WorldWideScience

Sample records for deficiency cardiac functional

  1. Platelet-Specific p38α Deficiency Improved Cardiac Function After Myocardial Infarction in Mice.

    Science.gov (United States)

    Shi, Panlai; Zhang, Lin; Zhang, Mingliang; Yang, Wenlong; Wang, Kemin; Zhang, Junfeng; Otsu, Kinya; Huang, Gonghua; Fan, Xuemei; Liu, Junling

    2017-12-01

    MAPKs (mitogen-activated protein kinases), especially p38, play detrimental roles in cardiac diseases and cardiac remodeling post-myocardial infarction. However, the activation and function of MAPKs in coronary thrombosis in vivo and its relationship with clinical outcomes remain poorly understood. Here, we showed that p38α was the major isoform expressed in human and mouse platelets. Platelet-specific p38α-deficient mice presented impaired thrombosis and hemostasis but had improved cardiac function, reduced infarct size, decreased inflammatory response, and microthrombus in a left anterior descending artery ligation model. Signaling analysis revealed that p38 activation was one of the earliest events in platelets after treatment with receptor agonists or reactive oxygen species. p38α/MAPK-activated protein kinase 2/heat shock protein 27 and p38α/cytosolic phospholipases A2 were the major pathways regulating receptor-mediated or hydrogen peroxide-induced platelet activation in an ischemic environment. Moreover, the distinct roles of ERK1/2 (extracellular signal-regulated kinase) in receptor- or reactive oxygen species-induced p38-mediated platelet activation reflected the complicated synergistic relationships among MAPKs. Analysis of clinical samples revealed that MAPKs were highly phosphorylated in platelets from preoperative patients with ST-segment-elevation myocardial infarction, and increased phosphorylation of p38 was associated with no-reflow outcomes. We conclude that p38α serves as a critical regulator of platelet activation and potential indicator of highly thrombotic lesions and no-reflow, and inhibition of platelet p38α may improve clinical outcomes in subjects with ST-segment-elevation myocardial infarction. © 2017 American Heart Association, Inc.

  2. Angiotensin II Stimulation of Cardiac Hypertrophy and Functional Decompensation in Osteoprotegerin-Deficient Mice.

    Science.gov (United States)

    Tsuruda, Toshihiro; Sekita-Hatakeyama, Yoko; Hao, Yilin; Sakamoto, Sumiharu; Kurogi, Syuji; Nakamura, Midori; Udagawa, Nobuyuki; Funamoto, Taro; Sekimoto, Tomohisa; Hatakeyama, Kinta; Chosa, Etsuo; Kato, Johji; Asada, Yujiro; Kitamura, Kazuo

    2016-05-01

    Circulating and myocardial expressions of receptor activator of nuclear factor-κb ligand and osteoprotegerin are activated in heart failure; however, it remains to be determined their pathophysiological roles on left ventricular structure and function in interaction with renin-angiotensin system. We conducted experiments using 8-week-old osteoprotegerin(-/-) mice and receptor activator of nuclear factor-κb ligand-transgenic mice to assess whether they affect the angiotensin II-induced left ventricular remodeling. Subcutaneous infusion of angiotensin II to osteoprotegerin(-/-) mice progressed the eccentric hypertrophy, resulting in left ventricular systolic dysfunction for 28 days, and this was comparable with wild-type mice, showing concentric hypertrophy, irrespective of equivalent elevation of systolic blood pressure. The structural alteration was associated with reduced interstitial fibrosis, decreased procollagen α1 and syndecan-1 expressions, and the increased number of apoptotic cells in the left ventricle, compared with wild-type mice. In contrast, angiotensin II infusion to the receptor activator of nuclear factor-κb ligand-transgenic mice revealed the concentric hypertrophy with preserved systolic contractile function. Intraperitoneal administration of human recombinant osteoprotegerin, but not subcutaneous injection of anti-receptor activator of nuclear factor-κb ligand antibody, to the angiotensin II-infused osteoprotegerin(-/-) mice for 28 days ameliorated the progression of heart failure without affecting systolic blood pressure. These results underscore the biological activity of osteoprotegerin in preserving myocardial structure and function during the angiotensin II-induced cardiac hypertrophy, independent of receptor activator of nuclear factor-κb ligand activity. In addition, the antiapoptotic and profibrotic actions of osteoprotegerin that emerged from our data might be involved in the mechanisms. © 2016 American Heart Association, Inc.

  3. Preservation of cardiac function by prolonged action potentials in mice deficient of KChIP2

    DEFF Research Database (Denmark)

    Grubb, Søren Jahn; Aistrup, Gary L; Koivumäki, Jussi T

    2015-01-01

    Inherited ion channelopathies and electrical remodeling in heart disease alter the cardiac action potential with important consequences for excitation-contraction coupling. Potassium channel-interacting protein 2 (KChIP2) is reduced in heart failure and interacts under physiological conditions...

  4. Atherosclerosis and cardiac function assessment in low-density lipoprotein receptor-deficient mice undergoing body weight cycling.

    Science.gov (United States)

    McMillen, T S; Minami, E; Leboeuf, R C

    2013-06-24

    Obesity has become an epidemic in many countries and is supporting a billion dollar industry involved in promoting weight loss through diet, exercise and surgical procedures. Because of difficulties in maintaining body weight reduction, a pattern of weight cycling often occurs (so called 'yo-yo' dieting) that may result in deleterious outcomes to health. There is controversy about cardiovascular benefits of yo-yo dieting, and an animal model is needed to better understand the contributions of major diet and body weight changes on heart and vascular functions. Our purpose is to determine the effects of weight cycling on cardiac function and atherosclerosis development in a mouse model. We used low-density lipoprotein receptor-deficient mice due to their sensitivity to metabolic syndrome and cardiovascular diseases when fed high-fat diets. Alternating ad libitum feeding of high-fat and low-fat (rodent chow) diets was used to instigate weight cycling during a 29-week period. Glucose tolerance and insulin sensitivity tests were done at 22 and 24 weeks, echocardiograms at 25 weeks and atherosclerosis and plasma lipoproteins assessed at 29 weeks. Mice subjected to weight cycling showed improvements in glucose homeostasis during the weight loss cycle. Weight-cycled mice showed a reduction in the severity of atherosclerosis as compared with high-fat diet-fed mice. However, atherosclerosis still persisted in weight-cycled mice as compared with mice fed rodent chow. Cardiac function was impaired in weight-cycled mice and matched with that of mice fed only the high-fat diet. This model provides an initial structure in which to begin detailed studies of diet, calorie restriction and surgical modifications on energy balance and metabolic diseases. This model also shows differential effects of yo-yo dieting on metabolic syndrome and cardiovascular diseases.

  5. Partial IGF-1 deficiency is sufficient to reduce heart contractibility, angiotensin II sensibility, and alter gene expression of structural and functional cardiac proteins.

    Science.gov (United States)

    González-Guerra, José Luis; Castilla-Cortazar, Inma; Aguirre, Gabriel A; Muñoz, Úrsula; Martín-Estal, Irene; Ávila-Gallego, Elena; Granado, Miriam; Puche, Juan E; García-Villalón, Ángel Luis

    2017-01-01

    Circulating levels of IGF-1 may decrease under several circumstances like ageing, metabolic syndrome, and advanced cirrhosis. This reduction is associated with insulin resistance, dyslipidemia, progression to type 2 diabetes, and increased risk for cardiovascular diseases. However, underlying mechanisms between IGF-1 deficiency and cardiovascular disease remain elusive. The specific aim of the present work was to study whether the partial IGF-1 deficiency influences heart and/or coronary circulation, comparing vasoactive factors before and after of ischemia-reperfusion (I/R). In addition, histology of the heart was performed together with cardiac gene expression for proteins involved in structure and function (extracellular matrix, contractile proteins, active peptides); carried out using microarrays, followed by RT-qPCR confirmation of the three experimental groups. IGF-1 partial deficiency is associated to a reduction in contractility and angiotensin II sensitivity, interstitial fibrosis as well as altered expression pattern of genes involved in extracellular matrix proteins, calcium dynamics, and cardiac structure and function. Although this work is descriptive, it provides a clear insight of the impact that partial IGF-1 deficiency on the heart and establishes this experimental model as suitable for studying cardiac disease mechanisms and exploring therapeutic options for patients under IGF-1 deficiency conditions.

  6. Improvement of cardiac contractile function by peptide-based inhibition of NF-κB in the utrophin/dystrophin-deficient murine model of muscular dystrophy

    Directory of Open Access Journals (Sweden)

    Guttridge Denis C

    2011-05-01

    Full Text Available Abstract Background Duchenne muscular dystrophy (DMD is an inherited and progressive disease causing striated muscle deterioration. Patients in their twenties generally die from either respiratory or cardiac failure. In order to improve the lifespan and quality of life of DMD patients, it is important to prevent or reverse the progressive loss of contractile function of the heart. Recent studies by our labs have shown that the peptide NBD (Nemo Binding Domain, targeted at blunting Nuclear Factor κB (NF-κB signaling, reduces inflammation, enhances myofiber regeneration, and improves contractile deficits in the diaphragm in dystrophin-deficient mdx mice. Methods To assess whether cardiac function in addition to diaphragm function can be improved, we investigated physiological and histological parameters of cardiac muscle in mice deficient for both dystrophin and its homolog utrophin (double knockout = dko mice treated with NBD peptide. These dko mice show classic pathophysiological hallmarks of heart failure, including myocyte degeneration, an impaired force-frequency response and a severely blunted β-adrenergic response. Cardiac contractile function at baseline and frequencies and pre-loads throughout the in vivo range as well as β-adrenergic reserve was measured in isolated cardiac muscle preparations. In addition, we studied histopathological and inflammatory markers in these mice. Results At baseline conditions, active force development in cardiac muscles from NBD treated dko mice was more than double that of vehicle-treated dko mice. NBD treatment also significantly improved frequency-dependent behavior of the muscles. The increase in force in NBD-treated dko muscles to β-adrenergic stimulation was robustly restored compared to vehicle-treated mice. However, histological features, including collagen content and inflammatory markers were not significantly different between NBD-treated and vehicle-treated dko mice. Conclusions We conclude

  7. Cardiac function in growth hormone deficient patients before and after 1 year with replacement therapy: a magnetic resonance imaging study

    DEFF Research Database (Denmark)

    Andreassen, Mikkel; Faber, Jens Oscar; Kjær, Andreas

    2011-01-01

    Assessed by conventional echocardiography the influence of growth hormone deficiency (GHD) and effects of replacement therapy on left ventricle (LV) function and mass (LVM) have shown inconsistent results. We aimed to evaluate cardiac function before and during replacement therapy employing...... in LV systolic function or LVM occurred during 1 year of GH treatment. BNP levels were unchanged (P = 0.88), whereas NT-proBNP tended to decrease (P = 0.052). Assessed by the highly sensitive and precise CMRI method, untreated GHD was not associated with impaired systolic function or reduced LVMI and 1...... year of GH replacement using physiological doses did not influence cardiac mass or function....

  8. Left ventricular dysfunction with reduced functional cardiac reserve in diabetic and non-diabetic LDL-receptor deficient apolipoprotein B100-only mice

    Directory of Open Access Journals (Sweden)

    Bosch Fatima

    2011-06-01

    Full Text Available Abstract Background Lack of suitable mouse models has hindered the studying of diabetic macrovascular complications. We examined the effects of type 2 diabetes on coronary artery disease and cardiac function in hypercholesterolemic low-density lipoprotein receptor-deficient apolipoprotein B100-only mice (LDLR-/-ApoB100/100. Methods and results 18-month-old LDLR-/-ApoB100/100 (n = 12, diabetic LDLR-/-ApoB100/100 mice overexpressing insulin-like growth factor-II (IGF-II in pancreatic beta cells (IGF-II/LDLR-/-ApoB100/100, n = 14 and age-matched C57Bl/6 mice (n = 15 were studied after three months of high-fat Western diet. Compared to LDLR-/-ApoB100/100 mice, diabetic IGF-II/LDLR-/-ApoB100/100 mice demonstrated more calcified atherosclerotic lesions in aorta. However, compensatory vascular enlargement was similar in both diabetic and non-diabetic mice with equal atherosclerosis (cross-sectional lesion area ~60% and consequently the lumen area was preserved. In coronary arteries, both hypercholesterolemic models showed significant stenosis (~80% despite positive remodeling. Echocardiography revealed severe left ventricular systolic dysfunction and anteroapical akinesia in both LDLR-/-ApoB100/100 and IGF-II/LDLR-/-ApoB100/100 mice. Myocardial scarring was not detected, cardiac reserve after dobutamine challenge was preserved and ultrasructural changes revealed ischemic yet viable myocardium, which together with coronary artery stenosis and slightly impaired myocardial perfusion suggest myocardial hibernation resulting from chronic hypoperfusion. Conclusions LDLR-/-ApoB100/100 mice develop significant coronary atherosclerosis, severe left ventricular dysfunction with preserved but diminished cardiac reserve and signs of chronic myocardial hibernation. However, the cardiac outcome is not worsened by type 2 diabetes, despite more advanced aortic atherosclerosis in diabetic animals.

  9. Iron deficiency and cognitive functions

    Directory of Open Access Journals (Sweden)

    Jáuregui-Lobera I

    2014-11-01

    Full Text Available Ignacio Jáuregui-Lobera Department of Nutrition and Bromatology, Pablo de Olavide University, Seville, Spain Abstract: Micronutrient deficiencies, especially those related to iodine and iron, are linked to different cognitive impairments, as well as to potential long-term behavioral changes. Among the cognitive impairments caused by iron deficiency, those referring to attention span, intelligence, and sensory perception functions are mainly cited, as well as those associated with emotions and behavior, often directly related to the presence of iron deficiency anemia. In addition, iron deficiency without anemia may cause cognitive disturbances. At present, the prevalence of iron deficiency and iron deficiency anemia is 2%–6% among European children. Given the importance of iron deficiency relative to proper cognitive development and the alterations that can persist through adulthood as a result of this deficiency, the objective of this study was to review the current state of knowledge about this health problem. The relevance of iron deficiency and iron deficiency anemia, the distinction between the cognitive consequences of iron deficiency and those affecting specifically cognitive development, and the debate about the utility of iron supplements are the most relevant and controversial topics. Despite there being methodological differences among studies, there is some evidence that iron supplementation improves cognitive functions. Nevertheless, this must be confirmed by means of adequate follow-up studies among different groups. Keywords: iron deficiency, anemia, cognitive functions, supplementation

  10. Moderate doses of hGH (0.64 mg/d) improve lipids but not cardiovascular function in GH-deficient adults with normal baseline cardiac function.

    Science.gov (United States)

    Newman, Connie B; Frisch, Katalin A; Rosenzweig, Barry; Roubenoff, Ronenn; Rey, Mariano; Kidder, Teresa; Kong, Yuan; Pursnani, Amit; Sedlis, Steven P; Schwartzbard, Arthur; Kleinberg, David L

    2011-01-01

    Data regarding effects of lower-dose GH on cardiopulmonary function in GH-deficient (GHD) adults are limited. The objective was to assess effects of lower-dose GH on exercise capacity and echocardiographic parameters in GHD adults. The study was a 6-month double-blind, placebo-controlled randomized trial. The study was conducted at the General Clinical Research Center. Thirty hypopituitary adults with GHD were studied. Subjects were randomized to recombinant human GH or placebo for 6 months, followed by open-label recombinant human GH for 12 months. Primary endpoints were exercise duration, maximal oxygen consumption, and left ventricular ejection fraction. Secondary endpoints were echocardiographic indices of systolic and diastolic function, left ventricular mass, lipids, and body composition. In the 6-month double-blind phase, mean GH dose was 0.64 mg/d. Mean IGF-I sd score increased from -4.5 to -1.0. Exercise duration, maximal oxygen consumption, left ventricular ejection fraction, and other echocardiographic parameters were normal at baseline and did not change. GH decreased total and low-density lipoprotein cholesterol by 7.5% (P = 0.016) and 14.7% (P = 0.002) (P = 0.04 vs. placebo). Mean lean body mass increased by 2.2 kg (P = 0.004), fat mass decreased by 1.7 kg (P = 0.21), and percent body fat decreased by 2.5% (P = 0.018), although between-group changes were not significant. Human GH did not improve exercise performance or echocardiographic parameters or decrease fat mass but significantly decreased total and low-density lipoprotein cholesterol, increased IGF-I, and increased lean body mass. These results indicate that responses to human GH are variable and should be assessed at baseline and during treatment.

  11. Iron deficiency and cognitive functions

    OpenAIRE

    Jáuregui-Lobera, Ignacio

    2014-01-01

    Ignacio Jáuregui-Lobera Department of Nutrition and Bromatology, Pablo de Olavide University, Seville, Spain Abstract: Micronutrient deficiencies, especially those related to iodine and iron, are linked to different cognitive impairments, as well as to potential long-term behavioral changes. Among the cognitive impairments caused by iron deficiency, those referring to attention span, intelligence, and sensory perception functions are mainly cited, as well as those associated with...

  12. PTRF/Cavin-1 Deficiency Causes Cardiac Dysfunction Accompanied by Cardiomyocyte Hypertrophy and Cardiac Fibrosis.

    Directory of Open Access Journals (Sweden)

    Takuya Taniguchi

    Full Text Available Mutations in the PTRF/Cavin-1 gene cause congenital generalized lipodystrophy type 4 (CGL4 associated with myopathy. Additionally, long-QT syndrome and fatal cardiac arrhythmia are observed in patients with CGL4 who have homozygous PTRF/Cavin-1 mutations. PTRF/Cavin-1 deficiency shows reductions of caveolae and caveolin-3 (Cav3 protein expression in skeletal muscle, and Cav3 deficiency in the heart causes cardiac hypertrophy with loss of caveolae. However, it remains unknown how loss of PTRF/Cavin-1 affects cardiac morphology and function. Here, we present a characterization of the hearts of PTRF/Cavin-1-null (PTRF-/- mice. Electron microscopy revealed the reduction of caveolae in cardiomyocytes of PTRF-/- mice. PTRF-/- mice at 16 weeks of age developed a progressive cardiomyopathic phenotype with wall thickening of left ventricles and reduced fractional shortening evaluated by echocardiography. Electrocardiography revealed that PTRF-/- mice at 24 weeks of age had low voltages and wide QRS complexes in limb leads. Histological analysis showed cardiomyocyte hypertrophy accompanied by progressive interstitial/perivascular fibrosis. Hypertrophy-related fetal gene expression was also induced in PTRF-/- hearts. Western blotting analysis and quantitative RT-PCR revealed that Cav3 expression was suppressed in PTRF-/- hearts compared with that in wild-type (WT ones. ERK1/2 was activated in PTRF-/- hearts compared with that in WT ones. These results suggest that loss of PTRF/Cavin-1 protein expression is sufficient to induce a molecular program leading to cardiomyocyte hypertrophy and cardiomyopathy, which is partly attributable to Cav3 reduction in the heart.

  13. Vitamin D deficiency induces cardiac hypertrophy and inflammation in epicardial adipose tissue in hypercholesterolemic swine.

    Science.gov (United States)

    Gupta, Gaurav K; Agrawal, Tanupriya; DelCore, Michael G; Mohiuddin, Syed M; Agrawal, Devendra K

    2012-08-01

    Vitamin D is a sectosteroid that functions through Vitamin D receptor (VDR), a transcription factor, which controls the transcription of many targets genes. Vitamin D deficiency has been linked with cardiovascular diseases, including heart failure and coronary artery disease. Suppressor of cytokine signaling (SOCS)3 regulates different biological processes such as inflammation and cellular differentiation and is an endogenous negative regulator of cardiac hypertrophy. The purpose of this study was to test the hypothesis that vitamin D deficiency causes cardiomyocyte hypertrophy and increased proinflammatory profile in epicardial adipose tissue (EAT), and this correlates with decreased expression of SOCS3 in cardiomyocytes and EAT. Eight female Yucatan miniswine were fed vitamin D-sufficient (900 IU/d) or vitamin D-deficient hypercholesterolemic diet. Lipid profile, metabolic panel, and serum 25(OH)D levels were regularly measured. After 12 months animals were euthanized and histological, immunohistochemical and qPCR studies were performed on myocardium and epicardial fat. Histological studies showed cardiac hypertrophy, as judged by cardiac myocyte cross sectional area, in the vitamin D-deficient group. Immunohistochemical and qPCR analyses showed significantly decreased mRNA and protein expression of VDR and SOCS3 in cardiomyocytes of vitamin D-deficient animals. EAT from vitamin D-deficient group had significantly higher expression of TNF-α, IL-6, MCP-1, and decreased adiponectin in association with increased inflammatory cellular infiltrate. Interestingly, EAT from vitamin D-deficient group had significantly decreased expression of SOCS3. These data suggest that vitamin D deficiency induces hypertrophy in cardiomyocytes which is associated with decreased expression of VDR and SOCS3. Vitamin D deficiency is also associated with increased inflammatory markers in EAT. Activity of VDR in the body is controlled through regulation of vitamin D metabolites. Therefore

  14. Growth Hormone Deficiency Is Associated with Worse Cardiac Function, Physical Performance, and Outcome in Chronic Heart Failure: Insights from the T.O.S.CA. GHD Study.

    Science.gov (United States)

    Arcopinto, Michele; Salzano, Andrea; Giallauria, Francesco; Bossone, Eduardo; Isgaard, Jörgen; Marra, Alberto M; Bobbio, Emanuele; Vriz, Olga; Åberg, David N; Masarone, Daniele; De Paulis, Amato; Saldamarco, Lavinia; Vigorito, Carlo; Formisano, Pietro; Niola, Massimo; Perticone, Francesco; Bonaduce, Domenico; Saccà, Luigi; Colao, Annamaria; Cittadini, Antonio

    2017-01-01

    Although mounting evidence supports the concept that growth hormone (GH) deficiency (GHD) affects cardiovascular function, no study has systematically investigated its prevalence and role in a large cohort of chronic heart failure (CHF) patients. Aim of this study is to assess the prevalence of GHD in mild-to-moderate CHF and to explore clinical and functional correlates of GHD. One-hundred thirty CHF patients underwent GH provocative test with GHRH+arginine and accordingly categorized into GH-deficiency (GHD, n = 88, age = 61.6±1.1 years, 68% men) and GH-sufficiency (GHS, n = 42, age = 63.6±1.5 years, 81% men) cohorts. Both groups received comprehensive cardiovascular examination and underwent Doppler echocardiography, cardiopulmonary exercise testing, and biochemical and hormonal assay. GHD was detected in roughly 30% of CHF patients. Compared to GHD, GHS patients showed smaller end-diastolic and end-systolic LV volumes (-28%, p = .008 and -24%, p = .015, respectively), lower LV end-systolic wall stress (-21%, p = .03), higher RV performance (+18% in RV area change, p = .03), lower estimated systolic pulmonary artery pressure (-11%, p = .04), higher peak VO2 (+20%, p = .001) and increased ventilatory efficiency (-12% in VE/VCO2 slope, p = .002). After adjusting for clinical covariates (age, gender, and tertiles of LV ejection fraction, IGF-1, peak VO2, VE/VCO2 slope, and NT-proBNP), logistic multivariate analysis showed that peak VO2 (β = -1.92, SE = 1.67, p = .03), VE/VCO2 slope (β = 2.23, SE = 1.20, p = .02) and NT-proBNP (β = 2.48, SE = 1.02, p = .016), were significantly associated with GHD status. Finally, compared to GHS, GHD cohort showed higher all-cause mortality at median follow-up of 3.5 years (40% vs. 25%, p functional capacity, LV remodeling and elevated NT-proBNP levels. GHD is also associated with increased all-cause mortality.

  15. Novel Toll-like receptor-4 deficiency attenuates trastuzumab (Herceptin induced cardiac injury in mice

    Directory of Open Access Journals (Sweden)

    Yousif Nasser

    2011-10-01

    Full Text Available Abstract Background Cardiac inflammation and generation of oxidative stress are known to contribute to trastuzumab (herceptin induced cardiac toxicity. Toll-like receptors (TLRs are a part of the innate immune system and are involved in cardiac stress reactions. Since TLR4 might play a relevant role in cardiac inflammatory signaling, we investigated whether or not TLR4 is involved in trastuzumab induced cardiotoxicity. Methods Seven days after a single injection of herceptin (2 mg/kg; i.p., left ventricular pressure volume loops were measured in HeN compotent (TLR4+/+ and HeJ mutant (TLR4-/- treated with trastuzumab and control mice. Immunofluorescent staining for monocyte infiltration and analyses of plasma by (ELISAs for different chemokines including: MCP-1and tumor necrosis factor-α (TNF-α, Western immunoblotting assay for ICAM-1, and used troponin I for cardiac injury marker. Results Trastuzumab injection resulted in an impairment of left ventricular function in TLR-4 competent (HeN, in contrast TLR4-/- trastuzumab mice showed improved left ventricular function EF%, CO; p -/-; p -/-, marked reduction of myocardial troponin-I levels in TLR4-deficient mice. Data are presented as means ± SE; n = 8 in each group p Conclusions Treatment with trastuzumab induces an inflammatory response that contributes to myocardial tissue TLR4 mediates chemokine expression (TNF-α, MCP-1and ICAM-1, so in experimental animals TLR4 deficiency improves left ventricular function and attenuates pathophysiological key mechanisms in trastuzumab induced cardiomyopathy.

  16. Is fetal cardiac function gender dependent?

    NARCIS (Netherlands)

    Clur, S. A. B.; Oude Rengerink, K.; Mol, B. W.; Ottenkamp, J.; Bilardo, C. M.

    2011-01-01

    An increased nuchal translucency (NT) is more common in males. A delayed diastolic cardiac function maturation has been proposed to explain this and the reported gender-related differences in ductus venosus (DV) flow. To investigate gender-related differences in fetal cardiac function. One hundred

  17. Annexin A7 deficiency potentiates cardiac NFAT activity promoting hypertrophic signaling

    Energy Technology Data Exchange (ETDEWEB)

    Voelkl, Jakob; Alesutan, Ioana; Pakladok, Tatsiana; Viereck, Robert; Feger, Martina; Mia, Sobuj [Department of Physiology, University of Tübingen, Tübingen (Germany); Schönberger, Tanja [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Noegel, Angelika A. [Center for Biochemistry, Institute of Biochemistry I, University of Cologne, Köln (Germany); Gawaz, Meinrad [Department of Cardiology and Cardiovascular Medicine, University of Tübingen, Tübingen (Germany); Lang, Florian, E-mail: florian.lang@uni-tuebingen.de [Department of Physiology, University of Tübingen, Tübingen (Germany)

    2014-02-28

    Highlights: • Cardiac Anxa7 expression was up-regulated following TAC. • The hypertrophic response following TAC was augmented in Anxa7-deficient mice. • Silencing of Anxa7 increased indicators of HL-1 cardiomyocytes hypertrophy. • Silencing of Anxa7 induced Nfatc1 nuclear translocation. • Silencing of Anxa7 enhanced NFAT-dependent transcriptional activity. - Abstract: Annexin A7 (Anxa7) is a cytoskeletal protein interacting with Ca{sup 2+} signaling which in turn is a crucial factor for cardiac remodeling following cardiac injury. The present study explored whether Anxa7 participates in the regulation of cardiac stress signaling. To this end, mice lacking functional Anxa7 (anxa7{sup −/−}) and wild-type mice (anxa7{sup +/+}) were investigated following pressure overload by transverse aortic constriction (TAC). In addition, HL-1 cardiomyocytes were silenced with Anxa7 siRNA and treated with isoproterenol. Transcript levels were determined by quantitative RT-PCR, transcriptional activity by luciferase reporter assay and protein abundance by Western blotting and confocal microscopy. As a result, TAC treatment increased the mRNA and protein levels of Anxa7 in wild-type mice. Moreover, TAC increased heart weight to body weight ratio and the cardiac mRNA levels of αSka, Nppb, Col1a1, Col3a1 and Rcan1, effects more pronounced in anxa7{sup −/−} mice than in anxa7{sup +/+} mice. Silencing of Anxa7 in HL-1 cardiomyocytes significantly increased nuclear localization of Nfatc1. Furthermore, Anxa7 silencing increased NFAT-dependent transcriptional activity as well as αSka, Nppb, and Rcan1 mRNA levels both, under control conditions and following β-adrenergic stimulation by isoproterenol. These observations point to an important role of annexin A7 in the regulation of cardiac NFAT activity and hypertrophic response following cardiac stress conditions.

  18. some deficiencies in using moment generating functions

    African Journals Online (AJOL)

    Two deficiencies in using moment-generating functions are given and illustrated with examples. Many distributions do not have moment generating functions, but every distribution has a unique characteristic function. The use of characteristic functions is preferred to moment-generating functions. KEY WORDS: ...

  19. Is fetal cardiac function gender dependent?

    NARCIS (Netherlands)

    Clur, S. A. B.; Rengerink, K. Oude; Mol, B. W.; Ottenkamp, J.; Bilardo, C. M.

    Introduction An increased nuchal translucency (NT) is more common in males. A delayed diastolic cardiac function maturation has been proposed to explain this and the reported gender-related differences in ductus venosus (DV) flow. Objective To investigate gender-related differences in fetal cardiac

  20. Mathematical Models of Cardiac Pacemaking Function

    Directory of Open Access Journals (Sweden)

    Pan eLi

    2013-10-01

    Full Text Available Over the past half century, there has been intense and fruitful interaction between experimental and computational investigations of cardiac function. This interaction has, for example, led to deep understanding of cardiac excitation-contraction coupling; how it works, as well as how it fails. However, many lines of inquiry remain unresolved, among them the initiation of each heartbeat. The sinoatrial node, a cluster of specialized pacemaking cells in the right atrium of the heart, spontaneously generates an electro-chemical wave that spreads through the atria and through the cardiac conduction system to the ventricles, initiating the contraction of cardiac muscle essential for pumping blood to the body. Despite the fundamental importance of this primary pacemaker, this process is still not fully understood, and ionic mechanisms underlying cardiac pacemaking function are currently under heated debate. Several mathematical models of sinoatrial node cell membrane electrophysiology have been constructed as based on different experimental data sets and hypotheses. As could be expected, these differing models offer diverse predictions about cardiac pacemaking activities. This paper aims to present the current state of debate over the origins of the pacemaking function of the sinoatrial node. Here, we will specifically review the state-of-the-art of cardiac pacemaker modeling, with a special emphasis on current discrepancies, limitations, and future challenges.

  1. Impaired Cardiac Function and Cognitive Brain Aging.

    Science.gov (United States)

    van der Velpen, Isabelle F; Yancy, Clyde W; Sorond, Farzaneh A; Sabayan, Behnam

    2017-12-01

    It is well established that patients with heart failure are at a greater risk for dementia. Recent evidence suggests that the heart-brain link goes beyond advanced heart failure, and even suboptimal cardiac function is associated with brain structural and functional changes leading to cognitive impairment. In this review, we address several pathophysiological mechanisms underlying this association, including hemodynamic stress and cerebral hypoperfusion, neuroinflammation, cardiac arrhythmias, and hypercoagulation. The close link between cardiac function and brain health has numerous clinical and public health implications. Cardiac dysfunction and cognitive impairment are both common in older adults. However, in our current clinical practice, these medical conditions are generally evaluated and treated in isolation. Emerging evidence on the significance of the heart-brain link calls for comprehensive cardiovascular risk assessment in patients with cognitive impairment and a neurocognitive workup in patients with impaired cardiac function. A multidisciplinary approach by cardiologists, neurologists, and geriatricians would benefit the diagnostic process and disease management and ultimately improve the quality of life for patients with cardiac and cognitive dysfunction. Copyright © 2017 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.

  2. Exercise leads to unfavourable cardiac remodelling and enhanced metabolic homeostasis in obese mice with cardiac and skeletal muscle autophagy deficiency.

    Science.gov (United States)

    Yan, Zhen; Kronemberger, Ana; Blomme, Jay; Call, Jarrod A; Caster, Hannah M; Pereira, Renata O; Zhao, Henan; de Melo, Vitor U; Laker, Rhianna C; Zhang, Mei; Lira, Vitor A

    2017-08-11

    Autophagy is stimulated by exercise in several tissues; yet the role of skeletal and cardiac muscle-specific autophagy on the benefits of exercise training remains incompletely understood. Here, we determined the metabolic impact of exercise training in obese mice with cardiac and skeletal muscle disruption of the Autophagy related 7 gene (Atg7 h&mKO ). Muscle autophagy deficiency did not affect glucose clearance and exercise capacity in lean adult mice. High-fat diet in sedentary mice led to endoplasmic reticulum stress and aberrant mitochondrial protein expression in autophagy-deficient skeletal and cardiac muscles. Endurance exercise training partially reversed these abnormalities in skeletal muscle, but aggravated those in the heart also causing cardiac fibrosis, foetal gene reprogramming, and impaired mitochondrial biogenesis. Interestingly, exercise-trained Atg7 h&mKO mice were better protected against obesity and insulin resistance with increased circulating fibroblast growth factor 21 (FGF21), elevated Fgf21 mRNA and protein solely in the heart, and upregulation of FGF21-target genes involved in thermogenesis and fatty acid oxidation in brown fat. These results indicate that autophagy is essential for the protective effects of exercise in the heart. However, the atypical remodelling elicited by exercise in the autophagy deficient cardiac muscle enhances whole-body metabolism, at least partially, via a heart-brown fat cross-talk involving FGF21.

  3. Cardiac dysfunction in Pkd1-deficient mice with phenotype rescue by galectin-3 knockout

    Science.gov (United States)

    Balbo, Bruno E.; Amaral, Andressa G.; Fonseca, Jonathan M.; de Castro, Isac; Salemi, Vera M.; Souza, Leandro E.; dos Santos, Fernando; Irigoyen, Maria C.; Qian, Feng; Chammas, Roger; Onuchic, Luiz F.

    2016-01-01

    Alterations in myocardial wall texture stand out among ADPKD cardiovascular manifestations, in hypertensive and normotensive patients. To elucidate their pathogenesis, we analyzed the cardiac phenotype in Pkd1cond/cond:Nestincre (CYG+) cystic mice exposed to increased blood pressure, at 5–6 and 20–24 weeks of age, and Pkd1+/− (HTG+) noncystic mice at 5–6 and 10–13 weeks. Echocardiographic analyses revealed decreased myocardial deformation and systolic function in CYG+ and HTG+ mice, as well as diastolic dysfunction in older CYG+ mice, compared to their Pkd1cond/cond and Pkd1+/+ controls. Hearts from CYG+ and HTG+ mice presented reduced polycystin-1 expression, increased apoptosis and mild fibrosis. Since galectin-3 has been associated with heart dysfunction, we studied it as a potential modifier of the ADPKD cardiac phenotype. Double-mutant Pkd1cond/cond:Nestincre;Lgals3−/− (CYG−) and Pkd1+/−;Lgals3−/− (HTG−) mice displayed improved cardiac deformability and systolic parameters compared to single-mutants, not differing from their controls. CYG− and HTG− showed decreased apoptosis and fibrosis. Analysis of a severe cystic model (Pkd1V/V; VVG+) showed that Pkd1V/V;Lgals3−/− (VVG−) mice have longer survival, decreased cardiac apoptosis and improved heart function compared to VVG+. CYG− and VVG− animals showed no difference in renal cystic burden compared to CYG+ and VVG+ mice. Thus, myocardial dysfunction occurs in different Pkd1-deficient models and suppression of galectin-3 expression rescues this phenotype. PMID:27475230

  4. Akap1 Deficiency Promotes Mitochondrial Aberrations and Exacerbates Cardiac Injury Following Permanent Coronary Ligation via Enhanced Mitophagy and Apoptosis.

    Directory of Open Access Journals (Sweden)

    Gabriele Giacomo Schiattarella

    Full Text Available A-kinase anchoring proteins (AKAPs transmit signals cues from seven-transmembrane receptors to specific sub-cellular locations. Mitochondrial AKAPs encoded by the Akap1 gene have been shown to modulate mitochondrial function and reactive oxygen species (ROS production in the heart. Under conditions of hypoxia, mitochondrial AKAP121 undergoes proteolytic degradation mediated, at least in part, by the E3 ubiquitin ligase Seven In-Absentia Homolog 2 (Siah2. In the present study we hypothesized that Akap1 might be crucial to preserve mitochondrial function and structure, and cardiac responses to myocardial ischemia. To test this, eight-week-old Akap1 knockout mice (Akap1-/-, Siah2 knockout mice (Siah2-/- or their wild-type (wt littermates underwent myocardial infarction (MI by permanent left coronary artery ligation. Age and gender matched mice of either genotype underwent a left thoracotomy without coronary ligation and were used as controls (sham. Twenty-four hours after coronary ligation, Akap1-/- mice displayed larger infarct size compared to Siah2-/- or wt mice. One week after MI, cardiac function and survival were also significantly reduced in Akap1-/- mice, while cardiac fibrosis was significantly increased. Akap1 deletion was associated with remarkable mitochondrial structural abnormalities at electron microscopy, increased ROS production and reduced mitochondrial function after MI. These alterations were associated with enhanced cardiac mitophagy and apoptosis. Autophagy inhibition by 3-methyladenine significantly reduced apoptosis and ameliorated cardiac dysfunction following MI in Akap1-/- mice. These results demonstrate that Akap1 deficiency promotes cardiac mitochondrial aberrations and mitophagy, enhancing infarct size, pathological cardiac remodeling and mortality under ischemic conditions. Thus, mitochondrial AKAPs might represent important players in the development of post-ischemic cardiac remodeling and novel therapeutic targets.

  5. Functional cardiac imaging: positron emission tomography

    International Nuclear Information System (INIS)

    Mullani, N.A.; Gould, K.L.

    1984-01-01

    Dynamic cardiovascular imaging plays a vital role in the diagnosis and treatment of cardiac disease by providing information about the function of the heart. During the past 30 years, cardiovascular imaging has evolved from the simple chest x-ray and fluoroscopy to such sophisticated techniques as invasive cardiac angiography and cinearteriography and, more recently, to noninvasive cardiac CT scanning, nuclear magnetic resonance, and positron emission tomography, which reflect more complex physiologic functions. As research tools, CT, NMR, and PET provide quantitative information on global as well as regional ventricular function, coronary artery stenosis, myocardial perfusion, glucose and fatty acid metabolism, or oxygen utilization, with little discomfort or risk to the patient. As imaging modalities become more sophisticated and more oriented toward clinical application, the prospect of routinely obtaining such functional information about the heart is becoming realistic. However, these advances are double-edged in that the interpretation of functional data is more complex than that of the anatomic imaging familiar to most physicians. They will require an enhanced understanding of the physiologic and biochemical processes, as well as of the instrumentation and techniques for analyzing the data. Of the new imaging modalities that provide functional information about the heart, PET is the most useful because it quantitates the regional distribution of radionuclides in vivo. Clinical applications, interpretation of data, and the impact of PET on our understanding of cardiac pathophysiology are discussed. 5 figures

  6. Leucocyte Function in Protein Deficiency States

    African Journals Online (AJOL)

    Total proteins and serum albumin levels were correlated in each group, according to the following: (i) the total leucocyte count; (ii) the number of cells containing NBT; and (Ui) the number of cells ... show no increase in leucocyte count; however. their leucocytes ... could find no deficiency in intracellular leucocyte function ...

  7. Improved cardiac function after renal transplantation.

    OpenAIRE

    Fleming, S. J.; Caplin, J. L.; Banim, S. O.; Baker, L. R.

    1985-01-01

    There are few reports of the outcome of renal transplantation in patients with severe left ventricular (LV) impairment. We describe three men with chronic disabling heart failure associated with LV dysfunction in whom a remarkable improvement in cardiac function followed renal transplantation. Transplantation may offer the prospect of successful rehabilitation in these circumstances. Undue pessimism as to the prognosis in such patients is unwarranted.

  8. Cardiac mitochondria exhibit dynamic functional clustering

    Directory of Open Access Journals (Sweden)

    Felix Tobias Kurz

    2014-09-01

    Full Text Available Multi-oscillatory behavior of mitochondrial inner membrane potential ΔΨm in self-organized cardiac mitochondrial networks can be triggered by metabolic or oxidative stress. Spatio-temporal analyses of cardiac mitochondrial networks have shown that mitochondria are heterogeneously organized in synchronously oscillating clusters in which the mean cluster frequency and size are inversely correlated, thus suggesting a modulation of cluster frequency through local inter-mitochondrial coupling. In this study, we propose a method to examine the mitochondrial network's topology through quantification of its dynamic local clustering coefficients. Individual mitochondrial ΔΨm oscillation signals were identified for each cardiac myocyte and cross-correlated with all network mitochondria using previously described methods (Kurz et al., 2010. Time-varying inter-mitochondrial connectivity, defined for mitochondria in the whole network whose signals are at least 90% correlated at any given time point, allowed considering functional local clustering coefficients. It is shown that mitochondrial clustering in isolated cardiac myocytes changes dynamically and is significantly higher than for random mitochondrial networks that are constructed using the Erdös-Rényi model based on the same sets of vertices. The network's time-averaged clustering coefficient for cardiac myocytes was found to be 0.500 ± 0.051 (N=9 versus 0.061 ± 0.020 for random networks, respectively. Our results demonstrate that cardiac mitochondria constitute a network with dynamically connected constituents whose topological organization is prone to clustering. Cluster partitioning in networks of coupled oscillators has been observed in scale-free and chaotic systems and is therefore in good agreement with previous models of cardiac mitochondrial networks (Aon et al., 2008.

  9. Omentin functions to attenuate cardiac hypertrophic response.

    Science.gov (United States)

    Matsuo, Kazuhiro; Shibata, Rei; Ohashi, Koji; Kambara, Takahiro; Uemura, Yusuke; Hiramatsu-Ito, Mizuho; Enomoto, Takashi; Yuasa, Daisuke; Joki, Yusuke; Ito, Masanori; Hayakawa, Satoko; Ogawa, Hayato; Kihara, Shinji; Murohara, Toyoaki; Ouchi, Noriyuki

    2015-02-01

    Cardiac hypertrophy occurs in many obesity-related conditions. Omentin is an adipose-derived plasma protein that is downregulated under obese conditions. Here, we investigated whether omentin modulates cardiac hypertrophic responses in vivo and in vitro. Systemic administration of an adenoviral vector expressing human omentin (Ad-OMT) to wild-type (WT) mice led to the attenuation of cardiac hypertrophy, fibrosis and ERK phosphorylation induced by transverse aortic constriction (TAC) or angiotensin II infusion. In cultured cardiomyocytes, stimulation with phenylephrine (PE) led to an increase in myocyte size, which was prevented by pretreatment with human omentin protein. Pretreatment of cardiomyocytes with omentin protein also reduced ERK phosphorylation in response to PE stimulation. Ad-OMT enhanced phosphorylation of AMP-activated protein kinase (AMPK) in the heart of WT mice after TAC operation. Blockade of AMPK activation by transduction with dominant-negative mutant forms of AMPK reversed the inhibitory effect of omentin on myocyte hypertrophy and ERK phosphorylation following PE stimulation. Moreover, fat-specific transgenic mice expressing human omentin showed reduced cardiac hypertrophy and ERK phosphorylation following TAC surgery compared to littermate controls. These data suggest that omentin functions to attenuate the pathological process of myocardial hypertrophy via the activation of AMPK in the heart, suggesting that omentin may represent a target molecule for the treatment of cardiac hypertrophy. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Relationship between cobalamin deficiency and delirium in elderly patients undergoing cardiac surgery

    Directory of Open Access Journals (Sweden)

    Sevuk U

    2015-08-01

    Full Text Available Utkan Sevuk,1 Erkan Baysal,2 Nurettin Ay,3 Yakup Altas,2 Rojhat Altindag,2 Baris Yaylak,2 Vahhac Alp,3 Ertan Demirtas4 1Department of Cardiovascular Surgery, Diyarbakir Gazi Yasargil Education and Research Hospital, Diyarbakir, 2Department of Cardiology, Diyarbakir Gazi Yasargil Education and Research Hospital, Diyarbakir, 3Department of General Surgery, Diyarbakir Gazi Yasargil Education and Research Hospital, Diyarbakir, 4Department of Cardiovascular Surgery, Liv Hospital, Ankara, Turkey Background: Delirium is common after cardiac surgery and is independently associated with increased morbidity, mortality, prolonged hospital stays, and higher costs. Cobalamin (vitamin B12 deficiency is a common cause of neuropsychiatric symptoms and affects up to 40% of elderly people. The relationship between cobalamin deficiency and the occurrence of delirium after cardiac surgery has not been examined in previous studies. We examined the relationship between cobalamin deficiency and delirium in elderly patients undergoing coronary artery bypass grafting (CABG surgery.Material and methods: A total of 100 patients with cobalamin deficiency undergoing CABG were enrolled in this retrospective study. Control group comprised 100 patients without cobalamin deficiency undergoing CABG. Patients aged 65 years or over were included. Diagnosis of delirium was made using Intensive Care Delirium Screening Checklist. Delirium severity was measured using the Delirium Rating Scale-revised-98.Results: Patients with cobalamin deficiency had a significantly higher incidence of delirium (42% vs 26%; P=0.017 and higher delirium severity scores (16.5±2.9 vs 15.03±2.48; P=0.034 than patients without cobalamin deficiency. Cobalamin levels were significantly lower in patients with delirium than patients without delirium (P=0.004. Delirium severity score showed a moderate correlation with cobalamin levels (Ρ=-0.27; P=0.024. Logistic regression analysis demonstrated that

  11. Primary cardiac lymphoma in a patient with acquired immune deficiency syndrome

    International Nuclear Information System (INIS)

    Constantino, A.; West, T.E.; Gupta, M.; Loghmanee, F.

    1987-01-01

    A 34-year-old male prisoner with a history of intravenous drug abuse presented with fever, lymphadenopathy, weight loss, and recent onset of congestive heart failure. Serologic testing was positive for antibodies to human immune deficiency virus. There was intense myocardial uptake of gallium. Autopsy showed a primary immunoblastic lymphoma involving only the myocardium. While primary cardiac lymphoma is an extremely rare condition, the incidence may be higher in patients with acquired immune deficiency syndrome (AIDS) and should be suspected in cases with atypical cardiomyopathy

  12. Deficiency of methionine sulfoxide reductase A causes cellular dysfunction and mitochondrial damage in cardiac myocytes under physical and oxidative stresses

    International Nuclear Information System (INIS)

    Nan, Changlong; Li, Yuejin; Jean-Charles, Pierre-Yves; Chen, Guozhen; Kreymerman, Alexander; Prentice, Howard; Weissbach, Herbert; Huang, Xupei

    2010-01-01

    Research highlights: → Deficiency of MsrA in the heart renders myocardial cells more sensitive to oxidative stress. → Mitochondrial damage happens in the heart lacking MsrA. → More protein oxidation in myocardial cells lacking MsrA. → MsrA protects the heart against oxidative stress. -- Abstract: Methionine sulfoxide reductase A (MsrA) is an enzyme that reverses oxidation of methionine in proteins. Using a MsrA gene knockout (MsrA -/- ) mouse model, we have investigated the role of MsrA in the heart. Our data indicate that cellular contractility and cardiac function are not significantly changed in MsrA -/- mice if the hearts are not stressed. However, the cellular contractility, when stressed using a higher stimulation frequency (2 Hz), is significantly reduced in MsrA -/- cardiac myocytes. MsrA -/- cardiac myocytes also show a significant decrease in contractility after oxidative stress using H 2 O 2 . Corresponding changes in Ca 2+ transients are observed in MsrA -/- cardiomyocytes treated with 2 Hz stimulation or with H 2 O 2 . Electron microscope analyses reveal a dramatic morphological change of mitochondria in MsrA -/- mouse hearts. Further biochemical measurements indicate that protein oxidation levels in MsrA -/- mouse hearts are significantly higher than those in wild type controls. Our study demonstrates that the lack of MsrA in cardiac myocytes reduces myocardial cell's capability against stress stimulations resulting in a cellular dysfunction in the heart.

  13. Relationship between cardiac function and resting cerebral blood flow

    DEFF Research Database (Denmark)

    Henriksen, Otto M; Jensen, Lars T; Krabbe, Katja

    2014-01-01

    Although both impaired cardiac function and reduced cerebral blood flow are associated with ageing, current knowledge of the influence of cardiac function on resting cerebral blood flow (CBF) is limited. The aim of this study was to investigate the potential effects of cardiac function on CBF. CBF......) and 2.4 l min(-1) m(-2), respectively, in females. No effects of cardiac output or cardiac index on CBF or structural signs of brain ageing were observed. However, fractional brain flow defined as the ratio of total brain flow to cardiac output was inversely correlated with cardiac index (r(2) = 0.22, P...... = 0.008) and furthermore lower in males than in females (8.6% versus 12.5%, P = 0.003). Fractional brain flow was also inversely correlated with cerebral white matter lesion grade, although this effect was not significant when adjusted for age. Frequency analysis of heart rate variability showed...

  14. Cardiac Function Remains Impaired Despite Reversible Cardiac Remodeling after Acute Experimental Viral Myocarditis

    Directory of Open Access Journals (Sweden)

    Peter Moritz Becher

    2017-01-01

    Full Text Available Background. Infection with Coxsackievirus B3 induces myocarditis. We aimed to compare the acute and chronic phases of viral myocarditis to identify the immediate effects of cardiac inflammation as well as the long-term effects after resolved inflammation on cardiac fibrosis and consequently on cardiac function. Material and Methods. We infected C57BL/6J mice with Coxsackievirus B3 and determined the hemodynamic function 7 as well as 28 days after infection. Subsequently, we analyzed viral burden and viral replication in the cardiac tissue as well as the expression of cytokines and matrix proteins. Furthermore, cardiac fibroblasts were infected with virus to investigate if viral infection alone induces profibrotic signaling. Results. Severe cardiac inflammation was determined and cardiac fibrosis was consistently colocalized with inflammation during the acute phase of myocarditis. Declined cardiac inflammation but no significantly improved hemodynamic function was observed 28 days after infection. Interestingly, cardiac fibrosis declined to basal levels as well. Both cardiac inflammation and fibrosis were reversible, whereas the hemodynamic function remains impaired after healed viral myocarditis in C57BL/6J mice.

  15. GRAF1 deficiency blunts sarcolemmal injury repair and exacerbates cardiac and skeletal muscle pathology in dystrophin-deficient mice.

    Science.gov (United States)

    Lenhart, Kaitlin C; O'Neill, Thomas J; Cheng, Zhaokang; Dee, Rachel; Demonbreun, Alexis R; Li, Jianbin; Xiao, Xiao; McNally, Elizabeth M; Mack, Christopher P; Taylor, Joan M

    2015-01-01

    The plasma membranes of striated muscle cells are particularly susceptible to rupture as they endure significant mechanical stress and strain during muscle contraction, and studies have shown that defects in membrane repair can contribute to the progression of muscular dystrophy. The synaptotagmin-related protein, dysferlin, has been implicated in mediating rapid membrane repair through its ability to direct intracellular vesicles to sites of membrane injury. However, further work is required to identify the precise molecular mechanisms that govern dysferlin targeting and membrane repair. We previously showed that the bin-amphiphysin-Rvs (BAR)-pleckstrin homology (PH) domain containing Rho-GAP GTPase regulator associated with focal adhesion kinase-1 (GRAF1) was dynamically recruited to the tips of fusing myoblasts wherein it promoted membrane merging by facilitating ferlin-dependent capturing of intracellular vesicles. Because acute membrane repair responses involve similar vesicle trafficking complexes/events and because our prior studies in GRAF1-deficient tadpoles revealed a putative role for GRAF1 in maintaining muscle membrane integrity, we postulated that GRAF1 might also play an important role in facilitating dysferlin-dependent plasma membrane repair. We used an in vitro laser-injury model to test whether GRAF1 was necessary for efficient muscle membrane repair. We also generated dystrophin/GRAF1 doubledeficient mice by breeding mdx mice with GRAF1 hypomorphic mice. Evans blue dye uptake and extensive morphometric analyses were used to assess sarcolemmal integrity and related pathologies in cardiac and skeletal muscles isolated from these mice. Herein, we show that GRAF1 is dynamically recruited to damaged skeletal and cardiac muscle plasma membranes and that GRAF1-depleted muscle cells have reduced membrane healing abilities. Moreover, we show that dystrophin depletion exacerbated muscle damage in GRAF1-deficient mice and that mice with dystrophin/GRAF1

  16. Functional cardiac imaging by random access microscopy

    Directory of Open Access Journals (Sweden)

    Claudia eCrocini

    2014-10-01

    Full Text Available Advances in the development of voltage sensitive dyes and Ca2+ sensors in combination with innovative microscopy techniques allowed researchers to perform functional measurements with an unprecedented spatial and temporal resolution. At the moment, one of the shortcomings of available technologies is their incapability of imaging multiple fast phenomena while controlling the biological determinants involved. In the near future, ultrafast deflectors can be used to rapidly scan laser beams across the sample, performing optical measurements of action potential and Ca2+ release from multiple sites within cardiac cells and tissues. The same scanning modality could also be used to control local Ca2+ release and membrane electrical activity by activation of caged compounds and light-gated ion channels. With this approach, local Ca2+ or voltage perturbations could be induced, simulating arrhythmogenic events, and their impact on physiological cell activity could be explored. The development of this optical methodology will provide fundamental insights in cardiac disease, boosting new therapeutic strategies, and, more generally, it will represent a new approach for the investigation of the physiology of excitable cells.

  17. Impact of prolonged walking exercise on cardiac structure and function in cardiac patients versus healthy controls.

    Science.gov (United States)

    Benda, Nathalie Mm; Hopman, Maria Te; van Dijk, Arie Pj; Oxborough, David; George, Keith P; Thijssen, Dick Hj; Eijsvogels, Thijs Mh

    2016-08-01

    Previous studies have demonstrated that endurance exercise can cause an acute transient decrease in cardiac function in healthy subjects. Whether this also occurs in cardiac patients is unknown. We investigated the impact of prolonged single day and three-day walking exercise on cardiac function and cardiac biomarkers between cardiac patients and healthy controls in an observational study. We recruited 10 cardiac patients (nine males, one female, 68 ± 5 years) and 10 age- and sex-matched healthy control subjects (nine males, one female, 68 ± 4 years) to perform 30 or 40 km of walking exercise per day for three consecutive days. Cardiac function was examined using echocardiography and cardiac biomarkers (cardiac troponin and B-type natriuretic peptide) with blood samples. Data were collected before walking and directly after walking on day 1 and day 3. Post-exercise early systolic tissue contraction velocity of the left ventricle (p = 0.005) and global longitudinal left ventricle strain (P = 0.026) were increased in both groups compared with baseline. Post-exercise right ventricle peak early diastolic tissue filling velocity and systolic blood pressure/left ventricle end-systolic volume ratio decreased in both groups (p = 0.043 and p = 0.028, respectively). Post-exercise cardiac troponin levels increased (p = 0.045) but did not differ across groups (p = 0.60), whereas B-type natriuretic peptide levels did not change (p = 0.43). This study suggests that stable cardiac patients are capable of performing three days of prolonged walking exercise without clinically significant acute overall deterioration in cardiac function or more pronounced increase in cardiac biomarkers compared with healthy controls. © The European Society of Cardiology 2016.

  18. Determining Functional Vitamin B12 Deficiency in the Elderly

    OpenAIRE

    Khodabandehloo, Niloofar; Vakili, Masoud; Hashemian, Zahra; Zare Zardini, Hadi

    2015-01-01

    Background: Elevated concentration of serum total homocysteine usually occurs in vitamin B-12 deficiency. This metabolite can be measured and used for screening functional vitamin B-12 deficiency. Objectives: We assessed functional vitamin B12 deficiency in Tehranian elderly admitted to elderly research center, University of Social Welfare and Rehabilitation Sciences. Patients and Materials: A cross-sectional study was performed on 232 elderly admitted to elderly research center in Tehran, Ir...

  19. AMP-activated protein kinase deficiency rescues paraquat-induced cardiac contractile dysfunction through an autophagy-dependent mechanism.

    Science.gov (United States)

    Wang, Qiurong; Yang, Lifang; Hua, Yinan; Nair, Sreejayan; Xu, Xihui; Ren, Jun

    2014-11-01

    Paraquat, a quaternary nitrogen herbicide, is a highly toxic prooxidant resulting in multi-organ failure including the heart although the underlying mechanism still remains elusive. This study was designed to examine the role of the cellular fuel sensor AMP-activated protein kinase (AMPK) in paraquat-induced cardiac contractile and mitochondrial injury. Wild-type and transgenic mice with overexpression of a mutant AMPK α2 subunit (kinase dead, KD), with reduced activity in both α1 and α2 subunits, were administered with paraquat (45 mg/kg) for 48 h. Paraquat elicited cardiac mechanical anomalies including compromised echocardiographic parameters (elevated left ventricular end-systolic diameter and reduced factional shortening), suppressed cardiomyocyte contractile function, intracellular Ca(2+) handling, reduced cell survival, and overt mitochondrial damage (loss in mitochondrial membrane potential). In addition, paraquat treatment promoted phosphorylation of AMPK and autophagy. Interestingly, deficiency in AMPK attenuated paraquat-induced cardiac contractile and intracellular Ca(2+) derangement. The beneficial effect of AMPK inhibition was associated with inhibition of the AMPK-TSC-mTOR-ULK1 signaling cascade. In vitro study revealed that inhibitors for AMPK and autophagy attenuated paraquat-induced cardiomyocyte contractile dysfunction. Taken together, our findings revealed that AMPK may mediate paraquat-induced myocardial anomalies possibly by regulating the AMPK/mTOR-dependent autophagy. © The Author 2014. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  20. NOD2 Deficiency Protects against Cardiac Remodeling after Myocardial Infarction in Mice

    Directory of Open Access Journals (Sweden)

    Xiang Li

    2013-12-01

    Full Text Available Background/Aims: Although the pathogenesis of myocardial infarction (MI is multifactorial, activation of innate immune system to induce inflammation has emerged as a key pathophysiological process in MI. NOD2, one member of the NOD-like receptor (NLR family, plays an important role in the innate immune response. This study was to examine the role of NOD2 during MI. Methods: MI was induced by permanent ligation of the left coronary artery in wild type and NOD2-/- mice and cardiac fibroblasts were isolated. Results: NOD2 expression was significantly increased in myocardium in post-MI mice. NOD2 deficiency improved cardiac dysfunction and remodeling after MI as evidenced by echocardiographic analysis, reduced the levels of cytokines, inflammatory cell infiltration and matrix metalloproteinase-9 (MMP-9 activity. In vitro, we further found that NOD2 activation induced the activation of MAPK signaling pathways, production of proinflammatory mediators and MMP-9 activity in cardiac fibroblasts. Conclusions: Our studies demonstrate that NOD2 is a critical component of a signal transduction pathway that links cardiac injury by exacerbation of inflammation and MMP-9 activity. Pharmacological targeting of NOD2-mediated signaling pathways may provide a novel approach to treatment of cardiovascular diseases.

  1. Embryonic Lethality Due to Arrested Cardiac Development in Psip1/Hdgfrp2 Double-Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Hao Wang

    Full Text Available Hepatoma-derived growth factor (HDGF related protein 2 (HRP2 and lens epithelium-derived growth factor (LEDGF/p75 are closely related members of the HRP2 protein family. LEDGF/p75 has been implicated in numerous human pathologies including cancer, autoimmunity, and infectious disease. Knockout of the Psip1 gene, which encodes for LEDGF/p75 and the shorter LEDGF/p52 isoform, was previously shown to cause perinatal lethality in mice. The function of HRP2 was by contrast largely unknown. To learn about the role of HRP2 in development, we knocked out the Hdgfrp2 gene, which encodes for HRP2, in both normal and Psip1 knockout mice. Hdgfrp2 knockout mice developed normally and were fertile. By contrast, the double deficient mice died at approximate embryonic day (E 13.5. Histological examination revealed ventricular septal defect (VSD associated with E14.5 double knockout embryos. To investigate the underlying molecular mechanism(s, RNA recovered from ventricular tissue was subjected to RNA-sequencing on the Illumina platform. Bioinformatic analysis revealed several genes and biological pathways that were significantly deregulated by the Psip1 knockout and/or Psip1/Hdgfrp2 double knockout. Among the dozen genes known to encode for LEDGF/p75 binding factors, only the expression of Nova1, which encodes an RNA splicing factor, was significantly deregulated by the knockouts. However the expression of other RNA splicing factors, including the LEDGF/p52-interacting protein ASF/SF2, was not significantly altered, indicating that deregulation of global RNA splicing was not a driving factor in the pathology of the VSD. Tumor growth factor (Tgf β-signaling, which plays a key role in cardiac morphogenesis during development, was the only pathway significantly deregulated by the double knockout as compared to control and Psip1 knockout samples. We accordingly speculate that deregulated Tgf-β signaling was a contributing factor to the VSD and prenatal lethality

  2. Impact of prolonged walking exercise on cardiac structure and function in cardiac patients versus healthy controls.

    NARCIS (Netherlands)

    Benda, N.M.M.; Hopman, M.T.E.; Dijk, A.P.J. van; Oxborough, D.; George, K.P.; Thijssen, D.H.J.; Eijsvogels, T.M.H.

    2016-01-01

    BACKGROUND AND DESIGN: Previous studies have demonstrated that endurance exercise can cause an acute transient decrease in cardiac function in healthy subjects. Whether this also occurs in cardiac patients is unknown. We investigated the impact of prolonged single day and three-day walking exercise

  3. Astragaloside IV Prevents Cardiac Remodeling in the Apolipoprotein E-Deficient Mice by Regulating Cardiac Homeostasis and Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Xiong-Zhi Li

    2017-12-01

    Full Text Available Background: Hypercholesterolemia is a risk factor for the development of cardiac hypertrophy. Astragaloside IV (AST-IV possesses cardiovascular protective properties. We hypothesize that AST-IV prevents cardiac remodeling with hypercholesterolemia via modulating tissue homeostasis and alleviating oxidative stress. Methods: The ApoE-/- mice were treated with AST-IV at 1 or 10 mg/kg for 8 weeks. The blood lipids tests, echocardiography, and TUNEL were performed. The mRNA expression profile was detected by real-time PCR. The myocytes size and number, and the expressions of proliferation (ki67, senescence (p16INK4a, oxidant (NADPH oxidase 4, NOX4 and antioxidant (superoxide dismutase, SOD were observed by immunofluorescence staining. Results: Neither 1 mg/kg nor 10 mg/kg AST-IV treatment could decrease blood lipids in ApoE-/- mice. However, the decreased left ventricular ejection fraction (LVEF and fractional shortening (FS in ApoE–/– mice were significantly improved after AST-IV treatment. The cardiac collagen volume fraction declined nearly in half after AST-IV treatment. The enlarged myocyte size was suppressed, and myocyte number was recovered, and the alterations of genes expressions linked to cell cycle, proliferation, senescence, p53-apoptosis pathway and oxidant-antioxidants in the hearts of ApoE-/- mice were reversed after AST-IV treatment. The decreased ki67 and increased p16INK4a in the hearts of ApoE-/- mice were recovered after AST-IV treatment. The percentages of apoptotic myocytes and NOX4-positive cells in AST-IV treated mice were decreased, which were consistent with the gene expressions. Conclusion: AST-IV treatment could prevent cardiac remodeling and recover the impaired ventricular function induced by hypercholesterolemia. The beneficial effect of AST-IV might partly be through regulating cardiac homeostasis and anti-oxidative stress.

  4. Directly Measured Physical Function in Cardiac Rehabilitation.

    Science.gov (United States)

    Rengo, Jason L; Savage, Patrick D; Shaw, Joan C; Ades, Philip A

    2017-05-01

    The Short Physical Performance Battery (SPPB) is a strong predictor for risk of physical disability in older adults. Roughly half of individuals participating in phase II cardiac rehabilitation (CR) are 65 years or older, many presenting with low aerobic capacities and may be at increased risk for physical disability. The cohort consisted of 196 consecutive patients (136 men), aged 65 years or older, entering CR who were prospectively evaluated by the SPPB. Data were also obtained for age, self-reported physical function (Medical Outcomes Study Short Form-36 questionnaire), and peak aerobic capacity. Measures were repeated upon completion of CR for those individuals who completed the program. The average age of patients was 74 ± 0.5 years. At baseline, total SPPB score was 9.7 ± 0.2 (out of 12). Followup data were obtained on 133 (68%) patients, with a mean improvement of 0.8 ± 0.1 (P speed (0.5 ± 0.1, P vs 17.5 ± 0.4 mL/kg/min, P speed and leg strength (chair-stand).

  5. RP105 deficiency aggravates cardiac dysfunction after myocardial infarction in mice

    NARCIS (Netherlands)

    Louwe, M.C.; Karper, J.C.; Vries, M.R. de; Nossent, A.Y.; Bastiaansen, A.J.; Hoorn, J.W. van der; Dijk, K van; Rensen, P.C.; Steendijk, P.; Smit, J.W.A.; Quax, P.H.A.

    2014-01-01

    BACKGROUND: Toll-like receptor-4 (TLR4), a receptor of the innate immune system, is suggested to have detrimental effects on cardiac function after myocardial infarction (MI). RP105 (CD180) is a TLR4 homolog lacking the intracellular signaling domain that competitively inhibits TLR4-signaling. Thus,

  6. RP105 deficiency aggravates cardiac dysfunction after myocardial infarction in mice

    NARCIS (Netherlands)

    Louwe, M.C.; Karper, J.C.; Vries, M.R. de; Nossent, A.Y.; Bastiaansen, A.J.N.M.; Hoorn, J.W.A. van der; Willems Van Dijk, K.; Rensen, P.C.N.; Steendijk, P.; Smit, J.W.A.; Quax, P.H.A.

    2014-01-01

    Background Toll-like receptor-4 (TLR4), a receptor of the innate immune system, is suggested to have detrimental effects on cardiac function after myocardial infarction (MI). RP105 (CD180) is a TLR4 homolog lacking the intracellular signaling domain that competitively inhibits TLR4-signaling. Thus,

  7. Deficiency in Cardiac Dystrophin Affects the Abundance of the α-/β-Dystroglycan Complex

    Directory of Open Access Journals (Sweden)

    James Lohan

    2005-01-01

    Full Text Available Although Duchenne muscular dystrophy is primarily categorised as a skeletal muscle disease, deficiency in the membrane cytoskeletal protein dystrophin also affects the heart. The central transsarcolemmal linker between the actin membrane cytoskeleton and the extracellular matrix is represented by the dystrophin-associated dystroglycans. Chemical cross-linking analysis revealed no significant differences in the dimeric status of the α-/β-dystroglycan subcomplex in the dystrophic mdx heart as compared to normal cardiac tissue. In analogy to skeletal muscle fibres, heart muscle also exhibited a greatly reduced abundance of both dystroglycans in dystrophin-deficient cells. Immunoblotting demonstrated that the degree of reduction in α-dystroglycan is more pronounced in matured mdx skeletal muscle as contrasted to the mdx heart. The fact that the deficiency in dystrophin triggers a similar pathobiochemical response in both types of muscle suggests that the cardiomyopathic complications observed in x-linked muscular dystrophy might be initiated by the loss of the dystrophin-associated surface glycoprotein complex.

  8. Galnt1 Is Required for Normal Heart Valve Development and Cardiac Function

    Science.gov (United States)

    Tian, E; Stevens, Sharon R.; Guan, Yu; Springer, Danielle A.; Anderson, Stasia A.; Starost, Matthew F.; Patel, Vyomesh; Ten Hagen, Kelly G.; Tabak, Lawrence A.

    2015-01-01

    Congenital heart valve defects in humans occur in approximately 2% of live births and are a major source of compromised cardiac function. In this study we demonstrate that normal heart valve development and cardiac function are dependent upon Galnt1, the gene that encodes a member of the family of glycosyltransferases (GalNAc-Ts) responsible for the initiation of mucin-type O-glycosylation. In the adult mouse, compromised cardiac function that mimics human congenital heart disease, including aortic and pulmonary valve stenosis and regurgitation; altered ejection fraction; and cardiac dilation, was observed in Galnt1 null animals. The underlying phenotype is aberrant valve formation caused by increased cell proliferation within the outflow tract cushion of developing hearts, which is first detected at developmental stage E11.5. Developing valves from Galnt1 deficient animals displayed reduced levels of the proteases ADAMTS1 and ADAMTS5, decreased cleavage of the proteoglycan versican and increased levels of other extracellular matrix proteins. We also observed increased BMP and MAPK signaling. Taken together, the ablation of Galnt1 appears to disrupt the formation/remodeling of the extracellular matrix and alters conserved signaling pathways that regulate cell proliferation. Our study provides insight into the role of this conserved protein modification in cardiac valve development and may represent a new model for idiopathic valve disease. PMID:25615642

  9. Temporal and Molecular Analyses of Cardiac Extracellular Matrix Remodeling following Pressure Overload in Adiponectin Deficient Mice.

    Directory of Open Access Journals (Sweden)

    Keith Dadson

    Full Text Available Adiponectin, circulating levels of which are reduced in obesity and diabetes, mediates cardiac extracellular matrix (ECM remodeling in response to pressure overload (PO. Here, we performed a detailed temporal analysis of progressive cardiac ECM remodelling in adiponectin knockout (AdKO and wild-type (WT mice at 3 days and 1, 2, 3 and 4 weeks following the induction of mild PO via minimally invasive transverse aortic banding. We first observed that myocardial adiponectin gene expression was reduced after 4 weeks of PO, whereas increased adiponectin levels were detected in cardiac homogenates at this time despite decreased circulating levels of adiponectin. Scanning electron microscopy and Masson's trichrome staining showed collagen accumulation increased in response to 2 and 4 weeks of PO in WT mice, while fibrosis in AdKO mice was notably absent after 2 weeks but highly apparent after 4 weeks of PO. Time and intensity of fibroblast appearance after PO was not significantly different between AdKO and WT animals. Gene array analysis indicated that MMP2, TIMP2, collagen 1α1 and collagen 1α3 were induced after 2 weeks of PO in WT but not AdKO mice. After 4 weeks MMP8 was induced in both genotypes, MMP9 only in WT mice and MMP1α only in AdKO mice. Direct stimulation of primary cardiac fibroblasts with adiponectin induced a transient increase in total collagen detected by picrosirius red staining and collagen III levels synthesis, as well as enhanced MMP2 activity detected via gelatin zymography. Adiponectin also enhanced fibroblast migration and attenuated angiotensin-II induced differentiation to a myofibroblast phenotype. In conclusion, these data indicate that increased myocardial bioavailability of adiponectin mediates ECM remodeling following PO and that adiponectin deficiency delays these effects.

  10. In Vivo Genome Editing Restores Dystrophin Expression and Cardiac Function in Dystrophic Mice.

    Science.gov (United States)

    El Refaey, Mona; Xu, Li; Gao, Yandi; Canan, Benjamin D; Adesanya, T M Ayodele; Warner, Sarah C; Akagi, Keiko; Symer, David E; Mohler, Peter J; Ma, Jianjie; Janssen, Paul M L; Han, Renzhi

    2017-09-29

    Duchenne muscular dystrophy is a severe inherited form of muscular dystrophy caused by mutations in the reading frame of the dystrophin gene disrupting its protein expression. Dystrophic cardiomyopathy is a leading cause of death in Duchenne muscular dystrophy patients, and currently no effective treatment exists to halt its progression. Recent advancement in genome editing technologies offers a promising therapeutic approach in restoring dystrophin protein expression. However, the impact of this approach on Duchenne muscular dystrophy cardiac function has yet to be evaluated. Therefore, we assessed the therapeutic efficacy of CRISPR (clustered regularly interspaced short palindromic repeats)-mediated genome editing on dystrophin expression and cardiac function in mdx/Utr +/- mice after a single systemic delivery of recombinant adeno-associated virus. To examine the efficiency and physiological impact of CRISPR-mediated genome editing on cardiac dystrophin expression and function in dystrophic mice. Here, we packaged SaCas9 (clustered regularly interspaced short palindromic repeat-associated 9 from Staphylococcus aureus ) and guide RNA constructs into an adeno-associated virus vector and systemically delivered them to mdx/Utr +/- neonates. We showed that CRIPSR-mediated genome editing efficiently excised the mutant exon 23 in dystrophic mice, and immunofluorescence data supported the restoration of dystrophin protein expression in dystrophic cardiac muscles to a level approaching 40%. Moreover, there was a noted restoration in the architecture of cardiac muscle fibers and a reduction in the extent of fibrosis in dystrophin-deficient hearts. The contractility of cardiac papillary muscles was also restored in CRISPR-edited cardiac muscles compared with untreated controls. Furthermore, our targeted deep sequencing results confirmed that our adeno-associated virus-CRISPR/Cas9 strategy was very efficient in deleting the ≈23 kb of intervening genomic sequences. This

  11. Cardiac desmosomal (dys)function and myocyte viability

    NARCIS (Netherlands)

    Remme, Carol Ann; Bezzina, Connie R.

    2010-01-01

    Cardiac desmosomes form intercellular junctions at the boundaries of intercalated discs between neighboring cardiomyocytes and are essential for proper cell-to-cell coupling between cardiomyocytes and for normal mechanical and electrical function of myocardial tissue. Genetic mutations in desmosomal

  12. Evaluation of cardiac function in active and hibernating grizzly bears.

    Science.gov (United States)

    Nelson, O Lynne; McEwen, Margaret-Mary; Robbins, Charles T; Felicetti, Laura; Christensen, William F

    2003-10-15

    To evaluate cardiac function parameters in a group of active and hibernating grizzly bears. Prospective study. 6 subadult grizzly bears. Indirect blood pressure, a 12-lead ECG, and a routine echocardiogram were obtained in each bear during the summer active phase and during hibernation. All measurements of myocardial contractility were significantly lower in all bears during hibernation, compared with the active period. Mean rate of circumferential left ventricular shortening, percentage fractional shortening, and percentage left ventricular ejection fraction were significantly lower in bears during hibernation, compared with the active period. Certain indices of diastolic function appeared to indicate enhanced ventricular compliance during the hibernation period. Mean mitral inflow ratio and isovolumic relaxation time were greater during hibernation. Heart rate was significantly lower for hibernating bears, and mean cardiac index was lower but not significantly different from cardiac index during the active phase. Contrary to results obtained in hibernating rodent species, cardiac index was not significantly correlated with heart rate. Cardiac function parameters in hibernating bears are opposite to the chronic bradycardic effects detected in nonhibernating species, likely because of intrinsic cardiac muscle adaptations during hibernation. Understanding mechanisms and responses of the myocardium during hibernation could yield insight into mechanisms of cardiac function regulation in various disease states in nonhibernating species.

  13. Cardiac function in trisomy 21 fetuses

    NARCIS (Netherlands)

    Clur, S. A. B.; Oude Rengerink, K.; Ottenkamp, J.; Bilardo, C. M.

    2011-01-01

    Objectives Trisomy 21 is associated with an increased nuchal translucency thickness (NT), abnormal ductus venosus (DV) flow at 11-14 weeks' gestation and congenital heart defects (CHD), and cardiac dysfunction has been hypothesized as the link between them. We therefore aimed to investigate whether

  14. Cardiac function in trisomy 21 fetuses

    NARCIS (Netherlands)

    Clur, S. A. B.; Rengerink, K. Oude; Ottenkamp, J.; Bilardo, C. M.

    Objectives Trisomy 21 is associated with an increased nuchal translucency thickness (NT), abnormal ductus venosus (DV) flow at 11-14 weeks' gestation and congenital heart defects (CHD), and cardiac dysfunction has been hypothesized as the link between them. We therefore aimed to investigate whether

  15. Bone Morphogenetic Protein 9 Reduces Cardiac Fibrosis and Improves Cardiac Function in Heart Failure.

    Science.gov (United States)

    Morine, Kevin J; Qiao, Xiaoying; York, Sam; Natov, Peter S; Paruchuri, Vikram; Zhang, Yali; Aronovitz, Mark J; Karas, Richard H; Kapur, Navin K

    2018-02-27

    Background -Heart failure is a growing cause of morbidity and mortality worldwide. Transforming growth factor beta (TGF-β1) promotes cardiac fibrosis, but also activates counter-regulatory pathways that serve to regulate TGF-β1 activity in heart failure. Bone morphogenetic protein 9 (BMP9) is a member of the TGFβ family of cytokines and signals via the downstream effector protein Smad1. Endoglin is a TGFβ co-receptor that promotes TGF-β1 signaling via Smad3 and binds BMP9 with high affinity. We hypothesized that BMP9 limits cardiac fibrosis by activating Smad1 and attenuating Smad3 and further that neutralizing endoglin activity promotes BMP9 activity. Methods -We examined BMP9 expression and signaling in human cardiac fibroblasts and human subjects with heart failure. We utilized the thoracic aortic constriction (TAC) induced model of heart failure to evaluate the functional effect of BMP9 signaling on cardiac remodeling. Results -BMP9 expression is increased in the circulation and left ventricle (LV) of human subjects with heart failure and is expressed by cardiac fibroblasts. Next, we observed that BMP9 attenuates Type I collagen synthesis in human cardiac fibroblasts using recombinant human BMP9 and an siRNA approach. In BMP9 -/- mice subjected to TAC, loss of BMP9 activity promotes cardiac fibrosis, impairs LV function, and increases LV levels of phosphorylated Smad3 (pSmad3), not pSmad1. In contrast, treatment of wild-type mice subjected to TAC with recombinant BMP9 limits progression of cardiac fibrosis, improves LV function, enhances myocardial capillary density, and increases LV levels of pSmad1, not pSmad3 compared to vehicle treated controls. Since endoglin binds BMP9 with high affinity, we explored the effect of reduced endoglin activity on BMP9 activity. Neutralizing endoglin activity in human cardiac fibroblasts or in wild-type mice subjected to TAC induced heart failure limits collagen production, increases BMP9 protein levels, and increases

  16. Assessment of Cardiac Function--Basic Principles and Approaches.

    Science.gov (United States)

    Spinale, Francis G

    2015-09-20

    Increased access and ability to visualize the heart has provided a means to measure a myriad of cardiovascular parameters in real or near real time. However, without fundamental knowledge regarding the basis for cardiac contraction and how to evaluate cardiac function in terms of loading conditions and inotropic state, appropriate interpretation of these cardiovascular parameters can be difficult and can lead to misleading conclusions regarding the functional state of the cardiac muscle. Thus, in this series of Comprehensive Physiology, the basic properties of cardiac muscle function, the cardiac cycle, and determinants of pump function will be reviewed. These basic concepts will then be integrated by presenting approaches in which the effects of preload, afterload, and myocardial contractility can be examined. Moreover, the utility of the pressure-volume relation in terms of assessing both myocardial contractility as well as critical aspects of diastolic performance will be presented. Finally, a generalized approach for the assessment and interpretation of cardiac function within the intact cardiovascular system will be presented. Copyright © 2015 John Wiley & Sons, Inc.

