WorldWideScience

Sample records for definition disposal options

  1. Uranium-233 waste definition: Disposal options, safeguards, criticality control, and arms control

    International Nuclear Information System (INIS)

    Forsberg, C.W.; Storch, S.N.; Lewis, L.C.

    1998-01-01

    The US investigated the use of 233 U for weapons, reactors, and other purposes from the 1950s into the 1970s. Based on the results of these investigations, it was decided not to use 233 U on a large scale. Most of the 233 U-containing materials were placed in long-term storage. At the end of the cold war, the US initiated, as part of its arms control policies, a disposition program for excess fissile materials. Other programs were accelerated for disposal of radioactive wastes placed in storage during the cold war. Last, potential safety issues were identified related to the storage of some 233 U-containing materials. Because of these changes, significant activities associated with 233 U-containing materials are expected. This report is one of a series of reports to provide the technical bases for future decisions on how to manage this material. A basis for defining when 233 U-containing materials can be managed as waste and when they must be managed as concentrated fissile materials has been developed. The requirements for storage, transport, and disposal of radioactive wastes are significantly different than those for fissile materials. Because of these differences, it is important to classify material in its appropriate category. The establishment of a definition of what is waste and what is fissile material will provide the guidance for appropriate management of these materials. Wastes are defined in this report as materials containing sufficiently small masses or low concentrations of fissile materials such that they can be managed as typical radioactive waste. Concentrated fissile materials are defined herein as materials containing sufficient fissile content such as to warrant special handling to address nuclear criticality, safeguards, and arms control concerns

  2. Disposal options for radioactive waste

    International Nuclear Information System (INIS)

    Olivier, J.P.

    1991-01-01

    On the basis of the radionuclide composition and the relative toxicity of radioactive wastes, a range of different options are available for their disposal. Practically all disposal options rely on confinement of radioactive materials and isolation from the biosphere. Dilution and dispersion into the environment are only used for slightly contaminated gaseous and liquid effluents produced during the routine operation of nuclear facilities, such as power plants. For the bulk of solid radioactive waste, whatever the contamination level and decay of radiotoxicity with time are, isolation from the biosphere is the objective of waste disposal policies. The paper describes disposal approaches and the various techniques used in this respect, such as shallow land burial with minimum engineered barriers, engineered facilities built at/near the surface, rock cavities at great depth and finally deep geologic repositories for long-lived waste. The concept of disposing long-lived waste into seabed sediment layers is also discussed, as well as more remote possibilities, such as disposal in outer space or transmutation. For each of these disposal methods, the measures to be adopted at institutional level to reinforce technical isolation concepts are described. To the extent possible, some comments are made with regard to the applicability of such disposal methods to other hazardous wastes. (au)

  3. TMI abnormal wastes disposal options

    International Nuclear Information System (INIS)

    Ayers, A.L. Jr.

    1984-03-01

    A substantial quantity of high beta-gamma/high-TRU contaminated wastes are expected from cleanup activities of Unit 2 of the Three Mile Island Nuclear Power Station. Those wastes are not disposable because of present regulatory constraints. Therefore, they must be stored temporarily. This paper discusses three options for storage of those wastes at the Idaho National Engineering Laboratory: (1) storage in temporary storage casks; (2) underground storage in vaults; and (3) storage in silos at a hot shop. Each option is analyzed and evaluated. Also included is a discussion of future disposal strategies, which might be pursued when a suitable federal or commercial repository is built

  4. Depleted uranium disposal options evaluation

    International Nuclear Information System (INIS)

    Hertzler, T.J.; Nishimoto, D.D.; Otis, M.D.

    1994-05-01

    The Department of Energy (DOE), Office of Environmental Restoration and Waste Management, has chartered a study to evaluate alternative management strategies for depleted uranium (DU) currently stored throughout the DOE complex. Historically, DU has been maintained as a strategic resource because of uses for DU metal and potential uses for further enrichment or for uranium oxide as breeder reactor blanket fuel. This study has focused on evaluating the disposal options for DU if it were considered a waste. This report is in no way declaring these DU reserves a ''waste,'' but is intended to provide baseline data for comparison with other management options for use of DU. To PICS considered in this report include: Retrievable disposal; permanent disposal; health hazards; radiation toxicity and chemical toxicity

  5. Waste disposal options report. Volume 2

    International Nuclear Information System (INIS)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k eff for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes

  6. Waste disposal options report. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    Volume 2 contains the following topical sections: estimates of feed and waste volumes, compositions, and properties; evaluation of radionuclide inventory for Zr calcine; evaluation of radionuclide inventory for Al calcine; determination of k{sub eff} for high level waste canisters in various configurations; review of ceramic silicone foam for radioactive waste disposal; epoxides for low-level radioactive waste disposal; evaluation of several neutralization cases in processing calcine and sodium-bearing waste; background information for EFEs, dose rates, watts/canister, and PE-curies; waste disposal options assumptions; update of radiation field definition and thermal generation rates for calcine process packages of various geometries-HKP-26-97; and standard criteria of candidate repositories and environmental regulations for the treatment and disposal of ICPP radioactive mixed wastes.

  7. Waste disposal options report. Volume 1

    International Nuclear Information System (INIS)

    Russell, N.E.; McDonald, T.G.; Banaee, J.; Barnes, C.M.; Fish, L.W.; Losinski, S.J.; Peterson, H.K.; Sterbentz, J.W.; Wenzel, D.R.

    1998-02-01

    This report summarizes the potential options for the processing and disposal of mixed waste generated by reprocessing spent nuclear fuel at the Idaho Chemical Processing Plant. It compares the proposed waste-immobilization processes, quantifies and characterizes the resulting waste forms, identifies potential disposal sites and their primary acceptance criteria, and addresses disposal issues for hazardous waste

  8. Disposal options for disused radioactive sources

    International Nuclear Information System (INIS)

    2005-01-01

    This report presents a review of relevant information on the various technical factors and issues, as well as approaches and relevant technologies, leading to the identification of potential disposal options for disused radioactive sources. The report attempts to provide a logical 'road map' for the disposal of disused radioactive sources, taking into consideration the high degree of variability in the radiological properties of such types of radioactive waste. The use of borehole or shaft type repositories is highlighted as a potential disposal option, particularly for those countries that have limited resources and are looking for a simple, safe and cost effective solution for the disposal of their radioactive source inventories. It offers information about usage and characteristics of radioactive sources, disposal considerations, identification and screening of disposal options as well as waste packaging and acceptance criteria for disposal. The information provided in the report could be adapted or adopted to identify and develop specific disposal options suitable for the type and inventory of radioactive sources kept in storage in a given Member State

  9. Immobilized low-level waste disposal options configuration study

    International Nuclear Information System (INIS)

    Mitchell, D.E.

    1995-02-01

    This report compiles information that supports the eventual conceptual and definitive design of a disposal facility for immobilized low-level waste. The report includes the results of a joint Westinghouse/Fluor Daniel Inc. evaluation of trade-offs for glass manufacturing and product (waste form) disposal. Though recommendations for the preferred manufacturing and disposal option for low-level waste are outside the scope of this document, relative ranking as applied to facility complexity, safety, remote operation concepts and ease of retrieval are addressed

  10. Alternative disposal options for transuranic waste

    International Nuclear Information System (INIS)

    Loomis, G.G.

    1994-01-01

    Three alternative concepts are proposed for the final disposal of stored and retrieved buried transuranic waste. These proposed options answer criticisms of the existing U.S. Department of Energy strategy of directly disposing of stored transuranic waste in deep, geological salt formations at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The first option involves enhanced stabilization of stored waste by thermal treatment followed by convoy transportation and internment in the existing WIPP facility. This concept could also be extended to retrieved buried waste with proper permitting. The second option involves in-state, in situ internment using an encapsulating lens around the waste. This concept applies only to previously buried transuranic waste. The third option involves sending stored and retrieved waste to the Nevada Test Site and configuring the waste around a thermonuclear device from the U.S. or Russian arsenal in a specially designed underground chamber. The thermonuclear explosion would transmute plutonium and disassociate hazardous materials while entombing the waste in a national sacrifice area

  11. 40 CFR 35.6345 - Equipment disposal options.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 1 2010-07-01 2010-07-01 false Equipment disposal options. 35.6345 Section 35.6345 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY GRANTS AND OTHER FEDERAL... options. The following disposal options are available: (a) Use the equipment on another CERCLA project and...

  12. Low activity resin processing and disposal options review

    International Nuclear Information System (INIS)

    Gardner, F.

    1996-01-01

    New processing options for low activity resin processing and disposal are available. This presentation reviews the economics and technical requirements associated with the following low activity resin processing options. (1) Bulk release resin. (2) Direct disposal. (3) Decontamination and bulk release of cleaned resin. New processing and disposal options have been developed during 1995. Commercial experience with each of these options will be reviewed and the economics associated with the processing method described in detail. Technical requirements for each option will be identified specifying the activity limits and operational requirements for implementation

  13. Toxic and hazardous waste disposal. Volume 4. New and promising ultimate disposal options

    International Nuclear Information System (INIS)

    Pojasek, R.B.

    1980-01-01

    Separate abstrats were prepared for four of the eighteen chapters of this book which reviews several disposal options available to the generators of hazardous wastes. The chapters not abstracted deal with land disposal of hazardous wastes, the solidification/fixation processes, waste disposal by incineration and molten salt combustion and the use of stabilized industrial waste for land reclamation and land farming

  14. Radiological protection criteria risk assessments for waste disposal options

    International Nuclear Information System (INIS)

    Hill, M.D.

    1982-01-01

    Radiological protection criteria for waste disposal options are currently being developed at the National Radiological Protection Board (NRPB), and, in parallel, methodologies to be used in assessing the radiological impact of these options are being evolved. The criteria and methodologies under development are intended to apply to all solid radioactive wastes, including the high-level waste arising from reprocessing of spent nuclear fuel (because this waste will be solidified prior to disposal) and gaseous or liquid wastes which have been converted to solid form. It is envisaged that the same criteria will be applied to all solid waste disposal options, including shallow land burial, emplacement on the ocean bed (sea dumping), geological disposal on land and sub-seabed disposal

  15. Disposal configuration options for future uses of greater confinement disposal at the Nevada Test Site

    International Nuclear Information System (INIS)

    Price, L.

    1994-09-01

    The US Department of Energy (DOE) is responsible for disposing of a variety of radioactive and mixed wastes, some of which are considered special-case waste because they do not currently have a clear disposal option. The DOE's Nevada Field Office contracted with Sandia National Laboratories to investigate the possibility of disposing of some of this special-case waste at the Nevada Test Site (NTS). As part of this investigation, a review of a near-surface and subsurface disposal options that was performed to develop alternative disposal configurations for special-case waste disposal at the NTS. The criteria for the review included (1) configurations appropriate for disposal at the NTS; (2) configurations for disposal of waste at least 100 ft below the ground surface; (3) configurations for which equipment and technology currently exist; and (4) configurations that meet the special requirements imposed by the nature of special-case waste. Four options for subsurface disposal of special-case waste are proposed: mined consolidated rock, mined alluvium, deep pits or trenches, and deep boreholes. Six different methods for near-surface disposal are also presented: earth-covered tumuli, above-grade concrete structures, trenches, below-grade concrete structures, shallow boreholes, and hydrofracture. Greater confinement disposal (GCD) in boreholes at least 100 ft deep, similar to that currently practiced at the GCD facility at the Area 5 Radioactive Waste Management Site at the NTS, was retained as the option that met the criteria for the review. Four borehole disposal configurations are proposed with engineered barriers that range from the native alluvium to a combination of gravel and concrete. The configurations identified will be used for system analysis that will be performed to determine the disposal configurations and wastes that may be suitable candidates for disposal of special-case wastes at the NTS

  16. Review of available options for low level radioactive waste disposal

    International Nuclear Information System (INIS)

    1992-07-01

    The scope of this report includes: descriptions of the options available; identification of important elements in the selection process; discussion and assessment of the relevance of the various elements for the different options; cost data indicating the relative financial importance of different parts of the systems and the general cost level of a disposal facility. An overview of the types of wastes included in low level waste categories and an approach to the LLW management system is presented. A generic description of the disposal options available and the main activities involved in implementing the different options are described. Detailed descriptions and cost information on low level waste disposal facility concepts in a number of Member States are given. Conclusions from the report are summarized. In addition, this report provides a commentary on various aspects of land disposal, based on experience gained by IAEA Member States. The document is intended to complement other related IAEA publications on LLW management and disposal. It also demonstrates that alternatives solutions for the final disposal of LLW are available and can be safely operated but the choice of an appropriate solution must be a matter for national strategy taking into account local conditions. 18 refs, 16 figs, 1 tab

  17. Hydrologic information needs for evaluating waste disposal options

    Energy Technology Data Exchange (ETDEWEB)

    Huff, D.D.

    1983-01-01

    Before waste disposal options can be assessed, an objective or set of criteria for evaluation must be established. For hydrologists, the objective is to ensure that ground water and surface water do not become contaminated beyond acceptable limits as a result of waste disposal operations. The focus here is on the information required to quantify hydrologic transport of potential contaminants from the disposal site. It is important to recognize that the composition of the waste, its physical and chemical form, and the intended disposal methods (e.g., surface spreading, incineration, shallow land burial, or interment in a deep geologic repository) must either be specified a priori or set forth as specific options for evaluation, because these factors influence the nature of the hydrologic data needs. The hydrologic information needs of major importance are given together with specific measurable variables to be determined.

  18. Nuclear waste disposal: regional options for the Western Pacific

    International Nuclear Information System (INIS)

    Childs, I.

    1985-01-01

    The disposal of nuclear waste is a complex environmental problem involving the technology of containing a radiation hazard and the political problem of finding an acceptable site for a hazardous waste facility. The focus of discussion here is the degree to which Western Pacific countries are committed to nuclear power as an energy source, and the political and economic interdependencies in the region which will influence waste disposal options

  19. Levelized cost-risk reduction prioritization of waste disposal options

    International Nuclear Information System (INIS)

    Wilkinson, V.K.; Young, J.M.

    1992-01-01

    The prioritization of solid waste disposal options in terms of reduced risk to workers, the public, and the environment has recently generated considerable governmental and public interest. In this paper we address the development of a methodology to establish priorities for waste disposal options, such as incineration, landfills, long-term storage, waste minimization, etc. The study is one result of an overall project to develop methodologies for Probabilistic Risk Assessments (PRAs) of non-reactor nuclear facilities for the US Department of Energy. Option preferences are based on a levelized cost-risk reduction analysis. Option rankings are developed as functions of disposal option cost and timing, relative long- and short-term risks, and possible accident scenarios. We examine the annual costs and risks for each option over a large number of years. Risk, in this paper, is defined in terms of annual fatalities (both prompt and long-term) and environmental restoration costs that might result from either an accidental release or long-term exposure to both plant workers and the public near the site or facility. We use event timing to weigh both costs and risks; near-term costs and risks are discounted less than future expenditures and fatalities. This technique levels the timing of cash flows and benefits by converting future costs and benefits to present value costs and benefits. We give an example Levelized Cost-Benefit Analysis of incinerator location options to demonstrate the methodology and required data

  20. Self-disposal option for heat-generating waste - 59182

    International Nuclear Information System (INIS)

    Ojovan, Michael I.; Poluektov, Pavel P.; Kascheev, Vladimir A.

    2012-01-01

    Self-descending heat generating capsules can be used for disposal of dangerous radioactive wastes in extremely deep layers of the Earth preventing any release of radionuclides into the biosphere. Self-disposal option for heat-generating radioactive waste such as spent fuel, high level reprocessing waste or spent sealed radioactive sources, known also as rock melting concept, was considered in the 70's as a viable alternative disposal option by both Department of Energy in the USA and Atomic Industry Ministry in the USSR. Self-disposal is currently reconsidered as a potential alternative route to existing options for solving the nuclear waste problem and is associated with the renaissance of nuclear industry. Self- disposal option utilises the heat generated by decaying radionuclides of radioactive waste inside a heavy and durable capsule to melt the rock on its way down. As the heat from radionuclides within the capsule partly melts the enclosing rock, the relatively low viscosity and density of the silicate melt allow the capsule to be displaced upwards past the heavier capsule as it sinks. Eventually the melt cools and solidifies (e.g. vitrifies or crystallizes), sealing the route along which the capsule passed. Descending or self-disposal continues until enough heat is generated by radionuclides to provide partial melting of surrounding rock. Estimates show that extreme depths of several tens and up to hundred km can be reached by capsules which could never be achieved by other techniques. Self- disposal does not require complex and expensive disposal facilities and provides a minimal footprint used only at operational stage. It has also an extremely high non- proliferation character and degree of safety. Utilisation of heat generated by relatively short-lived radionuclides diminishes the environmental uncertainties of self-disposal and increases the safety of this concept. Self-sinking heat-generating capsules could be launched from the bottom of the sea as

  1. Proposed radiological protection criteria for waste disposal options

    International Nuclear Information System (INIS)

    Hill, M.D.

    1981-01-01

    Criteria which are based solely on the consequences of releases of radionuclides, that is doses to man, are inappropriate for decisions on the acceptability of many of the disposal options for solid wastes. The risks associated with disposal options in which the intention is to isolate wastes from the biosphere for any length of time have two major components: the probability that a release of radionuclides will occur and the probability that subsequent radiation doses will give rise to deleterious effects. It is therefore necessary to develop criteria which embody the basic radiological principle of keeping risks to acceptable levels and take account of both components of risk. In this paper proposed criteria are described and some of the implications of adopting these criteria are discussed. (author)

  2. Options for the disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Mitchell, N.T.; Laughton, A.S.; Webb, G.A.M.

    1977-01-01

    The management of radioactive waste within the fuel cycle, especially the high-level wastes from reprocessing of nuclear fuel, is currently a matter of particular concern. In the short term (meaning a timescale of tens of years) management by engineered storage is considered to provide a satisfactory solution. Beyond this, however, the two main alternative options which are considered in the paper are: (a) disposal by burial into geologic formations on land; and (b) disposal by emplacement into or onto the seabed. Status of our present knowledge on the land and seabed disposal options is reviewed together with an assessment of the extent to which their reliability and safety can be judged on presently available information. Further information is needed on the environmental behaviour of radioactivity in the form of solidified waste in both situations in order to provide a more complete, scientific assessment. Work done so far has clarified the areas where further research is most needed - for instance modelling of the environmental transfer processes associated with the seabed option. This is discussed together with an indication of the research programmes which are now being pursued

  3. Environmental and waste disposal options in nuclear engineering curricula

    International Nuclear Information System (INIS)

    Elleman, T.S.; Gilligan, J.G.

    1991-01-01

    The strong national emphasis on waste and environmental issues has prompted increasing interest among nuclear engineering students in study options that will prepare them for careers in these areas. Student interest appears to focus principally on health physics, radioactive waste disposal, and environmental interactions with radionuclides. One motivation for this interest appears to be the growing national programs in environmental restoration and waste remediation that have produced fellowship support for nuclear engineering students as well as employment opportunities. Also, the recent National Academy of sciences study on nuclear engineering education specifically emphasized the importance of expanding nuclear engineering curricula and research programs to include a greater emphasis on radioactive waste and environmental issues. The North Carolina State University (NCSU) Department of Nuclear Engineering is attempting to respond to these needs through the development of course options that will allow students to acquire background in environmental subjects as a complement to the traditional nuclear engineering education

  4. A Real Options Approach to Nuclear Waste Disposal in Sweden

    International Nuclear Information System (INIS)

    Soederkvist, Jonas; Joensson, Kristian

    2004-04-01

    This report is concerned with an investigation of how the real options approach can be useful for managerial decisions regarding the phase-out of nuclear power generation in Sweden. The problem of interest is the optimal time-schedule for phase-out activities, where the optimal time-schedule is defined in purely economical terms. The approach taken is actual construction and application of three real options models, which capture different aspects of managerial decisions. The first model concerns when investments in deep disposal facilities should optimally be made. Although the model is a rough simplification of reality, the result is clear. It is economically advantageous to postpone deep disposal forever. The second model focuses on how the uncertainty of future costs relates to managerial investment decisions. Construction of this model required some creativity, as the nuclear phase-out turns out to be quite a special project. The result from the second model is that there can be a value associated with deferral of investments due to the uncertainty of future costs, but the result is less clear-cut compared to the first model. In the third model, we extend an approach suggested by Louberge, Villeneuve and Chesney. The risk of a nuclear accident is introduced through this model and we develop its application to investigate the Swedish phase-out in particular, which implies that waste continuously disposed. In the third model, focus is shifted from investment timing to implementation timing. The results from the third model are merely qualitative, as it is considered beyond the scope of this work to quantitatively determine all relevant inputs. It is concluded that the phase-out of nuclear power generation in Sweden is not just another area of application for standard real options techniques. A main reason is that although there are a lot of uncertain issues regarding the phase-out, those uncertainties do not leave a lot of room for managerial flexibility if

  5. Low level radioactive waste disposal: An evaluation of reports comparing ocean and land based disposal options

    International Nuclear Information System (INIS)

    1990-05-01

    This document evaluates reports presenting comparative assessments of land and sea disposal options for low and intermediate level radioactive waste. It was performed following a request by the LDC to the IAEA. In this evaluation, IAEA Safety Series No. 65 ''Environmental Assessment Methodologies for Sea Dumping of Radioactive Wastes'', was used as the main reference in reviewing the comparative assessments made to date. IAEA Safety Series No. 65 gives guidance on the performance of comparative assessments of the different options, and provides a list and scheme of factors to be considered. 5 studies were transmitted by the Contracting Parties and considered in this review. A larger number of reports was not considered in this effort on the basis that the evaluation would be most effective if directed at those studies which specifically compared ocean disposal with land based disposal in a consistent manner. It is not the purpose of this report to state whether one document is better than another or whether one report forms a good blueprint for future assessments. This would require a different type of review and is outside the scope of this document. Indeed since the purposes of the five reports were originally so different it would not be possible to produce such a ranking and any attempts in that direction would be very misleading. 11 refs, 3 tabs

  6. Conceptual waste packaging options for deep borehole disposal

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann -Cherng [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest L. [Sandia National Laboratories (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    -profile threaded connections at each end. The internal-flush design would be suitable for loading waste that arrives from the originating site in weld-sealed, cylindrical canisters. Internal, tapered plugs with sealing filet welds would seal the tubing at each end. The taper would be precisely machined onto both the tubing and the plug, producing a metal-metal sealing surface that is compressed as the package is subjected to hydrostatic pressure. The lower plug would be welded in place before loading, while the upper plug would be placed and welded after loading. Conceptual Waste Packaging Options for Deep Borehole Disposal July 30, 2015 iv Threaded connections between packages would allow emplacement singly or in strings screwed together at the disposal site. For emplacement on a drill string the drill pipe would be connected directly into the top package of a string (using an adapter sub to mate with premium semi-flush tubing threads). Alternatively, for wireline emplacement the same package designs could be emplaced singly using a sub with wireline latch, on the upper end. Threaded connections on the bottom of the lowermost package would allow attachment of a crush box, instrumentation, etc.

  7. Facial Pores: Definition, Causes, and Treatment Options.

    Science.gov (United States)

    Lee, Sang Ju; Seok, Joon; Jeong, Se Yeong; Park, Kui Young; Li, Kapsok; Seo, Seong Jun

    2016-03-01

    Enlarged skin pores refer to conditions that present with visible topographic changes of skin surfaces. Although not a medical concern, enlarged pores are a cosmetic concern for a large number of individuals. Moreover, clear definition and possible causes of enlarged pores have not been elucidated. To review the possible causes and treatment options for skin pores. This article is based on a review of the medical literature and the authors' clinical experience in investigating and treating skin pores. There are 3 major clinical causes of enlarged facial pores, namely high sebum excretion, decreased elasticity around pores, and increased hair follicle volume. In addition, chronic recurrent acne, sex hormones, and skin care regimen can affect pore size. Given the different possible causes for enlarged pores, therapeutic modalities must be individualized for each patient. Potential factors that contribute to enlarged skin pores include excessive sebum, decreased elasticity around pores, and increased hair follicle volume. Because various factors cause enlarged facial pores, it might be useful to identify the underlying causes to be able to select the appropriate treatment.

  8. Design concepts of definitive disposal for high level radioactive wastes

    International Nuclear Information System (INIS)

    Badillo A, V.E.; Alonso V, G.

    2007-01-01

    It is excessively known the importance about finding a solution for the handling and disposition of radioactive waste of all level. However, the polemic is centered in the administration of high level radioactive waste and the worn out fuel, forgetting that the more important volumes of waste its are generated in the categories of low level wastes or of very low level. Depending on the waste that will be confined and of the costs, several technological modalities of definitive disposition exist, in function of the depth of the confinement. The concept of deep geologic storage, technological option proposed more than 40 years ago, it is a concept of isolation of waste of long half life placed in a deep underground installation dug in geologic formations that are characterized by their high stability and their low flow of underground water. In the last decades, they have registered countless progresses in technical and scientific aspects of the geologic storage, making it a reliable technical solution supported with many years of scientific work carried out by numerous institutions in the entire world. In this work the design concepts that apply some countries for the high level waste disposal that its liberate heat are revised and the different geologic formations that have been considered for the storage of this type of wastes. (Author)

  9. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hardin, Ernest [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-07-01

    This report presents conceptual design information for a system to handle and emplace packages containing radioactive waste, in boreholes 16,400 ft deep or possibly deeper. Its intended use is for a design selection study that compares the costs and risks associated with two emplacement methods: drill-string and wireline emplacement. The deep borehole disposal (DBD) concept calls for siting a borehole (or array of boreholes) that penetrate crystalline basement rock to a depth below surface of about 16,400 ft (5 km). Waste packages would be emplaced in the lower 6,560 ft (2 km) of the borehole, with sealing of appropriate portions of the upper 9,840 ft (3 km). A deep borehole field test (DBFT) is planned to test and refine the DBD concept. The DBFT is a scientific and engineering experiment, conducted at full-scale, in-situ, without radioactive waste. Waste handling operations are conceptualized to begin with the onsite receipt of a purpose-built Type B shipping cask, that contains a waste package. Emplacement operations begin when the cask is upended over the borehole, locked to a receiving flange or collar. The scope of emplacement includes activities to lower waste packages to total depth, and to retrieve them back to the surface when necessary for any reason. This report describes three concepts for the handling and emplacement of the waste packages: 1) a concept proposed by Woodward-Clyde Consultants in 1983; 2) an updated version of the 1983 concept developed for the DBFT; and 3) a new concept in which individual waste packages would be lowered to depth using a wireline. The systems described here could be adapted to different waste forms, but for design of waste packaging, handling, and emplacement systems the reference waste forms are DOE-owned high- level waste including Cs/Sr capsules and bulk granular HLW from fuel processing. Handling and Emplacement Options for Deep Borehole Disposal Conceptual Design July 23, 2015 iv ACKNOWLEDGEMENTS This report has

  10. Commercial disposal options for Idaho National Engineering Laboratory low-level radioactive waste

    International Nuclear Information System (INIS)

    Porter, C.L.; Widmayer, D.A.

    1995-09-01

    The Idaho National Engineering Laboratory (INEL) is a Department of Energy (DOE)-owned, contractor-operated site. Significant quantities of low-level radioactive waste (LLW) have been generated and disposed of onsite at the Radioactive Waste Management Complex (RWMC). The INEL expects to continue generating LLW while performing its mission and as aging facilities are decommissioned. An on-going Performance Assessment process for the RWMC underscores the potential for reduced or limited LLW disposal capacity at the existing onsite facility. In order to properly manage the anticipated amount of LLW, the INEL is investigating various disposal options. These options include building a new facility, disposing the LLW at other DOE sites, using commercial disposal facilities, or seeking a combination of options. This evaluation reports on the feasibility of using commercial disposal facilities

  11. Management options for food production systems affected by a nuclear accident. Task 6: landspreading as a waste disposal option for contaminated milk

    International Nuclear Information System (INIS)

    Marchant, J.K.; Nisbet, A.F.

    2002-01-01

    In the event of a nuclear accident, there may be significant quantities of agricultural produce that are contaminated with radionuclides and require disposal. The disposal of milk would be of particular concern, since the quantities of milk classed as waste could be substantial and extensive environmental damage could be caused if this was not disposed of appropriately. As part of contingency planning for potential nuclear accidents, the identification of practicable options for disposal of contaminated milk is therefore important. One of the potential options is disposal by landspreading. This report sets out the current legal position of the landspreading of contaminated milk on farmland, provides information on the current extent of landspreading by farmers and assesses the practicability of landspreading contaminated milk according to the following criteria: technical feasibility, capacity, cost, environmental impact, radiological impact and acceptability. Milk contaminated with radionuclides could be defined as a radioactive waste or an agricultural waste. If it were defined as a radioactive waste it would require disposal under the Radioactive Substances Act 1993. Decisions concerning the definition of contaminated milk area matter for the relevant government departments. In this report it was assumed that the milk would be defined as an agricultural waste. The Code of Good Agricultural Practice for the Protection of Water provides farmers with practical guidance for avoiding water pollution and the Code of Good Agricultural Practice for the Protection of Air provides them with practical guidance for avoiding air pollution. Farmers should follow both of these codes when landspreading milk. According to the Animal By-products Order, 1999 milk contaminated with radionuclides above the levels specified by the European Council at which marketing would be prohibited would constitute high risk material; landspreading would not then be permitted. This, however

  12. Disposal Options for Low and Intermediate-Level Radioactive Waste: Comparative Study

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2013-01-01

    This study presents the status of current disposal options for Low and Intermediate- Level Radioactive Waste (LILRW) generated in different countries and outlines the potential for future disposal option/s of these wastes in Egypt. Since approaches used in other countries may provide useful lessons for managing Egyptian radioactive wastes. This study was based on data for19 countries repositories and we focused on 6 countries, which considered as leaders in the field of disposal of rad waste. Several countries have plans for repositories which are sufficiently advanced that it was based on their own of their extensive experience with nuclear power generation and with constructing and operating LLRW disposal facilities. On the other hand, our programme for site selection and host rock characterization for low and intermediate level radioactive waste disposal is under study. We are preparing our criteria for selecting a national repository for LIL rad waste.

  13. Options for disposal and reapplication of depleted uranium hexafluoride

    International Nuclear Information System (INIS)

    Fitch, St.H.

    2009-01-01

    The nuclear renaissance has spurred the need to enrich uranium to fuel power reactors to meet the nation's energy requirements. However, enriching uranium produces the volatile byproduct of DUF 6 tails. In an ambient environment, DUF 6 decomposes into uranium oxides and hydrogen fluoride (HF). This HF component makes DUF 6 unsuitable for disposal as low-level waste. To make DUF 6 suitable for disposal, it must be stabilized in a controlled process by converting it into uranium oxides and fluorine compounds by the processes of de-conversion and fluorine extraction. Once stabilized, the DU and fluorine have reapplication potential that would delay or divert the need for disposal. Certain challenges confound this process, notably the chemical toxicity from elemental fluorine and DU, radiation hazards, limited low-level waste disposal capacity, and potential political and public opposition. (authors)

  14. New DEA rules expand options for controlled substance disposal.

    Science.gov (United States)

    Peterson, David M

    2015-03-01

    Prescription drug abuse and overdose are rapidly growing problems in the United States. The United States federal Disposal of Controlled Substances Rule became effective 9 October 2014, implementing the Secure and Responsible Drug Disposal Act of 2010 (Disposal Act). These regulations target escalating prescription drug misuse by reducing accumulation of unused controlled substances that may be abused, diverted or accidentally ingested. Clinical areas that can now participate in collecting unused controlled substances include retail pharmacies, hospitals or clinics with an onsite pharmacy, and narcotic treatment programs. Collection methods include placing a controlled substance collection receptacle or instituting a mail-back program. Because prompt onsite destruction of collected items is required of mail-back programs, collection receptacles are more likely to be used in clinical areas. Retail pharmacies and hospitals or clinics with an onsite pharmacy may also place and maintain collection receptacles at long-term care facilities. The Act and Rule are intended to increase controlled substance disposal methods and expand local involvement in collection of unused controlled substances. Potential barriers to participating in controlled substance collection include acquisition of suitable collection receptacles and liners, lack of available space meeting the necessary criteria, lack of employee time for verification and inventory requirements, and program costs.

  15. Evaluation of retention and disposal options for tritium in fuel reprocessing

    International Nuclear Information System (INIS)

    Grimes, W.R.; Hampson, D.C.; Larkin, D.J.; Skolrud, J.O.; Benjamin, R.W.

    1982-08-01

    Five options were evaluated as means of retaining tritium released from light-water reactor or fast breeder reactor fuel during the head-end steps of a typical Purex reprocessing scheme. Cost estimates for these options were compared with a base case in which no retention of tritium within the facility was obtained. Costs were also estimated for a variety of disposal methods of the retained tritium. The disposal costs were combined with the retention costs to yield total costs (capital plus operating) for retention and disposal of tritium under the conditions envisioned. The above costs were converted to an annual basis and to a dollars per curie retained basis. This then was used to estimate the cost in dollars per man-rem saved by retaining the tritium. Only the options that used the least expensive disposal costs could approach the $1000/man-rem cost used as a guide by the Nuclear Regulatory Commission

  16. Technical and economic evaluation of controlled disposal options for very low level radioactive wastes

    International Nuclear Information System (INIS)

    Robinson, P.J.; Vance, J.N.

    1990-08-01

    Over the past several years, there has been considerable interest by the nuclear industry in the Nuclear Regulatory Commission (NRC) explicitly defined an activity level in plant waste materials at which the radiological impacts would be so low as to be considered Below Regulatory Concern (BRC). In January 1989, Electric Power Research Institute (EPRI) completed an extensive industry research effort to develop the technical bases for establishing criteria for the disposal of very low activity wastes in ordinary disposal facilities. The Nuclear Management and Resources Council (NUMARC), with assistance from the Edison Electric Institute (EEI) and the Electric Power Research Institute (EPRI), drafted a petition titled: ''Petition for Rulemaking Regarding Disposal of Below Regulatory Concern Radioactive Wastes from Commercial Nuclear Power Plants.'' Subsequent to the industry making a final decision for submittal of the drafted BRC petition, EPRI was requested to evaluate the technical and economic impact of six BRC options. These options are: take no action in pursuing a BRC waste exemption, petition the NRC for authorization to disposal of any BRC waste in any ordinary disposal facility, limit disposal of BRC waste to the nuclear power plant site, limit disposal of BRC waste to the nuclear power plant site and other utility owned property, petition for a mixed waste exemption, and petition for single waste stream exemptions in sequence (i.e. soil, followed by sewage sludge, etc.). The petition and technical bases were written to support the disposal of any BRC waste type in any ordinary disposal facility. These documents do not provide all of the technical and economic information needed to completely assessment the BRC options. This report provides the technical and economic basis for a range of options concerning disposal of very low activity wastes. 3 figs., 20 tabs

  17. Earth Construction and Landfill Disposal Options for Slaker Grits

    OpenAIRE

    Risto Pöykiö; G. Watkins; H. Nurmesniemi and O. Dahl

    2010-01-01

    Slaker grits, an industrial residue originating from the chemical recovery process at sulfate (kraft) pulp mills, are typically disposed of to landfill in Finland. However, due to the relatively low total heavy metal and low leachable heavy metal, chloride, fluoride, sulfate, Dissolved O rganic Carbon (DOC) and Total Dissolved Solids (TDS) concentrations, the residue is a potential earth construction material. This paper gives an overview of the relevant Finnish legislation on the use of indu...

  18. 76 FR 55255 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction

    Science.gov (United States)

    2011-09-07

    ... Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction AGENCY: Internal..., on the definition of solid waste disposal facilities for purposes of the rules applicable to tax... governments that issue tax-exempt bonds to finance solid waste disposal facilities and to taxpayers that use...

  19. 76 FR 55256 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction

    Science.gov (United States)

    2011-09-07

    ... Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes; Correction AGENCY: Internal..., 2011, on the definition of solid waste disposal facilities for purposes of the rules applicable to tax... governments that issue tax-exempt bonds to finance solid waste disposal facilities and to taxpayers that use...

  20. Treatment And Disposal Options For Oil Field-Norm-Waste

    International Nuclear Information System (INIS)

    Shaaban, Sh.I.

    1999-01-01

    The presentation discusses the origin of NORM in gas and oil industries and the hazards arising from working with Natural Occurring Radioactive Material. This paper illustrates the positive steps taken related to personnel health,environmental impact, the extent of the problem, prevention and controlling, as well as handling and disposal control of radioactive material. The study aims at avoiding the release of contaminated substances into the surrounding environment and at taking radiation protection measures in order to prevent and / or limit the radiological risk involved in routine maintenance operations

  1. Radiological assessments of land disposal options: recent model developments

    International Nuclear Information System (INIS)

    Fearn, H.S.; Pinner, A.V.; Hemming, C.R.

    1984-10-01

    This report describes progress in the development of methodologies and models for assessing the radiological impact of the disposal of low and intermediate level wastes by (i) shallow land burial in simple trenches (land 1), (ii) shallow land burial in engineered facilities (land 2), and (iii) emplacement in mined repositories or existing cavities (land 3/4). In particular the report describes wasteform leaching models, for unconditioned and cemented waste, the role of engineered barriers of a shallow land burial facility in reducing the magnitude of doses arising from groundwater contact and a detailed consideration of the interactions between radioactive carbon and various media. (author)

  2. Safeguardability of the vitrification option for disposal of plutonium

    Energy Technology Data Exchange (ETDEWEB)

    Pillay, K.K.S. [Los Alamos National Lab., NM (United States)

    1996-05-01

    Safeguardability of the vitrification option for plutonium disposition is rather complex and there is no experience base in either domestic or international safeguards for this approach. In the present treaty regime between the US and the states of the former Soviet Union, bilaterial verifications are considered more likely with potential for a third-party verification of safeguards. There are serious technological limitations to applying conventional bulk handling facility safeguards techniques to achieve independent verification of plutonium in borosilicate glass. If vitrification is the final disposition option chosen, maintaining continuity of knowledge of plutonium in glass matrices, especially those containing boron and those spike with high-level wastes or {sup 137}Cs, is beyond the capability of present-day safeguards technologies and nondestructive assay techniques. The alternative to quantitative measurement of fissile content is to maintain continuity of knowledge through a combination of containment and surveillance, which is not the international norm for bulk handling facilities.

  3. Systems engineering study: tank 241-C-103 organic skimming,storage, treatment and disposal options

    Energy Technology Data Exchange (ETDEWEB)

    Klem, M.J.

    1996-10-23

    This report evaluates alternatives for pumping, storing, treating and disposing of the separable phase organic layer in Hanford Site Tank 241-C-103. The report provides safety and technology based preferences and recommendations. Two major options and several varations of these options were identified. The major options were: 1) transfer both the organic and pumpable aqueous layers to a double-shell tank as part of interim stabilization using existing salt well pumping equipment or 2) skim the organic to an above ground before interim stabilization of Tank 241-C-103. Other options to remove the organic were considered but rejected following preliminary evaluation.

  4. An investigation of storage and treatment options for radioactive wastes prepared for sea disposal

    International Nuclear Information System (INIS)

    Wakerley, M.W.; Woodfine, B.C.

    1986-07-01

    A sea disposal of 3500 t of packaged waste using a specially converted ship was planned for 1983, but did not take place. The major part of this waste is currently stored at two UKAEA sites. The waste packages were made with the intention that they would be disposed of within about 18 months of packaging. It was not intended that they would be stored for long periods. All wastes are packaged in mild steel drums and the wastes are temporarily stored within buildings. The conditions under which the packages are stored and their present condition are described and possible storage and treatment options are investigated having regard to available disposal routes. (author)

  5. Reversibility and switching options values in the geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ionescu, Oana; Spaeter, Sandrine

    2011-07-01

    This article offers some economic insights for the debate on the reversible geological disposal of radioactive waste. Irreversibility due to large sunk costs, an important degree of flexibility and several sources of uncertainty are taken into account in the decision process relative to the radioactive waste disposal. We draw up a stochastic model in a continuous time framework to study the decision problem of a reversible repository project for the radioactive waste, with multiple disposal stages. We consider that the value of reversibility, related to the radioactive waste packages, is jointly affected by economic and technological uncertainty. These uncertainties are modeled, first, by a 2-Dimensional Geometric Brownian Motion, and, second, by a Geometric Brownian Motion with a Poisson jump process. A numerical analysis and a sensitivity study of various parameters are also proposed. Switching options values in the geological disposal of radioactive waste. (authors)

  6. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    Energy Technology Data Exchange (ETDEWEB)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched {sup 235}U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched {sup 235}U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing.

  7. Options for treating high-temperature gas-cooled reactor fuel for repository disposal

    International Nuclear Information System (INIS)

    Lotts, A.L.; Bond, W.D.; Forsberg, C.W.; Glass, R.W.; Harrington, F.E.; Micheals, G.E.; Notz, K.J.; Wymer, R.G.

    1992-02-01

    This report describes the options that can reasonably be considered for disposal of high-temperature gas-cooled reactor (HTGR) fuel in a repository. The options include whole-block disposal, disposal with removal of graphite (either mechanically or by burning), and reprocessing of spent fuel to separate the fuel and fission products. The report summarizes what is known about the options without extensively projecting or analyzing actual performance of waste forms in a repository. The report also summarizes the processes involved in convert spent HTGR fuel into the various waste forms and projects relative schedules and costs for deployment of the various options. Fort St. Vrain Reactor fuel, which utilizes highly-enriched 235 U (plus thorium) and is contained in a prismatic graphite block geometry, was used as the baseline for evaluation, but the major conclusions would not be significantly different for low- or medium-enriched 235 U (without thorium) or for the German pebble-bed fuel. Future US HTGRs will be based on the Fort St. Vrain (FSV) fuel form. The whole block appears to be a satisfactory waste form for disposal in a repository and may perform better than light-water reactor (LWR) spent fuel. From the standpoint of process cost and schedule (not considering repository cost or value of fuel that might be recycled), the options are ranked as follows in order of increased cost and longer schedule to perform the option: (1) whole block, (2a) physical separation, (2b) chemical separation, and (3) complete chemical processing

  8. Alternative disposal options for alpha-mixed low-level waste

    International Nuclear Information System (INIS)

    Loomis, G.G.; Sherick, M.J.

    1995-01-01

    This paper presents several disposal options for the Department of Energy alpha-mixed low-level waste. The mixed nature of the waste favors thermally treating the waste to either an iron-enriched basalt or glass waste form, at which point a multitude of reasonable disposal options, including in-state disposal, are a possibility. Most notably, these waste forms will meet the land-ban restrictions. However, the thermal treatment of this waste involves considerable waste handling and complicated/expensive offgas systems with secondary waste management problems. In the United States, public perception of offgas systems in the radioactive incinerator area is unfavorable. The alternatives presented here are nonthermal in nature and involve homogenizing the waste with cryogenic techniques followed by complete encapsulation with a variety of chemical/grouting agents into retrievable waste forms. Once encapsulated, the waste forms are suitable for transport out of the state or for actual in-state disposal. This paper investigates variances that would have to be obtained and contrasts the alternative encapsulation idea with the thermal treatment option

  9. Alternative disposal options for alpha-mixed low-level waste

    Energy Technology Data Exchange (ETDEWEB)

    Loomis, G.G.; Sherick, M.J. [Idaho National Engineering Lab., Idaho Falls, ID (United States)

    1995-12-31

    This paper presents several disposal options for the Department of Energy alpha-mixed low-level waste. The mixed nature of the waste favors thermally treating the waste to either an iron-enriched basalt or glass waste form, at which point a multitude of reasonable disposal options, including in-state disposal, are a possibility. Most notably, these waste forms will meet the land-ban restrictions. However, the thermal treatment of this waste involves considerable waste handling and complicated/expensive offgas, systems with secondary waste management problems. In the United States, public perception of off gas systems in the radioactive incinerator area is unfavorable. The alternatives presented here are nonthermal in nature and involve homogenizing the waste with cryogenic techniques followed by complete encapsulation with a variety of chemical/grouting agents into retrievable waste forms. Once encapsulated, the waste forms are suitable for transport out of the state or for actual in-state disposal. This paper investigates variances that would have to be obtained and contrasts the alternative encapsulation idea with the thermal treatment option.

  10. Summary of feasibility studies on in situ disposal as a decommissioning option for nuclear facilities

    International Nuclear Information System (INIS)

    Helbrecht, R.A.

    2002-01-01

    A scoping study was conducted over the period 1998-2000 to consider the feasibility of in situ disposal as a decommissioning option for AECL's Nuclear Power Demonstration Reactor located at Rolphton, Ontario. The results of a detailed assessment are summarized and the study concludes that in situ disposal appears feasible. Additional work required to confirm the results is also identified. A second in situ component, contaminated Winnipeg River sediments at AECL's Whiteshell Laboratory located in Manitoba, was also evaluated. That study concluded that in situ abandonment would have no adverse impact on aquatic life, humans and the environment. A summary of the study is presented as an appendix to the report. (author)

  11. Radiation and environmental safety of spent nuclear fuel management options based on direct disposal or reprocessing and disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Vuori, S.

    1996-05-01

    The report considers the various stages of two nuclear fuel cycle options: direct disposal and reprocessing followed by disposal of vitrified high-level waste. The comparative review is based on the results of previous international studies and concentrates on the radiation and environmental safety aspects of technical solutions based on today's technology. (23 refs., 7 figs., 4 tabs.)

  12. Integrated model of Korean spent fuel and high level waste disposal options - 16091

    International Nuclear Information System (INIS)

    Hwang, Yongsoo; Miller, Ian

    2009-01-01

    This paper describes an integrated model developed by the Korean Atomic Energy Research Institute (KAERI) to simulate options for disposal of spent nuclear fuel (SNF) and reprocessing products in South Korea. A companion paper (Hwang and Miller, 2009) describes a systems-level model of Korean options for spent nuclear fuel (SNF) management in the 21. century. The model addresses alternative design concepts for disposal of SNF of different types (Candu, PWR), high level waste, and fission products arising from a variety of alternative fuel cycle back ends. It uses the GoldSim software to simulate the engineered system, near-field and far-field geosphere, and biosphere, resulting in long-term dose predictions for a variety of receptor groups. The model's results allow direct comparison of alternative repository design concepts, and identification of key parameter uncertainties and contributors to receptor doses. (authors)

  13. Techno-economical Analysis of High Level Waste Storage and Disposal Options

    International Nuclear Information System (INIS)

    Bace, M.; Trontl, K.; Vrankic, K.

    2002-01-01

    Global warming and instability of gas and oil prices are redefining the role of nuclear energy in electrical energy production. A production of high-level radioactive waste (HLW), during the nuclear power plant operation and a danger of high level waste mitigation to the environment are considered by the public as a main obstacle of accepting the nuclear option. As economical and technical aspects of the back end of fuel cycle will affect the nuclear energy acceptance the techno-economical analysis of different methods for high level waste storage and disposal has to be performed. The aim of this paper is to present technical and economical characteristics of different HLW storage and disposal technologies. The final choice of a particular HLW management method is closely connected to the selection of a fuel cycle type: open or closed. Wet and dry temporary storage has been analyzed including different types of spent fuel pool capacity increase methods, different pool location (at reactor site and away from reactor site) as well as casks and vault system of dry storage. Since deep geological deposition is the only disposal method with a realistic potential, we focused our attention on that disposal technology. Special attention has been given to the new idea of international and regional disposal location. The analysis showed that a coexistence of different storage methods and deep geological deposition is expected in the future, regardless of the fuel cycle type. (author)

  14. Comparison of potential health and safety impacts of different disposal options for defense high-level wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Smith, E.D.; Witherspoon, J.P.

    1984-01-01

    A comparative assessment has been performed of the potential long- and short-term health and safety impacts of different disposal options for defense high-level wastes. Conservative models and assumptions were used. The assessment suggests that considerations of health and safety will not be significant in choosing among disposal options, primarily because of the need to meet stringent standards in all cases. Rather, the ease and cost of assuring compliance of a particular disposal option with health and safety standards may be a more important factor. 11 references

  15. ASTM STANDARD GUIDE FOR EVALUATING DISPOSAL OPTIONS FOR REUSE OF CONCRETE FROM NUCLEAR FACILITY DECOMMISSIONING

    International Nuclear Information System (INIS)

    Phillips, Ann Marie; Meservey, Richard H.

    2003-01-01

    Within the nuclear industry, many contaminated facilities that require decommissioning contain huge volumes of concrete. This concrete is generally disposed of as low-level waste at a high cost. Much of the concrete is lightly contaminated and could be reused as roadbed, fill material, or aggregate for new concrete, thus saving millions of dollars. However, because of the possibility of volumetric contamination and the lack of a method to evaluate the risks and costs of reusing concrete, reuse is rarely considered. To address this problem, Argonne National Laboratory-East (ANL-E) and the Idaho National Engineering and Environmental Laboratory teamed to write a ''concrete protocol'' to help evaluate the ramifications of reusing concrete within the U.S. Department of Energy (DOE). This document, titled the Protocol for Development of Authorized Release Limits for Concrete at U.S. Department of Energy Site (1) is based on ANL-E's previously developed scrap metal recycle protocols; on the 10-step method outlined in DOE's draft handbook, Controlling Release for Reuse or Recycle of Property Containing Residual Radioactive Material (2); and on DOE Order 4500.5, Radiation Protection of the Public and the Environment (3). The DOE concrete protocol was the basis for the ASTM Standard Guide for Evaluating Disposal Options for Concrete from Nuclear Facility Decommissioning, which was written to make the information available to a wider audience outside DOE. The resulting ASTM Standard Guide is a more concise version that can be used by the nuclear industry worldwide to evaluate the risks and costs of reusing concrete from nuclear facility decommissioning. The bulk of the ASTM Standard Guide focuses on evaluating the dose and cost for each disposal option. The user calculates these from the detailed formulas and tabulated data provided, then compares the dose and cost for each disposal option to select the best option that meets regulatory requirements. With this information

  16. Safety assessment for a disposal option of TENORM wastes coming from the electric generation in Cuba

    International Nuclear Information System (INIS)

    Leyva, Dennys; Gil, Reinaldo; Peralta, Jose L.; Odalys Ramos

    2008-01-01

    The aim of the present paper was the safety assessment for a disposal option of ashes wastes coming from the electric generation in Cuba. The ashes are planned to be disposed as subsurface layer, covered with soil under controlled conditions. The composition of theses wastes are TENORM ( 226 Ra and 224 Ra) and heavy metals (vanadium, chromium, zinc), therefore, their disposal should accomplish the national and international defined regulations. The adopted safety assessment methodology, allowed the identification and selection of the main scenarios to evaluate, the mathematical models to apply and the comparison against the assessment criteria. According to the assessment context and the site characteristics, the atmospheric and groundwater scenarios were evaluated. During the modelling stage were included the identification of the main exposure pathways and the most relevant assessment processes were modelled (transport of contaminants, radioactive decay, etc.). For atmospheric dispersion, the SCREEN3 model was adopted, including the radioactive decay and other radiological properties. The DRAF model was used for the groundwater scenario. The doses for inhalation, external irradiation and foodstuff ingestion were obtained using several dosimetric models. The results showed that the 226 Ra concentration values were higher than the 228 Ra in the evaluation points, for atmospheric and groundwater scenarios. This behaviour is influenced by the small radioactive inventory, the shorter half life of the 228 Ra and the distance between the disposal site and the evaluation points. The obtained external doses were always below the dose limits for the members of the public and for all scenarios, including the more conservatives. The lower dose (by ingestion) values were associated to the scenarios of radionuclides transport through the geosphere. According the safety assessment and the established scenarios, the evaluated disposal practice does not represent a relevant

  17. Disposal options for polluted plants grown on heavy metal contaminated brownfield lands - A review.

    Science.gov (United States)

    Kovacs, Helga; Szemmelveisz, Katalin

    2017-01-01

    Reducing or preventing damage caused by environmental pollution is a significant goal nowadays. Phytoextraction, as remediation technique is widely used, but during the process, the heavy metal content of the biomass grown on these sites special treatment and disposal techniques are required, for example liquid extraction, direct disposal, composting, and combustion. These processes are discussed in this review in economical and environmental aspects. The following main properties are analyzed: form and harmful element content of remains, utilization of the main and byproducts, affect to the environment during the treatment and disposal. The thermal treatment (combustion, gasification) of contaminated biomass provides a promising alternative disposal option, because the energy production affects the rate of return, and the harmful elements are riched in a small amount of solid remains depending on the ash content of the plant (1-2%). The biomass combustion technology is a wildely used energy production process in residential and industrial scale, but the ordinary biomass firing systems are not suited to burn this type of fuel without environmental risk. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Determining ''Best Practicable Environmental Options'' for final waste disposal of radioactive waste

    International Nuclear Information System (INIS)

    Smith, Graham

    1999-01-01

    This presentation discusses some ideas on what the Best Practical Environmental Option (BPEO) process should include. A BPEO study to help develop a radioactive waste management strategy should not only look at post-closure safety of a facility. In the UK there was a 1986 Study of BPEOs for management of low and intermediate level radioactive wastes. This study tried to answer important questions such as (1) What are the practical options, (2) Which wastes should go to shallow burial, (3) Which wastes should go to sea disposal, (4) How does storage compare with disposal and (5) What are the cost and environmental trade-offs. The presentation discusses what was done to answer the questions. The BPEO Study resulted in major improved effort to characterise waste, much greater quantitative understanding of where and when the real costs, and environmental and radiological impacts arise. All options would be useful within a national strategy. But there was clearly a need for resolution of political acceptance problems, integration of policy with other hazardous waste management, and stronger legal framework

  19. Municipal solid waste options : integrating organics management and residual disposal treatment : executive summary

    Energy Technology Data Exchange (ETDEWEB)

    Cant, M. (comp.) [Totten Sims Hubicki Associates Ltd., Calgary, AB (Canada); Van der Werf, P. [2cg Inc., Edmonton, AB (Canada); Kelleher, M. [Kelleher Environmental, Toronto, ON (Canada); Merriman, D. [MacViro Consultants, Markham, ON (Canada); Fitcher, K. [Gartner Lee Ltd., Toronto, ON (Canada); MacDonald, N. [CH2M Hill Engineering Ltd., Calgary, AB (Canada)

    2006-04-15

    The Municipal Solid Waste (MSW) Options Report explored different MSW management options for 3 community sizes: 20,000, 80,000 and 200,0000 people. It was released at a time when many communities were developing waste management plans to cost-effectively reduce environmental impacts and conserve landfill capacity. The purpose of this report was to provide a greater understanding on the environmental, social, economic, energy recovery/utilization and greenhouse gas (GHG) considerations of MSW management. The report also demonstrated the interrelationships between the management of organics and residuals. It was based on information from existing waste diversion and organics management options and emerging residual treatment technology options. The following organics management and residual treatment disposal options were evaluated: composting; anaerobic digestion; sanitary landfills; bioreactor landfills; and thermal treatment. Composting was examined with reference to both source separated organics (SSO) and mixed waste composting. SSO refers to the separation of materials suitable for composting solid waste from households, while mixed waste composting refers to the manual or mechanical removal of recyclable material from the waste, including compost. The composting process was reviewed along with available technologies such as non-reactor windrow; aerated static pile; reactor enclosed channel; and, container tunnel. An evaluation of SSO and mixed waste composting was then presented in terms of environmental, social, financial and GHG impacts. refs., tabs., figs.

