WorldWideScience

Sample records for defensive cellular stress

  1. Role of resveratrol in regulation of cellular defense systems against oxidative stress.

    Science.gov (United States)

    Truong, Van-Long; Jun, Mira; Jeong, Woo-Sik

    2018-01-01

    Resveratrol, a natural polyphenolic compound, is found in various kinds of fruits, plants, and their commercial products such as red wine. It has been demonstrated to exhibit a variety of health-promoting effects including prevention and/or treatment of cardiovascular diseases, inflammation, diabetes, neurodegeneration, aging, and cancer. Cellular defensive properties of resveratrol can be explained through its ability of either directly neutralizing reactive oxygen species/reactive nitrogen species (ROS/RNS) or indirectly upregulating the expression of cellular defensive genes. As a direct antioxidant agent, resveratrol scavenges diverse ROS/RNS as well as secondary organic radicals with mechanisms of hydrogen atom transfer and sequential proton loss electron transfer, thereby protecting cellular biomolecules from oxidative damage. Resveratrol also enhances the expression of various antioxidant defensive enzymes such as heme oxygenase 1, catalase, glutathione peroxidase, and superoxide dismutase as well as the induction of glutathione level responsible for maintaining the cellular redox balance. Such defenses could be achieved by regulating various signaling pathways including sirtuin 1, nuclear factor-erythroid 2-related factor 2 and nuclear factor κB. This review provides current understanding and information on the role of resveratrol in cellular defense system against oxidative stress. © 2017 BioFactors, 44(1):36-49, 2018. © 2017 International Union of Biochemistry and Molecular Biology.

  2. Cellular and exosome mediated molecular defense mechanism in bovine granulosa cells exposed to oxidative stress.

    Science.gov (United States)

    Saeed-Zidane, Mohammed; Linden, Lea; Salilew-Wondim, Dessie; Held, Eva; Neuhoff, Christiane; Tholen, Ernst; Hoelker, Michael; Schellander, Karl; Tesfaye, Dawit

    2017-01-01

    Various environmental insults including diseases, heat and oxidative stress could lead to abnormal growth, functions and apoptosis in granulosa cells during ovarian follicle growth and oocyte maturation. Despite the fact that cells exposed to oxidative stress are responding transcriptionally, the potential release of transcripts associated with oxidative stress response into extracellular space through exosomes is not yet determined. Therefore, here we aimed to investigate the effect of oxidative stress in bovine granulosa cells in vitro on the cellular and exosome mediated defense mechanisms. Bovine granulosa cells were aspirated from ovarian follicles and cultured in DMEM/F-12 Ham culture medium supplemented with 10% exosome-depleted fetal bovine serum. In the first experiment sub-confluent cells were treated with 5 μM H2O2 for 40 min to induce oxidative stress. Thereafter, cells were subjected to ROS and mitochondrial staining, cell proliferation and cell cycle assays. Furthermore, gene and protein expression analysis were performed in H2O2-challenged versus control group 24 hr post-treatment using qRT-PCR and immune blotting or immunocytochemistry assay, respectively. Moreover, exosomes were isolated from spent media using ultracentrifugation procedure, and subsequently used for RNA isolation and qRT-PCR. In the second experiment, exosomes released by granulosa cells under oxidative stress (StressExo) or those released by granulosa cells without oxidative stress (NormalExo) were co-incubated with bovine granulosa cells in vitro to proof the potential horizontal transfer of defense molecules from exosomes to granulosa cells and investigate any phenotype changes. Exposure of bovine granulosa cells to H2O2 induced the accumulation of ROS, reduced mitochondrial activity, increased expression of Nrf2 and its downstream antioxidant genes (both mRNA and protein), altered the cell cycle transitions and induced cellular apoptosis. Granulosa cells exposed to oxidative

  3. Spatially organized aggregation of misfolded proteins as cellular stress defense strategy.

    Science.gov (United States)

    Miller, Stephanie B M; Mogk, Axel; Bukau, Bernd

    2015-04-10

    An evolutionary conserved response of cells to proteotoxic stress is the organized sequestration of misfolded proteins into subcellular deposition sites. In Saccharomyces cerevisiae, three major sequestration sites for misfolded proteins exist, IPOD (insoluble protein deposit), INQ (intranuclear quality control compartment) [former JUNQ (juxtanuclear quality control compartment)] and CytoQ. IPOD is perivacuolar and predominantly sequesters amyloidogenic proteins. INQ and CytoQs are stress-induced deposits for misfolded proteins residing in the nucleus and the cytosol, respectively, and requiring cell-compartment-specific aggregases, nuclear Btn2 and cytosolic Hsp42 for formation. The organized aggregation of misfolded proteins is proposed to serve several purposes collectively increasing cellular fitness and survival under proteotoxic stress. These include (i) shielding of cellular processes from interference by toxic protein conformers, (ii) reducing the substrate burden for protein quality control systems upon immediate stress, (iii) orchestrating chaperone and protease functions for efficient repair or degradation of damaged proteins [this involves initial extraction of aggregated molecules via the Hsp70/Hsp104 bi-chaperone system followed by either refolding or proteasomal degradation or removal of entire aggregates by selective autophagy (aggrephagy) involving the adaptor protein Cue5] and (iv) enabling asymmetric retention of protein aggregates during cell division, thereby allowing for damage clearance in daughter cells. Regulated protein aggregation thus serves cytoprotective functions vital for the maintenance of cell integrity and survival even under adverse stress conditions and during aging. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. New therapeutic strategy for hepatocellular carcinoma by molecular targeting agents via inhibition of cellular stress defense mechanisms.

    Science.gov (United States)

    Honma, Yuichi; Harada, Masaru

    2014-12-01

    The prognosis of advanced hepatocellular carcinoma (HCC) has remained very poor.It has recently been reported that the molecular targeting agent sorafenib can improve the prognosis of patients with advanced HCC. However, the detailed mechanisms of sorafenib, especially its direct effects on hepatoma and hepatocyte cells, are poorly understood, making a more detailed investigation about the molecular mechanism of sorafenib necessary. Endoplasmic reticulum (ER) stress is related to the pathophysiology of various liver diseases, including chronic viral hepatitis, alcoholic and nonalcoholic steatohepatitis and HCC. In this regard, our recent data examining the molecular effects of sorafenib focused on the cellular defense mechanisms from ER stress, the unfolded protein response (UPR) and keratin phosphorylation, demonstrated that sorafenib inhibited both important cytoprotective mechanisms, UPR and keratin phosphorylation, and enhances the anti-tumor effect in combination with proteasome inhibitors. This review summarizes the cytoprotective mechanisms from ER stress and our results about the direct effect of sorafenib on the cytoprotective mechanisms.

  5. Induction of multixenobiotic defense mechanisms in resistant Daphnia magna clones as a general cellular response to stress.

    Science.gov (United States)

    Jordão, Rita; Campos, Bruno; Lemos, Marco F L; Soares, Amadeu M V M; Tauler, Romà; Barata, Carlos

    2016-06-01

    Multixenobiotic resistance mechanisms (MXR) were recently identified in Daphnia magna. Previous results characterized gene transcripts of genes encoding and efflux activities of four putative ABCB1 and ABCC transporters that were chemically induced but showed low specificity against model transporter substrates and inhibitors, thus preventing us from distinguishing between activities of different efflux transporter types. In this study we report on the specificity of induction of ABC transporters and of the stress protein hsp70 in clones selected to be genetically resistant to ABCB1 chemical substrates. Clones resistant to mitoxantrone, ivermectin and pentachlorophenol showed distinctive transcriptional responses of transporter protein coding genes and of putative transporter dye activities. Expression of hsp70 proteins also varied across resistant clones. Clones resistant to mitoxantrone and pentachlorophenol showed high constitutive levels of hsp70. Transcriptional levels of the abcb1 gene transporter and of putative dye transporter activity were also induced to a greater extent in the pentachlorophenol resistant clone. Observed higher dye transporter activities in individuals from clones resistant to mitoxantrone and ivermectin were unrelated with transcriptional levels of the studied four abcc and abcb1 transporter genes. These findings suggest that Abcb1 induction in D. magna may be a part of a general cellular stress response. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Aldehyde Dehydrogenase 7A1 (ALDH7A1) Is a Novel Enzyme Involved in Cellular Defense against Hyperosmotic Stress*

    OpenAIRE

    Brocker, Chad; Lassen, Natalie; Estey, Tia; Pappa, Aglaia; Cantore, Miriam; Orlova, Valeria V.; Chavakis, Triantafyllos; Kavanagh, Kathryn L.; Oppermann, Udo; Vasiliou, Vasilis

    2010-01-01

    Mammalian ALDH7A1 is homologous to plant ALDH7B1, an enzyme that protects against various forms of stress, such as salinity, dehydration, and osmotic stress. It is known that mutations in the human ALDH7A1 gene cause pyridoxine-dependent and folic acid-responsive seizures. Herein, we show for the first time that human ALDH7A1 protects against hyperosmotic stress by generating osmolytes and metabolizing toxic aldehydes. Human ALDH7A1 expression in Chinese hamster ovary cells attenuated osmotic...

  7. [Comparative immunological analysis of echinoderm cellular and humoral defense factors].

    Science.gov (United States)

    Kudriavtsev, I V; Polevshchikov, A V

    2004-01-01

    Coelomocyte are found in the fluid filling coelomic cavity of echinoderms and depending on species can be a mixture of several morphologically different types. There are among them: granular and agranular amoebocytes, morula cells, vibratile and lymphocyte-like cells. All these cells take part in cellular response to immune challenges through phagocytosis, clotting, encapsulation of foreign particles, cytotoxicity, and the production of antimicrobial agents, such as reactive oxygen and nitric oxide. The data are given on a variety of humoral factors found in the coelomic fluid, including different types of lectines, agglutinins, hemolysins, acute phase proteins and antimicrobial factors. The discussion on cooperation between cellular and humoral arms of defense reactions during inflammation reveals the crucial role of coelomocytes in immune response. It is suggested that the sea urchin complement system (that is homologous to the alternative pathway in vertebrates) is appeared initially in echinoderms as a protein cascade that points to opsonization of foreign cells and particles, augmenting their phagocytosis and subsequent destruction by coelomocytes. So the identification of a simple complement system as a part of the echinoderm immune response shows that these animals as well as all invertebrate deuterostomes share innate immune system homologies with vertebrates. Studying the simpler immune response demonstrated by echinoderms is important for understanding the ancestral deuterostome defense system and reconstructing the evolution of immune system in higher vertebrates.

  8. Ethanol cellular defense induce unfolded protein response in yeast

    Directory of Open Access Journals (Sweden)

    Elisabet eNavarro-Tapia

    2016-02-01

    Full Text Available Ethanol is a valuable industrial product and a common metabolite used by many cell types. However, this molecule produces high levels of cytotoxicity affecting cellular performance at several levels. In the presence of ethanol, cells must adjust some of their components, such as the membrane lipids to maintain homeostasis. In the case of microorganism as Saccharomyces cerevisiae, ethanol is one of the principal products of their metabolism and is the main stress factor during fermentation. Although many efforts have been made, mechanisms of ethanol tolerance are not fully understood and very little evidence is available to date for specific signaling by ethanol in the cell. This work studied two Saccharomyces cerevisiae strains, CECT10094 and Temohaya-MI26, isolated from flor wine and agave fermentation (a traditional fermentation from Mexico respectively, which differ in ethanol tolerance, in order to understand the molecular mechanisms underlying the ethanol stress response and the reasons for different ethanol tolerance. The transcriptome was analyzed after ethanol stress and, among others, an increased activation of genes related with the unfolded protein response (UPR and its transcription factor, Hac1p, was observed in the tolerant strain CECT10094. We observed that this strain also resist more UPR agents than Temohaya-MI26 and the UPR-ethanol stress correlation was corroborated observing growth of 15 more strains and discarding UPR correlation with other stresses as thermal or oxidative stress. Furthermore, higher activation of UPR pathway in the tolerant strain CECT10094 was observed using a UPR mCherry reporter. Finally, we observed UPR activation in response to ethanol stress in other S. cerevisiae ethanol tolerant strains as the wine strains T73 and EC1118. This work demonstrates that the UPR pathway is activated under ethanol stress occurring in a standard fermentation and links this response to an enhanced ethanol tolerance. Thus

  9. Oxidative and endoplasmic reticulum stress defense mechanisms of bovine granulosa cells exposed to heat stress.

    Science.gov (United States)

    Alemu, Teshome Wondie; Pandey, Hari Om; Salilew Wondim, Dessie; Gebremedhn, Samuel; Neuhof, Christiane; Tholen, Ernst; Holker, Michael; Schellander, Karl; Tesfaye, Dawit

    2018-04-01

    In most mammalian species including cattle, heat stress has detrimental effects on ovarian function through disturbing estradiol production and viability of granulosa cells. However, effect of heat stress and underlying cellular defense mechanisms of bovine granulosa cells is not fully understood. Here, we aimed to investigate the effect of heat stress on granulosa cells function and the associated defense mechanism. For this an in vitro granulosa cell model was used to investigate the role of elevated temperature (41 °C) on granulosa cell functions at 24 h and 48 h exposure compared to the control cultured at 37 °C. The results showed that reactive oxygen species level was higher in cells under 41 °C at 24 h compared to control. In response to increased reactive oxygen species level, the expression of NRF2 and its antioxidant genes, CAT and PRDX1 were higher in bovine granulosa cells exposed to heat stress. Interestingly, heat stress markedly increased expression of endoplasmic reticulum stress marker genes; GRP78 and GRP94, in cultured bovine granulosa cells at 24 h, and higher protein accumulation of GRP78 accompanied by increased expression of apoptotic genes, BAX and CASPASE-3. Moreover, heat stress significantly decreased the bovine granulosa cells proliferation, which was supported by decreased in the expression of proliferation marker gene PCNA. All in all heat stress induce reactive oxygen species accumulation, apoptosis and reduced proliferation, which trigger the NRF2 mediated oxidative stress and endoplasmic reticulum stress response by bovine granulosa cells. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Oxidative stress action in cellular aging

    Directory of Open Access Journals (Sweden)

    Monique Cristine de Oliveira

    2010-12-01

    Full Text Available Various theories try to explain the biological aging by changing the functions and structure of organic systems and cells. During lifetime, free radicals in the oxidative stress lead to lipid peroxidation of cellular membranes, homeostasis imbalance, chemical residues formation, gene mutations in DNA, dysfunction of certain organelles, and the arise of diseases due to cell death and/or injury. This review describes the action of oxidative stress in the cells aging process, emphasizing the factors such as cellular oxidative damage, its consequences and the main protective measures taken to prevent or delay this process. Tests with antioxidants: vitamins A, E and C, flavonoids, carotenoids and minerals, the practice of caloric restriction and physical exercise, seeking the beneficial effects on human health, increasing longevity, reducing the level of oxidative stress, slowing the cellular senescence and origin of certain diseases, are discussed.Diferentes teorias tentam explicar o envelhecimento biológico através da alteração das funções e estrutura dos sistemas orgânicos e células. Ao longo da vida, os radicais livres presentes no estresse oxidativo conduzem à peroxidação dos lipídios das membranas celulares, desequilíbrio da homeostase, formação de resíduos químicos, mutações gênicas no DNA, disfunção de certas organelas, bem como ao surgimento de doenças devido à lesão e/ou morte celular. Nesta revisão descreve-se a ação do estresse oxidativo no processo de envelhecimento das células, enfatizando fatores como os danos oxidativos celulares, suas conseqüências e as principais medidas protetoras adotadas para se prevenir ou retardar este processo. Testes com antioxidantes: vitaminas A, E e C, flavonóides, carotenóides e minerais; a prática de restrição calórica e exercícios físicos, que buscam efeitos benéficos sobre a saúde humana, aumentando a longevidade, reduzindo o nível de estresse oxidativo

  11. Characterization of anti-apoptotic action of TCDD as a defensive cellular stress response reaction against the cell damaging action of ultra-violet irradiation in an immortalized normal human mammary epithelial cell line, MCF10A.

    Science.gov (United States)

    Park, Sujin; Matsumura, Fumio

    2006-01-16

    It was originally shown by Woerner and Schrenk [Woerner, W., Schrenk, D., 1998. 2,3,7,8-Tetrachlorodibenzo-p-dioxin suppresses apoptosis and leads to hyperphosphorylation of p53 in rat hepatocytes. Environ. Toxicol. Pharmacol. 6, 239-247] that TCDD (2,3,7,8-tetrachlorodibenzo-p-dioxin) acts as an antagonist against the action of UV-irradiation to induce apoptosis in rat primary hepatocytes. Since prevention of apoptosis has been shown to promote carcinogenesis, we have decided to investigate this phenomenon in a human mammary gland epithelial cell line, MCF10A. We found that, in this cell line, TCDD can antagonize apoptosis that was induced by a variety of treatments, such as UV- and gamma-irradiation, growth factor starvation and trypsinization, or by the addition of H(2)O(2), TGFbeta, and staurosporine. Furthermore, other agents that are known to elicit defensive cellular responses, such as LPS, Fe(3+), nitric oxide and hypoxia could also antagonize UV induced apoptosis just as in the case of TCDD. In addition, we found that, in this cell line, such anti-apoptotic action of TCDD resembles that of exogenously added EGF or TGF alpha. To study the basic mechanism of such an action of TCDD, we tested a variety of diagnostic agents to reverse the effect of TCDD. Antagonists of TCDD which were found to be effective in this way were (a) inhibitors of c-Src kinase, such as PP-2 and CGP77675, (b) those known to block the action of TGF alpha, such as anti-TGF alpha antibody, and alpha(1)-antitrypsin, (c) PD98059, a specific inhibitor of ERK activation, but not SB202190 (an inhibitor of p38 MAPK activation) or SP600125 (a JNK inhibitor) and (d) Ah receptor antagonists, alpha-naphthoflavone and 1, 10-phenanthroline. These results support the notion that TCDD acts as an anti-apoptotic agent by mimicking the action of EGF through activation of the c-Src/ERK signaling pathway.

  12. Protein Redox Modification as a Cellular Defense Mechanism against Tissue Ischemic Injury

    Directory of Open Access Journals (Sweden)

    Liang-Jun Yan

    2014-01-01

    Full Text Available Protein oxidative or redox modifications induced by reactive oxygen species (ROS or reactive nitrogen species (RNS not only can impair protein function, but also can regulate and expand protein function under a variety of stressful conditions. Protein oxidative modifications can generally be classified into two categories: irreversible oxidation and reversible oxidation. While irreversible oxidation usually leads to protein aggregation and degradation, reversible oxidation that usually occurs on protein cysteine residues can often serve as an “on and off” switch that regulates protein function and redox signaling pathways upon stress challenges. In the context of ischemic tolerance, including preconditioning and postconditioning, increasing evidence has indicated that reversible cysteine redox modifications such as S-sulfonation, S-nitrosylation, S-glutathionylation, and disulfide bond formation can serve as a cellular defense mechanism against tissue ischemic injury. In this review, I highlight evidence of cysteine redox modifications as protective measures in ischemic injury, demonstrating that protein redox modifications can serve as a therapeutic target for attenuating tissue ischemic injury. Prospectively, more oxidatively modified proteins will need to be identified that can play protective roles in tissue ischemic injury, in particular, when the oxidative modifications of such identified proteins can be enhanced by pharmacological agents or drugs that are available or to be developed.

  13. Mechanisms of beauvericin toxicity and antioxidant cellular defense.

    Science.gov (United States)

    Mallebrera, Beatriz; Juan-Garcia, Ana; Font, Guillermina; Ruiz, Maria-Jose

    2016-03-30

    Beauvericin (BEA) is a secondary metabolite produced by many species of fungus Fusarium. This study determines the injury (cell viability, cell proliferation, mitochondrial membrane potential, cell death and DNA damage) and the intracellular defense mechanisms (catalase and superoxide dismutase) in Chinese Hamster ovary (CHO-K1) cells after BEA exposure. The results obtained in this study demonstrated that BEA induces cytotoxicity in a dose- and time-dependent manner in CHO-K1 cells. Moreover, disruption in mitochondrial enzymatic activity and cell proliferation has been observed after BEA exposure, which can lead or be consequence of cell death. BEA inhibits cell proliferation by arresting cells in G0/G1 and increasing apoptosis. Moreover, at higher exposure times, BEA induces differentiation of CHO-K1 cells through G2/M arrest, preventing that cells entry into mitosis. DNA strand breaks were observed at 1 μM after 24h of exposure. On the other hand, the SOD and CAT activities were increased after BEA exposure and as a defense system they could contribute to eliminate damage produced by BEA and oxidants products generated in CHO-K1 cells. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  14. Cellular Stress Response to Engineered Nanoparticles: Effect of Size, Surface Coating, and Cellular Uptake

    Science.gov (United States)

    CELLULAR STRESS RESPONSE TO ENGINEERED NANOPARTICLES: EFFECT OF SIZE, SURFACE COATING, AND CELLULAR UPTAKE RY Prasad 1, JK McGee2, MG Killius1 D Ackerman2, CF Blackman2 DM DeMarini2 , SO Simmons2 1 Student Services Contractor, US EPA, RTP, NC 2 US EPA, RTP, NC The num...

  15. Diverse Functions of Restriction-Modification Systems in Addition to Cellular Defense

    Science.gov (United States)

    Vasu, Kommireddy

    2013-01-01

    SUMMARY Restriction-modification (R-M) systems are ubiquitous and are often considered primitive immune systems in bacteria. Their diversity and prevalence across the prokaryotic kingdom are an indication of their success as a defense mechanism against invading genomes. However, their cellular defense function does not adequately explain the basis for their immaculate specificity in sequence recognition and nonuniform distribution, ranging from none to too many, in diverse species. The present review deals with new developments which provide insights into the roles of these enzymes in other aspects of cellular function. In this review, emphasis is placed on novel hypotheses and various findings that have not yet been dealt with in a critical review. Emerging studies indicate their role in various cellular processes other than host defense, virulence, and even controlling the rate of evolution of the organism. We also discuss how R-M systems could have successfully evolved and be involved in additional cellular portfolios, thereby increasing the relative fitness of their hosts in the population. PMID:23471617

  16. Conversion of psychological stress into cellular stress response: roles of the sigma-1 receptor in the process.

    Science.gov (United States)

    Hayashi, Teruo

    2015-04-01

    Psychiatrists empirically recognize that excessive or chronic psychological stress can result in long-lasting impairments of brain functions that partly involve neuronal cell damage. Recent studies begin to elucidate the molecular pathways activated/inhibited by psychological stress. Activation of the hypothalamic-pituitary-adrenal axis under psychological stress causes inflammatory oxidative stresses in the brain, in part due to elevation of cytokines. Psychological stress or neuropathological conditions (e.g., accumulation of β-amyloids) trigger 'cellular stress responses', which promote upregulation of molecular chaperones to protect macromolecules from degradation. The unfolded protein response, the endoplasmic reticulum (ER)-specific cellular stress response, has been recently implicated in the pathophysiology of neuropsychiatric disorders and the pharmacology of certain clinically used drugs. The sigma-1 receptor is an ER protein whose ligands are shown to exert antidepressant-like and neuroprotective actions. Recent studies found that the sigma-1 receptor is a novel ligand-operated ER chaperone that regulates bioenergetics, free radical generation, oxidative stress, unfolded protein response and cytokine signaling. The sigma-1 receptor also regulates morphogenesis of neuronal cells, such as neurite outgrowth, synaptogenesis, and myelination, which can be perturbed by cellular stress. The sigma-1 receptor may thus contribute to a cellular defense system that protects nervous systems against chronic psychological stress. Findings from sigma receptor research imply that not only cell surface monoamine effectors but also intracellular molecules, especially those at the ER, may provide novel therapeutic targets for future drug developments. © 2014 The Author. Psychiatry and Clinical Neurosciences © 2014 Japanese Society of Psychiatry and Neurology.

  17. Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats

    International Nuclear Information System (INIS)

    Rashid, Kahkashan; Sil, Parames C.

    2015-01-01

    The phytochemical, curcumin, has been reported to play many beneficial roles. However, under diabetic conditions, the detail mechanism of its beneficial action in the glucose homeostasis regulatory organ, pancreas, is poorly understood. The present study has been designed and carried out to explore the role of curcumin in the pancreatic tissue of STZ induced and cellular stress mediated diabetes in eight weeks old male Wistar rats. Diabetes was induced with a single intraperitoneal dose of STZ (65 mg/kg body weight). Post to diabetes induction, animals were treated with curcumin at a dose of 100 mg/kg body weight for eight weeks. Underlying molecular and cellular mechanism was determined using various biochemical assays, DNA fragmentation, FACS, histology, immunoblotting and ELISA. Treatment with curcumin reduced blood glucose level, increased plasma insulin and mitigated oxidative stress related markers. In vivo and in vitro experimental results revealed increased levels of proinflammatory cytokines (TNF-α, IL1-β and IFN-γ), reduced level of cellular defense proteins (Nrf-2 and HO-1) and glucose transporter (GLUT-2) along with enhanced levels of signaling molecules of ER stress dependent and independent apoptosis (cleaved Caspase-12/9/8/3) in STZ administered group. Treatment with curcumin ameliorated all the adverse changes and helps the organ back to its normal physiology. Results suggest that curcumin protects pancreatic beta-cells by attenuating inflammatory responses, and inhibiting ER/mitochondrial dependent and independent pathways of apoptosis and crosstalk between them. This uniqueness and absence of any detectable adverse effect proposes the possibility of using this molecule as an effective protector in the cellular stress mediated diabetes mellitus. - Highlights: • STZ induced cellular stress plays a vital role in pancreatic dysfunction. • Cellular stress causes inflammation, pancreatic islet cell death and diabetes. • Deregulation of Nrf-2

  18. Curcumin enhances recovery of pancreatic islets from cellular stress induced inflammation and apoptosis in diabetic rats

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Kahkashan; Sil, Parames C., E-mail: parames@jcbose.ac.in

    2015-02-01

    The phytochemical, curcumin, has been reported to play many beneficial roles. However, under diabetic conditions, the detail mechanism of its beneficial action in the glucose homeostasis regulatory organ, pancreas, is poorly understood. The present study has been designed and carried out to explore the role of curcumin in the pancreatic tissue of STZ induced and cellular stress mediated diabetes in eight weeks old male Wistar rats. Diabetes was induced with a single intraperitoneal dose of STZ (65 mg/kg body weight). Post to diabetes induction, animals were treated with curcumin at a dose of 100 mg/kg body weight for eight weeks. Underlying molecular and cellular mechanism was determined using various biochemical assays, DNA fragmentation, FACS, histology, immunoblotting and ELISA. Treatment with curcumin reduced blood glucose level, increased plasma insulin and mitigated oxidative stress related markers. In vivo and in vitro experimental results revealed increased levels of proinflammatory cytokines (TNF-α, IL1-β and IFN-γ), reduced level of cellular defense proteins (Nrf-2 and HO-1) and glucose transporter (GLUT-2) along with enhanced levels of signaling molecules of ER stress dependent and independent apoptosis (cleaved Caspase-12/9/8/3) in STZ administered group. Treatment with curcumin ameliorated all the adverse changes and helps the organ back to its normal physiology. Results suggest that curcumin protects pancreatic beta-cells by attenuating inflammatory responses, and inhibiting ER/mitochondrial dependent and independent pathways of apoptosis and crosstalk between them. This uniqueness and absence of any detectable adverse effect proposes the possibility of using this molecule as an effective protector in the cellular stress mediated diabetes mellitus. - Highlights: • STZ induced cellular stress plays a vital role in pancreatic dysfunction. • Cellular stress causes inflammation, pancreatic islet cell death and diabetes. • Deregulation of Nrf-2

  19. Cellular stress response cross talk maintains protein and energy homeostasis

    OpenAIRE

    Swan, Cynthia L; Sistonen, Lea

    2015-01-01

    Maintenance of cellular homeostasis depends upon several pathways that allow a cell to respond and adapt to both environmental stress and changes in metabolic status. New work in this issue of The EMBO Journal reveals a mechanism of cross talk between heat shock factor 1 (HSF1), the primary regulator of the proteotoxic stress response, and AMP-activated protein kinase (AMPK), the primary sensor in the metabolic stress response.

  20. ATM Couples Replication Stress and Metabolic Reprogramming during Cellular Senescence

    Directory of Open Access Journals (Sweden)

    Katherine M. Aird

    2015-05-01

    Full Text Available Replication stress induced by nucleotide deficiency plays an important role in cancer initiation. Replication stress in primary cells typically activates the cellular senescence tumor-suppression mechanism. Senescence bypass correlates with development of cancer, a disease characterized by metabolic reprogramming. However, the role of metabolic reprogramming in the cellular response to replication stress has been little explored. Here, we report that ataxia telangiectasia mutated (ATM plays a central role in regulating the cellular response to replication stress by shifting cellular metabolism. ATM inactivation bypasses senescence induced by replication stress triggered by nucleotide deficiency. This was due to restoration of deoxyribonucleotide triphosphate (dNTP levels through both upregulation of the pentose phosphate pathway via increased glucose-6-phosphate dehydrogenase (G6PD activity and enhanced glucose and glutamine consumption. These phenotypes were mediated by a coordinated suppression of p53 and upregulation of c-MYC downstream of ATM inactivation. Our data indicate that ATM status couples replication stress and metabolic reprogramming during senescence.

  1. How do K-RAS-activated cells evade cellular defense mechanisms?

    Science.gov (United States)

    Lee, Y-S; Bae, S-C

    2016-02-18

    Lung adenocarcinomas, like other cancers, develop through the accumulation of epigenetic and genetic alterations. Numerous studies have shown that K-RAS mutation is among the most important early events in carcinogenesis of the lung. However, it is also well established that growth-stimulating signals feed back into growth-suppressing pathways, and any imbalance in these signaling networks will cause the cell to exit the cell cycle, thereby preventing uncontrolled cell growth. How, then, do K-RAS-activated cells evade cellular defense mechanisms? To answer this question, it is necessary to identify the molecular event(s) responsible for the development of early dysplastic lesions that are unable to defend against aberrant oncogene activation. Lineage-determining transcriptional regulators govern differentiation status during normal lung development, as well as in lung adenocarcinoma. Among the genes involved in K-RAS-induced lung tumorigenesis, RUNX3 is unique: inactivation of Runx3 in mouse lung induces lung adenoma and abrogates the ARF-p53 pathway. This observation raises the possibility of intimate cross-talk between the differentiation program and oncogene surveillance. In this review, we summarized evidences suggesting that K-RAS-activated cells do not evade cellular defense mechanisms per se; instead, cells with K-RAS mutations are selected only if they occur in cells in which defense mechanism is abrogated.

  2. Molecular and cellular control of cell death and defense signaling in pepper.

    Science.gov (United States)

    Choi, Hyong Woo; Hwang, Byung Kook

    2015-01-01

    Pepper (Capsicum annuum L.) provides a good experimental system for studying the molecular and functional genomics underlying the ability of plants to defend themselves against microbial pathogens. Cell death is a genetically programmed response that requires specific host cellular factors. Hypersensitive response (HR) is defined as rapid cell death in response to a pathogen attack. Pepper plants respond to pathogen attacks by activating genetically controlled HR- or disease-associated cell death. HR cell death, specifically in incompatible interactions between pepper and Xanthomonas campestris pv. vesicatoria, is mediated by the molecular genetics and biochemical machinery that underlie pathogen-induced cell death in plants. Gene expression profiles during the HR-like cell death response, virus-induced gene silencing and transient and transgenic overexpression approaches are used to isolate and identify HR- or disease-associated cell death genes in pepper plants. Reactive oxygen species, nitric oxide, cytosolic calcium ion and defense-related hormones such as salicylic acid, jasmonic acid, ethylene and abscisic acid are involved in the execution of pathogen-induced cell death in plants. In this review, we summarize recent molecular and cellular studies of the pepper cell death-mediated defense response, highlighting the signaling events of cell death in disease-resistant pepper plants. Comprehensive knowledge and understanding of the cellular functions of pepper cell death response genes will aid the development of novel practical approaches to enhance disease resistance in pepper, thereby helping to secure the future supply of safe and nutritious pepper plants worldwide.

  3. Chronic pain, perceived stress, and cellular aging: an exploratory study

    Directory of Open Access Journals (Sweden)

    Sibille Kimberly T

    2012-02-01

    Full Text Available Abstract Background Chronic pain conditions are characterized by significant individual variability complicating the identification of pathophysiological markers. Leukocyte telomere length (TL, a measure of cellular aging, is associated with age-related disease onset, psychosocial stress, and health-related functional decline. Psychosocial stress has been associated with the onset of chronic pain and chronic pain is experienced as a physical and psychosocial stressor. However, the utility of TL as a biological marker reflecting the burden of chronic pain and psychosocial stress has not yet been explored. Findings The relationship between chronic pain, stress, and TL was analyzed in 36 ethnically diverse, older adults, half of whom reported no chronic pain and the other half had chronic knee osteoarthritis (OA pain. Subjects completed a physical exam, radiographs, health history, and psychosocial questionnaires. Blood samples were collected and TL was measured by quantitative polymerase chain reaction (qPCR. Four groups were identified characterized by pain status and the Perceived Stress Scale scores: 1 no pain/low stress, 2 no pain/high stress, chronic pain/low stress, and 4 chronic pain/high stress. TL differed between the pain/stress groups (p = 0.01, controlling for relevant covariates. Specifically, the chronic pain/high stress group had significantly shorter TL compared to the no pain/low stress group. Age was negatively correlated with TL, particularly in the chronic pain/high stress group (p = 0.03. Conclusions Although preliminary in nature and based on a modest sample size, these findings indicate that cellular aging may be more pronounced in older adults experiencing high levels of perceived stress and chronic pain.

  4. Dichloroacetate Decreases Cell Health and Activates Oxidative Stress Defense Pathways in Rat Alveolar Type II Pneumocytes

    Directory of Open Access Journals (Sweden)

    Alexis Valauri-Orton

    2015-01-01

    Full Text Available Dichloroacetate (DCA is a water purification byproduct that is known to be hepatotoxic and hepatocarcinogenic and to induce peripheral neuropathy and damage macrophages. This study characterizes the effects of the haloacetate on lung cells by exposing rat alveolar type II (L2 cells to 0–24 mM DCA for 6–24 hours. Increasing DCA concentration and the combination of increasing DCA concentration plus longer exposures decrease measures of cellular health. Length of exposure has no effect on oxidative stress biomarkers, glutathione, SOD, or CAT. Increasing DCA concentration alone does not affect total glutathione or its redox ratio but does increase activity in the SOD/CAT oxidative stress defense pathway. These data suggest that alveolar type II cells rely on SOD and CAT more than glutathione to combat DCA-induced stress.

  5. Interplay between inflammation and cellular stress triggered by Flaviviridae viruses

    Directory of Open Access Journals (Sweden)

    Ana Luiza Chaves Valadão

    2016-08-01

    Full Text Available Flaviviruses, from Flaviviridae virus family, comprises several human pathogens, including Dengue, Zika, Yellow Fever, West Nile and Japanese Encephalitis viruses. Those are enveloped, single-stranded positive sense RNA viruses, and replicate mostly in intracellular compartments associated to endoplasmic reticulum (ER and Golgi complex. Virus replication results in abundant viral RNAs and proteins, which are recognized by cellular mechanisms evolved to prevent virus infection, resulting in inflammation and stress responses. Virus RNA molecules are sensed by Toll-like receptors (TLRs, RIG-I-like receptors (RIG-I and MDA5 and RNA-dependent protein kinases (PKR, inducing the production of inflammatory mediators and interferons. Simultaneously, the synthesis of virus RNA and proteins are distinguished in different compartments such as mitochondria, ER and cytoplasmic granules, triggering intracellular stress pathways, including oxidative stress, UPR pathway, and stress granules assembly. Here, we review the new findings that connect the inflammatory pathways to cellular stress sensors and the strategies of Flaviviridae members to counteract these cellular mechanisms and escape immune response.

  6. Interplay between Inflammation and Cellular Stress Triggered by Flaviviridae Viruses.

    Science.gov (United States)

    Valadão, Ana L C; Aguiar, Renato S; de Arruda, Luciana B

    2016-01-01

    The Flaviviridae family comprises several human pathogens, including Dengue, Zika, Yellow Fever, West Nile, Japanese Encephalitis viruses, and Hepatitis C Virus. Those are enveloped, single-stranded positive sense RNA viruses, which replicate mostly in intracellular compartments associated to endoplasmic reticulum (ER) and Golgi complex. Virus replication results in abundant viral RNAs and proteins, which are recognized by cellular mechanisms evolved to prevent virus infection, resulting in inflammation and stress responses. Virus RNA molecules are sensed by Toll-like receptors (TLRs), RIG-I-like receptors (RIG-I and MDA5) and RNA-dependent protein kinases (PKR), inducing the production of inflammatory mediators and interferons. Simultaneously, the synthesis of virus RNA and proteins are distinguished in different compartments such as mitochondria, ER and cytoplasmic granules, triggering intracellular stress pathways, including oxidative stress, unfolded protein response pathway, and stress granules assembly. Here, we review the new findings that connect the inflammatory pathways to cellular stress sensors and the strategies of Flaviviridae members to counteract these cellular mechanisms and escape immune response.

  7. Glycerol stress in Saccharomyces cerevisiae: Cellular responses and evolved adaptations.

    Science.gov (United States)

    Mattenberger, Florian; Sabater-Muñoz, Beatriz; Hallsworth, John E; Fares, Mario A

    2017-03-01

    Glycerol synthesis is key to central metabolism and stress biology in Saccharomyces cerevisiae, yet the cellular adjustments needed to respond and adapt to glycerol stress are little understood. Here, we determined impacts of acute and chronic exposures to glycerol stress in S. cerevisiae. Glycerol stress can result from an increase of glycerol concentration in the medium due to the S. cerevisiae fermenting activity or other metabolic activities. Acute glycerol-stress led to a 50% decline in growth rate and altered transcription of more than 40% of genes. The increased genetic diversity in S. cerevisiae population, which had evolved in the standard nutrient medium for hundreds of generations, led to an increase in growth rate and altered transcriptome when such population was transferred to stressful media containing a high concentration of glycerol; 0.41 M (0.990 water activity). Evolution of S. cerevisiae populations during a 10-day period in the glycerol-containing medium led to transcriptome changes and readjustments to improve control of glycerol flux across the membrane, regulation of cell cycle, and more robust stress response; and a remarkable increase of growth rate under glycerol stress. Most of the observed regulatory changes arose in duplicated genes. These findings elucidate the physiological mechanisms, which underlie glycerol-stress response, and longer-term adaptations, in S. cerevisiae; they also have implications for enigmatic aspects of the ecology of this otherwise well-characterized yeast. © 2016 Society for Applied Microbiology and John Wiley & Sons Ltd.

  8. Cellular stress responses for monitoring and modulating ageing

    DEFF Research Database (Denmark)

    Demirovic, Dino; Schnebert, Sylvianne; Nizard, Carine

    2013-01-01

    , development and ageing. Our aim is to define and establish the immediate and delayed stress profiles of normal human skin fibroblasts undergoing ageing in vitro. This is done efficiently by using various cellular, molecular and antibody-based detection methods, combined with functional assays, such as wound...... healing in vitro by fibroblasts, and induction of differentiation of telomerase-immortalised stem cells. Furthermore, immediate and delayed stress profiles need to be established at several age points during the replicative senescence of cells in culture, which can then be the basis for testing potential...... biochemical methods, detecting one or more proteins exclusively involved in the specific stress response pathways. The results indicate that the ageing phenotype is a result of an ineffective probability for cells to respond to stress. http://dx.doi.org/10.1016/j.freeradbiomed.2013.08.023...

  9. Insulin resistance as a physiological defense against metabolic stress

    DEFF Research Database (Denmark)

    Nolan, Christopher J; Ruderman, Neil B; Kahn, Steven E

    2015-01-01

    challenging subgroup of patients with T2D who are overweight or obese with insulin resistance (IR) and the most refractory hyperglycemia due to an inability to change lifestyle to reverse positive energy balance. For this subgroup of patients with T2D, we question the dogma that IR is primarily harmful...... with intensive insulin therapy, could therefore be harmful. Treatments that nutrient off-load to lower glucose are more likely to be beneficial. The concepts of "IR as an adaptive defense mechanism" and "insulin-induced metabolic stress" may provide explanation for some of the unexpected outcomes of recent major...

  10. Defense mechanisms against oxidative stress in Coxiella burnetii: adaptation to a unique intracellular niche.

    Science.gov (United States)

    Mertens, Katja; Samuel, James E

    2012-01-01

    Survival of intracellular pathogenic bacteria depends on the ability to resist host-mediated degradation and to generate a replicative niche within the host. Usually, after internalization by professional phagocytic cells, the bacteria containing vacuole or phagosome traffics through the endocytic pathway, progressively acidifies and develops into a degradative mature phagolysosome. In this environment bacteria are exposed to a wide variety of anti-microbial agents, such as defensins, proteases, and reactive oxygen species (ROS) and reactive nitrogen species (RNS). Most parasitizing bacteria have evolved strategies to interfere with this maturation process and to direct the development of an environment that supports survival and replication. C. burnetii also follows this paradigm, but directs the biogenesis of a unique parasitophorous vacuole (PV), which resembles, yet is distinct from a terminal phagolysosome. Within the environment of the PV, C. burnetii is exposed to varying levels of ROS and RNS, which represent the primary defense mechanism of the host cell against this invading microorganism. Major mediators for ROS and RNS are superoxide (O (2) (-) ) and nitric oxide (NO(*)), generated by the cellular NADPH oxidase (phox) and inducible nitric oxide synthase (iNOS), respectively. C. burnetii employs several strategies to evade oxidative stress; on the host side (i) delaying phagolysosome fusion and (ii) inhibiting cellular NADPH oxidase. On the bacterial side, maintaining genome stability by (iii) evolving a preference for a low iron environment, (iv) expressing a minimal and likely crucial set of DNA repair genes and (v) detoxifying the PV by ROS and RNS degrading enzymes. Overall defense mechanisms in C. burnetii against oxidative and nitrosative stress and the regulation thereof are not fully defined and our knowledge is mainly based on genome sequence information. Comparison with E. coli as a model bacterium reveals that defense strategies of C. burnetii

  11. Heavy Metal Stress and Some Mechanisms of Plant Defense Response

    Directory of Open Access Journals (Sweden)

    Abolghassem Emamverdian

    2015-01-01

    Full Text Available Unprecedented bioaccumulation and biomagnification of heavy metals (HMs in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS. This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs or metallothioneins (MTs metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants.

  12. Heavy Metal Stress and Some Mechanisms of Plant Defense Response

    Science.gov (United States)

    Emamverdian, Abolghassem; Ding, Yulong; Mokhberdoran, Farzad; Xie, Yinfeng

    2015-01-01

    Unprecedented bioaccumulation and biomagnification of heavy metals (HMs) in the environment have become a dilemma for all living organisms including plants. HMs at toxic levels have the capability to interact with several vital cellular biomolecules such as nuclear proteins and DNA, leading to excessive augmentation of reactive oxygen species (ROS). This would inflict serious morphological, metabolic, and physiological anomalies in plants ranging from chlorosis of shoot to lipid peroxidation and protein degradation. In response, plants are equipped with a repertoire of mechanisms to counteract heavy metal (HM) toxicity. The key elements of these are chelating metals by forming phytochelatins (PCs) or metallothioneins (MTs) metal complex at the intra- and intercellular level, which is followed by the removal of HM ions from sensitive sites or vacuolar sequestration of ligand-metal complex. Nonenzymatically synthesized compounds such as proline (Pro) are able to strengthen metal-detoxification capacity of intracellular antioxidant enzymes. Another important additive component of plant defense system is symbiotic association with arbuscular mycorrhizal (AM) fungi. AM can effectively immobilize HMs and reduce their uptake by host plants via binding metal ions to hyphal cell wall and excreting several extracellular biomolecules. Additionally, AM fungi can enhance activities of antioxidant defense machinery of plants. PMID:25688377

  13. Silymarin Suppresses Cellular Inflammation By Inducing Reparative Stress Signaling

    Energy Technology Data Exchange (ETDEWEB)

    Lovelace, Erica S.; Wagoner, Jessica; MacDonald, James; Bammler, Theo; Bruckner, Jacob; Brownell, Jessica; Beyer, Richard; Zink, Erika M.; Kim, Young-Mo; Kyle, Jennifer E.; Webb-Robertson, Bobbie-Jo M.; Waters, Katrina M.; Metz, Thomas O.; Farin, Federico; Oberlies, Nicholas H.; Polyak, Steve

    2015-08-28

    Silymarin (SM), a natural product, is touted as a liver protectant and preventer of both chronic inflammation and diseases. To define how SM elicits these effects at a systems level, we performed transcriptional profiling, metabolomics, and signaling studies in human liver and T cell lines. Multiple pathways associated with cellular stress and metabolism were modulated by SM treatment within 0.5 to four hours: activation of Activating Transcription Factor 4 (ATF-4) and adenosine monophosphate protein kinase (AMPK) and inhibition of mammalian target of rapamycin (mTOR) signaling, the latter being associated with induction of DNA-damage-inducible transcript 4 (DDIT4). Metabolomics analyses revealed suppression of glycolytic, TCA cycle, and amino acid metabolism by SM treatment. Antiinflammatory effects arose with prolonged (i.e. 24 hours) SM exposure, with suppression of multiple proinflammatory mRNAs and nuclear factor kappa B (NF-κB) and forkhead box O (FOXO) signaling. Studies with murine knock out cells revealed that SM inhibition of both mTOR and NF-κB was partially AMPK dependent, while SM inhibition of the mTOR pathway in part required DDIT4. Thus, SM activates stress and repair responses that culminate in an anti-inflammatory phenotype. Other natural products induced similar stress responses, which correlated with their ability to suppress inflammation. Therefore, natural products like SM may be useful as tools to define how metabolic, stress, and repair pathways regulate cellular inflammation.