  17. Pseudoxanthoma elasticum: cardiac findings in patients and Abcc6-deficient mouse model.

    Directory of Open Access Journals (Sweden)

    Fabrice Prunier

    Full Text Available Pseudoxanthoma elasticum (PXE, caused by mutations in the ABCC6 gene, is a rare multiorgan disease characterized by the mineralization and fragmentation of elastic fibers in connective tissue. Cardiac complications reportedly associated with PXE are mainly based on case reports.A cohort of 67 PXE patients was prospectively assessed. Patients underwent physical examination, electrocardiogram, transthoracic echocardiography, cardiac magnetic resonance imaging (CMR, treadmill testing, and perfusion myocardial scintigraphy (SPECT. Additionally, the hearts of a PXE mouse models (Abcc6(-/- and wild-type controls (WT were analyzed.Three patients had a history of proven coronary artery disease. In total, 40 patients underwent exercise treadmill tests, and 28 SPECT. The treadmill tests were all negative. SPECT showed mild perfusion abnormalities in two patients. Mean left ventricular (LV dimension and function values were within the normal range. LV hypertrophy was found in 7 (10.4% patients, though the hypertrophy etiology was unknown for 3 of those patients. Echocardiography revealed frequent but insignificant mitral and tricuspid valvulopathies. Mitral valve prolapse was present in 3 patients (4.5%. Two patients exhibited significant aortic stenosis (3.0%. While none of the functional and histological parameters diverged significantly between the Abcc6(-/- and WT mice groups at age of 6 and 12 months, the 24-month-old Abcc6(-/- mice developed cardiac hypertrophy without contractile dysfunction.Despite sporadic cases, PXE does not appear to be associated with frequent cardiac complications. However, the development of cardiac hypertrophy in the 24-month-old Abcc6(-/- mice suggests that old PXE patients might be prone to developing late cardiopathy.

  18. Diets containing corn oil, coconut oil and cholesterol alter ventricular hypertrophy, dilatation and function in hearts of rats fed copper-deficient diets.

    Science.gov (United States)

    Jenkins, J E; Medeiros, D M

    1993-06-01

    Cardiac hypertrophy and function were evaluated in rats fed diets containing deficient, marginal or adequate levels of copper. The fat concentration of the diets was either 10 g/100 g corn oil, 10 g/100 g coconut oil or 10 g/100 g coconut oil + 1 g/100 g added cholesterol. Left ventricular (LV) wall thickening of hearts in rats fed copper-deficient diets was characterized by greater (P oil. Rats fed the copper-deficient diet with coconut oil + cholesterol had LV chamber volumes that were twofold larger than those of rats fed the copper-deficient diet with coconut oil or corn oil. Copper deficiency reduced LV chamber volume only in rats fed coconut oil + cholesterol. Cardiac LV end diastolic pressure in rats fed copper-deficient diets was twofold larger than in copper-adequate and copper-marginal groups fed corn oil or coconut oil. Hearts from rats fed the copper-deficient diet with corn oil compared with those from rats fed the copper-deficient diet with coconut oil + cholesterol had greater right ventricular (RV) and LV end diastolic pressures, LV pressures and LV and RV maximal rates of positive pressure development. Our data suggest that cardiac adaptations in rats fed copper-deficient diets are influenced by dietary fat type: 1) hearts of rats fed the copper-deficient diet with corn oil were concentrically hypertrophied, whereas cardiac contractility was maintained in the presence of high preload; 2) preload and contractility in hearts of coconut oil-fed rats was greater than cardiac response to cholesterol addition to the coconut oil diet; 3) hearts in copper-deficient rats fed coconut oil + cholesterol exhibited eccentric hypertrophy and ventricular dysfunction.

  19. Vitamin B12 Deficiency in Relation to Functional Disabilities

    Directory of Open Access Journals (Sweden)

    Heather E. Rasmussen

    2013-11-01

    Full Text Available This study was designed to assess whether symptoms, functional measures, and reported disabilities were associated with vitamin B12 (B12 deficiency when defined in three ways. Participants, aged 60 or more years of age, in 1999–2002 National Health and Nutrition Examination Surveys (NHANES were categorized in relation to three previously used definitions of B12 deficiency: (1 serum B12 20 μmol/L; and (3 serum B12 0.21 μmol/L. Functional measures of peripheral neuropathy, balance, cognitive function, gait speed, along with self-reported disability (including activities of daily living were examined with standardized instruments by trained NHANES interviewers and technicians. Individuals identified as B12 deficient by definition 2 were more likely to manifest peripheral neuropathy OR (odds (95% confidence intervals, p value: 9.70 (2.24, 42.07, 0.004 and report greater total disability, 19.61 (6.22, 61.86 0.0001 after adjustments for age, sex, race, serum creatinine, and ferritin concentrations, smoking, diabetes, and peripheral artery disease. Smaller, but significantly increased, odds of peripheral neuropathy and total disability were also observed when definition 3 was applied. Functional measures and reported disabilities were associated with B12 deficiency definitions that include B12 biomarkers (homocysteine or methylmalonic acid. Further study of these definitions is needed to alert clinicians of possible subclinical B12 deficiency because functional decline amongst older adults may be correctable if the individual is B12 replete.

  20. Cardiac functional analysis by laser speckle interferometry

    Science.gov (United States)

    Ramachandran, G.; Singh, M.

    The laser speckle interference pattern during movement of a rough surface is employed to measure the respective displacements. The purpose of this work is to apply this technique in the form of laser speckle displacement cardiography to analyse the displacement patterns during the I and II heart sounds. The recording is performed by illuminating the chest over the cardiac region by collimated laser beam controlled by an ECG operated electric shutter. By analysis the 3-D displacement patterns are obtained. A comparison shows that the displacement at the apex, right ventricle, aortic and mitral valvular regions are significantly higher during I sound than that of II sound.

  1. Does vitamin C deficiency affect cognitive development and function?

    Science.gov (United States)

    Hansen, Stine Normann; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2014-09-19

    Vitamin C is a pivotal antioxidant in the brain and has been reported to have numerous functions, including reactive oxygen species scavenging, neuromodulation, and involvement in angiogenesis. Absence of vitamin C in the brain has been shown to be detrimental to survival in newborn SVCT2(-/-) mice and perinatal deficiency have shown to reduce hippocampal volume and neuron number and cause decreased spatial cognition in guinea pigs, suggesting that maternal vitamin C deficiency could have severe consequences for the offspring. Furthermore, vitamin C deficiency has been proposed to play a role in age-related cognitive decline and in stroke risk and severity. The present review discusses the available literature on effects of vitamin C deficiency on the developing and aging brain with particular focus on in vivo experimentation and clinical studies.

  2. Does vitamin C deficiency affect cognitive development and function?

    DEFF Research Database (Denmark)

    Hansen, Stine Normann; Tveden-Nyborg, Pernille; Lykkesfeldt, Jens

    2014-01-01

    Vitamin C is a pivotal antioxidant in the brain and has been reported to have numerous functions, including reactive oxygen species scavenging, neuromodulation, and involvement in angiogenesis. Absence of vitamin C in the brain has been shown to be detrimental to survival in newborn SVCT2(-/-) mice...... and perinatal deficiency have shown to reduce hippocampal volume and neuron number and cause decreased spatial cognition in guinea pigs, suggesting that maternal vitamin C deficiency could have severe consequences for the offspring. Furthermore, vitamin C deficiency has been proposed to play a role in age......-related cognitive decline and in stroke risk and severity. The present review discusses the available literature on effects of vitamin C deficiency on the developing and aging brain with particular focus on in vivo experimentation and clinical studies....

  3. Does Vitamin C Deficiency Affect Cognitive Development and Function?

    Directory of Open Access Journals (Sweden)

    Stine Normann Hansen

    2014-09-01

    Full Text Available Vitamin C is a pivotal antioxidant in the brain and has been reported to have numerous functions, including reactive oxygen species scavenging, neuromodulation, and involvement in angiogenesis. Absence of vitamin C in the brain has been shown to be detrimental to survival in newborn SVCT2(−/− mice and perinatal deficiency have shown to reduce hippocampal volume and neuron number and cause decreased spatial cognition in guinea pigs, suggesting that maternal vitamin C deficiency could have severe consequences for the offspring. Furthermore, vitamin C deficiency has been proposed to play a role in age-related cognitive decline and in stroke risk and severity. The present review discusses the available literature on effects of vitamin C deficiency on the developing and aging brain with particular focus on in vivo experimentation and clinical studies.

  4. Nonlinear mathematical model for predicting long term cardiac remodeling in Chagas' heart disease: introducing the concepts of 'limiting cardiac function' and 'cardiac function deterioration period'.

    Science.gov (United States)

    Benchimol-Barbosa, Paulo Roberto

    2010-11-19

    Cardiac remodeling has been recently investigated in long term follow-up introducing a simple exponential model to describe the time course of cardiac function and dimension changes in Chagas' disease. In the present study, an improved mathematical model to equate time course and cardiac functional changes has been proposed. Present model has been derived from previously validated intuitive assumptions and tested on data set of outpatients with chronic Chagas' disease (51.3±9.4 years old), followed for up to 10 years in Rio de Janeiro, Brazil. The variables representing cardiac status at admission were plotted against respective time derivative, which appropriately fit a second order polynomial (adjusted r(2)=0.956; pconstants: a time-function (2.0·10(-3)±5.4·10(-4) months(-1)·%(-1); p<0.001) and an inferior limit for left ventricular ejection fraction (19.0±0.9%; p<0.001), standing for a limit beyond life expectation is unsustainable, in Chagas' disease. Cardiac function deterioration period was promptly derived from the model, representing the period of time following indeterminate stages of the disease when cardiac function start deteriorating, and ranged from 3 to 15.8 years. An example of data of left ventricular ejection fraction of a subject followed during 10 years illustrated the model, further validating its robustness. Present data confirms that, in chronic Chagas' disease, initial insult is connected to the progression of myocardial remodeling and introduces the concepts of limiting cardiac function and cardiac deterioration period. Copyright © 2009 Elsevier Ireland Ltd. All rights reserved.

  5. EANM/ESC guidelines for radionuclide imaging of cardiac function

    DEFF Research Database (Denmark)

    Hesse, B.; Lindhardt, T.B.; Acampa, W.

    2008-01-01

    Radionuclide imaging of cardiac function represents a number of well-validated techniques for accurate determination of right (RV) and left ventricular (LV) ejection fraction (EF) and LV volumes. These first European guidelines give recommendations for how and when to use first-pass and equilibrium...... radionuclide ventriculography, gated myocardial perfusion scintigraphy, gated PET, and studies with non-imaging devices for the evaluation of cardiac function. The items covered are presented in 11 sections: clinical indications, radiopharmaceuticals and dosimetry, study acquisition, RV EF, LV EF, LV volumes...

  6. Biophysical stimulation forin vitroengineering of functional cardiac tissues.

    Science.gov (United States)

    Korolj, Anastasia; Wang, Erika Yan; Civitarese, Robert A; Radisic, Milica

    2017-07-01

    Engineering functional cardiac tissues remains an ongoing significant challenge due to the complexity of the native environment. However, our growing understanding of key parameters of the in vivo cardiac microenvironment and our ability to replicate those parameters in vitro are resulting in the development of increasingly sophisticated models of engineered cardiac tissues (ECT). This review examines some of the most relevant parameters that may be applied in culture leading to higher fidelity cardiac tissue models. These include the biochemical composition of culture media and cardiac lineage specification, co-culture conditions, electrical and mechanical stimulation, and the application of hydrogels, various biomaterials, and scaffolds. The review will also summarize some of the recent functional human tissue models that have been developed for in vivo and in vitro applications. Ultimately, the creation of sophisticated ECT that replicate native structure and function will be instrumental in advancing cell-based therapeutics and in providing advanced models for drug discovery and testing. © 2017 The Author(s). published by Portland Press Limited on behalf of the Biochemical Society.

  7. Identifying Model-Based Reconfiguration Goals through Functional Deficiencies

    Science.gov (United States)

    Benazera, Emmanuel; Trave-Massuyes, Louise

    2004-01-01

    Model-based diagnosis is now advanced to the point autonomous systems face some uncertain and faulty situations with success. The next step toward more autonomy is to have the system recovering itself after faults occur, a process known as model-based reconfiguration. After faults occur, given a prediction of the nominal behavior of the system and the result of the diagnosis operation, this paper details how to automatically determine the functional deficiencies of the system. These deficiencies are characterized in the case of uncertain state estimates. A methodology is then presented to determine the reconfiguration goals based on the deficiencies. Finally, a recovery process interleaves planning and model predictive control to restore the functionalities in prioritized order.

  8. Testosterone deficiency, insulin-resistant obesity and cognitive function.

    Science.gov (United States)

    Pintana, Hiranya; Chattipakorn, Nipon; Chattipakorn, Siriporn

    2015-08-01

    Testosterone is an androgenic steroid hormone, which plays an important role in the regulation of male reproduction and behaviors, as well as in the maintenance of insulin sensitivity. Several studies showed that testosterone exerted beneficial effects in brain function, including preventing neuronal cell death, balancing brain oxidative stress and antioxidant activity, improving synaptic plasticity and involving cognitive formation. Although previous studies showed that testosterone deficiency is positively correlated with cognitive impairment and insulin-resistant obesity, several studies demonstrated contradictory findings. Thus, this review comprehensively summarizes the current evidence from in vitro, in vivo and clinical studies of the relationship between testosterone deficiency and insulin-resistant obesity as well as the correlation between either insulin-resistant obesity or testosterone deficiency and cognitive impairment. Controversial reports and the mechanistic insights regarding the roles of testosterone in insulin-resistant obesity and cognitive function are also presented and discussed.

  9. Prevalence of factor XII (Hageman factor) deficiency among 426 patients with coronary heart disease awaiting cardiac surgery.

    Science.gov (United States)

    Halbmayer, W M; Haushofer, A; Radek, J; Schön, R; Deutsch, M; Fischer, M

    1994-05-01

    Several case reports of myocardial infarction in patients with factor XII deficiency have been published. In the present study we investigated the prevalence of this condition. Factor XII activity (one-stage clotting assay), fibrinogen (derived method), and lipoprotein (a) (enzyme-linked immunosorbent assay) were measured in the plasma of 426 consecutive patients with coronary heart disease awaiting cardiac surgery. Among the 426 patients, 44 (10.3%) were found to be moderately deficient in factor XII (factor XII activity 17-50%, antigen 15-57%). The prevalence of factor XII deficiency was significantly higher (P < 0.0001) among patients with coronary heart disease than among 300 healthy blood donors (2.3%). Among coronary heart disease patients with this deficiency, elevated levels of fibrinogen, lipoprotein (a), and blood pressure were no more prevalent than in those without the deficiency; nor were cigarette smoking or a positive family history of thromboembolism more prevalent. Coronary heart disease patients showed a 10% prevalence of factor XII deficiency. However, the pattern of atherosclerotic risk factors did not differ between patients with or without the deficiency.

  10. EPAC expression and function in cardiac fibroblasts and myofibroblasts

    International Nuclear Information System (INIS)

    Olmedo, Ivonne; Muñoz, Claudia; Guzmán, Nancy; Catalán, Mabel; Vivar, Raúl; Ayala, Pedro; Humeres, Claudio; Aránguiz, Pablo; García, Lorena; Velarde, Victoria; Díaz-Araya, Guillermo

    2013-01-01

    In the heart, cardiac fibroblasts (CF) and cardiac myofibroblasts (CMF) are the main cells responsible for wound healing after cardiac insult. Exchange protein activated by cAMP (EPAC) is a downstream effector of cAMP, and it has been not completely studied on CF. Moreover, in CMF, which are the main cells responsible for cardiac healing, EPAC expression and function are unknown. We evaluated in both CF and CMF the effect of transforming growth factor β1 (TGF-β1) on EPAC-1 expression. We also studied the EPAC involvement on collagen synthesis, adhesion, migration and collagen gel contraction. Method: Rat neonatal CF and CMF were treated with TGF-β1 at different times and concentrations. EPAC-1 protein levels and Rap1 activation were measured by western blot and pull down assay respectively. EPAC cellular functions were determined by adhesion, migration and collagen gel contraction assay; and collagen expression was determined by western blot. Results: TGF-β1 through Smad and JNK significantly reduced EPAC-1 expression in CF, while in CMF this cytokine increased EPAC-1 expression through ERK1/2, JNK, p38, AKT and Smad3. EPAC activation was able to induce higher Rap1-GTP levels in CMF than in CF. EPAC and PKA, both cAMP effectors, promoted CF and CMF adhesion on fibronectin, as well as CF migration; however, this effect was not observed in CMF. EPAC but not PKA activation mediated collagen gel contraction in CF, while in CMF both PKA and EPAC mediated collagen gel contraction. Finally, the EPAC and PKA activation reduced collagen synthesis in CF and CMF. Conclusion: TGF-β1 differentially regulates the expression of EPAC in CF and CMF; and EPAC regulates differentially CF and CMF functions associated with cardiac remodeling. - Highlights: • TGF-β1 regulates EPAC-1 expression in cardiac fibroblast and myofibroblast. • Rap-1GTP levels are higher in cardiac myofibroblast than fibroblast. • EPAC-1 controls adhesion, migration and collagen synthesis in cardiac

  11. EPAC expression and function in cardiac fibroblasts and myofibroblasts

    Energy Technology Data Exchange (ETDEWEB)

    Olmedo, Ivonne; Muñoz, Claudia; Guzmán, Nancy; Catalán, Mabel; Vivar, Raúl; Ayala, Pedro; Humeres, Claudio; Aránguiz, Pablo [Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); García, Lorena [Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile); Velarde, Victoria [Departamento de Ciencias Fisiológicas, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile (Chile); Díaz-Araya, Guillermo, E-mail: gadiaz@ciq.uchile.cl [Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile (Chile)

    2013-10-15

    In the heart, cardiac fibroblasts (CF) and cardiac myofibroblasts (CMF) are the main cells responsible for wound healing after cardiac insult. Exchange protein activated by cAMP (EPAC) is a downstream effector of cAMP, and it has been not completely studied on CF. Moreover, in CMF, which are the main cells responsible for cardiac healing, EPAC expression and function are unknown. We evaluated in both CF and CMF the effect of transforming growth factor β1 (TGF-β1) on EPAC-1 expression. We also studied the EPAC involvement on collagen synthesis, adhesion, migration and collagen gel contraction. Method: Rat neonatal CF and CMF were treated with TGF-β1 at different times and concentrations. EPAC-1 protein levels and Rap1 activation were measured by western blot and pull down assay respectively. EPAC cellular functions were determined by adhesion, migration and collagen gel contraction assay; and collagen expression was determined by western blot. Results: TGF-β1 through Smad and JNK significantly reduced EPAC-1 expression in CF, while in CMF this cytokine increased EPAC-1 expression through ERK1/2, JNK, p38, AKT and Smad3. EPAC activation was able to induce higher Rap1-GTP levels in CMF than in CF. EPAC and PKA, both cAMP effectors, promoted CF and CMF adhesion on fibronectin, as well as CF migration; however, this effect was not observed in CMF. EPAC but not PKA activation mediated collagen gel contraction in CF, while in CMF both PKA and EPAC mediated collagen gel contraction. Finally, the EPAC and PKA activation reduced collagen synthesis in CF and CMF. Conclusion: TGF-β1 differentially regulates the expression of EPAC in CF and CMF; and EPAC regulates differentially CF and CMF functions associated with cardiac remodeling. - Highlights: • TGF-β1 regulates EPAC-1 expression in cardiac fibroblast and myofibroblast. • Rap-1GTP levels are higher in cardiac myofibroblast than fibroblast. • EPAC-1 controls adhesion, migration and collagen synthesis in cardiac

  12. Osteoprotegerin Levels Change During STEMI and Reflect Cardiac Function

    DEFF Research Database (Denmark)

    Lindberg, Søren; Jensen, Jan Skov; Hoffmann, Søren

    2014-01-01

    of OPG levels during STEMI treated with percutaneous coronary intervention (PCI) and additionally, the effect of OPG levels on cardiac function. METHODS: We prospectively included 42 patients with STEMI treated with primary PCI. Four consecutive blood samples were obtained before and after PCI treatment...

  13. Genetic, molecular and functional analyses of complement factor I deficiency

    DEFF Research Database (Denmark)

    Nilsson, S.C.; Trouw, L.A.; Renault, N.

    2009-01-01

    could be expressed, in vitro, but was not functional because it lacks the serine protease domain. Furthermore, this truncated FI was not detected in serum of the patient. Structural investigations using molecular modeling were performed to predict the potential impact the mutations have on FI structure....... This is the first study that investigates, at the functional level, the consequences of molecular defects identified in patients with full FI deficiency Udgivelsesdato: 2009/1...

  14. Smoothelin-B deficiency results in reduced arterial contractility, hypertension, and cardiac hypertrophy in mice.

    Science.gov (United States)

    Rensen, Sander S; Niessen, Petra M; van Deursen, Jan M; Janssen, Ben J; Heijman, Edwin; Hermeling, Evelien; Meens, Merlijn; Lie, Natascha; Gijbels, Marion J; Strijkers, Gustav J; Doevendans, Pieter A; Hofker, Marten H; De Mey, Jo G R; van Eys, Guillaume J

    2008-08-19

    Smoothelins are actin-binding proteins that are abundantly expressed in healthy visceral (smoothelin-A) and vascular (smoothelin-B) smooth muscle. Their expression is strongly associated with the contractile phenotype of smooth muscle cells. Analysis of mice lacking both smoothelins (Smtn-A/B(-/-) mice) previously revealed a critical role for smoothelin-A in intestinal smooth muscle contraction. Here, we report on the generation and cardiovascular phenotype of mice lacking only smoothelin-B (Smtn-B(-/-)). Myograph studies revealed that the contractile capacity of the saphenous and femoral arteries was strongly reduced in Smtn-B(-/-) mice, regardless of the contractile agonist used to trigger contraction. Arteries from Smtn-A/B(-/-) compound mutant mice exhibited a similar contractile deficit. Smtn-B(-/-) arteries had a normal architecture and expressed normal levels of other smooth muscle cell-specific genes, including smooth muscle myosin heavy chain, alpha-smooth muscle actin, and smooth muscle-calponin. Decreased contractility of Smtn-B(-/-) arteries was paradoxically accompanied by increased mean arterial pressure (20 mm Hg) and concomitant cardiac hypertrophy despite normal parasympathetic and sympathetic tone in Smtn-B(-/-) mice. Magnetic resonance imaging experiments revealed that cardiac function was not changed, whereas distension of the proximal aorta during the cardiac cycle was increased in Smtn-B(-/-) mice. However, isobaric pulse wave velocity and pulse pressure measurements indicated normal aortic distensibility. Collectively, our results identify smoothelins as key determinants of arterial smooth muscle contractility and cardiovascular performance. Studies on mutations in the Smtn gene or alterations in smoothelin levels in connection to hypertension in humans are warranted.

  15. Adenylyl cyclase-mediated effects contribute to increased Isoprenaline-induced cardiac contractility in TRPM4-deficient mice.

    Science.gov (United States)

    Uhl, Sebastian; Mathar, Ilka; Vennekens, Rudi; Freichel, Marc

    2014-09-01

    measured contractility under ischemic conditions. Here, Trpm4(-/-) papillary muscles showed improved contractile function in comparison to wild type. Our results are consistent with the hypothesis that TRPM4 has a limiting effect on cardiac contractility specifically in ATP depleting conditions. The increased positive inotropic response in Trpm4(-/-) papillary muscles evoked by stimulation of adenylyl cyclase activity is not observed without active enhancement of ATP hydrolysis. Furthermore, the contractility of Trpm4(-/-) papillary muscles was also increased during ischemic simulation. These data underscore the potential of TRPM4 inactivation as an approach to increase inotropy in specific conditions associated with increased catecholamine levels, such as heart failure and ischemia. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. EANM/ESC guidelines for radionuclide imaging of cardiac function

    DEFF Research Database (Denmark)

    Hesse, B.; Lindhardt, T.B.; Acampa, W.

    2008-01-01

    Radionuclide imaging of cardiac function represents a number of well-validated techniques for accurate determination of right (RV) and left ventricular (LV) ejection fraction (EF) and LV volumes. These first European guidelines give recommendations for how and when to use first-pass and equilibrium...... radionuclide ventriculography, gated myocardial perfusion scintigraphy, gated PET, and studies with non-imaging devices for the evaluation of cardiac function. The items covered are presented in 11 sections: clinical indications, radiopharmaceuticals and dosimetry, study acquisition, RV EF, LV EF, LV volumes......, LV regional function, LV diastolic function, reports and image display and reference values from the literature of RVEF, LVEF and LV volumes. If specific recommendations given cannot be based on evidence from original, scientific studies, referral is given to "prevailing or general consensus...

  17. Skeletal and cardiac muscle pericytes: Functions and therapeutic potential

    OpenAIRE

    Murray, IR; Baily, JE; Chen, WCW; Dar, A; Gonzalez, ZN; Jensen, AR; Petrigliano, FA; Deb, A; Henderson, NC

    2017-01-01

    Pericytes are periendothelial mesenchymal cells residing within the microvasculature. Skeletal muscle and cardiac pericytes are now recognized to fulfill an increasing number of functions in normal tissue homeostasis, including contributing to microvascular function by maintaining vessel stability and regulating capillary flow. In the setting of muscle injury, pericytes contribute to a regenerative microenvironment through release of trophic factors and by modulating local immune responses. I...

  18. Autoimmune Response Confers Decreased Cardiac Function in ...

    African Journals Online (AJOL)

    Left atrial size: physiologic determinants and clinical applications. J Am Coll Cardiol. 2006; 47(12): 2357-2363. 9. Harada K, Toyono M, Yamamoto F. Assessment of right ventricular function during exercise with quantitative. Doppler tissue imaging in children late after repair of tetralogy of Fallot. J Am Soc Echocardiogr 2004 ...

  19. Comparative impact of AAV and enzyme replacement therapy on respiratory and cardiac function in adult Pompe mice

    Directory of Open Access Journals (Sweden)

    Darin J Falk

    Full Text Available Pompe disease is an autosomal recessive genetic disorder characterized by a deficiency of the enzyme responsible for degradation of lysosomal glycogen (acid α-glucosidase (GAA. Cardiac dysfunction and respiratory muscle weakness are primary features of this disorder. To attenuate the progressive and rapid accumulation of glycogen resulting in cardiorespiratory dysfunction, adult Gaa−/− mice were administered a single systemic injection of rAAV2/9-DES-hGAA (AAV9-DES or bimonthly injections of recombinant human GAA (enzyme replacement therapy (ERT. Assessment of cardiac function and morphology was measured 1 and 3 months after initiation of treatment while whole-body plethysmography and diaphragmatic contractile function was evaluated at 3 months post-treatment in all groups. Gaa−/− animals receiving either AAV9-DES or ERT demonstrated a significant improvement in cardiac function and diaphragmatic contractile function as compared to control animals. AAV9-DES treatment resulted in a significant reduction in cardiac dimension (end diastolic left ventricular mass/gram wet weight; EDMc at 3 months postinjection. Neither AAV nor ERT therapy altered minute ventilation during quiet breathing (eupnea. However, breathing frequency and expiratory time were significantly improved in AAV9-DES animals. These results indicate systemic delivery of either strategy improves cardiac function but AAV9-DES alone improves respiratory parameters at 3 months post-treatment in a murine model of Pompe disease.

  20. Global and regional cardiac function in lifelong endurance athletes with and without myocardial fibrosis.

    NARCIS (Netherlands)

    Eijsvogels, T.M.H.; Oxborough, D.L.; O'Hanlon, R.; Sharma, S.; Prasad, S.; Whyte, G.; George, K.P.; Wilson, M.G.

    2017-01-01

    The aim of the present study was to compare cardiac structure as well as global and regional cardiac function in athletes with and without myocardial fibrosis (MF). Cardiac magnetic resonance imaging with late gadolinium enhancement was used to detect MF and global cardiac structure in nine lifelong

  1. Neuropsychological functioning following cardiac transplant in Danon disease.

    Science.gov (United States)

    Salisbury, David; Meredith, Katherine

    2017-06-08

    To present a unique case involving a 31-year-old male with Danon disease (diagnosed at 14) who received cardiac transplant and subsequent cardiac re-transplant. Brief report/case study. Serial neuropsychological assessment across a 23-year span along with a review of school records and prior psychoeducational assessment. A consistent pattern of higher level cognitive impairment from childhood through adulthood was found. This pattern is interpreted in light of the sparse literature regarding cognitive and adaptive functioning related to Danon disease. The noteworthy aspects of this case include the preservation of some academic abilities and an unexpected level of functional independence given cognitive concerns. This case study further explores the nature of the deficits related to Danon disease and highlights the benefits of neuropsychological evaluation to guide functional interventions and maximize level of independence across the life span.

  2. Mechanical and non-mechanical functions of Dystrophin can prevent cardiac abnormalities in Drosophila.

    Science.gov (United States)

    Taghli-Lamallem, Ouarda; Jagla, Krzysztof; Chamberlain, Jeffrey S; Bodmer, Rolf

    2014-01-01

    Dystrophin-deficiency causes cardiomyopathies and shortens the life expectancy of Duchenne and Becker muscular dystrophy patients. Restoring Dystrophin expression in the heart by gene transfer is a promising avenue to explore as a therapy. Truncated Dystrophin gene constructs have been engineered and shown to alleviate dystrophic skeletal muscle disease, but their potential in preventing the development of cardiomyopathy is not fully understood. In the present study, we found that either the mechanical or the signaling functions of Dystrophin were able to reduce the dilated heart phenotype of Dystrophin mutants in a Drosophila model. Our data suggest that Dystrophin retains some function in fly cardiomyocytes in the absence of a predicted mechanical link to the cytoskeleton. Interestingly, cardiac-specific manipulation of nitric oxide synthase expression also modulates cardiac function, which can in part be reversed by loss of Dystrophin function, further implying a signaling role of Dystrophin in the heart. These findings suggest that the signaling functions of Dystrophin protein are able to ameliorate the dilated cardiomyopathy, and thus might help to improve heart muscle function in micro-Dystrophin-based gene therapy approaches. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Functional engineered human cardiac patches prepared from nature's platform improve heart function after acute myocardial infarction.

    Science.gov (United States)

    Wang, Qingjie; Yang, Hui; Bai, Aobing; Jiang, Wei; Li, Xiuya; Wang, Xinhong; Mao, Yishen; Lu, Chao; Qian, Ruizhe; Guo, Feng; Ding, Tianling; Chen, Haiyan; Chen, Sifeng; Zhang, Jianyi; Liu, Chen; Sun, Ning

    2016-10-01

    With the advent of induced pluripotent stem cells and directed differentiation techniques, it is now feasible to derive individual-specific cardiac cells for human heart tissue engineering. Here we report the generation of functional engineered human cardiac patches using human induced pluripotent stem cells-derived cardiac cells and decellularized natural heart ECM as scaffolds. The engineered human cardiac patches can be tailored to any desired size and shape and exhibited normal contractile and electrical physiology in vitro. Further, when patching on the infarct area, these patches improved heart function of rats with acute myocardial infarction in vivo. These engineered human cardiac patches can be of great value for normal and disease-specific heart tissue engineering, drug screening, and meet the demands for individual-specific heart tissues for personalized regenerative therapy of myocardial damages in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Ankyrin-B syndrome: enhanced cardiac function balanced by risk of cardiac death and premature senescence.

    Directory of Open Access Journals (Sweden)

    Peter J Mohler

    2007-10-01

    Full Text Available Here we report the unexpected finding that specific human ANK2 variants represent a new example of balanced human variants. The prevalence of certain ANK2 (encodes ankyrin-B variants range from 2 percent of European individuals to 8 percent in individuals from West Africa. Ankyrin-B variants associated with severe human arrhythmia phenotypes (eg E1425G, V1516D, R1788W were rare in the general population. Variants associated with less severe clinical and in vitro phenotypes were unexpectedly common. Studies with the ankyrin-B(+/- mouse reveal both benefits of enhanced cardiac contractility, as well as costs in earlier senescence and reduced lifespan. Together these findings suggest a constellation of traits that we term "ankyrin-B syndrome", which may contribute to both aging-related disorders and enhanced cardiac function.

  5. Effects of glucose-6-phosphate dehydrogenase deficiency on the metabolic and cardiac responses to obesogenic or high-fructose diets

    Science.gov (United States)

    Hecker, Peter A.; Mapanga, Rudo F.; Kimar, Charlene P.; Ribeiro, Rogerio F.; Brown, Bethany H.; O'Connell, Kelly A.; Cox, James W.; Shekar, Kadambari C.; Asemu, Girma; Essop, M. Faadiel

    2012-01-01

    Glucose-6-phosphate dehydrogenase (G6PD) deficiency is a common human enzymopathy that affects cellular redox status and may lower flux into nonoxidative pathways of glucose metabolism. Oxidative stress may worsen systemic glucose tolerance and cardiometabolic syndrome. We hypothesized that G6PD deficiency exacerbates diet-induced systemic metabolic dysfunction by increasing oxidative stress but in myocardium prevents diet-induced oxidative stress and pathology. WT and G6PD-deficient (G6PDX) mice received a standard high-starch diet, a high-fat/high-sucrose diet to induce obesity (DIO), or a high-fructose diet. After 31 wk, DIO increased adipose and body mass compared with the high-starch diet but to a greater extent in G6PDX than WT mice (24 and 20% lower, respectively). Serum free fatty acids were increased by 77% and triglycerides by 90% in G6PDX mice, but not in WT mice, by DIO and high-fructose intake. G6PD deficiency did not affect glucose tolerance or the increased insulin levels seen in WT mice. There was no diet-induced hypertension or cardiac dysfunction in either mouse strain. However, G6PD deficiency increased aconitase activity by 42% and blunted markers of nonoxidative glucose pathway activation in myocardium, including the hexosamine biosynthetic pathway activation and advanced glycation end product formation. These results reveal a complex interplay between diet-induced metabolic effects and G6PD deficiency, where G6PD deficiency decreases weight gain and hyperinsulinemia with DIO, but elevates serum free fatty acids, without affecting glucose tolerance. On the other hand, it modestly suppressed indexes of glucose flux into nonoxidative pathways in myocardium, suggesting potential protective effects. PMID:22829586

  6. Long-term blinded placebo-controlled study of SNT-MC17/idebenone in the dystrophin deficient mdx mouse: cardiac protection and improved exercise performance

    Science.gov (United States)

    Buyse, Gunnar M.; Van der Mieren, Gerry; Erb, Michael; D'hooge, Jan; Herijgers, Paul; Verbeken, Erik; Jara, Alejandro; Van Den Bergh, An; Mertens, Luc; Courdier-Fruh, Isabelle; Barzaghi, Patrizia; Meier, Thomas

    2009-01-01

    Aims Duchenne muscular dystrophy (DMD) is a severe and still incurable disease, with heart failure as a leading cause of death. The identification of a disease-modifying therapy may require early-initiated and long-term administration, but such type of therapeutic trial is not evident in humans. We have performed such a trial of SNT-MC17/idebenone in the mdx mouse model of DMD, based on the drug’s potential to improve mitochondrial respiratory chain function and reduce oxidative stress. Methods and results In this study, 200 mg/kg bodyweight of either SNT-MC17/idebenone or placebo was given from age 4 weeks until 10 months in mdx and wild-type mice. All evaluators were blinded to mouse type and treatment groups. Idebenone treatment significantly corrected cardiac diastolic dysfunction and prevented mortality from cardiac pump failure induced by dobutamine stress testing in vivo, significantly reduced cardiac inflammation and fibrosis, and significantly improved voluntary running performance in mdx mice. Conclusion We have identified a novel potential therapeutic strategy for human DMD, as SNT-MC17/idebenone was cardioprotective and improved exercise performance in the dystrophin-deficient mdx mouse. Our data also illustrate that the mdx mouse provides unique opportunities for long-term controlled prehuman therapeutic studies. PMID:18784063

  7. Estrogen modulates the influence of cardiac inflammatory cells on function of cardiac fibroblasts

    Directory of Open Access Journals (Sweden)

    McLarty JL

    2013-08-01

    Full Text Available Jennifer L McLarty,1 Jianping Li,2 Scott P Levick,3 Joseph S Janicki2 1Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA; 2Department of Cell Biology and Anatomy, School of Medicine, University of South Carolina, Columbia, SC, USA; 3Department of Pharmacology and Toxicology, Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA Background: Inflammatory cells play a major role in the pathology of heart failure by stimulating cardiac fibroblasts to regulate the extracellular matrix in an adverse way. In view of the fact that inflammatory cells have estrogen receptors, we hypothesized that estrogen provides cardioprotection by decreasing the ability of cardiac inflammatory cells to influence fibroblast function. Methods: Male rats were assigned to either an untreated or estrogen-treated group. In the treated group, estrogen was delivered for 2 weeks via a subcutaneous implanted pellet containing 17β-estradiol. A mixed population of cardiac inflammatory cells, including T-lymphocytes (about 70%, macrophages (about 12%, and mast cells (about 12%, was isolated from each rat and cultured in a Boyden chamber with cardiac fibroblasts from untreated adult male rats for 24 hours. To examine if tumor necrosis factor-alpha (TNF-α produced by inflammatory cells represents a mechanism contributing to the stimulatory effects of inflammatory cells on cardiac fibroblasts, inflammatory cells from the untreated group were incubated with cardiac fibroblasts in a Boyden chamber system for 24 hours in the presence of a TNF-α -neutralizing antibody. Cardiac fibroblasts were also incubated with 5 ng/mL of TNF-α for 24 hours. Fibroblast proliferation, collagen synthesis, matrix metalloproteinase activity, β1 integrin protein levels, and the ability of fibroblasts to contract collagen gels were determined in all groups and statistically compared via one-way analysis of variance. Results: Inflammatory cells from the

  8. Endothelial Function in a Mouse Model of Myeloperoxidase Deficiency

    Directory of Open Access Journals (Sweden)

    Veronika Golubinskaya

    2014-01-01

    Full Text Available Myeloperoxidase (MPO activity is suggested to reduce the function of vascular nitric oxide, thereby contributing to endothelial dysfunction, although data in rodents are inconclusive. We examined vascular contractile and relaxant responses in MPO-deficient (MPO-/- and wild-type mice to investigate the role for myeloperoxidase in the development of endothelial dysfunction. Carotid and saphenous arteries were taken from 8-month-old mice and studied in a myograph. Responses of carotid arteries to phenylephrine, high potassium, or acetylcholine (Ach were statistically not different from controls. Treatment with lipopolysaccharide (LPS; to enhance endothelial dysfunction reduced responses to Ach in MPO-/- but did not affect responses in wild-type. In response to high concentrations of Ach, carotid arteries responded with transient contractions, which were not different between the groups and not affected by LPS treatment. Saphenous arteries from MPO-/- had smaller normalized diameters and developed less contractile force. Vessels from MPO-/- were less sensitive to Ach than controls. These data suggest that mature MPO-deficient mice do not show enhanced endothelial function compared to wild-type mice, even when provoked with LPS treatment. The EDHF response appears to be reduced in MPO deficiency.

  9. Comparison of in vivo cardiac function with ex vivo cardiac performance of the rat heart after thoracic irradiation

    NARCIS (Netherlands)

    Franken, N. A.; Camps, J. A.; van Ravels, F. J.; van der Laarse, A.; Pauwels, E. K.; Wondergem, J.

    1997-01-01

    The aim of the study was to compare in vivo cardiac function with ex vivo cardiac performance after local heart irradiation in the same rat. Left ventricular ejection fraction (LVEF) was measured in vivo by radionuclide ventriculography in Sprague-Dawley rats up to 16 months after a single dose of

  10. Interfacing the neural system to restore deficient functions: from theoretical studies to neuroprothesis design.

    Science.gov (United States)

    Guiraud, David

    2012-01-01

    Electrical stimulation is a valuable technical solution to treat severe deficiencies related to nervous system. It is particularly interesting when no medical treatment exists as for cardiac deficiencies, deafness, blindness or complete paralysis. However, activating excitable cells such as neurons or muscle fibers to recover functions remains a difficult scientific and technological challenge. Indeed, both the function to restore and the way to activate selectively the desired target are not fully understood. The article describes how both theoretical studies based on experiments, and technological developments based on electrophysiology knowledge may help in the development of highly effective solutions. Existing systems such as pacemakers and cochlear implants proved that the recovered functions are of great quality leading to increase of quality of life and autonomy of the patients. However, the challenge for movement restoration is still in front of researchers, developers and clinical teams. The described method is the way we choose to face fundamental and tremendous scientific questions in order to provide disabled people with extended autonomy. Copyright © 2011 Académie des sciences. Published by Elsevier SAS. All rights reserved.

  11. Genetic, molecular and functional analyses of complement factor I deficiency

    DEFF Research Database (Denmark)

    Nilsson, S.C.; Trouw, L.A.; Renault, N.

    2009-01-01

    Complete deficiency of complement inhibitor factor I (FI) results in secondary complement deficiency due to uncontrolled spontaneous alternative pathway activation leading to susceptibility to infections. Current genetic examination of two patients with near complete FI deficiency and three patie...

  12. Cardiac structure and function in Cushing's syndrome: a cardiac magnetic resonance imaging study.

    Science.gov (United States)

    Kamenický, Peter; Redheuil, Alban; Roux, Charles; Salenave, Sylvie; Kachenoura, Nadjia; Raissouni, Zainab; Macron, Laurent; Guignat, Laurence; Jublanc, Christel; Azarine, Arshid; Brailly, Sylvie; Young, Jacques; Mousseaux, Elie; Chanson, Philippe

    2014-11-01

    Patients with Cushing's syndrome have left ventricular (LV) hypertrophy and dysfunction on echocardiography, but echo-based measurements may have limited accuracy in obese patients. No data are available on right ventricular (RV) and left atrial (LA) size and function in these patients. The objective of the study was to evaluate LV, RV, and LA structure and function in patients with Cushing's syndrome by means of cardiac magnetic resonance, currently the reference modality in assessment of cardiac geometry and function. Eighteen patients with active Cushing's syndrome and 18 volunteers matched for age, sex, and body mass index were studied by cardiac magnetic resonance. The imaging was repeated in the patients 6 months (range 2-12 mo) after the treatment of hypercortisolism. Compared with controls, patients with Cushing's syndrome had lower LV, RV, and LA ejection fractions (P < .001 for all) and increased end-diastolic LV segmental thickness (P < .001). Treatment of hypercortisolism was associated with an improvement in ventricular and atrial systolic performance, as reflected by a 15% increase in the LV ejection fraction (P = .029), a 45% increase in the LA ejection fraction (P < .001), and an 11% increase in the RV ejection fraction (P = NS). After treatment, the LV mass index and end-diastolic LV mass to volume ratio decreased by 17% (P < .001) and 10% (P = .002), respectively. None of the patients had late gadolinium myocardial enhancement. Cushing's syndrome is associated with subclinical biventricular and LA systolic dysfunctions that are reversible after treatment. Despite skeletal muscle atrophy, Cushing's syndrome patients have an increased LV mass, reversible upon correction of hypercortisolism.

  13. Improving family functioning after cardiac surgery: a randomized trial.

    Science.gov (United States)

    Gilliss, C L; Neuhaus, J M; Hauck, W W

    1990-11-01

    As part of a randomized clinical trial of in-hospital and postdischarge nursing interventions designed to facilitate the individual patient's recovery and improve the family's functioning after cardiac surgery, we followed 67 patient-spouse pairs for 6 months after surgery. Family health was appraised by using three pencil and paper measurements: the Family APGAR, the Locke-Wallace Marital Adjustment Scale, and the Family Inventory of Resources for Management. Mixed-effects analysis of variance did not detect differences for the main effect of intervention group; however, the main effect of time was significant for both patients' and spouses' APGAR scores and for patients' Marital Adjustment Scale scores, suggesting a pattern of response during recovery from cardiac surgery.

  14. Identification and functional characterization of cardiac pacemaker cells in zebrafish.

    Directory of Open Access Journals (Sweden)

    Federico Tessadori

    Full Text Available In the mammalian heart a conduction system of nodes and conducting cells generates and transduces the electrical signals evoking myocardial contractions. Specialized pacemaker cells initiating and controlling cardiac contraction rhythmicity are localized in an anatomically identifiable structure of myocardial origin, the sinus node. We previously showed that in mammalian embryos sinus node cells originate from cardiac progenitors expressing the transcription factors T-box transcription factor 3 (Tbx3 and Islet-1 (Isl1. Although cardiac development and function are strikingly conserved amongst animal classes, in lower vertebrates neither structural nor molecular distinguishable components of a conduction system have been identified, questioning its evolutionary origin. Here we show that zebrafish embryos lacking the LIM/homeodomain-containing transcription factor Isl1 display heart rate defects related to pacemaker dysfunction. Moreover, 3D reconstructions of gene expression patterns in the embryonic and adult zebrafish heart led us to uncover a previously unidentified, Isl1-positive and Tbx2b-positive region in the myocardium at the junction of the sinus venosus and atrium. Through their long interconnecting cellular protrusions the identified Isl1-positive cells form a ring-shaped structure. In vivo labeling of the Isl1-positive cells by transgenic technology allowed their isolation and electrophysiological characterization, revealing their unique pacemaker activity. In conclusion we demonstrate that Isl1-expressing cells, organized as a ring-shaped structure around the venous pole, hold the pacemaker function in the adult zebrafish heart. We have thereby identified an evolutionary conserved, structural and molecular distinguishable component of the cardiac conduction system in a lower vertebrate.

  15. ROS Regulate Cardiac Function via a Distinct Paracrine Mechanism

    Directory of Open Access Journals (Sweden)

    Hui-Ying Lim

    2014-04-01

    Full Text Available Reactive oxygen species (ROS can act cell autonomously and in a paracrine manner by diffusing into nearby cells. Here, we reveal a ROS-mediated paracrine signaling mechanism that does not require entry of ROS into target cells. We found that under physiological conditions, nonmyocytic pericardial cells (PCs of the Drosophila heart contain elevated levels of ROS compared to the neighboring cardiomyocytes (CMs. We show that ROS in PCs act in a paracrine manner to regulate normal cardiac function, not by diffusing into the CMs to exert their function, but by eliciting a downstream D-MKK3-D-p38 MAPK signaling cascade in PCs that acts on the CMs to regulate their function. We find that ROS-D-p38 signaling in PCs during development is also important for establishing normal adult cardiac function. Our results provide evidence for a previously unrecognized role of ROS in mediating PC/CM interactions that significantly modulates heart function.

  16. IL-33 Independently Induces Eosinophilic Pericarditis and Cardiac Dilation: ST2 Improves Cardiac Function

    Science.gov (United States)

    Abston, Eric D.; Barin, Jobert G.; Cihakova, Daniela; Bucek, Adriana; Coronado, Michael J.; Brandt, Jessica E.; Bedja, Djahida; Kim, Joseph B.; Georgakopoulos, Dimitrios; Gabrielson, Kathleen L.; Mitzner, Wayne; Fairweather, DeLisa

    2013-01-01

    Background Interleukin (IL)-33 via its receptor ST2 protects the heart from myocardial infarct and hypertrophy in animal models, but paradoxically increases autoimmune disease. In this study we examined the effect of IL-33 or ST2 administration on autoimmune heart disease. Methods and Results We used pressure volume relationships and isoproterenol challenge to assess the effect of recombinant (r)IL-33 or rST2 (e.g. soluble ST2) administration on the development of autoimmune coxsackievirus (CVB3) myocarditis and dilated cardiomyopathy (DCM) in male BALB/c mice. rIL-33 treatment significantly increased acute perimyocarditis (p=0.006) and eosinophilia (p=1.3×10−5), impaired cardiac function (maximum ventricular power p=0.0002), and increased ventricular dilation (end diastolic volume p=0.01). rST2 treatment prevented eosinophilia and improved heart function compared to rIL-33 treatment (ejection fraction, p=0.009). Neither treatment altered viral replication. rIL-33 increased IL-4, IL-33, IL-1β and IL-6 levels in the heart during acute myocarditis. To determine whether IL-33 altered cardiac function on its own, we administered rIL-33 to undiseased mice and found that rIL-33 induced eosinophilic pericarditis and adversely affected heart function. We used cytokine knockout mice to determine that this effect was due to IL-33-mediated signaling but not IL-1β or IL-6. Conclusions We show for the first time that IL-33 induces eosinophilic pericarditis while sST2 prevents eosinophilia and improves systolic function, and that IL-33 independently adversely affects heart function via the IL-33 receptor. PMID:22454393

  17. Preservation of cochlear function in Cd39 deficient mice.

    Science.gov (United States)

    Vlajkovic, Srdjan M; Housley, Gary D; Thorne, Peter R; Gupta, Rita; Enjyoji, Keiichi; Cowan, Peter J; Charles Liberman, M; Robson, Simon C

    2009-07-01

    Signalling actions of extracellular nucleotides via P2 receptors influence cellular function in most tissues. In the inner ear, P2 receptor signaling is involved in many processes including the regulation of hearing sensitivity and the cochlea's response to noise stress. CD39 (NTPDase1/ENTPD1) is an ectonucleotidase (ecto-nucleoside triphosphate diphosphohydrolase) that can hydrolyse purine and pyrimidine nucleoside tri- and di-phosphates to generate monophosphate nucleosides. Mice null for Cd39 exhibit major alterations in haemostasis and profound alterations in inflammatory and thrombotic reactions. Studies in the cochlea have suggested the involvement of purinergic-type signals that could be modulated by CD39 in regulation of cochlear blood flow and also auditory neurotransmission. This study aimed to determine the auditory phenotype of adult Cd39 null mice on the C57BL6 background. Auditory brainstem responses (ABR) and distortion product otoacoustic emissions (DPOAE) were unaffected in Cd39-deficient mice across the range of test frequencies, suggesting normal neural and outer hair cell function. Mutant mice also showed little difference to wild type mice in vulnerability to acoustic trauma. Gene expression analysis of other membrane-bound NTPDases with comparable hydrolytic activity demonstrated an up-regulation of Entpd2 and Entpd8 in the cochleae of Cd39 deficient mice. These findings suggest that Cd39 deletion alone does not adversely affect cochlear function, possibly as compensatory up-regulation of other surface located NTPDases may offset predicted alterations in cochlear homeostasis.

  18. Functional capacity and mental state of patients undergoing cardiac surgery

    Directory of Open Access Journals (Sweden)

    Bruna Corrêa

    Full Text Available Abstract Introduction: Cardiovascular diseases are a serious public health problem in Brazil. Myocardial revascularization surgery (MRS as well as cardiac valve replacement and repair are procedures indicated to treat them. Thus, extracorporeal circulation (ECC is still widely used in these surgeries, in which patients with long ECC times may have greater neurological deficits. Neurological damage resulting from MRS can have devastating consequences such as loss of independence and worsening of quality of life. Objective: To assess the effect of cardiac surgery on a patient’s mental state and functional capacity in both the pre- and postoperative periods. Methods: We conducted a cross-sectional study with convenience sampling of subjects undergoing MRS and valve replacement. Participants were administered the Mini-Mental State Exam (MMSE and the Duke Activity Status Index (DASI in the pre- and postoperative periods, as well as before their hospital discharge. Results: This study assessed nine patients (eight males aged 62.4 ± 6.3 years with a BMI of 29.5 ± 2.3 kg/m2. There was a significant decrease in DASI scores and VO2 from preoperative to postoperative status (p = 0.003 and p = 0.003, respectively. Conclusion: This study revealed a loss of cognitive and exercise capacity after cardiac surgery. A larger sample however is needed to consolidate these findings.

  19. 8-Oxoguanine DNA glycosylase 1 (ogg1) maintains the function of cardiac progenitor cells during heart formation in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Lifeng [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China); Zhou, Yong [Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Yu, Shanhe [Shanghai Institute of Hematology, RuiJin Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai 200025 (China); Ji, Guixiang [Nanjing Institute of Environmental Sciences/Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Environmental Protection, Nanjing 210042 (China); Wang, Lei [Key Laboratory of Stem Cell Biology, Institute of Health Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai 200025 (China); Liu, Wei [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China); Gu, Aihua, E-mail: aihuagu@njmu.edu.cn [State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, Nanjing 210029 (China); Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 210029 (China)

    2013-11-15

    Genomic damage may devastate the potential of progenitor cells and consequently impair early organogenesis. We found that ogg1, a key enzyme initiating the base-excision repair, was enriched in the embryonic heart in zebrafish. So far, little is known about DNA repair in cardiogenesis. Here, we addressed the critical role of ogg1 in cardiogenesis for the first time. ogg1 mainly expressed in the anterior lateral plate mesoderm (ALPM), the primary heart tube, and subsequently the embryonic myocardium by in situ hybridisation. Loss of ogg1 resulted in severe cardiac morphogenesis and functional abnormalities, including the short heart length, arrhythmia, decreased cardiomyocytes and nkx2.5{sup +} cardiac progenitor cells. Moreover, the increased apoptosis and repressed proliferation of progenitor cells caused by ogg1 deficiency might contribute to the heart phenotype. The microarray analysis showed that the expression of genes involved in embryonic heart tube morphogenesis and heart structure were significantly changed due to the lack of ogg1. Among those, foxh1 is an important partner of ogg1 in the cardiac development in response to DNA damage. Our work demonstrates the requirement of ogg1 in cardiac progenitors and heart development in zebrafish. These findings may be helpful for understanding the aetiology of congenital cardiac deficits. - Highlights: • A key DNA repair enzyme ogg1 is expressed in the embryonic heart in zebrafish. • We found that ogg1 is essential for normal cardiac morphogenesis in zebrafish. • The production of embryonic cardiomyocytes requires appropriate ogg1 expression. • Ogg1 critically regulated proliferation of cardiac progenitor cells in zebrafish. • foxh1 is a partner of ogg1 in the cardiac development in response to DNA damage.

  20. Cardiac functional analysis with MRI; Kardiale Funktionsanalyse mittels MRT

    Energy Technology Data Exchange (ETDEWEB)

    Sandner, T.A.; Theisen, D.; Bauner, K.U.; Picciolo, M.; Reiser, M.F.; Wintersperger, B.J. [Klinikum der Ludwig-Maximilians-Universitaet Muenchen, Campus Grosshadern, Institut fuer Klinische Radiologie, Muenchen (Germany)

    2010-06-15

    Cardiovascular diseases (CVD) are among the leading causes of death worldwide. Even in the 21{sup st} century CVD will still be the most frequent cause of morbidity and mortality. Precise evaluation of cardiac function is therefore mandatory for therapy planning and monitoring. In this article the contribution of MRI-based analysis of cardiac function will be addressed. Nowadays cine-MRI is considered as the standard of reference (SOR) in cardiac functional analysis. ECG-triggered steady-state free precession (SSFP) sequences are mainly used as they stand out due to short acquisition times and excellent contrast between the myocardium and the ventricular cavity. An indispensible requirement for cardiac functional analysis is an exact planning of the examination and based on that the coverage of the whole ventricle in short axial slices. By means of dedicated post-processing software, manual or semi-automatic segmentation of the endocardial and epicardial contours is necessary for functional analysis. In this way end-diastolic volume (EDV), end-systolic volume (ESV) and the ejection fraction (EF) are defined and regional wall motion abnormalities (RWMA) can be detected. (orig.) [German] Weltweit gehoeren Herz-Kreislauf-Erkrankungen zu den haeufigsten Todesursachen. Auch im 21. Jahrhundert werden diese Erkrankungen das Erkrankungsspektrum und die Todesursachenstatistik anfuehren. Eine genaue Beurteilung der kardialen Funktion ist fuer die Therapieplanung und -ueberwachung unerlaesslich. In diesem Beitrag wird der Stellenwert der MRT bei der Beurteilung der kardialen Funktion eroertert. Als Standard der kardialen Funktionsanalyse kann heute die Cine-MRT angesehen werden, wofuer man ueberwiegend EGK-getriggerte Steady-state-free-precession- (SSFP-)Sequenzen einsetzt, die sich durch kurze Messzeiten und einen hervorragenden Kontrast zwischen Myokard und Ventrikelkavum auszeichnen. Voraussetzung fuer kardiale Funktionsuntersuchungen ist eine exakte Einstellung der

  1. Cathepsin S deficiency results in abnormal accumulation of autophagosomes in macrophages and enhances Ang II-induced cardiac inflammation.

    Directory of Open Access Journals (Sweden)

    Lili Pan

    Full Text Available BACKGROUND: Cathepsin S (Cat S is overexpressed in human atherosclerotic and aneurysmal tissues and may contributes to degradation of extracellular matrix, especially elastin, in inflammatory diseases. We aimed to define the role of Cat S in cardiac inflammation and fibrosis induced by angiotensin II (Ang II in mice. METHODS AND RESULTS: Cat S-knockout (Cat S(-/- and littermate wild-type (WT C57BL/6J mice were infused continuously with Ang II (750 ng/kg/min or saline for 7 days. Cat S(-/- mice showed severe cardiac fibrosis, including elevated expression of collagen I and α-smooth muscle actin (α-SMA, as compared with WT mice. Moreover, macrophage infiltration and expression of inflammatory cytokines (tumor necrosis factor α, transforming growth factor β and interleukin 1β were significantly greater in Cat S(-/- than WT hearts. These Ang II-induced effects in Cat S(-/- mouse hearts was associated with abnormal accumulation of autophagosomes and reduced clearance of damaged mitochondria, which led to increased levels of reactive oxygen species (ROS and activation of nuclear factor-kappa B (NF-κB in macrophages. CONCLUSION: Cat S in lysosomes is essential for mitophagy processing in macrophages, deficiency in Cat S can increase damaged mitochondria and elevate ROS levels and NF-κB activity in hypertensive mice, so it regulates cardiac inflammation and fibrosis.

  2. Effect of prolonged space flight on cardiac function and dimensions

    Science.gov (United States)

    Henry, W. L.; Epstein, S. E.; Griffith, J. M.; Goldstein, R. E.; Redwood, D. R.

    1974-01-01

    Echocardiographic studies were performed preflight 5 days before launch and on recovery day and 1, 2, 4, 11, 31 and 68 days postflight. From these echocardiograms measurements were made. From these primary measurements, left ventricular end-diastolic volume, end-systolic volume, stroke volume, and mass were derived using the accepted assumptions. Findings in the Scientist Pilot and Pilot resemble those seen in trained distance runners. Wall thickness measurements were normal in all three crewmembers preflight. Postflight basal studies were unchanged in the Commander on recovery day through 68 days postflight in both the Scientist Pilot and Pilot, however, the left ventricular end-diastolic volume, stroke volume, and mass were decreased slightly. Left ventricular function curves were constructed for the Commander and Pilot by plotting stroke volume versus end-diastolic volume. In both astronauts, preflight and postflight data fell on the same straight line demonstrating that no deterioration in cardiac function had occurred. These data indicate that the cardiovascular system adapts well to prolonged weightlessness and suggest that alterations in cardiac dimensions and function are unlikely to limit man's future in space.

  3. Opposite effects of gene deficiency and pharmacological inhibition of soluble epoxide hydrolase on cardiac fibrosis.

    Directory of Open Access Journals (Sweden)

    Lijuan Li

    Full Text Available Arachidonic acid-derived epoxyeicosatrienoic acids (EETs are important regulators of cardiac remodeling; manipulation of their levels is a potentially useful pharmacological strategy. EETs are hydrolyzed by soluble epoxide hydrolase (sEH to form the corresponding diols, thus altering and reducing the activity of these oxylipins. To better understand the phenotypic impact of sEH disruption, we compared the effect of EPHX2 gene knockout (EPHX2-/- and sEH inhibition in mouse models. Measurement of plasma oxylipin profiles confirmed that the ratio of EETs/DHETs was increased in EPHX2-/- and sEH-inhibited mice. However, plasma concentrations of 9, 11, 15, 19-HETE were elevated in EPHX2-/- but not sEH-inhibited mice. Next, we investigated the role of this difference in cardiac dysfunction induced by Angiotensin II (AngII. Both EPHX2 gene deletion and inhibition protected against AngII-induced cardiac hypertrophy. Interestingly, cardiac dysfunction was attenuated by sEH inhibition rather than gene deletion. Histochemical staining revealed that compared with pharmacological inhibition, EPHX2 deletion aggravated AngII-induced myocardial fibrosis; the mRNA levels of fibrotic-related genes were increased. Furthermore, cardiac inflammatory response was greater in EPHX2-/- than sEH-inhibited mice with AngII treatment, as evidenced by increased macrophage infiltration and expression of MCP-1 and IL-6. In vitro, AngII-upregulated MCP-1 and IL-6 expression was significantly attenuated by sEH inhibition but promoted by EPHX2 deletion in cardiofibroblasts. Thus, compared with pharmacological inhibition of sEH, EPHX2 deletion caused the shift in arachidonic acid metabolism, which may led to pathological cardiac remodeling, especially cardiac fibrosis.

  4. Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function.

    Science.gov (United States)

    Chiellini, Grazia; Frascarelli, Sabina; Ghelardoni, Sandra; Carnicelli, Vittoria; Tobias, Sandra C; DeBarber, Andrea; Brogioni, Simona; Ronca-Testoni, Simonetta; Cerbai, Elisabetta; Grandy, David K; Scanlan, Thomas S; Zucchi, Riccardo

    2007-05-01

    3-Iodothyronamine T1AM is a novel endogenous thyroid hormone derivative that activates the G protein-coupled receptor known as trace anime-associated receptor 1 (TAAR1). In the isolated working rat heart and in rat cardiomyocytes, T1AM produced a reversible, dose-dependent negative inotropic effect (e.g., 27+/-5, 51+/-3, and 65+/-2% decrease in cardiac output at 19, 25, and 38 microM concentration, respectively). An independent negative chronotropic effect was also observed. The hemodynamic effects of T1AM were remarkably increased in the presence of the tyrosine kinase inhibitor genistein, whereas they were attenuated in the presence of the tyrosine phosphatase inhibitor vanadate. No effect was produced by inhibitors of protein kinase A, protein kinase C, calcium-calmodulin kinase II, phosphatidylinositol-3-kinase, or MAP kinases. Tissue cAMP levels were unchanged. In rat ventricular tissue, Western blot experiments with antiphosphotyrosine antibodies showed reduced phosphorylation of microsomal and cytosolic proteins after perfusion with synthetic T1AM; reverse transcriptase-polymerase chain reaction experiments revealed the presence of transcripts for at least 5 TAAR subtypes; specific and saturable binding of [125I]T1AM was observed, with a dissociation constant in the low micromolar range (5 microM); and endogenous T1AM was detectable by tandem mass spectrometry. In conclusion, our findings provide evidence for the existence of a novel aminergic system modulating cardiac function.

  5. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-01-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, free-standing electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on-demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function. PMID:26974408

  6. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  7. Deficiency of Smad7 enhances cardiac remodeling induced by angiotensin II infusion in a mouse model of hypertension.

    Directory of Open Access Journals (Sweden)

    Li Hua Wei

    Full Text Available Smad7 has been shown to negatively regulate fibrosis and inflammation, but its role in angiotensin II (Ang II-induced hypertensive cardiac remodeling remains unknown. Therefore, the present study investigated the role of Smad7 in hypertensive cardiopathy induced by angiotensin II infusion. Hypertensive cardiac disease was induced in Smad7 gene knockout (KO and wild-type (WT mice by subcutaneous infusion of Ang II (1.46 mg/kg/day for 28 days. Although equal levels of high blood pressure were developed in both Smad7 KO and WT mice, Smad7 KO mice developed more severe cardiac injury as demonstrated by impairing cardiac function including a significant increase in left ventricular (LV mass (P<0.01,reduction of LV ejection fraction(P<0.001 and fractional shortening(P<0.001. Real-time PCR, Western blot and immunohistochemistry detected that deletion of Smad7 significantly enhanced Ang II-induced cardiac fibrosis and inflammation, including upregulation of collagen I, α-SMA, interleukin-1β, TNF-α, and infiltration of CD3(+ T cells and F4/80(+ macrophages. Further studies revealed that enhanced activation of the Sp1-TGFβ/Smad3-NF-κB pathways and downregulation of miR-29 were mechanisms though which deletion of Smad7 promoted Ang II-mediated cardiac remodeling. In conclusions, Smad7 plays a protective role in AngII-mediated cardiac remodeling via mechanisms involving the Sp1-TGF-β/Smad3-NF.κB-miR-29 regulatory network.

  8. The effect of childhood obesity on cardiac functions.

    Science.gov (United States)

    Üner, Abdurrahman; Doğan, Murat; Epcacan, Zerrin; Epçaçan, Serdar

    2014-03-01

    Obesity is a metabolic disorder defined as excessive accumulation of body fat, which is made up of genetic, environmental, and hormonal factors and has various social, psychological, and medical complications. Childhood obesity is a major indicator of adult obesity. The aim of this study is to evaluate the cardiac functions via electrocardiography (ECG), echocardiography (ECHO), and treadmill test in childhood obesity. A patient group consisting of 30 obese children and a control group consisting of 30 non-obese children were included in the study. The age range was between 8 and 17 years. Anthropometric measurements, physical examination, ECG, ECHO, and treadmill test were done in all patients. P-wave dispersion (PD) was found to be statistically significantly high in obese patients. In ECHO analysis, we found that end-diastolic diameter, end-systolic diameter, left ventricle posterior wall thickness, and interventricular septum were significantly greater in obese children. In treadmill test, exercise capacity was found to be significantly lower and the hemodynamic response to exercise was found to be defective in obese children. Various cardiac structural and functional changes occur in childhood obesity and this condition includes important cardiovascular risks. PD, left ventricle end-systolic and end-diastolic diameter, left ventricle posterior wall thickness, interventricular septum thickness, exercise capacity, and hemodynamic and ECG measurements during exercise testing are useful tests to determine cardiac dysfunctions and potential arrhythmias even in early stages of childhood obesity. Early recognition and taking precautions for obesity during childhood is very important to intercept complications that will occur in adulthood.

  9. Interleukin-6 deficiency attenuates angiotensin II-induced cardiac pathogenesis with increased myocyte hypertrophy.

    Science.gov (United States)

    Chen, Fan; Chen, Dandan; Zhang, Yubin; Jin, Liang; Zhang, Han; Wan, Miyang; Pan, Tianshu; Wang, Xiaochuan; Su, Yuheng; Xu, Yitao; Ye, Junmei

    2017-12-16

    Interleukin-6 (IL-6) signaling is critical for cardiomyocyte hypertrophy, while the role of IL-6 in the pathogenesis of myocardium hypertrophy remains controversial. To determine the essential role of IL-6 signaling for the cardiac development during AngII-induced hypertension, and to elucidate the mechanisms, wild-type (WT) and IL-6 knockout (IL-6 KO) mice were infused subcutaneously with either vehicle or AngII (1.5 μg/h/mouse) for 1 week. Immunohistological and serum studies revealed that the extents of cardiac fibrosis, inflammation and apoptosis were reduced in IL-6 KO heart during AngII-stimulation, while cardiac hypertrophy was obviously induced. To investigate the underlying mechanisms, by using myocardial tissue and neonatal cardiomyocytes, we observed that IL-6/STAT3 signaling was activated under the stimulation of AngII both in vivo and in vitro. Further investigation suggested that STAT3 activation enhances the inhibitory effect of EndoG on MEF2A and hampers cardiomyocyte hypertrophy. Our study is the first to show the important role of IL-6 in regulating cardiac pathogenesis via inflammation and apoptosis during AngII-induced hypertension. We also provide a novel link between IL-6/STAT3 and EndoG/MEF2A pathway that affects cardiac hypertrophy during AngII stimulation. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Cardiac-specific ablation of the E3 ubiquitin ligase Mdm2 leads to oxidative stress, broad mitochondrial deficiency and early death.

    Directory of Open Access Journals (Sweden)

    Ludger Hauck

    Full Text Available The maintenance of normal heart function requires proper control of protein turnover. The ubiquitin-proteasome system is a principal regulator of protein degradation. Mdm2 is the main E3 ubiquitin ligase for p53 in mitotic cells thereby regulating cellular growth, DNA repair, oxidative stress and apoptosis. However, which of these Mdm2-related activities are preserved in differentiated cardiomyocytes has yet to be determined. We sought to elucidate the role of Mdm2 in the control of normal heart function. We observed markedly reduced Mdm2 mRNA levels accompanied by highly elevated p53 protein expression in the hearts of wild type mice subjected to myocardial infarction or trans-aortic banding. Accordingly, we generated conditional cardiac-specific Mdm2 gene knockout (Mdm2f/f;mcm mice. In adulthood, Mdm2f/f;mcm mice developed spontaneous cardiac hypertrophy, left ventricular dysfunction with early mortality post-tamoxifen. A decreased polyubiquitination of myocardial p53 was observed, leading to its stabilization and activation, in the absence of acute stress. In addition, transcriptomic analysis of Mdm2-deficient hearts revealed that there is an induction of E2f1 and c-Myc mRNA levels with reduced expression of the Pgc-1a/Ppara/Esrrb/g axis and Pink1. This was associated with a significant degree of cardiomyocyte apoptosis, and an inhibition of redox homeostasis and mitochondrial bioenergetics. All these processes are early, Mdm2-associated events and contribute to the development of pathological hypertrophy. Our genetic and biochemical data support a role for Mdm2 in cardiac growth control through the regulation of p53, the Pgc-1 family of transcriptional coactivators and the pivotal antioxidant Pink1.

  11. Baroreflex deficiency induces additional impairment of vagal tone, diastolic function and calcium handling proteins after myocardial infarction

    Science.gov (United States)

    Mostarda, Cristiano; Rodrigues, Bruno; Medeiros, Alessandra; Moreira, Edson D; Moraes-Silva, Ivana C; Brum, Patricia C; Angelis, Katia De; Irigoyen, Maria-Cláudia

    2014-01-01

    Baroreflex dysfunction has been considered an important mortality predictor after myocardial infarction (MI). However, the impact of baroreflex deficiency prior to MI on tonic autonomic control and cardiac function, and on the profile of proteins associated with intracellular calcium handling has not yet been studied. The aim of the present study was to analyze how the impairment of baroreflex induced by sinoaortic denervation (SAD) prior to MI in rats affects the tonic autonomic control, ventricular function and cardiomyocyte calcium handling proteins. After 15 days of following or SAD surgery, rats underwent MI. Echocardiographic, hemodynamic, autonomic and molecular evaluations were performed 90 days after MI. Baroreflex impairment led to additional damage on: left ventricular remodeling, diastolic function, vagal tonus and intrinsic heart rate after MI. The loss of vagal component of the arterial baroreflex and vagal tonus were correlated with changes in the cardiac proteins involved in intracellular calcium homeostasis. Furthermore, additional increase in sodium calcium exchanger expression levels was associated with impaired diastolic function in experimental animals. Our findings strongly suggest that previous arterial baroreflex deficiency may induce additional impairment of vagal tonus, which was associated with calcium handling proteins abnormalities, probably triggering ventricular diastolic dysfunction after MI in rats. PMID:24936224

  12. Regular Football Practice Improves Autonomic Cardiac Function in Male Children

    Science.gov (United States)

    Fernandes, Luis; Oliveira, Jose; Soares-Miranda, Luisa; Rebelo, Antonio; Brito, Joao

    2015-01-01

    Background: The role of the autonomic nervous system (ANS) in the cardiovascular regulation is of primal importance. Since it has been associated with adverse conditions such as cardiac arrhythmias, sudden death, sleep disorders, hypertension and obesity. Objectives: The present study aimed to investigate the impact of recreational football practice on the autonomic cardiac function of male children, as measured by heart rate variability. Patients and Methods: Forty-seven male children aged 9 - 12 years were selected according to their engagement with football oriented practice outside school context. The children were divided into a football group (FG; n = 22) and a control group (CG; n = 25). The FG had regular football practices, with 2 weekly training sessions and occasional weekend matches. The CG was not engaged with any physical activity other than complementary school-based physical education classes. Data from physical activity, physical fitness, and heart rate variability measured in time and frequency domains were obtained. Results: The anthropometric and body composition characteristics were similar in both groups (P > 0.05). The groups were also similar in time spent daily on moderate-to-vigorous physical activities (FG vs. CG: 114 ± 64 vs. 87 ± 55 minutes; P > 0.05). However, the FG performed better (P football practice presented enhanced physical fitness and autonomic function, by increasing vagal tone at rest. PMID:26448848

  13. Longstanding hyperthyroidism is associated with normal or enhanced intrinsic cardiomyocyte function despite decline in global cardiac function.

    Directory of Open Access Journals (Sweden)

    Nathan Y Weltman

    Full Text Available Thyroid hormones (THs play a pivotal role in cardiac homeostasis. TH imbalances alter cardiac performance and ultimately cause cardiac dysfunction. Although short-term hyperthyroidism typically leads to heightened left ventricular (LV contractility and improved hemodynamic parameters, chronic hyperthyroidism is associated with deleterious cardiac consequences including increased risk of arrhythmia, impaired cardiac reserve and exercise capacity, myocardial remodeling, and occasionally heart failure. To evaluate the long-term consequences of chronic hyperthyroidism on LV remodeling and function, we examined LV isolated myocyte function, chamber function, and whole tissue remodeling in a hamster model. Three-month-old F1b hamsters were randomized to control or 10 months TH treatment (0.1% grade I desiccated TH. LV chamber remodeling and function was assessed by echocardiography at 1, 2, 4, 6, 8, and 10 months of treatment. After 10 months, terminal cardiac function was assessed by echocardiography and LV hemodynamics. Hyperthyroid hamsters exhibited significant cardiac hypertrophy and deleterious cardiac remodeling characterized by myocyte lengthening, chamber dilatation, decreased relative wall thickness, increased wall stress, and increased LV interstitial fibrotic deposition. Importantly, hyperthyroid hamsters demonstrated significant LV systolic and diastolic dysfunction. Despite the aforementioned remodeling and global cardiac decline, individual isolated cardiac myocytes from chronically hyperthyroid hamsters had enhanced function when compared with myocytes from untreated age-matched controls. Thus, it appears that long-term hyperthyroidism may impair global LV function, at least in part by increasing interstitial ventricular fibrosis, in spite of normal or enhanced intrinsic cardiomyocyte function.

  14. A structure-function analysis in patients with prekallikrein deficiency.

    Science.gov (United States)

    Girolami, Antonio; Ferrari, Silvia; Cosi, Elisabetta; Lombardi, Anna Maria

    2017-11-22

    To investigate the structure-function relation in prekallikrein (PK) deficiency. PK is one of the proteins of the contact phase of blood coagulation which at the present time is the object of a revival of interest. All patients with PK deficiency who had been investigated by molecular biology techniques are the object of the present investigation. Details of patients were obtained from personal files and a time-unlimited PubMed search. Only cases with a molecular-biology-based diagnosis were included. Twelve families were included. The total number of missense mutation was 10, together with 3 stop codons and 2 insertions. These mutations involved mainly exons 11 and 14. There were eight proved homozygotes and three compound heterozygotes. In one instance, homozygosity was probable but not proved. In nine cases, the defect was Type I, whereas it was Type II in the remaining three. No bleeding manifestations were present in 11 of the 12 probands. One proband had epistaxis, but she had hypertension. Altogether, four patients had hypertension and one of them had also two myocardial infarctions. Despite the paucity of cases, it was established that the majority of mutations involved the catalytic domain. It is auspicable that future reports of patients with this disorder should include molecular studies. This would certainly contribute to the understanding of the contact phase of blood coagulation.

  15. Cardiac function adaptations in hibernating grizzly bears (Ursus arctos horribilis).

    Science.gov (United States)

    Nelson, O Lynne; Robbins, Charles T

    2010-03-01

    Research on the cardiovascular physiology of hibernating mammals may provide insight into evolutionary adaptations; however, anesthesia used to handle wild animals may affect the cardiovascular parameters of interest. To overcome these potential biases, we investigated the functional cardiac phenotype of the hibernating grizzly bear (Ursus arctos horribilis) during the active, transitional and hibernating phases over a 4 year period in conscious rather than anesthetized bears. The bears were captive born and serially studied from the age of 5 months to 4 years. Heart rate was significantly different from active (82.6 +/- 7.7 beats/min) to hibernating states (17.8 +/- 2.8 beats/min). There was no difference from the active to the hibernating state in diastolic and stroke volume parameters or in left atrial area. Left ventricular volume:mass was significantly increased during hibernation indicating decreased ventricular mass. Ejection fraction of the left ventricle was not different between active and hibernating states. In contrast, total left atrial emptying fraction was significantly reduced during hibernation (17.8 +/- 2.8%) as compared to the active state (40.8 +/- 1.9%). Reduced atrial chamber function was also supported by reduced atrial contraction blood flow velocities and atrial contraction ejection fraction during hibernation; 7.1 +/- 2.8% as compared to 20.7 +/- 3% during the active state. Changes in the diastolic cardiac filling cycle, especially atrial chamber contribution to ventricular filling, appear to be the most prominent macroscopic functional change during hibernation. Thus, we propose that these changes in atrial chamber function constitute a major adaptation during hibernation which allows the myocardium to conserve energy, avoid chamber dilation and remain healthy during a period of extremely low heart rates. These findings will aid in rational approaches to identifying underlying molecular mechanisms.