  20. Environmental and economic analyses of waste disposal options for traditional markets in Indonesia

    International Nuclear Information System (INIS)

    Aye, Lu; Widjaya, E.R.

    2006-01-01

    Waste from traditional markets in Indonesia is the second largest stream of municipal solid waste after household waste. It has a higher organic fraction and may have greater potential to be managed on a business scale compared to household wastes. The attributed reason is that in general the wastes generated from traditional markets are more uniform, more concentrated and less hazardous than waste from other sources. This paper presents the results of environmental and economic assessments to compare the options available for traditional market waste disposal in Indonesia. The options compared were composting in labour intensive plants, composting in a centralised plant that utilised a simple wheel loader, centralised biogas production and landfill for electricity production. The current open dumping practice was included as the baseline case. A life cycle assessment (LCA) was used for environmental analysis. All options compared have lower environmental impacts than the current practice of open dumping. The biogas production option has the lowest environmental impacts. A cost-benefit analysis, which considered greenhouse gas savings, was used for the economic assessment. It was found that composting at a centralised plant is the most economically feasible option under the present Indonesian conditions. The approach reported in this study could be applied for 'a pre-feasibility first cut comparison' that includes environmental aspects in a decision-making framework for developing countries even though European emission factors were used

  1. Modelling approach to evaluate safety of LILW-SL disposal in slovenia considering different waste packaging options

    International Nuclear Information System (INIS)

    Perko, J.; Mallants, D.

    2007-01-01

    The long-term safety of radioactive waste repositories is usually demonstrated by means of a safety assessment which normally includes modelling of radionuclide release from a multi-barrier surface or deep repository to the geosphere and biosphere. The present quantitative evaluation performed emphasizes on contrasting disposal options under consideration in Slovenia and concerns siting, disposal concept (deep versus surface), and waste packaging. The assessment has identified a number of conditions that would lead to acceptable waste disposal solutions, while at the same time results also revealed options that would result in exceeding the radiological criteria. Results presented are the output of a collective effort of a Quintessa-led Consortium with SCK-CEN and Belgatom, in the framework of a recent PHARE project. The key objective of this work was to identify the preferred disposal concept and packaging option from a number of alternatives being considered by the Slovenian radioactive waste management agency (ARAO) for low and intermediate level short-lived waste (LILW-SL). The emphasis of the assessment was the consideration of several waste treatment and packaging options in an attempt to identify the minimum required containment characteristics which would result in safe disposal and the cost-benefit of additional safety measures. Waste streams for which alternative treatment and packaging solutions were developed and evaluated include decommissioning waste and NPP operational wastes containing drums with unconditioned ion exchange resins in overpacked tube type containers (TTCs). For the former the disposal options under consideration were either direct disposal of loose pieces grouted into a vault or use of high integrity containers. For the latter three options were foreseen. The first is overpacking of resin containing TTCs grouted into high integrity containers, the second option is complete treatment with hydration, neutralisation, and cementation of

  2. Management options for food production systems affected by a nuclear accident. Task 5: disposal of waste milk to sea

    International Nuclear Information System (INIS)

    Wilkins, B.; Woodman, R.; Nisbet, A.; Mansfield, P.

    2001-11-01

    In emergency exercises, discharge to sea is often put forward as a disposal option for waste milk, the intention being to use the outfalls for coolant water or liquid effluent at nuclear installations. However, so far the legislative constraints and the practical and scientific limitations of this option have not been fully considered. This report sets out the current legal position and evaluates the practicability of transporting milk from an affected farm to a suitable coastal facility for disposal. The effect of discharging milk into coastal water bodies has also been considered, bearing in mind that after a serious accident disposals could continue for several weeks

  3. Standard Guide for Evaluating Disposal Options for Concrete from Nuclear Facility Decommissioning

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2002-01-01

    1.1 This standard guide defines the process for developing a strategy for dispositioning concrete from nuclear facility decommissioning. It outlines a 10-step method to evaluate disposal options for radioactively contaminated concrete. One of the steps is to complete a detailed analysis of the cost and dose to nonradiation workers (the public); the methodology and supporting data to perform this analysis are detailed in the appendices. The resulting data can be used to balance dose and cost and select the best disposal option. These data, which establish a technical basis to apply to release the concrete, can be used in several ways: (1) to show that the release meets existing release criteria, (2) to establish a basis to request release of the concrete on a case-by-case basis, (3) to develop a basis for establishing release criteria where none exists. 1.2 This standard guide is based on the “Protocol for Development of Authorized Release Limits for Concrete at U.S. Department of Energy Sites,” (1) from ...

  4. Evaluation of Landfill Cover Design Options for Waste Disposal Sites in the Coastal Regions of Ghana

    Directory of Open Access Journals (Sweden)

    Kodwo Beedu Keelson

    2015-01-01

    Full Text Available Uncontrolled leachate generation from operational and closed waste disposal sites is a major environmental concern in the coastal regions of Ghana which have abundant surface water and groundwater resources. The Ghana Landfill Guidelines requires the provision of a final cover or capping system as part of a final closure plan for waste disposal sites in the country as a means of minimizing the harmful environmental effects of these emissions. However, this technical manual does not provide explicit guidance on the material types or configuration for landfill covers that would be suitable for the different climatic conditions in the country. Four landfill cover options which are based on the USEPA RCRA-type and evapotranspirative landfill cover design specifications were evaluated with the aid of the HELP computer program to determine their suitability for waste disposal sites located in the Western, Central and Greater Accra regions. The RCRA Subtitle C cover which yielded flux rates of less than 0.001 mm/yr was found to be suitable for the specific climatic conditions. The RCRA Subtitle D cover was determined to be unsuitable due to the production of very large flux rates in excess of 200 mm/yr. The results for the anisotropic barrier and capillary barrier covers were inconclusive. Recommendations for further study include a longer simulation period as well the study of the combined effects of different topsoil vegetative conditions and evaporative zone depths on the landfill water balance. The use of other water balance models such as EPIC, HYDRUS-2D and UNSAT-H for the evaluation of the evapotranspirative landfill cover design options should also be considered.

  5. Back-end of the nuclear fuel cycle. A comparison of the direct disposal and reprocessing options

    International Nuclear Information System (INIS)

    Allan, C.J.; Baumgartner, P.

    1997-01-01

    Based on the need to address public concerns, the need to ensure long-term safety and an ethical concern for future generations, many countries are developing technology to dispose of nuclear fuel waste. The waste substances in used fuel can be disposed of either by directly disposing of the used fuel assemblies themselves, or by disposing of the long-lived waste from fuel reprocessing. The basic thesis of this paper is that the direct disposal of either used fuel or of the long-lived heat-generating and non-heat generating waste that arise from reprocessing is technically and economically feasible and that both options will meet the fundamental objectives of protecting human health and the environment. Decisions about whether, or when, to reprocess used fuel, or about whether to dispose of used fuel directly, are not fundamentally waste management issues. (author)

  6. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated.

  7. Disposal/recovery options for brine waters from oil and gas production in New York State. Final report

    International Nuclear Information System (INIS)

    Matsumoto, M.R.; Atkinson, J.F.; Bunn, M.D.; Hodge, D.S.

    1996-03-01

    Produced water from oil and gas operations, or brine as it is typically referred, may be characterized as being highly saline, with total dissolved solids greater than 100 g/L. If these bribes are disposed improperly there may be severe adverse environmental effects. Thus, it is important that brine be disposed using environmentally sound methods. Unfortunately, costs for the disposal of brine water are a significant burden to oil and gas producers in New York State. These costs and the relatively low market price of oil and natural gas have contributed to the decline in gas and oil production in New York State during the past 10 years. The objectives of this study were to evaluate new and existing options for brine disposal in New York State, examine the technical and economic merits of these options, and assess environmental impacts associated with each option. Two new disposal options investigated for New York State oil and gas producers included construction of a regional brine treatment facility to treat brine prior to discharge into a receiving water and a salt production facility that utilizes produced water as a feed stock. Both options are technically feasible; however, their economic viability depends on facility size and volume of brine treated

  8. A Study on Optimized Management Options for the Wolsong Low- and Intermediate - Level Waste Disposal Center in Korea - 13479

    Energy Technology Data Exchange (ETDEWEB)

    Park, JooWan; Kim, DongSun; Choi, DongEun [Korea Radioactive Waste Management Corporation, Korea 89, Bukseongno, Gyeongju, 780-050 (Korea, Republic of)

    2013-07-01

    The safe and effective management of radioactive waste is a national task required for sustainable generation of nuclear power and for energy self-reliance in Korea. Currently, for permanent disposal of low- and intermediate-level waste (LILW), the Wolsong LILW Disposal Center (WLDC) is under construction. It will accommodate a total of 800,000 drums at the final stage after stepwise expansion. As an implementing strategy for cost-effective development of the WLDC, various disposal options suitable for waste classification schemes would be considered. It is also needed an optimized management of the WLDC by taking a countermeasure of volume reduction treatment. In this study, various management options to be applied to each waste class are analyzed in terms of its inventory and disposal cost. For the volume reduction and stabilization of waste, the vitrification and plasma melting methods are considered for combustible and incombustible waste, respectively. (authors)

  9. Windrow composting as an option for disposal and utilization of dead birds

    Directory of Open Access Journals (Sweden)

    G. Vinodkumar

    2014-06-01

    Full Text Available Aim: The present study was undertaken to ascertain the feasibility of windrow composting as an environmentally safe and bio-secure disposal method of poultry manure and mortalities. Materials and Methods: Poultry dead birds and cage layer manure were collected from the commercial poultry farms and coir pith was obtained from coir fiber extraction unit. Physical properties and chemical composition of ingredients were analyzed and a suitable compost recipe was formulated. Two treatment windrow groups (T1- Dead birds + Cage layer manure + Coir pith, T2- Cage layer manure + Coir pith in replication were fabricated. Physical chemical and biological parameters of compost were analyzed. Results: Temperature profile ensured maximum pathogen and parasite reduction. Reduction in moisture content, weight, volume, total organic carbon, and progressive increase in total ash, calcium, phosphorus and potassium content as the composting proceeded, were indicative of organic matter degradation and mineralization. Favourable C:N ratio and germination index indicated compost maturity and absence of any phytotoxins in finished compost. The finished compost had undetectable level of Salmonella. There was no odour and fly menace throughout the composting experiment. Conclusion: Windrow composting of poultry waste can be considered as a biologically and environmentally safe disposal option with recycling of nutrients in the form of compost.

  10. Towards Sustainable Clothing Disposition: Exploring the Consumer Choice to Use Trash as a Disposal Option

    Directory of Open Access Journals (Sweden)

    Pamela S. Norum

    2017-07-01

    Full Text Available The textile and apparel supply chain plays an integral role in providing consumers with a continuous supply of apparel that must ultimately be discarded. Viewing the consumer as a player in the process between the supply chain and the post-consumer textile waste stream, this study was designed to explore the consumer apparel disposition process with an eye towards understanding how both supply chain members and post-consumer waste entities can interact with consumers to reduce the amount of apparel discarded in landfills. Hanson’s Consumer Product Disposition Process framework was used to help guide the research. Using a qualitative research approach, semi-structured in-depth interviews were conducted with twenty-four female consumers in the United States to address three main research questions. The findings revealed several themes: use of both “compensatory” and “non-compensatory” choice heuristics in decision making; a “usable life” and the “personal nature” of garments as barriers to non-trash disposal options; and the need to “create awareness” and “provide assurance” to encourage alternative disposal modes. Implications for apparel producers and retailers, secondhand stores and textile recyclers are discussed.

  11. A rational approach for evaluation and screening of treatment and disposal options for the solar pond sludges at Rocky Flats

    International Nuclear Information System (INIS)

    Dickerson, K.S.

    1995-01-01

    This document consists of information about the treatment options for the sludge that is located in the evaporation ponds at the Rocky Flats Plant. The sludges are mixed low-level radioactive wastes whose composition and character were variable. Sludges similar to these are typically treated prior to ultimate disposal. Disposal of treated sludges includes both on-site and off-site options. The rational approach described in this paper is useful for technology evaluation and screening because it provides a format for developing objectives, listing alternatives, and weighing the alternatives against the objectives and against each other

  12. A rational approach for evaluation and screening of treatment and disposal options for the solar pond sludges at Rocky Flats

    Energy Technology Data Exchange (ETDEWEB)

    Dickerson, K.S.

    1995-12-31

    This document consists of information about the treatment options for the sludge that is located in the evaporation ponds at the Rocky Flats Plant. The sludges are mixed low-level radioactive wastes whose composition and character were variable. Sludges similar to these are typically treated prior to ultimate disposal. Disposal of treated sludges includes both on-site and off-site options. The rational approach described in this paper is useful for technology evaluation and screening because it provides a format for developing objectives, listing alternatives, and weighing the alternatives against the objectives and against each other.

  13. Evaluation of food waste disposal options by LCC analysis from the perspective of global warming: Jungnang case, South Korea

    International Nuclear Information System (INIS)

    Kim, Mi-Hyung; Song, Yul-Eum; Song, Han-Byul; Kim, Jung-Wk; Hwang, Sun-Jin

    2011-01-01

    Highlights: → Various food waste disposal options were evaluated from the perspective of global warming. → Costs of the options were compared by the methodology of life cycle assessment and life cycle cost analysis. → Carbon price and valuable by-products were used for analyzing environmental credits. → The benefit-cost ratio of wet feeding scenario was the highest. - Abstract: The costs associated with eight food waste disposal options, dry feeding, wet feeding, composting, anaerobic digestion, co-digestion with sewage sludge, food waste disposer, incineration, and landfilling, were evaluated in the perspective of global warming and energy and/or resource recovery. An expanded system boundary was employed to compare by-products. Life cycle cost was analyzed through the entire disposal process, which included discharge, separate collection, transportation, treatment, and final disposal stages, all of which were included in the system boundary. Costs and benefits were estimated by an avoided impact. Environmental benefits of each system per 1 tonne of food waste management were estimated using carbon prices resulting from CO 2 reduction by avoided impact, as well as the prices of by-products such as animal feed, compost, and electricity. We found that the cost of landfilling was the lowest, followed by co-digestion. The benefits of wet feeding systems were the highest and landfilling the lowest.

  14. Low-level radioactive waste disposal in the USA - Use of mill tailings impoundments as a new policy option

    International Nuclear Information System (INIS)

    Farrell, C.W.

    2006-01-01

    Disposal of low-level radioactive waste (LLW) in the United States is facing severe and immediate capacity limitations. Seemingly intractable regulatory and jurisdictional conflicts make establishment of new LLW disposal sites effectively impossible. Uranium mill tailings impoundments constructed at conventional uranium open-cast and underground mines could offer approximately 40 to 80+ million tons of disposal capacity for low activity radioactive waste. Such impoundments would provide an enhanced, high level of environmental and health and safety protection for the direct disposal of depleted uranium, special nuclear material, technologically-enhanced, naturally-occurring radioactive material (TENORM) and mixed waste. Many waste streams, such as TENORM and decommissioning rubble, will be high-volume, low activity materials and ideally suited for disposal in such structures. Materials in a given decay chain with a total activity from all radionuclides present of ∼820 Bq/g (2.22 x 10 -08 Ci/g) with no single radionuclide present in an activity greater than ∼104 Bq/g (2,800 pCi/g) should be acceptable for disposal. Materials of this type could be accepted without any site-specific dose modelling, so long as the total activity of the tailings impoundment not exceed its design capacity (generally 82 x 10 07 Bq/metric tonne) (0.020 Ci/short ton) and the cover design requirements to limit radon releases are satisfied. This paper provides background on US LLW disposal regulations, examines LLW disposal options under active consideration by the US Environmental Protection Agency and Department of Energy, develops generic waste acceptance criteria and identifies policy needs for federal and state governments to facilitate use of uranium mill tailings impoundments for LLW disposal. (author)

  15. The residuals analysis project: Evaluating disposal options for treated mixed low-level waste

    International Nuclear Information System (INIS)

    Waters, R.D.; Gruebel, M.M.; Case, J.T.; Letourneau, M.J.

    1997-01-01

    For almost four years, the U.S. Department of Energy (DOE) through its Federal Facility Compliance Act Disposal Workgroup has been working with state regulators and governors' offices to develop an acceptable configuration for disposal of its mixed low-level waste (MLLW). These interactions have resulted in screening the universe of potential disposal sites from 49 to 15 and conducting ''performance evaluations'' for those fifteen sites to estimate their technical capabilities for disposal of MLLW. In the residuals analysis project, we estimated the volume of DOE's MLLW that will require disposal after treatment and the concentrations of radionuclides in the treated waste. We then compared the radionuclide concentrations with the disposal limits determined in the performance evaluation project for each of the fifteen sites. The results are a scoping-level estimate of the required volumetric capacity for MLLW disposal and the identification of waste streams that may pose problems for disposal based on current treatment plans. The analysis provides technical information for continued discussions between the DOE and affected States about disposal of MLLW and systematic input to waste treatment developers on disposal issues

  16. Nuclear power and radioactive waste: a sub-seabed disposal option

    International Nuclear Information System (INIS)

    Deese, D.A.

    1978-01-01

    The radioactive waste disposal programs of most countries are still focused on investigation of land-based geologic formations as possible containment media for radioactive wastes. Important discoveries in geological oceanography and amazing advances in ocean engineering over the past decade have, however, led several countries to investigate another promising possibility for geologic disposal of radioactive waste--isolation within the deep seabed or sub-seabed disposal. Beyond the various technical advantages and disadvantages involved, use of the international seabed for radioactive waste disposal raises a multitude of social, economic, political, legal, institutional, and ethical issues. These issues are analyzed in this volume

  17. Reserves for shutdown/dismantling and disposal in nuclear technology. Theses and recommendations on reform options

    International Nuclear Information System (INIS)

    Meyer, Bettina

    2012-01-01

    The study on reserves for shutdown, dismantling and disposal of nuclear facilities covers the following topics: cost for shutdown, dismantling and disposal and amount and transparency of nuclear reserves, solution by y stock regulated by public law for long-term liabilities, and improvement of the protection in the event of insolvency for the remaining EVU reserves for short- and intermediate-term liabilities. The appendix includes estimations and empirical values for the cost of shutdown and dismantling, estimation of disposal costs, and a summary of Swiss studies on dismantling and disposal and transfer to Germany.

  18. Offsite commercial disposal of oil and gas exploration and production waste :availability, options, and cost.

    Energy Technology Data Exchange (ETDEWEB)

    Puder, M. G.; Veil, J. A.

    2006-09-05

    A survey conducted in 1995 by the American Petroleum Institute (API) found that the U.S. exploration and production (E&P) segment of the oil and gas industry generated more than 149 million bbl of drilling wastes, almost 18 billion bbl of produced water, and 21 million bbl of associated wastes. The results of that survey, published in 2000, suggested that 3% of drilling wastes, less than 0.5% of produced water, and 15% of associated wastes are sent to offsite commercial facilities for disposal. Argonne National Laboratory (Argonne) collected information on commercial E&P waste disposal companies in different states in 1997. While the information is nearly a decade old, the report has proved useful. In 2005, Argonne began collecting current information to update and expand the data. This report describes the new 2005-2006 database and focuses on the availability of offsite commercial disposal companies, the prevailing disposal methods, and estimated disposal costs. The data were collected in two phases. In the first phase, state oil and gas regulatory officials in 31 states were contacted to determine whether their agency maintained a list of permitted commercial disposal companies dedicated to oil. In the second stage, individual commercial disposal companies were interviewed to determine disposal methods and costs. The availability of offsite commercial disposal companies and facilities falls into three categories. The states with high oil and gas production typically have a dedicated network of offsite commercial disposal companies and facilities in place. In other states, such an infrastructure does not exist and very often, commercial disposal companies focus on produced water services. About half of the states do not have any industry-specific offsite commercial disposal infrastructure. In those states, operators take their wastes to local municipal landfills if permitted or haul the wastes to other states. This report provides state-by-state summaries of the

  19. Evaluating Options for Disposal of Low-Level Waste at LANL

    International Nuclear Information System (INIS)

    Hargis, K.M.; French, S.B.; Boyance, J.A.

    2009-01-01

    Los Alamos National Laboratory (LANL) generates a wide range of waste types, including solid low-level radioactive waste (LLW), in conducting its national security mission and other science and technology activities. Although most of LANL's LLW has been disposed on-site, limitations on expansion, stakeholder concerns, and the potential for significant volumes from environmental remediation and decontamination and demolition (D and D) have led LANL to evaluate the feasibility of increasing off-site disposal. It appears that most of the LLW generated at LANL would meet the Waste Acceptance Criteria at the Nevada Test Site or available commercial LLW disposal sites. Some waste is considered to be problematic to transport to off-site disposal even though it could meet the off-site Waste Acceptance Criteria. Cost estimates for off-site disposal are being evaluated for comparison to estimated costs under the current plans for continued on-site disposal. An evaluation of risks associated with both on-site and off-site disposal will also be conducted. (authors)

  20. Expediting the commercial disposal option: Low-level radioactive waste shipments from the Mound Plant

    Energy Technology Data Exchange (ETDEWEB)

    Rice, S.; Rothman, R.

    1995-12-31

    In April, Envirocare of Utah, Inc., successfully commenced operation of its mixed waste treatment operation. A mixed waste which was (a) radioactive, (b) listed as a hazardous waste under the Resource Conservation and Recovery Act (RCRA), and (c) prohibited from land disposal was treated using Envirocare`s full-scale Mixed Waste Treatment Facility. The treatment system involved application of chemical fixation/stabilization technologies to reduce the leachability of the waste to meet applicable concentration-based RCRA treatment standards. In 1988, Envirocare became the first licensed facility for the disposal of naturally occurring radioactive material. In 1990, Envirocare received a RCRA Part B permit for commercial mixed waste storage and disposal. In 1994, Envirocare was awarded a contract for the disposal of DOE mixed wastes. Envirocare`s RCRA Part B permit allows for the receipt, storage, treatment, and disposal of mixed wastes that do not meet the land-disposal treatment standards of 40 CFR (Code of Federal Regulations) 268. Envirocare has successfully received, managed, and disposed of naturally occurring radioactive material, low-activity radioactive waste, and mixed waste from government and private generators.

  1. Advanced fuel cycles options for LWRs and IMF benchmark definition

    International Nuclear Information System (INIS)

    Breza, J.; Darilek, P.; Necas, V.

    2008-01-01

    In the paper, different advanced nuclear fuel cycles including thorium-based fuel and inert-matrix fuel are examined under light water reactor conditions, especially VVER-440, and compared. Two investigated thorium based fuels include one solely plutonium-thorium based fuel and the second one plutonium-thorium based fuel with initial uranium content. Both of them are used to carry and burn or transmute plutonium created in the classical UOX cycle. The inert-matrix fuel consist of plutonium and minor actinides separated from spent UOX fuel fixed in Yttria-stabilised zirconia matrix. The article shows analysed fuel cycles and their short description. The conclusion is concentrated on the rate of Pu transmutation and Pu with minor actinides cumulating in the spent advanced thorium fuel and its comparison to UOX open fuel cycle. Definition of IMF benchmark based on presented scenario is given. (authors)

  2. Vitrification treatment options for disposal of greater-than-Class-C low-level waste in a deep geologic repository

    International Nuclear Information System (INIS)

    Fullmer, K.S.; Fish, L.W.; Fischer, D.K.

    1994-11-01

    The Department of Energy (DOE), in keeping with their responsibility under Public Law 99-240, the Low-Level Radioactive Waste Policy Amendments Act of 1985, is investigating several disposal options for greater-than-Class C low-level waste (GTCC LLW), including emplacement in a deep geologic repository. At the present time vitrification, namely borosilicate glass, is the standard waste form assumed for high-level waste accepted into the Civilian Radioactive Waste Management System. This report supports DOE's investigation of the deep geologic disposal option by comparing the vitrification treatments that are able to convert those GTCC LLWs that are inherently migratory into stable waste forms acceptable for disposal in a deep geologic repository. Eight vitrification treatments that utilize glass, glass ceramic, or basalt waste form matrices are identified. Six of these are discussed in detail, stating the advantages and limitations of each relative to their ability to immobilize GTCC LLW. The report concludes that the waste form most likely to provide the best composite of performance characteristics for GTCC process waste is Iron Enriched Basalt 4 (IEB4)

  3. Comparison through a LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery

    International Nuclear Information System (INIS)

    Kim, Mi-Hyung; Kim, Jung-Wk

    2010-01-01

    This study evaluated feed manufacturing including dry feeding and wet feeding, composting, and landfilling for food waste disposal options from the perspective of global warming and resource recovery. The method of the expanded system boundaries was employed in order to compare different by-products. The whole stages of disposal involved in the systems such as separate discharge, collection, transportation, treatment, and final disposal, were included in the system boundary and evaluated. The Global Warming Potential generated from 1 tonne of food wastes for each disposal system was analyzed by the life cycle assessment method. The results showed that 200 kg of CO 2 -eq could be produced from dry feeding process, 61 kg of CO 2 -eq from wet feeding process, 123 kg of CO 2 -eq from composting process, and 1010 kg of CO 2 -eq from landfilling. Feed manufacturing and composting, the common treatment methods currently employed, have been known to be environment friendlier than other methods. However, this study shows that they can negatively affect the environment if their by-products are not appropriately utilized as intended.

  4. Comparison through a LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Mi-Hyung, E-mail: mhkim9@snu.ac.kr [Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, San 56-1, Sillim-Dong, Gwanak-Gu, Seoul 151-742 (Korea, Republic of); Kim, Jung-Wk, E-mail: kimjw@snu.ac.kr [Department of Environmental Planning, Graduate School of Environmental Studies, Seoul National University, San 56-1, Sillim-Dong, Gwanak-Gu, Seoul 151-742 (Korea, Republic of)

    2010-09-01

    This study evaluated feed manufacturing including dry feeding and wet feeding, composting, and landfilling for food waste disposal options from the perspective of global warming and resource recovery. The method of the expanded system boundaries was employed in order to compare different by-products. The whole stages of disposal involved in the systems such as separate discharge, collection, transportation, treatment, and final disposal, were included in the system boundary and evaluated. The Global Warming Potential generated from 1 tonne of food wastes for each disposal system was analyzed by the life cycle assessment method. The results showed that 200 kg of CO{sub 2}-eq could be produced from dry feeding process, 61 kg of CO{sub 2}-eq from wet feeding process, 123 kg of CO{sub 2}-eq from composting process, and 1010 kg of CO{sub 2}-eq from landfilling. Feed manufacturing and composting, the common treatment methods currently employed, have been known to be environment friendlier than other methods. However, this study shows that they can negatively affect the environment if their by-products are not appropriately utilized as intended.

  5. Comparison of different target material options for the European Spallation Source based on certain aspects related to the final disposal

    Science.gov (United States)

    Kókai, Zsófia; Török, Szabina; Zagyvai, Péter; Kiselev, Daniela; Moormann, Rainer; Börcsök, Endre; Zanini, Luca; Takibayev, Alan; Muhrer, Günter; Bevilacqua, Riccardo; Janik, József

    2018-02-01

    Different target options have been examined for the European Spallation Source, which is under construction in Lund, Sweden. During the design update phase, parameters and characteristics for the target design have been optimized not only for neutronics but also with respect to the waste characteristics related to the final disposal of the target. A rotating, solid tungsten target was eventually selected as baseline concept; the other options considered included mercury and lead-bismuth (LBE) targets suitable for a pulsed source. Since the licensee is obliged to present a decommissioning plan even before the construction phase starts, the radioactive waste category of the target after full operation time is of crucial importance. The results obtained from a small survey among project partners of 7th Framework Program granted by EU 202247 contract have been used. Waste characteristics of different potential spallation target materials were compared. Based on waste index, the tungsten target is the best alternative and the second one is the mercury target. However, all alternatives have HLW category after a 10 year cooling. Based on heat generation alone all of the options would be below the HLW limit after this cooling period. The LBE is the least advantageous alternative based on waste index and heat generation comparison. These results can be useful in compiling the licensing documents of the ESS facility as the target alternatives can be compared from various aspects related to their disposal.

  6. LLNL Input to SNL L2 MS: Report on the Basis for Selection of Disposal Options

    International Nuclear Information System (INIS)

    Sutton, M.; Blink, J.A.; Halsey, W.G.

    2011-01-01

    This mid-year deliverable has two parts. The first part is a synopsis of J. Blink's interview of the former Nevada Attorney General, Frankie Sue Del Papa, which was done in preparation for the May 18-19, 2010 Legal and Regulatory Framework Workshop held in Albuquerque. The second part is a series of sections written as input for the SNL L2 Milestone M21UF033701, due March 31, 2011. Disposal of high-level radioactive waste is categorized in this review into several categories. Section II discusses alternatives to geologic disposal: space, ice-sheets, and an engineered mountain or mausoleum. Section III discusses alternative locations for mined geologic disposal: islands, coastlines, mid-continent, and saturated versus unsaturated zone. Section IV discusses geologic disposal alternatives other than emplacement in a mine: well injection, rock melt, sub-seabed, and deep boreholes in igneous or metamorphic basement rock. Finally, Secton V discusses alternative media for mined geologic disposal: basalt, tuff, granite and other igneous/metamorphic rock, alluvium, sandstone, carbonates and chalk, shale and clay, and salt.

  7. LLNL Input to SNL L2 MS: Report on the Basis for Selection of Disposal Options

    Energy Technology Data Exchange (ETDEWEB)

    Sutton, M; Blink, J A; Halsey, W G

    2011-03-02

    This mid-year deliverable has two parts. The first part is a synopsis of J. Blink's interview of the former Nevada Attorney General, Frankie Sue Del Papa, which was done in preparation for the May 18-19, 2010 Legal and Regulatory Framework Workshop held in Albuquerque. The second part is a series of sections written as input for the SNL L2 Milestone M21UF033701, due March 31, 2011. Disposal of high-level radioactive waste is categorized in this review into several categories. Section II discusses alternatives to geologic disposal: space, ice-sheets, and an engineered mountain or mausoleum. Section III discusses alternative locations for mined geologic disposal: islands, coastlines, mid-continent, and saturated versus unsaturated zone. Section IV discusses geologic disposal alternatives other than emplacement in a mine: well injection, rock melt, sub-seabed, and deep boreholes in igneous or metamorphic basement rock. Finally, Secton V discusses alternative media for mined geologic disposal: basalt, tuff, granite and other igneous/metamorphic rock, alluvium, sandstone, carbonates and chalk, shale and clay, and salt.

  8. Ocean disposal option for bulk wastes containing naturally occurring radionuclides: an assessment case history

    International Nuclear Information System (INIS)

    Stull, E.A.; Merry-Libby, P.

    1985-01-01

    There are 180,000 m 3 of slightly contaminated radioactive wastes (36 pCi/g radium-226) currently stored at the US Department of Energy's Niagara Falls Storage Site (NFSS), near Lewiston, New York. These wastes resulted from the cleanup of soils that were contaminated above the guidelines for unrestricted use of property. An alternative to long-term management of these wastes on land is dispersal in the ocean. A scenario for ocean disposal is presented for excavation, transport, and emplacement of these wastes in an ocean disposal site. The potential fate of the wastes and impacts on the ocean environment are analyzed, and uncertainties in the development of two worst-case scenarios for dispersion and pathway analyses are discussed. Based on analysis of a worst-case pathway back to man, the incremental dose from ingesting fish containing naturally occurring radionuclides from ocean disposal of the NFSS wastes is insignificant. Ocean disposal of this type of waste appears to be a technically promising alternative to the long-term maintenance costs and eventual loss of containment associated with management in a near-surface land burial facility

  9. Savannah River Site waste vitrification projects initiated throughout the United States: Disposal and recycle options

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    2000-01-01

    A vitrification process was developed and successfully implemented by the US Department of Energy's (DOE) Savannah River Site (SRS) and at the West Valley Nuclear Services (WVNS) to convert high-level liquid nuclear wastes (HLLW) to a solid borosilicate glass for safe long term geologic disposal. Over the last decade, SRS has successfully completed two additional vitrification projects to safely dispose of mixed low level wastes (MLLW) (radioactive and hazardous) at the SRS and at the Oak Ridge Reservation (ORR). The SRS, in conjunction with other laboratories, has also demonstrated that vitrification can be used to dispose of a wide variety of MLLW and low-level wastes (LLW) at the SRS, at ORR, at the Los Alamos National Laboratory (LANL), at Rocky Flats (RF), at the Fernald Environmental Management Project (FEMP), and at the Hanford Waste Vitrification Project (HWVP). The SRS, in conjunction with the Electric Power Research Institute and the National Atomic Energy Commission of Argentina (CNEA), have demonstrated that vitrification can also be used to safely dispose of ion-exchange (IEX) resins and sludges from commercial nuclear reactors. In addition, the SRS has successfully demonstrated that numerous wastes declared hazardous by the US Environmental Protection Agency (EPA) can be vitrified, e.g. mining industry wastes, contaminated harbor sludges, asbestos containing material (ACM), Pb-paint on army tanks and bridges. Once these EPA hazardous wastes are vitrified, the waste glass is rendered non-hazardous allowing these materials to be recycled as glassphalt (glass impregnated asphalt for roads and runways), roofing shingles, glasscrete (glass used as aggregate in concrete), or other uses. Glass is also being used as a medium to transport SRS americium (Am) and curium (Cm) to the Oak Ridge Reservation (ORR) for recycle in the ORR medical source program and use in smoke detectors at an estimated value of $1.5 billion to the general public

  10. Final disposal options for mercury/uranium mixed wastes from the Oak Ridge Reservation

    International Nuclear Information System (INIS)

    Gorin, A.H.; Leckey, J.H.; Nulf, L.E.

    1994-01-01

    Laboratory testing was completed on chemical stabilization and physical encapsulation methods that are applicable (to comply with federal and state regulations) to the final disposal of both hazardous and mixed hazardous elemental mercury waste that is in either of the following categories: (1) waste generated during decontamination and decommissioning (D and D) activities on mercury-contaminated buildings, such as Building 9201-4 at the Oak Ridge Y-12 Plant, or (2) waste stored and regulated under either the Federal Facilities Compliance Agreement or the Federal Facilities Compliance Act. Methods were used that produced copper-mercury, zinc-mercury, and sulfur-mercury materials at room temperature by dry mixing techniques. Toxicity Characteristic Leaching Procedure (TCLP) results for mercury on batches of both the copper-mercury and the sulfur-mercury amalgams consistently produced leachates with less than the 0.2-mg/L Resource Conservation and Recovery Act (RCRA) regulatory limit for mercury. The results clearly showed that the reaction of mercury with sulfur at room temperature produces black mercuric sulfide, a material that is well suited for land disposal. The results also showed that the copper-mercury and zinc-mercury amalgams had major adverse properties that make them undesirable for land disposal. In particular, they reacted readily in air to form oxides and liberate elemental mercury. Another major finding of this study is that sulfur polymer cement is potentially useful as a physical encapsulating agent for mercuric sulfide. This material provides a barrier in addition to the chemical stabilization that further prevents mercury, in the form of mercuric sulfide, from migrating into the environment

  11. Options open to a small country, like Slovenia, in relation to radioactive waste disposal

    International Nuclear Information System (INIS)

    Kontic, B.

    1996-01-01

    When a society of two million people, who live on scarcely 20500 km 2 , needs to plan, and afterwards to implement, a strategy for radioactive waste management, the first step in the process is to look round and ask its bigger, stronger and more experienced neighbours (neighbouring countries), how they performed that task. Unfortunately, it is usually found that only few of the numerous answers to these questions and sub-questions are suitable for questioner. So what is to be done when the society is a Mediterranean, Central European, relatively highly populated country, where the Gross Domestic Product (GDP) per capita in 1994 exceeded 7000 US dollars, where the territory is mainly intended for residence, tourism and agricultural purposes, and where there is only one nuclear power plant (NPP) and one uranium mill which are responsible for the greatest part of the highly undesired radioactive waste ? The producers of radioactive wastes, and the economy of the country as a whole, cannot afford the costs of seeking a unique way of disposing of those wastes, but nevertheless, answers to the two primary questions concerning radioactive waste management should be given in any case. First: What should be done with the radioactive wastes produced in one NPP (PWR, 632 MWe) during 35 years of operation (up to 8000 m 3 of low - and intermediate - level waste, about 600 tons of spent fuel), and a uranium mill closed after only six years of ore-processing operation (670000 tons of ore-processing wastes)? Second: Where should it be done? Both questions pose the problem of siting, environmental assessment and the appropriateness of (all kinds of) criteria. In this paper the situation in Slovenia is presented with emphasis on the possibility and feasibility of radioactive waste disposal. Methodology and criteria for site evaluation and site selection for low- and intermediate- level radioactive waste (LILW) disposal is described. Fifty-five criteria are included in a decision

  12. 2005 dossier: granite. Tome: architecture and management of the geologic disposal

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the geologic disposal of high-level and long-lived radioactive wastes in granite formations. Content: 1 - Approach of the study: main steps since the December 30, 1991 law, ANDRA's research program on disposal in granitic formations; 2 - high-level and long-lived (HLLL) wastes: production scenarios, waste categories, inventory model; 3 - disposal facility design in granitic environment: definition of the geologic disposal functions, the granitic material, general facility design options; 4 - general architecture of a disposal facility in granitic environment: surface facilities, underground facilities, disposal process, operational safety; 5 - B-type wastes disposal area: primary containers of B-type wastes, safety options, concrete containers, disposal alveoles, architecture of the B-type wastes disposal area, disposal process and feasibility aspects, functions of disposal components with time; 6 - C-type wastes disposal area: C-type wastes primary containers, safety options, super-containers, disposal alveoles, architecture of the C-type wastes disposal area, disposal process in a reversibility logics, functions of disposal components with time; 7 - spent fuels disposal area: spent fuel assemblies, safety options, spent fuel containers, disposal alveoles, architecture of the spent fuel disposal area, disposal process in a reversibility logics, functions of disposal components with time; 8 - conclusions: suitability of the architecture with various types of French granites, strong design, reversibility taken into consideration. (J.S.)

  13. Waste Handling and Emplacement Options for Disposal of Radioactive Waste in Deep Boreholes.

    Energy Technology Data Exchange (ETDEWEB)

    Cochran, John R.; Hardin, Ernest

    2015-11-01

    Traditional methods cannot be used to handle and emplace radioactive wastes in boreholes up to 16,400 feet (5 km) deep for disposal. This paper describes three systems that can be used for handling and emplacing waste packages in deep borehole: (1) a 2011 reference design that is based on a previous study by Woodward–Clyde in 1983 in which waste packages are assembled into “strings” and lowered using drill pipe; (2) an updated version of the 2011 reference design; and (3) a new concept in which individual waste packages would be lowered to depth using a wireline. Emplacement on coiled tubing was also considered, but not developed in detail. The systems described here are currently designed for U.S. Department of Energy-owned high-level waste (HLW) including the Cesium- 137/Strontium-90 capsules from the Hanford Facility and bulk granular HLW from fuel processing in Idaho.

  14. Waste Handling and Emplacement Options for Disposal of Radioactive Waste in Deep Boreholes

    International Nuclear Information System (INIS)

    Cochran, John R.; Hardin, Ernest

    2015-01-01

    Traditional methods cannot be used to handle and emplace radioactive wastes in boreholes up to 16,400 feet (5 km) deep for disposal. This paper describes three systems that can be used for handling and emplacing waste packages in deep borehole: (1) a 2011 reference design that is based on a previous study by Woodward-Clyde in 1983 in which waste packages are assembled into ''strings'' and lowered using drill pipe; (2) an updated version of the 2011 reference design; and (3) a new concept in which individual waste packages would be lowered to depth using a wireline. Emplacement on coiled tubing was also considered, but not developed in detail. The systems described here are currently designed for U.S. Department of Energy-owned high-level waste (HLW) including the Cesium- 137/Strontium-90 capsules from the Hanford Facility and bulk granular HLW from fuel processing in Idaho.

  15. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Beibei [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Department of Geography and Environmental Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD 21218 (United States); Wei, Qi [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Zhang, Bing, E-mail: Zhangb@nju.edu.cn [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China); Bi, Jun [State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210093 (China)

    2013-03-01

    The treatment and disposal of sewage sludge generate considerable amounts of greenhouse gases (GHGs) and pose environmental and economic challenges to wastewater treatment in China. To achieve a more informed and sustainable sludge management, this study conducts a life cycle inventory to investigate the GHG performances of six scenarios involving various sludge treatment technologies and disposal strategies. These scenarios are landfilling (S1), mono-incineration (S2), co-incineration (S3), brick manufacturing (S4), cement manufacturing (S5), and fertilizer for urban greening (S6). In terms of GHG emissions, S2 demonstrates the best performance with its large offset from sludge incineration energy recovery, followed by S4 and S6, whereas S1 demonstrates the poorest performance primarily because of its large quantity of methane leaks. The scenario rankings are affected by the assumptions of GHG offset calculation. In most scenarios, GHG performance could be improved by using waste gas or steam from existing facilities for drying sludge. Furthermore, considering the GHG performance along with economic, health, and other concerns, S6 is recommended. We thus suggest that local governments promote the use of composted sludge as urban greening fertilizers. In addition, the use of sludge with 60% water content, in place of the current standard of 80%, in wastewater treatment plants is proposed to be the new standard for Tai Lake Watershed in China. - Highlights: ► Life-cycle GHG emissions of six sludge handling scenarios are examined. ► Scenario rankings are affected by the assumptions of GHG offset calculation. ► Using heat from existing facilities to dry sludge can improve GHG performance. ► Fertilizer for urban greening is recommended due to its integrated performance. ► The sludge water-content standard is suggested to changed from 80% to 60%.

  16. Life cycle GHG emissions of sewage sludge treatment and disposal options in Tai Lake Watershed, China

    International Nuclear Information System (INIS)

    Liu, Beibei; Wei, Qi; Zhang, Bing; Bi, Jun

    2013-01-01

    The treatment and disposal of sewage sludge generate considerable amounts of greenhouse gases (GHGs) and pose environmental and economic challenges to wastewater treatment in China. To achieve a more informed and sustainable sludge management, this study conducts a life cycle inventory to investigate the GHG performances of six scenarios involving various sludge treatment technologies and disposal strategies. These scenarios are landfilling (S1), mono-incineration (S2), co-incineration (S3), brick manufacturing (S4), cement manufacturing (S5), and fertilizer for urban greening (S6). In terms of GHG emissions, S2 demonstrates the best performance with its large offset from sludge incineration energy recovery, followed by S4 and S6, whereas S1 demonstrates the poorest performance primarily because of its large quantity of methane leaks. The scenario rankings are affected by the assumptions of GHG offset calculation. In most scenarios, GHG performance could be improved by using waste gas or steam from existing facilities for drying sludge. Furthermore, considering the GHG performance along with economic, health, and other concerns, S6 is recommended. We thus suggest that local governments promote the use of composted sludge as urban greening fertilizers. In addition, the use of sludge with 60% water content, in place of the current standard of 80%, in wastewater treatment plants is proposed to be the new standard for Tai Lake Watershed in China. - Highlights: ► Life-cycle GHG emissions of six sludge handling scenarios are examined. ► Scenario rankings are affected by the assumptions of GHG offset calculation. ► Using heat from existing facilities to dry sludge can improve GHG performance. ► Fertilizer for urban greening is recommended due to its integrated performance. ► The sludge water-content standard is suggested to changed from 80% to 60%

  17. Disposal of radioactive waste into clay layers the most natural option

    International Nuclear Information System (INIS)

    Baetsle, L.H.; Bonne, A.

    1990-01-01

    Among the geological formations suitable for the disposal of radioactive waste, the clay formations provide outstanding opportunities : impermeable for water, self-healing, strongly absorbing for ions, widespread in nature. The self-healing properties of large clay deposits have been demonstrated by their auto-sealing and plastic response to tectonic stress and magmatic intrusion. The discovery of fossil trees preserved after geologic periods of burial in clay is one of the most dramatic illustrations of their entombment ability. The physicochemical and hydrologic characteristics of the Boom clay are very favorable for the confinement of migrating radionuclides within the layer. Except for the extremely long half-lives ( 237 Np, 129 I,...) no radionuclide can escape from the clay body. The effects of heat, metal corrosion, material interaction and biochemical degradation on the natural properties of the clay layer are discussed in some detail and related to the natural properties of the clay formation which have to stay unaltered for geologic periods. The first Safety Assessment Report, established by NIRAS-ONDRAF in close collaboration with SCK-CEN, has been submitted to a multi-disciplinary task force which is to advise the Belgian Government on the suitability of the Boom clay layer below the Nuclear Research site of Mol as a potential host formation for nuclear waste coming from the electronuclear program. 13 refs., 2 figs., 1 tab

  18. Fusion option to dispose of spent nuclear fuel and transuranic elements

    International Nuclear Information System (INIS)

    Gohar, Y.

    2000-01-01

    The fusion option is examined to solve the disposition problems of the spent nuclear fuel and the transuranic elements. The analysis of this report shows that the top rated solution, the elimination of the transuranic elements and the long-lived fission products, can be achieved in a fusion reactor. A 167 MW of fusion power from a D-T plasma for sixty years with an availability factor of 0.75 can transmute all the transuranic elements and the long-lived fission products of the 70,000 tons of the US inventory of spent nuclear fuel generated up to the year 2015. The operating time can be reduced to thirty years with use of 334 MW of fusion power, a system study is needed to define the optimum time. In addition, the fusion solution eliminates the need for a geological repository site, which is a major advantage. Meanwhile, such utilization of the fusion power will provide an excellent opportunity to develop fusion energy for the future. Fusion blankets with a liquid carrier for the transuranic elements can achieve a transmutation rate for the transuranic elements up to 80 kg/MW.y of fusion power with k eff of 0.98. In addition, the liquid blankets have several advantages relative to the other blanket options. The energy from this transmutation is utilized to produce revenue for the system. Molten salt (Flibe) and lithium-lead eutectic are identified as the most promising liquids for this application, both materials are under development for future fusion blanket concepts. The Flibe molten salt with transuranic elements was developed and used successfully as nuclear fuel for the molten salt breeder reactor in the 1960's

  19. Characterization of roadway stormwater system residuals for reuse and disposal options

    International Nuclear Information System (INIS)

    Jang, Yong-Chul; Jain, Pradeep; Tolaymat, Thabet; Dubey, Brajesh; Singh, Shrawan; Townsend, Timothy

    2010-01-01

    will provide stormwater managers and environmental management authorities with a useful resource to examine proper disposal and beneficial use of catch basin and stormwater pond sediments.

  20. Northern Cheyenne Reservation Coal Bed Natural Resource Assessment and Analysis of Produced Water Disposal Options

    Energy Technology Data Exchange (ETDEWEB)

    Shaochang Wo; David A. Lopez; Jason Whiteman Sr.; Bruce A. Reynolds

    2004-07-01

    Coalbed methane (CBM) development in the Powder River Basin (PRB) is currently one of the most active gas plays in the United States. Monthly production in 2002 reached about 26 BCF in the Wyoming portion of the basin. Coalbed methane reserves for the Wyoming portion of the basin are approximately 25 trillion cubic feet (TCF). Although coal beds in the Powder River Basin extend well into Montana, including the area of the Northern Cheyenne Indian Reservation, the only CBM development in Montana is the CX Field, operated by the Fidelity Exploration, near the Wyoming border. The Northern Cheyenne Reservation is located on the northwest flank of the PRB in Montana with a total land of 445,000 acres. The Reservation consists of five districts, Lame Deer, Busby, Ashland, Birney, and Muddy Cluster and has a population of 4,470 according to the 2000 Census. The CBM resource represents a significant potential asset to the Northern Cheyenne Indian Tribe. Methane gas in coal beds is trapped by hydrodynamic pressure. Because the production of CBM involves the dewatering of coalbed to allow the release of methane gas from the coal matrix, the relatively large volume of the co-produced water and its potential environmental impacts are the primary concerns for the Tribe. Presented in this report is a study conducted by the Idaho National Engineering and Environmental Laboratory (INEEL) and the Montana Bureau of Mines and Geology (MBMG) in partnership with the Northern Cheyenne Tribe to assess the Tribe’s CBM resources and evaluate applicable water handling options. The project was supported by the U.S. Department of Energy (DOE) through the Native American Initiative of the National Petroleum Technology Office, under contract DEAC07- 99ID13727. Matching funds were granted by the MBMG in supporting the work of geologic study and mapping conducted at MBMG.

  1. Pilot-scale fluidized-bed combustor testing cofiring animal-tissue biomass with coal as a carcass disposal option

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Elizabeth M. Fedorowicz; David W. Harlan; Linda A. Detwiler; Michelle L. Rossman [Pennsylvania State University, University Park, PA (United States). Energy Institute

    2006-10-15

    This study was performed to demonstrate the technical viability of cofiring animal-tissue biomass (ATB) in a coal-fired fluidized-bed combustor (FBC) as an option for disposing of specified risk materials (SRMs) and carcasses. The purpose of this study was to assess the technical issues of feeding/combusting ATB and not to investigate prion deactivation/pathogen destruction. Overall, the project successfully demonstrated that carcasses and SRMs can be cofired with coal in a bubbling FBC. Feeding ATB into the FBC did, however, present several challenges. Specifically, handling/feeding issues resulting from the small scale of the equipment and the extremely heterogeneous nature of the ATB were encountered during the testing. Feeder modifications and an overbed firing system were necessary. Through statistical analysis, it was shown that the ATB feed location had a greater effect on CO emissions, which were used as an indication of combustion performance, than the fuel type due to the feeding difficulties. Baseline coal tests and tests cofiring ATB into the bed were statistically indistinguishable. Fuel feeding issues would not be expected at the full scale since full-scale units routinely handle low-quality fuels. In a full-scale unit, the disproportionate ratio of feed line size to unit diameter would be eliminated thereby eliminating feed slugging. Also, the ATB would either be injected into the bed, thereby ensuring uniform mixing and complete combustion, or be injected directly above the bed with overfire air ports used to ensure complete combustion. Therefore, it is anticipated that a demonstration at the full scale, which is the next activity in demonstrating this concept, should be successful. As the statistical analysis shows, emissions cofiring ATB with coal would be expected to be similar to that when firing coal only. 14 refs., 5 figs., 6 tabs.

  2. 2005 dossier: granite. Tome: architecture and management of the geologic disposal; Dossier 2005: granite. Tome architecture et gestion du stockage geologique

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the geologic disposal of high-level and long-lived radioactive wastes in granite formations. Content: 1 - Approach of the study: main steps since the December 30, 1991 law, ANDRA's research program on disposal in granitic formations; 2 - high-level and long-lived (HLLL) wastes: production scenarios, waste categories, inventory model; 3 - disposal facility design in granitic environment: definition of the geologic disposal functions, the granitic material, general facility design options; 4 - general architecture of a disposal facility in granitic environment: surface facilities, underground facilities, disposal process, operational safety; 5 - B-type wastes disposal area: primary containers of B-type wastes, safety options, concrete containers, disposal alveoles, architecture of the B-type wastes disposal area, disposal process and feasibility aspects, functions of disposal components with time; 6 - C-type wastes disposal area: C-type wastes primary containers, safety options, super-containers, disposal alveoles, architecture of the C-type wastes disposal area, disposal process in a reversibility logics, functions of disposal components with time; 7 - spent fuels disposal area: spent fuel assemblies, safety options, spent fuel containers, disposal alveoles, architecture of the spent fuel disposal area, disposal process in a reversibility logics, functions of disposal components with time; 8 - conclusions: suitability of the architecture with various types of French granites, strong design, reversibility taken into consideration. (J.S.)

  3. Uncertainties about the safety of disposal leading to a wish to keep alternatives open. Discussion on the concepts 'storage' ('wait and see') vs. 'disposal' and 'retrievable disposal' vs. 'definitive disposal'

    International Nuclear Information System (INIS)

    Norrby, S.

    2000-01-01

    Uncertainties about the safety of final disposal may lead to unwillingness to take decisions about waste management issues that may seem to be non-reversible. This has lead to proposals that we should wait with decisions on final measures and instead store the waste for some period of time. Also the possibility of retrieval may lead to decisions not to go for permanent disposal but instead to retrievable disposal. These aspects and the pros and cons are discussed both from a more general perspective and also with some reflections from the Swedish programme for nuclear waste management and disposal. (author)

  4. Waste disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure

  5. Disposal options for radioactive residues. Development of interdisciplinary evaluation principles in ENTRIA; Entsorgungsoptionen fuer hoch radioaktive Abfaelle. Die Schaffung interdisziplinaerer Bewertungsgrundlagen in ENTRIA

    Energy Technology Data Exchange (ETDEWEB)

    Walther, C. [Hannover Univ. (Germany). Inst. fuer Radiooekologie und Strahlenschutz; Chaudry, S.; Plischke, E.; Roehlig, K.J. [TU Clausthal, Clausthal-Zellerfeld (Germany). Inst. fuer Endlagerforschung; Hocke, P. [Karlsruher Institut fuer Technologie, Karlsruhe (Germany). Inst. fuer Technikfolgenabschaetzung und Systemanalyse; Eckhardt, A. [risicare GmbH, Zollikerberg (Switzerland); Ott, K. [Kiel Univ. (Germany). Philosophisches Seminar

    2016-07-01

    ENTRIA, short for ''Disposal Options for Radioactive Residues: Interdisciplinary Analyses and Development of Evaluation Principles'', is a joint project of twelve institutes or departments of German universities and research institutions as well as a partner from Switzerland. The fundamentally new approach here is the plurality of represented disciplines. ENTRIA analyzes radioactive waste management subjects from the viewpoint of natural sciences, engineering, arts, law and social science. ENTRIA works independently from politics, operators und interest groups. ENTRIA performs purely scientific research analyzing the three most important radioactive waste management option:''Final disposal in deep geological formations without any arrangements for retrieval (maintenance-free deep geological disposal)'', ''disposal in deep geological formations with arrangements for monitoring and retrieval'' and ''surface storage''. Based on these options ENTRIA developed generic ''reference models'' and generic host-rockdependent container models (ENCON). All these models are of generic character, but are elaborated to an extent, e.g. with respect to reversibility time scales, as is necessary for a comparative differentiated evaluation. Long-term surface storage is considered and evaluated because of the increasingly apparent need to address interim storage not only as (temporary) alternative, but also as a necessary part of the overall process. Besides disciplinary work packages performed in ENTRIA several tasks combine the expertise and perspective of disciplines which could classically be considered ''far apart''. A key task is the creation of interdisciplinary evaluation principles. This article provides insight into interdisciplinary working within ENTERIA and describes the present status of this work from the perspective of the authors. However, this is not

  6. Radioactive waste management policy in the UK of best practicable environmental options for waste disposal and storage

    International Nuclear Information System (INIS)

    Johnson, P.D.; Feates, F.S.

