sun Zhiguo; Si Bingjun; Wang Dongsheng; Guo Xun

    2008-01-01

    In recent earthquakes,a large number of reinforced concrete (RC) bridges were severely damaged due to mixed flexure-shear failure modes of the bridge piers.An integrated experimental and finite element (FE) analysis study is described in this paper to study the seismic performance of the bridge piers that failed in flexure-shear modes.In the first part,a nonlinear cyclic loading test on six RC bridge piers with circular cross sections is carried out experimentally.The damage states,ductility and energy dissipation parameters,stiffness degradation and shear strength of the piers are studied and compared with each other.The experimental results suggest that all the piers exhibit stable flexural response at displacement ductilities up to four before exhibiting brittle shear failure.The ultimate performance of the piers is dominated by shear capacity due to significant shear cracking,and in some cases,rupturing of spiral bars.In the second part,modeling approaches describing the hysteretic behavior of the piers are investigated by using ANSYS software.A set of models with different parameters is selected and evaluated through comparison with experimental results.The influences of the shear retention coefficients between concrete cracks,the Bauschinger effect in longitudinal reinforcement,the bond-slip relationship between the longitudinal reinforcement and the concrete and the concrete failure surface on the simulated hysteretie curves are discussed.Then,a modified analysis model is presented and its accuracy is verified by comparing the simulated results with experimental ones.This research uses models available in commercial FE codes and is intended for researchers and engineers interested in using ANSYS software to predict the hysteretic behavior of reinforced concrete structures.

  14. Experimental research and finite element analysis of bridge piers failed in flexure-shear modes

    Science.gov (United States)

    Sun, Zhiguo; Si, Bingjun; Wang, Dongsheng; Guo, Xun

    2008-12-01

    In recent earthquakes, a large number of reinforced concrete (RC) bridges were severely damaged due to mixed flexure-shear failure modes of the bridge piers. An integrated experimental and finite element (FE) analysis study is described in this paper to study the seismic performance of the bridge piers that failed in flexure-shear modes. In the first part, a nonlinear cyclic loading test on six RC bridge piers with circular cross sections is carried out experimentally. The damage states, ductility and energy dissipation parameters, stiffness degradation and shear strength of the piers are studied and compared with each other. The experimental results suggest that all the piers exhibit stable flexural response at displacement ductilities up to four before exhibiting brittle shear failure. The ultimate performance of the piers is dominated by shear capacity due to significant shear cracking, and in some cases, rupturing of spiral bars. In the second part, modeling approaches describing the hysteretic behavior of the piers are investigated by using ANSYS software. A set of models with different parameters is selected and evaluated through comparison with experimental results. The influences of the shear retention coefficients between concrete cracks, the Bauschinger effect in longitudinal reinforcement, the bond-slip relationship between the longitudinal reinforcement and the concrete and the concrete failure surface on the simulated hysteretic curves are discussed. Then, a modified analysis model is presented and its accuracy is verified by comparing the simulated results with experimental ones. This research uses models available in commercial FE codes and is intended for researchers and engineers interested in using ANSYS software to predict the hysteretic behavior of reinforced concrete structures.

  15. Damping of flexural vibration using low-density, low-wave-speed media

    Science.gov (United States)

    Varanasi, Kripa K.; Nayfeh, Samir A.

    2006-04-01

    Significant damping of structural vibration can be attained by coupling to the structure a low-density medium (such as a powder or foam) in which the speed of sound propagation is relatively low. We describe a set of experiments in which flexural vibration of aluminum beams over a broad frequency range is damped by introduction of a layer of lossy low-wave-speed foam. At frequencies high enough to set up standing waves through the thickness of the foam, loss factors as high as 0.05 can be obtained with a foam layer whose mass is 3.9% of that of the beam. We model the foam as a continuum in which waves of dilatation and distortion can propagate, obtain approximate solutions for the frequency response of the system by means of a modal expansion, and find that the predictions are in close agreement with the measured responses. Finally, we develop a simple approximation for the system loss factor based on the complex wavenumber associated with flexural vibration in an infinite beam.

  16. Analytical theory of flexural behavior of concrete beam reinforced with textile-combined steel

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Textile-reinforced concrete (TRC) is a new high performance cementitious composite material,which not only has superior corrosion resistance but also can effectively limit the development of concrete cracks and make the crack width and spacing of concrete become smaller.However,due to the brittle feature of fiber materials,the TRC structural member has no distinct failure symptom when it arrives at its ultimate load.At the same time,ordinary reinforced concrete (RC) elements have large dead weight and can not efficiently restrict the expansion of the main crack of structures because of the restriction of their special cover thickness.In order to overcome the disadvantages of both the TRC and the RC,a new architecture reinforced with textile-combined steel is proposed in this study,making full use of the advantages of the above two structures.The cover concrete at the tension zone of an RC element is partially replaced with TRC and thus the steel reinforcements replaced with textiles are subtracted.Compared with the old one,the new structure has less dead weight and has the merits of service safety and good durability.The flexural development process of the proper beam with this new structure is investigated in this paper and based on the plane section assumption,analytical equations are derived by using nonlinear analysis theory,including the load-carrying capacity at different stages and moment-curvature relationship and mid-span deflection during the entire loading process.Comparison between the calculated and the experimental results reveals satisfactory agreement and thus verifies the feasibility of the equations.

  17. The effect of asteroid topography on surface ablation deflection

    Science.gov (United States)

    McMahon, Jay W.; Scheeres, Daniel J.

    2017-02-01

    Ablation techniques for deflecting hazardous asteroids deposit energy into the asteroid's surface, causing an effective thrust on the asteroid as the ablating material leaves normal to the surface. Although it has long been recognized that surface topography plays an important role in determining the deflection capabilities, most studies to date have ignored this aspect of the model. This paper focuses on understanding the topography for real asteroid shapes, and how this topography can change the deflection performance of an ablation technique. The near Earth asteroids Golevka, Bennu, and Itokawa are used as the basis for this study, as all three have high-resolution shape models available. This paper shows that naive targeting of an ablation method without accounting for the surface topography can lower the deflection performance by up to 20% in the cases studied in terms of the amount of acceleration applied in the desired direction. If the ablation thrust level is assumed to be 100 N, as used elsewhere in the literature, this misapplication of thrust translates to tens of kilometers per year in decreased semimajor axis change. However, if the ablation method can freely target any visible point on the surface of the asteroid, almost all of this performance can be recovered.

  18. Deflection of Light by Gravity: A Physical Approach.

    Science.gov (United States)

    Diamond, Joshua B.

    1982-01-01

    Einstein's equivalence principle relates effects seen by an accelerating observer to those experienced by an observer in a gravitational field, providing an explanation of bending of a light beam by gravity. Because the calculations lead to results one-half the value found experimentally, obtaining the correct light deflection is discussed.…

  19. Mission Design and Optimal Asteroid Deflection for Planetary Defense

    Science.gov (United States)

    Sarli, Bruno V.; Knittel, Jeremy M.; Englander, Jacob A.; Barbee, Brent W.

    2017-01-01

    Planetary defense is a topic of increasing interest for many reasons, which has been mentioned in "Vision and Voyages for Planetary Science in the Decade 2013-2022''. However, perhaps one of the most significant rationales for asteroid studies is the number of close approaches that have been documented recently. A space mission with a planetary defense objective aims to deflect the threatening body as far as possible from Earth. The design of a mission that optimally deflects an asteroid has different challenges: speed, precision, and system trade-off. This work addresses such issues and develops a fast transcription of the problem that can be implemented into an optimization tool, which allows for a broader trade study of different mission concepts with a medium fidelity. Such work is suitable for a mission?s preliminary study. It is shown, using the fictitious asteroid impact scenario 2017 PDC, that the complete tool is able to account for the orbit sensitivity to small perturbations and quickly optimize a deflection trajectory. The speed in which the tool operates allows for a trade study between the available hardware. As a result, key deflection dates and mission strategies are identified for the 2017 PDC.

  20. Mission Design and Optimal Asteroid Deflection for Planetary Defense

    Science.gov (United States)

    Sarli, Bruno V.; Knittel, Jeremy M.; Englander, Jacob A.; Barbee, Brent W.

    2017-01-01

    Planetary defense is a topic of increasing interest for many reasons, which has been mentioned in "Vision and Voyages for Planetary Science in the Decade 2013-2022". However, perhaps one of the most significant rationales for asteroid studies is the number of close approaches that have been documented recently. A space mission with a planetary defense objective aims to deflect the threatening body as far as possible from Earth. The design of a mission that optimally deflects an asteroid has different challenges: speed, precision, and system trade-off. This work addresses such issues and develops a fast transcription of the problem that can be implemented into an optimization tool, which allows for a broader trade study of different mission concepts with a medium fidelity. Such work is suitable for a mission's preliminary study. It is shown, using the fictitious asteroid impact scenario 2017 PDC, that the complete tool is able to account for the orbit sensitivity to small perturbations and quickly optimize a deflection trajectory. The speed in which the tool operates allows for a trade study between the available hardware. As a result, key deflection dates and mission strategies are identified for the 2017 PDC.

  1. Large deflection analysis of skew plates under uniformly distributed ...

    African Journals Online (AJOL)

    user

    load-deflection plane to show the effect of skew angle, aspect ratio and boundary condition. ... by edge 1, 2, 3 and 4 on the plate boundaries in Figures 1(a)-1(d). ... one-dimensional coordinate functions along normalized coordinate are shown ...

  2. An Analytical Model of Wake Deflection Due to Shear Flow

    NARCIS (Netherlands)

    Micallef, D.; Simao Ferreira, C.J.; Sant, T.; Van Bussel, G.J.W.

    2010-01-01

    The main motivation behind this work is to create a purely analytical engineering model for wind turbine wake upward deflection due to shear flow, by developing a closed form solution of the velocity field due to an oblique vortex ring. The effectiveness of the model is evaluated by comparing the re

  3. Deflection routing scheme for GMPLS-based OBS networks

    DEFF Research Database (Denmark)

    Eid, Arafat; Mahmood, Waqar; Alomar, Anwar

    2010-01-01

    is not applicable in such an integrated solution. This is due to the existence of already established Label Switched Paths (LSPs) between edge nodes in a GMPLS-based OBS network which guide the Data Burst Headers (DBHs) through the network. In this paper we propose a novel deflection routing scheme which can...

  4. Towards a mechanistic analysis of Benkelman beam deflection measurements

    NARCIS (Netherlands)

    Visser, A.F.H.M.; Priambodo Koesrindartono, D.

    2000-01-01

    This paper introduces and describes the Benkelman beam deflection test. Furthermore Benkelman beam tests are simulated using two multi-layer programs, based on an elastic and visco-elastic material model for asphalt. The results of these two programs are compared with each other. Finally, using the

  5. Cantilever deflection measurement and actuation by an nterdigitated transducer

    NARCIS (Netherlands)

    Strambini, E.; Piazza, V.; Pingue, P.; Biasiol, G.; Sorba, L.; Beltram, F.

    2010-01-01

    A scheme that allows all-electrical high-bandwidth readout of a cantilever deflection by means of an integrated interdigitated transducer is presented. The present approach takes advantage of the piezoelectricity of the chosen cantilever substrate material to generate and detect surface-acoustic-wav

  6. Observation of Beam-beam Deflections with LHC Orbit Data

    CERN Document Server

    Kozanecki, W; Wenninger, J

    2013-01-01

    The LHC luminosity is calibrated in dedicated fills with van der Meer scans (vdM) of the beams that are performed repeatedly in both planes. During vdM scans the relative separation of the two LHC beams is scanned in a range of ±6 sigma , where sigma is the single beam size, probing the beam-beam deflection over a relatively large range. Orbit data logged parasitically during those scans were analysed and the beam-beam deflections at the IP being scanned could be reconstructed from orbit fits in the LHC arcs surrounding the IP. Despite the small size of the kicks (≤ 1μrad) the coherent beam-beam deflections are clearly resolved. The beam parameters that are extracted from the fit to the beam-beam deflection data were compared to luminosity data fits and they were found to be in good agreement. The closed orbit shift due to the beam-beam kick is also clearly observed in the beam position interpolation at the collision point.

  7. Lithospheric flexure and sedimentary basin evolution: depositional cycles in the steer's head model

    Science.gov (United States)

    Moore, James; Watts, Tony

    2016-04-01

    Backstripping studies of biostratigraphic data from deep wells show that sediment loading is one of the main factors controlling the subsidence and uplift history of sedimentary basins. Previous studies based on single layer models of elastic and viscoelastic plates overlying an inviscid fluid have shown that sediment loading, together with a tectonic subsidence that decreases exponentially with time, can explain the large-scale 'architecture' of rift-type basins and, in some cases, details of their internal stratigraphy such as onlap and offlap patterns. One problem with these so-called 'steer's head' models is that they were based on a simple rheological model in which the long-term strength of the lithosphere increased with thermal age. Recent oceanic flexure studies, however, reveal that the long-term strength of the lithosphere depends not only on thermal age, but also load age. We have used the thermal structure based on plate cooling models, together with recent experimentally-derived flow laws, to compute the viscosity structure of the lithosphere and a new analytical model to compute the flexure of a multilayer viscoelastic plate by a trapezoid-shaped sediment load at different times since basin initiation. The combination of basin subsidence and viscoelastic flexural response results in the fluctuation of the depositional surface with time. If we define the nondimensional number Dw= τm/τt, where τm is the Maxwell time constant and τt is the thermal time constant, we find that for Dw>1 the flexure approximates that of a viscoelastic plate and is dominated by "offlapping" stratigraphy, with the basin edges evolving through shallow marine facies; though erosion late in the basin formation prevents much of this from being recorded in the stratigraphy. Interestingly Dw~1 produces a basin in which onlap dominates its early evolution while offlap dominates its later evolution with an unconformity separating the two different stratal patterns. This case lends

  8. Localized surface plate modes via flexural Mie resonances

    KAUST Repository

    Farhat, M.

    2017-05-11

    Surface-plasmon polaritons are naturally generated upon excitation of metals with high-frequency electromagnetic waves. However, the concept of spoof plasmons has made it possible to generate plasmoniclike effects in microwave electrodynamics, magnetics, and even acoustics. Similarly, in this paper, the concept of localized surface plate modes (SPMs) is introduced. It is demonstrated that SPMs can be generated on a two-dimensional (clamped or stress-free) cylindrical surface with subwavelength corrugations, which resides on a thin elastic plate, under excitation by an incident flexural plane wave. Numerical characterization of this corrugated rigid structure shows that it is elastically equivalent to a cylindrical scatterer with dispersive but uniformly negative flexural rigidity. This, indeed, suggests that plasmoniclike elastic materials can be engineered with potential applications in various areas including earthquake sensing and elastic imaging and cloaking.

  9. Enhanced flexural wave sensing by adaptive gradient-index metamaterials

    Science.gov (United States)

    Chen, Y. Y.; Zhu, R.; Barnhart, M. V.; Huang, G. L.

    2016-10-01

    Increasing sensitivity and signal to noise ratios of conventional wave sensors is an interesting topic in structural health monitoring, medical imaging, aerospace and nuclear instrumentation. Here, we report the concept of a gradient piezoelectric self-sensing system by integrating shunting circuitry into conventional sensors. By tuning circuit elements properly, both the quality and quantity of the flexural wave measurement data can be significantly increased for new adaptive sensing applications. Through analytical, numerical and experimental studies, we demonstrate that a metamaterial-based sensing system (MBSS) with gradient bending stiffness can be designed by connecting gradient negative capacitance circuits to an array of piezoelectric patches (sensors). Furthermore, we demonstrate that the proposed system can achieve more than two orders of magnitude amplification of flexural wave signals to overcome the detection limit. This research encompasses fundamental advancements in the MBSS with improved performance and functionalities, and will yield significant advances for a range of applications.

  10. The LINC-NIRVANA fringe and flexure tracker: laboratory tests

    Science.gov (United States)

    Tremou, Evangelia; Eckart, Andreas; Horrobin, Matthew; Lindhorst, Bettina; Moser, Lydia; Rost, Steffen; Smajic, Semir; Straubmeier, Christian; Wank, Imke; Zuther, Jens; Bertram, Thomas

    2010-07-01

    LINC-NIRVANA is the NIR homothetic imaging camera for the Large Binocular Telescope (LBT). In close cooperation with the Adaptive Optics systems of LINC-NIRVANA the Fringe and Flexure Tracking System (FFTS) is a fundamental component to ensure a complete and time-stable wavefront correction at the position of the science detector in order to allow for long integration times at interferometric angular resolutions. In this contribution, we present the design and the realization of the ongoing FFTS laboratory tests, taking into account the system requirements. We have to sample the large Field of View and to follow the reference source during science observations to an accuracy of less than 2 microns. In particular, important tests such as cooling tests of cryogenic components and tip - tilt test (the repeatability and the precision under the different inclinations) are presented. The system parameters such as internal flexure and precision are discussed.

  11. Flexural-Phonon Scattering Induced by Electrostatic Gating in Graphene

    Science.gov (United States)

    Gunst, Tue; Kaasbjerg, Kristen; Brandbyge, Mads

    2017-01-01

    Graphene has an extremely high carrier mobility partly due to its planar mirror symmetry inhibiting scattering by the highly occupied acoustic flexural phonons. Electrostatic gating of a graphene device can break the planar mirror symmetry, yielding a coupling mechanism to the flexural phonons. We examine the effect of the gate-induced one-phonon scattering on the mobility for several gate geometries and dielectric environments using first-principles calculations based on density functional theory and the Boltzmann equation. We demonstrate that this scattering mechanism can be a mobility-limiting factor, and show how the carrier density and temperature scaling of the mobility depends on the electrostatic environment. Our findings may explain the high deformation potential for in-plane acoustic phonons extracted from experiments and, furthermore, suggest a direct relation between device symmetry and resulting mobility.

  12. Flexural Strength and Behavior of Polypropylene Fiber Reinforced Concrete Beams

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The strength and deformation characteristics of polypropylene fiber reinforced concrete (PFRC) beams were investigated by four-point bending procedures in this paper.Two kinds of polypropylene fibers with different fiber contents (0.2%, 0.5%, 1.0% and 1.5%) by volume were used in the beam, which measured 100×100 mm with a span of 300 mm.It was found that the strength of the reinforced concrete beams was significantly decreased,whereas the flexural toughness was improved,compared to those unreinforced concrete beams.Geometry properties and volume contents of polypropylene fiber were considered to be important factors for improving the flexural toughness.Moreover,the composite mechanism between polypropylene fiber and concrete was analyzed and discussed.

  13. Flexural analysis of palm fiber reinforced hybrid polymer matrix composite

    Science.gov (United States)

    Venkatachalam, G.; Gautham Shankar, A.; Raghav, Dasarath; Santhosh Kiran, R.; Mahesh, Bhargav; Kumar, Krishna

    2015-07-01

    Uncertainty in availability of fossil fuels in the future and global warming increased the need for more environment friendly materials. In this work, an attempt is made to fabricate a hybrid polymer matrix composite. The blend is a mixture of General Purpose Resin and Cashew Nut Shell Liquid, a natural resin extracted from cashew plant. Palm fiber, which has high strength, is used as reinforcement material. The fiber is treated with alkali (NaOH) solution to increase its strength and adhesiveness. Parametric study of flexure strength is carried out by varying alkali concentration, duration of alkali treatment and fiber volume. Taguchi L9 Orthogonal array is followed in the design of experiments procedure for simplification. With the help of ANOVA technique, regression equations are obtained which gives the level of influence of each parameter on the flexure strength of the composite.

  14. Enhanced flexural wave sensing by adaptive gradient-index metamaterials

    Science.gov (United States)

    Chen, Y. Y.; Zhu, R.; Barnhart, M. V.; Huang, G. L.

    2016-01-01

    Increasing sensitivity and signal to noise ratios of conventional wave sensors is an interesting topic in structural health monitoring, medical imaging, aerospace and nuclear instrumentation. Here, we report the concept of a gradient piezoelectric self-sensing system by integrating shunting circuitry into conventional sensors. By tuning circuit elements properly, both the quality and quantity of the flexural wave measurement data can be significantly increased for new adaptive sensing applications. Through analytical, numerical and experimental studies, we demonstrate that a metamaterial-based sensing system (MBSS) with gradient bending stiffness can be designed by connecting gradient negative capacitance circuits to an array of piezoelectric patches (sensors). Furthermore, we demonstrate that the proposed system can achieve more than two orders of magnitude amplification of flexural wave signals to overcome the detection limit. This research encompasses fundamental advancements in the MBSS with improved performance and functionalities, and will yield significant advances for a range of applications. PMID:27748379

  15. Controlling flexural waves in semi-infinite platonic crystals

    CERN Document Server

    Haslinger, Stewart G; Movchan, Alexander B; Jones, Ian S; Craster, Richard V

    2016-01-01

    We address the problem of scattering and transmission of a plane flexural wave through a semi-infinite array of point scatterers/resonators, which take a variety of physically interesting forms. The mathematical model accounts for several classes of point defects, including mass-spring resonators attached to the top surface of the flexural plate and their limiting case of concentrated point masses. We also analyse the special case of resonators attached to opposite faces of the plate. The problem is reduced to a functional equation of the Wiener-Hopf type, whose kernel varies with the type of scatterer considered. A novel approach, which stems from the direct connection between the kernel function of the semi-infinite system and the quasi-periodic Green's functions for corresponding infinite systems, is used to identify special frequency regimes. We thereby demonstrate dynamically anisotropic wave effects in semi-infinite platonic crystals, with particular attention paid to designing systems to exhibit dynami...

  16. Novel parameter-based flexure bearing design method

    Science.gov (United States)

    Amoedo, Simon; Thebaud, Edouard; Gschwendtner, Michael; White, David

    2016-06-01

    A parameter study was carried out on the design variables of a flexure bearing to be used in a Stirling engine with a fixed axial displacement and a fixed outer diameter. A design method was developed in order to assist identification of the optimum bearing configuration. This was achieved through a parameter study of the bearing carried out with ANSYS®. The parameters varied were the number and the width of the arms, the thickness of the bearing, the eccentricity, the size of the starting and ending holes, and the turn angle of the spiral. Comparison was made between the different designs in terms of axial and radial stiffness, the natural frequency, and the maximum induced stresses. Moreover, the Finite Element Analysis (FEA) was compared to theoretical results for a given design. The results led to a graphical design method which assists the selection of flexure bearing geometrical parameters based on pre-determined geometric and material constraints.

  17. Flexural Vibration Characteristics of Initially Stressed Composite Plates

    Directory of Open Access Journals (Sweden)

    Rupesh Daripa

    2010-01-01

    Full Text Available The influence of localised in-plane load on the flexural vibration characteristics of isotropic and composite plates have been studied using a four-noded shear flexible high precision plate bending finite element. First, the critical buckling loads of such plates subjected to partial or concentrated compressive loads were calculated, then the linear and nonlinear flexural vibration frequencies were obtained. Limited parametric study was carried out to study the influences of location and distribution of tensile or compressive in-plane load on the vibration frequencies of such plates.Defence Science Journal, 2010, 60(1, pp.106-111, DOI:http://dx.doi.org/10.14429/dsj.60.117

  18. Weakened Flexural Strength of Nanocrystalline Nanoporous Gold by Grain Refinement.

    Science.gov (United States)

    Gwak, Eun-Ji; Kim, Ju-Young

    2016-04-13

    High density of grain boundaries in solid materials generally leads to high strength because grain boundaries act as strong obstacles to dislocation activity. We find that the flexural strength of nanoporous gold of grain size 206 nm is 33.6% lower than that of grain size 238 μm. We prepared three gold-silver precursor alloys, well-annealed, prestrained, and high-energy ball-milled, from which nanoporous gold samples were obtained by the same free-corrosion dealloying process. Ligaments of the same size are formed regardless of precursor alloys, and microstructural aspects of precursor alloys such as crystallographic orientation and grain size is preserved in the dealloying process. While the nanoindentation hardness of three nanoporous golds is independent of microstructural variation, flexural strength of nanocrystalline nanoporous gold is significantly lower than that of nanoporous golds with much larger grain size. We investigate weakening mechanisms of grain boundaries in nanocrystalline nanoporous gold, leading to weakening of flexural strength.

  19. Experimental Evaluation of Three Designs of Electrodynamic Flexural Transducers

    Science.gov (United States)

    Eriksson, Tobias J. R.; Laws, Michael; Kang, Lei; Fan, Yichao; Ramadas, Sivaram N.; Dixon, Steve

    2016-01-01

    Three designs for electrodynamic flexural transducers (EDFT) for air-coupled ultrasonics are presented and compared. An all-metal housing was used for robustness, which makes the designs more suitable for industrial applications. The housing is designed such that there is a thin metal plate at the front, with a fundamental flexural vibration mode at ∼50 kHz. By using a flexural resonance mode, good coupling to the load medium was achieved without the use of matching layers. The front radiating plate is actuated electrodynamically by a spiral coil inside the transducer, which produces an induced magnetic field when an AC current is applied to it. The transducers operate without the use of piezoelectric materials, which can simplify manufacturing and prolong the lifetime of the transducers, as well as open up possibilities for high-temperature applications. The results show that different designs perform best for the generation and reception of ultrasound. All three designs produced large acoustic pressure outputs, with a recorded sound pressure level (SPL) above 120 dB at a 40 cm distance from the highest output transducer. The sensitivity of the transducers was low, however, with single shot signal-to-noise ratio (SNR)≃15 dB in transmit–receive mode, with transmitter and receiver 40 cm apart. PMID:27571075

  20. Asymmetric Flexural-gravity Lumps in Nonuniform Media

    CERN Document Server

    Liang, Yong

    2014-01-01

    Here we show that asymmetric fully-localized flexural-gravity lumps can propagate on the surface of an inviscid and irrotational fluid covered by a variable-thickness elastic material, provided that the thickness varies only in one direction and has a local minimum. We derive and present equations governing the evolution of the envelope of flexural-gravity wave packets allowing the flexing material to have small variations in the transverse (to propagation) direction. We show that the governing equation belongs to the general family of Davey-Stewartson equations, but with an extra term in the surface evolution equation that accounts for the variable thickness of the elastic cover. We then use an iterative Newton-Raphson scheme, with a numerical continuation procedure via Lagrange interpolation, in a search to find fully-localized solutions of this system of equations. We show that if the elastic sheet thickness has (at least) a local minimum, flexural-gravity lumps can propagate near the minimum thickness, an...

  1. Edge chipping and flexural resistance of monolithic ceramics☆

    Science.gov (United States)

    Zhang, Yu; Lee, James J.-W.; Srikanth, Ramanathan; Lawn, Brian R.

    2014-01-01

    Objective Test the hypothesis that monolithic ceramics can be developed with combined esthetics and superior fracture resistance to circumvent processing and performance drawbacks of traditional all-ceramic crowns and fixed-dental-prostheses consisting of a hard and strong core with an esthetic porcelain veneer. Specifically, to demonstrate that monolithic prostheses can be produced with a much reduced susceptibility to fracture. Methods Protocols were applied for quantifying resistance to chipping as well as resistance to flexural failure in two classes of dental ceramic, microstructurally-modified zirconias and lithium disilicate glass–ceramics. A sharp indenter was used to induce chips near the edges of flat-layer specimens, and the results compared with predictions from a critical load equation. The critical loads required to produce cementation surface failure in monolithic specimens bonded to dentin were computed from established flexural strength relations and the predictions validated with experimental data. Results Monolithic zirconias have superior chipping and flexural fracture resistance relative to their veneered counterparts. While they have superior esthetics, glass–ceramics exhibit lower strength but higher chip fracture resistance relative to porcelain-veneered zirconias. Significance The study suggests a promising future for new and improved monolithic ceramic restorations, with combined durability and acceptable esthetics. PMID:24139756

  2. Opto-mechanical design of the G-CLEF flexure control camera system

    Science.gov (United States)

    Oh, Jae Sok; Park, Chan; Kim, Jihun; Kim, Kang-Min; Chun, Moo-Young; Yu, Young Sam; Lee, Sungho; Nah, Jakyoung; Park, Sung-Joon; Szentgyorgyi, Andrew; McMuldroch, Stuart; Norton, Timothy; Podgorski, William; Evans, Ian; Mueller, Mark; Uomoto, Alan; Crane, Jeffrey; Hare, Tyson

    2016-08-01

    The GMT-Consortium Large Earth Finder (G-CLEF) is the very first light instrument of the Giant Magellan Telescope (GMT). The G-CLEF is a fiber feed, optical band echelle spectrograph that is capable of extremely precise radial velocity measurement. KASI (Korea Astronomy and Space Science Institute) is responsible for Flexure Control Camera (FCC) included in the G-CLEF Front End Assembly (GCFEA). The FCC is a kind of guide camera, which monitors the field images focused on a fiber mirror to control the flexure and the focus errors within the GCFEA. The FCC consists of five optical components: a collimator including triple lenses for producing a pupil, neutral density filters allowing us to use much brighter star as a target or a guide, a tent prism as a focus analyzer for measuring the focus offset at the fiber mirror, a reimaging camera with three pair of lenses for focusing the beam on a CCD focal plane, and a CCD detector for capturing the image on the fiber mirror. In this article, we present the optical and mechanical FCC designs which have been modified after the PDR in April 2015.

  3. Current trends and controversies in the management of patients with splenic flexure tumours

    Directory of Open Access Journals (Sweden)

    Chan DS

    2013-03-01

    Full Text Available Aim: There exists a variation in practice in the management of tumours around the splenic flexure. We aim to determine the current opinion regarding the management of these tumours. Methods: An anonymised 10-part online questionnaire was sent to all members of the Association of Coloproctology of Great Britain and Ireland (ACPGBI. Results: The response rate was 24% (111/464 with approximately half of respondents performing laparoscopic surgery. Electively, an extended right hemicolectomy is the preferred option by 63% of respondents followed by left hemicolectomy (23% and segmental resection (14%. The upper sigmoid and rectosigmoid is the preferred site of anastomosis by 90% and 10% of respondents respectively. There were no significant differences in the type of operations performed by surgeons who practice laparoscopic or open surgery (p=0.10. A hand-sewn end-to-end anastomosis is most commonly performed (51% followed by a stapled side-to-side (36% and a stapled end-to-end (13% technique. Extended right hemicolectomy is also the preferred option in obstructing tumours. Of surgeons who perform segmental resections, 27% perform an on-table lavage and 9% perform a defunctioning stoma. Internal herniation following laparoscopic resection was only reported by a handful of surgeons. Conclusion: Opinion and practice in the management of patients with tumours around the splenic flexure are divided. Further trials are indicated to determine the best practice.

  4. Flexural wave attenuation in a sandwich beam with viscoelastic periodic cores

    Science.gov (United States)

    Guo, Zhiwei; Sheng, Meiping; Pan, Jie

    2017-07-01

    The flexural-wave attenuation performance of traditional constraint-layer damping in a sandwich beam is improved by using periodic constrained-layer damping (PCLD), where the monolithic viscoelastic core is replaced with two periodically alternating viscoelastic cores. Closed-form solutions of the wave propagation constants of the infinite periodic sandwich beam and the forced response of the corresponding finite sandwich structure are theoretically derived, providing computational support on the analysis of attenuation characteristics. In a sandwich beam with PCLD, the flexural waves can be attenuated by both Bragg scattering effect and damping effect, where the attenuation level is mainly dominated by Bragg scattering in the band-gaps and by damping in the pass-bands. Affected by these two effects, when the parameters of periodic cores are properly selected, a sandwich beam with PCLD can effectively reduce vibrations of much lower frequencies than that with traditional constrained-layer damping. The effects of the parameters of viscoelastic periodic cores on band-gap properties are also discussed, showing that the average attenuation in the desired frequency band can be maximized by tuning the length ratio and core thickness to proper values. The research in this paper could possibly provide useful information for the researches and engineers to design damping structures.

  5. Analysis and enhancement of flexural wave stop bands in 2D periodic plates

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yubao [Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, 410073 Changsha (China); The Marcus Wallenberg Laboratory for Sound and Vibration Research, KTH – The Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Feng, Leping [The Marcus Wallenberg Laboratory for Sound and Vibration Research, KTH – The Royal Institute of Technology, SE-100 44 Stockholm (Sweden); Wen, Jihong, E-mail: wenjihong_nudt1@vip.sina.com [Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, 410073 Changsha (China); Yu, Dianlong; Wen, Xisen [Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, 410073 Changsha (China)

    2015-07-17

    The band structure and enhancement of flexural wave stop bands in a 2D periodic plate are investigated. A unified method for analysing and designing the stop band of the plates with various attached structures is proposed. The effect of attached structures is considered based on their equivalent parameters (added equivalent mass and equivalent moment of inertia). The influences of the equivalent parameters on the band structures are studied. Three cases are considered: adding pure equivalent mass, pure equivalent moment of inertia and the combination of these two. The stop bands are enhanced via the multi interaction between the host plate and the attached structure. The enhancement pattern is determined, and several ways to obtain a wider combined stop band are presented. The frequency response functions of corresponding finite periodic plates are calculated to verify the stop bands and their enhancement in a number of typical cases. - Highlights: • A unified method for studying the stop band of the plates with various simplified attached structures is proposed. • The enhancement of flexural wave stop bands in a 2D phononic plate is investigated. • The stop bands are widened via multi interaction between the host plate and the attached structure. • The enhancement pattern is determined and several ways to get a wider stop band are presented.