  16. Neonatal multiorgan failure due to ACAD9 mutation and complex I deficiency with mitochondrial hyperplasia in liver, cardiac myocytes, skeletal muscle, and renal tubules.

    Science.gov (United States)

    Leslie, Nancy; Wang, Xinjian; Peng, Yanyan; Valencia, C Alexander; Khuchua, Zaza; Hata, Jessica; Witte, David; Huang, Taosheng; Bove, Kevin E

    2016-03-01

    Complex I deficiency causes Leigh syndrome, fatal infant lactic acidosis, and neonatal cardiomyopathy. Mutations in more than 100 nuclear DNA and mitochondrial DNA genes miscode for complex I subunits or assembly factors. ACAD9 is an acyl-CoA dehydrogenase with a novel function in assembly of complex I; biallelic mutations cause progressive encephalomyopathy, recurrent Reye syndrome, and fatal cardiomyopathy. We describe the first autopsy in fatal neonatal lethal lactic acidosis due to mutations in ACAD9 that reduced complex I activity. We identified mitochondrial hyperplasia in cardiac myocytes, diaphragm muscle, and liver and renal tubules in formalin-fixed, paraffin-embedded tissue using immunohistochemistry for mitochondrial antigens. Whole-exome sequencing revealed compound heterozygous variants in the ACAD9 gene: c.187G>T (p.E63*) and c.941T>C (p.L314P). The nonsense mutation causes late infantile lethality; the missense variant is novel. Autopsy-derived fibroblasts had reduced complex I activity (53% of control) with normal activity in complexes II to IV, similar to reported cases of ACAD9 deficiency. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Cardiac structure and functions in patients with asymptomatic primary hyperparathyroidism.

    Science.gov (United States)

    Aktas Yılmaz, B; Akyel, A; Kan, E; Ercin, U; Tavil, Y; Bilgihan, A; Cakır, N; Arslan, M; Balos Toruner, F

    2013-11-01

    The data about cardiovascular (CV) changes in patients with asymptomatic primary hyperparathyroidism (PHPT) are scarce. The aim of this study is to compare cardiac structure and functions in patients with asymptomatic PHPT and controls by using tissue Doppler echocardiography. Thirty-eight patients with asymptomatic PHPT and 31 sex- and age-matched controls with similar cardiac risk factors were evaluated. There was no significant difference in ejection fraction (EF) between the patients and the controls [64±5.95 vs 62±3.25% (p=0.094)]. Left ventricular mass index (LVMI) was significantly higher in patients than controls [105.96 (66.45-167.24) vs 93.79 (64.25- 139.25) g/m2, p=0.014]. There was a significant correlation between LVMI and serum calcium (Ca) (r=0.240, p<0.005). Myocardial performance index (MPI) was significantly higher in patients than controls [0.49 (0.35-0.60) vs 0.39 (0.33-0.62), p<0.001]. There was positive correlation between theMPI and serumCa levels (r=0.505, p<0.001), parathyroid hormone (PTH) levels (r=0.464, p<0.001) and LVMI (r=0.270, p<0.005). When the normotensive patients and controls were evaluated, the difference between the groups remained statistically significant considering LVMI and MPI [109 (66.45-167.24) g/m2 vs 94.17 (64.25-75.10) g/m2, p=0.03; and 0.49 (0.35-0.60) vs 0.39 (0.33-0.62), p<0.01, respectively]. There were significant correlations between MPI and Ca (r=0.566, p<0.001), and PTH (r=0.472, p<0.001). Our study results showed that cardiacmorphology and diastolic functions are altered in the patients with asymptomatic PHPT. High serum PTH and Ca levels may have an impact on these CV changes. Whether these subtle CV changes would affect cardiac systolic functions and mortality in patients with asymptomatic PHPT should be investigated in further prospective studies.

  18. The Effects of Bariatric Surgery on Cardiac Structure and Function: a Systematic Review of Cardiac Imaging Outcomes.

    Science.gov (United States)

    Aggarwal, Ravi; Harling, Leanne; Efthimiou, Evangelos; Darzi, Ara; Athanasiou, Thanos; Ashrafian, Hutan

    2016-05-01

    Obesity is associated with cardiac dysfunction, atherosclerosis, and increased cardiovascular risk. It can be lead to obesity cardiomyopathy and severe heart failure, which in turn raise morbidity and mortality while carrying a negative impact on quality of life. There is increasing clinical and mechanistic evidence on the metabolic and weight loss effects of bariatric surgery on improving cardiac structure and function in obese patients. The objective of this study was to quantify the effects of bariatric surgery on cardiac structure and function by appraising cardiac imaging changes before and after metabolic operations. This is a comprehensive systematic review of studies reporting pre-operative and post-operative echocardiographic or magnetic resonance cardiac indices in obese patients undergoing bariatric surgery. Studies were quality scored, and data were meta-analyzed using random effects modeling. Bariatric surgery is associated with significant improvements in the weighted incidence of a number of cardiac indices including a decrease in left ventricular mass index (11.2%, 95% confidence intervals (CI) 8.2-14.1%), left ventricular end-diastolic volume (13.28 ml, 95% CI 5.22-21.34 ml), and left atrium diameter (1.967 mm, 95% CI 0.980-2.954). There were beneficial increases in left ventricular ejection fraction (1.198%, 95%CI -0.050-2.347) and E/A ratio (0.189%, 95%CI -0.113-0.265). Bariatric surgery offers beneficial cardiac effects on diastolic function, systolic function, and myocardial structure in obese patients. These may derive from surgical modulation of an enterocardiac axis. Future studies must focus on higher evidence levels to better identify the most successful bariatric approaches in preventing and treating the broad spectrum of obesity-associated heart disease while also enhancing treatment strategies in the management of obesity cardiomyopathy.

  19. Relationship between quantitative evaluation of myocardial infarction size using gated CT and cardiac function

    International Nuclear Information System (INIS)

    Kuroki, Kazunori

    1990-01-01

    The purpose of this study is to evaluate the relationship between quantitative evaluation of myocardial infarction size on Gated CT and cardiac function. A total 56 cases of myocardial infarction were studied. Calculation of infarct size ratio to whole left ventricle myocardium was performed. Correlation was evaluated between infarct size and various methods of grading cardiac functions (effort tolerance potentiality, NYHA classification of cardiac function, cardiac failure and complications). Good correlation with NYHA classification of cardiac function and cardiac failure was obtained. However, there was no significant correlation with effort tolerance potentiality and complications. In conclusion, it is warranted to say that quantitative evaluation of myocardial infarction size on Gated CT is very useful for management decision of patients with myocardial infarction. (author)

  20. Phosphofructo-1-kinase deficiency leads to a severe cardiac and hematological disorder in addition to skeletal muscle glycogenosis.

    Directory of Open Access Journals (Sweden)

    Miguel García

    2009-08-01

    Full Text Available Mutations in the gene for muscle phosphofructo-1-kinase (PFKM, a key regulatory enzyme of glycolysis, cause Type VII glycogen storage disease (GSDVII. Clinical manifestations of the disease span from the severe infantile form, leading to death during childhood, to the classical form, which presents mainly with exercise intolerance. PFKM deficiency is considered as a skeletal muscle glycogenosis, but the relative contribution of altered glucose metabolism in other tissues to the pathogenesis of the disease is not fully understood. To elucidate this issue, we have generated mice deficient for PFKM (Pfkm(-/-. Here, we show that Pfkm(-/- mice had high lethality around weaning and reduced lifespan, because of the metabolic alterations. In skeletal muscle, including respiratory muscles, the lack of PFK activity blocked glycolysis and resulted in considerable glycogen storage and low ATP content. Although erythrocytes of Pfkm(-/- mice preserved 50% of PFK activity, they showed strong reduction of 2,3-biphosphoglycerate concentrations and hemolysis, which was associated with compensatory reticulocytosis and splenomegaly. As a consequence of these haematological alterations, and of reduced PFK activity in the heart, Pfkm(-/- mice developed cardiac hypertrophy with age. Taken together, these alterations resulted in muscle hypoxia and hypervascularization, impaired oxidative metabolism, fiber necrosis, and exercise intolerance. These results indicate that, in GSDVII, marked alterations in muscle bioenergetics and erythrocyte metabolism interact to produce a complex systemic disorder. Therefore, GSDVII is not simply a muscle glycogenosis, and Pfkm(-/- mice constitute a unique model of GSDVII which may be useful for the design and assessment of new therapies.

  1. Chronic zinc deficiency alters chick gut microbiota composition and function

    Science.gov (United States)

    Zinc (Zn) deficiency is a prevalent micronutrient insufficiency. Although the gut is a vital organ for Zn utilization, and Zn deficiency is associated with impaired intestinal permeability and a global decrease in gastrointestinal health, alterations in the gut microbial ecology of the host under co...

  2. Electron transfer flavoprotein deficiency: Functional and molecular aspects

    DEFF Research Database (Denmark)

    Schiff, M; Froissart, R; Olsen, Rikke Katrine Jentoft

    2006-01-01

    Multiple acyl-CoA dehydrogenase deficiency (MADD) is a recessively inherited metabolic disorder that can be due to a deficiency of electron transfer flavoprotein (ETF) or its dehydrogenase (ETF-ubiquinone oxidoreductase). ETF is a mitochondrial matrix protein consisting of alpha- (30kDa) and beta...

  3. Functional Effects of Hyperthyroidism on Cardiac Papillary Muscle in Rats

    Directory of Open Access Journals (Sweden)

    Fabricio Furtado Vieira

    Full Text Available Abstract Background: Hyperthyroidism is currently recognized to affect the cardiovascular system, leading to a series of molecular and functional changes. However, little is known about the functional influence of hyperthyroidism in the regulation of cytoplasmic calcium and on the sodium/calcium exchanger (NCX in the cardiac muscle. Objectives: To evaluate the functional changes in papillary muscles isolated from animals with induced hyperthyroidism. Methods: We divided 36 Wistar rats into a group of controls and another of animals with hyperthyroidism induced by intraperitoneal T3 injection. We measured in the animals' papillary muscles the maximum contraction force, speed of contraction (+df/dt and relaxation (-df/dt, contraction and relaxation time, contraction force at different concentrations of extracellular sodium, post-rest potentiation (PRP, and contraction force induced by caffeine. Results: In hyperthyroid animals, we observed decreased PRP at all rest times (p < 0.05, increased +df/dt and -df/dt (p < 0.001, low positive inotropic response to decreased concentration of extracellular sodium (p < 0.001, reduction of the maximum force in caffeine-induced contraction (p < 0.003, and decreased total contraction time (p < 0.001. The maximal contraction force did not differ significantly between groups (p = 0.973. Conclusion: We hypothesize that the changes observed are likely due to a decrease in calcium content in the sarcoplasmic reticulum, caused by calcium leakage, decreased expression of NCX, and increased expression of a-MHC and SERCA2.

  4. Effects of a single terlipressin administration on cardiac function and perfusion in cirrhosis

    DEFF Research Database (Denmark)

    Krag, Aleksander; Bendtsen, Flemming; Mortensen, Christian

    2010-01-01

    BACKGROUND: The vasoconstrictor terlipressin is widely used in the treatment of the hepatorenal syndrome and variceal bleeding. However, terlipressin may compromise cardiac function and induce ischemia. AIM: Therefore, we aimed to assess the effects of terlipressin on cardiac function and perfusi...

  5. Effect of exercise combined with glucagon-like peptide-1 receptor agonist treatment on cardiac function

    DEFF Research Database (Denmark)

    Jørgensen, Peter G; Jensen, Magnus T; Mensberg, Pernille

    2017-01-01

    In patients with type 2 diabetes, both supervised exercise and treatment with the glucagon-like peptide-1 (GLP-1) receptor agonist (GLP-1RA) liraglutide may improve cardiac function. We evaluated cardiac function before and after 16 weeks of treatment with the GLP-1RA liraglutide or placebo...

  6. 67. Do prenatal intracardiac echogenic foci affect postnatal cardiac function?

    Directory of Open Access Journals (Sweden)

    R. Bader

    2016-07-01

    Full Text Available Echogenic foci in the prenatal hear is not an uncommon finding. To determine whether prenatally diagnosed intracardiac echogenic foci are associated with neonatal cardiac dysfunction and persistence. Fetuses in which intracardiac echogenic foci were shown on prenatal sonography at 1 perinatal center from (September 2009 to December 2013 underwent postnatal echocardiography at ages 1 month to1 year. A single pediatric cardiologist assessed cardiac function by measuring the left ventricular shortening fraction and myocardial performance index. The presence of tricuspid valve regurgitation was also sought. Prenatally 60 fetuses had intracardiac echogenic foci mean age ± SD at diagnosis (23 ± 3.1. 53 (88.3% had left ventricular intracardiac echogenic foci, and 7 (11.6% had right ventricular intracardiac echogenic foci. 12 preganant ladies were lost for follow up (2 fetuses of 7 (28.5% with right ventricular intracardiac echogenic foci., and 10 fetuses of 53 (18.8% with LV intracardiac echogenic foci %. Post natally, those infants, 32 (66.6% males and 16 (33.3% females were examined. At a mean age ± SD of 7.4 ± 3.1 months. Prenatally, all infants had a normal left ventricular shortening fraction. The overall mean left ventricular myocardial performance index (reference value, 0.36 ± 0.06, was normal for both infants with left ventricular intracardiac echogenic foci (0.32 ± 0.01 and those with right ventricular intracardiac echogenic foci (0.33 ± 0.05. Trace tricuspid valve regurgitation were noted in 15 (31% of the infants. Left ventricular intracardiac echogenic foci persisted in 15 infants (34.8%, whereas right ventricular intracardiac echogenic foci persisted in 1 infant (20%. Prenatally diagnosed intracardiac echogenic foci can be persistent but is not associated with myocardial dysfunction in the first year of life.

  7. Cardiac Atrophy and Diastolic Dysfunction During and After Long Duration Spaceflight: Functional Consequences for Orthostatic Intolerance, Exercise Capability and Risk for Cardiac Arrhythmias

    Science.gov (United States)

    Levine, Benjamin D.; Bungo, Michael W.; Platts, Steven H.; Hamilton, Douglas R.; Johnston, Smith L.

    2009-01-01

    Cardiac Atrophy and Diastolic Dysfunction During and After Long Duration Spaceflight: Functional Consequences for Orthostatic Intolerance, Exercise Capability and Risk for Cardiac Arrhythmias (Integrated Cardiovascular) will quantify the extent of long-duration space flightassociated cardiac atrophy (deterioration) on the International Space Station crewmembers.

  8. [Functional iron deficiency, inflammation and fatigue after radiotherapy].

    Science.gov (United States)

    Grellier, Noémie; Deray, Gilbert; Yousfi, Amani; Khodari, Wassim; Bouaita, Ryan; Belkacemi, Yazid

    2015-09-01

    Radiation therapy is associated with a fatigue in the majority of patients with a relative variability according to the type of the tumour, comorbidities, associated treatments and the extent of the irradiation. Its origin is multifactorial. One explanation described is that fatigue could be related to the inflammation caused by irradiation exposure. One of the suspected mechanisms is a functional iron deficiency following pro-inflammatory cytokines synthesis, particularly the interleukins 1 and 6. This phenomenon is accompanied by a reduced availability of iron, while iron reserves are normal or increased. Thus, iron inaccessibility induces lower coefficient of transferrin saturation, which can lead to a non-regenerative normocytic or microcytic anaemia. The availability of iron is controlled by hepcidin that is synthesized in the liver as a response to radiation-induced inflammatory. The presence of hepcidin blocks iron absorption in the intestine and decreases its recycling from senescent red blood cells. A direct relationship between elevated levels of hepcidin, inflammation markers and radiation-induced side effects have been reported. The aim of the article is to review the literature related to fatigue in radiotherapy and understand the mechanisms involved or worsening its occurrence to consider better care and improve patients' quality. Copyright © 2015 Société Française du Cancer. Published by Elsevier Masson SAS. All rights reserved.

  9. Spironolactone in chronic hemodialysis patients improves cardiac function

    International Nuclear Information System (INIS)

    Taheri, Shahram; Mortazavi, Mojhgan; Shahidi Shahrzad; Seirafian, Shiva; Pourmoghadas, Ali; Garakyaraghi, Mohammad; Eshaghian, Afrooz; Ghassami, Maryam

    2009-01-01

    We performed this study to assess whether low dose spironolactone could be administered in hemodialysis (HD) patients with moderate to severe heart failure to improve cardiovascular function and reduce hospitalization without inducing hyperkalemia. We enrolled 16 chronic HD patients with moderate to severe heart failure and left ventricle ejection fraction :5 45%. In a double blinded randomized placebo controlled study, one group of 8 patients received 25 mg of spironolactone after each dialysis session within six months, and the rest received a placebo. Echocardiography was performed on all the patients to assess ejection fraction and left ventricular mass during 12 hours after completion of hemodialysis at the beginning and the end of study. Serum potassium was measured predialysis every 4 weeks. The mean ejection fraction increased significantly more in spironolactone group during the study period than in the placebo group (6.2 + - 1.64 vs. 0.83 + - 4.9, P0.046). The mean left ventricular mass decreased in the spironolactone group, but increased significantly in the placebo group during the period (-8.4 + - 4.72 vs. 3 + -7.97. 95%, P= 0.021). The incidence of hyperkalemia was not significantly increased in the study or controlled groups. In conclusion, we found in this study that administration of spironolactone in chronic HD patients with moderate to severe heart failure substantially improved their cardiac function and decreases left ventricular mass without development of significant hyperkalemia. (author)

  10. Reduced Right Ventricular Function Predicts Long-Term Cardiac Re-Hospitalization after Cardiac Surgery.

    Directory of Open Access Journals (Sweden)

    Leela K Lella

    Full Text Available The significance of right ventricular ejection fraction (RVEF, independent of left ventricular ejection fraction (LVEF, following isolated coronary artery bypass grafting (CABG and valve procedures remains unknown. The aim of this study is to examine the significance of abnormal RVEF by cardiac magnetic resonance (CMR, independent of LVEF in predicting outcomes of patients undergoing isolated CABG and valve surgery.From 2007 to 2009, 109 consecutive patients (mean age, 66 years; 38% female were referred for pre-operative CMR. Abnormal RVEF and LVEF were considered 30 days outcomes included, cardiac re-hospitalization, worsening congestive heart failure and mortality. Mean clinical follow up was 14 months.Forty-eight patients had reduced RVEF (mean 25% and 61 patients had normal RVEF (mean 50% (p<0.001. Fifty-four patients had reduced LVEF (mean 30% and 55 patients had normal LVEF (mean 59% (p<0.001. Patients with reduced RVEF had a higher incidence of long-term cardiac re-hospitalization vs. patients with normal RVEF (31% vs.13%, p<0.05. Abnormal RVEF was a predictor for long-term cardiac re-hospitalization (HR 3.01 [CI 1.5-7.9], p<0.03. Reduced LVEF did not influence long-term cardiac re-hospitalization.Abnormal RVEF is a stronger predictor for long-term cardiac re-hospitalization than abnormal LVEF in patients undergoing isolated CABG and valve procedures.

  11. Reduced Right Ventricular Function Predicts Long-Term Cardiac Re-Hospitalization after Cardiac Surgery.

    Science.gov (United States)

    Lella, Leela K; Sales, Virna L; Goldsmith, Yulia; Chan, Jacqueline; Iskandir, Marina; Gulkarov, Iosif; Tortolani, Anthony; Brener, Sorin J; Sacchi, Terrence J; Heitner, John F

    2015-01-01

    The significance of right ventricular ejection fraction (RVEF), independent of left ventricular ejection fraction (LVEF), following isolated coronary artery bypass grafting (CABG) and valve procedures remains unknown. The aim of this study is to examine the significance of abnormal RVEF by cardiac magnetic resonance (CMR), independent of LVEF in predicting outcomes of patients undergoing isolated CABG and valve surgery. From 2007 to 2009, 109 consecutive patients (mean age, 66 years; 38% female) were referred for pre-operative CMR. Abnormal RVEF and LVEF were considered hospitalizations and early mortaility; long-term (> 30 days) outcomes included, cardiac re-hospitalization, worsening congestive heart failure and mortality. Mean clinical follow up was 14 months. Forty-eight patients had reduced RVEF (mean 25%) and 61 patients had normal RVEF (mean 50%) (plong-term cardiac re-hospitalization vs. patients with normal RVEF (31% vs.13%, plong-term cardiac re-hospitalization (HR 3.01 [CI 1.5-7.9], plong-term cardiac re-hospitalization. Abnormal RVEF is a stronger predictor for long-term cardiac re-hospitalization than abnormal LVEF in patients undergoing isolated CABG and valve procedures.

  12. Sodium Channel (Dys)Function and Cardiac Arrhythmias

    NARCIS (Netherlands)

    Remme, Carol Ann; Bezzina, Connie R.

    2010-01-01

    P>Cardiac voltage-gated sodium channels are transmembrane proteins located in the cell membrane of cardiomyocytes. Influx of sodium ions through these ion channels is responsible for the initial fast upstroke of the cardiac action potential. This inward sodium current thus triggers the initiation

  13. Cardiac function of the naked mole-rat: ecophysiological responses to working underground.

    Science.gov (United States)

    Grimes, Kelly M; Voorhees, Andrew; Chiao, Ying Ann; Han, Hai-Chao; Lindsey, Merry L; Buffenstein, Rochelle

    2014-03-01

    The naked mole-rat (NMR) is a strictly subterranean rodent with a low resting metabolic rate. Nevertheless, it can greatly increase its metabolic activity to meet the high energetic demands associated with digging through compacted soils in its xeric natural habitat where food is patchily distributed. We hypothesized that the NMR heart would naturally have low basal function and exhibit a large cardiac reserve, thereby mirroring the species' low basal metabolism and large metabolic scope. Echocardiography showed that young (2-4 yr old) healthy NMRs have low fractional shortening (28 ± 2%), ejection fraction (43 ± 2%), and cardiac output (6.5 ± 0.4 ml/min), indicating low basal cardiac function. Histology revealed large NMR cardiomyocyte cross-sectional area (216 ± 10 μm(2)) and cardiac collagen deposition of 2.2 ± 0.4%. Neither of these histomorphometric traits was considered pathological, since biaxial tensile testing showed no increase in passive ventricular stiffness. NMR cardiomyocyte fibers showed a low degree of rotation, contributing to the observed low NMR cardiac contractility. Interestingly, when the exercise mimetic dobutamine (3 μg/g ip) was administered, NMRs showed pronounced increases in fractional shortening, ejection fraction, cardiac output, and stroke volume, indicating an increased cardiac reserve. The relatively low basal cardiac function and enhanced cardiac reserve of NMRs are likely to be ecophysiological adaptations to life in an energetically taxing environment.

  14. Assessment of cardiac function and circulatory status in critically ill patients

    Directory of Open Access Journals (Sweden)

    Gorazd Voga

    2007-12-01

    Full Text Available Background: Assessment of cardiac function and circulation is mandatory in almost all critically ill patients. In many patients morphological diagnosis of actual or pre-existing cardiac diseases and their functional consequences should be obtained.Methods: Cardiac function can be assessed by various non-invasive and invasive methods. The value of every method should be assessed according to its ability and reliability to assess preload, cardiac output and the adequacy of flow. In hemodinamically unstable patients frequent reassessment must be performed, because of rapid changes of patients’ conditions. Therefore, all methods for hemodynamic assessment in the ICU must be available on the 24 hours basis. Combined non-invasive and invasive approach to the assessment of cardiac function and circulation is preferred. After initial assessment of cardiac function according to clinical examination, electrocardiogram, chest X-ray and blood gas analysis, echocardiography is routinely used. When continuous monitoring of cardiac function is mandatory, complete invasive monitoring with pulmonary artery catheter and arterial line is employed. Monitoring of pulmonary pressures, continuous cardiac output, mixed venous blood oxygen saturation, and parameters of right ventricular function is the best choice to obtain complete information of hemodynamic situation. In patients with increased pulmonary vascular permeability the monitoring of cardiac output by pulse contour method together with measurement of intrathoracic blood volume and extravascular lung water could be even better choice.Conclusions: Assessment of cardiac function and circulatory status by rational use of various non-invasive and invasive methods is one of the essential components of critical care management.

  15. Cardiac structure and function during ageing in energetically compromised Guanidinoacetate N-methyltransferase (GAMT-knockout mice – a one year longitudinal MRI study

    Directory of Open Access Journals (Sweden)

    Clarke Kieran

    2008-02-01

    Full Text Available Abstract Background High-resolution magnetic resonance imaging (cine-MRI is well suited for determining global cardiac function longitudinally in genetically or surgically manipulated mice, but in practice it is seldom used to its full potential. In this study, male and female guanidinoacetate N-methyltransferase (GAMT knockout, and wild type littermate mice were subjected to a longitudinal cine-MRI study at four time points over the course of one year. GAMT is an essential enzyme in creatine biosynthesis, such that GAMT deficient mice are entirely creatine-free. Since creatine plays an important role in the buffering and transfer of high-energy phosphate bonds in the heart, it was hypothesized that lack of creatine would be detrimental for resting cardiac performance during ageing. Methods Measurements of cardiac structure (left ventricular mass and volumes and function (ejection fraction, stroke volume, cardiac output were obtained using high-resolution cine-MRI at 9.4 T under isoflurane anaesthesia. Results There were no physiologically significant differences in cardiac function between wild type and GAMT knockout mice at any time point for male or female groups, or for both combined (for example ejection fraction: 6 weeks (KO vs. WT: 70 ± 6% vs. 65 ± 7%; 4 months: 70 ± 6% vs. 62 ± 8%; 8 months: 62 ± 11% vs. 62 ± 6%; 12 months: 61 ± 7% vs. 59 ± 11%, respectively. Conclusion These findings suggest the presence of comprehensive adaptations in the knockout mice that can compensate for a lack of creatine. Furthermore, this study clearly demonstrates the power of cine-MRI for accurate non-invasive, serial cardiac measurements. Cardiac growth curves could easily be defined for each group, in the same set of animals for all time points, providing improved statistical power, and substantially reducing the number of mice required to conduct such a study. This technique should be eminently useful for following changes of cardiac structure and

  16. New developments in paediatric cardiac functional ultrasound imaging.

    Science.gov (United States)

    de Korte, Chris L; Nillesen, Maartje M; Saris, Anne E C M; Lopata, Richard G P; Thijssen, Johan M; Kapusta, Livia

    2014-07-01

    Ultrasound imaging can be used to estimate the morphology as well as the motion and deformation of tissues. If the interrogated tissue is actively deforming, this deformation is directly related to its function and quantification of this deformation is normally referred as 'strain imaging'. Tissue can also be deformed by applying an internal or external force and the resulting, induced deformation is a function of the mechanical tissue characteristics. In combination with the load applied, these strain maps can be used to estimate or reconstruct the mechanical properties of tissue. This technique was named 'elastography' by Ophir et al. in 1991. Elastography can be used for atherosclerotic plaque characterisation, while the contractility of the heart or skeletal muscles can be assessed with strain imaging. Rather than using the conventional video format (DICOM) image information, radio frequency (RF)-based ultrasound methods enable estimation of the deformation at higher resolution and with higher precision than commercial methods using Doppler (tissue Doppler imaging) or video image data (2D speckle tracking methods). However, the improvement in accuracy is mainly achieved when measuring strain along the ultrasound beam direction, so it has to be considered a 1D technique. Recently, this method has been extended to multiple directions and precision further improved by using spatial compounding of data acquired at multiple beam steered angles. Using similar techniques, the blood velocity and flow can be determined. RF-based techniques are also beneficial for automated segmentation of the ventricular cavities. In this paper, new developments in different techniques of quantifying cardiac function by strain imaging, automated segmentation, and methods of performing blood flow imaging are reviewed and their application in paediatric cardiology is discussed.

  17. Does systemic steroid deficiency affect inner ear functions?

    Science.gov (United States)

    Dogan, Remzi; Merıc, Ayşenur; Gedık, Ozge; Tugrul, Selahattin; Eren, Sabri Baki; Ozturan, Orhan

    2015-01-01

    Today corticosteroids are employed for the treatment of various inner ear disorders. In this study we have investigated probable changes in hearing functions resulting from a deficiency of systemic steroid secretions. Twenty four healthy female rats were used in our study, allocated into three groups (medical adrenalectomy, medical adrenalectomy+dexamethasone, no treatment). Audiological evaluations were conducted at the beginning of the study and on days 7, 14 and 21. Blood samples were taken at the beginning and at the end of the study and blood corticosterone levels were determined. While there were no significant differences between the basal, 7th, 14th and 21st day DPOAE values of group 1, their ABR threshold values showed significant increases. In group 2, there were no significant differences between the basal, 7th, 14th and 21st day DPOAE values. ABR thresholds of group 2 showed significant increases on days 7 and 14 as compared to their basal values, but there were no significant differences between the 21st day and basal ABR threshold values. There were no significant differences between the basal cortisol levels of the three groups. The mean cortisol level of group 1 on day 21 was found to be significantly lower than those of groups 2 and 3. The results of the study demonstrated that there were no significant changes in DPOAE values with the cessation of cortisol secretion, while there was a progressive increase in ABR thresholds, which could be overcome with cortisone replacement. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Evaluation of cardiac functions in patients with thalassemia major

    International Nuclear Information System (INIS)

    Kucuk, N.O.; Aras, G.; Sipahi, T.; Ibis, E.; Akar, N.; Soylu, A.; Erbay, G.

    1999-01-01

    It is known that a blood transfusion is necessary for survival in patients with thalassemia, but it may cause myocardial dysfunction due to myocardial siderosis as in other organs. The aim of this study was to evaluate myocardial perfusion by means of stress thallium scanning (MPS) and left ventricular functions by rest radionuclide ventriculography (RNV). Twenty-one patients at ages 9-16 (mean 12.1±3.2) who have been diagnosed with thalassemia for 4-15 years mean 12.7±4.8) were included in the study. They had blood transfusion 78-318 times (mean 162.1±71). MPS and RNV was performed within two days after the any transfusion. MPS showed ischemia in 3 patients and normal perfusion in 18 patients. RNV revealed normal systolic parameters (wall motion, EF, PER, TPE) but diminished diastolic parameters (TPF, PFR) compared with normal values (p<0.05). We conclude that ischemia or fixed defects may be seen in stress MPS as results of cardiac involvement in patients with thalassemia. But, RNV is an important and preferable test for the early detection of subclinic cardiomyopathy. RNV may therefore show diastolic abnormalities before the systolic abnormalities show up. (author)

  19. Evaluation of cardiac functions in patients with thalassemia major

    Energy Technology Data Exchange (ETDEWEB)

    Kucuk, N.O.; Aras, G.; Sipahi, T.; Ibis, E.; Akar, N.; Soylu, A.; Erbay, G. [Ankara Univ. (Turkey). Medical School

    1999-06-01

    It is known that a blood transfusion is necessary for survival in patients with thalassemia, but it may cause myocardial dysfunction due to myocardial siderosis as in other organs. The aim of this study was to evaluate myocardial perfusion by means of stress thallium scanning (MPS) and left ventricular functions by rest radionuclide ventriculography (RNV). Twenty-one patients at ages 9-16 (mean 12.1{+-}3.2) who have been diagnosed with thalassemia for 4-15 years mean 12.7{+-}4.8) were included in the study. They had blood transfusion 78-318 times (mean 162.1{+-}71). MPS and RNV was performed within two days after the any transfusion. MPS showed ischemia in 3 patients and normal perfusion in 18 patients. RNV revealed normal systolic parameters (wall motion, EF, PER, TPE) but diminished diastolic parameters (TPF, PFR) compared with normal values (p<0.05). We conclude that ischemia or fixed defects may be seen in stress MPS as results of cardiac involvement in patients with thalassemia. But, RNV is an important and preferable test for the early detection of subclinic cardiomyopathy. RNV may therefore show diastolic abnormalities before the systolic abnormalities show up. (author)

  20. Cardiac Function in 7-8-Year-Old Offspring of Women with Type 1 Diabetes

    Directory of Open Access Journals (Sweden)

    Maarten Rijpert

    2011-01-01

    Full Text Available Offspring of type 1 diabetic mothers (ODMs are at risk of short-term and long-term complications, such as neonatal macrosomia (birth weight >90th percentile, hypertrophic cardiomyopathy, and cardiovascular morbidity in later life. However, no studies have been performed regarding cardiac outcome. In this study, we investigated cardiac dimensions and function in 30 ODMs at 7-8 years of age in relation to neonatal macrosomia and maternal glycemic control during pregnancy and compared these with those in a control group of 30 children of nondiabetic women. We found that cardiac dimensions and systolic and diastolic function parameters in ODMs were comparable with those in controls. Neonatal macrosomia and poorer maternal glycemic control during pregnancy were not related to worse cardiac outcome in ODM. We conclude that cardiac function at 7-8 years of age in offspring of women with type 1 diabetes is reassuring and comparable with that in controls.

  1. Cardiac Nonmyocyte Cell Functions and Crosstalks in Response to Cardiotoxic Drugs

    Directory of Open Access Journals (Sweden)

    Jessica Gambardella

    2017-01-01

    Full Text Available The discovery of the molecular mechanisms involved in the cardiac responses to anticancer drugs represents the current goal of cardio-oncology research. The oxidative stress has a pivotal role in cardiotoxic responses, affecting the function of all types of cardiac cells, and their functional crosstalks. Generally, cardiomyocytes are the main target of research studies on cardiotoxicity, but recently the contribution of the other nonmyocyte cardiac cells is becoming of growing interest. This review deals with the role of oxidative stress, induced by anticancer drugs, in cardiac nonmyocyte cells (fibroblasts, vascular cells, and immune cells. The alterations of functional interplays among these cardiac cells are discussed, as well. These interesting recent findings increase the knowledge about cardiotoxicity and suggest new molecular targets for both diagnosis and therapy.

  2. Age-related normal structural and functional ventricular values in cardiac function assessed by magnetic resonance

    International Nuclear Information System (INIS)

    Fiechter, Michael; Gaemperli, Oliver; Kaufmann, Philipp A; Fuchs, Tobias A; Gebhard, Catherine; Stehli, Julia; Klaeser, Bernd; Stähli, Barbara E; Manka, Robert; Manes, Costantina; Tanner, Felix C

    2013-01-01

    The heart is subject to structural and functional changes with advancing age. However, the magnitude of cardiac age-dependent transformation has not been conclusively elucidated. This retrospective cardiac magnetic resonance (CMR) study included 183 subjects with normal structural and functional ventricular values. End systolic volume (ESV), end diastolic volume (EDV), and ejection fraction (EF) were obtained from the left and the right ventricle in breath-hold cine CMR. Patients were classified into four age groups (20–29, 30–49, 50–69, and ≥70 years) and cardiac measurements were compared using Pearson’s rank correlation over the four different groups. With advanced age a slight but significant decrease in ESV (r=−0.41 for both ventricles, P<0.001) and EDV (r=−0.39 for left ventricle, r=−0.35 for right ventricle, P<0.001) were observed associated with a significant increase in left (r=0.28, P<0.001) and right (r=0.27, P<0.01) ventricular EF reaching a maximal increase in EF of +8.4% (P<0.001) for the left and +6.1% (P<0.01) for the right ventricle in the oldest compared to the youngest patient group. Left ventricular myocardial mass significantly decreased over the four different age groups (P<0.05). The aging process is associated with significant changes in left and right ventricular EF, ESV and EDV in subjects with no cardiac functional and structural abnormalities. These findings underline the importance of using age adapted values as standard of reference when evaluating CMR studies

  3. Right ventricular function declines after cardiac surgery in adult patients with congenital heart disease

    NARCIS (Netherlands)

    Schuuring, Mark J.; Bolmers, Pauline P. M.; Mulder, Barbara J. M.; de Bruin-Bon, Rianne H. A. C. M.; Koolbergen, Dave R.; Hazekamp, Mark G.; Lagrand, Wim K.; de Hert, Stefan G.; de Beaumont, E. M. F. H.; Bouma, Berto J.

    2012-01-01

    Right ventricular function (RVF) is often selectively declined after coronary artery bypass graft surgery. In adult patients with congenital heart disease (CHD) the incidence and persistence of declined RVF after cardiac surgery is unknown. The current study aimed to describe RVF after cardiac

  4. Inhalation of Simulated Smog Atmospheres Affects Cardiac Function in Mice

    Science.gov (United States)

    The health effects of individual criteria air pollutants have been well investigated. However, little is known about the health effects of air pollutant mixtures that more realistically represent environmental exposures. The present study was designed to evaluate the cardiac eff...

  5. Comparison of yoga and walking-exercise on cardiac time intervals as a measure of cardiac function in elderly with increased pulse pressure

    Directory of Open Access Journals (Sweden)

    Satish Gurunathrao Patil

    2017-07-01

    Conclusions: Yoga practice for 3 months showed a significant improvement in diastolic function with a minimal change in systolic function. Yoga is more effective than walking in improving cardiac function in elderly with high PP.

  6. Novel mechanisms for caspase inhibition protecting cardiac function with chronic pressure overload

    OpenAIRE

    Park, Misun; Vatner, Stephen F.; Yan, Lin; Gao, Shumin; Yoon, Seunghun; Lee, Grace Jung Ah; Xie, Lai-Hua; Kitsis, Richard N.; Vatner, Dorothy E.

    2013-01-01

    Myocyte apoptosis is considered a major mechanism in the pathogenesis of heart failure. Accordingly, manipulations that inhibit apoptosis are assumed to preserve cardiac function by maintaining myocyte numbers. We tested this assumption by examining the effects of caspase inhibition (CI) on cardiac structure and function in C57BL/6 mouse with pressure overload model induced by transverse aortic constriction (TAC). CI preserved left ventricular (LV) function following TAC compared with the veh...

  7. Functional Significance of Iron Deficiency. Annual Nutrition Workshop Series, Volume III.

    Science.gov (United States)

    Enwonwu, Cyril O., Ed.

    Iron deficiency anemia impairs cognitive performance, physical capacity, and thermoregulation. Recent evidence suggests that these functional impairments are also evident in subclinical nonanemic iron deficiency. Very little is known about the relevance of the latter to the health of blacks, who have been shown to have the highest prevalence of…

  8. Iodine deficiency and functional performance of schoolchildren in Benin

    NARCIS (Netherlands)

    Briel-van Ingen, van den T.

    2001-01-01

    The notion that iodine deficiency may lead not only to goiter and cretinism, but to a much wider range of disorders, from stillbirth and abortions, to hearing problems and mental and physical underdevelopment began to be accepted beyond the research community since the early 1980's. In 1990 it was

  9. Immune function during GH treatment in GH-deficient adults

    DEFF Research Database (Denmark)

    Sneppen, S B; Mersebach, H; Ullum, H

    2002-01-01

    investigated were unaltered. CONCLUSIONS: GH deficiency was associated with changes in lymphocyte subsets and impaired unstimulated and stimulated natural killer cell activity, but these remained abnormal during 18 months of GH replacement therapy. Extra-pituitary GH gene expression in, e.g. lymphoid tissues...

  10. Fermitins, the orthologs of mammalian Kindlins, regulate the development of a functional cardiac syncytium in Drosophila melanogaster.

    Directory of Open Access Journals (Sweden)

    James H Catterson

    Full Text Available The vertebrate Kindlins are an evolutionarily conserved family of proteins critical for integrin signalling and cell adhesion. Kindlin-2 (KIND2 is associated with intercalated discs in mice, suggesting a role in cardiac syncytium development; however, deficiency of Kind2 leads to embryonic lethality. Morpholino knock-down of Kind2 in zebrafish has a pleiotropic effect on development that includes the heart. It therefore remains unclear whether cardiomyocyte Kind2 expression is required for cardiomyocyte junction formation and the development of normal cardiac function. To address this question, the expression of Fermitin 1 and Fermitin 2 (Fit1, Fit2, the two Drosophila orthologs of Kind2, was silenced in Drosophila cardiomyocytes. Heart development was assessed in adult flies by immunological methods and videomicroscopy. Silencing both Fit1 and Fit2 led to a severe cardiomyopathy characterised by the failure of cardiomyocytes to develop as a functional syncytium and loss of synchrony between cardiomyocytes. A null allele of Fit1 was generated but this had no impact on the heart. Similarly, the silencing of Fit2 failed to affect heart function. In contrast, the silencing of Fit2 in the cardiomyocytes of Fit1 null flies disrupted syncytium development, leading to severe cardiomyopathy. The data definitively demonstrate a role for Fermitins in the development of a functional cardiac syncytium in Drosophila. The findings also show that the Fermitins can functionally compensate for each other in order to control syncytium development. These findings support the concept that abnormalities in cardiomyocyte KIND2 expression or function may contribute to cardiomyopathies in humans.

  11. Functional Relevance of Coronary Artery Disease by Cardiac Magnetic Resonance and Cardiac Computed Tomography: Myocardial Perfusion and Fractional Flow Reserve

    Directory of Open Access Journals (Sweden)

    Gianluca Pontone

    2015-01-01

    Full Text Available Coronary artery disease (CAD is one of the leading causes of morbidity and mortality and it is responsible for an increasing resource burden. The identification of patients at high risk for adverse events is crucial to select those who will receive the greatest benefit from revascularization. To this aim, several non-invasive functional imaging modalities are usually used as gatekeeper to invasive coronary angiography, but the diagnostic yield of elective invasive coronary angiography remains unfortunately low. Stress myocardial perfusion imaging by cardiac magnetic resonance (stress-CMR has emerged as an accurate technique for diagnosis and prognostic stratification of the patients with known or suspected CAD thanks to high spatial and temporal resolution, absence of ionizing radiation, and the multiparametric value including the assessment of cardiac anatomy, function, and viability. On the other side, cardiac computed tomography (CCT has emerged as unique technique providing coronary arteries anatomy and more recently, due to the introduction of stress-CCT and noninvasive fractional flow reserve (FFR-CT, functional relevance of CAD in a single shot scan. The current review evaluates the technical aspects and clinical experience of stress-CMR and CCT in the evaluation of functional relevance of CAD discussing the strength and weakness of each approach.

  12. Nebivolol: impact on cardiac and endothelial function and clinical utility

    Directory of Open Access Journals (Sweden)

    Toblli JE

    2012-03-01

    Full Text Available Jorge Eduardo Toblli1, Federico DiGennaro1, Jorge Fernando Giani2, Fernando Pablo Dominici21Hospital Aleman, 2Instituto de Química y Fisicoquímica Biológicas (IQUIFIB, Facultad de Farmacia y Bioquímica, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, ArgentinaAbstract: Endothelial dysfunction is a systemic pathological state of the endothelium characterized by a reduction in the bioavailability of vasodilators, essentially nitric oxide, leading to impaired endothelium-dependent vasodilation, as well as disarrangement in vascular wall metabolism and function. One of the key factors in endothelial dysfunction is overproduction of reactive oxygen species which participate in the development of hypertension, atherosclerosis, diabetes, cardiac hypertrophy, heart failure, ischemia-reperfusion injury, and stroke. Because impaired endothelial activity is believed to have a major causal role in the pathophysiology of vascular disease, hypertension, and heart failure, therapeutic agents which modify this condition are of clinical interest. Nebivolol is a third-generation β-blocker with high selectivity for β1-adrenergic receptors and causes vasodilation by interaction with the endothelial L-arginine/nitric oxide pathway. This dual mechanism of action underscores several hemodynamic qualities of nebivolol, which include reductions in heart rate and blood pressure and improvements in systolic and diastolic function. Although nebivolol reduces blood pressure to a degree similar to that of conventional β-blockers and other types of antihypertensive drugs, it may have advantages in populations with difficult-to-treat hypertension, such as patients with heart failure along with other comorbidities, like diabetes and obesity, and elderly patients in whom nitric oxide-mediated endothelial dysfunction may be more pronounced. Furthermore, recent data indicate that nebivolol appears to be a cost-effective treatment for elderly patients with

  13. The role of cardiac magnetic resonance in assessing the cardiac involvement in Gaucher type 1 patients: morphological and functional evaluations.

    Science.gov (United States)

    Roghi, Alberto; Poggiali, Erika; Cassinerio, Elena; Pedrotti, Patrizia; Giuditta, Marianna; Milazzo, Angela; Quattrocchi, Giuseppina; Cappellini, Maria Domenica

    2017-04-01

    Type 1 Gaucher disease (GD1) is the most common lysosomal disorder, characterized by the accumulation of beta-glucocerebroside into the macrophages of several organs. Cardiac involvement is rare and referred to as restrictive cardiomyopathy, pulmonary hypertension, and calcifications of the valves and the aortic arch. To assess the cardiovascular status by cardiac magnetic resonance, including evaluation of tissue characterization, in GD1 patients. Nine GD1 patients were recruited at the Tertiary Care Centre for Rare Diseases at Ca' Granda Foundation IRCCS Hospital, Milan. The patients' records were available for a mean time of 6 ± 3 years. Medical history of cardiac disease and cardiovascular risk factors were surveyed by direct interview. Patients were scanned with a 1.5 Avanto Siemens using a comprehensive cardiovascular evaluation protocol, including morphologic and functional sequences with gadolinium contrast media, to assess early and late enhancement (late gadolinium enhancement). Echocardiography was performed to study the cardiac morphology and function, including the measurement of pulmonary pressure. Three patients showed left atrial enlargement, one patient showed moderate aortic stenosis in bicuspid valve with mild aortic dilatation, and one patient showed moderate mitral regurgitation. No evidence of myocardial late gadolinium enhancement was detected after gadolinium contrast media. Seven patients received enzyme replacement therapy for a median of 1 year, and two patients were evaluated at diagnosis. Although cardiac disease in Gaucher disease is considered rare and associated with particular genotypes, we have found two valvular diseases and mild left atrial enlargement in three out of nine patients. Further studies to evaluate the prognostic value of these findings are warranted.

  14. Interferon Regulatory Factor 7 Functions as a Novel Negative Regulator of Pathological Cardiac Hypertrophy

    Science.gov (United States)

    Jiang, Ding-Sheng; Liu, Yu; Zhou, Heng; Zhang, Yan; Zhang, Xiao-Dong; Zhang, Xiao-Fei; Chen, Ke; Gao, Lu; Peng, Juan; Gong, Hui; Chen, Yingjie; Yang, Qinglin; Liu, Peter P.; Fan, Guo-Chang; Zou, Yunzeng; Li, Hongliang

    2017-01-01

    Cardiac hypertrophy is a complex pathological process that involves multiple factors including inflammation and apoptosis. Interferon regulatory factor 7 (IRF7) is a multifunctional regulator that participates in immune regulation, cell differentiation, apoptosis, and oncogenesis. However, the role of IRF7 in cardiac hypertrophy remains unclear. We performed aortic banding in cardiac-specific IRF7 transgenic mice, IRF7 knockout mice, and the wild-type littermates of these mice. Our results demonstrated that IRF7 was downregulated in aortic banding–induced animal hearts and cardiomyocytes that had been treated with angiotensin II or phenylephrine for 48 hours. Accordingly, heart-specific overexpression of IRF7 significantly attenuated pressure overload–induced cardiac hypertrophy, fibrosis, and dysfunction, whereas loss of IRF7 led to opposite effects. Moreover, IRF7 protected against angiotensin II–induced cardiomyocyte hypertrophy in vitro. Mechanistically, we identified that IRF7-dependent cardioprotection was mediated through IRF7 binding to inhibitor of κB kinase-β, and subsequent nuclear factor-κB inactivation. In fact, blocking nuclear factor-κB signaling with cardiac-specific inhibitors of κBαS32A/S36A super-repressor transgene counteracted the adverse effect of IRF7 deficiency. Conversely, activation of nuclear factor-κB signaling via a cardiac-specific conditional inhibitor of κB kinase-βS177E/S181E (constitutively active) transgene negated the antihypertrophic effect of IRF7 overexpression. Our data demonstrate that IRF7 acts as a novel negative regulator of pathological cardiac hypertrophy by inhibiting nuclear factor-κB signaling and may constitute a potential therapeutic target for pathological cardiac hypertrophy. PMID:24396025

  15. Cardiac baroreflex function and dynamic cerebral autoregulation in elderly Masters athletes

    NARCIS (Netherlands)

    Aengevaeren, V.L.; Claassen, J.A.H.R.; Levine, B.D.; Zhang, R.

    2013-01-01

    Cerebral blood flow (CBF) is stably maintained through the combined effects of blood pressure (BP) regulation and cerebral autoregulation. Previous studies suggest that aerobic exercise training improves cardiac baroreflex function and beneficially affects BP regulation, but may negatively affect

  16. M line-deficient titin causes cardiac lethality through impaired maturation of the sarcomere.

    NARCIS (Netherlands)

    Weinert, S.; Bergmann, N.; Luo, X.; Erdmann, B.; Gotthardt, M.

    2006-01-01

    Titin, the largest protein known to date, has been linked to sarcomere assembly and function through its elastic adaptor and signaling domains. Titin's M-line region contains a unique kinase domain that has been proposed to regulate sarcomere assembly via its substrate titin cap (T-cap). In this

  17. Creatine transporter deficiency: Novel mutations and functional studies

    Directory of Open Access Journals (Sweden)

    O. Ardon

    2016-09-01

    Full Text Available X-linked cerebral creatine deficiency (MIM 300036 is caused by deficiency of the creatine transporter encoded by the SLC6A8 gene. Here we report three patients with this condition from Israel. These unrelated patients were evaluated for global developmental delays and language apraxia. Borderline microcephaly was noted in one of them. Diagnosis was prompted by brain magnetic resonance imaging and spectroscopy which revealed normal white matter distribution, but absence of the creatine peak in all three patients. Biochemical testing indicated normal plasma levels of creatine and guanidinoacetate, but an increased urine creatine/creatinine ratio. The diagnosis was confirmed by demonstrating absent [14]C-creatine transport in fibroblasts. Molecular studies indicated that the first patient is hemizygous for a single nucleotide change substituting a single amino acid (c.619 C>T, p.R207W. Expression studies in HeLa cells confirmed the causative role of the R207W substitution. The second patient had a three base pair deletion in the SLC6A8 gene (c.1222_1224delTTC, p.F408del as well as a single base change (c.1254+1G>A at a splicing site in the intron-exon junction of exon 8, the latter occurring de novo. The third patient, had a three base pair deletion (c.1006_1008delAAC, p.N336del previously reported in other patients with creatine transporter deficiency. These three patients are the first reported cases of creatine transporter deficiency in Israel.

  18. [The functional tests in clinical diagnostic laboratory: the detection of magnesium deficiency in the loading test].

    Science.gov (United States)

    Kondakov, A V; Kobylianskiĭ, A G; Tishchenkov, V G; Titov, V N

    2012-06-01

    The article deals with the value and role of functional tests in practice of clinical diagnostic laboratories. The possibilities of evaluation of biological function of homeostasis according the changes of magnesium ions or calcium concentration in urine or blood hence reflecting the deficiency of these ions in vivo. The magnesium tolerant test is described It is demonstrated that it can be applied both in curative preventive institutions and ambulatories. In the examined group of patients, 78% had physiologic parameters of magnesium concentration, 17% suffered from hypermagnesiumuria and 5%--from hypermagnesiumuria. The magnesium deficiency of different degree was detected in 87% of patients. In the most part of patients with magnesium deficiency normomagnesiumuria was detected. Only in one case with normomagnesiumuria the magnesium deficiency was absent. In 30% of patients with magnesium deficiency the concentration of cation in day urine decreased up to 2.2 times after load dose. In absence of deficiency the monotony of cation's excretion was noted. Under the magnesium deficiency the character of process changed but velocity of excretion of magnesium after load probe slightly decreased relative to values before the load. The impact of alcohol under established magnesium deficiency results in increasing of velocity of excretion of this analyte. In patient with diabetes mellitus type II six months before the diagnosis of this disease the hidden deficiency of magnesium was detected. The magnesium deficiency was not detected after the antidiabetic treatment was applied The results permit to postulate the possibility of application oral load test with magnesium to assess the impact of various stress, physical, emotional and psychological factors. The detection of magnesium deficiency permit to broad the complex treatment, to accelerate and to enhance the results of treatment of diseases. Besides, the evaluation of patient's condition according the reaction of the

  19. Comparative Toxicity of Different Crude Oils on the Cardiac Function of Marine Medaka (Oryzias melastigma Embryo

    Directory of Open Access Journals (Sweden)

    Zhendong Zhang

    2014-12-01

    Full Text Available The acute toxic effect of different crude oils (heavy crude oil and bonny light crude oil on embryos of marine medaka Oryzias melastigma was measured and evaluated by exposure to the water-accommodated fraction (WAF in the present study. The cardiac function of medaka embryos was used as target organ of ecotoxicological effect induced by oil exposure. Results showed that the developing marine medaka heart was a sensitive target organ to crude oil exposure the heavy crude oil WAF was more toxic to cardiac function of medaka embryos than bonny light cured oil one. Cardiac function of medaka embryos was clearly affected by exposure to heavy crude oil WAF after 24 hours exposure and showed a dose-dependent slowing of heart rate. Furthermore, swelled and enlarged heart morphology, lowered blood circulation and accumulation of blood cells around the heart area were found. However, the toxic effect of bonny light crude oil on cardiac function of medaka embryos was comparatively low. Statistical results showed that the cardiac function was only affected by highest bonny light crude oil WAF (9.8 mg/L exposure treatment. These findings indicated that cardiac function of marine medaka embryo was a good toxicity model for oil pollution and could be used to compare and evaluate the toxicity of different crude oils. The heart rate was an appropriate endpoint in the acute toxicity test.

  20. Systemic and Cardiac Depletion of M2 Macrophage through CSF-1R Signaling Inhibition Alters Cardiac Function Post Myocardial Infarction.

    Directory of Open Access Journals (Sweden)

    Anne-Laure Leblond

    Full Text Available The heart hosts tissue resident macrophages which are capable of modulating cardiac inflammation and function by multiple mechanisms. At present, the consequences of phenotypic diversity in macrophages in the heart are incompletely understood. The contribution of cardiac M2-polarized macrophages to the resolution of inflammation and repair response following myocardial infarction remains to be fully defined. In this study, the role of M2 macrophages was investigated utilising a specific CSF-1 receptor signalling inhibition strategy to achieve their depletion. In mice, oral administration of GW2580, a CSF-1R kinase inhibitor, induced significant decreases in Gr1lo and F4/80hi monocyte populations in the circulation and the spleen. GW2580 administration also induced a significant depletion of M2 macrophages in the heart after 1 week treatment as well as a reduction of cardiac arginase1 and CD206 gene expression indicative of M2 macrophage activity. In a murine myocardial infarction model, reduced M2 macrophage content was associated with increased M1-related gene expression (IL-6 and IL-1β, and decreased M2-related gene expression (Arginase1 and CD206 in the heart of GW2580-treated animals versus vehicle-treated controls. M2 depletion was also associated with a loss in left ventricular contractile function, infarct enlargement, decreased collagen staining and increased inflammatory cell infiltration into the infarct zone, specifically neutrophils and M1 macrophages. Taken together, these data indicate that CSF-1R signalling is critical for maintaining cardiac tissue resident M2-polarized macrophage population, which is required for the resolution of inflammation post myocardial infarction and, in turn, for preservation of ventricular function.

  1. The growth hormone system and cardiac function in patients with growth hormone disturbances and in the normal population.

    Science.gov (United States)

    Andreassen, Mikkel

    2010-10-01

    Pathological high and low levels of Insulin-like Growth factor I (IGF-I) might exert harmful influences on cardiovascular structures. In the normal population low IGF-I levels might be harmful. In a retrospective investigation in patients with growth hormone deficiency (GHD), normal levels of NT-proBNP at baseline and no changes during two years of GH treatment could be detected. A subsequent prospective study confirmed normal levels of NT-proBNP and also of BNP. Furthermore cardiac systolic function and left ventricle (LV) mass assessed by cardiac magnetic resonance imaging (CMRI) were unchanged compared to control subjects. One year of GH replacement therapy did not change levels of NT-proBNP, BNP or any of the variables obtained by CMRI. In a retrospective study of acromegalic patients we found reduced serum NT-proBNP in the untreated stage and a 4-fold increase after 3 months of treatment. A subsequent prospective CMRI investigation confirmed an initial increase in natriuretic peptides after 3 months treatment, and showed that the increase in natriuretic peptides was accompanied by an increase in end diastolic volume. In a normal population followed prospectively for 5 years, high plasma IGF-I was accompanied by increased incidence of chronic heart failure, whereas IGF-I levels did not seem to influence the overall development of cardiovascular diseases. assessed by sensitive methods patients with GHD had normal systolic function, and one year of GH replacement therapy did not change LV function or size. In acromegalic patients short-term treatment was associated with a minor decrease in cardiac function. In the normal population high levels of IGF-I was a risk factor for development of heart failure. The results illustrates that the interaction between the GH/IGF-I system and cardiovascular disease is very complex.

  2. Overhydration, Cardiac Function and Survival in Hemodialysis Patients.

    Science.gov (United States)

    Onofriescu, Mihai; Siriopol, Dimitrie; Voroneanu, Luminita; Hogas, Simona; Nistor, Ionut; Apetrii, Mugurel; Florea, Laura; Veisa, Gabriel; Mititiuc, Irina; Kanbay, Mehmet; Sascau, Radu; Covic, Adrian

    2015-01-01

    .29-5.89 for RFO >17.4%) and multivariate (HR = 2.31, 95%CI = 1.42-3.77 for RFO >15% and HR = 4.17, 95%CI = 2.48-7.02 for RFO >17.4%) Cox regression analysis. The study shows that the hydration status is associated with the mortality risk in a HD population, independently of cardiac morphology and function. We also describe and propose a new cut-off for RFO, in order to better define the relationship between overhydration and mortality risk. Further studies are needed to properly validate this new cut-off in other HD populations.

  3. Overhydration, Cardiac Function and Survival in Hemodialysis Patients.

    Directory of Open Access Journals (Sweden)

    Mihai Onofriescu

    .67, 95%CI = 2.29-5.89 for RFO >17.4% and multivariate (HR = 2.31, 95%CI = 1.42-3.77 for RFO >15% and HR = 4.17, 95%CI = 2.48-7.02 for RFO >17.4% Cox regression analysis.The study shows that the hydration status is associated with the mortality risk in a HD population, independently of cardiac morphology and function. We also describe and propose a new cut-off for RFO, in order to better define the relationship between overhydration and mortality risk. Further studies are needed to properly validate this new cut-off in other HD populations.

  4. Effect of cardiac function on aortic peak time and peak enhancement during coronary CT angiography

    International Nuclear Information System (INIS)

    Sakai, Shuji; Yabuuchi, Hidetake; Chishaki, Akiko; Okafuji, Takashi; Matsuo, Yoshio; Kamitani, Takeshi; Setoguchi, Taro; Honda, Hiroshi

    2010-01-01

    Purpose: To examine the manner in which cardiac function affects the magnitude and timing of aortic contrast enhancement during coronary CT angiography (CTA). Materials and methods: Twenty-nine patients (21 men, 8 women; mean age, 64.4 ± 13.4 years; mean weight, 59.4 ± 10.3 kg) underwent measurement of cardiac output within 2 weeks of coronary CTA. The cardiac output of each patient was measured by the thermodilution technique and the cardiac index was calculated from the body surface area. During coronary CTA, attenuation of the descending aorta was measured at the workstation every 3 s. The aortic peak time (APT) and aortic peak enhancement (APE) of each patient were calculated. Pearson's correlation coefficient analysis was used to investigate the relationships between the cardiac output or cardiac index and APT or APE. Furthermore, the relationship between patient factors or parameters on test bolus injection and APT or APE was also evaluated. Results: The range of cardiac output, cardiac index, APT, and APE was 1.55-10.46 L/min (mean: 4.77 ± 2.13), 1.11-5.30 L/(min-m 2 ) (mean: 3.28 ± 1.08), 25-51 s (mean: 38.3 ± 7.5), and 273.1-598.1 HU (mean: 390.4 ± 72.1), respectively. With an increase in the cardiac index, both APT (r = -0.698, p < 0.0001) and APE (r = -0.573, p = 0.0009) decreased. There were significant correlations between the patient body weight and APT and APE with the test bolus injection, and with APT and APE during coronary CTA. Conclusion: The APT and APE during coronary CTA are closely related to cardiac function.

  5. Multiple nutritional deficiencies in cerebral palsy compounding physical and functional impairments

    Directory of Open Access Journals (Sweden)

    P G Hariprasad

    2017-01-01

    Full Text Available Introduction: Cerebral palsy (CP refers to a spectrum of disorders causing physical and intellectual morbidity. Macro and micro nutrient deficiencies often contribute to the subnormal physical and mental capabilities of them. Objectives: To assess the growth, nutritional status, physical and functional ability and quality of life in cerebral palsy children and to determine any relation with their gross motor and functional capabilities. Method: The study was conducted at a Tertiary Care Centre, with the participants in the age group 1-16 years. A pretested evaluation tool was prepared which included Anthropometric measurements, tests for hemoglobin and Vitamin D estimation, evidence of micronutrient deficiencies, Dietary patterns, Epidemiological factors, Functional assessment using GMFM (Gross Motor Function Measure and FIM (Functional Independent Measurement scales and Quality of life (QOL assessment. The data was statistically analyzed. Results: Out of the 41 children, 30 had quadriplegia, 3 had hemiplegia and 8 had spastic diplegia. 34 (82.9% were severely underweight, 35 (85.4% had severe stunting and 38 (92.7% had severe wasting. Micronutrient deficiencies were noted like vitamin B complex deficiency in 37 (90.2%, vitamin A deficiency in 31 (75.6%, low vitamin D levels in 27 (65.9% and insufficient levels in 9 (22%, severe anemia in 5 (12.2% and moderate anemia in 26 (63.4%.The gross motor and functional scores were suboptimum in the majority of patients and the care givers had significant impairment in the quality of life. Conclusion: Majority of children with cerebral palsy had multiple nutritional deficiencies, gross motor and functional disabilities. QOL of the children and their care givers were suboptimum. A comprehensive package that address dietary intake, correction of micronutrient deficiencies especially anemia and vitamin D deficiency, physical and emotional support is recommended for the wellbeing of the affected children.

  6. Multimodality Cardiac Imaging for the Assessment of Left Atrial Function and the Association With Atrial Arrhythmias

    DEFF Research Database (Denmark)

    Olsen, Flemming Javier; Bertelsen, Litten; de Knegt, Martina Chantal

    2016-01-01

    Several cardiac imaging modalities are able to visualize the left atrium (LA) and, therefore, allow for quantification of both structural and functional properties of this cardiac chamber. In echocardiography, only the maximal LA volume is included in the assessment of diastolic function at the c......Several cardiac imaging modalities are able to visualize the left atrium (LA) and, therefore, allow for quantification of both structural and functional properties of this cardiac chamber. In echocardiography, only the maximal LA volume is included in the assessment of diastolic function...... atrial fibrillation, which will be a point of focus in this review. Pivotal cardiac magnetic resonance imaging studies have revealed high correlation between LA fibrosis and risk of atrial fibrillation recurrence after catheter ablation, and subsequent multimodality imaging studies have uncovered...... an inverse relationship between LA reservoir function and degree of LA fibrosis. This has sparked an increased interest into the application of advanced imaging modalities, including both speckle tracking echocardiography and tissue tracking by cardiac magnetic resonance imaging. Even though increasing...

  7. Moderate-Intensity Exercise Affects Gut Microbiome Composition and Influences Cardiac Function in Myocardial Infarction Mice

    Directory of Open Access Journals (Sweden)

    Zuheng Liu

    2017-09-01

    Full Text Available Physical exercise is commonly regarded as protective against cardiovascular disease (CVD. Recent studies have reported that exercise alters the gut microbiota and that modification of the gut microbiota can influence cardiac function. Here, we focused on the relationships among exercise, the gut microbiota and cardiac function after myocardial infarction (MI. Four-week-old C57BL/6J mice were exercised on a treadmill for 4 weeks before undergoing left coronary artery ligation. Cardiac function was assessed using echocardiography. Gut microbiomes were evaluated post-exercise and post-MI using 16S rRNA gene sequencing on an Illumina HiSeq platform. Exercise training inhibited declines in cardiac output and stroke volume in post-MI mice. In addition, physical exercise and MI led to alterations in gut microbial composition. Exercise training increased the relative abundance of Butyricimonas and Akkermansia. Additionally, key operational taxonomic units were identified, including 24 lineages (mainly from Bacteroidetes, Barnesiella, Helicobacter, Parabacteroides, Porphyromonadaceae, Ruminococcaceae, and Ureaplasma that were closely related to exercise and cardiac function. These results suggested that exercise training improved cardiac function to some extent in addition to altering the gut microbiota; therefore, they could provide new insights into the use of exercise training for the treatment of CVD.

  8. Therapeutic Inhibition of miR-208a Improves Cardiac Function and Survival During Heart Failure

    Science.gov (United States)

    Montgomery, Rusty L.; Hullinger, Thomas G.; Semus, Hillary M.; Dickinson, Brent A.; Seto, Anita G.; Lynch, Joshua M.; Stack, Christianna; Latimer, Paul A.; Olson, Eric N.; van Rooij, Eva

    2012-01-01

    Background Diastolic dysfunction in response to hypertrophy is a major clinical syndrome with few therapeutic options. MicroRNAs act as negative regulators of gene expression by inhibiting translation or promoting degradation of target mRNAs. Previously, we reported that genetic deletion of the cardiac-specific miR-208a prevents pathological cardiac remodeling and upregulation of Myh7 in response to pressure overload. Whether this miRNA might contribute to diastolic dysfunction or other forms of heart disease is currently unknown. Methods and Results Here, we show that systemic delivery of an antisense oligonucleotide induces potent and sustained silencing of miR-208a in the heart. Therapeutic inhibition of miR-208a by subcutaneous delivery of antimiR-208a during hypertension-induced heart failure in Dahl hypertensive rats dose-dependently prevents pathological myosin switching and cardiac remodeling while improving cardiac function, overall health, and survival. Transcriptional profiling indicates that antimiR-208a evokes prominent effects on cardiac gene expression; plasma analysis indicates significant changes in circulating levels of miRNAs on antimiR-208a treatment. Conclusions These studies indicate the potential of oligonucleotide-based therapies for modulating cardiac miRNAs and validate miR-208 as a potent therapeutic target for the modulation of cardiac function and remodeling during heart disease progression. PMID:21900086

  9. Insights into the clinical and functional significance of cardiac autonomic dysfunction in Chagas disease

    Directory of Open Access Journals (Sweden)

    Luiz Fernando Junqueira Junior

    2012-04-01

    Full Text Available INTRODUCTION: Exclusive or associated lesions in various structures of the autonomic nervous system occur in the chronic forms of Chagas disease. In the indeterminate form, the lesions are absent or mild, whereas in the exclusive or combined heart and digestive disease forms, they are often more pronounced. Depending on their severity these lesions can result mainly in cardiac parasympathetic dysfunction but also in sympathetic dysfunction of variable degrees. Despite the key autonomic effect on cardiovascular functioning, the pathophysiological and clinical significance of the cardiac autonomic dysfunction in Chagas disease remains unknown. METHODS: Review of data on the cardiac autonomic dysfunction in Chagas disease and their potential consequences, and considerations supporting the possible relationship between this disturbance and general or cardiovascular clinical and functional adverse outcomes. RESULTS: We hypothesise that possible consequences that cardiac dysautonomia might variably occasion or predispose in Chagas disease include: transient or sustained arrhythmias, sudden cardiac death, adverse overall and cardiovascular prognosis with enhanced morbidity and mortality, an inability of the cardiovascular system to adjust to functional demands and/or respond to internal or external stimuli by adjusting heart rate and other hemodynamic variables, and immunomodulatory and cognitive disturbances. CONCLUSIONS: Impaired cardiac autonomic modulation in Chagas disease might not be a mere epiphenomenon without significance. Indirect evidences point for a likely important role of this alteration as a primary predisposing or triggering cause or mediator favouring the development of subtle or evident secondary cardiovascular functional disturbances and clinical consequences, and influencing adverse outcomes.

  10. Renal and cardiac function during alpha1-beta-blockade in congestive heart failure

    DEFF Research Database (Denmark)

    Heitmann, M; Davidsen, U; Stokholm, K H

    2002-01-01

    of renal function during initiation of ACE-inhibition in patients with CHF is well known. The aim of this study was to investigate whether supplementation by a combined alpha1-beta-blockade to diuretics and ACE-inhibition might improve cardiac function without reducing renal function....

  11. Cardiac function and tolerance to ischemia-reperfusion injury in chronic kidney disease.

    Science.gov (United States)

    Kuczmarski, James M; Martens, Christopher R; Lennon-Edwards, Shannon L; Edwards, David G

    2014-08-01

    Cardiac dysfunction is an independent risk factor of ischemic heart disease and mortality in chronic kidney disease (CKD) patients, yet the relationship between impaired cardiac function and tolerance to ischemia-reperfusion (IR) injury in experimental CKD remains unclear. Cardiac function was assessed in 5/6 ablation-infarction (AI) and sham male Sprague-Dawley rats at 20 weeks of age, 8 weeks post-surgery using an isolated working heart system. This included measures taken during manipulation of preload and afterload to produce left ventricular (LV) function curves as well as during reperfusion following a 15-min ischemic bout. In addition, LV tissue was used for biochemical tissue analysis. Cardiac function was impaired in AI animals during preload and afterload manipulations. Cardiac functional impairments persisted post-ischemia in the AI animals, and 36% of AI animals did not recover sufficiently to achieve aortic overflow following ischemia (versus 0% of sham animals). However, for those animals able to withstand the ischemic perturbation, no difference was observed in percent recovery of post-ischemic cardiac function between groups. Urinary NOx (nitrite + nitrate) excretion was lower in AI animals and accompanied by reduced LV endothelial nitric oxide synthase and NOx. LV antioxidants superoxide dismutase-1 and -2 were reduced in AI animals, whereas glutathione peroxidase-1/2 as well as NADPH-oxidase-4 and H(2)O(2) were increased in these animals. Impaired cardiac function appears to predispose AI rats to poor outcomes following short-duration ischemic insult. These findings could be, in part, mediated by increased oxidative stress via nitric oxide-dependent and -independent mechanisms. © The Author 2013. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

  12. Impaired IL-13-mediated functions of macrophages in STAT6-deficient mice.

    Science.gov (United States)

    Takeda, K; Kamanaka, M; Tanaka, T; Kishimoto, T; Akira, S

    1996-10-15

    IL-13 shares many biologic responses with IL-4. In contrast to well-characterized IL-4 signaling pathways, which utilize STAT6 and 4PS/IRS2, IL-13 signaling pathways are poorly understood. Recent studies performed with STAT6-deficient mice have demonstrated that STAT6 plays an essential role in IL-4 signaling. In this study, the functions of peritoneal macrophages of STAT6-deficient mice in response to IL-13 were analyzed. In STAT6-deficient mice, neither morphologic changes nor augmentation of MHC class II expression in response to IL-13 was observed. In addition, IL-13 did not decrease the nitric oxide production by activated macrophages. Taken together, these results suggest that the macrophage functions in response to IL-13 were impaired in STAT6-deficient mice, indicating that IL-13 and IL-4 share the signaling pathway via STAT6.

  13. Deficiency of ataxia telangiectasia mutated kinase modulates cardiac remodeling following myocardial infarction: involvement in fibrosis and apoptosis.

    Directory of Open Access Journals (Sweden)

    Cerrone R Foster

    Full Text Available Ataxia telangiectasia mutated kinase (ATM is a cell cycle checkpoint protein activated in response to DNA damage. We recently reported that ATM plays a protective role in myocardial remodeling following β-adrenergic receptor stimulation. Here we investigated the role of ATM in cardiac remodeling using myocardial infarction (MI as a model.Left ventricular (LV structure, function, apoptosis, fibrosis, and protein levels of apoptosis- and fibrosis-related proteins were examined in wild-type (WT and ATM heterozygous knockout (hKO mice 7 days post-MI. Infarct sizes were similar in both MI groups. However, infarct thickness was higher in hKO-MI group. Two dimensional M-mode echocardiography revealed decreased percent fractional shortening (%FS and ejection fraction (EF in both MI groups when compared to their respective sham groups. However, the decrease in %FS and EF was significantly greater in WT-MI vs hKO-MI. LV end systolic and diastolic diameters were greater in WT-MI vs hKO-MI. Fibrosis, apoptosis, and α-smooth muscle actin staining was significantly higher in hKO-MI vs WT-MI. MMP-2 protein levels and activity were increased to a similar extent in the infarct regions of both groups. MMP-9 protein levels were increased in the non-infarct region of WT-MI vs WT-sham. MMP-9 protein levels and activity were significantly lower in the infarct region of WT vs hKO. TIMP-2 protein levels similarly increased in both MI groups, whereas TIMP-4 protein levels were significantly lower in the infarct region of hKO group. Phosphorylation of p53 protein was higher, while protein levels of manganese superoxide dismutase were significantly lower in the infarct region of hKO vs WT. In vitro, inhibition of ATM using KU-55933 increased oxidative stress and apoptosis in cardiac myocytes.

  14. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function.

    Science.gov (United States)

    Feiner, Ron; Engel, Leeya; Fleischer, Sharon; Malki, Maayan; Gal, Idan; Shapira, Assaf; Shacham-Diamand, Yosi; Dvir, Tal

    2016-06-01

    In cardiac tissue engineering approaches to treat myocardial infarction, cardiac cells are seeded within three-dimensional porous scaffolds to create functional cardiac patches. However, current cardiac patches do not allow for online monitoring and reporting of engineered-tissue performance, and do not interfere to deliver signals for patch activation or to enable its integration with the host. Here, we report an engineered cardiac patch that integrates cardiac cells with flexible, freestanding electronics and a 3D nanocomposite scaffold. The patch exhibited robust electronic properties, enabling the recording of cellular electrical activities and the on-demand provision of electrical stimulation for synchronizing cell contraction. We also show that electroactive polymers containing biological factors can be deposited on designated electrodes to release drugs in the patch microenvironment on demand. We expect that the integration of complex electronics within cardiac patches will eventually provide therapeutic control and regulation of cardiac function.

  15. Functional Status, Anxiety, Cardiac Self-Efficacy, and Health Beliefs of Patients with Coronary Heart Disease

    Directory of Open Access Journals (Sweden)

    Hamid Allahverdipour

    2013-12-01

    Full Text Available Background: Beliefs and emotions could effect on functional status, quality of life, and mortality amongst patients who are suffering coronary heart disease (CHD. Current study examined the role of anxiety: trait/ state, self-efficacy, health beliefs, and functional status among patient with history of CHD. Method: In this correlational study, 105 hospitalized and outpatients patients suffering CHD in Tehran Heart Center Hospital participated by using convenience sampling method in 2012. Cardiac self-efficacy, Seattle Angina, and research- designed health beliefs questionnaires were used to gather data. Results: The functional status in CHD patients showed significant relationships with gender, job, and type of medical insurance of the participants (All ps<0.05. In addition , perceived vulnerability to face again cardiac attack in the future, perceived severity of next cardiac attack, anxiety, state anxiety and trait anxiety (All ps<0.05 had significant and negative relationships with functional status. Conversely, the cardiac self-efficacy had a positive and significant relationship (P<0.001 with functional status. Conclusion: Psychological factors have important role in functional status and quality of life of patients who suffering CHD. Therefore, it is necessary to emphasize on supportive and complementary programs to promote Cardiac Rehabilitation Programs.

  16. Qiliqiangxin Enhances Cardiac Glucose Metabolism and Improves Diastolic Function in Spontaneously Hypertensive Rats

    Directory of Open Access Journals (Sweden)

    Jingfeng Wang

    2017-01-01

    Full Text Available Cardiac diastolic dysfunction has emerged as a growing type of heart failure. The present study aims to explore whether Qiliqiangxin (QL can benefit cardiac diastolic function in spontaneously hypertensive rat (SHR through enhancement of cardiac glucose metabolism. Fifteen 12-month-old male SHRs were randomly divided into QL-treated, olmesartan-treated, and saline-treated groups. Age-matched WKY rats served as normal controls. Echocardiography and histological analysis were performed. Myocardial glucose uptake was determined by 18F-FDG using small-animal PET imaging. Expressions of several crucial proteins and key enzymes related to glucose metabolism were also evaluated. As a result, QL improved cardiac diastolic function in SHRs, as evidenced by increased E′/A′and decreased E/E′ (P<0.01. Meanwhile, QL alleviated myocardial hypertrophy, collagen deposits, and apoptosis (P<0.01. An even higher myocardial glucose uptake was illustrated in QL-treated SHR group (P<0.01. Moreover, an increased CS activity and ATP production was observed in QL-treated SHRs (P<0.05. QL enhanced cardiac glucose utilization and oxidative phosphorylation in SHRs by upregulating AMPK/PGC-1α axis, promoting GLUT-4 expression, and regulating key enzymes related to glucose aerobic oxidation such as HK2, PDK4, and CS (P<0.01. Our data suggests that QL improves cardiac diastolic function in SHRs, which may be associated with enhancement of myocardial glucose metabolism.