  14. Plant Nucleolar Stress Response, a New Face in the NAC-Dependent Cellular Stress Responses

    Directory of Open Access Journals (Sweden)

    Iwai Ohbayashi

    2018-01-01

    Full Text Available The nucleolus is the most prominent nuclear domain, where the core processes of ribosome biogenesis occur vigorously. All these processes are finely orchestrated by many nucleolar factors to build precisely ribosome particles. In animal cells, perturbations of ribosome biogenesis, mostly accompanied by structural disorders of the nucleolus, cause a kind of cellular stress to induce cell cycle arrest, senescence, or apoptosis, which is called nucleolar stress response. The best-characterized pathway of this stress response involves p53 and MDM2 as key players. p53 is a crucial transcription factor that functions in response to not only nucleolar stress but also other cellular stresses such as DNA damage stress. These cellular stresses release p53 from the inhibition by MDM2, an E3 ubiquitin ligase targeting p53, in various ways, which leads to p53-dependent activation of a set of genes. In plants, genetic impairments of ribosome biogenesis factors or ribosome components have been shown to cause characteristic phenotypes, including a narrow and pointed leaf shape, implying a common signaling pathway connecting ribosomal perturbations and certain aspects of growth and development. Unlike animals, however, plants have neither p53 nor MDM2 family proteins. Then the question arises whether plant cells have a nucleolar stress response pathway. In recent years, it has been reported that several members of the plant-specific transcription factor family NAC play critical roles in the pathways responsive to various cellular stresses. In this mini review, we outline the plant cellular stress response pathways involving NAC transcription factors with reference to the p53-MDM2-dependent pathways of animal cells, and discuss the possible involvement of a plant-unique, NAC-mediated pathway in the nucleolar stress response in plants.

  15. Genetically-encoded biosensors for monitoring cellular stress in bioprocessing.

    Science.gov (United States)

    Polizzi, Karen M; Kontoravdi, Cleo

    2015-02-01

    With the current wealth of transcriptomic data, it is possible to design genetically-encoded biosensors for the detection of stress responses and apply these to high-throughput bioprocess development and monitoring of cellular health. Such biosensors can sense extrinsic factors such as nutrient or oxygen deprivation and shear stress, as well as intrinsic stress factors like oxidative damage and unfolded protein accumulation. Alongside, there have been developments in biosensing hardware and software applicable to the field of genetically-encoded biosensors in the near future. This review discusses the current state-of-the-art in biosensors for monitoring cultures during biological manufacturing and the future challenges for the field. Connecting the individual achievements into a coherent whole will enable the application of genetically-encoded biosensors in industry. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Oxidative Damage and Cellular Defense Mechanisms in Sea Urchin Models of Aging

    Science.gov (United States)

    Du, Colin; Anderson, Arielle; Lortie, Mae; Parsons, Rachel; Bodnar, Andrea

    2013-01-01

    The free radical or oxidative stress theory of aging proposes that the accumulation of oxidative cellular damage is a major contributor to the aging process and a key determinant of species longevity. This study investigates the oxidative stress theory in a novel model for aging research, the sea urchin. Sea urchins present a unique model for the study of aging due to the existence of species with tremendously different natural life spans including some species with extraordinary longevity and negligible senescence. Cellular oxidative damage, antioxidant capacity and proteasome enzyme activities were measured in the tissues of three sea urchin species: short-lived Lytechinus variegatus, long-lived Strongylocentrotus franciscanus and Strongylocentrotus purpuratus which has an intermediate lifespan. Levels of protein carbonyls and 4-hydroxynonenal (HNE) measured in tissues (muscle, nerve, esophagus, gonad, coelomocytes, ampullae) and 8-hydroxy-2’-deoxyguanosine (8-OHdG) measured in cell-free coelomic fluid showed no general increase with age. The fluorescent age-pigment lipofuscin measured in muscle, nerve and esophagus, increased with age however it appeared to be predominantly extracellular. Antioxidant mechanisms (total antioxidant capacity, superoxide dismutase) and proteasome enzyme activities were maintained with age. In some instances, levels of oxidative damage were lower and antioxidant activity higher in cells or tissues of the long-lived species compared to the short-lived species, however further studies are required to determine the relationship between oxidative damage and longevity in these animals. Consistent with the predictions of the oxidative stress theory of aging, the results suggest that negligible senescence is accompanied by a lack of accumulation of cellular oxidative damage with age and maintenance of antioxidant capacity and proteasome enzyme activities may be important mechanisms to mitigate damage. PMID:23707327

  17. Human Cytomegalovirus: Coordinating Cellular Stress, Signaling, and Metabolic Pathways.

    Science.gov (United States)

    Shenk, Thomas; Alwine, James C

    2014-11-01

    Viruses face a multitude of challenges when they infect a host cell. Cells have evolved innate defenses to protect against pathogens, and an infecting virus may induce a stress response that antagonizes viral replication. Further, the metabolic, oxidative, and cell cycle state may not be conducive to the viral infection. But viruses are fabulous manipulators, inducing host cells to use their own characteristic mechanisms and pathways to provide what the virus needs. This article centers on the manipulation of host cell metabolism by human cytomegalovirus (HCMV). We review the features of the metabolic program instituted by the virus, discuss the mechanisms underlying these dramatic metabolic changes, and consider how the altered program creates a synthetic milieu that favors efficient HCMV replication and spread.

  18. Histamine modulates the cellular stress response in yeast.

    Science.gov (United States)

    Delitheos, Basil; Papamichael, Konstantinos; Tiligada, Ekaterini

    2010-04-01

    The cellular stress response is a universal protective reaction to adverse environmental or microenvironmental conditions, such as heat and drugs, associated in part with the highly conserved heat shock proteins (HSPs). Histamine is a key inflammatory mediator derived from L: -histidine that governs vital cellular processes beyond inflammation, while recent evidence implies additional actions in both prokaryotes and eukaryotes. This study explored the possible role of histamine in the heat shock response in yeast, an established experimental model for the pharmacological investigation of the cellular stress response. The response was evaluated by determining growth and viability of post-logarithmic phase grown yeast cultures after heat shock at 53 degrees C for 30 min. Thermal preconditioning at 37 degrees C for 2 h served as a positive control. The effect of histamine was investigated following long-term administration through the post-logarithmic phase of growth or short-term administration for 2 h prior to heat shock. Short-term treatment with 1 mM histamine resulted in de novo protein synthesis-dependent acquisition of thermotolerance, while lower doses or long-term administration of histamine failed to induce the heat-resistant phenotype. Preliminary investigation of HSP104, HSP70 and HSP60 expression by western blotting showed an increase of these proteins after thermal preconditioning. However, a differential HSP and tubulin expression appeared to underlie the response of yeast cells to histamine. In conclusion, histamine was capable of inducing the adaptive phenotype, while the contribution of HSPs and tubulin and the potential implications remain largely elusive.

  19. Adaptive Cellular Stress Pathways as Therapeutic Targets of Dietary Phytochemicals: Focus on the Nervous System

    Science.gov (United States)

    Jo, Dong-Gyu; Park, Daeui; Chung, Hae Young

    2014-01-01

    During the past 5 decades, it has been widely promulgated that the chemicals in plants that are good for health act as direct scavengers of free radicals. Here we review evidence that favors a different hypothesis for the health benefits of plant consumption, namely, that some phytochemicals exert disease-preventive and therapeutic actions by engaging one or more adaptive cellular response pathways in cells. The evolutionary basis for the latter mechanism is grounded in the fact that plants produce natural antifeedant/noxious chemicals that discourage insects and other organisms from eating them. However, in the amounts typically consumed by humans, the phytochemicals activate one or more conserved adaptive cellular stress response pathways and thereby enhance the ability of cells to resist injury and disease. Examplesof such pathways include those involving the transcription factors nuclear factor erythroid 2-related factor 2, nuclear factor-κB, hypoxia-inducible factor 1α, peroxisome proliferator-activated receptor γ, and forkhead box subgroup O, as well as the production and action of trophic factors and hormones. Translational research to develop interventions that target these pathways may lead to new classes of therapeutic agents that act by stimulating adaptive stress response pathways to bolster endogenous defenses against tissue injury and disease. Because neurons are particularly sensitive to potentially noxious phytochemicals, we focus on the nervous system but also include findings from other cell types in which actions of phytochemicals on specific signal transduction pathways have been more thoroughly studied. PMID:24958636

  20. Cellular Stress to Low Gamma-ray Dose

    International Nuclear Information System (INIS)

    Manzanares-Acuna, E.; Vega-Carrillo, H. R.; Letechipia de Leon, C.; Guzman Enriquez, L. J.; Garcia-Talavera, M.

    2004-01-01

    The purpose of this study was to evaluate the effect of low gamma ray intensity upon Hsp 70 expression in human lymphocytes. the heat shock proteins (Hsp) family, are a group of proteins present in all living organism, therefore there are highly conserved and are related to adaptation and evolution. At cellular level these proteins acts as chaperones correcting denatured proteins. when a stress agent, such heavy metals, UV, heat, etc. is affecting a cell a response to this aggression is triggered through overexpression of Hsp. Several studies has been carried out in which the cellular effect are observed, mostly of these studies uses large doses, but very few studies are related with low doses. Blood of healthy volunteers was obtained and the lymphocytes were isolated by ficoll-histopaque gradient. Experimental lots were irradiated in a ''137Cs gamma-ray. Hsp70 expression was found since 0.5 cGy, indicating a threshold to very low doses of gamma rays. (Author) 27 refs

  1. Environmentally persistent free radicals amplify ultrafine particle mediated cellular oxidative stress and cytotoxicity

    Directory of Open Access Journals (Sweden)

    Balakrishna Shrilatha

    2009-04-01

    Full Text Available Abstract Background Combustion generated particulate matter is deposited in the respiratory tract and pose a hazard to the lungs through their potential to cause oxidative stress and inflammation. We have previously shown that combustion of fuels and chlorinated hydrocarbons produce semiquinone-type radicals that are stabilized on particle surfaces (i.e. environmentally persistent free radicals; EPFRs. Because the composition and properties of actual combustion-generated particles are complex, heterogeneous in origin, and vary from day-to-day, we have chosen to use surrogate particle systems. In particular, we have chosen to use the radical of 2-monochlorophenol (MCP230 as the EPFR because we have previously shown that it forms a EPFR on Cu(IIO surfaces and catalyzes formation of PCDD/F. To understand the physicochemical properties responsible for the adverse pulmonary effects of combustion by-products, we have exposed human bronchial epithelial cells (BEAS-2B to MCP230 or the CuO/silica substrate. Our general hypothesis was that the EPFR-containing particle would have greater toxicity than the substrate species. Results Exposure of BEAS-2B cells to our combustion generated particle systems significantly increased reactive oxygen species (ROS generation and decreased cellular antioxidants resulting in cell death. Resveratrol treatment reversed the decline in cellular glutathione (GSH, glutathione peroxidase (GPx, and superoxide dismutase (SOD levels for both types of combustion-generated particle systems. Conclusion The enhanced cytotoxicity upon exposure to MCP230 correlated with its ability to generate more cellular oxidative stress and concurrently reduce the antioxidant defenses of the epithelial cells (i.e. reduced GSH, SOD activity, and GPx. The EPFRs in MCP230 also seem to be of greater biological concern due to their ability to induce lipid peroxidation. These results are consistent with the oxidizing nature of the CuO/silica ultrafine

  2. Induction of Osmoadaptive Mechanisms and Modulation of Cellular Physiology Help Bacillus licheniformis Strain SSA 61 Adapt to Salt Stress

    Energy Technology Data Exchange (ETDEWEB)

    Paul, Sangeeta; Aggarwal, Chetana; Thakur, Jyoti Kumar; Bandeppa, G. S.; Khan, Md. Aslam; Pearson, Lauren M.; Babnigg, Gyorgy; Giometti, Carol S.; Joachimiak, Andrzej

    2015-01-06

    Bacillus licheniformis strain SSA 61, originally isolated from Sambhar salt lake, was observed to grow even in the presence of 25 % salt stress. Osmoadaptive mechanisms of this halotolerant B. licheniformis strain SSA 61, for long-term survival and growth under salt stress, were determined. Proline was the preferentially accumulated compatible osmolyte. There was also increased accumulation of antioxidants ascorbic acid and glutathione. Among the different antioxidative enzymes assayed, superoxide dismutase played the most crucial role in defense against salt-induced stress in the organism. Adaptation to stress by the organism involved modulation of cellular physiology at various levels. There was enhanced expression of known proteins playing essential roles in stress adaptation, such as chaperones DnaK and GroEL, and general stress protein YfkM and polynucleotide phosphorylase/polyadenylase. Proteins involved in amino acid biosynthetic pathway, ribosome structure, and peptide elongation were also overexpressed. Salt stress-induced modulation of expression of enzymes involved in carbon metabolism was observed. There was up-regulation of a number of enzymes involved in generation of NADH and NADPH, indicating increased cellular demand for both energy and reducing power.

  3. Electronic cigarette aerosols suppress cellular antioxidant defenses and induce significant oxidative DNA damage.

    Directory of Open Access Journals (Sweden)

    Vengatesh Ganapathy

    Full Text Available Electronic cigarette (EC aerosols contain unique compounds in addition to toxicants and carcinogens traditionally found in tobacco smoke. Studies are warranted to understand the public health risks of ECs.The aim of this study was to determine the genotoxicity and the mechanisms induced by EC aerosol extracts on human oral and lung epithelial cells.Cells were exposed to EC aerosol or mainstream smoke extracts and DNA damage was measured using the primer anchored DNA damage detection assay (q-PADDA and 8-oxo-dG ELISA assay. Cell viability, reactive oxygen species (ROS and total antioxidant capacity (TAC were measured using standard methods. mRNA and protein expression were evaluated by RT-PCR and western blot, respectively.EC aerosol extracts induced DNA damage in a dose-dependent manner, but independently of nicotine concentration. Overall, EC aerosol extracts induced significantly less DNA damage than mainstream smoke extracts, as measured by q-PADDA. However, the levels of oxidative DNA damage, as indicated by the presence of 8-oxo-dG, a highly mutagenic DNA lesion, were similar or slightly higher after exposure to EC aerosol compared to mainstream smoke extracts. Mechanistically, while exposure to EC extracts significantly increased ROS, it decreased TAC as well as the expression of 8-oxoguanine DNA glycosylase (OGG1, an enzyme essential for the removal of oxidative DNA damage.Exposure to EC aerosol extracts suppressed the cellular antioxidant defenses and led to significant DNA damage. These findings emphasize the urgent need to investigate the potential long-term cancer risk of exposure to EC aerosol for vapers and the general public.

  4. Ego Defenses and Reaction to Stress: A Validation Study of the Defense Mechanisms Inventory

    Science.gov (United States)

    Gleser, Goldine C.; Sacks, Marilyn

    1973-01-01

    This study investigated the relationship between scores on the Defense Mechanisms Inventory and reaction to an experimental conflict situation in which Ss (85 undergraduate college students) were led to believe that their performance was deficient on a new test of scholastic ability. The pattern of defenses predicted residual posttest estimates of…

  5. Defense Profiles in Adaptation Process to Sport Competition and Their Relationships with Coping, Stress and Control.

    Science.gov (United States)

    Nicolas, Michel; Martinent, Guillaume; Drapeau, Martin; Chahraoui, Khadija; Vacher, Philippe; de Roten, Yves

    2017-01-01

    The purpose of this study was to identify the potentially distinct defense profiles of athletes in order to provide insight into the complex associations that can exist between defenses and other important variables tied to performance in sports (e.g., coping, perceived stress and control) and to further our understanding of the complexity of the adaptation process in sports. Two hundred and ninety-six ( N = 296) athletes participated in a naturalistic study that involved a highly stressful situation: a sports competition. Participants were assessed before and after the competition. Hierarchical cluster analysis and a series of MANOVAs with post hoc comparisons indicated two stable defense profiles (high and low defense profiles) of athletes both before and during sport competition. These profiles differed with regards to coping, stress and control. Athletes with high defense profiles reported higher levels of coping strategies, perceived stress and control than athletes with low defense profiles. This study confirmed that defenses are involved in the psychological adaptation process and that research and intervention should not be based only on coping, but rather must include defense mechanisms in order to improve our understanding of psychological adaptation in competitive sports.

  6. Antioxidative defense

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2011-01-01

    Full Text Available Free radicals occur constantly during metabolism and take part in numerous physiological processes, such as: intra-cellular and inter-cellular signalization, gene expression, removal of damaged or senescent cells, and control of the tone of blood vessels. However, there is an increased quantity of free radicals in situations of so-called oxidative stress, when they cause serious damage to cellular membranes (peroxidation of their lipids, damage of membrane proteins, and similar, to interior cellular protein molecules, as well as DNA molecules and carbohydrates. This is precisely why the organism has developed numerous mechanisms for removing free radicals and/or preventing their production. Some of these are enzyme-related and include superoxide-dismutase, catalase, glutathione-peroxidase, and others. Other, non-enzyme mechanisms, imply antioxidative activities of vitamins E and C, provitamin A, coenzyme Q, reduced glutation, and others. Since free radicals can leave the cell that has produced them and become dispersed throughout the body, in addition to antioxidative defense that functions within cellular structures, antioxidant extra-cellular defense has also been developed. This is comprised by: transferrin, lactoferrin, haptoglobin, hemopexin, ceruloplasmin, albumins, extra-cellular isoform SOD, extracellular glutathione-peroxidase, glucose, bilirubin, urates, and many other molecules.

  7. Engineering oxidative stress defense pathways to build a robust lipid production platform in Yarrowia lipolytica.

    Science.gov (United States)

    Xu, Peng; Qiao, Kangjian; Stephanopoulos, Gregory

    2017-07-01

    Microbially derived lipids have recently attracted renewed interests due to their broad applications in production of green diesels, cosmetic additives, and oleochemicals. Metabolic engineering efforts have targeted a large portfolio of biosynthetic pathways to efficiently convert sugar to lipids in oleaginous yeast. In the engineered overproducing strains, endogenous cell metabolism typically generates harmful electrophilic molecules that compromise cell fitness and productivity. Lipids, particularly unsaturated fatty acids, are highly susceptible to oxygen radical attack and the resulting oxidative species are detrimental to cell metabolism and limit lipid productivity. In this study, we investigated cellular oxidative stress defense pathways in Yarrowia lipolytica to further improve the lipid titer, yield, and productivity. Specifically, we determined that coupling glutathione disulfide reductase and glucose-6-phosphate dehydrogenase along with aldehyde dehydrogenase are efficient solutions to combat reactive oxygen and aldehyde stress in Y. lipolytica. With the reported engineering strategies, we were able to synchronize cell growth and lipid production, improve cell fitness and morphology, and achieved industrially-relevant level of lipid titer (72.7 g/L), oil content (81.4%) and productivity (0.97 g/L/h) in controlled bench-top bioreactors. The strategies reported here represent viable steps in the development of sustainable biorefinery platforms that potentially upgrade low value carbons to high value oleochemicals and biofuels. Biotechnol. Bioeng. 2017;114: 1521-1530. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  8. Gene expression profile of oxidative stress and antioxidant defense in lung tissue of patients exposed to sulfur mustard.

    Science.gov (United States)

    Tahmasbpour, Eisa; Ghanei, Mostafa; Qazvini, Ali; Vahedi, Ensieh; Panahi, Yunes

    2016-04-01

    Sulfur mustard (SM) is a potent alkylating agent that targets several organs, especially lung tissue. Although pathological effects of SM on mustard lung have been widely considered, molecular and cellular mechanisms for these pathologies are poorly understood. We investigated changes in expression of genes related to oxidative stress (OS) and antioxidant defense caused by SM in lung tissue of patients. We performed gene expression profiling of OS and antioxidant defense in lung tissue samples from healthy controls (n=5) and SM-exposed patients (n=6). Changes in gene expression were measured using a 96-well RT(2) Profiler ™PCR Array: Human Oxidative Stress and Antioxidant Defense, which arrayed 84 genes functionally involved in cellular OS response. 47 (55.95%) genes were found to be significantly upregulated in patients with mustard lung compared with controls (p<0.05), whereas 7 (8.33%) genes were significantly downregulated (p<0.05). Among the most upregulated genes were OS responsive-1 (OXSR1), forkhead box M1 (FOXM1), and glutathione peroxidase-2 (GPX2), while metallothionein-3 (MT3) and glutathione reductase (GSR) were the most downregulated genes. Expression of hypoxia-induced genes (CYGB and MB), antioxidants and reactive oxygen species (ROS)-producing genes were significantly altered, suggesting an increased oxidative damage in mustard lungs. Mustard lungs were characterized by hypoxia, massive production of ROS, OS, disruption of epithelial cells, surfactant dysfunction, as well as increased risk of lung cancer and pulmonary fibrosis. Oxidative stress induced by ROS is the major mechanism for direct effect of SM exposure on respiratory system. Antioxidant treatment may improve the main features of mustard lungs. Copyright © 2016. Published by Elsevier B.V.

  9. Relative roles of the cellular and humoral responses in the Drosophila host defense against three gram-positive bacterial infections.

    Directory of Open Access Journals (Sweden)

    Nadine T Nehme

    2011-03-01

    Full Text Available Two NF-kappaB signaling pathways, Toll and immune deficiency (imd, are required for survival to bacterial infections in Drosophila. In response to septic injury, these pathways mediate rapid transcriptional activation of distinct sets of effector molecules, including antimicrobial peptides, which are important components of a humoral defense response. However, it is less clear to what extent macrophage-like hemocytes contribute to host defense.In order to dissect the relative importance of humoral and cellular defenses after septic injury with three different gram-positive bacteria (Micrococcus luteus, Enterococcus faecalis, Staphylococcus aureus, we used latex bead pre-injection to ablate macrophage function in flies wildtype or mutant for various Toll and imd pathway components. We found that in all three infection models a compromised phagocytic system impaired fly survival--independently of concomitant Toll or imd pathway activation. Our data failed to confirm a role of the PGRP-SA and GNBP1 Pattern Recognition Receptors for phagocytosis of S. aureus. The Drosophila scavenger receptor Eater mediates the phagocytosis by hemocytes or S2 cells of E. faecalis and S. aureus, but not of M. luteus. In the case of M. luteus and E. faecalis, but not S. aureus, decreased survival due to defective phagocytosis could be compensated for by genetically enhancing the humoral immune response.Our results underscore the fundamental importance of both cellular and humoral mechanisms in Drosophila immunity and shed light on the balance between these two arms of host defense depending on the invading pathogen.

  10. Autophagy as a defense strategy against stress: focus on Paracentrotus lividus sea urchin embryos exposed to cadmium.

    Science.gov (United States)

    Chiarelli, Roberto; Martino, Chiara; Agnello, Maria; Bosco, Liana; Roccheri, Maria Carmela

    2016-01-01

    Autophagy is used by organisms as a defense strategy to face environmental stress. This mechanism has been described as one of the most important intracellular pathways responsible for the degradation and recycling of proteins and organelles. It can act as a cell survival mechanism if the cellular damage is not too extensive or as a cell death mechanism if the damage/stress is irreversible; in the latter case, it can operate as an independent pathway or together with the apoptotic one. In this review, we discuss the autophagic process activated in several aquatic organisms exposed to different types of environmental stressors, focusing on the sea urchin embryo, a suitable system recently included into the guidelines for the use and interpretation of assays to monitor autophagy. After cadmium (Cd) exposure, a heavy metal recognized as an environmental toxicant, the sea urchin embryo is able to adopt different defense mechanisms, in a hierarchical way. Among these, autophagy is one of the main responses activated to preserve the developmental program. Finally, we discuss the interplay between autophagy and apoptosis in the sea urchin embryo, a temporal and functional choice that depends on the intensity of stress conditions.

  11. Drought stress promotes the colonization success of a herbivorous mite that manipulates plant defenses.

    Science.gov (United States)

    Ximénez-Embún, Miguel G; Glas, Joris J; Ortego, Felix; Alba, Juan M; Castañera, Pedro; Kant, Merijn R

    2017-12-01

    Climate change is expected to bring longer periods of drought and this may affect the plant's ability to resist pests. We assessed if water deficit affects the tomato russet mite (TRM; Aculops lycopersici), a key tomato-pest. TRM thrives on tomato by suppressing the plant's jamonate defenses while these defenses typically are modulated by drought stress. We observed that the TRM population grows faster and causes more damage on drought-stressed plants. To explain this observation we measured several nutrients, phytohormones, defense-gene expression and the activity of defensive proteins in plants with or without drought stress or TRM. TRM increased the levels of total protein and several free amino acids. It also promoted the SA-response and upregulated the accumulation of jasmonates but down-regulated the downstream marker genes while promoting the activity of cysteine-but not serine-protease inhibitors, polyphenol oxidase and of peroxidase (POD). Drought stress, in turn, retained the down regulation of JA-marker genes and reduced the activity of serine protease inhibitors and POD, and altered the levels of some free-amino acids. When combined, drought stress antagonized the accumulation of POD and JA by TRM and synergized accumulation of free sugars and SA. Our data show that drought stress interacts with pest-induced primary and secondary metabolic changes and promotes pest performance.

  12. Cellular dislocations patterns in monolike silicon: Influence of stress, time under stress and impurity doping

    Science.gov (United States)

    Oliveira, V. A.; Rocha, M.; Lantreibecq, A.; Tsoutsouva, M. G.; Tran-Thi, T. N.; Baruchel, J.; Camel, D.

    2018-05-01

    Besides the well-known local sub-grain boundaries (SGBs) defects, monolike Si ingots grown by Directional Solidification present distributed background cellular dislocation structures. In the present work, the influence of stress level, time under stress, and doping by O and Ge, on the formation of dislocation cells in monolike silicon, is analysed. This is achieved by performing a comparative study of the dislocation structures respectively obtained during crystallisation of pilot scale monolike ingots on Czochralski (CZ) and monolike seeds, during annealing of Float Zone (FZ), CZ, and 1 × 1020 at/cm3 Ge-doped CZ (GCZ) samples, and during 4-point bending of FZ and GCZ samples at 1300 °C under resolved stresses of 0.3, 0.7 and 1.9 MPa during 1-20 h. Synchrotron X-ray White-beam Topography and Rocking Curve Imaging (RCI) are applied to visualize the dislocation arrangements and to quantify the spatial distribution of the associated lattice distortions. Annealed samples and samples bent under 0.3 MPa present dislocation structures corresponding to transient creep stages where dislocations generated from surface defects are propagating and multiplying in the bulk. The addition of the hardening element Ge is found to block the propagation of dislocations from these surface sources during the annealing test, and to retard dislocation multiplication during bending under 0.3 MPa. On the opposite, cellular structures corresponding to the final stationary creep stage are obtained both in the non-molten seeds and grown part of monolike ingots and in samples bent under 0.7 and 1.9 MPa. A comparative discussion is made of the dynamics of formation of these final dislocation structures during deformation at high temperature and monolike growth.

  13. Plant-Pathogen Effectors: Cellular Probes Interfering with Plant Defenses in Spatial and Temporal Manners

    Science.gov (United States)

    Toruño, Tania Y.; Stergiopoulos, Ioannis; Coaker, Gitta

    2017-01-01

    Plants possess large arsenals of immune receptors capable of recognizing all pathogen classes. To cause disease, pathogenic organisms must be able to overcome physical barriers, suppress or evade immune perception, and derive nutrients from host tissues. Consequently, to facilitate some of these processes, pathogens secrete effector proteins that promote colonization. This review covers recent advances in the field of effector biology, focusing on conserved cellular processes targeted by effectors from diverse pathogens. The ability of effectors to facilitate pathogen entry into the host interior, suppress plant immune perception, and alter host physiology for pathogen benefit is discussed. Pathogens also deploy effectors in a spatial and temporal manner, depending on infection stage. Recent advances have also enhanced our understanding of effectors acting in specific plant organs and tissues. Effectors are excellent cellular probes that facilitate insight into biological processes as well as key points of vulnerability in plant immune signaling networks. PMID:27359369

  14. Expression of stress/defense-related genes in barley grown under space environment

    Science.gov (United States)

    Sugimoto, Manabu; Shagimardanova, Elena; Gusev, Oleg; Bingham, Gail; Levinskikh, Margarita; Sychev, Vladimir

    Plants are exposed to the extreme environment in space, especially space radiation is suspected to induce oxidative stress by generating high-energy free radicals and microgravity would enhance the effect of space radiation, however, current understandings of plant growth and responses on this synergistic effect of radiation and microgravity is limited to a few experiments. In this study, expression of stress/defense-related genes in barley grown under space environment was analyzed by RT-PCR and DNA microarray experiments to understand plant responses and adaptation to space environment and to develop the space stress-tolerant plants. The seeds of barley, Hordeum vulgare L. cv. Haruna nijo, kept in the international space station (ISS) over 4 months, were germinated after 3 days of irrigation in LADA plant growth chamber onboard Russian segment of ISS and the final germination ratio was over 90 %. The height of plants was about 50 to 60 cm and flag leaf has been opened after 26 days of irrigation under 24 hr lighting, showing the similar growth to ground-grown barley. Expression levels of stress/defense-related genes in space-grown barley were compared to those in ground-grown barley by semi-quantitative RT-PCR. In 17 stress/defense-related genes that are up-regulated by oxidative stress or other abiotic stress, only catalase, pathogenesis-related protein 13, chalcone synthase, and phenylalanine ammonia-lyase genes were increased in space-grown barley. DNA microarrya analysis with the GeneChip Barley Genome Array showed the similar expression profiles of the stress/defense-related genes to those by RT-PCR experiment, suggesting that the barley germinated and grown in LADA onboard ISS is not damaged by space environment, especially oxidative stress induced by space radiation and microgravity.

  15. Future Climate CO2 Levels Mitigate Stress Impact on Plants: Increased Defense or Decreased Challenge?

    Science.gov (United States)

    AbdElgawad, Hamada; Zinta, Gaurav; Beemster, Gerrit T S; Janssens, Ivan A; Asard, Han

    2016-01-01

    Elevated atmospheric CO2 can stimulate plant growth by providing additional C (fertilization effect), and is observed to mitigate abiotic stress impact. Although, the mechanisms underlying the stress mitigating effect are not yet clear, increased antioxidant defenses, have been held primarily responsible (antioxidant hypothesis). A systematic literature analysis, including "all" papers [Web of Science (WoS)-cited], addressing elevated CO2 effects on abiotic stress responses and antioxidants (105 papers), confirms the frequent occurrence of the stress mitigation effect. However, it also demonstrates that, in stress conditions, elevated CO2 is reported to increase antioxidants, only in about 22% of the observations (e.g., for polyphenols, peroxidases, superoxide dismutase, monodehydroascorbate reductase). In most observations, under stress and elevated CO2 the levels of key antioxidants and antioxidant enzymes are reported to remain unchanged (50%, e.g., ascorbate peroxidase, catalase, ascorbate), or even decreased (28%, e.g., glutathione peroxidase). Moreover, increases in antioxidants are not specific for a species group, growth facility, or stress type. It seems therefore unlikely that increased antioxidant defense is the major mechanism underlying CO2-mediated stress impact mitigation. Alternative processes, probably decreasing the oxidative challenge by reducing ROS production (e.g., photorespiration), are therefore likely to play important roles in elevated CO2 (relaxation hypothesis). Such parameters are however rarely investigated in connection with abiotic stress relief. Understanding the effect of elevated CO2 on plant growth and stress responses is imperative to understand the impact of climate changes on plant productivity.

  16. Identification of a key role for permeability glycoprotein in enhancing the cellular defense mechanisms of fertilized oocytes.

    Science.gov (United States)

    Martin, Jacinta H; Nixon, Brett; Lord, Tessa; Bromfield, Elizabeth G; Aitken, R John

    2016-09-01

    Double strand breaks (DSBs) are highly damaging DNA lesions that can destabilize the genome and generate a suite of adverse physiological outcomes in the oocyte and early embryo. While it is therefore likely that these cells possess a sophisticated suite of protective mechanisms to ameliorate such damage, the precise nature of these defense systems are yet to be fully elucidated. This study characterizes the sensitivity of the oocyte to etoposide, a chemotherapeutic agent with the ability to elicit DSBs. We demonstrate significant developmental changes in etoposide vulnerability, with fertilization of the oocyte leading to an enhancement of its cellular defense machinery. Using a parthenogenic model we show that this response is mediated, at least in part, by permeability glycoprotein (PGP), an endogenous multidrug efflux transporter that is up-regulated, translocated to the oolemma and phosphorylated upon oocyte activation. Moreover, evidence from dye exclusion assays in the presence of a specific PGP pharmacological inhibitor (PSC833), illustrates that these events effectively increase oocyte efflux activity, thereby enhancing the ability of these cells to exclude genotoxicants capable of eliciting DSB formation. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Discovery of biomarkers for oxidative stress based on cellular metabolomics.

    Science.gov (United States)

    Wang, Ningli; Wei, Jianteng; Liu, Yewei; Pei, Dong; Hu, Qingping; Wang, Yu; Di, Duolong

    2016-07-01

    Oxidative stress has a close relationship with various pathologic physiology phenomena and the potential biomarkers of oxidative stress may provide evidence for clinical diagnosis or disease prevention. Metabolomics was employed to identify the potential biomarkers of oxidative stress. High-performance liquid chromatography-diode array detector, mass spectrometry and partial least squares discriminate analysis were used in this study. The 10, 15 and 13 metabolites were considered to discriminate the model group, vitamin E-treated group and l-glutathione-treated group, respectively. Some of them have been identified, namely, malic acid, vitamin C, reduced glutathione and tryptophan. Identification of other potential biomarkers should be conducted and their physiological significance also needs to be elaborated.

  18. Addition of Alanyl-Glutamine to Dialysis Fluid Restores Peritoneal Cellular Stress Responses - A First-In-Man Trial.

    Directory of Open Access Journals (Sweden)

    Klaus Kratochwill

    Full Text Available Peritonitis and ultrafiltration failure remain serious complications of chronic peritoneal dialysis (PD. Dysfunctional cellular stress responses aggravate peritoneal injury associated with PD fluid exposure, potentially due to peritoneal glutamine depletion. In this randomized cross-over phase I/II trial we investigated cytoprotective effects of alanyl-glutamine (AlaGln addition to glucose-based PDF.In a prospective randomized cross-over design, 20 stable PD outpatients underwent paired peritoneal equilibration tests 4 weeks apart, using conventional acidic, single chamber 3.86% glucose PD fluid, with and without 8 mM supplemental AlaGln. Heat-shock protein 72 expression was assessed in peritoneal effluent cells as surrogate parameter of cellular stress responses, complemented by metabolomics and functional immunocompetence assays.AlaGln restored peritoneal glutamine levels and increased the primary outcome heat-shock protein expression (effect 1.51-fold, CI 1.07-2.14; p = 0.022, without changes in peritoneal ultrafiltration, small solute transport, or biomarkers reflecting cell mass and inflammation. Further effects were glutamine-like metabolomic changes and increased ex-vivo LPS-stimulated cytokine release from healthy donor peripheral blood monocytes. In patients with a history of peritonitis (5 of 20, AlaGln supplementation decreased dialysate interleukin-8 levels. Supplemented PD fluid also attenuated inflammation and enhanced stimulated cytokine release in a mouse model of PD-associated peritonitis.We conclude that AlaGln-supplemented, glucose-based PD fluid can restore peritoneal cellular stress responses with attenuation of sterile inflammation, and may improve peritoneal host-defense in the setting of PD.

  19. Addition of Alanyl-Glutamine to Dialysis Fluid Restores Peritoneal Cellular Stress Responses – A First-In-Man Trial

    Science.gov (United States)

    Boehm, Michael; Herzog, Rebecca; Gruber, Katharina; Lichtenauer, Anton Michael; Kuster, Lilian; Csaicsich, Dagmar; Gleiss, Andreas; Alper, Seth L.; Aufricht, Christoph; Vychytil, Andreas

    2016-01-01

    Background Peritonitis and ultrafiltration failure remain serious complications of chronic peritoneal dialysis (PD). Dysfunctional cellular stress responses aggravate peritoneal injury associated with PD fluid exposure, potentially due to peritoneal glutamine depletion. In this randomized cross-over phase I/II trial we investigated cytoprotective effects of alanyl-glutamine (AlaGln) addition to glucose-based PDF. Methods In a prospective randomized cross-over design, 20 stable PD outpatients underwent paired peritoneal equilibration tests 4 weeks apart, using conventional acidic, single chamber 3.86% glucose PD fluid, with and without 8 mM supplemental AlaGln. Heat-shock protein 72 expression was assessed in peritoneal effluent cells as surrogate parameter of cellular stress responses, complemented by metabolomics and functional immunocompetence assays. Results AlaGln restored peritoneal glutamine levels and increased the primary outcome heat-shock protein expression (effect 1.51-fold, CI 1.07–2.14; p = 0.022), without changes in peritoneal ultrafiltration, small solute transport, or biomarkers reflecting cell mass and inflammation. Further effects were glutamine-like metabolomic changes and increased ex-vivo LPS-stimulated cytokine release from healthy donor peripheral blood monocytes. In patients with a history of peritonitis (5 of 20), AlaGln supplementation decreased dialysate interleukin-8 levels. Supplemented PD fluid also attenuated inflammation and enhanced stimulated cytokine release in a mouse model of PD-associated peritonitis. Conclusion We conclude that AlaGln-supplemented, glucose-based PD fluid can restore peritoneal cellular stress responses with attenuation of sterile inflammation, and may improve peritoneal host-defense in the setting of PD. PMID:27768727

  20. Plant Abiotic Stress Proteomics: The Major Factors Determining Alterations in Cellular Proteome

    Science.gov (United States)

    Kosová, Klára; Vítámvás, Pavel; Urban, Milan O.; Prášil, Ilja T.; Renaut, Jenny

    2018-01-01

    HIGHLIGHTS: Major environmental and genetic factors determining stress-related protein abundance are discussed.Major aspects of protein biological function including protein isoforms and PTMs, cellular localization and protein interactions are discussed.Functional diversity of protein isoforms and PTMs is discussed. Abiotic stresses reveal profound impacts on plant proteomes including alterations in protein relative abundance, cellular localization, post-transcriptional and post-translational modifications (PTMs), protein interactions with other protein partners, and, finally, protein biological functions. The main aim of the present review is to discuss the major factors determining stress-related protein accumulation and their final biological functions. A dynamics of stress response including stress acclimation to altered ambient conditions and recovery after the stress treatment is discussed. The results of proteomic studies aimed at a comparison of stress response in plant genotypes differing in stress adaptability reveal constitutively enhanced levels of several stress-related proteins (protective proteins, chaperones, ROS scavenging- and detoxification-related enzymes) in the tolerant genotypes with respect to the susceptible ones. Tolerant genotypes can efficiently adjust energy metabolism to enhanced needs during stress acclimation. Stress tolerance vs. stress susceptibility are relative terms which can reflect different stress-coping strategies depending on the given stress treatment. The role of differential protein isoforms and PTMs with respect to their biological functions in different physiological constraints (cellular compartments and interacting partners) is discussed. The importance of protein functional studies following high-throughput proteome analyses is presented in a broader context of plant biology. In summary, the manuscript tries to provide an overview of the major factors which have to be considered when interpreting data from proteomic

  1. Dysregulated physiological stress systems and accelerated cellular aging

    NARCIS (Netherlands)

    Révész, D.; Verhoeven, J.; Milaneschi, Y.; de Geus, E.J.C.; Wolkowitz, O.M.; Penninx, B.W.J.H.

    2014-01-01

    Exposure to chronic stressors is associated with accelerated biological aging as indicated by reduced leukocyte telomere length (LTL). This impact could be because of chronic overactivation of the body's physiological stress systems. This study examined the associations between LTL and the immune

  2. Carica Papaya Seed Extract Enhances Cellular Response to Stress ...

    African Journals Online (AJOL)

    Cell death via apoptosis is involved in a wide range of biological and pathological processes and has been associated with oxidative stress in a number of cell systems. Therefore, the present study was carried out to investigate the role of Carica papaya seed (CPS) extract that contains, Benzyl Isothiocyanates, one of the ...

  3. Hormone-regulated defense and stress response networks contribute to heterosis in Arabidopsis F1 hybrids.

    Science.gov (United States)

    Groszmann, Michael; Gonzalez-Bayon, Rebeca; Lyons, Rebecca L; Greaves, Ian K; Kazan, Kemal; Peacock, W James; Dennis, Elizabeth S

    2015-11-17

    Plant hybrids are extensively used in agriculture to deliver increases in yields, yet the molecular basis of their superior performance (heterosis) is not well understood. Our transcriptome analysis of a number of Arabidopsis F1 hybrids identified changes to defense and stress response gene expression consistent with a reduction in basal defense levels. Given the reported antagonism between plant immunity and growth, we suggest that these altered patterns of expression contribute to the greater growth of the hybrids. The altered patterns of expression in the hybrids indicate decreases to the salicylic acid (SA) biosynthesis pathway and increases in the auxin [indole-3-acetic acid (IAA)] biosynthesis pathway. SA and IAA are hormones known to control stress and defense responses as well as plant growth. We found that IAA-targeted gene activity is frequently increased in hybrids, correlating with a common heterotic phenotype of greater leaf cell numbers. Reduced SA concentration and target gene responses occur in the larger hybrids and promote increased leaf cell size. We demonstrated the importance of SA action to the hybrid phenotype by manipulating endogenous SA concentrations. Increasing SA diminished heterosis in SA-reduced hybrids, whereas decreasing SA promoted growth in some hybrids and phenocopied aspects of hybrid vigor in parental lines. Pseudomonas syringae infection of hybrids demonstrated that the reductions in basal defense gene activity in these hybrids does not necessarily compromise their ability to mount a defense response comparable to the parents.

  4. Pyruvate Accumulation Is the First Line of Cell Defense against Heat Stress in a Fungus.

    Science.gov (United States)

    Zhang, Xing; St Leger, Raymond J; Fang, Weiguo

    2017-09-05

    Heat tolerance is well known to be key to fungal survival in many habitats, but our mechanistic understanding of how organisms adapt to heat stress is still incomplete. Using Metarhizium robertsii , an emerging model organism for assessing evolutionary processes, we report that pyruvate is in the vanguard of molecules that scavenge heat-induced reactive oxygen species (ROS). We show that, as well as inducing a rapid burst of ROS production, heat stress also downregulates genes for pyruvate consumption. The accumulating pyruvate is the fastest acting of several M. robertsii ROS scavengers, efficiently reducing protein carbonylation, stabilizing mitochondrial membrane potential, and promoting fungal growth. The acetate produced from pyruvate-ROS reactions itself causes acid stress, tolerance to which is regulated by Hog1 mitogen-activated protein kinase. Heat stress also induces pyruvate accumulation in several other fungi, suggesting that scavenging of heat-induced ROS by pyruvate is widespread. IMPORTANCE Heat is a dangerous challenge for most organisms, as it denatures proteins and induces the production of ROS that inactivate proteins, lipid membranes, and DNA. How organisms respond to this stress is not fully understood. Using the experimentally tractable insect pathogen Metarhizium robertsii as a model organism, we show for the first time that heat stress induces pyruvate production and that this functions as the first line of defense against heat-induced ROS. Heat stress also induces rapid pyruvate accumulation in other fungi, suggesting that pyruvate is a common but unappreciated defense against stress. Copyright © 2017 Zhang et al.

  5. Induction of Nrf2-mediated cellular defenses and alteration of phase I activities as mechanisms of chemoprotective effects of coffee in the liver.

    Science.gov (United States)

    Cavin, C; Marin-Kuan, M; Langouët, S; Bezençon, C; Guignard, G; Verguet, C; Piguet, D; Holzhäuser, D; Cornaz, R; Schilter, B

    2008-04-01

    Coffee consumption has been associated with a significant decrease in the risk of developing chronic diseases such as Parkinson disease, diabetes type-2 and several types of cancers (e.g. colon, liver). In the present study, a coffee-dependent induction of enzymes involved in xenobiotic detoxification processes was observed in rat liver and primary hepatocytes. In addition, coffee was found to induce the mRNA and protein expression of enzymes involved in cellular antioxidant defenses. These inductions were correlated with the activation of the Nrf2 transcription factor as shown using an ARE-reporter luciferase assay. The induction of detoxifying enzymes GSTs and AKR is compatible with a protection against both genotoxicity and cytotoxicity of aflatoxin B1 (AFB1). This hypothesis was confirmed in in vitro and ex vivo test systems, where coffee reduced both AFB1-DNA and protein adducts. Interestingly, coffee was also found to inhibit cytochrome CYP1A1/2, indicating that other mechanisms different from a stimulation of detoxification may also play a significant role in the chemoprotective effects of coffee. Further investigations in either human liver cell line and primary hepatocytes indicated that the chemoprotective effects of coffee against AFB1 genotoxicity are likely to be of relevance for humans. These data strongly suggest that coffee may protect against the adverse effects of AFB1. In addition, the coffee-mediated stimulation of the Nrf2-ARE pathway resulting in increased endogenous defense mechanisms against electrophilic but also oxidative insults further support that coffee may be associated with a protection against various types of chemical stresses.

  6. A Unique ISR Program Determines Cellular Responses to Chronic Stress

    Czech Academy of Sciences Publication Activity Database

    Guan, B.J.; van Hoef, V.; Jobava, R.; Elroy-Stein, O.; Valášek, Leoš Shivaya; Cargnello, M.; Gao, X.H.; Krokowski, D.; Merrick, W.C.; Kimball, S.R.; Komar, A.A.; Koromilas, A.E.; Wynshaw-Boris, A.; Topisirovic, I.; Larsson, O.; Hatzoglou, M.

    2017-01-01

    Roč. 68, č. 5 (2017), s. 885-900 ISSN 1097-2765 R&D Projects: GA ČR(CZ) GA17-06238S EU Projects: Wellcome Trust(GB) 090812/B/09/A Institutional support: RVO:61388971 Keywords : UNFOLDED PROTEIN RESPONSE * EUKARYOTIC TRANSLATION INITIATION * ENDOPLASMIC-RETICULUM STRESS Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 14.714, year: 2016

  7. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    Directory of Open Access Journals (Sweden)

    Fu-Wei Liu

    Full Text Available Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system.