  6. Jet deflection by very weak guide fields during magnetic reconnection.

    Science.gov (United States)

    Goldman, M V; Lapenta, G; Newman, D L; Markidis, S; Che, H

    2011-09-23

    Previous 2D simulations of reconnection using a standard model of initially antiparallel magnetic fields have detected electron jets outflowing from the x point into the ion outflow exhausts. Associated with these jets are extended "outer electron diffusion regions." New PIC simulations with an ion to electron mass ratio as large as 1836 (an H(+) plasma) now show that the jets are strongly deflected and the outer electron diffusion region is broken up by a very weak out-of-plane magnetic guide field, even though the diffusion rate itself is unchanged. Jet outflow and deflection are interpreted in terms of electron dynamics and are compared to recent measurements of jets in the presence of a small guide field in Earth's magnetosheath.

  7. Estimation of the deflection of the vertical using gravity measurements

    Science.gov (United States)

    Manoussakis, Gerassimos; Korakitis, Romylos; Milas, Paraskevas

    2017-04-01

    We present a method to estimate the deflection of the vertical at a point P on the Earth's physical surface by forming a small network of three points around point P, with known geodetic coordinates (φ, λ, h) and by obtaining gravity measurements at all points. In the first step, the gravity values are used to form the Eötvös matrix of the actual gravity potential W at point P. In the second step, the gravity differences and the components of the Eötvös matrix are used to form a linear system of three algebraic equations with three unknowns, which are the first order partial derivatives of the actual potential W. The solution of the system enables us to determine the components ξ and η of the deflection of the vertical at the chosen point P. Finally, we present a numerical simulation, using several points scattered on a wide area of the Earth's surface.

  8. Deflection of Rotating Symmetric Molecules by Inhomogeneous Fields

    CERN Document Server

    Gershnabel, Erez

    2011-01-01

    We consider deflection of rotating symmetric molecules by inhomogeneous optical and static electric fields, compare results with the case of linear molecules, and find new singularities in the distribution of the scattering angle. Scattering of the prolate/oblate molecules is analyzed in detail, and it is shown that the process can be efficiently controlled by means of short and strong femtosecond laser pulses. In particular, the angular dispersion of the deflected molecules may be dramatically reduced by laser-induced molecular pre-alignment. We first study the problem by using a simple classical model, and then find similar results by means of more sophisticated methods, including the formalism of adiabatic invariants and direct numerical simulation of the Euler-Lagrange equations of motion. The suggested control scheme opens new ways for many applications involving molecular focusing, guiding, and trapping by optical and static fields.

  9. Measurement of Large Forces and Deflections in Microstructures

    CERN Document Server

    Hals, Kai Axel; Chen, Xuyuan

    2008-01-01

    Properties of typical MEMS materials have been widely investigated. Mechanical properties of MEMS structures depend not only on the bulk material properties, but also structural factors. A measurement system has been made to measure force/deflection on microstructures to examine some of the structural properties. This is a stylus setup integrated with a load cell and a linear actuator. First, the requirements for the measurement system were established. Then the system was built up and characterized. We have successfully made measurements on a typical micromechanical structure, a cantilever accelerometer design. The stylus placement accuracy, the spring constant along the proof mass, analysis of the force/deflection curve shape and destructive tests on the cantilever have been investigated in our experiment and will be presented in this paper.

  10. Strong deflection gravitational lensing by a modified Hayward black hole

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shan-Shan; Xie, Yi [Nanjing University, School of Astronomy and Space Science, Nanjing (China); Nanjing University, Ministry of Education, Key Laboratory of Modern Astronomy and Astrophysics, Nanjing (China)

    2017-05-15

    A modified Hayward black hole is a nonsingular black hole. It is proposed that it would form when the pressure generated by quantum gravity can stop matter's collapse as the matter reaches the Planck density. Strong deflection gravitational lensing occurring nearby its event horizon might provide some clues of these quantum effects in its central core. We investigate observables of the strong deflection lensing, including angular separations, brightness differences and time delays between its relativistic images, and we estimate their values for the supermassive black hole in the Galactic center. We find that it is possible to distinguish the modified Hayward black hole from a Schwarzschild one, but it demands a very high resolution, beyond current stage. (orig.)

  11. A map of UHECRs deflections through the turbulent GMF

    Energy Technology Data Exchange (ETDEWEB)

    Pshirkov, M.S. [Sternberg Astronomical Institute, Lomonosov Moscow State University, Universitetsky Prospekt 13, 119992 Moscow (Russian Federation); Pushchino Radio Astronomy Observatory, 142290 Pushchino (Russian Federation); Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow (Russian Federation); Tinyakov, P.G. [Institute for Nuclear Research of the Russian Academy of Sciences, 117312 Moscow (Russian Federation); Université Libre de Bruxelles, Service de Physique Théorique, CP225, 1050 Brussels (Belgium); Urban, F.R. [Université Libre de Bruxelles, Service de Physique Théorique, CP225, 1050 Brussels (Belgium)

    2014-04-01

    We study the effect of the random part of the Galactic Magnetic Field (GMF) on the propagation of ultra high-energy cosmic rays. We are able to derive a clear and direct relation between the observed variance of rotation measures and the predicted cosmic ray deflections, which puts a solid upper limit of the experimentally observed displacements. Remarkably, this is obtained bypassing entirely the detailed knowledge of the magnetic properties of the turbulent plasma, and that of the electron density variance. Over most of the sky the random deflections for 40 EeV protons do not exceed 1–2°, and can be as large as 5° close to the Galactic plane.

  12. SUPERCONDUCTING RF-DIPOLE DEFLECTING AND CRABBING CAVITIES

    Energy Technology Data Exchange (ETDEWEB)

    Delayen, Jean [ODU, JLAB; De Silva, Paygalage Subashini [ODU, JLAB

    2013-09-01

    Recent interests in designing compact deflecting and crabbing structures for future accelerators and colliders have initiated the development of novel rf structures. The superconducting rf-dipole cavity is one of the first compact designs with attractive properties such as higher gradients, higher shunt impedance, the absence of lower order modes and widely separated higher order modes. Two rf-dipole designs of 400 MHz and 499 MHz have been designed, fabricated and tested as proof-of-principle designs of compact deflecting and crabbing cavities for the LHC high luminosity upgrade and Jefferson Lab 12 GeV upgrade. The first rf tests have been performed on the rf-dipole geometries at 4.2 K and 2.0 K in a vertical test assembly with excellent results. The cavities have achieved high gradients with high intrinsic quality factors, and multipacting levels were easily processed.

  13. Prediction of Double Layer Grids' Maximum Deflection Using Neural Networks

    Directory of Open Access Journals (Sweden)

    Reza K. Moghadas

    2008-01-01

    Full Text Available Efficient neural networks models are trained to predict the maximum deflection of two-way on two-way grids with variable geometrical parameters (span and height as well as cross-sectional areas of the element groups. Backpropagation (BP and Radial Basis Function (RBF neural networks are employed for the mentioned purpose. The inputs of the neural networks are the length of the spans, L, the height, h and cross-sectional areas of the all groups, A and the outputs are maximum deflections of the corresponding double layer grids, respectively. The numerical results indicate that the RBF neural network is better than BP in terms of training time and performance generality.

  14. Effect of layer length on deflection in sandwich beams

    Science.gov (United States)

    Abbu, Muthanna A.; AL-Ameri, Riyadh

    2017-09-01

    A theoretical study has been carried out on sandwich beams strengthened mechanically by two external steel plates attached to their tension and compression sides with so-called "shear connectors ". This study is based on the individual behaviour of each component of the composite sandwich section (i.e. reinforced concrete beam and upper steel plate and lower steel plate). The approach has been developed to simulate the behaviour of such beams, and is based on neglecting the separation between the three layers; i.e., the deflections are equal in each element through the same section. The differential equations reached were solved analytically. Deflection was calculated by using the approach for several beams, tested in two series, and close agreements were obtained with the experimental values. Furthermore, the interaction efficiency between the three elements in a composite sandwich beam has been considered thoroughly, from which the effect of some parameters, such as plate length upon the behaviour of such beams, were studied.

  15. Deflection of Resilient Materials for Reduction of Floor Impact Sound

    OpenAIRE

    Jung-Yoon Lee; Jong-Mun Kim

    2014-01-01

    Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved condu...

  16. Galvanometer deflection: a precision high-speed system.

    Science.gov (United States)

    Jablonowski, D P; Raamot, J

    1976-06-01

    An X-Y galvanometer deflection system capable of high precision in a random access mode of operation is described. Beam positional information in digitized form is obtained by employing a Ronchi grating with a sophisticated optical detection scheme. This information is used in a control interface to locate the beam to the required precision. The system is characterized by high accuracy at maximum speed and is designed for operation in a variable environment, with particular attention placed on thermal insensitivity.

  17. Effect of flexural crack on plain concrete beam failure mechanism A numerical simulation

    Directory of Open Access Journals (Sweden)

    Abdoullah Namdar

    2016-03-01

    Full Text Available The flexural failure of plain concrete beam occurs along with development of flexural crack on beam. In this paper by using ABAQUS, mechanism failure of plain concrete beam under three steps have been simulated. The cracking moment has been analytically calculated and applied on the both sides of the fixed beam, and flexural crack has been simulated on beam. Displacement, von Mises, load reaction, displacementcrack length, von Mises-crack length and von Mises-displacement of beams have been graphical depicted. Results indicated that, the flexural crack governs beam mechanism failure and its effects on beam resistance failure. It has been found that the flexural crack in initial stage it developed slowly and changes to be fast at the final stage of collapsing beam due to reduction of the flexural resistance of beam. Increasing mechanical properties of concrete, collapse displacement is reduced.

  18. The effect of nanoclay filler loading on the flexural strength of fiber-reinforced composites

    Directory of Open Access Journals (Sweden)

    Vajihesadat Mortazavi

    2012-01-01

    Results: For groups with the same concentration of nanoparticles, PMMA-grafted filler-loaded group showed significantly higher flexural strength, except for 0.2% wt. For groups that contain PMMA-grafted nanoclay fillers, the 2% wt had the highest flexural strength value with significant difference to other subgroups. 1% wt and 2% wt showed significantly higher values compared to control (P 0.05. Flexural modulus of 2%, 5% wt PMMA-grafted and 0.5%, 1%, 2%, 5% wt unmodified nanoclay particles-loaded subgroups decreased significantly compared to control group (P < 0.05. Conclusions: PMMA-grafted nanoclay filler loading may enhance the flexural strength of FRCs. Addition of unmodified nanoparticles cannot significantly improve the flexural strength of FRCs. Addition of both unmodified and PMMA-grafted nanoclay particles in some concentrations decreased the flexural modulus.

  19. Stiffness and Angular Deflection analysis of Revolute Manipulator

    Directory of Open Access Journals (Sweden)

    Pundru Srinivasa Rao

    2014-03-01

    Full Text Available This paper proposed to determine the Cartesian stiffness matrix and angular deflection analysis of revolute manipulator. The selected manipulator has rigid fixed link, two movable links and two rotary joints with joint stiffness coefficients are taken into account. The kinematic model of revolute joint manipulator has considered as a planar kinematic chain, which is composed by rigid fixed link and two revolute joints with clearance and deformable elements. The calculation of stiffness matrix depends on Jacobian matrix and change of configuration. The rotational joints are modeled as torsion springs with the same stiffness constant. The relative angular deflections are proportional to the actuated torques taken into account. The subject of this paper has to describe a method for stiffness analysis of serial manipulator. In the present work is to derive the stiffness matrix and angular deflection equations in the Robotic manipulator under the consideration of two-link optimum geometry model for rotary joint manipulator. The stiffness values are measured by displacements of its revolute links loaded by force.

  20. Sparse, reliable, and long-term stable representation of periodic whisker deflections in the mouse barrel cortex.

    Science.gov (United States)

    Mayrhofer, Johannes M; Haiss, Florent; Helmchen, Fritjof; Weber, Bruno

    2015-07-15

    The rodent whisker system is a preferred model for studying plasticity in the somatosensory cortex (barrel cortex). Contrarily, only a small amount of research has been conducted to characterize the stability of neuronal population activity in the barrel cortex. We used the mouse whisker system to address the neuronal basis of stable perception in the somatosensory cortex. Cortical representation of periodic whisker deflections was studied in populations of neurons in supragranular layers over extended time periods (up to 3 months) with long-term two-photon Ca(2+) imaging in anesthetized mice. We found that in most of the neurons (87%), Ca(2+) responses increased sublinearly with increasing number of contralateral whisker deflections. The imaged population of neurons was activated in a stereotypic way over days and for different deflection rates (pulse frequencies). Thus, pulse frequencies are coded by response strength rather than by distinct neuronal sub-populations. A small population of highly responsive neurons (~3%) was sufficient to decode the whisker stimulus. This conserved functional map, led by a small set of highly responsive neurons, might form the foundation of stable sensory percepts. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Equivalent circuit models of two-layer flexure beams with excitation by temperature, humidity, pressure, piezoelectric or piezomagnetic interactions

    Directory of Open Access Journals (Sweden)

    U. Marschner

    2014-09-01

    Full Text Available Two-layer flexure beams often serve as basic transducers in actuators and sensors. In this paper a generalized description of their stimuli-influenced mechanical behavior is derived. For small deflection angles this description includes a multi-port circuit or network representation with lumped elements for a beam part of finite length. A number of coupled finite beam parts model the dynamic behavior including the first natural frequencies of the beam. For piezoelectric and piezomagnetic interactions, reversible transducer models are developed. The piezomagnetic two-layer beam model is extended to include solenoid and planar coils. Linear network theory is applied in order to determine network parameters and to simplify the circuit representation. The resulting circuit model is the basis for a fast simulation of the dynamic system behavior with advanced circuit simulators and, thus, the optimization of the system. It is also a useful tool for understanding and explaining this multi-domain system through basic principles of general system theory.

  2. Comparison Between Two Solutions Based on the Relationship of Load-deflection Character of a Large Deflection Rubber Circular Plate

    Institute of Scientific and Technical Information of China (English)

    段浩; 胡宗武; 杨赪石; 黎佑铭

    2003-01-01

    The rubber circular plate is considered as a kind of membrane. Based on the character that there existsno bending-moment inside a membrane, the geometric behavior of the rubber circular plate in expanding state wasdescribed with the aid of a group of mathematic method. The relationship between deflection and load was attainedby means of calculating stress and strain inside the curved-surface of rubber plate. Meantime, based on Henckymethod, the relationship between deflection and load was attained and considered as the Hencky solution. The dif-ferent results given rise by the two different resolving methods were compared. The deviation results from theHencky method was discussed, and a kind of correcting method was put forward.

  3. A real-time, nonintrusive trace gas detector based on laser photothermal deflection

    Science.gov (United States)

    de Vries, H. S. M.; Dam, N.; van Lieshout, M. R.; Sikkens, C.; Harren, F. J. M.; Reuss, J.

    1995-09-01

    We present the layout and technical details of a trace gas monitor based on photothermal deflection. The operating principle of this instrument, i.e., the deflection of a (weak) probe laser beam by the thermal refractive index gradient induced by trace gas absorption of an intense pump laser beam, allows nonintrusive measurements with good space and time resolution. An intra-cavity CO2 laser is used as the pump beam and a red HeNe laser as the probe. The latter runs perpendicular to the pump beam to optimize spatial resolution. To increase sensitivity, the probe laser is incorporated in a multipass setup. The instrument is demonstrated by the localization of ethylene emission sites on a cherry tomato and by monitoring ammonia production due to nitrogen fixation by cyanobacteria. Both C2H4 and NH3 can be detected at the 1-3 ppb level, at a spatial resolution of 2 mm (along the pump laser)×0.6 mm (perpendicular to it), and a response time of 0.1 s (without background correction) or 15 s (including background correction). Sensitivity can be increased at the expense of spatial resolution, and vice versa. In principle, this instrument is applicable to all those gases possessing a characteristic (``fingerprint'') spectrum in the CO2 laser range. The great advantage of the photothermal deflection technique with respect to other trace gas detection schemes lies in the nonintrusive character of the measurements. There is no need to enclose the sample in a vessel or to suck large volumes of air into the detector; measurements can be performed in open air and in real time. This should prove especially useful where sticky (polar) gases, like H2O, NH3, CH3OH, etc., are to be detected quantitatively. Main applications include air quality monitoring, especially concerning dry deposition rate measurements using the eddy correlation technique, and the study of volatile metabolite emission of biological samples.

  4. Deflection unit for multi-beam mask making

    Science.gov (United States)

    Letzkus, Florian; Butschke, Joerg; Irmscher, Mathias; Jurisch, Michael; Klingler, Wolfram; Platzgummer, Elmar; Klein, Christof; Loeschner, Hans; Springer, Reinhard

    2008-10-01

    Two main challenges of future mask making are the decreasing throughput of the pattern generators and the insufficient line edge roughness of the resist structures. The increasing design complexity with smaller feature sizes combined with additional pattern elements of the Optical Proximity Correction generates huge data volumes which reduce correspondingly the throughput of conventional single e-beam pattern generators. On the other hand the achievable line edge roughness when using sensitive chemically amplified resists does not fulfill the future requirements. The application of less sensitive resists may provide an improved roughness, however on account of throughput, as well. To overcome this challenge a proton multi-beam pattern generator is developed [1]. Starting with a highly parallel broad beam, an aperture-plate is used to generate thousands of separate spot beams. These beams pass through a blanking-plate unit, based on a CMOS device for de-multiplexing the writing data and equipped with electrodes placed around the apertures switching the beams "on" or "off", dependent on the desired pattern. The beam array is demagnified by a 200x reduction optics and the exposure of the entire substrate is done by a continuous moving stage. One major challenge is the fabrication of the required high aspect deflection electrodes and their connection to the CMOS device. One approach is to combine a post-processed CMOS chip with a MEMS component containing the deflection electrodes and to realize the electrical connection of both by vertical integration techniques. For the evaluation and assessment of this considered scheme and fabrication technique, a proof-of-concept deflection unit has been realized and tested. Our design is based on the generation of the deflection electrodes in a silicon membrane by etching trenches and oxide filling afterwards. In a 5mm x 5mm area 43,000 apertures with the corresponding electrodes have been structured and wired individually or in

  5. Design principle of high-precision flexure mechanisms based on parasitic-motion compensation

    Science.gov (United States)

    Li, Shouzhong; Yu, Jingjun

    2014-07-01

    In design of flexure mechanism, diminishing the parasitic-motion is a key point to improve the accuracy. However, most of existing topics concentrate on improving the accuracy of linear-motion flexure mechanisms via compensating the parasitic error, but few research the multi-dimensional flexure mechanisms. A general design principle and method for high-precision flexure mechanisms based on the parasitic-motion compensation is presented, and the proposed method can compensate the parasitic rotation in company with translation, or the parasitic translation in company with rotation, or both. The crucial step for the method is that the parasitic motion of a flexure mechanism is formulated and evaluated in terms of its compliance. The overall compliance matrix of a general flexure mechanism is formulated by using screw theory firstly, then the criteria for the parasitic motions is introduced by analyzing the characteristics of the resultant compliance matrix as well as with aid of the concept of instantaneous rotation center. Subsequently, a compliance-based compensation approach for reducing parasitic-motion is addressed as the most important part. The design principles and procedure are further discussed to help with improving the accuracy of flexure mechanisms, and case studies are provided to illustrate this method. Finally, an analytical verification is provided to demonstrate that the symmetry design philosophy widely used in flexure design can effectively improve accuracy in terms of the proposed method. The proposed compensation method can be well used to diminish the parasitic-motion of multi-dimensional flexure mechanisms.

  6. Experimental determination of optimum dielectric strength of Turmeric fiber reinforced polyester composites using flexural properties

    Directory of Open Access Journals (Sweden)

    K. Murali Mohan Rao

    2009-10-01

    Full Text Available The present investigation puts forward new natural fiber turmeric to be used in the preparation of turmeric fiber reinforced polyester (FRP composites. The dielectric strength of the composites shown decrease in trend with increase in volume fraction of fiber with appreciable reduction in their weight. There was clear fall in the density of the composites with increase in fiber volume fraction. The optimum value of dielectric strength was determined with flexural strength, flexural modulus and specific flexural strength, specific flexural modulus against percentage volume fraction of fiber from the graphs.

  7. RING-TENSILE-STRENGTH AND FLEXURE-STRENGTH CORRELATIONS OF SEA ICE.

    Science.gov (United States)

    SEA ICE, MECHANICAL PROPERTIES), TENSILE PROPERTIES, SALINITY, TEMPERATURE, ICE, FLEXURAL STRENGTH , CORRELATION TECHNIQUES, ACCURACY, SAMPLING, THICKNESS, PREDICTIONS, ANTARCTIC REGIONS, LOADS(FORCES)

  8. Static deformation modeling and analysis of flexure hinges made of a shape memory alloy

    Science.gov (United States)

    Du, Zhijiang; Yang, Miao; Dong, Wei; Zhang, Dan

    2016-11-01

    The flexure hinge is a key element in compliant mechanisms to achieve continuous motion; however the motion range of a flexure hinge is severely restricted by the material’s allowable strain. Due to the superelasticity effect, shape memory alloys (SMAs) can undergo much larger strain than other metals; this means that they are excellent candidates for the fabrication of flexure hinges with a large motion range. In this paper, a simple static deformation modeling approach is proposed for a flexure hinge made of a SMA. The superelastic behavior of the SMA is described by Brinson’s constitutive model. The flexure hinge is considered as a non-prismatic cantilever beam associated with geometrical and material nonlinearities. Govern equations of the flexure hinge are derived and solved numerically by applying the nonlinear bending theory of the Euler-Bernoulli beam. Experimental tests show that the proposed modeling approach can predict the deformation of the flexure hinge precisely; the maximum relative error is less than 6.5%. Based on the static deformation model, the motion capacity, the stiffness characteristic and the rotational error of the flexure hinge are also investigated. The results reveal that the flexure hinge made of a SMA has great potential to construct compliant mechanisms with a large motion range.

  9. Reflection and refraction of flexural waves at geometric boundaries.

    Science.gov (United States)

    Evans, Arthur A; Levine, Alex J

    2013-07-19

    We present a theory of flexural wave propagation on elastic shells having nontrivial geometry and develop an analogy to geometric optics. The transport of momentum within the shell itself is anisotropic due to the curvature, and as such complex classical effects such as birefringence are generically found. We determine the equations of reflection and refraction of such waves at boundaries between different local geometries, showing that waves are totally internally reflected, especially at boundaries between regions of positive and negative Gaussian curvature. We verify these effects by using finite element simulations and discuss the ramifications of these effects for the statistical mechanics of thin curved materials.

  10. Intrinsic embedded sensors for polymeric mechatronics: flexure and force sensing.

    Science.gov (United States)

    Jentoft, Leif P; Dollar, Aaron M; Wagner, Christopher R; Howe, Robert D

    2014-02-25

    While polymeric fabrication processes, including recent advances in additive manufacturing, have revolutionized manufacturing, little work has been done on effective sensing elements compatible with and embedded within polymeric structures. In this paper, we describe the development and evaluation of two important sensing modalities for embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint angle sensing utilizing IR phototransistors, and a small (12 mm), three-axis force sensing via embedded silicon strain gages with similar performance characteristics as an equally sized metal element based sensor.

  11. Intrinsic Embedded Sensors for Polymeric Mechatronics: Flexure and Force Sensing

    Directory of Open Access Journals (Sweden)

    Leif P. Jentoft

    2014-02-01

    Full Text Available While polymeric fabrication processes, including recent advances in additive manufacturing, have revolutionized manufacturing, little work has been done on effective sensing elements compatible with and embedded within polymeric structures. In this paper, we describe the development and evaluation of two important sensing modalities for embedding in polymeric mechatronic and robotic mechanisms: multi-axis flexure joint angle sensing utilizing IR phototransistors, and a small (12 mm, three-axis force sensing via embedded silicon strain gages with similar performance characteristics as an equally sized metal element based sensor.

  12. Calculating the Carrying Capacity of Flexural Prestressed Concrete Beams with Non-Metallic Reinforcement

    Directory of Open Access Journals (Sweden)

    Mantas Atutis

    2011-04-01

    Full Text Available The article reviews moment resistance design methods of prestressed concrete beams with fibre-reinforced polymer (FRP reinforcement. FRP tendons exhibit linear elastic response to rupture without yielding and thus failure is expected to be brittle. The structural behaviour of beams prestressed with FRP tendons is different from beams with traditional steel reinforcement. Depending on the reinforcement ratio, the flexural behaviour of the beam can be divided into several groups. The numerical results show that depending on the nature of the element failure, moment resistance calculation results are different by using reviewed methods. It was found, that the use of non-metallic reinforcement in prestressed concrete structures is effective: moment capacity is about 5% higher than that of the beams with conventional steel reinforcement.Article in Lithuanian

  13. Optimization of the Tensile and Flexural Strength of a Wood-PET Composite

    Directory of Open Access Journals (Sweden)

    Cruz-Salgado Javier

    2015-01-01

    Full Text Available The large amount of disposable bottles presently produced makes the search for alternative products that reuse these materials imperative. Wood-plastic composites are sustainable, organic materials, that show potential for the development of environmentally friendly products. This paper presents the optimization of tensile and flexural strength of a wood-plastic composite made ​​from polyethylene-terephthalate, as thermoplastic resin, and sawdust as fiberfill. The goal of this study was to establish the operating conditions that provide the optimum properties of the wood-plastic composites, with minimal variance. The particle size of the fiber filler was taken as a noise factor. The response surface methodology, by contour lines, in a combined design of experiment was applied.

  14. Coupled flexural-torsional vibration band gap in periodic beam including warping effect

    Institute of Scientific and Technical Information of China (English)

    Fang Jian-Yu; Yu Dian-Long; Han Xiao-Yun; Cai Li

    2009-01-01

    The propagation of coupled flexural-torsional vibration in the periodic beam including warping effect is investigated with the transfer matrix theory.The band structures of the periodic beam,both including warping effect and ignoring warping effect,are obtained.The frequency response function of the finite periodic beams is simulated with finite element method,which shows large vibration attenuation in the frequency range of the gap as expected.The effect of warping stiffness on the band structure is studied and it is concluded that substantial error can be produced in high frequency range if the effect is ignored.The result including warping effect agrees quite well with the simulated result.

  15. Flexure bearing compressor in the one watt linear (OWL) envelope

    Science.gov (United States)

    Rühlich, I.; Mai, M.; Wiedmann, Th.; Rosenhagen, C.

    2007-04-01

    For high performance IR detectors the split linear cooler is a preferred solution. High reliability, low induced vibration and low audible noise are major benefits of such coolers. Today, most linear coolers are qualified for MTTF of 8,000h or above. It is a strong customer desire to further reduce the maintenance costs on system level with significantly higher cooler lifetime. Increased cooler MTTF figures are also needed for IR applications with high lifetime requirements like missile warning applications, border surveillance or homeland security applications. AIM developed a Moving Magnet Flexure Bearing compressor to meet a MTTF of minimum 20,000h. The compressor has a full flexure bearing support on both sides of the driving mechanism. In the assembly process of the compressor an automated alignment process is used to achieve the necessary accuracy. Thus, side-forces on the pistons are minimized during operation, which significantly reduces the wear-out. In order to reduce the outgassing potential most of the internal junctions are welded and the use of all non-metallic components is minimized. The outline dimensions comply with the SADA2 requirements in length and diameter. Further, when operated with a 1/2" SADA type coldfinger, the cooler meets all specified performance data for SADA2. The compressor can be combined with different Stirling type coldfingers and also with the AIM Pulse Tube coldfinger, which gives increased lifetime potential up to 50,000h MTTF. Technical details and performance data of the new compressor are shown.

  16. Linear Analytical Solutions of Mechanical Sensitivity in Large Deflection of Unsymmetrically Layered Piezoelectric Plate under Pretension

    Directory of Open Access Journals (Sweden)

    Chun-Fu Chen

    2014-03-01

    Full Text Available Linear analytical study on the mechanical sensitivity in large deflection of unsymmetrically layered and laterally loaded piezoelectric plate under pretension is conducted. von Karman plate theory for large deflection is utilized but extended to the case of an unsymmetrically layered plate embedded with a piezoelectric layer. The governing equations thus obtained are simplified by omitting the arising nonlinear terms, yielding a Bessel or modified Bessel equation for the lateral slope. Depending on the relative magnitude of the piezoelectric effect, for both cases, analytical solutions of various geometrical responses are developed and formulated via Bessel and modified Bessel functions. The associated ultimate radial stresses are further derived following lamina constitutive law to evaluate the mechanical sensitivity of the considered plate. For a nearly monolithic plate under a very low applied voltage, the results are in good agreement with those for a single-layered case due to pure mechanical load available in literature, and thus the present approach is checked. For a two-layered unsymmetric plate made of typical silicon-based materials, a sound piezoelectric effect is illustrated particularly in a low pretension condition.

  17. Detection without deflection? A hypothesis for direct sensing of sound pressure by hair cells

    Indian Academy of Sciences (India)

    Andrew Bell

    2007-03-01

    It is widely thought that organisms detect sound by sensing the deflection of hair-like projections, the stereocilia, at the apex of hair cells. In the case of mammals, the standard interpretation is that hair cells in the cochlea respond to deflection of stereocilia induced by motion generated by a hydrodynamic travelling wave. But in the light of persistent anomalies, an alternative hypothesis seems to have some merit: that sensing cells (in particular the outer hair cells) may, at least at low intensities, be reacting to a different stimulus – the rapid pressure wave that sweeps through the cochlear fluids at the speed of sound in water. This would explain why fast responses are sometimes seen before the peak of the travelling wave. Yet how could cells directly sense fluid pressure? Here, a model is constructed of the outer hair cell as a pressure vessel able to sense pressure variations across its cuticular pore, and this ‘fontanelle’ model, based on the sensing action of the basal body at this compliant spot, could explain the observed anomalies. Moreover, the fontanelle model can be applied to a wide range of other organisms, suggesting that direct pressure detection is a general mode of sensing complementary to stereociliar displacement.

  18. Challenges of deflecting an asteroid or cometary nucleus with a nuclear burst

    Energy Technology Data Exchange (ETDEWEB)

    Bradley, Paul A [Los Alamos National Laboratory; Plesko, Cathy S [Los Alamos National Laboratory; Clement, Ryan R C [Los Alamos National Laboratory; Conlon, Leann M [Los Alamos National Laboratory; Weaver, Robert P [Los Alamos National Laboratory; Guzik, Joyce A [Los Alamos National Laboratory; Pritchett - Sheets, Lori A [Los Alamos National Laboratory; Huebner, Walter F [SOUTHWEST RESEARCH INSTITUTE

    2009-01-01

    There are many natural disasters that humanity has to deal with over time. These include earthquakes, tsunami, hurricanes, floods, asteroid strikes, and so on. Many of these disasters occur slowly enough that some advance warning of which areas will be affected is possible. However, in almost all cases, the response is to evacuate the area to be affected and deal with the damage later. The evacuations for hurricanes Katrina and Rita on the US Gulf Coast in 2005 demonstrated the chaos that can result. In contrast with other natural disasters. it is likely that an asteroid or cometary nucleus on a collision course with Earth is likely to be detected with enough warning time to possibly deflect it away from the collision course. Thanks to near-Earth object (NEO) surveys, people are working towards a goal of cataloging at least 90% of all near-Earth objects with diameters larger than {approx}140 meters in the next decade. The question is how to mitigate the threat from an asteroid or cometary nucleus found to be on a collision course. We briefly review some possible methods, describing their good and bad points, and then embark on a more detailed description of using a nuclear munition in standoff mode to deflect an asteroid or cometary nucleus before it can hit Earth.

  19. The 2017 Eclipse: Centenary of the Einstein Light Deflection Experiment

    Science.gov (United States)

    Kennefick, Daniel

    2017-01-01

    August 21st, 2017 will see a total eclipse of the Sun visible in many parts of the United States. Coincidentally this date marks the centenary of the first observational attempt to test Einstein's General Theory of Relativity by measuring gravitational deflection of light by the Sun. This was attempted by the Kodaikanal Observatory in India during the conjunction of Regulus with the Sun in daylight on August 21st, 1917. The observation was attempted at the urging of the amateur German-British astronomer A. F. Lindemann, with his son, F. A. Lindemann, a well-known physicist, who later played a significant role as Churchill's science advisor during World War II. A century later Regulus will once again be in conjunction with the Sun, but by a remarkable coincidence, this will occur during a solar eclipse! Efforts will be made to measure the star deflection during the eclipse and the experiment is contrasted with the famous expeditions of 1919 which were the first to actually measure the light deflection, since the 1917 effort did not meet with success. Although in recent decades there have been efforts made to suggest that the 1919 eclipse team, led by Arthur Stanley Eddington and Sir Frank Watson Dyson, over-interpreted their results in favor of Einstein this talk will argue that such claims are wrong-headed. A close study of their data analysis reveals that they had good grounds for the decisions they made and this conclusion is reinforced by comparison with a modern re-analysis of the plates by the Greenwich Observatory conducted in 1977.

  20. Spin Rate and Deflection Ratio of a Ping Pong Ball

    Directory of Open Access Journals (Sweden)

    Byung Joon Ahn

    2013-01-01

    Full Text Available To investigate the effects of a spherical object’s spin rate on the curvature of its flight, Ping Pong balls, of varying spin rates, were hit horizontally and recorded from above with a high-speed camera. It was shown that there was a proportional relationship between the ball’s spin rate and deflection ratio. Additionally, using the results of the analyzed data, a coefficient of skin friction of the Ping Pong ball was found to be approximately 0.2 under the specific conditions of this investigation.