  17. Enhanced angiogenesis and increased cardiac perfusion after myocardial infarction in protein tyrosine phosphatase 1B-deficient mice.

    Science.gov (United States)

    Besnier, Marie; Galaup, Ariane; Nicol, Lionel; Henry, Jean-Paul; Coquerel, David; Gueret, Alexandre; Mulder, Paul; Brakenhielm, Ebba; Thuillez, Christian; Germain, Stéphane; Richard, Vincent; Ouvrard-Pascaud, Antoine

    2014-08-01

    The protein tyrosine phosphatase 1B (PTP1B) modulates tyrosine kinase receptors, among which is the vascular endothelial growth factor receptor type 2 (VEGFR2), a key component of angiogenesis. Because PTP1B deficiency in mice improves left ventricular (LV) function 2 mo after myocardial infarction (MI), we hypothesized that enhanced angiogenesis early after MI via activated VEGFR2 contributes to this improvement. At 3 d after MI, capillary density was increased at the infarct border of PTP1B(-/-) mice [+7±2% vs. wild-type (WT), P = 0.05]. This was associated with increased extracellular signal-regulated kinase 2 phosphorylation and VEGFR2 activation (i.e., phosphorylated-Src/Src/VEGFR2 and dissociation of endothelial VEGFR2/VE-cadherin), together with higher infiltration of proangiogenic M2 macrophages within unchanged overall infiltration. In vitro, we showed that PTP1B inhibition or silencing using RNA interference increased VEGF-induced migration and proliferation of mouse heart microvascular endothelial cells as well as fibroblast growth factor (FGF)-induced proliferation of rat aortic smooth muscle cells. At 8 d after MI in PTP1B(-/-) mice, increased LV capillary density (+21±3% vs. WT; P<0.05) and an increased number of small diameter arteries (15-50 μm) were likely to participate in increased LV perfusion assessed by magnetic resonance imaging and improved LV compliance, indicating reduced diastolic dysfunction. In conclusion, PTP1B deficiency reduces MI-induced heart failure promptly after ischemia by enhancing angiogenesis, myocardial perfusion, and diastolic function. © FASEB.

  18. Functional significance of early-life iron deficiency: outcomes at 25 years.

    Science.gov (United States)

    Lozoff, Betsy; Smith, Julia B; Kaciroti, Niko; Clark, Katy M; Guevara, Silvia; Jimenez, Elias

    2013-11-01

    To evaluate adulthood function following chronic iron deficiency in infancy. At 25 years, we compared 33 subjects with chronic iron deficiency in infancy to 89 who were iron-sufficient before and/or after iron therapy. Outcomes included education, employment, marital status, and physical and mental health. Adjusting for sex and socioeconomic status, a higher proportion of the group with chronic iron deficiency did not complete secondary school (58.1% vs 19.8% in iron-sufficient group; Wald value = 8.74; P = .003), were not pursuing further education/training (76.1% vs 31.5%; Wald value = 3.01; P = .08; suggestive trend), and were single (83.9% vs 23.7%, Wald value = 4.49; P = .03). They reported poorer emotional health and more negative emotions and feelings of dissociation/detachment. Results were similar in secondary analyses comparing the chronic iron-deficient group with subjects in the iron-sufficient group who had been iron-deficient before treatment in infancy. Path analysis showed direct paths for chronic iron deficiency in infancy and being single and more detachment/dissociation at 25 years. There were indirect paths for chronic iron deficiency and not completing secondary school via poorer cognitive functioning in early adolescence and more negative emotions via behavior problems in adolescence, indicating a cascade of adverse outcomes. The observational nature of this study limits our ability to draw causal inference, even when controlling for background factors. Nonetheless, our results indicate substantial loss of human potential. There may be broader societal implications, considering that many adults worldwide had chronic iron deficiency in infancy. Iron deficiency can be prevented or treated before it becomes chronic or severe. Copyright © 2013 Mosby, Inc. All rights reserved.

  19. Cardiac autonomic function in patients with diabetes improves with practice of comprehensive yogic breathing program

    Directory of Open Access Journals (Sweden)

    Viveka P Jyotsna

    2013-01-01

    Full Text Available Background: The aim of this study was to observe the effect comprehensive yogic breathing (Sudarshan Kriya Yoga [SKY] and Pranayam had on cardiac autonomic functions in patients with diabetes. Materials and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 64 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program. Standard therapy included dietary advice, brisk walking for 45 min daily, and administration of oral antidiabetic drugs. Comprehensive yogic breathing program was introduced to the participants through a course of 12 h spread over 3 days. It was an interactive session in which SKY, a rhythmic cyclical breathing, preceded by Pranayam is taught under the guidance of a certified teacher. Cardiac autonomic function tests were done before and after 6 months of intervention. Results: In the intervention group, after practicing the breathing techniques for 6 months, the improvement in sympathetic functions was statistically significant (P 0.04. The change in sympathetic functions in the standard therapy group was not significant (P 0.75.Parasympathetic functions did not show any significant change in either group. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P 0.06. In the standard therapy group, no change in cardiac autonomic functions was noted (P 0.99. Conclusion: Cardiac autonomic functions improved in patients with diabetes on standard treatment who followed the comprehensive yogic breathing program compared to patients who were on standard therapy alone.

  20. Regulatory effects of phospholamban on cardiac sarcoplasmic reticulum function

    International Nuclear Information System (INIS)

    Kim, Hae Won.

    1989-01-01

    In this thesis, the author reports the effect of phospholamban on: (a) Ca 2+ release by cardiac SR and (b) the Ca 2+ -ATPase activity in a purified reconstituted system. Phosphorylation of phospholamban by Ca 2+ · calmodulin-dependent protein kinase had no appreciable effect on the initial rates of Ca 2+ release from cardiac SR vesicles loaded under passive conditions and on the apparent 45 Ca 2+ - 40 Ca 2+ exchange from cardiac SR vesicles loaded under active conditions. us, it appears that Ca 2+ · calmodulin-dependent phosphorylation of phospholamban is not involved in the regulation of Ca 2+ release and 45 Ca 2+-40 Ca 2+ exchange. To determine the molecular mechanism by which phospholamban regulates the Ca 2+ pump, a reconstituted system was developed, using a freeze-thaw sonication procedure. The Ca 2+ -ATPase was purified by a method which yields an active enzyme preparation essentially free of phospholamban. The best rates of Ca 2+ uptake were obtained when cholate and phosphatidylcholine (PC) were used at a ratio of cholate/PC/Ca 2 + -ATPase of 2/80/1. The maximal rates of Ca 2+ Uptake were 700 nmol/min/mg reconstituted vesicles compared to 800 nmol/min/mg SR vesicles. The EC 50 values for Ca 2+ were 0.05 μM for both Ca 2+ uptake and Ca 2+ -ATPase activity in the reconstituted vesicles compared to 0.63 μM Ca 2+ in native SR vesicles. To determine the effect of phospholamban on the Ca + -ATPase activity in the reconstituted vesicles, purified phospholamban was added to the cholate/Ca 2+ -ATPase mixture prior to combining it with liposomes

  1. Endothelial Function as a Possible Significant Determinant of Cardiac Function during Exercise in Patients with Structural Heart Disease

    Directory of Open Access Journals (Sweden)

    Bonpei Takase

    2009-01-01

    Full Text Available This study was investigated the role that endothelial function and systemic vascular resistance (SVR play in determining cardiac function reserve during exercise by a new ambulatory radionuclide monitoring system (VEST in patients with heart disease. The study population consisted of 32 patients. The patients had cardiopulmonary stress testing using the treadmill Ramp protocol and the VEST. The anaerobic threshold (AT was autodetermined using the V-slope method. The SVR was calculated by determining the mean blood pressure/cardiac output. Flow-mediated vasodilation (FMD was measured in the brachial artery to evaluate endotheilial function. FMD and the percent change f'rom rest to AT in SVR correlated with those from rest to AT in ejection fraction and peak ejection ratio by VEST, respectively. Our findings suggest that FMD in the brachial artery and the SVR determined by VEST in patients with heart disease can possibly reflect cardiac function reserve during aerobic exercise.

  2. ICF-based approach to evaluating functionality in cardiac rehabilitation patients after heart surgery.

    Science.gov (United States)

    Racca, V; Di Rienzo, M; Mazzini, P; Ripamonti, V; Gasti, G; Spezzaferri, R; Modica, M; Ferratini, M

    2015-08-01

    Heart surgery is a frequent reason for admission to in-patient cardiac rehabilitation programmes. ICF approach has never been used to evaluate cardiac patients after major heart surgery. The aim was to evaluate and measure functionality in cardiac patients who have undergone heart surgery, using for the first time the ICF-based approach and to assess whether such approach can be feasible and useful in cardiac rehabilitation. Observational study. In-patients cardiac Rehabilitation Unit in Milan. Fifty consecutively admitted patients who had undergone heart surgery (34 males, 16 females; mean age 65.7±12.5 years). We prepared a ICF-core set short enough to be feasible and practical. Patients were individually interviewed by different healthcare professionals (randomly selected from a group of two physicians, two physiotherapists and two psychologists) at the beginning (T1) and end of cardiac rehabilitation (T2) RESULTS: The sum of the scores of each ICF body function, body structure, activity and participation code significantly decreased between T1 and T2 (PICF body function scores and Barthel's index (ρ=0.381; P=0.006), NYHA class (ρ=0.404; P=0.004) and plasma Cr-P levels (r=0.31; P=0.03), between the ICF body structure codes and the Conley scale (ρ=0.306; P=0.02), and between the activity/participation codes and SpO2 (ρ=0.319; P=0.04). There were no correlations between the ICF environmental codes and clinical parameters. The ICF-based data provided functional information that was consistent with the patients' clinical course. The core set used allowed to quantify important body functions and activities, including some areas that are generally insufficiently considered by healthcare professionals during cardiac rehabilitation, and document their improvement.

  3. Iron-responsive olfactory uptake of manganese improves motor function deficits associated with iron deficiency.

    Directory of Open Access Journals (Sweden)

    Jonghan Kim

    Full Text Available Iron-responsive manganese uptake is increased in iron-deficient rats, suggesting that toxicity related to manganese exposure could be modified by iron status. To explore possible interactions, the distribution of intranasally-instilled manganese in control and iron-deficient rat brain was characterized by quantitative image analysis using T1-weighted magnetic resonance imaging (MRI. Manganese accumulation in the brain of iron-deficient rats was doubled after intranasal administration of MnCl(2 for 1- or 3-week. Enhanced manganese level was observed in specific brain regions of iron-deficient rats, including the striatum, hippocampus, and prefrontal cortex. Iron-deficient rats spent reduced time on a standard accelerating rotarod bar before falling and with lower peak speed compared to controls; unexpectedly, these measures of motor function significantly improved in iron-deficient rats intranasally-instilled with MnCl(2. Although tissue dopamine concentrations were similar in the striatum, dopamine transporter (DAT and dopamine receptor D(1 (D1R levels were reduced and dopamine receptor D(2 (D2R levels were increased in manganese-instilled rats, suggesting that manganese-induced changes in post-synaptic dopaminergic signaling contribute to the compensatory effect. Enhanced olfactory manganese uptake during iron deficiency appears to be a programmed "rescue response" with beneficial influence on motor impairment due to low iron status.

  4. Levothyroxine replacement in hypothyroid humans reduces myocardial lipid load and improves cardiac function.

    Science.gov (United States)

    Scherer, Thomas; Wolf, Peter; Winhofer, Yvonne; Duan, Heying; Einwallner, Elisa; Gessl, Alois; Luger, Anton; Trattnig, Siegfried; Hoffmann, Martha; Niessner, Alexander; Baumgartner-Parzer, Sabina; Krššák, Martin; Krebs, Michael

    2014-11-01

    Hypothyroidism is a common endocrine disorder frequently accompanied by alterations in lipid metabolism, such as hypercholesterolemia and high circulating triglycerides, both risk factors for nonischemic cardiomyopathy. Rodent studies suggest that the hypothyroid state promotes cardiac lipid retention by increasing lipid uptake into cardiomyocytes while reducing fatty acid oxidation. Furthermore, increased cardiac lipid load has been linked to cardiac dysfunction. Dyslipidemia and hypothyroidism frequently coexist; thus, we hypothesized that overt hypothyroidism causes cardiac lipid deposition and ultimately cardiac dysfunction. An interventional prospective study with balanced within-subject comparison. PARTICIPANTS/SETTING/INTERVENTION: Ten patients recruited at an academic center, who underwent a thyroidectomy due to differentiated thyroid carcinoma, were examined 4 weeks postoperatively in the overtly hypothyroid state, right before radioiodine therapy, and 6-8 weeks after initiation of levothyroxine replacement. We measured cardiac lipid content and function in vivo before and after levothyroxine treatment using electrocardiogram-gated (1)H-magnetic resonance spectroscopy and imaging. Levothyroxine therapy reduced cardiac lipid content in nine of the 10 patients (0.35 ± 0.09 vs 0.22 ± 0.06 % water signal; P = .008; n = 10) and improved cardiac index (2 ± 0.2 vs 2.4 ± 0.1 L/min/m(2); P = .047) when comparing the hypothyroid with the euthyroid state, independent of changes in liver fat content (7.5 ± 3.2 vs 7.1 ± 2.6% magnetic resonance spectroscopy signal; P = .60) or body weight. Here we show that levothyroxine treatment reduces lipid accumulation in the heart and increases cardiac output in overtly hypothyroid patients. These results could in part explain the increased risk of death and heart failure in hypothyroid patients.

  5. Stable xenon CT measurement of cerebral blood flow in cardiac transplantation candidates: Correlation with cognitive function

    International Nuclear Information System (INIS)

    Bello, J.A.; Fink, M.E.; Hilal, S.K.; Rose, E.A.; Reemtsma, K.

    1987-01-01

    Thirteen consecutive unselected patients with NYHA class 4 cardiac failure referred for cardiac transplantation underwent neurologic examination and cerebral blood flow measurement (rCBF) using the stable xenon enhanced CT method on a GE9800 system. Eleven men and two women were studied (mean age = 43.8 +- 6.1). On neurological examination, six of the patients demonstrated normal mental function; the remaining seven patients demonstrated memory, language, or learning impairment. There was no difference in mean cardiac output between the groups (4.9 L/min +- 1.68 vs. 4.2L/min +- 1.57). rCBF was significantly reduced in the impaired group. Cognitive impairment in patients with cardiac failure can be correlated with cerebral ischemia. Stable xenon CT measurement of rCBF in transplant candidates may help identify patients requiring more rapid transplantation to prevent permanent cerebral injury

  6. The Cardiac Fibroblast: Functional and Electrophysiological Considerations in Healthy and Diseased Hearts

    Science.gov (United States)

    Vasquez, Carolina; Benamer, Najate; Morley, Gregory E.

    2011-01-01

    Cardiac fibrosis occurs in a number of cardiovascular diseases associated with a high incidence of arrhythmias. A critical event in the development of fibrosis is the transformation of fibroblasts into an active phenotype or myofibroblast. This transformation results in functional changes including increased proliferation and changes in the release of signaling molecules and extracellular matrix deposition. Traditionally fibroblasts have been considered to affect cardiac electrophysiology indirectly by physically isolating myocytes and creating conduction barriers. There is now increasing evidence that cardiac fibroblasts may play a direct role in modulating the electrophysiological substrate in diseased hearts. The purpose of this review is to summarize the functional changes associated with fibroblast activation, the membrane currents that have been identified in adult cardiac fibroblasts and describe recent studies of fibroblast-myocyte electrical interactions with emphasis on the changes that occur with cardiac injury. Further analysis of fibroblast membrane electrophysiology and their interactions with myocytes will lead to a more complete understanding of the arrhythmic substrate. These studies have the potential to generate new therapeutic approaches for the prevention of arrhythmias associated with cardiac fibrosis. PMID:21242811

  7. Older Adults in Cardiac Rehabilitation: A New Strategy for Enhancing Physical Function.

    Science.gov (United States)

    Rejeski, W. Jack; Foy, Capri Gabrielle; Brawley, Lawrence R.; Brubaker, Peter H.; Focht, Brian C.; Norris, James L., III; Smith, Marci L.

    2002-01-01

    Contrasted the effect of a group-mediated cognitive- behavioral intervention (GMCB) versus traditional cardiac rehabilitation (CRP) upon changes in objective and self-reported physical function of older adults after 3 months of exercise therapy. Both groups improved significantly. Adults with lower function at the outset of the intervention…

  8. Vascular calcification and cardiac function according to residual renal function in patients on hemodialysis with urination.

    Directory of Open Access Journals (Sweden)

    Dong Ho Shin

    Full Text Available Vascular calcification is common and may affect cardiac function in patients with end-stage renal disease (ESRD. However, little is known about the effect of residual renal function on vascular calcification and cardiac function in patients on hemodialysis.This study was conducted between January 2014 and January 2017. One hundred six patients with residual renal function on maintenance hemodialysis for 3 months were recruited. We used residual renal urea clearance (KRU to measure residual renal function. First, abdominal aortic calcification score (AACS and brachial-ankle pulse wave velocity (baPWV were measured in patients on hemodialysis. Second, we performed echocardiography and investigated new cardiovascular events after study enrollment.The median KRU was 0.9 (0.3-2.5 mL/min/1.73m2. AACS (4.0 [1.0-10.0] vs. 3.0 [0.0-8.0], p = 0.05 and baPWV (1836.1 ± 250.4 vs. 1676.8 ± 311.0 cm/s, p = 0.01 were significantly higher in patients with a KRU < 0.9 mL/min/1.73m2 than a KRU ≥ 0.9 mL/min/1.73m2. Log-KRU significantly negatively correlated with log-AACS (ß = -0.29, p = 0.002 and baPWV (ß = -0.19, P = 0.05 after factor adjustment. The proportion of left ventricular diastolic dysfunction was significantly higher in patients with a KRU < 0.9 mL/min/1.73m2 than with a KRU ≥ 0.9 mL/min/1.73m2 (67.9% vs. 49.1%, p = 0.05. Patients with a KRU < 0.9 mL/min/1.73m2 showed a higher tendency of cumulative cardiovascular events compared to those with a KRU ≥ 0.9 ml/min/1.73m2 (P = 0.08.Residual renal function was significantly associated with vascular calcification and left ventricular diastolic dysfunction in patients on hemodialysis.

  9. The nitric oxide donor molsidomine rescues cardiac function in rats with chronic kidney disease and cardiac dysfunction.

    Science.gov (United States)

    Bongartz, Lennart G; Braam, Branko; Verhaar, Marianne C; Cramer, Maarten Jan M; Goldschmeding, Roel; Gaillard, Carlo A; Steendijk, Paul; Doevendans, Pieter A; Joles, Jaap A

    2010-12-01

    We recently developed a rat model of cardiorenal failure that is characterized by severe left ventricular systolic dysfunction (LVSD) and low nitric oxide (NO) production that persisted after temporary low-dose NO synthase inhibition. We hypothesized that LVSD was due to continued low NO availability and might be reversed by supplementing NO. Rats underwent a subtotal nephrectomy and were treated with low-dose NO synthase inhibition with N(ω)-nitro-l-arginine up to week 8. After 3 wk of washout, rats were treated orally with either the long-acting, tolerance-free NO donor molsidomine (Mols) or vehicle (Veh). Cardiac and renal function were measured on weeks 11, 13, and 15. On week 16, LV hemodynamics and pressure-volume relationships were measured invasively, and rats were killed to quantify histological damage. On week 15, blood pressure was mildly reduced and creatinine clearance was increased by Mols (both P stroke volume (324 ± 33 vs. 255 ± 15 μl in Veh-treated rats, P relationship was shifted to the left in Mols compared with Veh treatment. In summary, in a model of cardiorenal failure with low NO availability, supplementing NO significantly improves cardiac systolic and diastolic function without a major effect on afterload.

  10. Gravity Reception and Cardiac Function in the Spider

    Science.gov (United States)

    Finck, A.

    1985-01-01

    The following features of the arachnid gravity system were studied. (1) the absolute threshold to hyper-gz is quite low indicating fine proprioreceptive properties of the lyriform organ, the Gz/vibration detector; (2) the neurogenic heart of the spider is a good dependent variable for assessing its behavior to Gz and other stimuli which produce mechanical effects on the exoskeleton; (3) Not only is the cardiac response useful but it is now understood to be an integral part of the system which compensates for the consequences of gravity in the spider (an hydraulic leg extension); and (4) a theoretical model was proposed in which a mechanical amplifier, the leg lever, converts a weak force (at the tarsus) to a strong force (at the patella), capable of compressing the exoskeleton and consequently the lyriform receptor.

  11. Cortical Bone Stem Cell Therapy Preserves Cardiac Structure and Function After Myocardial Infarction.

    Science.gov (United States)

    Sharp, Thomas E; Schena, Giana J; Hobby, Alexander R; Starosta, Timothy; Berretta, Remus M; Wallner, Markus; Borghetti, Giulia; Gross, Polina; Yu, Daohai; Johnson, Jaslyn; Feldsott, Eric; Trappanese, Danielle M; Toib, Amir; Rabinowitz, Joseph E; George, Jon C; Kubo, Hajime; Mohsin, Sadia; Houser, Steven R

    2017-11-10

    Cortical bone stem cells (CBSCs) have been shown to reduce ventricular remodeling and improve cardiac function in a murine myocardial infarction (MI) model. These effects were superior to other stem cell types that have been used in recent early-stage clinical trials. However, CBSC efficacy has not been tested in a preclinical large animal model using approaches that could be applied to patients. To determine whether post-MI transendocardial injection of allogeneic CBSCs reduces pathological structural and functional remodeling and prevents the development of heart failure in a swine MI model. Female Göttingen swine underwent left anterior descending coronary artery occlusion, followed by reperfusion (ischemia-reperfusion MI). Animals received, in a randomized, blinded manner, 1:1 ratio, CBSCs (n=9; 2×10 7 cells total) or placebo (vehicle; n=9) through NOGA-guided transendocardial injections. 5-ethynyl-2'deoxyuridine (EdU)-a thymidine analog-containing minipumps were inserted at the time of MI induction. At 72 hours (n=8), initial injury and cell retention were assessed. At 3 months post-MI, cardiac structure and function were evaluated by serial echocardiography and terminal invasive hemodynamics. CBSCs were present in the MI border zone and proliferating at 72 hours post-MI but had no effect on initial cardiac injury or structure. At 3 months, CBSC-treated hearts had significantly reduced scar size, smaller myocytes, and increased myocyte nuclear density. Noninvasive echocardiographic measurements showed that left ventricular volumes and ejection fraction were significantly more preserved in CBSC-treated hearts, and invasive hemodynamic measurements documented improved cardiac structure and functional reserve. The number of EdU + cardiac myocytes was increased in CBSC- versus vehicle- treated animals. CBSC administration into the MI border zone reduces pathological cardiac structural and functional remodeling and improves left ventricular functional reserve

  12. Evaluating the cardiac function of duchenne muscular dystrophy with Doppler Tei index

    International Nuclear Information System (INIS)

    Yao Fengjuan; Zheng Ju; Lu Kun; Liu Donghong; Wu Miaoling; Lin Hong; Zhang Cheng; Yu Hongkui

    2007-01-01

    Objective: To evaluate the cardiac function of early Duchenne muscular dystrophy (DMD) by left ventricular ejection fraction (LVEF) and pulse Doppler Tei index. Methods: Twenty-eight DMD patients and fifteen normal people were studied. LVEF, E/A and Tei index were measured and calculated by M-mode and Pulse wave Doppler respectively. Results: Compared with control group, Tei index and IRT were significantly high, and there were not significant difference in LVEF(%) and E/A. Conclusion: Tei index was valuable in assessing cardiac function of early DMD. (authors)

  13. Cardiac iron load and function in transfused patients treated with deferasirox (the MILE study).

    Science.gov (United States)

    Ho, P Joy; Tay, Lay; Teo, Juliana; Marlton, Paula; Grigg, Andrew; St Pierre, Tim; Brown, Greg; Badcock, Caro-Anne; Traficante, Robert; Gervasio, Othon L; Bowden, Donald K

    2017-02-01

    To assess the effect of iron chelation therapy with deferasirox on cardiac iron and function in patients with transfusion-dependent thalassemia major, sickle cell disease (SCD), and myelodysplastic syndromes (MDS). This phase IV, single-arm, open-label study over 53 wk evaluated the change in cardiac and liver iron load with deferasirox (up to 40 mg/kg/d), measured by magnetic resonance imaging (MRI). Cardiac iron load (myocardial T2*) significantly improved (P = 0.002) overall (n = 46; n = 36 thalassemia major, n = 4 SCD, n = 6 MDS). Results were significant for patients with normal and moderate baseline cardiac iron (P = 0.017 and P = 0.015, respectively), but not in the five patients with severe cardiac iron load. Liver iron concentration (LIC) significantly decreased overall [mean LIC 10.4 to 8.2 mg Fe/g dry tissue (dw); P = 0.024], particularly in those with baseline LIC >7 mg Fe/g dw (19.9 to 15.6 mg Fe/g dw; P = 0.002). Furthermore, myocardial T2* significantly increased in patients with LIC deferasirox over 1 yr significantly increased myocardial T2* and reduced LIC. This confirms that single-agent deferasirox is effective in the management of cardiac iron, especially for patients with myocardial T2* >10 ms (Clinicaltrials.gov identifier: NCT00673608). © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. Association Between Severe Vitamin D Deficiency, Lung Function and Asthma Control.

    Science.gov (United States)

    Beyhan-Sagmen, Seda; Baykan, Ozgur; Balcan, Baran; Ceyhan, Berrin

    2017-04-01

    To examine the relationship between severe vitamin D deficiency, asthma control, and pulmonary function in Turkish adults with asthma. One hundred six asthmatic patients underwent pulmonary function tests skin prick test, peripheral blood eosinophil counts, IgE, body mass index and vitamin D levels were determined. Patients were divided into 2 subgroups according to vitamin D levels (vitamin D level<10ng/ml and vitamin D level≥10 ng/ml). Asthma control tests were performed. The mean age of subgroup i (vitamin D level<10) was 37±10 and the mean age of subgroup ii (vitamin D level≥10ng/ml) was 34±8. Sixty-six percent of patients had severe vitamin D deficiency (vitamin D level<10 ng/ml). There was a significant trend towards lower absolute FEV 1 (L) values in patients with lower vitamin D levels (P=.001). Asthma control test scores were significantly low in the severe deficiency group than the other group (P=.02). There were a greater number of patients with uncontrolled asthma (asthma control test scores<20) in the severe vitamin D deficiency group (P=.040). Patients with severe vitamin D deficiency had a higher usage of inhaled corticosteroids than the group without severe vitamin D deficiency (P=.015). There was a significant trend towards lower absolute FEV 1 (L) (P=.005, r=.272) values in patients with lower vitamin D levels. Vitamin D levels were inversely related with body mass index (P=.046). The incidence of severe vitamin D deficiency was high in adult Turkish asthmatics. In addition, lower vitamin D levels were associated with poor asthma control and decreased pulmonary function. Copyright © 2016 SEPAR. Publicado por Elsevier España, S.L.U. All rights reserved.

  15. Post-operative pressure lability and cardiac baroreflex in normotensive patients as a function of age.

    Science.gov (United States)

    Cividjian, A; Meyrieux, V; Gratadour, P; Sagnard, P; Annat, G; Boulez, J; Viale, J P; Quintin, L

    2008-10-01

    Pressure lability may be linked to the loss of the cardiac baroreflex. The reduction of the sensitivity of the cardiac baroreflex has not been delineated in the post-operative period according to age in normotensive patients. This study addresses pressure lability and slope of the cardiac baroreflex as a function of age. Patients were allocated to the following three groups: young (20-39 years, n=7), middle aged (40-59 years, n=7) and elderly (60-79 years, n=6), and studied before minor intra-abdominal surgery under CO(2) peritoneal insufflation and nitrous oxide-isoflurane-sufentanil anesthesia, up to 24 h after extubation. An electrocardiogram and non-invasive beat-by-beat pressure monitoring (Finapres) allowed offline calculation of the sensitivity of the cardiac baroreflex ('sequence' technique) and standard deviation (SD) of heart rate (HR; HR variability) and systolic blood pressure (SBP; pressure lability). Before anesthesia, (a) an inverse relationship was observed between the slope of the cardiac baroreflex and age and (b) a trend (P<0.09) existed between the slope of the cardiac baroreflex and pressure lability, irrespective of age. During the early post-operative period, young patients returned to their baseline slope of the cardiac baroreflex; no inverse relationship between increased SD of SBP and decreased SD of RR interval was observed. Middle-aged and elderly patients displayed a depressed slope of the cardiac baroreflex both before and after anesthesia. At variance with the pre-operative period, no simple inverse relationship was observed between increased pressure lability and depressed HR variability in young patients during the early post-operative period.

  16. Association of plasma osteoprotegerin and adiponectin with arterial function, cardiac function and metabolism in asymptomatic type 2 diabetic men

    Directory of Open Access Journals (Sweden)

    Bjerre Mette

    2011-07-01

    Full Text Available Abstract Background Osteoprotegerin (OPG, a soluble member of the tumor necrosis factor receptor superfamily, is linked to cardiovascular disease. Negative associations exist between circulating OPG and cardiac function. The adipocytokine adiponectin (ADPN is downregulated in type 2 diabetes mellitus (T2DM and coronary artery disease and shows an inverse correlation with insulin sensitivity and cardiovascular disease risk. We assessed the relationship of plasma OPG and ADPN and arterial function, cardiac function and myocardial glucose metabolism in T2DM. Methods We included 78 asymptomatic men with uncomplicated, well-controlled T2DM, without inducible ischemia, assessed by dobutamine-stress echocardiography, and 14 age-matched controls. Cardiac function was measured by magnetic resonance imaging, myocardial glucose metabolism (MMRglu by 18F-2-fluoro-2-deoxy-D-glucose positron emission tomography. OPG and ADPN levels were measured in plasma. Results T2DM patients vs. controls showed lower aortic distensibility, left ventricular (LV volumes, impaired LV diastolic function and MMRglu (all P P Conclusions OPG was inversely associated with aortic distensibility, LV volumes and LV diastolic function, while ADPN was positively associated with MMRglu. These findings indicate that in asymptomatic men with uncomplicated T2DM, OPG and ADPN may be markers of underlying mechanisms linking the diabetic state to cardiac abnormalities. Trial registration Current Controlled Trials ISRCTN53177482

  17. Uniform low-level dystrophin expression in the heart partially preserved cardiac function in an aged mouse model of Duchenne cardiomyopathy.

    Science.gov (United States)

    Wasala, Nalinda B; Yue, Yongping; Vance, Jenna; Duan, Dongsheng

    2017-01-01

    Dystrophin deficiency results in Duchenne cardiomyopathy, a primary cause of death in Duchenne muscular dystrophy (DMD). Gene therapy has shown great promise in ameliorating the cardiac phenotype in mouse models of DMD. However, it is not completely clear how much dystrophin is required to treat dystrophic heart disease. We and others have shown that mosaic dystrophin expression at the wild-type level, depending on the percentage of dystrophin positive cardiomyocytes, can either delay the onset of or fully prevent cardiomyopathy in dystrophin-null mdx mice. Many gene therapy strategies will unlikely restore dystrophin to the wild-type level in a cardiomyocyte. To determine whether low-level dystrophin expression can reduce the cardiac manifestations in DMD, we examined heart histology, ECG and hemodynamics in 21-m-old normal BL6 and two strains of BL6-background dystrophin-deficient mice. Mdx3cv mice show uniform low-level expression of a near full-length dystrophin protein in every myofiber while mdx4cv mice have no dystrophin expression. Immunostaining and western blot confirmed marginal level dystrophin expression in the heart of mdx3cv mice. Although low-level expression did not reduce myocardial histopathology, it significantly ameliorated QRS prolongation and normalized diastolic hemodynamic deficiencies. Our study demonstrates for the first time that low-level dystrophin can partially preserve heart function. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Time Course of Atrophic Remodeling: Effects of Exercise on Cardiac Morpology and Function

    Science.gov (United States)

    Scott, J. M.; Martin, D.; Caine, T.; Matz, T.; Ploutz-Snyder, L. L.

    2014-01-01

    Early and consistent evaluation of cardiac morphology and function throughout an atrophic stimulus is critically important for the design and optimization of interventions. Exercise training is one intervention that has been shown to confer favorable improvements in LV mass and function during unloading. However, the format and intensity of exercise required to induce optimal cardiac improvements has not been investigated. PURPOSE: This randomized, controlled trial was designed to 1) comprehensively characterize the time course of unloading-induced morpho-functional remodeling, and 2) examine the effects of high intensity exercise training on cardiac structural and functional parameters during unloading. METHODS: Twenty six subjects completed 70 days of head down tilt bed rest (HDBR): 17 were randomized to exercise training (ExBR) and 9 remained sedentary. Exercise consisted of integrated high intensity, continuous, and resistance exercise. We assessed cardiac morphology (left ventricular mass; LVM) and function (speckle-tracking assessment of longitudinal, radial, and circumferential strain and twist) before (BR-2), during (BR7,21,31,70), and following (BR+0, +3) HDBR. Cardiorespiratory fitness (VO2max) was evaluated before (BR- 3), during (BR4,25,46,68) and following (BR+0) HDBR. RESULTS: Sedentary HDBR resulted in a progressive decline in LVM, longitudinal, radial, and circumferential strain, and an increase in twist. ExBR mitigated decreases in LVM and function. Change in twist was significantly related to change in VO2max (R=0.68, p<0.01). CONCLUSIONS: Alterations in cardiac morphology and function begin early during unloading. High-intensity exercise attenuates atrophic morphological and functional remodeling.

  19. Pearson marrow-pancreas syndrome with worsening cardiac function caused by pleiotropic rearrangement of mitochondrial DNA.

    Science.gov (United States)

    Krauch, Gabriele; Wilichowski, Ekkehard; Schmidt, Klaus G; Mayatepek, Ertan

    2002-06-01

    Pearson marrow-pancreas syndrome is a usually fatal disorder that involves the hematopoietic system, exocrine pancreas, liver, kidneys, and often presents clinically with failure to thrive. We report a 5-year-old patient who developed, in addition to the typical features of Pearson syndrome, worsening cardiac function, mainly affecting the left ventricle. The latter finding is particularly interesting because cardiac involvement has not yet been regarded as a major feature of Pearson syndrome. The diagnosis was proved by the finding of so far undescribed pleioplasmatic rearrangement of mitochondrial (mt)DNA (loss of 5,630 bp, 70% deleted and duplicated mtDNA) in blood cells. Our report demonstrates that patients with Pearson syndrome may also have impaired cardiac function. Thus, Pearson syndrome should be considered in the differential diagnosis of patients with left ventricular dysfunction of unknown origin and other clinical findings suggestive of a mitochondrial disease. Copyright 2002 Wiley-Liss, Inc.

  20. Cardiac mass and function decrease in bronchiolitis obliterans syndrome after lung transplantation: relationship to physical activity?

    Directory of Open Access Journals (Sweden)

    Jan B Hinrichs

    Full Text Available RATIONALE: There is a need to expand knowledge on cardio-pulmonary pathophysiology of bronchiolitis obliterans syndrome (BOS following lung transplantation (LTx. OBJECTIVES: The purpose of this study was to assess MRI-derived biventricular cardiac mass and function parameters as well as flow hemodynamics in patients with and without BOS after LTx. METHODS: Using 1.5T cardiac MRI, measurements of myocardial structure and function as well as measurements of flow in the main pulmonary artery and ascending aorta were performed in 56 lung transplant patients. The patients were dichotomized into two gender matched groups of comparable age range: one with BOS (BOS stages 1-3 and one without BOS (BOS 0/0p. MEASUREMENTS AND MAIN RESULTS: Significantly lower biventricular cardiac mass, right and left ventricular end-diastolic volume, biventricular stroke volume, flow hemodynamics and significant higher heart rate but preserved cardiac output were observed in patients with BOS 1-3 compared to the BOS 0/0p group (p < 0.05. In a stepwise logistic regression analysis global cardiac mass (p = 0.046 and days after LTx (p = 0.0001 remained independent parameters to predict BOS. In a second model an indicator for the physical fitness level - walking number of stairs - was added to the logistic regression model. In this second model, time after LTx (p = 0.005 and physical fitness (p = 0.01 remained independent predictors for BOS. CONCLUSION: The observed changes in biventricular cardiac mass and function as well as changes in hemodynamic flow parameters in the pulmonary trunk and ascending aorta are likely attributed to the physical fitness level of patients after lung transplantation, which in turn is strongly related to lung function.

  1. Exercise and type 2 diabetes mellitus: changes in tissue-specific fat distribution and cardiac function.

    Science.gov (United States)

    Jonker, Jacqueline T; de Mol, Pieter; de Vries, Suzanna T; Widya, Ralph L; Hammer, Sebastiaan; van Schinkel, Linda D; van der Meer, Rutger W; Gans, Rijk O B; Webb, Andrew G; Kan, Hermien E; de Koning, Eelco J P; Bilo, Henk J G; Lamb, Hildo J

    2013-11-01

    To prospectively assess the effects of an exercise intervention on organ-specific fat accumulation and cardiac function in type 2 diabetes mellitus. Written informed consent was obtained from all participants, and the study protocol was approved by the medical ethics committee. The study followed 12 patients with type 2 diabetes mellitus (seven men; mean age, 46 years ± 2 [standard error]) before and after 6 months of moderate-intensity exercise, followed by a high-altitude trekking expedition with exercise of long duration. Abdominal, epicardial, and paracardial fat volume were measured by using magnetic resonance (MR) imaging. Cardiac function was quantified with cardiac MR, and images were analyzed by a researcher who was supervised by a senior researcher (4 and 21 years of respective experience in cardiac MR). Hepatic, myocardial, and intramyocellular triglyceride (TG) content relative to water were measured with proton MR spectroscopy at 1.5 and 7 T. Two-tailed paired t tests were used for statistical analysis. Exercise reduced visceral abdominal fat volume from 348 mL ± 57 to 219 mL ± 33 (P Exercise decreased hepatic TG content from 6.8% ± 2.3 to 4.6% ± 1.6 (P Exercise did not change epicardial fat volume (P = .9), myocardial TG content (P = .9), intramyocellular lipid content (P = .3), or cardiac function (P = .5). A 6-month exercise intervention in type 2 diabetes mellitus decreased hepatic TG content and visceral abdominal and paracardial fat volume, which are associated with increased cardiovascular risk, but cardiac function was unaffected. Tissue-specific exercise-induced changes in body fat distribution in type 2 diabetes mellitus were demonstrated in this study. RSNA, 2013

  2. A portable cadmium telluride multidetector probe for cardiac function monitoring

    CERN Document Server

    Arntz, Y; Dumitresco, B; Eclancher, B; Prat, V

    1999-01-01

    A new nuclear stethoscope based on a matrix of small CdTe semiconductor detectors has been developed for studying the cardiac performance by gamma ventriculography at the equilibrium, in rest and stress conditions, in the early and recovery phases of the coronary disease and to follow the long-term therapy. The light-weight probe consists of an array of 64 detectors 5x5x2 mm grouped in 16 independent units in a lead shielded aluminum box including 16 preamplifiers. The probe is connected to an electronic box containing DC power supply, 16 channel amplifiers, discriminators and counters, two analog-triggering ECG channels, and interface to a PC. The left ventricle activity is, preferentially, detected by using a low-resolution matching convergent collimator. A physical evaluation of the probe has been performed, both with static tests and dynamically with a hydraulic home-built model of beating heart ventricle paced by a rhythm simulator. The sum of the 16 detectors activity provided a radiocardiogram (RCG) wh...

  3. Deficiency Mutations of Alpha-1 Antitrypsin. Effects on Folding, Function, and Polymerization.

    Science.gov (United States)

    Haq, Imran; Irving, James A; Saleh, Aarash D; Dron, Louis; Regan-Mochrie, Gemma L; Motamedi-Shad, Neda; Hurst, John R; Gooptu, Bibek; Lomas, David A

    2016-01-01

    Misfolding, polymerization, and defective secretion of functional alpha-1 antitrypsin underlies the predisposition to severe liver and lung disease in alpha-1 antitrypsin deficiency. We have identified a novel (Ala336Pro, Baghdad) deficiency variant and characterized it relative to the wild-type (M) and Glu342Lys (Z) alleles. The index case is a homozygous individual of consanguineous parentage, with levels of circulating alpha-1 antitrypsin in the moderate deficiency range, but is a biochemical phenotype that could not be classified by standard methods. The majority of the protein was present as functionally inactive polymer, and the remaining monomer was 37% active relative to the wild-type protein. These factors combined indicate an 85 to 95% functional deficiency, similar to that seen with ZZ homozygotes. Biochemical, biophysical, and computational studies further defined the molecular basis of this deficiency. These studies demonstrated that native Ala336Pro alpha-1 antitrypsin could populate the polymerogenic intermediate-and therefore polymerize-more readily than either wild-type alpha-1 antitrypsin or the Z variant. In contrast, folding was far less impaired in Ala336Pro alpha-1 antitrypsin than in the Z variant. The data are consistent with a disparate contribution by the "breach" region and "shutter" region of strand 5A to folding and polymerization mechanisms. Moreover, the findings demonstrate that, in these variants, folding efficiency does not correlate directly with the tendency to polymerize in vitro or in vivo. They therefore differentiate generalized misfolding from polymerization tendencies in missense variants of alpha-1 antitrypsin. Clinically, they further support the need to quantify loss-of-function in alpha-1 antitrypsin deficiency to individualize patient care.

  4. Acid sphingomyelinase (aSMase) deficiency leads to abnormal microglia behavior and disturbed retinal function

    Energy Technology Data Exchange (ETDEWEB)

    Dannhausen, Katharina; Karlstetter, Marcus; Caramoy, Albert [Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne (Germany); Volz, Cornelia; Jägle, Herbert [Department of Ophthalmology, University Hospital Regensburg, Regensburg (Germany); Liebisch, Gerhard [Institute for Clinical Chemistry and Laboratory Medicine, University Hospital Regensburg, Regensburg (Germany); Utermöhlen, Olaf [Institute for Medical Microbiology, Immunology and Hygiene and Center for Molecular Medicine Cologne, University of Cologne, Cologne (Germany); Langmann, Thomas, E-mail: thomas.langmann@uk-koeln.de [Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, University of Cologne, Cologne (Germany)

    2015-08-21

    Mutations in the acid sphingomyelinase (aSMase) coding gene sphingomyelin phosphodiesterase 1 (SMPD1) cause Niemann-Pick disease (NPD) type A and B. Sphingomyelin storage in cells of the mononuclear phagocyte system cause hepatosplenomegaly and severe neurodegeneration in the brain of NPD patients. However, the effects of aSMase deficiency on retinal structure and microglial behavior have not been addressed in detail yet. Here, we demonstrate that retinas of aSMase{sup −/−} mice did not display overt neuronal degeneration but showed significantly reduced scotopic and photopic responses in electroretinography. In vivo fundus imaging of aSMase{sup −/−} mice showed many hyperreflective spots and staining for the retinal microglia marker Iba1 revealed massive proliferation of retinal microglia that had significantly enlarged somata. Nile red staining detected prominent phospholipid inclusions in microglia and lipid analysis showed significantly increased sphingomyelin levels in retinas of aSMase{sup −/−} mice. In conclusion, the aSMase-deficient mouse is the first example in which microglial lipid inclusions are directly related to a loss of retinal function. - Highlights: • aSMase-deficient mice show impaired retinal function and reactive microgliosis. • aSMase-deficient microglia express pro-inflammatory transcripts. • aSMase-deficient microglia proliferate and have increased cell body size. • In vivo imaging shows hyperreflective spots in the fundus of aSMase-deficient mice. • aSMase-deficient microglia accumulate sphingolipid-rich intracellular deposits.

  5. Correlation between serum vitamin D level and cardiac function: Echocardiographic assessment

    Directory of Open Access Journals (Sweden)

    Mohammed Ahmed Abdel Rahman

    2015-12-01

    Conclusion: Vitamin D exerts biphasic effect on cardiac function according to its serum levels. Reduced vitamin D (<20 ng/ml appears to be associated with worse systolic functions in terms of end systolic volume and end systolic dimension. Higher vitamin D levels (⩾20 ng/ml, however, seem to be linked to worse LV diastolic functions in terms of lower e′, higher E/e′ and longer IVRT.

  6. Effects of growth hormone on anthropometric measurements and cardiac function in children with thermal injury.

    Science.gov (United States)

    Mlcak, Ronald P; Suman, Oscar E; Murphy, Kevin; Herndon, David N

    2005-02-01

    Severe burn injuries are associated with growth delays a persistent hypermetabolic response and severe muscle catabolism and wasting. Growth hormone (GH), a potent anabolic agent and salutary modulator of post-traumatic metabolic responses has been shown to decrease muscle wasting, improve net protein synthesis and attenuate growth delays in burned children. In non-burned populations, GH has recently been shown to be of benefit in enhancing cardiac performance and improving cardiac contractility and efficiency. Yet, whether administration of GH will induce similar improvements in cardiac function in severely burned children is presently unknown. We therefore, investigated whether the administration of GH initiated upon hospital discharge (95% healed) and continued for 1-year post-burn would improve resting cardiac function in burned children. Severely burned children were randomized to receive either saline placebo (n = 37) or 0.05 mg/kg per day of GH (n = 39) from discharge until 12-month post-burn. Outcome variables included height, weight, lean body mass, resting energy expenditure, cardiac index, stroke-volume index, heart rate and left ventricular ejection fraction. height, weight, lean body mass and ejection fraction showed a significant increase with GH. Our results indicate that severely burned children treated with long-term GH show a significant improvement in left ventricular ejection fraction.

  7. Enhanced response to radiotherapy in tumours deficient in the function of hypoxia-inducible factor-1.

    NARCIS (Netherlands)

    Williams, K.J.; Telfer, B.A.; Xenaki, D.; Sheridan, M.R.; Desbaillets, I.; Peters, H.J.; Honess, D.; Harris, A.L.; Dachs, G.U.; Kogel, A.J. van der; Stratford, I.J.

    2005-01-01

    BACKGROUND AND PURPOSE: To test the hypothesis that deficiency in expression of the transcription factor, HIF-1, renders tumours more radioresponsive than HIF-1 proficient tumours. PATIENTS AND METHODS: Tumours comprising mouse hepatoma cells lacking HIF-1beta (and thereby HIF-1 function) were grown

  8. The effect of melatonin on vascular function in NO-deficient hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Paulis, L.; Pecháňová, O.; Zicha, Josef; Gardlik, R.; Celec, P.; Kuneš, Jaroslav

    2008-01-01

    Roč. 26, Suppl.1 (2008), S382-S382 ISSN 0263-6352. [Scientific Meeting International Society of Hypertension /22./ , Scientific Meeting European Society of Hypertension /18./. 14.06.2008-19.06.2008, Berlin] Institutional research plan: CEZ:AV0Z50110509 Keywords : cpo1 * melatonin * NO-deficient hypertension * vascular function Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery

  9. [Ubiquinone: metabolism and functions. Ubiquinone deficiency and its implication in mitochondrial encephalopathies. Treatment with ubiquinone].

    Science.gov (United States)

    Artuch, R; Colomé, C; Vilaseca, M A; Pineda, M; Campistol, J

    Review of ubiquinone-10 metabolism and functions in humans, focusing its implication in the pathogenesis and physiopathology of mitochondrial encephalomyopathies. Ubiquinone-10 is an endogenously synthesized lipid with a wide distribution in tissues. Tyrosine and acetil-CoA are involved in ubiquinone biosynthesis. This molecule has several biological functions in cells: it is a movil electron carrier in the mitochondrial respiratory chain and also acts as antioxidant. Owing to its implication in these functions, ubiquinone deficiency may cause important deletereous effects in tissues. Several authors reported ubiquinone deficient status in some physiological and pathological conditions. Mitochondrial encephalomyopathies may be related to a primary or secondary ubiquinone deficient status, or even to an altered function of ubiquinone in the respiratory chain. Moreover, some relevant aspects about ubiquinone therapy in mitochondrial disorders are reported. According to recent reports about ubiquinone implication in several diseases, its determination in different biological samples seems very useful to elucidate the physiopathological mechanisms involved and even the to start a therapy in cases with ubiquinone deficiency.

  10. Forward lunge as a functional performance test in ACL deficient subjects: test-retest reliability

    DEFF Research Database (Denmark)

    Alkjaer, Tine; Henriksen, Marius; Dyhre-Poulsen, Poul

    2009-01-01

    The forward lunge movement may be used as a functional performance test of anterior cruciate ligament (ACL) deficient and reconstructed subjects. The purposes were 1) to determine the test-retest reliability of a forward lunge in healthy subjects and 2) to determine the required numbers...

  11. Inspiratory Muscle Training and Functional Capacity in Patients Undergoing Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    André Luiz Lisboa Cordeiro

    Full Text Available Abstract Introduction: Cardiac surgery is a highly complex procedure which generates worsening of lung function and decreased inspiratory muscle strength. The inspiratory muscle training becomes effective for muscle strengthening and can improve functional capacity. Objective: To investigate the effect of inspiratory muscle training on functional capacity submaximal and inspiratory muscle strength in patients undergoing cardiac surgery. Methods: This is a clinical randomized controlled trial with patients undergoing cardiac surgery at Instituto Nobre de Cardiologia. Patients were divided into two groups: control group and training. Preoperatively, were assessed the maximum inspiratory pressure and the distance covered in a 6-minute walk test. From the third postoperative day, the control group was managed according to the routine of the unit while the training group underwent daily protocol of respiratory muscle training until the day of discharge. Results: 50 patients, 27 (54% males were included, with a mean age of 56.7±13.9 years. After the analysis, the training group had significant increase in maximum inspiratory pressure (69.5±14.9 vs. 83.1±19.1 cmH2O, P=0.0073 and 6-minute walk test (422.4±102.8 vs. 502.4±112.8 m, P=0.0031. Conclusion: We conclude that inspiratory muscle training was effective in improving functional capacity submaximal and inspiratory muscle strength in this sample of patients undergoing cardiac surgery.

  12. Inspiratory Muscle Training and Functional Capacity in Patients Undergoing Cardiac Surgery.

    Science.gov (United States)

    Cordeiro, André Luiz Lisboa; de Melo, Thiago Araújo; Neves, Daniela; Luna, Julianne; Esquivel, Mateus Souza; Guimarães, André Raimundo França; Borges, Daniel Lago; Petto, Jefferson

    2016-04-01

    Cardiac surgery is a highly complex procedure which generates worsening of lung function and decreased inspiratory muscle strength. The inspiratory muscle training becomes effective for muscle strengthening and can improve functional capacity. To investigate the effect of inspiratory muscle training on functional capacity submaximal and inspiratory muscle strength in patients undergoing cardiac surgery. This is a clinical randomized controlled trial with patients undergoing cardiac surgery at Instituto Nobre de Cardiologia. Patients were divided into two groups: control group and training. Preoperatively, were assessed the maximum inspiratory pressure and the distance covered in a 6-minute walk test. From the third postoperative day, the control group was managed according to the routine of the unit while the training group underwent daily protocol of respiratory muscle training until the day of discharge. 50 patients, 27 (54%) males were included, with a mean age of 56.7±13.9 years. After the analysis, the training group had significant increase in maximum inspiratory pressure (69.5±14.9 vs. 83.1±19.1 cmH2O, P=0.0073) and 6-minute walk test (422.4±102.8 vs. 502.4±112.8 m, P=0.0031). We conclude that inspiratory muscle training was effective in improving functional capacity submaximal and inspiratory muscle strength in this sample of patients undergoing cardiac surgery.

  13. The diagnostic and therapeutic aspects of loss-of-function cardiac sodium channelopathies in children

    NARCIS (Netherlands)

    Chockalingam, Priya; Clur, Sally-Ann B.; Breur, Johannes M. P. J.; Kriebel, Thomas; Paul, Thomas; Rammeloo, Lukas A.; Wilde, Arthur A. M.; Blom, Nico A.

    2012-01-01

    BACKGROUND Loss-of-function sodium channelopathies manifest as a spectrum of diseases including Brugada syndrome (BrS) and cardiac conduction disease. OBJECTIVE To analyze the diagnostic and therapeutic aspects of these disorders in children. METHODS Patients aged <= 16 years with genetically

  14. Tei index in determination of fetal cardiac function in pregnant women with gestational diabetes mellitus

    Directory of Open Access Journals (Sweden)

    Guo-Dong Li

    2016-09-01

    Full Text Available Objective: To explore the application value of Tei index in determination of fetal cardiac function in pregnant women with gestational diabetes mellitus (GDM. Methods: A total of 60 gestational diabetes mellitus pregnant women with single birth were included in the study and served as GDM group, while 60 healthy pregnant women with single birth were served as the control group. The fetal echocardiography was performed. The cardiac structure, function, and other related indicators were detected and compared. Results: IVSs, LVWT, RVWT, LVEF, LVFS, and RVFS in GDM group were significantly greater than those in the control group (P<0.05. E/A MV and E/A TV in GDM group were significantly lower than those in the control group (P<0.05. The left and right ventricular Tei index in GDM group was significantly higher than that in the control group (P<0.05. Conclusions: The fetal cardiac structure and function in GDM pregnant women can cause damage to a different degree. Tei index is an important indicator to evaluate the fetal cardiac function in GDM pregnant women, and can be applied in the early diagnosis and treatment; therefore, it deserved to be widely recommended in the clinic.

  15. Cognitive, and behavioural and emotional functioning of young children awaiting elective cardiac surgery or catheter intervention

    NARCIS (Netherlands)

    Utens, E. M.; Versluis-den Bieman, H. J.; Witsenburg, M.; Bogers, A. J.; Verhulst, F. C.; Hess, J.

    2001-01-01

    To assess the cognitive, and behavioural and emotional functioning of children aged 3 months to 7 years shortly before elective cardiac surgery or elective interventional catheterisation. We used the Bayley Scales of Infant Development, and the McCarthy Scales of Children's Abilities, to measure

  16. Exercise and Type 2 Diabetes Mellitus : Changes in Tissue-specific Fat Distribution and Cardiac Function

    NARCIS (Netherlands)

    Jonker, Jacqueline T.; de Mol, Pieter; de Vries, Suzanna T.; Widya, Ralph L.; Hammer, Sebastiaan; van Schinkel, Linda D.; van der Meer, Rutger W.; Gans, Rijk O. B.; Webb, Andrew G.; Kan, Hermien E.; de Koning, Eelco J. P.; Bilo, Henk J. G.; Lamb, Hildo J.

    2013-01-01

    Purpose: To prospectively assess the effects of an exercise intervention on organ-specific fat accumulation and cardiac function in type 2 diabetes mellitus. Materials and Methods: Written informed consent was obtained from all participants, and the study protocol was approved by the medical ethics

  17. Survivors of cardiac arrest with good neurological outcome show considerable impairments of memory functioning.

    Science.gov (United States)

    Sulzgruber, Patrick; Kliegel, Andreas; Wandaller, Cosima; Uray, Thomas; Losert, Heidrun; Laggner, Anton N; Sterz, Fritz; Kliegel, Matthias

    2015-03-01

    Deficits in cognitive function are a well-known dysfunction in survivors of cardiac arrest. However, data concerning memory function in this neurological vulnerable patient collective remain scarce and inconclusive. Therefore, we aimed to assess multiple aspects of retrospective and prospective memory performance in patients after cardiac arrest. We prospectively enrolled 33 survivors of cardiac arrest, with cerebral performance categories (CPC) 1 and 2 and a control-group (n=33) matched in sex, age and educational-level. To assess retrospective and prospective memory performance we administrated 4 weeks after cardiac arrest the "Rey Adult Learning Test" (RAVLT), the "Digit-Span-Backwards Test", the "Logic-Memory Test" and the "Red-Pencil Test". Results indicate an impairment in immediate and delayed free recall, but not in recognition. However, the overall impairment in immediate recall was qualified by analyzing RAVLT performance, showing that patients were only impaired in trials 4 and 5 of the learning sequence. Moreover, working and prospective memory as well as prose recall were worse in cardiac arrest survivors. Cranial computed tomography was available in 61% of all patients (n=20) but there was no specific neurological damage detectable that could be linked to this cognitive impairment. Episodic long-term memory functioning appears to be particularly impaired after cardiac arrest. In contrast, short-term memory storage, even tested via free-call, seems not to be affected. Based on cranial computed tomography we suggest that global brain ischemia rather than focal brain lesions appear to underlie these effects. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  18. Association of plasma osteoprotegerin and adiponectin with arterial function, cardiac function and metabolism in asymptomatic type 2 diabetic men

    NARCIS (Netherlands)

    Chen, Weena J. Y.; Rijzewijk, Luuk J.; van der Meer, Rutger W.; Heymans, Martijn W.; van Duinkerken, Eelco; Lubberink, Mark; Lammertsma, Adriaan A.; Lamb, Hildo J.; de Roos, Albert; Romijn, Johannes A.; Smit, Jan W. A.; Bax, Jeroen J.; Bjerre, Mette; Frystyk, Jan; Flyvbjerg, Allan; Diamant, Michaela

    2011-01-01

    Osteoprotegerin (OPG), a soluble member of the tumor necrosis factor receptor superfamily, is linked to cardiovascular disease. Negative associations exist between circulating OPG and cardiac function. The adipocytokine adiponectin (ADPN) is downregulated in type 2 diabetes mellitus (T2DM) and

  19. Performance of automated software in the assessment of segmental left ventricular function in cardiac CT: Comparison with cardiac magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Rui [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Capital Medical University, Department of Radiology, Beijing Anzhen Hospital, Beijing (China); Meinel, Felix G. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Ludwig-Maximilians-University Hospital, Institute for Clinical Radiology, Munich (Germany); Schoepf, U.J. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); Medical University of South Carolina, Division of Cardiology, Department of Medicine, Charleston, SC (United States); Canstein, Christian [Siemens Medical Solutions USA, Malvern, PA (United States); Spearman, James V. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); De Cecco, Carlo N. [Medical University of South Carolina, Department of Radiology and Radiological Science, Charleston, SC (United States); University of Rome ' ' Sapienza' ' , Departments of Radiological Sciences, Oncology and Pathology, Latina (Italy)

    2015-12-15

    To evaluate the accuracy, reliability and time saving potential of a novel cardiac CT (CCT)-based, automated software for the assessment of segmental left ventricular function compared to visual and manual quantitative assessment of CCT and cardiac magnetic resonance (CMR). Forty-seven patients with suspected or known coronary artery disease (CAD) were enrolled in the study. Wall thickening was calculated. Segmental LV wall motion was automatically calculated and shown as a colour-coded polar map. Processing time for each method was recorded. Mean wall thickness in both systolic and diastolic phases on polar map, CCT, and CMR was 9.2 ± 0.1 mm and 14.9 ± 0.2 mm, 8.9 ± 0.1 mm and 14.5 ± 0.1 mm, 8.3 ± 0.1 mm and 13.6 ± 0.1 mm, respectively. Mean wall thickening was 68.4 ± 1.5 %, 64.8 ± 1.4 % and 67.1 ± 1.4 %, respectively. Agreement for the assessment of LV wall motion between CCT, CMR and polar maps was good. Bland-Altman plots and ICC indicated good agreement between CCT, CMR and automated polar maps of the diastolic and systolic segmental wall thickness and thickening. The processing time using polar map was significantly decreased compared with CCT and CMR. Automated evaluation of segmental LV function with polar maps provides similar measurements to manual CCT and CMR evaluation, albeit with substantially reduced analysis time. (orig.)

  20. Vitamin D deficiency plays an important role in cardiac disease and affects patient outcome: Still a myth or a fact that needs exploration?

    Directory of Open Access Journals (Sweden)

    Zaher Fanari

    2015-10-01

    Full Text Available There is increasing evidence that a low vitamin D status may be an important and hitherto neglected factor of cardiovascular disease. This review is an overview of the current body of literature, and presents evidence of the mechanisms through which vitamin D deficiency affects the cardiovascular system in general and the heart in particular. Available data indicate that the majority of congestive heart failure patients have 25-hydroxyvitamin D deficiency. Furthermore, the low serum 25-hydroxyvitamin D level has a higher impact on hypertension, coronary artery disease an on the occurrence of relevant cardiac events. A serum 25-hydroxyvitamin D level below 75 nmol/l (30 ng/l is generally regarded as vitamin D insufficiency in both adults and children, while a level below 50 nmol/l (20 ng/l is considered deficiency. Levels below 50 nmol/l (20 ng/l are linked independently to cardiovascular morbidity and mortality.

  1. Effects of Vitamin D on Cardiac Function in Patients With Chronic HF: The VINDICATE Study.

    Science.gov (United States)

    Witte, Klaus K; Byrom, Rowena; Gierula, John; Paton, Maria F; Jamil, Haqeel A; Lowry, Judith E; Gillott, Richard G; Barnes, Sally A; Chumun, Hemant; Kearney, Lorraine C; Greenwood, John P; Plein, Sven; Law, Graham R; Pavitt, Sue; Barth, Julian H; Cubbon, Richard M; Kearney, Mark T

    2016-06-07

    Patients with chronic heart failure (HF) secondary to left ventricular systolic dysfunction (LVSD) are frequently deficient in vitamin D. Low vitamin D levels are associated with a worse prognosis. The VINDICATE (VitamIN D treatIng patients with Chronic heArT failurE) study was undertaken to establish safety and efficacy of high-dose 25 (OH) vitamin D3 (cholecalciferol) supplementation in patients with chronic HF due to LVSD. We enrolled 229 patients (179 men) with chronic HF due to LVSD and vitamin D deficiency (cholecalciferol vitamin D3 supplementation (4,000 IU [100 μg] daily) or matching non-calcium-based placebo. The primary endpoint was change in 6-minute walk distance between baseline and 12 months. Secondary endpoints included change in LV ejection fraction at 1 year, and safety measures of renal function and serum calcium concentration assessed every 3 months. One year of high-dose vitamin D3 supplementation did not improve 6-min walk distance at 1 year, but was associated with a significant improvement in cardiac function (LV ejection fraction +6.07% [95% confidence interval (CI): 3.20 to 8.95; p vitamin D3 supplementation does not improve 6-min walk distance but has beneficial effects on LV structure and function in patients on contemporary optimal medical therapy. Further studies are necessary to determine whether these translate to improvements in outcomes. (VitamIN D Treating patIents With Chronic heArT failurE [VINDICATE]; NCT01619891). Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  2. Action Potential Shortening and Impairment of Cardiac Function by Ablation of Slc26a6.

    Science.gov (United States)

    Sirish, Padmini; Ledford, Hannah A; Timofeyev, Valeriy; Thai, Phung N; Ren, Lu; Kim, Hyo Jeong; Park, Seojin; Lee, Jeong Han; Dai, Gu; Moshref, Maryam; Sihn, Choong-Ryoul; Chen, Wei Chun; Timofeyeva, Maria Valeryevna; Jian, Zhong; Shimkunas, Rafael; Izu, Leighton T; Chiamvimonvat, Nipavan; Chen-Izu, Ye; Yamoah, Ebenezer N; Zhang, Xiao-Dong

    2017-10-01

    Intracellular pH (pH i ) is critical to cardiac excitation and contraction; uncompensated changes in pH i impair cardiac function and trigger arrhythmia. Several ion transporters participate in cardiac pH i regulation. Our previous studies identified several isoforms of a solute carrier Slc26a6 to be highly expressed in cardiomyocytes. We show that Slc26a6 mediates electrogenic Cl - /HCO 3 - exchange activities in cardiomyocytes, suggesting the potential role of Slc26a6 in regulation of not only pH i , but also cardiac excitability. To test the mechanistic role of Slc26a6 in the heart, we took advantage of Slc26a6 knockout ( Slc26a6 -/ - ) mice using both in vivo and in vitro analyses. Consistent with our prediction of its electrogenic activities, ablation of Slc26a6 results in action potential shortening. There are reduced Ca 2+ transient and sarcoplasmic reticulum Ca 2+ load, together with decreased sarcomere shortening in Slc26a6 -/ - cardiomyocytes. These abnormalities translate into reduced fractional shortening and cardiac contractility at the in vivo level. Additionally, pH i is elevated in Slc26a6 -/ - cardiomyocytes with slower recovery kinetics from intracellular alkalization, consistent with the Cl - /HCO 3 - exchange activities of Slc26a6. Moreover, Slc26a6 -/ - mice show evidence of sinus bradycardia and fragmented QRS complex, supporting the critical role of Slc26a6 in cardiac conduction system. Our study provides mechanistic insights into Slc26a6, a unique cardiac electrogenic Cl - /HCO 3 - transporter in ventricular myocytes, linking the critical roles of Slc26a6 in regulation of pH i , excitability, and contractility. pH i is a critical regulator of other membrane and contractile proteins. Future studies are needed to investigate possible changes in these proteins in Slc26a6 -/ - mice. © 2017 American Heart Association, Inc.

  3. Ultrasonographic assessment of maternal cardiac function and peripheral circulation during normal gestation in dogs.

    Science.gov (United States)

    Blanco, Paula G; Tórtora, Mariana; Rodríguez, Raúl; Arias, Daniel O; Gobello, Cristina

    2011-10-01

    The aim of this study was to describe changes in cardiac morphology, systolic function and some peripheral hemodynamic parameters during normal pregnancy in dogs. Twenty healthy bitches, 10 pregnant (PG) and 10 non-pregnant controls (CG), were evaluated every 10 days using echocardiography from day 0 of the estrus cycle to parturition or to day 65 for the PG and CG groups, respectively. Systolic blood pressure (SBP) and uterine artery resistance index (RI) were also assessed. Throughout the study, the shortening fraction and cardiac output increased up to 30% vs. 5% (Pdogs. Copyright © 2010 Elsevier Ltd. All rights reserved.

  4. Adaptive servo ventilation improves Cheyne-Stokes respiration, cardiac function, and prognosis in chronic heart failure patients with cardiac resynchronization therapy.

    Science.gov (United States)

    Miyata, Makiko; Yoshihisa, Akiomi; Suzuki, Satoshi; Yamada, Shinya; Kamioka, Masashi; Kamiyama, Yoshiyuki; Yamaki, Takayoshi; Sugimoto, Koichi; Kunii, Hiroyuki; Nakazato, Kazuhiko; Suzuki, Hitoshi; Saitoh, Shu-ichi; Takeishi, Yasuchika

    2012-09-01

    Cheyne-Stokes respiration (CSR-CSA) is often observed in patients with chronic heart failure (CHF). Although cardiac resynchronization therapy (CRT) is effective for CHF patients with left ventricular dyssynchrony, it is still unclear whether adaptive servo ventilation (ASV) improves cardiac function and prognosis of CHF patients with CSR-CSA after CRT. Twenty two patients with CHF and CSR-CSA after CRT defibrillator (CRTD) implantation were enrolled in the present study and randomly assigned into two groups: 11 patients treated with ASV (ASV group) and 11 patients treated without ASV (non-ASV group). Measurement of plasma B-type natriuretic peptide (BNP) levels (before 3, and 6 months later) and echocardiography (before and 6 months) were performed in each group. Patients were followed up to register cardiac events (cardiac death and re-hospitalization) after discharge. In the ASV group, indices for apnea-hypopnea, central apnea, and oxyhemoglobin saturation were improved on ASV. BNP levels, cardiac systolic and diastolic function were improved with ASV treatment for 6 months. Importantly, the event-free rate was significantly higher in the ASV group than in the non-ASV group. ASV improves CSR-CSA, cardiac function, and prognosis in CHF patients with CRTD. Patients with CSR-CSA and post CRTD implantation would get benefits by treatment with ASV. Copyright © 2012 Japanese College of Cardiology. Published by Elsevier Ltd. All rights reserved.

  5. Effects of iron deficiency on cognitive function in school going adolescent females in rural area of central India.

    Science.gov (United States)

    More, Sarika; Shivkumar, V B; Gangane, Nitin; Shende, Sumeet

    2013-01-01

    Iron deficiency anemia is most common nutritional deficiency disorder in India and remains a formidable health challenge. Girls in the period of later school age and early adolescence are prone to develop iron deficiency. Iron deficiency leads to many non-hematological disturbances which include growth and development, depressed immune function in infants; reduces physical work capacity; decreases the cognitive function in both infants and adolescents. Present study was done to know the prevalence of iron deficiency in both the anemic and non anemic school going adolescent girls, to assess the effect of iron deficiency on cognitive functions in anemic iron deficient and non-anemic iron deficient school girls in a village school situated in central India. Methods. A secondary school having girl students in the age group of 12-15 years studying in sixth to ninth standard was selected. Serum ferritin concentration was estimated by ELISA. For assessing the cognitive function mathematics score, one multi-component test for memory, attention and verbal learning and Intelligent Quotient scores of the students were used. Results. Scholastic Performance, IQ and Scores of Mental balance, Attention & Concentration, Verbal Memory and Recognition were decreased in iron deficient girls, both anemic and non anemic as compared to the non iron deficient girls.

  6. Generation of Functional Human Cardiac Progenitor Cells by High-Efficiency Protein Transduction.

    Science.gov (United States)

    Li, Xiao-Hong; Li, Qianqian; Jiang, Lin; Deng, Chunyu; Liu, Zaiyi; Fu, Yongheng; Zhang, Mengzhen; Tan, Honghong; Feng, Yuliang; Shan, Zhixin; Wang, Jianjun; Yu, Xi-Yong

    2015-12-01

    The reprogramming of fibroblasts to induced pluripotent stem cells raises the possibility that somatic cells could be directly reprogrammed to cardiac progenitor cells (CPCs). The present study aimed to assess highly efficient protein-based approaches to reduce or eliminate the genetic manipulations to generate CPCs for cardiac regeneration therapy. A combination of QQ-reagent-modified Gata4, Hand2, Mef2c, and Tbx5 and three cytokines rapidly and efficiently reprogrammed human dermal fibroblasts (HDFs) into CPCs. This reprogramming process enriched trimethylated histone H3 lysine 4, monoacetylated histone H3 lysine 9, and Baf60c at the Nkx2.5 cardiac enhancer region by the chromatin immunoprecipitation quantitative polymerase chain reaction assay. Protein-induced CPCs transplanted into rat hearts after myocardial infarction improved cardiac function, and this was related to differentiation into cardiomyocyte-like cells. These findings demonstrate that the highly efficient protein-transduction method can directly reprogram HDFs into CPCs. This protein reprogramming strategy lays the foundation for future refinements both in vitro and in vivo and might provide a source of CPCs for regenerative approaches. The findings from the present study have demonstrated an efficient protein-transduction method of directly reprogramming fibroblasts into cardiac progenitor cells. These results have great potential in cell-based therapy for cardiovascular diseases. ©AlphaMed Press.

  7. The Role of Levosimendan in Patients with Decreased Left Ventricular Function Undergoing Cardiac Surgery

    Directory of Open Access Journals (Sweden)

    Marija Bozhinovska

    2016-06-01

    Full Text Available The postoperative low cardiac output is one of the most important complications following cardiac surgery and is associated with increased morbidity and mortality. The condition requires inotropic support to achieve adequate hemodynamic status and tissue perfusion. While catecholamines are utilised as a standard therapy in cardiac surgery, their use is limited due to increased oxygen consumption. Levosimendan is calcium sensitising inodilatator expressing positive inotropic effect by binding with cardiac troponin C without increasing oxygen demand. Furthermore, the drug opens potassium ATP (KATP channels in cardiac mitochondria and in the vascular muscle cells, showing cardioprotective and vasodilator properties, respectively. In the past decade, levosimendan demonstrated promising results in treating patients with reduced left ventricular function when administered in peri- or post- operative settings. In addition, pre-operative use of levosimendan in patients with severely reduced left ventricular ejection fraction may reduce the requirements for postoperative inotropic support, mechanical support, duration of intensive care unit stay as well as hospital stay and a decrease in post-operative mortality. However, larger studies are needed to clarify clinical advantages of levosimendan versus conventional inotropes.

  8. Use of the cardiopulmonary flow index to evaluate cardiac function in thoroughbred horses

    International Nuclear Information System (INIS)

    Guthrie, A.J.; Killeen, V.M.; Grosskopf, J.F.W.

    1991-01-01

    The ratio of the cardiopulmonary blood volume to stroke volume is called the cardiopulmonary flow index (CPFI). The CPFI can be determined indirectly from the simultaneous recording of a radiocardiogram and an electrocardiogram. The CPFI and cardiac output were measured simultaneously in horses that were diagnosed as having cardiac disease. The results obtained from these subjects were compared with those from control animals and significant differences were found between the mean CPFI of the control horses and those with macroscopically visible myocardial fibrosis on post mortem examination. No significant differences were found between the means of the cardiac output measured in either of the groups of horses. The effect of pharmacological acceleration of the heart rate on the CPFI was also studied. Significant differences were found between the mean CPFI and the slopes of the regression lines of CPFI on heart rate of the control and principal groups of horses. These differences were greatest at heart rates near to the resting heart rates of the individuals. The CPFI was found to be a more sensitive measure of cardiac function than cardiac output, in the horses. 16 refs., 2 figs., 2 tabs

  9. Pulsed electromagnetic field improves cardiac function in response to myocardial infarction.

    Science.gov (United States)

    Hao, Chang-Ning; Huang, Jing-Juan; Shi, Yi-Qin; Cheng, Xian-Wu; Li, Hao-Yun; Zhou, Lin; Guo, Xin-Gui; Li, Rui-Lin; Lu, Wei; Zhu, Yi-Zhun; Duan, Jun-Li

    2014-01-01

    Extracorporeal pulsed electromagnetic field (PEMF) has been shown the ability to improve regeneration in various ischemic episodes. Here, we examined whether PEMF therapy facilitate cardiac recovery in rat myocardial infarction (MI), and the cellular/molecular mechanisms underlying PEMF-related therapy was further investigated. The MI rats were exposed to active PEMF for 4 cycles per day (8 minutes/cycle, 30 ± 3 Hz, 5 mT) after MI induction. The data demonstrated that PEMF treatment significantly inhibited cardiac apoptosis and improved cardiac systolic function. Moreover, PEMF treatment increased capillary density, the levels of vascular endothelial growth factor (VEGF) and hypoxic inducible factor-1α in infarct border zone. Furthermore, the number and function of circulating endothelial progenitor cells were advanced in PEMF treating rats. In vitro, PEMF induced the degree of human umbilical venous endothelial cells tubulization and increased soluble pro-angiogenic factor secretion (VEGF and nitric oxide). In conclusion, PEMF therapy preserves cardiac systolic function, inhibits apoptosis and trigger postnatal neovascularization in ischemic myocardium.

  10. Visualization and functional characterization of the developing murine cardiac conduction system

    Science.gov (United States)

    Rentschler, Stacey; Vaidya, Dhananjay M.; Tamaddon, Houman; Degenhardt, Karl; Sassoon, David; Morley, Gregory E.; Jalife, José; Fishman, Glenn I.

    2013-01-01

    SUMMARY The cardiac conduction system is a complex network of cells that together orchestrate the rhythmic and coordinated depolarization of the heart. The molecular mechanisms regulating the specification and patterning of cells that form this conductive network are largely unknown. Studies in avian models have suggested that components of the cardiac conduction system arise from progressive recruitment of cardiomyogenic progenitors, potentially influenced by inductive effects from the neighboring coronary vasculature. However, relatively little is known about the process of conduction system development in mammalian species, especially in the mouse, where even the histological identification of the conductive network remains problematic. We have identified a line of transgenic mice where lacZ reporter gene expression delineates the developing and mature murine cardiac conduction system, extending proximally from the sinoatrial node to the distal Purkinje fibers. Optical mapping of cardiac electrical activity using a voltage-sensitive dye confirms that cells identified by the lacZ reporter gene are indeed components of the specialized conduction system. Analysis of lacZ expression during sequential stages of cardiogenesis provides a detailed view of the maturation of the conductive network and demonstrates that patterning occurs surprisingly early in embryogenesis. Moreover, optical mapping studies of embryonic hearts demonstrate that a murine His-Purkinje system is functioning well before septation has completed. Thus, these studies describe a novel marker of the murine cardiac conduction system that identifies this specialized network of cells throughout cardiac development. Analysis of lacZ expression and optical mapping data highlight important differences between murine and avian conduction system development. Finally, this line of transgenic mice provides a novel tool for exploring the molecular circuitry controlling mammalian conduction system development

  11. Mutations in hereditary phosphoglucomutase 1 deficiency map to key regions of enzyme structure and function.

    Science.gov (United States)

    Beamer, Lesa J

    2015-03-01

    Recent studies have identified phosphoglucomutase 1 (PGM1) deficiency as an inherited metabolic disorder in humans. PGM1 deficiency is classified as both a muscle glycogenosis (type XIV) and a congenital disorder of glycosylation of types I and II. Affected patients show multiple disease phenotypes, reflecting the central role of the enzyme in glucose homeostasis, where it catalyzes the interconversion of glucose 1-phosphate and glucose 6-phosphate. The influence of PGM1 deficiency on protein glycosylation patterns is also widespread, affecting both biosynthesis and processing of glycans and their precursors. To date, 21 different mutations involved in PGM1 deficiency have been identified, including 13 missense mutations resulting in single amino acid changes. Growing clinical interest in PGM1 deficiency prompts a review of the molecular context of these mutations in the three-dimensional structure of the protein. Here the known crystal structure of PGM from rabbit (97 % sequence identity to human) is used to analyze the mutations associated with disease and find that many map to regions with clear significance to enzyme function. In particular, amino acids in and around the active site cleft are frequently involved, including regions responsible for catalysis, binding of the metal ion required for activity, and interactions with the phosphosugar substrate. Several of the known mutations, however, are distant from the active site and appear to manifest their effects indirectly. An understanding of how the different mutations that cause PGM1 deficiency affect enzyme structure and function is foundational to providing clinical prognosis and the development of effective treatment strategies.