  8. Aloin Protects Skin Fibroblasts from Heat Stress-Induced Oxidative Stress Damage by Regulating the Oxidative Defense System.

    Science.gov (United States)

    Liu, Fu-Wei; Liu, Fu-Chao; Wang, Yu-Ren; Tsai, Hsin-I; Yu, Huang-Ping

    2015-01-01

    Oxidative stress is commonly involved in the pathogenesis of skin damage induced by environmental factors, such as heat stress. Skin fibroblasts are responsible for the connective tissue regeneration and the skin recovery from injury. Aloin, a bioactive compound in Aloe vera, has been reported to have various pharmacological activities, such as anti-inflammatory effects. The aim of this study was to investigate the protective effect of aloin against heat stress-mediated oxidative stress in human skin fibroblast Hs68 cells. Hs68 cells were first incubated at 43°C for 30 min to mimic heat stress. The study was further examined if aloin has any effect on heat stress-induced oxidative stress. We found that aloin protected Hs68 cells against heat stress-induced damage, as assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide and lactate dehydrogenase assay. Aloin protected Hs68 cells by regulating reactive oxygen species production and increasing the levels of glutathione, cytosolic and mitochondrial superoxide dismutase. Aloin also prevented the elevation of thiobarbituric acid reactive substances and the reduction of 8-OH-dG induced by heat stress. These results indicated that aloin protected human skin fibroblasts from heat stress-induced oxidative stress damage by regulating the oxidative defense system.

  9. Dysregulated physiological stress systems and accelerated cellular aging.

    Science.gov (United States)

    Révész, Dóra; Verhoeven, Josine E; Milaneschi, Yuri; de Geus, Eco J C N; Wolkowitz, Owen M; Penninx, Brenda W J H

    2014-06-01

    Exposure to chronic stressors is associated with accelerated biological aging as indicated by reduced leukocyte telomere length (LTL). This impact could be because of chronic overactivation of the body's physiological stress systems. This study examined the associations between LTL and the immune system, hypothalamic-pituitary-adrenal axis and autonomic nervous system. LTL was assessed in 2936 adults from the Netherlands Study of Depression and Anxiety. Inflammation markers (interleukin-6, c-reactive protein, tumor necrosis factor-alpha), hypothalamic-pituitary-adrenal-axis indicators (salivary cortisol awakening curve [area under the curve indicators, with respect to the ground and increase], evening levels, 0.5 mg dexamethasone cortisol suppression ratio), and autonomic nervous system measures (heart rate, respiratory sinus arrhythmia, pre-ejection period) were determined. Linear regression analyses were performed and adjusted for sociodemographic, lifestyle and clinical factors. Shorter LTL was significantly associated with higher c-reactive protein, interleukin-6, area under the curve with respect to increase, and heart rate. A cumulative index score was calculated based on the number of highest tertiles of these 4 stress markers. LTL demonstrated a significant gradient within subjects ranging from having zero (5528 base pairs) to having 4 elevated stress markers (5371 base pairs, p for trend = 0.002), corresponding to a difference of 10 years of accelerated biological aging. Contrary to the expectations, shorter LTL was also associated with longer pre-ejection period, indicating lower sympathetic tone. This large-scale study showed that inflammation, high awakening cortisol response, and increased heart rate are associated with shorter LTL, especially when they are dysregulated cumulatively. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Role of Nrf2 antioxidant defense in mitigating cadmium-induced oxidative stress in the olfactory system of zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Lu; Gallagher, Evan P., E-mail: evang3@uw.edu

    2013-01-15

    Exposure to trace metals can disrupt olfactory function in fish leading to a loss of behaviors critical to survival. Cadmium (Cd) is an olfactory toxicant that elicits cellular oxidative stress as a mechanism of toxicity while also inducing protective cellular antioxidant genes via activation of the nuclear factor (erythroid-derived 2)-like 2 (Nrf2) pathway. However, the molecular mechanisms of Cd-induced olfactory injury have not been characterized. In the present study, we investigated the role of the Nrf2-mediated antioxidant defense pathway in protecting against Cd-induced olfactory injury in zebrafish. A dose-dependent induction of Nrf2-regulated antioxidant genes associated with cellular responses to oxidative stress was observed in the olfactory system of adult zebrafish following 24 h Cd exposure. Zebrafish larvae exposed to Cd for 3 h showed increased glutathione S-transferase pi (gst pi), glutamate–cysteine ligase catalytic subunit (gclc), heme oxygenase 1 (hmox1) and peroxiredoxin 1 (prdx1) mRNA levels indicative of Nrf2 activation, and which were blocked by morpholino-mediated Nrf2 knockdown. The inhibition of antioxidant gene induction in Cd-exposed Nrf2 morphants was associated with disruption of olfactory driven behaviors, increased cell death and loss of olfactory sensory neurons (OSNs). Nrf2 morphants also exhibited a downregulation of OSN-specific genes after Cd exposure. Pre-incubation of embryos with sulforaphane (SFN) partially protected against Cd-induced olfactory tissue damage. Collectively, our results indicate that oxidative stress is an important mechanism of Cd-mediated injury in the zebrafish olfactory system. Moreover, the Nrf2 pathway plays a protective role against cellular oxidative damage and is important in maintaining zebrafish olfactory function. -- Highlights: ► Oxidative stress is an important mechanism of Cd-mediated olfactory injury. ► Cd induces antioxidant gene expression in the zebrafish olfactory system. ► The

  11. EFFECTS OF PROLONGED EXERCISE ON OXIDATIVE STRESS AND ANTIOXIDANT DEFENSE IN ENDURANCE HORSE

    Directory of Open Access Journals (Sweden)

    Susanna Kinnunen

    2005-12-01

    Full Text Available Increased oxidative stress during prolonged endurance exercise may end up with muscle damage, fatigue and decreased physical performance. We have recently shown that acute exercise at moderate intensity induced lipid peroxidation, protein oxidation and oxygen radical absorbance capacity (ORAC in trained trotters. The aim of this study was to measure the changes in oxidative stress and antioxidant defense following an 80-km ride in the blood of endurance horses. Blood samples were collected before and immediately after the ride. Unlike to our previous studies performed on trotters, in endurance horses there were no measurable changes in antioxidants or oxidative stress marker lipid hydroperoxides (LPO after prolonged exercise. ORAC, vitamin E and lipid hydroperoxide (LPO concentration or glutathione related enzyme activities were not altered due to the 80-km ride. However, the base line levels of oxidative stress marker were higher in endurance horses compared to trotters. A positive correlation between the pre-ride LPO concentration and erythrocyte glutathione peroxidase (GPx activity after the ride was observed, which may indicate a protective response of glutathione peroxidase against exercise-induced oxidative stress. Our results suggest that endurance horses have higher oxidative stress levels compared to trotters and a single 80-km ride probably did not suffice to induce oxidative stress and to activate antioxidant defense mechanisms.

  12. Local cellular response to stress of the lower lung

    Energy Technology Data Exchange (ETDEWEB)

    Tonnel, A.B.; Gosset, P.; Joseph, M.; Fournier, E.; Steenhouwer, F.; Mallart-Voisin, A.

    1983-01-01

    The cell populations in the alveoli are exposed to the environment and react differently to each type of challenge (mineral particles, toxic gases, infections, antigenic substances. . .). Amongst the best studied of these irritant factors is tobacco smoke which in the long term leads to a number of changes both in the distribution of alveolar cells and also their function and morphology. Amongst acute and sub-acute pathogens, bacterial infections produce a rapid poly-morpho-nuclear neutrophilia and then a lymphocytosis; oxygen and oxidising agents in general lead to a neutrophilia which amplifies the pulmonary parenchymal changes related to the release of toxic metabolites of oxygen. The inhalation of antigenic substances also disturbs the behaviour of alveolar cells: activation of macrophages in the presence of allergy in those sensitized to IgE and immediate attraction of neutrophils preceding a T lymphocyte alveolitis in hypersensitivity pneumonia. It is possible to categorise several patterns of reaction in intra-pulmonary cells when challenged by some insult, a direct cytotoxic action, the accumulation of inflammatory cells and immunological competence corresponding to the concept of ''a neutrophil alveolitis'' or a ''T cell alveolitis'' with the development of emphysematous lesions. An understanding of the cellular make-up present in the alveoli when reacting to an external pathogen enables a better approach to the pathophysiological mechanisms in question.

  13. Physical Forces Modulate Oxidative Status and Stress Defense Meditated Metabolic Adaptation of Yeast Colonies: Spaceflight and Microgravity Simulations

    Science.gov (United States)

    Hammond, Timothy G.; Allen, Patricia L.; Gunter, Margaret A.; Chiang, Jennifer; Giaever, Guri; Nislow, Corey; Birdsall, Holly H.

    2017-12-01

    Baker's yeast (Saccharomyces cerevisiae) has broad genetic homology to human cells. Although typically grown as 1-2mm diameter colonies under certain conditions yeast can form very large (10 + mm in diameter) or `giant' colonies on agar. Giant yeast colonies have been used to study diverse biomedical processes such as cell survival, aging, and the response to cancer pharmacogenomics. Such colonies evolve dynamically into complex stratified structures that respond differentially to environmental cues. Ammonia production, gravity driven ammonia convection, and shear defense responses are key differentiation signals for cell death and reactive oxygen system pathways in these colonies. The response to these signals can be modulated by experimental interventions such as agar composition, gene deletion and application of pharmaceuticals. In this study we used physical factors including colony rotation and microgravity to modify ammonia convection and shear stress as environmental cues and observed differences in the responses of both ammonia dependent and stress response dependent pathways We found that the effects of random positioning are distinct from rotation. Furthermore, both true and simulated microgravity exacerbated both cellular redox responses and apoptosis. These changes were largely shear-response dependent but each model had a unique response signature as measured by shear stress genes and the promoter set which regulates them These physical techniques permitted a graded manipulation of both convection and ammonia signaling and are primed to substantially contribute to our understanding of the mechanisms of drug action, cell aging, and colony differentiation.

  14. MicroRNA Regulation of Oxidative Stress-Induced Cellular Senescence

    Science.gov (United States)

    Wedel, Sophia; Cavinato, Maria; Jansen-Dürr, Pidder

    2017-01-01

    Aging is a time-related process of functional deterioration at cellular, tissue, organelle, and organismal level that ultimately brings life to end. Cellular senescence, a state of permanent cell growth arrest in response to cellular stress, is believed to be the driver of the aging process and age-related disorders. The free radical theory of aging, referred to as oxidative stress (OS) theory below, is one of the most studied aging promoting mechanisms. In addition, genetics and epigenetics also play large roles in accelerating and/or delaying the onset of aging and aging-related diseases. Among various epigenetic events, microRNAs (miRNAs) turned out to be important players in controlling OS, aging, and cellular senescence. miRNAs can generate rapid and reversible responses and, therefore, are ideal players for mediating an adaptive response against stress through their capacity to fine-tune gene expression. However, the importance of miRNAs in regulating OS in the context of aging and cellular senescence is largely unknown. The purpose of our article is to highlight recent advancements in the regulatory role of miRNAs in OS-induced cellular senescence. PMID:28593022

  15. Periplasmic flagella in Borrelia burgdoferi function to maintain cellular integrity upon external stress.

    Science.gov (United States)

    Kumar, Bharath; Miller, Kelly; Charon, Nyles W; Legleiter, Justin

    2017-01-01

    Tapping mode atomic force microscopy (AFM) in solution was used to analyze the role of the internally located periplasmic flagella (PFs) of the Lyme disease spirochete Borrelia burgdorferi in withstanding externally applied cellular stresses. By systematically imaging immobilized spirochetes with increasing tapping forces, we found that mutants that lack PFs are more readily compressed and damaged by the imaging process compared to wild-type cells. This finding suggest that the PFs, aside from being essential for motility and involved in cell shape, play a cytoskeletal role in dissipating energy and maintaining cellular integrity in the presence of external stress.

  16. Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails.

    Science.gov (United States)

    Hermes-Lima, M; Storey, J M; Storey, K B

    1998-07-01

    The roles of enzymatic antioxidant defenses in the natural tolerance of environmental stresses that impose changes in oxygen availability and oxygen consumption on animals is discussed with a particular focus on the biochemistry of estivation and metabolic depression in pulmonate land snails. Despite reduced oxygen consumption and PO2 during estivation, which should also mean reduced production of oxyradicals, the activities of antioxidant enzymes, such as superoxide dismutase and catalase, increased in 30 day-estivating snails. This appears to be an adaptation that allows the snails to deal with oxidative stress that takes place during arousal when PO2 and oxygen consumption rise rapidly. Indeed, oxidative stress was indicated by increased levels of lipid peroxidation damage products accumulating in hepatopancreas within minutes after arousal was initiated. The various metabolic sites responsible for free radical generation during arousal are still unknown but it seems unlikely that the enzyme xanthine oxidase plays any substantial role in this despite being implicated in oxidative stress in mammalian models of ischemia/reperfusion. We propose that the activation of antioxidant defenses in the organs of Otala lactea during estivation is a preparative mechanism against oxidative stress during arousal. Increased activities of antioxidant enzymes have also observed under other stress situations in which the actual production of oxyradicals should decrease. For example, antioxidant defenses are enhanced during anoxia exposure in garter snakes Thamnophis sirtalis parietalis (10 h at 5 degrees C) and leopard frogs Rana pipiens (30 h at 5 degrees C) and during freezing exposure (an ischemic condition due to plasma freezing) in T. sirtalis parietalis and wood frogs Rana sylvatica. It seems that enhancement of antioxidant enzymes during either anoxia or freezing is used as a preparatory mechanism to deal with a physiological oxidative stress that occurs rapidly within the

  17. Cellular stress induces a protective sleep-like state in C. elegans.

    Science.gov (United States)

    Hill, Andrew J; Mansfield, Richard; Lopez, Jessie M N G; Raizen, David M; Van Buskirk, Cheryl

    2014-10-20

    Sleep is recognized to be ancient in origin, with vertebrates and invertebrates experiencing behaviorally quiescent states that are regulated by conserved genetic mechanisms. Despite its conservation throughout phylogeny, the function of sleep remains debated. Hypotheses for the purpose of sleep include nervous-system-specific functions such as modulation of synaptic strength and clearance of metabolites from the brain, as well as more generalized cellular functions such as energy conservation and macromolecule biosynthesis. These models are supported by the identification of synaptic and metabolic processes that are perturbed during prolonged wakefulness. It remains to be seen whether perturbations of cellular homeostasis in turn drive sleep. Here we show that under conditions of cellular stress, including noxious heat, cold, hypertonicity, and tissue damage, the nematode Caenorhabditis elegans engages a behavioral quiescence program. The stress-induced quiescent state displays properties of sleep and is dependent on the ALA neuron, which mediates the conserved soporific effect of epidermal growth factor (EGF) ligand overexpression. We characterize heat-induced quiescence in detail and show that it is indeed dependent on components of EGF signaling, providing physiological relevance to the behavioral effects of EGF family ligands. We find that after noxious heat exposure, quiescence-defective animals show elevated expression of cellular stress reporter genes and are impaired for survival, demonstrating the benefit of stress-induced behavioral quiescence. These data provide evidence that cellular stress can induce a protective sleep-like state in C. elegans and suggest that a deeply conserved function of sleep is to mitigate disruptions of cellular homeostasis. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. The imperative for controlled mechanical stresses in unraveling cellular mechanisms of mechanotransduction

    Directory of Open Access Journals (Sweden)

    Sorkin Adam M

    2006-05-01

    Full Text Available Abstract Background In vitro mechanotransduction studies are designed to elucidate cell behavior in response to a well-defined mechanical signal that is imparted to cultured cells, e.g. through fluid flow. Typically, flow rates are calculated based on a parallel plate flow assumption, to achieve a targeted cellular shear stress. This study evaluates the performance of specific flow/perfusion chambers in imparting the targeted stress at the cellular level. Methods To evaluate how well actual flow chambers meet their target stresses (set for 1 and 10 dyn/cm2 for this study at a cellular level, computational models were developed to calculate flow velocity components and imparted shear stresses for a given pressure gradient. Computational predictions were validated with micro-particle image velocimetry (μPIV experiments. Results Based on these computational and experimental studies, as few as 66% of cells seeded along the midplane of commonly implemented flow/perfusion chambers are subjected to stresses within ±10% of the target stress. In addition, flow velocities and shear stresses imparted through fluid drag vary as a function of location within each chamber. Hence, not only a limited number of cells are exposed to target stress levels within each chamber, but also neighboring cells may experience different flow regimes. Finally, flow regimes are highly dependent on flow chamber geometry, resulting in significant variation in magnitudes and spatial distributions of stress between chambers. Conclusion The results of this study challenge the basic premise of in vitro mechanotransduction studies, i.e. that a controlled flow regime is applied to impart a defined mechanical stimulus to cells. These results also underscore the fact that data from studies in which different chambers are utilized can not be compared, even if the target stress regimes are comparable.

  19. Coordinated Actions of Glyoxalase and Antioxidant Defense Systems in Conferring Abiotic Stress Tolerance in Plants.

    Science.gov (United States)

    Hasanuzzaman, Mirza; Nahar, Kamrun; Hossain, Md Shahadat; Mahmud, Jubayer Al; Rahman, Anisur; Inafuku, Masashi; Oku, Hirosuke; Fujita, Masayuki

    2017-01-20

    Being sessile organisms, plants are frequently exposed to various environmental stresses that cause several physiological disorders and even death. Oxidative stress is one of the common consequences of abiotic stress in plants, which is caused by excess generation of reactive oxygen species (ROS). Sometimes ROS production exceeds the capacity of antioxidant defense systems, which leads to oxidative stress. In line with ROS, plants also produce a high amount of methylglyoxal (MG), which is an α-oxoaldehyde compound, highly reactive, cytotoxic, and produced via different enzymatic and non-enzymatic reactions. This MG can impair cells or cell components and can even destroy DNA or cause mutation. Under stress conditions, MG concentration in plants can be increased 2- to 6-fold compared with normal conditions depending on the plant species. However, plants have a system developed to detoxify this MG consisting of two major enzymes: glyoxalase I (Gly I) and glyoxalase II (Gly II), and hence known as the glyoxalase system. Recently, a novel glyoxalase enzyme, named glyoxalase III (Gly III), has been detected in plants, providing a shorter pathway for MG detoxification, which is also a signpost in the research of abiotic stress tolerance. Glutathione (GSH) acts as a co-factor for this system. Therefore, this system not only detoxifies MG but also plays a role in maintaining GSH homeostasis and subsequent ROS detoxification. Upregulation of both Gly I and Gly II as well as their overexpression in plant species showed enhanced tolerance to various abiotic stresses including salinity, drought, metal toxicity, and extreme temperature. In the past few decades, a considerable amount of reports have indicated that both antioxidant defense and glyoxalase systems have strong interactions in conferring abiotic stress tolerance in plants through the detoxification of ROS and MG. In this review, we will focus on the mechanisms of these interactions and the coordinated action of

  20. Stress appraisals and cellular aging: a key role for anticipatory threat in the relationship between psychological stress and telomere length.

    Science.gov (United States)

    O'Donovan, Aoife; Tomiyama, A Janet; Lin, Jue; Puterman, Eli; Adler, Nancy E; Kemeny, Margaret; Wolkowitz, Owen M; Blackburn, Elizabeth H; Epel, Elissa S

    2012-05-01

    Chronic psychological stress is a risk factor for multiple diseases of aging. Accelerated cellular aging as indexed by short telomere length has emerged as a potential common biological mechanism linking various forms of psychological stress and diseases of aging. Stress appraisals determine the degree and type of biological stress responses and altered stress appraisals may be a common psychological mechanism linking psychological stress and diseases of aging. However, no previous studies have examined the relationship between stress appraisals and telomere length. We exposed chronically stressed female caregivers and non-caregiving controls (N=50; M age=62.14±6.10) to a standardized acute laboratory stressor and measured their anticipatory and retrospective threat and challenge appraisals of the stressor. We hypothesized that threat and challenge appraisals would be associated with shorter and longer telomere length respectively, and that chronic caregiving stress would influence telomere length through altered stress appraisals. Higher anticipatory threat appraisals were associated with shorter age-adjusted telomere length (β=-.32, p=.03), but challenge appraisals and retrospective threat appraisals showed no independent association with telomere length. Caregivers reported significantly higher anticipatory (β=-.36, p=.006) and retrospective (β=-.29, p=.03) threat appraisals than controls, but similar challenge appraisals. Although there was no significant main effect of caregiver status on telomere length, caregiving had a significant indirect effect on telomere length through anticipatory threat appraisals. Exaggerated anticipatory threat appraisals may be a common and modifiable psychological mechanism of psychological stress effects on cellular aging. Copyright © 2012 Elsevier Inc. All rights reserved.

  1. Cellular and mucosal immune reactions to mental and cold stress: Associations with gender and cardiovascular reactivity

    NARCIS (Netherlands)

    Willemsen, G.; Carroll, D.; Ring, C.; Drayson, M.

    2002-01-01

    To examine gender differences in immune reactions to stress and relationships between immune and cardiovascular reactivity, measures of cellular and mucosal immunity and cardiovascular activity were recorded in 77 men and 78 women at rest and in response to active (mental arithmetic) and passive

  2. Oxidative stress and antioxidant defense mechanisms linked to exercise during cardiopulmonary and metabolic disorders

    Science.gov (United States)

    Fisher-Wellman, Kelsey; Bell, Heather K

    2009-01-01

    Oxidative stress has been implicated in the pathophysiology of multiple human diseases, in addition to the aging process. Although various stimuli exist, acute exercise is known to induce a transient increase in reactive oxygen and nitrogen species (RONS), evident by several reports of increased oxidative damage following acute bouts of aerobic and anaerobic exercise. Although the results are somewhat mixed and appear disease dependent, individuals with chronic disease experience an exacerbation in oxidative stress following acute exercise when compared to healthy individuals. However, this increased oxidant stress may serve as a necessary “signal” for the upregulation in antioxidant defenses, thereby providing protection against subsequent exposure to prooxidant environments within susceptible individuals. Here we present studies related to both acute exercise-induced oxidative stress in those with disease, in addition to studies focused on adaptations resulting from increased RONS exposure associated with chronic exercise training in persons with disease. PMID:20046644

  3. Defense Advanced Research Projects Agency (DARPA) Improving Warfighter Information Intake under Stress: Augmented Cognition - Phases 2, 3, and 4

    National Research Council Canada - National Science Library

    Dorneich, Michael C; Ververs, Patricia M; Mathan, Santosh; Whitlow, Stephen D

    2008-01-01

    This report is a comprehensive summary of a multi-year effort by the Honeywell team on the Improving Warfighter Information Intake Under Stress/AugCog program jointly sponsored by the Defense Advanced...

  4. Species as Stressors: Heterospecific Interactions and the Cellular Stress Response under Global Change.

    Science.gov (United States)

    Gunderson, Alex R; King, Emily E; Boyer, Kirsten; Tsukimura, Brian; Stillman, Jonathon H

    2017-07-01

    Anthropogenic global change is predicted to increase the physiological stress of organisms through changes in abiotic conditions such as temperature, pH, and pollution. However, organisms can also experience physiological stress through interactions with other species, especially parasites, predators, and competitors. The stress of species interactions could be an important driver of species' responses to global change as the composition of biological communities change through factors such as distributional and phenological shifts. Interactions between biotic and abiotic stressors could also induce non-linear physiological stress responses under global change. One of the primary means by which organisms deal with physiological stress is through the cellular stress response (CSR), which is broadly the upregulation of a conserved set of genes that facilitate the removal and repair of damaged macromolecules. Here, we present data on behavioral interactions and CSR gene expression for two competing species of intertidal zone porcelain crab (Petrolisthes cinctipes and Petrolisthes manimaculis). We found that P. cinctipes and P. manimaculis engage in more agonistic behaviors when interacting with heterospecifics than conspecifics; however, we found no evidence that heterospecific interactions induced a CSR in these species. In addition to our new data, we review the literature with respect to CSR induction via species interactions, focusing on predator-prey systems and heterospecific competition. We find extensive evidence for predators to induce cellular stress and aspects of the CSR in prey, even in the absence of direct physical contact between species. Effects of heterospecific competition on the CSR have been studied far less, but we do find evidence that agonistic interactions with heterospecifics can induce components of the CSR. Across all published studies, there is clear evidence that species interactions can lead to cellular stress and induction of the CSR

  5. Nitric Oxide Mediates Molybdenum-Induced Antioxidant Defense in Wheat under Drought Stress

    Directory of Open Access Journals (Sweden)

    Songwei Wu

    2017-06-01

    Full Text Available Molybdenum (Mo has been reported to alleviate drought stress by enhancing antioxidant defense in plants, but the underlying mechanism remains unclear. Here, we hypothesized that Mo mediates nitric oxide (NO-induced antioxidant defense through Mo-enzymes, particularly by nitrate reductase (NR in wheat under drought stress. The 30-day-old wheat seedlings cultivated in -Mo (0 μM Mo and +Mo (1 μM Mo Hoagland solutions were detached and then pretreated with Mo-enzyme inhibitors, NO scavengers, NO donors or their combinations according to demands of complementary experiment under 10% polyethylene glycol 6000 (PEG-stimulated drought stress (PSD. Mo supplementation increased the activities and transcripts of antioxidant enzymes, decreased H2O2 and MDA contents, and elevated NO production, implying that Mo-induced antioxidant defense may be related to NO signal. Complementary experiment showed that NO production was induced by Mo, while suppressed by Mo-enzyme inhibitors and NO scavengers, but restored by NO donors, suggesting that Mo-induced increase of NO production may be due to the regulation by Mo-enzymes. Further experiment indicated that the increased activities and transcripts of antioxidant enzymes induced by Mo were suppressed by Mo-enzyme inhibitors and NO scavengers, and NO donors could eliminate their suppressing effects. Moreover, Mo application increased NR activity and inhibitors of Mo-enzymes inhibited NR activity in wheat leaves under PSD, suggesting that NR might involve in the regulation of Mo-induced NO production. These results clearly indicate that NO mediates Mo-induced antioxidant defense at least partially through the regulation of NR.

  6. Oxidative stress activates a specific p53 transcriptional response that regulates cellular senescence and aging.

    Science.gov (United States)

    Gambino, Valentina; De Michele, Giulia; Venezia, Oriella; Migliaccio, Pierluigi; Dall'Olio, Valentina; Bernard, Loris; Minardi, Simone Paolo; Della Fazia, Maria Agnese; Bartoli, Daniela; Servillo, Giuseppe; Alcalay, Myriam; Luzi, Lucilla; Giorgio, Marco; Scrable, Heidi; Pelicci, Pier Giuseppe; Migliaccio, Enrica

    2013-06-01

    Oxidative stress is a determining factor of cellular senescence and aging and a potent inducer of the tumour-suppressor p53. Resistance to oxidative stress correlates with delayed aging in mammals, in the absence of accelerated tumorigenesis, suggesting inactivation of selected p53-downstream pathways. We investigated p53 regulation in mice carrying deletion of p66, a mutation that retards aging and confers cellular resistance and systemic resistance to oxidative stress. We identified a transcriptional network of ~200 genes that are repressed by p53 and encode for determinants of progression through mitosis or suppression of senescence. They are selectively down-regulated in cultured fibroblasts after oxidative stress, and, in vivo, in proliferating tissues and during physiological aging. Selectivity is imposed by p66 expression and activation of p44/p53 (also named Delta40p53), a p53 isoform that accelerates aging and prevents mitosis after protein damage. p66 deletion retards aging and increases longevity of p44/p53 transgenic mice. Thus, oxidative stress activates a specific p53 transcriptional response, mediated by p44/p53 and p66, which regulates cellular senescence and aging. © 2013 John Wiley & Sons Ltd and the Anatomical Society.

  7. Impact of Membrane Phospholipid Alterations in Escherichia coli on Cellular Function and Bacterial Stress Adaptation.

    Science.gov (United States)

    Rowlett, Veronica W; Mallampalli, Venkata K P S; Karlstaedt, Anja; Dowhan, William; Taegtmeyer, Heinrich; Margolin, William; Vitrac, Heidi

    2017-07-01

    Bacteria have evolved multiple strategies to sense and rapidly adapt to challenging and ever-changing environmental conditions. The ability to alter membrane lipid composition, a key component of the cellular envelope, is crucial for bacterial survival and adaptation in response to environmental stress. However, the precise roles played by membrane phospholipids in bacterial physiology and stress adaptation are not fully elucidated. The goal of this study was to define the role of membrane phospholipids in adaptation to stress and maintenance of bacterial cell fitness. By using genetically modified strains in which the membrane phospholipid composition can be systematically manipulated, we show that alterations in major Escherichia coli phospholipids transform these cells globally. We found that alterations in phospholipids impair the cellular envelope structure and function, the ability to form biofilms, and bacterial fitness and cause phospholipid-dependent susceptibility to environmental stresses. This study provides an unprecedented view of the structural, signaling, and metabolic pathways in which bacterial phospholipids participate, allowing the design of new approaches in the investigation of lipid-dependent processes involved in bacterial physiology and adaptation. IMPORTANCE In order to cope with and adapt to a wide range of environmental conditions, bacteria have to sense and quickly respond to fluctuating conditions. In this study, we investigated the effects of systematic and controlled alterations in bacterial phospholipids on cell shape, physiology, and stress adaptation. We provide new evidence that alterations of specific phospholipids in Escherichia coli have detrimental effects on cellular shape, envelope integrity, and cell physiology that impair biofilm formation, cellular envelope remodeling, and adaptability to environmental stresses. These findings hold promise for future antibacterial therapies that target bacterial lipid biosynthesis

  8. Physiological stress reactivity and empathy following social exclusion: a test of the defensive emotional analgesia hypothesis.

    Science.gov (United States)

    Bass, Ellyn Charlotte; Stednitz, Sarah Josephine; Simonson, Kevin; Shen, Tori; Gahtan, Ethan

    2014-01-01

    Experiences of social exclusion elicit social pain responses. The current study examined the ability of social exclusion to activate physiological stress responses and adaptively modulate affect and empathy consistent with "defensive emotional analgesia." Measures of affect and empathy, and saliva samples for cortisol and alpha-amylase (sAA) analysis, were collected before and after subjects participated in a computer game ("Cyberball") designed to manipulate feelings of social exclusion. Contrary to our hypotheses, social exclusion was associated with a reduction in cortisol, and social inclusion with an increase in cortisol. Both Cyberball groups showed increases in sAA and decreases in both positive and negative affect, with the greatest drop in affect occurring after social exclusion. Empathy did not differ between the social exclusion and inclusion groups and was not correlated with cortisol or sAA levels. These results support the presence of a defensive response to social exclusion in which central stress pathways controlling cortisol release are inhibited. Cortisol and sAA were shown to have distinct patterns of responses to psychological stress, with sAA responding more rapidly. Related methodological concerns for the use of these physiological stress markers and of Cyberball in social neuroscience research are discussed.

  9. Calcium-mediated oxidative stress: a common mechanism in tight junction disruption by different types of cellular stress.

    Science.gov (United States)

    Gangwar, Ruchika; Meena, Avtar S; Shukla, Pradeep K; Nagaraja, Archana S; Dorniak, Piotr L; Pallikuth, Sandeep; Waters, Christopher M; Sood, Anil; Rao, RadhaKrishna

    2017-02-20

    The role of reactive oxygen species (ROS) in osmotic stress, dextran sulfate sodium (DSS) and cyclic stretch-induced tight junction (TJ) disruption was investigated in Caco-2 cell monolayers in vitro and restraint stress-induced barrier dysfunction in mouse colon in vivo Live cell imaging showed that osmotic stress, cyclic stretch and DSS triggered rapid production of ROS in Caco-2 cell monolayers, which was blocked by depletion of intracellular Ca 2+ by 1,2-bis-( o -aminophenoxy)ethane- N , N , N ', N '-tetraacetic acid. Knockdown of Ca V 1.3 or TRPV6 channels blocked osmotic stress and DSS-induced ROS production and attenuated TJ disruption and barrier dysfunction. N -Acetyl l-cysteine (NAC) and l- N G -Nitroarginine methyl ester (l-NAME) blocked stress-induced TJ disruption and barrier dysfunction. NAC and l-NAME also blocked stress-induced activation of c-Jun N -terminal kinase (JNK) and c-Src. ROS was colocalized with the mitochondrial marker in stressed cells. Cyclosporin A blocked osmotic stress and DSS-induced ROS production, barrier dysfunction, TJ disruption and JNK activation. Mitochondria-targeted Mito-TEMPO blocked osmotic stress and DSS-induced barrier dysfunction and TJ disruption. Chronic restraint stress in mice resulted in the elevation of intracellular Ca 2+ , activation of JNK and c-Src, and disruption of TJ in the colonic epithelium. Furthermore, corticosterone administration induced JNK and c-Src activation, TJ disruption and protein thiol oxidation in colonic mucosa. The present study demonstrates that oxidative stress is a common signal in the mechanism of TJ disruption in the intestinal epithelium by different types of cellular stress in vitro and bio behavioral stress in vivo . © 2017 The Author(s); published by Portland Press Limited on behalf of the Biochemical Society.

  10. Adaptive endoplasmic reticulum stress alters cellular responses to the extracellular milieu.

    Science.gov (United States)

    Liu, Yiting; Neely, Elizabeth; Simmons, Zachary; Connor, James R

    2015-05-01

    The ability to respond to perturbations in endoplasmic reticulum (ER) function is a critical property for all cells. In the presence of chronic ER stress, the cell must adapt so that cell survival is favored or the stress may promote apoptosis. In some pathological processes, such as neurodengeneration, persistent ER stress can be tolerated for an extended period, but eventually cell death occurs. It is not known how an adaptive response converts from survival into apoptosis. To gain a better understanding of the role of adaptive ER stress in neurodegeneration, in this study, with a neuronal cell line SH-SY5Y and primary motor neuron-glia cell mixed cultures, we induced adaptive ER stress and modified the extracellular environment with physiologically relevant changes that alone did not activate ER stress. Our data demonstrate that an adaptive ER stress favored neuronal cell survival, but when cells were exposed to additional physiological insults the level of ER stress was increased, followed by activation of the caspase pathway. Our results indicate that an adaptive ER stress response could be converted to apoptosis when the external cellular milieu changed, suggesting that the conversion from prosurvival to proapoptotic pathways can be driven by the external milieu. This conversion was due at least partially to an increased level of ER stress. © 2015 Wiley Periodicals, Inc.

  11. Soybean aphid (Hemiptera: Aphididae) response to soybean plant defense: stress levels, tradeoffs, and cross-virulence.

    Science.gov (United States)

    Enders, Laramy; Bickel, Ryan; Brisson, Jennifer; Heng-Moss, Tiffany; Siegfried, Blair; Zera, Anthony; Miller, Nick

    2014-02-01

    A variety of management methods to control the soybean aphid (Aphis glycines Matsumura) have been investigated since its invasion into North America in 2000, among them plant resistance has emerged as a viable option for reducing aphid damage to soybeans and preventing outbreaks. Plant resistance methods often use natural soybean plant defenses that impose stress on aphids by reducing fitness and altering behavior. Research efforts have heavily focused on identification and development of aphid resistant soybean varieties, leaving much unknown about soybean aphid response to stressful host plant defenses. In this study, we aimed to 1) evaluate lifetime fitness consequences and phenotypic variation in response to host plant-induced stress and 2) investigate whether trade-offs involving fitness costs and/or cross-virulence to multiple antibiotic soybean varieties exists. We compared aphid survival and reproduction during and after a short period of exposure to soybeans with the Rag2 resistance gene and measured aphid clonal variation in response to Rag2 soybeans. In addition, we measured the performance of Rag2 virulent and avirulent aphids on five soybean varieties with various forms of antibiotic resistance. Our results indicate that plant defenses impose high levels of stress and have long-term fitness consequences, even after aphids are removed from resistant plants. We identified one aphid clone that was able to colonize Rag2 among the seven clones tested, suggesting that virulent genotypes may be prevalent in natural populations. Finally, although we did not find evidence of cross-virulence to multiple antibiotic soybean varieties, our results suggest independent mechanisms of aphid virulence to Rag1 and Rag2 that may involve fitness costs.

  12. Coriandrum sativum L. protects human keratinocytes from oxidative stress by regulating oxidative defense systems.

    Science.gov (United States)

    Park, G; Kim, H G; Kim, Y O; Park, S H; Kim, S Y; Oh, M S

    2012-01-01

    Oxidative radicals are major environmental causes of human skin damage. Oxidative defense factors, including nuclear factor erythroid-derived 2-related factor 2 (Nrf2), are centrally involved in repairing skin cells or protecting them from oxidative damage. Coriandrum sativum L. (coriander; CS) is a commonly consumed food and a traditional phytomedicine in Asia and Europe. In this study, we examined the protective effects of a standardized CS leaf extract against oxidative stress in human HaCaT keratinocytes. CS significantly and dose-dependently protected cells against reduced cell viability caused by H2O2-induced damage, as assessed using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Other assays demonstrated that CS protected HaCaT cells by increasing the levels of glutathione and activities of oxidative defense enzymes, such as superoxide dismutase and catalase. Moreover, it increased the expression of activated Nrf2, which plays a crucial role in protecting skin cells against oxidative stress. These results suggest that CS protects human keratinocytes from H2O2-induced oxidative stress through antioxidant effects. Copyright © 2012 S. Karger AG, Basel.

  13. Antioxidative defense and oxidative stress in ringed seals (Pusa hispida) from differently polluted areas.

    Science.gov (United States)

    Kanerva, Mirella; Routti, Heli; Tamuz, Yael; Nyman, Madeleine; Nikinmaa, Mikko

    2012-06-15

    High contaminant levels detected in Baltic seals have been associated with various health effects. In this study several parameters related to antioxidative defense and oxidative stress (concentrations of reduced and oxidised glutathione, lipid hydroperoxide and vitamin E, activities of glutathione reductase, peroxidase and S-transferase, glucose-6-phosphate dehydrogenase, catalase, and superoxidedismutase) were measured in the livers of ringed seals from the Baltic Sea and from a less contaminated reference area, Svalbard, Norway. Seals were caught during two different time periods 1996-1997 and 2002-2007, which represent different levels of contamination. No signs of oxidative damage were found in the Baltic seals. However, glutathione metabolism was enhanced in the ringed seals from the Baltic Sea compared to the seals from Svalbard. The adaptation to dive where repetitive ischemia/reperfusion occurs naturally may contribute to the resistance of oxidative stress and to the capacity to increase enzymatic antioxidant defense in phocid seals. This could explain the similarities in oxidative stress levels despite the differences in antioxidant responses between the ringed seals from the Baltic Sea and Svalbard. Copyright © 2012 Elsevier B.V. All rights reserved.

  14. Brassinosteroids Denigrate the Seasonal Stress through Antioxidant Defense System in Seedlings of Brassica juncea L.

    Directory of Open Access Journals (Sweden)

    Sandeep Kumar

    2014-05-01

    Full Text Available The present work has been undertaken to study the effect of exogenously application of 24-epiBL and 28-homoBL on soluble protein, proline contents and antioxidant defense system of Brassica juncea L. RLM 619 under the influence of seasonal stress. It was observed that 24-epiBL and 28-homoBL treatment enhance the soluble protein, dry weight and shoot length of B. juncea seedlings under seasonal stress. If seeds treated with the different concentrations (10-6, 10-8 and 10-10 M of 24-epiBL and 28-homoBL revealed batter growth, protein and proline contents as compare to untreated seedlings. Similarly the activities of antioxidant enzymes SOD, CAT, APOX, DHAR, PPO and Auxinases were enhanced by the application of different concentration of both brassinosteroids, whereas MDA content was decrease with both brassinosteroids treatments. Then we have concluded that both brassinolides have the seasonal stress ameliorative properties in B. juncea seedlings grown under the influence of seasonal stress. This study culminates to the role of brassinolides as an anti-stress property for protection of plant from various types of stresses.

  15. The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium.

    Science.gov (United States)

    Alzahrani, Yahya; Kuşvuran, Alpaslan; Alharby, Hesham F; Kuşvuran, Sebnem; Rady, Mostafa M

    2018-02-20

    In the crust of earth, silicon (Si) is one of the two major elements. For plant growth and development, importance of Si remains controversial due to the widely differences in ability of plants to take up this element. In this paper, pot experiments were done to study Si roles in improving salt, drought or cadmium (Cd) stress tolerance in wheat. Up to full emergence, all pots were watered at 100% field capacity (FC) every other day with nutrient solution without any treatments. Fifteen days after sowing, pots were divided into four plots, each with 40 pots for no stress (control) and three stress treatments; drought (50% FC), salinity (200 mM NaCl) and cadmium (2 mM Cd). For all plots, Si was applied at four levels (0, 2, 4 and 6 mM). Under no stress condition, Si applications increased Si content and improved growth as a result of reduced electrolyte leakage (EL), malondialdehyde (MDA) and Na + contents. Under stress conditions, Si supplementation conferred higher growth, gas exchange, tissue water and membranes stabilities, and K + content, and had limited MDA and Na + contents and EL compared to those obtained without Si. Compared to those without Si, enzyme (e.g., superoxide dismutase, catalase and peroxidase) activity was improved by Si applications, which were linked with elevated antioxidants and osmoprotectants (e.g., free proline, soluble sugars, ascorbic acid and glutathione) contents, might providing antioxidant defense against abiotic stress in wheat. The level of 4 mM Si was most effective for mitigating the salt and drought stress conditions, while 6 mM Si level was most influentially for alleviating the Cd stress condition. These results suggest that Si is beneficial in remarkably affecting physiological phenomena and improving wheat growth under abiotic stress. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. KDM5 interacts with Foxo to modulate cellular levels of oxidative stress.

    Directory of Open Access Journals (Sweden)

    Xingyin Liu

    2014-10-01

    Full Text Available Increased cellular levels of oxidative stress are implicated in a large number of human diseases. Here we describe the transcription co-factor KDM5 (also known as Lid as a new critical regulator of cellular redox state. Moreover, this occurs through a novel KDM5 activity whereby it alters the ability of the transcription factor Foxo to bind to DNA. Our microarray analyses of kdm5 mutants revealed a striking enrichment for genes required to regulate cellular levels of oxidative stress. Consistent with this, loss of kdm5 results in increased sensitivity to treatment with oxidizers, elevated levels of oxidized proteins, and increased mutation load. KDM5 activates oxidative stress resistance genes by interacting with Foxo to facilitate its recruitment to KDM5-Foxo co-regulated genes. Significantly, this occurs independently of KDM5's well-characterized demethylase activity. Instead, KDM5 interacts with the lysine deacetylase HDAC4 to promote Foxo deacetylation, which affects Foxo DNA binding.

  17. Discovery, Biosynthesis and Stress-Related Accumulation of Dolabradiene-Derived Defenses in Maize.

    Science.gov (United States)

    Mafu, Sibongile; Ding, Yezhang; Murphy, Katherine M; Yaacoobi, Omar; Addison, J Bennett; Wang, Qiang; Shen, Zhouxin; Briggs, Steven P; Bohlmann, Jörg; Castro-Falcon, Gabriel; Hughes, Chambers C; Betsiashvili, Mariam; Huffaker, Alisa; Schmelz, Eric A; Zerbe, Philipp

    2018-04-01

    Terpenoids are a major component of maize ( Zea mays ) chemical defenses that mediate responses to herbivores, pathogens, and other environmental challenges. Here, we describe the biosynthesis and elicited production of a class of maize diterpenoids, named dolabralexins. Dolabralexin biosynthesis involves the sequential activity of two diterpene synthases, ENT -COPALYL DIPHOSPHATE SYNTHASE (ZmAN2) and KAURENE SYNTHASE-LIKE4 (ZmKSL4). Together, ZmAN2 and ZmKSL4 form the diterpene hydrocarbon dolabradiene. In addition, we biochemically characterized a cytochrome P450 monooxygenase, ZmCYP71Z16, which catalyzes the oxygenation of dolabradiene to yield the epoxides 15,16-epoxydolabrene (epoxydolabrene) and 3β-hydroxy-15,16-epoxydolabrene (epoxydolabranol). The absence of dolabradiene and epoxydolabranol in Zman2 mutants under elicited conditions confirmed the in vivo biosynthetic requirement of ZmAN2. Combined mass spectrometry and NMR experiments demonstrated that much of the epoxydolabranol is further converted into 3β,15,16-trihydroxydolabrene (trihydroxydolabrene). Metabolite profiling of field-grown maize root tissues indicated that dolabralexin biosynthesis is widespread across common maize cultivars, with trihydroxydolabrene as the predominant diterpenoid. Oxidative stress induced dolabralexin accumulation and transcript expression of ZmAN2 and ZmKSL4 in root tissues, and metabolite and transcript accumulation were up-regulated in response to elicitation with the fungal pathogens Fusarium verticillioides and Fusarium graminearum Consistently, epoxydolabranol significantly inhibited the growth of both pathogens in vitro at 10 µg mL -1 , while trihydroxydolabrene-mediated inhibition was specific to F verticillioides These findings suggest that dolabralexins have defense-related roles in maize stress interactions and expand the known chemical space of diterpenoid defenses as genetic targets for understanding and ultimately improving maize resilience. © 2018

  18. Stress, chemical defense agents, and cholinergic receptors. Midterm report, 1 November 1987-31 July 1989

    Energy Technology Data Exchange (ETDEWEB)

    Lane, J.D.