  1. Online Estimation of wind turbine blade deflection with UWB signals

    DEFF Research Database (Denmark)

    Jensen, Tobias Lindstrøm; Jakobsen, Morten Lomholt; Østergaard, Jan;

    2015-01-01

    In this paper we use ultra-wideband (UWB) signals for the localization of blade tips on wind turbines. Our approach is to acquire two separate distances to each tip via time-delay estimation, and each tip is then localized by triangulation. We derive an approximate maximum a posteriori (MAP) delay...... estimator exploiting i) contextual prior information and ii) a direct-path approximation. The resulting deflection estimation algorithm is computationally feasible for online usage. Simulation studies are conducted to assess the overall triangulation uncertainty and it is observed that negative correlation...

  2. Direct measurement of Vorticella contraction force by micropipette deflection.

    Science.gov (United States)

    France, Danielle; Tejada, Jonathan; Matsudaira, Paul

    2017-02-01

    The ciliated protozoan Vorticella convallaria is noted for its exceptionally fast adenosine triphosphate-independent cellular contraction, but direct measurements of contractile force have proven difficult given the length scale, speed, and forces involved. We used high-speed video microscopy to image live Vorticella stalled in midcontraction by deflection of an attached micropipette. Stall forces correlate with both distance contracted and the resting stalk length. Estimated isometric forces range from 95 to 177 nanonewtons (nN), or 1.12 nN·μm(-1) of the stalk. Maximum velocity and work are also proportional to distance contracted. These parameters constrain proposed biochemical/physical models of the contractile mechanism.

  3. Angular Dispersion and Deflection Function for Heavy Ion Elastic Scattering

    Institute of Scientific and Technical Information of China (English)

    BAI Zhen; MAO Rui-Shi; YUAN Xiao-Hua; Xu Zhi-Guo; ZHANG Hong-Bin; XU Hua-Gen; QI Hui-Rong; WANG Yue; JIA Fei; WU Li-Jie; DING Xian-Li; WANG Qi; GAO Qi; GAO Hui; LI Song-Lin; LI Jun-Qing; ZHANG Ya-Peng; XIAO Guo-Qing; JIN Gen-Ming; REN Zhong-Zhou; ZHOU Shan-Gui; XU Wang; HAN Jian-Long; Fan Gong-Tao; ZHANG Shuang-Quan; PANG Dan-Yang; SERGEY Yu-Kun; XIAO Zhi-Gang; XU Hu-Shan; SUN Zhi-Yu; HU Zheng-Guo; ZHANG Xue-Ying; WANG Hong-Wei

    2007-01-01

    The differential cross sections for elastic scattering products of17 F on 208 Pb have been measured.The angular dispersion plots of In(dσ/dθ)versus θ2 are obtained from the angular distribution of the elastic scattering differential cross sections.Systematical analysis on the angular dispersion for the available experimental data indicates that there is an angular dispersion turning angle at forward angular range within the grazing angle.This turning angle can be clarified as nuclear rainbow in classical deflection function.The exotic behaviour of the nuclear rainbow angle offers a new probe to investigate the halo and skin phenomena.

  4. The Deflection of Charged Particles in an Electric Dodecapole Field

    Energy Technology Data Exchange (ETDEWEB)

    Seely, D. G.; Chalut, K.; Thompson, J. S.; Kvale, T. J.

    1997-10-10

    The properties of an ion-optical device consisting of twelve long parallel rods placed equidistantly on a circle are briefly reviewed. The use of this device in its dodecapole configuration to deflect ions in a plane perpendicular to the axis of the dodecapole is discussed. Results of trajectory computations made with the SIMION ion-optics computer program demonstrate that the device works remarkably well in separating the constituents of a multiply-charged ion beam. The use of this device to merge an ion beam with an optical beam is proposed.

  5. Wind Turbine Blade Deflection Sensing System Based on UWB Technology

    DEFF Research Database (Denmark)

    Franek, Ondrej; Zhang, Shuai; Jensen, Tobias Lindstrøm

    2016-01-01

    by triangulation. An experimental setup with corner reflector antenna mounted at the tip and horn antennas at the root of a 37.3 m long blade is described. Analyzing the data from the experiment, special attention is given to the propagation aspects of the UWB links, with focus on the multipath effects caused...... by the blade. It is demonstrated that despite the adverse effects of the multipath propagation the ranging accuracy of the system amounts to 1.5 cm, leading to maximum error of deflection 4.5 %....

  6. Observation of Femtosecond Bunch Length Using a Transverse Deflecting Structure

    Energy Technology Data Exchange (ETDEWEB)

    Huning, M.; Bolzmann, A.; Schlarb, H.; /DESY; Frisch, J.; McCormick, D.; Ross, M.; Smith, T.; /SLAC; Rossbach, J.; /Hamburg U.

    2005-12-14

    The design of the VUV-FEL at DESY demands bunch lengths in the order of 50 fs and below. For the diagnostic of such very short bunches a transverse deflecting RF structure (LOLA) has been installed which streaks the beam according to the longitudinal distribution. Tests in the VUV-FEL yielded a rich substructure of the bunches. The most pronounced peak in the has a rms length of approximately 50 fs during FEL operation and below 20 fs FWHM at maximum compression. Depending on the transverse focusing a resolution well below 50 fs was achieved.

  7. Fatigue behavior of dental resin composites: flexural fatigue in vitro versus 6 years in vivo

    NARCIS (Netherlands)

    Garcia-Godoy, F.; Frankenberger, R.; Lohbauer, U.; Feilzer, A.J.; Krämer, N.

    2012-01-01

    Objectives: To evaluate fatigue behavior of direct resin composite restorations (Tetric Ceram vs. Grandio) in vitro and in vivo over an observation period of 6 years. Methods: For the in vitro part, Young's moduli (YM) were calculated and both initial (FS: flexural strength) and fatigue flexural

  8. Effects of forming processing conditions on the flexural properties of bagasse and bamboo plastic composites

    Directory of Open Access Journals (Sweden)

    Shinichi Shibata

    2012-11-01

    Full Text Available The effects of processing conditions such as pressure, temperature, and holding time on the flexural properties of bagasse and bamboo biodegradable composites were investigated. Each sample of bagasse or bamboo was mixed with a corn-starch-based biodegradable resin and fabricated by a hot press forming method. The cross-sectional structure of the bagasse fiber was found to be porous and compressible, while that of bamboo was found to be more solid. The relationship between flexural strength, flexural modulus, and pressure in bagasse fiber was apparently different from that of bamboo due to the differences in the cross-sectional structure. In bagasse, the flexural strength and flexural modulus increased with the increase in pressure, whereas in bamboo those properties decreased. In bagasse, an increase in pressure made the fibers into a more compressed structure, increasing their flexural properties. In rigid bamboo, an increase in pressure caused the resin to extrude between fibers, and this resulted in lower flexural properties. At temperatures above 170 oC, the resin depolymerized thermally and the degree of polymerization decreased. Thus, the flexural modulus and strength decreased gradually with increase in holding temperature in both bagasse and bamboo composites. Furthermore, a maximum fiber volume fraction existed for both bagasse and bamboo plastic composites in the approximate range of 75% to 80%.

  9. A comparison of flexural strengths of polymer (SBR and PVA modified, roller compacted concrete

    Directory of Open Access Journals (Sweden)

    John N. Karadelis

    2015-09-01

    Full Text Available This brief article aims to reveal the flexural performance, including the equivalent flexural strength of PVA (Polyvinyl Alcohol modified concrete by comparing it primarily with that of SBR (Styrene Butadiene Rubber concrete. This data article is directly related to Karadelis and Lin [6].

  10. A comparison of flexural strengths of polymer (SBR and PVA) modified, roller compacted concrete.

    Science.gov (United States)

    Karadelis, John N; Lin, Yougui

    2015-09-01

    This brief article aims to reveal the flexural performance, including the equivalent flexural strength of PVA (Polyvinyl Alcohol) modified concrete by comparing it primarily with that of SBR (Styrene Butadiene Rubber) concrete. This data article is directly related to Karadelis and Lin [6].

  11. A comparison of flexural strengths of polymer (SBR and PVA) modified, roller compacted concrete

    OpenAIRE

    Karadelis, John N.; Lin, Yougui

    2015-01-01

    This brief article aims to reveal the flexural performance, including the equivalent flexural strength of PVA (Polyvinyl Alcohol) modified concrete by comparing it primarily with that of SBR (Styrene Butadiene Rubber) concrete. This data article is directly related to Karadelis and Lin [6].

  12. The influence of resin flexural modulus on the magnitude of ceramic strengthening.

    LENUS (Irish Health Repository)

    Fleming, Garry J P

    2012-07-01

    The aim was to determine the magnitude of ceramic resin-strengthening with resin-based materials with varying flexural moduli using a regression technique to assess the theoretical strengthening at a \\'zero\\' resin-coating thickness. The hypothesis tested was that experimentally, increasing resin flexural modulus results in increased resin-strengthening observed at a theoretical \\'zero\\' resin-coating thickness.

  13. Fatigue behavior of dental resin composites: flexural fatigue in vitro versus 6 years in vivo

    NARCIS (Netherlands)

    F. Garcia-Godoy; R. Frankenberger; U. Lohbauer; A.J. Feilzer; N. Krämer

    2012-01-01

    Objectives: To evaluate fatigue behavior of direct resin composite restorations (Tetric Ceram vs. Grandio) in vitro and in vivo over an observation period of 6 years. Methods: For the in vitro part, Young's moduli (YM) were calculated and both initial (FS: flexural strength) and fatigue flexural str

  14. A Symbolic Formulation for Analytical Compliance Analysis and Synthesis of Flexure Mechanisms.

    Science.gov (United States)

    Su, Hai-Jun; Shi, Hongliang; Yu, Jingjun

    2012-05-01

    This paper presents a symbolic formulation for analytical compliance analysis and synthesis of flexure mechanisms with serial, parallel, or hybrid topologies. Our approach is based on the screw theory that characterizes flexure deformations with motion twists and loadings with force wrenches. In this work, we first derive a symbolic formulation of the compliance and stiffness matrices for commonly used flexure elements, flexure joints, and simple chains. Elements of these matrices are all explicit functions of flexure parameters. To analyze a general flexure mechanism, we subdivide it into multiple structural modules, which we identify as serial, parallel, or hybrid chains. We then analyze each module with the known flexure structures in the library. At last, we use a bottom-up approach to obtain the compliance/stiffness matrix for the overall mechanism. This is done by taking appropriate coordinate transformation of twists and wrenches in space. Four practical examples are provided to demonstrate the approach. A numerical example is employed to compare analytical compliance models against a finite element model. The results show that the errors are sufficiently small (2%, compared with finite element (FE) model), if the range of motion is limited to linear deformations. This work provides a systematical approach for compliance analysis and synthesis of general flexure mechanisms. The symbolic formulation enables subsequent design tasks, such as compliance synthesis or sensitivity analysis.

  15. Flexure fatigue testing of 90 deg graphite/epoxy composites

    Science.gov (United States)

    Peck, Ann Nancy W.

    1995-01-01

    A great deal of research has been performed characterizing the in-plane fiber-dominated properties, under both static and fatigue loading, of advanced composite materials. To the author's knowledge, no study has been performed to date investigating fatigue characteristics in the transverse direction. This information is important in the design of bonded composite airframe structure where repeated, cyclic out-of-plane bending may occur. Recent tests characterizing skin/stringer debond failures in reinforced composite panels where the dominant loading in the skin is flexure along the edge of the frame indicate failure initiated either in the skin or else the flange, near the flange tip. When failure initiated in the skin, transverse matrix cracks formed in the surface skin ply closest to the flange and either initiated delaminations or created matrix cracks in the next lower ply, which in turn initiated delaminations. When failure initiated in the flanges, transverse cracks formed in the flange angle ply closest to the skin and initiated delamination. In no configuration did failure propagate through the adhesive bond layer. For the examined skin/flange configurations, the maximum transverse tension stress at failure correlates very well with the transverse tension strength of the composites. Transverse tension strength (static) data of graphite epoxy composites have been shown to vary with the volume of material stressed. As the volume of material stressed increased, the strength decreased. A volumetric scaling law based on Weibull statistics can be used to predict the transverse strength measurements. The volume dependence reflects the presence of inherent flaws in the microstructure of the lamina. A similar approach may be taken to determine a volume scale effect on the transverse tension fatigue behavior of graphite/epoxy composites. The objective of this work is to generate transverse tension strength and fatigue S-N characteristics for composite materials using

  16. Refraction of $e^-$ beams due to plasma lensing at a plasma-vacuum interface -- applied to beam deflection in a Copper cell with electrical RF-breakdown plasma

    CERN Document Server

    Sahai, Aakash A

    2014-01-01

    We formulate a possible description of the deflection of a relativistic $e^-$ beam in an inhomogeneous copper plasma, encountered by the beam when propagating through a accelerating cell that has undergone a high electric-field RF-breakdown. It is well known that an inhomogeneous plasma forms and may last for up to a few micro-seconds, until recombination in an accelerating structure where a field-emission triggers melting and ionization of RF-cell wall deformity. We present a preliminary model for the beam deflection due to collective plasma response based upon the beam density, plasma density and interaction length.

  17. Experimental and theoretical assessment of flexural properties of hybrid natural fibre composites

    DEFF Research Database (Denmark)

    Raghavalu Thirumalai, Durai Prabhakaran; Toftegaard, Helmuth Langmaack; Markussen, Christen Malte

    2014-01-01

    The concept of hybridization of natural fibre composites with synthetic fibres is attracting increasing scientific attention. The present study addresses the flexural properties of hybrid flax/glass/epoxy composites to demonstrate the potential benefits of hybridization. The study covers both...... experimental and theoretical assessments. Composite laminates with different hybrid fibre mixing ratios and different layer configurations were manufactured, and their volumetric composition and flexural properties were measured. The relationship between volume fractions in the composites is shown to be well...... predicted as a function of the hybrid fibre mixing ratio. The flexural modulus of the composites is theoretically assessed by using micromechanical models and laminate theory. The model predictions are compared with the experimentally determined flexural properties. Both approaches show that the flexural...

  18. EFFECT OF FILLER LOADING ON PHYSICAL AND FLEXURAL PROPERTIES OF RAPESEED STEM/PP COMPOSITES

    Directory of Open Access Journals (Sweden)

    Seyed Majid Zabihzadeh

    2011-03-01

    Full Text Available The objective of the study is to develop a new filler for the production of natural filler thermoplastic composites using the waste rapeseed stalks. The long-term water absorption and thickness swelling behaviors and flexural properties of rapeseed filled polypropylene (PP composites were investigated. Three different contents of filler were tested: 30, 45, and 60 wt%. Results of long-term hygroscopic tests indicated that by the increase in filler content from 30% to 60%, water diffusion absorption and thickness swelling rate parameter increased. A swelling model developed by Shi and Gardner can be used to quantify the swelling rate. The increasing of filler content reduced the flexural strength of the rapeseed/PP composites significantly. In contrast to the flexural strength, the flexural modulus improved with increasing the filler content. The flexural properties of these composites were decreased after the water uptake, due to the effect of the water molecules.

  19. Deflection corridors of abdomen and thorax in oblique side impacts using equal stress equal velocity approach: comparison with other normalization methods.

    Science.gov (United States)

    Yoganandan, Narayan; Arun, Mike W J; Humm, John; Pintar, Frank A

    2014-10-01

    The first objective of the study was to determine the thorax and abdomen deflection time corridors using the equal stress equal velocity approach from oblique side impact sled tests with postmortem human surrogates fitted with chestbands. The second purpose of the study was to generate deflection time corridors using impulse momentum methods and determine which of these methods best suits the data. An anthropometry-specific load wall was used. Individual surrogate responses were normalized to standard midsize male anthropometry. Corridors from the equal stress equal velocity approach were very similar to those from impulse momentum methods, thus either method can be used for this data. Present mean and plus/minus one standard deviation abdomen and thorax deflection time corridors can be used to evaluate dummies and validate complex human body finite element models.

  20. Deflection of resilient materials for reduction of floor impact sound.

    Science.gov (United States)

    Lee, Jung-Yoon; Kim, Jong-Mun

    2014-01-01

    Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved conducting twenty-seven material tests and ten sound insulation floating concrete floor specimens. Two main parameters were considered in the experimental investigation: the seven types of resilient materials and the location of the loading point. The structural behavior of sound insulation floor floating was predicted using the Winkler method. The experimental and analytical results indicated that the cracking strength of the floating concrete floor significantly increased with increasing the tangent modulus of resilient material. The deflection of the floating concrete floor loaded at the side of the specimen was much greater than that of the floating concrete floor loaded at the center of the specimen. The Winkler model considering the effect of modulus of resilient materials was able to accurately predict the cracking strength of the floating concrete floor.

  1. UHECR correlations taking account of composition and Galactic magnetic deflections

    CERN Document Server

    Roberts, J

    2013-01-01

    We predict the arrival direction distribution of cosmic rays including their deflection in the Galactic magnetic field, for several combinations of source and composition hypotheses: the sources are hard X-ray AGNs or uniformly sample the matter distribution of galaxies, and the composition at the source is pure proton or is the Galactic cosmic ray composition measured by CREAM. We use the regular component of the Jansson-Farrar 2012 model for the GMF and allow for rigidities as low as 2 EeV. We report the correlations of published UHECRs, rescaling event energies so as to reconcile the spectra of the different experiments and taking the overall energy uncertainty into account; different composition hypotheses are considered. This work demonstrates the feasibility of calculating GMF deflections to low enough rigidities to allow for heavy composition in correlation studies, and that non-trivial arrival direction structure should be expected even for mixed or heavy composition, as long as UHECRs come from the l...

  2. Large deflection of flexible tapered functionally graded beam

    Institute of Scientific and Technical Information of China (English)

    A.R.Davoodinik; G.H.Rahimi

    2011-01-01

    In this paper the semi-analytical analyses of the flexible cantilever tapered functionally graded beam under combined inclined end loading and intermediate loading are studied.In order to derive the fully non-linear equations governing the non-linear deformation,a curvilinear coordinate system is introduced.A general non-linear second order differential equation that governs the shape of a deflected beam is derived based on the geometric nonlinearities,infinitesimal local displacements and local rotation concepts with remarkable physical properties of functionally graded materials.The solutions obtained from semi-analytical methods are numerically compared with the existing elliptic integral solution for the case of a flexible uniform cantilever functionally graded beam.The effects of taper ratio,inclined end load angle and material property gradient on large deflection of the beam are evaluated.The Adomian decomposition method will be useful toward the design of tapered functionally graded compliant mechanisms driven by smart actuators.

  3. Design and Field Test of a Galvanometer Deflected Streak Camera

    Energy Technology Data Exchange (ETDEWEB)

    Lai, C C; Goosman, D R; Wade, J T; Avara, R

    2002-11-08

    We have developed a compact fieldable optically-deflected streak camera first reported in the 20th HSPP Congress. Using a triggerable galvanometer that scans the optical signal, the imaging and streaking function is an all-optical process without incurring any photon-electron-photon conversion or photoelectronic deflection. As such, the achievable imaging quality is limited mainly only by optical design, rather than by multiple conversions of signal carrier and high voltage electron-optics effect. All core elements of the camera are packaged into a 12 inch x 24 inch footprint box, a size similar to that of a conventional electronic streak camera. At LLNL's Site-300 Test Site, we have conducted a Fabry-Perot interferometer measurement of fast object velocity using this all-optical camera side-by-side with an intensified electronic streak camera. These two cameras are configured as two independent instruments for recording synchronously each branch of the 50/50 splits from one incoming signal. Given the same signal characteristics, the test result has undisputedly demonstrated superior imaging performance for the all-optical streak camera. It produces higher signal sensitivity, wider linear dynamic range, better spatial contrast, finer temporal resolution, and larger data capacity as compared with that of the electronic counterpart. The camera had also demonstrated its structural robustness and functional consistence to be well compatible with field environment. This paper presents the camera design and the test results in both pictorial records and post-process graphic summaries.

  4. Deflection of Resilient Materials for Reduction of Floor Impact Sound

    Directory of Open Access Journals (Sweden)

    Jung-Yoon Lee

    2014-01-01

    Full Text Available Recently, many residents living in apartment buildings in Korea have been bothered by noise coming from the houses above. In order to reduce noise pollution, communities are increasingly imposing bylaws, including the limitation of floor impact sound, minimum thickness of floors, and floor soundproofing solutions. This research effort focused specifically on the deflection of resilient materials in the floor sound insulation systems of apartment houses. The experimental program involved conducting twenty-seven material tests and ten sound insulation floating concrete floor specimens. Two main parameters were considered in the experimental investigation: the seven types of resilient materials and the location of the loading point. The structural behavior of sound insulation floor floating was predicted using the Winkler method. The experimental and analytical results indicated that the cracking strength of the floating concrete floor significantly increased with increasing the tangent modulus of resilient material. The deflection of the floating concrete floor loaded at the side of the specimen was much greater than that of the floating concrete floor loaded at the center of the specimen. The Winkler model considering the effect of modulus of resilient materials was able to accurately predict the cracking strength of the floating concrete floor.

  5. System for deflection measurements of floating dry docks

    Science.gov (United States)

    Gorbachev, Alexey A.; Pantyushin, Anton V.; Serikova, Mariya G.; Korotaev, Valery V.; Timofeev, Aleksandr N.

    2015-05-01

    In this paper we introduce a system for deflection measurement of floating dry docks. The system contains two measurement channels observing opposite directions of the dock. It also includes set of reference marks, an industrial computer and a display. Each channel contains CMOS camera with long focal-length lens. Reference marks are implemented as IR LED arrays with 940 nm working wavelength for better performance within bad weather conditions (e.g. fog, rain, high humidity etc.). In the paper we demonstrate results of an analysis of different optical schemes for coupling the oppositely directed channels of the measurement unit and show that the scheme with two image sensors with separated lenses is an optimal option, because it allows usage of nonequidistant location of reference marks and demonstrates the least value of parasitic shift caused by rotations of the measuring unit. The developed system was tested both on specially-designed setup and in real infrastructure of a floating dry dock. The conducted tests proved that a measuring error of the system is smaller than +/- 1.5 mm within the measurement range of +/- 150 mm when deflection of 100 m dock is measured. Obtained results showed that the system demonstrates an ability to work in a harsh environment including poor weather conditions.

  6. Design OF Flexure Bearing For Linear Compressor By Optimization Procedure Using FEA

    Directory of Open Access Journals (Sweden)

    Saurabh Malpani

    2012-05-01

    Full Text Available Bearing are used to allow the relative motion between two surfaces. A shaft has to rotate about its casing or a piston has to slide about the cylinder. Both requires relative motion to happened least rictional losses. The flexural bearing however ,offers a different approach in supporting the bearing surfaces. The elements of bearing surfaces are deformed on application of load to one of the surfaces, allowing the relative motion between the two surfaces on removal of the load ,the surfaces go back to their original position subjected tocondition that caused deformation of the bearing element due to pplied load is within the limit of elasticity. This eliminates the wear ,vibration and frictional losses. However ,the deformation has to be limited. The precision and micro machining applications and some medical applications very low relative motion. Hence, flexural bearing in this kind of application is a better. The present work is specific to the typical flexure bearing used in linear compressor. Since the flexural bearing designed procedure is not available, this paper proposes to the FEM as a tool to find the axial stiffness thatwould be offered by a typical flexure used in the linear compressor application for cryocooler. The cryocooler has a linear compressor use for compressing a gas with a typical displacement of 5 mm. The typical design has the flexural bearing with spiral cuts in the flexures. These spiral cuts allows each of the flexure to move itselfaxially on application of load in the axial direction. There are two states of flexures called stacks on either side of linear motor supporting a piston rod which moves the piston either side i.e. back and forth in gas displacer. As mentioned typical displacement of the piston is 5mm causing each of the flexure to get deformed by same amount. Since there is no any standard method available for alculating axial stiffness of bearing ,we haveconsider an example of disc.

  7. Source illusion devices for flexural Lamb waves using elastic metasurfaces

    CERN Document Server

    Liu, Yongquan; Liu, Fu; Diba, Owen; Lamb, Alistair; Li, Jensen

    2016-01-01

    Metamaterials with the transformation method has greatly promoted the development in achieving invisibility and illusion for various classical waves. However, the requirement of tailor-made bulk materials and extreme constitutive parameters associated to illusion designs hampers its further progress. Inspired by recent demonstrations of metasurfaces in achieving reduced versions of electromagnetic cloaks, we propose and experimentally demonstrate source illusion devices to manipulate flexural waves using metasurfaces. The approach is particularly useful for elastic waves due to the lack of form-invariance in usual transformation methods. We demonstrate metasurfaces for shifting, transforming and splitting a point source with "space-coiling" structures. The effects are found to be broadband and robust against a change of source position, with agreement from numerical simulations and Huygens-Fresnel theory. The proposed approach provides an avenue to generically manipulate guided elastic waves in solids, and is...

  8. Ice-Shelf Tidal Flexure and Subglacial Pressure Variations

    Science.gov (United States)

    Walker, Ryan T.; Parizek, Byron R.; Alley, Richard B.; Anandakrishnan, Sridhar; Riverman, Kiya L.; Christianson, Knut

    2013-01-01

    We develop a model of an ice shelf-ice stream system as a viscoelastic beam partially supported by an elastic foundation. When bed rock near the grounding line acts as a fulcrum, leverage from the ice shelf dropping at low tide can cause significant (approx 1 cm) uplift in the first few kilometers of grounded ice.This uplift and the corresponding depression at high tide lead to basal pressure variations of sufficient magnitude to influence subglacial hydrology.Tidal flexure may thus affect basal lubrication, sediment flow, and till strength, all of which are significant factors in ice-stream dynamics and grounding-line stability. Under certain circumstances, our results suggest the possibility of seawater being drawn into the subglacial water system. The presence of sea water beneath grounded ice would significantly change the radar reflectivity of the grounding zone and complicate the interpretation of grounded versus floating ice based on ice-penetrating radar observations.

  9. [Splenic flexure and irritable colon syndromes: conjugate conditions].

    Science.gov (United States)

    Osipenko, M F; Bikbulatova, E A; Mut-Gusaim, V I

    2008-01-01

    To investigate phenotypical and clinical characteristics in individuals with high fixation of the splenic angle (HFSA). The study group included 82 patients with HFSA, the comparison group--76 patients with irritable colon syndrome (ICS), control group--19 patients without colon pathology. the results of the following examinations were analysed: the disease history, detailed intestinal investigation, rectal sensitivity, constitution, connective tissue weakness, vegetative dysfunction and regulation. HFSA is encountered mainly in persons with hyperstenic constitution. Some HFSA patients have pain on the left side--splenic flexure syndrome (SFS). The pain corresponds most to clinical criteria of irritable colon syndrome diagnosis and is accompanied with reduced threshold of pain sensitivity to balloon extension. Provoking factors of the symptoms are stress situations in childhood. SFS can be considered as a variant of ICS arising in HFSA. The treatment should be based on the principles of ICS treatment.

  10. The LINC-NIRVANA fringe and flexure tracker control system

    Science.gov (United States)

    Rost, Steffen; Eckart, Andreas; Horrobin, Matthew; Lindhorst, Bettina; Rauch, Christoph; Smajic, Semir; Straubmeier, Christian; Tremou, Evangelia; Wank, Imke; Zuther, Jens; Pott, Jörg-Uwe

    2012-07-01

    We present the latest status of the control system of the LN (LINC-NIRVANA) FFTS (Fringe and Flexure Tracker System) for the LBT. The software concept integrates the sensor data and control of the various subsystems and provides the interaction with the whole LN instrument. Varying conditions and multiple configurations for observations imply a flexible interconnection of the control loops for the hardware manipulators with respect to the time-critical data analysis of the fringe detection. In this contribution details of the implementation of the algorithms on a real-time Linux PC are given. By considering the results from simulations of the system dynamics, lab experiments, atmospheric simulations, and telescope characterization the optimal parameter setup for an observation can be chosen and basic techniques for adaption to changing conditions can be derived.

  11. Long wavelength gravity anomalies over India: Crustal and lithospheric structures and its flexure

    Science.gov (United States)

    Tiwari, V. M.; Ravi Kumar, M.; Mishra, D. C.

    2013-07-01

    crustal thicknesses under the Vindhyan and the Ganga basins are attributed to the lithospheric flexure of the Indian plate due to Himalaya. Crustal bulge due to lithospheric flexure is well reflected in isostatic Moho based on flexural model of average effective elastic thickness of ˜40 km. Lithospheric flexure causes high heat flow that is aided by large crustal scale fault system of mobile belts and their extensions northwards in this section, which may be responsible for lower crustal bulk density in the northern part. A low density and high thermal regime in north India north of the SMB compared to south India, however does not conform to the high S-wave velocity in the northern part and thus it is attributed to changes in composition between the northern and the southern parts indicating a reworked lithosphere. Some of the long wavelength gravity anomalies along the east and the west coasts of India are attributed to the intrusives that caused the breakup of India from Antarctica, and Africa, Madagascar and Seychelles along the east and the west coasts of India, respectively.

  12. Determination of the Critical Value of Deflection for Embedded Cylindrical Structures

    Institute of Scientific and Technical Information of China (English)

    LIU Jian-qi; CHEN Bin; WANG Hai-yan

    2005-01-01

    An embedded cylinder is a large-diameter cylinder embedded in a soil foundation. The state of failure of such an embedded cylindrical structure shows large deflection instead of slide and overturn of the traditional gravity type of structure placed on a rubble base or foundation base. The critical value of deflection of the embedded cylindrical structure, which is the maximum allowable deflection for stability calculation of the cylinder, is a vital control value. Through investigation on deflection and soil pressures on an embedded cylinder by model experiments, the variations of the angle of rotation θ of a cylinder with effective anti-overturning ratio η and moment MH of thrust are discussed. On the basis of experimental study, the critical value of deflection of the cylindrical structure is proposed in the paper. Meanwhile, the formulas for calculating deflection of cylinders are derived.

  13. Evaluation of Relative Sensitivity of SAW and Flexural Plate Wave Devices for Atmospheric Sensing

    Science.gov (United States)

    White, Richard M.; Black, Justin; Chen, Bryan

    1998-01-01

    The objective of this project is to evaluate the suitability of the ultrasonic flexural plate wave (FPW) device as the detector in a gas chromatograph (GC). Of particular interest is the detection of nitrous oxide (N2O). From experimental results we conclude analyte detection is achieved through two mechanisms: changes in gas density, and mass loading of the device membrane due to the sorption of gas molecules. Reducing the dead volume of the FPW chamber increased the FPW response. A comparison of the FPW response to that of the surface acoustic wave (SAW) detector provided with the GC (made by MSI, Microsensor Technologies, Inc.), shows that for unseparated N2O in N2, the FPW exhibits a sensitivity that is at least 550 times greater than that of the SAW device. A Porapak Q column was found to separate N2O from its carrier gas, N2 or He. With the Porapak Q column, a coated FPW detected 1 ppm N2O in N2 or He, with a response magnitude of 7 Hz. A coated SAW exhibited a response of 25 Hz to pure N2O. The minimal detectable N2O concentrations of the sensors were not evaluated.

  14. Deflection routing in slotted self-routing networks with arbitrary topology

    OpenAIRE

    2002-01-01

    A deflection routing algorithm that can be applied to a novel self-routing address scheme for networks with arbitrary topology is proposed. The proposed deflection routing algorithm can be implemented all-optically using bitwise optical logic gates. Besides the primary output link selection, alternate output link choices by a packet at each node in case of deflection are also encoded in the address header. Priority classes can also be defined in the proposed address scheme. The performance of...

  15. Global Trends of CME Deflections Based on CME and Solar Parameters

    CERN Document Server

    Kay, C; Evans, R M

    2014-01-01

    Accurate space weather forecasting requires knowledge of the trajectory of coronal mass ejections (CMEs), including any deflections close to the Sun or through interplanetary space. Kay et al. 2013 introduced ForeCAT, a model of CME deflection resulting from the background solar magnetic field. For a magnetic field solution corresponding to Carrington Rotation (CR) 2029 (declining phase, April-May 2005), the majority of the CMEs deflected to the Heliospheric Current Sheet (HCS), the minimum in magnetic pressure on global scales. Most of the deflection occurred below 4 Rs. Here we extend ForeCAT to include a three dimensional description of the deflecting CME. We attempt to answer the following questions: a) Do all CMEs deflect to the magnetic minimum? and b) Does most deflection occur within the first few solar radii (~4 Rs)? Results for solar minimum and declining phase CMEs show that not every CME deflects to the magnetic minimum and that typically about half of the deflection occurs below 10 Rs. Slow, narr...

  16. Mission Analysis For the Ion Beam Deflection of Fictitious Asteroid 2015PDC

    CERN Document Server

    Bombardelli, Claudio; Cano, Juan Luis

    2015-01-01

    A realistic mission scenario for the deflection of fictitious asteroid 2015PDC is investigated that makes use of the ion beam shepherd concept as primary deflection technique. The article deals with the design of a low thrust rendezvous trajectory to the asteroid, the estimation of the propagated covariance ellipsoid and the outcome of a slow-push deflection starting from three worst case scenarios (impacts in New Delhi, Dhaka and Teheran). Displacing the impact point towards very low populated areas, as opposed to full deflection, is found to be the simplest and most effective mitigation approach. Mission design, technical and political aspects are discussed.

  17. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction

    DEFF Research Database (Denmark)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej

    2015-01-01

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1–5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists...... is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics...

  18. BRIEF REPORT: Photon deflection by a Coulomb field in noncommutative QED

    Science.gov (United States)

    Pires, C. A. de S.