  12. TNNI3K is a novel mediator of myofilament function and phosphorylates cardiac troponin I

    International Nuclear Information System (INIS)

    Wang, Hui; Wang, Lin; Song, Li; Zhang, Yan-Wan; Ye, Jue; Xu, Rui-Xia; Shi, Na; Meng, Xian-Min

    2013-01-01

    The phosphorylation of cardiac troponin I (cTnI) plays an important role in the contractile dysfunction associated with heart failure. Human cardiac troponin I-interacting kinase (TNNI3K) is a novel cardiac-specific functional kinase that can bind to cTnI in a yeast two-hybrid screen. The purpose of this study was to investigate whether TNNI3K can phosphorylate cTnI at specific sites and to examine whether the phosphorylation of cTnI caused by TNNI3K can regulate cardiac myofilament contractile function. Co-immunoprecipitation was performed to confirm that TNNI3K could interact with cTnI. Kinase assays further indicated that TNNI3K did not phosphorylate cTnI at Ser23/24 and Ser44, but directly phosphorylated Ser43 and Thr143 in vitro. The results obtained for adult rat cardiomyocytes also indicated that enhanced phosphorylation of cTnI at Ser43 and Thr143 correlated with rTNNI3K (rat TNNI3K) overexpression, and phosphorylation was reduced when rTNNI3K was knocked down. To determine the contractile function modulated by TNNI3K-mediated phosphorylation of cTnI, cardiomyocyte contraction was studied in adult rat ventricular myocytes. The contraction of cardiomyocytes increased with rTNNI3K overexpression and decreased with rTNNI3K knockdown. We conclude that TNNI3K may be a novel mediator of cTnI phosphorylation and contribute to the regulation of cardiac myofilament contraction function

  13. Absolute and Functional Iron Deficiency Anemia among Different Tumors in Cancer Patients in South Part of Iran, 2014

    Science.gov (United States)

    Hashemi, Seyed Mehdi; Mashhadi, Mohammad Ali; Mohammadi, Mehdi; Ebrahimi, Maryam; Allahyari, Abolghasem

    2017-01-01

    Background: Anemia is a common problem in cancer patients. This study aimed to investigate the frequency rate of absolute and functional iron deficiency anemia among different tumors and its distribution in different stages of cancer in solid tumors. Materials and Methods: This study was performed on 597 patients with cancer referred to Ali-Ebne-Abitaleb Hospital in Zahedan. Laboratory tests included serum iron, transferrin saturation, C-reactive protein (CRP), erythrocyte sedimentation rate (ESR) and complete blood count (CBC). The malignancy type and stages were recorded. Data were analysed using SPSS statistics software (Ver.19). Results: Four hundred and fifty-seven patients (76.5 %) diagnosed with solid tumors and 140 (23.5%) suffered from hematologic malignancies. Among patients with solid tumors, functional iron deficiency had the highest rate (300 patients had anemia and 243 (53.2%) of whom were functionally iron deficient), but in hematologic malignancies most of patients had not iron deficiency (66 patients had not iron deficiency against 12 patients had absolute iron deficiency and 62 patients had functional iron deficiency anemia) (P-value=0.021). No significant differences were observed among the various stages of cancers in terms of degrees of iron deficiency (P>0.05). Conclusion: The results of the study showed that solid tumors had a higher rate of absolute and functional iron deficiency anemia, compared to hematologic malignancies. But there was no difference between the different stages of the disease. PMID:28989585

  14. Cardiac function associated with home ventilator care in Duchenne muscular dystrophy.

    Science.gov (United States)

    Lee, Sangheun; Lee, Heeyoung; Eun, Lucy Youngmin; Gang, Seung Woong

    2018-02-01

    Cardiomyopathy is becoming the leading cause of death in patients with Duchenne muscular dystrophy because mechanically assisted lung ventilation and assisted coughing have helped resolve respiratory complications. To clarify cardiopulmonary function, we compared cardiac function between the home ventilator-assisted and non-ventilator-assisted groups. We retrospectively reviewed patients with Duchenne muscular dystrophy from January 2010 to March 2016 at Gangnam Severance Hospital. Demographic characteristics, pulmonary function, and echocardiography data were investigated. Fifty-four patients with Duchenne muscular dystrophy were divided into 2 groups: home ventilator-assisted and non-ventilator-assisted. The patients in the home ventilator group were older (16.25±1.85 years) than those in the nonventilator group (14.73±1.36 years) ( P =0.001). Height, weight, and body surface area did not differ significantly between groups. The home ventilator group had a lower seated functional vital capacity (1,038±620.41 mL) than the nonventilator group (1,455±603.12 mL). Mean left ventricular ejection fraction and fractional shortening were greater in the home ventilator group, but the data did not show any statistical difference. The early ventricular filling velocity/late ventricular filling velocity ratio (1.7±0.44) was lower in the home ventilator group than in the nonventilator group (2.02±0.62). The mitral valve annular systolic velocity was higher in the home ventilator group (estimated β, 1.06; standard error, 0.48). Patients with Duchenne muscular dystrophy on a ventilator may have better systolic and diastolic cardiac functions. Noninvasive ventilator assistance can help preserve cardiac function. Therefore, early utilization of noninvasive ventilation or oxygen may positively influence cardiac function in patients with Duchenne muscular dystrophy.

  15. Functional substitution by TAT-utrophin in dystrophin-deficient mice.

    Directory of Open Access Journals (Sweden)

    Kevin J Sonnemann

    2009-05-01

    Full Text Available The loss of dystrophin compromises muscle cell membrane stability and causes Duchenne muscular dystrophy and/or various forms of cardiomyopathy. Increased expression of the dystrophin homolog utrophin by gene delivery or pharmacologic up-regulation has been demonstrated to restore membrane integrity and improve the phenotype in the dystrophin-deficient mdx mouse. However, the lack of a viable therapy in humans predicates the need to explore alternative methods to combat dystrophin deficiency. We investigated whether systemic administration of recombinant full-length utrophin (Utr or DeltaR4-21 "micro" utrophin (muUtr protein modified with the cell-penetrating TAT protein transduction domain could attenuate the phenotype of mdx mice.Recombinant TAT-Utr and TAT-muUtr proteins were expressed using the baculovirus system and purified using FLAG-affinity chromatography. Age-matched mdx mice received six twice-weekly intraperitoneal injections of either recombinant protein or PBS. Three days after the final injection, mice were analyzed for several phenotypic parameters of dystrophin deficiency. Injected TAT-muUtr transduced all tissues examined, integrated with members of the dystrophin complex, reduced serum levels of creatine kinase (11,290+/-920 U versus 5,950+/-1,120 U; PBS versus TAT, the prevalence of muscle degeneration/regeneration (54%+/-5% versus 37%+/-4% of centrally nucleated fibers; PBS versus TAT, the susceptibility to eccentric contraction-induced force drop (72%+/-5% versus 40%+/-8% drop; PBS versus TAT, and increased specific force production (9.7+/-1.1 N/cm(2 versus 12.8+/-0.9 N/cm(2; PBS versus TAT.These results are, to our knowledge, the first to establish the efficacy and feasibility of TAT-utrophin-based constructs as a novel direct protein-replacement therapy for the treatment of skeletal and cardiac muscle diseases caused by loss of dystrophin.

  16. Mesenchymal Stem Cell-Derived Factors Restore Function to Human Frataxin-Deficient Cells.

    Science.gov (United States)

    Kemp, Kevin; Dey, Rimi; Cook, Amelia; Scolding, Neil; Wilkins, Alastair

    2017-08-01

    Friedreich's ataxia is an inherited neurological disorder characterised by mitochondrial dysfunction and increased susceptibility to oxidative stress. At present, no therapy has been shown to reduce disease progression. Strategies being trialled to treat Friedreich's ataxia include drugs that improve mitochondrial function and reduce oxidative injury. In addition, stem cells have been investigated as a potential therapeutic approach. We have used siRNA-induced knockdown of frataxin in SH-SY5Y cells as an in vitro cellular model for Friedreich's ataxia. Knockdown of frataxin protein expression to levels detected in patients with the disorder was achieved, leading to decreased cellular viability, increased susceptibility to hydrogen peroxide-induced oxidative stress, dysregulation of key anti-oxidant molecules and deficiencies in both cell proliferation and differentiation. Bone marrow stem cells are being investigated extensively as potential treatments for a wide range of neurological disorders, including Friedreich's ataxia. The potential neuroprotective effects of bone marrow-derived mesenchymal stem cells were therefore studied using our frataxin-deficient cell model. Soluble factors secreted by mesenchymal stem cells protected against cellular changes induced by frataxin deficiency, leading to restoration in frataxin levels and anti-oxidant defences, improved survival against oxidative stress and stimulated both cell proliferation and differentiation down the Schwann cell lineage. The demonstration that mesenchymal stem cell-derived factors can restore cellular homeostasis and function to frataxin-deficient cells further suggests that they may have potential therapeutic benefits for patients with Friedreich's ataxia.

  17. Mast Cells: Key Contributors to Cardiac Fibrosis

    Directory of Open Access Journals (Sweden)

    Scott P. Levick

    2018-01-01

    Full Text Available Historically, increased numbers of mast cells have been associated with fibrosis in numerous cardiac pathologies, implicating mast cells in the development of cardiac fibrosis. Subsequently, several approaches have been utilised to demonstrate a causal role for mast cells in animal models of cardiac fibrosis including mast cell stabilising compounds, rodents deficient in mast cells, and inhibition of the actions of mast cell-specific proteases such as chymase and tryptase. Whilst most evidence supports a pro-fibrotic role for mast cells, there is evidence that in some settings these cells can oppose fibrosis. A major gap in our current understanding of cardiac mast cell function is identification of the stimuli that activate these cells causing them to promote a pro-fibrotic environment. This review will present the evidence linking mast cells to cardiac fibrosis, as well as discuss the major questions that remain in understanding how mast cells contribute to cardiac fibrosis.

  18. Mesodermal iPSC–derived progenitor cells functionally regenerate cardiac and skeletal muscle

    Science.gov (United States)

    Quattrocelli, Mattia; Swinnen, Melissa; Giacomazzi, Giorgia; Camps, Jordi; Barthélemy, Ines; Ceccarelli, Gabriele; Caluwé, Ellen; Grosemans, Hanne; Thorrez, Lieven; Pelizzo, Gloria; Muijtjens, Manja; Verfaillie, Catherine M.; Blot, Stephane; Janssens, Stefan; Sampaolesi, Maurilio

    2015-01-01

    Conditions such as muscular dystrophies (MDs) that affect both cardiac and skeletal muscles would benefit from therapeutic strategies that enable regeneration of both of these striated muscle types. Protocols have been developed to promote induced pluripotent stem cells (iPSCs) to differentiate toward cardiac or skeletal muscle; however, there are currently no strategies to simultaneously target both muscle types. Tissues exhibit specific epigenetic alterations; therefore, source-related lineage biases have the potential to improve iPSC-driven multilineage differentiation. Here, we determined that differential myogenic propensity influences the commitment of isogenic iPSCs and a specifically isolated pool of mesodermal iPSC-derived progenitors (MiPs) toward the striated muscle lineages. Differential myogenic propensity did not influence pluripotency, but did selectively enhance chimerism of MiP-derived tissue in both fetal and adult skeletal muscle. When injected into dystrophic mice, MiPs engrafted and repaired both skeletal and cardiac muscle, reducing functional defects. Similarly, engraftment into dystrophic mice of canine MiPs from dystrophic dogs that had undergone TALEN-mediated correction of the MD-associated mutation also resulted in functional striatal muscle regeneration. Moreover, human MiPs exhibited the same capacity for the dual differentiation observed in murine and canine MiPs. The findings of this study suggest that MiPs should be further explored for combined therapy of cardiac and skeletal muscles. PMID:26571398

  19. Establishing Early Functional Perfusion and Structure in Tissue Engineered Cardiac Constructs

    Science.gov (United States)

    Wang, Bo; Patnaik, Sourav S.; Brazile, Bryn; Butler, J. Ryan; Claude, Andrew; Zhang, Ge; Guan, Jianjun; Hong, Yi; Liao, Jun

    2016-01-01

    Myocardial infarction (MI) causes massive heart muscle death and remains a leading cause of death in the world. Cardiac tissue engineering aims to replace the infarcted tissues with functional engineered heart muscles or revitalize the infarcted heart by delivering cells, bioactive factors, and/or biomaterials. One major challenge of cardiac tissue engineering and regeneration is the establishment of functional perfusion and structure to achieve timely angiogenesis and effective vascularization, which are essential to the survival of thick implants and the integration of repaired tissue with host heart. In this paper, we review four major approaches to promoting angiogenesis and vascularization in cardiac tissue engineering and regeneration: delivery of pro-angiogenic factors/molecules, direct cell implantation/cell sheet grafting, fabrication of prevascularized cardiac constructs, and the use of bioreactors to promote angiogenesis and vascularization. We further provide a detailed review and discussion on the early perfusion design in nature-derived biomaterials, synthetic biodegradable polymers, tissue-derived acellular scaffolds/whole hearts, and hydrogel derived from extracellular matrix. A better understanding of the current approaches and their advantages, limitations, and hurdles could be useful for developing better materials for future clinical applications. PMID:27480586

  20. The diagnostic and therapeutic aspects of loss-of-function cardiac sodium channelopathies in children.

    Science.gov (United States)

    Chockalingam, Priya; Clur, Sally-Ann B; Breur, Johannes M P J; Kriebel, Thomas; Paul, Thomas; Rammeloo, Lukas A; Wilde, Arthur A M; Blom, Nico A

    2012-12-01

    Loss-of-function sodium channelopathies manifest as a spectrum of diseases including Brugada syndrome (BrS) and cardiac conduction disease. To analyze the diagnostic and therapeutic aspects of these disorders in children. Patients aged ≤ 16 years with genetically confirmed loss-of-function sodium channelopathies (SCN5A mutation), presenting with cardiac symptoms, positive family history, and/or abnormal electrocardiogram (ECG), were included. Abnormal ECG consisted of type 1 BrS ECG and/or prolonged conduction intervals (PR interval/QRS duration > 98th percentile for age). Among the cohort (n = 33, age 6 ± 5 years, 58% male subjects, 30% probands), 14 (42%) patients were symptomatic, presenting with syncope (n = 5), palpitations (n = 1), supraventricular arrhythmias (n = 3), aborted cardiac arrest (n = 3), and sudden cardiac death (n = 2). Heart rate was 91 ± 26 beats/min, PR interval 168 ± 35 ms, QRS duration 112 ± 20 ms, and heart-rate corrected QT interval 409 ± 26 ms. Conduction intervals were prolonged in 28 (85%) patients; 6 of these patients also had spontaneous type 1 BrS ECG. Eight fever-associated events occurred in 6 patients; 2 of these were vaccination-related fever episodes. Treatment included aggressive antipyretics during fever in all patients; antiarrhythmic treatment included implantable cardioverter-defibrillator (n = 4), pacemaker (n = 2), and beta-blockers, either alone (n = 3) or in combination with device (n = 2). During follow-up (4 ± 4 years), 2 previously symptomatic patients had monomorphic ventricular tachycardia; there were no deaths. Diagnosis of loss-of-function sodium channelopathies in children relies on cardiac symptoms, family history, and ECG. Fever and vaccination are potential arrhythmia triggers; conduction delay is the commonest finding on ECG. Beta-blockers have a role in preventing tachycardia-induced arrhythmias; implantable cardioverter-defibrillator should probably be reserved for severe cases. Copyright © 2012

  1. Cardiac resynchronization therapy modulation of exercise left ventricular function and pulmonary O₂ uptake in heart failure.

    Science.gov (United States)

    Tomczak, Corey R; Paterson, Ian; Haykowsky, Mark J; Lawrance, Richard; Martellotto, Andres; Pantano, Alfredo; Gulamhusein, Sajad; Haennel, Robert G

    2012-06-15

    To better understand the mechanisms contributing to improved exercise capacity with cardiac resynchronization therapy (CRT), we studied the effects of 6 mo of CRT on pulmonary O(2) uptake (Vo(2)) kinetics, exercise left ventricular (LV) function, and peak Vo(2) in 12 subjects (age: 56 ± 15 yr, peak Vo(2): 12.9 ± 3.2 ml·kg(-1)·min(-1), ejection fraction: 18 ± 3%) with heart failure. We hypothesized that CRT would speed Vo(2) kinetics due to an increase in stroke volume secondary to a reduction in LV end-systolic volume (ESV) and that the increase in peak Vo(2) would be related to an increase in cardiac output reserve. We found that Vo(2) kinetics were faster during the transition to moderate-intensity exercise after CRT (pre-CRT: 69 ± 21 s vs. post-CRT: 54 ± 17 s, P 0.05). CRT improved heart rate, measured as a lower resting and steady-state exercise heart rate and as faster heart rate kinetics after CRT (pre-CRT: 89 ± 12 s vs. post-CRT: 69 ± 21 s, P cardiac output reserve increased significantly post-CRT and was 22% higher at peak exercise post-CRT (both P cardiac output was due to both a significant increase in peak and reserve stroke volume and to a nonsignificant increase in heart rate reserve. Similar patterns in LV volumes as moderate-intensity exercise were observed at peak exercise. Cardiac output reserve was related to peak Vo(2) (r = 0.48, P chronic CRT-mediated cardiac factors that contribute, in part, to the speeding in Vo(2) kinetics and increase in peak Vo(2) in clinically stable heart failure patients.

  2. Natriuretic peptides in developing medaka embryos: implications in cardiac development by loss-of-function studies.

    Science.gov (United States)

    Miyanishi, Hiroshi; Okubo, Kataaki; Nobata, Shigenori; Takei, Yoshio

    2013-01-01

    Cardiac natriuretic peptides (NPs), atrial NP (ANP) and B-type NP (BNP), and their receptor, guanylyl cyclase (GC)-A have attracted attention of many basic and clinical researchers because of their potent renal and cardiovascular actions. In this study, we used medaka, Oryzias latipes, as a model species to pursue the physiological functions of NPs because it is a suitable model for developmental analyses. Medaka has two ligands, BNP and C-type NP3 (CNP3) (but not ANP), that have greater affinity for the two O. latipes GC-A receptors (OLGC), OLGC7 and OLGC2, respectively. CNP3 is the ancestral molecule of cardiac NPs. Initially, we examined developmental expression of cardiac NP/receptor combinations, BNP/OLGC7 and CNP3/OLGC2, using quantitative real-time PCR and in situ hybridization. BNP and CNP3 mRNA increased at stages 25 (onset of ventricular formation) and 22 (appearance of heart anlage), respectively, whereas both receptor mRNAs increased at as early as stage 12. BNP/OLGC7 transcripts were found in arterial/ventricular tissues and CNP3/OLGC2 transcripts in venous/atrial tissues by in situ hybridization. Thus, BNP and CNP3 can act locally on cardiac myocytes in a paracrine/autocrine fashion. Double knockdown of BNP/OLGC7 genes impaired ventricular development by causing hypoplasia of ventricular myocytes as evidenced by reduced bromodeoxyuridine incorporation. CNP3 knockdown induced hypertrophy of atria and activated the renin-angiotensin system. Collectively, it appears that BNP is important for normal ventricular, whereas CNP3 is important for normal atrial development and performance, a role usually taken by ANP in other vertebrates. The current study provides new insights into the role of cardiac NPs in cardiac development in vertebrates.

  3. Dystrophin- and MLP-deficient mouse hearts: marked differences in morphology and function, but similar accumulation of cytoskeletal proteins.

    Science.gov (United States)

    Wilding, James R; Schneider, Jürgen E; Sang, A Elizabeth; Davies, Kay E; Neubauer, Stefan; Clarke, Kieran

    2005-01-01

    In humans, cytoskeletal dystrophin and muscle LIM protein (MLP) gene mutations can cause dilated cardiomyopathy, yet these mutations may have different effects in mice, owing to increased accumulation of other, compensatory cytoskeletal proteins. Consequently, we characterized left-ventricular (LV) morphology and function in vivo using high-resolution cine-magnetic resonance imaging (MRI) in 2- to 3-month old dystrophin-deficient (mdx) and MLP-null mice, and their respective controls. LV passive stiffness was assessed in isolated, perfused hearts, and cytoskeletal protein levels were determined using Western blot analyses. In mdx mouse hearts, LV-to-body weight ratio, cavity volume, ejection fraction, stroke volume, and cardiac output were normal. However, MLP-null mouse hearts had 1.2-fold higher LV-to-body weight ratios (PMLP, and MLP-null mouse hearts accumulated dystrophin and syncoilin. Although the increase in MLP and utrophin in the mdx mouse heart was able to compensate for the loss of dystrophin, accumulation of desmin, syncoilin and dystrophin were unable to compensate for the loss of MLP, resulting in heart failure.

  4. Tansig activation function (of MLP network) for cardiac abnormality detection

    Science.gov (United States)

    Adnan, Ja'afar; Daud, Nik Ghazali Nik; Ishak, Mohd Taufiq; Rizman, Zairi Ismael; Rahman, Muhammad Izzuddin Abd

    2018-02-01

    Heart abnormality often occurs regardless of gender, age and races. This problem sometimes does not show any symptoms and it can cause a sudden death to the patient. In general, heart abnormality is the irregular electrical activity of the heart. This paper attempts to develop a program that can detect heart abnormality activity through implementation of Multilayer Perceptron (MLP) network. A certain amount of data of the heartbeat signals from the electrocardiogram (ECG) will be used in this project to train the MLP network by using several training algorithms with Tansig activation function.

  5. Effects of exercise training on arterial-cardiac baroreflex function in POTS.

    Science.gov (United States)

    Galbreath, M Melyn; Shibata, Shigeki; VanGundy, Tiffany B; Okazaki, Kazunobu; Fu, Qi; Levine, Benjamin D

    2011-04-01

    Postural orthostatic tachycardia syndrome (POTS) is characterized by excessive tachycardia in the upright position. To test the hypothesis that patients with POTS have impaired arterial-cardiac baroreflex function, while exercise training normalizes the baroreflex function in these patients. Seventeen POTS patients aged 27 ± 9 (mean ± SD) years underwent an exercise training program for 3 months. Arterial-cardiac baroreflex function was assessed by spectral and transfer function analysis of beat-to-beat R-R interval (RRI) and systolic blood pressure (SBP) variability in the supine position and at 60° upright tilt during spontaneous breathing before and after training. Data were compared with 17 healthy sedentary controls. Even though upright heart rate (HR) was greater in patients than controls, indexes of RRI variability did not differ between groups. Transfer function gain (SBP to RRI), used as an index of arterial-cardiac baroreflex sensitivity was similar between patients and controls in both low- (LF, P = 0.470) and high-frequency (HF, P = 0.663) ranges. Short-term exercise training decreased upright HR and increased RRI variability in POTS patients. LF baroreflex gain increased significantly in the supine position and during upright tilt [analysis of variance (ANOVA), P = 0.04 for training], while HF gain increased modestly after training (ANOVA, P = 0.105 for training) in these patients; however, the baroreflex gains remained within the normal ranges when compared with healthy controls. These data suggest that patients with POTS have normal arterial-cardiac baroreflex function in both supine and upright postures. Short-term exercise training increases the baroreflex sensitivity in these patients, associated with a decrease in upright heart rate.

  6. Adiponectin, biomarkers of inflammation and changes in cardiac autonomic function

    DEFF Research Database (Denmark)

    Hansen, Christian Stevns; Vistisen, Dorte; Jørgensen, Marit Eika

    2017-01-01

    changes in heart rate (HR) and heart rate variability (HRV) in non-diabetic and diabetic individuals. METHODS: Data are based on up to 25,050 person-examinations for 8469 study participants of the Whitehall II cohort study. Measures of CAN included HR and several HRV indices. Associations between baseline......BACKGROUND: Biomarkers of inflammation and adiponectin are associated with cardiovascular autonomic neuropathy (CAN) in cross-sectional studies, but prospective data are scarce. This study aimed to assess the associations of biomarkers of subclinical inflammation and adiponectin with subsequent......: Higher IL-1Ra levels appeared as novel risk marker for increases in HR. Higher adiponectin levels were associated with a more favourable development of cardiovascular autonomic function in individuals with type 2 diabetes independently of multiple confounders....

  7. Effects of Obstructive Sleep Apnea on Cardiac Function and Clinical Outcomes in Chinese Patients with ST-Elevation Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Baoxin Liu

    2014-01-01

    Full Text Available Aim. The objective of this study was to investigate the influence of OSA on cardiac function in Chinese patients with ST-elevation myocardial infarction (STEMI and determine the prognostic impact of OSA among these patients. Methods. In this retrospective study, 198 STEMI patients were enrolled. Doppler echocardiography was performed to detect the effect of OSA on cardiac function. Major adverse cardiac events (MACE and cardiac mortality were analyzed to determine whether OSA was a clinical prognostic factor; its prognostic impact was then assessed adjusting for other covariates. Results. The echocardiographic results showed that the myocardium of STEMI patients with OSA appeared to be more hypertrophic and with a poorer cardiac function compared with non-OSA STEMI patients. A Kaplan-Meier survival analysis revealed significantly higher cumulative incidence of MACE and cardiac mortality in the OSA group compared with that in the non-OSA group during a mean follow-up of 24 months. Multivariate Cox regression analysis revealed that OSA was an independent risk factor for MACE and cardiac mortality. Conclusion. These results indicate that the OSA is a powerful predictor of decreased survival and exerts negative prognostic impact on cardiac function in STEMI patients.

  8. Standardized echocardiographic assessment of cardiac function in normal adult zebrafish and heart disease models

    Directory of Open Access Journals (Sweden)

    Louis W. Wang

    2017-01-01

    Full Text Available The zebrafish (Danio rerio is an increasingly popular model organism in cardiovascular research. Major insights into cardiac developmental processes have been gained by studies of embryonic zebrafish. However, the utility of zebrafish for modeling adult-onset heart disease has been limited by a lack of robust methods for in vivo evaluation of cardiac function. We established a physiological protocol for underwater zebrafish echocardiography using high frequency ultrasound, and evaluated its reliability in detecting altered cardiac function in two disease models. Serial assessment of cardiac function was performed in wild-type zebrafish aged 3 to 12 months and the effects of anesthetic agents, age, sex and background strain were evaluated. There was a varying extent of bradycardia and ventricular contractile impairment with different anesthetic drugs and doses, with tricaine 0.75 mmol l−1 having a relatively more favorable profile. When compared with males, female fish were larger and had more measurement variability. Although age-related increments in ventricular chamber size were greater in females than males, there were no sex differences when data were normalized to body size. Systolic ventricular function was similar in both sexes at all time points, but differences in diastolic function were evident from 6 months onwards. Wild-type fish of both sexes showed a reliance on atrial contraction for ventricular diastolic filling. Echocardiographic evaluation of adult zebrafish with diphtheria toxin-induced myocarditis or anemia-induced volume overload accurately identified ventricular dilation and altered contraction, with suites of B-mode, ventricular strain, pulsed-wave Doppler and tissue Doppler indices showing concordant changes indicative of myocardial hypocontractility or hypercontractility, respectively. Repeatability, intra-observer and inter-observer correlations for echocardiographic measurements were high. We demonstrate that

  9. Preserved cardiac function despite marked impairment of cAMP generation.

    Directory of Open Access Journals (Sweden)

    Mei Hua Gao

    Full Text Available So many clinical trials of positive inotropes have failed, that it is now axiomatic that agents that increase cAMP are deleterious to the failing heart. An alternative strategy is to alter myocardial Ca(2+ handling or myofilament response to Ca(2+ using agents that do not affect cAMP. Although left ventricular (LV function is tightly linked to adenylyl cyclase (AC activity, the beneficial effects of AC may be independent of cAMP and instead stem from effects on Ca(2+ handling. Here we ask whether an AC mutant molecule that reduces LV cAMP production would have favorable effects on LV function through its effects on Ca(2+ handling alone.We generated transgenic mice with cardiac-directed expression of an AC6 mutant (AC6mut. Cardiac myocytes showed impaired cAMP production in response to isoproterenol (74% reduction; p<0.001, but LV size and function were normal. Isolated hearts showed preserved LV function in response to isoproterenol stimulation. AC6mut expression was associated with increased sarcoplasmic reticulum Ca(2+ uptake and the EC50 for SERCA2a activation was reduced. Cardiac myocytes isolated from AC6mut mice showed increased amplitude of Ca(2+ transients in response to isoproterenol (p = 0.0001. AC6mut expression also was associated with increased expression of LV S100A1 (p = 0.03 and reduced expression of phospholamban protein (p = 0.01.LV AC mutant expression is associated with normal cardiac function despite impaired cAMP generation. The mechanism appears to be through effects on Ca(2+ handling - effects that occur despite diminished cAMP.

  10. Effect of monomeric adiponectin on cardiac function and perfusion in anesthetized pig.

    Science.gov (United States)

    Grossini, Elena; Prodam, Flavia; Walker, Gillian Elisabeth; Sigaudo, Lorenzo; Farruggio, Serena; Bellofatto, Kevin; Marotta, Patrizia; Molinari, Claudio; Mary, David; Bona, Gianni; Vacca, Giovanni

    2014-07-01

    Adiponectin, the most abundant adipokine released by adipose tissue, appears to play an important role in the regulation of vascular endothelial and cardiac function. To date, however, the physiological effects of human monomeric adiponectin on the coronary vasculature and myocardial systo-diastolic function, as well as on parasympathetic/sympathetic involvement and nitric oxide (NO) release, have not yet been investigated. Thus, we planned to determine the primary in vivo effects of human monomeric adiponectin on coronary blood flow and cardiac contractility/relaxation and the related role of autonomic nervous system, adiponectin receptors, and NO. In 30 anesthetized pigs, human monomeric adiponectin was infused into the left anterior descending coronary artery at constant heart rate and arterial blood pressure, and the effects on coronary blood flow, left ventricular systo-diastolic function, myocardial oxygen metabolism, and NO release were examined. The mechanisms of the observed hemodynamic responses were also analyzed by repeating the highest dose of human monomeric adiponectin infusion after autonomic nervous system and NO blockade, and after specific adiponectin 1 receptor antagonist administration. Intracoronary human monomeric adiponectin caused dose-related increases of coronary blood flow and cardiac function. Those effects were accompanied by increased coronary NO release and coronary adiponectin levels. Moreover, the vascular effects of the peptide were prevented by blockade of β2-adrenoceptors and NO synthase, whereas all effects of human monomeric adiponectin were prevented by adiponectin 1 receptor inhibitor. In conclusion, human monomeric adiponectin primarily increased coronary blood flow and cardiac systo-diastolic function through the involvement of specific receptors, β2-adrenoceptors, and NO release. © 2014 Society for Endocrinology.

  11. Structural and functional cardiac changes in myotonic dystrophy type 1: a cardiovascular magnetic resonance study

    Directory of Open Access Journals (Sweden)

    Hermans Mieke CE

    2012-07-01

    Full Text Available Abstract Background Myotonic dystrophy type 1 (MD1 is a neuromuscular disorder with potential involvement of the heart and increased risk of sudden death. Considering the importance of cardiomyopathy as a predictor of prognosis, we aimed to systematically evaluate and describe structural and functional cardiac alterations in patients with MD1. Methods Eighty MD1 patients underwent physical examination, electrocardiography (ECG, echocardiography and cardiovascular magnetic resonance (CMR. Blood samples were taken for determination of NT-proBNP plasma levels and CTG repeat length. Results Functional and structural abnormalities were detected in 35 patients (44%. Left ventricular systolic dysfunction was found in 20 cases, left ventricular dilatation in 7 patients, and left ventricular hypertrophy in 6 patients. Myocardial fibrosis was seen in 10 patients (12.5%. In general, patients had low left ventricular mass indexes. Right ventricular involvement was uncommon and only seen together with left ventricular abnormalities. Functional or structural cardiac involvement was associated with age (p = 0.04, male gender (p Conclusions CMR can be useful to detect early structural and functional myocardial abnormalities in patients with MD1. Myocardial involvement is strongly associated with conduction abnormalities, but a normal ECG does not exclude myocardial alterations. These findings lend support to the hypothesis that MD1 patients have a complex cardiac phenotype, including both myocardial and conduction system alteration.

  12. Systems analysis of the mechanisms of cardiac diastolic function changes after microgravity exposure

    Science.gov (United States)

    Summers, Richard; Coleman, Thomas; Steven, Platts; Martin, David

    Detailed information concerning cardiac function was collected by two-dimensional and M-mode echocardiography at 10 days before flight and 3h after landing in astronauts returning from shuttle missions. A comparative analysis of this data suggests that cardiac diastolic function is reduced after microgravity exposure with little or no change in systolic function as measured by ejection fraction However, the mechanisms responsible for these adaptations have not been determined. In this study, an integrative computer model of human physiology that forms the framework for the Digital Astronaut Project (Guyton/Coleman/Summers Model) was used in a systems analysis of the echocardiographic data in the context of general cardiovascular physiologic functioning. The physiologic mechanisms involved in the observed changes were then determined by a dissection of model interrelationships. The systems analysis of possible physiologic mechanisms involved reveals that a loss of fluid from the myocardial interstitial space may lead to a stiffening of the myocardium and could potentially result in some of the cardiac diastolic dysfunction seen postflight. The cardiovascular dynamics may be different during spaceflight.

  13. Monitoring endurance running performance using cardiac parasympathetic function.

    Science.gov (United States)

    Buchheit, Martin; Chivot, A; Parouty, J; Mercier, D; Al Haddad, H; Laursen, P B; Ahmaidi, S

    2010-04-01

    The aims of the present study were to (1) assess relationships between running performance and parasympathetic function both at rest and following exercise, and (2) examine changes in heart rate (HR)-derived indices throughout an 8-week period training program in runners. In 14 moderately trained runners (36 +/- 7 years), resting vagal-related HR variability (HRV) indices were measured daily, while exercise HR and post-exercise HR recovery (HRR) and HRV indices were measured fortnightly. Maximal aerobic speed (MAS) and 10 km running performance were assessed before and after the training intervention. Correlations (r > 0.60, P 0.5% (responders), resting vagal-related indices showed a progressively increasing trend (time effect P = 0.03) and qualitative indications of possibly and likely higher values during week 7 [+7% (90% CI -3.7;17.0)] and week 9 [+10% (90% CI -1.5;23)] compared with pre-training values, respectively. Post-exercise HRV showed similar changes, despite less pronounced between-group differences. HRR showed a relatively early possible decrease at week 3 [-20% (90% CI -42;10)], with only slight reductions near the end of the program. The results illustrate the potential of resting, exercise and post-exercise HR measurements for both assessing and predicting the impact of aerobic training on endurance running performance.

  14. The neuronal control of cardiac functions in Molluscs.

    Science.gov (United States)

    Kodirov, Sodikdjon A

    2011-10-01

    In this manuscript, I review the current and relevant classical studies on properties of the Mollusca heart and their central nervous system including ganglia, neurons, and nerves involved in cardiomodulation. Similar to mammalian brain hemispheres, these invertebrates possess symmetrical pairs of ganglia albeit visceral (only one) ganglion and the parietal ganglia (the right ganglion is bigger than the left one). Furthermore, there are two major regulatory drives into the compartments (pericard, auricle, and ventricle) and cardiomyocytes of the heart. These are the excitatory and inhibitory signals that originate from a few designated neurons and their putative neurotransmitters. Many of these neurons are well-identified, their specific locations within the corresponding ganglion are mapped, and some are termed as either heart excitatory (HE) or inhibitory (HI) cells. The remaining neurons are classified as cardio-regulatory, and their direct and indirect actions on the heart's function have been documented. The cardiovascular anatomy of frequently used experimental animals, Achatina, Aplysia, Helix, and Lymnaea is relatively simple. However, as in humans, it possesses all major components including even trabeculae and atrio-ventricular valves. Since the myocardial cells are enzymatically dispersible, multiple voltage dependent cationic currents in isolated cardiomyocytes are described. The latter include at least the A-type K(+), delayed rectifier K(+), TTX-sensitive Na(+), and L-type Ca(2+) channels. Published by Elsevier Inc.

  15. The neuronal control of cardiac functions in Molluscs☆

    Science.gov (United States)

    Kodirov, Sodikdjon A.

    2017-01-01

    In this manuscript, I review the current and relevant classical studies on properties of the Mollusca heart and their central nervous system including ganglia, neurons, and nerves involved in cardiomodulation. Similar to mammalian brain hemispheres, these invertebrates possess symmetrical pairs of ganglia albeit visceral (only one) ganglion and the parietal ganglia (the right ganglion is bigger than the left one). Furthermore, there are two major regulatory drives into the compartments (pericard, auricle, and ventricle) and cardiomyocytes of the heart. These are the excitatory and inhibitory signals that originate from a few designated neurons and their putative neurotransmitters. Many of these neurons are well-identified, their specific locations within the corresponding ganglion are mapped, and some are termed as either heart excitatory (HE) or inhibitory (HI) cells. The remaining neurons are classified as cardio-regulatory, and their direct and indirect actions on the heart’s function have been documented. The cardiovascular anatomy of frequently used experimental animals, Achatina, Aplysia, Helix, and Lymnaea is relatively simple. However, as in humans, it possesses all major components including even trabeculae and atrio-ventricular valves. Since the myocardial cells are enzymatically dispersible, multiple voltage dependent cationic currents in isolated cardiomyocytes are described. The latter include at least the A-type K+, delayed rectifier K+, TTX-sensitive Na+, and L-type Ca2+ channels. PMID:21736949

  16. The cycle of form and function in cardiac valvulogenesis

    Directory of Open Access Journals (Sweden)

    Stephanie E. Lindsey

    2011-12-01

    Full Text Available The formation and remodeling of the embryonic valves is a complex and dynamic process that occurs within a constantly changing hemodynamic environment. Defects in embryonic and fetal valve remodeling are the leading cause of congenital heart defects, yet very little is known about how fibrous leaflet tissue is created from amorphous gelatinous masses called cushions. Microenvironmental cues such as mechanical forces and extracellular matrix composition play major roles in cell differentiation, but almost all research efforts in valvulogenesis center around genetics and molecular approaches. This review summarizes what is known about the dynamic mechanical and extracellular matrix microenvironment of the atrioventricular and semilunar valves during embryonic development and their possible guidance roles. A variety of new computational tools and sophisticated experimental techniques are progressing that enable precise microenvironmental alterations that are critical to complement genetic gain and loss of function approaches. Studies at the interface of mechanical and genetic signaling in embryonic valvulogenesis will likely pay significant dividends, not only in terms of increasing our mechanistic understanding, but also lead to the development of novel therapeutic strategies for patients with congenital valve abnormalities.

  17. New structural and functional defects in polyphosphate deficient bacteria: A cellular and proteomic study

    Directory of Open Access Journals (Sweden)

    Chávez Francisco P

    2010-01-01

    Full Text Available Abstract Background Inorganic polyphosphate (polyP, a polymer of tens or hundreds of phosphate residues linked by ATP-like bonds, is found in all organisms and performs a wide variety of functions. PolyP is synthesized in bacterial cells by the actions of polyphosphate kinases (PPK1 and PPK2 and degraded by exopolyphosphatase (PPX. Bacterial cells with polyP deficiencies due to knocking out the ppk1 gene are affected in many structural and important cellular functions such as motility, quorum sensing, biofilm formation and virulence among others. The cause of this pleiotropy is not entirely understood. Results The overexpression of exopolyphosphatase in bacteria mimicked some pleitropic defects found in ppk1 mutants. By using this approach we found new structural and functional defects in the polyP-accumulating bacteria Pseudomonas sp. B4, which are most likely due to differences in the polyP-removal strategy. Colony morphology phenotype, lipopolysaccharide (LPS structure changes and cellular division malfunction were observed. Finally, we used comparative proteomics in order to elucidate the cellular adjustments that occurred during polyP deficiency in this bacterium and found some clues that helped to understand the structural and functional defects observed. Conclusions The results obtained suggest that during polyP deficiency energy metabolism and particularly nucleoside triphosphate (NTP formation were affected and that bacterial cells overcame this problem by increasing the flux of energy-generating metabolic pathways such as tricarboxilic acid (TCA cycle, β-oxidation and oxidative phosphorylation and by reducing energy-consuming ones such as active transporters and amino acid biosynthesis. Furthermore, our results suggest that a general stress response also took place in the cell during polyP deficiency.

  18. Population Survey of Iodine Deficiency and Environmental Disruptors of Thyroid Function in Young Children in Haiti.

    Science.gov (United States)

    von Oettingen, Julia E; Brathwaite, Tesha D; Carpenter, Christopher; Bonnell, Ric; He, Xuemei; Braverman, Lewis E; Pearce, Elizabeth N; Larco, Philippe; Larco, Nancy Charles; Jean-Baptiste, Eddy; Brown, Rosalind S

    2017-02-01

    Iodine deficiency is the leading cause of preventable neurodevelopmental delay in children worldwide and a possible public health concern in Haiti. To determine the prevalence of iodine deficiency in Haitian young children and its influence by environmental factors. Cross-sectional study, March through June 2015. Community churches in 3 geographical regions in Haiti. 299 healthy Haitian children aged 9 months to 6 years; one-third each enrolled in a coastal, mountainous, and urban region. Urinary iodide, serum thyrotropin (TSH), goiter assessment, and urinary perchlorate and thiocyanate. Mean age was 3.3±1.6 years, with 51% female, median family income USD 30/week, and 16% malnutrition. Median urinary iodide levels were normal in coastal (145 μg/L, interquartile range [IQR] 97 to 241) and urban regions (187 μg/L, IQR 92 to 316), but revealed mild iodine deficiency in a mountainous region (89 μg/L, IQR 56 to 129), P < 0.0001. Grade 1 goiters were palpated in 2 children, but TSH values were normal. Urinary thiocyanate and perchlorate concentrations were not elevated. Predictors of higher urinary iodide included higher urinary thiocyanate and perchlorate, breastfeeding, and not living in a mountainous region. Areas of mild iodine deficiency persist in Haiti's mountainous regions. Exposure to two well-understood environmental thyroid function disruptors is limited. Copyright © 2017 by the Endocrine Society

  19. Functional and morphological cardiac magnetic resonance imaging of mice using a cryogenic quadrature radiofrequency coil.

    Directory of Open Access Journals (Sweden)

    Babette Wagenhaus

    Full Text Available Cardiac morphology and function assessment by magnetic resonance imaging is of increasing interest for a variety of mouse models in pre-clinical cardiac research, such as myocardial infarction models or myocardial injury/remodeling in genetically or pharmacologically induced hypertension. Signal-to-noise ratio (SNR constraints, however, limit image quality and blood myocardium delineation, which crucially depend on high spatial resolution. Significant gains in SNR with a cryogenically cooled RF probe have been shown for mouse brain MRI, yet the potential of applying cryogenic RF coils for cardiac MR (CMR in mice is, as of yet, untapped. This study examines the feasibility and potential benefits of CMR in mice employing a 400 MHz cryogenic RF surface coil, compared with a conventional mouse heart coil array operating at room temperature. The cryogenic RF coil affords SNR gains of 3.0 to 5.0 versus the conventional approach and hence enables an enhanced spatial resolution. This markedly improved image quality--by better deliniation of myocardial borders and enhanced depiction of papillary muscles and trabeculae--and facilitated a more accurate cardiac chamber quantification, due to reduced intraobserver variability. In summary the use of a cryogenically cooled RF probe represents a valuable means of enhancing the capabilities of CMR of mice.

  20. Cardiac PET Imaging of Blood Flow, Metabolism, and Function in Normal and Infarcted Rats

    Science.gov (United States)

    Lecomte, R.; Croteau, E.; Gauthier, M.-E.; Archambault, M.; Aliaga, A.; Rousseau, J.; Cadorette, J.; Leroux, J.-D.; Lepage, M. D.; Benard, F.; Bentourkia, M.

    2004-06-01

    The rat heart is an excellent model for the investigation of cardiac physiology and metabolism. It has been used extensively for ex vivo studies of the normal heart as well as for the study of various heart diseases. With the advent of dedicated high-resolution small animal PET scanners, it is now possible to transpose many of the cardiac studies routinely used in humans to the rat. These include the in vivo measurement of myocardial blood flow, metabolism, and function. Because these techniques are noninvasive, the same animal can be imaged repetitively, thus allowing for follow-up studies of disease progression and for the assessment of new therapeutic methods. In this work, we report on cardiac studies performed in normal and diseased rats using the Sherbrooke avalanche photodiode PET scanner, a small animal PET imaging device achieving 14 /spl mu/l volumetric spatial resolution with excellent image signal-to-noise ratio. The system also features flexible list-mode data acquisition, which allows dynamic studies to be resampled as desired for kinetic modeling. These cardiac PET imaging methods were used for the follow-up of infarcted rats submitted to experimental intramyocardial revascularization therapy.

  1. Acute response and chronic stimulus for cardiac structural and functional adaptation in a professional boxer.

    Science.gov (United States)

    Oxborough, David; George, Keith; Utomi, Victor; Lord, Rachel; Morton, James; Jones, Nigel; Somauroo, John

    2014-06-01

    The individual response to acute and chronic changes in cardiac structure and function to intense exercise training is not fully understood and therefore evidence in this setting may help to improve the timing and interpretation of pre-participation cardiac screening. The following case report highlights an acute increase in right ventricular (RV) size and a reduction in left ventricular (LV) basal radial function with concomitant increase at the mid-level in response to a week's increase in training volume in a professional boxer. These adaptations settle by the second week; however, chronic physiological adaptation occurs over a 12-week period. Electrocardiographic findings demonstrate an acute lateral T-wave inversion at 1 week, which revert to baseline for the duration of training. It appears that a change in training intensity and volume generates an acute response within the RV that acts as a stimulus for chronic adaptation in this professional boxer.

  2. Hypothalamus-pituitary-thyroid axis activity and function of cardiac muscle in energy deficit

    Directory of Open Access Journals (Sweden)

    Katarzyna Lachowicz

    2017-12-01

    Full Text Available Frequently repeated statement that energy restriction is a factor that improves cardiovascular system function seems to be not fully truth. Low energy intake modifies the hypothalamus-pituitary-thyroid axis activity and thyroid hormone peripheral metabolism. Thyroid hormones, as modulators of the expression and activity of many cardiomyocyte proteins, control heart function. Decreased thyroid hormone levels and their disturbanced conversion and action result in alternation of cardiac remodeling, disorder of calcium homeostasis and diminish myocardial contractility. This review provides a summary of the current state of knowledge about the mechanisms of energy restriction effects on thyroidal axis activity, thyroid hormone peripheral metabolism and action in target tissues, especially in cardiac myocytes. We also showed the existence of energy restriction-thyroid-heart pathway.

  3. CARDIAC TRANSPLANT REJECTION AND NON-INVASIVE COMON CAROTID ARTERY WALL FUNCTIONAL INDICES

    Directory of Open Access Journals (Sweden)

    A. O. Shevchenko

    2015-01-01

    Full Text Available Allograft rejection would entail an increase in certain blood biomarkers and active substances derived from activated inflammatory cells which could influence entire vascular endothelial function and deteriorate arterial wall stiffness. We propose that carotid wall functional indices measured with non-invasive ultrasound could we valuable markers of the subclinical cardiac allograft rejection. Aim. Our goal was to analyze the clinical utility of functional common carotid wall (CCW variables measured with high-resolution Doppler ultrasound as a non-invasive screening tool for allograft rejection in cardiac transplant patients (pts. Methods. One hundred and seventy one pts included 93 cardiac recipients, 30 dilated cardiomyopathy waiting list pts, and 48 stable coronary artery disease (SCAD pts without decompensated heart failure were included. Along with resistive index (Ri, pulsative index (Pi, and CCW intima-media thickness (IMT, CCW rigidity index (iRIG was estimated using empirical equation. Non-invasive evaluation was performed in cardiac transplant recipients prior the endomyo- cardial biopsy. Results. Neither of Ri, Pi, or CCW IMT were different in studied subgroups. iRIG was signifi- cantly lower in SCAD pts when compared to the dilated cardiomyopathy subgroup. The later had similar values with cardiac transplant recipients without rejection. Antibody-mediated and cellular rejection were found in 22 (23.7% and 17 (18.3% cardiac recipients, respectively. Mean iRIG in pts without rejection was significantly lower in comparison to antibody-mediated rejection and cell-mediated (5514.7 ± 2404.0 vs 11856.1 ± 6643.5 and 16071.9 ± 10029.1 cm/sec2, respectively, p = 0.001. Area under ROC for iRIG was 0.90 ± 0.03 units2. Analysis showed that iRIG values above estimated treshold 7172 cm/sec2 suggested relative risk of any type of rejection 17.7 (95%CI = 6.3–49.9 sensitivity 80.5%, specificity – 81.1%, negative predictive value – 84

  4. Pioglitazone improves cardiac function and alters myocardial substrate metabolism without affecting cardiac triglyceride accumulation and high-energy phosphate metabolism in patients with well-controlled type 2 diabetes mellitus

    NARCIS (Netherlands)

    van der Meer, Rutger W.; Rijzewijk, Luuk J.; de Jong, Hugo W. A. M.; Lamb, Hildo J.; Lubberink, Mark; Romijn, Johannes A.; Bax, Jeroen J.; de Roos, Albert; Kamp, Otto; Paulus, Walter J.; Heine, Robert J.; Lammertsma, Adriaan A.; Smit, Johannes W. A.; Diamant, Michaela

    2009-01-01

    Cardiac disease is the leading cause of mortality in type 2 diabetes mellitus (T2DM). Pioglitazone has been associated with improved cardiac outcome but also with an elevated risk of heart failure. We determined the effects of pioglitazone on myocardial function in relation to cardiac high-energy

  5. Adaptive cardiac resynchronization therapy for dilated cardiomyopathy with functional mitral regurgitation

    Directory of Open Access Journals (Sweden)

    Yoshiki Nagata, MD, PhD

    2017-10-01

    Full Text Available We report the case of a man in his 60s who had dilated cardiomyopathy with severe functional mitral regurgitation. Four years after a cardiac resynchronization therapy (CRT device with an implantable cardioverter defibrillator was implanted, this device was replaced with an adaptive CRT device because of battery consumption. Seven months after replacement of this device, the left ventricular pacing to right ventricular activation and the atrioventricular delay from automatic adjustments contributed to less functional mitral regurgitation. The findings from our case suggest that optimal CRT, by measuring intracardiac conduction parameters, is effective for functional mitral regurgitation.

  6. A maternal high salt diet disturbs cardiac and vascular function of offspring.

    Science.gov (United States)

    Maruyama, Kana; Kagota, Satomi; Van Vliet, Bruce N; Wakuda, Hirokazu; Shinozuka, Kazumasa

    2015-09-01

    High salt intake is an environmental factor that promotes increased blood pressure. We previously demonstrated that high salt diet causes aggravation of hypertension and impaired vasodilation in response to nitric oxide (NO) in young spontaneously hypertensive rats (SHR), which exhibit low sensitivity to salt in adulthood. Changes in offspring blood pressure and cardiovascular structures have been reported. However, it remains unclear to what extent a maternal high salt intake may affect cardiac and/or vascular function in offspring. Therefore, we investigated influence of exposure to a maternal high salt diet during gestation and lactation on offspring's cardiac and arterial functions in SHR. SHR dams were fed either a high salt diet or a control diet. After weaning, the offspring were fed the high salt diet or control diet for 8weeks. Compared with offspring of control diet-fed dams, at 12weeks of age, offspring of the high-salt diet-fed dams had lower blood pressure, heart rate, indices of both left ventricular systolic and diastolic function, and a decreased aortic vasodilation response to NO. Postnatal high salt intake did not affect blood pressure, vasodilatory response, or cardiac function in offspring of high-salt diet-fed dams. Neither maternal nor postnatal dietary salt altered levels of lipid peroxide, superoxide dismutase, or angiotensinogen mRNA in serum and ventricle of the offspring. Exposure to high maternal dietary salt induces cardiac and vascular dysfunction in offspring. These results point to the possible importance of avoiding excess dietary salt during gestation and lactation. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. The relationship between erythrocyte membrane fatty acid levels and cardiac autonomic function in obese children.

    Science.gov (United States)

    Mustafa, Gulgun; Kursat, Fidanci Muzaffer; Ahmet, Tas; Alparslan, Genc Fatih; Omer, Gunes; Sertoglu, Erdem; Erkan, Sarı; Ediz, Yesilkaya; Turker, Turker; Ayhan, Kılıc

    Childhood obesity is a worldwide health concern. Studies have shown autonomic dysfunction in obese children. The exact mechanism of this dysfunction is still unknown. The aim of this study was to assess the relationship between erythrocyte membrane fatty acid (EMFA) levels and cardiac autonomic function in obese children using heart rate variability (HRV). A total of 48 obese and 32 healthy children were included in this case-control study. Anthropometric and biochemical data, HRV indices, and EMFA levels in both groups were compared statistically. HRV parameters including standard deviation of normal-to-normal R-R intervals (NN), root mean square of successive differences, the number of pairs of successive NNs that differ by >50 ms (NN50), the proportion of NN50 divided by the total number of NNs, high-frequency power, and low-frequency power were lower in obese children compared to controls, implying parasympathetic impairment. Eicosapentaenoic acid and docosahexaenoic acid levels were lower in the obese group (p<0.001 and p=0.012, respectively). In correlation analysis, in the obese group, body mass index standard deviation and linoleic acid, arachidonic acid, triglycerides, and high-density lipoprotein levels showed a linear correlation with one or more HRV parameter, and age, eicosapentaenoic acid, and systolic and diastolic blood pressure correlated with mean heart rate. In linear regression analysis, age, dihomo-gamma-linolenic acid, linoleic acid, arachidonic acid, body mass index standard deviation, systolic blood pressure, triglycerides, low-density lipoprotein and high-density lipoprotein were related to HRV parameters, implying an effect on cardiac autonomic function. There is impairment of cardiac autonomic function in obese children. It appears that levels of EMFAs such as linoleic acid, arachidonic acid and dihomo-gamma-linolenic acid play a role in the regulation of cardiac autonomic function in obese children. Copyright © 2017 Sociedade Portuguesa

  8. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    Energy Technology Data Exchange (ETDEWEB)

    Grans, Camilla Figueiredo; Feriani, Daniele Jardim; Abssamra, Marcos Elias Vergilino; Rocha, Leandro Yanase; Carrozzi, Nicolle Martins [Laboratório do Movimento Humano, Universidade São Judas Tadeu (USJT), São Paulo, SP (Brazil); Mostarda, Cristiano [Departamento de Educação Física, Universidade Federal do Maranhão (UFMA), São Luís, MA (Brazil); Figueroa, Diego Mendrot [Laboratório de Hipertensão Experimental, Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP (Brazil); Angelis, Kátia De [Laboratório de Fisiologia Translacional, Universidade Nove de Julho (Uninove), São Paulo, SP (Brazil); Irigoyen, Maria Cláudia [Laboratório de Hipertensão Experimental, Instituto do Coração (InCor), Faculdade de Medicina, Universidade de São Paulo (USP), São Paulo, SP (Brazil); Rodrigues, Bruno, E-mail: bruno.rodrigues@incor.usp.br [Laboratório do Movimento Humano, Universidade São Judas Tadeu (USJT), São Paulo, SP (Brazil)

    2014-07-15

    Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats.

  9. Modification of cardiac function in cirrhotic patients with and without ascites.

    Science.gov (United States)

    Valeriano, V; Funaro, S; Lionetti, R; Riggio, O; Pulcinelli, G; Fiore, P; Masini, A; De Castro, S; Merli, M

    2000-11-01

    Abnormalities in cardiac function have been reported in liver cirrhosis, suggesting a latent cardiomyopathy in these patients. In this study we investigated cardiac function in cirrhotic patients and in controls. A total of 20 cirrhotic patients without previous or ongoing ascites, 20 cirrhotic patients with moderate-to-severe ascites, and 10 healthy controls were studied by two-dimensional Doppler echocardiography. Cardiac dimensions and left and right ventricular function were evaluated. The left ventricular geometric pattern was calculated according to Ganau's criteria. Diastolic function was evaluated by the peak filling velocity of E wave and A wave, E/A ratio, and deceleration time of E wave. The pulmonary systolic arterial pressure was also estimated in patients with tricuspid insufficiency. Right and left atrium and right ventricle diameters were significantly enlarged in cirrhotic patients versus controls. E/A ratio was decreased (p < 0.05) in patients with ascites (0.9 +/- 0.2) versus those without ascites (1.3 +/- 0.4) and controls (1.3 +/- 1). The estimated pulmonary systolic arterial pressure was slightly elevated in patients with ascites (35 +/- 5 mm Hg, six patients) versus those with no ascites (28 +/- 5, 10 patients) and controls (27 +/- 8, 6 controls, analysis of variance, p < 0.05). The pattern of left ventricular geometry was normal in the majority of patients. Nitrite and nitrate levels were increased in cirrhotics irrespective of the presence of ascites. Liver cirrhosis is associated with enlarged right cardiac chambers. Diastolic dysfunction and mild pulmonary hypertension are evident in cirrhotic patients with ascites. These changes do not depend on variations in the left ventricular geometry.

  10. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    Directory of Open Access Journals (Sweden)

    Camilla Figueiredo Grans

    2014-07-01

    Full Text Available Background: Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. Objective: To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Methods: Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week. At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. Results: The maximum load test increased in groups trained control (+32% and trained infarcted (+46% in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%, myocardial performance index (-39% and systolic blood pressure (+6% improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%, as well as in the low frequency band of systolic blood pressure (-46% in rats from group trained infarcted in relation to group sedentary infarcted. Conclusion: Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats.

  11. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    Science.gov (United States)

    Grans, Camilla Figueiredo; Feriani, Daniele Jardim; Abssamra, Marcos Elias Vergilino; Rocha, Leandro Yanase; Carrozzi, Nicolle Martins; Mostarda, Cristiano; Figueroa, Diego Mendrot; Angelis, Kátia De; Irigoyen, Maria Cláudia; Rodrigues, Bruno

    2014-01-01

    Background Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. Objective To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Methods Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. Results The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Conclusion Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats. PMID:25014059

  12. Resistance Training After Myocardial Infarction in Rats: Its Role on Cardiac and Autonomic Function

    International Nuclear Information System (INIS)

    Grans, Camilla Figueiredo; Feriani, Daniele Jardim; Abssamra, Marcos Elias Vergilino; Rocha, Leandro Yanase; Carrozzi, Nicolle Martins; Mostarda, Cristiano; Figueroa, Diego Mendrot; Angelis, Kátia De; Irigoyen, Maria Cláudia; Rodrigues, Bruno

    2014-01-01

    Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats

  13. Resistance training after myocardial infarction in rats: its role on cardiac and autonomic function.

    Science.gov (United States)

    Grans, Camilla Figueiredo; Feriani, Daniele Jardim; Abssamra, Marcos Elias Vergilino; Rocha, Leandro Yanase; Carrozzi, Nicolle Martins; Mostarda, Cristiano; Figueroa, Diego Mendrot; Angelis, Kátia De; Irigoyen, Maria Cláudia; Rodrigues, Bruno

    2014-07-01

    Although resistance exercise training is part of cardiovascular rehabilitation programs, little is known about its role on the cardiac and autonomic function after myocardial infarction. To evaluate the effects of resistance exercise training, started early after myocardial infarction, on cardiac function, hemodynamic profile, and autonomic modulation in rats. Male Wistar rats were divided into four groups: sedentary control, trained control, sedentary infarcted and trained infarcted rats. Each group with n = 9 rats. The animals underwent maximum load test and echocardiography at the beginning and at the end of the resistance exercise training (in an adapted ladder, 40% to 60% of the maximum load test, 3 months, 5 days/week). At the end, hemodynamic, baroreflex sensitivity and autonomic modulation assessments were made. The maximum load test increased in groups trained control (+32%) and trained infarcted (+46%) in relation to groups sedentary control and sedentary infarcted. Although no change occurred regarding the myocardial infarction size and systolic function, the E/A ratio (-23%), myocardial performance index (-39%) and systolic blood pressure (+6%) improved with resistance exercise training in group trained infarcted. Concomitantly, the training provided additional benefits in the high frequency bands of the pulse interval (+45%), as well as in the low frequency band of systolic blood pressure (-46%) in rats from group trained infarcted in relation to group sedentary infarcted. Resistance exercise training alone may be an important and safe tool in the management of patients after myocardial infarction, considering that it does not lead to significant changes in the ventricular function, reduces the global cardiac stress, and significantly improves the vascular and cardiac autonomic modulation in infarcted rats.

  14. Cardiac baroreflex function and dynamic cerebral autoregulation in elderly Masters athletes.

    Science.gov (United States)

    Aengevaeren, Vincent L; Claassen, Jurgen A H R; Levine, Benjamin D; Zhang, Rong

    2013-01-15

    Cerebral blood flow (CBF) is stably maintained through the combined effects of blood pressure (BP) regulation and cerebral autoregulation. Previous studies suggest that aerobic exercise training improves cardiac baroreflex function and beneficially affects BP regulation, but may negatively affect cerebral autoregulation. The purpose of this study was to reveal the impact of lifelong exercise on cardiac baroreflex function and dynamic cerebral autoregulation (CA) in older adults. Eleven Masters athletes (MA) (8 men, 3 women; mean age 73 ± 6 yr; aerobic training >15 yr) and 12 healthy sedentary elderly (SE) (7 men, 5 women; mean age 71 ± 6 yr) participated in this study. BP, CBF velocity (CBFV), and heart rate were measured during resting conditions and repeated sit-stand maneuvers to enhance BP variability. Baroreflex gain was assessed using transfer function analysis of spontaneous changes in systolic BP and R-R interval in the low frequency range (0.05-0.15 Hz). Dynamic CA was assessed during sit-stand-induced changes in mean BP and CBFV at 0.05 Hz (10 s sit, 10 s stand). Cardiac baroreflex gain was more than doubled in MA compared with SE (MA, 7.69 ± 7.95; SE, 3.18 ± 1.29 ms/mmHg; P = 0.018). However, dynamic CA was similar in the two groups (normalized gain: MA, 1.50 ± 0.56; SE, 1.56 ± 0.42% CBFV/mmHg; P = 0.792). These findings suggest that lifelong exercise improves cardiac baroreflex function, but does not alter dynamic CA. Thus, beneficial effects of exercise training on BP regulation can be achieved in older adults without compromising dynamic regulation of CBF.

  15. Colchicine Improves Survival, Left Ventricular Remodeling, and Chronic Cardiac Function After Acute Myocardial Infarction.

    Science.gov (United States)

    Fujisue, Koichiro; Sugamura, Koichi; Kurokawa, Hirofumi; Matsubara, Junichi; Ishii, Masanobu; Izumiya, Yasuhiro; Kaikita, Koichi; Sugiyama, Seigo

    2017-07-25

    Several studies have reported that colchicine attenuated the infarct size and inflammation in acute myocardial infarction (MI). However, the sustained benefit of colchicine administration on survival and cardiac function after MI is unknown. It was hypothesized that the short-term treatment with colchicine could improve survival and cardiac function during the recovery phase of MI.Methods and Results:MI was induced in mice by permanent ligation of the left anterior descending coronary artery. Mice were then orally administered colchicine 0.1 mg/kg/day or vehicle from 1 h to day 7 after MI. Colchicine significantly improved survival rate (colchicine, n=48: 89.6% vs. vehicle, n=51: 70.6%, Pcolchicine group at 4 weeks after MI. Histological and gene expression analysis revealed colchicine significantly inhibited the infiltration of neutrophils and macrophages, and attenuated the mRNA expression of pro-inflammatory cytokines and NLRP3 inflammasome components in the infarcted myocardium at 24 h after MI. Short-term treatment with colchicine successfully attenuated pro-inflammatory cytokines and NLRP3 inflammasome, and improved cardiac function, heart failure, and survival after MI.

  16. Usefulness of true FISP cine MR imaging in patients with poor cardiac function

    Energy Technology Data Exchange (ETDEWEB)

    Sakuma, Toshiharu; Yamada, Naoaki; Motooka, Makoto; Enomoto, Naoyuki; Maeshima, Isamu; Matsuda, Kazuhide; Urayama, Shinichi; Ikeo, Miki [National Cardiovascular Center, Suita, Osaka (Japan)

    2002-01-01

    This study was done to assess the value of True FISP cine in patients with poor cardiac function. True FISP cine and FLASH cine imaging were performed on a 1.5 T machine. Both short axis and horizontal long axis imaging sections were used. The imaging sections used a Matrix (120 x 128), FOV (24 x 32 cm), and had a slice thickness of 8 mm. The imaging time for True FISP cine was 8 heart beats and 17 heart beats for FLASH cine. The contrast-to-noise ratio between the blood and myocardium (CNR) was measured at enddiastole and endsystole. The subjects in the study were 10 healty volunteers (average age 26.5{+-}3.2 years) and 12 patients with hypofunction (average age 53.9{+-}13.2 years). In the volunteers, the CNR of the short axis imaging was similar in both True FISP (24.6{+-}3.7) and FLASH (23.4{+-}5.9). In the patients with poor cardiac function however, the CNR of True FISP was larger than FLASH in both the short and long axis. In the short axis (22.7{+-}6.1 vs. 17.9{+-}5.3, P<0.01) and in the long axis (17.4{+-}4.3 vs. 9.3{+-}4.0, P<0.01). We conclude that True FISP cine has a higher contrast in a shorter imaging time than FLASH cine. True FISP cine is especially useful in patients with poor cardiac function. (author)

  17. Ankyrin Repeat Domain 1 Protein: A Functionally Pleiotropic Protein with Cardiac Biomarker Potential

    Directory of Open Access Journals (Sweden)

    Samantha S. M. Ling

    2017-06-01

    Full Text Available The ankyrin repeat domain 1 (ANKRD1 protein is a cardiac-specific stress-response protein that is part of the muscle ankyrin repeat protein family. ANKRD1 is functionally pleiotropic, playing pivotal roles in transcriptional regulation, sarcomere assembly and mechano-sensing in the heart. Importantly, cardiac ANKRD1 has been shown to be highly induced in various cardiomyopathies and in heart failure, although it is still unclear what impact this may have on the pathophysiology of heart failure. This review aims at highlighting the known properties, functions and regulation of ANKRD1, with focus on the underlying mechanisms that may be involved. The current views on the actions of ANKRD1 in cardiovascular disease and its utility as a candidate cardiac biomarker with diagnostic and/or prognostic potential are also discussed. More studies of ANKRD1 are warranted to obtain deeper functional insights into this molecule to allow assessment of its potential clinical applications as a diagnostic or prognostic marker and/or as a possible therapeutic target.

  18. Exercise training and cardiac autonomic function in type 2 diabetes mellitus: A systematic review.

    Science.gov (United States)

    Bhati, Pooja; Shenoy, Shweta; Hussain, M Ejaz

    Cardiac autonomic neuropathy (CAN) is a common complication of type 2 diabetes mellitus (T2DM). It has been found to independently predict all cause and cardiovascular disease (CVD) mortality. It remains unclear whether exercise training could improve autonomic control in T2DM patients. The purpose of this study was to systematically review the effects of exercise training on cardiac autonomic function in T2DM patients. Electronic databases (MEDLINE, CENTRAL, PEDro, Scopus and Web of science) were systematically searched to retrieve relevant evidence. Clinical trials administering exercise training for at least 4 weeks and examining either heart rate variability (HRV), baroreflex sensitivity (BRS), heart rate recovery (HRR) as outcome measures were eligible. Eighteen articles were found to be relevant and were then assessed for characteristics and quality. Fifteen studies out of 18 found that exercise training leads to positive improvements in autonomic function of T2DM patients. Exercise participation enhances cardiac autonomic function of type 2 diabetics and therefore should be implemented in their management programs. Copyright © 2017 Diabetes India. Published by Elsevier Ltd. All rights reserved.

  19. Dichloroacetate selectively improves cardiac function and metabolism in female and male rainbow trout

    Science.gov (United States)

    Battiprolu, Pavan K.

    2014-01-01

    Cardiac tissue from female rainbow trout demonstrates a sex-specific preference for exogenous glucose and glycolysis, impaired Ca2+ handling, and a greater tolerance for hypoxia and reoxygenation than cardiac tissue from male rainbow trout. We tested the hypothesis that dichloroacetate (DCA), an activator of pyruvate dehydrogenase, enhances cardiac energy metabolism and Ca2+ handling in female preparations and provide cardioprotection for hypoxic male tissue. Ventricle strips from sexually immature fish with very low (male) and nondetectable (female) plasma sex steroids were electrically paced in oxygenated or hypoxic Ringer solution with or without 1 mM DCA. In the presence of 5 mM glucose, aerobic tissue from male trout could be paced at a higher frequency (1.79 vs. 1.36 Hz) with lower resting tension and less contractile dysfunction than female tissue. At 0.5 Hz, DCA selectively reduced resting tension below baseline values and lactate efflux by 75% in aerobic female ventricle strips. DCA improved the functional recovery of developed twitch force, reduced lactate efflux by 50%, and doubled citrate in male preparations after hypoxia-reoxygenation. Independent of female sex steroids, reduced myocardial pyruvate dehydrogenase activity and impaired carbohydrate oxidation might explain the higher lactate efflux, compromised function of the sarcoplasmic reticulum, and reduced mechanical performance of aerobic female tissue. Elevated oxidative metabolism and reduced glycolysis might also underlie the beneficial effects of DCA on the mechanical recovery of male cardiac tissue after hypoxia-reoxygenation. These results support the use of rainbow trout as an experimental model of sex differences of cardiovascular energetics and function, with the potential for modifying metabolic phenotypes and cardioprotection independent of sex steroids. PMID:25217653

  20. The specific case: cardiac amyloidosis as differential diagnosis in case of restricted cardiac pump function; Der besondere Fall. Amyloidose des Herzens als Differenzialdiagnose bei eingeschraenkter kardialer Pumpfunktion

    Energy Technology Data Exchange (ETDEWEB)

    D' Errico, L. [Universitaetsspital Basel (Switzerland). Klinik fuer Radiologie und Nuklearmedizin; Zellweger, M.; Niemann, T.

    2014-03-15

    The NMR imaging data in combination with clinical characterization and echocardiography are consistent with the diagnosis of a cardiac amyloidosis. The article describes disease pattern and diagnosis based on contrast agent accumulation and diastolic functional disturbances. CT was performed to exclude pulmonary embolism.

  1. Factors that influence obesity, functional capacity, anxiety and depression outcomes following a Phase III cardiac rehabilitation programme.

    Science.gov (United States)

    McKee, Gabrielle; Kerins, Mary; Fitzgerald, Geraldine; Spain, Marie; Morrison, Karen

    2013-10-01

    To examine changes in functional capacity, anxiety, depression and BMI in patients who completed a cardiac rehabilitation programme and to determine the influencing factors. While the effectiveness of cardiac rehabilitation is long established, more studies are needed to examine the combined effectiveness of this multicomponent intervention and the factors that influence this in the changed profile of patients currently attending cardiac rehabilitation. The study was a longitudinal retrospective study of patients following a six- or eight-week Phase III cardiac rehabilitation programme. The study recruited 154 patients. Functional capacity, anxiety, depression, weight, waist circumference and BMI were assessed at the beginning and end of cardiac rehabilitation. t-tests were used to assess changes over time, and multivariate regression analysis was used to determine the influence of factors on these changes. Significant improvements were seen in functional capacity, waist circumference, weight and BMI, but not in depression and anxiety. Multivariate analysis revealed that being younger and less fit was associated with greater improvements in functional capacity while reason for referral, gender, depression or BMI did not influence improvements in functional capacity. Models testing the influence of the factors on BMI, anxiety and depression were not significant. Cardiac rehabilitation is still an effective method to instigate changes in cardiac risk factors despite the changes in patients profile attending programmes. Continued encouragement of the historically less typical patients to participate in cardiac rehabilitation is needed as reason for referral, gender, depression or BMI did not influence improvements in functional capacity. Despite psychosocial components within the programme, no significant improvements were observed over cardiac rehabilitation in depression or anxiety. While effectiveness was observed, there is room for further optimisation of practice

  2. Age-specific associations between cardiac vagal activity and functional somatic symptoms : a population-based study

    NARCIS (Netherlands)

    Tak, Lineke M.; Janssens, Karin A. M.; Dietrich, Andrea; Slaets, Joris P. J.; Rosmalen, Judith G. M.

    2010-01-01

    BACKGROUND: Functional somatic symptoms (FSS) are symptoms not explained by underlying organic pathology. It has frequently been suggested that dysfunction of the autonomic nervous system (ANS) contributes to the development of FSS. We hypothesized that decreased cardiac vagal activity is

  3. Evaluation of arterial stiffness and cardiac function in patients with vascular erectile dysfunction : Acute effects of phosphodiesterase-5 inhibitor tadalafil

    NARCIS (Netherlands)

    Özdabakoglu, O.; Güllülü, S.; Sag, S.; Sentürk, T.; Kilicarslan, H.; Tütüncü, A.; Kecebas, M.; Baran, Ismet; Aydinlar, A.

    2017-01-01

    This study aimed to detect endothelial dysfunction in erectile dysfunction (ED) patients free from cardiovascular diseases or atherosclerotic risk factors and to evaluate acute effects of phosphodiesterase-5 inhibitor tadalafil on endothelial dysfunction and cardiac function. Thirty ED patients and

  4. Effects of protein-calorie restriction on mechanical function of hypertrophied cardiac muscle

    Directory of Open Access Journals (Sweden)

    Antônio Carlos Cicogna

    1999-04-01

    Full Text Available OBJECTIVE: To assess the effect of food restriction (FR on hypertrophied cardiac muscle in spontaneously hypertensive rats (SHR. METHODS: Isolated papillary muscle preparations of the left ventricle (LV of 60-day-old SHR and of normotensive Wistar-Kyoto (WKY rats were studied. The rats were fed either an unrestricted diet or FR diet (50% of the intake of the control diet for 30 days. The mechanical function of the muscles was evaluated through monitoring isometric and isotonic contractions. RESULTS: FR caused: 1 reduction in the body weight and LV weight of SHR and WKY rats; 2 increase in the time to peak shortening and the time to peak developed tension (DT in the hypertrophied myocardium of the SHR; 3 diverging changes in the mechanical function of the normal cardiac muscles of WKY rats with reduction in maximum velocity of isotonic shortening and of the time for DT to decrease 50% of its maximum value, and increase of the resting tension and of the rate of tension decline. CONCLUSION: Short-term FR causes prolongation of the contraction time of hypertrophied muscles and paradoxal changes in mechanical performance of normal cardiac fibers, with worsening of the shortening indices and of the resting tension, and improvement of the isometric relaxation.

  5. Modifications of cardiac function in cirrhotic patients treated with transjugular intrahepatic portosystemic shunt (TIPS).

    Science.gov (United States)

    Merli, Manuela; Valeriano, Valentina; Funaro, Stefania; Attili, Adolfo Francesco; Masini, Andrea; Efrati, Cesare; De, Castro Stefano; Riggio, Oliviero

    2002-01-01

    The implantation of a transjugular intrahepatic portosystemic shunt (TIPS) has been shown to exacerbate the hyperdynamic circulation and might induce a significant cardiac overload. We investigated cardiac function before and 1, 3, 6, and 12 months after the TIPS procedure in cirrhotic patients. Eleven patients with nonalcoholic cirrhosis were evaluated. Cardiovascular parameters were assessed by two-dimensional Doppler echocardiography. After TIPS, the left ventricular diastolic diameter increased from 26.5 +/- 1.8 mm (basal) to 30.0 +/- 2.8 mm (6 months) (p < 0.05), whereas the ejection fraction showed a slight increase (basal, 64.5 +/- 3.3; 6 months, 68.1 +/- 3.2). The left ventricular pre-ejection period and the isovolumetric relaxation time decreased transiently at 1 month (p < 0.05). An increased velocity in all of the components of pulmonary venous flow (systolic, diastolic, and atrial) documented the accelerated fluxes induced by the procedure. The estimated pulmonary systolic arterial pressure also increased at 1 month (29.5 +/- 1.4 vs 44.1 +/- 1.4 mm Hg, p < 0.05). All of these modifications reverted after 6 months. Our study demonstrates that nonalcoholic cirrhotic patients, without cardiovascular pathologies, show transient modifications in cardiac dimension and function for 3-6 months after TIPS caused by the increased volume load shunted to the heart.