    1986-01-01

    The organisations which produce radioactive waste carry the direct responsibility for safe and effective management of the wastes and for meeting the costs. UK Nirex Ltd., the Nuclear Industry Radioactive Waste Executive, has been set up to develop and operate new disposal facilities. Individual producers of radioactive waste undertake research related to the treatment of their own wastes, and UK Nirex Ltd. commissions research related to the disposal facilities it wishes to develop. Whatever new disposal facilities are developed and used, UK Nirex Ltd. will have to show that any proposed facilities comply with the principles for assessment of proposals for the protection of the human environment issued by the Government Authorising Departments in 1984, and which incorporate basic radiological safety requirements

  7. On ocean island geological repository - a second-generation option for disposal of spent fuel and high-level waste

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1993-01-01

    The concept of an ocean subseabed geological high-level waste repository with access via an ocean island is discussed. The technical advantages include, in addition to geologic waste isolation, geographical isolation, near-zero groundwater flow through the disposal site, and near-infinite ocean dilution as a backup in the event of a failure of the repository geological waste isolation system. The institutional advantages may include reduced siting problems and the potential of creating an international waste repository. Establishment of a repository accepting wastes from many countries would allow cost sharing, aid international nonproliferation goals, and ensure proper disposal of spent fuel from developing countries. Major uncertainties that are identified in this concept are the uncertainties in rock conditions at waste disposal depths, costs, and ill-defined institutional issues

  8. 76 FR 51879 - Definition of Solid Waste Disposal Facilities for Tax-Exempt Bond Purposes

    Science.gov (United States)

    2011-08-19

    ... generation, purchase or acquisition into a qualified solid waste disposal process described in paragraph (d... purchases used cars and restores them. This restoration process includes disassembly, cleaning, and... regulations by this Treasury decision (the Final Regulations). Significant aspects of the public comments and...

  9. Energy options

    International Nuclear Information System (INIS)

    Hampton, Michael

    1999-01-01

    This chapter focuses on energy options as a means of managing exposure to energy prices. An intuitive approach to energy options is presented, and traditional definitions of call and put options are given. The relationship between options and swaps, option value and option exercises, commodity options, and option pricing are described. An end-user's guide to energy option strategy is outlined, and straight options, collars, participating swaps and collars, bull and bear spreads, and swaption are examined. Panels explaining the defining of basis risk, and discussing option pricing and the Greeks, delta hedging, managing oil options using the Black-Scholes model, caps, floors and collars, and guidelines on hedging versus speculation with options are included in the paper

  10. Definition of the OPERA safety case for radioactive waste disposal in the Netherlands

    International Nuclear Information System (INIS)

    Hart, Jaap; Wildenborg, Ton; Davis, Paul; Becker, Dirk-Alexander; Verhoef, Ewoud

    2014-01-01

    This paper first gives a short introduction on OPERA, the current Dutch five-year research programme on disposal of radioactive waste. It then zooms in on OPERA WP (Work Package) 2 Safety Case - the OSCAR project, and presents (preliminary) results on the structure of the OPERA safety case, the subject of safety statements, and the OPERA safety assessment methodology. The structure of the initial long-term, post-closure safety case for a disposal facility for radioactive waste in Boom Clay in the Netherlands is being developed in the OSCAR project. Hereto a selection of relevant national and international efforts concerning the set-up of a safety case for geological disposal of radioactive waste (safety case structure, safety assessment methodology, FEP database) has been reviewed considering the objectives and outlines of the OPERA programme described in the OPERA research plan. Not surprisingly, it turned out that the guidelines and databases of the IAEA and NEA developed by the international community pretty well covered all aspects of nationally developed safety cases. Although in OPERA only 'initial and conditional' safety cases (for disposal in low permeable clay and rock salt) will be developed, the programme objective is detailing a first road-map for the long-term research on geological disposal of radioactive waste in the Netherlands. The safety case being developed will serve as a basis for the further development of the subsequent stages of the Dutch radioactive waste disposal programme. The focus of OSCAR is, therefore, to develop and propose a 'future proof' structure for the safety case, drawing on the NEA and IAEA/PRISM methodologies. The OPERA safety case structure being developed will encompass all relevant aspects, or components, of a modern safety case and will link the different components in a practical and transparent way. It will assist in steering the flow of information generated within the different OPERA and as such provide a structured

  11. Assessment of Household Disposal of Pharmaceuticals in Lebanon: Management Options to Protect Water Quality and Public Health

    Science.gov (United States)

    Massoud, May A.; Chami, Ghida; Al-Hindi, Mahmoud; Alameddine, Ibrahim

    2016-05-01

    Pharmaceuticals comprise an extensive group of compounds whose release into the environment has potential adverse impacts on human health and aquatic ecosystems. In many developing countries the extent of the problem and the occurrence of pharmaceuticals in water bodies are generally unknown. While thousands of tons of pharmaceutical substances are used annually, little information is known about their final fate after their intended use. This paper focuses on better understanding the management of human-use pharmaceutical wastes generated at the residential level within the Administrative Beirut Area. A survey encompassing 300 households was conducted. Results revealed that the majority of respondents were found to dispose of their unwanted medications, mainly through the domestic solid waste stream. Willingness to participate in a future collection program was found to be a function of age, medical expenditure, and the respondents' views towards awareness and the importance of establishing a collection system for pharmaceutical wastes. Respondents who stated a willingness to participate in a collection program and/or those who believed in the need for awareness programs on the dangers of improper medical waste disposal tended to favor more collection programs managed by the government as compared to a program run by pharmacies or to the act of re-gifting medication to people in need. Ultimately, collaboration and coordination between concerned stakeholders are essential for developing a successful national collection plan.

  12. Safety studies of HLW-disposal in the Mors salt dome - Support to the salt option of the Pagis project

    International Nuclear Information System (INIS)

    Lindstroem Jensen, K.E.

    1987-01-01

    The study, which is a support to the Pagis project, covers three tasks concerning the evaluation of the Danish salt dome Mors (variant disposal site): evaluation of the human intrusion scenario where a cavern is excavated near the HLW-repository by solution mining technique. The waste is supposed to be leached during the operation period until the abandoned cavern is closed by convergence and the contaminated brine is pressed up into the overburden. Evaluation of the brine intrusion scenario, where the HLW-repository is inadvertently located close to a major brine pocket which subsequently releases its brine content through defects in the repository to the discharge stream for the catchment area. Collection and description of hydrological data of surface and deep layers (down to circa 700 metres) in the repository region. The data will be used by GSF to calculate the radionuclide migration in the geosphere

  13. Evaluation of options relative to the fixation and disposal of 14C-contaminated CO2 as CaCO3

    International Nuclear Information System (INIS)

    Croff, A.G.

    1976-04-01

    A paper study was conducted to determine the best method for fixing the 14 C-contaminated CO 2 resulting from an HTGR fuel block burner as CaCO 3 , and to determine the best methods for disposing of the CaCO 3 thus produced. The fixation method selected was the direct reaction of a Ca(OH) 2 slurry with the CO 2 . The least expensive disposal options which are likely to be acceptable appear to be the shallow-land burial of either drummed CaCO 3 solid (total cost = $18.47/kg heavy metal) or drummed CaCO 3 concreted with cement (total cost = $43.33/kg heavy metal). Neither placing the CO 2 fixation process before the Kr removal process nor separating the bulk of the graphite fuel block from the fuel particles is attractive on both technical and economic grounds. However, reduction of the HTGR fuel nitrogen content appears to be a more attractive method of reducing the 14 C release rate

  14. Pathway analysis for alternate low-level waste disposal methods

    International Nuclear Information System (INIS)

    Rao, R.R.; Kozak, M.W.; McCord, J.T.; Olague, N.E.

    1992-01-01

    The purpose of this paper is to evaluate a complete set of environmental pathways for disposal options and conditions that the Nuclear Regulatory Commission (NRC) may analyze for a low-level radioactive waste (LLW) license application. The regulations pertaining In the past, shallow-land burial has been used for the disposal of low-level radioactive waste. However, with the advent of the State Compact system of LLW disposal, many alternative technologies may be used. The alternative LLW disposal facilities include below- ground vault, tumulus, above-ground vault, shaft, and mine disposal This paper will form the foundation of an update of the previously developed Sandia National Laboratories (SNL)/NRC LLW performance assessment methodology. Based on the pathway assessment for alternative disposal methods, a determination will be made about whether the current methodology can satisfactorily analyze the pathways and phenomena likely to be important for the full range of potential disposal options. We have attempted to be conservative in keeping pathways in the lists that may usually be of marginal importance. In this way we can build confidence that we have spanned the range of cases likely to be encountered at a real site. Results of the pathway assessment indicate that disposal methods can be categorized in groupings based on their depth of disposal. For the deep disposal options of shaft and mine disposal, the key pathways are identical. The shallow disposal options, such as tumulus, shallow-land, and below-ground vault disposal also may be grouped together from a pathway analysis perspective. Above-ground vault disposal cannot be grouped with any of the other disposal options. The pathway analysis shows a definite trend concerning depth of disposal. The above-ground option has the largest number of significant pathways. As the waste becomes more isolated, the number of significant pathways is reduced. Similar to shallow-land burial, it was found that for all

  15. 26 CFR 1.424-1 - Definitions and special rules applicable to statutory options.

    Science.gov (United States)

    2010-04-01

    ... causes the fair market value of Z common stock to decrease to $200 per share. On the same day, Z grants... to divorce (described in section 1041(a)). The special tax treatment of § 1.421-2(a) with respect to... transfer of a statutory option incident to divorce. (2) A share of stock acquired by an individual pursuant...

  16. Hazardous landfill management, control options

    International Nuclear Information System (INIS)

    Corbin, M.H.; Lederman, P.B.

    1982-01-01

    The land disposal of hazardous wastes has been a common practice over the last half century. The industrial and environmental communities, as well as the public, have an immediate challenge to control the contaminants that may be released from waste land disposal facilities. At the same time, land disposal continues to be, in many cases, the only available disposal technique that can be utilized in the next five years. Thus, it is extremely important that environmentally sound landfill management and control techniques be utilized, both for inactive and active sites. There are a number of key steps in developing a sound management and control plan. These include problem definition, personnel safety, characterization, evaluation of control options, cost-effectiveness analysis and development of an integrated control plan. A number of control options, including diversion, regrading, sealing, and leachate treatment are available and more cost effective in most cases than waste removal. These and other options, as well as the methodology to develop an integrated control plan, are discussed, together with examples. (Auth.)

  17. Evaluation of natural gas supply options for south east and central Europe. Part 1: Indicator definitions and single indicator analysis

    International Nuclear Information System (INIS)

    Afgan, Naim H.; Carvalho, Maria G.; Pilavachi, Petros A.; Martins, Nelson

    2007-01-01

    The need for diversification of energy sources is an immanent goal in long term energy strategy. In particular, this is of great importance for the natural gas supply. In this respect, evaluation and assessment of potential natural gas resources and their relation to consumers is of great importance. The natural gas supply in Europe is one of the main issues of European energy strategy to be followed in the future. In particular, the natural gas supply in the southeast countries is important. This paper provides a framework for understanding how much natural gas is available for use in south east and central Europe as well as the links to the recent supply of natural gas and its transport. The analysis is focused on evaluation of the potential routes for natural gas supply to the south east and central European countries. The potential options included in this analysis are the Yamal Route; Nabucco Route; West Balkan Route; LNG NEUM Route and Gas by Wire Route. In this analysis, attention is focused on the following indicators for assessment of potential options: environmental indicator; NG cost indicator; NG transport and royalty indicator; investment indicator; and NG demand indicator. The first part of this paper is devoted to the definition of the indicators and to single indicator analysis. (author)

  18. Waste disposal

    International Nuclear Information System (INIS)

    2005-01-01

    Radioactive waste, as a unavoidable remnant from the use of radioactive substances and nuclear technology. It is potentially hazardous to health and must therefore be managed to protect humans and the environment. The main bulk of radioactive waste must be permanently disposed in engineered repositories. Appropriate safety standards for repository design and construction are required along with the development and implementation of appropriate technologies for the design, construction, operation and closure of the waste disposal systems. As backend of the fuel cycle, resolving the issue of waste disposal is often considered as a prerequisite to the (further) development of nuclear energy programmes. Waste disposal is therefore an essential part of the waste management strategy that contributes largely to build confidence and helps decision-making when appropriately managed. The International Atomic Energy Agency provides assistance to Member States to enable safe and secure disposal of RW related to the development of national RWM strategies, including planning and long-term project management, the organisation of international peer-reviews for research and demonstration programmes, the improvement of the long-term safety of existing Near Surface Disposal facilities including capacity extension, the selection of potential candidate sites for different waste types and disposal options, the characterisation of potential host formations for waste facilities and the conduct of preliminary safety assessment, the establishment and transfer of suitable technologies for the management of RW, the development of technological solutions for some specific waste, the building of confidence through training courses, scientific visits and fellowships, the provision of training, expertise, software or hardware, and laboratory equipment, and the assessment of waste management costs and the provision of advice on cost minimisation aspects

  19. Definition of intrusion scenarios and example concentration ranges for the disposal of near-surface waste at the Hanford Site

    International Nuclear Information System (INIS)

    Aaberg, R.L.; Kennedy, W.E. Jr.

    1990-10-01

    The US Department of Energy (DOE) is in the process of conducting performance assessments of its radioactive waste sites and disposal systems to ensure that public health and safety are protected, the environment is preserved, and that no remedial actions after disposal are required. Hanford Site low-level waste performance assessments are technical evaluations of waste sites or disposal systems that provide a basis for making decisions using established criteria. The purpose of this document is to provide a family of scenarios to be considered when calculating radionuclide exposure to individuals who may inadvertently intrude into near-surface waste disposal sites. Specific performance assessments will use modifications of the general scenarios described here to include additional site/system details concerning the engineering design, waste form, inventory, and environmental setting. This document also describes and example application of the Hanford-specific scenarios in the development of example concentration ranges for the disposal of near-surface wastes. The overall goal of the example calculations is to illustrate the application of the scenarios in a performance assessment to assure that people in the future cannot receive a dose greater than an established limit. 24 refs., 2 figs., 5 tabs

  20. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Blomeke, J.O.

    1979-01-01

    Radioactive waste management and disposal requirements options available are discussed. The possibility of beneficial utilization of radioactive wastes is covered. Methods of interim storage of transuranium wastes are listed. Methods of shipment of low-level and high-level radioactive wastes are presented. Various methods of radioactive waste disposal are discussed

  1. Control, oversight and related terms in the international guidance on geological disposal of radioactive waste - Review of definitions and use

    International Nuclear Information System (INIS)

    2014-01-01

    This document presents the most complete analysis of the use of the words control, oversight, etc. as used in NEA, IAEA and ICRP literature connected to radioactive waste disposal. It reveals the many different ways the same word, 'control', has been used in international guidance and ambiguities than can arise, especially so for the post-closure phase of the repository. The newly introduced ICRP terminology, namely the use of the words 'oversight' and 'built-in controls', represents a step forward in terminology and resolves the ambiguity

  2. Salt disposal: Paradox Basin, Utah

    International Nuclear Information System (INIS)

    1983-04-01

    This report presents the findings of a study conducted for the National Waste Terminal Storage (NWTS) Program. Permanent disposal options are examined for salt resulting from the excavation of a waste repository in the bedded salt deposits of the Paradox Basin of southeastern Utah. The study is based on a repository salt backfill compaction of 60% of the original density which leaves a total of 8 million tons of 95% pure salt to be disposed of over a 30-year period. The feasibility, impacts, and mitigation methods are examined for five options: commercial disposal, permanent onsite surface disposal, permanent offsite disposal, deepwell injection, and ocean and Great Salt Lake disposal. The study concludes the following: Commercial marketing of all repository salt would require a subsidy for transportation to major salt markets. Permanent onsite surface storage is both economically and technically feasible. Permanent offsite disposal is technically feasible but would incur additional transportation costs. Selection of an offsite location would provide a means of mitigating impacts associated with surface storage at the repository site. Deepwell injection is an attractive disposal method; however, the large water requirement, high cost of development, and poor performance of similar operating brine disposal wells eliminates this option from consideration as the primary means of disposal for the Paradox Basin. Ocean disposal is expensive because of high transportation cost. Also, regulatory approval is unlikely. Ocean disposal should be eliminated from further consideration in the Paradox Basin. Great Salt Lake disposal appears to be technically feasible. Great Salt Lake disposal would require state approval and would incur substantial costs for salt transportation. Permanent onsite disposal is the least expensive method for disposal of all repository salt

  3. Disposal Of Waste Matter

    International Nuclear Information System (INIS)

    Kim, Jeong Hyeon; Lee, Seung Mu

    1989-02-01

    This book deals with disposal of waste matter management of soiled waste matter in city with introduction, definition of waste matter, meaning of management of waste matter, management system of waste matter, current condition in the country, collect and transportation of waste matter disposal liquid waste matter, industrial waste matter like plastic, waste gas sludge, pulp and sulfuric acid, recycling technology of waste matter such as recycling system of Black clawson, Monroe and Rome.

  4. Land disposal alternatives for low-level waste

    International Nuclear Information System (INIS)

    Alexander, P.; Lindeman, R.; Saulnier, G.; Adam, J.; Sutherland, A.; Gruhlke, J.; Hung, C.

    1982-01-01

    The objective of this project is to develop data regarding the effectiveness and costs of the following options for disposing of specific low-level nuclear waste streams; sanitary landfill; improved shallow land burial; intermediate depth disposal; deep well injection; conventional shallow land burial; engineered surface storage; deep geological disposal; and hydrofracturing. This will be accomplished through the following steps: (1) characterize the properties of the commercial low-level wastes requiring disposal; (2) evaluate the various options for disposing of this waste, characterize selected representative waste disposal sites and design storage facilities suitable for use at those sites; (3) calculate the effects of various waste disposal options on population health risks; (4) estimate the costs of various waste disposal options for specific sites; and (5) perform trade-off analyses of the benefits of various waste disposal options against the costs of implementing these options. These steps are described. 2 figures, 2 tables

  5. Actors Notebook Nr 1 - Geological disposal: an unavoidable option for the system of sustainable management of radioactive wastes? Theme 1 - The role of Cigeo in the waste management system; Theme 2 - The control of risks specific to Cigeo

    International Nuclear Information System (INIS)

    2013-05-01

    This issue addresses the issue of geological storage of radioactive wastes. It evokes the concerned wastes, and the warehousing and transmutation as additional rather than alternative solutions to disposal. It presents the Cigeo project which aims at an industrial implementation of a reversible geological disposal. It evokes the dialogue process associated with this project, and the associated risks during the exploitation phase and after disposal closure. The next part first addresses the role of Cigeo in the waste management arrangement. It more particularly presents the different types of wastes to be stored in Cigeo (waste inventory elaboration, brief opinion of the IRSN), addresses the issue of reversibility (law content, notions of parcel retrievability and of reversibility period, definition of reversibility), proposes an overview of warehousing installations (design and safety aspects, long duration warehousing), addresses the possibility of the separation/transmutation technology for long-life wastes (notions and techniques of separation and transmutation, consequences for the fuel cycle). The second part of this issue addresses the management of risks specific to Cigeo. It more particularly addresses the exploitation phase (key notions, risk of dissemination of radioactive materials, personnel exposure and fire hazard, risks related to other external aggressions), the safety of high-activity and medium-activity long-life waste parcels, the storage sealing (associated safety functions, expected properties, issue of performance demonstration), the notion of geological barrier (associated safety functions, geological characteristics and confinement properties of the geological environment, evolution of these properties). The issue finally proposes a set of sheets presenting current experiments and studies: diffusion experiments, study of natural tracers, the study of fractures with respect to radionuclide transport, seismic or electric methods of detection

  6. Oil ''rig'' disposal

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    A comparison of the environmental impacts of disposing of the Brent Spar oil platform on land and at sea is presented, with a view to establishing the best decommissioning option in the light of recent controversy. The document is presented as an aid to comprehension of the scientific and engineering issues involved for Members of Parliament. (UK)

  7. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Allan, C.J.

    1993-01-01

    The Canadian concept for nuclear fuel waste disposal is based on disposing of the waste in a vault excavated 500-1000 m deep in intrusive igneous rock of the Canadian Shield. The author believes that, if the concept is accepted following review by a federal environmental assessment panel (probably in 1995), then it is important that implementation should begin without delay. His reasons are listed under the following headings: Environmental leadership and reducing the burden on future generations; Fostering public confidence in nuclear energy; Forestalling inaction by default; Preserving the knowledge base. Although disposal of reprocessing waste is a possible future alternative option, it will still almost certainly include a requirement for geologic disposal

  8. An International Peer Review of the Safety Options Dossier of the Project for Disposal of Radioactive Waste in Deep Geological Formations (Cigéo). Final Report of the IAEA International Review Team November 2016

    International Nuclear Information System (INIS)

    2017-07-01

    The French Nuclear Safety Authority (Autorité de sûreté nucléaire, ASN) is preparing the evaluation of a licence application for the creation of a deep geological disposal facility in 2018, called Cigéo, for intermediate level, high level and long lived radioactive waste. This licence is preceded by the submission of a Safety Options Dossier to ASN, which provides the French National Radioactive Waste Management Agency (Agence nationale pour la gestion des déchets radioactifs, Andra) the possibility to receive advice from ASN on the preparation of the licence application on the safety principles and approach. The Safety Options Dossier sets out the chosen objectives, concepts and principles for ensuring the safety of the facility. ASN requested the IAEA to organize an international peer review of the Safety Options Dossier. This publication presents the consensus view of the international group of experts convened by the IAEA to conduct the review against the relevant IAEA safety standards and proven international practice and experience. The experts acted in a personal capacity and the views expressed do not necessarily reflect those of the IAEA, the governments of the nominating Member States or the nominating organizations. The basis of this peer review is the set of documents provided by Andra, as the agency responsible for the development of the Cigéo project and for its safety. Consequently, the findings of the reviews are addressed directly to Andra. This publication, however, is primarily submitted to ASN to review the outcomes of the Andra project.

  9. Municipal sludge disposal economics

    Energy Technology Data Exchange (ETDEWEB)

    Jones, J L [SRI International, Menlo Park, CA; Bomberger, Jr, D C; Lewis, F M

    1977-10-01

    Costs for disposal of sludges from a municipal wastewater treatment plant normally represents greater than or equal to 25% of the total plant operating cost. The following 5 sludge handling options are considered: chemical conditioning followed by vacuum filtration, and incineration; high-pressure wet-air oxidation and vacuum filtration or filter press prior to incineration; thermal conditioning, vacuum filtraton, and incineration; high-pressure wet-air oxidation and vacuum filtration, with ash to landfill; aerobic or anaerobic digestion, followed by chemical conditioning, vacuum filtration, and disposal on land; and chemical conditioning, followed by a filter press, flash dryer, and sale as fertilizer. The 1st 2 options result in the ultimate disposal of small amounts of ash in a landfill; the digestion options require a significant landfill; the fertilizer option requires a successful marketing and sales effort. To compare the economies of scale for the options, analyses were performed for 3 plant capacities - 10, 100, and 500 mgd; as plant size increases, the economies of scale for incineration system are quite favorable. The anaerobic digestion system has a poorer capital cost-scaling factor. The incinerator options which start with chemical conditioning consume much less electrical power at all treatment plant sizes; incinerator after thermal conditioning uses more electricity but less fuel. Digestion requires no direct external fossil fuel input. The relative use of fuel is constant at all plant sizes for other options. The incinerator options can produce a significant amount of steam which may be used. The anaerobic digestion process can be a significant net producer of fuel gas.

  10. Mixed waste management options

    International Nuclear Information System (INIS)

    Owens, C.B.; Kirner, N.P.

    1992-01-01

    Currently, limited storage and treatment capacity exists for commercial mixed waste streams. No commercial mixed waste disposal is available, and it has been estimated that if and when commercial mixed waste disposal becomes available, the costs will be high. If high disposal fees are imposed, generators may be willing to apply extraordinary treatment or regulatory approaches to properly dispose of their mixed waste. This paper explores the feasibility of several waste management scenarios and management options. Existing data on commercially generated mixed waste streams are used to identify the realm of mixed waste known to be generated. Each waste stream is evaluated from both a regulatory and technical perspective in order to convert the waste into a strictly low-level radioactive or a hazardous waste. Alternative regulatory approaches evaluated in this paper include a delisting petition) no migration petition) and a treatability variance. For each waste stream, potentially available treatment options are identified that could lead to these variances. Waste minimization methodology and storage for decay are also considered. Economic feasibility of each option is discussed broadly. Another option for mixed waste management that is being explored is the feasibility of Department of Energy (DOE) accepting commercial mixed waste for treatment, storage, and disposal. A study has been completed that analyzes DOE treatment capacity in comparison with commercial mixed waste streams. (author)

  11. Overview of nuclear waste disposal in space

    International Nuclear Information System (INIS)

    Rice, E.E.; Priest, C.C.

    1981-01-01

    One option receiving consideration by the Department of Energy (DOE) is the space disposal of certain high-level nuclear wastes. The National Aeronautics and Space Administration is assessing the space disposal option in support of DOE studies on alternatives for nuclear waste management. The space disposal option is viewed as a complement, since total disposal of fuel rods from commercial power plants is not considered to be economically practical with Space Shuttle technology. The space disposal of certain high-level wastes may, however, provide reduced calculated and perceived risks. The space disposal option in conjunction with terrestrial disposal may offer a more flexible and lower risk overall waste management system. For the space disposal option to be viable, it must be demonstrated that the overall long-term risks associated with this activity, as a complement to the mined geologic repository, would be significantly less than the long-term risk associated with disposing of all the high-level waste. The long-term risk benefit must be achieved within an acceptable short-term and overall program cost. This paper briefly describes space disposal alternatives, the space disposal destination, possible waste mixes and forms, systems and typical operations, and the energy and cost analysis

  12. Definitive design report: Design report project W-025, Radioactive Mixed Waste (RMW) Land Disposal Facility NON-DRAG-OFF. Revision 1, Volume 1 and 2

    International Nuclear Information System (INIS)

    Roscha, V.

    1994-01-01

    The purpose of this report is to describe the definitive design of the Radioactive Mixed Waste (RMW) Non-Drag-Off disposal facility, Project W-025. This report presents a n of the major landfill design features and a discussion of how each of the criteria is addressed in the design. The appendices include laboratory test results, design drawings, and individual analyses that were conducted in support of the design. Revision 1 of this document incorporates design changes resulting from an increase in the required operating life of the W-025 landfill from 2 to 20 years. The rationale for these design changes is described in Golder Associates Inc. 1991a. These changes include (1) adding a 1.5-foot-thick layer of compacted admix directory-under the primary FML on the floor of the landfill to mitigate the effects of possible stress cracking in the primary flexible membrane liner (FML), and (2) increasing the operations layer thickness from two to three feet over the entire landfill area, to provide additional protection for the secondary admix layer against mechanical damage and the effects of freezing and desiccation. The design of the W-025 Landfill has also been modified in response to the results of the EPA Method 9090 chemical compatibility testing program (Golder Associates Inc. 1991b and 1991c), which was completed after the original design was prepared. This program consisted of testing geosynthetic materials and soil/bentonite admix with synthetic leachate having the composition expected during the life of the W-025 Landfill., The results of this program indicated that the polyester geotextile originally specified for the landfill might be susceptible to deterioration. On this basis, polypropylene geotextiles were substituted as a more chemically-resistant alternative. In addition, the percentage of bentonite in the admix was increased to provide sufficiently low permeability to the expected leachate

  13. Variation in the use of definitive treatment options in the management of Graves' disease: a UK clinician survey.

    Science.gov (United States)

    Hookham, Jessica; Collins, Emma E; Allahabadia, Amit; Balasubramanian, Sabapathy P

    2017-04-01

    Graves' disease can be treated with antithyroid drugs (ATDs), radioiodine or surgery. Use of definitive treatments (radioiodine or surgery) varies widely across centres. Specific clinical circumstances, local facilities, patient and clinician preferences and perceptions will affect the choice of treatment. Detailed understanding of UK clinicians' views and their rationale for different treatments is lacking. To study the preferences and perceptions of UK clinicians on the role of surgery and radioiodine in the management of Graves' disease. 'British Thyroid Association' (BTA), 'Society for Endocrinology' (SFE) and 'British Association of Endocrine and Thyroid Surgeons' (BAETS) members were invited to complete an online survey examining their management decisions in Graves' disease and factors that influenced their decisions. 158 responses from UK consultants were included. The ratio of physicians to surgeons was 11:5 and males to females was 12:4. Most clinicians would commence ATDs in uncomplicated first presentation of Graves' disease. A wide range of risk estimates on the effectiveness and risks of treatment was given by clinicians. Radioiodine was used most frequently in relapsed Graves' disease. However, severe eye disease and pregnancy strongly influenced choice in favour of surgery. Surgeons underestimated the success of radioiodine (pGraves' disease. The variation appeared to be dependent on patient and disease-specific factors as well as physician experience, gender and specialty. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  14. Disposal of radioactive wastes. Chapter 11

    International Nuclear Information System (INIS)

    Skitt, J.

    1979-01-01

    An account is given of the history and present position of legislation in the United Kingdom on the disposal of radioactive wastes. The sections are headed: introduction and definitions; history; the Radioactive Substances Act 1960; disposal of solid radioactive wastes through Local Authority services; function of Local Authorities; exemptions; national radioactive waste disposal service; incidents involving radioactivity. (U.K.)

  15. 7 CFR 2902.21 - Disposable containers.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 15 2010-01-01 2010-01-01 false Disposable containers. 2902.21 Section 2902.21... Items § 2902.21 Disposable containers. (a) Definition. Products designed to be used for temporary... paragraph (d): Disposable containers can include boxes and packaging made from paper. Under the Resource...

  16. Analysis of nuclear waste disposal in space, phase 3. Volume 2: Technical report

    Science.gov (United States)

    Rice, E. E.; Miller, N. E.; Yates, K. R.; Martin, W. E.; Friedlander, A. L.

    1980-01-01

    The options, reference definitions and/or requirements currently envisioned for the total nuclear waste disposal in space mission are summarized. The waste form evaluation and selection process is documented along with the physical characteristics of the iron nickel-base cermet matrix chosen for disposal of commercial and defense wastes. Safety aspects of radioisotope thermal generators, the general purpose heat source, and the Lewis Research Center concept for space disposal are assessed as well as the on-pad catastrophic accident environments for the uprated space shuttle and the heavy lift launch vehicle. The radionuclides that contribute most to long-term risk of terrestrial disposal were determined and the effects of resuspension of fallout particles from an accidental release of waste material were studied. Health effects are considered. Payload breakup and rescue technology are discussed as well as expected requirements for licensing, supporting research and technology, and safety testing.

  17. Classification and disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1990-01-01

    This paper reviews the historical development in the U.S. of definitions and requirements for permanent disposal of different classes of radioactive waste. We first consider the descriptions of different waste classes that were developed prior to definitions in laws and regulations. These descriptions usually were not based on requirements for permanent disposal but, rather, on the source of the waste and requirements for safe handling and storage. We then discuss existing laws and regulations for disposal of different waste classes. Current definitions of waste classes are largely qualitative, and thus somewhat ambiguous, and are based primarily on the source of the waste rather than the properties of its radioactive constituents. Furthermore, even though permanent disposal is clearly recognized as the ultimate goal of radioactive water management, current laws and regulations do not associated the definitions of different waste classes with requirement for particular disposal systems. Thus, requirements for waste disposal essentially are unaffected by ambiguities in the present waste classification system

  18. Disposal of hazardous wastes

    International Nuclear Information System (INIS)

    Barnhart, B.J.

    1978-01-01

    The Fifth Life Sciences Symposium entitled Hazardous Solid Wastes and Their Disposal on October 12 through 14, 1977 was summarized. The topic was the passage of the National Resources Conservation and Recovery Act of 1976 will force some type of action on all hazardous solid wastes. Some major points covered were: the formulation of a definition of a hazardous solid waste, assessment of long-term risk, list of specific materials or general criteria to specify the wastes of concern, Bioethics, sources of hazardous waste, industrial and agricultural wastes, coal wastes, radioactive wastes, and disposal of wastes

  19. Disposal safety

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    International consensus does not seem to be necessary or appropriate for many of the issues concerned with the safety of nuclear waste disposal. International interaction on the technical aspects of disposal has been extensive, and this interaction has contributed greatly to development of a consensus technical infrastructure for disposal. This infrastructure provides a common and firm base for regulatory, political, and social actions in each nation

  20. Underground disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1979-08-15

    Disposal of low- and intermediate-level radioactive wastes by shallow land burial, emplacement in suitable abandoned mines, or by deep well injection and hydraulic fracturing has been practised in various countries for many years. In recent years considerable efforts have been devoted in most countries that have nuclear power programmes to developing and evaluating appropriate disposal systems for high-level and transuranium-bearing waste, and to studying the potential for establishing repositories in geological formations underlaying their territories. The symposium, organized jointly by the IAEA and OECD's Nuclear Energy Agency in cooperation with the Geological Survey of Finland, provided an authoritative account of the status of underground disposal programmes throughout the world in 1979. It was evidence of the experience that has been gained and the comprehensive investigations that have been performed to study various options for the underground disposal of radioactive waste since the last IAEA/NEA symposium on this topic (Disposal of Radioactive Waste into the Ground) was held in 1967 in Vienna. The 10 sessions covered the following topics: National programme and general studies, Disposal of solid waste at shallow depth and in rock caverns, underground disposal of liquid waste by deep well injection and hydraulic fracturing, Disposal in salt formations, Disposal in crystalline rocks and argillaceous sediments, Thermal aspects of disposal in deep geological formations, Radionuclide migration studies, Safety assessment and regulatory aspects.

  1. Reserves for shutdown/dismantling and disposal in nuclear technology. Theses and recommendations on reform options; Rueckstellungen fuer Stilllegung/Rueckbau und Entsorgung im Atombereich. Thesen und Empfehlungen zu Reformoptionen

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Bettina [Forum Oekologisch-Soziale Marktwirtschaft e.V. (FOeS), Berlin (Germany). Green Budget Germany (GBG)

    2012-04-11

    The study on reserves for shutdown, dismantling and disposal of nuclear facilities covers the following topics: cost for shutdown, dismantling and disposal and amount and transparency of nuclear reserves, solution by y stock regulated by public law for long-term liabilities, and improvement of the protection in the event of insolvency for the remaining EVU reserves for short- and intermediate-term liabilities. The appendix includes estimations and empirical values for the cost of shutdown and dismantling, estimation of disposal costs, and a summary of Swiss studies on dismantling and disposal and transfer to Germany.

  2. Recycling And Disposal Of Waste

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Ui So

    1987-01-15

    This book introduces sewage disposal sludge including properties of sludge and production amount, stabilization of sludge by anaerobic digestion stabilization of sludge by aerobic digestion, stabilization of sludge by chemical method, and dewatering, water process sludge, human waste and waste fluid of septic tank such as disposal of waste fluid and injection into the land, urban waste like definition of urban waste, collection of urban waste, recycling, properties and generation amount, and disposal method and possibility of injection of industrial waste into the ground.

  3. Regional disposal, a feasible solution for Romania

    International Nuclear Information System (INIS)

    Radu, Maria

    2004-01-01

    Almost every country that exploits or builds nuclear power plants is engaged in its own research or international cooperation programs aiming at identification of optimal solutions of closing the fuel cycle and finding feasible technologies for final disposal of spent fuel and high-level wastes resulting from reprocessing. The general trend that manifests in these countries is to manage on their own territories the final disposal while considering the possibility of regional arrangements for common disposal. But this latter alternative has not been definitively analyzed and decided upon. Hence, European Union and IAEA look for solutions of long term (of the order of hundreds years) for the final disposal, particularly within regional facilities. Multinational repositories where disposal of high-level wastes or spent fuel should appear as a paid specialized servicing, where the operation technical conditions would be well established, as secure from nuclear safety and physical point of view, under the provisions of safeguards agreements, are still under consideration. No matter of the option which will be chosen, closing the nuclear cycle and ensuring a final disposal facility for radioactive wastes are compulsory tasks and issues with many aspects in common (establishing a site hosted by stable deep geological formations, protection by engineered barriers to prevent dispersion of radioactive products into the environment, long term analyses, etc). In this circumstances, having in mind that no other variant appears to be achievable before 2020-2050, intermediate term storage appears as compulsory a solution in developing the fuel cycle both world wide and in Romania, As early as in the first half of 2003 at Cernavoda, the Intermediate Storage for Spent Fuel (DICA) was commissioned. This is a facility founded for the first time in Romania aiming at closing the fuel cycle. The paper presents the current issues and the results obtained so far within the frame of

  4. Options Study - Phase II

    Energy Technology Data Exchange (ETDEWEB)

    R. Wigeland; T. Taiwo; M. Todosow; W. Halsey; J. Gehin

    2010-09-01

    The Options Study has been conducted for the purpose of evaluating the potential of alternative integrated nuclear fuel cycle options to favorably address the issues associated with a continuing or expanding use of nuclear power in the United States. The study produced information that can be used to inform decisions identifying potential directions for research and development on such fuel cycle options. An integrated nuclear fuel cycle option is defined in this study as including all aspects of the entire nuclear fuel cycle, from obtaining natural resources for fuel to the ultimate disposal of used nuclear fuel (UNF) or radioactive wastes. Issues such as nuclear waste management, especially the increasing inventory of used nuclear fuel, the current uncertainty about used fuel disposal, and the risk of nuclear weapons proliferation have contributed to the reluctance to expand the use of nuclear power, even though it is recognized that nuclear power is a safe and reliable method of producing electricity. In this Options Study, current, evolutionary, and revolutionary nuclear energy options were all considered, including the use of uranium and thorium, and both once-through and recycle approaches. Available information has been collected and reviewed in order to evaluate the ability of an option to clearly address the challenges associated with the current implementation and potential expansion of commercial nuclear power in the United States. This Options Study is a comprehensive consideration and review of fuel cycle and technology options, including those for disposal, and is not constrained by any limitations that may be imposed by economics, technical maturity, past policy, or speculated future conditions. This Phase II report is intended to be used in conjunction with the Phase I report, and much information in that report is not repeated here, although some information has been updated to reflect recent developments. The focus in this Options Study was to

  5. Shallow land disposal of radioactive waste

    International Nuclear Information System (INIS)

    1987-01-01

    The application of basic radiation protection concepts and objectives to the disposal of radioactive wastes requires the development of specific reference levels or criteria for the radiological acceptance of each type of waste in each disposal option. This report suggests a methodology for the establishment of acceptance criteria for the disposal of low-level radioactive waste containing long-lived radionuclides in shallow land burial facilities

  6. Disposal of drilling fluids and solids generated from water-based systems in Alberta

    International Nuclear Information System (INIS)

    Parenteau, S.E.

    1999-01-01

    The different disposal options for drilling wastes as outlined in Guide 50 of the Alberta Energy and Utilities Board (EUB) are discussed. Guide 50 provides for the cost effective and environmentally sound disposal of drilling waste generated in Alberta. Each disposal option of the guide is reviewed and common methods of operation are outlined. Relative costs, environmental suitability and liability issues associated with each option are described. Issues regarding overall disposal considerations, on-site and off-site disposal options, hydrocarbon contamination, salt contaminated waste, toxic waste, and documentation of waste disposal outlined. Some recent programs which have been in the trial phase for a few years are also addressed

  7. Waste Disposal

    International Nuclear Information System (INIS)

    Neerdael, B.; Marivoet, J.; Put, M.; B-Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-01-01

    This contribution describes the main activities of the Waste and Disposal Department of the Belgian Nuclear Research Center SCK-CEN. Achievements in 1997 in three topical areas are reported on: performance assessments, waste forms/packages and near-and far field studies

  8. Landfill disposal of very low level waste

    International Nuclear Information System (INIS)

    Luo Shanggeng

    2009-01-01

    The radioactivities of very low level wastes are very low. VLLW can be disposed by simple and economic burial process. This paper describes the significance of segregation of very low level waste (VLLW), the VLLW-definition and its limit value, and presents an introduction of VLLW-disposing approaches operated world wide. The disposal of VLLW in China is also briefly discussed and suggested here. (author)

  9. Disposition Options for Uranium-233

    International Nuclear Information System (INIS)

    Beahm, E.C.; Dole, L.R.; Forsberg, C.W.; Icenhour, A.S.; Storch, S.N.

    1999-01-01

    The U.S. Department of Energy (DOE) Fissile Materials Disposition Program (MD), in support of the U.S. arms-control and nonproliferation policies, has initiated a program to disposition surplus weapons-usable fissile material by making it inaccessible and unattractive for use in nuclear weapons. Weapons-usable fissile materials include plutonium, high-enriched uranium (HEU), and uranium-233 (sup 233)U. In support of this program, Oak Ridge National Laboratory led DOE's contractor efforts to identify and characterize options for the long-term storage and disposal of excess (sup 233)U. Five storage and 17 disposal options were identified and are described herein

  10. HLW disposal dilemma

    International Nuclear Information System (INIS)

    Andrei, V.; Glodeanu, F.

    2003-01-01

    ' strategy is now considered. There is a broad agreement that national organizations are responsible for finding their own solutions for disposal of their wastes. However, this does not mean that they have to find solutions within their own countries. This is the concept of international or multinational sheared repositories, well sited and safe facilities operated for the benefit of a number of users, with effective use of shared resources. This may be the only realistic option for some national programmes. On 22nd February 2002 a small group of organisations from 5 countries inaugurated a new association to support the concept of sharing facilities for storage and disposal of all types of long-lived radioactive wastes. The founding members are from Belgium (ONDRAF Waste Agency), Bulgaria (Kozloduy Power Plant), Hungary (PURAM Waste Agency), Japan (Obayashi Corporation) and Switzerland (Colenco Power Engineering, backed by two of the Swiss nuclear power utilities). The Association is open to all organisations sharing its goals; discussions with a range of further potential members are already underway. Romania might consider the regional disposal option. (authors)

  11. Rehabilitation Options

    Science.gov (United States)

    ... Speech Pathology Occupational Therapy Art Therapy Recreational therapy Neuropsychology Home Care Options Advanced Care Planning Palliative Care ... Speech Pathology Occupational Therapy Art Therapy Recreational therapy Neuropsychology Home Care Options Advanced Care Planning Palliative Care ...

  12. The analysis of geological formations from Romania available for disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    Barariu, Gheorghe; Alecu, Catalin

    2003-01-01

    The majority of countries possessing nuclear power industry has not yet decided upon the option about closing the nuclear cycle. There are still in progress projects concerning the final disposal, while worldwide it is not foreseen the reprocessing of the whole amount of reusable fissionable materials. The annual worldwide production of used nuclear fuel continues to be about 10 500 - 11 000 tones of heavy metal. The difficulties in designing used fuel final disposal repositories led to the design of some interim storage facilities, providing a satisfactory safety level for biosphere. On the other hand, regardless of the selected option we respect to closing the nuclear cycle, a final repository must exists, either for the high level wastes resulted from reprocessing the used nuclear fuel or for the used fuel considered radioactive waste. Although, presently, in Romania, the nuclear fuel extracted from the reactor after its 'useful life' is declared as radioactive waste, it may contain a certain amount of fissionable material that could be used in other types of reactors. This possibility implies taking into account the concept regarding the recovery of fuel after a certain period of time, although, by definition, final disposal means prevention of this possibility. The harmonization of the Romanian legislation with that of the European Community and the adhering to the European Conventions, poses among other issues the problem of the final disposal of the used nuclear fuel. Starting from these major requirements the paper presents the main aspects of the Project 011/11.10.2001, entitled 'Researches for the selection and preliminary characterization of the host rock for the final disposal of the used nuclear fuel', part of The National Research Program: Medium, Energy and Resources. A complex analysis regarding the implications on the design of the Used Nuclear Fuel Final Disposal Repository in Romania was performed, the analysis of the available geological

  13. Estimating waste disposal quantities from raw waste samples

    International Nuclear Information System (INIS)

    Negin, C.A.; Urland, C.S.; Hitz, C.G.; GPU Nuclear Corp., Middletown, PA)

    1985-01-01

    Estimating the disposal quantity of waste resulting from stabilization of radioactive sludge is complex because of the many factors relating to sample analysis results, radioactive decay, allowable disposal concentrations, and options for disposal containers. To facilitate this estimation, a microcomputer spread sheet template was created. The spread sheet has saved considerable engineering hours. 1 fig., 3 tabs

  14. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container. type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3). nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.). building concerned. details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting o...

  15. Waste disposal

    CERN Multimedia

    2006-01-01

    We should like to remind you that you can have all commonplace, conventional waste (combustible, inert, wood, etc.) disposed of by the TS-FM Group. Requests for the removal of such waste should be made by contacting FM Support on tel. 77777 or by e-mail (Fm.Support@cern.ch). For requests to be acted upon, the following information must be communicated to FM Support: budget code to be debited for the provision and removal of the skip / container; type of skip required (1m3, 4 m3, 7 m3, 15 m3, 20 m3, 30 m3); nature of the waste to be disposed of (bulky objects, cardboard boxes, etc.); building concerned; details of requestor (name, phone number, department, group, etc.). We should also like to inform you that the TS-FM Group can arrange for waste to be removed from work-sites for firms under contract to CERN, provided that the prior authorisation of the CERN Staff Member in charge of the contract is obtained and the relevant disposal/handling charges are paid. You are reminded that the selective sorting...

  16. A Proposal for Geologic Radioactive Waste Disposal Environmental Zero-State and Subsequent Monitoring Definition - First Lessons Learned from the French Environment Observatory - 13188

    International Nuclear Information System (INIS)

    Landais, Patrick; Leclerc, Elisabeth; Mariotti, Andre

    2013-01-01

    Obtaining a reference state of the environment before the beginning of construction work for a geological repository is essential as it will be useful for further monitoring during operations and beyond, thus keeping a memory of the original environmental state. The area and the compartments of the biosphere to be observed and monitored as well as the choice of the markers (e.g. bio-markers, biodiversity, quality of the environment, etc.) to be followed must be carefully selected. In parallel, the choice and selection of the environmental monitoring systems (i.e. scientific and technical criteria, social requirements) will be of paramount importance for the evaluation of the perturbations that could be induced during the operational phase of the repository exploitation. This paper presents learning points of the French environment observatory located in the Meuse/Haute-Marne that has been selected for studying the feasibility of the underground disposal of high level wastes in France. (authors)

  17. A Proposal for Geologic Radioactive Waste Disposal Environmental Zero-State and Subsequent Monitoring Definition - First Lessons Learned from the French Environment Observatory - 13188

    Energy Technology Data Exchange (ETDEWEB)

    Landais, Patrick; Leclerc, Elisabeth; Mariotti, Andre [Andra, 1-7 rue Jean Monnet, 92298 Chatenay Malabry (France)

    2013-07-01

    Obtaining a reference state of the environment before the beginning of construction work for a geological repository is essential as it will be useful for further monitoring during operations and beyond, thus keeping a memory of the original environmental state. The area and the compartments of the biosphere to be observed and monitored as well as the choice of the markers (e.g. bio-markers, biodiversity, quality of the environment, etc.) to be followed must be carefully selected. In parallel, the choice and selection of the environmental monitoring systems (i.e. scientific and technical criteria, social requirements) will be of paramount importance for the evaluation of the perturbations that could be induced during the operational phase of the repository exploitation. This paper presents learning points of the French environment observatory located in the Meuse/Haute-Marne that has been selected for studying the feasibility of the underground disposal of high level wastes in France. (authors)

  18. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Petit, J.C.

    1998-04-01

    A deep gap, reflecting a persisting fear, separates the viewpoints of the experts and that of the public on the issue of the disposal of nuclear WASTES. The history of this field is that of the proliferation with time of spokesmen who pretend to speak in the name of the both humans and non humans involved. Three periods can be distinguished: 1940-1970, an era of contestation and confusion when the experts alone represents the interest of all; 1970-1990, an era of contestation and confusion when spokespersons multiply themselves, generating the controversy and the slowing down of most technological projects; 1990-, an era of negotiation, when viewpoints, both technical and non technical, tend to get closer and, let us be optimistic, leading to the overcome of the crisis. We show that, despite major differences, the options and concepts developed by the different actors are base on two categories of resources, namely Nature and Society, and that the consensus is built up through their 'hydridation'. we show in this part that the perception of nuclear power and, in particular of the underground disposal of nuclear wastes, involves a very deep psychological substrate. Trying to change mentalities in the domain by purely scientific and technical arguments is thus in vain. The practically instinctive fear of radioactivity, far from being due only to lack of information (and education), as often postulated by scientists and engineers, is rooted in archetypical structures. These were, without doubt, reactivated in the 40 s by the traumatizing experience of the atomic bomb. In addition, anthropological-linked considerations allow us to conclude that he underground disposal of wastes is seen as a 'rape' and soiling of Mother Earth. This contributes to explaining, beyond any rationality, the refusal of this technical option by some persons. However, it would naturally be simplistic and counter-productive to limit all controversy in this domain to these psychological aspects

  19. Greater-confinement disposal

    International Nuclear Information System (INIS)

    Trevorrow, L.E.; Schubert, J.P.

    1989-01-01

    Greater-confinement disposal (GCD) is a general term for low-level waste (LLW) disposal technologies that employ natural and/or engineered barriers and provide a degree of confinement greater than that of shallow-land burial (SLB) but possibly less than that of a geologic repository. Thus GCD is associated with lower risk/hazard ratios than SLB. Although any number of disposal technologies might satisfy the definition of GCD, eight have been selected for consideration in this discussion. These technologies include: (1) earth-covered tumuli, (2) concrete structures, both above and below grade, (3) deep trenches, (4) augered shafts, (5) rock cavities, (6) abandoned mines, (7) high-integrity containers, and (8) hydrofracture. Each of these technologies employ several operations that are mature,however, some are at more advanced stages of development and demonstration than others. Each is defined and further described by information on design, advantages and disadvantages, special equipment requirements, and characteristic operations such as construction, waste emplacement, and closure

  20. 12 CFR 41.83 - Disposal of consumer information.

    Science.gov (United States)

    2010-01-01

    ... Duties of Users of Consumer Reports Regarding Address Discrepancies and Records Disposal § 41.83 Disposal of consumer information. (a) Definitions as used in this section. (1) Bank means national banks... 12 Banks and Banking 1 2010-01-01 2010-01-01 false Disposal of consumer information. 41.83 Section...

  1. Whither nuclear waste disposal?

    International Nuclear Information System (INIS)

    Cotton, T.A.

    1990-01-01

    With respect to the argument that geologic disposal has failed, I do not believe that the evidence is yet sufficient to support that conclusion. It is certainly true that the repository program is not progressing as hoped when the Nuclear Waste Policy Act of 1982 established a 1998 deadline for initial operation of the first repository. The Department of Energy (DOE) now expects the repository to be available by 2010, and tat date depends upon a finding that the Yucca Mountain site - the only site that DOE is allowed by law to evaluate - is in fact suitable for use. Furthermore, scientific evaluation of the site to determine its suitability is stopped pending resolution of two lawsuits. However, I believe it is premature to conclude that the legal obstacles are insuperable, since DOE just won the first of the two lawsuits, and chances are good it will win the second. The concept of geologic disposal is still broadly supported. A recent report by the Board on Radioactive Waste Management of the National Research Council noted that 'There is a worldwide scientific consensus that deep geological disposal, the approach being followed in the United States, is the best option for disposing of high-level radioactive waste'. The U.S. Nuclear Regulatory Commission (USNRC) recently implicitly endorsed this view in adopting an updated Waste Confidence position that found confidence that a repository could be available in the first quarter of the next century - sufficient time to allow for rejection of Yucca Mountain and evaluation of a new site

  2. Whither nuclear waste disposal?

    Energy Technology Data Exchange (ETDEWEB)

    Cotton, T A [JK Research Associates, Silver Spring, MD (United States)

    1990-07-01

    With respect to the argument that geologic disposal has failed, I do not believe that the evidence is yet sufficient to support that conclusion. It is certainly true that the repository program is not progressing as hoped when the Nuclear Waste Policy Act of 1982 established a 1998 deadline for initial operation of the first repository. The Department of Energy (DOE) now expects the repository to be available by 2010, and tat date depends upon a finding that the Yucca Mountain site - the only site that DOE is allowed by law to evaluate - is in fact suitable for use. Furthermore, scientific evaluation of the site to determine its suitability is stopped pending resolution of two lawsuits. However, I believe it is premature to conclude that the legal obstacles are insuperable, since DOE just won the first of the two lawsuits, and chances are good it will win the second. The concept of geologic disposal is still broadly supported. A recent report by the Board on Radioactive Waste Management of the National Research Council noted that 'There is a worldwide scientific consensus that deep geological disposal, the approach being followed in the United States, is the best option for disposing of high-level radioactive waste'. The U.S. Nuclear Regulatory Commission (USNRC) recently implicitly endorsed this view in adopting an updated Waste Confidence position that found confidence that a repository could be available in the first quarter of the next century - sufficient time to allow for rejection of Yucca Mountain and evaluation of a new site.