    1989-11-30

    This project is assessing the affects of exposure to a chemical defense agent on anxiety and stress, by using rat models of anxiety (conditioned emotional response (CER); conditioned suppression) and unconditioned non-specific stres (exposure to footshock). The specific experiments determined the plasticity of muscarinic cholinergic binding sites in the central nervous system. The neuroanatomical locus and neuropharmacological profile of changes in binding sites were assessed in brain areas enriched in cholinergic markers. Acetylcholine turnover was measured to determine if the receptor response is compensatory or independent. The effects of acute exposure to doses of a chemical defense agent (soman--XGD) on lethality and behaviors were examined. The experiments involved training and conditioning adult rats to CER using standard operant/respondent techniques. The binding of radiolabelled ligand was studied in vitro using brain membranes and tissue sections (autoradiography). The major findings are that CER produces increases in acetylcholine turnover in brain areas involved in anxiety, and that primarily post-synaptic M1 receptors compensatorly decrease in response. These neurochemical phenomena are directly correlated with several behaviors, including onset and extinction of CER and non-specific stress. Followup experiments have been designed to test the interaction of CER, XGD and neurochemistry.

  19. Unraveling the cellular response to oxidative stress in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Hansen, Henning Gram

    -oxidized by molecular oxygen and this step generates hydrogen peroxide: a reactive oxygen species. Intramolecular disulfide bonds tightly regulate the oxidase activity of Ero1α. Whereas the regulatory mechanisms that regulate Ero1α activity are well understood, the overall cellular response to oxidative stress....... Interestingly, depletion of GPx8 in cells induced expression of an antioxidant response marker only in the presence of Ero1. These findings imply that GPx8 is an important scavenger of Ero1-generated hydrogen peroxide, and thus provides a critical function in negotiating oxidative stress originating from...... disulfide bond formation. In conclusion, the results presented here suggest that Ero1-generated hydrogen peroxide is efficiently detoxified in the ER, and this work therefore provides novel insights into the intimate relationship between oxidative protein folding and oxidative stress....

  20. ASSESSMENT OF CRACKING RESISTANCE OF CELLULAR CONCRETE PRODUCTS UNDER MOISTURE AND CARBONISATION DEFORMATIONS WITH STRESS RELAXATION

    Directory of Open Access Journals (Sweden)

    Sh. I. Apkarov

    2017-01-01

    Full Text Available Objectives. On the basis of the experimental, theoretical and field studies, an engineering calculation method was developed for assessing the cracking resistance of external enclosing constructions made of cellular concrete, with the maximum gradient development of moisture and carbonisation forced deformations along their thickness, taking into account the relaxation of the shrinkage stresses. In this regard, the aim of the work is to provide technological measures at the manufacturing stage in order to increase the operational cracking resistance of the construction's outer surface layers by reducing the moisture and carbonation shrinkage of cellular concrete by introducing a large or fine porous aggregate in calculated amounts.Methods. A number of analytical equations were applied to establish the dependence of the shrinkage of heavy concrete of conventional hardness on the amount of aggregate introduced and its elasticity modulus, water-cement ratio and cement consumption, as well as the concrete's moisture content.Results. Knowing the volumes of the structural aggregate and the cellular concrete mass, as well as their modulus of elasticity, the shrinkage reduction factor of the cellular concrete was calculated with the addition of a lightweight porous aggregate. Subsequently, the shrinkage deformations of concrete in the surface layer of the outer enclosing construction, maximising crack resistance due to moisture exchange and carbonation influences under operating conditions, were defined, taking into account the relaxation of tensile stresses due to creep of concrete.Conclusion. Theoretical calculations, based on the recommended method of assessing the cracking resistance of cellular concrete enclosing constructions under moisture exchange and carbonisation processes, taking into account the relaxation of shrinkage stresses, showed that in order to exclude the appearance of cracks in wall panels 280 mm thick made of 700 kg/m3 gas ash

  1. Metabolic and cellular stress responses of catfish, Horabagrus brachysoma (Günther) acclimated to increasing temperatures.

    Science.gov (United States)

    Dalvi, Rishikesh S; Das, Tilak; Debnath, Dipesh; Yengkokpam, Sona; Baruah, Kartik; Tiwari, Lalchand R; Pal, Asim K

    2017-04-01

    We investigated the metabolic and cellular stress responses in an endemic catfish Horabagrus brachysoma acclimated to ambient (26°C), 31, 33 and 36°C for 30 days. After acclimation, fish were sampled to investigate changes in the levels of blood glucose, tissue glycogen and ascorbic acid, activities of enzymes involved in glycolysis (LDH), citric acid cycle (MDH), gluconeogenesis (FBPase and G6Pase), pentose phosphate pathway (G6PDH), protein metabolism (AST and ALT), phosphate metabolism (ACP and ALP) and energy metabolism (ATPase), and HSP70 levels in various tissues. Acclimation to higher temperatures (33 and 36°C) significantly increased activities of LDH, MDH, ALP, ACP, AST, ALT and ATPase and blood glucose levels, whereas decreased the G6PDH enzyme activity and, tissue glycogen and ascorbic acid. Results indicated an overall increase in the carbohydrate, protein and lipid metabolism implying increased metabolic demands for maintaining homeostasis in fish acclimated to higher temperatures (33 and 36°C). We observed tissue specific response of HSP70 in H. brachysoma, with significant increase in gill and liver at 33 and 36°C, and in brain and muscle at 36°C, enabling cellular protection at higher acclimation temperatures. In conclusion, H. brachysoma adjusted metabolic and cellular responses to withstand increased temperatures, however, these responses suggest that the fish was under stress at 33°C or higher temperature. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Oxidative defense metabolites induced by salinity stress in roots of Salicornia herbacea.

    Science.gov (United States)

    Lee, Seung Jae; Jeong, Eun-Mi; Ki, Ah Young; Oh, Kyung-Seo; Kwon, Joseph; Jeong, Jae-Hyuk; Chung, Nam-Jin

    2016-11-01

    High salinity is a major abiotic stress that affects the growth and development of plants. This type of stress can influence flowering, the production of crops, defense mechanisms and other physiological processes. Previous studies have attempted to elucidate salt-tolerance mechanisms to improve plant growth and productivity in the presence of sodium chloride. One such plant that has been studied in detail is Salicornia, a well-known halophyte, which has adapted to grow in the presence of high salt. To further the understanding of how Salicornia grows and develops under high saline conditions, Salicornia herbacea (S. herbacea) was grown under varying saline concentrations (0, 50, 100, 200, 300, and 400mM), and the resulting phenotype, ion levels, and metabolites were investigated. The optimal condition for the growth of S. herbacea was determined to be 100mM NaCl, and increased salt concentrations directly decreased the internal concentrations of other inorganic ions including Ca 2+ , K + , and Mg 2+ . Metabolomics were performed on the roots of the plant as a systematic metabolomics study has not yet been reported for Salicornia roots. Using ethylacetate and methanol extraction followed by high resolution ultra-performance liquid chromatography coupled with mass spectrometry (UPLC-MS), 1793 metabolites were identified at different NaCl levels. Structural and functional analyses demonstrated that the concentration of 53 metabolites increased as the concentration of NaCl increased. These metabolites have been linked to stress responses, primarily oxidative stress responses, which increase under saline stress. Most metabolites can be classified as polyols, alkaloids, and steroids. Functional studies of these metabolites show that shikimic acid, vitamin K1, and indole-3-carboxylic acid are generated as a result of defense mechanisms, including the shikimate pathway, to protect against reactive oxygen species (ROS) generated by salt stress. This metabolite profiling

  3. Early-life stress impacts the developing hippocampus and primes seizure occurrence: cellular, molecular, and epigenetic mechanisms

    Science.gov (United States)

    Huang, Li-Tung

    2014-01-01

    Early-life stress includes prenatal, postnatal, and adolescence stress. Early-life stress can affect the development of the hypothalamic-pituitary-adrenal (HPA) axis, and cause cellular and molecular changes in the developing hippocampus that can result in neurobehavioral changes later in life. Epidemiological data implicate stress as a cause of seizures in both children and adults. Emerging evidence indicates that both prenatal and postnatal stress can prime the developing brain for seizures and an increase in epileptogenesis. This article reviews the cellular and molecular changes encountered during prenatal and postnatal stress, and assesses the possible link between these changes and increases in seizure occurrence and epileptogenesis in the developing hippocampus. In addititon, the priming effect of prenatal and postnatal stress for seizures and epileptogenesis is discussed. Finally, the roles of epigenetic modifications in hippocampus and HPA axis programming, early-life stress, and epilepsy are discussed. PMID:24574961

  4. TFEB and TFE3: Linking Lysosomes to Cellular Adaptation to Stress.

    Science.gov (United States)

    Raben, Nina; Puertollano, Rosa

    2016-10-06

    In recent years, our vision of lysosomes has drastically changed. Formerly considered to be mere degradative compartments, they are now recognized as key players in many cellular processes. The ability of lysosomes to respond to different stimuli revealed a complex and coordinated regulation of lysosomal gene expression. This review discusses the participation of the transcription factors TFEB and TFE3 in the regulation of lysosomal function and biogenesis, as well as the role of the lysosomal pathway in cellular adaptation to a variety of stress conditions, including nutrient deprivation, mitochondrial dysfunction, protein misfolding, and pathogen infection. We also describe how cancer cells make use of TFEB and TFE3 to promote their own survival and highlight the potential of these transcription factors as therapeutic targets for the treatment of neurological and lysosomal diseases.

  5. Happily (never after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence

    Directory of Open Access Journals (Sweden)

    Annika Höhn

    2017-04-01

    Full Text Available Aging is a complex phenomenon and its impact is becoming more relevant due to the rising life expectancy and because aging itself is the basis for the development of age-related diseases such as cancer, neurodegenerative diseases and type 2 diabetes. Recent years of scientific research have brought up different theories that attempt to explain the aging process. So far, there is no single theory that fully explains all facets of aging. The damage accumulation theory is one of the most accepted theories due to the large body of evidence found over the years. Damage accumulation is thought to be driven, among others, by oxidative stress. This condition results in an excess attack of oxidants on biomolecules, which lead to damage accumulation over time and contribute to the functional involution of cells, tissues and organisms. If oxidative stress persists, cellular senescence is a likely outcome and an important hallmark of aging. Therefore, it becomes crucial to understand how senescent cells function and how they contribute to the aging process. This review will cover cellular senescence features related to the protein pool such as morphological and molecular hallmarks, how oxidative stress promotes protein modifications, how senescent cells cope with them by proteostasis mechanisms, including antioxidant enzymes and proteolytic systems. We will also highlight the nutritional status of senescent cells and aged organisms (including human clinical studies by exploring trace elements and micronutrients and on their importance to develop strategies that might increase both, life and health span and postpone aging onset.

  6. Frequent cellular phone use modifies hypothalamic-pituitary-adrenal axis response to a cellular phone call after mental stress in healthy children and adolescents: A pilot study.

    Science.gov (United States)

    Geronikolou, Styliani A; Chamakou, Aikaterini; Mantzou, Aimilia; Chrousos, George; Kanaka--Gantenbein, Christina

    2015-12-01

    The hypothalamic-pituitary-adrenal (HPA) axis is the main "gate-keeper" of the organism's response to every somatic or mental stress. This prospective study aims to investigate the HPA-axis response to a cellular phone call exposure after mental stress in healthy children and adolescents and to assess the possible predictive role of baseline endocrine markers to this response. Two groups of healthy school-age children aged 11-14 (12.5±1.5) years were included in the study, the one comprising those who are occasional users of a cellular phone (Group A) while the second those who do regularly use one (Group B). Blood samples were obtained from all participants at 8.00 am after a 12-hour overnight fasting for thyroid hormone, glucose, insulin, and cortisol levels determination. The participants performed the Trier Social Stress Test for Children (TSST-C) (5 minoral task followed by 5 min arithmetic task). Salivary cortisol samples were obtained at baseline, 10' and 20' min after the TSST-C and 10' and 20' after a 5 minute cellular phone call. Significant changes in the salivary cortisol levels were noted between 10' and 20' mins after the cellular phone call with different responses between the two groups. Baseline thyroid hormone levels seem to predict the cortisol response to mental stress mainly in group A, while HOMA had no impact on salivary cortisol response at any phase of the test, in either group. HPA axis response to cellular phone after mental stress in children and adolescents follow a different pattern in frequent users than in occasional users that seems to be influenced by the baseline thyroid hormone levels. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Long-Term Exercise Protects against Cellular Stresses in Aged Mice

    Directory of Open Access Journals (Sweden)

    Irina Belaya

    2018-01-01

    Full Text Available The current study examined the effect of aging and long-term wheel-running on the expression of heat shock protein (HSP, redox regulation, and endoplasmic reticulum (ER stress markers in tibialis anterior (T.A. and soleus muscle of mice. Male mice were divided into young (Y, 3-month-old, old-sedentary (OS, 24-month-old, and old-exercise (OE, 24-month-old groups. The OE group started voluntary wheel-running at 3 months and continued until 24 months of age. Aging was associated with a higher thioredoxin-interacting protein (TxNiP level, lower thioredoxin-1 (TRX-1 to TxNiP ratio—a determinant of redox regulation and increased CHOP, an indicator of ER stress-related apoptosis signaling in both muscles. Notably, GRP78, a key indicator of ER stress, was selectively elevated in T.A. Long-term exercise decreased TxNiP in T.A. and soleus muscles and increased the TRX-1/TxNiP ratio in soleus muscle of aged mice. Inducible HSP70 and constituent HSC70 were upregulated, whereas CHOP was reduced after exercise in soleus muscle. Thus, our data demonstrated that aging induced oxidative stress and activated ER stress-related apoptosis signaling in skeletal muscle, whereas long-term wheel-running improved redox regulation, ER stress adaptation and attenuated ER stress-related apoptosis signaling. These findings suggest that life-long exercise can protect against age-related cellular stress.

  8. Exploring the interrelationship between alexithymia, defense style, emotional suppression, homicide-related posttraumatic stress disorder and psychiatric co-morbidity.

    Science.gov (United States)

    Chung, Man Cheung; Di, Xiaohu; Wan, King Hung

    2016-09-30

    This study investigated the interrelationship between alexithymia, defense style, emotional suppression, posttraumatic stress disorder (PTSD) following homicide and psychiatric co-morbidity. One hundred and fifty male homicide perpetrators and 156 male perpetrators of non-violent crime completed the Posttraumatic Stress Diagnostic Scale (except for non-violent perpetrators), the General Health Questionnaire-28, the Defense Styles Questionnaire, the Courtauld Emotional Control Scale and the Toronto Alexithymia Scale-20. The results showed that 44% of homicide perpetrators met the criteria for PTSD. No significant differences were found between groups in alexithymia, defense style and psychiatric co-morbidity. Homicide perpetrators suppressed depression significantly more than the non-violent group. PLS analyses showed that alexithymia was significantly correlated with defense style. Defense styles were significantly correlated with emotional suppression which, in turn, was associated with homicide-related PTSD and psychiatric co-morbidity. To conclude, perpetrators can experience PTSD reactions following the act of homicide. The severity of these reactions and other psychological problems were related to difficulty getting in touch with distressing emotions, the defenses they used to protect themselves psychologically and the way they suppressed their emotion. Copyright © 2016. Published by Elsevier Ireland Ltd.

  9. Both live and dead Enterococci activate Caenorhabditis elegans host defense via immune and stress pathways.

    Science.gov (United States)

    Yuen, Grace J; Ausubel, Frederick M

    2018-12-31

    The innate immune response of the nematode Caenorhabditis elegans has been extensively studied and a variety of Toll-independent immune response pathways have been identified. Surprisingly little, however, is known about how pathogens activate the C. elegans immune response. Enterococcus faecalis and Enterococcus faecium are closely related enterococcal species that exhibit significantly different levels of virulence in C. elegans infection models. Previous work has shown that activation of the C. elegans immune response by Pseudomonas aeruginosa involves P. aeruginosa-mediated host damage. Through ultrastructural imaging, we report that infection with either E. faecalis or E. faecium causes the worm intestine to become distended with proliferating bacteria in the absence of extensive morphological changes and apparent physical damage. Genetic analysis, whole-genome transcriptional profiling, and multiplexed gene expression analysis demonstrate that both enterococcal species, whether live or dead, induce a rapid and similar transcriptional defense response dependent upon previously described immune signaling pathways. The host response to E. faecium shows a stricter dependence upon stress response signaling pathways than the response to E. faecalis. Unexpectedly, we find that E. faecium is a C. elegans pathogen and that an active wild-type host defense response is required to keep an E. faecium infection at bay. These results provide new insights into the mechanisms underlying the C. elegans immune response to pathogen infection.

  10. Elevation of Oxidative Stress and Decline in Endogenous Antioxidant Defense in Elderly Individuals with Hypertension.

    Science.gov (United States)

    Naregal, Govindanagouda V; Devaranavadagi, Basavaraj B; Patil, Satish G; Aski, Basavaraj S

    2017-07-01

    Hypertension is becoming an important medical and public health problem all over the world and is the most common disorder of ageing. There is a growing evidence of involvement of vascular oxidative stress in the development of hypertension from animal studies. However, studies on humans with hypertension, particularly in elderly are least and data remained controversial. Moreover, studies in elderly people with hypertension are scarce. To investigate the possible role of oxidative stress and antioxidant defense in the pathogenesis of hypertension in elderly. A cross-sectional study was conducted on elderly males (n=60) with newly diagnosed hypertension and with normal blood pressure. Oxidative stress and antioxidant status were evaluated by assessing the following parameters: plasma Malondialdehyde (MDA), and antioxidants: Superoxide Dismutase (SOD) activity, reduced Glutathione (GSH), and vitamin C levels; and total Nitric Oxide concentration in plasma (NOx). Difference between groups was determined by using unpaired t-test/Mann-Whitney U test. Bivariate correlation and multiple regression analysis were used to determine the relationship between variables. A significant rise in plasma MDA (p-value=0.013) and lower levels of endogenous antioxidants: SOD (p-value≤0.001) and GSH (p-value≤0.001) were observed in elderly individuals with hypertension when compared to healthy controls. Though not significant, there was a mean decrease in plasma NOx in hypertensive subjects than normotensive ones. While vitamin C showed no significant difference between two groups. Decrease in GSH (β=-0.398; p-value=0.001) and SOD (β=-0.423; p-value≤0.001) were the significant determinants of hypertension in elderly individuals. Above findings indicate that elevation in oxidative stress and decrease in endogenous antioxidant level may be involved in the pathogenesis of hypertension. However, it remains unclear whether oxidative stress causes or augments hypertension.

  11. Integrated physiological and proteomic analysis reveals underlying response and defense mechanisms of Brachypodium distachyon seedling leaves under osmotic stress, cadmium and their combined stresses.

    Science.gov (United States)

    Cheng, Zhi-Wei; Chen, Zi-Yan; Yan, Xing; Bian, Yan-Wei; Deng, Xiong; Yan, Yue-Ming

    2018-01-06

    Drought stress, a major abiotic stress, commonly occurs in metal-contaminated environments and affects crop growth and yield. In this study, we performed the first integrated phenotypic, physiological, and proteomic analysis of Brachypodium distachyon L. seedling leaves under polyethylene glycol (PEG) mock osmotic stress, cadmium (Cd 2+ ), and their combined stresses. Combined osmotic and Cd 2+ stress had more significant effects than each individual stress on seedling growth, and the physiological traits and ultrastructures of leaves. Totally 117 differentially accumulated protein (DAP) spots detected by two-dimensional difference gel electrophoresis (2D-DIGE) were identified, and representing 89 unique proteins under individual and combined stresses. These DAPs were involved in photosynthesis/respiration (34%), energy and carbon metabolism (21%), stress/defense/detoxification (13%), protein folding and degradation (12%), and amino acid metabolism (7%). Principal component analysis (PCA) revealed that DAPs from the Cd 2+ and combined stresses grouped much closer than those from osmotic stress, indicating Cd 2+ and combined stresses resulted in more changes to the leaf proteome than osmotic stress alone. Protein-protein interaction analyses showed that a 14-3-3 centered sub-network could play important roles in responses to abiotic stresses. An overview pathway of proteome metabolic changes in Bd21 seedling leaves under combined stresses is proposed, representing a synergistic responsive network and underlying response and defense mechanisms. Drought stress is one of the major abiotic stresses, which commonly occurs in metal-contaminated environments, and affects crop growth and yield performance. We performed the first integrated phenotypic, physiological and proteomic analysis of Brachypodium distachyon L. seedling leaves under drought (PEG), cadmium (Cd 2+ ) and their combined stresses. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Functional characterization of novel genotypes and cellular oxidative stress studies in propionic acidemia.

    Science.gov (United States)

    Gallego-Villar, Lorena; Pérez-Cerdá, Celia; Pérez, Belén; Abia, David; Ugarte, Magdalena; Richard, Eva; Desviat, Lourdes R

    2013-09-01

    Propionic acidemia (PA), caused by a deficiency of the mitochondrial biotin dependent enzyme propionyl-CoA carboxylase (PCC) is one of the most frequent organic acidurias in humans. PA is caused by mutations in either the PCCA or PCCB genes encoding the α- and β-subunits of the PCC enzyme which are assembled as an α6β6 dodecamer. In this study we have investigated the molecular basis of the defect in ten fibroblast samples from PA patients. Using homology modeling with the recently solved crystal structure of the PCC holoenzyme and a eukaryotic expression system we have analyzed the structural and functional effect of novel point mutations, also revealing a novel splice defect by minigene analysis. In addition, we have investigated the contribution of oxidative stress to cellular damage measuring reactive oxygen species (ROS) levels and apoptosis parameters in patient fibroblasts, as recent studies point to a secondary mitochondrial dysfunction as pathophysiological mechanism in this disorder. The results show an increase in intracellular ROS content compared to controls, correlating with the activation of the JNK and p38 signaling pathways. Highest ROS levels were present in cells harboring functionally null mutations, including one severe missense mutation. This work provides molecular insight into the pathogenicity of PA variants and indicates that oxidative stress may be a major contributing factor to the cellular damage, supporting the proposal of antioxidant strategies as novel supplementary therapy in this rare disease.

  13. Contaminant loading in remote Arctic lakes affects cellular stress-related proteins expression in feral charr.

    Science.gov (United States)

    Wiseman, Steve; Jorgensen, Even H.; Maule, Alec G.; Vijayan, Mathilakath M.

    2011-01-01

    The remote Arctic lakes on Bjornoya Island, Norway, offer a unique opportunity to study possible affect of lifelong contaminant exposure in wild populations of landlocked Arctic charr (Salvelinus alpinus). This is because Lake Ellasjoen has persistent organic pollutant (POP) levels that are significantly greater than in the nearby Lake Oyangen. We examined whether this differential contaminant loading was reflected in the expression of protein markers of exposure and effect in the native fish. We assessed the expressions of cellular stress markers, including cytochrome P4501A (Cyp1A), heat shock protein 70 (hsp70), and glucocorticoid receptor (GR) in feral charr from the two lakes. The average polychlorinated biphenyl (PCB) load in the charr liver from Ellasjoen was approximately 25-fold higher than in individuals from Oyangen. Liver Cyp1A protein expression was significantly higher in individuals from Ellasjoen compared with Oyangen, confirming differential PCB exposure. There was no significant difference in hsp70 protein expression in charr liver between the two lakes. However, brain hsp70 protein expression was significantly elevated in charr from Ellasjoen compared with Oyangen. Also, liver GR protein expression was significantly higher in the Ellasjoen charr compared with Oyangen charr. Taken together, our results suggest changes to cellular stress-related protein expression as a possible adaptation to chronic-contaminant exposure in feral charr in the Norwegian high-Arctic.

  14. Cellular stress and innate inflammation in organ-specific autoimmunity: lessons learned from vitiligo

    Science.gov (United States)

    Harris, John E.

    2015-01-01

    Summary For decades, research in autoimmunity has focused primarily on immune contributions to disease. Yet recent studies report elevated levels of reactive oxygen species (ROS) and abnormal activation of the unfolded protein response (UPR) in cells targeted by autoimmunity, implicating cellular stress originating from the target tissue as a contributing factor. A better understanding of this contribution may help to answer important lingering questions in organ-specific autoimmunity, like what factors initiate disease, and what directs its tissue specificity. Vitiligo, an autoimmune disease of the skin, has been the focus of translational research for over 30 years, and both melanocyte stress and immune mechanisms have been thought to be mutually exclusive explanations for pathogenesis. Chemical-induced vitiligo is a unique clinical presentation that reflects the importance of environmental influences on autoimmunity, provides insight into a new paradigm linking cell stress to the immune response, and serves as a template for other autoimmune diseases. In this review I will discuss the evidence for cell stress contributions to a number of autoimmune diseases, the questions that remain, and how vitiligo, an underappreciated example of organ-specific autoimmunity, helps to answer them. PMID:26683142

  15. Cultivated Sea Lettuce is a Multiorgan Protector from Oxidative and Inflammatory Stress by Enhancing the Endogenous Antioxidant Defense System

    Science.gov (United States)

    Ratnayake, Ranjala; Liu, Yanxia; Paul, Valerie J.; Luesch, Hendrik

    2013-01-01

    The health-promoting effects of seaweeds have been linked to antioxidant activity that may counteract cancer-causing oxidative stress-induced damage and inflammation. While antioxidant activity is commonly associated with direct radical scavenging activity, an alternative way to increase the antioxidant status of a cell is to enhance the endogenous (phase II) defense system consisting of cytoprotective antioxidant enzymes, including NAD(P)H:quinone oxidoreductase 1 (NQO1). These enzymes are transcriptionally regulated by the antioxidant response element (ARE) via the transcription factor Nrf2. Extracts derived from cultivated Ulva sp., a green alga regarded as a marine vegetable (sea lettuce), potently activated the Nrf2-ARE pathway in IMR-32 neuroblastoma and LNCaP prostate cancer cells. RNA interference studies demonstrated that Nrf2 and PI3 kinase are essential for the phase II response in IMR-32 cells. Activity-enriched fractions induced Nrf2 nuclear translocation and target gene transcription, and boosted the cellular glutathione level and therefore antioxidant status. A single-dose gavage feeding of Ulva-derived fractions increased Nqo1 transcript levels in various organs. Nqo1 induction spiked in different tissues, depending on the specific chemical composition of each administered fraction. We purified and characterized four ARE inducers in this extract, including loliolide (1), isololiolide (2), a megastigmen (3), and a novel chlorinated unsaturated aldehyde (4). The ARE-active fractions attenuated lipopolysaccharide-induced iNOS and Cox2 gene expression in macrophagic RAW264.7 cells, decreasing nitric oxide (NO) and prostaglandin E2 (PGE2) production, respectively. Nqo1 activity and NO production were abrogated in nrf2−/− mouse embryonic fibroblasts, providing a direct link between the induction of phase II response and anti-inflammatory activity. PMID:24005795

  16. Brachycorynella asparagi (Mordv.) Induced-Oxidative Stress and Antioxidative Defenses of Asparagus officinalis L.

    Science.gov (United States)

    Borowiak-Sobkowiak, Beata; Woźniak, Agnieszka; Bednarski, Waldemar; Formela, Magda; Samardakiewicz, Sławomir; Morkunas, Iwona

    2016-10-20

    The aim of this study was to investigate whether and to what extent oxidative stress is induced in leaves of one- and two-month-old plants of Asparagus officinalis L. cv. Argenteuil infested by Brachycorynella asparagi (Mordvilko) at a varied population size. The pest B. asparagi has been described as the most damaging species feeding on asparagus. Analyses using electron paramagnetic resonance (EPR) demonstrated generally higher concentrations of semiquinone radicals with g -values of 2.0045 ± 0.0005 and 2.0026 ± 0.0005 in Asparagus officinalis ( A. officinalis ) leaves after Brachycorynella asparagi ( B. asparagi ) infestation than in the control. Observations of leaves under a confocal microscope showed a post-infestation enhanced generation of the superoxide anion radical (O₂ •- ) and hydrogen peroxide (H₂O₂) in comparison to the control. Strong fluctuations in Mn 2+ ion levels detected by EPR spectroscopy versus time were detected in leaves infested by aphids, which may indicate the involvement of these ions in the control of O₂ •- production. An enhanced superoxide dismutase activity is an important element in leaf defense against oxidative stress. Visible symptoms were found in aphid-infested A. officinalis . Damage to leaves of one- and two-month-old A. officinalis plants by the aphid B. asparagi was dependent on the intensity, duration of infestation and plant age.

  17. Brachycorynella asparagi (Mordv.) Induced—Oxidative Stress and Antioxidative Defenses of Asparagus officinalis L.

    Science.gov (United States)

    Borowiak-Sobkowiak, Beata; Woźniak, Agnieszka; Bednarski, Waldemar; Formela, Magda; Samardakiewicz, Sławomir; Morkunas, Iwona

    2016-01-01

    The aim of this study was to investigate whether and to what extent oxidative stress is induced in leaves of one- and two-month-old plants of Asparagus officinalis L. cv. Argenteuil infested by Brachycorynella asparagi (Mordvilko) at a varied population size. The pest B. asparagi has been described as the most damaging species feeding on asparagus. Analyses using electron paramagnetic resonance (EPR) demonstrated generally higher concentrations of semiquinone radicals with g-values of 2.0045 ± 0.0005 and 2.0026 ± 0.0005 in Asparagus officinalis (A. officinalis) leaves after Brachycorynella asparagi (B. asparagi) infestation than in the control. Observations of leaves under a confocal microscope showed a post-infestation enhanced generation of the superoxide anion radical (O2•−) and hydrogen peroxide (H2O2) in comparison to the control. Strong fluctuations in Mn2+ ion levels detected by EPR spectroscopy versus time were detected in leaves infested by aphids, which may indicate the involvement of these ions in the control of O2•− production. An enhanced superoxide dismutase activity is an important element in leaf defense against oxidative stress. Visible symptoms were found in aphid-infested A. officinalis. Damage to leaves of one- and two-month-old A. officinalis plants by the aphid B. asparagi was dependent on the intensity, duration of infestation and plant age. PMID:27775613

  18. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response.

    Directory of Open Access Journals (Sweden)

    Bo Liu

    Full Text Available Biotic and abiotic stresses are major unfavorable factors that affect crop productivity worldwide. NAC proteins comprise a large family of transcription factors that play important roles in plant growth and development as well as in responses to biotic and abiotic stresses. In a virus-induced gene silencing-based screening to identify genes that are involved in defense response against Botrytis cinerea, we identified a tomato NAC gene SlSRN1 (Solanum lycopersicum Stress-related NAC1. SlSRN1 is a plasma membrane-localized protein with transactivation activity in yeast. Expression of SlSRN1 was significantly induced by infection with B. cinerea or Pseudomonas syringae pv. tomato (Pst DC3000, leading to 6-8 folds higher than that in the mock-inoculated plants. Expression of SlSRN1 was also induced by salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid and by drought stress. Silencing of SlSRN1 resulted in increased severity of diseases caused by B. cinerea and Pst DC3000. However, silencing of SlSRN1 resulted in increased tolerance against oxidative and drought stresses. Furthermore, silencing of SlSRN1 accelerated accumulation of reactive oxygen species but attenuated expression of defense genes after infection by B. cinerea. Our results demonstrate that SlSRN1 is a positive regulator of defense response against B. cinerea and Pst DC3000 but is a negative regulator for oxidative and drought stress response in tomato.

  19. Tomato NAC transcription factor SlSRN1 positively regulates defense response against biotic stress but negatively regulates abiotic stress response.

    Science.gov (United States)

    Liu, Bo; Ouyang, Zhigang; Zhang, Yafen; Li, Xiaohui; Hong, Yongbo; Huang, Lei; Liu, Shixia; Zhang, Huijuan; Li, Dayong; Song, Fengming

    2014-01-01

    Biotic and abiotic stresses are major unfavorable factors that affect crop productivity worldwide. NAC proteins comprise a large family of transcription factors that play important roles in plant growth and development as well as in responses to biotic and abiotic stresses. In a virus-induced gene silencing-based screening to identify genes that are involved in defense response against Botrytis cinerea, we identified a tomato NAC gene SlSRN1 (Solanum lycopersicum Stress-related NAC1). SlSRN1 is a plasma membrane-localized protein with transactivation activity in yeast. Expression of SlSRN1 was significantly induced by infection with B. cinerea or Pseudomonas syringae pv. tomato (Pst) DC3000, leading to 6-8 folds higher than that in the mock-inoculated plants. Expression of SlSRN1 was also induced by salicylic acid, jasmonic acid and 1-amino cyclopropane-1-carboxylic acid and by drought stress. Silencing of SlSRN1 resulted in increased severity of diseases caused by B. cinerea and Pst DC3000. However, silencing of SlSRN1 resulted in increased tolerance against oxidative and drought stresses. Furthermore, silencing of SlSRN1 accelerated accumulation of reactive oxygen species but attenuated expression of defense genes after infection by B. cinerea. Our results demonstrate that SlSRN1 is a positive regulator of defense response against B. cinerea and Pst DC3000 but is a negative regulator for oxidative and drought stress response in tomato.

  20. Mitochondrial proteomics on human fibroblasts for identification of metabolic imbalance and cellular stress

    Directory of Open Access Journals (Sweden)

    Bross Peter

    2009-05-01

    Full Text Available Abstract Background Mitochondrial proteins are central to various metabolic activities and are key regulators of apoptosis. Disturbance of mitochondrial proteins is therefore often associated with disease. Large scale protein data are required to capture the mitochondrial protein levels and mass spectrometry based proteomics is suitable for generating such data. To study the relative quantities of mitochondrial proteins in cells from cultivated human skin fibroblasts we applied a proteomic method based on nanoLC-MS/MS analysis of iTRAQ-labeled peptides. Results When fibroblast cultures were exposed to mild metabolic stress – by cultivation in galactose medium- the amount of mitochondria appeared to be maintained whereas the levels of individual proteins were altered. Proteins of respiratory chain complex I and IV were increased together with NAD+-dependent isocitrate dehydrogenase of the citric acid cycle illustrating cellular strategies to cope with altered energy metabolism. Furthermore, quantitative protein data, with a median standard error below 6%, were obtained for the following mitochondrial pathways: fatty acid oxidation, citric acid cycle, respiratory chain, antioxidant systems, amino acid metabolism, mitochondrial translation, protein quality control, mitochondrial morphology and apoptosis. Conclusion The robust analytical platform in combination with a well-defined compendium of mitochondrial proteins allowed quantification of single proteins as well as mapping of entire pathways. This enabled characterization of the interplay between metabolism and stress response in human cells exposed to mild stress.

  1. Effects of magma-induced stress within a cellular automaton model of volcanism

    Science.gov (United States)

    Butters, Olivia J.; Sarson, Graeme R.; Bushby, Paul J.

    2017-07-01

    The cellular automaton model of Piegari, Di Maio, Scandone and Milano, J. Volc. Geoth. Res., 202, 22-28 (2011) is extended to include magma-induced stress (i.e. a local magma-related augmentation of the stress field). This constitutes a nonlinear coupling between the magma and stress fields considered by this model, which affects the statistical distributions of eruptions obtained. The extended model retains a power law relation between eruption size and frequency for most events, as expected from the self-organised criticality inspiring this model; but the power law now applies for a reduced range of size, and there are new peaks of relatively more frequent eruptions of intermediate and large size. The cumulative frequency of repose time between events remains well modelled by a stretched exponential function of repose time (approaching a pure exponential distribution only for the longest repose times), but the time scales of this behaviour are slightly longer, reflecting the increased preference for larger events. The eruptions are relatively more likely to have high volatile (water) content, so would generally be more explosive. The new model also naturally favours a central 'axial' transport conduit, as found in many volcano systems, but which otherwise must be artificially imposed within such models.

  2. VapC toxins drive cellular dormancy under uranium stress for the extreme thermoacidophile Metallosphaera prunae.

    Science.gov (United States)

    Mukherjee, Arpan; Wheaton, Garrett H; Counts, James A; Ijeomah, Brenda; Desai, Jigar; Kelly, Robert M

    2017-07-01

    When abruptly exposed to toxic levels of hexavalent uranium, the extremely thermoacidophilic archaeon Metallosphaera prunae, originally isolated from an abandoned uranium mine, ceased to grow, and concomitantly exhibited heightened levels of cytosolic ribonuclease activity that corresponded to substantial degradation of cellular RNA. The M. prunae transcriptome during 'uranium-shock' implicated VapC toxins as possible causative agents of the observed RNA degradation. Identifiable VapC toxins and PIN-domain proteins encoded in the M. prunae genome were produced and characterized, three of which (VapC4, VapC7, VapC8) substantially degraded M. prunae rRNA in vitro. RNA cleavage specificity for these VapCs mapped to motifs within M. prunae rRNA. Furthermore, based on frequency of cleavage sequences, putative target mRNAs for these VapCs were identified; these were closely associated with translation, transcription, and replication. It is interesting to note that Metallosphaera sedula, a member of the same genus and which has a nearly identical genome sequence but not isolated from a uranium-rich biotope, showed no evidence of dormancy when exposed to this metal. M. prunae utilizes VapC toxins for post-transcriptional regulation under uranium stress to enter a cellular dormant state, thereby providing an adaptive response to what would otherwise be a deleterious environmental perturbation. © 2017 Society for Applied Microbiology and John Wiley & Sons Ltd.

  3. Сalculation theory for shrinkage stresses in cellular concrete wall panels in carbonation processes with account of creep

    Directory of Open Access Journals (Sweden)

    Chepurnenko Anton Sergeevich

    2016-12-01

    Full Text Available The task of comprehensive analysis presented in this article is a development of theory of calculation of shrinkage stresses in cellular concrete wall panels; such stresses occur due to carbonation of concrete because of the creep of material. Analytical dependences characterizing the influence of carbonation on the modulus of elasticity, shrinkage and creep of autoclaved cellular concrete, as well as the regularity of variation of carbonation degree as per thickness of the wall panels depending on time, were obtained. The proposed theory of calculation of shrinkage stresses in cellular concrete wall panels, with account of concrete creep, makes it possible to predict the influence of carbonation processes on crack resistance thereof, and thus to develop measures of technological and structural nature, in order to improve their operational reliability and durability.

  4. Effect of electromagnetic fields at 2.45 GHz on the levels of cellular stress proteins HSP-90 and 70 in the rat thyroid

    International Nuclear Information System (INIS)

    Misa Agustino, M. J.; Alvarez-Folgueras, M.; Jorge-Mora, M. T.; Jorge Barreiro, F. J.; Ares Pena, F. J.; Lleiro, J.; Lopez Martin, M. E.

    2011-01-01

    In this study we analyzed the cellular stress levels achieved by heat shock proteins (HSP) 90 and 70 in rat thyroid tissue after exposure to radio waves in TWG experimental system. Parallel measurements of body stress in animals by rectal temperature probes allow us to determine whether there is any interaction between temperature increases and cellular stress.

  5. Induction of stress responses by polluting agents which dis-regulate cellular homeostasis

    International Nuclear Information System (INIS)

    Mothersill, Carmel

    2001-01-01

    There is growing concern both in the scientific community and among the general public about the effects of exposure to low levels of radiation and environmental chemicals. The increased incidence of cancer, reproduction disorders and allergies have been associated with ambient environmental exposure to these pollutants. The pollution burden is generally made up of a mixture of agents, occurring at concentrations of the individual compounds which are not considered harmful and which are below the action level. Individual pollutants can act through a variety of primary toxicity mechanisms. However the resulting secondary and tertiary toxicity mechanisms which affect cellular homeostasis might be more common. These resulting stress responses, including oxidative stress, have been associated with effects that include increased level of death during cell division, increased levels of mutation and increased tolerance of mutations in cell populations, increased levels of cytogenetic abnormalities and many other symptoms. These effects are linked to a persistent increase in (oxidative) stress and are particularly evident in the haematopoietic system (possibly due to the high rate self of renewal in that system). Therefore prolonged exposure to mixtures of chemicals and radiation might result in additive and synergistic stress responses which can induce long-term delayed effects, often in progeny or in cells not directly exposed to the agent/s. The existence of a common (oxidative) stress mechanism means that the effects of individual pollutants may not be considered in isolation. Rather the total pollution burden may need to be measured using a response rather than a dose based scoring or ranking system. Improved understanding of toxicity mechanisms and effects underpins improved risk assessment and identification of biomarkers. The immune system plays a pivotal role in maintaining health status, and disruption of immune functions can lead to increased susceptibility to

  6. Acute stress disorder and defense mechanisms: a study of physical trauma patients admitted to an emergency hospital.

    Science.gov (United States)

    Santana, Márcia Rosane Moreira; Zatti, Cleonice; Spader, Mariana Lunardi; Malgarim, Bibiana Godoi; Salle, Emílio; Piltcher, Renato; Ceresér, Keila Maria Mendes; Bastos, Andre Goettems; Freitas, Lúcia Helena

    2017-01-01

    Acute stress disorder (ASD) encompasses a set of symptoms that can arise in individuals after exposure to a traumatic event. This study assessed the defense mechanisms used by victims of physical trauma who developed ASD. This was a controlled cross-sectional study of 146 patients who suffered physical trauma and required hospitalization. A structured questionnaire was used to evaluate ASD symptoms based on DSM-5 diagnostic criteria, in addition to the Defense Style Questionnaire (DSQ). Ten participants (6.85%) received a positive diagnosis of ASD, and 136, (93.15%) a negative diagnosis. The majority of the sample consisted of men with median age ranging from 33.50 to 35.50. The most prevalent defense mechanisms among the 10 patients with ASD were cancellation and devaluation, which belong to the neurotic and immature factors, respectively. Positive associations between the presence of symptoms from criterion B of the DSM-5 and defense mechanisms from the DSQ were found. These included the mechanisms of undoing, projection, passive aggression, acting out, autistic fantasy, displacement, and somatization. Patients with ASD employed different defense mechanisms such as undoing and devaluation when compared to patients not diagnosed with ASD. These results mark the importance of early detection of ASD symptoms at a preventative level, thereby creating new possibilities for avoiding exacerbations related to the trauma, which represents an important advance in terms of public health.

  7. Neocortex and allocortex respond differentially to cellular stress in vitro and aging in vivo.

    Directory of Open Access Journals (Sweden)

    Jessica M Posimo

    Full Text Available In Parkinson's and Alzheimer's diseases, the allocortex accumulates aggregated proteins such as synuclein and tau well before neocortex. We present a new high-throughput model of this topographic difference by microdissecting neocortex and allocortex from the postnatal rat and treating them in parallel fashion with toxins. Allocortical cultures were more vulnerable to low concentrations of the proteasome inhibitors MG132 and PSI but not the oxidative poison H2O2. The proteasome appeared to be more impaired in allocortex because MG132 raised ubiquitin-conjugated proteins and lowered proteasome activity in allocortex more than neocortex. Allocortex cultures were more vulnerable to MG132 despite greater MG132-induced rises in heat shock protein 70, heme oxygenase 1, and catalase. Proteasome subunits PA700 and PA28 were also higher in allocortex cultures, suggesting compensatory adaptations to greater proteasome impairment. Glutathione and ceruloplasmin were not robustly MG132-responsive and were basally higher in neocortical cultures. Notably, neocortex cultures became as vulnerable to MG132 as allocortex when glutathione synthesis or autophagic defenses were inhibited. Conversely, the glutathione precursor N-acetyl cysteine rendered allocortex resilient to MG132. Glutathione and ceruloplasmin levels were then examined in vivo as a function of age because aging is a natural model of proteasome inhibition and oxidative stress. Allocortical glutathione levels rose linearly with age but were similar to neocortex in whole tissue lysates. In contrast, ceruloplasmin levels were strikingly higher in neocortex at all ages and rose linearly until middle age. PA28 levels rose with age and were higher in allocortex in vivo, also paralleling in vitro data. These neo- and allocortical differences have implications for the many studies that treat the telencephalic mantle as a single unit. Our observations suggest that the topographic progression of protein

  8. Endocrine and cellular stress effects of zinc oxide nanoparticles and nifedipine in marsh frogs Pelophylax ridibundus.

    Science.gov (United States)

    Falfushynska, Halina; Gnatyshyna, Lesya; Horyn, Oksana; Sokolova, Inna; Stoliar, Oksana

    2017-04-01

    Freshwater organisms including amphibians experience increasing exposures to emerging pollutants such as nanoparticles and pharmaceuticals, which can affect their fitness and performance. We studied the effects of two common pollutants extensively used in industry, pharmaceutical and personal care products, nano-zinc oxide (nZnO) and a Ca-channel blocker nifedipine (Nfd), on endocrine status and cellular stress markers of the marsh frog Pelophylax ridibundus. Males were exposed for 14days to nZnO (3.1μM), Zn 2+ (3.1μM, as a positive control for nZnO exposures), Nfd (10μM), and combination of nZnO and Nfd (nZnO+Nfd). Exposure to nZnO and Zn 2+ led to an increase in Zn burdens, elevated concentrations of the metal-bound metallothioneins (MT-Me) in the liver and increased vitellogenin in the serum, whereas exposures to Nfd and nZnO+Nfd resulted in the metal release from MTs and a significant increase in the ratio of total to metal-bound MTs. This likely reflects oxidative stress caused by Nfd exposures as manifested in the elevated levels of oxyradical production, upregulation of superoxide dismutase activity (SOD) and increase in the total and oxidized glutathione concentrations in Nfd-exposed frogs. Zn-containing exposures upregulated activity of deiodinase (in nZnO and nZnO+Nfd exposures) and serum thyrotropin level (in the case of Zn 2+ ). All exposures caused an increase in DNA fragmentation, lipofuscin accumulation as well as upregulation of caspase-3 and CYP450 levels reflecting cytotoxicity of the studied compounds in the liver. Across all experimental treatments, nZnO exposures in the absence of Nfd had the least impact on the cellular stress traits or redox status in frogs. This indicates that at the low environmentally relevant levels of pollution, pharmaceuticals such as Nfd and free metals (such as Zn 2+ ) may represent a stronger threat to the health of the frogs than nZnO particles. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Anita Ayer

    Full Text Available Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (E GSH was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. E GSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (-340 to -350 mV were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H(+/2GSH and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H(+/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions.