  6. Relationship between myocardial T2* values and cardiac volumetric and functional parameters in β-thalassemia patients evaluated by cardiac magnetic resonance in association with serum ferritin levels

    International Nuclear Information System (INIS)

    Liguori, Carlo; Pitocco, Francesca; Di Giampietro, Ilenia; Vivo, Aldo Eros de; Schena, Emiliano; Cianciulli, Paolo; Zobel, Bruno Beomonte

    2013-01-01

    Purpose: Myocardial T2* cardiovascular magnetic resonance provides a rapid and reproducible assessment of cardiac iron load in thalassemia patients. Although cardiac involvement is mainly characterized by left ventricular dysfunction caused by iron overload, little is known about right ventricular function. The aim of this study was to assess the relationship between T2* value in myocardium and left–right ventricular volumetric and functional parameters and to evaluate the existing associations between left–right ventricles volumetric and functional parameter, myocardial T2* values and blood ferritin levels. Materials and methods: A retrospective analysis of 208 patients with β-thalassemia major and thalassemia intermedia was performed (109 males and 99 females; mean age 37.7 ± 13 years; 143 thalassemia major, 65 thalassemia intermedia). Myocardial iron load was assessed by T2* measurements, and volumetric functions were analyzed using the steady state free precession sequence. Results: A significant correlation was observed between EFLV and T2* (p = 0.0001), EFRV and T2* (p = 0.0279). An inverse correlation was present between DVLV and T2* (p = 0.0468), SVLV and T2* (p = 0.0003), SVRV and T2* (p = 0.0001). There was no significant correlation between cardiac T2* and LV–RV mass indices. A significant correlation was observed between T2* and serum ferritin levels (p < 0.001) and between EFLV and serum ferritin (p < 0.05). Conclusion: Myocardial iron load assessed by T2* cardiac magnetic resonance is associated with deterioration in left–right ventricular function; this is more evident when T2* values fall below 14 ms. CMR appears to be a promising approach for cardiac risk evaluation in TM patients

  7. Relationship between myocardial T2* values and cardiac volumetric and functional parameters in β-thalassemia patients evaluated by cardiac magnetic resonance in association with serum ferritin levels

    Energy Technology Data Exchange (ETDEWEB)

    Liguori, Carlo, E-mail: c.liguori@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Pitocco, Francesca, E-mail: f.pitocco@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Di Giampietro, Ilenia, E-mail: i.digiampietro@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Vivo, Aldo Eros de, E-mail: devivoeros@gmail.com [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Schena, Emiliano, E-mail: e.schena@unicampus.it [Unit of Measurements and Biomedical Instrumentation, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy); Cianciulli, Paolo, E-mail: CIANCIULLI.PAOLO@aslrmc.it [Thalassemia Unit, Ospedale Sant Eugenio, Piazzale dell’Umanesimo 10, 00143 Rome (Italy); Zobel, Bruno Beomonte, E-mail: b.zobel@unicampus.it [Department of Diagnostic Imaging, Campus Bio Medico University, via Alvaro del Portillo 200, 00128 Rome (Italy)

    2013-09-15

    Purpose: Myocardial T2* cardiovascular magnetic resonance provides a rapid and reproducible assessment of cardiac iron load in thalassemia patients. Although cardiac involvement is mainly characterized by left ventricular dysfunction caused by iron overload, little is known about right ventricular function. The aim of this study was to assess the relationship between T2* value in myocardium and left–right ventricular volumetric and functional parameters and to evaluate the existing associations between left–right ventricles volumetric and functional parameter, myocardial T2* values and blood ferritin levels. Materials and methods: A retrospective analysis of 208 patients with β-thalassemia major and thalassemia intermedia was performed (109 males and 99 females; mean age 37.7 ± 13 years; 143 thalassemia major, 65 thalassemia intermedia). Myocardial iron load was assessed by T2* measurements, and volumetric functions were analyzed using the steady state free precession sequence. Results: A significant correlation was observed between EFLV and T2* (p = 0.0001), EFRV and T2* (p = 0.0279). An inverse correlation was present between DVLV and T2* (p = 0.0468), SVLV and T2* (p = 0.0003), SVRV and T2* (p = 0.0001). There was no significant correlation between cardiac T2* and LV–RV mass indices. A significant correlation was observed between T2* and serum ferritin levels (p < 0.001) and between EFLV and serum ferritin (p < 0.05). Conclusion: Myocardial iron load assessed by T2* cardiac magnetic resonance is associated with deterioration in left–right ventricular function; this is more evident when T2* values fall below 14 ms. CMR appears to be a promising approach for cardiac risk evaluation in TM patients.

  8. Evaluation of left ventricular mass and function, lipid profile, and insulin resistance in Egyptian children with growth hormone deficiency: A single-center prospective case-control study

    Directory of Open Access Journals (Sweden)

    Kotb Abbass Metwalley

    2013-01-01

    Full Text Available Background: Growth hormone deficiency (GHD in adults is associated with a cluster of cardiovascular risk factors that may contribute to an increased mortality for cardiovascular disease. In children, relatively few studies have investigated the effect of GHD and replacement therapy on cardiac performance and metabolic abnormalities that may place them at a higher risk of cardiovascular disease (CVD at an early age. Aim: This study was aimed to assess the left ventricular function, lipid profile, and degree of insulin resistance in Egyptian children with GHD before and after 1 year of GH replacement therapy. Settings and Design: Prospective case-control study, single-center study. Materials and Methods: Thirty children with short stature due to GHD were studied in comparison to 20 healthy age- and sex-matched children. All subjects were subjected to history, clinical examination, auxological assessment, and echocardiography to assess the left ventricular function. Blood samples were collected for measuring IGF-1, lipid profile (Total, LDL, HDL cholesterol, triglyceride, and atherogenic index (AI, fasting blood sugar, and fasting insulin levels. In addition, basal and stimulated GH levels were measured in children with suspected GHD. Statistical Analysis Used: Student′s t-test was used for parametric data, and the Mann-Whitney U-test was used for non-parametric data. Results: Total, LDL cholesterol, triglyceride, AI, and insulin were significantly higher in children with GHD than in healthy controls at baseline. After 12 months of GH replacement therapy, total, LDL cholesterol, triglyceride, AI and insulin were significantly decreased, while homeostatic model assessment for insulin resistance index (HOMA-IR was significantly increased compared to both pre-treatment and control values. At baseline, the left ventricular mass (LVM and left ventricular mass index (LVMi were significantly lower in GHD children than in controls. After 12 months of GH

  9. Influence of functional knee bracing on the isokinetic and functional tests of anterior cruciate ligament deficient patients.

    Directory of Open Access Journals (Sweden)

    Niyousha Mortaza

    Full Text Available Use of functional knee braces has been suggested to provide protection and to improve kinetic performance of the knee in Anterior cruciate ligament(ACL-injured patients. However, many athletes might refrain from wearing the braces because of the fear of performance hindrance in the playing field. The aim of this study was to examine the effect of three functional knee brace/sleeves upon the isokinetic and functional performance of ACL-deficient and healthy subjects. Six anterior cruciate ligament deficient (29.0 ± 5.3 yrs., 175.2 ± 5.4 cm, and 73.0 ± 10.0 kg and six healthy male subjects (27.2 ± 3.7 yrs., 176.4 ± 6.4 cm, and 70.3 ± 6.9 kg were selected. The effect of a custom-made functional knee brace, and two neoprene knee sleeves, one with four metal supports and one without support were examined via the use of isokinetic and functional tests in four sets (non-braced,wearing functional knee brace,and wearing the sleeves. Cross-over hop and single leg vertical jump test were performed and jump height, and hop distance were recorded. Peak torque to body weight ratio and average power in two isokinetic velocities(60°.s(-1,180°.s(-1 were recorded and the brace/sleeves effect was calculated as the changes in peak torque measured in the brace/sleeves conditions, expressed as a percentage of peak torque measured in non-braced condition. Frequency content of the isokinetic torque-time curves was also analyzed. Wilcoxon signed rank test was used to compare the measured values in four test conditions within each control and ACL-deficient group,and Mann-Whitney U test was used for the comparison between the two groups. No significant differences in peak torque, average power, torque-time curve frequency content, vertical-jump and hop measurements were found within the experimental and the non-braced conditions (p>0.05. Although the examined functional knee brace/sleeves had no significant effect on the knee muscle performance, there have been

  10. Efficacy of cardiac resynchronization with defibrillator insertion in patients undergone coronary artery bypass graft: A cohort study of cardiac function

    Directory of Open Access Journals (Sweden)

    Reza Karbasi Afshar

    2015-01-01

    Full Text Available Introduction: Cardiac resynchronization therapy (CRT is a proven therapeutic method in selected patients with heart failure and systolic dysfunction which increases left ventricular function and patient survival. We designed a study that included patients undergoing coronary artery bypass graft (CABG, with and without CRT-defibrillator (CRT-D inserting and then measured its effects on these two groups. Patients and Methods: Between 2010 and 2013, we conducted a prospective cohort study on 100 coronary artery disease patients where candidate for CABG. Then based on the receiving CRT-D, the patients were categorized in two groups; Group 1 ( n = 48, with CRT-D insertion before CABG and Group 2 ( n = 52 without receiving CRT-D. Thereafter both of these groups were followed-up at 1-3 months after CABG for mortality, hospitalization, atrial fibrillation (AF, echocardiographic assessment, and New York Heart Association (NYHA class level. Results: The mean age of participants in Group 1 (48 male and in Group 2 (52 male was 58 ± 13 and 57 ± 12 respectively. Difference between Groups 1 and 2 in cases of mean left ventricular ejection fraction (LVEF changes and NYHA class level was significant ( P > 0.05. Hospitalization ( P = 0.008, mortality rate ( P = 0.007, and AF were significantly different between these two groups. Conclusions: The results showed that the increase in LVEF and patient′s improvement according to NYHA-class was significant in the first group, and readmission, mortality rate and AF was increased significantly in the second group.

  11. Enhanced response to radiotherapy in tumours deficient in the function of hypoxia-inducible factor-1

    International Nuclear Information System (INIS)

    Williams, Kaye J.; Telfer, Brian A.; Xenaki, Dia; Sheridan, Mary R.; Desbaillets, Isabelle; Peters, Hans J.W.; Honess, Davina; Harris, Adrian L.; Dachs, Gabi U.; Kogel, Albert van der; Stratford, Ian J.

    2005-01-01

    Background and purpose: To test the hypothesis that deficiency in expression of the transcription factor, HIF-1, renders tumours more radioresponsive than HIF-1 proficient tumours. Patients and methods: Tumours comprising mouse hepatoma cells lacking HIF-1β (and thereby HIF-1 function) were grown in nude mice and radiation-induced growth delay compared with that seen for wild-type tumours and tumours derived from HIF-1β negative cells where HIF-1 function had been restored. Results: The xenografts that lack HIF-1 activity take longer to establish their growth and are more radioresponsive than both parental xenografts and those with restored HIF-1 function. Pre-treatment of the HIF-1 deficient xenografts with the hypoxic radiosensitizer misonidazole, had little effect on radioresponse. In contrast this treatment radiosensitized the parental xenografts. In spite of this, no difference in oxygenation status was found between the tumour types as measured by Eppendorf O 2 -electrodes and by binding of the hypoxic cell marker NITP. Admixing wild type and HIF-1 deficient cells in the same tumour at ratios of 1 in 10 and 1 in 100 restores the growth of the mixed tumours to that of a 100% HIF-1 proficient cell population. However, when comparing the effects of radiation on the mixed tumours, radioresponsiveness is maintained in those tumours containing the high proportion of HIF-1 deficient cells. Conclusions: The differences in radioresponse do not correlate with tumour oxygenation, suggesting that the hypoxic cells within the HIF-1 deficient tumours do not contribute to the outcome of radiotherapy. Thus, hypoxia impacts on tumour radioresponsiveness not simply because of the physio-chemical mechanism of oxygen with radiation-induced radicals causing damage 'fixation', but also because hypoxia/HIF-1 promotes expression of genes that allow tumour cells to survive under these adverse conditions. Further, the results from the cell mixing experiments uncouple the growth

  12. Deficiency of cardiac Acyl-CoA synthetase-1 induces diastolic dysfunction, but pathologic hypertrophy is reversed by rapamycin

    DEFF Research Database (Denmark)

    Paul, David S; Grevengoed, Trisha J; Pascual, Florencia

    2014-01-01

    and increased phosphorylated S6 kinase (S6K), a substrate of the mechanistic target of rapamycin, mTOR. Doppler echocardiography revealed evidence of significant diastolic dysfunction, indicated by a reduced E/A ratio and increased mean performance index, although the deceleration time and the expression...... of sarco/endoplasmic reticulum calcium ATPase and phospholamban showed no difference between genotypes. To determine the role of mTOR in the development of cardiac hypertrophy, we treated Acsl1(H-/-) mice with rapamycin. Six to eight week old Acsl1(H-/-) mice and their littermate controls were given i...... and B-type natriuretic peptide. mTOR activation of the related Acsl3 gene, usually associated with pathologic hypertrophy, was also attenuated in the Acsl1(H-/-) hearts, indicating that alternative pathways of fatty acid activation did not compensate for the loss of Acsl1. Compared to controls, Acsl1(H...

  13. Chronic mitral regurgitation detected on cardiac MDCT: differentiation between functional and valvular aetiologies.

    LENUS (Irish Health Repository)

    Killeen, Ronan P

    2012-02-01

    OBJECTIVE: To determine whether cardiac computed tomography (MDCT) can differentiate between functional and valvular aetiologies of chronic mitral regurgitation (MR) compared with echocardiography (TTE). METHODS: Twenty-seven patients with functional or valvular MR diagnosed by TTE and 19 controls prospectively underwent cardiac MDCT. The morphological appearance of the mitral valve (MV) leaflets, MV geometry, MV leaflet angle, left ventricular (LV) sphericity and global\\/regional wall motion were analysed. The coronary arteries were evaluated for obstructive atherosclerosis. RESULTS: All control and MR cases were correctly identified by MDCT. Significant differences were detected between valvular and control groups for anterior leaflet length (30 +\\/- 7 mm vs. 22 +\\/- 4 mm, P < 0.02) and thickness (3.0 +\\/- 1 mm vs. 2.2 +\\/- 1 mm, P < 0.01). High-grade coronary stenosis was detected in all patients with functional MR compared with no controls (P < 0.001). Significant differences in those with\\/without MV prolapse were detected in MV tent area (-1.0 +\\/- 0.6 mm vs. 1.3 +\\/- 0.9 mm, P < 0.0001) and MV tent height (-0.7 +\\/- 0.3 mm vs. 0.8 +\\/- 0.8 mm, P < 0.0001). Posterior leaflet angle was significantly greater for functional MR (37.9 +\\/- 19.1 degrees vs. 22.9 +\\/- 14 degrees , P < 0.018) and less for valvular MR (0.6 +\\/- 35.5 degrees vs. 22.9 +\\/- 14 degrees, P < 0.017). Sensitivity, specificity, and positive and negative predictive values of MDCT were 100%, 95%, 96% and 100%. CONCLUSION: Cardiac MDCT allows the differentiation between functional and valvular causes of MR.

  14. Electromyographic and biomechanic analysis of anterior cruciate ligament deficiency and functional knee bracing.

    Science.gov (United States)

    Ramsey, Dan K; Wretenberg, Per F; Lamontagne, Mario; Németh, Gunnar

    2003-01-01

    Examine the neuromuscular response to functional knee bracing relative to anterior tibial translations in vivo. During randomised brace conditions, electromyographic data with simultaneous skeletal tibiofemoral kinematics were recorded from four anterior cruciate ligament deficient subjects to investigate the effect of the DonJoy Legend functional brace during activity. Knee braces do not increase knee stability but may influence afferent inputs from proprioception and therefore one might expect changes in muscle firing patterns, amplitude and timing. Hoffman bone pins affixed with markers were implanted into the tibia and femur for kinematic measurement. The EMG data from the rectus femoris, semitendinosus, biceps femoris, and lateral head of the gastrocnemius were integrated for each subject in three separate time periods: 250 ms preceding footstrike and two consecutive 125 ms time intervals following footstrike. With brace, semitendinosus activity significantly decreased 17% prior to footstrike whereas bicep femoris significantly decreased 44% during A2, (P<0.05). Rectus femoris activity significantly increased 21% in A2 (P<0.05). No consistent reductions in anterior translations were evident. Our preliminary findings, based on a limited number of subjects, indicate joint stability may result from proprioceptive feedback rather than the mechanical stabilising effect of the brace. Despite a significant increase in rectus femoris activity upon landing, only one subject demonstrated an increase in anterior tibial drawer. Studies have shown functional braces do not mechanically stabilise the anterior cruciate ligament deficient knee. Perhaps bracing alters proprioceptive feedback. It has been shown that bracing the anterior cruciate ligament deficient knee may affect hamstring and quadriceps activity. Our findings stresses the importance of functional knee bracing combined with proprioceptive and muscular coordination training in order to increase joint stability.

  15. Prediction of cardiac sympathetic nerve activity and cardiac functional outcome after treatment in patients with dilated cardiomyopathy. Examination using dobutamine gated blood pool scintigraphy

    Energy Technology Data Exchange (ETDEWEB)

    Kasama, Shu; Toyama, Takuji; Iwasaki, Tsutomu; Suzuki, Tadashi [Gunma Univ., Maebashi (Japan). School of Medicine; Hoshizaki, Hiroshi; Oshima, Shigeru; Taniguchi, Koichi; Nagai, Ryozo

    2000-07-01

    This study evaluated whether dobutamine gated blood pool scintigraphy can predict improvement of cardiac sympathetic nerve activity and cardiac function. Sixteen patients (10 men and 6 women, mean age 59{+-}13 years) with dilated cardiomyopathy underwent dobutamine gated blood pool scintigraphy to measure left ventricular ejection fraction (LVEF) using tracer at 0, 5, 10 and 15 {mu}g/kg/min before treatment. Patients were divided into good responders (LVEF increase {>=}15%) 8 patients (GR Group) and poor responders (LVEF increase <15%) 8 patients (PR Group) after treatment with {beta}-blocker or amiodarone with a background treatment of digitalis, diuretics and angiotensin converting enzyme inhibitor. I-123 metaiodobenzylguanidine (MIBG) imaging to evaluate cardiac sympathetic nerve activity and echocardiography were performed before and at one year after treatment. MIBG imaging was obtained 4 hours after tracer injection, and the heart/mediastinum count ratio (H/M ratio) calculated from the anterior planar image and the total defect score (TDS) from the single photon emission computed tomography image. LVEF and left ventricular endo-diastolic dimension (LVDd) were measured by echocardiography and New York Heart Association (NYHA) functional class was evaluated. The GR Group showed TDS decreased from 28{+-}6 to 17{+-}12 (p<0.05), H/M ratio increased from 1.79{+-}0.26 to 2.07{+-}0.32 (p<0.05), LVEF increased from 29{+-}8% to 48{+-}10% (p<0.01), and LVDd decreased from 65{+-}4 mm to 58{+-}5 mm (p<0.05). In contrast, the PR group showed no significant changes in TDS. H/M ratio, LVEF and LVDd. NYHA functional class improved in both groups. The improvement was better in the GR Group than in the PR group. Dobutamine gated blood pool scintigraphy is useful to predict the improvement of the cardiac sympathetic nerve activity and cardiac function, and symptoms after treatment in patients with dilated cardiomyopathy. (author)

  16. Echocardiographic and biochemical analysis of cardiac function and injury among female amateur runners post-marathon.

    Science.gov (United States)

    Montiel, G; Horn, T; Vafa, R; Solera, A; Hollmann, W; Predel, H G; Brinkmann, C

    2016-03-01

    Numerous studies with male amateur runners have determined negative changes in their cardiac function/of their myocard following long endurance loads. This study aims to examine such potential changes in women, specifically, after running a marathon. A total of 18 female amateur runners (39.5 ± 10.5 years) were examined before (T1), immediately after (T2) and 24 h post-marathon (T3). An echocardiography was performed using Tissue Doppler (TD) imaging. In addition, the concentration of cardiac troponin T (cTnT) and the activity of the myocardial muscle creatine kinase (CK-MB) were determined at T1 and T2. The echocardiographic parameters revealed impairment of the diastolic function, without, however, documenting a diastolic dysfunction (in accordance with the classification of Nagueh (J Am Soc Echocardiogr, 22:107-33, 2009)). The ratio of blood flow velocity through the mitral valve during early versus late diastole (MV E/A ratio), for example, decreased. The values measured at T3 were similar to those measured at T1. The ratio of early transmitral diastolic filling velocity and of the transmitral diastolic filling velocity by TD imaging (MV E/E') did not indicate any change from T1 to T2, but a significant increase at T3 (in comparison with T1). The systolic function (measured by the left ventricular ejection fraction) did not change significantly. The cTnT concentration and CK-MB activity were significantly higher in T2 than in T1. The data collected does not provide any solid evidence of pathological changes in the cardiac function of female amateur runners post-marathon, although the lab values indicate a strongly increased myocardial stimulation.

  17. On site assessment of cardiac function and neural regulation in amateur half marathon runners

    Science.gov (United States)

    Dalla Vecchia, Laura; Traversi, Egidio; Porta, Alberto; Lucini, Daniela; Pagani, Massimo

    2014-01-01

    Objective Strenuous exercise variably modifies cardiovascular function. Only few data are available on intermediate levels of effort. We therefore planned a study in order to address the hypothesis that a half marathon distance would result in transient changes of cardiac mechanics, neural regulation and biochemical profile suggestive of a complex, integrated adaptation. Methods We enrolled 35 amateur athletes (42±7 years). Supine and standing heart rate variability and a complete echocardiographic evaluation were assessed on site after the completion of a half marathon (postrace) and about 1 month after (baseline). Biochemical tests were also measured postrace. Results Compared to baseline, the postrace left ventricular end-diastolic volume was smaller, peak velocity of E wave was lower, peak velocity of A wave higher, and accordingly the E/A ratio lower. The postrace heart and respiratory rate were higher and variance of RR interval lower, together with a clear shift towards a sympathetic predominance in supine position and a preserved response to orthostasis. At baseline, athletes were characterised by a lower, although still predominant, sympathetic drive with a preserved physiological response to standing. Conclusions Immediately after a half marathon there are clear marks that an elevated sympathetic cardiac drive outlasts the performance, together with decreased left ventricular diastolic volumes and slight modifications of the left ventricular filling pattern without additional signs of diastolic dysfunction or indices of transient left or right ventricular systolic abnormalities. Furthermore, no biochemical indices of any permanent cardiac damage were found. PMID:25332775

  18. Cardiac MRI in pulmonary artery hypertension: correlations between morphological and functional parameters and invasive measurements

    Energy Technology Data Exchange (ETDEWEB)

    Alunni, Jean-Philippe; Otal, Philippe; Rousseau, Herve; Chabbert, Valerie [CHU Rangueil, Department of Radiology, Toulouse (France); Degano, Bruno; Tetu, Laurent; Didier, Alain [CHU Larrey, Department of Pneumology, Toulouse (France); Arnaud, Catherine [CHU Rangueil, Department of Methods in Clinical Research, Toulouse (France); Blot-Souletie, Nathalie [CHU Rangueil, Department of Cardiology, Toulouse (France)

    2010-05-15

    To compare cardiac MRI with right heart catheterisation in patients with pulmonary hypertension (PH) and to evaluate its ability to assess PH severity. Forty patients were included. MRI included cine and phase-contrast sequences, study of ventricular function, cardiac cavity areas and ratios, position of the interventricular septum (IVS) in systole and diastole, and flow measurements. We defined four groups according to the severity of PH and three groups according to IVS position: A, normal position; B, abnormal in diastole; C, abnormal in diastole and systole. IVS position was correlated with pulmonary artery pressures and PVR (pulmonary vascular resistance). Median pulmonary artery pressures and resistance were significantly higher in patients with an abnormal septal position compared with those with a normal position. Correlations were good between the right ventricular ejection fraction and PVR, right ventricular end-systolic volume and PAP, percentage of right ventricular area change and PVR, and diastolic and systolic ventricular area ratio and PVR. These parameters were significantly associated with PH severity. Cardiac MRI can help to assess the severity of PH. (orig.)

  19. Cardiac structure and function in humans: a new cardiovascular physiology laboratory

    Science.gov (United States)

    Song, Su; Burleson, Paul D.; Passo, Stanley; Messina, Edward J.; Levine, Norman; Thompson, Carl I.; Belloni, Francis L.; Recchia, Fabio A.; Ojaimi, Caroline; Kaley, Gabor

    2009-01-01

    As the traditional cardiovascular control laboratory has disappeared from the first-year medical school curriculum, we have recognized the need to develop another “hands-on” experience as a vehicle for wide-ranging discussions of cardiovascular control mechanisms. Using an echocardiograph, an automatic blood pressure cuff, and a reclining bicycle, we developed protocols to illustrate the changes in cardiac and vascular function that occur with changes in posture, venous return, and graded exercise. We use medical student volunteers and a professional echocardiographer to generate and acquire data, respectively. In small-group sessions, we developed an interactive approach to discuss the data and to make a large number of calculations from a limited number of measurements. The sequence of cardiac events and cardiac structure in vivo were illustrated with the volunteers lying down, standing, and then with their legs raised passively above the heart to increase venous return. Volunteers were then asked to peddle the bicycle to achieve steady-state heart rates of 110 and 150 beats/min. Data were collected in all these states, and calculations were performed and used as the basis of a small-group discussion to illustrate physiological principles. Information related to a surprisingly large number of cardiovascular control mechanisms was derived, and its relevance to cardiovascular dysfunction was explored. This communication describes our experience in developing a new cardiovascular control laboratory to reinforce didactic material presented in lectures and small-group sessions. PMID:19745049

  20. Effectiveness of nocturnal home oxygen therapy to improve exercise capacity, cardiac function and cardiac sympathetic nerve activity in patients with chronic heart failure and central sleep apnea.

    Science.gov (United States)

    Toyama, Takuji; Seki, Ryotaro; Kasama, Shu; Isobe, Naoki; Sakurai, Shigeki; Adachi, Hitoshi; Hoshizaki, Hiroshi; Oshima, Shigeru; Taniguchi, Koichi

    2009-02-01

    Central sleep apnea, often found in patients with chronic heart failure (CHF), has a high risk of poor prognosis. This study involved 20 patients with CHF (left ventricular ejection fraction (LVEF) 5 times/h who were divided into 2 groups: 10 patients treated with nocturnal home oxygen therapy (HOT) and 10 patients without HOT (non-HOT). All patients had dilated cardiomyopathy and underwent overnight polysomnography, cardiopulmonary exercise testing, and nuclear cardiac examinations to evaluate AHI, exercise capacity according to the specific activity scale and oxygen uptake at anaerobic threshold and peak exercise (peak VO(2)). Cardiac function according to (99m)Tc-MIBI QGS, and the total defect score (TDS), H/M ratio and the washout rate (WR) on (123)I-metaiodobenzylguanidine (MIBG) imaging were calculated for all patients. As compared with the non-HOT group, the HOT group demonstrated a greater reduction in AHI (26.1+/-9.1 to 5.1+/-3.4), (123)I-MIBG TDS (31+/-8 to 25+/-9), and (123)I-MIBG WR (48+/-8% to 41+/-5%) and a greater increase in the specific activity scale (4.0+/-0.9 to 5.8+/-1.2 Mets), peak VO(2) (16.0+/-3.8 to 18.3+/-4.7 ml . min(-1) . kg(-1)), and LVEF (27+/-9% to 37+/-10%). HOT improves exercise capacity, cardiac function, and cardiac sympathetic nerve activity in patients with CHF and central sleep apnea.

  1. Biventricular Pacing Cardiac Contractility Modulation Improves Cardiac Contractile Function via Upregulating SERCA2 and miR-133 in a Rabbit Model of Congestive Heart Failure

    Directory of Open Access Journals (Sweden)

    Bin Ning

    2014-05-01

    Full Text Available Objective: To compare the effects of biventricular electrical pacing and conventional single-ventricular pacing for cardiac contractility modulation (CCM on cardiac contractile function and to delineate the underlying molecular mechanisms. Methods: Forty rabbits were divided into four groups before surgery: healthy control, HF sham, HF left ventricular pacing CCM (LVP-CCM, and HF biventricular pacing CCM (BVP-CCM groups with n=10 for each group. A rabbit model of chronic heart failure was established by ligating ascending aortic root of rabbits. Then electrical stimulations during the absolute refractory period were delivered to the anterior wall of left ventricle in the LVP-CCM group and on the anterior wall of both left and right ventricles in the BVP-CCM group lasting six hours per day for seven days. Changes in ventricular structure, cardiac function and electrocardiogram were monitored before and after CCM stimulation. Results: Compared with the sham-operated group, heart weight, heart weight index, LV end-systolic diameter (LVESD, LV end-diastolic diameter (LVEDD in the LVP-CCM and BVP-CCM groups were significantly decreased (ppp2+-ATPase (SERCA2a protein levels were upregulated by 1.7 and 2.4 fold, along with simultaneous upregulation of a cardiac-enriched microRNA miR-133 levels by 2.6 and 3.3 fold, in LVP-CCM and BVP-CCM, respectively, compared to sham. Conclusions: Biventricular pacing CCM is superior to conventional monoventricular pacing CCM, producing greater improvement cardiac contractile function. Greater upregulation of SERCA2 and miR-133 may account, at least partially, for the improvement by BVP-CCM.

  2. Glucagon-like peptide-1 and the exenatide analogue AC3174 improve cardiac function, cardiac remodeling, and survival in rats with chronic heart failure

    Directory of Open Access Journals (Sweden)

    Polizzi Clara

    2010-11-01

    Full Text Available Abstract Background Accumulating evidence suggests glucagon-like peptide-1 (GLP-1 exerts cardioprotective effects in animal models of myocardial infarction (MI. We hypothesized that chronic treatment with GLP-1 or the exenatide analog AC3174 would improve cardiac function, cardiac remodeling, insulin sensitivity, and exercise capacity (EC in rats with MI-induced chronic heart failure (CHF caused by coronary artery ligation. Methods Two weeks post-MI, male Sprague-Dawley rats were treated with GLP-1 (2.5 or 25 pmol/kg/min, AC3174 (1.7 or 5 pmol/kg/min or vehicle via subcutaneous infusion for 11 weeks. Cardiac function and morphology were assessed by echocardiography during treatment. Metabolic, hemodynamic, exercise-capacity, and body composition measurements were made at study end. Results Compared with vehicle-treated rats with CHF, GLP-1 or AC3174 significantly improved cardiac function, including left ventricular (LV ejection fraction, and end diastolic pressure. Cardiac dimensions also improved as evidenced by reduced LV end diastolic and systolic volumes and reduced left atrial volume. Vehicle-treated CHF rats exhibited fasting hyperglycemia and hyperinsulinemia. In contrast, GLP-1 or AC3174 normalized fasting plasma insulin and glucose levels. GLP-1 or AC3174 also significantly reduced body fat and fluid mass and improved exercise capacity and respiratory efficiency. Four of 16 vehicle control CHF rats died during the study compared with 1 of 44 rats treated with GLP-1 or AC3174. The cellular mechanism by which GLP-1 or AC3174 exert cardioprotective effects appears unrelated to changes in GLUT1 or GLUT4 translocation or expression. Conclusions Chronic treatment with either GLP-1 or AC3174 showed promising cardioprotective effects in a rat model of CHF. Hence, GLP-1 receptor agonists may represent a novel approach for the treatment of patients with CHF or cardiovascular disease associated with type 2 diabetes.

  3. Cardiac Disease Status Dictates Functional mRNA Targeting Profiles of Individual MicroRNAs.

    Science.gov (United States)

    Matkovich, Scot J; Dorn, Gerald W; Grossenheider, Tiffani C; Hecker, Peter A

    2015-12-01

    MicroRNAs are key players in cardiac stress responses, but the mRNAs, whose abundance and translational potential are primarily affected by changes in cardiac microRNAs, are not well defined. Stimulus-induced, large-scale alterations in the cardiac transcriptome, together with consideration of the law of mass action, further suggest that the mRNAs most substantively targeted by individual microRNAs will vary between unstressed and stressed conditions. To test the hypothesis that microRNA target profiles differ in health and disease, we traced the fate of empirically determined miR-133a and miR-378 targets in mouse hearts undergoing pressure overload hypertrophy. Ago2 immunoprecipitation with RNA sequencing (RNA-induced silencing complex sequencing) was used for unbiased definition of microRNA-dependent and microRNA-independent alterations occurring among ≈13 000 mRNAs in response to transverse aortic constriction (TAC). Of 37 direct targets of miR-133a defined in unstressed hearts (fold change ≥25%, false discovery rate the effect of TAC on microRNA direct target selection resulted in widespread alterations of signaling function. Numerous microRNA-mediated regulatory events occurring exclusively during pressure overload revealed signaling networks that may be responsive to the endogenous decreases in miR-133a during TAC. Pressure overload-mediated changes in overall cardiac RNA content alter microRNA targeting profiles, reinforcing the need to define microRNA targets in tissue-, cell-, and status-specific contexts. © 2015 American Heart Association, Inc.

  4. Cardiac Myocyte De Novo DNA Methyltransferases 3a/3b Are Dispensable for Cardiac Function and Remodeling after Chronic Pressure Overload in Mice.

    Directory of Open Access Journals (Sweden)

    Thomas G Nührenberg

    Full Text Available Recent studies reported altered DNA methylation in failing human hearts. This may suggest a role for de novo DNA methylation in the development of heart failure. Here, we tested whether cardiomyocyte-specific loss of de novo DNA methyltransferases Dnmt3a and Dnmt3b altered cardiac function and remodeling after chronic left ventricular pressure overload.Mice with specific ablation of Dnmt3a and Dnmt3b expression in cardiomyocytes were generated by crossing floxed Dnmt3afl and Dnmt3bfl alleles with mice expressing Cre recombinase under control of the atrial myosin light chain gene promoter. The efficacy of combined Dnmt3a/3b ablation (DKO was characterized on cardiomyocyte-specific genomic DNA and mRNA levels. Cardiac phenotyping was carried out without (sham or with left ventricular pressure overload induced by transverse aortic constriction (TAC. Under similar conditions, cardiac genome-wide transcriptional profiling was performed and DNA methylation levels of promoters of differentially regulated genes were assessed by pyrosequencing.DKO cardiomyocytes showed virtual absence of targeted Dnmt3a and Dnmt3b mRNA transcripts. Cardiac phenotyping revealed no significant differences between DKO and control mice under sham and TAC conditions. Transcriptome analyses identified upregulation of 44 and downregulation of 9 genes in DKO as compared with control sham mice. TAC mice showed similar changes with substantial overlap of regulated genes compared to sham. Promoters of upregulated genes were largely unmethylated in DKO compared to control mice.The absence of cardiac pathology in the presence of the predicted molecular phenotype suggests that de novo DNA methylation in cardiomyocytes is dispensable for adaptive mechanisms after chronic cardiac pressure overload.

  5. Cardiac Myocyte De Novo DNA Methyltransferases 3a/3b Are Dispensable for Cardiac Function and Remodeling after Chronic Pressure Overload in Mice

    Science.gov (United States)

    Schnick, Tilman; Preißl, Sebastian; Witten, Anika; Stoll, Monika; Gilsbach, Ralf; Neumann, Franz-Josef; Hein, Lutz

    2015-01-01

    Background Recent studies reported altered DNA methylation in failing human hearts. This may suggest a role for de novo DNA methylation in the development of heart failure. Here, we tested whether cardiomyocyte-specific loss of de novo DNA methyltransferases Dnmt3a and Dnmt3b altered cardiac function and remodeling after chronic left ventricular pressure overload. Methods Mice with specific ablation of Dnmt3a and Dnmt3b expression in cardiomyocytes were generated by crossing floxed Dnmt3afl and Dnmt3bfl alleles with mice expressing Cre recombinase under control of the atrial myosin light chain gene promoter. The efficacy of combined Dnmt3a/3b ablation (DKO) was characterized on cardiomyocyte-specific genomic DNA and mRNA levels. Cardiac phenotyping was carried out without (sham) or with left ventricular pressure overload induced by transverse aortic constriction (TAC). Under similar conditions, cardiac genome-wide transcriptional profiling was performed and DNA methylation levels of promoters of differentially regulated genes were assessed by pyrosequencing. Results DKO cardiomyocytes showed virtual absence of targeted Dnmt3a and Dnmt3b mRNA transcripts. Cardiac phenotyping revealed no significant differences between DKO and control mice under sham and TAC conditions. Transcriptome analyses identified upregulation of 44 and downregulation of 9 genes in DKO as compared with control sham mice. TAC mice showed similar changes with substantial overlap of regulated genes compared to sham. Promoters of upregulated genes were largely unmethylated in DKO compared to control mice. Conclusion The absence of cardiac pathology in the presence of the predicted molecular phenotype suggests that de novo DNA methylation in cardiomyocytes is dispensable for adaptive mechanisms after chronic cardiac pressure overload. PMID:26098432

  6. Thyroid function in girls with menstrual disturbances in iodine-deficiency region

    Directory of Open Access Journals (Sweden)

    O Konstantinova

    2010-06-01

    Full Text Available The estimate the functional state of the female adolescent thyroid with menstrual cycle disorder, living in the iodine deficiency regions, 130 female adolescents with irregular menstrual cycle were examined. Hypothyroidism incidence (in them was 16.9%. In addition we considered TSH range 2.5–4.0 mU/l (highly normal TSH level the extent of which was 12.3%. High extent of antibody carriage to the thyroid (31.3% in girls with irregular menses, having high blood TSH level. There were no statistical differences between the structure of menstrual dysfunction and menstrual duration depending on thyroid function (p = 0.2383, respectively, as well as the average values of estradiol levels depending on TSH level (p = 0.3213. Thus, the influence of highly normal TSH on menstrual function development in female adolescents.

  7. Calcium channel blockade limits cardiac remodeling and improves cardiac function in myocardial infarction-induced heart failure in rats

    NARCIS (Netherlands)

    Sandmann, S.; Claas, R.; Cleutjens, J. P.; Daemen, M. J.; Unger, T.

    2001-01-01

    Calcium channel antagonists (CCAs) have been proposed to prevent cardiac events after myocardial infarction (MI). However, unwanted effects, such as negative inotropy, limit their use in many cases. The aim of this study was to compare the effects of long-term treatment with the CCAs, mibefradil,

  8. The effect of time to defibrillation and targeted temperature management on functional survival after out-of-hospital cardiac arrest.

    Science.gov (United States)

    Drennan, Ian R; Lin, Steve; Thorpe, Kevin E; Morrison, Laurie J

    2014-11-01

    Cardiac arrest physiology has been proposed to occur in three distinct phases: electrical, circulatory and metabolic. There is limited research evaluating the relationship of the 3-phase model of cardiac arrest to functional survival at hospital discharge. Furthermore, the effect of post-cardiac arrest targeted temperature management (TTM) on functional survival during each phase is unknown. To determine the effect of TTM on the relationship between the time of initial defibrillation during each phase of cardiac arrest and functional survival at hospital discharge. This was a retrospective observational study of consecutive adult (≥18 years) out-of-hospital cardiac arrest (OHCA) patients with initial shockable rhythms. Included patients obtained a return of spontaneous circulation (ROSC) and were eligible for TTM. Multivariable logistic regression was used to determine predictors of functional survival at hospital discharge. There were 20,165 OHCA treated by EMS and 871 patients were eligible for TTM. Of these patients, 622 (71.4%) survived to hospital discharge and 487 (55.9%) had good functional survival. Good functional survival was associated with younger age (OR 0.94; 95% CI 0.93-0.95), shorter times from collapse to initial defibrillation (OR 0.73; 95% CI 0.65-0.82), and use of post-cardiac arrest TTM (OR 1.49; 95% CI 1.07-2.30). Functional survival decreased during each phase of the model (65.3% vs. 61.7% vs. 50.2%, Pdefibrillation and was decreased during each successive phase of the 3-phase model. Post-cardiac arrest TTM was associated with improved functional survival. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Cardiac myosin binding protein-C plays no regulatory role in skeletal muscle structure and function.

    Directory of Open Access Journals (Sweden)

    Brian Lin

    Full Text Available Myosin binding protein-C (MyBP-C exists in three major isoforms: slow skeletal, fast skeletal, and cardiac. While cardiac MyBP-C (cMyBP-C expression is restricted to the heart in the adult, it is transiently expressed in neonatal stages of some skeletal muscles. However, it is unclear whether this expression is necessary for the proper development and function of skeletal muscle. Our aim was to determine whether the absence of cMyBP-C alters the structure, function, or MyBP-C isoform expression in adult skeletal muscle using a cMyBP-C null mouse model (cMyBP-C((t/t. Slow MyBP-C was expressed in both slow and fast skeletal muscles, whereas fast MyBP-C was mostly restricted to fast skeletal muscles. Expression of these isoforms was unaffected in skeletal muscle from cMyBP-C((t/t mice. Slow and fast skeletal muscles in cMyBP-C((t/t mice showed no histological or ultrastructural changes in comparison to the wild-type control. In addition, slow muscle twitch, tetanus tension, and susceptibility to injury were all similar to the wild-type controls. Interestingly, fMyBP-C expression was significantly increased in the cMyBP-C((t/t hearts undergoing severe dilated cardiomyopathy, though this does not seem to prevent dysfunction. Additionally, expression of both slow and fast isoforms was increased in myopathic skeletal muscles. Our data demonstrate that i MyBP-C isoforms are differentially regulated in both cardiac and skeletal muscles, ii cMyBP-C is dispensable for the development of skeletal muscle with no functional or structural consequences in the adult myocyte, and iii skeletal isoforms can transcomplement in the heart in the absence of cMyBP-C.

  10. Adaptive responses of cardiac function to fetal postural change as gestational age increases

    Science.gov (United States)

    Kim, Woo Jin; Choi, Hye Jin; Yang, Sun Young; Koo, Boo Hae; Ahn, Ki Hoon; Hong, Soon Cheol; Oh, Min-Jeong; Kim, Hai-Joong

    2016-01-01

    Objective The cardiovascular system maintains homeostasis through a series of adaptive responses to physiological requirements. However, little is known about the adaptation of fetal cardiac function to gravity, according to gestational age. In the present study, we aimed to evaluate the adaptive responses of cardiac function to postural changes, using Tei index measurements. Methods Fetal echocardiography and Doppler examination were performed on 114 women with vertex singleton pregnancies at 19 to 40 weeks' gestation. Participants were placed in an upright seated position, and the Tei index for fetal left ventricular cardiac function was measured. The women were then moved into a supine position and the Tei index was re-measured. Results The mean Tei index when measured in an upright seated position was significantly lower than that measured in a supine positioning for all fetuses (0.528±0.103 vs. 0.555±0.106, P=0.014, respectively). This difference was also noted in fetuses with a gestational age of 28–40 weeks (0.539±0.107 vs. 0.574±0.102, P=0.011, respectively). However, there was no difference in the Tei index between an upright seated and a supine position among fetuses with a gestational age of Postural changes from an upright seated to a supine position result in an increased Tei index after a gestational age of 28 weeks. This appears to reflect maturation in the adaptive responses of the fetal cardiovascular system to postural changes. PMID:27896244

  11. Usefulness of true FISP cine MR imaging in patients with poor cardiac function

    International Nuclear Information System (INIS)

    Sakuma, Toshiharu; Yamada, Naoaki; Motooka, Makoto; Enomoto, Naoyuki; Maeshima, Isamu; Matsuda, Kazuhide; Urayama, Shinichi; Ikeo, Miki

    2002-01-01

    This study was done to assess the value of True FISP cine in patients with poor cardiac function. True FISP cine and FLASH cine imaging were performed on a 1.5 T machine. Both short axis and horizontal long axis imaging sections were used. The imaging sections used a Matrix (120 x 128), FOV (24 x 32 cm), and had a slice thickness of 8 mm. The imaging time for True FISP cine was 8 heart beats and 17 heart beats for FLASH cine. The contrast-to-noise ratio between the blood and myocardium (CNR) was measured at enddiastole and endsystole. The subjects in the study were 10 healty volunteers (average age 26.5±3.2 years) and 12 patients with hypofunction (average age 53.9±13.2 years). In the volunteers, the CNR of the short axis imaging was similar in both True FISP (24.6±3.7) and FLASH (23.4±5.9). In the patients with poor cardiac function however, the CNR of True FISP was larger than FLASH in both the short and long axis. In the short axis (22.7±6.1 vs. 17.9±5.3, P<0.01) and in the long axis (17.4±4.3 vs. 9.3±4.0, P<0.01). We conclude that True FISP cine has a higher contrast in a shorter imaging time than FLASH cine. True FISP cine is especially useful in patients with poor cardiac function. (author)

  12. Effects of ioxaglic acid on cardiac functions during coronary arteriography in canines

    Energy Technology Data Exchange (ETDEWEB)

    Traegaardh, B. (Malmoe Allmaenna Sjukhus, Malmoe, Sweden); Lynch, P.R. (Temple Univ., Philadelphia, PA (USA). School of Medicine)

    1983-01-01

    The new monoacid dimer ioxaglic acid (P286), the non-ionic metrizamide (Amipaque) and diatrizoate (Renografin 76) were compared regarding their effects on left ventricular pressure, the first derivative of left ventricular pressure, aortic pressures and on ECG changes during left and right coronary angiography in dogs. Ioxaglate was found to affect most of these parameters less than diatrizoate probably due to its lower osmolality. Ioxaglate should be regarded suitable for coronary angiography. However, ioxaglate was found to have greater effects on the cardiac function than the equiosmolar metrizamide. This is probably due to the chemotoxicity of the anion or possibly to the sodium content of the ioxaglic acid solution.

  13. An injectable silk sericin hydrogel promotes cardiac functional recovery after ischemic myocardial infarction.

    Science.gov (United States)

    Song, Yu; Zhang, Cheng; Zhang, Jinxiang; Sun, Ning; Huang, Kun; Li, Huili; Wang, Zheng; Huang, Kai; Wang, Lin

    2016-09-01

    Acute myocardial infarction (MI) leads to morbidity and mortality due to cardiac dysfunction. Here we identify sericin, a silk-derived protein, as an injectable therapeutic biomaterial for the minimally invasive MI repair. For the first time, sericin prepared in the form of an injectable hydrogel has been utilized for cardiac tissue engineering and its therapeutical outcomes evaluated in a mouse MI model. The injection of this sericin hydrogel into MI area reduces scar formation and infarct size, increases wall thickness and neovascularization, and inhibits the MI-induced inflammatory responses and apoptosis, thereby leading to a significant functional improvement. The potential therapeutical mechanisms have been further analyzed in vitro. Our results indicate that sericin downregulates pro-inflammatory cytokines (TNF-α and IL-18) and chemokine (CCL2) and reduces TNF-α expression by suppressing the TLR4-MAPK/NF-κB pathways. Moreover, sericin exhibits angiogenic activity by promoting migration and tubular formation of human umbilical vessel endothelial cells (HUVECs). Also, sericin stimulates VEGFa expression via activating ERK phosphorylation. Further, sericin protects endothelial cells and cardiomyocytes from apoptosis by inhibiting the activation of caspase 3. Together, these diverse biochemical activities of sericin protein lead to a significant recovery of cardiac function. This work represents the first study reporting sericin as an effective therapeutic biomaterial for ischemic myocardial repair in vivo. Intramyocardial biomaterial injection is thought to be a potential therapeutic approach to improve cardiac performance after ischemic myocardial infarction. In this study, we report the successful fabrication and in vivo application of an injectable sericin hydrogel for ischemic heart disease. We for the first time show that the injection of in situ forming crosslinked sericin hydrogel promotes heart functional recovery accompanied with reduced

  14. Long term dietary deficiency in steers: vital functions and T3 and IGF-1 relationships

    Directory of Open Access Journals (Sweden)

    Alessandra S. Lima

    2014-09-01

    Full Text Available To evaluate the influence of diets with different degrees of energy deficiency on the hormonal profile and vital functions, 12 steers were randomly distributed into 3 groups of 4 animals. For 140 days, each group received (G1 a diet to promote a weight gain of 900gr/day (17.7 Mcal/d DE and 13% CP, (G2 80% of the maintenance requirements (5.8 Mcal/d DE and 7% CP, or (G3 60% of the maintenance requirements (4.7 Mcal/d DE and 5% CP. In G2 and G3, the energy deficit caused a marked decrease in the heart rate and respiratory rate and a reduction in the blood levels of Insulin like growth factor-1 (IGF-1 and triiodothyronine (T3. The decrease in heart rate, respiratory movement and, to a lesser extent, reduction of the rectal temperature, reflected the low status of energy and was negatively impacted by the low levels of T3. There was a strong correlation between the hormones T3 and IGF-1 (r=0.833. There were also strong correlations between T3 and HR (r=0.701, T3 and RR (r=0.632, IGF-1 and HR (r=0.731, and IGF-1 and RR (r=0.679. There were intermediate correlations between T3 and TºC (r=0.484, T3 and insulin (r=0.506, IGF-1 and insulin (r=0.517, and IGF-1 and TºC (r=0.548. This study showed the influence of a long period of providing an energy-deficient diet on animal performance, correlating hormonal status and vital functions in growing cattle. The results indicated that the evaluated parameters represent an important tool for the early detection of dietary deficiency.

  15. Caffeine restores myocardial cytochrome oxidase activity and improves cardiac function during sepsis.

    Science.gov (United States)

    Verma, Richa; Huang, Zhishan; Deutschman, Clifford S; Levy, Richard J

    2009-04-01

    Impaired mitochondrial function is a potential cause of sepsis-associated myocardial depression. Cytochrome oxidase (CcOX), the terminal oxidase of the electron transport chain, is inhibited in the septic heart. Caffeine increases CcOX activity by increasing cyclic adenosine monophosphate and protein kinase A activity. We hypothesized that caffeine will restore myocardial CcOX activity, increase cardiac function, and improve survival during sepsis. Prospective randomized controlled study. University hospital-based laboratory. One hundred twenty Sprague-Dawley male rats. Sprague-Dawley male rats underwent cecal ligation and puncture (CLP) or sham operation. At 24 and 48 hours, rats underwent intraperitoneal injection of either caffeine (7.5 mg/kg, the equivalent of 1-1.5 cups of coffee) or equal volume of saline. One hour following the 48-hour injection, steady-state CcOX kinetic activity was measured in isolated mitochondria and normalized to citrate synthase activity. Cardiac function was assessed using an isolated rat heart preparation and survival was tracked to 96 hours. CLP significantly decreased myocardial CcOX activity, oxygen consumption, left ventricular pressure, and pressure developed during isovolumic contraction (+dP/dt) and relaxation (-dP/dt). Caffeine restored CcOX activity and increased left ventricular pressure and +/-dP/dt toward sham values following CLP. Survival significantly improved following CLP in caffeine-injected animals compared with saline injection. Caffeine may be a novel therapy to treat sepsis-associated myocardial depression.

  16. Noninvasive Evaluation of Cardiac Function in Non Hypertensive and Asymptomatic Diabetic Patients

    Directory of Open Access Journals (Sweden)

    Behzad Babapour

    2012-11-01

    Full Text Available Background & Objectives: Type 2 diabetes is a major cardiovascular risk factor such as HTN, HLP and smoking. A primary diabetic cardiomyopathy represents a high risk factor for heart failure in the absence of ischemic, valvular and hypertensive heart disease in the diabetic population. CAD is more common in diabetic patients and it is almost asymptomatic.   Unquestionably, an early detection of LV damage and CAD is a major goal for the prevention of cardiac disease in the diabetic population.   Methods: This study was done as Cross-Sectional method. The study sample consisted of 40 patients with type 2 diabetes mellitus without hypertension and cardiac symptoms (mean age 47 years who recourse to diabetes clinic of Ardabil Imam Khomeini Hospital during 2009-2010. Left ventricular (LV function was studied by echocardiography and exercise test using Bruce protocol. Data from the patients were collected and analyzed using SPSS 17 software.   Results: All studied cases had a normal systolic function. 22 cases (55% had diastolic dysfunction and 8 people (20% had a positive stress test, which all had diastolic dysfunction too.   Conclusion: This study showed that an impairment of left ventricular diastolic function occurs early in the natural history of diabetes mellitus and CAD is more common in diabetic patients with diastolic dysfunction.

  17. Prospective randomized controlled intervention trial: Comprehensive Yogic Breathing Improves Cardiac autonomic functions and Quality of life in Diabetes

    Directory of Open Access Journals (Sweden)

    V P Jyotsna

    2012-01-01

    Full Text Available Aims and Objectives: To assess the effect of Comprehensive Yogic Breathing Program on glycemic control, quality of life, and cardiac autonomic functions in diabetes. Material and Methods: This is a prospective randomized controlled intervention trial. Cardiac autonomic functions were assessed in 120 diabetics. Patients were randomized into two groups, one group receiving standard therapy for diabetes (n = 56 and the other group receiving standard therapy for diabetes and comprehensive yogic breathing program (n = 64. Standard therapy included advice on diet, walk, and oral antidiabetic drugs. Comprehensive yogic breathing program was an interactive session in which Sudarshan kriya yoga, a rhythmic cyclical breathing, preceded by Pranayam was taught under guidance of a certified teacher. Change in fasting, post prandial blood sugars, glycated hemoglobin, and quality of life were assessed. Cardiac autonomic function tests were done before and six months after intervention. Results: There was significant improvement in psychological (P = 0.006 and social domains (P = 0.04 and total quality of life (P = 0.02 in the group practicing comprehensive yogic breathing program as compared to the group following standard therapy alone. In the group following breathing program, the improvement in sympathetic cardiac autonomic functions was statistically significant (P = 0.01, while the change in the standard group was not significant (P = 0.17. When both parasympathetic and sympathetic cardiac autonomic functions were considered, there was a trend toward improvement in patients following comprehensive yogic breathing program (P = 0.07. In the standard therapy group, no change in cardiac autonomic functions was noted (P = 0.76. The parameters of glycemic control were comparable in both groups. Conclusion: There was significant improvement in quality of life and cardiac autonomic functions in the diabetes patients practicing comprehensive yogic breathing

  18. Impaired exercise performance and skeletal muscle mitochondrial function in rats with secondary carnitine deficiency

    Directory of Open Access Journals (Sweden)

    Jamal BOUITBIR

    2016-08-01

    Full Text Available Purpose: The effects of carnitine depletion upon exercise performance and skeletal muscle mitochondrial function remain largely unexplored. We therefore investigated the effect of N-trimethyl-hydrazine-3-propionate (THP, a carnitine analogue inhibiting carnitine biosynthesis and renal carnitine reabsorption, on physical performance and skeletal muscle mitochondrial function in rats.Methods: Male Sprague Dawley rats were treated daily with water (control rats; n=12 or with 20 mg/100 g body weight THP (n=12 via oral gavage for 3 weeks. Following treatment, half of the animals of each group performed an exercise test until exhaustion.Results: Distance covered and exercise performance were lower in THP-treated compared to control rats. In the oxidative soleus muscle, carnitine depletion caused atrophy (-24% and impaired function of complex II and IV of the mitochondrial electron transport chain. The free radical leak (ROS production relative to oxygen consumption was increased and the cellular glutathione pool decreased. Moreover, mRNA expression of markers of mitochondrial biogenesis and mitochondrial DNA were decreased in THP-treated compared to control rats. In comparison, in the glycolytic gastrocnemius muscle, carnitine depletion was associated with impaired function of complex IV and increased free radical leak, whilst muscle weight and cellular glutathione pool were maintained. Markers of mitochondrial proliferation and mitochondrial DNA were unaffected.Conclusions: Carnitine deficiency is associated with impaired exercise capacity in rats treated with THP. THP-induced carnitine deficiency is associated with impaired function of the electron transport chain in oxidative and glycolytic muscle as well as with atrophy and decreased mitochondrial DNA in oxidative muscle.

  19. The relationship between immediate preoperative serum 25-hydroxy-vitamin D₃ levels and cardiac function, dysglycemia, length of stay, and 30-d readmissions in cardiac surgery patients.

    Science.gov (United States)

    Sriram, Krishnan; Perumal, Kalyani; Alemzadeh, Golnaz; Osei, Albert; Voronov, Gennadiy

    2015-06-01

    Vitamin D has pleiotropic effects on cardiac, renal, and endocrine diseases like diabetes mellitus and deficiency has been correlated with increased Intensive Care Unit (ICU) morbidity and mortality. We studied the relationship between preoperative Vitamin D levels and several short-term endpoints including cardiovascular events, glucose levels, ICU, and hospital length of stay. Standard demographic data were obtained. Blood samples were drawn for 25-hydroxy-vitamin D3 (Vit D) levels at baseline (just before induction of anesthesia) and on postoperative day (POD #1). The number of inotropes used on POD # 0, 1, and 2 was recorded as well as the Cardiac Index (CI). Baseline glucose, Blood Urea Nitrogen and Creatinine (Cr) levels were obtained and repeated on POD # 1 & 2. Other variables studied are number of days of ICU and hospital stay. Of the 64 patients included in the cohort, 3 were excluded because of inadequate data. 69% had Vit D levels ICU and hospital length of stay in this cohort. The low levels in this study truly represent the Vit D status as they were obtained before any intervention, including surgery or fluid administration. Vit D levels decreased rapidly after surgery and hence future studies on Vit D may need to focus on premorbid levels obtained at the time of initial presentation and not those obtained after resuscitation or ICU admission. In contrast to epidemiologic reports, we found no association between low Vit D levels and postoperative cardiovascular events. However, low Vit D levels did affect the ICU and hospital length of stay in patients who were undergoing cardiac surgery. This is an important finding especially when many institutions and regulatory agencies are investigating novel therapies and processes to reduce the length of hospitalization. More studies are required to investigate the effect on hospital length of stay of early preadmission or preoperative Vit D supplementation before elective surgery. Published by Elsevier Inc.

  20. Women have worse cognitive, functional, and psychiatric outcomes at hospital discharge after cardiac arrest.

    Science.gov (United States)

    Agarwal, Sachin; Presciutti, Alex; Verma, Jayati; Pavol, Marykay A; Anbarasan, Deepti; Brodie, Daniel; Rabbani, Leroy E; Roh, David J; Park, Soojin; Claassen, Jan; Stern, Yaakov

    2018-04-01

    To examine gender differences among cardiac arrest (CA) survivors' cognitive, functional, and psychiatric outcomes at discharge. This is a prospective, observational cohort of 187 CA patients admitted to Columbia University Medical Center, considered for Targeted Temperature Management (TTM), and survived to hospital discharge between September 2015 and July 2017. Patients with sufficient mental status at hospital discharge to engage in the Repeatable Battery for Neuropsychological Status (RBANS), Modified Lawton Physical Self-Maintenance Scale (M-PSMS), Cerebral Performance Category Scale (CPC), Center for Epidemiological Studies Depression Scale (CES-D), and Post-Traumatic Stress Disorder Checklist - Civilian Version (PCL-C) were included. Fisher's exact, Wilcoxon Rank Sum, and regression analysis were utilized. 80 patients (38% women, 44% white, mean age 53 ± 17 years) were included. No significant gender differences were found for age, race, Charlson Comorbidity Index, premorbid CPC or psychiatric diagnoses, arrest related variables, discharge CPC, or PCL-C scores. Women had significantly worse RBANS (64.9 vs 74.8, p = .01), M-PSMS (13.6 vs 10.6, p = .02), and CES-D (22.8 vs 14.3, p = .02) scores. These significant differences were maintained in multivariate models after adjusting for age, initial rhythm, time to return of spontaneous circulation, and TTM. Women have worse cognitive, functional, and psychiatric outcomes at hospital discharge after cardiac arrest than men. Identifying factors contributing to these differences is of great importance in cardiac arrest outcomes research. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Anti-thymocyte globulin induces neoangiogenesis and preserves cardiac function after experimental myocardial infarction.

    Directory of Open Access Journals (Sweden)

    Michael Lichtenauer

    Full Text Available RATIONALE: Acute myocardial infarction (AMI followed by ventricular remodeling is the major cause of congestive heart failure and death in western world countries. OBJECTIVE: Of relevance are reports showing that infusion of apoptotic leucocytes or anti-lymphocyte serum after AMI reduces myocardial necrosis and preserves cardiac function. In order to corroborate this therapeutic mechanism, the utilization of an immunosuppressive agent with a comparable mechanism, such as anti-thymocyte globulin (ATG was evaluated in this study. METHODS AND RESULTS: AMI was induced in rats by ligation of the left anterior descending artery. Initially after the onset of ischemia, rabbit ATG (10 mg/rat was injected intravenously. In vitro and in vivo experiments showed that ATG induced a pronounced release of pro-angiogenic and chemotactic factors. Moreover, paracrine factors released from ATG co-incubated cell cultures conferred a down-regulation of p53 in cardiac myocytes. Rats that were injected with ATG evidenced higher numbers of CD68+ macrophages in the ischemic myocardium. Animals injected with ATG evidenced less myocardial necrosis, showed a significant reduction of infarct dimension and an improvement of post-AMI remodeling after six weeks (infarct dimension 24.9% vs. 11.4%, p<0.01. Moreover, a higher vessel density in the peri-infarct region indicated a better collateralization in rats that were injected with ATG. CONCLUSIONS: These data indicate that ATG, a therapeutic agent successfully applied in clinical transplant immunology, triggered cardioprotective effects after AMI that salvaged ischemic myocardium by down-regulation of p53. This might have raised the resistance against apoptotic cell death during ischemia. The combination of these mechanisms seems to be causative for improved cardiac function and less ventricular remodeling after experimental AMI.

  2. Cardiac resynchronization therapy improves renal function in human heart failure with reduced glomerular filtration rate.

    Science.gov (United States)

    Boerrigter, Guido; Costello-Boerrigter, Lisa C; Abraham, William T; Sutton, Martin G St John; Heublein, Denise M; Kruger, Kristin M; Hill, Michael R S; McCullough, Peter A; Burnett, John C

    2008-09-01

    Renal dysfunction is an important independent prognostic factor in heart failure (HF). Cardiac resynchronization therapy (CRT) improves functional status and left ventricular (LV) function in HF patients with ventricular dyssynchrony, but the impact of CRT on renal function is less defined. We hypothesized that CRT would improve glomerular filtration rate as estimated by the abbreviated Modification of Diet in Renal Disease equation (eGFR). The Multicenter InSync Randomized Clinical Evaluation (MIRACLE) study evaluated CRT in HF patients with NYHA Class III-IV, ejection fraction or=130 ms. Patients were evaluated before and 6 months after randomization to control (n = 225) or CRT (n = 228). Patients were categorized according to their baseline eGFR: >or=90 (category A), 60 function in all categories. Compared with control, CRT increased eGFR (-2.4 +/- 1.2 vs. +2.7 +/- 1.2 mL/min per 1.73 m(2); P = .003) and reduced blood urea nitrogen (+6.4 +/- 2.4 vs. -1.1 +/- 1.5 mg/mL; P = .008) in category C, whereas no differences were observed in categories A and B. CRT increased eGFR and reduced blood urea nitrogen in HF patients with moderately reduced baseline eGFR. By improving cardiac function, CRT can indirectly improve renal function, underscoring the importance of cardiorenal interaction and providing another mechanism for the beneficial effects of CRT.

  3. Can Functional Cardiac Age be Predicted from ECG in a Normal Healthy Population

    Science.gov (United States)

    Schlegel, Todd; Starc, Vito; Leban, Manja; Sinigoj, Petra; Vrhovec, Milos

    2011-01-01

    In a normal healthy population, we desired to determine the most age-dependent conventional and advanced ECG parameters. We hypothesized that changes in several ECG parameters might correlate with age and together reliably characterize the functional age of the heart. Methods: An initial study population of 313 apparently healthy subjects was ultimately reduced to 148 subjects (74 men, 84 women, in the range from 10 to 75 years of age) after exclusion criteria. In all subjects, ECG recordings (resting 5-minute 12-lead high frequency ECG) were evaluated via custom software programs to calculate up to 85 different conventional and advanced ECG parameters including beat-to-beat QT and RR variability, waveform complexity, and signal-averaged, high-frequency and spatial/spatiotemporal ECG parameters. The prediction of functional age was evaluated by multiple linear regression analysis using the best 5 univariate predictors. Results: Ignoring what were ultimately small differences between males and females, the functional age was found to be predicted (R2= 0.69, P < 0.001) from a linear combination of 5 independent variables: QRS elevation in the frontal plane (p<0.001), a new repolarization parameter QTcorr (p<0.001), mean high frequency QRS amplitude (p=0.009), the variability parameter % VLF of RRV (p=0.021) and the P-wave width (p=0.10). Here, QTcorr represents the correlation between the calculated QT and the measured QT signal. Conclusions: In apparently healthy subjects with normal conventional ECGs, functional cardiac age can be estimated by multiple linear regression analysis of mostly advanced ECG results. Because some parameters in the regression formula, such as QTcorr, high frequency QRS amplitude and P-wave width also change with disease in the same direction as with increased age, increased functional age of the heart may reflect subtle age-related pathologies in cardiac electrical function that are usually hidden on conventional ECG.

  4. Central-peripheral neural network interactions evoked by vagus nerve stimulation: functional consequences on control of cardiac function.

    Science.gov (United States)

    Ardell, Jeffrey L; Rajendran, Pradeep S; Nier, Heath A; KenKnight, Bruce H; Armour, J Andrew

    2015-11-15

    Using vagus nerve stimulation (VNS), we sought to determine the contribution of vagal afferents to efferent control of cardiac function. In anesthetized dogs, the right and left cervical vagosympathetic trunks were stimulated in the intact state, following ipsilateral or contralateral vagus nerve transection (VNTx), and then following bilateral VNTx. Stimulations were performed at currents from 0.25 to 4.0 mA, frequencies from 2 to 30 Hz, and a 500-μs pulse width. Right or left VNS evoked significantly greater current- and frequency-dependent suppression of chronotropic, inotropic, and lusitropic function subsequent to sequential VNTx. Bradycardia threshold was defined as the current first required for a 5% decrease in heart rate. The threshold for the right vs. left vagus-induced bradycardia in the intact state (2.91 ± 0.18 and 3.47 ± 0.20 mA, respectively) decreased significantly with right VNTx (1.69 ± 0.17 mA for right and 3.04 ± 0.27 mA for left) and decreased further following bilateral VNTx (1.29 ± 0.16 mA for right and 1.74 ± 0.19 mA for left). Similar effects were observed following left VNTx. The thresholds for afferent-mediated effects on cardiac parameters were 0.62 ± 0.04 and 0.65 ± 0.06 mA with right and left VNS, respectively, and were reflected primarily as augmentation. Afferent-mediated tachycardias were maintained following β-blockade but were eliminated by VNTx. The increased effectiveness and decrease in bradycardia threshold with sequential VNTx suggest that 1) vagal afferents inhibit centrally mediated parasympathetic efferent outflow and 2) the ipsilateral and contralateral vagi exert a substantial buffering capacity. The intact threshold reflects the interaction between multiple levels of the cardiac neural hierarchy. Copyright © 2015 the American Physiological Society.

  5. Empagliflozin Prevents Worsening of Cardiac Function in an Experimental Model of Pressure Overload-Induced Heart Failure

    Directory of Open Access Journals (Sweden)

    Nikole J. Byrne, BSc

    2017-08-01

    Full Text Available This study sought to determine whether the sodium/glucose cotransporter 2 (SGLT2 inhibitor empagliflozin improved heart failure (HF outcomes in nondiabetic mice. The EMPA-REG OUTCOME (Empagliflozin, Cardiovascular Outcome Event Trial in Type 2 Diabetes Mellitus Patients trial demonstrated that empagliflozin markedly prevented HF and cardiovascular death in subjects with diabetes. However, despite ongoing clinical trials in HF patients without type 2 diabetes, there are no objective and translational data to support an effect of SGLT2 inhibitors on cardiac structure and function, particularly in the absence of diabetes and in the setting of established HF. Male C57Bl/6 mice were subjected to either sham or transverse aortic constriction surgery to induce HF. Following surgery, mice that progressed to HF received either vehicle or empagliflozin for 2 weeks. Cardiac function was then assessed in vivo using echocardiography and ex vivo using isolated working hearts. Although vehicle-treated HF mice experienced a progressive worsening of cardiac function over the 2-week treatment period, this decline was blunted in empagliflozin-treated HF mice. Treatment allocation to empagliflozin resulted in an improvement in cardiac systolic function, with no significant changes in cardiac remodeling or diastolic dysfunction. Moreover, isolated hearts from HF mice treated with empagliflozin displayed significantly improved ex vivo cardiac function compared to those in vehicle-treated controls. Empagliflozin treatment of nondiabetic mice with established HF blunts the decline in cardiac function both in vivo and ex vivo, independent of diabetes. These data provide important basic and translational clues to support the evaluation of SGLT2 inhibitors as a treatment strategy in a broad range of patients with established HF.

  6. Cardiac resynchronization therapy and AV optimization increase myocardial oxygen consumption, but increase cardiac function more than proportionally.

    Science.gov (United States)

    Kyriacou, Andreas; Pabari, Punam A; Mayet, Jamil; Peters, Nicholas S; Davies, D Wyn; Lim, P Boon; Lefroy, David; Hughes, Alun D; Kanagaratnam, Prapa; Francis, Darrel P; Whinnett, Zachary I

    2014-02-01

    The mechanoenergetic effects of atrioventricular delay optimization during biventricular pacing ("cardiac resynchronization therapy", CRT) are unknown. Eleven patients with heart failure and left bundle branch block (LBBB) underwent invasive measurements of left ventricular (LV) developed pressure, aortic flow velocity-time-integral (VTI) and myocardial oxygen consumption (MVO2) at 4 pacing states: biventricular pacing (with VV 0 ms) at AVD 40 ms (AV-40), AVD 120 ms (AV-120, a common nominal AV delay), at their pre-identified individualised haemodynamic optimum (AV-Opt); and intrinsic conduction (LBBB). AV-120, relative to LBBB, increased LV developed pressure by a mean of 11(SEM 2)%, p=0.001, and aortic VTI by 11(SEM 3)%, p=0.002, but also increased MVO2 by 11(SEM 5)%, p=0.04. AV-Opt further increased LV developed pressure by a mean of 2(SEM 1)%, p=0.035 and aortic VTI by 4(SEM 1)%, p=0.017. MVO2 trended further up by 7(SEM 5)%, p=0.22. Mechanoenergetics at AV-40 were no different from LBBB. The 4 states lay on a straight line for Δexternal work (ΔLV developed pressure × Δaortic VTI) against ΔMVO2, with slope 1.80, significantly >1 (p=0.02). Biventricular pacing and atrioventricular delay optimization increased external cardiac work done but also myocardial oxygen consumption. Nevertheless, the increase in cardiac work was ~80% greater than the increase in oxygen consumption, signifying an improvement in cardiac mechanoenergetics. Finally, the incremental effect of optimization on external work was approximately one-third beyond that of nominal AV pacing, along the same favourable efficiency trajectory, suggesting that AV delay dominates the biventricular pacing effect - which may therefore not be mainly "resynchronization". © 2013. Published by Elsevier Ireland Ltd. All rights reserved.

  7. Effect of plasma NOx values on cardiac function in obese hypertensive and normotensive pediatric patients.

    Science.gov (United States)

    Akcaboy, Meltem; Kula, Serdar; Göktas, Tayfun; Nazlıel, Bijen; Terlemez, Semiha; Celik, Nurullah; Celik, Bülent; Buyan, Necla

    2016-03-01

    Hypertension (HT) is a major comorbidity of obesity that is associated with an increased risk of cardiovascular disease and higher mortality. The aim of our study was to evaluate cardiac function in obese hypertensive (OHT) and obese normotensive (ONT) pediatric patients and determine the effects of plasma nitric oxide (NOx) values on cardiac function, while demonstrating the role of plasma NOx in HT in obese pediatric patients. The study population consisted of 62 patients (27 boys, 35 girls), aged 13-18 years and 21 age-matched healthy controls. All subjects enrolled in the study underwent echocardiography (Echo) evaluation and ambulatory blood pressure monitoring for HT. Plasma NOx and biochemical values were studied in both patient groups separately. Plasma NOx levels were found to be lower in the OHT group than in the ONT and control groups (p NOx plays an essential role in obesity-induced HT. Concentric hypertrophy of the left ventricle was found in both the OHT and ONT groups, indicating structural deformation of the heart.

  8. Morphological and Functional Evaluation of Quadricuspid Aortic Valves Using Cardiac Computed Tomography

    Energy Technology Data Exchange (ETDEWEB)

    Song, Inyoung; Park, Jung Ah; Choi, Bo Hwa; Ko, Sung Min [Department of Radiology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030 (Korea, Republic of); Shin, Je Kyoun; Chee, Hyun Keun; Kim, Jun Seok [Department of Thoracic Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul 05030 (Korea, Republic of)

    2016-11-01

    The aim of this study was to identify the morphological and functional characteristics of quadricuspid aortic valves (QAV) on cardiac computed tomography (CCT). We retrospectively enrolled 11 patients with QAV. All patients underwent CCT and transthoracic echocardiography (TTE), and 7 patients underwent cardiovascular magnetic resonance (CMR). The presence and classification of QAV assessed by CCT was compared with that of TTE and intraoperative findings. The regurgitant orifice area (ROA) measured by CCT was compared with severity of aortic regurgitation (AR) by TTE and the regurgitant fraction (RF) by CMR. All of the patients had AR; 9 had pure AR, 1 had combined aortic stenosis and regurgitation, and 1 had combined subaortic stenosis and regurgitation. Two patients had a subaortic fibrotic membrane and 1 of them showed a subaortic stenosis. One QAV was misdiagnosed as tricuspid aortic valve on TTE. In accordance with the Hurwitz and Robert's classification, consensus was reached on the QAV classification between the CCT and TTE findings in 7 of 10 patients. The patients were classified as type A (n = 1), type B (n = 3), type C (n = 1), type D (n = 4), and type F (n = 2) on CCT. A very high correlation existed between ROA by CCT and RF by CMR (r = 0.99) but a good correlation existed between ROA by CCT and regurgitant severity by TTE (r = 0.62). Cardiac computed tomography provides comprehensive anatomical and functional information about the QAV.

  9. Morphological and functional evaluation of quadricuspid aortic valves using cardiac computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Song, In Young; Park, Jung Ah; Choi, Bo Hwa; Ko, Sung Min; Shin, Je Kyoun; Chee, Hyun Keun; KIm, Jun Seok [Konkuk University Medical Center, Konkuk University School of Medicine, Seoul (Korea, Republic of)

    2016-07-15

    The aim of this study was to identify the morphological and functional characteristics of quadricuspid aortic valves (QAV) on cardiac computed tomography (CCT). We retrospectively enrolled 11 patients with QAV. All patients underwent CCT and transthoracic echocardiography (TTE), and 7 patients underwent cardiovascular magnetic resonance (CMR). The presence and classification of QAV assessed by CCT was compared with that of TTE and intraoperative findings. The regurgitant orifice area (ROA) measured by CCT was compared with severity of aortic regurgitation (AR) by TTE and the regurgitant fraction (RF) by CMR. All of the patients had AR; 9 had pure AR, 1 had combined aortic stenosis and regurgitation, and 1 had combined subaortic stenosis and regurgitation. Two patients had a subaortic fibrotic membrane and 1 of them showed a subaortic stenosis. One QAV was misdiagnosed as tricuspid aortic valve on TTE. In accordance with the Hurwitz and Robert's classification, consensus was reached on the QAV classification between the CCT and TTE findings in 7 of 10 patients. The patients were classified as type A (n = 1), type B (n = 3), type C (n = 1), type D (n = 4), and type F (n = 2) on CCT. A very high correlation existed between ROA by CCT and RF by CMR (r = 0.99) but a good correlation existed between ROA by CCT and regurgitant severity by TTE (r = 0.62). Cardiac computed tomography provides comprehensive anatomical and functional information about the QAV.

  10. Platelet function testing in cardiac surgery: A comparative study of electrical impedance aggregometry and thromboelastography.

    Science.gov (United States)

    Kirmani, Bilal H; Johnson, Robert Ian; Agarwal, Seema

    2017-09-01

    Point of care platelet function tests are increasingly used to assess drug-related platelet inhibition prior to cardiac surgery. Numerous devices are available including Thromboelastography (TEG ® PlateletMapping™). The latest generation TEG ® - the TEG ® 6 - has recently been released incorporating a cartridge-based system with a PlateletMapping cartridge. In this study, the performance of the TEG ® 6 PlateletMapping was compared to that of Multiple Electrode Aggregometry (MEA) performed with the Multiplate™. Preoperative platelet function tests were performed on 50 cardiac surgery patients. Two sets of tests were performed using arachidonic acid and ADP assessing for aspirin and ADP antagonists, respectively, assessing the MEA area under the curve (AUC) in comparison to the TEG ® maximal amplitude (MA) and percentage inhibition. For both arachidonic acid and ADP, the MEA AUC did not correlate with either the TEG ® MA or % inhibition by Pearson's correlation. The Bland-Altman plots, however, indicated that there might be good agreement between the tests with either reagents, accounting for the different scales of measurement.

  11. Preoperative Renal Functional Reserve Predicts Risk of Acute Kidney Injury After Cardiac Operation.

    Science.gov (United States)

    Husain-Syed, Faeq; Ferrari, Fiorenza; Sharma, Aashish; Danesi, Tommaso Hinna; Bezerra, Pércia; Lopez-Giacoman, Salvador; Samoni, Sara; de Cal, Massimo; Corradi, Valentina; Virzì, Grazia Maria; De Rosa, Silvia; Muciño Bermejo, María Jimena; Estremadoyro, Carla; Villa, Gianluca; Zaragoza, Jose J; Caprara, Carlotta; Brocca, Alessandra; Birk, Horst-Walter; Walmrath, Hans-Dieter; Seeger, Werner; Nalesso, Federico; Zanella, Monica; Brendolan, Alessandra; Giavarina, Davide; Salvador, Loris; Bellomo, Rinaldo; Rosner, Mitchell H; Kellum, John A; Ronco, Claudio

    2018-04-01

    Although acute kidney injury (AKI) frequently complicates cardiac operations, methods to determine AKI risk in patients without underlying kidney disease are lacking. Renal functional reserve (RFR) can be used to measure the capacity of the kidney to increase glomerular filtration rate under conditions of physiologic stress and may serve as a functional marker that assesses susceptibility to injury. We sought to determine whether preoperative RFR predicts postoperative AKI. We enrolled 110 patients with normal resting glomerular filtration rates undergoing elective cardiac operation. Preoperative RFR was measured by using a high oral protein load test. The primary end point was the ability of preoperative RFR to predict AKI within 7 days of operation. Secondary end points included the ability of a risk prediction model, including demographic and comorbidity covariates, RFR, and intraoperative variables to predict AKI, and the ability of postoperative cell cycle arrest markers at various times to predict AKI. AKI occurred in 15 patients (13.6%). Preoperative RFR was lower in patients who experienced AKI (p RFR was highly predictive of AKI. A reduced RFR appears to be a novel risk factor for AKI, and measurement of RFR preoperatively can identify patients who are likely to benefit from preventive measures or to select for use of biomarkers for early detection. Larger prospective studies to validate the use of RFR in strategies to prevent AKI are warranted. ClinicalTrials.gov identifier: NCT03092947, ISRCTN Registry: ISRCTN16109759. Copyright © 2018 The Society of Thoracic Surgeons. Published by Elsevier Inc. All rights reserved.