  3. Review of very low level radioactive waste disposal

    International Nuclear Information System (INIS)

    Wang Jinsheng; Guo Minli; Tian Hao; Teng Yanguo

    2005-01-01

    Very low level waste (VLLW) is a new type of radioactive wastes proposed recently. No widely acceptable definition and disposal rules have been established for it. This paper reviews the definition of VLLW in some countries where VLLW was researched early, as well as the disposal policies and methods of VLLW that the IAEA and these countries followed. In addition, the safety assessment programs for VLLW disposal are introduced. It is proved the research of VLLW is urgent and essential in china through the comparison of VLLW disposal between china and these counties. At last, this paper points out the future development of VLLW disposal research in China. (authors)

  4. Greater confinement disposal of high activity and special case wastes at the Nevada Test Site: A unified migration assessment approach

    International Nuclear Information System (INIS)

    Davis, P.A.; Olague, N.E.; Johnson, V.L.; Dickman, P.T.; O'Neill, L.J.

    1993-01-01

    The Department of Energy's Nevada Field Office has disposed of a small quantity of high activity and special case wastes using Greater Confinement Disposal facilities in Area 5 of the Nevada Test Site. Because some of these wastes are transuranic radioactive wastes, the Environmental Protection Agency standards for their disposal under 40 CFR Part 191 which requires a compliance assessment. In conducting the 40 CFR Part 191 compliance assessment, review of the Greater Confinement Disposal inventory revealed potentially land disposal restricted hazardous wastes. The regulatory options for disposing of land disposal restricted wastes consist of (1) treatment and monitoring, or (2) developing a no-migration petition. Given that the waste is already buried without treatment, a no-migration petition becomes the primary option. Based on a desire to minimize costs associated with site characterization and performance assessment, a single approach has been developed for assessing compliance with 40 CFR Part 191, DOE Order 5820.2A (which regulates low-level radioactive wastes contained in Greater Confinement Disposal facilities) and developing a no-migration petition. The approach consists of common points of compliance, common time frame for analysis, and common treatment of uncertainty. The procedure calls for conservative bias of modeling assumptions, including model input parameter distributions and adverse processes and events that can occur over the regulatory time frame, coupled with a quantitative treatment of data and parameter uncertainty. This approach provides a basis for a defensible regulatory decision. In addition, the process is iterative between modeling and site characterization activities, where the need for site characterization activities is based on a quantitative definition of the most important and uncertain parameters or assumptions

  5. Disposal of Radioactive Waste. Specific Safety Requirements

    International Nuclear Information System (INIS)

    2011-01-01

    This publication establishes requirements applicable to all types of radioactive waste disposal facility. It is linked to the fundamental safety principles for each disposal option and establishes a set of strategic requirements that must be in place before facilities are developed. Consideration is also given to the safety of existing facilities developed prior to the establishment of present day standards. The requirements will be complemented by Safety Guides that will provide guidance on good practice for meeting the requirements for different types of waste disposal facility. Contents: 1. Introduction; 2. Protection of people and the environment; 3. Safety requirements for planning for the disposal of radioactive waste; 4. Requirements for the development, operation and closure of a disposal facility; 5. Assurance of safety; 6. Existing disposal facilities; Appendices.

  6. Determining the future for irradiated graphite disposal

    International Nuclear Information System (INIS)

    Neighbour, G.B.; Wickham, A.J.; Hacker, P.J.

    2000-01-01

    In recent years, proposals have been made for the long-term treatment of radioactive graphite waste which have ranged from sea dumping through incineration to land-based disposal, sometimes preceded by a variable period of 'safe storage' within the original reactor containment. Nuclear regulators are challenging the proposed length of 'safe storage' on the basis that essential knowledge may be lost. More recently, political constraints have further complicated the issue by eliminating disposal at sea and imposing a 'near-zero release' philosophy, while public opinion is opposed to land-based disposal and has induced a continual drive towards minimizing radioactivity release to the environment from disposal. This paper proposes that, despite various international agreements, it is time to review technically all options for disposal of irradiated graphite waste as a framework for the eventual decision-making process. It is recognized that the socio-economic and political pressures are high and therefore, given that all currently identified options satisfy the present safety limits, the need to minimize the objective risk is shown to be a minor need in comparison to the public's want of demonstrable control, responsiveness and ability to reverse/change the disposal options in the future. Further, it is shown that the eventual decision-making process for a post-dismantling option for graphite waste must optimize the beneficial attributes of subjective risk experienced by the general public. In addition, in advocating and preferred option to the general public, it is recommended that the industry should communicate at a level commensurate with the public understanding and initiate a process of facilitation which enables the public to arrive at their own solution and constituting a social exchange. Otherwise it is concluded that if the indecision over disposal options is allowed to continue then, by default, graphite will remain in long-term supervised storage. (author)

  7. Final disposal of radioactive waste

    Directory of Open Access Journals (Sweden)

    Freiesleben H.

    2013-06-01

    Full Text Available In this paper the origin and properties of radioactive waste as well as its classification scheme (low-level waste – LLW, intermediate-level waste – ILW, high-level waste – HLW are presented. The various options for conditioning of waste of different levels of radioactivity are reviewed. The composition, radiotoxicity and reprocessing of spent fuel and their effect on storage and options for final disposal are discussed. The current situation of final waste disposal in a selected number of countries is mentioned. Also, the role of the International Atomic Energy Agency with regard to the development and monitoring of international safety standards for both spent nuclear fuel and radioactive waste management is described.

  8. Analysis of scenarios for the direct disposal of spent nuclear fuel disposal conditions as expected in Germany

    International Nuclear Information System (INIS)

    Ashton, P.; Mehling, O.; Mohn, R.; Wingender, H.J.

    1990-01-01

    This report contains an investigation of aspects of the waste management of spent light water reactor fuel by direct disposal in a deep geological formation on land. The areas covered are: interim dry storage of spent fuel with three options of pre-conditioning; conditioning of spent fuel for final disposal in a salt dome repository; disposal of spent fuel (heat-generating waste) in a salt dome repository; disposal of medium and low-level radioactive wastes in the Konrad mine. Dose commitments, effluent discharges and potential incidents were not found to vary significantly for the various conditioning options/salt dome repository types. Due to uncertainty in the cost estimates, in particular the disposal cost estimates, the variation between the three conditioning options examined is not considered as being significant. The specific total costs for the direct disposal strategy are estimated to lie in the range ECU 600 to 700 per kg hm (basis 1988)

  9. 24 CFR 35.120 - Options.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Options. 35.120 Section 35.120... and Definitions for All Programs. § 35.120 Options. (a) Standard treatments. Where interim controls are required by this part, the designated party has the option to presume that lead-based paint or...

  10. Ocean Disposal Site Monitoring

    Science.gov (United States)

    EPA is responsible for managing all designated ocean disposal sites. Surveys are conducted to identify appropriate locations for ocean disposal sites and to monitor the impacts of regulated dumping at the disposal sites.

  11. Waste disposal: preliminary studies

    International Nuclear Information System (INIS)

    Carvalho, J.F. de.

    1983-01-01

    The problem of high level radioactive waste disposal is analyzed, suggesting an alternative for the final waste disposal from irradiated fuel elements. A methodology for determining the temperature field around an underground disposal facility is presented. (E.G.) [pt

  12. Budget Options

    National Research Council Canada - National Science Library

    2000-01-01

    This volume-part of the Congressional Budget Office's (CBO's) annual report to the House and Senate Committees on the Budget-is intended to help inform policymakers about options for the federal budget...

  13. Radioactive mixed waste disposal

    International Nuclear Information System (INIS)

    Jasen, W.G.; Erpenbeck, E.G.

    1993-02-01

    Various types of waste have been generated during the 50-year history of the Hanford Site. Regulatory changes in the last 20 years have provided the emphasis for better management of these wastes. Interpretations of the Atomic Energy Act of 1954 (AEA), the Resource Conservation and Recovery Act of 1976 (RCRA), and the Hazardous and Solid Waste Amendments (HSWA) have led to the definition of radioactive mixed wastes (RMW). The radioactive and hazardous properties of these wastes have resulted in the initiation of special projects for the management of these wastes. Other solid wastes at the Hanford Site include low-level wastes, transuranic (TRU), and nonradioactive hazardous wastes. This paper describes a system for the treatment, storage, and disposal (TSD) of solid radioactive waste

  14. French surface disposal experience. The disposal of large waste

    International Nuclear Information System (INIS)

    Dutzer, Michel; Lecoq, Pascal; Duret, Franck; Mandoki, Robert

    2006-01-01

    delivered at the end of June 2005 and the 55 vessel heads should be disposed by 2013. The safety approach of the facility was adapted to take into account the disposal of such large waste. This methodology and the disposal technique can be generalised to receive large waste from decommissioning activities for which cutting works and conditioning in standard packages would not be relevant. For instance this option is investigated for steam generators and could be helpful to manage waste from the important decommissioning program that is starting up in France in particular for the first generation power reactors. This decommissioning program also motivated the implementation of a facility for the disposal very low level waste, in agreement with French regulation for the management of waste in nuclear facilities. It is located in Morvilliers village, close to Centre de l'Aube facility. Disposal is performed in trenches in clay that are protected from rainwater by removable roofs. Standard packages were developed even if handling techniques are more 'rustic' due to very low dose rate. First deliveries were done in October 2003. Since start up large waste, as concrete blocks or heat exchangers, have been disposed. For very heavy waste, the interest of dedicated disposal cells is investigated. (authors)

  15. Radioactive metals disposal and recycling impact modelling

    International Nuclear Information System (INIS)

    Kemp, N.W.; Lunn, R.J.; Belton, V.; Kockar, I.

    2014-01-01

    Screening life cycle assessment models developed to investigate hypothetical disposal and recycling options for the Windscale Advanced Gas-cooled Reactor heat exchangers were used to generate more complex models addressing the main UK radioactive metals inventory. Both studies show there are significant environmental advantages in the metals recycling promoted by the current low level waste disposal policies, strategies and plans. Financial benefits from current metals treatment options are supported and offer even greater benefits when applied to the UK radioactive metals inventory as a whole. (authors)

  16. Cost considerations in remediation and disposal

    International Nuclear Information System (INIS)

    Dance, J.T.; Huddleston, R.D.

    1999-01-01

    Opportunities for assessing the costs associated with the reclamation and remediation of sites contaminated by oilfield wastes are discussed. The savings can be maximized by paying close attention to five different aspects of the overall site remediation and disposal process. These are: (1) highly focused site assessment, (2) cost control of treatment and disposal options, (3) value added cost benefits, (4) opportunities to control outside influences during the remedial process, and (5) opportunities for managing long-term liabilities and residual risk remaining after the remedial program is completed. It is claimed that addressing these aspects of the process will ultimately lower the overall cost of site remediation and waste disposal

  17. Geological disposal system development

    International Nuclear Information System (INIS)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected

  18. Geological disposal system development

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Chul Hyung; Kuh, J. E.; Kim, S. K. and others

    2000-04-01

    Spent fuel inventories to be disposed of finally and design base spent fuel were determined. Technical and safety criteria for a geological repository system in Korea were established. Based on the properties of spent PWR and CANDU fuels, seven repository alternatives were developed and the most promising repository option was selected by the pair-wise comparison method from the technology point of view. With this option preliminary conceptual design studies were carried out. Several module, e.g., gap module, congruent release module were developed for the overall assessment code MASCOT-K. The prominent overseas databases such as OECD/NEA FEP list were are fully reviewed and then screened to identify the feasible ones to reflect the Korean geo-hydrological conditions. In addition to this the well known scenario development methods such as PID, RES were reviewed. To confirm the radiological safety of the proposed KAERI repository concept the preliminary PA was pursued. Thermo-hydro-mechanical analysis for the near field of repository were performed to verify thermal and mechanical stability for KAERI repository system. The requirements of buffer material were analyzed, and based on the results, the quantitative functional criteria for buffer material were established. The hydraulic and swelling property, mechanical properties, and thermal conductivity, the organic carbon content, and the evolution of pore water chemistry were investigated. Based on the results, the candidate buffer material was selected.

  19. The disposal of Canada's nuclear fuel waste: engineering for a disposal facility

    International Nuclear Information System (INIS)

    Simmons, G.R.; Baumgartner, P.

    1994-01-01

    This report presents some general considerations for engineering a nuclear fuel waste disposal facility, alternative disposal-vault concepts and arrangements, and a conceptual design of a used-fuel disposal centre that was used to assess the technical feasibility, costs and potential effects of disposal. The general considerations and alternative disposal-vault arrangements are presented to show that options are available to allow the design to be adapted to actual site conditions. The conceptual design for a used-fuel disposal centre includes descriptions of the two major components of the disposal facility, the Used-Fuel Packaging Plant and the disposal vault; the ancillary facilities and services needed to carry out the operations are also identified. The development of the disposal facility, its operation, its decommissioning, and the reclamation of the site are discussed. The costs, labour requirements and schedules used to assess socioeconomic effects and that may be used to assess the cost burden of waste disposal to the consumer of nuclear energy are estimated. The Canadian Nuclear Fuel Waste Management Program is funded jointly by AECL and Ontario Hydro under the auspices of the CANDU Owners Group. (author)

  20. Technetium removal: preliminary flowsheet options

    International Nuclear Information System (INIS)

    Eager, K.M.

    1995-01-01

    This document presents the results of a preliminary investigation into options for preliminary flowsheets for 99Tc removal from Hanford Site tank waste. A model is created to show the path of 99Tc through pretreatment to disposal. The Tank Waste Remediation (TWRS) flowsheet (Orme 1995) is used as a baseline. Ranges of important inputs to the model are developed, such as 99Tc inventory in the tanks and important splits through the TWRS flowsheet. Several technetium removal options are discussed along with sensitivities of the removal schemes to important model parameters

  1. Retrievable disposal - opposing views on ethics

    International Nuclear Information System (INIS)

    Selling, H.A.

    2000-01-01

    In the previous decades many research programmes on the disposal of radioactive waste have been completed in the Netherlands. The experts involved have reconfirmed their view that deep underground disposal in suitable geological formations would ensure a safe and prolonged isolation of the waste from the biosphere. Both rock salt and clay formations are considered to qualify as a suitable host rock. In 1993 the government in a position paper stated that such a repository should be designed in a way that the waste can be retrieved from it, should the need arise. In an attempt to involve stakeholders in the decision-making process, a research contract was awarded to an environmental group to study the ethical aspects related to retrievable disposal of radioactive waste. In their report which was published in its final form in January 2000 the authors concluded that retrievable disposal is acceptable from an ethical point of view. However, this conclusion was reached in the understanding that this situation of retrievability would be permanent. From the concept of equity between generations, each successive generation should be offered equal opportunities to decide for itself how to dispose of the radioactive waste. Consequently, the preferred disposal option is retrievable disposal (or long term storage) in a surface facility. Although this view is not in conformity with the ''official'' position on radioactive waste disposal, there is a benefit of having established a dialogue between interested parties in a broad sense. (author)

  2. Final disposal of nuclear waste

    Energy Technology Data Exchange (ETDEWEB)

    Anon,

    1995-10-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK).

  3. Final disposal of nuclear waste

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The nuclear industry argues that high level radioactive waste can be safely disposed of in deep underground repositories. As yet, however, no such repositories are in use and the amount of spent nuclear fuel in ponds and dry storage is steadily increasing. Although the nuclear industry further argues that storage is a safe option for up to 50 years and has the merit of allowing the radioactivity of the fuel to decay to a more manageable level, the situation seems to be far from ideal. The real reasons for procrastination over deep disposal seem to have as much to do with politics as safe technology. The progress of different countries in finding a solution to the final disposal of high level waste is examined. In some, notably the countries of the former Soviet Union, cost is a barrier; in others, the problem has not yet been faced. In these countries undertaking serious research into deep disposal there has been a tendency, in the face of opposition from environmental groups, to retreat to sites close to existing nuclear installations and to set up rock laboratories to characterize them. These sites are not necessarily the best geologically, but the laboratories may end up being converted into actual repositories because of the considerable financial investment they represent. (UK)

  4. Radioactive waste disposal in UK: progress to date

    International Nuclear Information System (INIS)

    Folger, Michael

    1995-01-01

    In this paper, originally presented at a conference organised by the Financial Times, three main topics are covered. First, the current disposal strategies for different classes of waste, taking account of the Government's Consultative Document published recently. Second, an update on site characterisation at Sellafield and on the deep repository programme which will follow if Nirex's work confirms the site can support the demanding safety case disposal of intermediate level waste. Third, comments on costs of various options for waste disposal. (author)

  5. Safety assessment for radwaste disposal in Korea: Pt. 1

    International Nuclear Information System (INIS)

    Suh, I.S.; Park, H.H.; Han, K.W.; Hahn, P.S.

    1986-01-01

    A simplified safety analysis code has been established in order to provide a basic methodology for the preliminary selection of a disposal method. The disposal type selection is prerequisite to meet the requirements of low and intermediate level radwaste management program in Korea. The code covers resaturation and leaching, migration through fracture-porous media transport such that the rock cavern disposal option can be evaluated compared with that of shallow land burial

  6. Management of radioactive fuel wastes: the Canadian disposal program

    International Nuclear Information System (INIS)

    Boulton, J.

    1978-10-01

    This report describes the research and development program to verify and demonstrate the concepts for the safe, permanent disposal of radioactive fuel wastes from Canadian nuclear reactors. The program is concentrating on deep underground disposal in hard-rock formations. The nature of the radioactive wastes is described, and the options for storing, processing, packaging and disposing of them are outlined. The program to verify the proposed concept, select a suitable site and to build and operate a demonstration facility is described. (author)

  7. Spent fuel disposal: is the underground the sole solution?

    International Nuclear Information System (INIS)

    Nachmilner, L.

    1997-01-01

    The following 4 major approaches to spent fuel disposal are discussed: permanent storage in an underground repository, reprocessing, partitioning and transmutation, and accelerator driven transmutation. It is concluded that underground disposal will remain the basic option for the near future, although pursuing the other methods is certainly worth while. (P.A.)

  8. The French geological disposal project CIGEO

    Energy Technology Data Exchange (ETDEWEB)

    Ouzounian, G. [ANDRA, Chatenay-Malabry cedex (France)

    2015-07-01

    This paper discusses the major management options for high level waste in France. Safety of the population and protection of the environment is the first priority. Reprocessing of used fuel and reuse of valuable material is considered. Reversible geological disposal (Cigéo Project) is the reference solution for the high-level waste.

  9. Ocean disposal of heat generating waste

    International Nuclear Information System (INIS)

    1985-06-01

    A number of options for the disposal of vitrified heat generating waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the engineering and operational aspects of the Penetrator Option for ocean disposal to enable technical comparisons with other options to be made. In the Penetrator Option concept, waste would be loaded into carefully designed containers which would be launched at a suitable deep ocean site where they would fall freely through the water and would embed themselves completely within the seabed sediments. Radiological protection would be provided by a multi-barrier system including the vitrified waste form, the penetrator containment, the covering sediment and the ocean. Calculations and demonstration have shown that penetrators could easily achieve embedment depths in excess of 30m and preliminary radiological assessments indicate that 30m of intact sediment would be an effective barrier for radionuclide isolation. The study concludes that a 75mm thickness of low carbon steel appears to be sufficient to provide a containment life of 500 to 1000 years during which time the waste heat output would have decayed to an insignificant level. Disposal costs have been assessed. (author)

  10. Disposal of high-level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Costello, J M [Australian Atomic Energy Commission Research Establishment, Lucas Heights

    1982-03-01

    The aims and options for the management and disposal of highly radioactive wastes contained in spent fuel from the generation of nuclear power are outlined. The status of developments in reprocessing, waste solidification and geologic burial in major countries is reviewed. Some generic assessments of the potential radiological impacts from geologic repositories are discussed, and a perspective is suggested on risks from radiation.

  11. Ultimate disposal: a plan for achievement

    International Nuclear Information System (INIS)

    Bartlett, J.W.

    1975-01-01

    Four major topics relevant to R and D plans for disposal were: functions of planning, plans development procedures, R and D program procedures, and R and D plans content. Comments on these topics emphasize four major points: plans and their results support decisions on disposal methods; decisions will winnow options on the basis of comprehensive assessments; the R and D plan for disposal will be comprehensive and maintain options; time frame for the R and D program may be about 20 years. Prior and on-going work has provided a good foundation for this planning effort and the content of the plans. The R and D plans are expected to be developed this year and updated periodically

  12. Low level waste disposal

    International Nuclear Information System (INIS)

    Barthoux, A.

    1985-01-01

    Final disposal of low level wastes has been carried out for 15 years on the shallow land disposal of the Manche in the north west of France. Final participant in the nuclear energy cycle, ANDRA has set up a new waste management system from the production center (organization of the waste collection) to the disposal site including the setting up of a transport network, the development of assessment, additional conditioning, interim storage, the management of the disposal center, records of the location and characteristics of the disposed wastes, site selection surveys for future disposals and a public information Department. 80 000 waste packages representing a volume of 20 000 m 3 are thus managed and disposed of each year on the shallow land disposal. The disposal of low level wastes is carried out according to their category and activity level: - in tumuli for very low level wastes, - in monoliths, a concrete structure, of the packaging does not provide enough protection against radioactivity [fr

  13. 40 CFR 266.210 - What definitions apply to this subpart?

    Science.gov (United States)

    2010-07-01

    ..., Transportation and Disposal. Terms § 266.210 What definitions apply to this subpart? This subpart uses the... waste in accordance with 40 CFR 261.3, “Definition of Hazardous Waste.” Land Disposal Restriction (LDR...

  14. ENVIRONMENTALLY SOUND DISPOSAL OF RADIOACTIVE MATERIALS AT A RCRA HAZARDOUS WASTE DISPOSAL FACILITY

    International Nuclear Information System (INIS)

    Romano, Stephen; Welling, Steven; Bell, Simon

    2003-01-01

    The use of hazardous waste disposal facilities permitted under the Resource Conservation and Recovery Act (''RCRA'') to dispose of low concentration and exempt radioactive materials is a cost-effective option for government and industry waste generators. The hazardous and PCB waste disposal facility operated by US Ecology Idaho, Inc. near Grand View, Idaho provides environmentally sound disposal services to both government and private industry waste generators. The Idaho facility is a major recipient of U.S. Army Corps of Engineers FUSRAP program waste and received permit approval to receive an expanded range of radioactive materials in 2001. The site has disposed of more than 300,000 tons of radioactive materials from the federal government during the past five years. This paper presents the capabilities of the Grand View, Idaho hazardous waste facility to accept radioactive materials, site-specific acceptance criteria and performance assessment, radiological safety and environmental monitoring program information

  15. Optimizing High Level Waste Disposal

    International Nuclear Information System (INIS)

    Dirk Gombert

    2005-01-01

    If society is ever to reap the potential benefits of nuclear energy, technologists must close the fuel-cycle completely. A closed cycle equates to a continued supply of fuel and safe reactors, but also reliable and comprehensive closure of waste issues. High level waste (HLW) disposal in borosilicate glass (BSG) is based on 1970s era evaluations. This host matrix is very adaptable to sequestering a wide variety of radionuclides found in raffinates from spent fuel reprocessing. However, it is now known that the current system is far from optimal for disposal of the diverse HLW streams, and proven alternatives are available to reduce costs by billions of dollars. The basis for HLW disposal should be reassessed to consider extensive waste form and process technology research and development efforts, which have been conducted by the United States Department of Energy (USDOE), international agencies and the private sector. Matching the waste form to the waste chemistry and using currently available technology could increase the waste content in waste forms to 50% or more and double processing rates. Optimization of the HLW disposal system would accelerate HLW disposition and increase repository capacity. This does not necessarily require developing new waste forms, the emphasis should be on qualifying existing matrices to demonstrate protection equal to or better than the baseline glass performance. Also, this proposed effort does not necessarily require developing new technology concepts. The emphasis is on demonstrating existing technology that is clearly better (reliability, productivity, cost) than current technology, and justifying its use in future facilities or retrofitted facilities. Higher waste processing and disposal efficiency can be realized by performing the engineering analyses and trade-studies necessary to select the most efficient methods for processing the full spectrum of wastes across the nuclear complex. This paper will describe technologies being

  16. Talk about disposal for very low level waste

    International Nuclear Information System (INIS)

    Luo Shanggeng

    2008-01-01

    This paper describes the significance of segregation of very low level waste (VLLW), the current VLLW-definition and its limit value, and presents an introduction of four VLLW-disposing approaches operated world wide, as well as disposal of VLLW in China are also briefly discussed and suggested. (authors)

  17. 12 CFR 222.83 - Disposal of consumer information.

    Science.gov (United States)

    2010-01-01

    ... RESERVE SYSTEM FAIR CREDIT REPORTING (REGULATION V) Duties of Users of Consumer Reports Regarding Identity Theft § 222.83 Disposal of consumer information. (a) Definitions as used in this section. (1) You means... 12 Banks and Banking 3 2010-01-01 2010-01-01 false Disposal of consumer information. 222.83...

  18. Energy exotic options

    International Nuclear Information System (INIS)

    Kaminski, V.; Gibner, S.; Pinnamaneni, K.

    1999-01-01

    This chapter with 88 references focuses on the use of exotic options to control exposure to energy prices. Exotic options are defined, and the conversion of a standard option into an exotic option and pricing models are examined. Pricing and hedging exotic options, path-dependent options, multi-commodity options, options on the minimum-or-maximum of two commodities, compound options, digital options, hybrid and complex structures, and natural gas daily options are described. Formulas for option pricing for vanilla, barrier, compound, options on minimum or maximum of two assets, and look back options are given in an appendix

  19. Handling and disposing of radioactive waste

    International Nuclear Information System (INIS)

    Trauger, D.B.

    1983-01-01

    Radioactive waste has been separated by definition into six categories. These are: commercial spent fuel; high-level wastes; transuranium waste; low-level wastes; decommissioning and decontamination wastes; and mill tailings and mine wastes. Handling and disposing of these various types of radioactive wastes are discussed briefly

  20. Geological disposal of radioactive waste. Safety requirements

    International Nuclear Information System (INIS)

    2006-01-01

    This Safety Requirements publication is concerned with providing protection to people and the environment from the hazards associated with waste management activities related to disposal, i.e. hazards that could arise during the operating period and following closure. It sets out the protection objectives and criteria for geological disposal and establishes the requirements that must be met to ensure the safety of this disposal option, consistent with the established principles of safety for radioactive waste management. It is intended for use by those involved in radioactive waste management and in making decisions in relation to the development, operation and closure of geological disposal facilities, especially those concerned with the related regulatory aspects. This publication contains 1. Introduction; 2. Protection of human health and the environment; 3. The safety requirements for geological disposal; 4. Requirements for the development, operation and closure of geological disposal facilities; Appendix: Assurance of compliance with the safety objective and criteria; Annex I: Geological disposal and the principles of radioactive waste management; Annex II: Principles of radioactive waste management

  1. Treated Effluent Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Treated non-hazardous and non-radioactive liquid wastes are collected and then disposed of through the systems at the Treated Effluent Disposal Facility (TEDF). More...

  2. Options theory

    International Nuclear Information System (INIS)

    Markland, J.T.

    1992-01-01

    Techniques used in conventional project appraisal are mathematically very simple in comparison to those used in reservoir modelling, and in the geosciences. Clearly it would be possible to value assets in mathematically more sophisticated ways if it were meaningful and worthwhile so to do. The DCf approach in common use has recognized limitations; the inability to select a meaningful discount rate being particularly significant. Financial Theory has advanced enormously over the last few years, along with computational techniques, and methods are beginning to appear which may change the way we do project evaluations in practice. The starting point for all of this was a paper by Black and Scholes, which asserts that almost all corporate liabilities can be viewed as options of varying degrees of complexity. Although the financial presentation may be unfamiliar to engineers and geoscientists, some of the concepts used will not be. This paper outlines, in plain English, the basis of option pricing theory for assessing the market value of a project. it also attempts to assess the future role of this type of approach in practical Petroleum Exploration and Engineering economics. Reference is made to relevant published Natural Resource literature

  3. Contemplating future energy options

    International Nuclear Information System (INIS)

    Pooley, D.

    2005-01-01

    All political parties in the UK accept that we should move away from our reliance on fossil fuels towards a much greater use of alternative energy technologies. Nuclear power is one of these but finds minimal support in the political spectrum. The article reviews the European Commission's Advisory Group on Energy submission to the EC's report entitled 'Key Tasks for European Energy R and D'. The 'strength and weaknesses' of the various 'alternative energy' systems (including nuclear power) are summarised and then the key R and D tasks which, if they are carried out successfully, should make the eight selected technologies significantly more attractive. However, the message here is clear enough: there are no easy options, only a range of very imperfect possibilities, despite what enthusiastic proponents of each may say. Nuclear fission is certainly one of the most attractive options available, but the industry needs to continue to strive to eliminate the possibility of significant off-site releases, whether caused by plant failure or by human error or intention, and to prove beyond reasonable doubt the safety of high-level radioactive waste disposal. (author)

  4. NRC perspective on alternative disposal methods

    International Nuclear Information System (INIS)

    Pittiglio, C.L.; Tokar, M.

    1987-01-01

    In this paper is discussed an NRC staff strategy for the development of technical criteria and procedures for the licensing of various alternatives for disposal of low-level radioactive waste. Steps taken by the staff to identify viable alternative disposal methods and to comply with the requirements of the Low-Level Radioactive Waste Policy Amendments Act (LLRWPAA) of 1985 are also discussed. The strategy proposed by the NRC staff is to focus efforts in FY 87 on alternative concepts that incorporate concrete materials with soil or rock cover (e.g., below ground vaults and earth-mounded concrete bunkers), which several State and State Compacts have identified as preferred disposal options. While the NRC staff believes that other options, such as above ground vaults and mined cavities, are workable and licensable, the staff also believes, for reasons addressed in the paper, that it is in the best interest of the industry and the public to encourage standardization and to focus limited resources on a manageable number of alternative options. Therefore, guidance on above ground vaults, which are susceptible to long-term materials degradation due to climatological effects, and mined cavities, which represent a significant departure from the current experience base for low-level radioactive waste disposal, will receive minimal attention. 6 references

  5. Depleted uranium storage and disposal trade study: Summary report

    International Nuclear Information System (INIS)

    Hightower, J.R.; Trabalka, J.R.

    2000-01-01

    The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options)

  6. Depleted uranium storage and disposal trade study: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    Hightower, J.R.; Trabalka, J.R.

    2000-02-01

    The objectives of this study were to: identify the most desirable forms for conversion of depleted uranium hexafluoride (DUF6) for extended storage, identify the most desirable forms for conversion of DUF6 for disposal, evaluate the comparative costs for extended storage or disposal of the various forms, review benefits of the proposed plasma conversion process, estimate simplified life-cycle costs (LCCs) for five scenarios that entail either disposal or beneficial reuse, and determine whether an overall optimal form for conversion of DUF6 can be selected given current uncertainty about the endpoints (specific disposal site/technology or reuse options).

  7. Disposal of spent nuclear fuel

    International Nuclear Information System (INIS)

    1979-12-01

    This report addresses the topic of the mined geologic disposal of spent nuclear fuel from Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR). Although some fuel processing options are identified, most of the information in this report relates to the isolation of spent fuel in the form it is removed from the reactor. The characteristics of the waste management system and research which relate to spent fuel isolation are discussed. The differences between spent fuel and processed HLW which impact the waste isolation system are defined and evaluated for the nature and extent of that impact. What is known and what needs to be determined about spent fuel as a waste form to design a viable waste isolation system is presented. Other waste forms and programs such as geologic exploration, site characterization and licensing which are generic to all waste forms are also discussed. R and D is being carried out to establish the technical information to develop the methods used for disposal of spent fuel. All evidence to date indicates that there is no reason, based on safety considerations, that spent fuel should not be disposed of as a waste

  8. Definition of Videogames

    Directory of Open Access Journals (Sweden)

    Grant Tavinor

    2008-01-01

    Full Text Available Can videogames be defined? The new field of games studies has generated three somewhat competing models of videogaming that characterize games as new forms of gaming, narratives, and interactive fictions. When treated as necessary and sufficient condition definitions, however, each of the three approaches fails to pick out all and only videogames. In this paper I argue that looking more closely at the formal qualities of definition helps to set out the range of definitional options open to the games theorist. A disjunctive definition of videogaming seems the most appropriate of these definitional options. The disjunctive definition I offer here is motivated by the observation that there is more than one characteristic way of being a videogame.

  9. Calculations of the radiological impact of disposal of unit activity of selected radionuclides for use in waste management system studies

    International Nuclear Information System (INIS)

    Smith, G.M.

    1985-03-01

    The purpose of the work described is to provide estimates of the radiological impact following disposal of unit activity via each of several options, including shallow burial, engineered trench disposal, disposal in a geologic repository and disposal on the deep ocean bed. Results are presented for a range of important representative radionuclides. No single option is clearly the best from the radiological point of view. However, in conjunction with waste inventory data the results may be used to provide a preliminary view of the relative radiological merits of the various disposal options. (author)

  10. Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities

    International Nuclear Information System (INIS)

    2003-12-01

    Radioactive waste must be managed safely, consistent with internationally agreed safety standards. The disposal method chosen for the waste should be commensurate with the hazard and longevity of the waste. Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides and low concentrations of long lived radionuclides. The term 'near surface disposal' encompasses a wide range of design options, including disposal in engineered structures at or just below ground level, disposal in simple earthen trenches a few metres deep, disposal in engineered concrete vaults, and disposal in rock caverns several tens of metres below the surface. The use of a near surface disposal option requires design and operational measures to provide for the protection of human health and the environment, both during operation of the disposal facility and following its closure. To ensure the safety of both workers and the public (both in the short term and the long term), the operator is required to design a comprehensive waste management system for the safe operation and closure of a near surface disposal facility. Part of such a system is to establish criteria for accepting waste for disposal at the facility. The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures and in addition, to prevent or limit hazards, which could arise from non-radiological causes. Waste acceptance criteria include limits on radionuclide content concentration in waste materials, and radionuclide amounts in packages and in the repository as a whole. They also include limits on quantity of free liquids, requirements for exclusion of chelating agents and pyrophoric materials, and specifications of the characteristics of the waste containers. Largely as a result of problems encountered at some disposal facilities operated in the past, in 1985 the IAEA published guidance on generic acceptance

  11. Low-level radioactive waste management options

    International Nuclear Information System (INIS)

    Schmalz, R.F.

    1989-01-01

    This paper discusses the non-technical problems associated with the social and political obstacles to the secure disposal of low level radioactive waste. The author reviews thirty years' experience managing non-military wastes. The merits of available options are considered

  12. Krypton-85 disposal program. Semiannual report, August 15, 1977--March 31, 1978

    International Nuclear Information System (INIS)

    Klett, R.D.

    1979-02-01

    The first 7.5 months of the Krypton-85 disposal program are summarized. Included are task definitions and initial progress in geologic disposal system studies, SURF compatibility, augmented heat dissipation, material qualification, exterior canister compatibility, ceramic liners for canisters, and geologic transport. Feasibility studies indicate that Kr-85 can be disposed of at SURF facility or in near-surface geologic repositories

  13. Technical concept for a greater-confinement-disposal test facility

    International Nuclear Information System (INIS)

    Hunter, P.H.

    1982-01-01

    Greater confinement disposal (GCO) has been defined by the National Low-Level Waste Program as the disposal of low-level waste in such a manner as to provide greater containment of radiation, reduce potential for migration or dispersion or radionuclides, and provide greater protection from inadvertent human and biological intrusions in order to protect the public health and safety. This paper discusses: the need for GCD; definition of GCD; advantages and disadvantages of GCD; relative dose impacts of GCD versus shallow land disposal; types of waste compatible with GCD; objectives of GCD borehole demonstration test; engineering and technical issues; and factors affecting performance of the greater confinement disposal facility

  14. Disposal facility data for the interim performance

    International Nuclear Information System (INIS)

    Eiholzer, C.R.

    1995-01-01

    The purpose of this report is to identify and provide information on the waste package and disposal facility concepts to be used for the low-level waste tank interim performance assessment. Current concepts for the low-level waste form, canister, and the disposal facility will be used for the interim performance assessment. The concept for the waste form consists of vitrified glass cullet in a sulfur polymer cement matrix material. The waste form will be contained in a 2 x 2 x 8 meter carbon steel container. Two disposal facility concepts will be used for the interim performance assessment. These facility concepts are based on a preliminary disposal facility concept developed for estimating costs for a disposal options configuration study. These disposal concepts are based on vault type structures. None of the concepts given in this report have been approved by a Tank Waste Remediation Systems (TWRS) decision board. These concepts will only be used in th interim performance assessment. Future performance assessments will be based on approved designs

  15. Alternatives for definse waste-salt disposal

    International Nuclear Information System (INIS)

    Benjamin, R.W.; McDonell, W.R.

    1983-01-01

    Alternatives for disposal of decontaminated high-level waste salt at Savannah River were reviewed to estimate costs and potential environmental impact for several processes. In this review, the reference process utilizing intermediate-depth burial of salt-concrete (saltcrete) monoliths was compared with alternatives including land application of the decontaminated salt as fertilizer for SRP pine stands, ocean disposal with and without containment, and terminal storage as saltcake in existing SRP waste tanks. Discounted total costs for the reference process and its modifications were in the same range as those for most of the alternative processes; uncontained ocean disposal with truck transport to Savannah River barges and storage as saltcake in SRP tanks had lower costs, but presented other difficulties. Environmental impacts could generally be maintained within acceptable limits for all processes except retention of saltcake in waste tanks, which could result in chemical contamination of surrounding areas on tank collapse. Land application would require additional salt decontamination to meet radioactive waste disposal standards, and ocean disposal without containment is not permitted in existing US practice. The reference process was judged to be the only salt disposal option studied which would meet all current requirements at an acceptable cost

  16. Possibility of Radioactive and Toxic WasteDisposal in a Rock Ssalt Deposits in Slovakia Combining Wells and Cavities

    Directory of Open Access Journals (Sweden)

    Škvareková Erika

    2004-09-01

    Full Text Available Disposal of radioactive and toxic waste in rock salt can be performed in two ways – disposal in the salt mine repository or disposal in the deep wells connected with salt cavity. Presented article deals with the option of the disposal in a salt cavity at medium depths. The article also cover partially salt deposits in Slovakia and their potential suitability for waste disposal..

  17. Disposal of slightly contaminated radioactive wastes from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Minns, J.L. [Nuclear Regulatory Commission, Washington, DC (United States)

    1995-02-01

    With regard to the disposal of solid wastes, nuclear power plants basically have two options, disposal in a Part 61 licensed low-level waste site, or receive approval pursuant to 20.2002 for disposal in a manner not otherwise authorized by the NRC. Since 1981, the staff has reviewed and approved 30 requests for disposal of slightly contaminated radioactive materials pursuant to Section 20.2002 (formerly 20.302) for nuclear power plants located in non-Agreement States. NRC Agreement States have been delegated the authority for reviewing and approving such disposals (whether onsite or offsite) for nuclear power plants within their borders. This paper describes the characteristics of the waste disposed of, the review process, and the staff`s guidelines.

  18. Design Evolution Study - Aging Options

    International Nuclear Information System (INIS)

    McDaniel, P.

    2002-01-01

    The purpose of this study is to identify options and issues for aging commercial spent nuclear fuel received for disposal at the Yucca Mountain Mined Geologic Repository. Some early shipments of commercial spent nuclear fuel to the repository may be received with high-heat-output (younger) fuel assemblies that will need to be managed to meet thermal goals for emplacement. The capability to age as much as 40,000 metric tons of heavy metal of commercial spent nuclear he1 would provide more flexibility in the design to manage this younger fuel and to decouple waste receipt and waste emplacement. The following potential aging location options are evaluated: (1) Surface aging at four locations near the North Portal; (2) Subsurface aging in the permanent emplacement drifts; and (3) Subsurface aging in a new subsurface area. The following aging container options are evaluated: (1) Complete Waste Package; (2) Stainless Steel inner liner of the waste package; (3) Dual Purpose Canisters; (4) Multi-Purpose Canisters; and (5) New disposable canister for uncanistered commercial spent nuclear fuel. Each option is compared to a ''Base Case,'' which is the expected normal waste packaging process without aging. A Value Engineering approach is used to score each option against nine technical criteria and rank the options. Open issues with each of the options and suggested future actions are also presented. Costs for aging containers and aging locations are evaluated separately. Capital costs are developed for direct costs and distributable field costs. To the extent practical, unit costs are presented. Indirect costs, operating costs, and total system life cycle costs will be evaluated outside of this study. Three recommendations for aging commercial spent nuclear fuel--subsurface, surface, and combined surface and subsurface are presented for further review in the overall design re-evaluation effort. Options that were evaluated but not recommended are: subsurface aging in a new

  19. Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2011-01-01

    This Safety Requirements publication applies to the disposal of radioactive waste of all types by means of emplacement in designed disposal facilities, subject to the necessary limitations and controls being placed on the disposal of the waste and on the development, operation and closure of facilities. The classification of radioactive waste is discussed. This Safety Requirements publication establishes requirements to provide assurance of the radiation safety of the disposal of radioactive waste, in the operation of a disposal facility and especially after its closure. The fundamental safety objective is to protect people and the environment from harmful effects of ionizing radiation. This is achieved by setting requirements on the site selection and evaluation and design of a disposal facility, and on its construction, operation and closure, including organizational and regulatory requirements.

  20. Legislative and political aspects of waste disposal

    International Nuclear Information System (INIS)

    Freiwald, J.

    1982-01-01

    In the Senate bill on waste disposal the definition for high-level waste was based on the source of the waste. High-level waste was defined as the liquids and solids resulting from reprocessing. The other terms defined in that bill that are crucial for any legislation dealing with high-level waste are storage and disposal. In the Senate bill, the definition of storage specifically mentioned transuranic (TRU) waste, but it did not include TRU waste in the definition of disposal. In the four House versions of the nuclear waste bill, the definition of high-level waste are addressed more carefully. This paper discusses the following four House committee's versions particularly pointing out how TRU waste is defined and handled: (1) Science Committee bill; (2) Interior Committee bill; (3) Commerce Committee bill; and (4) Armed Service Committee bill. The final language concerning TRU waste will depend on the next series of conference between these Committees. After resolving any differences, conferences will be held between the House and Senate. Here a concensus bill will be developed and it will go to the Rules Committee and then to the floor

  1. Analysis of Options Contract, Option Pricing in Agricultural Products

    Directory of Open Access Journals (Sweden)

    H. Tamidy

    2016-03-01

    Full Text Available Introduction: Risk is an essential component in the production and sale of agricultural products. Due to the nature of agricultural products, the people who act in this area including farmers and businesspersons encounter unpredictable fluctuations of prices. On the other hand, the firms that process agricultural products also face fluctuation of price of agricultural inputs. Given that the Canola is considered as one of the inputs of product processing factories, control of unpredictable fluctuations of the price of this product would increase the possibility of correct decision making for farmers and managers of food processing industries. The best available tool for control and management of the price risk is the use of future markets and options. It is evident that the pricing is the main pillar in every trade. Therefore, offering a fair price for the options will be very important. In fact, options trading in the options market create cost insurance stopped. In this way, which can reduce the risks of deflation created in the future, if the person entitled to the benefits of the price increase occurs in the future. Unlike the futures, market where the seller had to deliver the product on time, in the options market, there is no such compulsion. In addition, this is one of the strengths of this option contract, because if there is not enough product for delivery to the futures market as result of chilling, in due course, the farmers suffer, but in the options market there will be a loss. In this study, the setup options of rape, as a product, as well as inputs has been paid for industry. Materials and Methods: In this section. The selection criteria of the disposal of asset base for valuation of European put options and call option is been introduced. That for obtain this purpose, some characteristics of the goods must considered: 1-Unpredictable fluctuations price of underlying asset 2 -large underlying asset cash market 3- The possibility

  2. Oceanography related to deep sea waste disposal

    International Nuclear Information System (INIS)

    1978-09-01

    In connection with studies on the feasibility of the safe disposal of radioactive waste, from a large scale nuclear power programme, either on the bed of the deep ocean or within the deep ocean bed, preparation of the present document was commissioned by the (United Kingdom) Department of the Environment. It attempts (a) to summarize the present state of knowledge of the deep ocean environment relevant to the disposal options and assess the processes which could aid or hinder dispersal of material released from its container; (b) to identify areas of research in which more work is needed before the safety of disposal on, or beneath, the ocean bed can be assessed; and (c) to indicate which areas of research can or should be undertaken by British scientists. The programmes of international cooperation in this field are discussed. The report is divided into four chapters dealing respectively with geology and geophysics, geochemistry, physical oceanography and marine biology. (U.K.)

  3. Hazardous waste disposal sites: Report 2

    International Nuclear Information System (INIS)

    1979-12-01

    Arkansas, like virtually every other state, is faced with a deluge of hazardous waste. There is a critical need for increased hazardous waste disposal capacity to insure continued industrial development. Additionally, perpetual maintenance of closed hazardous waste disposal sites is essential for the protection of the environment and human health. Brief descriptions of legislative and regulatory action in six other states are provided in this report. A report prepared for the New York State Environmental Facilities Corp. outlines three broad approaches states may take in dealing with their hazardous waste disposal problems. These are described. State assistance in siting and post-closure maintenance, with private ownership of site and facility, appears to be the most advantageous option

  4. Radioactive waste disposal - policy and perspectives

    International Nuclear Information System (INIS)

    Roberts, L.E.J.

    1979-01-01

    Methods are discussed that have been developed and could be used for management and disposal of highly active wastes. The characteristics of such waste are, described and the concept of toxic potential is explained. General principles of waste disposal and the various options which have been considered are discussed. Studies on the incorporation of waste into glass, and on container materials are described. Consideration is also given to the requirements of stores and repositories from the aspect of heat dissipation, design, siting, etc. The advantages and disadvantages of the various types of geological formation ie salt, argillaceous deposits, hardrocks, suitable for containment of highly active wastes are examined. Studies carried out on the safety of repositories and an ocean disposal of the waste are summarised. The review ends with a brief account of the status of the vitrification process in the UK and abroad and of future programmes involving geological and related studies. (UK)

  5. Radioactive waste disposal - policy and perspectives

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, L E.J. [UKAEA, Harwell. Atomic Energy Research Establishment

    1979-04-01

    Methods are discussed that have been developed and could be used for management and disposal of highly active wastes. The characteristics of such waste are, described and the concept of toxic potential is explained. General principles of waste disposal and the various options which have been considered are discussed. Studies on the incorporation of waste into glass, and on container materials are described. Consideration is also given to the requirements of stores and repositories from the aspect of heat dissipation, design, siting, etc. The advantages and disadvantages of the various types of geological formation ie salt, argillaceous deposits, hardrocks, suitable for containment of highly active wastes are examined. Studies carried out on the safety of repositories and an ocean disposal of the waste are summarised. The review ends with a brief account of the status of the vitrification process in the UK and abroad and of future programmes involving geological and related studies.

  6. Alternatives to land disposal of solid radioactive mixed wastes on the Hanford Site

    International Nuclear Information System (INIS)

    Jacobsen, P.H.

    1992-03-01

    This report is a detailed description of the generation and management of land disposal restricted mixed waste generated, treated, and stored at the Hanford Site. This report discusses the land disposal restricted waste (mixed waste) managed at the Hanford Site by point of generation and current storage locations. The waste is separated into groups on the future treatment of the waste before disposal. This grouping resulted in the definition of 16 groups or streams of land disposal restricted waste

  7. Brent Spar abandonment - Best Practicable Environmental Option (BPEO) assessment

    International Nuclear Information System (INIS)

    1994-12-01

    Possible methods of abandoning or re-using the Brent Spar storage and tanker offloading facility following its decommissioning in 1991 are discussed. The report assesses six of the thirteen possible methods, including horizontal dismantling and onshore disposal, vertical dismantling and onshore disposal, in-field disposal, deep water disposal, refurbishment and re-use, and continued maintenance, in order to determine the Best Practicable Environmental Option (BPEO). The BPEO covers technical feasibility risks to health and safety of the work force, environmental impacts, public acceptability and costs. (UK)

  8. Shale: an overlooked option for US nuclear waste disposal

    Science.gov (United States)

    Neuzil, Christopher E.

    2014-01-01

    Toss a dart at a map of the United States and, more often than not, it will land where shale can be found underground. A drab, relatively featureless sedimentary rock that historically attracted little interest, shale (as used here, the term includes clay and a range of clay-rich rocks) is entering Americans’ consciousness as a new source of gas and oil. But shale may also offer something entirely different—the ability to safely and permanently house high-level nuclear waste.

  9. 26 CFR 1.318-3 - Estates, trusts, and options.

    Science.gov (United States)

    2010-04-01

    ... 26 Internal Revenue 4 2010-04-01 2010-04-01 false Estates, trusts, and options. 1.318-3 Section 1... (CONTINUED) INCOME TAXES Definitions; Constructive Ownership of Stock § 1.318-3 Estates, trusts, and options... illustrating the use of these factors and methods. (c) The application of section 318(a) relating to options...

  10. Cementitious waste option scoping study report

    International Nuclear Information System (INIS)

    Lee, A.E.; Taylor, D.D.

    1998-02-01

    A Settlement Agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering and Environmental Laboratory (INEEL) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This study investigates the nonseparations Cementitious Waste Option (CWO) as a means to achieve this goal. Under this option all liquid sodium-bearing waste (SBW) and existing HLW calcine would be recalcined with sucrose, grouted, canisterized, and interim stored as a mixed-HLW for eventual preparation and shipment off-Site for disposal. The CWO waste would be transported to a Greater Confinement Disposal Facility (GCDF) located in the southwestern desert of the US on the Nevada Test Site (NTS). All transport preparation, shipment, and disposal facility activities are beyond the scope of this study. CWO waste processing, packaging, and interim storage would occur over a 5-year period between 2013 and 2017. Waste transport and disposal would occur during the same time period

  11. Cementitious waste option scoping study report

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.E.; Taylor, D.D.

    1998-02-01

    A Settlement Agreement between the Department of Energy (DOE) and the State of Idaho mandates that all high-level radioactive waste (HLW) now stored at the Idaho Chemical Processing Plant (ICPP) on the Idaho National Engineering and Environmental Laboratory (INEEL) will be treated so that it is ready to be moved out of Idaho for disposal by a target date of 2035. This study investigates the nonseparations Cementitious Waste Option (CWO) as a means to achieve this goal. Under this option all liquid sodium-bearing waste (SBW) and existing HLW calcine would be recalcined with sucrose, grouted, canisterized, and interim stored as a mixed-HLW for eventual preparation and shipment off-Site for disposal. The CWO waste would be transported to a Greater Confinement Disposal Facility (GCDF) located in the southwestern desert of the US on the Nevada Test Site (NTS). All transport preparation, shipment, and disposal facility activities are beyond the scope of this study. CWO waste processing, packaging, and interim storage would occur over a 5-year period between 2013 and 2017. Waste transport and disposal would occur during the same time period.

  12. Generic Argillite/Shale Disposal Reference Case

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Liange; Colon, Carlos Jové; Bianchi, Marco; Birkholzer, Jens

    2014-08-08

    Radioactive waste disposal in a deep subsurface repository hosted in clay/shale/argillite is a subject of widespread interest given the desirable isolation properties, geochemically reduced conditions, and widespread geologic occurrence of this rock type (Hansen 2010; Bianchi et al. 2013). Bianchi et al. (2013) provides a description of diffusion in a clay-hosted repository based on single-phase flow and full saturation using parametric data from documented studies in Europe (e.g., ANDRA 2005). The predominance of diffusive transport and sorption phenomena in this clay media are key attributes to impede radionuclide mobility making clay rock formations target sites for disposal of high-level radioactive waste. The reports by Hansen et al. (2010) and those from numerous studies in clay-hosted underground research laboratories (URLs) in Belgium, France and Switzerland outline the extensive scientific knowledge obtained to assess long-term clay/shale/argillite repository isolation performance of nuclear waste. In the past several years under the UFDC, various kinds of models have been developed for argillite repository to demonstrate the model capability, understand the spatial and temporal alteration of the repository, and evaluate different scenarios. These models include the coupled Thermal-Hydrological-Mechanical (THM) and Thermal-Hydrological-Mechanical-Chemical (THMC) models (e.g. Liu et al. 2013; Rutqvist et al. 2014a, Zheng et al. 2014a) that focus on THMC processes in the Engineered Barrier System (EBS) bentonite and argillite host hock, the large scale hydrogeologic model (Bianchi et al. 2014) that investigates the hydraulic connection between an emplacement drift and surrounding hydrogeological units, and Disposal Systems Evaluation Framework (DSEF) models (Greenberg et al. 2013) that evaluate thermal evolution in the host rock approximated as a thermal conduction process to facilitate the analysis of design options. However, the assumptions and the

  13. Commercial processing and disposal alternatives for very low levels of radioactive waste in the United States

    International Nuclear Information System (INIS)

    Benda, G.A.

    2005-01-01

    The United States has several options available in the commercial processing and disposal of very low levels of radioactive waste. These range from NRC licensed low level radioactive sites for Class A, B and C waste to conditional disposal or free release of very low concentrations of material. Throughout the development of disposal alternatives, the US promoted a graded disposal approach based on risk of the material hazards. The US still promotes this approach and is renewing the emphasis on risk based disposal for very low levels of radioactive waste. One state in the US, Tennessee, has had a long and successful history of disposal of very low levels of radioactive material. This paper describes that approach and the continuing commercial options for safe, long term processing and disposal. (author)

  14. Update on the Federal Facilities Compliance Act disposal workgroup disposal site evaluation - what has worked and what has not

    International Nuclear Information System (INIS)

    Case, J.T.; Waters, R.D.

    1995-01-01

    The Department of Energy (DOE) has been developing a planning process for mixed low-level waste (MLLW) disposal in conjunction with the affected states for over two years and has screened the potential disposal sites from 49 to 15. A radiological performance evaluation was conducted on these fifteen sites to further identify their strengths and weaknesses for disposal of MLLW. Technical analyses are on-going. The disposal evaluation process has sufficiently satisfied the affected states' concerns to the point that disposal has not been a major issue in the consent order process for site treatment plans. Additionally, a large amount of technical and institutional information on several DOE sites has been summarized. The relative technical capabilities of the remaining fifteen sites have been demonstrated, and the benefits of waste form and disposal facility performance have been quantified. However, the final disposal configuration has not yet been determined. Additionally, the MLLW disposal planning efforts will need to integrate more closely with the low-level waste disposal activities before a final MLLW disposal configuration can be determined. Recent Environmental Protection Agency efforts related to the definition of hazardous wastes may also affect the process

  15. Waste Water Disposal Design And Management V

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book deals with waste water disposal, design and management, which includes biofilm process, double living things treatment and microscopic organism's immobilized processing. It gives descriptions of biofilm process like construction, definition and characteristic of construction of biofilm process, system construction of biofilm process, principle of biofilm process, application of biofilm process, the basic treatment of double living thing and characteristic of immobilized processing of microscopic organism.