  10. Distinct redox regulation in sub-cellular compartments in response to various stress conditions in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ayer, Anita; Sanwald, Julia; Pillay, Bethany A; Meyer, Andreas J; Perrone, Gabriel G; Dawes, Ian W

    2013-01-01

    Responses to many growth and stress conditions are assumed to act via changes to the cellular redox status. However, direct measurement of pH-adjusted redox state during growth and stress has never been carried out. Organellar redox state (E GSH) was measured using the fluorescent probes roGFP2 and pHluorin in Saccharomyces cerevisiae. In particular, we investigated changes in organellar redox state in response to various growth and stress conditions to better understand the relationship between redox-, oxidative- and environmental stress response systems. E GSH values of the cytosol, mitochondrial matrix and peroxisome were determined in exponential and stationary phase in various media. These values (-340 to -350 mV) were more reducing than previously reported. Interestingly, sub-cellular redox state remained unchanged when cells were challenged with stresses previously reported to affect redox homeostasis. Only hydrogen peroxide and heat stress significantly altered organellar redox state. Hydrogen peroxide stress altered the redox state of the glutathione disulfide/glutathione couple (GSSG, 2H(+)/2GSH) and pH. Recovery from moderate hydrogen peroxide stress was most rapid in the cytosol, followed by the mitochondrial matrix, with the peroxisome the least able to recover. Conversely, the bulk of the redox shift observed during heat stress resulted from alterations in pH and not the GSSG, 2H(+)/2GSH couple. This study presents the first direct measurement of pH-adjusted redox state in sub-cellular compartments during growth and stress conditions. Redox state is distinctly regulated in organelles and data presented challenge the notion that perturbation of redox state is central in the response to many stress conditions.

  11. Apolipoprotein J/Clusterin is a novel structural component of human erythrocytes and a biomarker of cellular stress and senescence.

    Directory of Open Access Journals (Sweden)

    Marianna H Antonelou

    Full Text Available BACKGROUND: Secretory Apolipoprotein J/Clusterin (sCLU is a ubiquitously expressed chaperone that has been functionally implicated in several pathological conditions of increased oxidative injury, including aging. Nevertheless, the biological role of sCLU in red blood cells (RBCs remained largely unknown. In the current study we identified sCLU as a component of human RBCs and we undertook a detailed analysis of its cellular topology. Moreover, we studied the erythrocytic membrane sCLU content during organismal aging, in conditions of increased organismal stress and accelerated RBCs senescence, as well as during physiological in vivo cellular senescence. METHODOLOGY/PRINCIPAL FINDINGS: By using a combination of molecular, biochemical and high resolution microscopical methods we found that sCLU is a novel structural component of RBCs extra- and intracellular plasma membrane and cytosol. We observed that the RBCs membrane-associated sCLU decreases during organismal aging or exposure to acute stress (e.g. smoking, in patients with congenital hemolytic anemia, as well as during RBCs in vivo senescence. In all cases, sCLU reduction paralleled the expression of typical cellular senescence, redox imbalance and erythrophagocytosis markers which are also indicative of the senescence- and oxidative stress-mediated RBCs membrane vesiculation. CONCLUSIONS/SIGNIFICANCE: We propose that sCLU at the mature RBCs is not a silent remnant of the erythroid precursors, but an active component being functionally implicated in the signalling mechanisms of cellular senescence and oxidative stress-responses in both healthy and diseased organism. The reduced sCLU protein levels in the RBCs membrane following cell exposure to various endogenous or exogenous stressors closely correlates to the levels of cellular senescence and redox imbalance markers, suggesting the usefulness of sCLU as a sensitive biomarker of senescence and cellular stress.

  12. Deficiency of methionine sulfoxide reductase A causes cellular dysfunction and mitochondrial damage in cardiac myocytes under physical and oxidative stresses

    International Nuclear Information System (INIS)

    Nan, Changlong; Li, Yuejin; Jean-Charles, Pierre-Yves; Chen, Guozhen; Kreymerman, Alexander; Prentice, Howard; Weissbach, Herbert; Huang, Xupei

    2010-01-01

    Research highlights: → Deficiency of MsrA in the heart renders myocardial cells more sensitive to oxidative stress. → Mitochondrial damage happens in the heart lacking MsrA. → More protein oxidation in myocardial cells lacking MsrA. → MsrA protects the heart against oxidative stress. -- Abstract: Methionine sulfoxide reductase A (MsrA) is an enzyme that reverses oxidation of methionine in proteins. Using a MsrA gene knockout (MsrA -/- ) mouse model, we have investigated the role of MsrA in the heart. Our data indicate that cellular contractility and cardiac function are not significantly changed in MsrA -/- mice if the hearts are not stressed. However, the cellular contractility, when stressed using a higher stimulation frequency (2 Hz), is significantly reduced in MsrA -/- cardiac myocytes. MsrA -/- cardiac myocytes also show a significant decrease in contractility after oxidative stress using H 2 O 2 . Corresponding changes in Ca 2+ transients are observed in MsrA -/- cardiomyocytes treated with 2 Hz stimulation or with H 2 O 2 . Electron microscope analyses reveal a dramatic morphological change of mitochondria in MsrA -/- mouse hearts. Further biochemical measurements indicate that protein oxidation levels in MsrA -/- mouse hearts are significantly higher than those in wild type controls. Our study demonstrates that the lack of MsrA in cardiac myocytes reduces myocardial cell's capability against stress stimulations resulting in a cellular dysfunction in the heart.

  13. Mitochondrial oxidative stress caused by Sod2 deficiency promotes cellular senescence and aging phenotypes in the skin.

    Science.gov (United States)

    Velarde, Michael C; Flynn, James M; Day, Nicholas U; Melov, Simon; Campisi, Judith

    2012-01-01

    Cellular senescence arrests the proliferation of mammalian cells at risk for neoplastic transformation, and is also associated with aging. However, the factors that cause cellular senescence during aging are unclear. Excessive reactive oxygen species (ROS) have been shown to cause cellular senescence in culture, and accumulated molecular damage due to mitochondrial ROS has long been thought to drive aging phenotypesin vivo. Here, we test the hypothesis that mitochondrial oxidative stress can promote cellular senescence in vivo and contribute to aging phenotypes in vivo, specifically in the skin. We show that the number of senescent cells, as well as impaired mitochondrial (complex II) activity increase in naturally aged mouse skin. Using a mouse model of genetic Sod2 deficiency, we show that failure to express this important mitochondrial anti-oxidant enzyme also impairs mitochondrial complex II activity, causes nuclear DNA damage, and induces cellular senescence but not apoptosis in the epidermis. Sod2 deficiency also reduced the number of cells and thickness of the epidermis, while increasing terminal differentiation. Our results support the idea that mitochondrial oxidative stress and cellular senescence contribute to aging skin phenotypes in vivo.

  14. Reduced Sleep During Social Isolation Leads to Cellular Stress and Induction of the Unfolded Protein Response.

    Science.gov (United States)

    Brown, Marishka K; Strus, Ewa; Naidoo, Nirinjini

    2017-07-01

    Social isolation has a multitude of negative consequences on human health including the ability to endure challenges to the immune system, sleep amount and efficiency, and general morbidity and mortality. These adverse health outcomes are conserved in other social species. In the fruit fly Drosophila melanogaster, social isolation leads to increased aggression, impaired memory, and reduced amounts of daytime sleep. There is a correlation between molecules affected by social isolation and those implicated in sleep in Drosophila. We previously demonstrated that acute sleep loss in flies and mice induced the unfolded protein response (UPR), an adaptive signaling pathway. One mechanism indicating UPR upregulation is elevated levels of the endoplasmic reticular chaperone BiP/GRP78. We previously showed that BiP overexpression in Drosophila led to increased sleep rebound. Increased rebound sleep has also been demonstrated in socially isolated (SI) flies. D. melanogaster were used to study the effect of social isolation on cellular stress. SI flies displayed an increase in UPR markers; there were higher BiP levels, increased phosphorylation of the translation initiation factor eIF2α, and increased splicing of xbp1. These are all indicators of UPR activation. In addition, the effects of isolation on the UPR were reversible; pharmacologically and genetically altering sleep in the flies modulated the UPR. The reduction in sleep observed in SI flies is a cellular stressor that results in UPR induction. © Sleep Research Society 2017. Published by Oxford University Press [on behalf of the Sleep Research Society]. All rights reserved. For permissions, please email: journals.permissions@oup.com

  15. Fitness costs of chemical defense in Plantago lanceolata L.: effects of nutrient and competition stress

    NARCIS (Netherlands)

    Marak, H.B.; Biere, A.; Van Damme, J.M.M.

    2003-01-01

    Fitness costs of defense are often invoked to explain the maintenance of genetic variation in levels of chemical defense compounds in natural plant populations. We investigated fitness costs of iridoid glycosides (IGs), terpenoid compounds that strongly deter generalist insect herbivores, in ribwort

  16. Multitasking antimicrobial peptides, plant development, and host defense against biotic/abiotic stress

    Science.gov (United States)

    Crop losses due to pathogens are a major threat to global food security. Plants employ a multilayer defense system against pathogens including use of physical barriers (cell wall), induction of hypersensitive defense response (HR), resistance (R) proteins, and synthesis of antimicrobial peptides (AM...

  17. Cellular Stress in the Context of an Inflammatory Environment Supports TGF-β-Independent T Helper-17 Differentiation.

    Science.gov (United States)

    Brucklacher-Waldert, Verena; Ferreira, Cristina; Stebegg, Marisa; Fesneau, Olivier; Innocentin, Silvia; Marie, Julien C; Veldhoen, Marc

    2017-06-13

    T helper-17 (Th17) cells are associated with inflammatory disorders and cancer. We report that environmental conditions resulting in cellular stress, such as low oxygen, glucose, and isotonic stress, particularly enhance the generation of Th17 cells. Pharmacological inhibition of cell stress reduces Th17 cell differentiation while stress inducers enhance the development of Th17 cells. The cellular stress response results in Th17 cell development via sustained cytoplasmic calcium levels and, in part, XBP1 activity. Furthermore, in an inflammatory environment, conditions resulting in cell stress can bring about de novo Th17 cell differentiation, even in the absence of transforming growth factor β (TGF-β) signaling. In vivo, cell stress inhibition enhances resistance to Th17-mediated autoimmunity while stress-exposed T cells enhance disease severity. Adverse metabolic environments during inflammation provide a link between adaptive immunity and inflammation and may represent a risk factor for the development of chronic inflammatory conditions by facilitating Th17 cell differentiation. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Arabidopsis thaliana natural variation reveals connections between UV radiation stress and plant pathogen-like defense responses.

    Science.gov (United States)

    Piofczyk, Thomas; Jeena, Ganga; Pecinka, Ales

    2015-08-01

    UV radiation is a ubiquitous component of solar radiation that affects plant growth and development. Here we studied growth related traits of 345 Arabidopsis thaliana accessions in response to UV radiation stress. We analyzed the genetic basis of this natural variation by genome-wide association studies, which suggested a specific candidate genomic region. RNA-sequencing of three sensitive and three resistant accessions combined with mutant analysis revealed five large effect genes. Mutations in PHE ammonia lyase 1 (PAL1) and putative kinase At1g76360 rendered Arabidopsis hypersensitive to UV stress, while loss of function from putative methyltransferase At4g22530, novel plant snare 12 (NPSN12) and defense gene activated disease resistance 2 (ADR2) conferred higher UV stress resistance. Three sensitive accessions showed strong ADR2 transcriptional activation, accumulation of salicylic acid (SA) and dwarf growth upon UV stress, while these phenotypes were much less affected in resistant plants. The phenotype of sensitive accessions resembles autoimmune reactions due to overexpression of defense related genes, and suggests that natural variation in response to UV radiation stress is driven by pathogen-like responses in Arabidopsis. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  19. Oxidative stress is associated with an increased antioxidant defense in elderly subjects: a multilevel approach.

    Directory of Open Access Journals (Sweden)

    Gemma Flores-Mateo

    Full Text Available BACKGROUND: Studies of associations between plasma GSH-Px activity and cardiovascular risk factors have been done in humans, and contradictory results have been reported. The aim of our study was to assess the association between the scavenger antioxidant enzyme glutathione peroxidase (GSH-Px activity in plasma and the presence of novel and classical cardiovascular risk factors in elderly patients. METHODS: We performed a cross-sectional study with baseline data from a subsample of the PREDIMED (PREvención con DIeta MEDiterránea study in Spain. Participants were 1,060 asymptomatic subjects at high risk for cardiovascular disease (CVD, aged 55 to 80, selected from 8 primary health care centers (PHCCs. We assessed classical CVD risk factors, plasma oxidized low-density lipoproteins (ox-LDL, and glutathione peroxidase (GSH-Px using multilevel statistical procedures. RESULTS: Mean GSH-Px value was 612 U/L (SE: 12 U/L, with variation between PHCCs ranging from 549 to 674 U/L (Variance =  013.5; P<0.001. Between-participants variability within a PHCC accounted for 89% of the total variation. Both glucose and oxidized LDL were positively associated with GSH-Px activity after adjustment for possible confounder variables (P = 0.03 and P = 0.01, respectively. CONCLUSION: In a population at high cardiovascular risk, a positive linear association was observed between plasma GSH-Px activity and both glucose and ox-LDL levels. The high GSH-Px activity observed when an oxidative stress situation occurred, such as hyperglycemia and lipid oxidative damage, could be interpreted as a healthy defensive response against oxidative injury in our cardiovascular risk population.

  20. Oxidative Stress Is Associated with an Increased Antioxidant Defense in Elderly Subjects: A Multilevel Approach

    Science.gov (United States)

    Flores-Mateo, Gemma; Elosua, Roberto; Rodriguez-Blanco, Teresa; Basora-Gallisà, Josep; Bulló, Mònica; Salas-Salvadó, Jordi; Martínez-González, Miguel Ángel; Estruch, Ramon; Corella, Dolores; Fitó, Montserrat; Fiol, Miquel; Arós, Fernando; Gómez-Gracia, Enrique; Subirana, Isaac; Lapetra, José; Ruiz-Gutiérrez, Valentina; Sáez, Guillermo T.; Covas, Maria-Isabel

    2014-01-01

    Background Studies of associations between plasma GSH-Px activity and cardiovascular risk factors have been done in humans, and contradictory results have been reported. The aim of our study was to assess the association between the scavenger antioxidant enzyme glutathione peroxidase (GSH-Px) activity in plasma and the presence of novel and classical cardiovascular risk factors in elderly patients. Methods We performed a cross-sectional study with baseline data from a subsample of the PREDIMED (PREvención con DIeta MEDiterránea) study in Spain. Participants were 1,060 asymptomatic subjects at high risk for cardiovascular disease (CVD), aged 55 to 80, selected from 8 primary health care centers (PHCCs). We assessed classical CVD risk factors, plasma oxidized low-density lipoproteins (ox-LDL), and glutathione peroxidase (GSH-Px) using multilevel statistical procedures. Results Mean GSH-Px value was 612 U/L (SE: 12 U/L), with variation between PHCCs ranging from 549 to 674 U/L (Variance = 1013.5; P<0.001). Between-participants variability within a PHCC accounted for 89% of the total variation. Both glucose and oxidized LDL were positively associated with GSH-Px activity after adjustment for possible confounder variables (P = 0.03 and P = 0.01, respectively). Conclusion In a population at high cardiovascular risk, a positive linear association was observed between plasma GSH-Px activity and both glucose and ox-LDL levels. The high GSH-Px activity observed when an oxidative stress situation occurred, such as hyperglycemia and lipid oxidative damage, could be interpreted as a healthy defensive response against oxidative injury in our cardiovascular risk population. PMID:25269026

  1. Binge Ethanol and MDMA Combination Exacerbates Toxic Cardiac Effects by Inducing Cellular Stress.

    Directory of Open Access Journals (Sweden)

    Javier Navarro-Zaragoza

    Full Text Available Binge drinking is a common pattern of ethanol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular 3,4 methylendioxymethamphetamine (MDMA. The aim of the present work was to study the mechanisms implicated in the adaptive changes observed after administration of these drugs of abuse. So, we have evaluated the cardiac sympathetic activity and the expression and activation of heat shock protein 27 (HSP27, after voluntary binge ethanol consumption, alone and in combination with MDMA. Both parameters are markers of stressful situations and they could be modified inducing several alterations in different systems. Adolescent mice received MDMA, ethanol or both (ethanol plus MDMA. Drinking in the dark (DID procedure was used as a model of binge. Noradrenaline (NA turnover, tyrosine hydroxylase (TH, TH phosphorylated at serine 31 and HSP27 expression and its phosphorylation at serine 82 were evaluated in adolescent mice 48 h, 72 h, and 7 days after treatments in the left ventricle. NA and normetanephrine (NMN were determined by high-performance liquid chromatography (HPLC; TH and HSP27 expression and phosphorylation were measured by quantitative blot immunollabeling using specific antibodies. Ethanol and MDMA co-administration increased NA turnover and TH expression and phosphorylation versus the consumption of each one of these drugs. In parallel with the described modifications in the cardiac sympathetic activity, our results showed that binge ethanol+MDMA exposure is associated with an increase in HSP27 expression and phosphorylation in the left ventricle, supporting the idea that the combination of both drugs exacerbates the cellular stress induced by ethanol or MDMA alone.

  2. Binge Ethanol and MDMA Combination Exacerbates Toxic Cardiac Effects by Inducing Cellular Stress

    Science.gov (United States)

    Navarro-Zaragoza, Javier; Ros-Simó, Clara; Milanés, María-Victoria; Valverde, Olga; Laorden, María-Luisa

    2015-01-01

    Binge drinking is a common pattern of ethanol consumption among young people. Binge drinkers are especially susceptible to brain damage when other substances are co-administered, in particular 3,4 methylendioxymethamphetamine (MDMA). The aim of the present work was to study the mechanisms implicated in the adaptive changes observed after administration of these drugs of abuse. So, we have evaluated the cardiac sympathetic activity and the expression and activation of heat shock protein 27 (HSP27), after voluntary binge ethanol consumption, alone and in combination with MDMA. Both parameters are markers of stressful situations and they could be modified inducing several alterations in different systems. Adolescent mice received MDMA, ethanol or both (ethanol plus MDMA). Drinking in the dark (DID) procedure was used as a model of binge. Noradrenaline (NA) turnover, tyrosine hydroxylase (TH), TH phosphorylated at serine 31 and HSP27 expression and its phosphorylation at serine 82 were evaluated in adolescent mice 48 h, 72 h, and 7 days after treatments in the left ventricle. NA and normetanephrine (NMN) were determined by high-performance liquid chromatography (HPLC); TH and HSP27 expression and phosphorylation were measured by quantitative blot immunollabeling using specific antibodies. Ethanol and MDMA co-administration increased NA turnover and TH expression and phosphorylation versus the consumption of each one of these drugs. In parallel with the described modifications in the cardiac sympathetic activity, our results showed that binge ethanol+MDMA exposure is associated with an increase in HSP27 expression and phosphorylation in the left ventricle, supporting the idea that the combination of both drugs exacerbates the cellular stress induced by ethanol or MDMA alone. PMID:26509576

  3. Radiation and surgical stress induce a significant impairment in cellular immunity in patients with esophageal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Yoshiki; Sakamoto, Kiyoshi; Arai, Mitsuhiro; Akagi, Masanobu (Kumamoto Univ. (Japan). School of Medicine)

    1989-09-01

    The effects of preoperative radiation plus surgical stress on immunity were examined in 29 patients with esophageal cancer, including 14 patients who experienced radiation therapy and 15 who did not, as well as 15 age-, sex- and body weight-matched control subjects. Absolute numbers of the total lymphocytes and OKT3 (all T cells), OKT4 (helper/inducer T cells) and OKT8 (suppressor/cytotoxic T cells) positive lymphocytes were almost the same in both patient groups before treatment. Both the in vitro response to phytohemagglutinin (PHA) and antibody dependent cell-mediated cytotoxicity (ADCC) were depressed in the patients when compared to the controls before treatment. Dual treatment of radiation and surgery led to a marked reduction of lymphocytes in the numbers and activities of PHA and ADCC, when compared to findings in the non-radiation group. Especially, the number of OKT4 positive lymphocytes and the OKT4 to OKT8 ratio decreased most and recovery was slow. While ADCC activity in the non-radiation group recovered at 28 postoperative days (POD), the response to PHA did not return to the pretreatment levels. Serum levels of IgG, IgM and IgA were within normal limits throughout the course of treatment. The B1 (all B cells) positive lymphocytes significantly decreased after the treatments. These results suggest that radiation plus surgery shifts the host immunity toward immunosuppression and induces a significant impairment of cellular immunity in patients with esophageal cancer. (author).

  4. Cellular Stress Response Gene Expression During Upper and Lower Body High Intensity Exercises

    Science.gov (United States)

    Kochanowicz, Andrzej; Sawczyn, Stanisław; Niespodziński, Bartłomiej; Mieszkowski, Jan; Kochanowicz, Kazimierz

    2017-01-01

    Objectives The aim was to compare the effect of upper and lower body high-intensity exercise on chosen genes expression in athletes and non-athletes. Method Fourteen elite male artistic gymnasts (EAG) aged 20.6 ± 3.3 years and 14 physically active men (PAM) aged 19.9 ± 1.0 years performed lower and upper body 30 s Wingate Tests. Blood samples were collected before, 5 and 30 minutes after each effort to assess gene expression via PCR. Results Significantly higher mechanical parameters after lower body exercise was observed in both groups, for relative power (8.7 ± 1.2 W/kg in gymnasts, 7.2 ± 1.2 W/kg in controls, p = 0.01) and mean power (6.7 ± 0.7 W/kg in gymnasts, 5.4 ± 0.8 W/kg in controls, p = 0.01). No differences in lower versus upper body gene expression were detected for all tested genes as well as between gymnasts and physical active man. For IL-6 m-RNA time-dependent effect was observed. Conclusions Because of no significant differences in expression of genes associated with cellular stress response the similar adaptive effect to exercise may be obtained so by lower and upper body exercise. PMID:28141870

  5. Cellular adaptation to biomechanical stress across length scales in tissue homeostasis and disease.

    Science.gov (United States)

    Gilbert, Penney M; Weaver, Valerie M

    2017-07-01

    Human tissues are remarkably adaptable and robust, harboring the collective ability to detect and respond to external stresses while maintaining tissue integrity. Following injury, many tissues have the capacity to repair the damage - and restore form and function - by deploying cellular and molecular mechanisms reminiscent of developmental programs. Indeed, it is increasingly clear that cancer and chronic conditions that develop with age arise as a result of cells and tissues re-implementing and deregulating a selection of developmental programs. Therefore, understanding the fundamental molecular mechanisms that drive cell and tissue responses is a necessity when designing therapies to treat human conditions. Extracellular matrix stiffness synergizes with chemical cues to drive single cell and collective cell behavior in culture and acts to establish and maintain tissue homeostasis in the body. This review will highlight recent advances that elucidate the impact of matrix mechanics on cell behavior and fate across these length scales during times of homeostasis and in disease states. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Adenylate kinase I does not affect cellular growth characteristics under normal and metabolic stress conditions.

    Science.gov (United States)

    de Bruin, Wieke; Oerlemans, Frank; Wieringa, Bé

    2004-07-01

    Adenylate kinase (AK)-catalyzed phosphotransfer is essential in the maintenance of cellular energetic economy in cells of fully differentiated tissues with highly variable energy demand, such as muscle and brain. To investigate if AK isoenzymes have a comparable function in the energy-demand management of proliferating cells, AK1 and AK1beta were expressed in mouse neuroblastoma N2a cells and in human colon carcinoma SW480 cells. Glucose deprivation, galactose feeding, and metabolic inhibitor tests revealed a differential energy dependency for these two cell lines. N2a cells showed a faster proliferation rate and strongest coupling to mitochondrial activity, SW480 proliferation was more dependent on glycolysis. Despite these differences, ectopic expression of AK1 or AK1beta did not affect their growth characteristics under normal conditions. Also, no differential effects were seen under metabolic stress upon treatment with mitochondrial and glycolytic inhibitors in in vitro culture or in solid tumors grown in vivo. Although many intimate connections have been revealed between cell death and metabolism, our results suggest that AK1- or AK1beta-mediated high-energy phosphoryl transfer is not a modulating factor in the survival of tumor cells during episodes of metabolic crisis.

  7. Contribution of glutathione to the control of cellular redox homeostasis under toxic metal and metalloid stress.

    Science.gov (United States)

    Hernández, Luis E; Sobrino-Plata, Juan; Montero-Palmero, M Belén; Carrasco-Gil, Sandra; Flores-Cáceres, M Laura; Ortega-Villasante, Cristina; Escobar, Carolina

    2015-05-01

    The accumulation of toxic metals and metalloids, such as cadmium (Cd), mercury (Hg), or arsenic (As), as a consequence of various anthropogenic activities, poses a serious threat to the environment and human health. The ability of plants to take up mineral nutrients from the soil can be exploited to develop phytoremediation technologies able to alleviate the negative impact of toxic elements in terrestrial ecosystems. However, we must select plant species or populations capable of tolerating exposure to hazardous elements. The tolerance of plant cells to toxic elements is highly dependent on glutathione (GSH) metabolism. GSH is a biothiol tripeptide that plays a fundamental dual role: first, as an antioxidant to mitigate the redox imbalance caused by toxic metal(loid) accumulation, and second as a precursor of phytochelatins (PCs), ligand peptides that limit the free ion cellular concentration of those pollutants. The sulphur assimilation pathway, synthesis of GSH, and production of PCs are tightly regulated in order to alleviate the phytotoxicity of different hazardous elements, which might induce specific stress signatures. This review provides an update on mechanisms of tolerance that depend on biothiols in plant cells exposed to toxic elements, with a particular emphasis on the Hg-triggered responses, and considering the contribution of hormones to their regulation. © The Author 2015. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  8. Defense-related proteins involved in sugarcane responses to biotic stress

    Science.gov (United States)

    Souza, Thais P.; Dias, Renata O.; Silva-Filho, Marcio C.

    2017-01-01

    Abstract Sugarcane is one of the most important agricultural crops in the world. However, pathogen infection and herbivore attack cause constant losses in yield. Plants respond to pathogen infection by inducing the expression of several protein types, such as glucanases, chitinases, thaumatins, peptidase inhibitors, defensins, catalases and glycoproteins. Proteins induced by pathogenesis are directly or indirectly involved in plant defense, leading to pathogen death or inducing other plant defense responses. Several of these proteins are induced in sugarcane by different pathogens or insects and have antifungal or insecticidal activity. In this review, defense-related proteins in sugarcane are described, with their putative mechanisms of action, pathogen targets and biotechnological perspectives. PMID:28222203

  9. Transcriptome and Proteome Dynamics of the Cellular Response of Shewanella oneidensis to Chromium Stress

    Energy Technology Data Exchange (ETDEWEB)

    Thompson, D.K.

    2005-04-18

    The overall goal of this DOE NABIR project is to characterize the molecular basis and regulation of hexavalent chromium [Cr(VI)] stress response and reduction by Shewanella oneidensis strain MR-1. Temporal genomic profiling and mass spectrometry-based proteomic analysis were employed to characterize the dynamic molecular response of S. oneidensis MR-1 to both acute and chronic Cr(VI) exposure. The acute stress response of aerobic, mid-exponential phase cells shocked to a final concentration of 1 mM potassium chromate (K2CrO4) was examined at post-exposure time intervals of 5, 30, 60, and 90 min relative to untreated cells. The transcriptome of mid-exponential cultures was also analyzed 30 min after shock doses of 0.3, 0.5, or 1 mM K{sub 2}CrO{sub 4}. The tonB1-exbB1-exbD1 genes comprising the TonB1 iron transport system were some of the most highly induced coding sequences (CDSs) after 90 min (up to {approx}240 fold), followed by other genes involved in heme transport, sulfate transport, and sulfur assimilation pathways. In addition, transcript levels for CDSs with annotated functions in DNA repair (dinP, recX, recA, recN) and detoxification processes (so3585, so3586) were substantially increased in Cr(VI)-exposed cells compared to untreated cells. By contrast, genes predicted to encode hydrogenases (HydA, HydB), oxidoreductases (SO0902-03-04, SO1911), iron-sulfur cluster binding proteins (SO4404), decaheme cytochrome c proteins (MtrA, OmcA, OmcB), and a number of LysR or TetR family transcriptional regulators were some of the most highly repressed CDSs following the 90-min shock period. Transcriptome profiles generated from MR-1 cells adapted to 0.3 mM Cr(VI) differed significantly from those characterizing cells exposed to acute Cr(VI) stress without adaptation. Parallel proteomic characterization of soluble protein and membrane protein fractions extracted from Cr(VI)-shocked and Cr(VI)-adapted MR-1 cells was performed using multidimensional HPLC-ESI-MS/MS (both

  10. Weight loss-induced cellular stress in subcutaneous adipose tissue and the risk for weight regain in overweight and obese adults

    NARCIS (Netherlands)

    Roumans, N.J.T.; Vink, R.G.; Bouwman, F.G.; Fazelzadeh, P.; Baak, van M.A.; Mariman, E.C.M.

    2017-01-01

    Background/objective: Weight loss is often followed by weight regain after the dietary intervention (DI). Cellular stress is increased in adipose tissue of obese individuals. However, the relation between cellular stress and weight regain is unclear. Previously, we observed increased adipose

  11. Psychopathological symptoms, defense mechanisms and time perspectives among subjects with alcohol dependence (AD) presenting different patterns of coping with stress.

    Science.gov (United States)

    Iwanicka, Katarzyna; Gerhant, Aneta; Olajossy, Marcin

    2017-01-01

    The problem of coping with stress is an important one in the context of development and persistence of alcohol dependence. In the literature to date very little attention has been paid to coping patterns construed as a configuration of specific coping styles, particularly as regards the functioning of addicted individuals. The aim of the study was to verify whether individuals with alcohol dependence characterized by different coping patterns differ with respect to the severity of psychopathological symptoms, defense mechanisms and time perspectives. Participants were given a battery of psychological tests-Coping Inventory for Stresfull Situations (CISS), Defense Style Questionnaire (DSQ 40), Syndrom Checklist (SCL-90) and Short Zimbardo Time Perspective Inventory (SZPTI-PL). The sample comprised 112 individuals with alcohol dependence, aged 20 to 63 years old, the average age was 37.86; 78 percent were men. There were identified three sub-groups of individuals characterized by a distinctive patterns of coping with stress -"emotional-avoidant", "task oriented" and a "mixed one". Individuals with the predominant emotional-avoidant coping pattern are characterized by significantly higher severity of psychopathological symptoms, less mature defense mechanisms and past time perspectives. Subjects reliant on task-oriented coping pattern were characterized by the highest level of adaptation and the most constructive way of functioning in the face of difficulties. It is worth regarding the examination of patterns of coping as an indispensable element of collecting medical history from alcohol dependent individuals.

  12. Quercetin conjugated poly(β-amino esters) nanogels for the treatment of cellular oxidative stress.

    Science.gov (United States)

    Gupta, Prachi; Authimoolam, Sundar P; Hilt, J Zach; Dziubla, Thomas D

    2015-11-01

    PβAE polymers have emerged as highly promising candidates for biomedical and drug delivery applications owing to their tunable, degradable and pH sensitive properties. These polymeric systems can serve as prodrug carriers for the delivery of bioactive compounds which suffer from poor aqueous solubility, low bioavailability and are biologically unstable, such as the antioxidant, quercetin. Using acrylate functionalized quercetin, it is possible to incorporate the polyphenol into the backbone of the polymer matrix, permitting slow release of the intact molecule which is perfectly timed with the polymer degradation. While formulating these quercetin conjugated PβAE matrix into nanocarriers would allow for multiple delivery routes (oral, intravenous, inhalation etc.), well known oil-water nano-emulsion formulation methods are not amenable to the crosslinked hydrolytically sensitive nanoparticle/nanogel. In this work, a single-phase reaction-precipitation method was developed to formulate quercetin conjugated PβAE nanogels (QNG) via reaction of acrylated quercetin (4-5 acrylate groups) with a secondary diamine under dilute conditions using acetonitrile as the reaction medium, resulting in a self-stabilized suspension. The proposed approach permits the post synthesis modification of the spherical nanogels with a PEGylated coating, enhancing their aqueous stability and stealth characteristics. Nanogel size was controlled by varying feed reactant concentrations, achieving drug loadings of 25-38wt%. Uniform release of quercetin over 45-48h was observed upon PβAE ester hydrolysis under physiological conditions with its retained antioxidant activity over the extended times. Here we present the first demonstration of using poly(beta amino ester) chemistry to form nanogels composed of a bioactive polyphenol for the control of cellular oxidative stress. Previous nanogel and nanoparticle approaches, which use a water phase, are not readily amenable to PBAE chemistry due to

  13. OCT4B1 Regulates the Cellular Stress Response of Human Dental Pulp Cells with Inflammation

    Directory of Open Access Journals (Sweden)

    Lu Liu

    2017-01-01

    Full Text Available Introduction. Infection and apoptosis are combined triggers for inflammation in dental tissues. Octamer-binding transcription factor 4-B1 (OCT4B1, a novel spliced variant of OCT4 family, could respond to the cellular stress and possess antiapoptotic property. However, its specific role in dental pulpitis remains unknown. Methods. To investigate the effect of OCT4B1 on inflammation of dental pulp cells (DPCs, its expression in inflamed dental pulp tissues and DPCs was examined by in situ hybridization, real-time PCR, and FISH assay. OCT4B1 overexpressed DPCs model was established, confirmed by western blot and immunofluorescence staining, and then stimulated with Lipopolysaccharide (LPS. Apoptotic rate was determined by Hoechst/PI staining and FACS. Cell survival rate was calculated by CCK8 assay. Results. In situ hybridization, real-time PCR, and FISH assay revealed that OCT4B1 was extensively expressed in inflamed dental pulp tissues and DPCs with LPS stimulation. Western blot and immunofluorescence staining showed the expression of OCT4B1 and OCT4B increased after OCT4B1 transfection. Hoechst/PI staining and FACS demonstrated that less red/blue fluorescence was detected and apoptotic percentage decreased (3.45% after transfection. CCK8 demonstrated that the survival rate of pCDH-OCT4B1-flag cells increased. Conclusions. OCT4B1 plays an essential role in inflammation and apoptosis of DPCs. OCT4B might operate synergistically with OCT4B1 to reduce apoptosis.

  14. APPLICATION OF AN EQUIVALENT TRUSS MODEL FOR DETERMINING THE STRESS STATE IN MULTI-PHASE MATERIALS WITH CELLULAR AUTOMATA METHOD

    Directory of Open Access Journals (Sweden)

    Anna Staszczyk

    2017-06-01

    Full Text Available The Cellular Automata represent a universal method of modelling and simulation. They enable the performance of calculations for even the most complex processes and phenomena. They are also used successfully in mechanical and material engineering. In this paper, the concept of application of the Cellular Automata method for simulating the behaviour of material under stress is presented. The proposed numerical algorithm created performs a number of calculations of local stress states in the structure of precipitation hardened material. The principle of its operation is based on the application of the equivalent truss model, which is often used in the optimisation and design of structures. In this paper, this model was used to simulate a system embodying a section of the material containing various phases with different mechanical properties.

  15. Switch from cap- to factorless IRES-dependent 0 and +1 frame translation during cellular stress and dicistrovirus infection.

    Directory of Open Access Journals (Sweden)

    Qing S Wang

    Full Text Available Internal ribosome entry sites (IRES are utilized by a subset of cellular and viral mRNAs to initiate translation during cellular stress and virus infection when canonical cap-dependent translation is compromised. The intergenic region (IGR IRES of the Dicistroviridae uses a streamlined mechanism in which it can directly recruit the ribosome in the absence of initiation factors and initiates translation using a non-AUG codon. A subset of IGR IRESs including that from the honey bee viruses can also direct translation of an overlapping +1 frame gene. In this study, we systematically examined cellular conditions that lead to IGR IRES-mediated 0 and +1 frame translation in Drosophila S2 cells. Towards this, a novel bicistronic reporter that exploits the 2A "stop-go" peptide was developed to allow the detection of IRES-mediated translation in vivo. Both 0 and +1 frame translation by the IGR IRES are stimulated under a number of cellular stresses and in S2 cells infected by cricket paralysis virus, demonstrating a switch from cap-dependent to IRES-dependent translation. The regulation of the IGR IRES mechanism ensures that both 0 frame viral structural proteins and +1 frame ORFx protein are optimally expressed during virus infection.

  16. Modulatory effects of defense and coping on stress-induced changes in endocrine and immune parameters

    NARCIS (Netherlands)

    Olff, M.; Brosschot, J. F.; Godaert, G.; Benschop, R. J.; Ballieux, R. E.; Heijnen, C. J.; de Smet, M. B.; Ursin, H.

    1995-01-01

    We examined whether habitual defense and coping affect the response of hormones (ACTH. cortisol, prolactin. endorphins, and noradrenaline) and immune parameters (numbers of T cells. B cells. natural killer [NK] cells, and proliferative responses to mitogens or antigens) to an acute laboratory

  17. Impact of Heat Stress on Cellular and Transcriptional Adaptation of Mammary Epithelial Cells in Riverine Buffalo (Bubalus Bubalis.

    Directory of Open Access Journals (Sweden)

    Neha Kapila

    Full Text Available The present study aims to identify the heat responsive genes and biological pathways in heat stressed buffalo mammary epithelial cells (MECs. The primary mammary epithelial cells of riverine buffalo were exposed to thermal stress at 42°C for one hour. The cells were subsequently allowed to recover at 37°C and harvested at different time intervals (30 min to 48 h along with control samples (un-stressed. In order to assess the impact of heat stress in buffalo MECs, several in-vitro cellular parameters (lactate dehydrogenase activity, cell proliferation assay, cellular viability, cell death and apoptosis and transcriptional studies were conducted. The heat stress resulted in overall decrease in cell viability and cell proliferation of MECs while induction of cellular apoptosis and necrosis. The transcriptomic profile of heat stressed MECs was generated using Agilent 44 K bovine oligonucleotide array and at cutoff criteria of ≥3-or ≤3 fold change, a total of 153 genes were observed to be upregulated while 8 genes were down regulated across all time points post heat stress. The genes that were specifically up-regulated or down-regulated were identified as heat responsive genes. The upregulated genes in heat stressed MECs belonged to heat shock family viz., HSPA6, HSPB8, DNAJB2, HSPA1A. Along with HSPs, genes like BOLA, MRPL55, PFKFB3, PSMC2, ENDODD1, ARID5A, and SENP3 were also upregulated. Microarray data revealed that the heat responsive genes belonged to different functional classes viz., chaperons; immune responsive; cell proliferation and metabolism related. Gene ontology analysis revealed enrichment of several biological processes like; cellular process, metabolic process, response to stimulus, biological regulation, immune system processes and signaling. The transcriptome analysis data was further validated by RT-qPCR studies. Several HSP (HSP40, HSP60, HSP70, HSP90, and HSPB1, apoptotic (Bax and Bcl2, immune (IL6, TNFα and NF-kβ and

  18. Impact of Heat Stress on Cellular and Transcriptional Adaptation of Mammary Epithelial Cells in Riverine Buffalo (Bubalus Bubalis).

    Science.gov (United States)

    Kapila, Neha; Sharma, Ankita; Kishore, Amit; Sodhi, Monika; Tripathi, Pawan K; Mohanty, Ashok K; Mukesh, Manishi

    2016-01-01

    The present study aims to identify the heat responsive genes and biological pathways in heat stressed buffalo mammary epithelial cells (MECs). The primary mammary epithelial cells of riverine buffalo were exposed to thermal stress at 42°C for one hour. The cells were subsequently allowed to recover at 37°C and harvested at different time intervals (30 min to 48 h) along with control samples (un-stressed). In order to assess the impact of heat stress in buffalo MECs, several in-vitro cellular parameters (lactate dehydrogenase activity, cell proliferation assay, cellular viability, cell death and apoptosis) and transcriptional studies were conducted. The heat stress resulted in overall decrease in cell viability and cell proliferation of MECs while induction of cellular apoptosis and necrosis. The transcriptomic profile of heat stressed MECs was generated using Agilent 44 K bovine oligonucleotide array and at cutoff criteria of ≥3-or ≤3 fold change, a total of 153 genes were observed to be upregulated while 8 genes were down regulated across all time points post heat stress. The genes that were specifically up-regulated or down-regulated were identified as heat responsive genes. The upregulated genes in heat stressed MECs belonged to heat shock family viz., HSPA6, HSPB8, DNAJB2, HSPA1A. Along with HSPs, genes like BOLA, MRPL55, PFKFB3, PSMC2, ENDODD1, ARID5A, and SENP3 were also upregulated. Microarray data revealed that the heat responsive genes belonged to different functional classes viz., chaperons; immune responsive; cell proliferation and metabolism related. Gene ontology analysis revealed enrichment of several biological processes like; cellular process, metabolic process, response to stimulus, biological regulation, immune system processes and signaling. The transcriptome analysis data was further validated by RT-qPCR studies. Several HSP (HSP40, HSP60, HSP70, HSP90, and HSPB1), apoptotic (Bax and Bcl2), immune (IL6, TNFα and NF-kβ) and oxidative

  19. Gender differences in defense mechanisms, ways of coping with stress and sense of identity in adolescent suicide attempts.

    Science.gov (United States)

    Foto-Özdemir, Dilşad; Akdemir, Devrim; Çuhadaroğlu-Çetin, Füsun

    2016-01-01

    The main aim of this study was to investigate the gender differences in defense mechanisms, ways of coping with stress and identity formation in relation to adolescent suicidal behavior. This study involved 64 adolescents between 12-17 years of age, who were admitted to the emergency service with a suicide attempt. They were evaluated with a semi-structured clinical interview (K-SADS), Ways of Coping Inventory (WCI), Defense Mechanisms Inventory (DMI) and Sense of Identity Assessment Form (SIAF). 60.9% (n = 39) of the adolescents were female, and 39.1% (n=25) were male. There were no statistically significant differences between the girls and the boys with respect to the clinical characteristics of the suicide attempt and the rate of psychiatric disorders. Of the 64 adolescents with suicide attempt, 47 (73.4%) had at least one, and 26 (40.6%) had more than one psychiatric disorder according to K-SADS. Disruptive behavior disorders were more frequent in males, whereas depression was more frequent in girls. The data indicated the importance of identity confusion, major depression and ADHD in adolescents with suicide attempt in both genders. 43.6% (n=17) of the girls and 36% (n=9) of the boys obtained scores higher than the cut-off point of SIAF indicating identity confusion. Professional help seeking and NSSI behaviors before the suicide attempt were more common in adolescents with identity confusion. While there were differences between genders with respect to the defense mechanisms used, no significant difference was found in terms of ways of coping. Evaluation of DMI scores revealed that the turning against object subscale score was significantly higher in boys compared to girls. While evaluating the adolescents at risk, their defense mechanisms, way of coping and sense of identity, as well as their psychiatric diagnosis should be assessed in detail in order to identify the suicidal thoughts and prevent possible suicide attempts.

  20. Stress, depression and immunity : the role of defense and coping styles

    NARCIS (Netherlands)

    Olff, M

    1999-01-01

    It is by now widely recognized that acute and chronic stress have an impact on the immune system. Acute stress may have a stimulating effect on the immune system, while in the case of chronic stress - and in particular in depression - the immune system may be down-regulated. However, there is

  1. Stress, depression and immunity: the role of defense and coping styles

    NARCIS (Netherlands)

    Olff, M.

    1999-01-01

    It is by now widely recognized that acute and chronic stress have an impact on the immune system. Acute stress may have a stimulating effect on the immune system, while in the case of chronic stress--and in particular in depression--the immune system may be down-regulated. However, there is

  2. Effect of β-1,3/1,6-D-glucan in diet on productivity and humoral and cellular defense mechanisms in sheep

    Directory of Open Access Journals (Sweden)

    Katarzyna Ząbek

    2013-01-01

    Full Text Available The aim of this study was to determine the effect of β-1,3/1,6-D-glucan, isolated from Saccharomyces cerevisiae, on indicators of milk and meat performance in sheep as well as on selected non-specific indicators of humoral and cellular defense. The experiment was carried on 26 suckling ewes divided into 2 equal groups, and their offspring (21 in each group. The ewes were administered concentrate with the addition of β-1,3/1,6-D-glucan at a dose of 3 g/kg. Indicators of milk performance and markers of humoral and cellular immunity were analyzed on days 28 and 70 of lactation; and the indicators of meat performance of lambs on day 28 and 70 of their life. The addition of β-1,3/1,6-D-glucan was observed to cause an increase in milk performance by 13.5–14%. Simultaneously, milk was characterized by a lower somatic cell count. Diet supplementation had a positive effect on the chemical composition of milk, which was manifested by increased percentage contents of fat (by 15– 30% and protein (by 11%. Lambs were characterized by a higher growth rate and better muscle tissue development. The supplementation caused an increase of gamma-globulin concentration (by 6.33–9.5 g/l, lysozyme activity (by 0.1 mg/l, respiratory burst activity (by 0.11–0.14, potential killing activity (by 0.10–0.12, proliferative response of T-cells stimulated by mitogen concanavalineA (by 0.07–0.09 RI and proliferative response of B-cells stimulated by mitogen lipopolysaccharide (by 0.13–0.16 RI in sheep’s blood. The activity of β-1,3/1,6-D-glucan as a natural immunostimulator has been studied in many animal species, however, this is the first study conducted on sheep.

  3. Proteome and phosphoproteome characterization reveals new response and defense mechanisms of Brachypodium distachyon leaves under salt stress.