    2004-12-01

    In noncommutative QED photons present self-interactions in the form of triple and quartic interactions. The triple interaction implies that, even though the photon is electrically neutral, it will deflect when in the presence of an electromagnetic field. If detected, such deflection would be undoubted evidence of noncommutative space-time. In this work we derive a general expression for the deflection of a photon by any electromagnetic field. As an application we consider the case of the deflection of a photon by an external static Coulomb field.

  19. Quantum Effects on the Deflection of Light and the Gauss-Bonnet Theorem

    CERN Document Server

    Jusufi, Kimet

    2016-01-01

    In this letter we apply the Gauss--Bonnet theorem to calculate the deflection angle by a quantum corrected Schwarzschild black hole in the weak limit approximation. In particular, we calculate the light deflection by two types of quantum corrected black holes: the renormalization group improved Schwarzschild solution and the quantum corrected Schwarzschild solution in Bohmian quantum mechanics. We start from the corresponding optical metrics to use then the Gauss--Bonnet theorem and calculate the Gaussian curvature in both cases. Finally, we calculate the leading terms of the deflection angle and show that quantum corrections modifies the deflection angle in both solutions.

  20. Orthogonally interdigitated shielded serpentine travelling wave cathode ray tube deflection structure

    Science.gov (United States)

    Hagen, Edward C.; Hudson, Charles L.

    1995-01-01

    A new deflection structure (12) which deflects a beam of charged particles, uch as an electron beam (15), includes a serpentine set (20) for transmitting a deflection field, and a shielding frame (25) for housing the serpentine set (20). The serpentine set (20) includes a vertical serpentine deflection element (22) and a horizontal serpentine deflection element (24). These deflection elements (22, 24) are identical, and are interdigitatedly and orthogonally disposed relative to each other, for forming a central transmission passage (75), through which the electron beam (15) passes, and is deflected by the deflection field, so as to minimize drift space signal distortion. The shielding frame (25) includes a plurality of ground blocks (26, 28, 30, 32), and forms an internal serpentine trough (77) within these ground blocks, for housing the serpentine set (20). The deflection structure (12) further includes a plurality of feedthrough connectors (35, 37, 35I, 37I), which are inserted through the shielding frame (25), and which are electrically connected to the serpentine set (20).

  1. CT Scan Mapping of Splenic Flexure in Relation to Spleen and its Clinical Implications.

    Science.gov (United States)

    Saber, Alan A; Dervishaj, Ornela; Aida, Samer S; Christos, Paul J; Dakhel, Mahmoud

    2016-05-01

    Splenic flexure mobilization is a challenging step during left colon resection. The maneuver places the spleen at risk for injury. To minimize this risk, we conducted this study for CT scan mapping of splenic flexure in relation to the spleen. One hundred and sixty CT scans of abdomen were reviewed. The level of the splenic flexure was determined in relation to hilum and lower pole of spleen. These levels were compared with patient demographics. Statistical analysis was performed using Fisher's exact test. The splenic flexure was above the hilum of the spleen in 95 patients (67.86%), at the splenic hilum level in 11 patents (7.88%), between the hilum and lower pole of the spleen in 12 (8.57%), at the lower pole of the spleen in 15 (10.7%) patients and 7 (5%) patients has a splenic flexure that lied below the lower pole of the spleen. Patient demographics showed no statistical significance in regard to splenic flexure location. Splenic flexure lies above the hilum of the spleen in majority of patients. This should be considered as part of operative strategies for left colon resection.

  2. Comparative study of flexural strength test methods on CAD/CAM Y-TZP dental ceramics

    Science.gov (United States)

    Xu, Yongxiang; Han, Jianmin; Lin, Hong; An, Linan

    2015-01-01

    Clinically, fractures are the main cause of computer-aided design and computer-aided manufacturing (CAD/CAM) 3 mol%-yttria-stabilized tetragonal zirconia polycrystal (Y-TZP) all-ceramic dental restorations failure because of repetitive occlusal loading. The goal of this work is to study the effect of test methods and specimen’s size on the flexural strength of five ceramic products. Both bi-axial flexure test (BI) and uni-axial flexure tests (UNI), including three-point flexure test (3PF) and four-point flexure test (4PF), are used in this study. For all five products, the flexural strength is as follows: BI > 3PF > 4PF. Furthermore, specimens with smaller size (3PF-s) have higher values than the bigger ones (3PF). The difference between BI and UNI resulted from the edge flaws in ceramic specimens. The relationship between different UNI (including 3PF-s, 3PF and 4PF) can be explained according to Weibull statistical fracture theory. BI is recommended to evaluate the flexural strength of CAD/CAM Y-TZP dental ceramics. PMID:26816646

  3. Periodic Relativity: Deflection of Light, Acceleration, Rotation Curves

    Directory of Open Access Journals (Sweden)

    Zaveri V. H.

    2015-01-01

    Full Text Available Vectorial analysis relating to derivation of deflection of light is presented. Curvilinear acceleration is distinguished from the Newtonian polar conic acceleration. The dif- ference between the two is due to the curvature term. Lorentz invariant expression for acceleration is derived. A physical theory of rotation curves of galaxies based on second solution to Einstein’s field equation is presented. Theory is applied to Milky Way, M31, NGC3198 and Solar system. Modified Kepler’s third law yields correct orbital periods of stars in a galaxy. Deviation factor in the line element of t he theory happens to be the ratio of the Newtonian gravitational acceleration to th e measured acceleration of the star in the galaxy. Therefore this deviation factor can replace the MOND function.

  4. Asteroid Deflection Using a Spacecraft in Restricted Keplerian Motion

    CERN Document Server

    Ketema, Yohannes

    2016-01-01

    A method for asteroid deflection that makes use of a spacecraft moving back and forth on a segment of an appropriate Keplerian orbit about the asteroid is described and evaluated. It is shown that, on average, the spacecraft describing such a trajectory can exert a significantly larger force on the asteroid than e.g. a stationary gravity tractor, thereby reducing the time needed to effect a desired velocity change for the asteroid. Furthermore, the current method does not require canted thrusters on the spacecraft (unlike a stationary gravity tractor), markedly reducing the amount of fuel needed to create a given change in the asteroid velocity. In addition, the method allows for the simultaneous use of several spacecraft, further strengthening the overall tugging effect on the asteroid, and distributing the thrust requirement among the spacecraft.

  5. Fabrication and Testing of Deflecting Cavities for APS

    Energy Technology Data Exchange (ETDEWEB)

    Mammosser, John; Wang, Haipeng; Rimmer, Robert; Jim, Henry; Katherine, Wilson; Dhakal, Pashupati; Ali, Nassiri; Jim, Kerby; Jeremiah, Holzbauer; Genfa, Wu; Joel, Fuerst; Yawei, Yang; Zenghai, Li

    2013-09-01

    Jefferson Lab (Newport News, Virginia) in collaboration with Argonne National Laboratory (Argonne, IL) has fabricated and tested four first article, 2.8 GHz, deflecting SRF cavities, for Argonne's Short-Pulse X-ray (SPX) project. These cavities are unique in many ways including the fabrication techniques in which the cavity cell and waveguides were fabricated. These cavity subcomponents were milled from bulk large grain niobium ingot material directly from 3D CAD files. No forming of sub components was used with the exception of the beam-pipes. The challenging cavity and helium vessel design and fabrication results from the stringent RF performance requirements required by the project and operation in the APS ring. Production challenges and fabrication techniques as well as testing results will be discussed in this paper.

  6. Study of surface charges in ballistic deflection transistors

    Science.gov (United States)

    Millithaler, J.-F.; Iñiguez-de-la-Torre, I.; Mateos, J.; GonzáIez, T.; Margala, M.

    2015-12-01

    This paper presents a comprehensive study of the behavior of surface charges in ballistic deflection transistors, at room temperature, where the in-plane geometry associating two drains with two gates in push-pull modes allows the control of electron path. Monte Carlo simulations were performed and compared with experimental data by using different models for accounting for surface charge effects. The simple model which assumes a constant and uniform value of the surface charge provides good results at equilibrium, but it is not able to correctly reproduce the BDT’s complex behavior when biased. We have confirmed that for a correct description of the device operation it is necessary to use a model allowing the surface charge to adapt itself locally to the carrier concentration in its surroundings.

  7. Profiling compact toroid plasma density on CTIX with laser deflection

    Science.gov (United States)

    Brockington, Samuel Joseph Erwin

    A laser deflectometer measures line-integrated plasma density gradient using laser diodes and amplified point detectors. A laser passing through an optically thin plasma is refracted by an amount proportional to the line-integrated electron density gradient. I have designed, installed, and operated a deflection diagnostic for the Compact Toroid Injection Experiment (CTIX), a plasma rail gun which can create compact toroid (CT) plasmas of controllable density and velocity. The diagnostic design and motivation are discussed, as well as three experiments performed with deflectometry. Thus, my thesis consists of the design of the deflectometer diagnostic, a comparison of its accuracy to interferometer density measurements, and finally a survey of compact toroid density profiles in two dimensions conducted with an array of detectors.

  8. Plumb line deflection varied with time obtained by repeated gravimetry

    Institute of Scientific and Technical Information of China (English)

    李辉; 付广裕; 李正心

    2001-01-01

    In this paper, the plumb line deflection varied with time (PLV) are calculated with the Vening-Meinesz formula for Xiaguan and Beijing point based on the 28 and 39 campaigns of gravimetry at the local gravity networks in the Western Yunnan Earthquake Prediction Experiment Area and the North China, respectively. Based on the results, we conclude that: ① the maximum of PLV is under 0.12 and amplitudes of interannual variation are under 0.022.②PLV can be determined with the reliability of 0.012 by the modeling based on the precession of repeated gravimetry. This implies that repeated gravimetry could be used to determine the PLV. ③There exist some common and different characteristics for the different places and different components. It may provide a new approach for the study on the local or global geodynamic by using repeated gravimetry.

  9. Theory of using magnetic deflections to combine charged particle beams

    Energy Technology Data Exchange (ETDEWEB)

    Steckbeck, Mackenzie K. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Doyle, Barney Lee [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-09-01

    Several radiation effects projects in the Ion Beam Lab (IBL) have recently required two disparate charged particle beams to simultaneously strike a single sample through a single port of the target chamber. Because these beams have vastly different mass–energy products (MEP), the low-MEP beam requires a large angle of deflection toward the sample by a bending electromagnet. A second electromagnet located further upstream provides a means to compensate for the small angle deflection experienced by the high-MEP beam during its path through the bending magnet. This paper derives the equations used to select the magnetic fields required by these two magnets to achieve uniting both beams at the target sample. A simple result was obtained when the separation of the two magnets was equivalent to the distance from the bending magnet to the sample, and the equation is given by: Bs= 1/2(rc/rs) Bc, where Bs and Bc are the magnetic fields in the steering and bending magnet and rc/rs is the ratio of the radii of the bending magnet to that of the steering magnet. This result is not dependent upon the parameters of the high MEP beam, i.e. energy, mass, charge state. Therefore, once the field of the bending magnet is set for the low-MEP beam, and the field in the steering magnet is set as indicted in the equation, the trajectory path of any high-MEP beam will be directed into the sample.

  10. NANO-BEARING: THE DESIGN OF A NEW TYPE OF AIR BEARING WITH FLEXURE STRUCTURE

    Institute of Scientific and Technical Information of China (English)

    KO Pui Hang; DU Ruxu

    2007-01-01

    A new type of air bearing with flexure structure is introduced. The new bearing is designed for precision mechanical engineering devices such as mechanical watch movement. The new design uses the flexure structure to provide 3D damping to absorb shocks from all directions. Two designs are presented: one has 12 T-shape slots in the radian direction while the other has 8 spiral slots in the radian direction. Both designs have flexure mountings on the axial directions. Based on the finite element analysis (FEA), the new bearing can reduce the vibration (displacement) by as much as 8.37% and hence, can better protect the shafts.

  11. Controlling thermal and electrical properties of graphene by strain-engineering its flexural phonons

    Science.gov (United States)

    Conley, Hiram; Nicholl, Ryan; Bolotin, Kirill

    2014-03-01

    We explore the effects of flexural phonons on the thermal and electrical properties of graphene. To control the amplitude of flexural phonons, we developed a technique to engineer uniform mechanical strain between 0 and 1% in suspended graphene. We determine the level of strain, thermal conductivity and carrier mobility of graphene through a combination of mechanical resonance and electrical transport measurements. Depending on strain, we find significant changes in the thermal expansion coefficient, thermal conductivity, and carrier mobility of suspended graphene. These changes are consistent with the expected contribution of flexural phonons.

  12. Geometrical design parameters for journal bearings with flexure pads and compliant liners

    DEFF Research Database (Denmark)

    Thomsen, Kim; Klit, Peder

    2012-01-01

    A hydrodynamic journal bearing utilizing flexure pads with a compliant liner is studied and its performance enhanced through a parametric study. The main geometrical dimensions are varied and the affect on pad performance is analyzed. This will put more knowledge into the design and function...... of flexure pads. uidelines are given to the design of the pads and are also covering the polymer liner. It is found that the use of flexure pads is an attractive alternative to pivoted pads. Pivot contact-related failure modes are eliminated and load capacity is not restricted by the force that can...

  13. EFFECT OF NANOPOWDER ADDITION ON THE FLEXURAL STRENGTH OF ALUMINA CERAMIC - A WEIBULL MODEL ANALYSIS

    Directory of Open Access Journals (Sweden)

    Daidong Guo

    2016-05-01

    Full Text Available Alumina ceramics were prepared either with micrometer-sized alumina powder (MAP or with the addition of nanometer-sized alumina powder (NAP. The density, crystalline phase, flexural strength and the fracture surface of the two ceramics were measured and compared. Emphasis has been put on the influence of nanopowder addition on the flexural strength of Al₂O₃ ceramic. The analysis based on the Weibull distribution model suggests the distribution of the flexural strength of the NAP ceramic is more concentrated than that of the MAP ceramic. Therefore, the NAP ceramics will be more stable and reliable in real applications.

  14. Detection of disbonds in foam composite assemblies using flexural waves and shearography

    Science.gov (United States)

    Lamboul, B.; Giraudo, O.; Osmont, D.

    2015-03-01

    This paper presents a method based on the generation of low frequency flexural waves for the detection of disbonds in foam composite assemblies. An imaging procedure based on the shearography technique is proposed for the fast generation of images suitable for nondestructive testing analysis. The method is assessed with calibrated disbond defects in a composite foam core sandwich. The role of local flexural resonances for obtaining clear defect signatures is studied and highlighted using complementary Laser vibrometry data. The minimum defect size for detection is associated with the conditions for exciting the first flexural mode in the defect region.

  15. Fiber reinforced concrete: Characterization of flexural toughness and some studies on fiber-matrix bond-slip interaction

    Science.gov (United States)

    Dubey, Ashish

    One major problem associated with the testing of fiber reinforced concrete specimens under flexural loading is that the measured post-cracking response is severely affected by the stiffness of the testing machine. As a consequence, misleading results are obtained when such a flexural response is used for the characterization of composite toughness. An assessment of a new toughness characterization technique termed the Residual Strength Test Method (RSTM) has been made. In this technique, a stable narrow crack is first created in the specimen by applying a flexural load in parallel with a steel plate under controlled conditions. The plate is then removed, and the specimen is tested in a routine manner in flexure to obtain the post-crack load versus displacement response. Flexural response for a variety of fiber reinforced cementitious composites obtained using the Residual Strength Test Method has been found to correlate very well with those obtained with relatively stiffer test configurations such as closed-loop test machines. The Residual Strength Test Method is found to be effective in differentiating between different fiber types, fiber lengths, fiber configurations, fiber volume fractions, fiber geometries and fiber moduli. In particular, the technique has been found to be extremely useful for testing cement-based composites containing fibers at very low dosages (shear lag theory is introduced to study the problem of fiber pullout in fiber reinforced composites. The proposed model eliminates limitations of many earlier models and captures essential features of pullout process, including progressive interfacial debonding, Poisson's effect, and variation in interfacial properties during the fiber pullout process. Interfacial debonding is modeled using an interfacial shear strength criterion. Influence of normal contact stress at the fiber-matrix interface is considered using shrink-fit theory, and the interfacial frictional shear stress over the debonded

  16. Prediction of Flexural Strength of Concretes Containing Silica Fume and Styrene-Butadiene Rubber (SBR) with an Empirical Model

    Science.gov (United States)

    Shafieyzadeh, M.

    2015-12-01

    In the flexural test, the theoretical maximum tensile stress at the bottom fiber of a test beam is known as the modulus of rupture or flexural strength. This work deals with the effects of Silica Fume and Styrene-Butadiene Latex (SBR) on flexural strength of concrete. An extensive experimentation was carried out to determine the effects of silica fume and SBR on flexural strength of concrete. Two water-binder ratios and several percentages of silica fume and SBR were considered. Abrams' Law, which was originally formulated for conventional concrete containing cement as the only cementations material, is used for prediction of flexural strength of these concretes. The aim of this work is to construct an empirical model to predict the flexural strength of silica fume-SBR concretes using concrete ingredients and time of curing in water. Also, the obtained results for flexural strength tests have been compared with predicted results.

  17. Arc Deflection Length Affected by Transverse Rotating Magnetic Field with Lateral Gas

    Science.gov (United States)

    Shiino, Toru; Ishii, Yoko; Yamamoto, Shinji; Iwao, Toru; High Current Energy Laboratory (HiCEL) Team

    2016-10-01

    Gas metal arc welding using shielding gas is often used in the welding industry. However, the arc deflection affected by lateral gas is problem because of inappropriate heat transfer. Shielding gas is used in order to prevent the instability affected by the arc deflection. However, the shielding gas causes turbulence, then blowhole of weld defect occurs because the arc affected by the instability is contaminated by the air. Thus, the magnetic field is applied to the arc in order to stabilize the arc using low amount of shielding gas. The method of applying the transverse rotating magnetic field (RMF) to the arc is one of the methods to prevent the arc instability. The RMF drives the arc because of electromagnetic force. The driven arc is considered to be prevented to arc deflection of lateral gas because the arc is restrained by the magnetic field because of the driven arc. In addition, it is assume the RMF prevented to the arc deflection of lateral gas from the multiple directions. In this paper, the arc deflection length affected by the RMF with lateral gas was elucidated in order to know the effect of the RMF for arc stabilization. Specifically, the arc deflection length affected by the magnetic frequency and the magnetic flux density is measured by high speed video camera. As a result, the arc deflection length decreases with increasing magnetic frequency, and the arc deflection length increases with increasing the magnetic flux density.

  18. Evaluation of disparate laser beam deflection technologies by means of number and rate of resolvable spots.

    Science.gov (United States)

    Bechtold, Peter; Hohenstein, Ralph; Schmidt, Michael

    2013-08-15

    We introduce a method to objectively evaluate systems of differing beam deflection technologies that commonly are described by disparate technical specifications. Using our new approach based on resolvable spots we will compare commercially available random-access beam deflection technologies, namely galvanometer scanners, piezo scanners, MEMS scanners, acousto-optic deflectors, and electro-optic deflectors.

  19. Short-term and long-term deflection of reinforced hollow core ...

    African Journals Online (AJOL)

    Short-term and long-term deflection of reinforced hollow core concrete slab systems. ... AFRICAN JOURNALS ONLINE (AJOL) · Journals · Advanced Search ... For the prediction of the long-term deflection, a measured ratio of long-term ...

  20. A nonlinear mathematical model for large deflection of incompressible saturated poroelastic beams

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    Nonlinear governing equations are established for large deflection of incompressible fluid saturated poroelastic beams under constraint that diffusion of the pore fluid is only in the axial direction of the deformed beams. Then, the nonlinear bending of a saturated poroelastic cantilever beam with fixed end impermeable and free end permeable, subjected to a suddenly applied constant concentrated transverse load at its free end, is examined with the Galerkin truncation method. The curves of deflections and bending moments of the beam skeleton and the equivalent couples of the pore fluid pressure are shown in figures. The results of the large deflection and the small deflection theories of the cantilever poroelastic beam are compared, and the differences between them are revealed. It is shown that the results of the large deflection theory are less than those of the corresponding small deflection theory, and the times needed to approach its stationary states for the large deflection theory are much less than those of the small deflection theory.

  1. A novel monolithic piezoelectric actuated flexure-mechanism based wire clamp for microelectronic device packaging

    Science.gov (United States)

    Liang, Cunman; Wang, Fujun; Tian, Yanling; Zhao, Xingyu; Zhang, Hongjie; Cui, Liangyu; Zhang, Dawei; Ferreira, Placid

    2015-04-01

    A novel monolithic piezoelectric actuated wire clamp is presented in this paper to achieve fast, accurate, and robust microelectronic device packaging. The wire clamp has compact, flexure-based mechanical structure and light weight. To obtain large and robust jaw displacements and ensure parallel jaw grasping, a two-stage amplification composed of a homothetic bridge type mechanism and a parallelogram leverage mechanism was designed. Pseudo-rigid-body model and Lagrange approaches were employed to conduct the kinematic, static, and dynamic modeling of the wire clamp and optimization design was carried out. The displacement amplification ratio, maximum allowable stress, and natural frequency were calculated. Finite element analysis (FEA) was conducted to evaluate the characteristics of the wire clamp and wire electro discharge machining technique was utilized to fabricate the monolithic structure. Experimental tests were carried out to investigate the performance and the experimental results match well with the theoretical calculation and FEA. The amplification ratio of the clamp is 20.96 and the working mode frequency is 895 Hz. Step response test shows that the wire clamp has fast response and high accuracy and the motion resolution is 0.2 μm. High speed precision grasping operations of gold and copper wires were realized using the wire clamper.

  2. A colonic splenic flexure tumour presenting as an empyema thoracis: a case report.

    LENUS (Irish Health Repository)

    Murphy, K

    2009-01-01

    The case report describes the rare presentation of a 79-year-old patient with a locally perforated splenic flexure tumour of the colon presenting with an apparent empyema thoracis in the absence of abdominal signs or symptoms.

  3. Analysis of the flexural vibration of ship's tail shaft by transfer matrix method

    Institute of Scientific and Technical Information of China (English)

    JIA Xiao-jun; FAN Shi-dong

    2008-01-01

    A ship's tail shaft has serious flexural vibration due to the cantilevered nature of the propeller's blades. Analysis of the nature frequency of flexural vibration is vital to be able to provide effective shock absorption for a ship's tail shaft. A mathematic model of tail shaft flexural vibrations was built using the transfer matrix method. The nature frequency of flexural vibration for an electrically propelled ship's tail shaft was then analyzed, and an effective method for calculating it was proposed: a genetic algorithm (GA), which calculates the nature frequency of vibration of a system. Sample calculations, with comparisons by the Prohl method under conditions bearing isotropic support, showed this method to be practical. It should have significant impact on engineering design theory.

  4. Wear and flexural strength comparisons of alumina/feldspar resin infiltrated dental composites.

    Science.gov (United States)

    Le Roux, A R; Lachman, N; Walker, M; Botha, T

    2008-11-01

    Incorporating a feldspar chemical bond between alumina filler particles is expected to increase the wear-resistant and flexural strength properties. An investigation was carried out to evaluate the influence of the feldspar chemical bonding between alumina filler particles on wear and flexural strength of experimental alumina/feldspar dental composites. It was hypothesized that wear resistance and flexural strength would be significantly increased with increased feldspar mass. Alumina was chemically sintered and bonded with 30% and 60% feldspar mass, silanized and infiltrated with UDMA resin to prepare the dental restorative composite material. Higher wear-resistant characteristics resulted with increased feldspar mass of up to 60% (p 0.05). Feldspar chemical bonding between the alumina particles may improve on the wear-resistance and flexural strength of alumina/feldspar composites.

  5. Flexural Strength of Acrylic Resin Denture Bases Processed by Two Different Methods

    Directory of Open Access Journals (Sweden)

    Jafar Gharechahi

    2014-09-01

    Full Text Available Background and aims. The aim of this study was to compare flexural strength of specimens processed by conventional and injection-molding techniques. Materials and methods. Conventional pressure-packed PMMA was used for conventional pressure-packed and injection-molded PMMA was used for injection-molding techniques. After processing, 15 specimens were stored in distilled water at room temperature until measured. Three-point flexural strength test was carried out. Statistical analysis was carried out by SPSS using t-test. Statistical significance was defined at P<0.05. Results. Flexural strength of injection-polymerized acrylic resin specimens was higher than that of theconventional method (P=0.006. This difference was statistically significant (P=0.006. Conclusion. Within the limitations of this study, flexural strength of acrylic resin specimens was influenced by the mold-ing technique.

  6. ASYMPTOTIC ANALYSIS OF DYNAMIC PROBLEMS FOR LINEARLY ELASTICSHELLS JUSTIFICATION OF EQUATIONS FOR DYNAMIC FLEXURAL SHELLS

    Institute of Scientific and Technical Information of China (English)

    肖黎明

    2001-01-01

    Under certain conditions, starting from the three-dimensional dynamic equations of elastic shells the author gives the justification of dynamic equations of flexural shells by means of themethod of asymptotic analysis.

  7. Flexural strength of acrylic resin denture bases processed by two different methods.

    Science.gov (United States)

    Gharechahi, Jafar; Asadzadeh, Nafiseh; Shahabian, Foad; Gharechahi, Maryam

    2014-01-01

    Background and aims. The aim of this study was to compare flexural strength of specimens processed by conventional and injection-molding techniques. Materials and methods. Conventional pressure-packed PMMA was used for conventional pressure-packed and injection-molded PMMA was used for injection-molding techniques. After processing, 15 specimens were stored in distilled water at room temperature until measured. Three-point flexural strength test was carried out. Statistical analysis was carried out by SPSS using t-test. Statistical significance was defined at P<0.05. Results. Flexural strength of injection-polymerized acrylic resin specimens was higher than that of the conventional method (P=0.006). This difference was statistically significant (P=0.006). Conclusion. Within the limitations of this study, flexural strength of acrylic resin specimens was influenced by the molding technique.

  8. Stiffness Analysis of Corrugated Flexure Beam Used in Compliant Mechanisms

    Institute of Scientific and Technical Information of China (English)

    WANG Nianfeng; LIANG Xiaohe; ZHANG Xianmin

    2015-01-01

    Conventional flexible joints generally have limited range of motion and high stress concentration. To overcome these shortcomings, corrugated flexure beam(CF beam) is designed because of its large flexibility obtained from longer overall length on the same span. The successful design of compliant mechanisms using CF beam requires manipulation of the stiffnesses as the design variables. Empirical equations of the CF beam stiffness components, except of the torsional stiffness, are obtained by curve-fitting method. The application ranges of all the parameters in each empirical equation are also discussed. The ratio of off-axis to axial stiffness is considered as a key characteristic of an effective compliant joint. And parameter study shows that the radius of semi-circular segment and the length of straight segment contribute most to the ratio. At last, CF beam is used to design translational and rotational flexible joints, which also verifies the validity of the empirical equations. CF beam with large flexibility is presented, and empirical equations of its stiffness are proposed to facilitate the design of flexible joint with large range of motion.

  9. Exploratory flexural power flow measurements on a bar

    Science.gov (United States)

    Vanderwal, H. M. M.

    1990-05-01

    Exploratory experiments in a bar with an absorptive termination were performed. The bar was excited in a transversal direction. The flexural power flow in the bar was measured at various positions, applying the two transducer technique (2TT) and the four transducer technique (4TT). The separation distance between the accelerometers was varied. The power flow at the excitation point was determined from a force and an acceleration measurement (Fv). When comparing the 2TT power flow with the 4TT or Fv power flow, the discretization error (i.e. the error due to a finite accelerometer separation) is an important parameter, particularly for separations larger than one sixth of a wavelength. In order to quantify the effect of this error, a prediction of the measured power flows on the basis of an analytical solution of the bending wave equation for the far field is performed. For most cases a good agreement is found between the predicted and the measured power flow ratios (i.e. 4TT/2TT and 2TT/Fv). However, for accelerometer separations smaller than about one sixth of a wavelength, a larger scatter is observed in the power flow data, measured with the 4TT, due to loss of significant digits. This effect may result in limitations for multiple transducer techniques in two or three dimensional structures.

  10. Polymerization Shrinkage and Flexural Modulus of Flowable Dental Composites

    Directory of Open Access Journals (Sweden)

    Janaína Cavalcanti Xavier

    2010-09-01

    Full Text Available Linear polymerization shrinkage (LPS, flexural strength (FS and modulus of elasticity (ME of low-viscosity resin composites (Admira Flow™, Grandio Flow™/VOCO; Filtek Z350 Flow™/3M ESPE; Tetric Flow™/Ivoclar-Vivadent was evaluated using a well-established conventional micro-hybrid composite as a standard (Filtek Z250™/3M ESPE. For the measurement of LPS, composites were applied to a cylindrical metallic mould and polymerized (n = 8. The gap formed at the resin/mould interface was observed using SEM (1500×. For FS and ME, specimens were prepared according to the ISO 4049 specifications (n = 10. Statistical analysis of the data was performed with one-way ANOVA and the Tukey test. The conventional resin presented significantly lower LPS associated with high FS and ME, but only the ME values of the conventional resin differed significantly from the low-viscosity composites. The relationship between ME and LPS of low-viscosity resin composites when used as restorative material is a critical factor in contraction stress relief and marginal leakage.

  11. CYCLIC TEMPERATURE LOADING RESIDUAL FLEXURAL STRENGHT OF REFRACTORY SLABS

    Directory of Open Access Journals (Sweden)

    Ondřej Holčapek

    2017-05-01

    Full Text Available This paper describes the effect of cyclic elevated temperature loading on refractory slabs made from high performance, fibre reinforced cement composite. Slabs were produced from aluminous cement-based composites, reinforced by different dosages of basalt fibres. The composite investigated in this study had self-compacting characteristics. The slabs used were exposed to different thermal loading – 600 °C, 1000 °C, six times applied 600 °C and 1000 °C. Then, flexural strength was investigated in all groups of slabs, including group reference slabs with no thermal loading. The results show that the appropriate combination of aluminous cement, natural basalt aggregate, fine filler and basalt fibres in dosage 1.00% of volume is able to successfully resist to cyclic temperature loading. Tensile strength in bending of these slabs (after cyclic temperature loading at 600 °C achieved 6.0 MPa. It was demonstrated that it is possible to use this composite for high extensive conditions in real industrial conditions.

  12. Moulding and shielding flexural waves in elastic plates

    Science.gov (United States)

    Antonakakis, T.; Craster, R. V.; Guenneau, S.

    2014-03-01

    Platonic crystals (PlCs) are the elastic plate analogue of the photonic crystals widely used in optics, and are thin structured elastic plates along which flexural waves cannot propagate within certain stop band frequency intervals. The practical importance of PlCs is twofold: These can be used either in the design of microstructured acoustic metamaterials or as an approximate model for surface elastic waves propagating in meter scale seismic metamaterials. Here, we make use of the band spectrum of PlCs created by an array of either very small or densely packed clamped circles to achieve surface wave reflectors at very large wavelengths, a flat lens, a waveguide effect, a directive antenna near the stop band frequencies. The limit in which the circles reduce to points is particularly appealing as there is an exact dispersion relation available so the origin of these phenomena can be explained and interpreted using Fourier series and high-frequency homogenization (HFH). We then enlarge the radius of clamped circles, which both makes the zero-frequency stop band up to five times wider and flattens the dispersion curves. Here, HFH notably captures the essence of localized modes, one of which appears in the zero-frequency stop band and is used in the design of a highly directive waveguide.

  13. A small-gap electrostatic micro-actuator for large deflections.

    Science.gov (United States)

    Conrad, Holger; Schenk, Harald; Kaiser, Bert; Langa, Sergiu; Gaudet, Matthieu; Schimmanz, Klaus; Stolz, Michael; Lenz, Miriam

    2015-12-11

    Common quasi-static electrostatic micro actuators have significant limitations in deflection due to electrode separation and unstable drive regions. State-of-the-art electrostatic actuators achieve maximum deflections of approximately one third of the electrode separation. Large electrode separation and high driving voltages are normally required to achieve large actuator movements. Here we report on an electrostatic actuator class, fabricated in a CMOS-compatible process, which allows high deflections with small electrode separation. The concept presented makes the huge electrostatic forces within nanometre small electrode separation accessible for large deflections. Electrostatic actuations that are larger than the electrode separation were measured. An analytical theory is compared with measurement and simulation results and enables closer understanding of these actuators. The scaling behaviour discussed indicates significant future improvement on actuator deflection. The presented driving concept enables the investigation and development of novel micro systems with a high potential for improved device and system performance.

  14. Design Optimization of Deflection Caused After Release of Multilayer Structural Membrane of Symmetric Toggle Switch

    Directory of Open Access Journals (Sweden)

    K. Maninder

    2011-01-01

    Full Text Available This paper presents the optimization in deflection caused by the inbuilt stress generated in mechanical or movable membrane of Symmetric Toggle RF MEMS Switch (STS. The movable membrane of STS was initially fabricated with two different materials, i.e. Chrome and Gold. The simulated deflection at 70 °C was 11.9 µm, and experimental deflection was 11-12 µm. We present a study of inbuilt deflection reduction in multimetal movable layers without change in actuation voltage of the switch. The design study was initially carried out on cantilevers and then on structural membrane of STS. STS with proposed multilayer of Cr-Au-Au-Ti-Au has a simulated deflection of 0.56 µm at 70 °C.