  16. Crystalline ceramics: Waste forms for the disposal of weapons plutonium

    International Nuclear Information System (INIS)

    Ewing, R.C.; Lutze, W.; Weber, W.J.

    1995-05-01

    At present, there are three seriously considered options for the disposition of excess weapons plutonium: (i) incorporation, partial burn-up and direct disposal of MOX-fuel; (ii) vitrification with defense waste and disposal as glass ''logs''; (iii) deep borehole disposal (National Academy of Sciences Report, 1994). The first two options provide a safeguard due to the high activity of fission products in the irradiated fuel and the defense waste. The latter option has only been examined in a preliminary manner, and the exact form of the plutonium has not been identified. In this paper, we review the potential for the immobilization of plutonium in highly durable crystalline ceramics apatite, pyrochlore, monazite and zircon. Based on available data, we propose zircon as the preferred crystalline ceramic for the permanent disposition of excess weapons plutonium

  17. Disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-01-15

    The problem of disposal can be tackled in two ways: the waste can be diluted and dispersed so that the radiation to which any single individual would be subjected would be negligible, or it can be concentrated and permanently isolated from man and his immediate environment. A variety of methods for the discharge of radioactive waste into the ground were described at the Monaco conference. They range from letting liquid effluent run into pits or wells at appropriately chosen sites to the permanent storage of high activity material at great depth in geologically suitable strata. Another method discussed consists in the incorporation of high level fission products in glass which is either buried or stored in vaults. Waste disposal into rivers, harbours, outer continental shelves and the open sea as well as air disposal are also discussed. Many of the experts at the Monaco conference were of the view that most of the proposed, or actually applied, methods of waste disposal were compatible with safety requirements. Some experts, felt that certain of these methods might not be harmless. This applied to the possible hazards of disposal in the sea. There seemed to be general agreement, however, that much additional research was needed to devise more effective and economical methods of disposal and to gain a better knowledge of the effects of various types of disposal operations, particularly in view of the increasing amounts of waste material that will be produced as the nuclear energy industry expands

  18. A common framework for the safe disposal of radioactive waste

    International Nuclear Information System (INIS)

    Metcalf, P.; Barraclough, I.

    2002-01-01

    Various industrial, research and medical activities give rise to waste that contain or are contaminated with radioactive material. In view of the potential radiological hazards associated with such waste they have to be managed and disposed of in such a way as to ensure that such potential hazards are adequately managed and controlled in compliance with the safety principles and criteria. Over the past few decades experience in radioactive waste management has led to the development of various options for radioactive waste management and has also led to the development of principles which the various waste management options should satisfy in order to achieve an acceptable level of safety. International consensus has evolved in respect of the principles. However, complete consensus in respect of demonstrating compliance with the requirements for managing and disposing of the whole range of waste types is still developing. This paper identifies the various waste types that have to be managed, the prevailing safety principles and the disposal options available. It discusses the development of a common framework which would enable demonstration that a particular disposal option would meet the safety principles and requirements for the disposal of a particular waste type. (author)

  19. Treatment Options for Retinoblastoma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other places in the body. Treatment Option Overview Key Points There are different types of ...

  20. Disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Dlouhy, Z.

    1982-01-01

    This book provides information on the origin, characteristics and methods of processing of radioactive wastes, as well as the philosophy and practice of their storage and disposal. Chapters are devoted to the following topics: radioactive wastes, characteristics of radioactive wastes, processing liquid and solid radioactive wastes, processing wastes from spent fuel reprocessing, processing gaseous radioactive wastes, fixation of radioactive concentrates, solidification of high-level radioactive wastes, use of radioactive wastes as raw material, radioactive waste disposal, transport of radioactive wastes and economic problems of radioactive wastes disposal. (C.F.)

  1. Subseabed disposal safety analysis

    International Nuclear Information System (INIS)

    Koplick, C.M.; Kabele, T.J.

    1982-01-01

    This report summarizes the status of work performed by Analytic Sciences Corporation (TASC) in FY'81 on subseabed disposal safety analysis. Safety analysis for subseabed disposal is divided into two phases: pre-emplacement which includes all transportation, handling, and emplacement activities; and long-term (post-emplacement), which is concerned with the potential hazard after waste is safely emplaced. Details of TASC work in these two areas are provided in two technical reports. The work to date, while preliminary, supports the technical and environmental feasibility of subseabed disposal of HLW

  2. Final disposal of high levels waste and spent nuclear fuel

    International Nuclear Information System (INIS)

    Gelin, R.

    1984-05-01

    Foreign and international activities on the final disposal of high-level waste and spent nuclear fuel have been reviewed. A considerable research effort is devoted to development of acceptable disposal options. The different technical concepts presently under study are described in the report. Numerous studies have been made in many countries of the potential risks to future generations from radioactive wastes in underground disposal repositories. In the report the safety assessment studies and existing performance criteria for geological disposal are briefly discussed. The studies that are being made in Canada, the United States, France and Switzerland are the most interesting for Sweden as these countries also are considering disposal into crystalline rocks. The overall time-tables in different countries for realisation of the final disposal are rather similar. Normally actual large-scale disposal operations for high-level wastes are not foreseen until after year 2000. In the United States the Congress recently passed the important Nuclear Waste Policy Act. It gives a rather firm timetable for site-selection and construction of nuclear waste disposal facilities. According to this act the first repository for disposal of commercial high-level waste must be in operation not later than in January 1998. (Author)

  3. Transuranic advanced disposal systems: preliminary 239Pu waste-disposal criteria for Hanford

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.; Soldat, J.K.

    1982-08-01

    An evaluation of the feasibility and potential application of advanced disposal systems is being conducted for defense transuranic (TRU) wastes at the Hanford Site. The advanced waste disposal options include those developed to provide greater confinement than provided by shallow-land burial. An example systems analysis is discussed with assumed performance objectives and various Hanford-specific disposal conditions, waste forms, site characteristics, and engineered barriers. Preliminary waste disposal criteria for 239 Pu are determined by applying the Allowable Residual Contamination Level (ARCL) method. This method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. A 10,000 year environmental performance period is assumed, and the dose rate limit for human intrusion is assumed to be 500 mrem/y to any exposed individual. Preliminary waste disposal criteria derived by this method for 239 Pu in soils at the Hanford Site are: 0.5 nCi/g in soils between the surface and a depth of 1 m, 2200 nCi/g of soil at a depth of 5 m, and 10,000 nCi/g of soil at depths 10 m and below. These waste disposal criteria are based on exposure scenarios that reflect the dependence of exposure versus burial depth. 2 figures, 5 tables

  4. Comparison of the waste management aspects of spent fuel disposal and reprocessing: post-disposal radiological impact

    International Nuclear Information System (INIS)

    Mobbs, S.F.; Harvey, M.P.; Martin, J.S.; Mayall, A.; Jones, M.E.

    1991-01-01

    A joint project involving contractors from France, Germany and the UK was set up by the Commission of the European Communities to assess the implications of two waste management options: the direct disposal of spent fuel and reprocessing of that fuel. This report describes the calculation of the radiological impact on the public of the management and disposal of the wastes associated with these two options. Six waste streams were considered: discharge of liquid reprocessing effluents, discharge of gaseous reprocessing effluents, disposal of low-level solid wastes arising from reprocessing, disposal of intermediate-level solid wastes arising from reprocessing, disposal of vitrified high-level reprocessing wastes, and direct disposal of spent fuel. The results of the calculations are in the form of maximum annual doses and risks to individual members of the public, and collective doses to four population groups, integrated over six time periods. These results were designed for input into a computer model developed by another contractor, Yard Ltd, which combines costs and impacts in a multi-attribute hierarchy to give an overall measure of the impact of a given option

  5. Waste classification and methods applied to specific disposal sites

    International Nuclear Information System (INIS)

    Rogers, V.C.

    1979-01-01

    An adequate definition of the classes of radioactive wastes is necessary to regulating the disposal of radioactive wastes. A classification system is proposed in which wastes are classified according to characteristics relating to their disposal. Several specific sites are analyzed with the methodology in order to gain insights into the classification of radioactive wastes. Also presented is the analysis of ocean dumping as it applies to waste classification. 5 refs

  6. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    Merrett, G.J.; Gillespie, P.A.

    1983-07-01

    This report discusses events and processes that could adversely affect the long-term stability of a nuclear fuel waste disposal vault or the regions of the geosphere and the biosphere to which radionuclides might migrate from such a vault

  7. Disposal leachates treatment

    Energy Technology Data Exchange (ETDEWEB)

    Coulomb, I.; Renaud, P. (SITA, 75 - Paris (France)); Courant, P. (FD Conseil, 78 - Gargenville (France)); Manem, J.; Mandra, V.; Trouve, E. (Lyonnaise des Eaux-Dumez, 78 - Le Pecq (France))

    1993-12-01

    Disposal leachates are complex and variable effluents. The use of a bioreactor with membranes, coupled with a reverse osmosis unit, gives a new solution to the technical burying centers. Two examples are explained here.

  8. Safe Disposal of Pesticides

    Science.gov (United States)

    ... Toxics Environmental Information by Location Greener Living Health Land, Waste, and Cleanup Lead Mold Pesticides Radon Science ... or www.earth911.com . Think before disposing of extra pesticides and containers: Never reuse empty pesticide containers. ...

  9. Disposal of Iodine-129

    International Nuclear Information System (INIS)

    Morgan, M.T.; Moore, J.G.; Devaney, H.E.; Rogers, G.C.; Williams, C.; Newman, E.

    1978-01-01

    One of the problems to be solved in the nuclear waste management field is the disposal of radioactive iodine-129, which is one of the more volatile and long-lived fission products. Studies have shown that fission products can be fixed in concrete for permanent disposal. Current studies have demonstrated that practical cementitious grouts may contain up to 18% iodine as barium iodate. The waste disposal criterion is based on the fact that harmful effects to present or future generations can be avoided by isolation and/or dilution. Long-term isolation is effective in deep, dry repositories; however, since penetration by water is possible, although unlikely, release was calculated based on leach rates into water. Further considerations have indicated that sea disposal on or in the ocean floor may be a more acceptable alternative

  10. Integrated Disposal Facility

    Data.gov (United States)

    Federal Laboratory Consortium — Located near the center of the 586-square-mile Hanford Site is the Integrated Disposal Facility, also known as the IDF.This facility is a landfill similar in concept...

  11. Shallow land disposal technology

    Energy Technology Data Exchange (ETDEWEB)

    Pillette-Cousin, L. [Nuclear Environment Technology Insitute, Taejon (Korea, Republic of Korea )

    1997-12-31

    This paper covers the radioactive waste management policy and regulatory framework, the characteristics of low and intermediate level radioactive waste, the characteristics of waste package, the waste acceptance criteria, the waste acceptance and related activities, the design of the disposal system, the organization of waste transportation, the operation feature, the safety assessment of the Centre de L`Aube, the post closure measures, the closure of the Centre de la Mache disposal facility, the licensing issues. 3 tabs., 7 figs.

  12. Shallow land disposal technology

    International Nuclear Information System (INIS)

    Pillette-Cousin, L.

    1997-01-01

    This paper covers the radioactive waste management policy and regulatory framework, the characteristics of low and intermediate level radioactive waste, the characteristics of waste package, the waste acceptance criteria, the waste acceptance and related activities, the design of the disposal system, the organization of waste transportation, the operation feature, the safety assessment of the Centre de L'Aube, the post closure measures, the closure of the Centre de la Mache disposal facility, the licensing issues. 3 tabs., 7 figs

  13. 40 CFR 2.305 - Special rules governing certain information obtained under the Solid Waste Disposal Act, as amended.

    Science.gov (United States)

    2010-07-01

    ... information obtained under the Solid Waste Disposal Act, as amended. 2.305 Section 2.305 Protection of... § 2.305 Special rules governing certain information obtained under the Solid Waste Disposal Act, as amended. (a) Definitions. For purposes of this section: (1) Act means the Solid Waste Disposal Act, as...

  14. Options for Steam Generator Decommissioning

    International Nuclear Information System (INIS)

    Krause, Gregor; Amcoff, Bjoern; Robinson, Joe

    2016-01-01

    Selecting the best option for decommissioning steam generators is a key consideration in preparing for decommissioning PWR nuclear power plants. Steam Generators represent a discrete waste stream of large, complex items that can lend themselves to a variety of options for handling, treatment, recycling and disposal. Studsvik has significant experience in processing full size Steam Generators at its metal recycling facility in Sweden, and this paper will introduce the Studsvik steam generator treatment concept and the results achieved to date across a number of projects. The paper will outline the important parameters needed at an early stage to assess options and to help consider the balance between off-site and on-site treatment solutions, and the role of prior decontamination techniques. The paper also outlines the use of feasibility studies and demonstration projects that have been used to help customers prepare for decommissioning. The paper discusses physical, radiological and operational history data, Pro and Contra factors for on- and off-site treatment, the role of chemical decontamination prior to treatment, planning for off-site shipments as well as Studsvik experience This paper has an original focus upon the coming challenges of steam generator decommissioning and potential external treatment capacity constraints in the medium term. It also focuses on the potential during operations or initial shut-down to develop robust plans for steam generator management. (authors)

  15. Radioactivity in sludge: tank cleaning procedures and sludge disposal

    International Nuclear Information System (INIS)

    Bradley, D.A.

    1995-01-01

    In the oil and gas industry management of alpha-active sludge is made more complex by the presence of hydrocarbons and heavy metals. This presentation discusses the origin of radioactivity in sludge, management of risk in terms of safe working procedures, storage and possible disposal options. The several options will generally involve aspects of dilution or of concentration; issues to be discussed will include sludge farming, bioremediation and incineration. (author)

  16. Nuclear spent fuel management. Experience and options

    International Nuclear Information System (INIS)

    1986-01-01

    Spent nuclear fuel can be stored safely for long periods at relatively low cost, but some form of permanent disposal will eventually be necessary. This report examines the options for spent fuel management, explores the future prospects for each stage of the back-end of the fuel cycle and provides a thorough review of past experience and the technical status of the alternatives. Current policies and practices in twelve OECD countries are surveyed

  17. Australian Asian Options

    OpenAIRE

    Manuel Moreno; Javier F. Navas

    2003-01-01

    We study European options on the ratio of the stock price to its average and viceversa. Some of these options are traded in the Australian Stock Exchange since 1992, thus we call them Australian Asian options. For geometric averages, we obtain closed-form expressions for option prices. For arithmetic means, we use different approximations that produce very similar results.

  18. Options with Extreme Strikes

    Directory of Open Access Journals (Sweden)

    Lingjiong Zhu

    2015-07-01

    Full Text Available In this short paper, we study the asymptotics for the price of call options for very large strikes and put options for very small strikes. The stock price is assumed to follow the Black–Scholes models. We analyze European, Asian, American, Parisian and perpetual options and conclude that the tail asymptotics for these option types fall into four scenarios.

  19. Environmental analysis of closure options for waste sites at the Savannah River Plant

    International Nuclear Information System (INIS)

    Gordon, D.E.; King, C.M.; Looney, B.B.; Stephenson, D.E.; Johnson, W.F.

    1987-01-01

    Previously acceptable waste management practices (e.g., the use of unlined seepage basins) for discarding of wastes from nuclear materials production has resulted in occasional cases of groundwater contamination beneath some disposal sites, mainly in water-table aquifers. Groundwater contaminants include volatile organic compounds, heavy metals, radionuclides, and other chemicals. The closure of active and inactive waste sites that have received hazardous and/or low-level radioactive materials at the Savannah River Plant (SRP) is planned as part of an overall program to protect groundwater quality. DOE developed and submitted to Congress a groundwater protection plan for SRP. This initial plan and subsequent revisions provide the basis for closure of SRP waste sites to comply with applicable groundwater protection requirements. An environmental analysis of the closure options for the criteria waste sites that have received hazardous and/or low-level radioactive wastes was conducted to provide technical support. The several parts of this environmental analysis include description of geohydrologic conditions; determination of waste inventories; definition of closure options; modeling of environmental pathways; assessment of risk; and analysis of project costs. Each of these components of the overall analysis is described in turn in the following paragraphs. Production operations at SRP have generated a variety of solid, hazardous, and low-level radioactive waste materials. Several locations onplant have been used as waste disposal sites for solid and liquid wastes. Seventy-six individual waste sites at 45 distinct geographical locations on SRP have received hazardous, low-level radioactive, or mixed wastes. These waste sites can be categorized into 26 groupings according to the function of the waste disposed. 15 refs., 6 figs., 5 tabs

  20. Superfund TIO videos: Set C. Land disposal restrictions. Part 3. Audio-Visual

    International Nuclear Information System (INIS)

    1990-01-01

    The videotape discusses the fundamental requirements of the Land Disposal Restrictions (LDRs) under RCRA, methods for determining whether LDRs are applicable or relevant and appropriate requirements for a CERCLA response, and LDR compliance options

  1. Evaluation of Island and Nearshore Confined Disposal Facility Alternatives, Pascagoula River Harbor Dredged Material Management Plan

    National Research Council Canada - National Science Library

    Bunch, Barry

    2003-01-01

    ...) for the Federal navigation project at Pascagoula, MS. The studies focused on evaluating an option under consideration for the placement of dredged material in an island confined disposal facility (CDF...

  2. Recycling and Disposal of CFLs and Other Bulbs that Contain Mercury

    Science.gov (United States)

    Consumers can help prevent the release of mercury into the environment by taking advantage of available local options for recycling CFLs and other household hazardous wastes, rather than disposing of them in regular household trash.

  3. Low-level radioactive waste disposal. Study of a conceptual nuclear energy center at Green River, Utah

    International Nuclear Information System (INIS)

    Card, D.H.; Hunter, P.H.; Barg, D.; de Souza, F.; Felthauser, K.; Winkler, V.; White, R.

    1982-02-01

    This document constitutes a segment of a feasibility study investigating the ramifications of constructing a nuclear energy center in an arid western region. In this phase of the study, the alternatives for disposing of the low-level waste on the site are compared with the alternative of transporting the waste to the nearest commercial waste disposal site for permanent disposal. Both radiological and nonradiological impacts on the local socioeconomic infrastructure and the environment are considered. Disposal on the site was found to cost considerably less than off-site disposal with only negligible impacts associated with the disposal option on either mankind or the environment

  4. Inspection and verification of waste packages for near surface disposal

    International Nuclear Information System (INIS)

    2000-01-01

    Extensive experience has been gained with various disposal options for low and intermediate level waste at or near surface disposal facilities. Near surface disposal is based on proven and well demonstrated technologies. To ensure the safety of near surface disposal facilities when available technologies are applied, it is necessary to control and assure the quality of the repository system's performance, which includes waste packages, engineered features and natural barriers, as well as siting, design, construction, operation, closure and institutional controls. Recognizing the importance of repository performance, the IAEA is producing a set of technical publications on quality assurance and quality control (QA/QC) for waste disposal to provide Member States with technical guidance and current information. These publications cover issues on the application of QA/QC programmes to waste disposal, long term record management, and specific QA/QC aspects of waste packaging, repository design and R and D. Waste package QA/QC is especially important because the package is the primary barrier to radionuclide release from a disposal facility. Waste packaging also involves interface issues between the waste generator and the disposal facility operator. Waste should be packaged by generators to meet waste acceptance requirements set for a repository or disposal system. However, it is essential that the disposal facility operator ensure that waste packages conform with disposal facility acceptance requirements. Demonstration of conformance with disposal facility acceptance requirements can be achieved through the systematic inspection and verification of waste packages at both the waste generator's site and at the disposal facility, based on a waste package QA/QC programme established by the waste generator and approved by the disposal operator. However, strategies, approaches and the scope of inspection and verification will be somewhat different from country to country

  5. Shielding design of disposal container for disused sealed radioactive source

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Suk Hoon; Kim, Ju Youl [FNC Technology Co., Yongin (Korea, Republic of)

    2017-06-15

    Disused Sealed Radioactive Sources (DSRSs), which are stored temporally in the centralized storage facility of Korea Radioactive Waste Agency (KORAD), will be disposed of in the low- and intermediate-level radioactive waste disposal facility located in Wolsong. Accordingly, the future plan on DSRS disposal should be established as soon as possible in connection with the construction and operation plan of disposal facility. In this study, as part of developing the systematic management plan, the radiation shielding analysis for three types of disposal container was performed for all kinds of radionuclides (excluding mixed sources) contained in DSRSs generated from domestic area using MicroShield and MCNP5 codes in consideration of the preliminary post-closure safety assessment result for disposal options, source-specific characteristics, and etc. In accordance with the analysis result, thickness of inner container for general disposal container and dimensions (i.e. diameter and height) of inner capsule for two types of special disposal container were determined as 3 mm, OD40×H120 mm (for type 1), and OD100× H240 mm (for type 2), respectively. These values were reflected in the conceptual design of DSRS disposal container, and the structural integrity of each container was confrmed through the structural analysis carried out separately from this study. Given the shielding and structural analysis results, the conceptual design derived from this study sufficiently fulfills the technical standards in force and the design performance level. And consequently, it is judged that the safe management for DSRSs to be disposed of is achieved by utilizing the disposal container with the conceptual design devised.

  6. Shielding design of disposal container for disused sealed radioactive source

    International Nuclear Information System (INIS)

    Kim, Suk Hoon; Kim, Ju Youl

    2017-01-01

    Disused Sealed Radioactive Sources (DSRSs), which are stored temporally in the centralized storage facility of Korea Radioactive Waste Agency (KORAD), will be disposed of in the low- and intermediate-level radioactive waste disposal facility located in Wolsong. Accordingly, the future plan on DSRS disposal should be established as soon as possible in connection with the construction and operation plan of disposal facility. In this study, as part of developing the systematic management plan, the radiation shielding analysis for three types of disposal container was performed for all kinds of radionuclides (excluding mixed sources) contained in DSRSs generated from domestic area using MicroShield and MCNP5 codes in consideration of the preliminary post-closure safety assessment result for disposal options, source-specific characteristics, and etc. In accordance with the analysis result, thickness of inner container for general disposal container and dimensions (i.e. diameter and height) of inner capsule for two types of special disposal container were determined as 3 mm, OD40×H120 mm (for type 1), and OD100× H240 mm (for type 2), respectively. These values were reflected in the conceptual design of DSRS disposal container, and the structural integrity of each container was confrmed through the structural analysis carried out separately from this study. Given the shielding and structural analysis results, the conceptual design derived from this study sufficiently fulfills the technical standards in force and the design performance level. And consequently, it is judged that the safe management for DSRSs to be disposed of is achieved by utilizing the disposal container with the conceptual design devised

  7. PFR liquid metals disposal at Dounreay

    International Nuclear Information System (INIS)

    McIntyre, A.W.

    1997-01-01

    When the Prototype Fast Reactor (PFR) at Dounreay was shut down in 1994, the UKAEA commissioned a series of studies to determine the least cost, lowest risk option for dealing with the liquid metal coolants, i.e. the sodium from the primary and secondary circuits and the NaK from the decay heat removal system. The studies concluded that leaving the liquid metals in situ was not a viable option. Removing the liquid metals had three options, provision of long term external storage facilities, re-use in other projects or treatment for final disposal. The UKAEA invited companies to bid for the challenging task of disposing of more than 1500 t of liquid metals. In 1995 UKAEA awarded NNC Ltd. one of the largest decommissioning projects ever to be let competitively in the UK. During the first year of the contract, the challenges have focused on solving design problems and a number of innovative solutions have been developed by NNC and its subcontractors. From January 1997 the focus has moved to construction on site at Dounreay, and the manufacturing and installation of the mechanical components of the plant

  8. Innovative Disposal Practices at the Nevada Test Site to Meet Its Low-Level Waste Generators' Future Disposal Needs

    International Nuclear Information System (INIS)

    Di Sanza, E.F.; Carilli, J.T.

    2006-01-01

    Low-level radioactive waste (LLW) streams which have a clear, defined pathway to disposal are becoming less common as U.S. Department of Energy accelerated cleanup sites enters their closure phase. These commonly disposed LLW waste streams are rapidly being disposed and the LLW inventory awaiting disposal is dwindling. However, more complex waste streams that have no path for disposal are now requiring attention. The U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Site Office (NSO) Environmental Management Program is charged with the responsibility of carrying out the disposal of onsite and off-site defense-generated and research-related LLW at the Nevada. Test Site (NTS). The NSO and its generator community are constantly pursuing new LLW disposal techniques while meeting the core mission of safe and cost-effective disposal that protects the worker, the public and the environment. From trenches to present-day super-cells, the NTS disposal techniques must change to meet the LLW generator's disposal needs. One of the many ways the NTS is addressing complex waste streams is by designing waste specific pits and trenches. This ensures unusual waste streams with high-activity or large packaging have a disposal path. Another option the NTS offers is disposal of classified low-level radioactive-contaminated material. In order to perform this function, the NTS has a safety plan in place as well as a secure facility. By doing this, the NTS can accept DOE generated classified low-level radioactive-contaminated material that would be equivalent to U.S. Nuclear Regulatory Commission Class B, C, and Greater than Class C waste. In fiscal year 2006, the NTS will be the only federal disposal facility that will be able to dispose mixed low-level radioactive waste (MLLW) streams. This is an activity that is highly anticipated by waste generators. In order for the NTS to accept MLLW, generators will have to meet the stringent requirements of the NTS

  9. Final disposal of spent fuels and high activity waste: status and trends in the world

    International Nuclear Information System (INIS)

    Herscovich de Pahissa, Marta

    2007-01-01

    Geological disposal of spent nuclear fuel and high level waste from reprocessing, properly conditioned, is described. This issue is a major challenge related to radioactive waste management. Several options are analyzed, such as application of separation and transmutation to high level waste before final disposal; need of multinational repositories; a phased approach to deep geological disposal and long term surface storage. Bearing in mind this information, a future article will report the state of art in the world. (author) [es

  10. Republic of Korea. Closure concept development for LILW disposal facility in Republic of Korea

    International Nuclear Information System (INIS)

    2001-01-01

    Nuclear Environment Technology Institute (NETEC) of Korea Electric Power Corporation (KEPCO) is developing near surface disposal concepts for both a rock cavern type disposal facility, and a vault type facility; two types of facility are being considered to provide more options for LILW repository siting. The conceptual design for the vault type facility will be completed in 1999. As a part of conceptual design effort, a preliminary concept for the disposal facility closure has been identified

  11. Waste disposal[1997 Scientific Report of the Belgian Nuclear Research Centre

    Energy Technology Data Exchange (ETDEWEB)

    Neerdael, B.; Marivoet, J.; Put, M.; Verstricht, J.; Van Iseghem, P.; Buyens, M.

    1998-07-01

    The primary mission of the Waste Disposal programme at the Belgian Nuclear Research Centre SCK/CEN is to propose, develop, and assess solutions for the safe disposal of radioactive waste. In Belgium, deep geological burial in clay is the primary option for the disposal of High-Level Waste and spent nuclear fuel. The main achievements during 1997 in the following domains are described: performance assessment, characterization of the geosphere, characterization of the waste, migration processes, underground infrastructure.

  12. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1985-12-01

    The feasibility of safe ocean disposal options for heat-generating radioactive waste relies on the existence of suitable disposal sites. This review considers the status of the development of site selection criteria and the results of the study area investigations carried out under various national and international research programmes. In particular, the usefulness of the results obtained is related to the data needed for environmental and emplacement modelling. Preliminary investigations have identified fifteen potential deep ocean study areas in the North Atlantic. From these Great Meteor East (GME), Southern Nares Abyssal Plan (SNAP) and Kings Trough Flank (KTF) were selected for further investigation. The review includes appraisals of regional geology, geophysical studies, sedimentology, geotechnical studies, geochemical studies and oceanography. (author)

  13. Ocean CO{sub 2} disposal

    Energy Technology Data Exchange (ETDEWEB)

    Shindo, Yuji; Hakuta, Toshikatsu [National Inst. of Materials and Chemical Research, AIST, MITI, Higashi, Tsukuba, Ibaraki (Japan)

    1993-12-31

    Most countries in the world will continue to depend on fossil fuels for their main energy at least for half a country, even in the confrontation with the threat of global warming. This indicates that the development of CO{sub 2} removal technologies such as recovering CO{sub 2} from flue gases and sequestering it of in the deep oceans or subterranean sites is necessary, at least until non-fossil fuel dependent society is developed. Ocean CO{sub 2} disposal is one of the promising options for the sequestration of CO{sub 2} recovered from flue gases. Oceans have sufficient capacity to absorb all the CO{sub 2} emitted in the world. It is very significant to research and develop the technologies for ocean CO{sub 2} disposal.

  14. Ocean disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1984-08-01

    The operational and technical feasibility of the penetrator option for HGW disposal has been reviewed and the areas where research is required to confirm feasibility have been identified. The research requirements have been presented against the Department's ocean disposal programme timescale on a series of bar charts. The bar charts show the need for theoretical and experimental studies of the basic mechanisms governing hole closure and the development of suitable instrumentation to assess the actual behaviour of the remoulded sediment in deep ocean trials. Detailed planning of deep ocean trials in sufficient time to develop strategy, models and instrumentation, identification of site investigation requirements and thermal response studies of sediments are also required. (author)

  15. Developing a disposal and remediation plan

    International Nuclear Information System (INIS)

    Messier, T.S.

    1999-01-01

    The environmental release of wastes generated by the upstream oil and gas industry in Alberta can result in polluted soil and groundwater at several facilities across the province. Responsibility for decommissioning upstream oil and gas facilities falls under the jurisdiction of the Alberta Energy and Utilities Board (EUB) and Alberta Environmental Protection (AEP). This paper outlines a protocol that can serve as a framework for the development of a plan to dispose of oilfield waste and to remediate related contaminated soils. The components involved in developing a disposal and remediation plan for oilfield wastes are: (1) identifying the potential source of pollution and oilfield waste generation, (2) characterizing oilfield wastes, (3) determining the nature and extent of soil and groundwater pollution, (4) preparing a remedial action plan, (5) assessing the viability of various remediation options, and (6) preparing health and safety plan. 12 refs., 2 tabs., 2 figs

  16. Disposal of wastes from uranium conversion and enrichment processes

    International Nuclear Information System (INIS)

    Costello, J.M.

    1981-11-01

    This paper reviews the general principles and objectives in radioactive waste management, and shows how these are applied in options for management and disposal of wastes from uranium upgrading operations. Some estimates of radiological dose commitments and health effects from LWR nuclear power and its fuel cycle have been made for US conditions

  17. Regulatory criteria for the disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Wagstaff, K.P.

    1986-09-01

    Radiological protection criteria have been proposed by the Atomic Energy Control Board for judging the potential long-term impacts of radioactive waste disposal options in which the wastes are contained and isolated from the human environment. This paper reviews the proposed criteria and the regulatory guidelines for their application in performance assessments, taking note of the public comments received to-date

  18. Landfill disposal risk assessment

    International Nuclear Information System (INIS)

    Mininni, G.; Passino, R.; Spinosa, L.

    1993-01-01

    Landfill disposal is the most used waste disposal system in Italy, due to its low costs and also to the great opposition of populations towards new incineration plants and the adjustment of the existing ones. Nevertheless, landfills may present many environmental problems as far as leachate and biogas are concerned directly influencing water, air and soil. This paper shows the most important aspects to be considered for a correct evaluation of environmental impacts caused by a landfill of urban wastes. Moreover, detection systems for on site control of pollution phenomena are presented and some measures for an optimal operation of a landfill are suggested

  19. Reversible deep disposal

    International Nuclear Information System (INIS)

    2009-10-01

    This presentation, given by the national agency of radioactive waste management (ANDRA) at the meeting of October 8, 2009 of the high committee for the nuclear safety transparency and information (HCTISN), describes the concept of deep reversible disposal for high level/long living radioactive wastes, as considered by the ANDRA in the framework of the program law of June 28, 2006 about the sustainable management of radioactive materials and wastes. The document presents the social and political reasons of reversibility, the technical means considered (containers, disposal cavities, monitoring system, test facilities and industrial prototypes), the decisional process (progressive development and blocked off of the facility, public information and debate). (J.S.)

  20. Radioactive waste (disposal)

    International Nuclear Information System (INIS)

    Jenkin, P.

    1985-01-01

    The disposal of low- and intermediate-level radioactive wastes was discussed. The following aspects were covered: public consultation on the principles for assessing disposal facilities; procedures for dealing with the possible sites which the Nuclear Industry Radioactive Waste Executive (NIREX) had originally identified; geological investigations to be carried out by NIREX to search for alternative sites; announcement that proposal for a site at Billingham is not to proceed further; NIREX membership; storage of radioactive wastes; public inquiries; social and environmental aspects; safety aspects; interest groups; public relations; government policies. (U.K.)

  1. Environmental Restoration Disposal Facility Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    Dronen, V.R.

    1998-06-01

    The Hanford Site is operated by the U. S. Department of Energy (DOE) with a primary mission of environmental cleanup and restoration. The Environmental Restoration Disposal Facility (ERDF) is an integral part of the DOE environmental restoration effort at the Hanford Site. The purpose of this document is to establish the ERDF waste acceptance criteria for disposal of materials resulting from Hanford Site cleanup activities. Definition of and compliance with the requirements of this document will enable implementation of appropriate measures to protect human health and the environment, ensure the integrity of the ERDF liner system, facilitate efficient use of the available space in the ERDF, and comply with applicable environmental regulations and DOE orders. To serve this purpose, the document defines responsibilities, identifies the waste acceptance process, and provides the primary acceptance criteria and regulatory citations to guide ERDF users. The information contained in this document is not intended to repeat or summarize the contents of all applicable regulations

  2. Nuclear waste disposal: Gambling on Yucca Mountain

    International Nuclear Information System (INIS)

    Ginsburg, S.

    1995-01-01

    This document describes the historical aspects of nuclear energy ,nuclear weapons usage, and development of the nuclear bureaucracy in the United States, and discusses the selection and siting of Yucca Mountain, Nevada for a federal nuclear waste repository. Litigation regarding the site selection and resulting battles in the political arena and in the Nevada State Legislature are also presented. Alternative radioactive waste disposal options, risk assessments of the Yucca Mountain site, and logistics regarding the transportation and storage of nuclear waste are also presented. This document also contains an extensive bibliography

  3. Radioactive waste disposal package

    Science.gov (United States)

    Lampe, Robert F.

    1986-11-04

    A radioactive waste disposal package comprising a canister for containing vitrified radioactive waste material and a sealed outer shell encapsulating the canister. A solid block of filler material is supported in said shell and convertible into a liquid state for flow into the space between the canister and outer shell and subsequently hardened to form a solid, impervious layer occupying such space.

  4. Manufacture of disposal canisters

    International Nuclear Information System (INIS)

    Nolvi, L.

    2009-12-01

    The report summarizes the development work carried out in the manufacturing of disposal canister components, and present status, in readiness for manufacturing, of the components for use in assembly of spent nuclear fuel disposal canister. The disposal canister consist of two major components: the nodular graphite cast iron insert and overpack of oxygen-free copper. The manufacturing process for copper components begins with a cylindrical cast copper billet. Three different manufacturing processes i.e. pierce and draw, extrusion and forging are being developed, which produce a seamless copper tube or a tube with an integrated bottom. The pierce and draw process, Posiva's reference method, makes an integrated bottom possible and only the lid requires welding. Inserts for BWR-element are cast with 12 square channels and inserts for VVER 440-element with 12 round channels. Inserts for EPR-elements have four square channels. Casting of BWR insert type has been studied so far. Experience of casting inserts for PWR, which is similar to the EPR-type, has been got in co-operation with SKB. The report describes the processes being developed for manufacture of disposal canister components and some results of the manufacturing experiments are presented. Quality assurance and quality control in manufacture of canister component is described. (orig.)

  5. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Lindblom, U.; Gnirk, P.

    1982-01-01

    The subject is discussed under the following headings: the form and final disposal of nuclear wastes; the natural rock and groundwater; the disturbed rock and the groundwater; long-term behavior of the rock and the groundwater; nuclear waste leakage into the groundwater; what does it all mean. (U.K.)

  6. Chemical Stockpile Disposal Program

    Energy Technology Data Exchange (ETDEWEB)

    Krummel, J.R.; Policastro, A.J.; Olshansky, S.J.; McGinnis, L.D.

    1990-10-01

    As part of the Chemical Stockpile Disposal Program mandated by Public Law 99--145 (Department of Defense Authorization Act), an independent review is presented of the US Army Phase I environmental report for the disposal program at the Umatilla Depot Activity (UMDA) in Hermiston, Oregon. The Phase I report addressed new and additional concerns not incorporated in the final programmatic environmental impact statement (FPEIS). Those concerns were addressed by examining site-specific data for the Umatilla Depot Activity and by recommending the scope and content of a more detailed site-specific study. This independent review evaluates whether the new site-specific data presented in the Phase I report would alter the decision in favor of on-site disposal that was reached in the FPEIS, and whether the recommendations for the scope and content of the site-specific study are adequate. Based on the methods and assumptions presented in the FPEIS, the inclusion of more detailed site-specific data in the Phase I report does not change the decision reached in the FPEIS (which favored on-site disposal at UMDA). It is recommended that alternative assumptions about meteorological conditions be considered and that site-specific data on water, ecological, socioeconomic, and cultural resources; seismicity; and emergency planning and preparedness be considered explicitly in the site-specific EIS decision-making process. 7 refs., 1 fig.

  7. Nanomaterial disposal by incineration

    Science.gov (United States)

    As nanotechnology-based products enter into widespread use, nanomaterials will end up in disposal waste streams that are ultimately discharged to the environment. One possible end-of-life scenario is incineration. This review attempts to ascertain the potential pathways by which ...

  8. Geological disposal concept hearings

    International Nuclear Information System (INIS)

    1996-01-01

    The article outlines the progress to date on AECL spent-nuclear fuel geological disposal concept. Hearings for discussion, organised by the federal Environmental Assessment Review Panel, of issues related to this type of disposal method occur in three phases, phase I focuses on broad societal issues related to long term management of nuclear fuel waste; phase II will focus on the technical aspects of this method of disposal; and phase III will consist of community visits in New Brunswick, Quebec, Ontario, Manitoba and Saskatchewan. This article provides the events surrounding the first two weeks of phase I hearings (extracted from UNECAN NEWS). In the first week of hearings, where submissions on general societal issues was the focus, there were 50 presentations including those by Natural Resources Canada, Energy Probe, Ontario Hydro, AECL, Canadian Nuclear Society, Aboriginal groups, environmental activist organizations (Northwatch, Saskatchewan Environmental Society, the Inter-Church Uranium Committee, and the Canadian Coalition for Nuclear responsibility). In the second week of hearings there was 33 presentations in which issues related to siting and implementation of a disposal facility was the focus. Phase II hearings dates are June 10-14, 17-21 and 27-28 in Toronto

  9. Plumbing and Sewage Disposal.

    Science.gov (United States)

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the principles of plumbing and sewage disposal used by Marine Hygiene Equipment Operators to perform their mission. The course contains three study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the…

  10. Radwaste treatment and disposal

    International Nuclear Information System (INIS)

    Ehn, L.; Breza, M.; Pekar, A.

    2000-01-01

    In this lecture is given the basic information, that is concerning on the RAW treatment and long term disposal of the treated RAW in repository at Mochovce. Then here is given the basic technical and technological information, that is concerning bituminization, plant, the vitrification unit, center for the RAW-treatment (BSC) and repository at Mochovce. (authors)

  11. Waste disposal package

    Science.gov (United States)

    Smith, M.J.

    1985-06-19

    This is a claim for a waste disposal package including an inner or primary canister for containing hazardous and/or radioactive wastes. The primary canister is encapsulated by an outer or secondary barrier formed of a porous ceramic material to control ingress of water to the canister and the release rate of wastes upon breach on the canister. 4 figs.

  12. Traditional preventive treatment options

    DEFF Research Database (Denmark)

    Longbottom, C; Ekstrand, K; Zero, D

    2009-01-01

    Preventive treatment options can be divided into primary, secondary and tertiary prevention techniques, which can involve patient- or professionally applied methods. These include: oral hygiene (instruction), pit and fissure sealants ('temporary' or 'permanent'), fluoride applications (patient...... options....

  13. Breast Cancer: Treatment Options

    Science.gov (United States)

    ... Breast Cancer > Breast Cancer: Treatment Options Request Permissions Breast Cancer: Treatment Options Approved by the Cancer.Net Editorial ... can be addressed as quickly as possible. Recurrent breast cancer If the cancer does return after treatment for ...

  14. Economics of low-level radioactive waste disposal

    International Nuclear Information System (INIS)

    Schafer, J.; Jennrich, E.

    1983-01-01

    Regardless of who develops new low-level radioactive waste disposal sites or when, economics will play a role. To assist in this area the Department of Energy's Low-Level Radioactive Waste Management Program has developed a computer program, LLWECON, and data base for projecting disposal site costs. This program and its non-site specific data base can currently be used to compare the costs associated with various disposal site development, financing, and operating scenarios. As site specific costs and requirements are refined LLWECON will be able to calculate exact life cycle costs for each facility. While designed around shallow land burial, as practiced today, LLWECON is flexible and the input parameters discrete enough to be applicable to other disposal options. What the program can do is illustrated

  15. Advances in poultry litter disposal technology--a review.

    Science.gov (United States)

    Kelleher, B P; Leahy, J J; Henihan, A M; O'Dwyer, T F; Sutton, D; Leahy, M J

    2002-05-01

    The land disposal of waste from the poultry industry and subsequent environmental implications has stimulated interest into cleaner and more useful disposal options. The review presented here details advances in the three main alternative disposal routes for poultry litter, specifically in the last decade. Results of experimental investigations into the optimisation of composting, anaerobic digestion and direct combustion are summarised. These technologies open up increased opportunities to market the energy and nutrients in poultry litter to agricultural and non-agricultural uses. Common problems experienced by the current technologies are the existence and fate of nitrogen as ammonia, pH and temperature levels, moisture content and the economics of alternative disposal methods. Further advancement of these technologies is currently receiving increased interest, both academically and commercially. However, significant financial incentives are required to attract the agricultural industry.

  16. Geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sato, Tsutomu

    2000-01-01

    For disposing method of radioactive wastes, various feasibilities are investigated at every nations and international organizations using atomic energy, various methods such as disposal to cosmic space, disposal to ice sheet at the South Pole and so forth, disposal into ocean bed or its sediments, and disposal into ground have been examined. It is, however, impossible institutionally at present, to have large risk on accident in the disposal to cosmic space, to be prohibited by the South Pole Treaty on the disposal to ice sheet at the South Pole, and to be prohibited by the treaty on prevention of oceanic pollution due to the disposal of wastes and so forth on the disposal into oceanic bed or its sediments (London Treaty). Against them, the ground disposal is thought to be the most powerful method internationally from some reasons shown as follows: no burden to the next generation because of no need in long-term management by human beings; safety based on scientific forecasting; disposal in own nation; application of accumulated technologies on present mining industries, civil engineering, and so forth to construction of a disposal facility; and, possibility to take out wastes again, if required. For the ground disposal, wastes must be buried into the ground and evaluated their safety for long terms. It is a big subject to be taken initiative by engineers on geoscience who have quantified some phenomena in the ground and at ultra long term. (G.K.)

  17. 39 CFR 262.6 - Retention and disposal.

    Science.gov (United States)

    2010-07-01

    ... Service UNITED STATES POSTAL SERVICE ORGANIZATION AND ADMINISTRATION RECORDS AND INFORMATION MANAGEMENT DEFINITIONS § 262.6 Retention and disposal. (a) Records control schedule. A directive describing records... the Smithsonian Institution, local museums or historical societies. (3) Sale as waste material. (4...

  18. 77 FR 43149 - Water and Waste Disposal Loans and Grants

    Science.gov (United States)

    2012-07-24

    ... joint financing committed to the proposed project is: (i) Twenty percent or more private, local, or...) Colonia. (See definition in Sec. 1777.4). The proposed project will provide water and/or waste disposal... of obtaining federal financing, receive economic benefits that exceed any direct economic costs...

  19. Distributed Energy Implementation Options

    Energy Technology Data Exchange (ETDEWEB)

    Shah, Chandralata N [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2017-09-13

    This presentation covers the options for implementing distributed energy projects. It distinguishes between options available for distributed energy that is government owned versus privately owned, with a focus on the privately owned options including Energy Savings Performance Contract Energy Sales Agreements (ESPC ESAs). The presentation covers the new ESPC ESA Toolkit and other Federal Energy Management Program resources.

  20. Nuclear waste disposal technology for Pacific Basin countries

    International Nuclear Information System (INIS)

    Langley, R.A. Jr.; Brothers, G.W.

    1981-01-01

    Safe long-term disposal of nuclear wastes is technically feasible. Further technological development offers the promise of reduced costs through elimination of unnecessary conservatism and redundance in waste disposal systems. The principal deterrents to waste disposal are social and political. The issues of nuclear waste storage and disposal are being confronted by many nuclear power countries including some of the Pacific Basin nuclear countries. Both mined geologic and subseabed disposal schemes are being developed actively. The countries of the Pacific Basin, because of their geographic proximity, could benefit by jointly planning their waste disposal activities. A single repository, of a design currently being considered, could hold all the estimated reprocessing waste from all the Pacific Basin countries past the year 2010. As a start, multinational review of alterntive disposal schemes would be beneficial. This review should include the subseabed disposal of radwastes. A multinational review of radwaste packaging is also suggested. Packages destined for a common repository, even though they may come from several countries, should be standardized to maximize repository efficiency and minimize operator exposure. Since package designs may be developed before finalization of a repository scheme and design, the packages should not have characteristics that would preclude or adversely affect operation of desirable repository options. The sociopolitical problems of waste disposal are a major deterrent to a multinational approach to waste disposal. The elected representatives of a given political entity have generally been reluctant to accept the waste from another political entity. Initial studies would, nevertheless, be beneficial either to a common solution to the problem, or to aid in separate solutions

  1. Sources, classification, and disposal of radioactive wastes: History and legal and regulatory requirements

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1991-01-01

    This report discusses the following topics: (1) early definitions of different types (classes) of radioactive waste developed prior to definitions in laws and regulations; (2) sources of different classes of radioactive waste; (3) current laws and regulations addressing classification of radioactive wastes; and requirements for disposal of different waste classes. Relationship between waste classification and requirements for permanent disposal is emphasized; (4) federal and state responsibilities for radioactive wastes; and (5) distinctions between radioactive wastes produced in civilian and defense sectors

  2. Potential storage and/or disposal strategies

    International Nuclear Information System (INIS)

    Lioure, A.

    2002-01-01

    The long-term management of substances produced by nuclear power plants has become a major challenge for society. One of the options is to dispose of ultimate waste, or even whole spent fuel, in geological structures with reversibility potential. Another option, which may precede this, is storage, which is already the interim solution adopted by the industry. CEA has started to demonstrate that standardized storage is feasible over centuries for all types of objects (spent fuel, packages of vitrified waste, forthcoming packages resulting from advanced separation) in heavy-duty, passive near-surface or subsurface facilities. The finer details of some technical arrangements as well as the cost of these stores remain to be worked out. (author)

  3. Disposing of the world's excess plutonium

    International Nuclear Information System (INIS)

    McCormick, J.M.; Bullen, D.B.

    1998-01-01

    The authors undertake three key objectives in addressing the issue of plutonium disposition at the end of the Cold War. First, the authors estimate the total global inventory of plutonium both from weapons dismantlement and civil nuclear power reactors. Second, they review past and current policy toward handling this metal by the US, Russia, and other key countries. Third, they evaluate the feasibility of several options (but especially the vitrification and mixed oxide fuel options announced by the Clinton administration) for disposing of the increasing amounts of plutonium available today. To undertake this analysis, the authors consider both the political and scientific problems confronting policymakers in dealing with this global plutonium issue. Interview data with political and technical officials in Washington and at the International Atomic Energy Agency in Vienna, Austria, and empirical inventory data on plutonium from a variety of sources form the basis of their analysis

  4. Ocean disposal of heat generating radioactive waste backfilling requirements

    International Nuclear Information System (INIS)

    1986-07-01

    This report describes the backfilling requirements arising from the disposal of HGW in deep ocean sediments. The two disposal options considered are the drilled emplacement method and the free fall penetrator method. The materials best suited for filling the voids in the two options are reviewed. Candidate materials are selected following a study of the property requirements of each backfill. Placement methods for the candidate materials, as well as the means available for verifying the quality of the filling, are presented. Finally, an assessment of the overall feasibility of each placement method is given. The main conclusion is that, although the proposed methods are feasible, further work is necessary to test in inactive trials each of the proposed filling methods. Moreover, it is difficult to envisage how two of the backfilling operations in drilled emplacement option can be verified by non destructive methods. (author)

  5. 10 CFR 61.2 - Definitions.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Definitions. 61.2 Section 61.2 Energy NUCLEAR REGULATORY....2 Definitions. As used in this part: Active maintenance means any significant remedial activity... biosphere inhabited by man and containing his food chains by emplacement in a land disposal facility...

  6. Preliminary risk benefit assessment for nuclear waste disposal in space

    Science.gov (United States)

    Rice, E. E.; Denning, R. S.; Friedlander, A. L.; Priest, C. C.

    1982-01-01

    This paper describes the recent work of the authors on the evaluation of health risk benefits of space disposal of nuclear waste. The paper describes a risk model approach that has been developed to estimate the non-recoverable, cumulative, expected radionuclide release to the earth's biosphere for different options of nuclear waste disposal in space. Risk estimates for the disposal of nuclear waste in a mined geologic repository and the short- and long-term risk estimates for space disposal were developed. The results showed that the preliminary estimates of space disposal risks are low, even with the estimated uncertainty bounds. If calculated release risks for mined geologic repositories remain as low as given by the U.S. DOE, and U.S. EPA requirements continue to be met, then no additional space disposal study effort in the U.S. is warranted at this time. If risks perceived by the public are significant in the acceptance of mined geologic repositories, then consideration of space disposal as a complement to the mined geologic repository is warranted.

  7. FUNDING ALTERNATIVES FOR LOW-LEVEL WASTE DISPOSAL

    International Nuclear Information System (INIS)

    Becker, Bruce D.; Carilli, Jhon

    2003-01-01

    For 13 years, low-level waste (LLW) generator fees and disposal volumes for the U.S. Department of Energy (DOE) National Nuclear Security Administration Nevada Operations Office (NNSA/NV) Radioactive Waste Management Sites (RWMSs) had been on a veritable roller coaster ride. As forecast volumes and disposal volumes fluctuated wildly, generator fees were difficult to determine and implement. Fiscal Year (FY) 2000 forecast projections were so low, the very existence of disposal operations at the Nevada Test Site (NTS) were threatened. Providing the DOE Complex with a viable, cost-effective disposal option, while assuring the disposal site a stable source of funding, became the driving force behind the development of the Waste Generator Access Fee at the NTS. On September 26, 2000, NNSA/NV (after seeking input from DOE/Headquarters [HQ]), granted permission to Bechtel Nevada (BN) to implement the Access Fee for FY 2001 as a two-year Pilot Program. In FY 2001 (the first year the Access Fee was implemented), the NTS Disposal Operations experienced a 90 percent increase in waste receipts from the previous year and a 33 percent reduction in disposal fee charged to the waste generators. Waste receipts for FY 2002 were projected to be 63 percent higher than FY 2001 and 15 percent lower in cost. Forecast data for the outyears are just as promising. This paper describes the development, implementation, and ultimate success of this fee strategy

  8. On-site disposal as a decommissioning strategy

    International Nuclear Information System (INIS)

    1999-11-01

    On-site disposal is not a novel decommissioning strategy in the history of the nuclear industry. Several projects based on this strategy have been implemented. Moreover, a number of studies and proposals have explored variations within the strategy, ranging from in situ disposal of entire facilities or portions thereof to disposal within the site boundary of major components such as the reactor pressure vessel or steam generators. Regardless of these initiatives, and despite a significant potential for dose, radioactive waste and cost reduction, on-site disposal has often been disregarded as a viable decommissioning strategy, generally as the result of environmental and other public concerns. Little attention has been given to on-site disposal in previous IAEA publications in the field of decommissioning. The objective of this report is to establish an awareness of technical factors that may or may not favour the adoption of on-site disposal as a decommissioning strategy. In addition, this report presents an overview of relevant national experiences, studies and proposals. The expected end result is to show that, subject to safety and environmental protection assessment, on-site disposal can be a viable decommissioning option and should be taken into consideration in decision making

  9. TANK SPACE OPTIONS REPORT

    International Nuclear Information System (INIS)

    Willis, W.L.; Ahrendt, M.R.

    2009-01-01

    Since this report was originally issued in 2001, several options proposed for increasing double-shell tank (DST) storage space were implemented or are in the process of implementation. Changes to the single-shell tank (SST) waste retrieval schedule, completion of DST space saving options, and the DST space saving options in progress have delayed the projected shortfall of DST storage space from the 2007-2011 to the 2018-2025 timeframe (ORP-11242, River Protection Project System Plan). This report reevaluates options from Rev. 0 and includes evaluations of new options for alleviating projected restrictions on SST waste retrieval beginning in 2018 because of the lack of DST storage space.

  10. Review of disposal techniques for radioactively contaminated organic ion-exchange resins

    International Nuclear Information System (INIS)

    Inman, J.R.; Mack, J.