    Science.gov (United States)

    Lv, Dong-Wen; Subburaj, Saminathan; Cao, Min; Yan, Xing; Li, Xiaohui; Appels, Rudi; Sun, Dong-Fa; Ma, Wujun; Yan, Yue-Ming

    2014-02-01

    Salinity is a major abiotic stress affecting plant growth and development. Understanding the molecular mechanisms of salt response and defense in plants will help in efforts to improve the salt tolerance of crops. Brachypodium distachyon is a new model plant for wheat, barley, and several potential biofuel grasses. In the current study, proteome and phosphoproteome changes induced by salt stress were the focus. The Bd21 leaves were initially treated with salt in concentrations ranging from 80 to 320 mm and then underwent a recovery process prior to proteome analysis. A total of 80 differentially expressed protein spots corresponding to 60 unique proteins were identified. The sample treated with a median salt level of 240 mm and the control were selected for phosphopeptide purification using TiO2 microcolumns and LC-MS/MS for phosphoproteome analysis to identify the phosphorylation sites and phosphoproteins. A total of 1509 phosphoproteins and 2839 phosphorylation sites were identified. Among them, 468 phosphoproteins containing 496 phosphorylation sites demonstrated significant changes at the phosphorylation level. Nine phosphorylation motifs were extracted from the 496 phosphorylation sites. Of the 60 unique differentially expressed proteins, 14 were also identified as phosphoproteins. Many proteins and phosphoproteins, as well as potential signal pathways associated with salt response and defense, were found, including three 14-3-3s (GF14A, GF14B, and 14-3-3A) for signal transduction and several ABA signal-associated proteins such as ABF2, TRAB1, and SAPK8. Finally, a schematic salt response and defense mechanism in B. distachyon was proposed.

  4. Cellular Stress, Excessive Apoptosis, and the Effect of Metformin in a Mouse Model of Type 2 Diabetic Embryopathy

    Science.gov (United States)

    Wu, Yanqing; Wang, Fang; Fu, Mao; Wang, Cheng; Quon, Michael J.

    2015-01-01

    Increasing prevalence of type 2 diabetes in women of childbearing age has led to a higher incidence of diabetes-associated birth defects. We established a model of type 2 diabetic embryopathy by feeding 4-week-old female mice a high-fat diet (HFD) (60% fat). After 15 weeks on HFD, the mice showed characteristics of type 2 diabetes mellitus (DM) and were mated with lean male mice. During pregnancy, control dams fed a normal diet (10% fat) were maintained on either normal diet or HFD, serving as a control group with elevated circulating free fatty acids. DM dams produced offspring at a rate of 11.3% for neural tube defect (NTD) formation, whereas no embryos in the control groups developed NTDs. Elevated markers of oxidative stress, endoplasmic reticulum stress, caspase activation, and neuroepithelial cell apoptosis (causal events in type 1 diabetic embryopathy) were observed in embryos of DM dams. DM dams treated with 200 mg/kg metformin in drinking water ameliorated fasting hyperglycemia, glucose intolerance, and insulin resistance with consequent reduction of cellular stress, apoptosis, and NTDs in their embryos. We conclude that cellular stress and apoptosis occur and that metformin effectively reduces type 2 diabetic embryopathy in a useful rodent model. PMID:25720389

  5. The role of nanosecond electric pulse-induced mechanical stress in cellular nanoporation

    Science.gov (United States)

    Roth, Caleb C.

    Background: Exposures of cells to very short (less than 1 microsecond) electric pulses in the megavolt/meter range have been shown to cause a multitude of effects, both physical and molecular in nature. Physically, nanosecond electrical pulse exposure can disrupt the plasma membrane, leading to a phenomenon known as nanoporation. Nanoporation is the production of nanometer sized holes (less than 2 nanometers in diameter) that can persist for up to fifteen minutes, allowing the flow of ions into and out of the cell. Nanoporation can lead to secondary physical effects, such as cellular swelling, shrinking and blebbing. Molecularly, nanosecond electrical pulses have been shown to activate signaling pathways, produce oxidative stress, stimulate hormone secretion and induce both apoptotic and necrotic death. The mechanism by which nanosecond electrical pulses cause molecular changes is unknown; however, it is thought the flow of ions, such as calcium, into the cell via nanopores, could be a major cause. The ability of nanosecond electrical pulses to cause membranes to become permeable and to induce apoptosis makes the technology a desirable modality for cancer research; however, the lack of understanding regarding the mechanisms by which nanosecond electrical pulses cause nanoporation impedes further development of this technology. This dissertation documents the genomic and proteomic responses of cells exposed to nanosecond electrical pulses and describes in detail the biophysical effects of these electrical pulses, including the demonstration for the first time of the generation of acoustic pressure transients capable of disrupting plasma membranes and possibly contributing to nanoporation. Methods: Jurkat, clone E6-1 (human lymphocytic cell line), U937 (human lymphocytic cell line), Chinese hamster ovarian cells and adult primary human dermal fibroblasts exposed to nanosecond electrical pulses were subjected to a variety of molecular assays, including flow cytometry

  6. The effect of academic exam stress on mucosal and cellular airway immune markers among healthy and allergic individuals.

    Science.gov (United States)

    Trueba, Ana F; Rosenfield, David; Oberdörster, Eva; Vogel, Pia D; Ritz, Thomas

    2013-01-01

    Research suggests that psychological stress can exacerbate allergies, but relatively little is known about the effect of stress on mucosal immune processes central to allergic pathophysiology. In this study, we quantified vascular endothelial growth factor (VEGF), interferon gamma (IFN-γ), and interleukin-4 concentrations in saliva (S) and exhaled breath condensate (EBC) during final exams and at midsemester among 23 healthy and 21 allergic rhinitis individuals. IFN-γs decreased during exams for both groups while VEGF(EBC) increased (and increases in VEGFs were a trend). Elevated negative affect ratings predicted higher VEGF(EBC) in allergic individuals. IFN-γ(EBC) increased in healthy individuals early during exams and then decreased, while allergic individuals showed a decrease in IFN-γ(EBC) throughout final exams. These findings suggest that psychological stress can suppress cellular immune function among allergic individuals while increasing VEGF. Copyright © 2012 Society for Psychophysiological Research.

  7. Phenotypic impact of regulatory noise in cellular stress-response pathways.

    Science.gov (United States)

    Zhuravel, Daniil; Fraser, Dawn; St-Pierre, Simon; Tepliakova, Lioudmila; Pang, Wyming L; Hasty, Jeff; Kærn, Mads

    2010-06-01

    Recent studies indicate that intrinsic promoter-mediated gene expression noise can confer a selective advantage under acute environmental stress by providing beneficial phenotypic diversity within cell populations. To investigate how extrinsic gene expression noise impacts the fitness of cell populations under stress, we engineered two nearly isogenic budding yeast strains; one carrying a two-step regulatory cascade that allows for precise control of the noise transmitted from a transcriptional regulator to a downstream stress-inducing gene, and one carrying a network with low constant upstream noise. The fitness and gene expression of these strains were compared under acute and prolonged stress exposure. Using a phenomenological modeling approach, we predicted that increased noise should confer a fitness advantage under high stress conditions, but reciprocally reduce the resistance of the population to low stress. The model also predicted that extrinsic noise might serve as a basis for phenotypic plasticity whereby gene expression distributions are modulated in response to prolonged stress. Experimentally, we confirmed the predicted differential fitness advantage of extrinsic noise under acute stress, as well as the predicted modulation of gene expression under prolonged stress. However, contrary to model predictions, strains with low and high extrinsic noise showed very similar adaptive responses to prolonged stress. This suggests that while phenotypic heterogeneity generated by noise in regulatory signals can confer increased robustness to acute stress, it is not a requirement for the observed long-term phenotypic plasticity.

  8. Modulation of Antioxidant Defense System Is Associated with Combined Drought and Heat Stress Tolerance in Citrus

    Directory of Open Access Journals (Sweden)

    Sara I. Zandalinas

    2017-06-01

    Full Text Available Drought and high temperatures are two major abiotic stress factors that often occur simultaneously in nature, affecting negatively crop performance and yield. Moreover, these environmental challenges induce oxidative stress in plants through the production of reactive oxygen species (ROS. Carrizo citrange and Cleopatra mandarin are two citrus genotypes with contrasting ability to cope with the combination of drought and heat stress. In this work, a direct relationship between an increased antioxidant activity and stress tolerance is reported. According to our results, the ability of Carrizo plants to efficiently coordinate superoxide dismutase (SOD, ascorbate peroxidase (APX, catalase (CAT, and glutathione reductase (GR activities involved in ROS detoxification along with the maintenance of a favorable GSH/GSSG ratio could be related to their relative tolerance to this stress combination. On the other hand, the increment of SOD activity and the inefficient GR activation along with the lack of CAT and APX activities in Cleopatra plants in response to the combination of drought and heat stress, could contribute to an increased oxidative stress and the higher sensibility of this citrus genotype to this stress combination.

  9. Modulation of Antioxidant Defense System Is Associated with Combined Drought and Heat Stress Tolerance in Citrus.

    Science.gov (United States)

    Zandalinas, Sara I; Balfagón, Damián; Arbona, Vicent; Gómez-Cadenas, Aurelio

    2017-01-01

    Drought and high temperatures are two major abiotic stress factors that often occur simultaneously in nature, affecting negatively crop performance and yield. Moreover, these environmental challenges induce oxidative stress in plants through the production of reactive oxygen species (ROS). Carrizo citrange and Cleopatra mandarin are two citrus genotypes with contrasting ability to cope with the combination of drought and heat stress. In this work, a direct relationship between an increased antioxidant activity and stress tolerance is reported. According to our results, the ability of Carrizo plants to efficiently coordinate superoxide dismutase (SOD), ascorbate peroxidase (APX), catalase (CAT), and glutathione reductase (GR) activities involved in ROS detoxification along with the maintenance of a favorable GSH/GSSG ratio could be related to their relative tolerance to this stress combination. On the other hand, the increment of SOD activity and the inefficient GR activation along with the lack of CAT and APX activities in Cleopatra plants in response to the combination of drought and heat stress, could contribute to an increased oxidative stress and the higher sensibility of this citrus genotype to this stress combination.

  10. Acute dyskerin depletion triggers cellular senescence and renders osteosarcoma cells resistant to genotoxic stress-induced apoptosis

    International Nuclear Information System (INIS)

    Lin, Ping; Mobasher, Maral E.; Alawi, Faizan

    2014-01-01

    Highlights: • Dyskerin depletion triggers cellular senescence in U2OS osteosarcoma cells. • Dyskerin-depleted cells are resistant to apoptosis induced by genotoxic stress. • Chromatin relaxation sensitizes dyskerin-depleted cells to apoptosis. - Abstract: Dyskerin is a conserved, nucleolar RNA-binding protein implicated in an increasing array of fundamental cellular processes. Germline mutation in the dyskerin gene (DKC1) is the cause of X-linked dyskeratosis congenita (DC). Conversely, wild-type dyskerin is overexpressed in sporadic cancers, and high-levels may be associated with poor prognosis. It was previously reported that acute loss of dyskerin function via siRNA-mediated depletion slowed the proliferation of transformed cell lines. However, the mechanisms remained unclear. Using human U2OS osteosarcoma cells, we show that siRNA-mediated dyskerin depletion induced cellular senescence as evidenced by proliferative arrest, senescence-associated heterochromatinization and a senescence-associated molecular profile. Senescence can render cells resistant to apoptosis. Conversely, chromatin relaxation can reverse the repressive effects of senescence-associated heterochromatinization on apoptosis. To this end, genotoxic stress-induced apoptosis was suppressed in dyskerin-depleted cells. In contrast, agents that induce chromatin relaxation, including histone deacetylase inhibitors and the DNA intercalator chloroquine, sensitized dyskerin-depleted cells to apoptosis. Dyskerin is a core component of the telomerase complex and plays an important role in telomere homeostasis. Defective telomere maintenance resulting in premature senescence is thought to primarily underlie the pathogenesis of X-linked DC. Since U2OS cells are telomerase-negative, this leads us to conclude that loss of dyskerin function can also induce cellular senescence via mechanisms independent of telomere shortening

  11. The influence of cellular structures on flow stress of high strength components manufactured using SLM

    DEFF Research Database (Denmark)

    Mahshid, Rasoul; Hansen, Hans Nørgaard; Loft Højbjerre, Klaus

    2016-01-01

    of cellular materials on compression strength. The specimens are manufactured additively using industrial 3D printing systems from high-strength alloy. The material has the right mechanical properties for manufacturing tool components. This includes samples with solid and lattice structures. The Compression...

  12. Adenylate kinase I does not affect cellular growth characteristics under normal and metabolic stress conditions.

    NARCIS (Netherlands)

    Bruin, W.C.C. de; Oerlemans, F.T.J.J.; Wieringa, B.

    2004-01-01

    Adenylate kinase (AK)-catalyzed phosphotransfer is essential in the maintenance of cellular energetic economy in cells of fully differentiated tissues with highly variable energy demand, such as muscle and brain. To investigate if AK isoenzymes have a comparable function in the energy-demand

  13. Oxidative stress-induced proteome alterations target different cellular pathways in human myoblasts

    DEFF Research Database (Denmark)

    Baraibar, Martin A; Hyzewicz, Janek; Rogowska-Wrzesinska, Adelina

    2011-01-01

    Although increased oxidative stress has been associated with the impairment of proliferation and function of adult human muscle stem cells, proteins either involved in the stress response or damaged by oxidation have not been identified. A parallel proteomics approach was performed for analyzing...... the protein expression profile as well as proteins preferentially oxidized upon hydrogen peroxide-induced oxidative stress. Fifteen proteins involved in the oxidative stress response were identified. Among them, protein spots identified as peroxiredoxins 1 and 6, glyceraldehyde-3-phosphate dehydrogenase......, and α-enolase were shifted to a more acidic isoelectric point upon oxidative stress, indicating posttranslational modifications. Oxidized proteins were evidenced by immunodetection of derivatized carbonyl groups followed by identification by mass spectrometry. The carbonylated proteins identified...

  14. Chemical Genomics Identifies the PERK-Mediated Unfolded Protein Stress Response as a Cellular Target for Influenza Virus Inhibition

    Directory of Open Access Journals (Sweden)

    Sara Landeras-Bueno

    2016-04-01

    Full Text Available Influenza A viruses generate annual epidemics and occasional pandemics of respiratory disease with important consequences for human health and the economy. Therefore, a large effort has been devoted to the development of new anti-influenza virus drugs directed to viral targets, as well as to the identification of cellular targets amenable to anti-influenza virus therapy. Here we have addressed the identification of such potential cellular targets by screening collections of drugs approved for human use. We reasoned that screening with a green fluorescent protein-based recombinant replicon system would identify cellular targets involved in virus transcription/replication and/or gene expression and hence address an early stage of virus infection. By using such a strategy, we identified Montelukast (MK as an inhibitor of virus multiplication. MK inhibited virus gene expression but did not alter viral RNA synthesis in vitro or viral RNA accumulation in vivo. The low selectivity index of MK prevented its use as an antiviral, but it was sufficient to identify a new cellular pathway suitable for anti-influenza virus intervention. By deep sequencing of RNA isolated from mock- and virus-infected human cells, treated with MK or left untreated, we showed that it stimulates the PERK-mediated unfolded protein stress response. The phosphorylation of PERK was partly inhibited in virus-infected cells but stimulated in MK-treated cells. Accordingly, pharmacological inhibition of PERK phosphorylation led to increased viral gene expression, while inhibition of PERK phosphatase reduced viral protein synthesis. These results suggest the PERK-mediated unfolded protein response as a potential cellular target to modulate influenza virus infection.

  15. Sirtuin 7 promotes cellular survival following genomic stress by attenuation of DNA damage, SAPK activation and p53 response

    Energy Technology Data Exchange (ETDEWEB)

    Kiran, Shashi; Oddi, Vineesha [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Ramakrishna, Gayatri, E-mail: gayatrirama1@gmail.com [Laboratory of Cancer Biology, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, Telangana, 500001 (India); Laboratory of Cancer Cell Biology, Department of Research, Institute of Liver and Biliary Sciences, Delhi 110070 (India)

    2015-02-01

    Maintaining the genomic integrity is a constant challenge in proliferating cells. Amongst various proteins involved in this process, Sirtuins play a key role in DNA damage repair mechanisms in yeast as well as mammals. In the present work we report the role of one of the least explored Sirtuin viz., SIRT7, under conditions of genomic stress when treated with doxorubicin. Knockdown of SIRT7 sensitized osteosarcoma (U2OS) cells to DNA damage induced cell death by doxorubicin. SIRT7 overexpression in NIH3T3 delayed cell cycle progression by causing delay in G1 to S transition. SIRT7 overexpressing cells when treated with low dose of doxorubicin (0.25 µM) showed delayed onset of senescence, lesser accumulation of DNA damage marker γH2AX and lowered levels of growth arrest markers viz., p53 and p21 when compared to doxorubicin treated control GFP expressing cells. Resistance to DNA damage following SIRT7 overexpression was also evident by EdU incorporation studies where cellular growth arrest was significantly delayed. When treated with higher dose of doxorubicin (>1 µM), SIRT7 conferred resistance to apoptosis by attenuating stress activated kinases (SAPK viz., p38 and JNK) and p53 response thereby shifting the cellular fate towards senescence. Interestingly, relocalization of SIRT7 from nucleolus to nucleoplasm together with its co-localization with SAPK was an important feature associated with DNA damage. SIRT7 mediated resistance to doxorubicin induced apoptosis and senescence was lost when p53 level was restored by nutlin treatment. Overall, we propose SIRT7 attenuates DNA damage, SAPK activation and p53 response thereby promoting cellular survival under conditions of genomic stress. - Highlights: • Knockdown of SIRT7 sensitized cells to DNA damage induced apoptosis. • SIRT7 delayed onset of premature senescence by attenuating DNA damage response. • Overexpression of SIRT7 delayed cell cycle progression by delaying G1/S transition. • Upon DNA damage SIRT

  16. Adaptive changes in the neuronal proteome: mitochondrial energy production, endoplasmic reticulum stress, and ribosomal dysfunction in the cellular response to metabolic stress.

    Science.gov (United States)

    Herrmann, Abigail G; Deighton, Ruth F; Le Bihan, Thierry; McCulloch, Mailis C; Searcy, James L; Kerr, Lorraine E; McCulloch, James

    2013-05-01

    Impaired energy metabolism in neurons is integral to a range of neurodegenerative diseases, from Alzheimer's disease to stroke. To investigate the complex molecular changes underpinning cellular adaptation to metabolic stress, we have defined the proteomic response of the SH-SY5Y human neuroblastoma cell line after exposure to a metabolic challenge of oxygen glucose deprivation (OGD) in vitro. A total of 958 proteins across multiple subcellular compartments were detected and quantified by label-free liquid chromatography mass spectrometry. The levels of 130 proteins were significantly increased (Presponses to the metabolic challenge. Approximately one third (61) of the differentially expressed proteins was associated with the endoplasmic reticulum and mitochondria. Electron microscopic analysis of these subcellular structures showed morphologic changes consistent with the identified proteomic alterations. Our investigation of the global cellular response to a metabolic challenge clearly shows the considerable adaptive capacity of the proteome to a slowly evolving metabolic challenge.

  17. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance.

    Science.gov (United States)

    Brotman, Yariv; Landau, Udi; Cuadros-Inostroza, Álvaro; Tohge, Takayuki; Takayuki, Tohge; Fernie, Alisdair R; Chet, Ilan; Viterbo, Ada; Willmitzer, Lothar

    2013-03-01

    Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L.) plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC)-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated antioxidative capacity.

  18. Trichoderma-plant root colonization: escaping early plant defense responses and activation of the antioxidant machinery for saline stress tolerance.

    Directory of Open Access Journals (Sweden)

    Yariv Brotman

    2013-03-01

    Full Text Available Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, which stimulate JA-signaling via suppression of JAZ repressors and negatively regulate the expression of the defense genes FMO1, PAD3 and CYP71A13, was detected in Arabidopsis roots upon Trichoderma colonization. Reduced root colonization was observed in the wrky18/wrky40 double mutant line, while partial phenotypic complementation was achieved by over-expressing WRKY40 in the wrky18 wrky40 background. On the other hand increased colonization rate was found in roots of the FMO1 knockout mutant. Trichoderma spp. stimulate plant growth and resistance to a wide range of adverse environmental conditions. Arabidopsis and cucumber (Cucumis sativus L. plants treated with Trichoderma prior to salt stress imposition show significantly improved seed germination. In addition, Trichoderma treatment affects the expression of several genes related to osmo-protection and general oxidative stress in roots of both plants. The MDAR gene coding for monodehydroascorbate reductase is significantly up-regulated and, accordingly, the pool of reduced ascorbic acid was found to be increased in Trichoderma treated plants. 1-Aminocyclopropane-1-carboxylate (ACC-deaminase silenced Trichoderma mutants were less effective in providing tolerance to salt stress, suggesting that Trichoderma, similarly to ACC deaminase producing bacteria, can ameliorate plant growth under conditions of abiotic stress, by lowering ameliorating increases in ethylene levels as well as promoting an elevated

  19. Aminolevulinic acid and nitric oxide regulate oxidative defense and secondary metabolisms in canola (Brassica napus L.) under drought stress.

    Science.gov (United States)

    Akram, Nudrat Aisha; Iqbal, Majid; Muhammad, Atta; Ashraf, Muhammad; Al-Qurainy, Fahad; Shafiq, Sidra

    2018-01-01

    To minimize the damaging effects of stresses, plant growth regulators (PGRs) are widely used to sustain the plant life under stress-prone environments. So, a study was carried out to evaluate the response of two canola (Brassica napus L.) cultivars, Dunkeld and Cyclone, to foliar-applied two potential PGRs, nitric oxide (NO) and 5-aminolevulinic acid, under water deficit conditions. In this study, the levels of NO and ALA used were 0.02 and 0.895 mM, respectively. Plants of both canola cultivars were subjected to control (100% field capacity) and water deficit (60% field capacity). Drought stress significantly decreased growth, chlorophyll pigments, relative water contents (RWC), and soluble proteins, while it increased relative membrane permeability (RMP), proline, glycinebetaine (GB), malondialdehyde (MDA), total phenolics, and activities of catalase (CAT) and peroxidase (POD) enzymes in both cultivars. Foliar application of PGRs improved growth, chlorophyll a, GB, total phenolics, CAT activity, and total soluble proteins, while it decreased RMP, MDA, and POD activity in both canola cultivars. Other physio-biochemical attributes such as chlorophyll b, RWC, hydrogen peroxide (H 2 O 2 ) and proline contents as well as superoxide dismutase (SOD) activity remained unaffected due to application of PGRs. So, the results of the present study suggest that exogenous application of NO and ALA could be useful to enhance the drought tolerance of canola plants by up-regulating the oxidative defense system, osmoprotectant accumulation, and minimizing the lipid peroxidation.

  20. Effect of endoplasmic reticulum stress inhibition on hyperoxaluria-induced oxidative stress: influence on cellular ROS sources.

    Science.gov (United States)

    Bhardwaj, Rishi; Tandon, Chanderdeep; Dhawan, Devinder K; Kaur, Tanzeer

    2017-12-01

    Hyperoxaluria-induced calcium oxalate crystallisation is associated with the generation of reactive oxygen species (ROS) via mitochondria and NADPH oxidase. Endoplasmic reticulum (ER) has emerged as an organelle which could influence mitochondrial functioning and ROS generation. Plugging an upstream pathway of mitochondrial and NADPH oxidase-induced ROS generation may have better prophylaxis. Therefore, we propose to investigate the linkage of hyperoxaluria-induced ROS generation with ER stress by inhibiting the later with 4-Phenylbutyric acid (4-PBA). Male wistar rats were divided into three groups: a normal control group, an ethylene glycol with ammonium chloride-induced hyperoxaluric group (EA) and a third group which has hyperoxaluric animals given 4-PBA at a dose of 300 mg/kg. After 9 days of treatment, animals were sacrificed and renal tissues were analysed for histopathological examination, ROS, mitochondrial dysfunction, ER stress markers, inflammatory markers and NADPH oxidase subunits expression. Hyperoxaluric rats exhibited a significant increase in the levels of ROS, subsequently up-regulated levels of ER stress markers, inflammatory indicators, NADPH oxidase subunits and compromised mitochondrial functioning. However, ER stress amelioration appreciably curtailed the alterations caused by hyperoxaluric abuse. Therefore, suggesting the major role of ER in hyperoxaluric manifestations thereby providing an opportunity to target ER stress for future therapeutic interventions.

  1. Pyruvate Accumulation Is the First Line of Cell Defense against Heat Stress in a Fungus

    OpenAIRE

    Xing Zhang; Raymond J. St. Leger; Weiguo Fang; Michael Lorenz

    2017-01-01

    ABSTRACT Heat tolerance is well known to be key to fungal survival in many habitats, but our mechanistic understanding of how organisms adapt to heat stress is still incomplete. Using Metarhizium robertsii, an emerging model organism for assessing evolutionary processes, we report that pyruvate is in the vanguard of molecules that scavenge heat-induced reactive oxygen species (ROS). We show that, as well as inducing a rapid burst of ROS production, heat stress also downregulates genes for pyr...

  2. Alternative oxidase pathway optimizes photosynthesis during osmotic and temperature stress by regulating cellular ROS, malate valve and antioxidative systems

    Directory of Open Access Journals (Sweden)

    DINAKAR eCHALLABATHULA

    2016-02-01

    Full Text Available The present study reveals the importance of alternative oxidase (AOX pathway in optimizing photosynthesis under osmotic and temperature stress conditions in the mesophyll protoplasts of Pisum sativum. The responses of photosynthesis and respiration were monitored at saturating light intensity of 1000 µmoles m-2 s-1 at 25 oC under a range of sorbitol concentrations from 0.4 M to 1.0M to induce hyper-osmotic stress and by varying the temperature of the thermo-jacketed pre-incubation chamber from 25 oC to 10 oC to impose sub-optimal temperature stress. Compared to controls (0.4 M sorbitol and 25 OC, the mesophyll protoplasts showed remarkable decrease in NaHCO3-dependent O2 evolution (indicator of photosynthetic carbon assimilation, under both hyper-osmotic (1.0 M sorbitol and sub-optimal temperature stress conditions (10 OC, while the decrease in rates of respiratory O2 uptake were marginal. The capacity of AOX pathway increased significantly in parallel to increase in intracellular pyruvate and reactive oxygen species (ROS levels under both hyper-osmotic stress and sub-optimal temperature stress under the background of saturating light. The ratio of redox couple (Malate/OAA related to malate valve increased in contrast to the ratio of redox couple (GSH/GSSG related to antioxidative system during hyper-osmotic stress. Nevertheless, the ratio of GSH/GSSG decreased in the presence of sub-optimal temperature, while the ratio of Malate/OAA showed no visible changes. Also, the redox ratios of pyridine nucleotides increased under hyper-osmotic (NADH/NAD and sub-optimal temperature (NADPH/NADP stresses, respectively. However, upon restriction of AOX pathway by using salicylhydroxamic acid (SHAM, the observed changes in NaHCO3 dependent O2 evolution, cellular ROS, redox ratios of Malate/OAA, NAD(PH/NAD(P and GSH/GSSG were further aggravated under stress conditions with concomitant modulations in NADP-MDH and antioxidant enzymes. Taken together, the

  3. A Systematic Review of Oxidative Stress and Safety of Antioxidants in Diabetes: Focus on Islets and Their Defense

    Directory of Open Access Journals (Sweden)

    Udayakumar Karunakaran

    2013-04-01

    Full Text Available A growing body of evidence suggests that hyperglycemia-induced oxidative stress plays an important role in diabetic complications, especially β-cell dysfunction and failure. Under physiological conditions, reactive oxygen species serve as second messengers that facilitate signal transduction and gene expression in pancreatic β-cells. However, under pathological conditions, an imbalance in redox homeostasis leads to aberrant tissue damage and β-cell death due to a lack of antioxidant defense systems. Taking into account the vulnerability of islets to oxidative damage, induction of endogenous antioxidant enzymes or exogenous antioxidant administration has been proposed as a way to protect β-cells against diabetic insults. Here, we consider recent insights into how the redox response becomes deregulated under diabetic conditions, as well as the therapeutic benefits of antioxidants, which may provide clues for developing strategies aimed at the treatment or prevention of diabetes associated with β-cell failure.

  4. Potential of Radiation-Induced Cellular Stress for Reactivation of Latent HIV-1 and Killing of Infected Cells.

    Science.gov (United States)

    Iordanskiy, Sergey; Kashanchi, Fatah

    2016-02-01

    The use of highly active antiretroviral therapy against HIV-1 for last two decades has reduced mortality of patients through extension of nonsymptomatic phase of infection. However, HIV-1 can be preserved in long-lived resting CD4(+) T cells, which form a viral reservoir in infected individuals, and potentially in macrophages and astrocytes. Reactivation of viral replication is critical since the host immune response in combination with antiretroviral therapy may eradicate the virus (shock and kill strategy). In this opinion piece, we consider potential application of therapeutic doses of irradiation, the well-known and effective stress signal that induces DNA damage and activates cellular stress response, to resolve two problems: activate HIV-1 replication and virion production in persistent reservoirs under cART and deplete infected cells through selective cell killing using DNA damage responses.

  5. Induction of multixenobiotic defense mechanisms in resistant Daphnia magna clones as a general cellular response to stress

    OpenAIRE

    Jordão, Rita; Campos, B.; Lemos, Marco F L; Soares, Amadeu Mortágua Velho Maia; Tauler, Romà; Barata, Carlos

    2016-01-01

    Multixenobiotic resistance mechanisms (MXR) were recently identified in Daphnia magna. Previous results characterized gene transcripts of genes encoding and efflux activities of four putative ABCB1 and ABCC transporters that were chemically induced but showed low specificity against model transporter substrates and inhibitors, thus preventing us from distinguishing between activities of different efflux transporter types. In this study we report on the specificity of induction of ABC transpor...

  6. Neurological and cellular regulation of visceral hypersensitivity induced by chronic stress and colonic inflammation in rats

    Science.gov (United States)

    Chen, Jinghong; Winston, John H.; Sarna, Sushil K.

    2013-01-01

    The role of inflammation in inducing visceral hypersensitivity (VHS) in ulcerative colitis patients remains unknown. We tested the hypothesis that acute ulcerative colitis-like inflammation does not induce VHS. However, it sets up molecular conditions such that chronic stress following inflammation exaggerates single unit afferent discharges to colorectal distension. We used dextran sodium sulfate (DSS) to induce ulcerative colitis-like inflammation and a 9-day heterotypic chronic stress protocol in rats. DSS upregulated Nav1.8 mRNA in colon-responsive DRG neurons, TRPV1 in colonic muscularis externae (ME) and BDNF in spinal cord without affecting the spike frequency in spinal afferents or VMR to CRD. By contrast, chronic stress did not induce inflammation but it downregulated Kv1.1 and Kv1.4 mRNA in DRG neurons, and upregulated TRPA1 and NGF in ME, which mediated the increase of spike frequency and VMR to CRD. Chronic stress following inflammation exacerbated spike frequency in spinal afferent neurons. TRPA1 antagonist suppressed the sensitization of afferent neurons. DSS-inflammation did not affect the composition or excitation thresholds of low-threshold and high-threshold fibers. Chronic stress following inflammation increased the percent composition of high-threshold fibers and lowered the excitation threshold of both types of fibers. We conclude that not all types of inflammation induce VHS, whereas chronic stress induces VHS in the absence of inflammation. PMID:23806714

  7. Distinct Mechanisms Underlying Resveratrol-Mediated Protection from Types of Cellular Stress in C6 Glioma Cells.

    Science.gov (United States)

    Means, John C; Gerdes, Bryan C; Koulen, Peter

    2017-07-14

    The polyphenolic phytostilbene, trans -resveratrol, is found in high amounts in several types and tissues of plants, including grapes, and has been proposed to have beneficial effects in the central nervous system due to its activity as an antioxidant. The objective of the present study was to identify the mechanisms underlying the protective effects of resveratrol under conditions of oxidative stress or DNA damage, induced by the extracellularly applied oxidant, tert -butyl hydrogen peroxide, or UV-irradiation, respectively. In C6 glioma cells, a model system for glial cell biology and pharmacology, resveratrol was protective against both types of insult. Prevention of tau protein cleavage and of the formation of neurofibrillary tangles were identified as mechanisms of action of resveratrol-mediated protection in both paradigms of cellular damage. However, depending on the type of insult, resveratrol exerted its protective activity differentially: under conditions of chemically induced oxidative stress, inhibition of caspase activity, while with DNA damage, resveratrol regulated tau phosphorylation at Ser 422 . Results advance our understanding of resveratrol's complex impact on cellular signaling pathway and contribute to the notion of resveratrol's role as a pleiotropic therapeutic agent.

  8. Pummelo Protects Doxorubicin-Induced Cardiac Cell Death by Reducing Oxidative Stress, Modifying Glutathione Transferase Expression, and Preventing Cellular Senescence

    Directory of Open Access Journals (Sweden)

    L. Chularojmontri

    2013-01-01

    Full Text Available Citrus flavonoids have been shown to reduce cardiovascular disease (CVD risks prominently due to their antioxidant effects. Here we investigated the protective effect of pummelo (Citrus maxima, CM fruit juice in rat cardiac H9c2 cells against doxorubicin (DOX- induced cytotoxicity. Four antioxidant compositions (ascorbic acid, hesperidin, naringin, and gallic acid were determined by HPLC. CM significantly increased cardiac cell survival from DOX toxicity as evaluated by MTT assay. Reduction of cellular oxidative stress was monitored by the formation of DCF fluorescent product and total glutathione (GSH levels. The changes in glutathione-S-transferase (GST activity and expression were determined by enzyme activity assay and Western blot analysis, respectively. Influence of CM on senescence-associated β-galactosidase activity (SA-β-gal was also determined. The mechanisms of cytoprotection involved reduction of intracellular oxidative stress, maintaining GSH availability, and enhanced GST enzyme activity and expression. DOX-induced cellular senescence was also attenuated by long-term CM treatment. Thus, CM fruit juice can be promoted as functional fruit to protect cells from oxidative cell death, enhance the phase II GSTP enzyme activity, and decrease senescence phenotype population induced by cardiotoxic agent such as DOX.

  9. C/EBPγ Is a Critical Regulator of Cellular Stress Response Networks through Heterodimerization with ATF4

    Science.gov (United States)

    Huggins, Christopher J.; Mayekar, Manasi K.; Martin, Nancy; Saylor, Karen L.; Gonit, Mesfin; Jailwala, Parthav; Kasoji, Manjula; Haines, Diana C.; Quiñones, Octavio A.

    2015-01-01

    The integrated stress response (ISR) controls cellular adaptations to nutrient deprivation, redox imbalances, and endoplasmic reticulum (ER) stress. ISR genes are upregulated in stressed cells, primarily by the bZIP transcription factor ATF4 through its recruitment to cis-regulatory C/EBP:ATF response elements (CAREs) together with a dimeric partner of uncertain identity. Here, we show that C/EBPγ:ATF4 heterodimers, but not C/EBPβ:ATF4 dimers, are the predominant CARE-binding species in stressed cells. C/EBPγ and ATF4 associate with genomic CAREs in a mutually dependent manner and coregulate many ISR genes. In contrast, the C/EBP family members C/EBPβ and C/EBP homologous protein (CHOP) were largely dispensable for induction of stress genes. Cebpg−/− mouse embryonic fibroblasts (MEFs) proliferate poorly and exhibit oxidative stress due to reduced glutathione levels and impaired expression of several glutathione biosynthesis pathway genes. Cebpg−/− mice (C57BL/6 background) display reduced body size and microphthalmia, similar to ATF4-null animals. In addition, C/EBPγ-deficient newborns die from atelectasis and respiratory failure, which can be mitigated by in utero exposure to the antioxidant, N-acetyl-cysteine. Cebpg−/− mice on a mixed strain background showed improved viability but, upon aging, developed significantly fewer malignant solid tumors than WT animals. Our findings identify C/EBPγ as a novel antioxidant regulator and an obligatory ATF4 partner that controls redox homeostasis in normal and cancerous cells. PMID:26667036

  10. Chinese green tea consumption reduces oxidative stress, inflammation and tissues damage in smoke exposed rats

    Directory of Open Access Journals (Sweden)

    Wajdy Al-Awaida

    2014-10-01

    Conclusion: Exposure of albino rat model to cigarette smoke caused oxidative stress, altered the cellular antioxidant defense system, induced apoptosis in lung tissue, inflammation and tissues damage, which could be prevented by supplementation of CGT.

  11. Beta-carotene reduces oxidative stress, improves glutathione metabolism and modifies antioxidant defense systems in lead-exposed workers

    Energy Technology Data Exchange (ETDEWEB)

    Kasperczyk, Sławomir, E-mail: kaslav@mp.pl [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland); Dobrakowski, Michał [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland); Kasperczyk, Janusz [Dept. of Environmental Medicine and Epidemiology, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland); Ostałowska, Alina; Zalejska-Fiolka, Jolanta; Birkner, Ewa [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, ul. Jordana 19, 41-808 Zabrze (Poland)

    2014-10-01

    The aim of this study was to determine whether beta-carotene administration reduces oxidative stress and influences antioxidant, mainly glutathione-related, defense systems in workers chronically exposed to lead. The population consisted of two randomly divided groups of healthy male volunteers exposed to lead. Workers in the first group (reference group) were not administered any antioxidants, while workers in the second group (CAR group) were treated orally with 10 mg of beta-carotene once a day for 12 weeks. Biochemical analysis included measuring markers of lead-exposure and oxidative stress in addition to the levels and activities of selected antioxidants. After treatment, levels of malondialdehyde, lipid hydroperoxides and lipofuscin significantly decreased compared with the reference group. However, the level of glutathione significantly increased compared with the baseline. Treatment with beta-carotene also resulted in significantly decreased glutathione peroxidase activity compared with the reference group, while the activities of other glutathione-related enzymes and of superoxide dismutase were not significantly changed. However, the activities of glucose-6-phosphate dehydrogenase and catalase, as well as the level of alpha-tocopherol, were significantly higher after treatment compared with the baseline. Despite controversy over the antioxidant properties of beta-carotene in vivo, our findings showed reduced oxidative stress after beta-carotene supplementation in chronic lead poisoning. - Highlights: • Beta-carotene reduces oxidative stress in lead-exposed workers. • Beta-carotene elevates glutathione level in lead-exposed workers. • Beta-carotene administration could be beneficial in lead poisoning.

  12. Tualang Honey Improves Human Corneal Epithelial Progenitor Cell Migration and Cellular Resistance to Oxidative Stress In Vitro

    Science.gov (United States)

    Tan, Jun Jie; Azmi, Siti Maisura; Yong, Yoke Keong; Cheah, Hong Leong; Lim, Vuanghao; Sandai, Doblin; Shaharuddin, Bakiah

    2014-01-01

    Stem cells with enhanced resistance to oxidative stress after in vitro expansion have been shown to have improved engraftment and regenerative capacities. Such cells can be generated by preconditioning them with exposure to an antioxidant. In this study we evaluated the effects of Tualang honey (TH), an antioxidant-containing honey, on human corneal epithelial progenitor (HCEP) cells in culture. Cytotoxicity, gene expression, migration, and cellular resistance to oxidative stress were evaluated. Immunofluorescence staining revealed that HCEP cells were holoclonal and expressed epithelial stem cell marker p63 without corneal cytokeratin 3. Cell viability remained unchanged after cells were cultured with 0.004, 0.04, and 0.4% TH in the medium, but it was significantly reduced when the concentration was increased to 3.33%. Cell migration, tested using scratch migration assay, was significantly enhanced when cells were cultured with TH at 0.04% and 0.4%. We also found that TH has hydrogen peroxide (H2O2) scavenging ability, although a trace level of H2O2 was detected in the honey in its native form. Preconditioning HCEP cells with 0.4% TH for 48 h showed better survival following H2O2-induced oxidative stress at 50 µM than untreated group, with a significantly lower number of dead cells (15.3±0.4%) were observed compared to the untreated population (20.5±0.9%, p<0.01). Both TH and ascorbic acid improved HCEP viability following induction of 100 µM H2O2, but the benefit was greater with TH treatment than with ascorbic acid. However, no significant advantage was demonstrated using 5-hydroxymethyl-2-furancarboxaldehyde, a compound that was found abundant in TH using GC/MS analysis. This suggests that the cellular anti-oxidative capacity in HCEP cells was augmented by native TH and was attributed to its antioxidant properties. In conclusion, TH possesses antioxidant properties and can improve cell migration and cellular resistance to oxidative stress in HCEP cells in

  13. Discovery and identification of potential biomarkers for alcohol-induced oxidative stress based on cellular metabolomics.

    Science.gov (United States)

    Hu, Qingping; Wei, Jianteng; Liu, Yewei; Fei, Xiulan; Hao, Yuwei; Pei, Dong; Di, Duolong

    2017-07-01

    Biomarkers involved in alcohol-induced oxidative stress play an important role in alcoholic liver disease prevention and diagnosis. Alcohol-induced oxidative stress in human liver L-02 cells was used to discover the potential biomarkers. Metabolites from L-02 cells induced by alcohol were measured by high-performance liquid chromatography and mass spectrometry. Fourteen metabolites that allowed discrimination between control and model groups were discovered by multivariate statistical data analysis (i.e. principal components analysis, orthogonal partial least-squares discriminate analysis). Based on the retention time, UV spectrum and LC-MS findings of the samples and compared with the authentic standards, eight biomarkers involved in alcohol-induced oxidative stress, namely, malic acid, oxidized glutathione, γ-glutamyl-cysteinyl-glycine, adenosine triphosphate, phenylalanine, adenosine monophosphate, nitrotyrosine and tryptophan, were identified. These biomarkers offered important targets for disease diagnosis and other researches. Copyright © 2016 John Wiley & Sons, Ltd.

  14. Intracellular accumulation of bilirubin as a defense mechanism against increased oxidative stress

    Czech Academy of Sciences Publication Activity Database

    Zelenka, Jaroslav; Muchová, L.; Zelenková, M.; Váňová, K.; Vreman, H.J.; Wong, R.J.; Vítek, L.

    2012-01-01

    Roč. 94, č. 8 (2012), s. 1821-1827 ISSN 0300-9084 Grant - others:GA MZd(CZ) NT11327 Institutional research plan: CEZ:AV0Z50110509 Keywords : bilirubin * heme oxygenase * hyperbilirubinemia * lipopolysacccharide * oxidative stress Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 3.142, year: 2012

  15. Mechanisms of autoprotection and the role of stress-proteins in natural defenses, autoprotection, and salutogenesis

    NARCIS (Netherlands)

    Schaefer, J; Nierhaus, KH; Lohff, B; Peters, T; Schaefer, T; Vos, R

    We hypothesize that in all physiotherapeutically oriented procedures of naturotherapy - such as helio-, climate-, thalasso- or hydrotherapy or certain forms of physical exercise - the transient expression of stress-proteins (heat-shock proteins, HSPs) is an important element of salutogenesis. These

  16. A new cellular stress response that triggers centriolar satellite reorganization and ciliogenesis

    DEFF Research Database (Denmark)

    Villumsen, Bine H; Danielsen, Jannie R; Povlsen, Lou

    2013-01-01

    , and transcription blocks, invoking acute and selective displacement of the factors AZI1/CEP131, PCM1, and CEP290 from this compartment triggered by activation of the stress-responsive kinase p38/MAPK14. We demonstrate that the E3 ubiquitin ligase MIB1 is a new component of centriolar satellites, which interacts...... with and ubiquitylates AZI1 and PCM1 and suppresses primary cilium formation. In response to cell stress, MIB1 is abruptly inactivated in a p38-independent manner, leading to loss of AZI1, PCM1, and CEP290 ubiquitylation and concomitant stimulation of ciliogenesis, even in proliferating cells. Collectively, our findings...

  17. Amelioration of Heat Stress Induced Disturbances of Antioxidant Defense System in Chicken by Brahma Rasayana

    Directory of Open Access Journals (Sweden)

    V. Ramnath

    2008-01-01

    Full Text Available Since the range of comfort zone or thermo neutral zone of domestic chickens is narrow, they become easily susceptible to heat and cold environmental stress. We evaluated Brahma Rasayana (BR supplementation on concentrations of certain oxidative stress markers associated with heat stress. A total of 48 egg type male chickens of local strain were divided into six groups (n = 8 for the study. Three groups were fed with BR orally at the rate of 2 g/kg bw daily for 10 days prior to and during the period of experiment. Two of the four groups that were exposed to heat stress (HST i.e. to a temperature of 40 ± 1°C and relative humidity of 80 ± 5% in an environmental chamber for 4 h daily for 5 or 10 days, received BR orally. The other two groups remained as BR treated and untreated non-heat stressed (NHST controls. There was a significant (P < 0.05 increase in the activities of antioxidant enzymes in blood such as catalase (CAT and superoxide dismutase (SOD, as well as liver CAT, glutathione peroxidase (GPX and glutathione reductase (GR in NHST-BR treated and HST-BR treated (both 5 and 10 days chickens when compared with untreated controls. A great deal of significant (P < 0.05 variations were seen in serum and liver reduced glutathione (GSH concentration in NHST-BR treated and HST-BR treated (both 5 and 10 days chickens. Serum and liver lipid peroxidation levels were found to be significantly (P < 0.05 higher in HST-untreated (both 5 and 10 days chickens when compared with other groups. Thus BR supplementation during HST brings about enhanced action of enzymatic and non-enzymatic antioxidants, which nullified the undesired side effects of free radicals that are generated during HST.