  15. Four-dimensional visualization of a small-scale flame based on deflection tomography

    Science.gov (United States)

    Zhang, Bin; Liu, Zhigang; Zhao, Minmin

    2016-11-01

    Optical computed tomography is an important technique in the visualization and diagnosis of various flow fields. A small-scale diffusion flame was visualized using deflection tomography. A projection sampling system was proposed for deflection tomography to obtain deflectograms with a pair of gratings. Wave-front retrieval was employed for processing the deflectograms to obtain the deflection angles of the rays. This two-dimensional data extraction method expanded the application of deflection tomography and was suitable for the projection extraction of small-scale combustion. Deflection angle revision reconstruction algorithm was used to reconstruct the temperature distributions in 10 cross sections for each deflectogram in different instants. The flow structure was reconstructed using a visualization toolkit equipped with the marching cube and ray casting algorithms. The performed experiments demonstrated the three-dimensional dynamic visualization of temperature distributions and the flame structures of small-scale diffusion combustion.

  16. Experimental and Theoretical Deflections of Hybrid Composite Sandwich Panel under Four-point Bending Load

    Directory of Open Access Journals (Sweden)

    Jauhar Fajrin

    2017-03-01

    Full Text Available This paper presents a comparison of theoretical and experimental deflection of a hybrid sandwich panel under four-point bending load. The paper initially presents few basic equations developed under three-point load, followed by development of model under four-point bending load and a comparative analysis between theoretical and experimental results. It was found that the proposed model for predicting the deflection of hybrid sandwich panels provided fair agreement with the experimental values. Most of the sandwich panels showed theoretical deflection values higher than the experimental values, which is desirable in the design. It was also noticed that the introduction of intermediate layer does not contribute much to reduce the deflection of sandwich panel as the main contributor for the total deflection was the shear deformation of the core that mostly determined by the geometric of the samples and the thickness of the core.

  17. Improvements of the undulator spectral performance by compensating the backing beam deflection

    CERN Document Server

    Wang, C; Chang, L H; Chang, C H; Fan, T C; Bach, H; Blomqvist, I

    2002-01-01

    This study thoroughly examines how the backing beam deflection affects the undulator spectral performance. Reduction of the undulator spectral intensity owing to backing beam deflection is analytically evaluated based on plane-wave approximation. The results reveal that the amplitude and the slope of the backing beam deflection affect the undulator spectral performance. Provided is a novel figure-of-merit, rms of the regressed accumulated gap deviation, to determine the backing beam deflection budget. An example of a 3.9 m undulator supporting carriage mounted with 50-mm period length undulator magnet (U5) under a maximum magnetic loading of 5 metric tons at a minimum operating gap of 14 mm, is provided. Its mechanical features are first examined via 3D commercial finite element code ANSYS that concludes the backing beam deflection is influenced heavily by the rigidity of the undulator support frames. Examining the corresponding spectral performance shows that significantly diminishing the undulator spectral ...

  18. Numerical Simulation Study on the Surface Deflection of Cylindrical Shallow Shell

    Institute of Scientific and Technical Information of China (English)

    XING Zhongwen; BAO Jun; LIU Zhongyuan; YANG Yuying; SUN Zhenzhong

    2006-01-01

    The increasing applications of new materials such as high strength low alloy (HSAL) steels and aluminum alloy sheets have lead to greater focus on the surface deflections of auto body panels in the automobile industry in recent years. The finite element models of cylindrical shallow shell that can represent auto body panels are established. Numerical simulations of forming and unloading of cylindrical shallow shell are carried out. And a measurement and evaluation method of the surface deflection is introduced. The simulations of surface deflections with various blank holding forces (BHF) show great agreement with the experimental results. The influence laws of sheet thickness and material properties such as yield strength σs, strain-hardening exponent n, anisotropy parameter r and strength coefficient k on the surface deflection are achieved by simulations, which give a basic reference for controlling surface deflections.

  19. Influence of Specimen Preparation and Test Methods on the Flexural Strength Results of Monolithic Zirconia Materials

    OpenAIRE

    Christine Schatz; Monika Strickstrock; Malgorzata Roos; Daniel Edelhoff; Marlis Eichberger; Isabella-Maria Zylla; Bogna Stawarczyk

    2016-01-01

    The aim of this work was to evaluate the influence of specimen preparation and test method on the flexural strength results of monolithic zirconia. Different monolithic zirconia materials (Ceramill Zolid (Amann Girrbach, Koblach, Austria), Zenostar ZrTranslucent (Wieland Dental, Pforzheim, Germany), and DD Bio zx2 (Dental Direkt, Spenge, Germany)) were tested with three different methods: 3-point, 4-point, and biaxial flexural strength. Additionally, different specimen preparation methods wer...

  20. Influence of specimen preparation and test methods on the flexural strength results of monolithic zirconia materials

    OpenAIRE

    Schatz, Christine; Strickstrock, Monika; Roos, Malgorzata; Edelhoff, Daniel; Eichberger, Marlis; Zylla, Isabella-Maria; Stawarczyk, Bogna

    2016-01-01

    The aim of this work was to evaluate the influence of specimen preparation and test method on the flexural strength results of monolithic zirconia. Different monolithic zirconia materials (Ceramill Zolid (Amann Girrbach, Koblach, Austria), Zenostar ZrTranslucent (Wieland Dental, Pforzheim, Germany), and DD Bio zx2 (Dental Direkt, Spenge, Germany)) were tested with three different methods: 3-point, 4-point, and biaxial flexural strength. Additionally, different specimen preparation methods wer...

  1. Effects of forming processing conditions on the flexural properties of bagasse and bamboo plastic composites

    OpenAIRE

    2012-01-01

    The effects of processing conditions such as pressure, temperature, and holding time on the flexural properties of bagasse and bamboo biodegradable composites were investigated. Each sample of bagasse or bamboo was mixed with a corn-starch-based biodegradable resin and fabricated by a hot press forming method. The cross-sectional structure of the bagasse fiber was found to be porous and compressible, while that of bamboo was found to be more solid. The relationship between flexural strength, ...

  2. Blockage, trapping and waveguide modes for flexural waves in a semi-infinite double grating

    CERN Document Server

    Jones, Ian S; Movchan, Alexander B

    2015-01-01

    The paper presents a novel view on the scattering of a flexural wave in a Kirchhoff plate by a semi-infinite discrete system. Blocking and channelling of flexural waves are of special interest. A quasi-periodic two-source Green's function is used in the analysis of the waveguide modes. An additional "effective waveguide" approximation has been constructed. Comparisons are presented for these two methods in addition to an analytical solution for a finite truncated system.

  3. Modeling and analysis of circular flexural-vibration-mode piezoelectric transformer.

    Science.gov (United States)

    Huang, Yihua; Huang, Wei

    2010-12-01

    We propose a circular flexural-vibration-mode piezoelectric transformer and perform a theoretical analysis of the transformer. An equivalent circuit is derived from the equations of piezoelectricity and the Hamilton's principle. With this equivalent circuit, the voltage gain ratio, input impedance, and the efficiency of the circular flexural-vibration-mode piezoelectric transformer can be determined. The basic behavior of the transformer is shown by numerical results.

  4. EXPERIMENTAL ANALYSIS OF FLEXURAL STRENGTH ON GLASS FIBER SANDWICH COMPOSITE BY VARYING Z-PINS PITCHES

    OpenAIRE

    Pravin*, Jeyapratha

    2016-01-01

    This paper ambit to evaluate the flexural strength of glass fiber sandwich panels with varying z-pins pitches. Failure of sandwich panel are delamination and core shear, to minimize the crack propagation, pins are inserted in z-direction, by varying pitches through its thickness. During the insertion of pin, may cause the material some damage. Despite the damage, flexural property does not affected due interpolation of pins. Although the experiment were pull out with a phenomenal results of z...

  5. The Flexural Behavior of Denture Base Reinforced by Different Contents of Ultrahigh-Modulus Polyethylene Fiber

    Institute of Scientific and Technical Information of China (English)

    XU Dong-xuan; CHENG Xiang-rong; ZHANG Yu-feng; WANG Jun; CHENG Han-ting

    2003-01-01

    Denture base made from acrylic resin (polymethyl methacrylate,PMMA) was reinforced by different contents of ultrahigh-modulus polyethylene fiber (UHMPEF).The flexural strength of the denture base was tested,the failure modes and microstructures were investigated with a scanning electron microscope(SEM).The results indicate that 3.5wt%UHMPEF increased the ultimate flexural strength of the denture base.

  6. EXPERIMENTAL RESEARCH OF EFFICIENCY OF DISPERSE REINFORCEMENT OF STRETCHED ZONE OF FLEXURAL CONCRETE ELEMENTS

    OpenAIRE

    V. S. Izotov, R. Kh. Mukhametrakhimov, L. S. Sаbitov

    2011-01-01

    Problem statement. The method of disperse reinforcement of flexural concrete elements by fiber introduction in concrete stretched zone is described.Results and conclusions. The method provides more efficient use and economy of disperse rein-forcement, materials consumption reduction at the maintenance of specified flexural strength, high impact elasticity, and fracture strength. The comparative assessment of disperse reinforcement efficiency for two types of metal fibers is given at reinforce...

  7. On deflection of consolidation of sandwich structure with carbon fiber and its loading capacity%碳纤维加固建筑夹芯板的挠度及承载力分析

    Institute of Scientific and Technical Information of China (English)

    孙雪萍

    2015-01-01

    采用有限元软件ANSYS模拟计算,通过修正剪力分配系数,主要对比研究普通夹芯板和碳纤维加固夹芯板的挠度计算公式和受弯承载力,为以后的设计工作提供了理论基础。%The paper adopts the finite element software, ANSYS, to simulate the calculation, and undertakes the comparative research on the de-flection formulation and flexural capacity between common sandwich structure and consolidated sandwich structure with carbon fiber by modifying the shear distribution coefficiency, so as to lay the theoretic foundation for following design.

  8. Directed Energy Deflection Laboratory Measurements of Asteroids and Space Debris

    Science.gov (United States)

    Brashears, T.; Lubin, P. M.

    2016-12-01

    We report on laboratory studies of the effectiveness of directed energy planetary and space defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR [1][5][6] and DE-STARLITE [2][5][6] are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid [1][2][3][4][5][6]. In the DE-STAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds an "asteroid" or a space debris sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 µN/Woptical, though we assume a more conservative value of 80 µN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 µN/Woptical in our deflection modeling. Our measurements discussed here yield about 60 µN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed.

  9. Directed energy deflection laboratory measurements of common space based targets

    Science.gov (United States)

    Brashears, Travis; Lubin, Philip; Hughes, Gary B.; Meinhold, Peter; Batliner, Payton; Motta, Caio; Madajian, Jonathan; Mercer, Whitaker; Knowles, Patrick

    2016-09-01

    We report on laboratory studies of the effectiveness of directed energy planetary defense as a part of the DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) program. DE-STAR and DE-STARLITE are directed energy "stand-off" and "stand-on" programs, respectively. These systems consist of a modular array of kilowatt-class lasers powered by photovoltaics, and are capable of heating a spot on the surface of an asteroid to the point of vaporization. Mass ejection, as a plume of evaporated material, creates a reactionary thrust capable of diverting the asteroid's orbit. In a series of papers, we have developed a theoretical basis and described numerical simulations for determining the thrust produced by material evaporating from the surface of an asteroid. In the DESTAR concept, the asteroid itself is used as the deflection "propellant". This study presents results of experiments designed to measure the thrust created by evaporation from a laser directed energy spot. We constructed a vacuum chamber to simulate space conditions, and installed a torsion balance that holds a common space target sample. The sample is illuminated with a fiber array laser with flux levels up to 60 MW/m2 , which allows us to simulate a mission level flux but on a small scale. We use a separate laser as well as a position sensitive centroid detector to readout the angular motion of the torsion balance and can thus determine the thrust. We compare the measured thrust to the models. Our theoretical models indicate a coupling coefficient well in excess of 100 μN/Woptical, though we assume a more conservative value of 80 μN/Woptical and then degrade this with an optical "encircled energy" efficiency of 0.75 to 60 μN/Woptical in our deflection modeling. Our measurements discussed here yield about 45 μN/Wabsorbed as a reasonable lower limit to the thrust per optical watt absorbed. Results vary depending on the material tested and are limited to measurements of 1 axis, so

  10. Prediction of Mean and Design Fatigue Lives of Self Compacting Concrete Beams in Flexure

    Science.gov (United States)

    Goel, S.; Singh, S. P.; Singh, P.; Kaushik, S. K.

    2012-02-01

    In this paper, result of an investigation conducted to study the flexural fatigue characteristics of self compacting concrete (SCC) beams in flexure are presented. An experimental programme was planned in which approximately 60 SCC beam specimens of size 100 × 100 × 500 mm were tested under flexural fatigue loading. Approximately 45 static flexural tests were also conducted to facilitate fatigue testing. The flexural fatigue and static flexural strength tests were conducted on a 100 kN servo-controlled actuator. The fatigue life data thus obtained have been used to establish the probability distributions of fatigue life of SCC using two-parameter Weibull distribution. The parameters of the Weibull distribution have been obtained by different methods of analysis. Using the distribution parameters, the mean and design fatigue lives of SCC have been estimated and compared with Normally vibrated concrete (NVC), the data for which have been taken from literature. It has been observed that SCC exhibits higher mean and design fatigue lives compared to NVC.

  11. Flexural behavior of bonded post-tensioned concrete beams under strand corrosion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Xuhui [College of Civil Engineering and Mechanics, Xiangtan University, 411105 Xiangtan (China); School of Civil Engineering and Architecture, Changsha University of Science & Technology, 410114 Changsha (China); Industry Key Laboratory of Traffic Infrastructure Security Risk Management (CSUST), 410114 Changsha (China); Wang, Lei, E-mail: leiwlei@hotmail.com [School of Civil Engineering and Architecture, Changsha University of Science & Technology, 410114 Changsha (China); Industry Key Laboratory of Traffic Infrastructure Security Risk Management (CSUST), 410114 Changsha (China); Zhang, Jianren; Ma, Yafei [School of Civil Engineering and Architecture, Changsha University of Science & Technology, 410114 Changsha (China); Industry Key Laboratory of Traffic Infrastructure Security Risk Management (CSUST), 410114 Changsha (China); Liu, Yongming [School for Engineering of Matter, Transport and Energy, Arizona State University, 85281 Tempe, AZ (United States)

    2017-03-15

    Highlights: • Flexural behavior of bonded PT beams with strand corrosion is experimental tested. • Cracking, stiffness, ultimate strength, failure & ductility of beams are clarified. • A coefficient is proposed to measure incompatible strain between strand & concrete. - Abstract: An experimental test is performed to investigate the flexural behavior of bonded post-tensioned concrete beams under strand corrosion. Eight beams are designed and subjected to accelerated method to different corrosion levels. The initial stiffness of beams is observed by cyclic loading-unloading test during the corrosion procedure. Corrosion effects on concrete cracking, post-cracking stiffness, ultimate strength, failure mode and ductility are then clarified by the flexural test. And, a coefficient is introduced to quantify the incompatible strain between corroded strand and concrete. Results show that the prestress force loss of strand has almost the linear relation with corrosion loss. Strand corrosion affects slightly the initial stiffness of beam before flexural cracking, but degrades significantly the post-cracking stiffness of beam as the corrosion loss exceeds 27.0%. Slight corrosion of strand has little effects on beams flexural behavior. The severe corrosion, however, decreases the number of crack, changes the failure mode form the concrete crushing to strand rupture, degrades the ductility and the ultimate strength of beams, and leads to the incompatible strain between strand and concrete. In the present test, the incompatible strain decreases about 20% of the flexural strength as the corrosion loss exceeds 27.0%.

  12. Understanding the drivers for the development of design rules for the synthesis of cylindrical flexures

    Directory of Open Access Journals (Sweden)

    M. J. Telleria

    2012-04-01

    Full Text Available Cylindrical flexures (CFs, defined as flexures with only one finite radius of curvature loaded normal to the plane of curvature, present an interesting research direction in compliant mechanisms. CFs are constructed out of a cylindrical stock which leads to geometry, manufacturability, and compatibility advantages. Synthesis rules must be developed to design these new systems effectively. Current knowledge in flexure design pertains to straight-beam flexures or curved flexures loaded along the plane of curvature. CFs present a challenge because their mechanics differ from those of straight beams, and although their modelling has been researched thoroughly it has yet to be distilled into element and system creation rules. This paper uses models and finite element analysis to demonstrate that current design rules for straight-beam flexures are insufficient and inadequate for the design of CF systems. The presented discussion will show that CFs differ both at the element and systems levels, and therefore future research will focus on developing the three components of the building block approach: (i reworking of element mechanics models to reveal the parameters which cause the kinematics of the curved beam to differ from those of the straight beam, (ii development of a visual stiffness representation, and (iii formation of system creation rules.

  13. 3D Seismic Flexure Analysis for Subsurface Fault Detection and Fracture Characterization

    Science.gov (United States)

    Di, Haibin; Gao, Dengliang

    2017-03-01

    Seismic flexure is a new geometric attribute with the potential of delineating subtle faults and fractures from three-dimensional (3D) seismic surveys, especially those overlooked by the popular discontinuity and curvature attributes. Although the concept of flexure and its related algorithms have been published in the literature, the attribute has not been sufficiently applied to subsurface fault detection and fracture characterization. This paper provides a comprehensive study of the flexure attribute, including its definition, computation, as well as geologic implications for evaluating the fundamental fracture properties that are essential to fracture characterization and network modeling in the subsurface, through applications to the fractured reservoir at Teapot Dome, Wyoming (USA). Specifically, flexure measures the third-order variation of the geometry of a seismic reflector and is dependent on the measuring direction in 3D space; among all possible directions, flexure is considered most useful when extracted perpendicular to the orientation of dominant deformation; and flexure offers new insights into qualitative/quantitative fracture characterization, with its magnitude indicating the intensity of faulting and fracturing, its azimuth defining the orientation of most-likely fracture trends, and its sign differentiating the sense of displacement of faults and fractures.

  14. Effect of test method on flexural strength of recent dental ceramics.

    Science.gov (United States)

    Jin, Jingyue; Takahashi, Hidekazu; Iwasaki, Naohiko

    2004-12-01

    The purpose of the present study was to evaluate the relationships among three flexural strengths of recent dental ceramics using 3-point and 4-point bending tests and biaxial flexural test. Three brands of porcelain for veneering (d.SIGN, Supper porcelain AAA, Vintage Hallo), two injectable ceramics (Empress 2, OPC 3G), and one castable ceramic (Crys-Cera) were used. Twenty bar-shaped and 10 disc-shaped specimens of each ceramic type were prepared according to manufacturers' instructions, polished, and subjected to 3-point and 4-point bending tests and biaxial flexural test, respectively. Three flexural strengths for each ceramics were compared using one-way analysis of variance and Tukey comparison, and also investigated by Weibull analysis. The biaxial flexural strength and 3-point bending strength of all ceramics, except OPC 3G and Crys-Cera, were significantly greater than the corresponding 4-point bending strength. As for OPC 3G and Crys-Cera, their biaxial flexural strengths were significantly greater than their 3-point bending strengths, which is contrary to the other ceramics. The Weibull moduli ranged from 6.6 to 20.8. The Weibull moduli of examined ceramics, except Crys-cera, were statistically insignificant regardless of test methods.

  15. Flexural Properties of E Glass and TR50S Carbon Fiber Reinforced Epoxy Hybrid Composites

    Science.gov (United States)

    Dong, Chensong; Sudarisman; Davies, Ian J.

    2013-01-01

    A study on the flexural properties of E glass and TR50S carbon fiber reinforced hybrid composites is presented in this paper. Specimens were made by the hand lay-up process in an intra-ply configuration with varying degrees of glass fibers added to the surface of a carbon laminate. These specimens were then tested in the three-point bend configuration in accordance with ASTM D790-07 at three span-to-depth ratios: 16, 32, and 64. The failure modes were examined under an optical microscope. The flexural behavior was also simulated by finite element analysis, and the flexural modulus, flexural strength, and strain to failure were calculated. It is shown that although span-to-depth ratio shows an influence on the stress-strain relationship, it has no effect on the failure mode. The majority of specimens failed by either in-plane or out-of-plane local buckling followed by kinking and splitting at the compressive GFRP side and matrix cracking combined with fiber breakage at the CFRP tensile face. It is shown that positive hybrid effects exist for the flexural strengths of most of the hybrid configurations. The hybrid effect is noted to be more obvious when the hybrid ratio is small, which may be attributed to the relative position of the GFRP layer(s) with respect to the neutral plane. In contrast to this, flexural modulus seems to obey the rule of mixtures equation.

  16. Design Considerations of a Slit Diaphragm Flexure Used in a Precision Mirror Gimbal

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. C., Kaufman, M. I.

    2011-09-01

    Two precision mirror gimbals were designed using slit diaphragm flexures to provide two-axis precision mirror alignment in space-limited applications. Both gimbals are currently in use in diagnostics at the National Ignition Facility: one design in the Gamma Reaction History (GRH) diagnostic and the other in the Neutron Imaging System (NIS) diagnostic. The GRH gimbal has an adjustment sensitivity of 0.1 mrad about both axes and a total adjustment capability of ±6°; the NIS gimbal has an adjustment sensitivity of 0.8 μrad about both axes and a total adjustment range of ±3°. Both slit diaphragm flexures were electro-discharge machined out of high-strength titanium and utilize stainless steel stiffeners. The stiffener-flexure design results in adjustment axes with excellent orthogonality and centering with respect to the mirror in a single stage; a typical two-axis gimbal flexure requires two stages. Finite element analyses are presented for both flexure designs, and a design optimization of the GRH flexure is discussed.

  17. Design considerations of a slit diaphragm flexure used in a precision mirror gimbal

    Science.gov (United States)

    Cox, Brian; Kaufman, Morris

    2011-09-01

    Two precision mirror gimbals were designed using slit diaphragm flexures to provide two-axis precision mirror alignment in space-limited applications. Both gimbals are currently in use in diagnostics at the National Ignition Facility: one design in the Gamma Reaction History (GRH) diagnostic and the other in the Neutron Imaging System (NIS) diagnostic. The GRH gimbal has an adjustment sensitivity of 0.1 mrad about both axes and a total adjustment capability of +/-6° the NIS gimbal has an adjustment sensitivity of 0.8 μrad about both axes and a total adjustment range of +/-3°. Both slit diaphragm flexures were electro-discharge machined out of high-strength titanium and utilize stainless steel stiffeners. The stiffener-flexure design results in adjustment axes with excellent orthogonality and centering with respect to the mirror in a single stage; a typical two-axis gimbal flexure requires two stages. Finite element analyses are presented for both flexure designs, and a design optimization of the GRH flexure is discussed.

  18. Compliance and control characteristics of an additive manufactured-flexure stage

    Energy Technology Data Exchange (ETDEWEB)

    Lee, ChaBum; Tarbutton, Joshua A. [Department of Mechanical Engineering, University of South Carolina, 300 Main St., Columbia, South Carolina 29208 (United States)

    2015-04-15

    This paper presents a compliance and positioning control characteristics of additive manufactured-nanopositioning system consisted of the flexure mechanism and voice coil motor (VCM). The double compound notch type flexure stage was designed to utilize the elastic deformation of two symmetrical four-bar mechanisms to provide a millimeter-level working range. Additive manufacturing (AM) process, stereolithography, was used to fabricate the flexure stage. The AM stage was inspected by using 3D X-ray computerized tomography scanner: air-voids and shape irregularity. The compliance, open-loop resonance peak, and damping ratio of the AM stage were measured 0.317 mm/N, 80 Hz, and 0.19, respectively. The AM stage was proportional-integral-derivative positioning feedback-controlled and the capacitive type sensor was used to measure the displacement. As a result, the AM flexure mechanism was successfully 25 nm positioning controlled within 500 μm range. The resonance peak was found approximately at 280 Hz in closed-loop. This research showed that the AM flexure mechanism and the VCM can provide millimeter range with high precision and can be a good alternative to an expensive metal-based flexure mechanism and piezoelectric transducer.

  19. Comet deflection by directed energy: a finite element analysis

    Science.gov (United States)

    Madajian, Jonathan; Griswold, Janelle; Gandra, Anush; Hughes, Gary B.; Zhang, Qicheng; Rupert, Nic; Lubin, Philip

    2016-09-01

    Comets and Asteroids are viable threats to our planet; if these space rocks are smaller than 25 meters, they burn up in the atmosphere, but if they are wider than 25 meters they can cause damage to the impact area. Anything more than one to two kilometers can have worldwide effects, furthermore a mile-wide asteroid travelling at 30,000 miles per hour has the energy equal to a megaton bomb and is very likely to wipe out most of the life on Earth. Residents near Chelyabinsk, Russia experienced the detrimental effects of a collision with a Near-Earth Asteroid (NEA) on 15 February 2013 as a 20 m object penetrated the atmosphere above that city. The effective yield from this object was approximately 1/2 Megaton TNT equivalent (Mt), or that of a large strategic warhead. The 1908 Tunguska event, also over Russia, is estimated to have had a yield of approximately 15 Mt and had the potential to kill millions of people had it come down over a large city1. In the face of such danger a planetary defense system is necessary and this paper proposes a design for such a system. DE-STAR (Directed Energy System for Targeting of Asteroids and exploRation) is a phased array laser system that can be used to oblate, deflect and de-spin asteroids and comets.

  20. String formulation of space charge forces in a deflecting bunch

    Science.gov (United States)

    Talman, Richard

    2004-10-01

    The force between two moving point charges, because of its inverse square law singularity, cannot be applied directly in the numerical simulation of bunch dynamics; radiative effects make this especially true for short bunches being deflected by magnets. This paper describes a formalism circumventing this restriction in which the basic ingredient is the total force on a point charge comoving with a longitudinally aligned, uniformly charged string. Bunch evolution can then be treated using direct particle-to-particle, intrabeam scattering, with no need for an intermediate, particle-in-cell, step. Electric and magnetic fields do not appear individually in the theory. Since the basic formulas are both exact (in paraxial approximation) and fully relativistic, they are applicable to beams of all particle types and all energies. But the theory is expected to be especially useful for calculating the emittance growth of the ultrashort electron bunches of current interest for energy recovery linacs and free-electron lasers. The theory subsumes coherent synchrotron radiation and centrifugal space charge force. Renormalized, on-axis, longitudinal field components are in excellent agreement with values from Saldin et al. [DESY Report No. DESY-TESLA-FEL-96-14, 1995; Nucl. Instrum. Methods Phys. Res., Sect. ANIMAER0168-9002 417, 158 (1998).10.1016/S0168-9002(98)00623-8

  1. String formulation of space charge forces in a deflecting bunch

    Directory of Open Access Journals (Sweden)

    Richard Talman

    2004-10-01

    Full Text Available The force between two moving point charges, because of its inverse square law singularity, cannot be applied directly in the numerical simulation of bunch dynamics; radiative effects make this especially true for short bunches being deflected by magnets. This paper describes a formalism circumventing this restriction in which the basic ingredient is the total force on a point charge comoving with a longitudinally aligned, uniformly charged string. Bunch evolution can then be treated using direct particle-to-particle, intrabeam scattering, with no need for an intermediate, particle-in-cell, step. Electric and magnetic fields do not appear individually in the theory. Since the basic formulas are both exact (in paraxial approximation and fully relativistic, they are applicable to beams of all particle types and all energies. But the theory is expected to be especially useful for calculating the emittance growth of the ultrashort electron bunches of current interest for energy recovery linacs and free-electron lasers. The theory subsumes coherent synchrotron radiation and centrifugal space charge force. Renormalized, on-axis, longitudinal field components are in excellent agreement with values from Saldin et al. [DESY Report No. DESY-TESLA-FEL-96-14, 1995; Nucl. Instrum. Methods Phys. Res., Sect. A 417, 158 (1998.NIMAER0168-900210.1016/S0168-9002(9800623-8

  2. Moth tails divert bat attack: evolution of acoustic deflection.

    Science.gov (United States)

    Barber, Jesse R; Leavell, Brian C; Keener, Adam L; Breinholt, Jesse W; Chadwell, Brad A; McClure, Christopher J W; Hill, Geena M; Kawahara, Akito Y

    2015-03-03

    Adaptations to divert the attacks of visually guided predators have evolved repeatedly in animals. Using high-speed infrared videography, we show that luna moths (Actias luna) generate an acoustic diversion with spinning hindwing tails to deflect echolocating bat attacks away from their body and toward these nonessential appendages. We pit luna moths against big brown bats (Eptesicus fuscus) and demonstrate a survival advantage of ∼ 47% for moths with tails versus those that had their tails removed. The benefit of hindwing tails is equivalent to the advantage conferred to moths by bat-detecting ears. Moth tails lured bat attacks to these wing regions during 55% of interactions between bats and intact luna moths. We analyzed flight kinematics of moths with and without hindwing tails and suggest that tails have a minimal role in flight performance. Using a robust phylogeny, we find that long spatulate tails have independently evolved four times in saturniid moths, further supporting the selective advantage of this anti-bat strategy. Diversionary tactics are perhaps more common than appreciated in predator-prey interactions. Our finding suggests that focusing on the sensory ecologies of key predators will reveal such countermeasures in prey.

  3. GPS deflection monitoring of the West Gate Bridge

    Science.gov (United States)

    Raziq, Noor; Collier, Philip

    2007-05-01

    The achievable precision and relatively high sampling rates of currently available GPS receivers are well suited for monitoring the movements of long-span engineering structures where the amplitude of movements is often more than a few centimetres and the frequency of vibrations is low (below 10 Hz). However, engineering structures often offer non-ideal environments for GPS data collection due to high multipath interference and obstructions causing cycle slips in the GPS observations. Also, for many engineering structures such as bridge decks, vertical movements are more pronounced and more structurally critical than horizontal movements. Accuracy of GPS determined positions in the vertical direction is typically two to three times poorer than in the horizontal component. This paper describes the results of a GPS deflection monitoring trial on the West Gate Bridge in Melbourne, Australia. The results are compared to the estimated frequencies and movements from the design of the bridge and previous accelerometer campaigns. The frequency information derived from the GPS results is also compared to frequency data extracted from an accelerometer installed close to a GPS receiver. GPS results agree closely to the historical results and recent accelerometer trials for key modal frequencies. This indicates the suitability of GPS receivers to monitor engineering structures that exhibit smaller movements due to their stiffness and in environments not ideally suited to using GPS.

  4. Three-dimensional parabolic equation modeling of mesoscale eddy deflection.

    Science.gov (United States)

    Heaney, Kevin D; Campbell, Richard L

    2016-02-01

    The impact of mesoscale oceanography, including ocean fronts and eddies, on global scale low-frequency acoustics is examined using a fully three-dimensional parabolic equation model. The narrowband acoustic signal, for frequencies from 2 to 16 Hz, is simulated from a seismic event on the Kerguellen Plateau in the South Indian Ocean to an array of receivers south of Ascension Island in the South Atlantic, a distance of 9100 km. The path was chosen for its relevance to seismic detections from the HA10 Ascension Island station of the International Monitoring System, for its lack of bathymetric interaction, and for the dynamic oceanography encountered as the sound passes the Cape of Good Hope. The acoustic field was propagated through two years (1992 and 1993) of the eddy-permitting ocean state estimation ECCO2 (Estimating the Circulation and Climate of the Ocean, Phase II) system. The range of deflection of the back-azimuth was 1.8° with a root-mean-square of 0.34°. The refraction due to mesoscale oceanography could therefore have significant impacts upon localization of distant low-frequency sources, such as seismic or nuclear test events.

  5. Comparing deflection measurements of a magnetically steerable catheter using optical imaging and MRI

    Energy Technology Data Exchange (ETDEWEB)

    Lillaney, Prasheel, E-mail: Prasheel.Lillaney@ucsf.edu; Caton, Curtis; Martin, Alastair J.; Losey, Aaron D.; Evans, Leland; Saeed, Maythem; Cooke, Daniel L.; Wilson, Mark W.; Hetts, Steven W. [Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California 94143 (United States)

    2014-02-15

    Purpose: Magnetic resonance imaging (MRI) is an emerging modality for interventional radiology, giving clinicians another tool for minimally invasive image-guided interventional procedures. Difficulties associated with endovascular catheter navigation using MRI guidance led to the development of a magnetically steerable catheter. The focus of this study was to mechanically characterize deflections of two different prototypes of the magnetically steerable catheterin vitro to better understand their efficacy. Methods: A mathematical model for deflection of the magnetically steerable catheter is formulated based on the principle that at equilibrium the mechanical and magnetic torques are equal to each other. Furthermore, two different image based methods for empirically measuring the catheter deflection angle are presented. The first, referred to as the absolute tip method, measures the angle of the line that is tangential to the catheter tip. The second, referred to the base to tip method, is an approximation that is used when it is not possible to measure the angle of the tangent line. Optical images of the catheter deflection are analyzed using the absolute tip method to quantitatively validate the predicted deflections from the mathematical model. Optical images of the catheter deflection are also analyzed using the base to tip method to quantitatively determine the differences between the absolute tip and base to tip methods. Finally, the optical images are compared to MR images using the base to tip method to determine the accuracy of measuring the catheter deflection using MR. Results: The optical catheter deflection angles measured for both catheter prototypes using the absolute tip method fit very well to the mathematical model (R{sup 2} = 0.91 and 0.86 for each prototype, respectively). It was found that the angles measured using the base to tip method were consistently smaller than those measured using the absolute tip method. The deflection angles measured

  6. ATEFlap aerodynamic model, a dynamic stall model including the effects of trailing edge flap deflection

    Energy Technology Data Exchange (ETDEWEB)

    Bergami, L.; Gaunaa, M.