  12. Physiologic abnormalities of cardiac function in progressive systemic sclerosis with diffuse scleroderma

    International Nuclear Information System (INIS)

    Follansbee, W.P.; Curtiss, E.I.; Medsger, T.A. Jr.; Steen, V.D.; Uretsky, B.F.; Owens, G.R.; Rodnan, G.P.

    1984-01-01

    To investigate cardiopulmonary function in progressive systemic sclerosis with diffuse scleroderma, we studied 26 patients with maximal exercise and redistribution thallium scans, rest and exercise radionuclide ventriculography, pulmonary-function testing, and chest roentgenography. Although only 6 patients had clinical evidence of cardiac involvement, 20 had abnormal thallium scans, including 10 with reversible exercise-induced defects and 18 with fixed defects (8 had both). Seven of the 10 patients who had exercise-induced defects and underwent cardiac catheterization had normal coronary angiograms. Mean resting left ventricular ejection fraction and mean resting right ventricular ejection fraction were lower in patients with post-exercise left ventricular thallium defect scores above the median (59 +/- 13 per cent vs. 69 +/- 6 per cent, and 36 +/- 12 per cent vs. 47 +/- 7 per cent, respectively). The authors conclude that in progressive systemic sclerosis with diffuse scleroderma, abnormalities of myocardial perfusion are common and appear to be due to a disturbance of the myocardial microcirculation. Both right and left ventricular dysfunction appear to be related to this circulatory disturbance, suggesting ischemically mediated injury

  13. Evaluation of Right Ventricular Systolic Function in Chagas Disease Using Cardiac Magnetic Resonance Imaging.

    Science.gov (United States)

    Moreira, Henrique T; Volpe, Gustavo J; Marin-Neto, José A; Ambale-Venkatesh, Bharath; Nwabuo, Chike C; Trad, Henrique S; Romano, Minna M D; Pazin-Filho, Antonio; Maciel, Benedito C; Lima, João A C; Schmidt, André

    2017-03-01

    Right ventricular (RV) impairment is postulated to be responsible for prominent systemic congestion in Chagas disease. However, occurrence of primary RV dysfunction in Chagas disease remains controversial. We aimed to study RV systolic function in patients with Chagas disease using cardiac magnetic resonance. This cross-sectional study included 158 individuals with chronic Chagas disease who underwent cardiac magnetic resonance. RV systolic dysfunction was defined as reduced RV ejection fraction based on predefined cutoffs accounting for age and sex. Multivariable logistic regression was used to verify the relationship of RV systolic dysfunction with age, sex, functional class, use of medications for heart failure, atrial fibrillation, and left ventricular systolic dysfunction. Mean age was 54±13 years, 51.2% men. RV systolic dysfunction was identified in 58 (37%) individuals. Although usually associated with reduced left ventricular ejection fraction, isolated RV systolic dysfunction was found in 7 (4.4%) patients, 2 of them in early stages of Chagas disease. Presence of RV dysfunction was not significantly different in patients with indeterminate/digestive form of Chagas disease (35.7%) compared with those with Chagas cardiomyopathy (36.8%) ( P =1.000). In chronic Chagas disease, RV systolic dysfunction is more commonly associated with left ventricular systolic dysfunction, although isolated and early RV dysfunction can also be identified. © 2017 American Heart Association, Inc.

  14. Association of ADAMTS-7 Levels with Cardiac Function in a Rat Model of Acute Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Wenjing Wu

    2016-03-01

    Full Text Available Background/Aims: High ADAMTS-7 levels are associated with acute myocardial infarction (AMI, although its involvement in ventricular remodeling is unclear. In this study, we investigated the association between ADAMTS-7 expression and cardiac function in a rat AMI model. Methods: Sprague-Dawley rats were randomized into AMI (n = 40 and sham (n = 20 groups. The left anterior descending artery was sutured to model AMI. Before surgery and 7, 14, 28, and 42 days post-surgery, ADAMTS-7 and brain natriuretic peptide (BNP, and cartilage oligomeric matrix protein (COMP were assessed by ELISA, western blot, real-time RT-PCR, and/or immunohistochemistry. Cardiac functional and structural parameters were assessed by M-mode echocardiography. Results: After AMI, plasma ADAMTS-7 levels increased, peaking on day 28 (AMI: 13.2 ± 6.3 vs. sham: 3.4 ± 1.3 ng/ml, P P = 0.025, left ventricular end-diastolic diameter (r = 0.695, P = 0.041, left ventricular end-systolic diameter (r = 0.710, P = 0.039, left ventricular ejection fraction (r = 0.695, P = 0.036, and left ventricular short-axis fractional shortening (r = 0.721, P = 0.024. Conclusions: ADAMTS-7 levels may reflect the degree of ventricular remodeling after AMI.

  15. The Importance of Identifying Early Changes in Cardiac Structure and Function for the Prevention of Cognitive Impairment and Dementia.

    Science.gov (United States)

    Edwards, Jodi D

    2017-01-01

    Multiple cardiac pathologies have been shown to contribute to progressive cognitive decline and dementia in elderly populations, including left ventricular hypertrophy (LVH), a marker of prolonged exposure to hypertension. Although associations between chronic hypertension and cognitive function are thought to be mediated primarily by these end organ effects, there is increasing evidence that early changes in cardiac structure and function, such as LVH, may independently contribute to cognitive decline and impairment. In the current issue of the Journal of Alzheimer's Disease, Mahinrad and colleagues report important new findings on the association between LVH and cognitive function that are incremental to cardiovascular risk and co-morbidity, including hypertension. Emerging evidence that early changes in cardiac structure and function may independently contribute to cognitive decline in elderly populations has resulted in an increased interest in these preclinical substrates as potential treatment targets for the prevention of cognitive decline and in their putative contributions to the pathogenesis of dementia.

  16. Structural and functional cardiac adaptations to 6 months of football training in untrained hypertensive men

    DEFF Research Database (Denmark)

    Andersen, Lars Juel; Randers Thomsen, Morten Bredsgaard; Hansen, Peter Riis

    2014-01-01

    We investigated the effects of 3 and 6 months of regular football training on cardiac structure and function in hypertensive men. Thirty-one untrained males with mild-to-moderate hypertension were randomized 2:1 to a football training group (n = 20) and a control group receiving traditional...... training improves LV diastolic function in untrained men with mild-to-moderate arterial hypertension. Furthermore, it may improve longitudinal systolic function of both ventricles. The results suggest that football training has favorable effects on cardiac function in hypertensive men....... recommendations on healthy lifestyle (n = 11). Cardiac measures were evaluated by echocardiography. The football group exhibited significant (P just 3 months: Left ventricular (LV) end-diastolic volume increased from 104 ± 25 to 117 ± 29 mL. LV diastolic...

  17. Generation and cardiac subtype-specific differentiation of PITX2-deficient human iPS cell lines for exploring familial atrial fibrillation

    Directory of Open Access Journals (Sweden)

    Maike Marczenke

    2017-05-01

    Full Text Available Loss-of-function mutations in the PITX2 transcription factor gene have been shown to cause familial atrial fibrillation (AF. To potentially model aspects of AF and unravel PITX2-regulated downstream genes for drug target discovery, we here report the generation of integration-free PITX2-deficient hiPS cell lines. We also show that both PITX2 knockout hiPS cells and isogenic wild-type controls can selectively be differentiated into human atrial cardiomyocytes, to potentially uncover differentially expressed gene sets between these groups.

  18. Generation and cardiac subtype-specific differentiation of PITX2-deficient human iPS cell lines for exploring familial atrial fibrillation.

    Science.gov (United States)

    Marczenke, Maike; Fell, Jakob; Piccini, Ilaria; Röpke, Albrecht; Seebohm, Guiscard; Greber, Boris

    2017-05-01

    Loss-of-function mutations in the PITX2 transcription factor gene have been shown to cause familial atrial fibrillation (AF). To potentially model aspects of AF and unravel PITX2-regulated downstream genes for drug target discovery, we here report the generation of integration-free PITX2-deficient hiPS cell lines. We also show that both PITX2 knockout hiPS cells and isogenic wild-type controls can selectively be differentiated into human atrial cardiomyocytes, to potentially uncover differentially expressed gene sets between these groups. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. New aspects of HERG K⁺ channel function depending upon cardiac spatial heterogeneity.

    Directory of Open Access Journals (Sweden)

    Pen Zhang

    Full Text Available HERG K(+ channel, the genetic counterpart of rapid delayed rectifier K(+ current in cardiac cells, is responsible for many cases of inherited and drug-induced long QT syndromes. HERG has unusual biophysical properties distinct from those of other K(+ channels. While the conventional pulse protocols in patch-clamp studies have helped us elucidate these properties, their limitations in assessing HERG function have also been progressively noticed. We employed AP-clamp techniques using physiological action potential waveforms recorded from various regions of canine heart to study HERG function in HEK293 cells and identified several novel aspects of HERG function. We showed that under AP-clamp IHERG increased gradually with membrane repolarization, peaked at potentials around 20-30 mV more negative than revealed by pulse protocols and at action potential duration (APD to 60%-70% full repolarization, and fell rapidly at the terminal phase of repolarization. We found that the rising phase of IHERG was conferred by removal of inactivation and the decaying phase resulted from a fall in driving force, which were all determined by the rate of membrane repolarization. We identified regional heterogeneity and transmural gradient of IHERG when quantified with the area covered by IHERG trace. In addition, we observed regional and transmural differences of IHERG in response to dofetilide blockade. Finally, we characterized the influence of HERG function by selective inhibition of other ion currents. Based on our results, we conclude that the distinct biophysical properties of HERG reported by AP-clamp confer its unique function in cardiac repolarization thereby in antiarrhythmia and arrhythmogenesis.

  20. Report of the substudy assessing the impact of neurocognitive function on quality of life 5 years after cardiac surgery.

    Science.gov (United States)

    Newman, M F; Grocott, H P; Mathew, J P; White, W D; Landolfo, K; Reves, J G; Laskowitz, D T; Mark, D B; Blumenthal, J A

    2001-12-01

    The importance of perioperative cognitive decline has long been debated. We recently demonstrated a significant correlation between perioperative cognitive decline and long-term cognitive dysfunction. Despite this association, some still question the importance of these changes in cognitive function to the quality of life of patients and their families. The purpose of our investigation was to determine the association between cognitive dysfunction and long-term quality of life after cardiac surgery. After institutional review board approval and patient informed consent, 261 patients undergoing cardiac surgery with cardiopulmonary bypass were enrolled and followed for 5 years. Cognitive function was measured with a battery of tests at baseline, discharge, and 6 weeks and 5 years postoperatively. Quality of life was assessed with well-validated, standardized assessments at the 5-year end point. Our results demonstrate significant correlations between cognitive function and quality of life in patients after cardiac surgery. Lower 5-year overall cognitive function scores were associated with lower general health and a less productive working status. Multivariable logistic and linear regression controlling for age, sex, education, and diabetes confirmed this strong association in the majority of areas of quality of life. Five years after cardiac surgery, there is a strong relationship between neurocognitive functioning and quality of life. This has important social and financial implications for preoperative evaluation and postoperative care of patients undergoing cardiac surgery.

  1. Preserved otolith organ function in caspase-3-deficient mice with impaired horizontal semicircular canal function.

    Science.gov (United States)

    Armstrong, Patrick A; Wood, Scott J; Shimizu, Naoki; Kuster, Kael; Perachio, Adrian; Makishima, Tomoko

    2015-06-01

    Genetically engineered mice are valuable models for elucidation of auditory and vestibular pathology. Our goal was to establish a comprehensive vestibular function testing system in mice using: (1) horizontal angular vestibulo-ocular reflex (hVOR) to evaluate semicircular canal function and (2) otolith-ocular reflex (OOR) to evaluate otolith organ function and to validate the system by characterizing mice with vestibular dysfunction. We used pseudo off-vertical axis rotation to induce an otolith-only stimulus using a custom-made centrifuge. For the OOR, horizontal slow-phase eye velocity and vertical eye position were evaluated as a function of acceleration. Using this system, we characterized hVOR and OOR in the caspase-3 (Casp3) mutant mice. Casp3 (-/-) mice had severely impaired hVOR gain, while Casp3 (+/-) mice had an intermediate response compared to WT mice. Evaluation of OOR revealed that at low-to-mid frequencies and stimulus intensity, Casp3 mutants and WT mice had similar responses. At higher frequencies and stimulus intensity, the Casp3 mutants displayed mildly reduced otolith organ-related responses. These findings suggest that the Casp3 gene is important for the proper function of the semicircular canals but less important for the otolith organ function.

  2. Preserved otolith organ function in caspase-3 deficient mice with impaired horizontal semicircular canal function

    Science.gov (United States)

    Armstrong, Patrick A; Wood, Scott J; Shimizu, Naoki; Kuster, Kael; Perachio, Adrian; Makishima, Tomoko

    2015-01-01

    Genetically engineered mice are valuable models for elucidation of auditory and vestibular pathology. Our goal was to establish a comprehensive vestibular function testing system in mice using: 1) horizontal angular vestibular-ocular reflex (hVOR) to evaluate semicircular canal function, and 2) otolith-ocular reflex (OOR) to evaluate otolith organ function, and to validate the system by characterizing mice with vestibular dysfunction. We used pseudo-off vertical axis rotation (pOVAR) to induce an otolith-only stimulus using a custom-made centrifuge. For the OOR, horizontal slow phase eye velocity (HEV) and vertical eye position (VEP) was evaluated as a function of acceleration. Using this system, we characterized hVOR and OOR in the caspase-3 (Casp3) mutant mice. Casp3 −/− mice had severely impaired hVOR gain, while Casp3 +/− mice had an intermediate response compared to WT mice. Evaluation of OOR revealed that at low to mid frequencies and stimulus intensity, Casp3 mutants and WT mice had similar responses. At higher frequencies and stimulus intensity, the Casp3 mutants displayed mildly reduced otolith organ related responses. These findings suggest that the Casp3 gene is important for the proper function of the semicircular canals but less important for the otolith organ function. PMID:25827332

  3. Heme oxygenase-1 induction improves cardiac function following myocardial ischemia by reducing oxidative stress.

    Directory of Open Access Journals (Sweden)

    Yossi Issan

    Full Text Available Oxidative stress plays a key role in exacerbating diabetes and cardiovascular disease. Heme oxygenase-1 (HO-1, a stress response protein, is cytoprotective, but its role in post myocardial infarction (MI and diabetes is not fully characterized. We aimed to investigate the protection and the mechanisms of HO-1 induction in cardiomyocytes subjected to hypoxia and in diabetic mice subjected to LAD ligation.In vitro: cultured cardiomyocytes were treated with cobalt-protoporphyrin (CoPP and tin protoporphyrin (SnPP prior to hypoxic stress. In vivo: CoPP treated streptozotocin-induced diabetic mice were subjected to LAD ligation for 2/24 h. Cardiac function, histology, biochemical damage markers and signaling pathways were measured.HO-1 induction lowered release of lactate dehydrogenase (LDH and creatine phospho kinase (CK, decreased propidium iodide staining, improved cell morphology and preserved mitochondrial membrane potential in cardiomyocytes. In diabetic mice, Fractional Shortening (FS was lower than non-diabetic mice (35±1%vs.41±2, respectively p<0.05. CoPP-treated diabetic animals improved cardiac function (43±2% p<0.01, reduced CK, Troponin T levels and infarct size compared to non-treated diabetic mice (P<0.01, P<0.001, P<0.01 respectively. CoPP-enhanced HO-1 protein levels and reduced oxidative stress in diabetic animals, as indicated by the decrease in superoxide levels in cardiac tissues and plasma TNFα levels (p<0.05. The increased levels of HO-1 by CoPP treatment after LAD ligation led to a shift of the Bcl-2/bax ratio towards the antiapoptotic process (p<0.05. CoPP significantly increased the expression levels of pAKT and pGSK3β (p<0.05 in cardiomyocytes and in diabetic mice with MI. SnPP abolished CoPP's cardioprotective effects.HO-1 induction plays a role in cardioprotection against hypoxic damage in cardiomyocytes and in reducing post ischemic cardiac damage in the diabetic heart as proved by the increased levels of pAKT with

  4. Effects of Noise Exposure on the Auditory Function of Ovariectomized Rats with Estrogen Deficiency.

    Science.gov (United States)

    Hu, Xujun; Wang, Ying; Lau, Chi Chuen

    2016-12-01

    The benefits of estrogen for the auditory function of women depend on a number of factors. In this study, we aimed to examine the impact of noise trauma on the auditory function of ovariectomized rats with estrogen deficiency. Twenty-eight young, female Sprague-Dawley rats were assigned to three groups (OVX+N, OVX-N, Sham+N). Rats in the OVX+N group and the OVX-N group underwent bilateral ovariectomy (OVX); the OVX+N group alone was also exposed to white noise (N) of 115 dB SPL for 8 hours a day over 14 days. The Sham+N group consisted of rats with intact ovaries that were exposed to the same noise. The auditory function of all rats was measured before treatment and after noise exposure by the signal-to-noise ratio (SNR) of distortion-product otoacoustic emissions (DPOAE) and the threshold of auditory-evoked brainstem response (ABR). The Sham+N group (intact ovaries, noise-exposed) had worse auditory function than the OVX-N group (ovariectomy, no noise). The OVX+N group had decreased SNRs of DPOAE and increased ABR thresholds relative to the Sham+N group. Noise exposure may cause greater damage to auditory function when estrogen levels are low in females.

  5. Impact of type 2 diabetes and duration of type 2 diabetes on cardiac structure and function

    DEFF Research Database (Denmark)

    Jørgensen, Peter G; Jensen, Magnus T; Mogelvang, Rasmus

    2016-01-01

    BACKGROUND: Contemporary treatment of type 2 diabetes (T2D) has improved patient outcome and may also have affected myocardial structure and function. We aimed to describe the effect of T2D and T2D duration on cardiac structure and function in a large outpatient population. METHODS: We performed...... diameter and the changes were pronounced with increasing diabetes duration (Pprevalence of diastolic dysfunction (16.5% vs. 4.0%; P....5-65.1) vs. 62.1 (57.9-65.4), P=0.28). With the exception of global longitudinal strain, this was pronounced with increasing diabetes duration for all measures including increasing diastolic dysfunction (20years: 24.8%; P

  6. [Progress in research on function and mechanism of cardiac vascular system of taurine].

    Science.gov (United States)

    Hua, Hao-ming; Ito, Takashi; Qiu, Zhi-gang; Azuma, Junichi

    2005-05-01

    The function for cardiac vascular system of taurine is extensive, and the mechanism is complicated. Taurine protects the cells from the cell injury caused by ischemia etc. Through repressing apoptosis, prevents endothelial dysfunction caused by hyperglycemia, hypercholesterolemia, smoking and homocysteine; suppresses the proliferation and calcification in vascular smooth muscle cells, promotes metabolization and excretion of cholesterol in the animal models of hyperlipemia, and confers the resistance to an oxidant, hypochlorous acid, produced by neutrophil on cells, and taurine chrolamine to inhibit activation of NF-kappaB, which might be associated with anti-atherosclerotic effect. Taurine mainly acts inside the cell. However, taurine transport system becomes aberrant in pathological myocardial and vascular tissue. In addition, taurine improves cardiovascular function in fructose-induced hypertension and an iron-overload murine animal models.

  7. Sonic hedgehog-modified human CD34+ cells preserve cardiac function after acute myocardial infarction.

    Science.gov (United States)

    Mackie, Alexander R; Klyachko, Ekaterina; Thorne, Tina; Schultz, Kathryn M; Millay, Meredith; Ito, Aiko; Kamide, Christine E; Liu, Ting; Gupta, Rajesh; Sahoo, Susmita; Misener, Sol; Kishore, Raj; Losordo, Douglas W

    2012-07-20

    Ischemic cardiovascular disease represents one of the largest epidemics currently facing the aging population. Current literature has illustrated the efficacy of autologous, stem cell therapies as novel strategies for treating these disorders. The CD34+ hematopoetic stem cell has shown significant promise in addressing myocardial ischemia by promoting angiogenesis that helps preserve the functionality of ischemic myocardium. Unfortunately, both viability and angiogenic quality of autologous CD34+ cells decline with advanced age and diminished cardiovascular health. To offset age- and health-related angiogenic declines in CD34+ cells, we explored whether the therapeutic efficacy of human CD34+ cells could be enhanced by augmenting their secretion of the known angiogenic factor, sonic hedgehog (Shh). When injected into the border zone of mice after acute myocardial infarction, Shh-modified CD34+ cells (CD34(Shh)) protected against ventricular dilation and cardiac functional declines associated with acute myocardial infarction. Treatment with CD34(Shh) also reduced infarct size and increased border zone capillary density compared with unmodified CD34 cells or cells transfected with the empty vector. CD34(Shh) primarily store and secrete Shh protein in exosomes and this storage process appears to be cell-type specific. In vitro analysis of exosomes derived from CD34(Shh) revealed that (1) exosomes transfer Shh protein to other cell types, and (2) exosomal transfer of functional Shh elicits induction of the canonical Shh signaling pathway in recipient cells. Exosome-mediated delivery of Shh to ischemic myocardium represents a major mechanism explaining the observed preservation of cardiac function in mice treated with CD34(Shh) cells.

  8. Effect of Cardiac Rehabilitation on Blood Pressure and Functional Capacity in Patients after Myocardial Infarction

    Directory of Open Access Journals (Sweden)

    Mandana Parvand

    2016-04-01

    Full Text Available Background: Before the year 1950 treatment of myocardial Infarction patients was complete bed rest for several weeks and reduces physical activity for several months. Cardiac rehabilitation based on exercise training reduces the effects of deconditioning of bed rest. The primary purpose of this study was to determine the methods and means of prevention and treatment of coronary artery disease.Materials and Methods: This study was designed clinical trial and cross sectional study before and after intervention, the effect of our new protocol was assessed according to method of Bruce stress test. Measurement consisted of Blood Pressure and Functional Capacity, which were recorded and compared before and after intervention.Results: There was a significant increase in functional capacity according to method of Bruce stress test after ten session of training. The criterion deviation at functional capacity variable was 13.19±2.242 METS and 24.42±6.00 METS before and after 10 sessions. Respectively, this obtained METS (body oxygen survey at rest state equal to 3/5 milliliter oxygen to each kg person weight at minute rise amount from secondary posttest to primary test (P<0.05. There was also a significant decrease in systolic blood pressure after ten session of training. The criterion deviation and average was 121.5±8.83 and 112.00±9.18 for systolic blood pressure. This decline amounts has a meaningful variable amount given P value <0.05.Conclusion: Cardiac rehabilitation can increase the performance of blood circulation and uptake of oxygen in body. These changes showed a significant increase in functional capacity it can also reduce resistance of blood circulation and showed a significant decrease in systolic blood pressure.

  9. Adaptive servo-ventilation therapy improves cardiac sympathetic nerve activity, cardiac function, exercise capacity, and symptom in patients with chronic heart failure and Cheyne-Stokes respiration.

    Science.gov (United States)

    Toyama, Takuji; Hoshizaki, Hiroshi; Kasama, Shu; Miyaishi, Yusuke; Kan, Hakuken; Yamashita, Eiji; Kawaguti, Ren; Adachi, Hitoshi; Ohsima, Shigeru

    2017-12-01

    Adaptive servo-ventilation (ASV) therapy has been reported to be effective for improving central sleep apnea (CSA) and chronic heart failure (CHF). The purpose of this study was to clarify whether ASV is effective for CSA, cardiac sympathetic nerve activity (CSNA), cardiac symptoms/function, and exercise capacity in CHF patients with CSA and Cheyne-Stokes respiration (CSR-CSA). In this study, 31 CHF patients with CSR-CSA and a left ventricular ejection fraction (LVEF) ≤ 40% were randomized into an ASV group and a conservative therapy (non-ASV) group for 6 month. Nuclear imagings with 123 I-Metaiodobenzylguanidine (MIBG) and 99m Tc-Sestamibi were performed. Exercise capacity using a specific activity scale (SAS) and the New York Heart Association (NYHA) class were evaluated. CSNA was evaluated by 123 I-MIBG imaging, with the delayed heart/mediastinum activity ratio (H/M), delayed total defect score (TDS), and washout rate (WR). The ASV group had significantly better (P improvement of CSR-CSA, CSNA, cardiac symptoms/function, and exercise capacity in CHF patients with CSR-CSA.

  10. Genome-wide screens for in vivo Tinman binding sites identify cardiac enhancers with diverse functional architectures.

    Directory of Open Access Journals (Sweden)

    Hong Jin

    Full Text Available The NK homeodomain factor Tinman is a crucial regulator of early mesoderm patterning and, together with the GATA factor Pannier and the Dorsocross T-box factors, serves as one of the key cardiogenic factors during specification and differentiation of heart cells. Although the basic framework of regulatory interactions driving heart development has been worked out, only about a dozen genes involved in heart development have been designated as direct Tinman target genes to date, and detailed information about the functional architectures of their cardiac enhancers is lacking. We have used immunoprecipitation of chromatin (ChIP from embryos at two different stages of early cardiogenesis to obtain a global overview of the sequences bound by Tinman in vivo and their linked genes. Our data from the analysis of ~50 sequences with high Tinman occupancy show that the majority of such sequences act as enhancers in various mesodermal tissues in which Tinman is active. All of the dorsal mesodermal and cardiac enhancers, but not some of the others, require tinman function. The cardiac enhancers feature diverse arrangements of binding motifs for Tinman, Pannier, and Dorsocross. By employing these cardiac and non-cardiac enhancers in machine learning approaches, we identify a novel motif, termed CEE, as a classifier for cardiac enhancers. In vivo assays for the requirement of the binding motifs of Tinman, Pannier, and Dorsocross, as well as the CEE motifs in a set of cardiac enhancers, show that the Tinman sites are essential in all but one of the tested enhancers; although on occasion they can be functionally redundant with Dorsocross sites. The enhancers differ widely with respect to their requirement for Pannier, Dorsocross, and CEE sites, which we ascribe to their different position in the regulatory circuitry, their distinct temporal and spatial activities during cardiogenesis, and functional redundancies among different factor binding sites.

  11. TRPA1 mediates changes in heart rate variability and cardiac mechanical function in mice exposed to acrolein

    International Nuclear Information System (INIS)

    Kurhanewicz, Nicole; McIntosh-Kastrinsky, Rachel; Tong, Haiyan; Ledbetter, Allen; Walsh, Leon; Farraj, Aimen; Hazari, Mehdi

    2017-01-01

    Short-term exposure to ambient air pollution is linked with adverse cardiovascular effects. While previous research focused primarily on particulate matter-induced responses, gaseous air pollutants also contribute to cause short-term cardiovascular effects. Mechanisms underlying such effects have not been adequately described, however the immediate nature of the response suggests involvement of irritant neural activation and downstream autonomic dysfunction. Thus, this study examines the role of TRPA1, an irritant sensory receptor found in the airways, in the cardiac response of mice to acrolein and ozone. Conscious unrestrained wild-type C57BL/6 (WT) and TRPA1 knockout (KO) mice implanted with radiotelemeters were exposed once to 3 ppm acrolein, 0.3 ppm ozone, or filtered air. Heart rate (HR) and electrocardiogram (ECG) were recorded continuously before, during and after exposure. Analysis of ECG morphology, incidence of arrhythmia and heart rate variability (HRV) were performed. Cardiac mechanical function was assessed using a Langendorff perfusion preparation 24 h post-exposure. Acrolein exposure increased HRV independent of HR, as well as incidence of arrhythmia. Acrolein also increased left ventricular developed pressure in WT mice at 24 h post-exposure. Ozone did not produce any changes in cardiac function. Neither gas produced ECG effects, changes in HRV, arrhythmogenesis, or mechanical function in KO mice. These data demonstrate that a single exposure to acrolein causes cardiac dysfunction through TRPA1 activation and autonomic imbalance characterized by a shift toward parasympathetic modulation. Furthermore, it is clear from the lack of ozone effects that although gaseous irritants are capable of eliciting immediate cardiac changes, gas concentration and properties play important roles. - Highlights: • Acute acrolein exposure causes autonomic imbalance and altered CV function in mice. • TRPA1 mediates acrolein-induced autonomic nervous system cardiac

  12. Liraglutide improves cardiac function in patients with type 2 diabetes and chronic heart failure.

    Science.gov (United States)

    Arturi, F; Succurro, E; Miceli, S; Cloro, C; Ruffo, M; Maio, R; Perticone, M; Sesti, G; Perticone, F

    2017-09-01

    To compare the effect of liraglutide, sitagliptin and insulin glargine added to standard therapy on left ventricular function in post-ischemic type-2 diabetes mellitus patients. We evaluated 32 type-2 diabetes mellitus Caucasians with history of post-ischemic chronic heart failure NYHA class II/III and/or left ventricular ejection fraction ≤45 %. Participants underwent laboratory determinations, electrocardiogram, echocardiogram, Minnesota Living with Heart Failure questionnaire and 6 min walking test at baseline and following 52 weeks treatment. Patients were treated with standard therapy for chronic heart failure and were randomized to receive liraglutide, sitagliptin and glargine in addition to metformin and/or sulfonylurea. Liraglutide treatment induced an improvement in left ventricular ejection fraction from 41.5 ± 2.2 to 46.3 ± 3 %; P = 0.001). On the contrary, treatment with sitagliptin and glargine induced no changes in left ventricular ejection fraction (41.8 ± 2.6 vs. 42.5 ± 2.5 % and 42 ± 1.5 vs. 42 ± 1.6 %, respectively; P = NS). Indexed end-systolic LV volume was reduced only in liraglutide-treated patients (51 ± 9 vs. 43 ± 8 ml/m 2 ; P < 0.05). Liraglutide treatment induced also a significant increase in the anterograde stroke volume (39 ± 9 vs. 49 ± 11 ml; P < 0.05), whereas no differences were observed in the other two groups. Cardiac output and cardiac index showed a significant increase only in liraglutide-treated patients (4.4 ± 0.5 vs. 5.0 ± 0.6 L/min; P < 0.05 and 1.23 ± 0.26 vs. 1.62 ± 0.29 L/m 2 ; P = 0.005, respectively). Liraglutide treatment was also associated with an improvement of functional capacity and an improvement of quality of life. These data provide evidence that treatment with liraglutide is associated with improvement of cardiac function and functional capacity in failing post-ischemic type-2 diabetes mellitus

  13. A novel urotensin II receptor antagonist, KR-36996, improved cardiac function and attenuated cardiac hypertrophy in experimental heart failure.

    Science.gov (United States)

    Oh, Kwang-Seok; Lee, Jeong Hyun; Yi, Kyu Yang; Lim, Chae Jo; Park, Byung Kil; Seo, Ho Won; Lee, Byung Ho

    2017-03-15

    Urotensin II and its receptor are thought to be involved in various cardiovascular diseases such as heart failure, pulmonary hypertension and atherosclerosis. Since the regulation of the urotensin II/urotensin II receptor offers a great potential for therapeutic strategies related to the treatment of cardiovascular diseases, the study of selective and potent antagonists for urotensin II receptor is more fascinating. This study was designed to determine the potential therapeutic effects of a newly developed novel urotensin II receptor antagonist, N-(1-(3-bromo-4-(piperidin-4-yloxy)benzyl)piperidin-4-yl)benzo[b]thiophene-3-carboxamide (KR-36996), in experimental models of heart failure. KR-36996 displayed a high binding affinity (Ki=4.44±0.67nM) and selectivity for urotensin II receptor. In cell-based study, KR-36996 significantly inhibited urotensin II-induced stress fiber formation and cellular hypertrophy in H9c2 UT cells. In transverse aortic constriction-induced cardiac hypertrophy model in mice, the daily oral administration of KR-36996 (30mg/kg) for 14 days significantly decreased left ventricular weight by 40% (Pheart failure model in rats, repeated echocardiography and hemodynamic measurements demonstrated remarkable improvement of the cardiac performance by KR-36996 treatment (25 and 50mg/kg/day, p.o.) for 12 weeks. Moreover, KR-36996 decreased interstitial fibrosis and cardiomyocyte hypertrophy in the infarct border zone. These results suggest that potent and selective urotensin II receptor antagonist could efficiently attenuate both cardiac hypertrophy and dysfunction in experimental heart failure. KR-36996 may be useful as an effective urotensin II receptor antagonist for pharmaceutical or clinical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Cardiac resynchronization therapy and AV optimization increase myocardial oxygen consumption, but increase cardiac function more than proportionally☆

    Science.gov (United States)

    Kyriacou, Andreas; Pabari, Punam A.; Mayet, Jamil; Peters, Nicholas S.; Davies, D. Wyn; Lim, P. Boon; Lefroy, David; Hughes, Alun D.; Kanagaratnam, Prapa; Francis, Darrel P.; I.Whinnett, Zachary

    2014-01-01

    Background The mechanoenergetic effects of atrioventricular delay optimization during biventricular pacing (“cardiac resynchronization therapy”, CRT) are unknown. Methods Eleven patients with heart failure and left bundle branch block (LBBB) underwent invasive measurements of left ventricular (LV) developed pressure, aortic flow velocity-time-integral (VTI) and myocardial oxygen consumption (MVO2) at 4 pacing states: biventricular pacing (with VV 0 ms) at AVD 40 ms (AV-40), AVD 120 ms (AV-120, a common nominal AV delay), at their pre-identified individualised haemodynamic optimum (AV-Opt); and intrinsic conduction (LBBB). Results AV-120, relative to LBBB, increased LV developed pressure by a mean of 11(SEM 2)%, p = 0.001, and aortic VTI by 11(SEM 3)%, p = 0.002, but also increased MVO2 by 11(SEM 5)%, p = 0.04. AV-Opt further increased LV developed pressure by a mean of 2(SEM 1)%, p = 0.035 and aortic VTI by 4(SEM 1)%, p = 0.017. MVO2 trended further up by 7(SEM 5)%, p = 0.22. Mechanoenergetics at AV-40 were no different from LBBB. The 4 states lay on a straight line for Δexternal work (ΔLV developed pressure × Δaortic VTI) against ΔMVO2, with slope 1.80, significantly > 1 (p = 0.02). Conclusions Biventricular pacing and atrioventricular delay optimization increased external cardiac work done but also myocardial oxygen consumption. Nevertheless, the increase in cardiac work was ~ 80% greater than the increase in oxygen consumption, signifying an improvement in cardiac mechanoenergetics. Finally, the incremental effect of optimization on external work was approximately one-third beyond that of nominal AV pacing, along the same favourable efficiency trajectory, suggesting that AV delay dominates the biventricular pacing effect — which may therefore not be mainly “resynchronization”. PMID:24332598

  15. Effectiveness of nocturnal home oxygen therapy to improve exercise capacity, cardiac function and cardiac sympathetic nerve activity in patients with chronic heart failure and central sleep apnea

    International Nuclear Information System (INIS)

    Toyama, Takuji; Seki, Ryotaro; Isobe, Naoki; Sakurai, Shigeki; Adachi, Hitoshi; Hoshizaki, Hiroshi; Oshima, Shigeru; Taniguchi, Koichi; Kasama, Shu

    2009-01-01

    Central sleep apnea, often found in patients with chronic heart failure (CHF), has a high risk of poor prognosis. This study involved 20 patients with CHF (left ventricular ejection fraction (LVEF) 5 times/h who were divided into 2 groups: 10 patients treated with nocturnal home oxygen therapy (HOT) and 10 patients without HOT (non-HOT). All patients had dilated cardiomyopathy and underwent overnight polysomnography, cardiopulmonary exercise testing, and nuclear cardiac examinations to evaluate AHI, exercise capacity according to the specific activity scale and oxygen uptake at anaerobic threshold and peak exercise (peak VO 2 ). Cardiac function according to 99m Tc-methoxyisobutylisonitrile (MIBI) QGS, and the total defect score (TDS), H/M ratio and the washout rate (WR) on 123 I-metaiodobenzylguanidine (MIBG) imaging were calculated for all patients. As compared with the non-HOT group, the HOT group demonstrated a greater reduction in AHI (26.1±9.1 to 5.1±3.4), 123 I-MIBG TDS (31±8 to 25±9), and 123 I-MIBG WR (48±8% to 41±5%) and a greater increase in the specific activity scale (4.0±0.9 to 5.8±1.2 Mets), peak VO 2 (16.0±3.8 to 18.3±4.7 ml·min -1 ·kg -1 ), and LVEF (27±9% to 37±10%). HOT improves exercise capacity, cardiac function, and cardiac sympathetic nerve activity in patients with CHF and central sleep apnea. (author)

  16. Functional property of the cardiac valve prosthesis evaluated in vivo by cine-radiography

    International Nuclear Information System (INIS)

    Murakoshi, Sadaaki

    1986-01-01

    Functional property of the convexo-concave Bjoerk-Shiley cardiac valve prosthesis implanted in the mitral position of 21 patients was investigated by integrated cine-radiography repeated for a long term after operation. The maximum opening angle of the tilting disc was 58 ± 2 deg, and was not affected by atrial fibrillation nor by tachycardia up to 160 bpm. There was no change in the maximum opening angle of the disc observed during follow-up period. Good correlation between shortning of the disc opening time and increase in pulse rate suggests excellent adaptation of this prosthesis for tachycardia induced by exercise or electric pacing. However, atrial fibrillation causes time delay in disc closure immediately after prolonged R-R interval. Disc rotation alleviating disc wear was observed in all the patients whether it moves slow or quick. Dysfunction of the disc opening can be readily determined not only by measuring the maximum disc opening angle, but also by observing the characteristic movement indicated in this study. It is concluded from these results that clinical apprication for the convexo-concave Bjoerk-Shiley valve prosthesis is appropriate and cine-radiography is an useful non-invasive examination of cardiac valve prosthesis for long follow-up period. (author)

  17. The effect of gravitational acceleration on cardiac diastolic function: a biofluid mechanical perspective with initial results.

    Science.gov (United States)

    Pantalos, George M; Bennett, Thomas E; Sharp, M Keith; Woodruff, Stewart J; O'Leary, Sean D; Gillars, Kevin J; Schurfranz, Thomas; Everett, Scott D; Lemon, Mark; Schwartz, John

    2005-08-01

    Echocardiographic measurements of astronaut cardiac function have documented an initial increase, followed by a progressive reduction in both left ventricular end-diastolic volume index and stroke volume with entry into microgravity (micro-G). The investigators hypothesize that the observed reduction in cardiac filling may, in part, be due to the absence of a gravitational acceleration dependent, intraventricular hydrostatic pressure difference in micro-G that exists in the ventricle in normal gravity (1-G) due to its size and anatomic orientation. This acceleration-dependent pressure difference, DeltaP(LV), between the base and the apex of the heart for the upright posture can be estimated to be 6660 dynes/cm(2) ( approximately 5 mm Hg) on Earth. DeltaP(LV) promotes cardiac diastolic filling on Earth, but is absent in micro-G. If the proposed hypothesis is correct, cardiac pumping performance would be diminished in micro-G. To test this hypothesis, ventricular function experiments were conducted in the 1-G environment using an artificial ventricle pumping on a mock circulation system with the longitudinal axis anatomically oriented for the upright posture at 45 degrees to the horizon. Additional measurements were made with the ventricle horizontally oriented to null DeltaP(LV)along the apex-base axis of the heart as would be the case for the supine posture, but resulting in a lesser hydrostatic pressure difference along the minor (anterior-posterior) axis. Comparative experiments were also conducted in the micro-G environment of orbital space flight on board the Space Shuttle. This paper reviews the use of an automated cardiovascular simulator flown on STS-85 and STS-95 as a Get Away Special payload to test this hypothesis. The simulator consisted of a pneumatically actuated, artificial ventricle connected to a closed-loop, fluid circuit with adjustable compliance and resistance elements to create physiologic pressure and flow conditions. Ventricular

  18. Characterization of an investigative safety pharmacology model to assess comprehensive cardiac function and structure in chronically instrumented conscious beagle dogs.

    Science.gov (United States)

    Regan, Christopher P; Stump, Gary L; Detwiler, Theodore J; Chen, Li; Regan, Hillary K; Gilberto, David B; DeGeorge, Joseph J; Sannajust, Frederick J

    2016-01-01

    There has been an increasing need to conduct investigative safety pharmacology studies to complement regulatory-required studies, particularly as it applies to a comprehensive assessment of cardiovascular (CV) risk. We describe refined methodology using a combination of telemetry and direct signal acquisition to record concomitant peripheral hemodynamics, ECG, and left ventricular (LV) structure (LV chamber size and LV wall thickness) and function, including LV pressure-volume (PV) loops to determine load independent measures of contractility (end systolic elastance, Ees, and preload recruitable stroke work, PRSW) in conscious beagle dogs. Following baseline characterization, 28days of chronic rapid ventricular pacing (RVP) was performed and cardiac function monitored: both as a way to compare measures during development of dysfunction and to characterize feasibility of a model to assess CV safety in animals with underlying cardiac dysfunction. While ±dP/dT decreased within a few days of RVP and remained stable, more comprehensive cardiac function measurements, including Ees and PRSW, provided a more sensitive assessment confirming the value of such endpoints for a more clear functional assessment. After 28days of RVP, the inodilator pimobendan was administered to further demonstrate the ability to detect changes in cardiac function. Expectedly pimobendan caused a leftward shift in the PV loop, improved ejection fraction (EF) and significantly improved Ees and PRSW. In summary, the data show the feasibility and importance in measuring enhanced cardiac functional parameters in conscious normal beagle dogs and further describe a relatively stable cardiac dysfunction model that could be used as an investigative safety pharmacology risk assessment tool. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Early sepsis does not stimulate reactive oxygen species production and does not reduce cardiac function despite an increased inflammation status.

    Science.gov (United States)

    Léger, Thibault; Charrier, Alice; Moreau, Clarisse; Hininger-Favier, Isabelle; Mourmoura, Evangelia; Rigaudière, Jean-Paul; Pitois, Elodie; Bouvier, Damien; Sapin, Vincent; Pereira, Bruno; Azarnoush, Kasra; Demaison, Luc

    2017-07-01

    If it is sustained for several days, sepsis can trigger severe abnormalities of cardiac function which leads to death in 50% of cases. This probably occurs through activation of toll-like receptor-9 by bacterial lipopolysaccharides and overproduction of proinflammatory cytokines such as TNF- α and IL-1 β In contrast, early sepsis is characterized by the development of tachycardia. This study aimed at determining the early changes in the cardiac function during sepsis and at finding the mechanism responsible for the observed changes. Sixty male Wistar rats were randomly assigned to two groups, the first one being made septic by cecal ligation and puncture (sepsis group) and the second one being subjected to the same surgery without cecal ligation and puncture (sham-operated group). The cardiac function was assessed in vivo and ex vivo in standard conditions. Several parameters involved in the oxidative stress and inflammation were determined in the plasma and heart. As evidenced by the plasma level of TNF- α and gene expression of IL-1 β and TNF- α in the heart, inflammation was developed in the sepsis group. The cardiac function was also slightly stimulated by sepsis in the in vivo and ex vivo situations. This was associated with unchanged levels of oxidative stress, but several parameters indicated a lower cardiac production of reactive oxygen species in the septic group. In conclusion, despite the development of inflammation, early sepsis did not increase reactive oxygen species production and did not reduce myocardial function. The depressant effect of TNF- α and IL-1 β on the cardiac function is known to occur at very high concentrations. The influence of low- to moderate-grade inflammation on the myocardial mechanical behavior must thus be revisited. © 2017 French National Institute of Agronomical Research (INRA). Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society.

  20. Sustained delivery of VEGF from designer self-assembling peptides improves cardiac function after myocardial infarction

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hai-dong [Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Cui, Guo-hong; Yang, Jia-jun [Department of Neurology, Shanghai No. 6 People' s Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200233 (China); Wang, Cun [Institutes of Biomedical Sciences, Fudan University, Shanghai 200032 (China); Zhu, Jing; Zhang, Li-sheng; Jiang, Jun [Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China); Shao, Shui-jin, E-mail: shaoshuijin@163.com [Department of Anatomy, School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203 (China)

    2012-07-20

    Highlights: Black-Right-Pointing-Pointer The designer peptide LRKKLGKA could self-assemble into nanofibers. Black-Right-Pointing-Pointer Injection of LRKKLGKA peptides could promote the sustained delivery of VEGF. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides lead to sufficient angiogenesis. Black-Right-Pointing-Pointer Injection of VEGF with LRKKLGKA peptides improves heart function. -- Abstract: Poor vascularization and insufficient oxygen supply are detrimental to the survival of residual cardiomyocytes or transplanted stem cells after myocardial infarction. To prolong and slow the release of angiogenic factors, which stimulate both angiogenesis and vasculogenesis, we constructed a novel self-assembling peptide by attaching the heparin-binding domain sequence LRKKLGKA to the self-assembling peptide RADA16. This designer self-assembling peptide self-assembled into nanofiber scaffolds under physiological conditions, as observed by atomic force microscopy. The injection of designer self-assembling peptides can efficiently provide the sustained delivery of VEGF for at least 1 month. At 4 weeks after transplantation, cardiac function was improved, and scar size and collagen deposition were markedly reduced in the group receiving VEGF with the LRKKLGKA scaffolds compared with groups receiving VEGF alone, LRKKLGKA scaffolds alone or VEGF with RADA16 scaffolds. The microvessel density in the VEGF with LRKKLGKA group was higher than that in the VEGF with RADA16 group. TUNEL and cleaved caspase-3 expression assays showed that the transplantation of VEGF with LRKKLGKA enhanced cell survival in the infarcted heart. These results present the tailor-made peptide scaffolds as a new generation of sustained-release biomimetic biomaterials and suggest that the use of angiogenic factors along with designer self-assembling peptides can lead to myocardial protection, sufficient angiogenesis, and improvement in cardiac function.

  1. Assessment of Myocardial Function and Injury by Echocardiography and Cardiac Biomarkers in African Children With Severe Plasmodium falciparum Malaria.

    Science.gov (United States)

    Kotlyar, Simon; Olupot-Olupot, Peter; Nteziyaremye, Julius; Akech, Samuel O; Uyoga, Sophie; Muhindo, Rita; Moore, Christopher L; Maitland, Kathryn

    2018-03-01

    Perturbed hemodynamic function complicates severe malaria. The Fluid Expansion as Supportive Therapy trial demonstrated that fluid resuscitation, involving children with severe malaria, was associated with increased mortality, primarily due to cardiovascular collapse, suggesting that myocardial dysfunction may have a role. The aim of this study was to characterize cardiac function in children with severe malaria. A prospective observational study with clinical, laboratory, and echocardiographic data collected at presentation (T0) and 24 hours (T1) in children with severe malaria. Cardiac index and ejection fraction were calculated at T0 and T1. Cardiac troponin I and brain natriuretic peptide were measured at T0. We compared clinical and echocardiographic variables in children with and without severe malarial anemia (hemoglobin 0.1 ng/mL) in n equals to 50, (48%), and median brain natriuretic peptide was within normal range (69.1 pg/mL; interquartile range, 48.4-90.8). At T0, median Cardiac index was significantly higher in the severe malarial anemia versus nonsevere malarial anemia group (6.89 vs 5.28 L/min/m) (p = 0.001), which normalized in both groups at T1 (5.60 vs 5.13 L/min/m) (p = 0.452). Cardiac index negatively correlated with hemoglobin, r equals to -0.380 (p 96%) of children with severe malaria have preserved myocardial systolic function. Although there is evidence for myocardial injury (elevated cardiac troponin I), this does not correlate with cardiac dysfunction.

  2. Utility of Walk Tests in Evaluating Functional Status Among Participants in an Outpatient Cardiac Rehabilitation Program.

    Science.gov (United States)

    Harris, Kristie M; Anderson, Derek R; Landers, Jacob D; Emery, Charles F

    2017-09-01

    Although walk tests are frequently used in cardiac rehabilitation (CR), no prior study has evaluated the capacity of these measures to predict peak oxygen uptake during exercise testing ((Equation is included in full-text article.)O2peak). This study evaluated the interrelationship of objective measures of exercise performance (walk and exercise testing) among patients entering CR as well as a novel measure of functional status assessment for use in CR. Forty-nine patients (33 males) referred to an outpatient CR program were evaluated with objective measures of ambulatory functional status (peak oxygen uptake [(Equation is included in full-text article.)O2peak], 6-minute walk test [6MWT], and 60-ft walk test [60ftWT]). All measures of functional status were moderately to highly intercorrelated (r values from 0.50 to 0.88; P values text article.)O2peak and other measures. Measures of functional status, including (Equation is included in full-text article.)O2peak, 6MWT, and 60ftWT, were highly correlated among CR patients, suggesting the plausibility of using them interchangeably to fit the needs of the patient and testing environment. Among women, walk tests may not be appropriate substitutes for (Equation is included in full-text article.)O2peak. Because of the brevity of the 60ftWT, it may be particularly useful for measuring functional status in patients with greater symptoms and those with comorbidities limiting walking.

  3. Right ventricular function in patients with heart failure in a cardiac clinic in Southwest Nigeria

    Science.gov (United States)

    Akintunde, Adeseye A.

    2017-01-01

    Background: Right ventricular (RV) function is an important entity in heart failure. Patients with RV dysfunction (RVD) have poorer prognosis and exercise tolerance than those with preserved RV systolic function. Tricuspid annular plane systolic excursion (TAPSE) has been proposed as a simple and reproducible parameter for the qualitative assessment of RV systolic function/ejection fraction (EF). This study aims at describing RV function/RVD among heart failure patients in a specialized cardiac facility in Southwestern Nigeria. Materials and Methods: One hundred and thirty-two patients with clinical diagnosis of heart failure were recruited into the study between June 2011 and December 2014. Baseline data, laboratory investigations, electrocardiography, and echocardiography were taken for the participants. RV function was assessed with TAPSE. Statistical analysis was done using Statistical Package for Social Sciences 16.0 (Chicago Ill. USA). P heart failure and possibly worse prognosis among Nigerians with heart failure. Screening for RVD is encouraged to identify and aggressively treat to reduce the associated increased mortality. PMID:29238122

  4. Resting cardiac function in adolescent non-suicidal self-injury: The impact of borderline personality disorder symptoms and psychosocial functioning.

    Science.gov (United States)

    Koenig, Julian; Rinnewitz, Lena; Parzer, Peter; Resch, Franz; Thayer, Julian F; Kaess, Michael

    2017-02-01

    Vagally mediated heart rate variability (vmHRV) is reduced in borderline personality disorder (BPD). Non-suicidal self-injury (NSSI) is associated with comorbid psychopathology, in particular BPD. We aimed to examine differences in cardiac function (vmHRV and heart rate [HR]) comparing adolescents (12-17 years) engaging in NSSI (n=30) and healthy controls (n=30). Further, we aimed to determine clinical concomitants of cardiac function in patients with NSSI. Analyses showed no significant group differences on cardiac function. Controlling for a host of confounding variables resting state HR and vmHRV in adolescents with NSSI were significantly correlated with BPD symptoms and the current level of functioning. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  5. Brain Structure and Function Associated with Younger Adults in Growth Hormone Receptor-Deficient Humans.

    Science.gov (United States)

    Nashiro, Kaoru; Guevara-Aguirre, Jaime; Braskie, Meredith N; Hafzalla, George W; Velasco, Rico; Balasubramanian, Priya; Wei, Min; Thompson, Paul M; Mather, Mara; Nelson, Marvin D; Guevara, Alexandra; Teran, Enrique; Longo, Valter D

    2017-02-15

    Growth hormone receptor deficiency (GHRD) results in short stature, enhanced insulin sensitivity, and low circulating levels of insulin and insulin-like growth factor 1 (IGF-1). Previous studies in mice and humans suggested that GHRD has protective effects against age-related diseases, including cancer and diabetes. Whereas GHRD mice show improved age-dependent cognitive performance, the effect of GHRD on human cognition remains unknown. Using MRI, we compared brain structure, function, and connectivity between 13 people with GHRD and 12 unaffected relatives. We assessed differences in white matter microstructural integrity, hippocampal volume, subregional volumes, and cortical thickness and surface area of selected regions. We also evaluated brain activity at rest and during a hippocampal-dependent pattern separation task. The GHRD group had larger surface areas in several frontal and cingulate regions and showed trends toward larger dentate gyrus and CA1 regions of the hippocampus. They had lower mean diffusivity in the genu of the corpus callosum and the anterior thalamic tracts. The GHRD group showed enhanced cognitive performance and greater task-related activation in frontal, parietal, and hippocampal regions compared with controls. Furthermore, they had greater functional synchronicity of activity between the precuneus and the rest of the default mode network at rest. The results suggest that, compared with controls, GHRD subjects have brain structure and function that are more consistent with those observed in younger adults reported in previous studies. Further investigation may lead to improved understanding of underlying mechanisms and could contribute to the identification of treatments for age-related cognitive deficits. SIGNIFICANCE STATEMENT People and mice with growth hormone receptor deficiency (GHRD or Laron syndrome) are protected against age-related diseases including cancer and diabetes. However, in humans, it is unknown whether cognitive

  6. Deficiencia de zinc y sus implicaciones funcionales Zinc deficiency and its functional implications

    Directory of Open Access Journals (Sweden)

    JORGE L ROSADO

    1998-03-01

    closely associated to protein synthesis, among other functions. It is therefore related to functional and health impairments, specially in children. A marginal deficiency of zinc in Mexican children is relevant because of its potential effects. Studies suggest that marginal zinc deficiency is associated to diets based on plant foods wich are rich in zinc absorption inhibitors. Such diets are habitually consumed in rural areas and in poors areas of the cities. Marginal zinc deficiency was found to cause an increase in infectious diseases, specially diarrhea, and an impairment of the cognitive functions.

  7. Aging Impairs Myocardial Fatty Acid and Ketone Oxidation and Modifies Cardiac Functional and Metabolic Responses to Insulin in Mice

    Energy Technology Data Exchange (ETDEWEB)

    Hyyti, Outi M.; Ledee, Dolena; Ning, Xue-Han; Ge, Ming; Portman, Michael A.

    2010-07-02

    Aging presumably initiates shifts in substrate oxidation mediated in part by changes in insulin sensitivity. Similar shifts occur with cardiac hypertrophy and may contribute to contractile dysfunction. We tested the hypothesis that aging modifies substrate utilization and alters insulin sensitivity in mouse heart when provided multiple substrates. In vivo cardiac function was measured with microtipped pressure transducers in the left ventricle from control (4–6 mo) and aged (22–24 mo) mice. Cardiac function was also measured in isolated working hearts along with substrate and anaplerotic fractional contributions to the citric acid cycle (CAC) by using perfusate containing 13C-labeled free fatty acids (FFA), acetoacetate, lactate, and unlabeled glucose. Stroke volume and cardiac output were diminished in aged mice in vivo, but pressure development was preserved. Systolic and diastolic functions were maintained in aged isolated hearts. Insulin prompted an increase in systolic function in aged hearts, resulting in an increase in cardiac efficiency. FFA and ketone flux were present but were markedly impaired in aged hearts. These changes in myocardial substrate utilization corresponded to alterations in circulating lipids, thyroid hormone, and reductions in protein expression for peroxisome proliferator-activated receptor (PPAR)α and pyruvate dehydrogenase kinase (PDK)4. Insulin further suppressed FFA oxidation in the aged. Insulin stimulation of anaplerosis in control hearts was absent in the aged. The aged heart shows metabolic plasticity by accessing multiple substrates to maintain function. However, fatty acid oxidation capacity is limited. Impaired insulin-stimulated anaplerosis may contribute to elevated cardiac efficiency, but may also limit response to acute stress through depletion of CAC intermediates.

  8. [Effects of water deficiency on mitochondrial functions and polymorphism of respiratory enzymes in plants].

    Science.gov (United States)

    Rakhmankulova, Z F; Shuĭskaia, E V; Rogozhnikova, E S

    2013-01-01

    In plants, adaptive-compensatory responses to stress always entail additional energy expenditure. A suggestion was brought forward that in plants growing under conditions of water stress there is a relationship between genetic variability of respiratory enzymes and their functional significance. With Kochia prostrate (L.) Schrad. as a case study, intraspecies genetic polymorphism under the conditions of drought has been analyzed using typical protein markers which, considering their functional importance, can be viewed as respiratory enzymes. Out of eight protein markers examined, four enzymes were singled out for which dominating combination of genotypes Dia B (a), G6pd (a), Gdh (c), and Mdh A (a) was incidental. In all populations from arid and semiarid zone, these genotypes frequency of occurrence was in the range of 0.53-1.0, i.e., it comprised more than 50% of the whole variety of combinations. Thus, it seems plausible that this combination of genotypes can be an "adaptive collection" for K. prostrata populations growing in arid habitats. A characteristic feature of the picked out enzymes is their belonging to NAD(P)(+)-depending oxidoreductases that play a key role in functioning and redox-regulation of respiratory metabolism in course of adapting to water deficiency. It is suggested that the presence of such well-balanced co-adaptive genotype combinations, that provide enzymes important in terms of energetics, determine the formation of energetic and redox-balances during the process of adaptation to water stress.

  9. The impact of therapeutic hypothermia on neurological function and quality of life after cardiac arrest

    DEFF Research Database (Denmark)

    Bro-Jeppesen, John; Kjaergaard, Jesper; Horsted, Tina I

    2008-01-01

    AIMS: To assess the impact of therapeutic hypothermia on cognitive function and quality of life in comatose survivors of out of Hospital Cardiac arrest (OHCA). METHODS: We prospectively studied comatose survivors of OHCA consecutively admitted in a 4-year period. Therapeutic hypothermia...... was implemented in the last 2-year period, intervention period (n=79), and this group was compared to patients admitted the 2 previous years, control period (n=77). We assessed Cerebral Performance Category (CPC), survival, Mini Mental State Examination (MMSE) and self-rated quality of life (SF-36) 6 months after...... OHCA in the subgroup with VF/VT as initial rhythm. RESULTS: CPC in patients alive at hospital discharge was significantly better in the intervention period with a CPC of 1-2 in 97% vs. 71% in the control period, p=0.003, corresponding to an adjusted odds ratio of a favourable cerebral outcome of 17, p...

  10. Soccer training improves cardiac function in men with type 2 diabetes

    DEFF Research Database (Denmark)

    Schmidt, Jakob Friis; Rostgaard Andersen, Thomas; Horton, Joshua

    2013-01-01

    training can counteract the early signs of diabetic heart disease. PURPOSE: To evaluate the effects of soccer training on cardiac function, exercise capacity and blood pressure in middle-aged men with T2DM. METHODS: Twenty-one men aged 49.8±1.7 yrs with T2DM and no history of cardiovascular disease......INTRODUCTION: Patients with type 2 diabetes (T2DM) have an increased risk of cardiovascular disease which is worsened by physical inactivity. Subclinical myocardial dysfunction is associated with increased risk of heart failure and impaired prognosis in T2DM; however, it is not clear if exercise......, participated in a soccer training group (STG; n=12) that trained one h twice a week or a control group (CG; n=9) with no change in lifestyle. Examinations included comprehensive transthoracic echocardiography, measurements of blood pressure, maximal oxygen consumption (VO2max) and intermittent endurance...

  11. A Cell-Enriched Engineered Myocardial Graft Limits Infarct Size and Improves Cardiac Function

    Directory of Open Access Journals (Sweden)

    Isaac Perea-Gil, MS

    2016-08-01

    Full Text Available Myocardial infarction (MI remains a dreadful disease around the world, causing irreversible sequelae that shorten life expectancy and reduce quality of life despite current treatment. Here, the authors engineered a cell-enriched myocardial graft, composed of a decellularized myocardial matrix refilled with adipose tissue-derived progenitor cells (EMG-ATDPC. Once applied over the infarcted area in the swine MI model, the EMG-ATDPC improved cardiac function, reduced infarct size, attenuated fibrosis progression, and promoted neovascularization of the ischemic myocardium. The beneficial effects exerted by the EMG-ATDPC and the absence of identified adverse side effects should facilitate its clinical translation as a novel MI therapy in humans.

  12. Hypoxia inducible factor-1 improves the negative functional effects of natriuretic peptide and nitric oxide signaling in hypertrophic cardiac myocytes.

    Science.gov (United States)

    Tan, Tao; Scholz, Peter M; Weiss, Harvey R

    2010-07-03

    Both natriuretic peptides and nitric oxide may be protective in cardiac hypertrophy, although their functional effects are diminished in hypertrophy. Hypoxia inducible factor-1 (HIF-1) may also protect in cardiac hypertrophy. We hypothesized that upregulation of HIF-1 would protect the functional effects of cyclic GMP (cGMP) signaling in hypertrophied ventricular myocytes. A cardiac hypertrophy model was created in mice by transverse aorta constriction. HIF-1 was increased by deferoxamine (150 mg/kg for 2 days). HIF-1alpha protein levels were examined. Functional parameters were measured (edge detector) on freshly isolated myocytes at baseline and after BNP (brain natriuretic peptide, 10(-8)-10(-7)M) or CNP (C-type natriuretic peptide, 10(-8)-10(-7)M) or SNAP (S-nitroso-N-acetyl-penicillamine, a nitric oxide donor, 10(-6)-10(-5)M) followed by KT5823 (a cyclic GMP-dependent protein kinase (PKG) inhibitor, 10(-6)M). We also determined PKG expression levels and kinase activity. We found that under control conditions, BNP (-24%), CNP (-22%) and SNAP (-23%) reduced myocyte shortening, while KT5823 partially restored function. Deferoxamine treated control myocytes responded similarly. Baseline function was reduced in the myocytes from hypertrophied heart. BNP, CNP, SNAP and KT5823 also had no significant effects on function in these myocytes. Deferoxamine restored the negative functional effects of BNP (-22%), CNP (-18%) and SNAP (-19%) in hypertrophic cardiac myocytes and KT5823 partially reversed this effect. Additionally, deferoxamine maintained PKG expression levels and activity in hypertrophied heart. Our results indicated that the HIF-1 protected the functional effects of cGMP signaling in cardiac hypertrophy through preservation of PKG. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  13. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    International Nuclear Information System (INIS)

    Haddad, Rami; Kasneci, Amanda; Mepham, Kathryn; Sebag, Igal A.

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  14. Multipotent human stromal cells improve cardiac function after myocardial infarction in mice without long-term engraftment

    International Nuclear Information System (INIS)

    Iso, Yoshitaka; Spees, Jeffrey L.; Serrano, Claudia; Bakondi, Benjamin; Pochampally, Radhika; Song, Yao-Hua; Sobel, Burton E.; Delafontaine, Patrick; Prockop, Darwin J.

    2007-01-01

    The aim of this study was to determine whether intravenously administered multipotent stromal cells from human bone marrow (hMSCs) can improve cardiac function after myocardial infarction (MI) without long-term engraftment and therefore whether transitory paracrine effects or secreted factors are responsible for the benefit conferred. hMSCs were injected systemically into immunodeficient mice with acute MI. Cardiac function and fibrosis after MI in the hMSC-treated group were significantly improved compared with controls. However, despite the cardiac improvement, there was no evident hMSC engraftment in the heart 3 weeks after MI. Microarray assays and ELISAs demonstrated that multiple protective factors were expressed and secreted from the hMSCs in culture. Factors secreted by hMSCs prevented cell death of cultured cardiomyocytes and endothelial cells under conditions that mimicked tissue ischemia. The favorable effects of hMSCs appear to reflect the impact of secreted factors rather than engraftment, differentiation, or cell fusion

  15. Changes in cardiac structure and function among elite judoists resulting from long-term judo practice.

    Science.gov (United States)

    Laskowski, R; Wysocki, K; Multan, A; Haga, S

    2008-09-01

    The aim of this study was to investigate the character of changes in cardiac structure and function among elite judoists due to long-term judo practice. A group of male (N = 20, average age: 22.1) and female (N = 15, average age: 19.4) athletes practising judo for about 10 years was subjected to echocardiographic tests carried out during rest (aorta diameter [AoD], diastolic dimension of the left ventricle [Dd], thickness of the interventricular septum [IVST], the thickness of the posterior wall of the left ventricle [LVPWT]), and to measurement of cardiovascular system's action parameters (heart rate [HR], stroke volume [SV], cardiac output [Q], blood pressure [BP]). Moreover, control non trained subjects were also studied, women (N = 30, average age: 19.1) and men (N = 30, average age: 21.4). In order to determine aerobic efficiency, the authors measured the maximal oxygen uptake (VO2max) using the direct method. The anaerobic capacity was estimated on the basis of the maximal anaerobic power, and the volume of the performed work was calculated by means of the 30s Wingate test. Echocardiographic test values imply that changes in heart morphology induced by long term judo training, such as increase diastolic dimension of the left ventricle, thickness of the interventricular septum and left ventricular posterior wall, resemble more the changes observed in endurance athletes than changes observed in strength athletes. The obtained data indicated that judo training improves both aerobic and anerobic performance and these changes were associated with changes in heart structure and function as compared to non trained control.

  16. American Heart Association's Life's Simple 7: Avoiding Heart Failure and Preserving Cardiac Structure and Function.

    Science.gov (United States)

    Folsom, Aaron R; Shah, Amil M; Lutsey, Pamela L; Roetker, Nicholas S; Alonso, Alvaro; Avery, Christy L; Miedema, Michael D; Konety, Suma; Chang, Patricia P; Solomon, Scott D

    2015-09-01

    Many people may underappreciate the role of lifestyle in avoiding heart failure. We estimated whether greater adherence in middle age to American Heart Association's Life's Simple 7 guidelines—on smoking, body mass, physical activity, diet, cholesterol, blood pressure, and glucose—is associated with lower lifetime risk of heart failure and greater preservation of cardiac structure and function in old age. We studied the population-based Atherosclerosis Risk in Communities Study cohort of 13,462 adults ages 45-64 years in 1987-1989. From the 1987-1989 risk factor measurements, we created a Life's Simple 7 score (range 0-14, giving 2 points for ideal, 1 point for intermediate, and 0 points for poor components). We identified 2218 incident heart failure events using surveillance of hospital discharge and death codes through 2011. In addition, in 4855 participants free of clinical cardiovascular disease in 2011-2013, we performed echocardiography from which we quantified left ventricular hypertrophy and diastolic dysfunction. One in four participants (25.5%) developed heart failure through age 85 years. Yet, this lifetime heart failure risk was 14.4% for those with a middle-age Life's Simple 7 score of 10-14 (optimal), 26.8% for a score of 5-9 (average), and 48.6% for a score of 0-4 (inadequate). Among those with no clinical cardiovascular event, the prevalence of left ventricular hypertrophy in late life was approximately 40% as common, and diastolic dysfunction was approximately 60% as common, among those with an optimal middle-age Life's Simple 7 score, compared with an inadequate score. Greater achievement of American Heart Association's Life's Simple 7 in middle age is associated with a lower lifetime occurrence of heart failure and greater preservation of cardiac structure and function. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction

    Energy Technology Data Exchange (ETDEWEB)

    Muthu, Priya; Wang, Li; Yuan, Chen-Ching; Kazmierczak, Katarzyna; Huang, Wenrui; Hernandez, Olga M.; Kawai, Masataka; Irving, Thomas C.; Szczesna-Cordary, Danuta (IIT); (Iowa); (Miami-MED)

    2012-04-02

    The myosin essential light chain (ELC) is a structural component of the actomyosin cross-bridge, but its function is poorly understood, especially the role of the cardiac specific N-terminal extension in modulating actomyosin interaction. Here, we generated transgenic (Tg) mice expressing the A57G (alanine to glycine) mutation in the cardiac ELC known to cause familial hypertrophic cardiomyopathy (FHC). The function of the ELC N-terminal extension was investigated with the Tg-{Delta}43 mouse model, whose myocardium expresses a truncated ELC. Low-angle X-ray diffraction studies on papillary muscle fibers in rigor revealed a decreased interfilament spacing ({approx} 1.5 nm) and no alterations in cross-bridge mass distribution in Tg-A57G mice compared to Tg-WT, expressing the full-length nonmutated ELC. The truncation mutation showed a 1.3-fold increase in I{sub 1,1}/I{sub 1,0}, indicating a shift of cross-bridge mass from the thick filament backbone toward the thin filaments. Mechanical studies demonstrated increased stiffness in Tg-A57G muscle fibers compared to Tg-WT or Tg-{Delta}43. The equilibrium constant for the cross-bridge force generation step was smallest in Tg-{Delta}43. These results support an important role for the N-terminal ELC extension in prepositioning the cross-bridge for optimal force production. Subtle changes in the ELC sequence were sufficient to alter cross-bridge properties and lead to pathological phenotypes.

  18. Cardiac Function After Multimodal Breast Cancer Therapy Assessed With Functional Magnetic Resonance Imaging and Echocardiography Imaging

    Energy Technology Data Exchange (ETDEWEB)

    Heggemann, Felix, E-mail: felix.heggemann@umm.de [First Medical Department, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); German Center for Cardiovascular Research, Mannheim (Germany); Grotz, Hanna; Welzel, Grit [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Dösch, Christina [First Medical Department, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); German Center for Cardiovascular Research, Mannheim (Germany); Hansmann, Jan [Institute of Diagnostic Radiology and Nuclear Medicine, University Medical Center Mannheim University of Heidelberg, Mannheim (Germany); Kraus-Tiefenbacher, Uta [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Attenberger, Ulrike; Schönberg, Stephan Oswald [German Center for Cardiovascular Research, Mannheim (Germany); Institute of Diagnostic Radiology and Nuclear Medicine, University Medical Center Mannheim University of Heidelberg, Mannheim (Germany); Borggrefe, Martin [First Medical Department, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); German Center for Cardiovascular Research, Mannheim (Germany); Wenz, Frederik [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); Papavassiliu, Theano [First Medical Department, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany); German Center for Cardiovascular Research, Mannheim (Germany); Lohr, Frank [Department of Radiation Oncology, University Medical Center Mannheim, University of Heidelberg, Mannheim (Germany)

    2015-11-15

    Purpose: Breast intensity modulated radiation therapy (IMRT) reduces high-dose heart volumes but increases low-dose volumes. We prospectively assessed heart changes after 3D conformal RT (3DCRT) and IMRT for left-sided breast cancer. Heart dose was analyzed individually, 3DCRT patients were moderately exposed, and IMRT was performed only in patients with unacceptably high heart doses upon 3DCRT planning. Methods and Materials: In 49 patients (38 patients received 3DCRT; 11 patients received IMRT; and 20 patients received neoadjuvant or adjuvant chemotherapy) magnetic resonance imaging (MRI) and echocardiography were performed before and at 6, 12, and 24 months after treatment. Results: Mean heart dose for IMRT was 12.9 ± 3.9 Gy versus 4.5 ± 2.4 Gy for 3DCRT. Heart volumes receiving >40 Gy were 2.6% (3DCRT) versus 1.3% (IMRT); doses were >50 Gy only with 3DCRT. Temporary ejection fraction (EF) decrease was observed on MRI after 6 months (63%-59%, P=.005) resolving at 24 months. Only 3 patients had pronounced largely transient changes of EF and left ventricular enddiastolic diameter (LVEDD). Mitral (M) and tricuspid (T) annular plane systolic excursion (MAPSE and TAPSE) were reduced over the whole cohort (still within normal range). After 24 months left ventricular remodeling index decreased in patients receiving chemotherapy (0.80 vs 0.70, P=.028). Neither wall motion abnormalities nor late enhancements were found. On echocardiography, in addition to EF findings that were similar to those on MRI, global strain was unchanged over the whole cohort at 24 months after a transient decrease at 6 and 12 months. Longitudinal strain decreased in the whole cohort after 24 months in some segments, whereas it increased in others. Conclusions: Until 24 months after risk-adapted modern multimodal adjuvant therapy, only subclinical cardiac changes were observed in both 3DCRT patients with inclusion of small to moderate amounts of heart volume in RT tangents and

  19. Persistence of normal cardiac function and myocardial perfusion in irradiated long-term survivors of Hodgkin's disease

    International Nuclear Information System (INIS)

    Constine, L.S.; Schwartz, R.G.; Savage, D.E.; King, V.; Muhs, A.; Rubin, P.

    1996-01-01

    Purpose: The risk of myocardial infarction and cardiac dysfunction following mantle irradiation (RT) for Hodgkin's disease is controversial. The relative risk of fatal myocardial infarction is 2.8 in our Hodgkin's patients, similar to other reports. Sensitive evaluations of cardiac function and myocardial perfusion might be expected to reveal pre-clinical abnormalities of potential significance. We hypothesized the presence of pre-clinical cardiac toxicity and progressive deterioration of left ventricular performance and myocardial ischemia over time in long-term survivors of Hodgkin's disease. The data reported herein extend our previous study in patient number (n=50) and follow-up duration (mean 16.5 years). Materials and Methods: Equilibrium radionuclide angiocardiography (ERNA) was used to quantify left ventricular (LV) systolic and diastolic function with LV ejection fraction (LVEF) and peak filling rate (PFR), respectively. Quantitative myocardial perfusion scintigraphy (MPS) and ECG stress testing with exercise or dipyridamole were used to assess myocardial perfusion and electrical function. Patients at least 1.0 year after RT were eligible if ≤ 50 years old at RT and without known Hodgkin's or cardiac disease. Fifty patients, ages 10-46 years (mean 26.0) at RT, were tested 1.1 to 29.1 years (mean 9.1) after RT. Seventeen patients were tested 2 - 3 times separated by 0.5 - 6.5 years (mean 3.3). The mean central cardiac RT dose was 35.1 Gy (range 18.5 - 47.5) in daily 1.5-2.0 Gy fractions. Twelve patients were additionally irradiated to the left ventricle (LVRT), usually through partial transmission left lung shields (range 14.3-21.3 Gy). Results: No patient had symptomatic cardiac disease at the time of evaluation. The mean LVEF (first test, n = 50) was 60 ± 6% (range 42-73%) [normal ≥ 50%], and PFR (first test, n=44) was 3.43 ± 0.83 end diastolic volume per second (range 1.5-5.2 EDV/sec) [normal ≥ 2.54 EDV/sec] with 2 and 7 patients below normal

  20. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    Science.gov (United States)

    Carreira, Vinicius S; Fan, Yunxia; Kurita, Hisaka; Wang, Qin; Ko, Chia-I; Naticchioni, Mindi; Jiang, Min; Koch, Sheryl; Zhang, Xiang; Biesiada, Jacek; Medvedovic, Mario; Xia, Ying; Rubinstein, Jack; Puga, Alvaro

    2015-01-01

    The Developmental Origins of Health and Disease (DOHaD) Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR), either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD), a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease.

  1. Disruption of Ah Receptor Signaling during Mouse Development Leads to Abnormal Cardiac Structure and Function in the Adult.

    Directory of Open Access Journals (Sweden)

    Vinicius S Carreira

    Full Text Available The Developmental Origins of Health and Disease (DOHaD Theory proposes that the environment encountered during fetal life and infancy permanently shapes tissue physiology and homeostasis such that damage resulting from maternal stress, poor nutrition or exposure to environmental agents may be at the heart of adult onset disease. Interference with endogenous developmental functions of the aryl hydrocarbon receptor (AHR, either by gene ablation or by exposure in utero to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD, a potent AHR ligand, causes structural, molecular and functional cardiac abnormalities and altered heart physiology in mouse embryos. To test if embryonic effects progress into an adult phenotype, we investigated whether Ahr ablation or TCDD exposure in utero resulted in cardiac abnormalities in adult mice long after removal of the agent. Ten-months old adult Ahr-/- and in utero TCDD-exposed Ahr+/+ mice showed sexually dimorphic abnormal cardiovascular phenotypes characterized by echocardiographic findings of hypertrophy, ventricular dilation and increased heart weight, resting heart rate and systolic and mean blood pressure, and decreased exercise tolerance. Underlying these effects, genes in signaling networks related to cardiac hypertrophy and mitochondrial function were differentially expressed. Cardiac dysfunction in mouse embryos resulting from AHR signaling disruption seems to progress into abnormal cardiac structure and function that predispose adults to cardiac disease, but while embryonic dysfunction is equally robust in males and females, the adult abnormalities are more prevalent in females, with the highest severity in Ahr-/- females. The findings reported here underscore the conclusion that AHR signaling in the developing heart is one potential target of environmental factors associated with cardiovascular disease.