  18. Happily (n)ever after: Aging in the context of oxidative stress, proteostasis loss and cellular senescence.

    Science.gov (United States)

    Höhn, Annika; Weber, Daniela; Jung, Tobias; Ott, Christiane; Hugo, Martin; Kochlik, Bastian; Kehm, Richard; König, Jeannette; Grune, Tilman; Castro, José Pedro

    2017-04-01

    Aging is a complex phenomenon and its impact is becoming more relevant due to the rising life expectancy and because aging itself is the basis for the development of age-related diseases such as cancer, neurodegenerative diseases and type 2 diabetes. Recent years of scientific research have brought up different theories that attempt to explain the aging process. So far, there is no single theory that fully explains all facets of aging. The damage accumulation theory is one of the most accepted theories due to the large body of evidence found over the years. Damage accumulation is thought to be driven, among others, by oxidative stress. This condition results in an excess attack of oxidants on biomolecules, which lead to damage accumulation over time and contribute to the functional involution of cells, tissues and organisms. If oxidative stress persists, cellular senescence is a likely outcome and an important hallmark of aging. Therefore, it becomes crucial to understand how senescent cells function and how they contribute to the aging process. This review will cover cellular senescence features related to the protein pool such as morphological and molecular hallmarks, how oxidative stress promotes protein modifications, how senescent cells cope with them by proteostasis mechanisms, including antioxidant enzymes and proteolytic systems. We will also highlight the nutritional status of senescent cells and aged organisms (including human clinical studies) by exploring trace elements and micronutrients and on their importance to develop strategies that might increase both, life and health span and postpone aging onset. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  19. A study on the cellular structure during stress solicitation induced by BioMEMS.

    Science.gov (United States)

    Fior, Raffaella; Maggiolino, Stefano; Codan, Barbara; Lazzarino, Marco; Sbaizero, Orfeo

    2011-01-01

    The investigation of single cells is a topic in continuous evolution. The complexity of the cellular matrix, the huge variety of cells, the interaction of one cell with the other are all factors that must be taken into consideration in the study of the cellular structure and mechanics. In this project, we developed different types of bioMEMS for cell's stretching, both transparent devices based on silicon nitride and non-transparent silicon based. While the use of silicon devices is limited to reflection microscopes, transparent bioMEMS can be used with transmission and reflection microscopes but can also be easily coupled with other tools such as patch clamp analyzers or atomic force microscope. This improvement will open brand new possibilities in the biological investigation field. We used these two BioMEMS to stretch a single cell in a controlled way and, as a first investigation, we focused on its morphology. We noticed that during a controlled stretch, cells react to the applied deformation. A hysteretic behavior on the ratio between area and perimeter has been highlighted.

  20. Tocotrienol-Rich Fraction Ameliorates Antioxidant Defense Mechanisms and Improves Replicative Senescence-Associated Oxidative Stress in Human Myoblasts

    Directory of Open Access Journals (Sweden)

    Shy Cian Khor

    2017-01-01

    Full Text Available During aging, oxidative stress affects the normal function of satellite cells, with consequent regeneration defects that lead to sarcopenia. This study aimed to evaluate tocotrienol-rich fraction (TRF modulation in reestablishing the oxidative status of myoblasts during replicative senescence and to compare the effects of TRF with other antioxidants (α-tocopherol (ATF and N-acetyl-cysteine (NAC. Primary human myoblasts were cultured to young, presenescent, and senescent phases. The cells were treated with antioxidants for 24 h, followed by the assessment of free radical generation, lipid peroxidation, antioxidant enzyme mRNA expression and activities, and the ratio of reduced to oxidized glutathione. Our data showed that replicative senescence increased reactive oxygen species (ROS generation and lipid peroxidation in myoblasts. Treatment with TRF significantly diminished ROS production and decreased lipid peroxidation in senescent myoblasts. Moreover, the gene expression of superoxide dismutase (SOD2, catalase (CAT, and glutathione peroxidase (GPX1 was modulated by TRF treatment, with increased activity of superoxide dismutase and catalase and reduced glutathione peroxidase in senescent myoblasts. In comparison to ATF and NAC, TRF was more efficient in heightening the antioxidant capacity and reducing free radical insults. These results suggested that TRF is able to ameliorate antioxidant defense mechanisms and improves replicative senescence-associated oxidative stress in myoblasts.

  1. Tocotrienol-Rich Fraction Ameliorates Antioxidant Defense Mechanisms and Improves Replicative Senescence-Associated Oxidative Stress in Human Myoblasts.

    Science.gov (United States)

    Khor, Shy Cian; Wan Ngah, Wan Zurinah; Mohd Yusof, Yasmin Anum; Abdul Karim, Norwahidah; Makpol, Suzana

    2017-01-01

    During aging, oxidative stress affects the normal function of satellite cells, with consequent regeneration defects that lead to sarcopenia. This study aimed to evaluate tocotrienol-rich fraction (TRF) modulation in reestablishing the oxidative status of myoblasts during replicative senescence and to compare the effects of TRF with other antioxidants ( α -tocopherol (ATF) and N -acetyl-cysteine (NAC)). Primary human myoblasts were cultured to young, presenescent, and senescent phases. The cells were treated with antioxidants for 24 h, followed by the assessment of free radical generation, lipid peroxidation, antioxidant enzyme mRNA expression and activities, and the ratio of reduced to oxidized glutathione. Our data showed that replicative senescence increased reactive oxygen species (ROS) generation and lipid peroxidation in myoblasts. Treatment with TRF significantly diminished ROS production and decreased lipid peroxidation in senescent myoblasts. Moreover, the gene expression of superoxide dismutase (SOD2) , catalase (CAT), and glutathione peroxidase (GPX1) was modulated by TRF treatment, with increased activity of superoxide dismutase and catalase and reduced glutathione peroxidase in senescent myoblasts. In comparison to ATF and NAC, TRF was more efficient in heightening the antioxidant capacity and reducing free radical insults. These results suggested that TRF is able to ameliorate antioxidant defense mechanisms and improves replicative senescence-associated oxidative stress in myoblasts.

  2. Establishing cellular stress response profiles as biomarkers of homeodynamics, health, and hormesis

    DEFF Research Database (Denmark)

    Demirovic, Dino; Rattan, Suresh

    2013-01-01

    discuss the main intracellular SR pathways in human cells, and argue for the need to define and establish the immediate and delayed stress response profiles (SRP) during aging. Such SRP are required to be established at several age-points, which can be the molecular biomarkers of homeodynamic space...

  3. Oncogenic STAT5 signaling promotes oxidative stress in chronic myeloid leukemia cells by repressing antioxidant defenses.

    Science.gov (United States)

    Bourgeais, Jerome; Ishac, Nicole; Medrzycki, Magdalena; Brachet-Botineau, Marie; Desbourdes, Laura; Gouilleux-Gruart, Valerie; Pecnard, Emmanuel; Rouleux-Bonnin, Florence; Gyan, Emmanuel; Domenech, Jorge; Mazurier, Frederic; Moriggl, Richard; Bunting, Kevin D; Herault, Olivier; Gouilleux, Fabrice

    2017-06-27

    STAT5 transcription factors are frequently activated in hematopoietic neoplasms and are targets of various tyrosine kinase oncogenes. Evidences for a crosstalk between STAT5 and reactive oxygen species (ROS) metabolism have recently emerged but mechanisms involved in STAT5-mediated regulation of ROS still remain elusive. We demonstrate that sustained activation of STAT5 induced by Bcr-Abl in chronic myeloid leukemia (CML) cells promotes ROS production by repressing expression of two antioxidant enzymes, catalase and glutaredoxin-1(Glrx1). Downregulation of catalase and Glrx1 expression was also observed in primary cells from CML patients. Catalase was shown not only to reduce ROS levels but also, to induce quiescence in Bcr-Abl-positive leukemia cells. Furthermore, reduction of STAT5 phosphorylation and upregulation of catalase and Glrx1 were also evidenced in leukemia cells co-cultured with bone marrow stromal cells to mimic a leukemic niche. This caused downregulation of ROS levels and enhancement of leukemic cell quiescence. These data support a role of persistent STAT5 signaling in the regulation of ROS production in myeloid leukemias and highlight the repression of antioxidant defenses as an important regulatory mechanism.

  4. Antioxidant defense and oxidative stress in children with acute hepatitis A.

    Science.gov (United States)

    Popovic-Dragonjic, Lidija; Jovanovic, Maja; Vrbic, Miodrag; Konstantinovic, Ljiljana; Kostic, Velimir; Dragonjic, Ivan

    2011-01-01

    Published data on oxidative stress in children with acute hepatitis A are still very scarce. This study aims to evaluate the oxidant/antioxidant status of these patients. Prospective, case-control study, over 2.5 years in patients under hospitalized and ambulatory care. The levels of a whole-blood antioxidant, reduced glutathione; and plasma antioxidants, β-carotene, retinol, ascorbic acid, α-tocopherol; and the biomarker of oxidative stress, malondialdehyde, were evaluated in 50 pediatric patients (age range, 5-16 years; 29 males and 21 females) with acute hepatitis A and in 50 healthy children as control subjects (age range, 5-16 years; 25 males and 25 females). Plasma levels of reduced glutathione, β-carotene, retinol, α-tocopherol and ascorbic acid were significantly lower, while malondialdehyde plasma levels were significantly increased in the patient group when compared to the controls (Ppediatric patients with acute hepatitis A were influenced by oxidative stress, resulting in significantly lower levels of plasma antioxidants and increased lipid peroxidation. In the absence of other therapeutic options, antioxidant vitamin supplements could be added to the therapy for these patients to help reestablish the oxidant status balance. Further investigations to confirm this suggestion are recommended.

  5. Effects of subchronic manganese chloride exposure on tambaqui (Colossoma macropomum) tissues: oxidative stress and antioxidant defenses.

    Science.gov (United States)

    Gabriel, Diogo; Riffel, Ana Paula K; Finamor, Isabela A; Saccol, Etiane M H; Ourique, Giovana M; Goulart, Luis O; Kochhann, Daiani; Cunha, Mauro A; Garcia, Luciano O; Pavanato, Maria A; Val, Adalberto L; Baldisserotto, Bernardo; Llesuy, Susana F

    2013-05-01

    This study aimed to evaluate oxidative stress parameters in juvenile tambaqui (Colossoma macropomum) exposed to 3.88 mg l(-1) Mn(2+) for 96 hours. Biomarkers of oxidative stress, such as thiobarbituric acid reactive substances (TBARS), superoxide dismutase (SOD), catalase (CAT), and glutathione-S-transferase (GST) activities, as well as content of reduced glutathione (GSH), were analyzed in gill, liver, brain, and kidney. The presence of Mn(2+) in the water corresponded to increased levels of Mn(2+) accumulation according to the following sequence: gill > kidney > brain > liver. There was a significant increase in TBARS levels (40 %) and SOD activity (80 %) in addition to a significant decrease in GSH content (41 %) in gills of fish exposed to waterborne Mn(2+). In hepatic tissue of the exposed animals, TBARS levels decreased significantly (35 %), whereas SOD (82 %) and GST activities (51 %) as well as GSH content (43 %) increased significantly. In brain of exposed juvenile fish, only significant decreases in SOD (32 %) and CAT activities (65 %) were observed. Moreover, the kidney of exposed fish showed a significant increase in TBARS levels (53 %) and a significant decrease in SOD activity (41 %) compared with the control. Thus, the changes in biomarkers of oxidative stress were different in the tissues, showing a specific toxicity of this metal to each organ.

  6. Topography on a subcellular scale modulates cellular adhesions and actin stress fiber dynamics in tumor associated fibroblasts

    Science.gov (United States)

    Azatov, Mikheil; Sun, Xiaoyu; Suberi, Alexandra; Fourkas, John T.; Upadhyaya, Arpita

    2017-12-01

    Cells can sense and adapt to mechanical properties of their environment. The local geometry of the extracellular matrix, such as its topography, has been shown to modulate cell morphology, migration, and proliferation. Here we investigate the effect of micro/nanotopography on the morphology and cytoskeletal dynamics of human pancreatic tumor-associated fibroblast cells (TAFs). We use arrays of parallel nanoridges with variable spacings on a subcellular scale to investigate the response of TAFs to the topography of their environment. We find that cell shape and stress fiber organization both align along the direction of the nanoridges. Our analysis reveals a strong bimodal relationship between the degree of alignment and the spacing of the nanoridges. Furthermore, focal adhesions align along ridges and form preferentially on top of the ridges. Tracking actin stress fiber movement reveals enhanced dynamics of stress fibers on topographically patterned surfaces. We find that components of the actin cytoskeleton move preferentially along the ridges with a significantly higher velocity along the ridges than on a flat surface. Our results suggest that a complex interplay between the actin cytoskeleton and focal adhesions coordinates the cellular response to micro/nanotopography.

  7. The xanthophyll cycle and antioxidative defense system are enhanced in the wheat hybrid subjected to high light stress.

    Science.gov (United States)

    Chen, Xiaoying; Li, Wei; Lu, Qingtao; Wen, Xiaogang; Li, Hongwei; Kuang, Tingyun; Li, Zhensheng; Lu, Congming

    2011-10-15

    Although the wheat hybrids have often shown higher grain yields, the physiological basis of the higher yields remains unknown. Previous studies suggest that tolerance to photoinhibition in the hybrid may be one of the physiological bases (Yang et al., 2006, Plant Sci 171:389-97). The objective of this study was to further investigate the possible mechanism responsible for tolerance to photoinhibition in the hybrid. Photosystem II (PSII) photochemistry, the xanthophyll cycle, and antioxidative defense system were compared between the hybrid and its parents subjected to high light stress (1500μmolm(-2)s(-1)). The analyses of oxygen-evolving activity, chlorophyll fluorescence, and protein blotting demonstrated that the higher tolerance in the hybrid than in its parents was associated with its higher tolerance of PSII to photoinhibition. High light induced an increase in non-photochemical quenching, and this increase was greater in the hybrid than in its parents. There were no differences in the pool size of the xanthophyll cycle between the hybrid and its parents. The content of violaxanthin decreased significantly, whereas the content of zeaxanthin+antherxanthin increased considerably during high light treatments. However, the decrease in violaxanthin content and the increase in zeaxanthin+antherxanthin content were greater in the hybrid than in its parents. High light resulted in a significant accumulation of H(2)O(2), O(2)(-) and catalytic Fe, and this accumulation was less in the hybrid than in its parents. High light induced a significant increase in the activities of superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, dehydroascorbate reductase, and monodehydroascorbate reductase, and these increases were greater in the hybrid than its parents. These results suggest that the higher tolerance to photoinhibition in the hybrid may be associated with its higher capacity for antioxidative defense metabolism and the xanthophyll cycle

  8. Insulin resistance as a physiological defense against metabolic stress: implications for the management of subsets of type 2 diabetes.

    Science.gov (United States)

    Nolan, Christopher J; Ruderman, Neil B; Kahn, Steven E; Pedersen, Oluf; Prentki, Marc

    2015-03-01

    Stratifying the management of type 2 diabetes (T2D) has to take into account marked variability in patient phenotype due to heterogeneity in its pathophysiology, different stages of the disease process, and multiple other patient factors including comorbidities. The focus here is on the very challenging subgroup of patients with T2D who are overweight or obese with insulin resistance (IR) and the most refractory hyperglycemia due to an inability to change lifestyle to reverse positive energy balance. For this subgroup of patients with T2D, we question the dogma that IR is primarily harmful to the body and should be counteracted at any cost. Instead we propose that IR, particularly in this high-risk subgroup, is a defense mechanism that protects critical tissues of the cardiovascular system from nutrient-induced injury. Overriding IR in an effort to lower plasma glucose levels, particularly with intensive insulin therapy, could therefore be harmful. Treatments that nutrient off-load to lower glucose are more likely to be beneficial. The concepts of "IR as an adaptive defense mechanism" and "insulin-induced metabolic stress" may provide explanation for some of the unexpected outcomes of recent major clinical trials in T2D. Potential molecular mechanisms underlying these concepts; their clinical implications for stratification of T2D management, particularly in overweight and obese patients with difficult glycemic control; and future research requirements are discussed. © 2015 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered.

  9. Cellular stress and histopathological tools used as biomarkers in Oreochromis mossambicus for assessing metal contamination.

    Science.gov (United States)

    Kumar, Neeraj; Krishnani, K K; Gupta, S K; Singh, N P

    2017-01-01

    In the present study, we have analyzed various biochemical and histopathological biomarkers in the Oreochromis mossambicus collected from 18 sites at Bhima River. The biochemical biomarkers viz. antioxidative enzymes in muscle viz. catalase, SOD, and GST, glycolytic enzymes in kidney viz. LDH and MDH, protein metabolic enzymes in liver, gill, brain, gonad and muscle viz. ALT and AST, neurotransmitter enzymes in muscle AChE, lipid peroxidation and histopathology in the liver and gill have been evaluated. The oxidative biomarkers, glycolytic enzymes, protein metabolic enzymes and lipid peroxidation were significantly (pbiomarkers for monitoring contaminated freshwater ecosystems. This study suggests that, the importance of antioxidative enzymes, cellular biomarkers, AChE, and histopathology used as biomarkers in aquatic ecosystem biomonitoring. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Circumvention of camptothecin-induced resistance during the adaptive cellular stress response.

    Science.gov (United States)

    Tiligada, Ekaterini; Papamichael, Konstantinos; Vovou, Ioanna; Delitheos, Andreas

    2006-01-01

    Camptothecin-11 (CPT-11) induces the adaptive stress response in yeast, conferring resistance via not fully characterized mechanisms. This study aimed at exploring, pharmacologically, the mechanisms underlying the CPT-11-induced resistance in yeast. Post-logarithmic yeast cultures were submitted to heat shock following preconditioning with suramin and with CPT-11, either alone or in combination with suramin, cycloheximide, sodium molybdate, okadaic acid, or verapamil. The stress response was evaluated by determining cell viability after heat shock. Preconditioning with CPT-11 or suramin conferred thermotolerance to yeast cells. Co-administration of CPT-11 with suramin, cycloheximide or okadaic acid reversed the CPT-11-induced thermotolerant phenotype, while sodium molybdate and verapamil had no effect on CPT-11-induced resistance. The antagonistic effect of the thermotolerance-inducers and the possible contribution of topoisomerase II activity and post-translational modifications mediated by the phosphatases PP1/2A in CPT-11-induced resistance may have important implications on the acquisition of resistance to stress in eukaryotic cells.

  11. Oxidative stress suppresses the cellular bioenergetic effect of the 3-mercaptopyruvate sulfurtransferase/hydrogen sulfide pathway

    Energy Technology Data Exchange (ETDEWEB)

    Módis, Katalin [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States); Asimakopoulou, Antonia [Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras (Greece); Coletta, Ciro [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States); Papapetropoulos, Andreas [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States); Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, Patras (Greece); Szabo, Csaba, E-mail: szabocsaba@aol.com [Department of Anesthesiology, University of Texas Medical Branch and Shriners Burns Hospital for Children, Galveston, TX (United States)

    2013-04-19

    Highlights: •Oxidative stress impairs 3-MST-derived H{sub 2}S production in isolated enzyme and in isolated mitochondria. •This impairs the stimulatory bioenergetic effects of H{sub 2}S in hepatocytes. •This has implications for the pathophysiology of diseases with oxidative stress. -- Abstract: Recent data show that lower concentrations of hydrogen sulfide (H{sub 2}S), as well as endogenous, intramitochondrial production of H{sub 2}S by the 3-mercaptopyruvate (3-MP)/3-mercaptopyruvate sulfurtransferase (3-MST) pathway serves as an electron donor and inorganic source of energy to support mitochondrial electron transport and ATP generation in mammalian cells by donating electrons to Complex II. The aim of our study was to investigate the role of oxidative stress on the activity of the 3-MP/3-MST/H{sub 2}S pathway in vitro. Hydrogen peroxide (H{sub 2}O{sub 2}, 100–500 μM) caused a concentration-dependent decrease in the activity of recombinant mouse 3-MST enzyme. In mitochondria isolated from murine hepatoma cells, H{sub 2}O{sub 2} (50–500 μM) caused a concentration-dependent decrease in production of H{sub 2}S from 3-MP. In cultured murine hepatoma cells H{sub 2}O{sub 2}, (3–100 μM), did not result in overall cytotoxicity, but caused a partial decrease in basal oxygen consumption and respiratory reserve rapacity. The positive bioenergetic effect of 3-MP (100–300 nM) was completely abolished by pre-treatment of the cells with H{sub 2}O{sub 2} (50 μM). The current findings demonstrate that oxidative stress inhibits 3-MST activity and interferes with the positive bioenergetic role of the 3-MP/3-MST/H{sub 2}S pathway. These findings may have implications for the pathophysiology of various conditions associated with increased oxidative stress, such as various forms of critical illness, cardiovascular diseases, diabetes or physiological aging.

  12. Biomarkers of oxidative stress and of antioxidative defense: Relationship to intervention with antioxidant-rich foods

    DEFF Research Database (Denmark)

    Dragsted, Lars Ove; Young, Jette Feveile; Loft, Steffen

    2001-01-01

    polyphenol intake was observed. There was an increased oxidative stress response toward plasma proteins from food items rich in polyphenols and vitamin C and a decreased response when fruits and vegetables were omitted using a controlled diet. There also was a similar trend toward increased antioxidant......The antioxidant actions of single food items or extracts rich in flavonoids (e.g., apple and black currant juice, grape skin extract, tea extract and parsley) were evaluated in short-term human trials [Denmark; date not given]. An overall weak trend toward decreased lipid oxidation with increased...

  13. Nrf2 and Cardiovascular Defense

    Directory of Open Access Journals (Sweden)

    Reuben Howden

    2013-01-01

    Full Text Available The cardiovascular system is susceptible to a group of diseases that are responsible for a larger proportion of morbidity and mortality than any other disease. Many cardiovascular diseases are associated with a failure of defenses against oxidative stress-induced cellular damage and/or death, leading to organ dysfunction. The pleiotropic transcription factor, nuclear factor-erythroid (NF-E 2-related factor 2 (Nrf2, regulates the expression of antioxidant enzymes and proteins through the antioxidant response element. Nrf2 is an important component in antioxidant defenses in cardiovascular diseases such as atherosclerosis, hypertension, and heart failure. Nrf2 is also involved in protection against oxidant stress during the processes of ischemia-reperfusion injury and aging. However, evidence suggests that Nrf2 activity does not always lead to a positive outcome and may accelerate the pathogenesis of some cardiovascular diseases (e.g., atherosclerosis. The precise conditions under which Nrf2 acts to attenuate or stimulate cardiovascular disease processes are unclear. Further studies on the cellular environments related to cardiovascular diseases that influence Nrf2 pathways are required before Nrf2 can be considered a therapeutic target for the treatment of cardiovascular diseases.

  14. Unraveling the cellular response to oxidative stress in the endoplasmic reticulum

    DEFF Research Database (Denmark)

    Hansen, Henning Gram

    Many secretory proteins such as antibodies, blood clotting factors and plasma membrane receptors contain disulfide bonds. The formation of disulfide bonds in these secretory proteins is n essential step in attaining the functional native structure. In the endoplasmic reticulum (ER) of human cells....... Interestingly, depletion of GPx8 in cells induced expression of an antioxidant response marker only in the presence of Ero1. These findings imply that GPx8 is an important scavenger of Ero1-generated hydrogen peroxide, and thus provides a critical function in negotiating oxidative stress originating from...

  15. In vitro gene transfer by the application of laser-induced stress wave: effect of cellular heating

    Science.gov (United States)

    Terakawa, Mitsuhiro; Sato, Shunichi; Ogura, Makoto; Nakanishi, Kuniaki; Masaki, Yoshinori; Uenoyama, Maki; Wakisaka, Hitoshi; Ashida, Hiroshi; Obara, Minoru

    2004-07-01

    In a previous study, we demonstrated that simultaneous application of laser-induced stress wave (LISW) and cellular heating enhanced the uptake of the probe molecule into the cytoplasm. The idea was based on the fact that heating can increase the fluidity of the plasma membrane. In this study, we attempted to apply this technique to in vitro gene transfer. Delivery of enhanced green fluorescent protein (EGFP) expression vectors to NIH-3T3 cells was investigated. The cultured cells in a well were kept in a temperature-controlled water bath at temperatures of 310K and 316K. LISW was generated by irradiation of a polymer target attached to the back of the well with a 532-nm, nanosecond single laser pulse from a Q-switched Nd:YAG laser. The maximum laser energy used was 140 mJ, the corresponding laser fluence on the target being ~ 2 J/cm2. Twenty-four hours after laser irradiation, we observed expression of EGFP in the cells with a confocal laser scanning microscope. In the cells exposed to LISW at 316K, we observed gene expression, while gene expression was very limited in the cells treated at 310K, indicating the effect of cellular heating on the gene permeability.

  16. Partial Protection of PC12 Cells from Cellular Stress by Low-Dose Sodium Nitroprusside Pre-treatment.

    Science.gov (United States)

    Varga, Judit; Bátor, Judit; Nádasdi, Gergő; Árvai, Zita; Schipp, Renáta; Szeberényi, József

    2016-10-01

    The PC12 rat pheochromocytoma cell line is an in vitro model system widely used for the investigation of intracellular signaling events contributing to neuronal differentiation and cell death. We found earlier that the nitric oxide donor compound sodium nitroprusside (SNP) induced apoptosis of PC12 cells if it was applied in high concentration (400 µM). Yoshioka et al. (J Pharmacol Sci 101:126-134, 2006) reported that cell death evoked by cytotoxic concentrations of SNP could be prevented by a 100 µM SNP pre-treatment in a murine macrophage cell line. The apoptosis caused by toxic-dose SNP treatment (400 µM) could be partially overcome in PC12 cells as well by the low-dose SNP pre-treatment. The partial inhibition of apoptosis was accompanied by reduced phosphorylation of certain proteins (such as stress-activated protein kinases, the p53, and the eIF2α proteins), decreased caspase activation, and less intense internucleosomal DNA fragmentation. The 100 µM SNP pre-treatment reduced the pro-apoptotic potential of certain other stress stimuli (serum withdrawal, cisplatin and tunicamycin treatments) as well, although the underlying biochemical changes were not entirely uniform. On the contrary, the 100 µM SNP pre-treatment was unable to prevent cell death caused by the protein synthesis inhibitor anisomycin. Further clarification of the above-mentioned processes may be important in understanding the mechanisms by which mild nitrosative stress protects cells against certain forms of cellular stress conditions.

  17. Stress-induced neutral lipid biosynthesis in microalgae - Molecular, cellular and physiological insights.

    Science.gov (United States)

    Zienkiewicz, Krzysztof; Du, Zhi-Yan; Ma, Wei; Vollheyde, Katharina; Benning, Christoph

    2016-09-01

    Photosynthetic microalgae have promise as biofuel feedstock. Under certain conditions, they produce substantial amounts of neutral lipids, mainly in the form of triacylglycerols (TAGs), which can be converted to fuels. Much of our current knowledge on the genetic and molecular basis of algal neutral lipid metabolism derives mainly from studies of plants, i.e. seed tissues, and to a lesser extent from direct studies of algal lipid metabolism. Thus, the knowledge of TAG synthesis and the cellular trafficking of TAG precursors in algal cells is to a large extent based on genome predictions, and most aspects of TAG metabolism have yet to be experimentally verified. The biofuel prospects of microalgae have raised the interest in mechanistic studies of algal TAG biosynthesis in recent years and resulted in an increasing number of publications on lipid metabolism in microalgae. In this review we summarize the current findings on genetic, molecular and physiological studies of TAG accumulation in microalgae. Special emphasis is on the functional analysis of key genes involved in TAG synthesis, molecular mechanisms of regulation of TAG biosynthesis, as well as on possible mechanisms of lipid droplet formation in microalgal cells. This article is part of a Special Issue entitled: Plant Lipid Biology edited by Kent D. Chapman and Ivo Feussner. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Targeting Cellular Stress Mechanisms and Metabolic Homeostasis by Chinese Herbal Drugs for Neuroprotection

    Directory of Open Access Journals (Sweden)

    Hsiao-Chien Ting

    2018-01-01

    Full Text Available Traditional Chinese medicine has been practiced for centuries in East Asia. Herbs are used to maintain health and cure disease. Certain Chinese herbs are known to protect and improve the brain, memory, and nervous system. To apply ancient knowledge to modern science, some major natural therapeutic compounds in herbs were extracted and evaluated in recent decades. Emerging studies have shown that herbal compounds have neuroprotective effects or can ameliorate neurodegenerative diseases. To understand the mechanisms of herbal compounds that protect against neurodegenerative diseases, we summarize studies that discovered neuroprotection by herbal compounds and compound-related mechanisms in neurodegenerative disease models. Those compounds discussed herein show neuroprotection through different mechanisms, such as cytokine regulation, autophagy, endoplasmic reticulum (ER stress, glucose metabolism, and synaptic function. The interleukin (IL-1β and tumor necrosis factor (TNF-α signaling pathways are inhibited by some compounds, thus attenuating the inflammatory response and protecting neurons from cell death. As to autophagy regulation, herbal compounds show opposite regulatory effects in different neurodegenerative models. Herbal compounds that inhibit ER stress prevent neuronal death in neurodegenerative diseases. Moreover, there are compounds that protect against neuronal death by affecting glucose metabolism and synaptic function. Since the progression of neurodegenerative diseases is complicated, and compound-related mechanisms for neuroprotection differ, therapeutic strategies may need to involve multiple compounds and consider the type and stage of neurodegenerative diseases.

  19. Peroxynitrite and hydrogen peroxide elicit similar cellular stress responses mediated by the Ccp1 sensor protein.

    Science.gov (United States)

    Martins, Dorival; Bakas, Iolie; McIntosh, Kelly; English, Ann M

    2015-08-01

    Peroxynitrite [ONOO(H)] is an oxidant associated with deleterious effects in cells. Because it is an inorganic peroxide that reacts rapidly with peroxidases, we speculated that cells may respond to ONOO(H) and H2O2 challenge in a similar manner. We exposed yeast cells to SIN-1, a well-characterized ONOO(H) generator, and observed stimulation of catalase and peroxiredoxin (Prx) activities. Previously, we reported that H2O2 challenge increases these activities in wild-type cells and in cells producing the hyperactive mutant H2O2 sensor Ccp1(W191F) but not in Ccp1-knockout cells (ccp1Δ). We find here that the response of ccp1Δ and ccp1(W191F) cells to SIN-1 mirrors that to H2O2, identifying Ccp1 as a sensor of both peroxides. SIN-1 simultaneously releases (•)NO and O2(•-), which react to form ONOO(H), but exposure of the three strains separately to an (•)NO donor (spermine-NONOate) or an O2(•-) generator (paraquat) mainly depresses catalase or Prx activity, whereas co-challenge with the NONOate and paraquat stimulates these activities. Because Ccp1 appears to sense ONOO(H) in cells, we examined its reaction with ONOO(H) in vitro and found that peroxynitrous acid (ONOOH) rapidly (k2>10(6)M(-1)s(-1)) oxidizes purified Ccp1 to an intermediate with spectral and ferrocytochrome-oxidizing properties indistinguishable from those of its well-characterized compound I formed with H2O2. Importantly, the nitrite released from ONOOH is not oxidized to (•)NO2 by Ccp1(׳)s compound I, unlike peroxidases involved in immune defense. Overall, our results reveal that yeast cells mount a common antioxidant response to ONOO(H) and H2O2, with Ccp1 playing a pivotal role as an inorganic peroxide sensor. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Cellular stress response in human Müller cells (MIO-M1) after bevacizumab treatment.

    Science.gov (United States)

    Matsuda, Monique; Krempel, Paloma Gava; Marquezini, Mônica Valeria; Sholl-Franco, Alfred; Lameu, Amanda; Monteiro, Mário Luiz R; Miguel, Nádia Campos de Oliveira

    2017-07-01

    Bevacizumab, an anti-vascular endothelial growth factor (VEGF) agent, is widely used in the treatment of retinal vascular diseases. However, due to the essential role Müller cell derived-VEGF plays in the maintenance of retinal neurons and glial cells, cell viability is likely to be affected by VEGF inhibition. We therefore evaluated the effect of bevacizumab-induced VEGF inhibition on Müller cells (MIO-M1) in vitro. MIO-M1 cells were cultured for 12 or 24 h in media containing bevacizumab at 0.25 or 0.5 mg/mL. Controls were cultured in medium only. Cell viability was determined with the trypan blue exclusion test and MTT assay. Caspase-3, beclin-1, glial fibrillary acidic protein (GFAP) and vimentin content were quantified by immunohistochemistry. Gene expression was evaluated by real-time quantitative PCR. Treatment with bevacizumab did not reduce MIO-M1 cell viability, but increased metabolic activity at 24 h (0.5 mg/mL) and induced apoptosis and autophagy, as shown by the increased caspase-3 levels at 12 h (0.25 and 0.5 mg/mL) and the increased beclin levels at 24 h (0.5 mg/mL). Caspase-3 mRNA was upregulated at 12 h and downregulated at 24 h in cells treated with bevacizumab at 0.25 mg/mL. Bevacizumab treatment was also associated with structural protein abnormalities, with decreased GFAP and vimentin content and upregulated GFAP and vimentin mRNA expression. Although bevacizumab did not significantly affect MIO-M1 cell viability, it led to metabolic and molecular changes (apoptosis, autophagy and structural abnormalities) suggestive of significant cellular toxicity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Glutamate Dehydrogenase Is Required by Mycobacterium bovis BCG for Resistance to Cellular Stress.

    Directory of Open Access Journals (Sweden)

    James L Gallant

    Full Text Available We recently reported on our success to generate deletion mutants of the genes encoding glutamate dehydrogenase (GDH and glutamine oxoglutarate aminotransferase (GOGAT in M. bovis BCG, despite their in vitro essentiality in M. tuberculosis. We could use these mutants to delineate the roles of GDH and GOGAT in mycobacterial nitrogen metabolism by using M. bovis BCG as a model for M. tuberculosis specifically. Here, we extended our investigation towards the involvement of GDH and GOGAT in other aspects of M. bovis BCG physiology, including the use of glutamate as a carbon source and resistance to known phagosomal stresses, as well as in survival inside macrophages. We find that gdh is indispensable for the utilization of glutamate as a major carbon source, in low pH environments and when challenged with nitric oxide. On the other hand, the gltBD mutant had increased viability under low pH conditions and was unaffected by a challenge with nitric oxide. Strikingly, GDH was required to sustain M. bovis BCG during infection of both murine RAW 264.7 and bone-marrow derived and macrophages, while GOGAT was not. We conclude that the catabolism of glutamate in slow growing mycobacteria may be a crucial function during infection of macrophage cells and demonstrate a novel requirement for M. bovis BCG GDH in the protection against acidic and nitrosative stress. These results provide strong clues on the role of GDH in intracellular survival of M. tuberculosis, in which the essentiality of the gdh gene complicates knock out studies making the study of the role of this enzyme in pathogenesis difficult.

  2. Glutamate Dehydrogenase Is Required by Mycobacterium bovis BCG for Resistance to Cellular Stress.

    Science.gov (United States)

    Gallant, James L; Viljoen, Albertus J; van Helden, Paul D; Wiid, Ian J F

    2016-01-01

    We recently reported on our success to generate deletion mutants of the genes encoding glutamate dehydrogenase (GDH) and glutamine oxoglutarate aminotransferase (GOGAT) in M. bovis BCG, despite their in vitro essentiality in M. tuberculosis. We could use these mutants to delineate the roles of GDH and GOGAT in mycobacterial nitrogen metabolism by using M. bovis BCG as a model for M. tuberculosis specifically. Here, we extended our investigation towards the involvement of GDH and GOGAT in other aspects of M. bovis BCG physiology, including the use of glutamate as a carbon source and resistance to known phagosomal stresses, as well as in survival inside macrophages. We find that gdh is indispensable for the utilization of glutamate as a major carbon source, in low pH environments and when challenged with nitric oxide. On the other hand, the gltBD mutant had increased viability under low pH conditions and was unaffected by a challenge with nitric oxide. Strikingly, GDH was required to sustain M. bovis BCG during infection of both murine RAW 264.7 and bone-marrow derived and macrophages, while GOGAT was not. We conclude that the catabolism of glutamate in slow growing mycobacteria may be a crucial function during infection of macrophage cells and demonstrate a novel requirement for M. bovis BCG GDH in the protection against acidic and nitrosative stress. These results provide strong clues on the role of GDH in intracellular survival of M. tuberculosis, in which the essentiality of the gdh gene complicates knock out studies making the study of the role of this enzyme in pathogenesis difficult.

  3. Exercise before and after SCUBA diving and the role of cellular microparticles in decompression stress.

    Science.gov (United States)

    Madden, Dennis; Thom, Stephen R; Dujic, Zeljko

    2016-01-01

    Risk in SCUBA diving is often associated with the presence of gas bubbles in the venous circulation formed during decompression. Although it has been demonstrated time-after-time that, while venous gas emboli (VGE) often accompany decompression sickness (DCS), they are also frequently observed in high quantities in asymptomatic divers following even mild recreational dive profiles. Despite this VGE are commonly utilized as a quantifiable marker of the potential for an individual to develop DCS. Certain interventions such as exercise, antioxidant supplements, vibration, and hydration appear to impact VGE production and the decompression process. However promising these procedures may seem, the data are not yet conclusive enough to warrant changes in decompression procedure, possibly suggesting a component of individual response. We hypothesize that the impact of exercise varies widely in individuals and once tested, recommendations can be made that will reduce individual decompression stress and possibly the incidence of DCS. The understanding of physiological adaptations to diving stress can be applied in different diseases that include endothelial dysfunction and microparticle (MP) production. Exercise before diving is viewed by some as a protective form of preconditioning because some studies have shown that it reduces VGE quantity. We propose that MP production and clearance might be a part of this mechanism. Exercise after diving appears to impact the risk of adverse events as well. Research suggests that the arterialization of VGE presents a greater risk for DCS than when emboli are eliminated by the pulmonary circuit before they have a chance to crossover. Laboratory studies have demonstrated that exercise increases the incidence of crossover likely through extra-cardiac mechanisms such as intrapulmonary arterial-venous anastomoses (IPAVAs). This effect of exercise has been repeated in the field with divers demonstrating a direct relationship between exercise

  4. Deciphering the role of ferulic acid against streptozotocin-induced cellular stress in the cardiac tissue of diabetic rats.

    Science.gov (United States)

    Chowdhury, Sayantani; Ghosh, Sumit; Rashid, Kahkashan; Sil, Parames C

    2016-11-01

    The cardiomyocytes are one of the major sources of hyperglycemia induced ROS generation. The present study focuses on the ameliorative role of ferulic acid in combating cardiac complications in diabetic rats. Induction of diabetes by STZ in male Wistar rats (at a dose of 50 mg kg -1  body wt, i.p.) reduced body weight and plasma insulin level, enhanced blood glucose, disturbed the intra-cellular antioxidant machineries and disintegrated the normal radiation pattern of cardiac muscle fibers. Induction of ER stress (up-regulation in the levels of CHOP, GRP78, eIF2α signaling, increased calpain-1 expression), caspase-3 activation, PARP cleavage and DNA fragmentation were evidenced from immunoblot analyses and DNA fragmentation assay. However, ferulic acid administration, (at a dose of 50 mg kg -1  body wt, orally for eight weeks) in post-hyperglycemia could reverse such adverse effects. Also, the molecule increased GLUT-4 translocation to the cardiac membrane by enhanced phosphorylation of PI3Kinase, AKT and inactivation of GSK-3β thereby altering the hyperglycemic condition in the cardiac tissue of diabetic rats. Therefore, as a potential therapeutic, ferulic acid, exhibiting antioxidant and hypoglycemic effects, may hold promise in circumventing stress mediated diabetic cardiomyopathy in rats. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. FBXW7 modulates cellular stress response and metastatic potential through ​HSF1 post-translational modification.

    Science.gov (United States)

    Kourtis, Nikos; Moubarak, Rana S; Aranda-Orgilles, Beatriz; Lui, Kevin; Aydin, Iraz T; Trimarchi, Thomas; Darvishian, Farbod; Salvaggio, Christine; Zhong, Judy; Bhatt, Kamala; Chen, Emily I; Celebi, Julide T; Lazaris, Charalampos; Tsirigos, Aristotelis; Osman, Iman; Hernando, Eva; Aifantis, Iannis

    2015-03-01

    ​Heat-shock factor 1 (​HSF1) orchestrates the heat-shock response in eukaryotes. Although this pathway has evolved to help cells adapt in the presence of challenging conditions, it is co-opted in cancer to support malignancy. However, the mechanisms that regulate ​HSF1 and thus cellular stress response are poorly understood. Here we show that the ubiquitin ligase ​FBXW7α interacts with ​HSF1 through a conserved motif phosphorylated by ​GSK3β and ​ERK1. ​FBXW7α ubiquitylates ​HSF1 and loss of ​FBXW7α results in impaired degradation of nuclear ​HSF1 and defective heat-shock response attenuation. ​FBXW7α is either mutated or transcriptionally downregulated in melanoma and ​HSF1 nuclear stabilization correlates with increased metastatic potential and disease progression. ​FBXW7α deficiency and subsequent ​HSF1 accumulation activates an invasion-supportive transcriptional program and enhances the metastatic potential of human melanoma cells. These findings identify a post-translational mechanism of regulation of the ​HSF1 transcriptional program both in the presence of exogenous stress and in cancer.

  6. Impact of oxidative stress defense on bacterial survival and morphological change in Campylobacter jejuni under aerobic conditions

    Directory of Open Access Journals (Sweden)

    Euna eOh

    2015-04-01

    Full Text Available Campylobacter jejuni, a microaerophilic foodborne pathogen, inescapably faces high oxygen tension during its transmission to humans. Thus, the ability of C. jejuni to survive under oxygen-rich conditions may significantly impact C. jejuni viability in food and food safety as well. In this study, we investigated the impact of oxidative stress resistance on the survival of C. jejuni under aerobic conditions by examining three mutants defective in key antioxidant genes, including ahpC, katA, and sodB. All the three mutants exhibited growth reduction under aerobic conditions compared to the wild type (WT, and the ahpC mutant showed the most significant growth defect. The CFU reduction in the mutants was recovered to the WT level by complementation. Higher levels of reactive oxygen species (ROS were accumulated in C. jejuni under aerobic conditions than microaerobic conditions, and supplementation of culture media with an antioxidant recovered the growth of C. jejuni. The levels of lipid peroxidation and protein oxidation were significantly increased in the mutants compared to WT. Additionally, the mutants exhibited different morphological changes under aerobic conditions. The ahpC and katA mutants developed coccoid morphology by aeration, whereas the sodB mutant established elongated cellular morphology. Compared to microaerobic conditions, interestingly, aerobic culture conditions substantially induced the formation of coccoidal cells, and antioxidant treatment reduced the emergence of coccoid forms under aerobic conditions. The ATP concentrations and PMA-qPCR analysis supported that oxidative stress is a factor that induces the development of a viable-but-non-culturable (VBNC state in C. jejuni. The findings in this study clearly demonstrated that oxidative stress resistance plays an important role in the survival and morphological changes of C. jejuni under aerobic conditions.

  7. Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue.

    Directory of Open Access Journals (Sweden)

    Saleh Heneidi

    Full Text Available Advances in stem cell therapy face major clinical limitations, particularly challenged by low rates of post-transplant cell survival. Hostile host factors of the engraftment microenvironment such as hypoxia, nutrition deprivation, pro-inflammatory cytokines, and reactive oxygen species can each contribute to unwanted differentiation or apoptosis. In this report, we describe the isolation and characterization of a new population of adipose tissue (AT derived pluripotent stem cells, termed Multilineage Differentiating Stress-Enduring (Muse Cells, which are isolated using severe cellular stress conditions, including long-term exposure to the proteolytic enzyme collagenase, serum deprivation, low temperatures and hypoxia. Under these conditions, a highly purified population of Muse-AT cells is isolated without the utilization of cell sorting methods. Muse-AT cells grow in suspension as cell spheres reminiscent of embryonic stem cell clusters. Muse-AT cells are positive for the pluripotency markers SSEA3, TR-1-60, Oct3/4, Nanog and Sox2, and can spontaneously differentiate into mesenchymal, endodermal and ectodermal cell lineages with an efficiency of 23%, 20% and 22%, respectively. When using specific differentiation media, differentiation efficiency is greatly enhanced in Muse-AT cells (82% for mesenchymal, 75% for endodermal and 78% for ectodermal. When compared to adipose stem cells (ASCs, microarray data indicate a substantial up-regulation of Sox2, Oct3/4, and Rex1. Muse-ATs also exhibit gene expression patterns associated with the down-regulation of genes involved in cell death and survival, embryonic development, DNA replication and repair, cell cycle and potential factors related to oncogenecity. Gene expression analysis indicates that Muse-ATs and ASCs are mesenchymal in origin; however, Muse-ATs also express numerous lymphocytic and hematopoietic genes, such as CCR1 and CXCL2, encoding chemokine receptors and ligands involved in stem cell

  8. Genetically Engineered Multilineage-Differentiating Stress-Enduring Cells as Cellular Vehicles against Malignant Gliomas

    Directory of Open Access Journals (Sweden)

    Tomohiro Yamasaki

    2017-09-01

    Full Text Available Malignant glioma, the most common malignant brain tumor in adults, is difficult to treat due to its aggressive invasive nature. Enzyme/prodrug suicide gene therapy based on the herpes simplex virus thymidine kinase (HSVtk/ganciclovir (GCV system is an efficient strategy for treating malignant gliomas. In the present study, we evaluated treatment with multilineage-differentiating stress-enduring (Muse cells, which are endogenous non-tumorigenic pluripotent-like stem cells that are easily collectable from the bone marrow as SSEA-3+ cells, as carriers of the HSVtk gene. Human Muse cells showed potent migratory activity toward glioma cells both in vitro and in vivo. HSVtk gene-transduced Muse cells (Muse-tk cells at a cell number of only 1/32 that of U87 human glioma cells completely eradicated U87 gliomas in nude mouse brains, showing a robust in vivo bystander effect. Pre-existing intracranial U87 gliomas in nude mouse brains injected intratumorally with Muse-tk cells followed by intraperitoneal GCV administration were significantly reduced in size within 2 weeks, and 4 of 10 treated mice survived over 200 days. These findings suggest that intratumoral Muse-tk cell injection followed by systemic GCV administration is safe and effective and that allogeneic Muse-tk cell-medicated suicide gene therapy for malignant glioma is clinically feasible.