    2012-02-15

    The report presents the ATEFlap aerodynamic model, which computes the unsteady lift, drag and moment on a 2D airfoil section equipped with Adaptive Trailing Edge Flap. The model captures the unsteady response related to the effects of the vorticity shed into the wake, and the dynamics of flow separation a thin-airfoil potential flow model is merged with a dynamic stall model of the Beddoes-Leishmann type. The inputs required by the model are steady data for lift, drag, and moment coefficients as function of angle of attack and flap deflection. Further steady data used by the Beddoes- Leishmann dynamic stall model are computed in an external preprocessor application, which gives the user the possibility to verify, and eventually correct, the steady data passed to the aerodynamic model. The ATEFlap aerodynamic model is integrated in the aeroelastic simulation tool HAWC2, thus al- lowing to simulate the response of a wind turbine with trailing edge flaps on the rotor. The algorithms used by the preprocessor, and by aerodynamic model are presented, and modifications to previous implementations of the aerodynamic model are briefly discussed. The performance and the validity of the model are verified by comparing the dynamic response computed by the ATEFlap with solutions from CFD simulations. (Author)

  7. Heart dimensions may influence the occurrence of the heart rate deflection point in highly trained cyclists

    Science.gov (United States)

    Lucia, A.; Carvajal, A.; Boraita, A.; Serratosa, L.; Hoyos, J.; Chicharro, J. L.

    1999-01-01

    OBJECTIVES: To determine whether the heart rate (HR) response to exercise in 21 highly trained cyclists (mean (SD) age 25 (3) years) was related to their heart dimensions. METHODS: Before performing an incremental exercise test involving a ramp protocol with workload increases of 25 W/min, each subject underwent echocardiographic evaluation of the following variables: left ventricular end diastolic internal diameter (LVIDd), left ventricular posterior wall thickness at end diastole (LVPWTd), interventricular septal wall thickness at end diastole (IVSTd), left ventricular mass index (LVMI), left atrial dimension (LAD), longitudinal left atrial (LLAD) and right atrial (LRAD) dimensions, and the ratio of early to late (E/A) diastolic flow velocity. RESULTS: The HR response showed a deflection point (HRd) at about 85% VO2MAX in 66.7% of subjects (D group; n = 14) and was linear in 33.3% (NoD group; n = 7). Several echocardiographic variables (LVMI, LAD, LLAD, LRAD) indicative of heart dimensions were similar in each group. However, mean LPWTd (p<0.01) and IVSTd (p<0.05) values were significantly higher in the D group. Finally, no significant difference between groups was found with respect to the E/A. CONCLUSIONS: The HR response is curvilinear during incremental exercise in a considerable number of highly trained endurance athletes-that is, top level cyclists. The departure of HR increase from linearity may predominantly occur in athletes with thicker heart walls. 


 PMID:10597846

  8. Linear elastic response of tubes to internal detonation loading

    NARCIS (Netherlands)

    Beltman, W.M.; Shepherd, J.E.

    2002-01-01

    This paper deals with the structural response of a tube to an internal gaseous detonation. An internal detonation produces a pressure load that propagates down the tube. Because the speed of the gaseous detonation can be comparable to the flexural wave group speed, excitation of flexural waves in th

  9. Deflection of Cross-Ply Composite Laminates Induced by Piezoelectric Actuators

    Directory of Open Access Journals (Sweden)

    Chi-Sheng Lin

    2010-01-01

    Full Text Available The coupling effects between the mechanical and electric properties of piezoelectric materials have drawn significant attention for their potential applications as sensors and actuators. In this investigation, two piezoelectric actuators are symmetrically surface bonded on a cross-ply composite laminate. Electric voltages with the same amplitude and opposite sign are applied to the two symmetric piezoelectric actuators, resulting in the bending effect on the laminated plate. The bending moment is derived by using the classical laminate theory and piezoelectricity. The analytical solution of the flexural displacement of the simply supported composite plate subjected to the bending moment is solved by using the plate theory. The analytical solution is compared with the finite element solution to show the validation of present approach. The effects of the size and location of the piezoelectric actuators on the response of the composite laminate are presented through a parametric study. A simple model incorporating the classical laminate theory and plate theory is presented to predict the deformed shape of the simply supported laminate plate.

  10. Flexural and diametral tensile strength of composite resins

    Directory of Open Access Journals (Sweden)

    Álvaro Della Bona

    2008-03-01

    Full Text Available This study evaluated the flexural strength (sf and the diametral tensile strength (st of light-cured composite resins, testing the hypothesis that there is a positive relation between these properties. Twenty specimens were fabricated for each material (Filtek Z250- 3M-Espe; AM- Amelogen, Ultradent; VE- Vit-l-escence, Ultradent; EX- Esthet-X, Dentsply/Caulk, following ISO 4049 and ANSI/ADA 27 specifications and the manufacturers’ instructions. For the st test, cylindrical shaped (4 mm x 6 mm specimens (n = 10 were placed with their long axes perpendicular to the applied compressive load at a crosshead speed of 1.0 mm/min. The sf was measured using the 3-point bending test, in which bar shaped specimens (n = 10 were tested at a crosshead speed of 0.5 mm/min. Both tests were performed in a universal testing machine (EMIC 2000 recording the fracture load (N. Strength values (MPa were calculated and statistically analyzed by ANOVA and Tukey (a = 0.05. The mean and standard deviation values (MPa were Z250-45.06 ± 5.7; AM-35.61 ± 5.4; VE-34.45 ± 7.8; and EX-42.87 ± 6.6 for st; and Z250-126.52 ± 3.3; AM-87.75 ± 3.8; VE-104.66 ± 4.4; and EX-119.48 ± 2.1 for sf. EX and Z250 showed higher st and sf values than the other materials evaluated (p < 0.05, which followed a decreasing trend of mean values. The results confirmed the study hypothesis, showing a positive relation between the material properties examined.

  11. Comparative Analysis of the Flexural Stiffness of Pinniped Vibrissae.

    Directory of Open Access Journals (Sweden)

    Carly C Ginter Summarell

    Full Text Available Vibrissae are important components of the mammalian tactile sensory system and are used to detect vibrotactile stimuli in the environment. Pinnipeds have the largest and most highly innervated vibrissae among mammals, and the hair shafts function as a biomechanical filter spanning the environmental stimuli and the neural mechanoreceptors deep in the follicle-sinus complex. Therefore, the material properties of these structures are critical in transferring vibrotactile information to the peripheral nervous system. Vibrissae were tested as cantilever beams and their flexural stiffness (EI was measured to test the hypotheses that the shape of beaded vibrissae reduces EI and that vibrissae are anisotropic. EI was measured at two locations on each vibrissa, 25% and 50% of the overall length, and at two orientations to the point force. EI differed in orientations that were normal to each other, indicating a functional anisotropy. Since vibrissae taper from base to tip, the second moment of area (I was lower at 50% than 25% of total length. The anterior orientation exhibited greater EI values at both locations compared to the dorsal orientation for all species. Smooth vibrissae were generally stiffer than beaded vibrissae. The profiles of beaded vibrissae are known to decrease the amplitude of vibrations when protruded into a flow field. The lower EI values of beaded vibrissae, along with the reduced vibrations, may function to enhance the sensitivity of mechanoreceptors to detection of small changes in flow from swimming prey by increasing the signal to noise ratio. This study builds upon previous morphological and hydrodynamic analyses of vibrissae and is the first comparative study of the mechanical properties of pinniped vibrissae.

  12. Topographic mapping of biological specimens: flexure and curvature characterization

    Science.gov (United States)

    Baron, William S.; Baron, Sandra F.

    2004-07-01

    Shape quantification of tissue and biomaterials can be central to many studies and applications in bioengineering and biomechanics. Often, shape is mapped with photogrammetry or projected light techniques that provide XYZ point cloud data, and shape is quantified using derived flexure and curvature calculations based on the point cloud data. Accordingly, the accuracy of the calculated curvature depends on the properties of the point cloud data set. In this study, we present a curvature variability prediction (CVP) software model that predicts the distribution, i.e., the standard deviation, of curvature measurements associated with surface topography point cloud data properties. The CVP model point cloud data input variables include XYZ noise, sampling density, and map extent. The CVP model outputs the curvature variability statistic in order to assess performance in the curvature domain. Representative point cloud data properties are obtained from an automated biological specimen video topographer, the BioSpecVT (ver. 1.02) (Vision Metrics, Inc.,). The BioSpecVT uses a calibrated, structured light pattern to support automated computer vision feature extraction software for precisely converting video images of biological specimens, within seconds, into three dimensional point cloud data. In representative sample point cloud data obtained with the BioSpecVT, sampling density is about 11 pts/mm2 for an XYZ mapping volume encompassing about 16 mm x 13.5 mm x 18.5 mm, average XY per point variability is about +/-2 μm, and Z axis variability is about +/-40 μm (50% level) with a Gaussian distribution. A theoretical study with the CVP model shows that for derived point cloud data properties, curvature mapping accuracy increases, i.e. measurement variability decreases, when curvature increases from about 30 m-1 to 137 m-1. This computed result is consistent with the Z axis noise becoming less significant as the measured depth increases across an approximately fixed XY

  13. Large Amplitude Flexural Vibration of the Orthotropic Composite Plate Embedded with Shape Memory Alloy Fibers

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The free and forced vibration of large deformation composite plate embedded with shape memory alloy (SMA) fibers is investigated. A thermo-mechanical constitutive equation of SMA proposed by Brinson et al. is employed and the constitutive equations for evaluation of the properties of a hybrid SMA composite laminate are obtained. Based on the nonlinear theory of symmetrically laminated anisotropic plates, the governing equations of flexural vibration in terms of displacement and stress functions are derived. The Galerkin method has been used to convert the original partial differential equation into a nonlinear ordinary differential equation, which is then solved with harmonic balance method. The numerical results show that the relationship between nonlinear natural frequency ratio and temperature for the nonlinear plate has similar characteristics compared with that of the linear one, and the effects of temperature on forced response behavior during phase transformation from Martensite to Austenite are significant. The effects of the volume fraction of the SMA fiber, aspect ratio and free vibration amplitude on the dynamical behavior of the plate are also discussed.

  14. The Heliocentric Distance Where the Deflections and Rotations of Solar Coronal Mass Ejections Occur

    CERN Document Server

    Kay, C

    2015-01-01

    Understanding the trajectory of a coronal mass ejection (CME), including any deflection from a radial path, and the orientation of its magnetic field is essential for space weather predictions. Kay et al. (2015b) developed a model, Forecasting a CME's Altered Trajectory (ForeCAT), of CME deflections and rotation due to magnetic forces, not including the effects of reconnection. ForeCAT is able to reproduce the deflection of observed CMEs (Kay et al. 2015a). The deflecting CMEs tend to show a rapid increase of their angular momentum close to the Sun, followed by little to no increase at farther distances. Here we quantify the distance at which the CME deflection is "determined," which we define as the distance after which the background solar wind has negligible influence on the total deflection. We consider a wide range in CME masses and radial speeds and determine that the deflection and rotation of these CMEs can be well-described by assuming they propagate with constant angular momentum beyond 10 Rs. The a...

  15. Influence of deflection hole angle on effusion cooling in a real combustion chamber condition

    Directory of Open Access Journals (Sweden)

    Liu Xiao

    2015-01-01

    Full Text Available Fluid-solid coupling simulation is conducted to investigate the performance of effusion cooling in the real combustion chamber condition of strong rotation and primary holes. The wall temperature and film cooling effectiveness of different deflection angle is analyzed. From the results, it is concluded that the performance of effusion is better than conventional film cooling. The wall temperature and gradient is lower, the cooling efficiency is higher and the coolant is reduced by 20%, but pressure loss is slightly increased. The cooling effectiveness decreases behind primary holes because of local combustion. Comparison with the effect of deflection angle, the cooling performance of 60 deg deflection angle is best. The coolant is better attached to the wall downstream when the deflection angle is same as the rotating mainstream. In addition, the effect of deflection angle is not so significant on the coolant flow rate, but a large negative impact on the pressure loss. Although the cooling effectiveness of 60 deg deflection angle is highest, the total pressure recovery coefficient is lower. The maximum temperature drops about 70K and the outlet temperature distribution trends more consistent. So various factors should be taken into consideration when designing of deflection angle.

  16. Implementation of Input Block of Minimally Buffered Deflection NoC Router

    Directory of Open Access Journals (Sweden)

    Priti M. Shahane

    2016-08-01

    Full Text Available The traditional system on chip designs employ the shared bus architecture for data transfer in highly integrated Multiprocessor system on chips(MPSoC.Network on chip (NoCis a new paradigm for on chip communication for Multiprocessor systems on chips(MPSoCs. NoCs replace the traditional shared buses system with routing switches. Heart of the NoC is the router and it consists of an input buffer, arbiter, crossbar and an output port. The NoC router uses a buffer to store the incoming packets. These buffers improve the performance but they consume more power and area. Bufferless deflection routing is the solution for improvement in energy efficiency. In this method deflections of the packets take place to overcome the contention problem. But at high network load, deflection routing degrades the performance because of unnecessary hopping of data packets. The MinBD (minimally buffered deflection router is a new router design that uses a small buffer for bufferless deflection routing. In this paper the input block of MinBD router is implemented on FPGA which shows that a small buffer will help to reduce the network deflection rate. It also improves the performance and energy efficiency while buffering only deflected data packets.

  17. New results from the CERN-SPS beam deflection experiments with bent crystals

    Science.gov (United States)

    Baurichter, A.; Kirsebom, K.; Medenwaldt, R.; Møller, S. P.; Worm, T.; Uggerhøj, E.; Mikkelsen, U.; Graftström, P.; Gatignon, L.; Elsener, K.; Doble, N.; Biino, C.; Freund, A.; Vilakazi, Z.; Hage-Ali, M.; Siffert, P.; Clément, M.

    1996-10-01

    Results from five distinct bending experiments performed recently in the H8 beam at CERN are presented. Firstly, deflection of a positive pion beam at 200 GeV/c is compared to the "standard" 450-GeV/c proton beam for a bending angle of 3.1 mrad along the (111) plane in a 50 mm silicon crystal. Second, deflection of negative pions at 200 GeV/c is investigated for the same crystal, for incidence along the (111) plane as well as the axis. Small deflection effects are seen, but no negative particles are bent through the full bending angle of the crystal. Third, the first results from beam deflection at high energy using a germanium crystal are shown. Slightly higher deflection efficiencies than for silicon are seen for large bending angles, but significantly smaller than expected for such a crystal with higher atomic number. Fourth, deflection efficiencies using a strongly irradiated silicon crystal have been measured for the first time, and a small reduction in efficiency is seen in the irradiated region. Finally, deflection of positive particles using axial alignment of a bent silicon crystal has been investigated at 450 GeV/c. Qualitatively similar behaviour as in previous experiments at 12 GeV/c is seen; the beam splits into several beams corresponding to the different planes, and even weak planes are observed.

  18. Real-Time Deflection Monitoring for Milling of a Thin-Walled Workpiece by Using PVDF Thin-Film Sensors with a Cantilevered Beam as a Case Study

    National Research Council Canada - National Science Library

    Luo, Ming; Liu, Dongsheng; Luo, Huan

    2016-01-01

    .... To understand the workpiece deflection behavior in a machining process, a new real-time nonintrusive method for deflection monitoring is presented, and a detailed analysis of workpiece deflection...

  19. Effects of Cassava Starch and Natural Rubber as Binders on the Flexural and Water Absorption Properties of Recycled Paper Pulp Based Composites

    Directory of Open Access Journals (Sweden)

    Oladele Isiaka Oluwole

    2015-10-01

    Full Text Available Responsiveness was given to the effects of cassava starch and natural rubber as binders on the flexural strength and the water absorptivity properties of the developed rattan particulate reinforced paper pulp based composites. Paper pulp was produced by chopping waste papers into smaller pieces and soaked in boiled water after which it was stirred thoroughly to form paper pulp. Rattan particulate was produced by hammering, chopping, pounding and milling of rattan canes followed by sieving into a particle size of 437 µ. Varying mass of paper from 300-400 g and particulate rattan in treated and untreated form of 2-8 g were mixed and bonded with natural rubber and cassava starch, respectively for the various samples developed. The mixtures were thoroughly mixed to produce homogenous pastes and poured into 150 x 50 x 30 mm detachable mould and compacted for 5 minutes using a laboratory compaction machine maintained at 20 KN. The developed composites were allowed to cure at room temperature for 27 days after which flexural and water absorptivity tests were carried out on the samples. It was noticed that the composite samples ST4 and S5 containing cassava starch happen to be the best in terms of flexural strength while NR2 gave the best water- repellent outcome.

  20. Determination of Dynamic Flexural Tensile Strength of Thermally Treated Laurentian Granite Using Semi-Circular Specimens

    Science.gov (United States)

    Yin, Tubing; Wang, Pin; Li, Xibing; Wu, Bangbiao; Tao, Ming; Shu, Ronghua

    2016-10-01

    To understand the effects of increasing temperature and loading rate on the flexural tensile strength of Laurentian granite, dynamic flexural tensile strength experiments were carried out by means of a semi-circular bend specimen with a modified split Hopkinson pressure bar system. The tests were performed at different loading rates, specimens were treated from room temperature up to 850 °C, and a high-speed camera was utilized to monitor the failure process of the specimen. For samples in the same temperature group, a loading rate dependence of the flexural tensile strength was observed; it increased consistently with the increase of loading rate. Temperature effects on rock mechanical properties were investigated from the microscopic viewpoint, and the dynamic flexural tensile strength decreased with the treatment temperature. A formula relating dynamic flexural tensile strength to loading rate and temperature is presented to quantify the results. It was found that the change regulation of the dynamic flexural tensile strength of rock is very similar to that of its crack growth along with the increase of loading rate, which indicates that the essence of rock failure is the initiation and propagation of the internal cracks. Compared with our earlier work on dynamic tensile tests using the Brazilian test, it was observed that the flexural tensile strength is higher than the tensile strength. Non-local failure theory can be adopted to explain this discrepancy at low temperature conditions, but it is no longer effective at high temperatures. Under high loading rates, rock failure is initiated at the centre of the half circular disc, and finally it is separated completely into two equal parts.

  1. Flexural rigidity evolvement laws of reinforced concrete beams strengthened with carbon fiber laminates

    Institute of Scientific and Technical Information of China (English)

    NIU Peng-zhi; HUANG Pei-yan; DENG Jun; HAN Qiang

    2007-01-01

    Extensive research has shown that externally bonded carbon fiber reinforced polymer (CFRP) laminates are particularly suitable for improving the fatigue behavior of reinforced concrete (RC) beams. This paper presents the research on flexural rigidity evolvement laws by testing 14 simple-supported RC beams strengthened with carbon fiber laminates (CFL) under cyclic load, and 2 under monotone load as a reference. The cyclic load tests revealed the peak load applied onto the surface of a supported RC beam strengthened with CFL is linear to the logarithm of its fatigue life, and the flexural rigidity evolvement undergoes three distinct phases: a rapid decrease from the start to about 5% of the fatigue life; an even development from 5% to about 99% of the fatigue life; and a succedent rapid decrease to failure. When the ratio of fatigue cycles to the fatigue life is within 0.05 to 0.99, the flexural rigidity varies linearly with the ratio. The peak load does not affect the flexural rigidity evolvement if it is not high enough to make the main reinforcements yield. The dependences of the flexural rigidity of specimens formed in the same group upon their fatigue cycles normalized by fatigue life are almost coincident. This implies the flexural rigidity may be a material parameter independent of the stress level. These relationships of flexural rigidity to fatigue cycles, and fatigue life may be able to provide some hints for fatigue design and fatigue life evaluation of RC member strengthened with CFL; nevertheless the findings still need verifying by more experiments.

  2. Correlation between flexural and indirect tensile strength of resin composite cements.

    Science.gov (United States)

    Cassina, Gianluca; Fischer, Jens; Rohr, Nadja

    2016-11-04

    To evaluate a potential correlation between flexural strength and indirect tensile strength in assessing the mechanical strength of resin composite cements. Flexural strength (n = 5) and indirect tensile strength (n = 5) of 7 resin composite cements (RelyX Unicem 2 Automix [RXU], Panavia SA [PSA], Clearfil SA [CSA], Panavia F2.0 [PF2], Multilink Implant [MLI], DuoCem [DCM], Panavia 21 [P21]) were determined. Specimens were either auto-polymerized or dual-cured (except P21) and stored in water at 37 °C for 1 day prior to measurement. Flexural and indirect tensile strength of 4 cements (RXU, PSA, PF2, MLI) was additionally measured directly after curing and after 96 h water storage at 37 °C. Except for PF2, dual-cured specimens achieved higher flexural strength than auto-polymerized specimens. In the indirect tensile strength test differences in auto-polymerized and dual-cured specimens were only detected for RXU and DCM. A general non-linear correlation was found between flexural and indirect tensile strength values. However, strength values of auto-polymerized and dual-cured specimens did not generally correlate. Flexural strength and indirect tensile strength of resin composite cements are correlated. At high strength values the indirect tensile test is less sensitive than the flexural test. The results suggest that the indirect tensile test may only be recommended as a screening test especially for low or medium strength resin composite cements.

  3. Assessing the extent of colon lengthening due to splenic flexure mobilization techniques: a cadaver study

    Directory of Open Access Journals (Sweden)

    Sergio Eduardo Alonso Araujo

    2012-09-01

    Full Text Available CONTEXT: Failure of a colorectal anastomosis represents a life-threatening complication of colorectal surgery. Splenic flexure mobilization may contribute to reduce the occurrence of anastomotic complications due to technical flaws. There are no published reports measuring the impact of splenic flexure mobilization on the length of mobilized colon viable to construct a safe colorectal anastomosis. OBJECTIVE: The aim of the present study was to determine the effect of two techniques for splenic flexure mobilization on colon lengthening during open left-sided colon surgery using a cadaver model. DESIGN: Anatomical dissections for left colectomy and colorectal anastomosis at the sacral promontory level were conducted in 20 fresh cadavers by the same team of four surgeons. The effect of partial and full splenic flexure mobilization on the extent of mobilized left colon segment was determined. SETTING: University of Sao Paulo Medical School, Sao Paulo, SP, Brazil. Tertiary medical institution and university hospital. PARTICIPANTS: A team of four surgeons operated on 20 fresh cadavers. RESULTS: The length of resected left colon enabling a tension-free colorectal anastomosis at the level of sacral promontory achieved without mobilizing the splenic flexure was 46.3 (35-81 cm. After partial mobilization of the splenic flexure, an additionally mobilized colon segment measuring 10.7 (2-30 cm was obtained. After full mobilization of the distal transverse colon, a mean 28.3 (10-65 cm segment was achieved. CONCLUSION: Splenic flexure mobilization techniques are associated to effective left colon lengthening for colorectal anastomosis. This result may contribute to decision-making during rectal surgery and low colorectal and coloanal anastomosis.

  4. Light deflection with torsion effects caused by a spinning cosmic string

    Energy Technology Data Exchange (ETDEWEB)

    Jusufi, Kimet [State University of Tetovo, Physics Department, Tetovo (Macedonia, The Former Yugoslav Republic of)

    2016-06-15

    Using a new geometrical method introduced by Werner, we find the deflection angle in the weak limit approximation by a spinning cosmic string in the context of the Einstein-Cartan (EC) theory of gravity. We begin by adopting the String-Randers optical metric, then we apply the Gauss-Bonnet theorem to the optical geometry and derive the leading terms of the deflection angle in the equatorial plane. Calculation shows that light deflection is affected by the intrinsic spin of the cosmic string and torsion. (orig.)

  5. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    Science.gov (United States)

    Rathod, K. D.; Singh, P. K.; Natarajan, Vasant

    2014-09-01

    We demonstrate generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman Slower. They are then subjected to a pair of molasses beams inclined at $45^\\circ$ with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate selective deflection of the bosonic isotope $^{174}$Yb, and the fermionic isotope $^{171}$Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.

  6. Cold beam of isotopically pure Yb atoms by deflection using 1D-optical molasses

    Indian Academy of Sciences (India)

    K D Rathod; P K Singh; Vasant Natarajan

    2014-09-01

    We demonstrate the generation of an isotopically pure beam of laser-cooled Yb atoms by deflection using 1D-optical molasses. Atoms in a collimated thermal beam are first slowed using a Zeeman slower. They are then subjected to a pair of molasses beams inclined at 45° with respect to the slowed atomic beam. The slowed atoms are deflected and probed at a distance of 160 mm. We demonstrate the selective deflection of the bosonic isotope 174Yb and the fermionic isotope 171Yb. Using a transient measurement after the molasses beams are turned on, we find a longitudinal temperature of 41 mK.

  7. Analysis of rolls deflection of Sendzimir mill by 3D FEM

    Institute of Scientific and Technical Information of China (English)

    YU Hai-liang; LIU Xiang-hua; LEE Gyoo Taek

    2007-01-01

    The deflection of rolls of Sendzimir mill with double AS-U-Roll was simulated by finite element method(FEM). The influences of rolling pressure, strip width and rolls-assignment on rolls deflection were analyzed. The results show that the work roll deflection increases with the increase of rolling pressure and the reduction of work roll radius, but the rigid displacement of work roll slightly changes; the work roll end might appear negative displacement for the narrow strip width and high rolling pressure that might cause the contact of work rolls. The research results are significant for guiding production and theoretical analysis of the rolls system of Sendzimir mill.

  8. Self-Deflection of Dark Screening Spatial Solitons Based on Higher-Order Space Charge Field

    Institute of Scientific and Technical Information of China (English)

    ZHANG Guang-Yong; LIU Jin-Song; LIU Shi-Xiong; WANG Cheng; ZHANG Hui-Lan

    2007-01-01

    The effects of higher-order space charge field on the self-deflection of dark screening spatial solitons in biased photorefractive crystals are numerically investigated under steady-state conditions. The expression for an induced space-charge electric field including higher-order space-charge field terms is obtained. Numerical results indicate that dark solitons possess a self-deflection process during propagation, and the solitons always bend in the direction of the c axis of the crystal The self-deflection of dark solitons can experience considerable increase especially in the regime of high bias field strengths.

  9. Mode-locked Lasers Applied to Deflecting a Near Earth Object on Collision Course with Earth

    CERN Document Server

    Fork, Richard; Burgess, Luke; Bergstue, Grant

    2013-01-01

    We consider synchronized trains of sub-picosecond pulses generated by mode-locked lasers applied to deflection of near Earth objects (NEO) on collision course with Earth. Our method is designed to avoid a predicted collision of the NEO with Earth by at least the diameter of Earth. We estimate deflecting a 10,000 MT NEO, such as the asteroid which struck Earth near Chelyabinsk, Russia to be feasible within several months using average power in the ten kilowatt range. We see this deflection method as scalable to larger NEO to a degree not possible using continuous laser systems.

  10. Photonic-based laser driven electron beam deflection and focusing structures

    Directory of Open Access Journals (Sweden)

    T. Plettner

    2009-10-01

    Full Text Available We propose a dielectric photonic structure for ultrafast deflection and focusing of relativistic charged particle beams. The structure is designed to transform a free-space laser beam into a deflection force that acts on the free particles with the same optical phase over a distance of travel that is much greater than the laser wavelength. The proposed structure has a two-dimensional geometry and is compatible with existing nanofabrication methods. Deflection fields of GV/m magnitude and subfemtosecond switching speeds are expected to be possible from these dielectric structures. With these elements a submeter scale extreme ultraviolet synchrotron source seems feasible.

  11. Light deflection with torsion effects caused by a spinning cosmic string

    Science.gov (United States)

    Jusufi, Kimet

    2016-06-01

    Using a new geometrical method introduced by Werner, we find the deflection angle in the weak limit approximation by a spinning cosmic string in the context of the Einstein-Cartan (EC) theory of gravity. We begin by adopting the String-Randers optical metric, then we apply the Gauss-Bonnet theorem to the optical geometry and derive the leading terms of the deflection angle in the equatorial plane. Calculation shows that light deflection is affected by the intrinsic spin of the cosmic string and torsion.

  12. Multipole Field Effects for the Superconducting Parallel-Bar Deflecting/Crabbing Cavities

    Energy Technology Data Exchange (ETDEWEB)

    De Silva, Payagalage Subashini Uddika [Thomas Jefferson National Accelerator Facility, Newport News, VA (United States) and Old Dominion University, Norfolk, VA (United States); Delayen, Jean Roger [Old Dominion University, Norfolk, VA (United States)

    2012-09-01

    The superconducting parallel-bar deflecting/crabbing cavity is currently being considered as one of the design options in rf separation for the Jefferson Lab 12 GeV upgrade and for the crabbing cavity for the proposed LHC luminosity upgrade. Knowledge of multipole field effects is important for accurate beam dynamics study of rf structures. The multipole components can be accurately determined numerically using the electromagnetic surface field data in the rf structure. This paper discusses the detailed analysis of those components for the fundamental deflecting/crabbing mode and higher order modes in the parallel-bar deflecting/crabbing cavity.

  13. Light Deflection with Torsion Effects Caused by a Spinning Cosmic String

    CERN Document Server

    Jusufi, Kimet

    2016-01-01

    Using a new geometrical method introduced by Werner, we find the deflection angle in the weak limit approximation by a spinning cosmic string in the context of the Einstein-Cartan (EC) theory of gravity. We begin by adopting the String-Randers optical metric, then we apply the Gauss-Bonnet theorem to the optical geometry and derive the leading terms of the deflection angle in the equatorial plane. Calculations shows that light deflection is affected by the intrinsic spin of the cosmic string and torsion.

  14. Further development of the attitude difference method for estimating deflections of the vertical in real time

    Science.gov (United States)

    Zhu, Jing; Zhou, Zebo; Li, Yong; Rizos, Chris; Wang, Xingshu

    2016-07-01

    An improvement of the attitude difference method (ADM) to estimate deflections of the vertical (DOV) in real time is described in this paper. The ADM without offline processing estimates the DOV with a limited accuracy due to the response delay. The proposed model selection-based self-adaptive delay feedback (SDF) method takes the results of the ADM as the a priori information, then uses fitting and extrapolation to estimate the DOV at the current epoch. The active region selection factor F th is used to take full advantage of the Earth model EGM2008 and the SDF with different DOV exhibitions. The factors which affect the DOV estimation accuracy are analyzed and modeled. An external observation which is specified by the velocity difference between the global navigation satellite system (GNSS) and the inertial navigation system (INS) with DOV compensated is used to select the optimal model. The response delay induced by the weak observability of an integrated INS/GNSS to the violent DOV disturbances in the ADM is compensated. The DOV estimation accuracy of the SDF method is improved by approximately 40% and 50% respectively compared to that of the EGM2008 and the ADM. With an increase in GNSS accuracy, the DOV estimation accuracy could improve further.

  15. Flexural strength and hardness of direct and indirect composites

    Directory of Open Access Journals (Sweden)

    Márcia Borba

    2009-03-01

    Full Text Available The objective of this study was to evaluate the flexural strength (σf and hardness (H of direct and indirect composites, testing the hypotheses that direct resin composites produce higher σf and H values than indirect composites and that these properties are positively related. Ten bar-shaped specimens (25 mm x 2 mm x 2 mm were fabricated for each direct [D250 - Filtek Z250 (3M-Espe and D350 - Filtek Z350 (3M-Espe] and indirect [ISin - Sinfony (3M-Espe and IVM - VitaVM LC (Vita Zahnfabrik] materials, according to the manufacturer's instructions and ISO4049 specifications. The σf was tested in three-point bending using a universal testing machine (EMIC DL 2000 at a crosshead speed of 0.5 mm/min (ISO4049. Knoop hardness (H was measured on the specimens' fragments resultant from the σf test and calculated as H = 14.2P/l², where P is the applied load (0.1 kg; dwell time = 15 s and l is the longest diagonal of the diamond shaped indent (ASTM E384. The data were statistically analyzed using Anova and Tukey tests (α = 0.05. The mean σf and standard deviation values (MPa and statistical grouping were: D250 - 135.4 ± 17.6a; D350 - 123.7 ± 11.1b; ISin - 98.4 ± 6.4c; IVM - 73.1 ± 4.9d. The mean H and standard deviation values (kg/mm² and statistical grouping were: D250 - 98.12 ± 1.8a; D350 - 86.5 ± 1.9b; ISin - 28.3 ± 0.9c; IVM - 30.8 ± 1.0c. The direct composite systems examined produce higher mean σf and H values than the indirect composites, and the mean values of these properties were positively correlated (r = 0.91, confirming the study hypotheses.

  16. Free flexural radial vibrations of a thin circular cylindrical shell bearing added mass

    Directory of Open Access Journals (Sweden)

    Seregin Sergey Valer’evich

    2014-12-01

    Full Text Available The author comes up with a refined mathematical model contemplating that added mass facilitates interaction between coupled flexural and radial vibrations in the linear setting. The author has identified a higher splitting of the flexural frequency spectrum due to the presence of the added mass and the wave generation parameters that characterize the relative length and thickness of the shell. Within the framework of the shallow-shell theory, the influence of the small concentrated mass onto natural dynamic properties of the shell is exposed to research. The refined mathematical model was employed to identify that the added mass binds the coupled flexural shape of the circular cylindrical shell and facilitates interaction between low-frequency flexural vibrations and high-frequency radial vibrations. Moreover, radial vibrations act as a supplementary inertial link between coupled flexural shapes. Due to the availability of the exciting load, non-resonant areas, identified through the application of the traditional mathematical model, can be resonant in essence. The findings of this research must be considered in the course of the assessment of the dynamic strength of any shell structures designed. This refined finite-dimensional model, capable of recognizing radial vibrations, has generated the results that comply with numerical analyses and experimental data both quantitatively and qualitatively. Therefore, dynamic problems that have already been resolved may need refinement.