    1993-03-01

    Organic ion-exchange resins are used in the UK nuclear industry to remove radioactive nuclides from dilute aqueous solution. Resins represent a significant proportion of the organic content of ILW and LLW, particularly ILW. Spent resins are destined to be disposed of in the UK deep repository. There are concerns regarding the potential effects of organic materials on long-term repository performance, and these effects have been the subject of much recent research work. The object of this study has been to conduct a worldwide review of treatment and conditioning techniques available for spent organic ion-exchange resins with the intention of recommending the best option for dealing with the waste in the UK. Data on available techniques have been gathered together, and are presented in tabular form at the back of the report. The techniques have been reviewed and compared considering safety, practicality and cost, and a best option selected on the basis of current knowledge. On balance it would appear that wet oxidation using hydrogen peroxide with residue encapsulation in BFS/OPC is the most appropriate technique, probably implemented using a mobile plant. This conclusion and recommendation is not however clear cut and further advice regarding the acceptability of organic material in the repository is necessary before a definite recommendation can be made. (Author)

  11. Radioecological activity limits for radioactive waste disposal

    International Nuclear Information System (INIS)

    Ahmet, E. Osmanlioglu

    2006-01-01

    Full text: Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides. Near surface disposal term includes broad range of facilities from simple trenches to concrete vaults. Principally, disposal of radioactive waste requires the implementation of measures that will provide safety for human health and environment now and in the future. For this reason preliminary activity limits should be determined to avoid radioecological problems. Radioactive waste has to be safely disposed in a regulated manner, consistent with internationally agreed principles and standards and with national legislations to avoid serious radioecological problems. The purpose of this study, presents a safety assessment approach to derive operational and post-closure radioecological activity limits for the disposal of radioactive waste. Disposal system has three components; the waste, the facility (incl. engineered barriers) and the site (natural barriers). Form of the waste (unconditioned or conditioned) is effective at the beginning of the migration scenerio. Existence of the engineered barriers in the facility will provide long term isolation of the waste from environment. The site characteristics (geology, groundwater, seismicity, climate etc.) are important for the safety of the system. Occupational exposure of a worker shall be controlled so that the following dose limits are not exceeded: an effective dose of 20mSv/y averaged over 5 consecutive years; and an effective dose of 50mSv in any single year. The effective dose limit for members of the public recommended by ICRP and IAEA is 1 mSv/y for exposures from all man-made sources [1,2]. Dose constraints are typically a fraction of the dose limit and ICRP recommendations (0.3 mSv/y) could be applied [3,4]. Radioecological activity concentration limits of each radionuclide in the waste (Bq/kg) were calculated. As a result of this study radioecological activity

  12. Geological disposal of nuclear waste

    International Nuclear Information System (INIS)

    1979-01-01

    Fourteen papers dealing with disposal of high-level radioactive wastes are presented. These cover disposal in salt deposits, geologic deposits and marine disposal. Also included are papers on nuclear waste characterization, transport, waste processing technology, and safety analysis. All of these papers have been abstracted and indexed

  13. Compound Option Pricing under Fuzzy Environment

    Directory of Open Access Journals (Sweden)

    Xiandong Wang

    2014-01-01

    Full Text Available Considering the uncertainty of a financial market includes two aspects: risk and vagueness; in this paper, fuzzy sets theory is applied to model the imprecise input parameters (interest rate and volatility. We present the fuzzy price of compound option by fuzzing the interest and volatility in Geske’s compound option pricing formula. For each α, the α-level set of fuzzy prices is obtained according to the fuzzy arithmetics and the definition of fuzzy-valued function. We apply a defuzzification method based on crisp possibilistic mean values of the fuzzy interest rate and fuzzy volatility to obtain the crisp possibilistic mean value of compound option price. Finally, we present a numerical analysis to illustrate the compound option pricing under fuzzy environment.

  14. Preliminary disposal limits, plume interaction factors, and final disposal limits

    Energy Technology Data Exchange (ETDEWEB)

    Flach, G. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-11

    In the 2008 E-Area Performance Assessment (PA), each final disposal limit was constructed as the product of a preliminary disposal limit and a plume interaction factor. The following mathematical development demonstrates that performance objectives are generally expected to be satisfied with high confidence under practical PA scenarios using this method. However, radionuclides that experience significant decay between a disposal unit and the 100-meter boundary, such as H-3 and Sr-90, can challenge performance objectives, depending on the disposed-of waste composition, facility geometry, and the significance of the plume interaction factor. Pros and cons of analyzing single disposal units or multiple disposal units as a group in the preliminary disposal limits analysis are also identified.

  15. Disposal of fly ash

    International Nuclear Information System (INIS)

    Singh, B.; Foley, C.

    1991-01-01

    Theoretical arguments and pilot plant results have shown that the transport of fly-furnace ash from the power station to the disposal area as a high concentration slurry is technically viable and economically attractive. Further, lack of free water, when transported as a high concentration slurry, offers significant advantages in environmental management and rehabilitation of the disposal site. This paper gives a basis for the above observations and discusses the plans to exploit the above advantages at the Stanwell Power Station. (4 x 350 MWe). This will be operated by the Queensland Electricity Commission. The first unit is to come into operation in 1992 and other units are to follow progressively on a yearly basis

  16. Nuclear waste disposal

    International Nuclear Information System (INIS)

    Hare, Tony.

    1990-01-01

    The Save Our Earth series has been designed to appeal to the inquiring minds of ''planet-friendly'' young readers. There is now a greater awareness of environmental issues and an increasing concern for a world no longer able to tolerate the onslaught of pollution, the depletion of natural resources and the effects of toxic chemicals. Each book approaches a specific topic in a way that is exciting and thought-provoking, presenting the facts in a style that is concise and appropriate. The series aims to demonstrate how various environmental subjects relate to our lives, and encourages the reader to accept not only responsibility for the planet, but also for its rescue and restoration. This volume, on nuclear waste disposal, explains how nuclear energy is harnessed in a nuclear reactor, what radioactive waste is, what radioactivity is and its effects, and the problems and possible solutions of disposing of nuclear waste. An awareness of the dangers of nuclear waste is sought. (author)

  17. 2005 dossier: clay. Tome: architecture and management of the geologic disposal facility

    International Nuclear Information System (INIS)

    2005-01-01

    This document makes a status of the researches carried out by the French national agency of radioactive wastes (ANDRA) about the design of a geologic disposal facility for high-level and long-lived radioactive wastes in argilite formations. Content: 1 - approach of the study: goal, main steps of the design study, iterative approach, content; 2 - general description: high-level and long-lived radioactive wastes, purposes of a reversible disposal, geologic context of the Meuse/Haute-Marne site - the Callovo-Oxfordian formation, design principles of the disposal facility architecture, role of the different disposal components; 3 - high-level and long-lived wastes: production scenarios, description of primary containers, inventory model, hypotheses about receipt fluxes of primary containers; 4- disposal containers: B-type waste containers, C-type waste containers, spent fuel disposal containers; 5 - disposal modules: B-type waste disposal modules, C-type waste disposal modules, spent-fuel disposal modules; 6 - overall underground architecture: main safety questions, overall design, dimensioning factors, construction logic and overall exploitation of the facility, dimensioning of galleries, underground architecture adaptation to different scenarios; 7 - boreholes and galleries: general needs, design principles retained, boreholes description, galleries description, building up of boreholes and galleries, durability of facilities, backfilling and sealing up of boreholes and galleries; 8 - surface facilities: general organization, nuclear area, industrial and administrative area, tailings area; 9 - nuclear exploitation means of the facility: receipt of primary containers and preparation of disposal containers, transfer of disposal containers from the surface to the disposal alveoles, setting up of containers inside alveoles; 10 - reversible management of the disposal: step by step disposal process, mastery of disposal behaviour and action capacity, observation and

  18. The borehole disposal of spent sources (BOSS)

    International Nuclear Information System (INIS)

    Heard, R.G.

    2002-01-01

    During the International Atomic Energy Agency (IAEA) Regional Training Course on 'The Management of Low-Level Radioactive Waste from Hospitals and Other Nuclear Applications' hosted by the Atomic Energy Corporation of SA Ltd. (AEC), now NECSA, during July/August 1995, the African delegates reviewed their national radioactive waste programmes. Among the issues raised, which are common to most African countries, were the lack of adequate storage facilities, lack of disposal solutions and a lack of equipment to implement widely used disposal concepts to dispose of their spent sources. As a result of this meeting, a Technical Co-operation (TC) project was launched to look at the technical feasibility and economic viability of such a concept. Phase I and II of the project have been completed and the results can be seen in three reports produced by NECSA. The Safety Assessment methodology used in the evaluation of the concept was that developed during the ISAM programme and detailed in Van Blerk's PhD thesis. This methodology is specifically developed for shallow land repositories, but was used in this case as the borehole need not be more than 100m deep and could fit into the definition of a shallow land disposal system. The studies found that the BOSS concept would be suitable for implementation in African countries as the borehole has a large capacity for sources and it is possible that an entire country's disused sources can be placed in a single borehole. The costs are a lot lower than for a shallow land trench, and the concept was evaluated using radium (226) sources as the most limiting inventory. The conclusion of the initial safety assessment was that the BOSS concept is robust, and provides a viable alternative for the disposal of radium needles. The concept is expected to provide good assurance of safety at real sites. The extension of the safety assessment to other types of spent sources is expected to be relatively straightforward. Disposal of radium needles

  19. Disposal of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1960-11-15

    A discussion on the disposal of radioactive wastes was held in Vienna on 20 September 1960. The three scientists who participated in the discussion were Mr. Harry Brynielsson (Sweden), Head of the Swedish Atomic Energy Company; Mr. H. J. Dunster (United Kingdom), Health Physics Adviser to the United Kingdom Atomic Energy Authority; and Mr. Leslie Silverman (United States), Professor of Harvard University, and Chairman of the US AEC Advisory Committee on Reactor Safeguards, as well as consultant on air cleaning

  20. Disposal of radioactive waste

    International Nuclear Information System (INIS)

    Critchley, R.J.; Swindells, R.J.

    1984-01-01

    A method and apparatus for charging radioactive waste into a disposable steel drum having a plug type lid. The drum is sealed to a waste dispenser and the dispenser closure and lid are withdrawn into the dispenser in back-to-back manner. Before reclosing the dispenser the drum is urged closer to it so that on restoring the dispenser closure to the closed position the lid is pressed into the drum opening

  1. Radium bearing waste disposal

    International Nuclear Information System (INIS)

    Tope, W.G.; Nixon, D.A.; Smith, M.L.; Stone, T.J.; Vogel, R.A.; Schofield, W.D.

    1995-01-01

    Fernald radium bearing ore residue waste, stored within Silos 1 and 2 (K-65) and Silo 3, will be vitrified for disposal at the Nevada Test Site (NTS). A comprehensive, parametric evaluation of waste form, packaging, and transportation alternatives was completed to identify the most cost-effective approach. The impacts of waste loading, waste form, regulatory requirements, NTS waste acceptance criteria, as-low-as-reasonably-achievable principles, and material handling costs were factored into the recommended approach

  2. Disposing of fluid wastes

    International Nuclear Information System (INIS)

    Bradley, J.S.

    1984-01-01

    Toxic liquid waste, eg liquid radioactive waste, is disposed of by locating a sub-surface stratum which, before removal of any fluid, has a fluid pressure in the pores thereof which is less than the hydrostatic pressure which is normal for a stratum at that depth in the chosen area, and then feeding the toxic liquid into the stratum at a rate such that the fluid pressure in the stratum never exceeds the said normal hydrostatic pressure. (author)

  3. Rock disposal problems identified

    Energy Technology Data Exchange (ETDEWEB)

    Knox, R

    1978-06-01

    Mathematical models are the only way of examining the return of radioactivity from nuclear waste to the environment over long periods of time. Work in Britain has helped identify areas where more basic data is required, but initial results look very promising for final disposal of high level waste in hard rock repositories. A report by the National Radiological Protection Board of a recent study, is examined.

  4. Disposal of radioactive waste from mining and processing of mineral sands

    International Nuclear Information System (INIS)

    Hartley, B.M.

    1993-01-01

    All mineral sands products contain the naturally radioactive elements uranium and thorium and their daughters. The activity levels in the different minerals can vary widely and in the un mined state are frequently widely dispersed and add to the natural background radiation levels. Following mining, the minerals are concentrated to a stage where radiation levels can present an occupational hazard and disposal of waste can result in radiation doses in excess of the public limit. Chemical processing can release radioactive daughters, particularly radium, leading to the possibility of dispersal and resulting in widespread exposure of the public. The activity concentration in the waste can vary widely and different disposal options appropriate to the level of activity in the waste are needed. Disposal methods can range from dilution and dispersal of the material into the mine site, for untreated mine tailings, to off site disposal in custom built and engineered waste disposal facilities, for waste with high radionuclide content. The range of options for disposal of radioactive waste from mineral sands mining and processing is examined and the principles for deciding on the appropriate disposal option are discussed. The range of activities of waste from different downstream processing paths are identified and a simplified method of identifying potential waste disposal paths is suggested. 15 refs., 4 tabs

  5. Disposal of spent fuel

    International Nuclear Information System (INIS)

    Blomeke, J.O.; Ferguson, D.E.; Croff, A.G.

    1978-01-01

    Based on preliminary analyses, spent fuel assemblies are an acceptable form for waste disposal. The following studies appear necessary to bring our knowledge of spent fuel as a final disposal form to a level comparable with that of the solidified wastes from reprocessing: 1. A complete systems analysis is needed of spent fuel disposition from reactor discharge to final isolation in a repository. 2. Since it appears desirable to encase the spent fuel assembly in a metal canister, candidate materials for this container need to be studied. 3. It is highly likely that some ''filler'' material will be needed between the fuel elements and the can. 4. Leachability, stability, and waste-rock interaction studies should be carried out on the fuels. The major disadvantages of spent fuel as a disposal form are the lower maximum heat loading, 60 kW/acre versus 150 kW/acre for high-level waste from a reprocessing plant; the greater long-term potential hazard due to the larger quantities of plutonium and uranium introduced into a repository; and the possibility of criticality in case the repository is breached. The major advantages are the lower cost and increased near-term safety resulting from eliminating reprocessing and the treatment and handling of the wastes therefrom

  6. Waste and Disposal: Demonstration

    International Nuclear Information System (INIS)

    Neerdael, B.; Buyens, M.; De Bruyn, D.; Volckaert, G.

    2002-01-01

    Within the Belgian R and D programme on geological disposal, demonstration experiments have become increasingly important. In this contribution to the scientific report 2001, an overview is given of SCK-CEN's activities and achievements in the field of large-scale demonstration experiments. In 2001, main emphasis was on the PRACLAY project, which is a large-scale experiment to demonstrate the construction and the operation of a gallery for the disposal of HLW in a clay formation. The PRACLAY experiment will contribute to enhance understanding of water flow and mass transport in dense clay-based materials as well as to improve the design of the reference disposal concept. In the context of PRACLAY, a surface experiment (OPHELIE) has been developed to prepare and to complement PRACLAY-related experimental work in the HADES Underground Research Laboratory. In 2001, efforts were focussed on the operation of the OPHELIE mock-up. SCK-CEN also contributed to the SELFRAC roject which studies the self-healing of fractures in a clay formation

  7. Standards for high level waste disposal: A sustainability perspective

    International Nuclear Information System (INIS)

    Dougherty, W.W.; Powers, V.; Johnson, F.X.; Cornland, D.

    1999-01-01

    Spent reactor fuel from commercial power stations contains high levels of plutonium, other fissionable actinides, and fission products, all of which pose serious challenges for permanent disposal because of the very long half-lives of some isotopes. The 'nuclear nations' have agreed on the use of permanent geologic repositories for the ultimate disposal of high-level nuclear waste. However, it is premature to claim that a geologic repository offers permanent isolation from the biosphere, given high levels of uncertainty, nascent risk assessment frameworks for the time periods considered, and serious intergenerational equity issues. Many have argued for a broader consideration of disposal options that include extended monitored retrievable storage and accelerator-driven transmutation of wastes. In this paper we discuss and compare these three options relative to standards that emerge from the application of sustainable development principles, namely long-lasting technical viability, intergenerational equity, rational resource allocation, and rights of future intervention. We conclude that in order to maximise the autonomy of future generations, it is imperative to leave future options more open than does permanent disposal

  8. International conference on the safety of radioactive waste disposal. Contributed papers

    International Nuclear Information System (INIS)

    2005-01-01

    The objective of the Conference is to foster information exchange on the safety of radioactive waste disposal covering; the choice of appropriate waste disposal options, safety standards, safety cases for presenting safety arguments and demonstrating compliance with standards, safety assessment methodologies and their application, dealing with uncertainty, regulatory review and decision making, the derivation of limits, controls and conditions to be applied to the development and operation of disposal facilities to ensure safety and the communication of safety issues to all interested stakeholders and confidence development. The conference will consider all possible disposal options available, drawing from experience in Member States with near surface and geological disposal facilities and those at intermediate depths and giving consideration to any multilateral approach that may be adopted. Each of the contributed papers is indexed separately

  9. International conference on the safety of radioactive waste disposal. Contributed papers

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    The objective of the Conference is to foster information exchange on the safety of radioactive waste disposal covering; the choice of appropriate waste disposal options, safety standards, safety cases for presenting safety arguments and demonstrating compliance with standards, safety assessment methodologies and their application, dealing with uncertainty, regulatory review and decision making, the derivation of limits, controls and conditions to be applied to the development and operation of disposal facilities to ensure safety and the communication of safety issues to all interested stakeholders and confidence development. The conference will consider all possible disposal options available, drawing from experience in Member States with near surface and geological disposal facilities and those at intermediate depths and giving consideration to any multilateral approach that may be adopted. Each of the contributed papers is indexed separately.

  10. Issues related to the USEPA probabilistic standard for geologic disposal of high-level radioactive waste

    International Nuclear Information System (INIS)

    Okrent, D.

    1993-01-01

    This paper asks whether some of the fundamental bases for the 1985 USEPA standard on disposal of high level radioactive wastes (40 CFR Part 191) warrant re-examination. Similar questions also apply to the bases for the radioactive waste disposal requirements proposed by most other countries. It is suggested that the issue of intergenerational equity has been dealt with from too narrow a perspective. Not only should radioactive and nonradioactive hazardous waste disposal be regulated from a consistent philosophic basis, but the regulation of waste disposal itself should be embedded in the broader issues of intergenerational conservation of options, conservation of quality, and conservation of access. (author). 25 refs

  11. Borehole disposal design concept in Madagascar

    International Nuclear Information System (INIS)

    Randriamarolahy, J.N.; Randriantseheno, H.F.; Andriambololona, Raoelina

    2008-01-01

    Full text: In Madagascar, sealed radioactive sources are used in several socio-economic sectors such as medicine, industry, research and agriculture. At the end of their useful lives, these radioactive sources become ionizing radiations waste and can be still dangerous because they can cause harmful effects to the public and the environment. 'Borehole disposal design concept' is needed for sitting up a safe site for storage of radioactive waste, in particular, sealed radioactive sources. Borehole disposal is an option for long-term management of small quantities of radioactive waste in compliance with the internationally accepted principles for radioactive waste management. Several technical aspects must be respected to carry out such a site like the geological, geomorphologic, hydrogeology, geochemical, meteorological and demographic conditions. Two sites are most acceptable in Madagascar such as Ankazobe and Fanjakana. A Borehole will be drilled and constructed using standard techniques developed for water abstraction, oil exploration. At the Borehole, the sealed radioactive sources are encapsulated. The capsule is inserted in a container. This type of storage is benefit for the developing countries because it is technologically simple and economic. The construction cost depends on the volume of waste to store and the Borehole depth. The borehole disposal concept provides a good level of safety to avoid human intrusion. The future protection of the generations against the propagation of the ionizing radiations is then assured. (author)

  12. Geological disposal of heat generating radioactive waste

    International Nuclear Information System (INIS)

    1986-03-01

    A number of options for the disposal of vitrified heat-generating radioactive waste are being studied to ensure that safe methods are available when the time comes for disposal operations to commence. This study has considered the feasibility of three designs for containers which would isolate the waste from the environment for a minimum period of 500 to 1000 years. The study was sub-divided into the following major sections: manufacturing feasibility; stress analysis; integrity in accidents; cost benefit review. The candidate container designs were taken from the results of a previous study by Ove Arup and Partners (1985) and were developed as the study progressed. Their major features can be summarised as follows: (A) a thin-walled corrosion-resistant metal shell filled with lead or cement grout. (B) an unfilled thick-walled carbon steel shell. (C) an unfilled carbon steel shell planted externally with corrosion-resistant metal. Reference repository conditions in clay, granite and salt, reference disposal operations and metals corrosion data have been taken from various European Community radioactive waste management research and engineering projects. The study concludes that design Types A and B are feasible in manufacturing terms but design Type C is not. It is recommended that model containers should be produced to demonstrate the proposed methods of manufacture and that they should be tested to validate the analytical techniques used. (author)

  13. Low level waste disposal regulatory issues in the US - 59311

    International Nuclear Information System (INIS)

    James, David; Kalinowski, Thomas; Edwards, Lisa

    2012-01-01

    Document available in abstract form only. Full text of publication follows: The United States led the international efforts to define disposal requirements for low level radioactive wastes with the publication of US Regulations governing the disposal of such wastes. The requirements were based on a system of waste classification based on the concentrations of certain radionuclides considered problematic for the protection of future generations from radiation exposure. The regulation, itself, was based on a process for the development of new disposal sites defined by the US congress to provide an equitable distribution of burden to various regions of the US. This process has met with little success in the almost 30 years since its initiation leaving only an incomplete patchwork of disposal options which are primarily dependant on the same options that existed before the act and regulations were initiated. There is currently a new focus on the basis for some of the regulatory requirements derived from advances in the understanding of dose impacts from certain radionuclides, improvements in performance assessment methodologies, the increased use of engineered barriers, the reality of current disposal economies, along with the failure of the act to conform to expectations. This paper will provide an update on the discussion taking place with a focus on the technical considerations. (authors)

  14. DISPOSITION PATHS FOR ROCKY FLATS GLOVEBOXES: EVALUATING OPTIONS

    International Nuclear Information System (INIS)

    Lobdell, D.; Geimer, R.; Larsen, P.; Loveland, K.

    2003-01-01

    The Kaiser-Hill Company, LLC has the responsibility for closure activities at the Rocky Flats Environmental Technology Site (RFETS). One of the challenges faced for closure is the disposition of radiologically contaminated gloveboxes. Evaluation of the disposition options for gloveboxes included a detailed analysis of available treatment capabilities, disposal facilities, and lifecycle costs. The Kaiser-Hill Company, LLC followed several processes in determining how the gloveboxes would be managed for disposition. Currently, multiple disposition paths have been chosen to accommodate the needs of the varying styles and conditions of the gloveboxes, meet the needs of the decommissioning team, and to best manage lifecycle costs. Several challenges associated with developing a disposition path that addresses both the radiological and RCRA concerns as well as offering the most cost-effective solution were encountered. These challenges included meeting the radiological waste acceptance criteria of available disposal facilities, making a RCRA determination, evaluating treatment options and costs, addressing void requirements associated with disposal, and identifying packaging and transportation options. The varying disposal facility requirements affected disposition choices. Facility conditions that impacted decisions included radiological and chemical waste acceptance criteria, physical requirements, and measurement for payment options. The facility requirements also impacted onsite activities including management strategies, decontamination activities, and life-cycle cost

  15. Development of integrated waste management options for irradiated graphite

    Directory of Open Access Journals (Sweden)

    Alan Wareing

    2017-08-01

    Full Text Available The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  16. Development of integrated waste management options for irradiated graphite

    Energy Technology Data Exchange (ETDEWEB)

    Wareing, Alan; Abrahamsen-Mills, Liam; Fowler, Linda; Jarvis, Richard; Banford, Anthony William [National Nuclear Laboratory, Warrington (United Kingdom); Grave, Michael [Doosan Babcock, Gateshead (United Kingdom); Metcalfe, Martin [National Nuclear Laboratory, Gloucestershire (United Kingdom); Norris, Simon [Radioactive Waste Management Limited, Oxon (United Kingdom)

    2017-08-15

    The European Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project sought to develop best practices in the retrieval, treatment, and disposal of irradiated graphite including other irradiated carbonaceous waste such as structural material made of graphite, nongraphitized carbon bricks, and fuel coatings. Emphasis was given on legacy irradiated graphite, as this represents a significant inventory in respective national waste management programs. This paper provides an overview of the characteristics of graphite irradiated during its use, primarily as a moderator material, within nuclear reactors. It describes the potential techniques applicable to the retrieval, treatment, recycling/reuse, and disposal of these graphite wastes. Considering the lifecycle of nuclear graphite, from manufacture to final disposal, a number of waste management options have been developed. These options consider the techniques and technologies required to address each stage of the lifecycle, such as segregation, treatment, recycle, and ultimate disposal in a radioactive waste repository, providing a toolbox to aid operators and regulators to determine the most appropriate management strategy. It is noted that national waste management programs currently have, or are in the process of developing, respective approaches to irradiated graphite management. The output of the Treatment and Disposal of Irradiated Graphite and other Carbonaceous Waste project is intended to aid these considerations, rather than dictate them.

  17. Cosmic disposal of radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Y; Morisawa, S [Kyoto Univ. (Japan). Faculty of Engineering

    1975-03-01

    The technical and economical possibility and safety of the disposal of highly radioactive waste into cosmos are reviewed. The disposal of highly radioactive waste is serious problem to be solved in the near future, because it is produced in large amounts by the reprocessing of spent fuel. The promising methods proposed are (i) underground disposal, (ii) ocean disposal, (iii) cosmic disposal and (iv) extinguishing disposal. The final disposal method is not yet decided internationally. The radioactive waste contains very long life nuclides, for example transuranic elements and actinide elements. The author thinks the most perfect and safe disposal method for these very long life nuclides is the disposal into cosmos. The space vehicle carrying radioactive waste will be launched safely into outer space with recent space technology. The selection of orbit for vehicles (earth satellite or orbit around planets) or escape from solar system, selection of launching rocket type pretreatment of waste, launching weight, and the cost of cosmic disposal were investigated roughly and quantitatively. Safety problem of cosmic disposal should be examined from the reliable safety study data in the future.

  18. 10 CFR 63.302 - Definitions for Subpart L.

    Science.gov (United States)

    2010-01-01

    ... 10 Energy 2 2010-01-01 2010-01-01 false Definitions for Subpart L. 63.302 Section 63.302 Energy NUCLEAR REGULATORY COMMISSION (CONTINUED) DISPOSAL OF HIGH-LEVEL RADIOACTIVE WASTES IN A GEOLOGIC... Definitions for Subpart L. All definitions in subpart K of this part, and the following: Accessible...

  19. The development of international safety standards on geological disposal

    International Nuclear Information System (INIS)

    McCartin, T.

    2005-01-01

    The IAEA is developing a set of safety requirements for geologic disposal to be used by both developers and regulators for planning, designing, operating, and closing a geologic disposal facility. Safety requirements would include quantitative criteria for assessing safety of geologic disposal facilities as well as requirements for development of the facility and the safety strategy including the safety case. Geologic disposal facilities are anticipated to be developed over a period of at least a few decades. Key decisions, e.g., on the disposal concept, siting, design, operational management and closure, are expected to be made in a series of steps. Decisions will be made based on the information available at each step and the confidence that may be placed in that information. A safety strategy is important for ensuring that at each step during the development of the disposal facility, an adequate understanding of the safety implications of the available options is developed such that the ultimate goal of providing an acceptable level of operational and post closure safety will be met. A safety case for a geologic disposal facility would present all the safety relevant aspects of the site, the facility design and the managerial and regulatory controls. The safety case and its supporting assessments illustrates the level of protection provided and shall give reasonable assurance that safety standards will be met. Overall, the safety case provides confidence in the feasibility of implementing the disposal system as designed, convincing estimates of the performance of the disposal system and a reasonable assurance that safety standards will be met. (author)

  20. 77 FR 10020 - Self-Regulatory Organizations; C2 Options Exchange, Incorporated; Notice of Filing of a Proposed...

    Science.gov (United States)

    2012-02-21

    ... exchange that offers electronic complex order processing does not ``leg'' stock-option orders. See, e.g... to (i) adopt a definition of a stock-option order (as well as include a definition of a complex order... process for auctioning eligible complex orders for price improvement. See Rule 6.13(c). Definitions The...

  1. Review of options for managing iodine-125 wastes

    International Nuclear Information System (INIS)

    Lock, P.J.; Wakerley, M.W.

    1991-01-01

    Data on the nature, radioactive content and management options used for I-125 wastes that are produced in England and Wales and fall within the provisions of the Radioactive Substances Act 1960 have been collated. The options for, and impacts of the disposal of these wastes have been reviewed and discussed. In addition storage for decay has been reviewed. The necessary storage requirements and methods of storage for the various waste forms have been examined. Conclusions are drawn with respect to the potential/suitability of the various waste management options. (author)

  2. Status of UFD Campaign International Activities in Disposal Research

    Energy Technology Data Exchange (ETDEWEB)

    Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-09-01

    While the United States research program for geologic disposal of high-level radioactive waste over the past decades focused solely on an open tunnel emplacement in unsaturated densely fractured tuff, several international organizations have made significant progress in the characterization and performance evaluation of other disposal design options and host rock characteristics, most of which were very different from those studied in the U.S. As a result, areas of direct collaboration between the U.S. Department of Energy’s (DOE) and international geologic disposal programs were quite limited during that time. Recently, the decision by DOE to no longer pursue the geologic disposal of high-level radioactive waste and spent fuel at the Yucca Mountain site has shifted the nation’s focus to disposal design options and geologic environments similar to those being investigated by other nations. DOE started to recognize that close international collaboration is a beneficial and costeffective strategy for advancing disposal science and, in FY12, embarked on a comprehensive effort to identify international collaboration opportunities, to interact with international organizations and advance promising collaborations, and to plan/develop specific R&D activities in cooperation with international partners. This report describes the active collaboration opportunities available to U.S. researchers as a result of this effort, and presents specific cooperative research activities that have been recently initiated within DOE’s disposal research program. The focus in this report is on those opportunities that provide access to field data (and respective interpretation/modeling), and/or may allow participation in ongoing and planned field experiments.

  3. Radioactive waste disposal in geological formations

    International Nuclear Information System (INIS)

    Gera, F.

    1977-01-01

    The nuclear energy controversy, now raging in several countries, is based on two main issues: the safety of nuclear plants and the possibility to dispose safely of the long-lived radioactive wastes. Consideration of the evolution of the hazard potential of waste in function of decay time leads to a somewhat conservative reference containment time in the order of one hundred thousand years. Several concepts have been proposed for the disposal of long-lived wastes. At the present time, emplacement into suitable geological formations under land areas can be considered the most promising disposal option. It is practically impossible to define detailed criteria to be followed in selecting suitable sites for disposal of long-lived wastes. Basically there is a single criterion, namely; that the geological environment must be able to contain the wastes for at least a hundred thousand years. However, due to the extreme variability of geological settings, it is conceivable that this basic capability could be provided by a great variety of different conditions. The predominant natural mechanism by which waste radionuclides could be moved from a sealed repository in a deep geological formation into the biosphere is leaching and transfer by ground water. Hence the greatest challenge is to give a satisfactory demonstration that isolation from ground water will persist over the required containment time. Since geological predictions are necessarily affected by fairly high levels of uncertainty, the only practical approach is not a straight-forward forecast of future geological events, but a careful assessment of the upper limits of geologic changes that could take place in the repository area over the next hundred thousand years. If waste containment were to survive these extreme geological changes the disposal site could be considered acceptable. If some release of activity were to take place in consequence of the hypothetical events the disposal solution might still be

  4. Nuclear waste disposal site

    International Nuclear Information System (INIS)

    Mallory, C.W.; Watts, R.E.; Sanner, W.S. Jr.; Paladino, J.B.; Lilley, A.W.; Winston, S.J.; Stricklin, B.C.; Razor, J.E.

    1988-01-01

    This patent describes a disposal site for the disposal of toxic or radioactive waste, comprising: (a) a trench in the earth having a substantially flat bottom lined with a layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for obstructing any capillary-type flow of ground water to the interior of the trench; (b) a non-rigid, radiation-blocking cap formed from a first layer of alluvium, a second layer of solid, fluent, coarse, granular material having a high hydraulic conductivity for blocking any capillary-type flow of water between the layer of alluvium and the rest of the cap, a layer of water-shedding silt for directing surface water away from the trench, and a layer of rip-rap over the silt layer for protecting the silt layer from erosion and for providing a radiation barrier; (c) a solidly-packed array of abutting modules of uniform size and shape disposed in the trench and under the cap for both encapsulating the wastes from water and for structurally supporting the cap, wherein each module in the array is slidable movable in the vertical direction in order to allow the array of modules to flexibly conform to variations in the shape of the flat trench bottom caused by seismic disturbances and to facilitate the recoverability of the modules; (d) a layer of solid, fluent, coarse, granular materials having a high hydraulic conductivity in the space between the side of the modules and the walls of the trench for obstructing any capillary-type flow of ground water to the interior of the trench; and (e) a drain and wherein the layer of silt is sloped to direct surface water flowing over the cap into the drain

  5. Radioactive waste material disposal

    Science.gov (United States)

    Forsberg, Charles W.; Beahm, Edward C.; Parker, George W.

    1995-01-01

    The invention is a process for direct conversion of solid radioactive waste, particularly spent nuclear fuel and its cladding, if any, into a solidified waste glass. A sacrificial metal oxide, dissolved in a glass bath, is used to oxidize elemental metal and any carbon values present in the waste as they are fed to the bath. Two different modes of operation are possible, depending on the sacrificial metal oxide employed. In the first mode, a regenerable sacrificial oxide, e.g., PbO, is employed, while the second mode features use of disposable oxides such as ferric oxide.

  6. Disposal - practical problems

    International Nuclear Information System (INIS)

    Hycnar, J.; Pinko, L.

    1995-01-01

    Most Polish power plants have stockyards for storage of fly ash and slag. This paper describes the: methods of fly ash and slag storage used, methods of conveying the waste to the stockpiles (by railway cars, trucks, belt conveyors or hydraulically); construction of wet stockyards and dry stockyards and comparison of the ash dumped, development of methods of ash disposal in mine workings; composition and properties of fly ash and slag from hard coal; and the effects of ash storage yards on the environment (by leaching of trace elements, dust, effect on soils, and noise of machinery). 16 refs., 3 figs., 6 tabs

  7. Nuclear fuel waste disposal

    International Nuclear Information System (INIS)

    1982-01-01

    This film for a general audience deals with nuclear fuel waste management in Canada, where research is concentrating on land based geologic disposal of wastes rather than on reprocessing of fuel. The waste management programme is based on cooperation of the AECL, various universities and Ontario Hydro. Findings of research institutes in other countries are taken into account as well. The long-term effects of buried radioactive wastes on humans (ground water, food chain etc.) are carefully studied with the help of computer models. Animated sequences illustrate the behaviour of radionuclides and explain the idea of a multiple barrier system to minimize the danger of radiation hazards

  8. Waste disposal experts meet

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1959-01-15

    Problems connected with the disposal into the sea of radioactive wastes from peaceful uses of atomic energy are being examined by a panel of experts, convened by the International Atomic Energy Agency. These experts from eight different countries held a first meeting at IAEA headquarters in Vienna from 4-9 December 1958, under the chairmanship of Dr. Harry Brynielsson, Director General of the Swedish Atomic Energy Company. The countries represented are: Canada, Czechoslovakia, France, Japan, Netherlands, United Kingdom and United States. The group will meet again in 1959. (author)

  9. HLW Disposal System Development

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J. W.; Choi, H. J.; Lee, J. Y. (and others)

    2007-06-15

    A KRS is suggested through design requirement analysis of the buffer and the canister which are the constituent of disposal system engineered barrier and HLW management plans are proposed. In the aspect of radionuclide retention capacity, the thickness of the buffer is determined 0.5m, the shape to be disc and ring and the dry density to be 1.6 g/cm{sup 3}. The maximum temperature of the buffer is below 100 .deg. which meets the design requirement. And bentonite blocks with 5 wt% of graphite showed more than 1.0 W/mK of thermal conductivity without the addition of sand. The result of the thermal analysis for proposed double-layered buffer shows that decrease of 7 .deg. C in maximum temperature of the buffer. For the disposal canister, the copper for the outer shell material and cast iron for the inner structure material is recommended considering the results analyzed in terms of performance of the canisters and manufacturability and the geochemical properties of deep groundwater sampled from the research area with granite, salt water intrusion, and the heavy weight of the canister. The results of safety analysis for the canister shows that the criticality for the normal case including uncertainty is the value of 0.816 which meets subcritical condition. Considering nation's 'Basic Plan for Electric Power Demand and Supply' and based on the scenario of disposing CANDU spent fuels in the first phase, the disposal system that the repository will be excavated in eight phases with the construction of the Underground Research Laboratory (URL) beginning in 2020 and commissioning in 2040 until the closure of the repository is proposed. Since there is close correlation between domestic HLW management plans and front-end/back-end fuel cycle plans causing such a great sensitivity of international environment factor, items related to assuring the non-proliferation and observing the international standard are showed to be the influential factor and acceptability

  10. The effects of transuranic separation on waste disposal

    International Nuclear Information System (INIS)

    1991-04-01

    Rogers and Associates Engineering has analyzed waste streams from fuel cycles involving actinide partitioning and transmutation to determine appropriate disposal facilities for the waste and the cost of disposal. The focus of the study is the economic impact of actinide partitioning and transmutation on waste disposal, although there is a qualitative discussion of the impacts of actinide burning on disposal risk. This effort is part of a multi-contractor task being coordinated by the Electric Power Research Institute to address the technical feasibility and economic impact of transuranic burning. Waste streams were defined by General Electric Corporation for eight alternative processing cases -- involving aqueous and pyrochemical processing of spent fuel from light water reactors and liquid metal reactors and for low-actinide-recovery and high-actinide-recovery technologies. Disposal options are determined for three possible futures: one involving the present socio-political-licensing environment and using cost estimates for existing or planned facilities, an optimistic future with lower siting and licensing costs, and a pessimistic future with high siting and licensing costs and some extraordinary measures to assure waste isolation. The optimistic future allows the disposal of certain types of waste in a facility that provides a degree of waste isolation that is intermediate between a repository and a low-level-waste facility. 30 refs., 18 figs., 45 tabs

  11. Ocean disposal of radioactive waste: Status report

    International Nuclear Information System (INIS)

    Calmet, D.P.

    1989-01-01

    For hundreds of years, the seas have been used as a place to dispose of wastes resulting from human activities and although no high level radioactive waste (HLW) has been disposed of into the sea, variable amounts of packaged low level radioactive waste (LLW) have been dumped at more than 50 sites in the northern part of the Atlantic and Pacific oceans. So far, samples of sea water, sediments and deep sea organisms collected on the various sites have not shown any excess in the levels of radionuclides above those due to nuclear weapons fallout except on certain occasions where caesium and plutonium were detected at higher levels in samples taken close to packages at the dumping site. Since 1957, the date of its first meeting to design methodologies to assess the safety of ''radioactive waste disposal into the sea'', the IAEA has provided guidance and recommendations for ensuring that disposal of radioactive wastes into the sea will not result in unacceptable hazards to human health and marine organisms, damage to amenities or interference with other legitimate uses of the sea. Since the Convention for the Prevention of Marine Pollution by Dumping of Wastes and Other Matter (referred to as the London Dumping Convention) came into force in 1975, the dumping of waste has been regulated on a global scale. The London Dumping Convention entrusted IAEA with specific responsibilities for the definition of high level radioactive wastes unsuitable for dumping at sea, and for making recommendations to national authorities for issuing special permits for ocean dumping of low level radioactive wastes. This paper presents a status report of immersion operations of low-level radioactive waste and the current studies the IAEA is undertaking on behalf of the LDC

  12. The Texas Solution to the Nation's Disposal Needs for Irradiated Hardware - 13337

    International Nuclear Information System (INIS)

    Britten, Jay M.

    2013-01-01

    The closure of the disposal facility in Barnwell, South Carolina, to out-of-compact states in 2008 left commercial nuclear power plants without a disposal option for Class B and C irradiated hardware. In 2012, Waste Control Specialists LLC (WCS) opened a highly engineered facility specifically designed and built for the disposal of Class B and C waste. The WCS facility is the first Interstate Compact low-level radioactive waste disposal facility to be licensed and operated under the Low-level Waste Policy Act of 1980, as amended in 1985. Due to design requirements of a modern Low Level Radioactive Waste (LLRW) facility, traditional methods for disposal were not achievable at the WCS site. Earlier methods primarily utilized the As Low as Reasonably Achievable (ALARA) concept of distance to accomplish worker safety. The WCS method required the use of all three ALARA concepts of time, distance, and shielding to ensure the safe disposal of this highly hazardous waste stream. (authors)

  13. Design and operational experience of low level radioactive waste disposal in the United Kingdom

    International Nuclear Information System (INIS)

    Grimwood, P. D.

    1997-01-01

    Low level radioactive wastes have been disposed of at the Drigg near-surface disposal site for over 30 years. These are carried out under a disposal authorization granted by the UK Environment Agency. This is augmented by a three tier comprehensive system of waste controls developed by BNFL involving wasteform specification, consignor and waste stream qualification and waste consignment verification. Until 1988 wastes were disposed of into trench facilities. However, based on a series of integrated optioneering studies, new arrangements have since been brought into operation. Central to these is a wasteform specification based principally on high force compaction of wastes, grouting within 20 m 3 steel overpack containers to essentially eliminate associated voidage and subsequent disposal in concrete lined vaults. These arrangements ensure efficient utilisation of the Drigg site capacity and a cost-effective disposal concept which meets both national and international standards. (author). 7 figs

  14. The origins of options.

    Science.gov (United States)

    Smaldino, Paul E; Richerson, Peter J

    2012-01-01

    Most research on decision making has focused on how human or animal decision makers choose between two or more options, posed in advance by the researchers. The mechanisms by which options are generated for most decisions, however, are not well understood. Models of sequential search have examined the trade-off between continued exploration and choosing one's current best option, but still cannot explain the processes by which new options are generated. We argue that understanding the origins of options is a crucial but untapped area for decision making research. We explore a number of factors which influence the generation of options, which fall broadly into two categories: psycho-biological and socio-cultural. The former category includes factors such as perceptual biases and associative memory networks. The latter category relies on the incredible human capacity for culture and social learning, which doubtless shape not only our choices but the options available for choice. Our intention is to start a discussion that brings us closer toward understanding the origins of options.

  15. Americal options analyzed differently

    NARCIS (Netherlands)

    Nieuwenhuis, J.W.

    2003-01-01

    In this note we analyze in a discrete-time context and with a finite outcome space American options starting with the idea that every tradable should be a martingale under a certain measure. We believe that in this way American options become more understandable to people with a good working

  16. Assessment of alternative disposal concepts

    Energy Technology Data Exchange (ETDEWEB)

    Autio, J.; Saanio, T.; Tolppanen, P. [Saanio and Riekkola Consulting Engineers, Helsinki (Finland); Raiko, H.; Vieno, T. [VTT Energy, Espoo (Finland); Salo, J.P. [Posiva Oy, Helsinki (Finland)

    1996-12-01

    Four alternative repository designs for the disposal of spent nuclear in the Finnish crystalline bedrock were assessed in the study. The alternatives were: (1) the basic KBS-3 design in which copper canisters are emplaced in vertical deposition holes bored in the floors of horizontal tunnels, (2) the KBS-3-2C design with two canisters in a deposition hole, (3) Short Horizontal Holes (SHH) in the side walls of the tunnels, and (4) the Medium Long Holes (MLH) concept in which approximately 25 canisters are emplaced in a horizontal deposition hole about 200 metres in length bored between central and side tunnels. In all the alternatives considered, the thickness of the layer of compacted bentonite between copper canister and bedrock is 35 cm. Two different copper canister designs were also assessed. Technical feasibility and flexibility, post-closure safety and repository cost were assessed for each of the alternative canister and repository designs. On the basis of this assessment it is recommended that further development and studies should focus on the vacuum- or inert gas-filled cast insert type copper canister and the basic KBS-3 type repository design with a single canister in a vertical deposition hole. The KBS-3 design is robust and flexible and provides excellent post-closure safety. The transfer, emplacement and sealing operations are technically uncomplicated. The alternative options assessed do not offer any significant benefits in safety or cost over the basic design, but they are technically more complex and also in some respects more vulnerable to malfunction during the emplacement of canisters and buffer, as well as common mode failures. (60 refs.).

  17. Assessment of alternative disposal concepts

    International Nuclear Information System (INIS)

    Autio, J.; Saanio, T.; Tolppanen, P.; Raiko, H.; Vieno, T.; Salo, J.P.

    1996-12-01

    Four alternative repository designs for the disposal of spent nuclear in the Finnish crystalline bedrock were assessed in the study. The alternatives were: (1) the basic KBS-3 design in which copper canisters are emplaced in vertical deposition holes bored in the floors of horizontal tunnels, (2) the KBS-3-2C design with two canisters in a deposition hole, (3) Short Horizontal Holes (SHH) in the side walls of the tunnels, and (4) the Medium Long Holes (MLH) concept in which approximately 25 canisters are emplaced in a horizontal deposition hole about 200 metres in length bored between central and side tunnels. In all the alternatives considered, the thickness of the layer of compacted bentonite between copper canister and bedrock is 35 cm. Two different copper canister designs were also assessed. Technical feasibility and flexibility, post-closure safety and repository cost were assessed for each of the alternative canister and repository designs. On the basis of this assessment it is recommended that further development and studies should focus on the vacuum- or inert gas-filled cast insert type copper canister and the basic KBS-3 type repository design with a single canister in a vertical deposition hole. The KBS-3 design is robust and flexible and provides excellent post-closure safety. The transfer, emplacement and sealing operations are technically uncomplicated. The alternative options assessed do not offer any significant benefits in safety or cost over the basic design, but they are technically more complex and also in some respects more vulnerable to malfunction during the emplacement of canisters and buffer, as well as common mode failures. (60 refs.)

  18. 10 CFR 61.52 - Land disposal facility operation and disposal site closure.

    Science.gov (United States)

    2010-01-01

    ... DISPOSAL OF RADIOACTIVE WASTE Technical Requirements for Land Disposal Facilities § 61.52 Land disposal... wastes by placing in disposal units which are sufficiently separated from disposal units for the other... between any buried waste and the disposal site boundary and beneath the disposed waste. The buffer zone...

  19. Traffic Light Options

    DEFF Research Database (Denmark)

    Jørgensen, Peter Løchte

    This paper introduces, prices, and analyzes traffic light options. The traffic light option is an innovative structured OTC derivative developed independently by several London-based investment banks to suit the needs of Danish life and pension (L&P) companies, which must comply with the traffic...... 2006, and supervisory authorities in many other European countries have implemented similar regulation. Traffic light options are therefore likely to attract the attention of a wider audience of pension fund managers in the future. Focusing on the valuation of the traffic light option we set up a Black...... light scenarios. These stress scenarios entail drops in interest rates as well as in stock prices, and traffic light options are thus designed to pay off and preserve sufficient capital when interest rates and stock prices fall simultaneously. Sweden's FSA implemented a traffic light system in January...

  20. Traffic Light Options

    DEFF Research Database (Denmark)

    Jørgensen, Peter Løchte

    2007-01-01

    This paper introduces, prices, and analyzes traffic light options. The traffic light option is an innovative structured OTC derivative developed independently by several London-based investment banks to suit the needs of Danish life and pension (L&P) companies, which must comply with the traffic...... 2006, and supervisory authorities in many other European countries have implemented similar regulation. Traffic light options are therefore likely to attract the attention of a wider audience of pension fund managers in the future. Focusing on the valuation of the traffic light option we set up a Black...... light scenarios. These stress scenarios entail drops in interest rates as well as in stock prices, and traffic light options are thus designed to pay off and preserve sufficient capital when interest rates and stock prices fall simultaneously. Sweden's FSA implemented a traffic light system in January...

  1. Borehole disposal design concept

    International Nuclear Information System (INIS)

    RANDRIAMAROLAHY, J.N.

    2007-01-01

    In Madagascar, the sealed radioactive sources are used in several socioeconomic sectors such as medicine, industry, research and agriculture. At the end of their useful lives, these radioactive sources become radioactive waste and can be still dangerous because they can cause harmful effects to the public and the environment. This work entitled 'Borehole disposal design concept' consists in putting in place a site of sure storage of the radioactive waste, in particular, sealed radioactive sources. Several technical aspects must be respected to carry out such a site like the geological, geomorphologic, hydrogeologic, geochemical, meteorological and demographic conditions. This type of storage is favorable for the developing countries because it is technologically simple and economic. The cost of construction depends on the volume of waste to store and the depth of the Borehole. The Borehole disposal concept provides a good level of safety to avoid the human intrusion. The future protection of the generations against the propagation of the radiations ionizing is then assured. [fr

  2. Research on geological disposal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2013-08-15

    The aims of this research are to develop criteria for reviewing reliability and suitability of the result from Preliminary Investigations to be submitted by the implementer, and to establish a basic policy for safety review. For development of reliability and suitability criteria for reviewing the result of Preliminary Investigations, we evaluated the uncertainties and their influence from limited amount of investigations, as well as we identified important procedures during investigations and constructions of models, as follows: (1) uncertainties after limited amount of geological exploration and drilling, (2) influence of uncertainties in regional groundwater flow model, (3) uncertainties of DFN (Discrete Fracture Network) models in the fractured rock, (4) analyzed investigation methods described in implementer's report, and (5) identified important aspects in investigation which need to be reviewed and follow QA (Quality Assurance). For development of reliability and suitability criteria for reviewing the result of Detailed Investigations, we analyzed important aspects in investigation which supplies data to design and safety assessment, as well as studied the applicability of pressure interference data during excavation to verify hydrogeological model. Regarding the research for safety review, uncertainties of geologic process in long time-scale was studied. In FY2012, we started to evaluate the structural stabilities of concrete and bentonite in disposal environment. Finally, we continued to accumulate the knowledge on geological disposal into the database system. (author)

  3. Geoenvironment and waste disposal

    International Nuclear Information System (INIS)

    1983-07-01

    Within the activities planned by UNESCO in its Water and Earth Science programme, an interdisciplinary meeting on geology and environment was scheduled by this organization to be held by the beginning of 1983. At this meeting it was intended to consider geological processes in the light of their interaction and influence on the environment with special emphasis on the impact of various means of waste disposal on geological environment and on man-induced changes in the geological environment by mining, human settlements, etc. Considering the increasing interest shown by the IAEA in the field, through environmental studies, site studies, and impact studies for nuclear facilities and particularly nuclear waste disposal, UNESCO expressed the wish to organize the meeting jointly so as to take into account the experience gained by the Agency, and in order to avoid any duplication in the activities of the two organizations. This request was agreed to by the IAEA Secretariat and as a result, the meeting was organized by both organizations and held at IAEA Headquarters in Vienna from 21-23 March 1983. The report of this meeting is herewith presented

  4. Mine tailings disposal

    International Nuclear Information System (INIS)

    Gonzales, P.A.; Adams, B.J.

    1980-06-01

    The hydrologic evaluation of mine tailings disposal sites after they are abandoned is considered in relation to their potential environmental impact on a long term basis. There is a direct relation between the amounts and types of water leaving a disposal site and the severity of the potential damage to the environment. The evaluation of the relative distribution of the precipitation reaching the ground into evaporation, runoff and infiltration is obtained for a selected site and type of tailings material whose characteristics and physical properties were determined in the soils laboratory. A conceptual model of the hydrologic processes involved and the corresponding mathematical model were developed to simulate the physical system. A computer program was written to solve the set of equations forming the mathematical model, considering the physical properties of the tailings and the rainfall data selected. The results indicate that the relative distribution of the precipitation depends on the surface and upper layer of the tailings and that the position of the groundwater table is governed by the flow through the bottom of the profile considered. The slope of the surface of the mass of tailings was found to be one of the principal factors affecting the relative distribution of precipitation and, therefore, the potential pollution of the environment

  5. Disposal of radioactive waste material

    International Nuclear Information System (INIS)

    Cairns, W.J.; Burton, W.R.

    1984-01-01

    A method of disposal of radioactive waste consists in disposing the waste in trenches dredged in the sea bed beneath shallow coastal waters. Advantageously selection of the sites for the trenches is governed by the ability of the trenches naturally to fill with silt after disposal. Furthermore, this natural filling can be supplemented by physical filling of the trenches with a blend of absorber for radionuclides and natural boulders. (author)

  6. Report on radioactive waste disposal

    International Nuclear Information System (INIS)

    1993-01-01

    The safe management of radioactive wastes constitutes an essential part of the IAEA programme. A large number of reports and conference proceedings covering various aspects of the subject have been issued. The Technical Review Committee on Underground Disposal (February 1988) recommended that the Secretariat issue a report on the state of the art of underground disposal of radioactive wastes. The Committee recommended the need for a report that provided an overview of the present knowledge in the field. This report covers the basic principles associated with the state of the art of near surface and deep geological radioactive waste disposal, including examples of prudent practice, and basic information on performance assessment methods. It does not include a comprehensive description of the waste management programmes in different countries nor provide a textbook on waste disposal. Such books are available elsewhere. Reviewing all the concepts and practices of safe radioactive waste disposal in a document of reasonable size is not possible; therefore, the scope of this report has been limited to cover essential parts of the subject. Exotic disposal techniques and techniques for disposing of uranium mill tailings are not covered, and only brief coverage is provided for disposal at sea and in the sea-bed. The present report provides a list of references to more specialized reports on disposal published by the IAEA as well as by other bodies, which may be consulted if additional information is sought. 108 refs, 22 figs, 2 tabs

  7. Situation and prospects of radioactive waste disposal in the member states of the European Community

    International Nuclear Information System (INIS)

    Schaller, K.H.; Orlowski, S.

    1990-01-01

    All Member States of the European Community with a nuclear power production programme are preparing for the disposal of radioactive waste produced in the nuclear fuel cycle and through the use of radionuclides in health care, research and industry. The situation of storage and planned, on-going - and already performed - disposal of radioactive waste in these States is first summarised. Suitable sites for disposal of radioactive waste of all categories exist in all Member States concerned. The general principles and international recommendations, and common principles, standards and requirements applicable to disposal in the European Community are then presented, followed by a description of existing disposal facilities and of those which are in an advanced planning stage, and the implementation of basic criteria by national authorities. Finally, policies and strategies for long-term storage and disposal for definitively shut-down nuclear installations, and contributions to research in this field in the ''Communities' Radioactive Waste Management Programme'' are discussed. (author)

  8. Regulatory document R-104, Regulatory objectives, requirements and guidelines for the disposal of radioactive wastes - long-term aspects

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose and scope of this document is to present the regulatory basis for judging the long-term acceptability of radioactive waste disposal options. The basic objectives of radioactive waste disposal are given as are the regulatory requirements to be satisfied. (NEA)

  9. Polish Toxic Currency Options

    Directory of Open Access Journals (Sweden)

    Waldemar Gontarski

    2009-06-01

    Full Text Available Toxic currency options are defined on the basis of the opposition to the nature (essence of an option contract, which is justified in terms of norms founded on the general law clause of characteristics (nature of a relation (which represents an independent premise for imposing restrictions on the freedom of contracts. So-understood toxic currency options are unlawful. Indeed they contravene iuris cogentis regulations. These include for instance option contracts, which are concluded with a bank, if the bank has not informed about option risk before concluding the contract; or the barrier options, which focus only on the protection of bank’s interests. Therefore, such options may appear to be invalid. Therefore, performing contracts for toxic currency options may be qualified as a criminal mismanagement. For the sake of security, the manager should then take into consideration filing a claim for stating invalidity (which can be made in a court verdict. At the same time, if the supervisory board member in a commercial company, who can also be a subject to mismanagement offences, commits an omission involving lack of reaction (for example, if he/she fails to notify of the suspected offence committed by the management board members acting to the company’s detriment when the management board makes the company conclude option contracts which are charged with absolute invalidity the supervisory board member so acting may be considered to act to the company’s detriment. In the most recent Polish jurisprudence and judicature the standard of a “good host” is treated to be the last resort for determining whether the manager’s powers resulting from criminal regulations were performed. The manager of the exporter should not, as a rule, issue any options. Issuing options always means assuming an obligation. In the case of currency put options it is an absolute obligation to purchase a given amount in euro at exchange rate set in advance. On the

  10. Evaluation of disposal methods for oxidized FGD sludge

    International Nuclear Information System (INIS)

    Yu, W.C.