  2. Feasibility of functional cardiac MR imaging in mice using a clinical 3 Tesla whole body scanner.

    Science.gov (United States)

    Bunck, Alexander C; Engelen, Markus A; Schnackenburg, Bernhard; Furkert, Juliane; Bremer, Christoph; Heindel, Walter; Stypmann, Jörg; Maintz, David

    2009-12-01

    To test the feasibility of cardiac MR imaging in mice using a clinical 3 Tesla whole body MR system for structural and functional analysis. Standard protocols for bright blood cine imaging were adapted for murine dimensions. To validate measurements of functional parameters the MR data were compared with high-resolution echocardiographic measurements. Cardiac imaging was carried out in CD 1 wild-type mice (n = 8). MR imaging studies were performed using a clinical 3 Tesla MR system (Achieva, Philips). All mice received 2 MR scans and 1 echocardiographic evaluation. For optimal MR signal detection a dedicated solenoid receive-only coil was used. Electrocardiogram signal was recorded using a dedicated small animal electrocardiogram monitoring unit. For imaging we used a retrospectively triggered TFE sequence with a repetition time of 12 ms and an echo time of 4 ms. A dedicated software patch allowed for triggering of cardiac frequency of up to 600 BPM. Doppler-echocardiography was performed using a VisualSonics Vevo 770 high-resolution imaging system with a 30 MHz scanhead. Axial/lateral resolution was 40 of 100 microm and temporal resolution was 150 to 300 frames/s (B-mode) and 1000 frames/s (M-mode) depending on the setting. MR imaging was successfully carried out in all mice with a sufficient temporal resolution and good signal-to-noise ratio and contrast-to-noise ratio levels allowing for identification of all relevant structures. Accordingly, there was a good scan-rescan reproducibility of MR measurements: Interassay coefficients of variance ranged from 4% for ejection fraction to 12% for endsystolic volume (ESV). Magnetic resonance imaging and echocardiography gave comparable results when using the same geometric model (Teichholz method): EDV: 60.2 +/- 6.1 microL/59.1 +/- 12.3 microL, ESV: 20.0 +/- 2.6 microL/20.7 +/- 7.7 microL, EF: 66.7% +/- 4.0%/65.2% +/- 9.9%, CO 19.5 +/- 3.6 mL/17.9 +/- 2.9 mL. Bland-Altman analysis gave acceptable limits of agreement

  3. Rhoh deficiency reduces peripheral T-cell function and attenuates allogenic transplant rejection

    DEFF Research Database (Denmark)

    Porubsky, Stefan; Wang, Shijun; Kiss, Eva

    2011-01-01

    Rhoh is a hematopoietic system-specific GTPase. Rhoh-deficient T cells have been shown to have a defect in TCR signaling manifested during their thymic development. Our aims were to investigate the phenotype of peripheral Rhoh-deficient T cells and to explore in vivo the potential benefit of Rhoh...... deficiency in a clinically relevant situation, in which T-cell inhibition is desirable. In murine allogenic kidney transplantation, Rhoh deficiency caused a significant 75% reduction of acute and chronic transplant rejection accompanied by 75% lower alloantigen-specific antibody levels and significantly...

  4. Plasminogen deficiency causes reduced corticospinal axonal plasticity and functional recovery after stroke in mice.

    Directory of Open Access Journals (Sweden)

    Zhongwu Liu

    Full Text Available Tissue plasminogen activator (tPA has been implicated in neurite outgrowth and neurological recovery post stroke. tPA converts the zymogen plasminogen (Plg into plasmin. In this study, using plasminogen knockout (Plg-/- mice and their Plg-native littermates (Plg+/+, we investigated the role of Plg in axonal remodeling and neurological recovery after stroke. Plg+/+ and Plg-/- mice (n = 10/group were subjected to permanent intraluminal monofilament middle cerebral artery occlusion (MCAo. A foot-fault test and a single pellet reaching test were performed prior to and on day 3 after stroke, and weekly thereafter to monitor functional deficit and recovery. Biotinylated dextran amine (BDA was injected into the left motor cortex to anterogradely label the corticospinal tract (CST. Animals were euthanized 4 weeks after stroke. Neurite outgrowth was also measured in primary cultured cortical neurons harvested from Plg+/+ and Plg-/- embryos. In Plg+/+ mice, the motor functional deficiency after stroke progressively recovered with time. In contrast, recovery in Plg-/- mice was significantly impaired compared to Plg+/+ mice (p0.82, p<0.01. Plg-/- neurons exhibited significantly reduced neurite outgrowth. Our data suggest that plasminogen-dependent proteolysis has a beneficial effect during neurological recovery after stroke, at least in part, by promoting axonal remodeling in the denervated spinal cord.

  5. Deficient dopamine D2 receptor function causes renal inflammation independently of high blood pressure.

    Directory of Open Access Journals (Sweden)

    Yanrong Zhang

    Full Text Available Renal dopamine receptors participate in the regulation of blood pressure. Genetic factors, including polymorphisms of the dopamine D(2 receptor gene (DRD2 are associated with essential hypertension, but the mechanisms of their contribution are incompletely understood. Mice lacking Drd2 (D(2-/- have elevated blood pressure, increased renal expression of inflammatory factors, and renal injury. We tested the hypothesis that decreased dopamine D(2 receptor (D(2R function increases vulnerability to renal inflammation independently of blood pressure, is an immediate cause of renal injury, and contributes to the subsequent development of hypertension. In D(2-/- mice, treatment with apocynin normalized blood pressure and decreased oxidative stress, but did not affect the expression of inflammatory factors. In mouse RPTCs Drd2 silencing increased the expression of TNFα and MCP-1, while treatment with a D(2R agonist abolished the angiotensin II-induced increase in TNF-α and MCP-1. In uni-nephrectomized wild-type mice, selective Drd2 silencing by subcapsular infusion of Drd2 siRNA into the remaining kidney produced the same increase in renal cytokines/chemokines that occurs after Drd2 deletion, increased the expression of markers of renal injury, and increased blood pressure. Moreover, in mice with two intact kidneys, short-term Drd2 silencing in one kidney, leaving the other kidney undisturbed, induced inflammatory factors and markers of renal injury in the treated kidney without increasing blood pressure. Our results demonstrate that the impact of decreased D(2R function on renal inflammation is a primary effect, not necessarily associated with enhanced oxidant activity, or blood pressure; renal damage is the cause, not the result, of hypertension. Deficient renal D(2R function may be of clinical relevance since common polymorphisms of the human DRD2 gene result in decreased D(2R expression and function.

  6. Deficient dopamine D2 receptor function causes renal inflammation independently of high blood pressure.

    Science.gov (United States)

    Zhang, Yanrong; Cuevas, Santiago; Asico, Laureano D; Escano, Crisanto; Yang, Yu; Pascua, Annabelle M; Wang, Xiaoyan; Jones, John E; Grandy, David; Eisner, Gilbert; Jose, Pedro A; Armando, Ines

    2012-01-01

    Renal dopamine receptors participate in the regulation of blood pressure. Genetic factors, including polymorphisms of the dopamine D(2) receptor gene (DRD2) are associated with essential hypertension, but the mechanisms of their contribution are incompletely understood. Mice lacking Drd2 (D(2)-/-) have elevated blood pressure, increased renal expression of inflammatory factors, and renal injury. We tested the hypothesis that decreased dopamine D(2) receptor (D(2)R) function increases vulnerability to renal inflammation independently of blood pressure, is an immediate cause of renal injury, and contributes to the subsequent development of hypertension. In D(2)-/- mice, treatment with apocynin normalized blood pressure and decreased oxidative stress, but did not affect the expression of inflammatory factors. In mouse RPTCs Drd2 silencing increased the expression of TNFα and MCP-1, while treatment with a D(2)R agonist abolished the angiotensin II-induced increase in TNF-α and MCP-1. In uni-nephrectomized wild-type mice, selective Drd2 silencing by subcapsular infusion of Drd2 siRNA into the remaining kidney produced the same increase in renal cytokines/chemokines that occurs after Drd2 deletion, increased the expression of markers of renal injury, and increased blood pressure. Moreover, in mice with two intact kidneys, short-term Drd2 silencing in one kidney, leaving the other kidney undisturbed, induced inflammatory factors and markers of renal injury in the treated kidney without increasing blood pressure. Our results demonstrate that the impact of decreased D(2)R function on renal inflammation is a primary effect, not necessarily associated with enhanced oxidant activity, or blood pressure; renal damage is the cause, not the result, of hypertension. Deficient renal D(2)R function may be of clinical relevance since common polymorphisms of the human DRD2 gene result in decreased D(2)R expression and function.

  7. In vitro epigenetic reprogramming of human cardiac mesenchymal stromal cells into functionally competent cardiovascular precursors.

    Directory of Open Access Journals (Sweden)

    Matteo Vecellio

    Full Text Available Adult human cardiac mesenchymal-like stromal cells (CStC represent a relatively accessible cell type useful for therapy. In this light, their conversion into cardiovascular precursors represents a potential successful strategy for cardiac repair. The aim of the present work was to reprogram CStC into functionally competent cardiovascular precursors using epigenetically active small molecules. CStC were exposed to low serum (5% FBS in the presence of 5 µM all-trans Retinoic Acid (ATRA, 5 µM Phenyl Butyrate (PB, and 200 µM diethylenetriamine/nitric oxide (DETA/NO, to create a novel epigenetically active cocktail (EpiC. Upon treatment the expression of markers typical of cardiac resident stem cells such as c-Kit and MDR-1 were up-regulated, together with the expression of a number of cardiovascular-associated genes including KDR, GATA6, Nkx2.5, GATA4, HCN4, NaV1.5, and α-MHC. In addition, profiling analysis revealed that a significant number of microRNA involved in cardiomyocyte biology and cell differentiation/proliferation, including miR 133a, 210 and 34a, were up-regulated. Remarkably, almost 45% of EpiC-treated cells exhibited a TTX-sensitive sodium current and, to a lower extent in a few cells, also the pacemaker I(f current. Mechanistically, the exposure to EpiC treatment introduced global histone modifications, characterized by increased levels of H3K4Me3 and H4K16Ac, as well as reduced H4K20Me3 and H3s10P, a pattern compatible with reduced proliferation and chromatin relaxation. Consistently, ChIP experiments performed with H3K4me3 or H3s10P histone modifications revealed the presence of a specific EpiC-dependent pattern in c-Kit, MDR-1, and Nkx2.5 promoter regions, possibly contributing to their modified expression. Taken together, these data indicate that CStC may be epigenetically reprogrammed to acquire molecular and biological properties associated with competent cardiovascular precursors.

  8. Epoetin administrated after cardiac surgery: effects on renal function and inflammation in a randomized controlled study

    Directory of Open Access Journals (Sweden)

    de Seigneux Sophie

    2012-10-01

    Full Text Available Abstract Background Experimentally, erythropoietin (EPO has nephroprotective as well as immunomodulatory properties when administered after ischemic renal injury. We tested the hypothesis that different doses of recombinant human EPO administered to patients after cardiac surgery would minimize kidney lesions and the systemic inflammatory response, thereby decreasing acute kidney injury (AKI incidence. Methods In this double-blinded randomized control study, 80 patients admitted to the ICU post-cardiac surgery were randomized by computer to receive intravenously isotonic saline (n = 40 versus α-Epoetin (n = 40: either 40000 IU (n = 20 or 20000 IU (n = 20. The study lasted one year. The primary outcome was the change in urinary NGAL concentration from baseline and 48 h after EPO injection. Creatinine, cystatine C and urinary NGAL levels were measured on the day of randomization and 2–4 days after EPO injection. To assess acute inflammatory response, serum cytokines (IL6 and IL8 were measured at randomization and four days after r-HuEPO injection. Patients and care-takers were blinded for the assignment. Results No patient was excluded after randomization. Patient groups did not differ in terms of age, gender, comorbidities and renal function at randomization. The rate of AKI assessed by AKIN criteria was 22.5% in our population. EPO treatment did not significantly modify the difference in uNGAl between 48 hours and randomization compared to placebo [2.5 ng/ml (−17.3; 22.5 vs 0.7 ng/ml (−31.77; 25.15, p = 0.77] and the incidence of AKI was similar. Inflammatory cytokines levels were not influenced by EPO treatment. Mortality and hospital stays were similar between the groups and no adverse event was recorded. Conclusion In this randomized-controlled trial, α-Epoetin administrated after cardiac surgery, although safe, demonstrated neither nephroprotective nor anti-inflammatory properties. Trial registration number NCT

  9. Are Cardiac Autonomic Nervous System Activity and Perceived Stress Related to Functional Somatic Symptoms in Adolescents? The TRAILS Study

    NARCIS (Netherlands)

    Janssens, Karin A. M.; Riese, Harriëtte; van Roon, Arie M.; Hunfeld, Joke A. M.; Groot, Paul F. C.; Oldehinkel, Albertine J.; Rosmalen, Judith G. M.

    2016-01-01

    Stressors have been related to medically insufficiently explained or functional somatic symptoms (FSS). However, the underlying mechanism of this association is largely unclear. In the current study, we examined whether FSS are associated with different perceived stress and cardiac autonomic nervous

  10. Tissue-Doppler assessment of cardiac left ventricular function during short-term adjuvant epirubicin therapy for breast cancer

    DEFF Research Database (Denmark)

    Appel, Jon M; Sogaard, Peter; Mortensen, Christiane E

    2011-01-01

    It has been hypothesized that the extent of acute anthracycline-induced cardiotoxicity reflects the risk for late development of heart failure. The aim of this study was to examine if short-term changes in cardiac function can be detected even after low-dose adjuvant epirubicin therapy for breast...

  11. Assessment of cardiac function using myocardial perfusion imaging technique on SPECT with 99mTc sestamibi

    Science.gov (United States)

    Gani, M. R. A.; Nazir, F.; Pawiro, S. A.; Soejoko, D. S.

    2016-03-01

    Suspicion on coronary heart disease can be confirmed by observing the function of left ventricle cardiac muscle with Myocardial Perfusion Imaging techniques. The function perfusion itself is indicated by the uptake of radiopharmaceutical tracer. The 31 patients were studied undergoing the MPI examination on Gatot Soebroto Hospital using 99mTc-sestamibi radiopharmaceutical with stress and rest conditions. Stress was stimulated by physical exercise or pharmacological agent. After two hours, the patient did rest condition on the same day. The difference of uptake percentage between stress and rest conditions will be used to determine the malfunction of perfusion due to ischemic or infarct. Degradation of cardiac function was determined based on the image-based assessment of five segments of left ventricle cardiac. As a result, 8 (25.8%) patients had normal myocardial perfusion and 11 (35.5%) patients suspected for having partial ischemia. Total ischemia occurred to 8 (25.8%) patients with reversible and irreversible ischemia and the remaining 4 (12.9%) patients for partial infarct with characteristic the percentage of perfusion ≤50%. It is concluded that MPI technique of image-based assessment on uptake percentage difference between stress and rest conditions can be employed to predict abnormal perfusion as complementary information to diagnose the cardiac function.

  12. Manual hyperinflation partly prevents reductions of functional residual capacity in cardiac surgical patients--a randomized controlled trial

    NARCIS (Netherlands)

    Paulus, Frederique; Veelo, Denise P.; de Nijs, Selma B.; Beenen, Ludo F. M.; Bresser, Paul; de Mol, Bas A. J. M.; Binnekade, Jan M.; Schultz, Marcus J.

    2011-01-01

    Cardiac surgery is associated with post-operative reductions of functional residual capacity (FRC). Manual hyperinflation (MH) aims to prevent airway plugging, and as such could prevent the reduction of FRC after surgery. The main purpose of this study was to determine the effect of MH on

  13. Atorvastatin improves cardiac function and remodeling in chronic non-ischemic heart failure: A clinical and pre-clinical study

    Directory of Open Access Journals (Sweden)

    Ibrahim Elmadbouh

    2015-12-01

    Conclusions: Atorvastatin with standard CHF therapy improved cardiac function and remodeling. Cardio-protective “pleiotropic” actions of atorvastatin are anti-inflammatory, anti-fibrotic and anti-oxidative. Thus, atorvastatin has a potential therapeutic value in the management of CHF patients.

  14. Influences of the G2350A polymorphism in the ACE Gene on cardiac structure and function of ball game players

    Directory of Open Access Journals (Sweden)

    Jang Yongwoo

    2012-01-01

    Full Text Available Abstract Background Except for the I/D polymorphism in the angiotensin I-converting enzyme (ACE gene, there were few reports about the relationship between other genetic polymorphisms in this gene and the changes in cardiac structure and function of athletes. Thus, we investigated whether the G2350A polymorphism in the ACE gene is associated with the changes in cardiac structure and function of ball game players. Total 85 healthy ball game players were recruited in this study, and they were composed of 35 controls and 50 ball game players, respectively. Cardiac structure and function were measured by 2-D echocardiography, and the G2350A polymorphism in the ACE gene analyzed by the SNaPshot method. Results There were significant differences in left ventricular mass index (LVmassI value among each sporting discipline studied. Especially in the athletes of basketball disciplines, indicated the highest LVmassI value than those of other sporting disciplines studied (p ACE gene in the both controls and ball game players. Conclusions Our data suggests that the G2350A polymorphism in the ACE gene may not significantly contribute to the changes in cardiac structure and function of ball game players, although sporting disciplines of ball game players may influence the changes in LVmassI value of these athletes. Further studies using a larger sample size and other genetic markers in the ACE gene will be needed.

  15. Evaluation of the diagnostic accuracy of ultra-miniaturized pocket ultrasound device on cardiac function in critically ill patients

    Directory of Open Access Journals (Sweden)

    Li WANG

    2016-09-01

    Full Text Available Objective  To compare the diagnostic accuracy of a new ultra-miniaturized pocket ultrasound device (PUD (VscanTM, GE Healthcare, Wauwatosa, WI and conventional high-quality echocardiography system (Vivid qTM, GE Healthcare for a cardiac focused ultrasonography in critical patients. Methods  The patients admitted to our hospital and receiving transthoracic echocardiography (TTE using a PUD and a conventional echocardiography system were included in this study during the 10 months from December 2013 to October 2014. Each examination was performed independently by an intensive care unit (ICU physician and an experienced ultrasound doctor, unaware of the results found by the alternative device. The following parameters were assessed: global cardiac systolic function, identification of ventricular size, whether or not accompanying enlargement or hypertrophy, assessment for the morphology of cardiac valves and its function, pericardial effusion and estimation of the inferior vena cava (IVC diameter. The time-consuming of each device were recorded. Results  One hundred and twenty-eight patients were included in the study. Their left ventricular wall motion abnormalities, global left ventricular systolic dysfunction, pericardial effusion, IVC dilation were assessed by PUD and the assessment results were highly consistent with those by Vivid q (κ>0.84. The consistency was slightly lower in evaluating the left and right ventricular size. For evaluating the cardiac valves function, the agreement of two devices were relatively low (κ=0.69-0.84. Compared with Vivid q, PUD took less time (4.7±1.4min vs 6.3±2.6min; P<0.05. Conclusion  PUD can provide fast, reliable cardiac examination, thus being an effective method for ICU physicians to assess the cardiac f unction in critical patients. DOI: 10.11855/j.issn.0577-7402.2016.08.10

  16. Competing Risk of Cardiac Status and Renal Function During Hospitalization for Acute Decompensated Heart Failure.

    Science.gov (United States)

    Salah, Khibar; Kok, Wouter E; Eurlings, Luc W; Bettencourt, Paulo; Pimenta, Joana M; Metra, Marco; Verdiani, Valerio; Tijssen, Jan G; Pinto, Yigal M

    2015-10-01

    The aim of this study was to analyze the dynamic changes in renal function in combination with dynamic changes in N-terminal pro-B-type natriuretic peptide (NT-proBNP) in patients hospitalized for acute decompensated heart failure (ADHF). Treatment of ADHF improves cardiac parameters, as reflected by lower levels of NT-proBNP. However this often comes at the cost of worsening renal parameters (e.g., serum creatinine, estimated glomerular filtration rate [eGFR], or serum urea). Both the cardiac and renal markers are validated indicators of prognosis, but it is not yet clear whether the benefits of lowering NT-proBNP are outweighed by the concomitant worsening of renal parameters. This study was an individual patient data analysis assembled from 6 prospective cohorts consisting of 1,232 patients hospitalized for ADHF. Endpoints were all-cause mortality and the composite of all-cause mortality and/or readmission for a cardiovascular reason within 180 days after discharge. A significant reduction in NT-proBNP was not associated with worsening of renal function (WRF) or severe WRF (sWRF). A reduction of NT-proBNP of more than 30% during hospitalization determined prognosis (all-cause mortality hazard ratio [HR]: 1.81; 95% confidence Interval [CI]: 1.32 to 2.50; composite endpoint: HR: 1.36, 95% CI: 1.13 to 1.64), regardless of changes in renal function and other clinical variables. When we defined prognosis, NT-proBNP changes during hospitalization for treatment of ADHF prevailed over parameters for worsening renal function. Severe WRF is a measure of prognosis, but is of lesser value than, and independent of the prognostic changes induced by adequate NT-proBNP reduction. This suggests that in ADHF patients it may be warranted to strive for an optimal decrease in NT-proBNP, even if this induces WRF. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  17. Right-sided cardiac function in healthy volunteers measured by first-pass radionuclide ventriculography and gated blood-pool SPECT: comparison with cine MRI

    DEFF Research Database (Denmark)

    Kjaer, Andreas; Lebech, Anne-Mette; Hesse, Birger

    2005-01-01

    for evaluation of right-sided cardiac function. The aim of our study was to compare the agreement between these methods when measuring right-sided cardiac function. METHODS: Twenty-four healthy volunteers were included. Mean age was 44 years (range: 25-60) and 29% were females. All participants had FP, GBPS...

  18. Heterogeneous response of cardiac sympathetic function to cardiac resynchronization therapy in heart failure documented by 11[C]-hydroxy-ephedrine and PET/CT

    International Nuclear Information System (INIS)

    Capitanio, Selene; Nanni, Cristina; Marini, Cecilia; Bonfiglioli, Rachele; Martignani, Cristian; Dib, Bassam; Fuccio, Chiara; Boriani, Giuseppe; Picori, Lorena; Boschi, Stefano; Morbelli, Silvia

    2015-01-01

    Introduction: Cardiac resynchronization therapy (CRT) is an accepted treatment in patients with end-stage heart failure. PET permits the absolute quantification of global and regional homogeneity in cardiac sympathetic innervation. We evaluated the variation of cardiac adrenergic activity in patients with idiopathic heart failure (IHF) disease (NYHA III–IV) after CRT using 11 C-hydroxyephedrine (HED) PET/CT. Methods: Ten IHF patients (mean age = 68; range = 55–81; average left ventricular ejection fraction 26 ± 4%) implanted with a resynchronization device underwent three HED PET/CT studies: PET 1 one week after inactive device implantation; PET 2, one week after PET 1 under stimulated rhythm; PET 3, at 3 months under active CRT. A dedicated software (PMOD 3.4 version) was used to estimate global and regional cardiac uptake of HED through 17 segment polar maps. Results: At baseline, HED uptake was heterogeneously distributed throughout the left ventricle with a variation coefficient of 18 ± 5%. This variable markedly decreased after three months CRT (12 ± 5%, p < 0.01). Interestingly, subdividing the 170 myocardial segments (17 segments of each patient multiplied by the number of patients) into two groups, according to the median value of tracer uptake expressed as % of maximal myocardial uptake (76%), we observed a different behaviour depending on baseline innervation: HED uptake significantly increased only in segments with “impaired innervation” (SUV 2.61 ± 0.92 at PET1 and 3.05 ± 1.67 at three months, p < 0.01). Conclusion: As shown by HED PET/CT uptake and distribution, improvement in homogeneity of myocardial neuronal function reflected a selective improvement of tracer uptake in regions with more severe neuronal damage. Advances in Knowledge: These finding supported the presence of a myocardial regional variability in response of cardiac sympathetic system to CRT and a systemic response involving remote tissues with rich adrenergic innervation

  19. Clinically approved iron chelators influence zebrafish mortality, hatching morphology and cardiac function.

    Directory of Open Access Journals (Sweden)

    Jasmine L Hamilton

    Full Text Available Iron chelation therapy using iron (III specific chelators such as desferrioxamine (DFO, Desferal, deferasirox (Exjade or ICL-670, and deferiprone (Ferriprox or L1 are the current standard of care for the treatment of iron overload. Although each chelator is capable of promoting some degree of iron excretion, these chelators are also associated with a wide range of well documented toxicities. However, there is currently very limited data available on their effects in developing embryos. In this study, we took advantage of the rapid development and transparency of the zebrafish embryo, Danio rerio to assess and compare the toxicity of iron chelators. All three iron chelators described above were delivered to zebrafish embryos by direct soaking and their effects on mortality, hatching and developmental morphology were monitored for 96 hpf. To determine whether toxicity was specific to embryos, we examined the effects of chelator exposure via intra peritoneal injection on the cardiac function and gene expression in adult zebrafish. Chelators varied significantly in their effects on embryo mortality, hatching and morphology. While none of the embryos or adults exposed to DFO were negatively affected, ICL -treated embryos and adults differed significantly from controls, and L1 exerted toxic effects in embryos alone. ICL-670 significantly increased the mortality of embryos treated with doses of 0.25 mM or higher and also affected embryo morphology, causing curvature of larvae treated with concentrations above 0.5 mM. ICL-670 exposure (10 µL of 0.1 mM injection also significantly increased the heart rate and cardiac output of adult zebrafish. While L1 exposure did not cause toxicity in adults, it did cause morphological defects in embryos at 0.5 mM. This study provides first evidence on iron chelator toxicity in early development and will help to guide our approach on better understanding the mechanism of iron chelator toxicity.

  20. Novel phase-based noise reduction strategy for quantification of left ventricular function and mass assessment by cardiac CT: Comparison with cardiac magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Wai, Bryan, E-mail: bwai@partners.org [Cardiac MR PET CT Program, Division of Cardiology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); Thai, Wai-ee [Cardiac MR PET CT Program, Division of Cardiology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States); Brown, Heather [Qi Imaging, Redwood City, California (United States); Truong, Quynh A. [Cardiac MR PET CT Program, Division of Cardiology and Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts (United States)

    2013-08-15

    Background: Tube current modulation in retrospective ECG gated cardiac computed tomography (CT) results in increased image noise and may reduce the accuracy of left ventricular (LV) ejection fraction (EF) and mass assessment. Objective: To examine the effects of a novel CT phase-based noise reduction (NR) algorithm on LV EF and mass quantification as compared to cardiac magnetic resonance (CMR). Methods: In 40 subjects, we compared the LV EF and mass between CT and CMR. In a subset of 24 subjects with tube current modulated CT, the effect of phase-based noise reduction strategies on contrast-to-noise ratio (CNR) and the assessment of LV EF and mass was compared to CMR. Results: There was excellent correlation between CT and CMR for EF (r = 0.94) and mass (r = 0.97). As compared to CMR, the limits of agreement improved with increasing strength of NR strategy. There was a systematic underestimation of LV mass by CT compared to CMR with no NR (−10.3 ± 10.1 g) and low NR (−10.3 ± 12.5 g), but was attenuated with high NR (−0.5 ± 8.3 g). Studies without NR had lower CNR compared to low and high NR at both the ES phase and ED phase (all p < 0.01). Conclusions: A high NR strategy on tube current modulated functional cardiac CT improves correlation of EF compared to CMR and reduces variability of EF and mass evaluation by increasing the CNR. In an effort to reduce radiation dose with tube current modulation, this strategy provides better image quality when LV function and mass quantification is needed.

  1. Novel phase-based noise reduction strategy for quantification of left ventricular function and mass assessment by cardiac CT: Comparison with cardiac magnetic resonance

    International Nuclear Information System (INIS)

    Wai, Bryan; Thai, Wai-ee; Brown, Heather; Truong, Quynh A.

    2013-01-01

    Background: Tube current modulation in retrospective ECG gated cardiac computed tomography (CT) results in increased image noise and may reduce the accuracy of left ventricular (LV) ejection fraction (EF) and mass assessment. Objective: To examine the effects of a novel CT phase-based noise reduction (NR) algorithm on LV EF and mass quantification as compared to cardiac magnetic resonance (CMR). Methods: In 40 subjects, we compared the LV EF and mass between CT and CMR. In a subset of 24 subjects with tube current modulated CT, the effect of phase-based noise reduction strategies on contrast-to-noise ratio (CNR) and the assessment of LV EF and mass was compared to CMR. Results: There was excellent correlation between CT and CMR for EF (r = 0.94) and mass (r = 0.97). As compared to CMR, the limits of agreement improved with increasing strength of NR strategy. There was a systematic underestimation of LV mass by CT compared to CMR with no NR (−10.3 ± 10.1 g) and low NR (−10.3 ± 12.5 g), but was attenuated with high NR (−0.5 ± 8.3 g). Studies without NR had lower CNR compared to low and high NR at both the ES phase and ED phase (all p < 0.01). Conclusions: A high NR strategy on tube current modulated functional cardiac CT improves correlation of EF compared to CMR and reduces variability of EF and mass evaluation by increasing the CNR. In an effort to reduce radiation dose with tube current modulation, this strategy provides better image quality when LV function and mass quantification is needed

  2. Effects of Vitamin B6 Deficiency on the Composition and Functional Potential of T Cell Populations.

    Science.gov (United States)

    Qian, Bingjun; Shen, Shanqi; Zhang, Jianhua; Jing, Pu

    2017-01-01

    The immune system is critical in preventing infection and cancer, and malnutrition can weaken different aspects of the immune system to undermine immunity. Previous studies suggested that vitamin B6 deficiency could decrease serum antibody production with concomitant increase in IL4 expression. However, evidence on whether vitamin B6 deficiency would impair immune cell differentiation, cytokines secretion, and signal molecule expression involved in JAK/STAT signaling pathway to regulate immune response remains largely unknown. The aim of this study is to investigate the effects of vitamin B6 deficiency on the immune system through analysis of T lymphocyte differentiation, IL-2, IL-4, and INF- γ secretion, and SOCS-1 and T-bet gene transcription. We generated a vitamin B6-deficient mouse model via vitamin B6-depletion diet. The results showed that vitamin B6 deficiency retards growth, inhibits lymphocyte proliferation, and interferes with its differentiation. After ConA stimulation, vitamin B6 deficiency led to decrease in IL-2 and increase in IL-4 but had no influence on IFN- γ . Real-time PCR analysis showed that vitamin B6 deficiency downregulated T-bet and upregulated SOCS-1 transcription. This study suggested that vitamin B6 deficiency influenced the immunity in organisms. Meanwhile, the appropriate supplement of vitamin B6 could benefit immunity of the organism.

  3. Effects of Vitamin B6 Deficiency on the Composition and Functional Potential of T Cell Populations

    Directory of Open Access Journals (Sweden)

    Bingjun Qian

    2017-01-01

    Full Text Available The immune system is critical in preventing infection and cancer, and malnutrition can weaken different aspects of the immune system to undermine immunity. Previous studies suggested that vitamin B6 deficiency could decrease serum antibody production with concomitant increase in IL4 expression. However, evidence on whether vitamin B6 deficiency would impair immune cell differentiation, cytokines secretion, and signal molecule expression involved in JAK/STAT signaling pathway to regulate immune response remains largely unknown. The aim of this study is to investigate the effects of vitamin B6 deficiency on the immune system through analysis of T lymphocyte differentiation, IL-2, IL-4, and INF-γ secretion, and SOCS-1 and T-bet gene transcription. We generated a vitamin B6-deficient mouse model via vitamin B6-depletion diet. The results showed that vitamin B6 deficiency retards growth, inhibits lymphocyte proliferation, and interferes with its differentiation. After ConA stimulation, vitamin B6 deficiency led to decrease in IL-2 and increase in IL-4 but had no influence on IFN-γ. Real-time PCR analysis showed that vitamin B6 deficiency downregulated T-bet and upregulated SOCS-1 transcription. This study suggested that vitamin B6 deficiency influenced the immunity in organisms. Meanwhile, the appropriate supplement of vitamin B6 could benefit immunity of the organism.

  4. Effect of Growth Hormone Deficiency on Brain Structure, Motor Function and Cognition

    Science.gov (United States)

    Webb, Emma A.; O'Reilly, Michelle A.; Clayden, Jonathan D.; Seunarine, Kiran K.; Chong, Wui K.; Dale, Naomi; Salt, Alison; Clark, Chris A.; Dattani, Mehul T.

    2012-01-01

    The growth hormone-insulin-like growth factor-1 axis plays a role in normal brain growth but little is known of the effect of growth hormone deficiency on brain structure. Children with isolated growth hormone deficiency (peak growth hormone less than 6.7 [micro]g/l) and idiopathic short stature (peak growth hormone greater than 10 [micro]g/l)…

  5. On the Averaging of Cardiac Diffusion Tensor MRI Data: The Effect of Distance Function Selection

    Science.gov (United States)

    Giannakidis, Archontis; Melkus, Gerd; Yang, Guang; Gullberg, Grant T.

    2016-01-01

    Diffusion tensor magnetic resonance imaging (DT-MRI) allows a unique insight into the microstructure of highly-directional tissues. The selection of the most proper distance function for the space of diffusion tensors is crucial in enhancing the clinical application of this imaging modality. Both linear and nonlinear metrics have been proposed in the literature over the years. The debate on the most appropriate DT-MRI distance function is still ongoing. In this paper, we presented a framework to compare the Euclidean, affine-invariant Riemannian and log-Euclidean metrics using actual high-resolution DT-MRI rat heart data. We employed temporal averaging at the diffusion tensor level of three consecutive and identically-acquired DT-MRI datasets from each of five rat hearts as a means to rectify the background noise-induced loss of myocyte directional regularity. This procedure is applied here for the first time in the context of tensor distance function selection. When compared with previous studies that used a different concrete application to juxtapose the various DT-MRI distance functions, this work is unique in that it combined the following: (i) Metrics were judged by quantitative –rather than qualitative– criteria, (ii) the comparison tools were non-biased, (iii) a longitudinal comparison operation was used on a same-voxel basis. The statistical analyses of the comparison showed that the three DT-MRI distance functions tend to provide equivalent results. Hence, we came to the conclusion that the tensor manifold for cardiac DT-MRI studies is a curved space of almost zero curvature. The signal to noise ratio dependence of the operations was investigated through simulations. Finally, the “swelling effect” occurrence following Euclidean averaging was found to be too unimportant to be worth consideration. PMID:27754986

  6. On the averaging of cardiac diffusion tensor MRI data: the effect of distance function selection

    Science.gov (United States)

    Giannakidis, Archontis; Melkus, Gerd; Yang, Guang; Gullberg, Grant T.

    2016-11-01

    Diffusion tensor magnetic resonance imaging (DT-MRI) allows a unique insight into the microstructure of highly-directional tissues. The selection of the most proper distance function for the space of diffusion tensors is crucial in enhancing the clinical application of this imaging modality. Both linear and nonlinear metrics have been proposed in the literature over the years. The debate on the most appropriate DT-MRI distance function is still ongoing. In this paper, we presented a framework to compare the Euclidean, affine-invariant Riemannian and log-Euclidean metrics using actual high-resolution DT-MRI rat heart data. We employed temporal averaging at the diffusion tensor level of three consecutive and identically-acquired DT-MRI datasets from each of five rat hearts as a means to rectify the background noise-induced loss of myocyte directional regularity. This procedure is applied here for the first time in the context of tensor distance function selection. When compared with previous studies that used a different concrete application to juxtapose the various DT-MRI distance functions, this work is unique in that it combined the following: (i) metrics were judged by quantitative—rather than qualitative—criteria, (ii) the comparison tools were non-biased, (iii) a longitudinal comparison operation was used on a same-voxel basis. The statistical analyses of the comparison showed that the three DT-MRI distance functions tend to provide equivalent results. Hence, we came to the conclusion that the tensor manifold for cardiac DT-MRI studies is a curved space of almost zero curvature. The signal to noise ratio dependence of the operations was investigated through simulations. Finally, the ‘swelling effect’ occurrence following Euclidean averaging was found to be too unimportant to be worth consideration.

  7. Effect of erythropoietin combined with interventional therapy on cardiac function injury and inflammation in patients with STEMI

    Directory of Open Access Journals (Sweden)

    You-Gen Zhou

    2017-04-01

    Full Text Available Objective: To explore the effect of erythropoietin combined with interventional therapy on cardiac function injury and inflammation in patients with STEMI. Methods: 58 patients with STEMI treated in our hospital between April 2012 and September 2015 were selected, the treatment methods and test results were reviewed, and then they were divided into the control group who accepted interventional therapy alone and the observation group who accepted erythropoietin combined with interventional therapy. Before and after treatment, color Doppler diasonograph was used to detect cardiac function parameters; immune scatter turbidimetry was used to determine myocardial injury marker levels in peripheral blood; ELISA was used to detect serum inflammatory factor levels. Results: Before treatment, differences in cardiac function parameter levels, myocardial injury marker contents and inflammatory factor contents were not statistically significant between two groups of patients (P>0.05. After treatment, cardiac function parameters LvEDD and LVESD levels of observation group were significantly lower than those of control group while EV and AV levels were significantly higher than those of control group (P<0.05; serum myocardial injury indexes ICTP and IMA contents of observation group were significantly lower than those of control group while CysC content was significantly higher than that of control group (P<0.05; serum inflammatory factors CRP, IL-18, IL-27 and MDC contents of observation group were significantly lower than those of control group while IL-10 content was significantly higher than that of control group (P<0.05. Conclusion: Erythropoietin combined with interventional therapy can play a positive role in myocardial protection, improve cardiac pump function, reduce myocardial cell injury and inhibit inflammatory response.

  8. l-carnitine preserves cardiac function by activating p38 MAPK/Nrf2 signalling in hearts exposed to irradiation.

    Science.gov (United States)

    Fan, Zhigang; Han, Yang; Ye, Yuanpeng; Liu, Chao; Cai, Hui

    2017-06-05

    Radiation-induced heart damage (RIHD) is now considered to be one of the causes of mortality in cancer patients undergoing radiotherapy. Cardiac function impairments are clinical manifestations of RIHD. L-carnitine shows protective effects against irradiation and heart disease. This study was aimed to investigate the cardioprotective effects and potential molecular mechanisms of L-carnitine against RIHD. Mouse hearts were exposed to γ-radiation to induce RIHD. L-carnitine at doses of 100mg/Kg and 200mg/Kg was used to treat animals intraperitoneally. Additionally, a specific inhibitor of p38 MAPK was used to treat animals by intraperitoneal injections. Cardiac systolic/diastolic functions were determined using invasive hemodynamic methods; myocyte apoptosis was assessed using the TUNEL assay; intracellular reactive oxygen species production was measured using DHE staining; and western blotting was used to evaluate the phosphorylation of p38MAPK, phosphorylation of Nrf2, and expression levels of HO1, NQO1, caspase3 and bax. L-carnitine treatments inhibited irradiation induced cardiac function impairments. Radiation exposure induced myocyte apoptosis and reactive oxygen species production, which were attenuated by L-carnitine treatments. However, administration of a p38 MAPK inhibitor (SB203580) dramatically impaired L-carnitine's effect on attenuating apoptosis, reactive oxygen species accumulation and cardiac functions in irradiated hearts. Our study showed that L-carnitine administration activated p38MAPK/Nrf2 signalling, initiating the expression of HO1 and NQO1, which have anti-apoptotic and anti-oxidative effects, respectively. In conclusion, L-carnitine attenuates cardiac function loss by inhibiting reactive oxygen species production and apoptosis in hearts exposed to radiation. The cardioprotective effects of L-carnitine were mediated by p38MAPK/Nrf2 signalling. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. The impact of remote ischemic preconditioning on cardiac biomarker and functional response to endurance exercise.

    Science.gov (United States)

    Cocking, S; Landman, T; Benson, M; Lord, R; Jones, H; Gaze, D; Thijssen, D H J; George, K

    2017-10-01

    Remote ischemic preconditioning (RIPC; repeated short reversible periods of ischemia) protects the heart against subsequent ischemic injury. We explored whether RIPC can attenuate post-exercise changes in cardiac troponin T (cTnT) and cardiac function in healthy individuals. In a randomized, crossover design, 14 participants completed 1-h cycling time trials (TT) on two separate visits; preceded by RIPC (arms/legs, 4 × 5-min 220 mmHg), or SHAM-RIPC (20 mmHg). Venous blood was sampled before and 0-, 1-, and 3-h post-exercise to assess high sensitivity (hs-)cTnT and brain natriuretic peptide (NT-proBNP). Echocardiograms were performed at the same time points to assess left and right ventricular systolic (ejection fraction; EF and right ventricular fractional area change; RVFAC, respectively) and diastolic (early transmitral flow velocities; E) function. Baseline hs-cTnT was not different between RIPC and SHAM. Post-exercise hs-cTnT levels were consistently lower following RIPC (18 ± 3 vs 21 ± 3; 19 ± 3 vs 23 ± 3; and 20 ± 2 vs 25 ± 2 ng/L at 0, 1 and 3-h post-exercise, respectively; P exercise to a similar level in both trials (0.85 ± 0.04 vs 0.74 ± 0.04 m/s, respectively; P exercise but there was no independent effect of RIPC for NT-proBNP or LV systolic and diastolic function. The lower hs-cTnT levels after RIPC suggests that further research should evaluate the role of ischemia in exercise-induced elevation in hs-cTnT. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  10. The Function of the MEF2 Family of Transcription Factors in Cardiac Development, Cardiogenomics, and Direct Reprogramming

    Directory of Open Access Journals (Sweden)

    Cody A. Desjardins

    2016-08-01

    Full Text Available Proper formation of the mammalian heart requires precise spatiotemporal transcriptional regulation of gene programs in cardiomyocytes. Sophisticated regulatory networks have evolved to not only integrate the activities of distinct transcription factors to control tissue-specific gene programs but also, in many instances, to incorporate multiple members within these transcription factor families to ensure accuracy and specificity in the system. Unsurprisingly, perturbations in this elaborate transcriptional circuitry can lead to severe cardiac abnormalities. Myocyte enhancer factor–2 (MEF2 transcription factor belongs to the evolutionarily conserved cardiac gene regulatory network. Given its central role in muscle gene regulation and its evolutionary conservation, MEF2 is considered one of only a few core cardiac transcription factors. In addition to its firmly established role as a differentiation factor, MEF2 regulates wide variety of, sometimes antagonistic, cellular processes such as cell survival and death. Vertebrate genomes encode multiple MEF2 family members thereby expanding the transcriptional potential of this core transcription factor in the heart. This review highlights the requirement of the MEF2 family and their orthologs in cardiac development in diverse animal model systems. Furthermore, we describe the recently characterized role of MEF2 in direct reprogramming and genome-wide cardiomyocyte gene regulation. A thorough understanding of the regulatory functions of the MEF2 family in cardiac development and cardiogenomics is required in order to develop effective therapeutic strategies to repair the diseased heart.

  11. A functional genomic screen for evolutionarily conserved genes required for lifespan and immunity in germline-deficient C. elegans.

    Directory of Open Access Journals (Sweden)

    Amit Sinha

    Full Text Available The reproductive system regulates lifespan in insects, nematodes and vertebrates. In Caenorhabditis elegans removal of germline increases lifespan by 60% which is dependent upon insulin signaling, nuclear hormone signaling, autophagy and fat metabolism and their microRNA-regulators. Germline-deficient C. elegans are also more resistant to various bacterial pathogens but the underlying molecular mechanisms are largely unknown. Firstly, we demonstrate that previously identified genes that regulate the extended lifespan of germline-deficient C. elegans (daf-2, daf-16, daf-12, tcer-1, mir-7.1 and nhr-80 are also essential for resistance to the pathogenic bacterium Xenorhabdus nematophila. We then use a novel unbiased approach combining laser cell ablation, whole genome microarrays, RNAi screening and exposure to X. nematophila to generate a comprehensive genome-wide catalog of genes potentially required for increased lifespan and innate immunity in germline-deficient C. elegans. We find 3,440 genes to be upregulated in C. elegans germline-deficient animals in a gonad dependent manner, which are significantly enriched for genes involved in insulin signaling, fatty acid desaturation, translation elongation and proteasome complex function. Using RNAi against a subset of 150 candidate genes selected from the microarray results, we show that the upregulated genes such as transcription factor DAF-16/FOXO, the PTEN homolog lipid phosphatase DAF-18 and several components of the proteasome complex (rpn-6.1, rpn-7, rpn-9, rpn-10, rpt-6, pbs-3 and pbs-6 are essential for both lifespan and immunity of germline deficient animals. We also identify a novel role for genes including par-5 and T12G3.6 in both lifespan-extension and increased survival on X. nematophila. From an evolutionary perspective, most of the genes differentially expressed in germline deficient C. elegans also show a conserved expression pattern in germline deficient Pristionchus pacificus, a

  12. Estrogen Therapy, Independent of Timing, Improves Cardiac Structure and Function in Oophorectomized mRen2.Lewis Rats

    Science.gov (United States)

    Jessup, Jewell A.; Wang, Hao; MacNamara, Lindsay M.; Presley, Tennille D.; Kim-Shapiro, Daniel B.; Zhang, Lili; Chen, Alex F.; Groban, Leanne

    2013-01-01

    Objective mRen2.Lewis Rats exhibit exacerbated increases in blood pressure, left ventricular (LV) remodeling, and diastolic impairment following the loss of estrogens. In this same model, depletion of estrogens has marked effects on the cardiac biopterin profile concomitant with suppressed nitric oxide (NO) release. With respect to the establishment of overt systolic hypertension after oophorectomy (OVX), we assessed the effects of timing chronic 17 β-estradiol (E2) therapy on myocardial function, structure, and the cardiac NO system. Methods Oophrectomy (OVX; n=24) or sham-operation (Sham; n=13) was performed in 4-week-old, female mRen2.Lewis rats. Following randomization, OVX rats received E2 immediately (OVX + early E2; n=7), E2 at 11 weeks of age (OVX + late E2 N=8), or no E2 at all (OVX N=9). Results Early E2 was associated with lower body weight, less hypertension-related cardiac remodeling, and decreased LV filling pressure compared to OVX rats without E2 supplementation. Late E2 similarly attenuated the adverse effects of ovarian hormone loss on tissue-Doppler derived LV filling pressures and perivascular fibrosis, and significantly improved myocardial relaxation, or mitral annular velocity (e′). Early and late exposure to E2 decreased dihydrobiopterin, but only late E2 yielded significant increases in cardiac nitrite concentrations. Conclusions Although there were some similarities between early and late E2 treatment on preservation of diastolic function and cardiac structure after OVX, the lusitropic potential of E2 was most consistent with late supplementation. The cardioprotective effects of late E2 were independent of blood pressure and may have occurred through regulation of cardiac biopterins and NO production. PMID:23481117

  13. The Short-Term Effects of Ketogenic Diet on Cardiac Ventricular Functions in Epileptic Children.

    Science.gov (United States)

    Doksöz, Önder; Çeleğen, Kübra; Güzel, Orkide; Yılmaz, Ünsal; Uysal, Utku; İşgüder, Rana; Çeleğen, Mehmet; Meşe, Timur

    2015-09-01

    Our primary aim was to determine the short-term effects of a ketogenic diet on cardiac ventricular function in patients with refractory epilepsy. Thirty-eight drug-resistant epileptic patients who were treated with a ketogenic diet were enrolled in this prospective study. Echocardiography was performed on all patients before beginning the ketogenic diet and after the sixth month of therapy. Two-dimensional, M-mode, color flow, spectral Doppler, and pulsed-wave tissue Doppler imaging measurements were performed on all patients. The median age of the 32 patients was 45.5 months, and 22 (57.8%) of them were male. Body weight, height, and body mass index increased significantly at the sixth month of therapy when compared with baseline values (P 0.05). Doppler flow indices of mitral annulus and tricuspid annulus velocity of patients at baseline and month 6 showed no significant differences (P > 0.05). Tricuspid annular E/A ratio was lower at month 6 (P 0.05), there was a decrease in Ea velocity and Ea/Aa ratio gathered from tricuspid annulus at month 6 compared with baseline (P ketogenic diet does not impair left ventricular functions in children with refractory epilepsy; however, it may be associated with a right ventricular diastolic dysfunction. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. The Incidence of Functional Disorders and Clinical Symptoms that May be Associated with Lactase Deficiency in Infants of Lviv

    Directory of Open Access Journals (Sweden)

    R.V. Tkach

    2016-08-01

    Full Text Available Today, the violations of the digestive system in children of the first years of life remain the actual problem of practical pediatrics and are the common cause for parents to visit a doctor. The importance in the genesis of functional disorders of the digestive system in children of this age may belongs to lactase deficiency. 327 children from Lviv were included in the questionnaire survey. The aim of the study was to evaluate the incidence of clinical symptoms that may be associated with lactase deficiency in infants. Among the clinical symptoms in young children, according to the survey, regurgitation and colic, stool disorders dominated. The diagnosis of lactase deficiency was established in 3.4 % (11 of children, 2.8 % (9 children received enzyme of lactase.

  15. Integrins (alpha7beta1) in muscle function and survival. Disrupted expression in merosin-deficient congenital muscular dystrophy

    DEFF Research Database (Denmark)

    Vachon, P H; Xu, H; Liu, L

    1997-01-01

    Mutations in genes coding for dystrophin, for alpha, beta, gamma, and delta-sarcoglycans, or for the alpha2 chain of the basement membrane component merosin (laminin-2/4) cause various forms of muscular dystrophy. Analyses of integrins showed an abnormal expression and localization of alpha7beta1...... isoforms in myofibers of merosin-deficient human patients and mice, but not in dystrophin-deficient or sarcoglycan-deficient humans and animals. It was shown previously that skeletal muscle fibers require merosin for survival and function (Vachon, P.H., F. Loechel, H. Xu, U.M. Wewer, and E. Engvall. 1996...... in skeletal muscle; (b) indicate a merosin dependence for the accurate expression and membrane localization of alpha7beta1D integrins in myofibers; (c) provide a molecular basis for the critical role of merosin in myofiber survival; and (d) add new insights to the pathogenesis of neuromuscular disorders....

  16. Altered glucose homeostasis and hepatic function in obese mice deficient for both kinin receptor genes.

    Directory of Open Access Journals (Sweden)

    Carlos C Barros

    Full Text Available The Kallikrein-Kinin System (KKS has been implicated in several aspects of metabolism, including the regulation of glucose homeostasis and adiposity. Kinins and des-Arg-kinins are the major effectors of this system and promote their effects by binding to two different receptors, the kinin B2 and B1 receptors, respectively. To understand the influence of the KKS on the pathophysiology of obesity and type 2 diabetes (T2DM, we generated an animal model deficient for both kinin receptor genes and leptin (obB1B2KO. Six-month-old obB1B2KO mice showed increased blood glucose levels. Isolated islets of the transgenic animals were more responsive to glucose stimulation releasing greater amounts of insulin, mainly in 3-month-old mice, which was corroborated by elevated serum C-peptide concentrations. Furthermore, they presented hepatomegaly, pronounced steatosis, and increased levels of circulating transaminases. This mouse also demonstrated exacerbated gluconeogenesis during the pyruvate challenge test. The hepatic abnormalities were accompanied by changes in the gene expression of factors linked to glucose and lipid metabolisms in the liver. Thus, we conclude that kinin receptors are important for modulation of insulin secretion and for the preservation of normal glucose levels and hepatic functions in obese mice, suggesting a protective role of the KKS regarding complications associated with obesity and T2DM.

  17. Humanin preserves endothelial function and prevents atherosclerotic plaque progression in hypercholesterolemic ApoE deficient mice.

    Science.gov (United States)

    Oh, Yun K; Bachar, Adi R; Zacharias, David G; Kim, Sung Gyun; Wan, Junxiang; Cobb, Laura J; Lerman, Lilach O; Cohen, Pinchas; Lerman, Amir

    2011-11-01

    Humanin (HN) is a cytoprotective peptide derived from endogenous mitochondria, expressed in the endothelial layer of human vessels, but its role in atherogenesis in vivo is not known. In vitro study, however, HN reduced oxidized low-density lipoprotein induced formation of reactive oxygen species and apoptosis. The present study tested the hypothesis that long term treatment with HN will have a protective role against endothelial dysfunction and progression of atherosclerosis in vivo. Daily intraperitonial injection of the HN analogue HNGF6A for 16 weeks prevented endothelial dysfunction and decreased atherosclerotic plaque size in the proximal aorta of ApoE-deficient mice fed on a high cholesterol diet, without showing direct vasoactive effects or cholesterol-reducing effects. HN was expressed in the endothelial layer on the aortic plaques. HNGF6A treatment reduced apoptosis and nitrotyrosine immunoreactivity in the aortic plaques without affecting the systemic cytokine profile. HNGF6A also preserved expression of endothelial nitric oxide synthase in aorta. HN may have a protective effect on endothelial function and progression of atherosclerosis by modulating oxidative stress and apoptosis in the developing plaque. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  18. Burnout versus work engagement in their effects on 24-hour ambulatory monitored cardiac autonomic function

    NARCIS (Netherlands)

    L.J.P. van Doornen (Lorenz); J.H. Houtveen (Jan); S. Langelaan (Saar); A.B. Bakker (Arnold); W. van Rhenen (Willem); W.B. Schaufeli (Wilmar)

    2009-01-01

    textabstractBurnout has been associated with increased risk of cardiovascular disease. This relationship may be mediated by a stress-related disruption in cardiac autonomic activity. The aim of the present study was to assess cardiac autonomic activity (sympathetic and parasympathetic) during a

  19. GRK2 – A Link Between Myocardial Contractile Function and Cardiac Metabolism

    Science.gov (United States)

    Woodall, Meryl C.; Ciccarelli, Michele; Woodall, Benjamin P.; Koch, Walter J.

    2014-01-01

    Heart failure (HF) causes a tremendous burden on the worldwide healthcare system, affecting more than 23 million people. There are many cardiovascular disorders that contribute to the development of HF and multiple risk factors that accelerate its occurrence, but regardless of its underlying cause, HF is characterized by a marked decrease in myocardial contractility and loss of pump function. One biomarker molecule consistently shown to be upregulated in human HF and several animal models is G protein-coupled receptor (GPCR) kinase 2 (GRK2), a kinase originally discovered to be involved in GPCR desensitization, especially β-adrenergic receptors (βARs). Indeed, higher levels of GRK2 can impair βAR-mediated inotropic reserve and its inhibition or molecular reduction has shown to improve pump function in several animal models including a pre-clinical pig model of HF. Recently, non-classical roles for GRK2 in cardiovascular disease have been described, including negative regulation of insulin signaling, a role in myocyte cell survival and apoptotic signaling, and it has been shown to be localized in/on mitochondria. These new roles of GRK2 suggest that GRK2 may be a nodal link in the myocyte, influencing both cardiac contractile function and cell metabolism and survival and contributing to HF independent of its canonical role on GPCR desensitization. In this review, classical and non-classical roles for GRK2 will be discussed, focusing on recently discovered roles for GRK2 in cardiomyocyte metabolism and the effects that these roles may have on myocardial contractile function and HF development. PMID:24812353

  20. Endothelial Function Predicts New Hospitalization due to Heart Failure Following Cardiac Resynchronization Therapy.

    Science.gov (United States)

    Yufu, Kunio; Shinohara, Tetsuji; Ebata, Yuki; Ayabe, Reika; Fukui, Akira; Okada, Norihiro; Nakagawa, Mikiko; Takahashi, Naohiko

    2015-11-01

    Cardiac resynchronization therapy (CRT) has been established as a treatment for patients with chronic heart failure (HF). We tested the hypothesis that assessment of peripheral endothelial function is associated with the long-term outcome of CRT and its linkage to coronary flow reserve (CFR) was also investigated. From 2010, a total of 34 consecutive patients implanted with CRT for the treatment of advanced HF were evaluated at baseline (immediately before CRT) and 6-8 months after CRT. Endothelial function was evaluated by measurement of reactive hyperemia peripheral arterial tonometry (RH-PAT). In 24 of 34 patients, CFR was determined by transthoracic echocardiography. Based on the receiver-operating characteristic curves, depressed RH-PAT index (RHI) was defined as ≤1.5. Accurate follow-up information during the mean of 343 ± 120 days was obtained in 20 preserved RHI group (mean age 66 ± 1.8 years) and 14 depressed RHI group (71 ± 2.2 years). Kaplan-Meier survival analysis demonstrated that depressed RHI group had higher prevalence of new hospitalization due to HF progression (log-rank 5.40). Cox proportional hazards regression analysis revealed that the baseline log brain natriuretic peptide (hazard ratio 5.95) and the baseline RHI value (hazard ratio 0.066) were independently associated with the incidence of new hospitalization due to HF progression. The baseline RHI values were positively correlated with the 6-8 months change of CFR (R = 0.434, P = 0.0343). Our results suggest that the baseline peripheral endothelial function could predict the long-term outcome of CRT. The results also suggest that improvement of coronary microcirculation might be associated with the better baseline endothelial function. © 2015 Wiley Periodicals, Inc.

  1. Evaluation of Exercise Performance, Cardiac Function, and Quality of Life in Children After Liver Transplantation.

    Science.gov (United States)

    Vandekerckhove, Kristof; Coomans, Ilse; De Bruyne, Elke; De Groote, Katya; Panzer, Joseph; De Wolf, Daniel; Boone, Jan; De Bruyne, Ruth

    2016-07-01

    In children, after having liver transplantation (LT), it is important to assess the quality of life (QOL). Physical fitness is an important determinant of QOL, and because cardiac function can influence exercise performance, it is the purpose of the present study to assess these factors. Children in stable follow-up for more than 6 months post-LT were invited to participate in a case control study. Patients underwent cardiopulmonary exercise testing and echocardiography to assess systolic and diastolic function, and left ventricular wall dimensions. Health-related QOL was evaluated using child- and adolescent-reported PedsQL questionnaire. Twenty-eight of 31 included patients performed a maximal exercise test (15 boys, 11.6 ± 2.9 years, weight, 40.9 ± 13.1 kg; length, 148.6 ± 17.3 cm; body mass index, 17.6 ± 2.3). Liver transplantation patients had lower maximal oxygen consumption (VO2max/kg) (37.5 ± 9.3 mL/kg per minute vs 44.1 ± 8.8 mL/kg per minute), shorter exercise duration (9.3 ± 2.8 minutes vs 13.3 ± 3 minutes) and lower load (71 ± 14 vs 85 ± 20%). They reached the ventilatory anaerobic threshold earlier (81.4 ± 9.5 vs 88.3 ± 11.9%). Echocardiography demonstrated increased interventricular septal wall thickness (interventricular septum in diastole Z value, +0.45 ± 0.49, P exercise testing. Health-related QOL showed lower overall, emotional, psychosocial, and school functioning scores. Children on antihypertensive medication had impaired physical functioning compared with other LT patients. Lower physical fitness level, more deconditioning and lower health-related QOL in children after LT emphasize the importance of exercise stimulation and fitness programs. Patients on antihypertensive medication seem to be the most vulnerable group suffering from decreased physical fitness.

  2. Cardiac function and long-term volume load : Physiological investigations in endurance athletes and in patients operated on for aortic regurgitation

    OpenAIRE

    Hedman, Kristofer

    2016-01-01

    Background and aims. The heart is a remarkably adaptable organ, continuously changing its output to match metabolic demands and haemodynamic load. But also in long-term settings, such as in chronic or repeated volume load, there are changes in cardiac dimensions and mass termed cardiac hypertrophy. Depending on the stimulus imposing the volume load this hypertrophy differs in extent and phenotype. We aimed to study cardiac function in two settings with long-term volume load, including patient...

  3. Preexisting cognitive status is associated with reduced behavioral functional capacity in patients 3 months after cardiac surgery: an extension study.

    Science.gov (United States)

    Messerotti Benvenuti, Simone; Patron, Elisabetta; Zanatta, Paolo; Polesel, Elvio; Palomba, Daniela

    2014-01-01

    To examine whether preexisting cognitive status rather than short- and middle-term postoperative cognitive decline (POCD) may differentially account for behavioral functional capacity 3 months after cardiac surgery. Seventy-nine patients completed a psychological evaluation, including the Trail Making Test Part B, the memory with 10-s interference, the phonemic fluency and the Instrumental Activities of Daily Living (IADLs) questionnaire for cognitive functions and behavioral functional capacity, respectively, before surgery, at discharge and at 3-month follow-up. Thirty-one (39%) and 22 (28%) patients showed POCD at discharge and at 3-month follow-up, respectively. Preoperative cognitive status was significantly associated with change in behavioral functional capacity 3 months after surgery (Ps.095). Preexisting cognitive deficit, especially working memory deficit, rather than short- and middle-term POCD related to intraoperative risk factors is associated with poor behavioral functional capacity 3 months after cardiac surgery. The present study therefore suggests that a preoperative cognitive evaluation is essential to anticipate which patients are likely to show a decline in behavioral functional capacity after cardiac surgery. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Expressional and functional studies of Wolframin, the gene function deficient in Wolfram syndrome, in mice and patient cells.

    Science.gov (United States)

    Philbrook, Christine; Fritz, Eberhard; Weiher, Hans

    2005-01-01

    Wolfram Syndrome is an autosomal recessive degenerative disorder of the neuroendocrine system. Diabetes mellitus is its lead symptom. Patients show mutations in the wolframin (WFS1) gene coding for a hydrophobic transmembrane protein of 890 amino acids. This protein was preliminarily localised in the endoplasmatic reticulum (ER) in cells of mice and rats. Mice lacking the WFS1 gene display degeneration of pancreatic beta-cells following induction of ER stress. We here used antibodies against substructures of the wolframin protein in order to analyse its expression and localisation. Expression was detected in both pancreatic beta-cells and the limbic system of mice. Using the rat insulinoma cell line RIN 5AH and fractionated mouse brain tissue, we confirmed wolframin localisation to the endoplasmic reticulum. Expression profiling on patient's primary fibroblasts revealed down-regulation of the diabetes associated plasma membrane glycoprotein (PC-1) gene, and up-regulation of fibulin-3, a gene connected to senescence. However, cell proliferation was indistinguishable from non-mutated cells. In contrast to data obtained on murine pancreatic islets, we found no increased apoptosis following induction of ER stress but rather by staurosporine treatment in the absence of WFS1 function. This indicates a new role of WFS1 deficiency in programmed cell death.

  5. Longitudinal covariance of resting-state cardiac function and borderline personality disorder symptoms in adolescent non-suicidal self-injury.

    Science.gov (United States)

    Koenig, Julian; Weise, Sindy; Rinnewitz, Lena; Parzer, Peter; Resch, Franz; Kaess, Michael

    2018-03-01

    Cardiac function is altered in borderline personality disorder (BPD). In adolescents with non-suicidal self-injury (NSSI) resting heart rate (HR) and vagally mediated heart rate variability (vmHRV) are associated with BPD symptoms. The study aimed to investigate longitudinal covariance of BPD symptoms and cardiac function in adolescent NSSI. HR and vmHRV were recorded in female adolescents with NSSI (n = 17) completing a baseline and 1-year follow-up assessment. Physiological data, structured clinical interviews and self-reports were obtained at both time points. Predictors of change in clinical outcomes and cardiac function were assessed. Patients showed a reduction of NSSI (z (34;17)  = -3.79, P adolescents engaging in NSSI are associated with changes in resting cardiac function. Clinical studies are needed to investigate the utility of cardiac markers to track treatment outcome in adolescents with BPD.

  6. Functional characterization of malaria parasites deficient in the K+ channel Kch2.

    Science.gov (United States)

    Ellekvist, Peter; Mlambo, Godfree; Kumar, Nirbhay; Klaerke, Dan A

    2017-11-04

    K + channels are integral membrane proteins, which contribute to maintain vital parameters such as the cellular membrane potential and cell volume. Malaria parasites encode two K + channel homologues, Kch1 and Kch2, which are well-conserved among members of the Plasmodium genus. In the rodent malaria parasite P. berghei, the functional significance of K + channel homologue PbKch2 was studied using targeted gene knock-out. The knockout parasites were characterized in a mouse model in terms of growth-kinetics and infectivity in the mosquito vector. Furthermore, using a tracer-uptake technique with 86 Rb + as a K + congener, the K + transporting properties of the knockout parasites were assessed. Genetic disruption of Kch2 did not grossly affect the phenotype in terms of asexual replication and pathogenicity in a mouse model. In contrast to Kch1-null parasites, Kch2-null parasites were fully capable of forming oocysts in female Anopheles stephensi mosquitoes. 86 Rb + uptake in Kch2-deficient blood-stage P. berghei parasites (Kch2-null) did not differ from that of wild-type (WT) parasites. About two-thirds of the 86 Rb + uptake in WT and in Kch2-null parasites could be inhibited by K + channel blockers and could be inferred to the presence of functional Kch1 in Kch2 knockout parasites. Kch2 is therefore not required for transport of K + in P. berghei and is not essential to mosquito-stage sporogonic development of the parasite. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Homologous recombination mediates functional recovery of dysferlin deficiency following AAV5 gene transfer.

    Directory of Open Access Journals (Sweden)

    William E Grose

    Full Text Available The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9. Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.

  8. Functional cardiomyocytes derived from Isl1 cardiac progenitors via Bmp4 stimulation.

    Directory of Open Access Journals (Sweden)

    Esra Cagavi

    Full Text Available As heart failure due to myocardial infarction remains a leading cause of morbidity worldwide, cell-based cardiac regenerative therapy using cardiac progenitor cells (CPCs could provide a potential treatment for the repair of injured myocardium. As adult CPCs may have limitations regarding tissue accessibility and proliferative ability, CPCs derived from embryonic stem cells (ESCs could serve as an unlimited source of cells with high proliferative ability. As one of the CPCs that can be derived from embryonic stem cells, Isl1 expressing cardiac progenitor cells (Isl1-CPCs may serve as a valuable source of cells for cardiac repair due to their high cardiac differentiation potential and authentic cardiac origin. In order to generate an unlimited number of Isl1-CPCs, we used a previously established an ESC line that allows for isolation of Isl1-CPCs by green fluorescent protein (GFP expression that is directed by the mef2c gene, specifically expressed in the Isl1 domain of the anterior heart field. To improve the efficiency of cardiac differentiation of Isl1-CPCs, we studied the role of Bmp4 in cardiogenesis of Isl1-CPCs. We show an inductive role of Bmp directly on cardiac progenitors and its enhancement on early cardiac differentiation of CPCs. Upon induction of Bmp4 to Isl1-CPCs during differentiation, the cTnT+ cardiomyocyte population was enhanced 2.8±0.4 fold for Bmp4 treated CPC cultures compared to that detected for vehicle treated cultures. Both Bmp4 treated and untreated cardiomyocytes exhibit proper electrophysiological and calcium signaling properties. In addition, we observed a significant increase in Tbx5 and Tbx20 expression in differentiation cultures treated with Bmp4 compared to the untreated control, suggesting a link between Bmp4 and Tbx genes which may contribute to the enhanced cardiac differentiation in Bmp4 treated cultures. Collectively these findings suggest a cardiomyogenic role for Bmp4 directly on a pure population of

  9. Carotid body denervation improves autonomic and cardiac function and attenuates disordered breathing in congestive heart failure.

    Science.gov (United States)

    Marcus, Noah J; Del Rio, Rodrigo; Schultz, Evan P; Xia, Xiao-Hong; Schultz, Harold D

    2014-01-15

    In congestive heart failure (CHF), carotid body (CB) chemoreceptor activity is enhanced and is associated with oscillatory (Cheyne-Stokes) breathing patterns, increased sympathetic nerve activity (SNA) and increased arrhythmia incidence. We hypothesized that denervation of the CB (CBD) chemoreceptors would reduce SNA, reduce apnoea and arrhythmia incidence and improve ventricular function in pacing-induced CHF rabbits. Resting breathing, renal SNA (RSNA) and arrhythmia incidence were measured in three groups of animals: (1) sham CHF/sham-CBD (sham-sham); (2) CHF/sham-CBD (CHF-sham); and (3) CHF/CBD (CHF-CBD). Chemoreflex sensitivity was measured as the RSNA and minute ventilatory (VE) responses to hypoxia and hypercapnia. Respiratory pattern was measured by plethysmography and quantified by an apnoea-hypopnoea index, respiratory rate variability index and the coefficient of variation of tidal volume. Sympatho-respiratory coupling (SRC) was assessed using power spectral analysis and the magnitude of the peak coherence function between tidal volume and RSNA frequency spectra. Arrhythmia incidence and low frequency/high frequency ratio of heart rate variability were assessed using ECG and blood pressure waveforms, respectively. RSNA and VE responses to hypoxia were augmented in CHF-sham and abolished in CHF-CBD animals. Resting RSNA was greater in CHF-sham compared to sham-sham animals (43 ± 5% max vs. 23 ± 2% max, P patterns of changes were observed longitudinally within the CHF-CBD group before and after CBD. In conclusion, CBD is effective in reducing RSNA, SRC and arrhythmia incidence, while improving breathing stability and cardiac function in pacing-induced CHF rabbits.

  10. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle function

    Science.gov (United States)

    Gallagher, Thomas L.; Arribere, Joshua A.; Geurts, Paul A.; Exner, Cameron R. T.; McDonald, Kent L.; Dill, Kariena K.; Marr, Henry L.; Adkar, Shaunak S.; Garnett, Aaron T.; Amacher, Sharon L.; Conboy, John G.

    2012-01-01

    Rbfox RNA binding proteins are implicated as regulators of phylogenetically-conserved alternative splicing events important for muscle function. To investigate the function of rbfox genes, we used morpholino-mediated knockdown of muscle-expressed rbfox1l and rbfox2 in zebrafish embryos. Single and double morphant embryos exhibited changes in splicing of overlapping sets of bioinformatically-predicted rbfox target exons, many of which exhibit a muscle-enriched splicing pattern that is conserved in vertebrates. Thus, conservation of intronic Rbfox binding motifs is a good predictor of Rbfox-regulated alternative splicing. Morphology and development of single morphant embryos was strikingly normal; however, muscle development in double morphants was severely disrupted. Defects in cardiac muscle were marked by reduced heart rate and in skeletal muscle by complete paralysis. The predominance of wavy myofibers and abnormal thick and thin filaments in skeletal muscle revealed that myofibril assembly is defective and disorganized in double morphants. Ultra-structural analysis revealed that although sarcomeres with electron dense M- and Z-bands are present in muscle fibers of rbfox1l/rbox2 morphants, they are substantially reduced in number and alignment. Importantly, splicing changes and morphological defects were rescued by expression of morpholino-resistant rbfox cDNA. Additionally, a target-blocking MO complementary to a single UGCAUG motif adjacent to an rbfox target exon of fxr1 inhibited inclusion in a similar manner to rbfox knockdown, providing evidence that Rbfox regulates the splicing of target exons via direct binding to intronic regulatory motifs. We conclude that Rbfox proteins regulate an alternative splicing program essential for vertebrate heart and skeletal muscle function. PMID:21925157

  11. Rbfox-regulated alternative splicing is critical for zebrafish cardiac and skeletal muscle functions.

    Science.gov (United States)

    Gallagher, Thomas L; Arribere, Joshua A; Geurts, Paul A; Exner, Cameron R T; McDonald, Kent L; Dill, Kariena K; Marr, Henry L; Adkar, Shaunak S; Garnett, Aaron T; Amacher, Sharon L; Conboy, John G

    2011-11-15

    Rbfox RNA binding proteins are implicated as regulators of phylogenetically-conserved alternative splicing events important for muscle function. To investigate the function of rbfox genes, we used morpholino-mediated knockdown of muscle-expressed rbfox1l and rbfox2 in zebrafish embryos. Single and double morphant embryos exhibited changes in splicing of overlapping sets of bioinformatically-predicted rbfox target exons, many of which exhibit a muscle-enriched splicing pattern that is conserved in vertebrates. Thus, conservation of intronic Rbfox binding motifs is a good predictor of Rbfox-regulated alternative splicing. Morphology and development of single morphant embryos were strikingly normal; however, muscle development in double morphants was severely disrupted. Defects in cardiac muscle were marked by reduced heart rate and in skeletal muscle by complete paralysis. The predominance of wavy myofibers and abnormal thick and thin filaments in skeletal muscle revealed that myofibril assembly is defective and disorganized in double morphants. Ultra-structural analysis revealed that although sarcomeres with electron dense M- and Z-bands are present in muscle fibers of rbfox1l/rbox2 morphants, they are substantially reduced in number and alignment. Importantly, splicing changes and morphological defects were rescued by expression of morpholino-resistant rbfox cDNA. Additionally, a target-blocking MO complementary to a single UGCAUG motif adjacent to an rbfox target exon of fxr1 inhibited inclusion in a similar manner to rbfox knockdown, providing evidence that Rbfox regulates the splicing of target exons via direct binding to intronic regulatory motifs. We conclude that Rbfox proteins regulate an alternative splicing program essential for vertebrate heart and skeletal muscle functions. Published by Elsevier Inc.

  12. Impaired cerebrovascular function in coronary artery disease patients and recovery following cardiac rehabilitation.

    Directory of Open Access Journals (Sweden)

    Udunna C Anazodo

    2016-01-01

    Full Text Available Coronary artery disease (CAD poses a risk to the cerebrovascular function of older adults and has been linked to impaired cognitive abilities. Using magnetic resonance perfusion imaging, we investigated changes in resting cerebral blood flow (CBF and cerebrovascular reactivity (CVR to hypercapnia in 34 coronary artery disease (CAD patients and 21 age-matched controls. Gray matter volume images were acquired and used as a confounding variable to separate changes in structure from function. Compared to healthy controls, CAD patients demonstrated reduced CBF in the superior frontal, anterior cingulate, insular, pre- and post-central gyri, middle temporal and superior temporal regions. Subsequent analysis of these regions demonstrated decreased CVR in the anterior cingulate, insula, postcentral and superior frontal regions. Except in the superior frontal and precentral regions, regional reductions in CBF and CVR were identified in brain areas where no detectable reductions in gray matter volume were observed, demonstrating that these vascular changes were independent of brain atrophy. Because aerobic fitness training can improve brain function, potential changes in regional CBF were investigated in the CAD patients after completion of a 6-month exercise-based cardiac rehabilitation program. Increased CBF was observed in the bilateral anterior cingulate, as well as recovery of CBF in the dorsal aspect of the right anterior cingulate, where the magnitude of increased CBF was roughly equal to the reduction in CBF at baseline compared to controls. These exercise-related improvements in CBF in the anterior cingulate is intriguing given the role of this area in cognitive processing and regulation of cardiovascular autonomic control.

  13. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    Directory of Open Access Journals (Sweden)

    Daniela L Buscariollo

    Full Text Available Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg or vehicle (0.09% NaCl i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  14. Embryonic Caffeine Exposure Acts via A1 Adenosine Receptors to Alter Adult Cardiac Function and DNA Methylation in Mice

    Science.gov (United States)

    Greenwood, Victoria; Xue, Huiling; Rivkees, Scott A.; Wendler, Christopher C.

    2014-01-01

    Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs) mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg) or vehicle (0.09% NaCl) i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2–4 cups of coffee in humans. After dams gave birth, offspring were examined at 8–10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs) within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation. PMID:24475304

  15. Effect of rosiglitazone on cardiac electrophysiology, infarct size and mitochondrial function in ischaemia and reperfusion of swine and rat heart.

    Science.gov (United States)

    Palee, Siripong; Weerateerangkul, Punate; Surinkeaw, Sirirat; Chattipakorn, Siriporn; Chattipakorn, Nipon

    2011-08-01

    Rosiglitazone, a peroxisome proliferator-activated receptor γ agonist, has been used to treat type 2 diabetes. Despite debates regarding its cardioprotection, the effects of rosiglitazone on cardiac electrophysiology are still unclear. This study determined the effect of rosiglitazone on ventricular fibrillation (VF) incidence, VF threshold (VFT), defibrillation threshold (DFT) and mitochondrial function during ischaemia and reperfusion. Twenty-six pigs were used. In each pig, either rosiglitazone (1 mg kg(-1)) or normal saline solution was administered intravenously for 60 min. Then, the left anterior descending coronary artery was ligated for 60 min and released to promote reperfusion for 120 min. The cardiac electrophysiological parameters were determined at the beginning of the study and during the ischaemia and reperfusion periods. The heart was removed, and the area at risk and infarct size in each heart were determined. Cardiac mitochondria were isolated for determination of mitochondrial function. Rosiglitazone did not improve the DFT and VFT during the ischaemia-reperfusion period. In the rosiglitazone group, the VF incidence was increased (58 versus 10%) and the time to the first occurrence of VF was decreased (3 ± 2 versus 19 ± 1 min) in comparison to the vehicle group (P < 0.05). However, the infarct size related to the area at risk in the rosiglitazone group was significantly decreased (P < 0.05). In the cardiac mitochondria, rosiglitazone did not alter the level of production of reactive oxygen species and could not prevent mitochondrial membrane potential changes. Rosiglitazone increased the propensity for VF, and could neither increase defibrillation efficacy nor improve cardiac mitochondrial function.

  16. Effects of Vitamin B6 Deficiency on the Composition and Functional Potential of T Cell Populations

    OpenAIRE

    Qian, Bingjun; Shen, Shanqi; Zhang, Jianhua; Jing, Pu

    2017-01-01

    The immune system is critical in preventing infection and cancer, and malnutrition can weaken different aspects of the immune system to undermine immunity. Previous studies suggested that vitamin B6 deficiency could decrease serum antibody production with concomitant increase in IL4 expression. However, evidence on whether vitamin B6 deficiency would impair immune cell differentiation, cytokines secretion, and signal molecule expression involved in JAK/STAT signaling pathway to regulate immun...

  17. Functional importance of cardiac enhancer-associated noncoding RNAs in heart development and disease.

    Science.gov (United States)

    Ounzain, Samir; Pezzuto, Iole; Micheletti, Rudi; Burdet, Frédéric; Sheta, Razan; Nemir, Mohamed; Gonzales, Christine; Sarre, Alexandre; Alexanian, Michael; Blow, Matthew J; May, Dalit; Johnson, Rory; Dauvillier, Jérôme; Pennacchio, Len A; Pedrazzini, Thierry

    2014-11-01

    The key information processing units within gene regulatory networks are enhancers. Enhancer activity is associated with the production of tissue-specific noncoding RNAs, yet the existence of such transcripts during cardiac development has not been established. Using an integrated genomic approach, we demonstrate that fetal cardiac enhancers generate long noncoding RNAs (lncRNAs) during