  17. In vitro evaluation of flexural strength of different brands of expansion screws

    Directory of Open Access Journals (Sweden)

    Kádna Fernanda Mendes de Oliveira

    2012-06-01

    Full Text Available OBJECTIVE: The objective of this study was to compare the flexural strength of the stems of three maxillary expanders screws of Morelli, Forestadent and Dentaurum brands. METHODS: The sample consisted of nine expander screws (totalizing of 36 stems, three from each brand, all stainless steel and 12 mm of expansion capacity. The stems of the expander screws were cut with cutting pliers close to the weld region with screw body, then fixed in a universal testing machine Instron 4411 for tests of bending resistance of three points. The ultimate strength in kgF exerted by the machine to bend the stem of the 5 mm screw was recorded and the flexural strength was calculated using a mathematical formula. During the flexural strength test it was verified the modulus of elasticity of the stems by means of Bluehill 2 software. The flexural strength data were subjected to ANOVA with one criterion and Tukey's test, with significance level of 5%. RESULTS: Forestadent screw brand showed the greatest bending strength, significantly higher than Dentaurum. Morelli showed the lowest resistance. CONCLUSION: The flexural strength of the screws varied according to the brand. Forestadent screw showed the greatest resistance and Morelli the lowest. All the three screws were found adequate for use in procedures for rapid maxillary expansion.

  18. Deflection of light ray due to a charged body using Material Medium Approach

    CERN Document Server

    Roy, Saswati

    2015-01-01

    The gravitational deflection of light ray is an important prediction of General Theory of Relativity. In this paper we develop analytical expression of the deflection of light ray without any weak field approximation due to a charged gravitational body represented by Reissner_Nordstr\\"om (RN) and Janis-Newman-Winicour (JNW) space time geometry, using material medium approach. It is concluded that although both the geometries represent the charged, non-rotating, spherically symmetric gravitating body, but the effect of charge on the gravitational deflection is just opposite to each other. The gravitational deflection decreases with charge in the RN geometry and increases with charge in the JNW geometry. The calculations obtained here are compared with other methods done by different authors. The formalism is applied to an arbitrary selected pulsar PSRB1937+21 as a gravitating body, as a test case.

  19. Analysis of Deflection Problems of Large-span Continuous Rigid Frame Bridge and Prevention Measures

    Directory of Open Access Journals (Sweden)

    Chen Dong

    2015-01-01

    Full Text Available The large-span continuous rigid frame bridge is a kind of common structural form in long-span bridges of our country, but one of the main diseases of these bridges is the excessive deflection in the mid-span, which seriously affects the safety of the structure. This paper makes a comprehensive analysis for the causes of the excessive deflection, and lists the commonly-used control measures in engineering. Simultaneously, new improvement measures and the comparative analysis of before-and-after improvements are put forward on this basis. However, these measures can be used to inhibit deflection in a certain extent, but cannot avoid the occurrence of deflection completely.

  20. Evaluation of Accuracy and Precision of Several Highway Speed Deflection Devices

    OpenAIRE

    Rada, Gonzalo R; Visintine, Beth A.; Rocha,Sergio; Velarde, Jorge; Gallardo, Paola; Nazarian, Soheil; Siddharthan, Rajaratnam V.; Nasimifar, Seyyed

    2014-01-01

    Structural Session 2: Evaluation of Deflection Devices Moderated by Doug Chalman This presentation was held at the Pavement Evaluation 2014 Conference, which took place from September 15-18, 2014 in Blacksburg, Virginia. Presentation only

  1. Design and Development of Superconducting Parallel-Bar Deflecting/Crabbing Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Payagalage Subashini Uddi De Silva, Jean Delayen

    2012-07-01

    The superconducting parallel-bar cavity is a deflecting/crabbing cavity with attractive properties that is being considered for a number of applications. We present the designs of a 499 MHz deflecting cavity developed for the Jefferson Lab 12 GeV Upgrade and a 400 MHz crabbing cavity for the LHC High Luminosity Upgrade. Prototypes of these two cavities are now under development and fabrication.

  2. Encoding whisker deflection velocity within the rodent barrel cortex using phase-delayed inhibition.

    Science.gov (United States)

    Liu, Runjing; Patel, Mainak; Joshi, Badal

    2014-12-01

    The primary sensory feature represented within the rodent barrel cortex is the velocity with which a whisker has been deflected. Whisker deflection velocity is encoded within the thalamus via population synchrony (higher deflection velocities entail greater synchrony among the corresponding thalamic population). Thalamic (TC) cells project to regular spiking (RS) cells within the barrel cortex, as well as to inhibitory cortical fast-spiking (FS) neurons, which in turn project to RS cells. Thus, TC spikes result in EPSPs followed, with a small time lag, by IPSPs within an RS cell, and hence the RS cell decodes TC population synchrony by employing a phase-delayed inhibition synchrony detection scheme. As whisker deflection velocity is increased, the probability that an RS cell spikes rises, while jitter in the timing of RS cell spikes remains constant. Furthermore, repeated whisker deflections with fixed velocity lead to system adaptation--TC →RS, TC →FS, and FS →RS synapses all weaken substantially, leading to a smaller probability of spiking of the RS cell and increased jitter in the timing of RS cell spikes. Interestingly, RS cell activity is better able to distinguish among different whisker deflection velocities after adaptation. In this work, we construct a biophysical model of a basic 'building block' of barrel cortex - the feedforward circuit consisting of TC cells, FS cells, and a single RS cell - and we examine the ability of the purely feedforward circuit to explain the experimental data on RS cell spiking probability, jitter, adaptation, and deflection velocity discrimination. Moreover, we study the contribution of the phase-delayed inhibition network structure to the ability of an RS cell to decode whisker deflection velocity encoded via TC population synchrony.

  3. Strong deflection lensing by charged black holes in scalar-tensor gravity

    Energy Technology Data Exchange (ETDEWEB)

    Eiroa, Ernesto F.; Sendra, Carlos M. [Instituto de Astronomia y Fisica del Espacio (IAFE, CONICET-UBA), Buenos Aires (Argentina); Universidad de Buenos Aires, Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2014-11-15

    We examine a class of charged black holes in scalar-tensor gravity as gravitational lenses. We find the deflection angle in the strong deflection limit, from which we obtain the positions and the magnifications of the relativistic images. We compare our results with those corresponding to the Reissner-Norstroem spacetime and we analyze the observational aspects in the case of the Galactic supermassive black hole. (orig.)

  4. Influence of tool deflection on micro channel pattern of 6:4 brass with rectangular tool

    Institute of Scientific and Technical Information of China (English)

    Tae-Jin JE; Kang-Won LEE; Sang-Cheon PARK; Jae-Gu KIM; Doo-Sun CHOI; Kyoung-Taik PARK; Kyung-Hyun WHANG

    2009-01-01

    Machining experiment of micro channel structure with 6:4 brass was carried out by shaping process using a single crystal diamond tool. FEM simulation using solid cantilever beam model was analyzed. In result of experiment, tool deflection is observed as machining characteristics through result of experiments such as surface roughness, cutting force and burr formations. And the influence of tool deflection is experimentally proved.

  5. Large-Amplitude Free Flexural Vibrations of Laminated Composite Curved Panels using Shear-Flexible Shell Element

    Directory of Open Access Journals (Sweden)

    M. Ganapathi

    1995-01-01

    Full Text Available Using degree centigrade continuous, QUAD-8 shear-flexible shell element, based on field consistency principle, the nonlinear free flexural vibrations of anisotropic laminated curved panels are studied. The formulation includes transverse shear deformation, in-plane and rotary inertia effects and geometrical nonlinearity. The element is employed to study the large amplitude dynamic behaviour of cylindrical and spherical shells. The frequency versus amplitude curves are obtained from the dynamic response history. The nonlinear governing equations are solved using Wilson-Theta numerical integration scheme with Theta = 1.4. For each time step, modified Newton-Raphson iterations are employed to achieve equilibrium at the end of that time step. Detailed numerical results are presented, showing the effects of thickness, lamination scheme, material properties and boundary conditions, on nonlinear behaviour.

  6. Prediction of Extrusion Pressure And Product Deflection Of Using Artificial Neural Network

    Directory of Open Access Journals (Sweden)

    D.T. GUNDU

    2013-01-01

    Full Text Available - In this paper artificial neural network was used as a modeling tool for simulation and prediction of extrusion pressure and product deflection of extrudes of lead alloys. An extensive experimental program was undertaken to extrude a lead (Pb alloy on ELE Compact-1500 compression machine. The neural model of extrusion pressure and product deflection was developed based on groups of experiments carried out as samples, Eight (8 die bearing parameters (die bearing length, radius of curvature, slip angle, die angle, die ratio ram displacement, pocket depth and die diameter were used as inputs into the network architecture of 8 [4-3]2 2 in predicting the extrusion pressure and product deflection. After series of network architectures were trained using different training algorithms such as Levenberg-Marquardt, Bayesian Regulation, Resilient Backpropagation using MATLAB 7.9.0 (R20096, the LM8 [4-3]2 2 was selected as the most appropriate model. Prediction of the neural model exhibited reasonable correlation with the experimental extrusion pressure and product deflection. The predicted extrusion pressure and product deflection gave reasonable errors and higher correlation coefficients indicating that the model is robust for predicting extrusion pressure and product deflection.

  7. Large deflection and rotation of Timoshenko beams with frictional end supports under three-point bending

    Science.gov (United States)

    Li, Dao-Kui; Li, Xian-Fang

    2016-08-01

    Three-point bending of a beam is studied based on the Timoshenko beam theory. Large deflection and large rotation of a beam resting on simple supports with friction are calculated for a concentrated force acting at the midspan. Using the Lagrangian kinematic relations, a system of non-linear differential equations are obtained for a prismatic shear-deformable Timoshenko beam. Exact solutions for the deflection, horizontal displacement, and rotation of cross-section are derived analytically. Two deflections of small and large scale exist under three-point bending. The solutions corresponding to linearized model coincide with the well-known solutions to the classical Timoshenko beams. Numerical calculations are carried out to show the effect of the important parameters such as shear rigidity of the beam and the coefficient of friction at the contact position between the beam and supports on the deflection. The load-deflection curves are graphically presented. A comparison of large deflections and large rotations with their classical counterparts and with experimental data is made. The obtained results are useful in safety design of linear and non-linear beams subject to three-point bending.

  8. Using ForeCAT Deflections and Rotations to Constrain the Early Evolution of CMEs

    CERN Document Server

    Kay, C; Colaninno, R C; Vourlidas, A

    2016-01-01

    To accurately predict the space weather effects of coronal mass ejection (CME) impacts at Earth one must know if and when a CME will impact Earth, and the CME parameters upon impact. Kay et al. (2015b) presents Forecasting a CME's Altered Trajectory (ForeCAT), a model for CME deflections based on the magnetic forces from the background solar magnetic field. Knowing the deflection and rotation of a CME enables prediction of Earth impacts, and the CME orientation upon impact. We first reconstruct the positions of the 2008 April 10 and the 2012 July 12 CMEs from the observations. The first of these CMEs exhibits significant deflection and rotation (34 degrees deflection and 58 degrees rotation), while the second shows almost no deflection or rotation (<3 degrees each). Using ForeCAT, we explore a range of initial parameters, such as the CME location and size, and find parameters that can successfully reproduce the behavior for each CME. Additionally, since the deflection depends strongly on the behavior of a ...

  9. Finite element analysis modeling of pulse-laser excited photothermal deflection (mirage effect) from aerosols.

    Science.gov (United States)

    Dada, Oluwatosin O; Bialkowski, Stephen E

    2008-12-01

    A finite element analysis method for numerical modeling of the photothermal deflection spectroscopy of aerosols is presented. The models simulate pulse-laser excited photothermal deflection from aerosols collected on a plane surface substrate in air medium. The influence of the aerosol and substrate properties on the transient photothermal deflection signal is examined. We have previously obtained experimental results for photothermal deflection spectrometry of aerosols deposited onto a plate from an impactor system (O. O. Dada and S. E. Bialkowski, Appl. Spectrosc. 62, 1336 (2008)). This paper supports the validity of the experimental results presented in that paper and helps in answering some of the questions raised. The modeling results presented here demonstrate that the (peak) normalized transient temperature change profile and (peak) normalized transient photothermal deflection profile are a good approximation and invariant with number of particles, inter-particle distance, and particulate shape, which suggests that the photothermal deflection signal amplitude may be calibrated linearly with total mass of aerosols and the method could be applied to analysis of complex aerosols.

  10. A novel deflection shape function for rectangular capacitive micromachined ultrasonic transducer diaphragms

    Directory of Open Access Journals (Sweden)

    Zhou Zheng

    2015-09-01

    Full Text Available A highly accurate analytical deflection shape function that describes the deflection profiles of capacitive micromachined ultrasonic transducers (CMUTs with rectangular membranes under electrostatic pressure has been formulated. The rectangular diaphragms have a thickness range of 0.6–1.5 μm and a side length range of 100–1000 μm. The new deflection shape function generates deflection profiles that are in excellent agreement with finite element analysis (FEA results for a wide range of geometry dimensions and loading conditions. The deflection shape function is used to analyze membrane deformations and to calculate the capacitances between the deformed membranes and the fixed back plates. In 50 groups of random tests, compared with FEA results, the calculated capacitance values have a maximum deviation of 1.486% for rectangular membranes. The new analytical deflection function can provide designers with a simple way of gaining insight into the effects of designed parameters for CMUTs and other MEMS-based capacitive type sensors.

  11. Evaluation of cuspal deflection in premolar teeth restored with low shrinkable resin composite (in vitro study).

    Science.gov (United States)

    Labib, Labib Mohamed; Nabih, Sameh Mahmoud; Baroudi, Kusai

    2015-01-01

    This study evaluated cuspal deflection in premolar teeth restored with low shrinkable resin composite. A total of 40 human premolars were used for cuspal deflection evaluation in this study. Each group was divided into four equal groups according to the type of resin composite and the adhesive used as follows: group A: Using low shrinkable resin composite (silorane) with its adhesive system; group B: Using low shrinkable composite (silorane) with G-bond; group C: Using Filtek Z350 composite with G-bond; and group D: Using Filtek Z350 composite with AdheSE. Cusp deflection was detected using Universal measuring microscope and laser horizontal metroscope. This study was done to investigate the effect of polymerization shrinkage stresses of two resin composite materials (Filtek Z350 and Filtek P90) on cuspal deflection of mesio-occluso-distal restoration. For this study, the extracted non-carious maxillary second premolars were selected. Forty teeth that showed no more than 5% variation in their dimensions were used. A significant increase in cuspal deflection of cavities restored with the methacrylate-based (Filtek Z350) compared with the silorane (P90) resin-based composites was obtained. The change in the organic matrix or materials formulation of the resin composite using silorane has a positive effect on controlling the cusp deflection.

  12. Investigation of UWB Wind Turbine Blade Deflection Sensing with a Tip Antenna inside a Blade

    DEFF Research Database (Denmark)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej;

    2016-01-01

    An UWB blade deflection sensing system with a tip antenna inside a blade is investigated in this paper. The lower UWB band of 3.1-5.3 GHz is utilized. This system composes of two UWB radio links between one antenna inside the blade tip and two antennas outside the blade root. Blade deflections ar......, and the sensing system can realize the deflection tracking with a maximum deviation of 0.21 m and root mean squared error of 0.11 m.......An UWB blade deflection sensing system with a tip antenna inside a blade is investigated in this paper. The lower UWB band of 3.1-5.3 GHz is utilized. This system composes of two UWB radio links between one antenna inside the blade tip and two antennas outside the blade root. Blade deflections......-blade time-domain measurements are proposed to verify the simulations and realize the blade deflection sensing with an in-blade tip antenna. With the optimized in-blade tip antenna polarization and two root antenna locations, an accuracy of 2 cm is achieved for the tip-root antenna distance estimation...

  13. UWB Wind Turbine Blade Deflection Sensing for Wind Energy Cost Reduction.

    Science.gov (United States)

    Zhang, Shuai; Jensen, Tobias Lindstrøm; Franek, Ondrej; Eggers, Patrick C F; Olesen, Kim; Byskov, Claus; Pedersen, Gert Frølund

    2015-08-12

    A new application of utilizing ultra-wideband (UWB) technology to sense wind turbine blade deflections is introduced in this paper for wind energy cost reduction. The lower UWB band of 3.1-5.3 GHz is applied. On each blade, there will be one UWB blade deflection sensing system, which consists of two UWB antennas at the blade root and one UWB antenna at the blade tip. The detailed topology and challenges of this deflection sensing system are addressed. Due to the complexity of the problem, this paper will first realize the on-blade UWB radio link in the simplest case, where the tip antenna is situated outside (and on the surface of) a blade tip. To investigate this case, full-blade time-domain measurements are designed and conducted under different deflections. The detailed measurement setups and results are provided. If the root and tip antenna locations are properly selected, the first pulse is always of sufficient quality for accurate estimations under different deflections. The measured results reveal that the blade tip-root distance and blade deflection can be accurately estimated in the complicated and lossy wireless channels around a wind turbine blade. Some future research topics on this application are listed finally.

  14. Experimental Estimating Deflection of a Simple Beam Bridge Model Using Grating Eddy Current Sensors

    Directory of Open Access Journals (Sweden)

    Hui Zhao

    2012-07-01

    Full Text Available A novel three-point method using a grating eddy current absolute position sensor (GECS for bridge deflection estimation is proposed in this paper. Real spatial positions of the measuring points along the span axis are directly used as relative reference points of each other rather than using any other auxiliary static reference points for measuring devices in a conventional method. Every three adjacent measuring points are defined as a measuring unit and a straight connecting bar with a GECS fixed on the center section of it links the two endpoints. In each measuring unit, the displacement of the mid-measuring point relative to the connecting bar measured by the GECS is defined as the relative deflection. Absolute deflections of each measuring point can be calculated from the relative deflections of all the measuring units directly without any correcting approaches. Principles of the three-point method and displacement measurement of the GECS are introduced in detail. Both static and dynamic experiments have been carried out on a simple beam bridge model, which demonstrate that the three-point deflection estimation method using the GECS is effective and offers a reliable way for bridge deflection estimation, especially for long-term monitoring.

  15. Record Deflection Efficiencies Measured for High Energy Protons in a Bent Germanium Crystal

    Science.gov (United States)

    Elsener, K.; Biino, C.; Clement, M.; Doble, N.; Gatignon, L.; Grafstrom, P.; Mikkelsen, U.; Kirsebom, K.; Møller, S. P.; Uggerhøj, E.; Worm, T.; Freund, A.

    1997-05-01

    New experimental results on the deflection of 450 GeV/c and 200 GeV/c protons in a bent Ge crystal are presented. At 450 GeV/c, the 50 mm long crystal gave record deflection efficiencies up to 60% for small angles (1 mrad), while at angles as large as 12 mrad, the efficiency is about 25 times larger than for a silicon crystal of the same size. Measurements up to 20 mrad deflection angle have been performed at 200 GeV/c as well as 450 GeV/c - the lower bending dechanneling leads to a rather slow decrease in efficiency at lower momenta, and 15% of the 200 GeV/c beam hitting the crystal are still deflected at the largest angles measured. These experimental results are in good agreement with a model for channeling deflection developed by Ellison and give confidence in extrapolations to higher energies (e.g. to LHC), other crystal materials or different deflection angles.

  16. Adaptive Kalman Filter of Transfer Alignment with Un-modeled Wing Flexure of Aircraft

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    The alignment accuracy of the strap-down inertial navigation system (SINS) of airborne weapon is greatly degraded by the dynamic wing flexure of the aircraft. An adaptive Kalman filter uses innovation sequences based on the maximum likelihood estimated criterion to adapt the system noise covariance matrix and the measurement noise covariance matrix on line, which is used to estimate the misalignment if the model of wing flexure of the aircraft is unknown. From a number of simulations, it is shown that the accuracy of the adaptive Kalman filter is better than the conventional Kalman filter, and the erroneous misalignment models of the wing flexure of aircraft will cause bad estimation results of Kalman filter using attitude match method.

  17. Effect of polymerization cycles on flexural strengths and microhardness of different denture base materials.

    Science.gov (United States)

    Gungor, Hasan; Gundogdu, Mustafa; Alkurt, Murat; Yesil Duymus, Zeynep

    2017-01-13

    The purpose of this study was to evaluate the effect of different polymerization cycles on the flexural strengths and microhardness of two denture base materials (Meliodent and Paladent). Heat-polymerized acrylic resin specimens (65.0 mm long×10.0 mm wide×2.5 mm in height) were prepared using different short and long polymerization cycles. After the specimens had been polymerized, they were stored in distilled water at 37±1°C for 24 h. Flexural strength test was performed at a cross-head speed of 5 mm/min and Vickers microhardness was measured. Data were analyzed with a 1-way analysis of variance followed by Tukey test, and Student t-test (α=0.05). The flexural strengths and microhardness were significantly different between Meliodent and Paladent (pmicrohardness (p<0.05). Polymerization with G cycle may be suggested for Meliodent and H cycle may be suggested for Paladent.

  18. Processing, structure and flexural strength of CNT and carbon fibre reinforced, epoxy-matrix hybrid composite

    Indian Academy of Sciences (India)

    K Chandra Shekar; M Sai Priya; P K Subramanian; Anil Kumar; B Anjaneya Prasad; N Eswara Prasad

    2014-05-01

    Advanced materials such as continuous fibre-reinforced polymer matrix composites offer significant enhancements in variety of properties, as compared to their bulk, monolithic counterparts. These properties include primarily the tensile stress, flexural stress and fracture parameters. However, till date, there are hardly any scientific studies reported on carbon fibre (Cf) and carbon nanotube (CNT) reinforced hybrid epoxy matrix composites (unidirectional). The present work is an attempt to bring out the flexural strength properties along with a detailed investigation in the synthesis of reinforced hybrid composite. In this present study, the importance of alignment of fibre is comprehensively evaluated and reported. The results obtained are discussed in terms of material characteristics, microstructure and mode of failure under flexural (3-point bend) loading. The study reveals the material exhibiting exceptionally high strength values and declaring itself as a material with high strength to weight ratio when compared to other competing polymer matrix composites (PMCs); as a novel structural material for aeronautical and aerospace applications.

  19. Flexural-torsional buckling analysis of angle-bar stiffened plates

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Rahbar Ranji [Amirkabir University of Technology, Tehran (Iran, Islamic Republic of)

    2015-09-15

    The interaction of flexural-torsional buckling modes is critical for stiffened plates with asymmetric stiffeners. However, this interaction is ignored in all design rules because it is complex to characterize. In the literature, the presence of an attached plate is ignored, and stiffened plate is treated as an ordinary asymmetric beam. In the flexural buckling mode, stiffener and the attached plate buckle together; in the torsional buckling mode, the attached plate cannot freely rotate with stiffener. Basic equations of the flexural-torsional buckling modes are deduced based on hybrid beam concept and a new strain distribution assumption for sideway bending of stiffeners. Elastic buckling stresses of different angle-bar stiffened plates are calculated and compared with those generated by the Finite element method (FEM) and those available in the literature. The present method has better agreements with FEM.

  20. Physical and theoretical modeling of rock slopes against block-flexure toppling failure

    Directory of Open Access Journals (Sweden)

    Mehdi Amini

    2015-12-01

    Full Text Available Block-flexure is the most common mode of toppling failure in natural and excavated rock slopes. In such failure, some rock blocks break due to tensile stresses and some overturn under their own weights and then all of them topple together. In this paper, first, a brief review of previous studies on toppling failures is presented. Then, the physical and mechanical properties of experimental modeling materials are summarized. Next, the physical modeling results of rock slopes with the potential of block-flexural toppling failures are explained and a new analytical solution is proposed for the stability analysis of such slopes. The results of this method are compared with the outcomes of the experiments. The comparative studies show that the proposed analytical approach is appropriate for the stability analysis of rock slopes against block-flexure toppling failure. Finally, a real case study is used for the practical verification of the suggested method.

  1. Flexural fatigue characteristics of steel fiber reinforced recycled aggregate concrete (SFRRAC

    Directory of Open Access Journals (Sweden)

    Heeralal M.

    2009-01-01

    Full Text Available This research work is aimed at investigating the flexural fatigue behavior of Steel Fiber Reinforced Recycled Aggregate Concrete (SFRRAC. This study gains importance in view of the wide potential for demolished concrete to serve as a source of quality aggregate feed stock in a variety of structural and non-structural applications. This is a continuation of a series of investigations being conducted aimed at optimizing the utilization of recycled aggregate concrete in rigid pavements. A total of 72 standard flexure specimens of 100mm x 100mm x 450mm were cast and tested for flexure under both static and fatigue loading. The parameters of the investigation included the different replacements of recycled aggregate in natural aggregate, presence of steel fiber and different stress levels. The study showed that the recycled aggregates can be used in rigid pavements also and the inclusion of fibers can benefit the fatigue performance of recycled aggregate concrete.

  2. Effect of fiber loading on flexural strength of hybrid sisal/hemp-HDPE composites

    Science.gov (United States)

    Aggarwal, Lakshya; Sinha, Shishir; Gupta, V. K.

    2015-05-01

    The continuing demand for sustainable materials and increasing environmental concerns have led to intense research in the field of natural fiber reinforced composites. Natural fibers are favored over synthetic fibers as reinforcement due to positive environmental benefits such as raw material utilization at source and easy disposable of the biodegradable fiber. In the present work, we have investigated flexural behavior of hybrid natural fiber reinforced HDPE composites. The matrix comprises of 50-50 ratio of virgin and recycled HDPE and the content of fibers (sisal and hemp) in the composite is varied from 10 to 30%. The natural fibers were mercerized with NaOH solution and chemically treated with maleic anhydride. The flexural specimens were prepared by injection moulding process and the testing was conducted in accordance to ASTM D790 standards. It is revealed that the flexural strength of the hybrid composite increases with the increase in fibers content when compared to specimen containing 100% HDPE.

  3. Effects of Core Softness and Bimodularity of Fibreglass Layers on Flexural Stiffness of Polymer Sandwich Structures

    Directory of Open Access Journals (Sweden)

    Šuba Oldřich

    2017-01-01

    Full Text Available This paper deals with the study of the flexural stiffness of the sandwich structures based on fibreglass and polymeric foams. The influence of geometrical and material parameters on the resulting effective flexural stiffness of the sandwich structure is being studied experimentally, analytically and by using FEM models. The effective modulus of elasticity of the sandwich-structured element is being studied and its theoretical and model dependencies on the flexibility of the foam core and bimodularity of the fibreglass layers are being investigated. The achieved results are compared with the experimentally observed values. This study shows that it is necessary to pay special attention to the issue of flexural stiffness of the walls when designing sandwich shell products in order to prevent possible failures in the practical applications of these types of structures.

  4. FLEXURAL PROPERTIES OF ALKALINE TREATED SUGAR PALM FIBRE REINFORCED EPOXY COMPOSITES

    Directory of Open Access Journals (Sweden)

    D. Bachtiar

    2010-06-01

    Full Text Available A study of the effect of alkaline treatment on the flexural properties of sugar palm fibre reinforced epoxy composites is presented in this paper. The composites were reinforced with 10% weight fraction of the fibres. The fibres were treated using sodium hydroxide (NaOH with 0.25 M and 0.5 M concentration solution for 1 hour, 4 hours and 8 hours soaking time. The purpose of treating fibres with alkali was to enhance the interfacial bonding between matrix and fibre surfaces. The maximum flexural strength occurred at 0.25 M NaOH solution with 1 hour of soaking time, i.e 96.71 MPa, improving by 24.41% from untreated fibre composite. But, the maximum flexural modulus took place at 0.5 M NaOH solution with 4 hours soaking time, i.e. 6948 MPa, improving by 148% from untreated composite.

  5. Steady-state sinusoidal thermal characterization at chip level by internal infrared-laser deflection

    Energy Technology Data Exchange (ETDEWEB)

    Perpina, Xavier; Jorda, Xavier; Vellvehi, Miquel [Centre Nacional de Microelectronica (IMB-CNM-CSIC), Campus UAB, 08193 Bellaterra, Barcelona (Spain); Altet, Josep [Departament d' Enginyeria Electronica, Universitat Politecnica de Catalunya, Barcelona 08034 (Spain); Mestres, NarcIs [Institut de Ciencia dels Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Barcelona (Spain)

    2008-08-07

    A new approach is reported for thermally characterizing microelectronic devices and integrated circuits under a steady-state sinusoidal regime by internal infrared-laser deflection (IIR-LD). It consists of extracting the amplitude and phase Bode plots of the temperature profile inside the chip (depth-resolved measurements in the frequency domain). As a consequence, not only are the IIR-LD performances significantly improved (accuracy, robustness to noise, control of boundary conditions and heat flux confinement) but also the direct temperature measurement is feasible when thin regions are inspected and thermal parameters can be easily extracted (thermal diffusivity). In order to show the efficiency of this technique, a thermal test chip (TTC) is used. The TTC is thermally excited by imposing a cosine-like voltage waveform. As a result, a vertical temperature profile inside the die is obtained depending on the heating frequency. Repeating this procedure at several frequencies, the frequency response of the chip internal temperature profile is derived. By comparing the experimental results with the model predictions, good agreement is achieved. This technique allows evaluation of the thermal behaviour at the chip level; also it could be useful for failure analysis.

  6. Biaxial flexural strength of Turkom-Cera core compared to two other all-ceramic systems

    Directory of Open Access Journals (Sweden)

    Bandar Mohammed Abdullah Al-Makramani

    2010-12-01

    Full Text Available Advances in all-ceramic systems have established predictable means of providing metal-free aesthetic and biocompatible materials. These materials must have sufficient strength to be a practical treatment alternative for the fabrication of crowns and fixed partial dentures. OBJECTIVES: The aim of this study was to compare the biaxial flexural strength of three core ceramic materials. MATERIAL AND METHODS: Three groups of 10 disc-shaped specimens (16 mm diameter x 1.2 mm thickness - in accordance with ISO-6872, 1995 were made from the following ceramic materials: Turkom-Cera Fused Alumina [(Turkom-Ceramic (M Sdn Bhd, Puchong, Selangor, Malaysia], In-Ceram (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany and Vitadur-N (Vita Zahnfabrik, Bad Säckingen, Baden-Württemberg, Germany, which were sintered according to the manufacturer's recommendations. The specimens were subjected to biaxial flexural strength test in an universal testing machine at a crosshead speed of 0.5 mm/min. The definitive fracture load was recorded for each specimen and the biaxial flexural strength was calculated from an equation in accordance with ISO-6872. RESULTS: The mean biaxial flexural strength values were: Turkom-Cera: 506.8±87.01 MPa, In-Ceram: 347.4±28.83 MPa and Vitadur-N: 128.7±12.72 MPa. The results were analyzed by the Levene's test and Dunnett's T3 post-hoc test (SPSS software V11.5.0 for Windows, SPSS, Chicago, IL, USA at a preset significance level of 5% because of unequal group variances (P<0.001. There was statistically significant difference between the three core ceramics (P<0.05. Turkom-Cera showed the highest biaxial flexural strength, followed by In-Ceram and Vitadur-N. CONCLUSIONS: Turkom-Cera core had significantly higher flexural strength than In-Ceram and Vitadur-N ceramic core materials.

  7. Flexural resistance of heat-pressed and CAD-CAM lithium disilicate with different translucencies.

    Science.gov (United States)

    Fabian Fonzar, Riccardo; Carrabba, Michele; Sedda, Maurizio; Ferrari, Marco; Goracci, Cecilia; Vichi, Alessandro

    2017-01-01

    To compare flexural strength of CAD-CAM and heat-pressed lithium disilicate. For Pressed specimens (Group A), acrylate polymer blocks were cut with a saw in bars shape. Sprueing, investing and preheating procedures were carried out following manufacturer's instructions. IPS e.max Press ingots (Ivoclar-Vivadent) were divided into subgroups (n=15) according to translucency: A.1=HT-A3; A.2=MT-A3; A.3=LT-A3; A.4=MO2. Ingots were then pressed following manufacturer's instructions. For CAD-CAM specimens (Group B) blocks of IPS e.max CAD (Ivoclar-Vivadent) were divided into subgroups: B.1=HT-A3; B.2=MT-A3; B.3=LT-A3; B.4=MO2. Specimens (n=15) were obtained by cutting the blocks with a saw. Final crystallization was performed following manufacturer's instructions. Both Press and CAD specimens were polished and finished with silica carbide papers of increasing grit. Final dimensions of the specimens were 4.0±0.2mm, 1.2±0.2mm, and 16.0±0.2mm. Specimens were tested using a three-point bending test. Flexural strength, Weibull modulus, and Weibull characteristic strength were calculated. Flexural strength data were statistically analyzed. The overall means of Press and CAD specimens did not differ significantly. Within the Press group different translucencies were found to have similar flexural strength. Within the CAD group, statistically significant differences emerged among the tested translucencies (pCAD formulations can be based on different criteria than flexural resistance. Within each formulation, for IPS e.max Press translucency does not affect the flexural strength while for IPS e.max CAD it is an influential factor. Copyright © 2016 The Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  8. Effect of zinc oxide on flexural and physical properties of PMMA composites

    Science.gov (United States)

    Hamad, Wan Nur Fadilla Wan; Abdullah, Abdul Manaf; Mohamad, Dasmawati

    2016-12-01

    Polymethylmethacrylate (PMMA) is the most widely accepted material in maxillofacial implants due to its superior advantages. The material used for craniofacial implant should have good mechanical and antibacterial properties to withstand forces and eliminate infection. A study was conducted to prepare PMMA incorporated with β-tricalcium phosphate (β -TCP) filler and zinc oxide as an antibacterial agent at different compositions and investigate the flexural properties of the produced PMMA/β- TCP/ZnOcomposites. Pure PMMA as control,15 % β -TCP filled, 15% β -TCPwith 2.5% ZnO filled as well as15% β -TCPwith5% ZnOfilled PMMA were prepared. PMMA were mixed together with β -TCP and zinc oxide manually according to the percentages specified until it has reached the homogeneous state. Flexural specimens were prepared by casting the paste in silicone mould which has been fabricated using 3D printed flexural template. The number of samples was n=7 for each composition. Statistical analysis of One Way ANOVA was employed to compare the flexural properties of each samples. Flexural strength of pure PMMA,15 % β -TCP filled, 15% β -TCP with 2.5% ZnO filled as well as 15% β -TCP with 5% ZnO filled PMMA were 60.79, 46.75, 38.72 and 41.49 MPa respectively. The addition of either β- TCP or β- TCP with ZnO decreased the flexural properties and it showed significant differences as compared to pure PMMA (p0.05).