    1992-01-01

    The implementation of wet flue gas desulfurization - in response to the Clean Air Act of 1990 - will cause many power generators and state regulatory personnel to face important decisions on the disposal of large volumes of resultant solid waste. Even with the selection of forced oxidation technology, it is widely recognized that the vast majority of flue gas desulfurization by-products will be disposed. This paper analyzes the water quality issues associated with gypsum stacking, macroencapsulation of gypsum, and the stabilization/fixation of gypsum. Water quality issues include leachate quality, leachate generation, runoff management, and groundwater impact. The following analysis uses both field and literature data to measure the environmental impact of the three most discussed disposal options

  11. 2005 resource options report

    International Nuclear Information System (INIS)

    Morris, T.

    2005-01-01

    This resource options report (ROR) fulfils regulatory requirements in British Columbia's two-year resource planning process. It identifies a wide range of resources and technologies that could be used to meet BC Hydro's future electricity demand. As such, it facilitates a transparent public review of resource options which include both supply-side and demand-side options. The resource options that will be used in the 2005 integrated electricity plan (IEP) were characterized. This ROR also documents where there is a general agreement or disagreement on the resource type characterization, based on the First Nations and Stakeholder engagement. BC Hydro used current information to provide realistic ranges on volume and cost to characterize environmental and social attributes. The BC Hydro system was modelled to assess the benefit and cost of various resource options. The information resulting from this ROR and IEP will help in making decisions on how to structure competitive acquisition calls and to determine the level of transmission services needed to advance certain BC Hydro projects. The IEP forecasts the nature and quantity of domestic resources required over the next 20 years. A strategic direction on how those needs will be met has been created to guide the management of BC Hydro's energy resources. Supply-side options include near-commercial technologies such as energy storage, ocean waves, tidal, fuel cells and integrated coal gasification combined cycle technology. Supply-side options also include natural gas, coal, biomass, geothermal, wind, and hydro. 120 refs., 39 tabs., 21 figs., 6 appendices

  12. Expensing options solves nothing.

    Science.gov (United States)

    Sahlman, William A

    2002-12-01

    The use of stock options for executive compensation has become a lightning rod for public anger, and it's easy to see why. Many top executives grew hugely rich on the back of the gains they made on their options, profits they've been able to keep even as the value they were supposed to create disappeared. The supposed scam works like this: Current accounting regulations let companies ignore the cost of option grants on their income statements, so they can award valuable option packages without affecting reported earnings. Not charging the cost of the grants supposedly leads to overstated earnings, which purportedly translate into unrealistically high share prices, permitting top executives to realize big gains when they exercise their options. If an accounting anomaly is the problem, then the solution seems obvious: Write off executive share options against the current year's revenues. The trouble is, Sahlman writes, expensing option grants won't give us a more accurate view of earnings, won't add any information not already included in the financial statements, and won't even lead to equal treatment of different forms of executive pay. Far worse, expensing evades the real issue, which is whether compensation (options and other-wise) does what it's supposed to do--namely, help a company recruit, retain, and provide the right people with appropriate performance incentives. Any performance-based compensation system has the potential to encourage cheating. Only ethical management, sensible governance, adequate internal control systems, and comprehensive disclosure will save the investor from disaster. If, Sahlman warns, we pass laws that require the expensing of options, thinking that's fixed the fundamental flaws in corporate America's accounting, we will have missed a golden opportunity to focus on the much more extensive defects in the present system.

  13. Early Option Exercise

    DEFF Research Database (Denmark)

    Heje Pedersen, Lasse; Jensen, Mads Vestergaard

    A classic result by Merton (1973) is that, except just before expiration or dividend payments, one should never exercise a call option and never convert a convertible bond. We show theoretically that this result is overturned when investors face frictions. Early option exercise can be optimal when...... it reduces short-sale costs, transaction costs, or funding costs. We provide consistent empirical evidence, documenting billions of dollars of early exercise for options and convertible bonds using unique data on actual exercise decisions and frictions. Our model can explain as much as 98% of early exercises...

  14. Early Option Exercise

    DEFF Research Database (Denmark)

    Jensen, Mads Vestergaard; Heje Pedersen, Lasse

    2016-01-01

    A classic result by Merton (1973) is that, except just before expiration or dividend payments, one should never exercise a call option and never convert a convertible bond. We show theoretically that this result is overturned when investors face frictions. Early option exercise can be optimal when...... it reduces short-sale costs, transaction costs, or funding costs. We provide consistent empirical evidence, documenting billions of dollars of early exercise for options and convertible bonds using unique data on actual exercise decisions and frictions. Our model can explain as much as 98% of early exercises...

  15. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Bohm, H.; Closs, K.D.; Kuhn, K.

    1981-01-01

    The solutions to the technical problem of the disposal of radioactive waste are limited by a) the state of knowledge of reprocessing possibilites, b) public acceptance of the use of those techniques which are known, c) legislative procedures linking licensing of new nuclear power plants to the solution of waste problems, and d) other political constraints. Wastes are generated in the mining and enriching of radioactive elements, and in the operation of nuclear power plants as well as in all fields where radioactive substances may be used. Waste management will depend on the stability and concentration of radioactive materials which must be stored, and a resolution of the tension between numerous small storage sites and a few large ones, which again face problems of public acceptability

  16. Disposal of tritiated effluents

    International Nuclear Information System (INIS)

    Hartmann, K.; Bruecher, H.

    1981-06-01

    After some introductory remarks on the origin of tritium, its properties and its behaviour in a reprocessing plant three alternative methods for the disposal of tritiated effluents produced during reprocessing are described (deep well injection, in-situ solidification, deep-sea dumping) and compared with each other under various aspects. The study is based on the concept of a 1400 t/a reprocessing plant for LWR fuel, which annually produces 3000 m 3 of tritiated waste water with a tritium content of 6.5 x 10 12 Bq/m 3 as well as a residual fission product and actinide content. An assessment of the three methods under the aspects of simplicity, reliability, safety, costs, state of development and materials handling revealed advantages in favour of 'injection', followed by 'dumping' and 'in-situ solidification'. (orig./HP) [de

  17. Toxic waste liquor disposal

    International Nuclear Information System (INIS)

    Burton, W.R.

    1985-01-01

    Toxic waste liquors, especially radio active liquors, are disposed in a sub-zone by feeding down a bore hole a first liquid, then a buffer liquid (e.g. water), then the toxic liquors. Pressure variations are applied to the sub-zone to mix the first liquid and liquors to form gels or solids which inhibit further mixing and form a barrier between the sub-zone and the natural waters in the environment of the sub-zone. In another example the location of the sub-zone is selected so that the environement reacts with the liquors to produce a barrier around the zone. Blind bore holes are used to monitor the sub-zone profile. Materials may be added to the liquor to enhance barrier formation. (author)

  18. Radwaste Disposal Safety Analysis

    International Nuclear Information System (INIS)

    Hwang, Yong Soo; Kang, C. H.; Lee, Y. M.; Lee, S. H.; Jeong, J. T.; Choi, J. W.; Park, S. W.; Lee, H. S.; Kim, J. H.; Jeong, M. S.

    2010-02-01

    For the purpose of evaluating annual individual doses from a potential repository disposing of radioactive wastes from the operation of the prospective advanced nuclear fuel cycle facilities in Korea, the new safety assessment approaches are developed such as PID methods. The existing KAERI FEP list was reviewed. Based on these new reference and alternative scenarios are developed along with a new code based on the Goldsim. The code based on the compartment theory can be applied to assess both normal and what if scenarios. In addition detailed studies on THRC coupling is studied. The oriental biosphere study ends with great success over the completion of code V and V with JAEA. The further development of quality assurance, in the form of the CYPRUS+ enables handy use of it for information management

  19. Screening of alternative methods for the disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Macbeth, P.J.; Thamer, B.J.; Christensen, D.E.; Wehmann, G.

    1978-10-01

    A systematic method for categorizing these disposal alternatives which provides assurance that no viable alternatives are overlooked is reported. Alternatives are categorized by (1) the general media in which disposal occurs, (2) by whether the disposal method can be considered as dispersal, containment or elimination of the wastes, and (3) by the applicability of the disposal method to the possible physical waste forms. A literature survey was performed and pertinent references listed for the various alternatives discussed. A bibliography is given which provides coverage of published information on low-level radioactive waste management options. The extensive list of disposal alternatives identified was screened and the most viable choices were selected for further evaluation. A Technical Advisory Panel met and reviewed the results. Suggestions from that meeting and other comments are discussed. The most viable options selected for further evaluation are: (1) improving present shallow land burial practices; (2) deeper depth burial; (3) disposal in cavities; (4) disposal in exposed or buried structures; and (5) ocean disposal. 42 references

  20. Thermal performance of a depleted uranium shielded storage, transportation, and disposal package

    International Nuclear Information System (INIS)

    Wix, S.D.; Yoshimura, H.R.

    1994-01-01

    The US Department of Energy (DOE) is responsible for management and disposal of large quantities of depleted uranium (DU) in the DOE complex. Viable economic options for the use and eventual disposal of the material are needed. One possible option is the use of DU as shielding material for vitrified Defense High-Level Waste (DHLW) storage, transportation, and disposal packages. Use of DU as a shielding material provides the potential benefit of disposing of significant quantities of DU during the DHLW storage and disposal process. Two DU package concepts have been developed by Sandia National Laboratories. The first concept is the Storage/Disposal plus Transportation (S/D+T) package. The S/D+T package consists of two major components: a storage/disposal (S/D) container and a transportation overpack. The second concept is the S/D/T package which is an integral storage, transportation, and disposal package. The package concept considered in this analysis is the S/D+T package with seven DHLW waste canisters

  1. New York's response to the national LLRW disposal legislation

    International Nuclear Information System (INIS)

    Orazio, A.F.; Schwarz, W.F.; Feeney, A.X.

    1988-01-01

    The Federal Low Level Radioactive Waste Policy Act (LLRWPA) and its amendments brought about a shift from commercial responsibility to state responsibility for low level radioactive waste (LLRW) disposal. This shift required New York to evaluate various policy options for handling its new LLRW disposal responsibility. After passage of the 1980 Federal Act, New York participated in efforts which resulted in a proposed interstate compact in the Northeast. Following a review of the proposed compact, as well as other options, New York decided to assume by itself full responsibility for disposing of its LLRW. In July 1986, New York enacted the New York State LLRW Management Act. This act provides New York with a detailed plan for establishing a LLWR disposal facility by the 1993 federal deadline. This paper consists of two segments. The first describes the major provisions of the State Act assigning responsibilities to the various agencies involved and reports on their progress. The second segment discusses the current activities of those involved in implementing the State Act with an emphasis on the recent and future activities of the Siting Commission

  2. INEL Operable Unit 7-13 containment and stabilization configuration option

    International Nuclear Information System (INIS)

    Raivo, B.D.; Richardson, J.G.; Nickelson, D.F.

    1993-05-01

    A containment and stabilization configuration option has been developed for the Idaho National Engineering Laboratory's Subsurface Disposal Area Operable Unit 7-13, the transuranic (TRU)-contaminated waste pits and trenches. The configuration option is presented as an end-to-end system block diagram. Functional subelements are separately discussed, and technical background information, assumptions, input, high-level subelement requirements, and output are presented for each option

  3. Thermometers: Understand the Options

    Science.gov (United States)

    ... the options Thermometers come in a variety of styles. Understand the different types of thermometers and how ... MA. Fever in infants and children: Pathophysiology and management. http://www.uptodate.com/home. Accessed July 23, ...

  4. Cost effective disposal of whey

    Energy Technology Data Exchange (ETDEWEB)

    Zall, R R

    1980-01-01

    Means of reducing the problem of whey disposal are dealt with, covering inter alia the pre-treatment of cheese milk e.g., by ultrafiltration to lower the whey output, utilization of whey constituents, use of liquid whey for feeding, fermenting whey to produce methane and alcohol, and disposal of whey by irrigation of land or by purification in sewage treatment plants.

  5. Melter Disposal Strategic Planning Document

    Energy Technology Data Exchange (ETDEWEB)

    BURBANK, D.A.

    2000-09-25

    This document describes the proposed strategy for disposal of spent and failed melters from the tank waste treatment plant to be built by the Office of River Protection at the Hanford site in Washington. It describes program management activities, disposal and transportation systems, leachate management, permitting, and safety authorization basis approvals needed to execute the strategy.

  6. Korean Reference HLW Disposal System

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Heui Joo; Lee, J. Y.; Kim, S. S. (and others)

    2008-03-15

    This report outlines the results related to the development of Korean Reference Disposal System for High-level radioactive wastes. The research has been supported around for 10 years through a long-term research plan by MOST. The reference disposal method was selected via the first stage of the research during which the technical guidelines for the geological disposal of HLW were determined too. At the second stage of the research, the conceptual design of the reference disposal system was made. For this purpose the characteristics of the reference spent fuels from PWR and CANDU reactors were specified, and the material and specifications of the canisters were determined in term of structural analysis and manufacturing capability in Korea. Also, the mechanical and chemical characteristics of the domestic Ca-bentonite were analyzed in order to supply the basic design parameters of the buffer. Based on these parameters the thermal and mechanical analysis of the near-field was carried out. Thermal-Hydraulic-Mechanical behavior of the disposal system was analyzed. The reference disposal system was proposed through the second year research. At the final third stage of the research, the Korean Reference disposal System including the engineered barrier, surface facilities, and underground facilities was proposed through the performance analysis of the disposal system.

  7. Underground disposal of radioactive wastes

    International Nuclear Information System (INIS)

    1981-01-01

    This report is an overview document for the series of IAEA reports dealing with underground waste disposal to be prepared in the next few years. It provides an introduction to the general considerations involved in implementing underground disposal of radioactive wastes. It suggests factors to be taken into account for developing and assessing waste disposal concepts, including the conditioned waste form, the geological containment and possible additional engineered barriers. These guidelines are general so as to cover a broad range of conditions. They are generally applicable to all types of underground disposal, but the emphasis is on disposal in deep geological formations. Some information presented here may require slight modifications when applied to shallow ground disposal or other types of underground disposal. Modifications may also be needed to reflect local conditions. In some specific cases it may be that not all the considerations dealt with in this book are necessary; on the other hand, while most major considerations are believed to be included, they are not meant to be all-inclusive. The book primarily concerns only underground disposal of the wastes from nuclear fuel cycle operations and those which arise from the use of isotopes for medical and research activities

  8. Nuclear waste disposal in space

    Science.gov (United States)

    Burns, R. E.; Causey, W. E.; Galloway, W. E.; Nelson, R. W.

    1978-01-01

    Work on nuclear waste disposal in space conducted by the George C. Marshall Space Flight Center, National Aeronautics and Space Administration, and contractors are reported. From the aggregate studies, it is concluded that space disposal of nuclear waste is technically feasible.

  9. Chemical Waste Management and Disposal.

    Science.gov (United States)

    Armour, Margaret-Ann

    1988-01-01

    Describes simple, efficient techniques for treating hazardous chemicals so that nontoxic and nonhazardous residues are formed. Discusses general rules for management of waste chemicals from school laboratories and general techniques for the disposal of waste or surplus chemicals. Lists specific disposal reactions. (CW)

  10. Safe disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Hooker, P.; Metcalfe, R.; Milodowski, T.; Holliday, D.

    1997-01-01

    A high degree of international cooperation has characterized the two studies reported here which aim to address whether radioactive waste can be disposed of safely. Using hydrogeochemical and mineralogical surveying techniques earth scientists from the British Geological Survey have sought to identify and characterise suitable disposal sites. Aspects of the studies are explored emphasising their cooperative nature. (UK)

  11. Argentina's radioactive waste disposal policy

    International Nuclear Information System (INIS)

    Palacios, E.

    1986-01-01

    The Argentina policy for radioactive waste disposal from nuclear facilities is presented. The radioactive wastes are treated and disposed in confinement systems which ensure the isolation of the radionucles for an appropriate period. The safety criteria adopted by Argentina Authorities in case of the release of radioactive materials under normal conditions and in case of accidents are analysed. (M.C.K.) [pt

  12. Options for human intrusion

    International Nuclear Information System (INIS)

    Bauser, M.; Williams, R.

    1993-01-01

    This paper addresses options for dealing with human intrusion in terms of performance requirements and repository siting and design requirements. Options are presented, along with the advantages and disadvantages of certain approaches. At the conclusion, a conceptual approach is offered emphasizing both the minimization of subjective judgements concerning future human activity, and specification of repository requirements to minimize the likelihood of human intrusion and any resulting, harmful effects should intrusion occur

  13. Marine disposal of radioactive wastes - the debate

    International Nuclear Information System (INIS)

    Blair, I.

    1985-01-01

    The paper defends the case for marine disposal of radioactive wastes. The amount of packaged waste disposed; the site for marine disposal; the method of disposal; the radioactivity arising from the disposal; and safety factors; are all briefly discussed. (U.K.)

  14. The future of the nuclear option

    International Nuclear Information System (INIS)

    Frost, B.R.T.

    1992-01-01

    This paper reports on the future of the nuclear option. No nuclear power reactors have been ordered in the U.S.A. since 1975, but the number of operating reactors has increased to the 115 operating today. The demand for electric power continues to grow. At this time, concern over the environmental effects of fossil fuels has grown; global warming and acid rain effects are major determinants of energy policy. In these circumstances nuclear power may be the only viable option to meet the growing demand for electricity. In the past decade the nuclear power industry has addressed its major critics by standardizing designs, improving operator training, and developing safe methods of disposing of waste products. Fast breeder reactors have taken a new lease on life through the American Integral Fast Reactor (IFR) design which is inherently safe, proliferation resistant, and helps the waste-disposal problem. It will probably not be commercially available until well into the next century. The extension of reactor life raises questions of long-term thermal and radiation effects

  15. radioactive waste disposal standards abroad

    International Nuclear Information System (INIS)

    Lu Yan; Xin Pingping; Wu Jian; Zhang Xue

    2012-01-01

    With the world focus on human health and environmental protection, the problem of radioactive waste disposal has gradually become a global issue, and the focus of attention of public. The safety of radioactive waste disposal, is not only related to human health and environmental safety, but also an important factor of affecting the sustainable development of nuclear energy. In recent years the formulation of the radioactive waste disposal standards has been generally paid attention to at home and abroad, and it has made great progress. In China, radioactive waste management standards are being improved, and there are many new standards need to be developed. The revised task of implement standards is very arduous, and there are many areas for improvement about methods and procedures of the preparation of standards. This paper studies the current situation of radioactive waste disposal standards of the International Atomic Energy Agency, USA, France, Britain, Russia, Japan, and give some corresponding recommendations of our radioactive waste disposal standards. (authors)

  16. Engineering geology of waste disposal

    International Nuclear Information System (INIS)

    Bentley, S.P.

    1996-01-01

    This volume covers a wide spectrum of activities in the field of waste disposal. These activities range from design of new landfills and containment properties of natural clays to investigation, hazard assessment and remediation of existing landfills. Consideration is given to design criteria for hard rock quarries when used for waste disposal. In addition, an entire section concerns the geotechnics of underground repositories. This covers such topics as deep drilling, in situ stress measurement, rock mass characterization, groundwater flows and barrier design. Engineering Geology of Waste Disposal examines, in detail, the active role of engineering geologists in the design of waste disposal facilities on UK and international projects. The book provides an authoritative mix of overviews and detailed case histories. The extensive spectrum of papers will be of practical value to those geologists, engineers and environmental scientists who are directly involved with waste disposal. (UK)

  17. Preliminary study of the nuclear power option in Belarus

    International Nuclear Information System (INIS)

    Grusha, N.M.; Kazazyan, V.T.; Malykhin, A.P.; Mikhalevich, A.A.; Yakushau, A.P.; Yaroshevich, O.I.

    1999-01-01

    The Republic of Belarus possesses an economy with many energy intensive branches. At the same time the share of domestic energy resources is about 15% of total energy demand. The share of the payment for primary energy resources reaches 60% or USD 2 billion of the total energy import. That is comparable with the annual state budget. In addition to that, about half of the installed capacities have reached their operation life and 90% of the units have to be retrofitted or replaced until 2010. Thus, the problem of energy supply is one of the most important ones for Belarus' economy. The nuclear power appears to be one of the possible ways for solving the energy demand problem in Belarus which has, as in case of many countries of Central and South-Eastern Europe, limited energy resources. In 1992 - 1994 the works for studying the possibility of NPP siting were recommenced and six relatively competitive sites have been chosen out from 54 possible locations for NPP siting. Parallely, works on assessment of environmental NPP effect in these sites were carried out. As concerning the reactors to be purchased and installed in the sites selected, the following options were taken into consideration: PWR of American Company WESTINGHOUSE; PWR N4 of France Company FRAMATOME; PWR KONVOI of German Company SIEMENS. Also promising are the new generation of Russian Reactor NPP, namely NPP - 91, NPP - 92 and NPP with NGWWER - 640 reactors. Preliminary assessment having in view the feasibility characteristics, safety, reliability as well as the degree of completion shows the Russian projects NPP - 92 and NGWWER - 640 as more preferably at present. Concerning the radioactive waste management, sites for storing low and medium active waste have been determined as well as regions for high active waste disposal. At present Belarus Republic disposes of a definite production, engineering and scientific potential, which can be used when the nuclear power program will be launched. Construction

  18. Nevada Transportation Options Study

    International Nuclear Information System (INIS)

    P. GEHNER; E.M. WEAVER; L. FOSSUM

    2006-01-01

    This study performs a cost and schedule analysis of three Nevada Transportation options that support waste receipt at the repository. Based on the U.S. Department of Energy preference for rail transportation in Nevada (given in the Final Environmental Impact Statement), it has been assumed that a branch rail line would be constructed to support waste receipt at the repository. However, due to potential funding constraints, it is uncertain when rail will be available. The three Nevada Transportation options have been developed to meet a varying degree of requirements for transportation and to provide cost variations used in meeting the funding constraints given in the Technical Direction Letter guidelines for this study. The options include combinations of legal-weight truck, heavy-haul truck, and rail. Option 1 uses a branch rail line that would support initial waste receipt at the repository in 2010. Rail transportation would be the primary mode, supplemented by legal weight trucks. This option provides the highest level of confidence in cost and schedule, lowest public visibility, greatest public acceptability, lowest public dose, and is the recommended option for support of waste receipt. The completion of rail by 2010 will require spending approximately $800 million prior to 2010. Option 2 uses a phased rail approach to address a constrained funding scenario. To meet funding constraints, Option 2 uses a phased approach to delay high cost activities (final design and construction) until after initial waste receipt in 2010. By doing this, approximately 95 percent of the cost associated with completion of a branch rail line is deferred until after 2010. To support waste receipt until a branch rail line is constructed in Nevada, additional legal-weight truck shipments and heavy-haul truck shipments (on a limited basis for naval spent nuclear fuel) would be used to meet the same initial waste receipt rates as in Option 1. Use of heavy-haul shipments in the absence

  19. Life cycle assessment of alternative sewage sludge disposal methods; Oekobilanz von Klaerschlammentsorgungsalternativen

    Energy Technology Data Exchange (ETDEWEB)

    Fehrenbach, H. [Institut fuer Energie- und Umweltforschung (ifeu), Heidelberg (Germany)

    1994-10-01

    At present there are three principal options for sewage sludge disposal in use or under discussion: agricultural utilisation - landfilling - cold pretreatment prior to disposal or utilisation (e.g., composting or fermentation) - thermal pretreatment prior to disposal or utilisation (e.g., monocombustion, co-combustion, pyrolysis, gasification). 10% of sewage sludge is currently combusted, 60% is landfilled, and 30% is used for agriculture. The ifeu Institute has carried out several studies which examine and compare the environmental impact of sewage sludge disposal options. [Deutsch] Zur Entsorgung bzw. Verwertung von Klaerschlamm stehen derzeit drei grundsaetzliche Optionen in Anwendung oder werden diskutiert: - Landwirtschaftliche Verwertung - Deponierung - kalte Vorbehandlung vor Deponierung oder Verwertung (z.B. Kompostierung oder Vergaerung) - thermische Vorbehandlung vorn Deponierung oder Verwertung (z.B. Mono- oder Mitverbrennung, Pyrolyse, Vergasung). Verbrannt werden gegenwaertig etwa 10%, 60% deponiert und 30% landwirschaftlich verwertet. Das ifeu-Institut hat in verschiedenen Arbeiten die Umweltauswirkungen von Klaerschlammentsorgungsoptionen untersucht und gegenuebergestellt. (orig./SR)

  20. 17 CFR 248.30 - Procedures to safeguard customer records and information; disposal of consumer report information.

    Science.gov (United States)

    2010-04-01

    ... customer records and information; disposal of consumer report information. 248.30 Section 248.30 Commodity... of consumer report information. (a) Every broker, dealer, and investment company, and every... any customer. (b) Disposal of consumer report information and records—(1) Definitions (i) Consumer...

  1. Seminar on waste treatment and disposal

    International Nuclear Information System (INIS)

    Sneve, Malgorzata Karpow; Snihs, Jan Olof

    1999-01-01

    Leading abstract. A seminar on radioactive waste treatment and disposal was held 9 - 14 November 1998 in Oskarshamn, Sweden. The objective of the seminar was to exchange information on national and international procedures, practices and requirements for waste management. This information exchange was intended to promote the development of a suitable strategy for management of radioactive waste in Northwest Russia to be used as background for future co-operation in the region. The seminar focused on (1) overviews of international co-operation in the waste management field and national systems for waste management, (2) experiences from treatment of low- and intermediate-level radioactive waste, (3) the process of determining the options for final disposal of radioactive waste, (4) experiences from performance assessments and safety analysis for repositories intended for low- and intermediate level radioactive waste, (5) safety of storage and disposal of high-level waste. The seminar was jointly organised and sponsored by the Swedish Radiation Protection Institute (SSI), the Norwegian Radiation Protection Authority (NRPA), the Nordic Nuclear Safety Research (NKS) and the European Commission. A Russian version of the report is available. In brief, the main conclusions are: (1) It is the prerogative of the Russian federal Government to devise and implement a waste management strategy without having to pay attention to the recommendations of the meeting, (2) Some participants consider that many points have already been covered in existing governmental documents, (3) Norway and Sweden would like to see a strategic plan in order to identify how and where to co-operate best, (4) There is a rigorous structure of laws in place, based on over-arching environmental laws, (5) Decommissioning of submarines is a long and complicated task, (6) There are funds and a desire for continued Norway/Sweden/Russia co-operation, (7) Good co-operation is already taking place

  2. Seminar on waste treatment and disposal

    Energy Technology Data Exchange (ETDEWEB)

    Sneve, Malgorzata Karpow; Snihs, Jan Olof

    1999-07-01

    Leading abstract. A seminar on radioactive waste treatment and disposal was held 9 - 14 November 1998 in Oskarshamn, Sweden. The objective of the seminar was to exchange information on national and international procedures, practices and requirements for waste management. This information exchange was intended to promote the development of a suitable strategy for management of radioactive waste in Northwest Russia to be used as background for future co-operation in the region. The seminar focused on (1) overviews of international co-operation in the waste management field and national systems for waste management, (2) experiences from treatment of low- and intermediate-level radioactive waste, (3) the process of determining the options for final disposal of radioactive waste, (4) experiences from performance assessments and safety analysis for repositories intended for low- and intermediate level radioactive waste, (5) safety of storage and disposal of high-level waste. The seminar was jointly organised and sponsored by the Swedish Radiation Protection Institute (SSI), the Norwegian Radiation Protection Authority (NRPA), the Nordic Nuclear Safety Research (NKS) and the European Commission. A Russian version of the report is available. In brief, the main conclusions are: (1) It is the prerogative of the Russian federal Government to devise and implement a waste management strategy without having to pay attention to the recommendations of the meeting, (2) Some participants consider that many points have already been covered in existing governmental documents, (3) Norway and Sweden would like to see a strategic plan in order to identify how and where to co-operate best, (4) There is a rigorous structure of laws in place, based on over-arching environmental laws, (5) Decommissioning of submarines is a long and complicated task, (6) There are funds and a desire for continued Norway/Sweden/Russia co-operation, (7) Good co-operation is already taking place.

  3. Remedial action and waste disposal project - ERDF readiness evaluation plan

    International Nuclear Information System (INIS)

    Casbon, M.A.

    1996-06-01

    This Readiness Evaluation Report presents the results of the project readiness evaluation to assess the readiness of the Environmental Restoration and Disposal Facility. The evaluation was conducted at the conclusion of a series of readiness activities that began in January 1996. These activities included completion of the physical plant; preparation, review, and approval of operating procedures; definition and assembly of the necessary project and operational organizations; and activities leading to regulatory approval of the plant and operating plans

  4. Safely disposing and controlling the various forms of excess military plutonium

    International Nuclear Information System (INIS)

    Albright, D.

    1991-01-01

    The growing surplus of plutonium will continue to pose safety, health, and verification problems. Although long term storage and disposal of plutonium seems technically feasible, or at least comparable in technical difficulty to commercial spent fuel disposal, significant political obstacles within the government and the public, may make it difficult to solve this problem. Although options to build verifiable warhead dismantlement facilities or to recycle plutonium in reactors and thus convert separated plutonium into irradiated fuel are straight forward concepts, their realization remains difficult for economic and political reasons. The plutonium recycle option also raises additional proliferation concerns about its impact on civilian nuclear programs. In the absence of a long term solution, the United States can implement various storage or interim disposal options that involve minimal processing, but that ease verification problems and provide adequate safety and protection of public health

  5. Assessment of the underground disposal of tailings

    Energy Technology Data Exchange (ETDEWEB)

    Hutt, N M [Morwijk Enterprises Ltd., (Canada); Morin, K A [Normar Enterprises, (Canada)

    1995-06-01

    The Atomic Energy Control Board (AECB) of Canada is facing the issue of long-term disposal of uranium tailings. One option that has not been examined in sufficient detail for the AECB is the retrieval of tailings from surface impoundments and subsequent placement of those tailings in underground workings of mines. This report is structured like a catalogue of facts and information, with each paragraph presenting some concept, concern, theory, or case study involving the retrieval or placement of tailings. All relevant information, findings, interpretations, conclusions, and recommendations gathered during the course of this study are included. The Table of Contents illustrates the striking number of relevant topics and acts like a flowchart or checklist to ensure that an underground-disposal submission by a mining company has addressed relevant topics. This report explains in detail the implications of disturbing surface-impounded tailings for the purpose of placing only some of the volume underground. The cumulative environmental, safety, and monetary liabilities of such a partial scheme can be discouraging in some cases. (author). 244 refs., 47 tabs., 17 figs.

  6. Assessment of the underground disposal of tailings

    International Nuclear Information System (INIS)

    Hutt, N.M.; Morin, K.A.

    1995-06-01

    The Atomic Energy Control Board (AECB) of Canada is facing the issue of long-term disposal of uranium tailings. One option that has not been examined in sufficient detail for the AECB is the retrieval of tailings from surface impoundments and subsequent placement of those tailings in underground workings of mines. This report is structured like a catalogue of facts and information, with each paragraph presenting some concept, concern, theory, or case study involving the retrieval or placement of tailings. All relevant information, findings, interpretations, conclusions, and recommendations gathered during the course of this study are included. The Table of Contents illustrates the striking number of relevant topics and acts like a flowchart or checklist to ensure that an underground-disposal submission by a mining company has addressed relevant topics. This report explains in detail the implications of disturbing surface-impounded tailings for the purpose of placing only some of the volume underground. The cumulative environmental, safety, and monetary liabilities of such a partial scheme can be discouraging in some cases. (author). 244 refs., 47 tabs., 17 figs

  7. CENSUS AND STATISTICAL CHARACTERIZATION OF SOIL AND WATER QUALITY AT ABANDONED AND OTHER CENTRALIZED AND COMMERCIAL DRILLING-FLUID DISPOSAL SITES IN LOUISIANA, NEW MEXICO, OKLAHOMA, AND TEXAS

    Energy Technology Data Exchange (ETDEWEB)

    Alan R. Dutton; H. Seay Nance

    2003-06-01

    Commercial and centralized drilling-fluid disposal (CCDD) sites receive a portion of spent drilling fluids for disposal from oil and gas exploration and production (E&P) operations. Many older and some abandoned sites may have operated under less stringent regulations than are currently enforced. This study provides a census, compilation, and summary of information on active, inactive, and abandoned CCDD sites in Louisiana, New Mexico, Oklahoma, and Texas, intended as a basis for supporting State-funded assessment and remediation of abandoned sites. Closure of abandoned CCDD sites is within the jurisdiction of State regulatory agencies. Sources of data used in this study on abandoned CCDD sites mainly are permit files at State regulatory agencies. Active and inactive sites were included because data on abandoned sites are sparse. Onsite reserve pits at individual wells for disposal of spent drilling fluid are not part of this study. Of 287 CCDD sites in the four States for which we compiled data, 34 had been abandoned whereas 54 were active and 199 were inactive as of January 2002. Most were disposal-pit facilities; five percent were land treatment facilities. A typical disposal-pit facility has fewer than 3 disposal pits or cells, which have a median size of approximately 2 acres each. Data from well-documented sites may be used to predict some conditions at abandoned sites; older abandoned sites might have outlier concentrations for some metal and organic constituents. Groundwater at a significant number of sites had an average chloride concentration that exceeded nonactionable secondary drinking water standard of 250 mg/L, or a total dissolved solids content of >10,000 mg/L, the limiting definition for underground sources of drinking water source, or both. Background data were lacking, however, so we did not determine whether these concentrations in groundwater reflected site operations. Site remediation has not been found necessary to date for most abandoned

  8. Disposal of fissionable material from dismantled nuclear weapons

    International Nuclear Information System (INIS)

    Taylor, J.J.

    1991-01-01

    The reduction in tensions between the United States and the Soviet Union has improved the prospects for nuclear disarmament, making it more likely that significant numbers of nuclear warheads will be dismantled by the United States and USSR in the foreseeable future. Thus, the question becomes more urgent as to the disposition of the weapons materials, highly enriched uranium and plutonium. It is timely, therefore, to develop specific plans for such disposal. The overall process for disposal of weapons materials by the burnup option involves the following steps: (1) removing the weapons material from the warheads, (2) converting the material to a fuel form suitable for power reactors, (3) burning it up as a power reactor fuel, and (4) removing the spent fuel and placing it in a permanent repository. This paper examines these four steps with the purpose of answering the following questions. What facilities would be appropriate for the disposal process? Do they need to be dedicated facilities, or could industrial facilities be used? What is the present projection of the economics of the burnup process, both the capital investment and the operating costs? How does one assure that fissionable materials will not be diverted to military use during the disposal process? Is the spent fuel remaining from the burnup process proliferation resistant? Would the disposal of spent fuel add an additional burden to the spent fuel permanent repository? The suggested answers are those of the author and do not represent a position by the Electric Power Research Institute

  9. Disposal of hazardous wastes in Canada's Northwest Territories

    International Nuclear Information System (INIS)

    Henney, P.L.; Heinke, G.W.

    1991-01-01

    In the past decade, many jurisdictions have attempted to estimate quantities and types of hazardous wastes generated within their boundaries. Similar studies done in the Northwest Territories (NWT) are out-of-date, incomplete or specific to only one type of waste or geographical location. In 1990, an industry, business and community survey was conducted to determine types and quantities of hazardous wastes generated in the NWT and currently used disposal methods for these wastes. The survey revealed that 2,500 tons of hazardous wastes were generated each year, including waste oil and petroleum products, fuel tank sludges, acid batteries, spent solvents, antifreeze an waste paint. In many regions, disposal of these wastes may be routine, but waste disposal in arctic and subarctic regions presents unique difficulties. Severe climate, transportation expense, isolation and small quantities of waste generated can make standard solutions expensive, difficult or impossible to apply. Unique solutions are needed for northern waste disposal. The aim of this paper is to give an overview of low-cost, on-site or local hazardous wastes disposal options which can be applied in Canada's NWT and also in other arctic, remote or less-developed regions

  10. DOE SNF technology development necessary for final disposal

    International Nuclear Information System (INIS)

    Hale, D.L.; Fillmore, D.L.; Windes, W.E.

    1996-01-01

    Existing technology is inadequate to allow safe disposal of the entire inventory of US Department of Energy (DOE) spent nuclear fuel (SNF). Needs for SNF technology development were identified for each individual fuel type in the diverse inventory of SNF generated by past, current, and future DOE materials production, as well as SNF returned from domestic and foreign research reactors. This inventory consists of 259 fuel types with different matrices, cladding materials, meat composition, actinide content, and burnup. Management options for disposal of SNF include direct repository disposal, possible including some physical or chemical preparation, or processing to produce a qualified waste form by using existing aqueous processes or new treatment processes. Technology development needed for direct disposal includes drying, mitigating radionuclide release, canning, stabilization, and characterization technologies. While existing aqueous processing technology is fairly mature, technology development may be needed to apply one of these processes to SNF different than for which the process was originally developed. New processes to treat SNF not suitable for disposal in its current form were identified. These processes have several advantages over existing aqueous processes

  11. Plasma separation process: Disposal of PSP radioactive wastes

    International Nuclear Information System (INIS)

    1989-07-01

    Radioactive wastes, in the form of natural uranium contaminated scrap hardware and residual materials from decontamination operations, were generated in the PSP facilities in buildings R1 and 106. Based on evaluation of the characteristics of these wastes and the applicable regulations, the various options for the processing and disposal of PSP radioactive wastes were investigated and recommended procedures were developed. The essential features of waste processing included: (1) the solidification of all liquid wastes prior to shipment; (2) cutting of scrap hardware to fit 55-gallon drums and use of inerting agents (diatomaceous earth) to eliminate pyrophoric hazards; and (3) compaction of soft wastes. All PSP radioactive wastes were shipped to the Hanford Site for disposal. As part of the waste disposal process, a detailed plan was formulated for handling and tracking of PSP radioactive wastes, from the point of generation through shipping. In addition, a waste minimization program was implemented to reduce the waste volume or quantity. Included in this document are discussions of the applicable regulations, the types of PSP wastes, the selection of the preferred waste disposal approach and disposal site, the analysis and classification of PSP wastes, the processing and ultimate disposition of PSP wastes, the handling and tracking of PSP wastes, and the implementation of the PSP waste minimization program. 9 refs., 1 fig., 8 tabs

  12. Unreviewed Disposal Question Evaluation: Waste Disposal In Engineered Trench #3

    Energy Technology Data Exchange (ETDEWEB)

    Hamm, L. L.; Smith, F. G. III; Flach, G. P.; Hiergesell, R. A.; Butcher, B. T.

    2013-07-29

    Because Engineered Trench #3 (ET#3) will be placed in the location previously designated for Slit Trench #12 (ST#12), Solid Waste Management (SWM) requested that the Savannah River National Laboratory (SRNL) determine if the ST#12 limits could be employed as surrogate disposal limits for ET#3 operations. SRNL documented in this Unreviewed Disposal Question Evaluation (UDQE) that the use of ST#12 limits as surrogates for the new ET#3 disposal unit will provide reasonable assurance that Department of Energy (DOE) 435.1 performance objectives and measures (USDOE, 1999) will be protected. Therefore new ET#3 inventory limits as determined by a Special Analysis (SA) are not required.

  13. Treatment Options for Wilms Tumor

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... come back) after it has been treated. Treatment Option Overview Key Points There are different types of ...

  14. Treatment Options for Myelodysplastic Syndromes

    Science.gov (United States)

    ... special light. Certain factors affect prognosis and treatment options. The prognosis (chance of recovery) and treatment options ... age and general health of the patient. Treatment Option Overview Key Points There are different types of ...

  15. Treatment Option Overview (Prostate Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  16. Treatment Option Overview (Myelodysplastic Syndromes)

    Science.gov (United States)

    ... special light. Certain factors affect prognosis and treatment options. The prognosis (chance of recovery) and treatment options ... age and general health of the patient. Treatment Option Overview Key Points There are different types of ...

  17. Treatment Option Overview (Esophageal Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  18. Treatment Option Overview (Childhood Rhabdomyosarcoma)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  19. Treatment Option Overview (Penile Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  20. Treatment Option Overview (Vulvar Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  1. Treatment Option Overview (Pancreatic Cancer)

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  2. Treatment Option Overview (Adrenocortical Carcinoma)

    Science.gov (United States)

    ... affect the prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  3. Treatment Options for Childhood Rhabdomyosarcoma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  4. Treatment Options for Kaposi Sarcoma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... or in other parts of the body. Treatment Option Overview Key Points There are different types of ...

  5. Treatment Options for Childhood Craniopharyngioma

    Science.gov (United States)

    ... factors affect prognosis (chance of recovery) and treatment options. The prognosis (chance of recovery ) and treatment options ... the brain where it was first found. Treatment Option Overview Key Points There are different types of ...

  6. Applying multi-criteria analysis to radiation protection optimisation of low and intermediate level radioactive waste disposal

    International Nuclear Information System (INIS)

    Pages, P.; Schneider, T.; Lombard, J.

    1991-01-01

    Introduction of ALARA principles in the field of radioactive waste management implies a definition of the main characteristics of the decisional framework. Specific aspects should be taken into account: long term effects, large uncertainties and/or probabilistic events, with particular attention to the public and the political authorities. Traditional cost-benefit analysis is not qualified to deal with these different dimensions of the risk. The aim of this paper is to describe the principles of multi-criteria analysis applied to low and intermediate level radioactive waste disposal. Three categories of barriers can be distinguished acting at different protection levels: site characteristics, waste package and disposal system. A set of possible solutions can be identified, but the selection of the 'optimum' is not easy because of the diversity of the factors to be allowed for. For example, the following problem needs to be addressed: is it preferable to limit public radiation exposure several hundred years ahead or to reduce occupational exposure during the monitoring period of the disposal facility? An optimisation study is currently being performed on the various components of the structure, assuming given site and waste package characteristics. Four steps are distinguished: identification and analysis of options for the structure; selection and estimation of the qualitative and quantitative criteria; determination of the 'most interesting' solutions using multi-criteria analysis; sensitivity analysis and discussion on uncertainties related to the various assumptions. Based on the preliminary findings, the paper focuses on practical solutions to address the methodological issues raised in applying the optimisation procedures to radioactive waste management. (au)

  7. Research on geological disposal

    International Nuclear Information System (INIS)

    Uchida, Masahiro

    2011-01-01

    The aims of this research are to develop criteria for reviewing acceptability of the adequacy of the result of Preliminary and Detailed Investigations submitted by the implementor, and to establish a basic policy to secure safety for safety review. In FY 2010, 13 geology/climate related events for development of acceptance criteria for reviewing the adequacy of the result of Preliminary and Detailed Investigations were extracted. And the accuracy of geophysical exploration methods necessary for the Preliminary Investigation was evaluated. Regarding the research for safety review, we developed an idea of safety concept of Japanese geological disposal, and analyzed basic safety functions to secure safety. In order to verify the groundwater flow evaluation methods developed in regulatory research, the hydrological and geochemical data at Horonobe, northern Hokkaido were obtained, and simulated result of regional groundwater flow were compared with measured data. And we developed the safety scenario of geology/climate related events categorized by geological and geomorphological properties. Also we created a system to check the quality of research results in Japan and other countries in order to utilize for safety regulation, and developed a database system to compile them. (author)

  8. Researching radioactive waste disposal

    International Nuclear Information System (INIS)

    Feates, F.; Keen, N.

    1976-01-01

    At present it is planned to use the vitrification process to convert highly radioactive liquid wastes, arising from nuclear power programme, into glass which will be contained in steel cylinders for storage. The UKAEA in collaboration with other European countries is currently assessing the relative suitability of various natural geological structures as final repositories for the vitrified material. The Institute of Geological Sciences has been commissioned to specify the geological criteria that should be met by a rock structure if it is to be used for the construction of a repository though at this stage disposal sites are not being sought. The current research programme aims to obtain basic geological data about the structure of the rocks well below the surface and is expected to continue for at least three years. The results in all the European countries will then be considered so that the United Kingdom can choose a preferred method for isolating their wastes. It is only at that stage that a firm commitment may be made to select a site for a potential repository, when a far more detailed scientific research study will be instituted. Heat transfer problems and chemical effects which may occur within and around repositories are being investigated and a conceptual design study for an underground repository is being prepared. (U.K.)

  9. Radioactive waste disposal

    International Nuclear Information System (INIS)

    Cluchet, J.; Roger, B.

    1975-10-01

    After mentioning the importance of the problem of the disposal of wastes produced in the electro-nuclear industry, a short reminder on a few laws of radioactivity (nature and energy of radiations, half-life) and on some basic dosimetry is given. The conditioning and storage procedures are then indicated for solid wastes. The more active fractions of liquid wastes are incorporated into blocks of glass, whereas the less active are first concentrated by chemical treatments or by evaporation. The concentrates are then embedded into concrete, asphalt or resins. Storage is done according to the nature of each type of wastes: on a hard-surfaced area or inside concrete-lined trenches for the lowest radioactivity, in pits for the others. Transuranium elements with very long half-lives are buried in very deep natural cavities which can shelter them for centuries. From the investigations conducted so far and from the experience already gained, it can be concluded that safe solutions are within our reach [fr

  10. Radwaste disposal drum centrifuge

    International Nuclear Information System (INIS)

    Rubin, L.S.; Deltete, C.P.; Crook, M.R.

    1988-01-01

    The drum or processing bowl of the DDC becomes the disposal container when the filling operation is completed. Rehandling of the processed resin is eliminated. By allowing the centrifugally compacted resin to remain in the processing container, extremely efficient waste packaging can be achieved. The dewatering results and volume reductions reported during 1986 were based upon laboratory scale testing sponsored by the Electric Power Research Institute (EPRI) and the Department of Energy (DOE). Since the publication of these preliminary results, additional testing using a full-scale prototype DDC has been completed, again under the auspices of the DOE. Full-scale testing has substantiated the results of earlier testing and has formed the basis for preliminary discussions with the U.S. Nuclear Regulatory Commission (NRC) regarding DDC licensing for radioactive applications. A comprehensive Topical Report and Process Control Program is currently being prepared for submittal to the NRC for review under a utility licensing action. Detailed cost-benefit analyses for actual plant operations have been prepared to substantiate the attractiveness of the DDC. Several methods to physically integrate a DDC into a nuclear power plant have also been developed

  11. 12 CFR 1710.2 - Definitions.

    Science.gov (United States)

    2010-01-01

    ... from compensation or benefit agreements, fee arrangements, perquisites, stock option plans, post... 12 Banks and Banking 7 2010-01-01 2010-01-01 false Definitions. 1710.2 Section 1710.2 Banks and... AND SOUNDNESS CORPORATE GOVERNANCE General § 1710.2 Definitions. For purposes of this part, the term...

  12. The legislation of nuclear disposal. Text booklet with an introduction

    International Nuclear Information System (INIS)

    Smeddinck, Ulrich

    2014-01-01

    The book on the legislation of nuclear waste disposal covers the following issues: Part A: Introduction in the site selection law. Part B: Set of regulations: Constitutional law of the Federal Republic of Germany (extract), Guideline 2011/70 EURATOM on the responsible and safe disposal of spent fuel elements, common agreement on the safety of spent fuel treatment and on the safety of radioactive waste conditioning, law on search and selection of final repository site for heat generating radioactive wastes (site selection law), law on the civil use of nuclear energy and the protection against its hazards (Atomic Law AtG), federal mining act (BBergG), law on environmental impact assessment (UVPG), Law on supplementary regulations and legal remedies in environmental matters according EU guideline 2003/35EG, law on the construction of a Federal authority for nuclear disposal (BfkEEG), regulation on the protection against ionizing radiation hazards (Strahlenschutzverordnung), regulation on the transport of radioactive wastes or spent fuel elements. Regulation on the commissioning processes of facilities according paragraph 7 Atomic law, regulation on the definition of a development freeze for site protection for a final disposal, regulation on the warranty of nuclear safety and radiation protection, implementing rule for the nuclear safety warranty, regulation on the advance financing for the construction of Federal facilities for safeguarding and final disposal of radioactive wastes. Cost regulation for the Atomic Law.

  13. Risk perception of various technical options in the field of radioactive waste management

    International Nuclear Information System (INIS)

    Cameron, F.X.

    1996-01-01

    The author's group had a wide ranging discussion of risk and, at the very end of the discussion got to the question that was posed to them, which is that of risk perception of various technical options in the field of radioactive waste management. Some of the points that were made in this discussion is a reality that the group, as decision-makers, have to deal with, and it has to be treated as a reality. Secondly, the scientist looks at risk from the classic definition of ''probability times consequences'', but the public only looks at the consequences side of the equation, and too often the probability of something happening is treated as a probability of one that it will actually happen. A third problem that was identified in this area is that often the efforts to make the disposal of waste safer may contribute, in the public mind, to the fact that the risk is even more hazardous. And the last problem is that people do not trust what a decision maker is saying when he talks about the fact that there is little probability of something happening. The group then went on to a discussion of how he should try to treat risk perception. One point that was made is that voluntary acceptance of a risk is important. A second point that was made on how to deal with risk perception problems is that the group could try to put the risk of radioactive waste disposal in the perspective of other risks to society, from the chemical industry for instance. The group also talked about the possibility of putting the benefits in perspective for people. Another point was that the group should have different communications strategies for different audiences. But, the more the public is involved in the decision making process, the more comfortable they are going to be with the risk, and the more consistent the perception of risk may be with the scientific definition thereof. In terms of new technologies, new innovations on the generation and management of waste, although these may actually

  14. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    Energy Technology Data Exchange (ETDEWEB)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D. [Foster Wheeler Environmental Corp. (United States)

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ``Can mixed waste be managed out of existence?`` That study found that most, but not all, of the Nation`s mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation`s mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ``Which mixed waste has no treatment option?`` Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology.

  15. Mixed Waste Management Options: 1995 Update. National Low-Level Waste Management Program

    International Nuclear Information System (INIS)

    Kirner, N.; Kelly, J.; Faison, G.; Johnson, D.

    1995-05-01

    In the original mixed Waste Management Options (DOE/LLW-134) issued in December 1991, the question was posed, ''Can mixed waste be managed out of existence?'' That study found that most, but not all, of the Nation's mixed waste can theoretically be managed out of existence. Four years later, the Nation is still faced with a lack of disposal options for commercially generated mixed waste. However, since publication of the original Mixed Waste Management Options report in 1991, limited disposal capacity and new technologies to treat mixed waste have become available. A more detailed estimate of the Nation's mixed waste also became available when the US Environmental Protection Agency (EPA) and the US Nuclear Regulatory Commission (NRC) published their comprehensive assessment, titled National Profile on Commercially Generated Low-Level Radioactive Mixed Waste (National Profile). These advancements in our knowledge about mixed waste inventories and generation, coupled with greater treatment and disposal options, lead to a more applied question posed for this updated report: ''Which mixed waste has no treatment option?'' Beyond estimating the volume of mixed waste requiring jointly regulated disposal, this report also provides a general background on the Atomic Energy Act (AEA) and the Resource Conservation and Recovery Act (RCRA). It also presents a methodical approach for generators to use when deciding how to manage their mixed waste. The volume of mixed waste that may require land disposal in a jointly regulated facility each year was estimated through the application of this methodology

  16. FFTF disposable solid waste cask

    Energy Technology Data Exchange (ETDEWEB)

    Thomson, J. D.; Goetsch, S. D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper.

  17. FFTF disposable solid waste cask

    International Nuclear Information System (INIS)

    Thomson, J.D.; Goetsch, S.D.

    1983-01-01

    Disposal of radioactive waste from the Fast Flux Test Facility (FFTF) will utilize a Disposable Solid Waste Cask (DSWC) for the transport and burial of irradiated stainless steel and inconel materials. Retrievability coupled with the desire for minimal facilities and labor costs at the disposal site identified the need for the DSWC. Design requirements for this system were patterned after Type B packages as outlined in 10 CFR 71 with a few exceptions based on site and payload requirements. A summary of the design basis, supporting analytical methods and fabrication practices developed to deploy the DSWC is provided in this paper

  18. Comparison of low-level waste disposal programs of DOE and selected international countries

    International Nuclear Information System (INIS)

    Meagher, B.G.; Cole, L.T.

    1996-06-01

    The purpose of this report is to examine and compare the approaches and practices of selected countries for disposal of low-level radioactive waste (LLW) with those of the US Department of Energy (DOE). The report addresses the programs for disposing of wastes into engineered LLW disposal facilities and is not intended to address in-situ options and practices associated with environmental restoration activities or the management of mill tailings and mixed LLW. The countries chosen for comparison are France, Sweden, Canada, and the United Kingdom. The countries were selected as typical examples of the LLW programs which have evolved under differing technical constraints, regulatory requirements, and political/social systems. France was the first country to demonstrate use of engineered structure-type disposal facilities. The UK has been actively disposing of LLW since 1959. Sweden has been disposing of LLW since 1983 in an intermediate-depth disposal facility rather than a near-surface disposal facility. To date, Canada has been storing its LLW but will soon begin operation of Canada's first demonstration LLW disposal facility

  19. Roadmap for disposal of Electrorefiner Salt as Transuranic Waste.

    Energy Technology Data Exchange (ETDEWEB)

    Rechard, Robert P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Trone, Janis R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kalinina, Elena Arkadievna [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wang, Yifeng [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Hadgu, Teklu [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Sanchez, Lawrence C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    The experimental breeder reactor (EBR-II) used fuel with a layer of sodium surrounding the uranium-zirconium fuel to improve heat transfer. Disposing of EBR-II fuel in a geologic repository without treatment is not prudent because of the potentially energetic reaction of the sodium with water. In 2000, the US Department of Energy (DOE) decided to treat the sodium-bonded fuel with an electrorefiner (ER), which produces metallic uranium product, a metallic waste, mostly from the cladding, and the salt waste in the ER, which contains most of the actinides and fission products. Two waste forms were proposed for disposal in a mined repository; the metallic waste, which was to be cast into ingots, and the ER salt waste, which was to be further treated to produce a ceramic waste form. However, alternative disposal pathways for metallic and salt waste streams may reduce the complexity. For example, performance assessments show that geologic repositories can easily accommodate the ER salt waste without treating it to form a ceramic waste form. Because EBR-II was used for atomic energy defense activities, the treated waste likely meets the definition of transuranic waste. Hence, disposal at the Waste Isolation Pilot Plant (WIPP) in southern New Mexico, may be feasible. This report reviews the direct disposal pathway for ER salt waste and describes eleven tasks necessary for implementing disposal at WIPP, provided space is available, DOE decides to use this alternative disposal pathway in an updated environmental impact statement, and the State of New Mexico grants permission.

  20. Conceptual Design Report for Remote-Handled Low-Level Waste Disposal Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2010-10-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  1. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    David Duncan

    2011-05-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  2. Conceptual Design Report for the Remote-Handled Low-Level Waste Disposal Project

    Energy Technology Data Exchange (ETDEWEB)

    Lisa Harvego; David Duncan; Joan Connolly; Margaret Hinman; Charles Marcinkiewicz; Gary Mecham

    2011-03-01

    This conceptual design report addresses development of replacement remote-handled low-level waste disposal capability for the Idaho National Laboratory. Current disposal capability at the Radioactive Waste Management Complex is planned until the facility is full or until it must be closed in preparation for final remediation (approximately at the end of Fiscal Year 2017). This conceptual design report includes key project assumptions; design options considered in development of the proposed onsite disposal facility (the highest ranked alternative for providing continued uninterrupted remote-handled low level waste disposal capability); process and facility descriptions; safety and environmental requirements that would apply to the proposed facility; and the proposed cost and schedule for funding, design, construction, and operation of the proposed onsite disposal facility.

  3. Earth reencounter probabilities for aborted space disposal of hazardous nuclear waste

    Science.gov (United States)

    Friedlander, A. L.; Feingold, H.

    1977-01-01

    A quantitative assessment is made of the long-term risk of earth reencounter and reentry associated with aborted disposal of hazardous material in the space environment. Numerical results are presented for 10 candidate disposal options covering a broad spectrum of disposal destinations and deployment propulsion systems. Based on representative models of system failure, the probability that a single payload will return and collide with earth within a period of 250,000 years is found to lie in the range .0002-.006. Proportionately smaller risk attaches to shorter time intervals. Risk-critical factors related to trajectory geometry and system reliability are identified as possible mechanisms of hazard reduction.

  4. 20 CFR 416.2035 - Optional supplementation: Additional State options.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 2 2010-04-01 2010-04-01 false Optional supplementation: Additional State options. 416.2035 Section 416.2035 Employees' Benefits SOCIAL SECURITY ADMINISTRATION SUPPLEMENTAL... § 416.2035 Optional supplementation: Additional State options. (a) Residency requirement. A State or...

  5. Novel preventive treatment options

    DEFF Research Database (Denmark)

    Longbottom, C; Ekstrand, K; Zero, D

    2009-01-01

    A number of novel preventive treatment options which, as with traditional methods, can be differentiated into 3 categories of prevention (primary, secondary and tertiary), have been and are being currently investigated. Those reviewed are either commercially available or appear relatively close...... of these techniques show considerable promise and dentists should be aware of these developments and follow their progress, the evidence for each of these novel preventive treatment options is currently insufficient to make widespread recommendations. Changes in dental practice should be explored to see how oral...

  6. Tank Space Options Report

    International Nuclear Information System (INIS)

    BOYLES, V.C.

    2001-01-01

    A risk-based priority for the retrieval of Hanford Site waste from the 149 single-shell tanks (SSTs) has been adopted as a result of changes to the Hanford Federal Facility Agreement and Consent Order (HFFACO) (Ecology et al. 1997) negotiated in 2000. Retrieval of the first three tanks in the retrieval sequence fills available capacity in the double-shell tanks (DSTs) by 2007. As a result, the HFFACO change established a milestone (M-45-12-TO1) requiring the determination of options that could increase waste storage capacity for single-shell tank waste retrieval. The information will be considered in future negotiations. This document fulfills the milestone requirement. This study presents options that were reviewed for the purpose of increasing waste storage capacity. Eight options are identified that have the potential for increasing capacity from 5 to 10 million gallons, thus allowing uninterrupted single-shell tank retrieval until the planned Waste Treatment Plant begins processing substantial volumes of waste from the double-shell tanks in 2009. The cost of implementing these options is estimated to range from less than $1 per gallon to more than $14 per gallon. Construction of new double-shell tanks is estimated to cost about $63 per gallon. Providing 5 to 10 million gallons of available double-shell tank space could enable early retrieval of 5 to 9 high-risk single-shell tanks beyond those identified for retrieval by 2007. These tanks are A-101, AX-101, AX-103, BY-102, C-107, S-105, S-106, S-108, and S-109 (Garfield et al. 2000). This represents a potential to retrieve approximately 14 million total curies, including 3,200 curies of long-lived mobile radionuclides. The results of the study reflect qualitative analyses conducted to identify promising options. The estimated costs are rough-order-of magnitude and, therefore, subject to change. Implementing some of the options would represent a departure from the current baseline and may adversely impact the

  7. Alternative energy options

    International Nuclear Information System (INIS)

    Bennett, K.F.

    1983-01-01

    It is accepted that coal will continue to play the major role in the supply of energy to the country for the remainder of the century. In this paper, however, emphasis has been directed to those options which could supplement coal in an economic and technically sound manner. The general conclusion is that certain forms of solar energy hold the most promise and it is in this direction that research, development and implementation programmes should be directed. Tidal energy, fusion energy, geothermal energy, hydrogen energy and fuel cells are also discussed as alternative energy options

  8. Thermal test options

    International Nuclear Information System (INIS)

    Koski, J.A.; Keltner, N.R.; Sobolik, K.B.

    1993-02-01

    Shipping containers for radioactive materials must be qualified to meet a thermal accident environment specified in regulations, such at Title 10, Code of Federal Regulations, Part 71. Aimed primarily at the shipping container design, this report discusses the thermal testing options available for meeting the regulatory requirements, and states the advantages and disadvantages of each approach. The principal options considered are testing with radiant heat, furnaces, and open pool fires. The report also identifies some of the facilities available and current contacts. Finally, the report makes some recommendations on the appropriate use of these different testing methods

  9. Lighting Options for Homes.

    Energy Technology Data Exchange (ETDEWEB)

    Baker, W.S.

    1991-04-01

    This report covers many aspects of various lighting options for homes. Types of light sources described include natural light, artificial light, incandescent lamps, fluorescent lamps, and high intensity discharge lamps. A light source selection guide gives the physical characteristics of these, design considerations, and common applications. Color, strategies for efficient lighting, and types of lighting are discussed. There is one section giving tips for various situations in specific rooms. Rooms and types of fixtures are shown on a matrix with watts saved by using the recommended type lighting for that room and room location. A major emphasis of this report is saving energy by utilizing the most suitable, recommended lighting option. (BN)

  10. Use of compensation and incentives in siting low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Smith, T.P.; Jaffe, M.

    1984-09-01

    In discussing the use of compensation and incentives in siting low-level radioactive waste disposal facilities, chapters are devoted to: compensation and incentives in disposal facility siting (definitions and effects of compensation and incentives and siting decisions involving the use of compensation and incentives); the impacts of regional and state low-level radioactive waste facilities; the legal framework of compensation; and recommendations regarding the use of compensation

  11. Preliminary conceptual designs for advanced packages for the geologic disposal of spent fuel

    Energy Technology Data Exchange (ETDEWEB)

    Westerman, R.E.

    1979-04-01

    The present study assumes that the spent fuel will be disposed of in mined repositories in continental geologic formations, and that the post-emplacement control of the radioactive species will be accomplished independently by both the natural barrier, i.e., the geosphere, and the engineered barrier system, i.e., the package components consisting of the stabilizer, the canister, and the overpack; and the barrier components external to the package consisting of the hole sleeve and the backfill medium. The present document provides an overview of the nature of the spent fuel waste; the general approach to waste containment, using the defense-in-depth philosophy; material options, both metallic and nonmetallic, for the components of the engineered barrier system; a set of strawman criteria to guide the development of package/engineered barrier systems; and four preliminary concepts representing differing approaches to the solution of the containment problem. These concepts use: a corrosion-resistant meta canister in a special backfill (2 barriers); a mild steel canister in a corrosion-resistant metallic or nonmetallic hole sleeve, surrounded by a special backfill (2 barriers); a corrosion-resistant canister and a corrosion-resistant overpack (or hole sleeve) in a special backfill (3 barriers); and a mild steel canister in a massive corrosion-resistant bore sleeve surrounded by a polymer layer and a special backfill (3 barriers). The lack of definitive performance requirements makes it impossible to evaluate these concepts on a functional basis at the present time.

  12. Application of lifecycle management to design of the UK geological disposal facility

    International Nuclear Information System (INIS)

    Rendell, Philip G.P.; O'Grady, Henry J.P.; Currie, Malcolm F.

    2011-01-01

    The Radioactive Waste Management Directorate (RWMD) of the United Kingdom's (UK) Nuclear Decommissioning Authority (NDA) has been given the responsibility for delivery of a Geological Disposal Facility (GDF) for the UK's higher activity wastes in accordance with government policy. As part of this process, the RWMD has developed a project lifecycle, which addresses the overall lifecycle of the GDF in terms of five phases, from Preparatory Studies through to Operation and finally Closure, and is developing a staged approach to engineering design. The Engineering Design Process is broken down into seven stages, encompassing option development, requirements definition and preliminary and detailed design through to 'design development during closure'. Each stage finishes with a formally defined milestone (a 'gate') comprising a technical review and a specific set of engineering deliverables. This paper describes the background to the UK GDF development programme, the organisational issues associated with the RWMD's evolving role, the relationship between the top-level UK Government's Managing Radioactive Waste Safely programme and the RWMD engineering lifecycle, the formal reviews, the milestones and the overall contribution this makes to RWMD organisational development and UK regulatory approval. It also describes some of the lessons learnt. (author)

  13. Submarine Tailings Disposal (STD—A Review

    Directory of Open Access Journals (Sweden)

    Bernhard Dold

    2014-07-01

    Full Text Available The mining industry is a fundamental industry involved in the development of modern society, but is also the world’s largest waste producer. This role will be enhanced in the future, because ore grades are generally decreasing, thus leading to increases in the waste/metal production ratio. Mine wastes deposited on-land in so-called tailings dams, impoundments or waste-dumps have several associated environmental issues that need to be addressed (e.g., acid mine drainage formation due to sulphide oxidation, geotechnical stability, among others, and social concerns due to land use during mining. The mining industry recognizes these concerns and is searching for waste management alternatives for the future. One option used in the past was the marine shore or shallow submarine deposition of this waste material in some parts of the world. After the occurrence of some severe environmental pollution, today the deposition in the deep sea (under constant reducing conditions is seen as a new, more secure option, due to the general thought that sulphide minerals are geochemically stable under the reduced conditions prevailing in the deep marine environment. This review highlights the mineralogical and geochemical issues (e.g., solubility of sulphides in seawater; reductive dissolution of oxide minerals under reducing conditions, which have to be considered when evaluating whether submarine tailings disposal is a suitable alternative for mine waste.

  14. Environmental impacts of ocean disposal of CO2

    International Nuclear Information System (INIS)

    Adams, E.; Herzog, H.; Auerbach, D.

    1995-01-01

    One option to reduce atmospheric CO 2 levels is to capture and sequester power plant CO 2 Commercial CO 2 capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO 2 is highly uncertain. The deep ocean is one of only a few possible CO 2 disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO 2 . The term disposal is really a misnomer because the atmosphere and ocean eventually equilibrate on a timescale of 1000 years regardless of where the CO 2 is originally discharged. However, peak atmospheric CO 2 concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO 2 injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO 2 will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. Our project has been examining these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. The end-product will be a report issued during the summer of 1996 consisting of two volumes an executive summary (Vol I) and a series of six, individually authored topical reports (Vol II). A workshop with invited participants from the U.S. and abroad will review the draft findings in January, 1996

  15. Environmental impacts of ocean disposal of CO{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Adams, E.; Herzog, H.; Auerbach, D. [and others

    1995-11-01

    One option to reduce atmospheric CO{sub 2} levels is to capture and sequester power plant CO{sub 2} Commercial CO{sub 2} capture technology, though expensive, exists today. However, the ability to dispose of large quantities of CO{sub 2} is highly uncertain. The deep ocean is one of only a few possible CO{sub 2} disposal options (others are depleted oil and gas wells or deep, confined aquifers) and is a prime candidate because the deep ocean is vast and highly unsaturated in CO{sub 2}. The term disposal is really a misnomer because the atmosphere and ocean eventually equilibrate on a timescale of 1000 years regardless of where the CO{sub 2} is originally discharged. However, peak atmospheric CO{sub 2} concentrations expected to occur in the next few centuries could be significantly reduced by ocean disposal. The magnitude of this reduction will depend upon the quantity of CO{sub 2} injected in the ocean, as well as the depth and location of injection. Ocean disposal of CO{sub 2} will only make sense if the environmental impacts to the ocean are significantly less than the avoided impacts of atmospheric release. Our project has been examining these ocean impacts through a multi-disciplinary effort designed to summarize the current state of knowledge. The end-product will be a report issued during the summer of 1996 consisting of two volumes an executive summary (Vol I) and a series of six, individually authored topical reports (Vol II). A workshop with invited participants from the U.S. and abroad will review the draft findings in January, 1996.

  16. Greenhouse gas emissions reduction from fossil fuels: options and prospects

    International Nuclear Information System (INIS)

    McDonald, M.M.

    1999-01-01

    If levels of carbon dioxide in the atmosphere are to be stabilized over the next 50 years, net emissions from the use of fossil fuels have to be reduced. One concept worth exploring is the removal of carbon dioxide from plant flue gases and disposing of it in a manner that sequesters it from the atmosphere. A number of technologies, which are either commercially available or under development, promise to make this concept viable. The question of where to dispose of the carbon dioxide removed is not the limiting factor, given the potential for use in enhanced hydrocarbon production as well as other geological disposal options. In the longer term, fossil fuel use will significantly decline, but these extraction and sequestration technologies can provide the time for the transition to take place in a manner which causes least impact to the economies of the world. (author)

  17. Disposal Site Information Management System

    International Nuclear Information System (INIS)

    Larson, R.A.; Jouse, C.A.; Esparza, V.

    1986-01-01

    An information management system for low-level waste shipped for disposal has been developed for the Nuclear Regulatory Commission (NRC). The Disposal Site Information Management System (DSIMS) was developed to provide a user friendly computerized system, accessible through NRC on a nationwide network, for persons needing information to facilitate management decisions. This system has been developed on NOMAD VP/CSS, and the data obtained from the operators of commercial disposal sites are transferred to DSIMS semiannually. Capabilities are provided in DSIMS to allow the user to select and sort data for use in analysis and reporting low-level waste. The system also provides means for describing sources and quantities of low-level waste exceeding the limits of NRC 10 CFR Part 61 Class C. Information contained in DSIMS is intended to aid in future waste projections and economic analysis for new disposal sites

  18. Disposal of old printed journals

    Indian Academy of Sciences (India)

    2018-02-21

    Feb 21, 2018 ... Notice inviting Tender for Disposal of Old Printed Journals & Old News Papers. Indian Academy of ... The competent authority also reserves the right to reject any or all the tenders without assigning any reason thereof. 19.

  19. Radioactive waste processing and disposal

    International Nuclear Information System (INIS)

    1980-01-01

    This compilation contains 4144 citations of foreign and domestic reports, journal articles, patents, conference proceedings, and books pertaining to radioactive waste processing and disposal. Five indexes are provided: Corporate Author, Personal Author, Subject, Contract Number, and Report Number

  20. Study on the background information for the R and D of geological disposal

    International Nuclear Information System (INIS)

    Matsui, Kazuaki; Hirusawa, Shigenobu; Komoto, Harumi

    2001-02-01

    It is quite important for Japan Nuclear Cycle Development Institute (JNC) to analyze the R and D items after 'H12 report' and also provide their results of R and D activities to general public effectively. Recognizing the importance of the social consensus to the geological disposal, relating background informations were to be picked up. In this fiscal year, following two main topics were selected and studied. 1. Research and analysis on the options for the geological disposal concept. The major nuclear power-generating countries have almost all chosen deep geological disposal as preferred method for HLW disposal. Since 1990's, to make the geological disposal flexible, the alternative concepts for the disposal of HLW have been discussed promoting the social acceptance. In this context, recent optional discussions and international evaluations on the following topics were studied and summarized. (1) Reversibility of waste disposal/Retrievability of waste/Waste monitoring, (2) Long-term storage concept and its effectiveness, (3) Present position and role of international disposal. 2. Research and analysis on some educational materials collected from foreign countries. Although geological disposals is scheduled to start still in future, it is quite important to study the procedures to attract younger generation and get their proper perceptions on the nuclear energy and waste problems. As the supporting analysis to implement strategically the public relational activities for JNC's geological disposal R and D, particular attention was focused on the educational materials obtained in the last year's survey. Representative educational materials were selected and following items were studied and summarized. (1) Basic approach, positioning and characteristics of the educational materials, (2) Detailed analysis of the representatively selected educational materials, (3) Comparison of the analyzed characteristics and study on its feedback to Japanese materials. (author)

  1. Disposal phase experimental program plan

    International Nuclear Information System (INIS)

    1997-01-01

    The Waste Isolation Pilot Plant (WIPP) facility comprises surface and subsurface facilities, including a repository mined in a bedded salt formation at a depth of 2,150 feet. It has been developed to safely and permanently isolate transuranic (TRU) radioactive wastes in a deep geological disposal site. On April 12, 1996, the DOE submitted a revised Resource Conservation and Recovery Act (RCRA) Part B permit application to the New Mexico Environment Department (NMED). The DOE anticipates receiving an operating permit from the NMED; this permit is required prior to the start of disposal operations. On October 29, 1996, the DOE submitted a Compliance Certification Application (CCA) to the US Environmental Protection Agency (EPA) in accordance with the WIPP land Withdrawal Act (LWA) of 1992 (Public Law 102-579) as amended, and the requirements of Title 40 of the Code of Federal Regulations (40 CFR) Parts 191 and 194. The DOE plans to begin disposal operations at the WIPP in November 1997 following receipt of certification by the EPA. The disposal phase is expected to last for 35 years, and will include recertification activities no less than once every five years. This Disposal Phase Experimental Program (DPEP) Plan outlines the experimental program to be conducted during the first 5-year recertification period. It also forms the basis for longer-term activities to be carried out throughout the 35-year disposal phase. Once the WIPP has been shown to be in compliance with regulatory requirements, the disposal phase gives an opportunity to affirm the compliance status of the WIPP, enhance the operations of the WIPP and the national TRU system, and contribute to the resolution of national and international nuclear waste management technical needs. The WIPP is the first facility of its kind in the world. As such, it provides a unique opportunity to advance the technical state of the art for permanent disposal of long-lived radioactive wastes

  2. Americium product solidification and disposal

    International Nuclear Information System (INIS)

    Mailen, J.C.; Campbell, D.O.; Bell, J.T.; Collins, E.D.

    1987-01-01

    The americium product from the TRUEX processing plant needs to be converted into a form suitable for ultimate disposal. An evaluation of the disposal based on safety, number of process steps, demonstrated operability of the processes, production of low-level alpha waste streams, and simplicity of maintenance with low radiation exposures to personnel during maintenance, has been made. The best process is to load the americium on a cation exchange resin followed by calcination or oxidation of the resin after loading

  3. Waste disposal into the sea

    International Nuclear Information System (INIS)

    Ehlers, P.; Kunig, P.

    1987-01-01

    The waste disposal at sea is regulated for the most part by national administrative law, which mainly is based on international law rules supplemented by EC-law. The dumping of low-level radioactive waste into the sea is more and more called into question. The disposal of high-level radioactive waste into the subsoil of the sea does not correspond to the London Convention. (WG) [de

  4. Management and disposal of radioactive waste from clean-up operations

    International Nuclear Information System (INIS)

    Lehto, J.

    1997-01-01

    Clean-up of large contaminated areas may create enormous amounts of radioactive waste which need to be safely disposed of. Disposal of the waste may include pre-treatment and transportation to a final repository. There is much experience of the removal and disposal of large amounts of radioactive contaminated material from uranium mill tailings sites. For example, in Salt Lake City, USA, two million tons of radium-containing waste was transported 140 km by rail to a disposal site. In Port Hope, Canada, 70,000 cubic meters of similar waste were moved by road to a disposal site 350 km away. The disposal of the uranium mill tailings can be pre-planned, but an accident situation is quite different. In an emergency, decisions on how to deal with the waste from the clean-up may have to be made rapidly and disposal options may be limited. After the Chernobyl accident, large amounts of contaminated material (mainly soil and trees) were disposed of in shallow pits and surface mounds. Overall, approximately 4x10 6 m 3 of waste were distributed between about 800 disposal sites. Because the amounts of waste after a major nuclear accident could be large, their final disposal may require large human and capital resources. Depending on the scale it is possible that the wastes will have to be placed in several final disposal sites. These are likely to be pits or surface mounds. Such repositories may need clay or concrete liners to prevent migration of the radionuclides from the disposal sites. (EG)

  5. Strategic growth options

    NARCIS (Netherlands)

    Kulatilaka, N.; Perotti, E.C.

    1998-01-01

    We provide a strategic rationale for growth options under uncertainty and imperfect corn-petition. In a market with strategic competition, investment confers a greater capability to take advantage of future growth opportunities. This strategic advantage leads to the capture of a greater share of the

  6. New Options, Old Concerns.

    Science.gov (United States)

    O'Neil, John

    1996-01-01

    Will greater school choice result in more responsive, higher quality schools and happier parents? Or will proliferating options further sort students and families by race, social class, and special interest? Increasingly, education is viewed as a private good. If parents become autonomous, self-interested consumers, erosion of common purposes and…

  7. Heterogeneity and option pricing

    NARCIS (Netherlands)

    Benninga, Simon; Mayshar, Joram

    2000-01-01

    An economy with agents having constant yet heterogeneous degrees of relative risk aversion prices assets as though there were a single decreasing relative risk aversion pricing representative agent. The pricing kernel has fat tails and option prices do not conform to the Black-Scholes formula.

  8. Option Pricing and Momentum

    NARCIS (Netherlands)

    Rodriguez, J.C.

    2007-01-01

    If managers are reluctant to fully adjust dividends to changes in earnings, stock returns and changes in the dividend yield will tend to be negatively correlated. When this is the case, stock returns will exhibit positive autocorrelation, or mo- mentum. This paper studies the pricing of options in

  9. Idaho's Energy Options

    Energy Technology Data Exchange (ETDEWEB)

    Robert M. Neilson

    2006-03-01

    This report, developed by the Idaho National Laboratory, is provided as an introduction to and an update of the status of technologies for the generation and use of energy. Its purpose is to provide information useful for identifying and evaluating Idaho’s energy options, and for developing and implementing Idaho’s energy direction and policies.

  10. Financing of radioactive waste disposal

    International Nuclear Information System (INIS)

    Reich, J.

    1989-01-01

    Waste disposal is modelled as a financial calculus. In this connection the particularity is not primarily the dimension to be expected of financial requirement but above all the uncertainty of financial requirement as well as the ecological, socio-economic and especially also the temporal dimension of the Nuclear Waste Disposal project (disposal of spent fuel elements from light-water reactors with and without reprocessing, decommissioning = safe containment and disposal of nuclear power plants, permanent isolation of radioactive waste from the biosphere, intermediate storage). Based on the above mentioned factors the author analyses alternative approaches of financing or financial planning. He points out the decisive significance of the perception of risks or the evaluation of risks by involved or affected persons - i.e. the social acceptance of planned and designed waste disposal concepts - for the achievement and assessment of alternative solutions. With the help of an acceptance-specific risk measure developed on the basis of a mathematical chaos theory he illustrates, in a model, the social influence on the financing of nuclear waste disposal. (orig./HP) [de

  11. Near-surface land disposal

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1989-01-01

    The Radioactive Waste Management Handbook provides a comprehensive, systematic treatment of nuclear waste management. Near-Surface Land Disposal, the first volume, is a primary and secondary reference for the technical community. To those unfamiliar with the field, it provides a bridge to a wealth of technical information, presenting the technology associated with the near-surface disposal of low or intermediate level wastes. Coverage ranges from incipient planning to site closure and subsequent monitoring. The book discusses the importance of a systems approach during the design of new disposal facilities so that performance objectives can be achieved; gives an overview of the radioactive wastes cosigned to near-surface disposal; addresses procedures for screening and selecting sites; and emphasizes the importance of characterizing sites and obtaining reliable geologic and hydrologic data. The planning essential to the development of particular sites (land acquisition, access, layout, surface water management, capital costs, etc.) is considered, and site operations (waste receiving, inspection, emplacement, closure, stabilization, etc.) are reviewed. In addition, the book presents concepts for improved confinement of waste, important aspects of establishing a monitoring program at the disposal facility, and corrective actions available after closure to minimize release. Two analytical techniques for evaluating alternative technologies are presented. Nontechnical issues surrounding disposal, including the difficulties of public acceptance are discussed. A glossary of technical terms is included

  12. The disposal of radioactive waste

    International Nuclear Information System (INIS)

    Ormai, P.

    2006-01-01

    The first part shows different ways of 'producing' radioactive wastes, defines the wastes of small, medium and high activity and gives estimation on the quantity of the necessary capacities of waste disposal facilities. The modern radioactive waste disposal that is the integrated processing of the form of waste, the package, the technical facility and the embedding geological environment that guarantee the isolation together. Another factor is the lifetime of radioactive waste which means that any waste containing long lifetime waste in higher concentration than 400-4000 kBq/kg should be disposed geologically. Today the centre of debate disposal of radioactive waste is more social than technical. For this reason not only geological conditions and technical preparations, but social discussions and accepting communities are needed in selecting place of facilities. Now, the focus is on long term temporary disposal of high activity wastes, like burnt out heating elements. The final part of the paper summarizes the current Hungarian situation of disposal of radioactive wastes. (T-R.A.)

  13. 24 CFR 5.603 - Definitions.

    Science.gov (United States)

    2010-04-01

    ... value of any business or family assets disposed of by an applicant or tenant for less than fair market... tenant receives important consideration not measurable in dollar terms. (4) For purposes of determining... activities. See definition at section 407(d) of the Social Security Act (42 U.S.C. 607(d)). [61 FR 54498, Oct...

  14. 40 CFR 503.11 - Special definitions.

    Science.gov (United States)

    2010-07-01

    ... land with indigenous vegetation. (n) Reclamation site is drastically disturbed land that is reclaimed... FOR THE USE OR DISPOSAL OF SEWAGE SLUDGE Land Application § 503.11 Special definitions. (a) Agricultural land is land on which a food crop, a feed crop, or a fiber crop is grown. This includes range land...

  15. Sub-seabed disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Sivintsaev, Yu.V.

    1990-01-01

    The first stage of investigations of possibility of sub-seabed disposal of long-living intermediate-level radioactive wastes carried out by NIREX (UK) is described. Advantages and disadvantages of sub-seabed disposal of radioactive wastes are considered; regions suitable for disposal, transport means for marine disposal are described. Three types of sub-seabed burials are characterized

  16. 40 CFR 257.5 - Disposal standards for owners/operators of non-municipal non-hazardous waste disposal units that...

    Science.gov (United States)

    2010-07-01

    ... compliance with §§ 257.7 through 257.30 prior to the receipt of CESQG hazardous waste. (b) Definitions.... Waste management unit boundary means a vertical surface located at the hydraulically downgradient limit.../operators of non-municipal non-hazardous waste disposal units that receive Conditionally Exempt Small...

  17. Study on retrievability of waste package in geological disposal

    International Nuclear Information System (INIS)

    Hasegawa, Hiroshi; Noda, Masaru

    2002-02-01

    Retrievability of waste packages in geological disposal of high-level radioactive waste has been investigated from a technical aspect in various foreign countries, reflecting a social concern while retrievability is not provided as a technical requirement. This study investigates the concept of reversibility and retrievability in foreign countries and a technical feasibility on retrievability of waste packages in the geological disposal concept shown in the H12 report. The conclusion obtained through this study is as follows: 1. Concept of reversibility and retrievability in foreign countries. Many organizations have reconsidered the retrievability as one option in the geological disposal to improve the reversibility of the stepwise decision-making process and provide the flexibility, even based upon the principle of the geological disposal that retrieval of waste from the repository is not intended. 2. Technical feasibility on the retrievability in disposal concept in the H12 report. It is confirmed to be able to remove the buffer and to retrieve the waste packages by currently available technologies even after the stages following emplacement of the buffer. It must be noted that a large effort and expense would be required for some activities such as the reconstruction of access route if the activities started after a stage of backfilling disposal tunnels. 3. Evaluation of feasibility on the retrievability and extraction of the issues. In the near future, it is necessary to study and confirm the practical workability and economical efficiency for the retrieving method of waste packages proposed in this study, the handling and processing method of removed buffer materials, and the retrieving method of waste packages in the case of degrading the integrity of waste packages or not emplacing the waste packages in the assumed attitude, etc. (author)

  18. International low level waste disposal practices and facilities

    International Nuclear Information System (INIS)

    Nutt, W.M.

    2011-01-01

    options for the management of radioactive waste. There is a variety of alternatives for processing waste and for short term or long term storage prior to disposal. Likewise, there are various alternatives currently in use across the globe for the safe disposal of waste, ranging from near surface to geological disposal, depending on the specific classification of the waste. At present, there appears to be a clear and unequivocal understanding that each country is ethically and legally responsible for its own wastes, in accordance with the provisions of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Therefore the default position is that all nuclear wastes will be disposed of in each of the 40 or so countries concerned with nuclear power generation or part of the fuel cycle. To illustrate the global distribution of radioactive waste now and in the near future, Table 1 provides the regional breakdown, based on the UN classification of the world in regions illustrated in Figure 1, of nuclear power reactors in operation and under construction worldwide. In summary, 31 countries operate 433 plants, with a total capacity of more than 365 gigawatts of electrical energy (GW(e)). A further 65 units, totaling nearly 63 GW(e), are under construction across 15 of these nations. In addition, 65 countries are expressing new interest in, considering, or actively planning for nuclear power to help address growing energy demands to fuel economic growth and development, climate change concerns, and volatile fossil fuel prices. Of these 65 new countries, 21 are in Asia and the Pacific region, 21 are from the Africa region, 12 are in Europe (mostly Eastern Europe), and 11 in Central and South America. However, 31 of these 65 are not currently planning to build reactors, and 17 of those 31 have grids of less than 5 GW, which is said to be too small to accommodate most of the reactor designs available. For the remaining 34

  19. International low level waste disposal practices and facilities

    Energy Technology Data Exchange (ETDEWEB)

    Nutt, W.M. (Nuclear Engineering Division)

    2011-12-19

    options for the management of radioactive waste. There is a variety of alternatives for processing waste and for short term or long term storage prior to disposal. Likewise, there are various alternatives currently in use across the globe for the safe disposal of waste, ranging from near surface to geological disposal, depending on the specific classification of the waste. At present, there appears to be a clear and unequivocal understanding that each country is ethically and legally responsible for its own wastes, in accordance with the provisions of the Joint Convention on the Safety of Spent Fuel Management and on the Safety of Radioactive Waste Management. Therefore the default position is that all nuclear wastes will be disposed of in each of the 40 or so countries concerned with nuclear power generation or part of the fuel cycle. To illustrate the global distribution of radioactive waste now and in the near future, Table 1 provides the regional breakdown, based on the UN classification of the world in regions illustrated in Figure 1, of nuclear power reactors in operation and under construction worldwide. In summary, 31 countries operate 433 plants, with a total capacity of more than 365 gigawatts of electrical energy (GW[e]). A further 65 units, totaling nearly 63 GW(e), are under construction across 15 of these nations. In addition, 65 countries are expressing new interest in, considering, or actively planning for nuclear power to help address growing energy demands to fuel economic growth and development, climate change concerns, and volatile fossil fuel prices. Of these 65 new countries, 21 are in Asia and the Pacific region, 21 are from the Africa region, 12 are in Europe (mostly Eastern Europe), and 11 in Central and South America. However, 31 of these 65 are not currently planning to build reactors, and 17 of those 31 have grids of less than 5 GW, which is said to be too small to accommodate most of the reactor designs available. For the remaining 34

  20. Management options of varicoceles

    Directory of Open Access Journals (Sweden)

    Peter Chan

    2011-01-01

    Full Text Available Varicocele is one of the most common causes of male infertility. Treatment options for varicoceles includes open varicocelectomy performed at various anatomical levels. Laparoscopic varicocelectomy has been established to be a safe and effective treatment for varicoceles. Robotic surgery has been introduced recently as an alternative surgical option for varicocelectomy. Microsurgical varicocelectomy has gained increasing popularity among experts in male reproductive medicine as the treatment of choice for varicocele because of its superior surgical outcomes. There is a growing volume of literature in the recent years on minimal invasive varicocele treatment with percutaneous retrograde and anterograde venous embolization/sclerotherapy. In this review, we will discuss the advantages and limitations associated with each treatment modality for varicoceles. Employment of these advanced techniques of varicocelectomy can provide a safe and effective approach aiming to eliminate varicocele, preserve testicular function and, in a substantial number of men, increase semen quality and the likelihood of pregnancy.

  1. Energy options?; Energie opties?

    Energy Technology Data Exchange (ETDEWEB)

    Van Sark, W. (ed.)

    2006-05-15

    March 2006 the so-called Options Document was published by the Energy research Centre of the Netherlands (ECN) and the Netherlands Environmental Assessment Agency (MNP). The document is an overview of technical options to reduce energy consumption and emission of greenhouse gases up to 2020. Next to a brief summary of the document a few reactions and comments on the contents of the document are given. [Dutch] Maart 2006 publiceerde het Energieonderzoek Centrum Nederland (ECN) en het Milieu- en Natuurplanbureau (MNP) het zogenaamde Optiedocument energie en emissies 2010-2020. Daarin wordt een overzicht gegeven van de technische mogelijkheden voor vermindering van het energieverbruik en de uitstoot van broeikasgassen en luchtverontreinigende stoffen tot 2020. Naast een korte samenvatting van het document worden enkele reacties gegeven op de inhoud.

  2. Evaluating technology service options.

    Science.gov (United States)

    Blumberg, D F

    1997-05-01

    Four service and support options are available to healthcare organizations for maintaining their growth arsenals of medical and information technology. These options include maintaining and servicing all equipment using a facility-based biomedical engineering and MIS service department; using a combination of facility-based service and subcontracted service; expanding facility-based biomedical and MIS service departments to provide service to other healthcare organizations to achieve economies of scale; and outsourcing all maintenance, repair, and technical support services. Independent service companies and original equipment manufacturers (OEMs) are offering healthcare organizations a wider array of service and support capabilities than ever before. However, some health systems have successfully developed their own independent service organizations to take care of their own--and other healthcare organizations'--service and support needs.

  3. Optioner eller betingede aktier?

    DEFF Research Database (Denmark)

    Bechmann, Ken L.; Thorsell, Christopher

    2016-01-01

    Incitamentsaflønning – og herunder især aktieaflønning – fortsætter med at tiltrække sig stor opmærksomhed fra en lang række sider. Et spørgsmål, der ofte diskuteres, er selskabernes anvendelse af aktieaflønning, dvs. aflønning med optioner, betingede aktier o. lign. Diskussionerne har blandt andet...

  4. Waste Water Disposal Design And Management I

    International Nuclear Information System (INIS)

    Yang, Sang Hyeon; Lee, Jung Su

    2004-04-01

    This book gives descriptions of waste water disposal, design and management, which includes design of waterworks and sewerage facility such as preparatory work and building plan, used waste water disposal facilities, waste water disposal plant and industrial waste water disposal facilities, water use of waste water disposal plant and design of pump and pump facilities such as type and characteristic, selection and plan, screening and grit.

  5. Development of low-level radioactive waste disposal capacity in the United States - progress or stalemate?

    International Nuclear Information System (INIS)

    Devgun, J.S.; Larson, G.S.

    1995-01-01

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The U.S. nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW - industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW - face the same storage and cost uncertainties. This paper will summarize the current status of U.S. low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change

  6. Development of low-level radioactive waste disposal capacity in the United States -- Progress or stalemate?

    International Nuclear Information System (INIS)

    Devgun, J.S.

    1995-01-01

    It has been fifteen years since responsibility for the disposal of commercially generated low-level radioactive waste (LLW) was shifted to the states by the United States Congress through the Low-Level Radioactive Waste Policy Act of 1980 (LLRWPA). In December 1985, Congress revisited the issue and enacted the Low-Level Radioactive Waste Policy Amendments Act of 1985 (LLRWPAA). No new disposal sites have opened yet, however, and it is now evident that disposal facility development is more complex, time-consuming, and controversial than originally anticipated. For a nation with a large nuclear power industry, the lack of availability of LLW disposal capacity coupled with a similar lack of high-level radioactive waste disposal capacity could adversely affect the future viability of the nuclear energy option. The US nuclear power industry, with 109 operating reactors, generates about half of the LLW shipped to commercial disposal sites and faces dwindling access to waste disposal sites and escalating waste management costs. The other producers of LLW -- industries, government (except the defense related research and production waste), academic institutions, and medical institutions that account for the remaining half of the commercial LLW -- face the same storage and cost uncertainties. This paper will summarize the current status of US low-level radioactive waste generation and the status of new disposal facility development efforts by the states. The paper will also examine the factors that have contributed to delays, the most frequently suggested alternatives, and the likelihood of change

  7. Evaluation of alternative methods for the disposal of low-level radioactive wastes

    International Nuclear Information System (INIS)

    Macbeth, P.; Wehmann, G.; Thamer, B.J.; Card, D.H.

    1979-07-01

    A comparative analysis of the most viable alternatives for disposal of solid low-level radioactive wastes is presented to aid in evaluating national waste management options. Four basic alternative methods are analyzed and compared to the present practice of shallow land burial. These include deeper burial, disposal in mined cavities, disposal in engineered structures, and disposal in the oceans. Some variations in the basic methods are also presented. Technical, socio-political, and economic factors are assigened relative importances (weights) and evaluated for the various alternatives. Based on disposal of a constant volume of waste with given nuclear characteristics, the most desirable alternatives to shallow land burial in descending order of desirability appear to be: improving present practices, deeper burial, use of acceptable abandoned mines, new mines, ocean dumping, and structural disposal concepts. It must be emphasized that the evaluations reported here are generic, and use of other weights or different values for specific sites could change the conclusions and ordering of alternatives determined in this study. Impacts and costs associated with transportation over long distances predominate over differences among alternatives, indicating the desireability of establishing regional waste disposal locations. The impacts presented are for generic comparisons among alternatives, and are not intended to be predictive of the performance of any actual waste disposal facility

  8. Primary Criteria for Near Surface Disposal Facility in Egypt Proposal approach

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2013-01-01

    The objective of radioactive waste disposal is to isolate waste from the surrounding media to protect human health and environment from the harmful effect of the ionizing radiation. The required degree of isolation can be obtained by implementing various disposal methods, of which near surface disposal represents an option commonly used and demonstrated in several countries. Near surface disposal has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The site selection process for low-level and intermediate level radioactive waste disposal facility addressed a wide range of public health, safety, environmental, social and economic factors. The primary goal of the sitting process is to identify a site that is capable of protecting public health, safety and the environment. This paper is concerning a proposal approach for the primary criteria for near surface disposal facility that could be applicable in Egypt.

  9. Shungnak Energy Configuration Options.

    Energy Technology Data Exchange (ETDEWEB)

    Rosewater, David Martin [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Eddy, John P. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    Power systems in rural Alaska villages face a unique combination of challenges that can increase the cost of energy and lowers energy supply reliability. In the case of the remote village of Shungnak, diesel and heating fuel is either shipped in by barge or flown in by aircraft. This report presents a technical analysis of several energy infrastructure upgrade and modification options to reduce the amount of fuel consumed by the community of Shungnak. Reducing fuel usage saves money and makes the village more resilient to disruptions in fuel supply. The analysis considers demand side options, such as energy efficiency, alongside the installation of wind and solar power generation options. Some novel approaches are also considered including battery energy storage and the use of electrical home heating stoves powered by renewable generation that would otherwise be spilled and wasted. This report concludes with specific recommendations for Shungnak based on economic factors, and fuel price sensitivity. General conclusions are also included to support future work analyzing similar energy challenges in remote arctic regions.

  10. The safeguards options study

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D. [Los Alamos National Lab., NM (United States); Olsen, A.P.; Roche, C.T.; Rudolph, R.R. [Argonne National Lab., IL (United States); Bieber, A.M.; Lemley, J. [Brookhaven National Lab., Upton, NY (United States); Filby, E. [Idaho National Engineering Lab., Idaho Falls, ID (United States)] [and others

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq`s obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state.

  11. The safeguards options study

    International Nuclear Information System (INIS)

    Hakkila, E.A.; Mullen, M.F.; Olinger, C.T.; Stanbro, W.D.; Olsen, A.P.; Roche, C.T.; Rudolph, R.R.; Bieber, A.M.; Lemley, J.; Filby, E.

    1995-04-01

    The Safeguards Options Study was initiated to aid the International Safeguards Division (ISD) of the DOE Office of Arms Control and Nonproliferation in developing its programs in enhanced international safeguards. The goal was to provide a technical basis for the ISD program in this area. The Safeguards Options Study has been a cooperative effort among ten organizations. These are Argonne National Laboratory, Brookhaven National Laboratory, Idaho National Engineering Laboratory, Lawrence Livermore National Laboratory, Los Alamos National Laboratory, Mound Laboratory, Oak Ridge National Laboratory, Pacific Northwest Laboratories, Sandia National Laboratories, and Special Technologies Laboratory. Much of the Motivation for the Safeguards Options Study is the recognition after the Iraq experience that there are deficiencies in the present approach to international safeguards. While under International Atomic Energy Agency (IAEA) safeguards at their declared facilities, Iraq was able to develop a significant weapons program without being noticed. This is because negotiated safeguards only applied at declared sites. Even so, their nuclear weapons program clearly conflicted with Iraq's obligations under the Nuclear Nonproliferation Treaty (NPT) as a nonnuclear weapon state

  12. Siting of a low-level radioactive waste disposal facility

    International Nuclear Information System (INIS)

    Alvarado, R.A.

    1983-01-01

    The Texas Low-Level Radioactive Waste Disposal Authority was established by the 67th Legislature to assure safe and effective disposal of the state's low-level radioactive waste. The Authority operates under provisions of the Texas Low-Level Radioactive Waste Disposal Authority Act, VACS 4590f-1. In Texas, low-level radioactive waste is defined as any radioactive material that has a half-life of 35 years or less or that has less than 10 nanocuries per gram of transuranics, and may include radioactive material not excluded by this definition with a half-life or more than 35 years if special disposal criteria are established. Prior to beginning the siting study, the Authority developed both exclusionary and inclusionary criteria. Major requirements of the siting guidelines are that the site shall be located such that it will not interfere with: (1) existing or near-future industrial use, (2) sensitive environmental and ecological areas, and (3) existing and projected population growth. Therefore, the site should be located away from currently known recoverable mineral, energy and water resources, population centers, and areas of projected growth. This would reduce the potential for inadvertent intruders, increasing the likelihood for stability of the disposal site after closure. The identification of potential sites for disposal of low-level radioactive waste involves a phased progression from statewide screening to site-specific exploration, using a set of exclusionary and preferential criteria to guide the process. This methodology applied the criteria in a sequential manner to focus the analysis on progressively smaller and more favorable areas. The study was divided into three phases: (1) statewide screening; (2) site identification; and (3) preliminary site characterization

  13. The disposal of high-level radioactive waste. Vol. 1

    International Nuclear Information System (INIS)

    Parker, F.L.; Broshears, R.E.; Pasztor, J.

    1984-01-01

    The Beijer Institute received request from the Swedish Board for Spent Nuclear Fuel (Naemnden for Anvaent Kaernbraensle - NAK) to undertake an international review of the major programmes which were currently making arrangements for the future disposal of high-level radioactive wastes and spent nuclear fuel. The request was accepted, a detailed proposal was worked out and agreed to by NAK, for a critical technical review which concentrated on the following three main tasks: 1. a 'state-of-the-art' review of selected ongoing disposal programmes, both national and international; 2. an assessment of the scientific and technical controversies involved, and 3. recommendations for further research in this field. This review work was to be built on a survey of the available technical literature which was to serve as a basis for a series of detailed interviews, consultations and discussions with scientific and technical experts in Japan, Canada, USA, Belgium, Federal Republic of Germany, France, Switzerland and the United Kingdom. This first volume contains: disposal options; review of the state-of-the-art (international activities, national programs); analysis of waste disposal systems. (orig./HP)

  14. Pyroprocessing oxide spent nuclear fuels for efficient disposal

    International Nuclear Information System (INIS)

    McPheeters, C.C.; Pierce, R.D.; Mulcahey, T.P.

    1994-01-01

    Pyrochemical processing as a means for conditioning spent nuclear fuels for disposal offers significant advantages over the direct disposal option. The advantages include reduction in high-level waste volume; conversion of most of the high-level waste to a low-level waste in which nearly all the transuranics (TRU) have been removed; and incorporation of the TRUs into a stable, highly radioactive waste form suitable for interim storage, ultimate destruction, or repository disposal. The lithium process has been under development at Argonne National Laboratory for use in pyrochemical conditioning of spent fuel for disposal. All of the process steps have been demonstrated in small-scale (0.5-kg simulated spent fuel) experiments. Engineering-scale (20-kg simulated spent fuel) demonstration of the process is underway, and small-scale experiments have been conducted with actual spent fuel from a light water reactor (LWR). The lithium process is simple, operates at relatively low temperatures, and can achieve high decontamination factors for the TRU elements. Ordinary materials, such as carbon steel, can be used for process containment

  15. Costs of mixed low-level waste stabilization options

    International Nuclear Information System (INIS)

    Schwinkendorf, W.E.; Cooley, C.R.

    1998-01-01

    Selection of final waste forms to be used for disposal of DOE's mixed low-level waste (MLLW) depends on the waste form characteristics and total life cycle cost. In this paper the various cost factors associated with production and disposal of the final waste form are discussed and combined to develop life-cycle costs associated with several waste stabilization options. Cost factors used in this paper are based on a series of treatment system studies in which cost and mass balance analyses were performed for several mixed low-level waste treatment systems and various waste stabilization methods including vitrification, grout, phosphate bonded ceramic and polymer. Major cost elements include waste form production, final waste form volume, unit disposal cost, and system availability. Production of grout costs less than the production of a vitrified waste form if each treatment process has equal operating time (availability) each year; however, because of the lower volume of a high temperature slag, certification and handling costs and disposal costs of the final waste form are less. Both the total treatment cost and life cycle costs are higher for a system producing grout than for a system producing high temperature slag, assuming equal system availability. The treatment costs decrease with increasing availability regardless of the waste form produced. If the availability of a system producing grout is sufficiently greater than a system producing slag, then the cost of treatment for the grout system will be less than the cost for the slag system, and the life cycle cost (including disposal) may be less depending on the unit disposal cost. Treatment and disposal costs will determine the return on investment in improved system availability

  16. Thermal performance of a depleted uranium shielded storage, transportation, and disposal package

    International Nuclear Information System (INIS)

    Wix, S.D.; Yoshimura, H.R.

    1994-01-01

    The US Department of Energy (DOE) is responsible for management and disposal of large quantities of depleted uranium (DU) in the DOE complex. Viable economic options for the use and eventual disposal of the material are needed. One possible option is the use of DU as shielding material for vitrified Defense High-Level Waste (DHLW) storage, transportation, and disposal packages. Use of DU as a shielding material provides the potential benefit of disposing of significant quantities of DU during the DHLW storage and disposal process. Two DU package concepts have been developed by Sandia National Laboratories. The first concept is the Storage/Disposal plus Transportation (S/D+T) package. The S/D+T package consists of two major components: a storage/disposal (S/D) container and a transportation overpack. The second concept is the S/D/T package which is an integral storage, transportation, and disposal package. The package concept considered in this analysis is the S/D+T package with seven DHLW waste canisters. The S/D+T package provides shielding and containment for the DHLW waste canisters. The S/D container is intended to be used as an on-site storage and repository disposal container. In this analysis, the S/D container is constructed from a combination of stainless steel and DU. Other material combinations, such as mild steel and DU, are potential candidates. The transportation overpack is used to transport the S/D containers to a final geological repository and is not included in this analysis

  17. Summary of the Environmental Impact Statement on the concept for disposal of Canada's nuclear fuel waste

    International Nuclear Information System (INIS)

    1994-01-01

    This is the Summary of the Environmental Impact Statement (EIS) prepared by Atomic Energy of Canada Limited (AECL) on the concept for disposal of Canada's nuclear fuel waste. The proposed concept is a method for geological disposal, based on a system of natural and engineered barriers. The EIS provides information requested by the Environmental Assessment Panel reviewing the disposal concept and presents AECL's case for the acceptability of the concept. The introductory chapter of this Summary provides background information on several topics related to nuclear fuel waste, including current storage practices for used fuel, the need for eventual disposal of nuclear fuel waste, the options for disposal, and the reasons for Canada's focus on geological disposal. Chapter 2 describes the concept for disposal of nuclear fuel waste. Because the purpose of implementing the concept would he to protect human health and the natural environment far into the future, we discuss the long-term performance of a disposal system and present a case study of potential effects on human health and the natural environment after the closure of a disposal facility. The effects and social acceptability of disposal would depend greatly on how the concept was implemented. Chapter 3 describes AECL's proposed approach to concept implementation. We discuss how the public would be involved in implementation; activities that would be undertaken to protect human health, the natural environment, and the socio-economic environment; and a case study of the potential effects of disposal before the closure of a disposal facility. The last chapter presents AECL's Conclusion, based on more than 15 years of research and development, that implementation of the disposal concept represents a means by which Canada can safely dispose of its nuclear fuel waste. This chapter also presents AECL's recommendation that Canada progress toward disposal of its nuclear fuel waste by undertaking the first stage of concept

  18. Spent fuel reprocessing options

    International Nuclear Information System (INIS)

    2008-08-01

    The objective of this publication is to provide an update on the latest developments in nuclear reprocessing technologies in the light of new developments on the global nuclear scene. The background information on spent fuel reprocessing is provided in Section One. Substantial global growth of nuclear electricity generation is expected to occur during this century, in response to environmental issues and to assure the sustainability of the electrical energy supply in both industrial and less-developed countries. This growth carries with it an increasing responsibility to ensure that nuclear fuel cycle technologies are used only for peaceful purposes. In Section Two, an overview of the options for spent fuel reprocessing and their level of development are provided. A number of options exist for the treatment of spent fuel. Some, including those that avoid separation of a pure plutonium stream, are at an advanced level of technological maturity. These could be deployed in the next generation of industrial-scale reprocessing plants, while others (such as dry methods) are at a pilot scale, laboratory scale or conceptual stage of development. In Section Three, research and development in support of advanced reprocessing options is described. Next-generation spent fuel reprocessing plants are likely to be based on aqueous extraction processes that can be designed to a country specific set of spent fuel partitioning criteria for recycling of fissile materials to advanced light water reactors or fast spectrum reactors. The physical design of these plants must incorporate effective means for materials accountancy, safeguards and physical protection. Section four deals with issues and challenges related to spent fuel reprocessing. The spent fuel reprocessing options assessment of economics, proliferation resistance, and environmental impact are discussed. The importance of public acceptance for a reprocessing strategy is discussed. A review of modelling tools to support the

  19. LD Definition.

    Science.gov (United States)

    Learning Disability Quarterly, 1987

    1987-01-01

    The position paper (1981) of the National Joint Committee on Learning Disabilities presents a revised definition of learning disabilities and identifies issues and concerns (such as the limitation to children and the exclusion clause) associated with the definition included in P.L. 94-142, the Education for All Handicapped Children Act. (DB)

  20. Deliberating emission reduction options

    Energy Technology Data Exchange (ETDEWEB)

    Dowd, A. M.; Rodriguez, M.; Jeanneret, T. [Commonwealth Scientific and Industrial Research Organisation CSIRO, 37 Graham Rd, Highett VIC 3190 (Australia); De Best-Waldhober, M.; Straver, K.; Mastop, J.; Paukovic, M. [Energy research Centre of the Netherlands ECN, Policy Studies, Amsterdam (Netherlands)

    2012-06-15

    For more than 20 years there has been a concerted international effort toward addressing climate change. International conventions, such as the United Nations Foreign Convention on Climate Change (UNFCCC; ratified in 1994), have been established by committed nations seeking to address global climate change through the reduction of greenhouse gases emitted into the Earth's atmosphere (Global CCS Institute, 2011). Long recognised as the most crucial of the greenhouse gases to impact global warming, the majority of carbon dioxide's anthropogenic global emissions are directly related to fuel combustion of which both Australia and the Netherlands' energy production is significantly reliant. Both these nations will need to consider many opinions and make hard decisions if alternative energy options are to be implemented at the scale that is required to meet international emission targets. The decisions that are required not only need to consider the many options available but also their consequences. Along with politicians, policy developers and industry, the general public also need to be active participants in deciding which energy options, and their subsequent consequences, are acceptable for implementation at the national level. Access to balanced and factual information is essential in establishing informed opinions on the many policy options available. Past research has used several methods to measure public perceptions and opinions yet for complex issues, such as emission reduction, some of these methods have shown to be problematic. For example, semi structured interviews can provide data that is flexible and context rich yet is does also come with the limitations such as it seldom provides a practical assessment that can be utilised from researcher to researcher, across disciplines and public participation techniques. Surveys on the other hand usually address these limitations but surveys that do not encourage comparison of information or ask participants to