  9. Effect of cavity preparation on the flexural strengths of acrylic resin repairs

    Directory of Open Access Journals (Sweden)

    Safa Salim Elhadiry

    2010-12-01

    Full Text Available OBJECTIVE: To investigate the effect of cavity preparation on the flexural strength of heat-curing denture resin when repaired with an auto-curing resin. MATERIAL AND METHODS: Ninety-six rectangular specimens (64x10x2.5 mm prepared from heat-curing denture base resin (Meliodent were randomly divided into four groups before repair. One group was left intact as control. Each repair specimen was sectioned into two; one group was repaired using the conventional repair method (Group 1. Two groups had an additional transverse cavity (2x3.5x21.5 mm prepared prior to the repair; one repaired with (Group 2 and one without glass-fiber reinforcement (Group 3. A three-point flexural bending test according to the ISO 1567:1999 specification8 for denture base polymers was carried out on all groups after 1, 7 and 30 days of water immersion. Statistical analysis was carried out using two-way ANOVA, Kruskal Wallis and post-hoc Mann Whitney tests. RESULTS: The highest flexural strength was observed in the control group. Control and conventional repairs group (Group 1 showed reduction in the flexural strength 30 days after water immersion. No significant change in the strength was observed for Groups 2 and 3 where the repair joints were similarly prepared with additional transverse cavity. CONCLUSION: Repaired specimens showed lower flexural strength values than intact heat-curing resin. Cavity preparation had no significant effect on the flexural strength of repair with water immersion.

  10. Comparison of porcelain surface and flexural strength obtained by microwave and conventional oven glazing.

    Science.gov (United States)

    Prasad, Soni; Monaco, Edward A; Kim, Hyeongil; Davis, Elaine L; Brewer, Jane D

    2009-01-01

    Although the superior qualities of microwave technology are common knowledge in the industry, effects of microwave glazing of dental ceramics have not been investigated. The purpose of this study was to investigate the surface roughness and flexural strength achieved by glazing porcelain specimens in a conventional and microwave oven. Thirty specimens of each type of porcelain (Omega 900 and IPS d.Sign) were fabricated and sintered in a conventional oven. The specimens were further divided into 3 groups (n=10): hand polished (using diamond rotary ceramic polishers), microwave glazed, and conventional oven glazed. Each specimen was evaluated for surface roughness using a profilometer. The flexural strength of each specimen was measured using a universal testing machine. A 2-way ANOVA and Tukey HSD post hoc analysis were used to determine significant intergroup differences in surface roughness (alpha=.05). Flexural strength results were also analyzed using 2-way ANOVA, and the Weibull modulus was determined for each of the 6 groups. The surfaces of the specimens were subjectively evaluated for cracks and porosities using a scanning electron microscope (SEM). A significant difference in surface roughness was found among the surface treatments (P=.02). Follow-up tests showed a significant difference in surface roughness between oven-glazed and microwave-glazed treatments (P=.02). There was a significant difference in flexural strength between the 2 porcelains (Pmicrowave-glazed group was the highest (1.9) as compared to the other groups. The surface character of microwave-glazed porcelain was superior to oven-glazed porcelain. Omega 900 had an overall higher flexural strength than IPS d.Sign. Weibull distributions of flexural strengths for Omega 900 oven-glazed and microwave-glazed specimens were similar. SEM analysis demonstrated a greater number of surface voids and imperfections in IPS d. Sign as compared to Omega 900.

  11. Load Deflection of Dow Corning SE 1700 Face Centered Tetragonal Direct Ink Write Materials: Effect of Thickness and Filament Spacing

    Energy Technology Data Exchange (ETDEWEB)

    Small, Ward [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Pearson, Mark A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Metz, Tom R. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-03-09

    Dow Corning SE 1700 (reinforced polydimethylsiloxane) porous structures were made by direct ink writing (DIW) in a face centered tetragonal (FCT) configuration. The filament diameter was 250 μm. Structures consisting of 4, 8, or 12 layers were fabricated with center-to-center filament spacing (“road width” (RW)) of 475, 500, 525, 550, or 575 μm. Three compressive load-unload cycles to 2000 kPa were performed on four separate areas of each sample; three samples of each thickness and filament spacing were tested. At a given strain during the third loading phase, stress varied inversely with porosity. At 10% strain, the stress was nearly independent of the number of layers (i.e., thickness). At higher strains (20- 40%), the stress was highest for the 4-layer structure; the 8- and 12-layer structures were nearly equivalent suggesting that the load deflection is independent of number of layers above 8 layers. Intra-and inter-sample variability of the load deflection response was higher for thinner and less porous structures.

  12. Flexural waves in fluid-filled tubes subject to axial impact

    OpenAIRE

    2008-01-01

    We experimentally studied the propagation of coupled fluid stress waves and tube flexural waves generated through projectile impact along the axis of a water-filled tube. We tested mild steel tubes, 38–40 mm inner diameter and wall thicknesses of 0.8 mm, 6.4 mm, and 12.7 mm. A steel impactor was accelerated using an air cannon and struck a polycarbonate buffer placed on top of the water surface within the tube. Elastic flexural waves were observed for impact speeds of 5–10 m/s and plastic wav...

  13. Fabrication and flexural strength of multi-layer alumina with aligned acicular pores

    Science.gov (United States)

    Park, Dong-Soo; Lee, Myoung-Won; Kim, Hai-Doo; Jung, Yeon-Gil

    2004-07-01

    Multi-layer alumina with alternating dense and porous layers with aligned acicular pores was successfully prepared by tape casting the slurry with chopped carbon fibers followed by pressureless sintering. As the content of the chopped carbon fiber increased, the open porosity was increased, in part due to impingement among the carbon fibers inside the sample. The three-point flexural strength of the sample with total porosity of 11% was approximately 80% that of a dense sample. However, a sample with a porous layer with 5% chopped carbon fiber exhibited only 60% flexural strength of the dense sample, in part due to a low degree of alignment among the chopped fibers.

  14. Omnidirectional refractive devices for flexural waves based on graded phononic crystals

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel, E-mail: daniel.torrent@iemn.univ-lille1.fr; Pennec, Yan; Djafari-Rouhani, Bahram [Institut d' Electronique, de Microléctronique et de Nanotechnologie, UMR CNRS 8520, Université de Lille 1, 59655 Villeneuve d' Ascq (France)

    2014-12-14

    Different omnidirectional refractive devices for flexural waves in thin plates are proposed and numerically analyzed. Their realization is explained by means phononic crystal plates, where a previously developed homogenization theory is employed for the design of graded index refractive devices. These devices consist of a circular cluster of inclusions with a properly designed gradient in their radius. With this approach, the Luneburg and Maxwell lenses and a family of beam splitters for flexural waves are proposed and analyzed. Results show that these devices work properly in a broadband frequency region, being therefore an efficient approach for the design of refractive devices specially interesting for nano-scale applications.

  15. Effects of Reinforcement Geometry on Strength and Stiffness in Adhesively Bonded Steel-Timber Flexural Beams

    Directory of Open Access Journals (Sweden)

    Dave Smedley

    2012-07-01

    Full Text Available A finite element model is developed to analyse, as a function of volume fraction, the effects of reinforcement geometry and arrangement within a timber beam. The model is directly validated against experimental equivalents and found to never be mismatched by more than 8% in respect to yield strength predictions. Yield strength increases linearly as a function of increasing reinforcement volume fraction, while the flexural modulus follows more closely a power law regression fit. Reinforcement geometry and location of reinforcement are found to impact both the flexural properties of timber-steel composite beams and the changes due to an increase in volume fraction.

  16. A flexure-based wrist for needle-sized surgical robots

    Science.gov (United States)

    Losey, Dylan P.; York, Peter A.; Swaney, Philip J.; Burgner, Jessica; Webster, Robert J.

    2013-03-01

    We present a novel flexure-based wrist design intended for use with needle-sized robotic manipulators. It is designed to be mounted at the tip of a traditional surgical needle, deployed through an endoscope working channel, or attached to the tip of a concentric tube robot. In all these applications, the wrist enables dexterity in small spaces. The wrist consists of two stacked flexure joints that are actuated by thin pull wires. In this paper we present the design of the wrist, its kinematics, and an experimental evaluation of the relationship between actuation force and tip displacement conducted using a scale model.

  17. A review on the flexural mode of graphene: lattice dynamics, thermal conduction, thermal expansion, elasticity and nanomechanical resonance.

    Science.gov (United States)

    Jiang, Jin-Wu; Wang, Bing-Shen; Wang, Jian-Sheng; Park, Harold S

    2015-03-04

    Single-layer graphene is so flexible that its flexural mode (also called the ZA mode, bending mode, or out-of-plane transverse acoustic mode) is important for its thermal and mechanical properties. Accordingly, this review focuses on exploring the relationship between the flexural mode and thermal and mechanical properties of graphene. We first survey the lattice dynamic properties of the flexural mode, where the rigid translational and rotational invariances play a crucial role. After that, we outline contributions from the flexural mode in four different physical properties or phenomena of graphene-its thermal conductivity, thermal expansion, Young's modulus and nanomechanical resonance. We explain how graphene's superior thermal conductivity is mainly due to its three acoustic phonon modes at room temperature, including the flexural mode. Its coefficient of thermal expansion is negative in a wide temperature range resulting from the particular vibration morphology of the flexural mode. We then describe how the Young's modulus of graphene can be extracted from its thermal fluctuations, which are dominated by the flexural mode. Finally, we discuss the effects of the flexural mode on graphene nanomechanical resonators, while also discussing how the essential properties of the resonators, including mass sensitivity and quality factor, can be enhanced.

  18. Markov chain modeling of evolution of strains in reinforced concrete flexural beams

    Directory of Open Access Journals (Sweden)

    Anoop, M. B.

    2012-09-01

    Full Text Available From the analysis of experimentally observed variations in surface strains with loading in reinforced concrete beams, it is noted that there is a need to consider the evolution of strains (with loading as a stochastic process. Use of Markov Chains for modeling stochastic evolution of strains with loading in reinforced concrete flexural beams is studied in this paper. A simple, yet practically useful, bi-level homogeneous Gaussian Markov Chain (BLHGMC model is proposed for determining the state of strain in reinforced concrete beams. The BLHGMC model will be useful for predicting behavior/response of reinforced concrete beams leading to more rational design.A través del análisis de la evolución de la deformación superficial observada experimentalmente en vigas de hormigón armado al entrar en carga, se constata que dicho proceso debe considerarse estocástico. En este trabajo se estudia la utilización de cadenas de Markov para modelizar la evolución estocástica de la deformación de vigas flexotraccionadas. Se propone, para establecer el estado de deformación de estas, un modelo con distribución gaussiana tipo cadena de Markov homogénea de dos niveles (BLHGMC por sus siglas en inglés, cuyo empleo resulta sencillo y práctico. Se comprueba la utilidad del modelo BLHGMC para prever el comportamiento de estos elementos, lo que determina a su vez una mayor racionalidad a la hora de su cálculo y diseño

  19. [The effect of core veneer thickness ratio on the flexural strength of diatomite-based dental ceramic].

    Science.gov (United States)

    Jiang, Jie; Zhang, Xin; Gao, Mei-qin; Zhang, Fei-min; Lu, Xiao-li

    2015-06-01

    To evaluate the effect of different core veneer thickness ratios on the flexural strength and failure mode of bilayered diatomite-based dental ceramics. Diatomite-based dental ceramics blocks (16 mm×5.4 mm×1 mm) were sintered with different thickness of veneer porcelains: 0 mm (group A), 0.6 mm (group B), 0.8 mm (group C) and 1.0 mm (group D). Flexural strength was detected and scanning electron microscope was used to observe the interface microstructure. Statistical analysis was performed using SPSS 17.0 software package. With the increase of the thickness of the veneer porcelain, flexural strength of group C showed highest flexural strength up to (277.24±5.47) MPa. Different core veneer thickness ratios can significantly influence the flexural strength of bilayered diatomite-based dental ceramics. Supported by Science and Technology Projects of Nantong City (HS2013010).

  20. On Calculation Methods and Results for Straight Cylindrical Roller Bearing Deflection, Stiffness, and Stress

    Science.gov (United States)

    Krantz, Timothy L.

    2011-01-01

    The purpose of this study was to assess some calculation methods for quantifying the relationships of bearing geometry, material properties, load, deflection, stiffness, and stress. The scope of the work was limited to two-dimensional modeling of straight cylindrical roller bearings. Preparations for studies of dynamic response of bearings with damaged surfaces motivated this work. Studies were selected to exercise and build confidence in the numerical tools. Three calculation methods were used in this work. Two of the methods were numerical solutions of the Hertz contact approach. The third method used was a combined finite element surface integral method. Example calculations were done for a single roller loaded between an inner and outer raceway for code verification. Next, a bearing with 13 rollers and all-steel construction was used as an example to do additional code verification, including an assessment of the leading order of accuracy of the finite element and surface integral method. Results from that study show that the method is at least first-order accurate. Those results also show that the contact grid refinement has a more significant influence on precision as compared to the finite element grid refinement. To explore the influence of material properties, the 13-roller bearing was modeled as made from Nitinol 60, a material with very different properties from steel and showing some potential for bearing applications. The codes were exercised to compare contact areas and stress levels for steel and Nitinol 60 bearings operating at equivalent power density. As a step toward modeling the dynamic response of bearings having surface damage, static analyses were completed to simulate a bearing with a spall or similar damage.

  1. Rapid repair of severely earthquake-damaged bridge piers with flexural-shear failure mode

    Science.gov (United States)

    Sun, Zhiguo; Wang, Dongsheng; Du, Xiuli; Si, Bingjun

    2011-12-01

    An experimental study was conducted to investigate the feasibility of a proposed rapid repair technique for severely earthquake-damaged bridge piers with flexural-shear failure mode. Six circular pier specimens were first tested to severe damage in flexural-shear mode and repaired using early-strength concrete with high-fluidity and carbon fiber reinforced polymers (CFRP). After about four days, the repaired specimens were tested to failure again. The seismic behavior of the repaired specimens was evaluated and compared to the original specimens. Test results indicate that the proposed repair technique is highly effective. Both shear strength and lateral displacement of the repaired piers increased when compared to the original specimens, and the failure mechanism of the piers shifted from flexural-shear failure to ductile flexural failure. Finally, a simple design model based on the Seible formulation for post-earthquake repair design was compared to the experimental results. It is concluded that the design equation for bridge pier strengthening before an earthquake could be applicable to seismic repairs after an earthquake if the shear strength contribution of the spiral bars in the repaired piers is disregarded and 1.5 times more FRP sheets is provided.

  2. Occlusal force, electromyographic activity of masticatory muscles and mandibular flexure of subjects with different facial types

    Directory of Open Access Journals (Sweden)

    William Custodio

    2011-08-01

    Full Text Available OBJECTIVE: The aim of this study was to evaluate whether vertical facial patterns influence maximal occlusal force (MOF, masticatory muscle electromyographic (EMG activity, and medial mandibular flexure (MMF. MATERIAL AND METHODS: Seventy-eight dentate subjects were divided into 3 groups by Ricketts's analysis: brachyfacial, mesofacial and dolychofacial. Maximum occlusal force in the molar region was bilaterally measured with a force transducer. The electromyographic activities of the masseter and anterior temporal muscles were recorded during maximal voluntary clenching. Medial mandibular flexure was calculated by subtracting the intermolar distance of maximum opening or protrusion from the distance in the rest position. The data were analyzed using ANOVA followed by Tukey's HSD test. The significance level was set at 5%. RESULTS: Data on maximum occlusal force showed that shorter faces had higher occlusal forces (P<0.0001. Brachyfacial subjects presented higher levels of masseter electromyographic activity and medial mandibular flexure, followed by the mesofacial and dolychofacial groups. Additionally, dolychofacial subjects showed significantly lower electromyographic temporalis activities (P<0.05. CONCLUSION: Within the limitations of the study, it may be concluded that maximum occlusal force, masticatory muscle activity and medial mandibular flexure were influenced by the vertical facial pattern.

  3. Evaluation of the flexural strength of carbon, quartz, and glass fiber-based posts

    Directory of Open Access Journals (Sweden)

    Sita Rama Raju

    2014-01-01

    Full Text Available Objectives: This study was done to evaluate the flexural strength of carbon, quartz, and glass fiber posts by means of three-point bending test. Materials and Methods: Thirty pre-fabricated fiber posts were used and divided into three groups. Group I carbon fiber posts (C-Post, group II quartz fiber post (Aestheti Plus, group III glass fiber post (Para Post White Ten posts (N = 10 were used for each experimental group and were measured with digital caliper before test accomplishment. The fracture load of post specimens was measured, and flexural strength was obtained by the formula using S = 8FL/pd 3 . The values in Kgf/mm 2 were obtained and calculated to Mpa and submitted to ANOVA (a = 0.01 and to the Tukey′s test. Results: The mean values of flexural strength show that group II quartz fiber posts (666 MPa are significantly higher than group I carbon fiber (614 MPa and group III glass fiber (575 MPa. C onclusion: Hence, this study concluded that quartz fiber post showed significantly higher flexural strength values. Further scope of this study lies in the evaluation and evolution of a restorative materials used for post and core preparation, which have modulus of elasticity in harmony with that of dentin and near-natural esthetic appearance.

  4. 6 W Full-Flexure-Bearing Stirling Cryocooler for the Cryosystem Program

    Science.gov (United States)

    Benschop, A. A. J.; Bruins, P. C.; Mullié, J. C.; Meijers, M.; Helmonds, H.; Trollier, T.

    2004-06-01

    In February 2002, ASTRIUM selected AL/DTA for the delivery of the vial freezers for the ESA / CRYOSYSTEM project. The CRYOSYSTEM is a set of facilities for ultra-rapid cooling, preservation and storage of biological samples and protein crystals at -180°C on-board the ISS. While selecting the cooler for this program, AL/DTA recognised that THALES' moving magnet flexure-bearing coolers offer the reliability required for space programs, for a price that is far below what is usual for space cryocoolers. Based on the cold finger of the existing LSF9320 cryocooler (5.6 W at 80 K for 150 W input), THALES has developed a cold finger with flexure-bearing support of the displacer. Combined with the moving magnet flexure-bearing compressor, this offers a very long lifetime and a very high reliability. The paper describes the development of the flexure-bearing supported displacer, which has an extra driving rod to increase its efficiency compared with conventional free displacer fingers. The efficiency optimisation and mass reduction has led to a cooler with a total mass (including heat-sinking and EMI shield) of 7.8 kg, with a cooling power of 6.6 W at 75 K for 100 W input. The results of the ongoing space qualification program will be discussed.

  5. Optimization of release locations for small self-stress large stiffness flexure mechanisms

    NARCIS (Netherlands)

    Brouwer, D.M.; Boer, S.E.; Meijaard, J.P.; Aarts, R.G.K.M.

    2013-01-01

    In overconstrained mechanisms inherent alignment errors cause self-stress. The level of stress can be reduced by inserting flexure releases making the mechanism exactly constrained. The location and orientation of releases can be optimized for a combination of minimum self-stress and maximum stiffne

  6. Fluoride release, recharge and flexural properties of polymethylmethacrylate containing fluoridated glass fillers.

    Science.gov (United States)

    Al-Bakri, I A; Swain, M V; Naoum, S J; Al-Omari, W M; Martin, E; Ellakwa, A

    2014-06-01

    The purpose of this study was to investigate the effect of fluoridated glass fillers on fluoride release, recharge and the flexural properties of modified polymethylmethacrylate (PMMA). Specimens of PMMA denture base material with various loading of fluoridated glass fillers (0%, 1%, 2.5%, 5% and 10% by weight) were prepared. Flexural properties were evaluated on rectangular specimens (n = 10) aged in deionized water after 24 hours, 1 and 3 months. Disc specimens (n = 10) were aged for 43 days in deionized water and lactic acid (pH 4.0) and fluoride release was measured at numerous intervals. After ageing, specimens were recharged and fluoride re-release was recorded at 1, 3 and 7 days after recharge. Samples containing 2.5%, 5% and 10% glass fillers showed significantly (p glass fillers specimens. All experimental specimens exhibited fluoride release in both media. The flexural strength of specimens decreased in proportion to the percentage filler inclusion with the modulus of elasticity values remaining within ISO Standard 1567. The modified PMMA with fluoridated glass fillers has the ability to release and re-release fluoride ion. Flexural strength decreased as glass filler uploading increased. © 2014 Australian Dental Association.

  7. AN ACCURATE MODEL FOR CALCULATING CORRECTION OF PATH FLEXURE OF SATELLITE SIGNALS

    Institute of Scientific and Technical Information of China (English)

    LiYanxing; HuXinkang; ShuaiPing; ZhangZhongfu

    2003-01-01

    The propagation path of satellite signals in the atmosphere is a curve thus it,is very difficult to calculate its flexure correction accurately, a strict calculating expressions has so far not been derived. In this study, the flexure correction of the refraction curve is divided into two parts and their strict calculating expressions are derived. By use of the standard atmospheric model, the accurate flexure correction of the refraction curve is calculated for different zenith distance Z. On this basis, a calculation model is structured. This model is very simple in structure, convenient in use and high in accuracy. When Z is smaller than 85°,the accuracy of the correction exceeds 0.06mm. The flexure correction is basically proportional to tan2Z and increases rapidly with the increase of Z When Z>50°,the correction is smaller than 0.5 mm and can be neglected. When Z>50°, the correction must be made. When Z is 85°, 88° and 89° , the corrections are 198mm, 8.911m and 28.497 km, respectively. The calculation results shows that the correction estimate by Hopfield is correct when Z≤80°, but too small when Z=89°. The expression in this paper is applicable to any satellite.

  8. AN ACCURATE MODEL FOR CALCULATING CORRECTION OF PATH FLEXURE OF SATELLITE SIGNALS

    Institute of Scientific and Technical Information of China (English)

    Li Yanxing; Hu Xinkang; Shuai Ping; Zhang Zhongfu

    2003-01-01

    The propagation path of satellite signals in the atmosphere is a curve thus it.is very difficult to calculate its flexure correction accurately, a strict calculating expressions has so far not been derived. In this study, the flexure correction of the refraction curve is divided into two parts and their strict calculating expressions are derived. By use of the standard atmospheric model, the accurate flexure correction of the refraction curve is calculated for different zenith distance Z. On this basis, a calculation model is structured. This model is very simple in structure, convenient in use and high in accuracy. When Z is smaller than 85°, the accuracy of the correction exceeds 0.06 mm. The flexure correction is basically proportional to tan2Z and increases rapidly with the increase of Z When Z>50°,the correction is smaller than 0.5 mm and can be neglected.When Z>50°, the correction must be made. When Z is 85° , 88° and 89° , the corrections are 198mm, 8. 911 m and 28. 497 km, respectively. The calculation results shows that the correction estimate by Hopfield is correct when Z≤80 °, but too small when Z=89°. The expression in this paper is applicable to any satellite.

  9. Compressive and flexural strength of expanded perlite aggregate mortar subjected to high temperatures

    Science.gov (United States)

    Zulkifeli, Muhamad Faqrul Hisham bin Mohd; Saman@Hj Mohamed, Hamidah binti Mohd

    2017-08-01

    Work on thermal resistant of outer structures of buildings is one of the solution to reduce death, damages and properties loss in fire cases. Structures protected with thermal resistant materials can delay or avoid failure and collapse during fire. Hence, establishment of skin cladding with advance materials to protect the structure of buildings is a necessary action. Expanded perlite is a good insulation material which can be used as aggregate replacement in mortar. This study is to study on mortar mechanical properties of flexural and compressive strength subjected to elevated temperatures using expanded perlite aggregate (EPA). This study involved experimental work which was developing mortar with sand replacement by volume of 0%, 10%, 20%, 30% and 40% of EPA and cured for 56 days. The mortars then exposed to 200°C, 400 °C, 700 °C and 1000 °C. Flexural and compressive strength of the mortar were tested. The tests showed that there were increased of flexural and compressive strength at 200°C, and constantly decreased when subjected to 400°C, 700°C and 1000 °C. There were also variation of strengths at different percentages of EPA replacement. Highest compressive strength and flexural strength recorded were both at 200 °C with 65.52 MPa and 21.34 MPa respectively. The study conclude that by using EPA as aggregate replacement was ineffective below elevated temperatures but increased the performance of the mortar at elevated temperatures.

  10. Influence of hydrofluoric acid concentration on the flexural strength of a feldspathic ceramic.

    Science.gov (United States)

    Venturini, Andressa B; Prochnow, Catina; May, Liliana G; Bottino, Marco C; Felipe Valandro, Luiz

    2015-08-01

    This study evaluated the effects of etching with increasing hydrofluoric (HF) acid concentrations on the roughness and flexural strength of a feldspathic ceramic. One hundred and fifty ceramic specimens (14×4×1.2 mm(2)) were produced from ceramic blocks (VitaBlocks Mark II). All specimens were polished, chamfered and sonically cleaned in isopropyl alcohol. Specimens were randomly divided into 5 groups (n=30): SC (control) no ceramic surface etching; HF1, HF3, HF5 and HF10 ceramic surface etching for 60s with 1%, 3%, 5% and 10% HF acid concentrations, respectively. Profilometry was performed in all specimens to evaluate roughness prior to flexural strength testing. Data were analyzed using one-way ANOVA and Tukey׳s test (α=0.05). Weibull module (m) and characteristic stress (σc) were also determined. HF acid etching, regardless of the concentration used, led to significantly rougher surfaces than the control (pAcid etching significantly reduced the mean flexural strength when compared with the control (143.3 MPa). Weibull modulus of the groups was similar, except for the HF5 group that was higher compared to HF3. Flexural strength was similarly affected by the different HF acid concentrations tested, but roughness increased higher the acid concentration. Ceramic etching led to a significant reduction in strength when compared to the untreated ceramic, regardless of its concentration.

  11. Studies on the flexural and thermomechanical properties of woven carbon/nanoclay-epoxy laminates

    Energy Technology Data Exchange (ETDEWEB)

    Chowdhury, F.H. [Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088 (United States); Hosur, M.V. [Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088 (United States)]. E-mail: mhosur@gmail.com; Jeelani, S. [Center for Advanced Materials, Tuskegee University, Tuskegee, AL 36088 (United States)

    2006-04-15

    A systematic study was carried out to investigate the effects of nanoclay particles on flexural and thermal properties of woven carbon fiber reinforced polymer matrix composites. Different weight percentages of Nanomer[reg] I-28E nanoclay, a surface modified montmorillonite mineral, were dispersed in SC-15 epoxy using sonication route. The nanophased epoxy was then used to manufacture 6000 fiber tow-plain weave carbon/epoxy nanocomposites using vacuum assisted resin infusion molding (VARIM) process. Effect of post curing on these samples was also investigated. Three-point bend flexure and dynamic mechanical analysis (DMA) studies were carried out on eight and three layered samples, respectively. Maximum improvements in flexural strength and modulus were found for 2 wt.% nanoclay reinforced composites. Failure surface analysis of flexure samples was carried out by scanning electron microscopy (SEM) analysis. Dynamic mechanical analysis showed enhancement in thermomechanical properties. Glass transition temperature, T {sub g} of room temperature cured and thermally post cured samples showed an improvement of about 9 and 13 deg. C, respectively for 2 wt.% nanoclay loading.

  12. Corrections for shear and rotatory inertia on flexural vibrations of beams

    NARCIS (Netherlands)

    Nederveen, C.J.; Schwarzl, F.R.

    1964-01-01

    Different correction formulae for the influence of shear and rotatory inertia on flexural vibrations of freely supported beams are compared with the exact solution. It appears that in most cases a simple formula is sufficient because of the appearance of a constant which is not accurately known, viz

  13. Flexural and tensile bond strength, related via a stochastic numerical approach

    NARCIS (Netherlands)

    Pluijm, R. van der

    1998-01-01

    The flexural strength of masonry parallel to the bed joint depends on the geometry of the cross section, tensile bond strength, fracture energy, stiffness of units and of mortar joints. In experiments, tensile bond strength and fracture energy determined on relatively small specimens, show a large s

  14. Effect of mechanical cycling on the flexural strength of densely sintered ceramics

    NARCIS (Netherlands)

    Itinoche, Koiti Marco; Ozcan, Mudu; Bottino, Marco Antonio; Oyafuso, Denise

    2006-01-01

    Objectives. The aim of this study was to evaluate the effect of mechanical cycling on the biaxial flexural strength of two densely sintered ceramic materials. Methods. Disc shaped zirconia (In-Ceram Zirconia) and high alumina (Procera AllCeram) ceramic specimens (diameter: 15 min and thickness: 1.2

  15. RESIDUAL FLEXURAL STRENGTH OF RECYCLED BRICK AGGREGATE CONCRETE EXPOSED TO HIGH TEMPERATURES

    Directory of Open Access Journals (Sweden)

    Kasi Rekha

    2015-12-01

    Full Text Available The practice of using crushed brick in concrete is picking up due to its value addition to the mechanical properties of concrete. In the present experimental investigation the brick from the demolition waste is used as a coarse aggregate to study the flexural behaviour of recycled brick aggregate (RBA concrete after exposure to high temperatures. The recycled brick aggregate is replaced to granite aggregate up to 25% by its volume to produce RBA concrete. Beam specimens of size 100mm × 100mm × 500mm were used to study the flexural strength (modulus of rupture of both RBA concrete and granite aggregate (GA concrete. Both the concretes were heated to desired temperatures from 100oC to 1000oC in an interval of 100oC for three hours in bogie hearth furnace. The residual flexural strengths of both heated RBA and GA concretes were presented in this research to study the performance of RBAconcrete at high temperatures. The RBA concrete performed better than that of GA concrete in flexure at high temperatures by exhibiting higher residual strength.

  16. Exact Constraint Design of a Two-Degree of Freedom Flexure-Based Mechanism

    NARCIS (Netherlands)

    Brouwer, Dannis Michel; Folkersma, Ger; Boer, Steven; Aarts, Ronald G.K.M.

    2013-01-01

    We present the exact constraint design of a two degrees of freedom cross-flexure-based stage that combines a large workspace to footprint ratio with high vibration mode frequencies. To maximize unwanted vibration mode frequencies the mechanism is an assembly of optimized parts. To ensure a

  17. Coupling of flexural and longitudinal wave motion in a periodic structure with asymmetrically arranged transverse beams

    DEFF Research Database (Denmark)

    Friis, Lars; Ohlrich, Mogens

    2005-01-01

    In this paper we investigate the coupling of flexural and longitudinal wave motions in a waveguide with structural side branches attached at regular intervals. The analysis is based on periodic structure theory, and considers wave transmission in a fully tricoupled and semidefinite periodic...

  18. Mechanical and thermal cycling effects on the flexural strength of glass ceramics fused to titanium

    NARCIS (Netherlands)

    Vasquez, Vanessa; Ozcan, Mutlu; Nishioka, Renato; Souza, Rodrigo; Mesquita, Alfredo; Pavanelli, Carlos

    2008-01-01

    This study evaluated the effects of mechanical and thermal cycling on the flexural strength (ISO 9693) of three brands of ceramics fused to commercially pure titanium (cpTi). Metallic frameworks of 25 x 3 x 0.5 mm dimensions (N = 84) were cast in cpTi, followed by 150-mu m aluminum oxide airborne pa

  19. Coupling of Flexural and Longitudinal Damped Vibration in a Two-Layered Beam

    Directory of Open Access Journals (Sweden)

    F. Pourroy

    1998-01-01

    Full Text Available In dynamics, the effect of varying the constitutive materials’ thickness of a two-layered beam is investigated. Resonance frequencies and damping variations are determined. It is shown that for specific thicknesses the coupling of longitudinal and flexural vibrations influences the global modal damping ratio significantly.

  20. Performance optimization of large stroke flexure hinges for high stiffness and eigenfrequency

    NARCIS (Netherlands)

    Gunnink, K.; Aarts, R.G.K.M.; Brouwer, D.M.

    2013-01-01

    Two flexure hinge types are optimized for high support stiffness and high first unwanted eigenfrequency for two different working ranges, ±5.7° and ±20°. We show how multiple performance specifications lead to different designs with different performance. The optimization uses efficient parameterize