  9. Sublethal concentrations of waterborne copper induce cellular stress and cell death in zebrafish embryos and larvae

    Directory of Open Access Journals (Sweden)

    Pedro P Hernandez

    2011-01-01

    Full Text Available Copper is an essential ion that forms part of the active sites of many proteins. At the same time, an excess of this metal produces free radicals that are toxic for cells and organisms. Fish have been used extensively to study the effects of metals, including copper, present in food or the environment. It has been shown that different metals induce different adaptive responses in adult fish. However, until now, scant information has been available about the responses that are induced by waterborne copper during early life stages of fish. Here, acute toxicity tests and LC50 curves have been generated for zebrafish larvae exposed to dissolved copper sulphate at different concentrations and for different treatment times. We determined that the larvae incorporate and accumulate copper present in the medium in a concentration-dependent manner, resulting in changes in gene expression. Using a transgenic fish line that expresses enhanced green fluorescent protein (EGFP under the hsp70 promoter, we monitored tissue-specific stress responses to waterborne copper by following expression of the reporter. Furthermore, TUNEL assays revealed which tissues are more susceptible to cell death after exposure to copper. Our results establish a framework for the analysis of whole-organism management of excess external copper in developing aquatic animals.

  10. TRPA1 channels: molecular sentinels of cellular stress and tissue damage

    Science.gov (United States)

    2016-01-01

    Abstract TRPA1 is a non‐selective cation channel expressed in mammalian peripheral pain receptors, with a major role in chemonociception. TRPA1 has also been implicated in noxious cold and mechanical pain sensation. TRPA1 has an ancient origin and plays important functions in lower organisms, including thermotaxis, mechanotransduction and modulation of lifespan. Here we highlight the role of TRPA1 as a multipurpose sensor of harmful signals, including toxic bacterial products and UV light, and as a sensor of stress and tissue damage. Sensing roles span beyond the peripheral nervous system to include major barrier tissues: gut, skin and lung. Tissue injury, environmental irritants and microbial pathogens are danger signals that can threaten the health of organisms. These signals lead to the coordinated activation of the nociceptive and the innate immune system to provide a homeostatic response trying to re‐establish physiological conditions including tissue repair. Activation of TRPA1 participates in protective neuroimmune interactions at multiple levels, sensing ROS and bacterial products and triggering the release of neuropeptides. However, an exaggerated response to danger signals is maladaptive and can lead to the development of chronic inflammatory conditions. PMID:27079970

  11. The F box protein Fbx6 regulates Chk1 stability and cellular sensitivity to replication stress.

    Science.gov (United States)

    Zhang, You-Wei; Brognard, John; Coughlin, Chris; You, Zhongsheng; Dolled-Filhart, Marisa; Aslanian, Aaron; Manning, Gerard; Abraham, Robert T; Hunter, Tony

    2009-08-28

    ATR and Chk1 are two key protein kinases in the replication checkpoint. Activation of ATR-Chk1 has been extensively investigated, but checkpoint termination and replication fork restart are less well understood. Here, we report that DNA damage not only activates Chk1, but also exposes a degron-like region at the carboxyl terminus of Chk1 to an Fbx6-containing SCF (Skp1-Cul1-F box) E3 ligase, which mediates the ubiquitination and degradation of Chk1 and, in turn, terminates the checkpoint. The protein levels of Chk1 and Fbx6 showed an inverse correlation in both cultured cancer cells and in human breast tumor tissues. Further, we show that low levels of Fbx6 and consequent impairment of replication stress-induced Chk1 degradation are associated with cancer cell resistance to the chemotherapeutic agent, camptothecin. We propose that Fbx6-dependent Chk1 degradation contributes to S phase checkpoint termination and that a defect in this mechanism might increase tumor cell resistance to certain anticancer drugs.

  12. CELLULAR STRESS RESPONSE, REDOX STATUS AND VITAGENES IN GLAUCOMA: A SYSTEMIC OXIDANT DISORDER LINKED TO ALZHEIMER’S DISEASE

    Directory of Open Access Journals (Sweden)

    Vittorio eCalabrese

    2014-06-01

    Full Text Available Amyloid deposits, constituted of amyloid beta (A aggregates, are a characteristic feature of several neurodegenerative diseases, such as Alzheimer’s, mild cognitive impairment and Parkinson’s disease. They also have been recently implicated in the pathogenesis of retinal damage, as well as age-related macular degeneration and glaucoma. Glaucoma is a progressive optic neuropathy characterized by gradual degeneration of neuronal tissue due to retinal ganglion cell loss, associated to visual field loss over time resulting in irreversible blindness. Accumulation of Aβ characterizes glaucoma as a protein misfolding disease, suggesting a pathogenic role for oxidative stress in the pathogenesis of retinal degenerative damage associated to glaucoma. There is a growing body of evidence demonstrating a link between Alzheimer’s disease and glaucoma. Further, several Hsps members have been implicated both in neurodegenerative diseases and glaucomatous apoptosis. To maintain redox homeostasis vitagenes, as integrated mechanisms, operate actively to preserve cell survival under condition of stress. Vitagenes encode for sirtuin, thioredoxin and heat shock proteins. The present study was designed to investigate cellular stress response mechanisms in the blood of patients with glaucoma, compared to control subjects. Levels of vitagenes Hsp72, HO-1, as well as F2-isoprostanes were significantly higher in the blood of patients with glaucoma than in controls. Furthermore, in the same experimental group increased expression of Trx and sirtuin 1 were measured. Our results sustain the importance of redox homeostasis disruption in the pathogenesis of glaucoma and highlights the opportunity that new therapies that prevents neurodegeneration through non-immunomodulatory mechanisms might be synergistically associated with current glaucoma therapies, thus unravelling important targets for novel cytoprotective strategies.

  13. Salt-tolerant and -sensitive alfalfa (Medicago sativa) cultivars have large variations in defense responses to the lepidopteran insect Spodoptera litura under normal and salt stress condition.

    Science.gov (United States)

    Lei, Yunting; Liu, Qing; Hettenhausen, Christian; Cao, Guoyan; Tan, Qing; Zhao, Weiye; Lin, Honghui; Wu, Jianqiang

    2017-01-01

    In nature, plants are often exposed to multiple stress factors at the same time. Yet, little is known about how plants modulate their physiology to counteract simultaneous abiotic and biotic stresses, such as soil salinity and insect herbivory. In this study, insect performance bioassays, phytohormone measurements, quantification of transcripts, and protein determination were employed to study the phenotypic variations of two alfalfa (Medicago sativa) cultivars in response to insect Spodoptera litura feeding under normal and salt stress condition. When being cultivated in normal soil, the salt-tolerant alfalfa cultivar Zhongmu-1 exhibited lower insect resistance than did the salt-sensitive cultivar Xinjiang Daye. Under salinity stress, the defense responses of Xinjiang Daye were repressed, whereas Zhongmu-1 did not show changes in resistance levels. It is likely that salinity influenced the resistance of Xinjiang Daye through suppressing the accumulation of jasmonic acid-isoleucine (JA-Ile), which is the bioactive hormone inducing herbivore defense responses, leading to attenuated trypsin proteinase inhibitor (TPI) activity. Furthermore, exogenous ABA supplementation suppressed the insect herbivory-induced JA/JA-Ile accumulation and levels of JAR1 (jasmonate resistant 1) and TPI, and further decreased the resistance of Xinjiang Daye, whereas Zhongmu-1 showed very little response to the increased ABA level. We propose a mechanism, in which high levels of abscisic acid induced by salt treatment may affect the expression levels of JAR1 and consequently decrease JA-Ile accumulation and thus partly suppress the defense of Xinjiang Daye against insects under salt stress. This study provides new insight into the mechanism by which alfalfa responds to concurrent abiotic and biotic stresses.

  14. Proteomic characterization of an isolated fraction of synthetic proteasome inhibitor (PSI-induced inclusions in PC12 cells might offer clues to aggresomes as a cellular defensive response against proteasome inhibition by PSI

    Directory of Open Access Journals (Sweden)

    Li Xing'an

    2010-08-01

    Full Text Available Abstract Background Cooperation of constituents of the ubiquitin proteasome system (UPS with chaperone proteins in degrading proteins mediate a wide range of cellular processes, such as synaptic function and neurotransmission, gene transcription, protein trafficking, mitochondrial function and metabolism, antioxidant defence mechanisms, and apoptotic signal transduction. It is supposed that constituents of the UPS and chaperone proteins are recruited into aggresomes where aberrant and potentially cytotoxic proteins may be sequestered in an inactive form. Results To determinate the proteomic pattern of synthetic proteasome inhibitor (PSI-induced inclusions in PC12 cells after proteasome inhibition by PSI, we analyzed a fraction of PSI-induced inclusions. A proteomic feature of the isolated fraction was characterized by identification of fifty six proteins including twenty previously reported protein components of Lewy bodies, twenty eight newly identified proteins and eight unknown proteins. These proteins, most of which were recognized as a profile of proteins within cellular processes mediated by the UPS, a profile of constituents of the UPS and a profile of chaperone proteins, are classed into at least nine accepted categories. In addition, prolyl-4-hydroxylase beta polypeptide, an endoplasmic reticulum member of the protein disulfide isomerase family, was validated in the developmental process of PSI-induced inclusions in the cells. Conclusions It is speculated that proteomic characterization of an isolated fraction of PSI-induced inclusions in PC12 cells might offer clues to appearance of aggresomes serving as a cellular defensive response against proteasome inhibition.

  15. Chemical defense lowers plant competitiveness.

    Science.gov (United States)

    Ballhorn, Daniel J; Godschalx, Adrienne L; Smart, Savannah M; Kautz, Stefanie; Schädler, Martin

    2014-11-01

    Both plant competition and plant defense affect biodiversity and food web dynamics and are central themes in ecology research. The evolutionary pressures determining plant allocation toward defense or competition are not well understood. According to the growth-differentiation balance hypothesis (GDB), the relative importance of herbivory and competition have led to the evolution of plant allocation patterns, with herbivore pressure leading to increased differentiated tissues (defensive traits), and competition pressure leading to resource investment towards cellular division and elongation (growth-related traits). Here, we tested the GDB hypothesis by assessing the competitive response of lima bean (Phaseolus lunatus) plants with quantitatively different levels of cyanogenesis-a constitutive direct, nitrogen-based defense against herbivores. We used high (HC) and low cyanogenic (LC) genotypes in different competition treatments (intra-genotypic, inter-genotypic, interspecific), and in the presence or absence of insect herbivores (Mexican bean beetle, Epilachna varivestis) to quantify vegetative and generative plant parameters (above and belowground biomass as well as seed production). Highly defended HC-plants had significantly lower aboveground biomass and seed production than LC-plants when grown in the absence of herbivores implying significant intrinsic costs of plant cyanogenesis. However, the reduced performance of HC- compared to LC-plants was mitigated in the presence of herbivores. The two plant genotypes exhibited fundamentally different responses to various stresses (competition, herbivory). Our study supports the GDB hypothesis by demonstrating that competition and herbivory affect different plant genotypes differentially and contributes to understanding the causes of variation in defense within a single plant species.

  16. A novel antibody-dependent cellular cytotoxicity mechanism involved in defense against malaria requires costimulation of monocytes FcgammaRII and FcgammaRIII

    DEFF Research Database (Denmark)

    Jafarshad, Ali; Dziegiel, Morten Hanefeld; Lundquist, Rasmus

    2007-01-01

    Clinical experiments have shown that the Ab-dependent cell-mediated inhibition of Plasmodium falciparum is a major mechanism controlling malaria parasitemia and thereby symptoms. In this study, we demonstrate that a single merozoite per monocyte (MN) is sufficient to trigger optimal antiparasitic......-dependent cellular cytotoxicity and implies that all MN are not equally effective. These findings have both fundamental and practical implications, particularly for vaccine discovery....

  17. Activation of autophagy via Ca(2+)-dependent AMPK/mTOR pathway in rat notochordal cells is a cellular adaptation under hyperosmotic stress.

    Science.gov (United States)

    Jiang, Li-Bo; Cao, Lu; Yin, Xiao-Fan; Yasen, Miersalijiang; Yishake, Mumingjiang; Dong, Jian; Li, Xi-Lei

    2015-01-01

    Nucleus pulposus (NP) cells experience hyperosmotic stress in spinal discs; however, how these cells can survive in the hostile microenvironment remains unclear. Autophagy has been suggested to maintain cellular homeostasis under different stresses by degrading the cytoplasmic proteins and organelles. Here, we explored whether autophagy is a cellular adaptation in rat notochordal cells under hyperosmotic stress. Hyperosmotic stress was found to activate autophagy in a dose- and time-dependent manner. SQSTM1/P62 expression was decreased as the autophagy level increased. Transient Ca(2+) influx from intracellular stores and extracellular space was stimulated by hyperosmotic stress. Activation of AMPK and inhibition of p70S6K were observed under hyperosmotic conditions. However, intercellular Ca(2+) chelation inhibited the increase of LC3-II and partly reversed the decrease of p70S6K. Hyperosmotic stress decreased cell viability and promoted apoptosis. Inhibition of autophagy led to SQSTM1/P62 accumulation, reduced cell viability, and accelerated apoptosis in notochordal cells under this condition. These evidences suggest that autophagy induction via the Ca(2+)-dependent AMPK/mTOR pathway might occur as an adaptation mechanism for notochordal cells under hyperosmotic stress. Thus, activating autophagy might be a promising approach to improve viability of notochordal cells in intervertebral discs.

  18. Improvement of phytoextraction and antioxidative defense in Solanum nigrum L. under cadmium stress by application of cadmium-resistant strain and citric acid

    International Nuclear Information System (INIS)

    Gao Yang; Miao Chiyuan; Mao Liang; Zhou Pei; Jin Zhiguo; Shi Wanjun

    2010-01-01

    Remediation of plant-microorganism-chelates synergy has been proposed as an effective remediation method for enhancing the removal efficiency of heavy metal. Manipulation of the antioxidative system increases plant tolerance, thereby potentially enhancing the uptake capacity to heavy metal. In this study, we investigated the possibility of improving the phytoextraction of Cd and the antioxidative defense of Solanum nigrum L. by application of a new isolated strain (Paecilomyces lilacinus NH1) (PLNH1) and citric acid (CA). The results showed that application of CA or PLNH1 significantly promoted S. nigrum's growth under Cd stress, but the synergistic effect of CA and PLNH1 on S. nigrum's growth was more obvious. The coexistence of CA and PLNH1 could enhance about 30% of Cd accumulation in different organs of S. nigrum compared to the treatment without the addition of CA and PLNH1, whereas single CA or PLNH1 added treatment only enhanced about 10-15% of Cd accumulation in different organs of S. nigrum. The antioxidative defense in S. nigrum under Cd stress was significantly improved as result of application of CA and PLNH1. The responses of antioxidative enzymes to Cd stress significantly decreased following application of CA and PLNH1, and the oxidative stress experienced by the plant due to Cd in the soil was significantly alleviated.

  19. Polyamine regulates tolerance to water stress in leaves of white clover associated with antioxidant defense and dehydrin genes via involvement in calcium messenger system and hydrogen peroxide signaling

    Directory of Open Access Journals (Sweden)

    Zhou eLi

    2015-10-01

    Full Text Available Endogenous polyamine (PA may play a critical role in tolerance to water stress in plants acting as a signaling molecule activator. Water stress caused increases in endogenous PA content in leaves, including putrescine (Put, spermidine (Spd, and spermine (Spm. Exogenous application of Spd could induce the instantaneous H2O2 burst and accumulation of cytosolic free Ca2+, and activate NADPH oxidase and CDPK gene expression in cells. To a great extent, PA biosynthetic inhibitor reduced the water stress-induced H2O2 accumulation, free cytosolic Ca2+ release, antioxidant enzyme activities and genes expression leading to aggravate water stress-induced oxidative damage, while these suppressing effects were alleviated by the addition of exogenous Spd, indicating PA was involved in water stress-induced H2O2 and cytosolic free Ca2+ production as well as stress tolerance. Dehydrin genes (Y2SK, Y2K, and SK2 were showed to be highly responsive to exogenous Spd. PA-induced antioxidant defense and dehydrin genes expression could be blocked by the scavenger of H2O2 and the inhibitors of H2O2 generation or Ca2+ channels blockers, a calmodulin antagonist, as well as the inhibitor of CDPK. These findings suggested that PA regulated tolerance to water stress in white clover associated with antioxidant defenses and dehydrins via involvement in the calcium messenger system and H2O2 signaling pathways. PA-induced H2O2 production required Ca2+ release, while PA-induced Ca2+ release was also essential for H2O2 production, suggesting an interaction between PA-induced H2O2 and Ca2+ signaling.

  20. Behavioral stress response of genetically selected aggressive and nonaggressive wild house mice in the shock-probe/defensive burying test

    NARCIS (Netherlands)

    Sluyter, F; Korte, SM; Bohus, B; VanOortmerssen, GA

    Genetically selected aggressive and nonaggressive male wild house mice were tested in the shock-probe/defensive burying test. Five distinct behaviors (burying, immobility, rearing, grooming, and exploration) were recorded in two environmental situations: fresh and home cage sawdust. Nonaggressive

  1. Cellular Responses to Mechanical Stress Selected Contribution: A Three-Dimensional Model for Assessment of in Vitro Toxicity in Balaena Mysticetus Renal Tissue

    Science.gov (United States)

    Goodwin, T. J.; Coate-Li, L.; Linnehan, R. M.; Hammond, T. G.

    2000-01-01

    This study established two- and three-dimensional renal proximal tubular cell cultures of the endangered species bowhead whale (Balaena mysticetus), developed SV40-transfected cultures, and cloned the 61-amino acid open reading frame for the metallothionein protein, the primary binding site for heavy metal contamination in mammals. Microgravity research, modulations in mechanical culture conditions (modeled microgravity), and shear stress have spawned innovative approaches to understanding the dynamics of cellular interactions, gene expression, and differentiation in several cellular systems. These investigations have led to the creation of ex vivo tissue models capable of serving as physiological research analogs for three-dimensional cellular interactions. These models are enabling studies in immune function, tissue modeling for basic research, and neoplasia. Three-dimensional cellular models emulate aspects of in vivo cellular architecture and physiology and may facilitate environmental toxicological studies aimed at elucidating biological functions and responses at the cellular level. Marine mammals occupy a significant ecological niche (72% of the Earth's surface is water) in terms of the potential for information on bioaccumulation and transport of terrestrial and marine environmental toxins in high-order vertebrates. Few ex vivo models of marine mammal physiology exist in vitro to accomplish the aforementioned studies. Techniques developed in this investigation, based on previous tissue modeling successes, may serve to facilitate similar research in other marine mammals.

  2. Evaluation of the defense system in chloroplasts to photooxidative stress caused by paraquat using transgenic tobacco plants expressing catalase from Escherichia coli.

    Science.gov (United States)

    Miyagawa, Y; Tamoi, M; Shigeoka, S

    2000-03-01

    We evaluated the defense system in chloroplasts to photooxidative stress imposed by paraquat treatment under illumination in transgenic tobacco plants with increased tolerance to drought stress at a high light intensity produced by catalase from Escherichia coli targeted to chloroplasts [Shikanai et al. (1998) FEBS Lett. 428: 47]. At 24 h after the paraquat application, Chl was destroyed in the wild-type plants, but not in transgenic plants. Photosynthetic activities monitored by CO2 fixation and Chl fluorescence were much less affected by the paraquat treatment in transgenic lines. The activities of chloroplastic ascorbate peroxidase (APX) isoenzymes decreased in parallel with the depletion of ascorbate (AsA) in leaves in both lines. Paraquat treatment had no effect on the transcript level of chloroplastic APX isoenzymes, while it significantly lowered the level of their proteins. These data suggest that the depletion of AsA in chloroplasts under severe stress conditions inactivates and degrades chloroplastic APX isoenzymes.

  3. Cell-based assay for the detection of chemically induced cellular stress by immortalized untransformed transgenic hepatocytes

    Directory of Open Access Journals (Sweden)

    Vezzoni Paolo

    2004-03-01

    Full Text Available Abstract Background Primary hepatocytes, one of the most widely used cell types for toxicological studies, have a very limited life span and must be freshly derived from mice or even humans. Attempts to use stable cell lines maintaining the enzymatic pattern of liver cells have been so far unsatisfactory. Stress proteins (heat shock proteins, HSPs have been proposed as general markers of cellular injury and their use for environmental monitoring has been suggested. The aim of this work is to develop a bi-transgenic hepatocyte cell line in order to evaluate the ability of various organic and inorganic chemicals to induce the expression of the HSP70 driven reporter gene. We previously described transgenic mice (Hsp70/hGH secreting high levels of human Growth Hormone (hGH following exposure to toxic compounds in vivo and in vitro in primary cultures derived from different organs. In addition, we also reported another transgenic model (AT/cytoMet allowing the reproducible immortalization of untransformed hepatocytes retaining in vitro complex liver functions. Results The transgenic mouse line Hsp70/hGH was crossed with the AT/cytoMet transgenic strain permitting the reproducible immortalization of untransformed hepatocytes. From double transgenic animals we derived several stable hepatic cell lines (MMH-GH which showed a highly-differentiated phenotype as judged from the retention of epithelial cell polarity and the profile of gene expression, including hepatocyte-enriched transcription factors and detoxifying enzymes. In these cell lines, stresses induced by exposure to inorganic [Sodium Arsenite (NaAsO2 and Cadmium Chloride (CdCl2], and organic [Benzo(aPyrene (BaP, PentaChloroPhenol (PCP, TetraChloroHydroQuinone (TCHQ, 1-Chloro-2,4-DiNitro-Benzene (CDNB] compounds, specifically induced hGH release in the culture medium. Conclusions MMH-GH, an innovative model to evaluate the toxic potential of chemical and physical xenobiotics, provides a simple

  4. ALT1, a Snf2 Family Chromatin Remodeling ATPase, Negatively Regulates Alkaline Tolerance through Enhanced Defense against Oxidative Stress in Rice

    Science.gov (United States)

    Guo, Mingxin; Wang, Ruci; Wang, Juan; Hua, Kai; Wang, Yueming; Liu, Xiaoqiang; Yao, Shanguo

    2014-01-01

    Alkaline salt stress adversely affects rice growth, productivity and grain quality. However, the mechanism underlying this process remains elusive. We characterized here an alkaline tolerant mutant, alt1 in rice. Map-based cloning revealed that alt1 harbors a mutation in a chromatin remodeling ATPase gene. ALT1-RNAi transgenic plants under different genetic background mimicked the alt1 phenotype, exhibiting tolerance to alkaline stress in a transcript dosage-dependent manner. The predicted ALT1 protein belonged to the Ris1 subgroup of the Snf2 family and was localized in the nucleus, and transcription of ALT1 was transiently suppressed after alkaline treatment. Although the absorption of several metal ions maintained well in the mutant under alkaline stress, expression level of the genes involved in metal ions homeostasis was not altered in the alt1 mutant. Classification of differentially expressed abiotic stress related genes, as revealed by microarray analysis, found that the majority (50/78) were involved in ROS production, ROS scavenging, and DNA repair. This finding was further confirmed by that alt1 exhibited lower levels of H2O2 under alkaline stress and tolerance to methyl viologen treatment. Taken together, these results suggest that ALT1 negatively functions in alkaline tolerance mainly through the defense against oxidative damage, and provide a potential two-step strategy for improving the tolerance of rice plants to alkaline stress. PMID:25473841

  5. Overexpression of a pea DNA helicase (PDH45) in peanut (Arachis hypogaea L.) confers improvement of cellular level tolerance and productivity under drought stress.

    Science.gov (United States)

    Manjulatha, M; Sreevathsa, Rohini; Kumar, A Manoj; Sudhakar, Chinta; Prasad, T G; Tuteja, Narendra; Udayakumar, M

    2014-02-01

    Peanut, a major edible oil seed crop globally is predominantly grown under rainfed conditions and suffers yield losses due to drought. Development of drought-tolerant varieties through transgenic technology is a valid approach. Besides superior water relation traits like water mining, intrinsic cellular level tolerance mechanisms are important to sustain the growth under stress. To achieve this objective, the focus of this study was to pyramid drought adaptive traits by overexpressing a stress responsive helicase, PDH45 in the background of a genotype with superior water relations. PCR, Southern, and RT-PCR analyses confirmed stable integration and expression of the PDH45 gene in peanut transgenics. At the end of T₃ generation, eight transgenic events were identified as promising based on stress tolerance and improvement in productivity. Several transgenic lines showed stay-green phenotype and increased chlorophyll stability under stress and reduced chlorophyll retardation under etherel-induced simulated stress conditions. Stress-induced root growth was also substantially higher in the case of transformants. This was reflected in increased WUE (low Δ¹³C) and improved growth rates and productivity. The transgenics showed 17.2 and 26.75 % increase in yield under non-stress and stress conditions over wild type ascertaining the feasibility of trait pyramiding strategy for the development of drought-tolerant peanut.

  6. Mitochondrial and endoplasmic reticulum dysfunction and related defense mechanisms in critical illness-induced multiple organ failure.

    Science.gov (United States)

    Thiessen, Steven E; Van den Berghe, Greet; Vanhorebeek, Ilse

    2017-10-01

    Patients with critical illness-induced multiple organ failure suffer from a very high morbidity and mortality, despite major progress in intensive care. The pathogenesis of this condition is complex and incompletely understood. Inadequate tissue perfusion and an overwhelming inflammatory response with pronounced cellular damage have been suggested to play an important role, but interventions targeting these disturbances largely failed to improve patient outcome. Hence, new therapeutic perspectives are urgently needed. Cellular dysfunction, hallmarked by mitochondrial dysfunction and endoplasmic reticulum stress, is increasingly recognized as an important contributor to the development of organ failure in critical illness. Several cellular defense mechanisms are normally activated when the cell is in distress, but may fail or respond insufficiently to critical illness. This insight may open new therapeutic options by stimulating these cellular defense mechanisms. This review summarizes the current understanding of the role of mitochondrial dysfunction and endoplasmic reticulum stress in critical illness-induced multiple organ failure and gives an overview of the corresponding cellular defense mechanisms. Therapeutic perspectives based on these cellular defense mechanisms are discussed. This article is part of a Special Issue entitled: Immune and Metabolic Alterations in Trauma and Sepsis edited by Dr. Raghavan Raju. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Emery-Dreifuss Muscular Dystrophy-Associated Mutant Forms of Lamin A Recruit the Stress Responsive Protein Ankrd2 into the Nucleus, Affecting the Cellular Response to Oxidative Stress

    Directory of Open Access Journals (Sweden)

    Silvia Angori

    2017-05-01

    Full Text Available Background: Ankrd2 is a stress responsive protein mainly expressed in muscle cells. Upon the application of oxidative stress, Ankrd2 translocates into the nucleus where it regulates the activity of genes involved in cellular response to stress. Emery-Dreifuss Muscular Dystrophy 2 (EDMD2 is a muscular disorder caused by mutations of the gene encoding lamin A, LMNA. As well as many phenotypic abnormalities, EDMD2 muscle cells also feature a permanent basal stress state, the underlying molecular mechanisms of which are currently unclear. Methods: Experiments were performed in EDMD2-lamin A overexpressing cell lines and EDMD2-affected human myotubes. Oxidative stress was produced by H2O2 treatment. Co-immunoprecipitation, cellular subfractionation and immunofluorescence analysis were used to validate the relation between Ankrd2 and forms of lamin A; cellular sensibility to stress was monitored by the analysis of Reactive Oxygen Species (ROS release and cell viability. Results: Our data demonstrate that oxidative stress induces the formation of a complex between Ankrd2 and lamin A. However, EDMD2-lamin A mutants were able to bind and mislocalize Ankrd2 in the nucleus even under basal conditions. Nonetheless, cells co-expressing Ankrd2 and EDMD2-lamin A mutants were more sensitive to oxidative stress than the Ankrd2-wild type lamin A counterpart. Conclusions: For the first time, we present evidence that in muscle fibers from patients affected by EDMD2, Ankrd2 has an unusual nuclear localization. By introducing a plausible mechanism ruling this accumulation, our data hint at a novel function of Ankrd2 in the pathogenesis of EDMD2-affected cells.

  8. Real time medical learning using the WhatsApp cellular network: a cross sectional study following the experience of a division's medical officers in the Israel Defense Forces.

    Science.gov (United States)

    Blumenfeld, Ofer; Brand, Ronen

    2016-01-01

    Primary care medical officers (MOs) are expected to maintain self-education while serving in their units in order to maintain professional standards. With the rise of smartphone use in the Israel Defense Forces (IDF), the WhatsApp application can facilitate medical learning. To date, there has been no description of the use of this tool by MOs in a military setting. This paper aims to describe the pattern of use of a WhatsApp application group by IDF's MOs. We collected all the information (textual and visual) uploaded to a WhatsApp group called "The Division's Physicians", originally established two years earlier, during a randomly selected sample month. We analyzed the pattern of its use and explored the association between the number of questions and responses uploaded to the group and the duration of service of their senders. In December 2014, the "The Division's Physicians" WhatsApp group had 41 participants. We identified 478 messages classified as questions and 531 messages classified as responses. The number of questions asked by MOs in their first 2 months of service in the battalion (median = 14.5) and the number of questions asked by MOs with more than one year of their first assignment (median = 10.5) were significantly higher than the number of questions (median = 1.0) asked by MOs in their second assignment or later ( p values for comparisons were 0.008 and 0.012 respectively). We also found that both the number of responses provided by MOs with more than one year of service in the battalion (median = 21) and the number of responses provided by MOs in their second assignment or later (median = 5) were significantly higher than the number of responses (median = 1) provided by MOs within their first 2 months of service in the battalion ( p value for comparisons were 0.024 and 0.039 respectively). We conclude from our preliminary study that a WhatsApp group can facilitate the transfer of knowledge from more experienced MOs to those with

  9. A WRKY transcription factor from Withania somnifera regulates triterpenoid withanolide accumulation and biotic stress tolerance through modulation of phytosterol and defense pathways.

    Science.gov (United States)

    Singh, Anup Kumar; Kumar, Sarma Rajeev; Dwivedi, Varun; Rai, Avanish; Pal, Shaifali; Shasany, Ajit K; Nagegowda, Dinesh A

    2017-08-01

    Withania somnifera produces pharmacologically important triterpenoid withanolides that are derived via phytosterol pathway; however, their biosynthesis and regulation remain to be elucidated. A jasmonate- and salicin-inducible WRKY transcription factor from W. somnifera (WsWRKY1) exhibiting correlation with withaferin A accumulation was functionally characterized employing virus-induced gene silencing and overexpression studies combined with transcript and metabolite analyses, and chromatin immunoprecipitation assay. WsWRKY1 silencing resulted in stunted plant growth, reduced transcripts of phytosterol pathway genes with corresponding reduction in phytosterols and withanolides in W. somnifera. Its overexpression elevated the biosynthesis of triterpenoids in W. somnifera (phytosterols and withanolides), as well as tobacco and tomato (phytosterols). Moreover, WsWRKY1 binds to W-box sequences in promoters of W. somnifera genes encoding squalene synthase and squalene epoxidase, indicating its direct regulation of triterpenoid pathway. Furthermore, while WsWRKY1 silencing in W. somnifera compromised the tolerance to bacterial growth, fungal infection, and insect feeding, its overexpression in tobacco led to improved biotic stress tolerance. Together these findings demonstrate that WsWRKY1 has a positive regulatory role on phytosterol and withanolides biosynthesis, and defense against biotic stress, highlighting its importance as a metabolic engineering tool for simultaneous improvement of triterpenoid biosynthesis and plant defense. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  10. Complementary interactions between oxidative stress and auxins control plant growth responses at plant, organ, and cellular level.

    Science.gov (United States)

    Pasternak, Taras; Potters, Geert; Caubergs, Roland; Jansen, Marcel A K

    2005-08-01

    Plant stress responses are a key factor in steering the development of cells, tissues, and organs. However, the stress-induced signal transduction cascades that control localized growth and cell size/differentiation are not well understood. It is reported here that oxidative stress, exerted by paraquat or alloxan, induced localized cell proliferation in intact seedlings, in isolated root segments, and at the single cell level. Analysis of the stress-induced mitotic activity revealed that oxidative stress enhances auxin-dependent growth cycle reactivation. Based on the similarities between responses at plant, tissue, or single cell level, it is hypothesized that a common mechanism of reactive oxygen species enhanced auxin-responsiveness underlies the stress-induced re-orientation of growth, and that stress-induced effects on the protoplast growth cycle are directly relevant in terms of understanding whole plant behaviour.

  11. Involvement of oxygen reactive species in the cellular response of carcinoma cells to irradiation

    International Nuclear Information System (INIS)

    Tulard, A.

    2004-06-01

    After a presentation of oxygen reactive species and their sources, the author describes the enzymatic and non-enzymatic anti-oxidative defenses, the physiological roles of oxygen reactive species, the oxidative stress, the water radiolysis, the anti-oxidative enzymes and the effects of ionizing radiations. The author then reports an investigation on the contribution of oxygen reactive species in the cellular response to irradiation, and an investigation on the influence of the breathing chain on the persistence of a radio-induced oxidative stress. He also reports a research on molecular mechanisms involved in the cellular radio-sensitivity

  12. Transforming Defense

    National Research Council Canada - National Science Library

    Lamb, Christopher J; Bunn, M. E; Lutes, Charles; Cavoli, Christopher

    2005-01-01

    .... Despite the resources and attention consumed by the war on terror, and recent decisions by the White House to curtail the growth of defense spending, the senior leadership of the Department of Defense (DoD...

  13. BRIC-21: Global Transcriptome Profiling to Identify Cellular Stress Mechanisms Responsible for Spaceflight-Induced Antibiotic Resistance

    Science.gov (United States)

    Nicholson, Wayne L.; Fajardo-Cavazos, Patricia

    2015-01-01

    Comparisons of spaceflight stress responses in Bacillus subtilis spores and Staphylococcus epidermidis cells to ground-based controls will be conducted to uncover alterations in their antibiotic susceptibility.

  14. Deranged Bioenergetics and Defective Redox Capacity in T Lymphocytes and Neutrophils Are Related to Cellular Dysfunction and Increased Oxidative Stress in Patients with Active Systemic Lupus Erythematosus

    Directory of Open Access Journals (Sweden)

    Ko-Jen Li

    2012-01-01

    Full Text Available Urinary excretion of N-benzoyl-glycyl-Nε-(hexanonyllysine, a biomarker of oxidative stress, was higher in 26 patients with active systemic lupus erythematosus (SLE than in 11 non-SLE patients with connective tissue diseases and in 14 healthy volunteers. We hypothesized that increased oxidative stress in active SLE might be attributable to deranged bioenergetics, defective reduction-oxidation (redox capacity, or other factors. We demonstrated that, compared to normal cells, T lymphocytes (T and polymorphonuclear neutrophils (PMN of active SLE showed defective expression of facilitative glucose transporters GLUT-3 and GLUT-6, which led to increased intracellular basal lactate and decreased ATP production. In addition, the redox capacity, including intracellular GSH levels and the enzyme activity of glutathione peroxidase (GSH-Px and γ-glutamyl-transpeptidase (GGT, was decreased in SLE-T. Compared to normal cells, SLE-PMN showed decreased intracellular GSH levels, and GGT enzyme activity was found in SLE-PMN and enhanced expression of CD53, a coprecipitating molecule for GGT. We conclude that deranged cellular bioenergetics and defective redox capacity in T and PMN are responsible for cellular immune dysfunction and are related to increased oxidative stress in active SLE patients.

  15. The zebrafish miR-462/miR-731 cluster is induced under hypoxic stress via hypoxia-inducible factor 1α and functions in cellular adaptations.

    Science.gov (United States)

    Huang, Chun-Xiao; Chen, Nan; Wu, Xin-Jie; Huang, Cui-Hong; He, Yan; Tang, Rong; Wang, Wei-Min; Wang, Huan-Ling

    2015-12-01

    Hypoxia, a unique and essential environmental stress, evokes highly coordinated cellular responses, and hypoxia-inducible factor (HIF) 1 in the hypoxia signaling pathway, an evolutionarily conserved cellular signaling pathway, acts as a master regulator of the transcriptional response to hypoxic stress. MicroRNAs (miRNAs), a major class of posttranscriptional gene expression regulators, also play pivotal roles in orchestrating hypoxia-mediated cellular adaptations. Here, global miRNA expression profiling and quantitative real-time PCR indicated that the up-regulation of the miR-462/miR-731 cluster in zebrafish larvae is induced by hypoxia. It was further validated that miR-462 and miR-731 are up-regulated in a Hif-1α-mediated manner under hypoxia and specifically target ddx5 and ppm1da, respectively. Overexpression of miR-462 and miR-731 represses cell proliferation through blocking cell cycle progress of DNA replication, and induces apoptosis. In situ detection revealed that the miR-462/miR-731 cluster is highly expressed in a consistent and ubiquitous manner throughout the early developmental stages. Additionally, the transcripts become restricted to the notochord, pharyngeal arch, liver, and gut regions from postfertilization d 3 to 5. These data highlight a previously unidentified role of the miR-462/miR-731 cluster as a crucial signaling mediator for hypoxia-mediated cellular adaptations and provide some insights into the potential function of the cluster during embryonic development. © FASEB.

  16. Self-cytoprotection against stress: feedback regulation of heme- dependent metabolism

    OpenAIRE

    Schwartsburd, P.M.

    2001-01-01

    This minireview provides insight into feedback regulation of heme-dependent metabolism as a defensive cellular response against stress. Interactions among heme-, iron-, porphyrin-, and CO/NO-dependent metabolic pathways during the stress-induced response are emphasized in the context of feedback regulation. The hypothetical model of the latter interactions is presented as tightly controlled feedback cycles.

  17. Activation of antioxidant defenses in whole saliva by psychosocial stress is more manifested in young women than in young men.

    Directory of Open Access Journals (Sweden)

    Viktoriia Tsuber

    Full Text Available Psychosocial stress has been long known to have deleterious effects on health. Nevertheless, an exposure to moderate stressors enhances resilience and promotes health benefits. Male and female organisms differ in many aspects of health and disease. The aim of this study was to investigate antioxidant activity and oxidative damage in saliva in a psychosocial stress paradigm in men and women. Here, we show that an acute stressor of moderate strength augments antioxidant activity and decreases oxidative damage in whole saliva of young people. An examination stress caused a significant increase of catalase activity, accompanied by a decrease of levels of oxidized proteins. Levels of thiobarbituric acid-reacting substances did not increase at stress, indicating that lipid peroxidation was not activated. The stress-induced alterations were more manifested in young women compared to young men. Thus, antioxidant protective mechanisms are more activated by a moderate stressor in young women than in young men.

  18. Activation of antioxidant defenses in whole saliva by psychosocial stress is more manifested in young women than in young men.

    Science.gov (United States)

    Tsuber, Viktoriia; Kadamov, Yunus; Tarasenko, Lydia

    2014-01-01

    Psychosocial stress has been long known to have deleterious effects on health. Nevertheless, an exposure to moderate stressors enhances resilience and promotes health benefits. Male and female organisms differ in many aspects of health and disease. The aim of this study was to investigate antioxidant activity and oxidative damage in saliva in a psychosocial stress paradigm in men and women. Here, we show that an acute stressor of moderate strength augments antioxidant activity and decreases oxidative damage in whole saliva of young people. An examination stress caused a significant increase of catalase activity, accompanied by a decrease of levels of oxidized proteins. Levels of thiobarbituric acid-reacting substances did not increase at stress, indicating that lipid peroxidation was not activated. The stress-induced alterations were more manifested in young women compared to young men. Thus, antioxidant protective mechanisms are more activated by a moderate stressor in young women than in young men.

  19. Cellular mechanisms contributing to multiple stress tolerance in Saccharomyces cerevisiae strains with potential use in high-temperature ethanol fermentation.

    Science.gov (United States)

    Kitichantaropas, Yasin; Boonchird, Chuenchit; Sugiyama, Minetaka; Kaneko, Yoshinobu; Harashima, Satoshi; Auesukaree, Choowong

    2016-12-01

    High-temperature ethanol fermentation has several benefits including a reduction in cooling cost, minimizing risk of bacterial contamination, and enabling simultaneous saccharification and fermentation. To achieve the efficient ethanol fermentation at high temperature, yeast strain that tolerates to not only high temperature but also the other stresses present during fermentation, e.g., ethanol, osmotic, and oxidative stresses, is indispensable. The C3253, C3751, and C4377 Saccharomyces cerevisiae strains, which have been previously isolated as thermotolerant yeasts, were found to be multiple stress-tolerant. In these strains, continuous expression of heat shock protein genes and intracellular trehalose accumulation were induced in response to stresses causing protein denaturation. Compared to the control strains, these multiple stress-tolerant strains displayed low intracellular reactive oxygen species levels and effective cell wall remodeling upon exposures to almost all stresses tested. In response to simultaneous multi-stress mimicking fermentation stress, cell wall remodeling and redox homeostasis seem to be the primary mechanisms required for protection against cell damage. Moreover, these strains showed better performances of ethanol production than the control strains at both optimal and high temperatures, suggesting their potential use in high-temperature ethanol fermentation.

  20. The zebrafish miR-125c is induced under hypoxic stress via hypoxia-inducible factor 1α and functions in cellular adaptations and embryogenesis.

    Science.gov (United States)

    He, Yan; Huang, Chun-Xiao; Chen, Nan; Wu, Meng; Huang, Yan; Liu, Hong; Tang, Rong; Wang, Wei-Min; Wang, Huan-Ling

    2017-09-26

    Hypoxia is a unique environmental stress. Hypoxia inducible factor-lα (HIF-lα) is a major transcriptional regulator of cellular adaptations to hypoxic stress. MicroRNAs (miRNAs) as posttranscriptional gene expression regulators occupy a crucial role in cell survival under low-oxygen environment. Previous evidences suggested that miR-125c is involved in hypoxia adaptation, but its precise biological roles and the regulatory mechanism underlying hypoxic responses remain unknown. The present study showed that zebrafish miR-125c is upregulated by hypoxia in a Hif-lα-mediated manner in vitro and in vivo . Dual-luciferase assay revealed that cdc25a is a novel target of miR-125c. An inverse correlation between miR-125c and cdc25a was further confirmed in vivo , suggesting miR-125c as a crucial physiological inhibitor of cdc25a which responds to cellular hypoxia. Overexpression of miR-125c suppressed cell proliferation, led to cell cycle arrest at the G1 phase in ZF4 cells and induced apoptotic responses during embryo development. More importantly, miR-125c overexpression resulted in severe malformation and reduction of motility during zebrafish embryonic development. Taken together, we conclude that miR-125c plays a pivotal role in cellular adaptations to hypoxic stress at least in part through the Hif-1α/miR-125c/cdc25a signaling and has great impact on zebrafish early embryonic development.

  1. Effects of Marine Oils, Digested with Human Fluids, on Cellular Viability and Stress Protein Expression in Human Intestinal Caco-2 Cells.

    Science.gov (United States)

    Tullberg, Cecilia; Vegarud, Gerd; Undeland, Ingrid; Scheers, Nathalie

    2017-11-04

    In vitro digestion of marine oils has been reported to promote lipid oxidation, including the formation of reactive aldehydes (e.g., malondialdehyde (MDA) and 4-hydroxy-2-hexenal (HHE)). We aimed to investigate if human in vitro digestion of supplemental levels of oils from algae, cod liver, and krill, in addition to pure MDA and HHE, affect intestinal Caco-2 cell survival and oxidative stress. Cell viability was not significantly affected by the digests of marine oils or by pure MDA and HHE (0-90 μM). Cellular levels of HSP-70, a chaperone involved in the prevention of stress-induced protein unfolding was significantly decreased (14%, 28%, and 14% of control for algae, cod and krill oil, respectively; p ≤ 0.05). The oxidoreductase thioredoxin-1 (Trx-1) involved in reducing oxidative stress was also lower after incubation with the digested oils (26%, 53%, and 22% of control for algae, cod, and krill oil, respectively; p ≤ 0.001). The aldehydes MDA and HHE did not affect HSP-70 or Trx-1 at low levels (8.3 and 1.4 μM, respectively), whilst a mixture of MDA and HHE lowered Trx-1 at high levels (45 μM), indicating less exposure to oxidative stress. We conclude that human digests of the investigated marine oils and their content of MDA and HHE did not cause a stress response in human intestinal Caco-2 cells.

  2. Effects of Marine Oils, Digested with Human Fluids, on Cellular Viability and Stress Protein Expression in Human Intestinal Caco-2 Cells

    Directory of Open Access Journals (Sweden)

    Cecilia Tullberg

    2017-11-01

    Full Text Available In vitro digestion of marine oils has been reported to promote lipid oxidation, including the formation of reactive aldehydes (e.g., malondialdehyde (MDA and 4-hydroxy-2-hexenal (HHE. We aimed to investigate if human in vitro digestion of supplemental levels of oils from algae, cod liver, and krill, in addition to pure MDA and HHE, affect intestinal Caco-2 cell survival and oxidative stress. Cell viability was not significantly affected by the digests of marine oils or by pure MDA and HHE (0–90 μM. Cellular levels of HSP-70, a chaperone involved in the prevention of stress-induced protein unfolding was significantly decreased (14%, 28%, and 14% of control for algae, cod and krill oil, respectively; p ≤ 0.05. The oxidoreductase thioredoxin-1 (Trx-1 involved in reducing oxidative stress was also lower after incubation with the digested oils (26%, 53%, and 22% of control for algae, cod, and krill oil, respectively; p ≤ 0.001. The aldehydes MDA and HHE did not affect HSP-70 or Trx-1 at low levels (8.3 and 1.4 μM, respectively, whilst a mixture of MDA and HHE lowered Trx-1 at high levels (45 μM, indicating less exposure to oxidative stress. We conclude that human digests of the investigated marine oils and their content of MDA and HHE did not cause a stress response in human intestinal Caco-2 cells.

  3. A cellular stress response (CSR) that interacts with NADPH-P450 reductase (NPR) is a new regulator of hypoxic response.

    Science.gov (United States)

    Oguro, Ami; Koyama, Chika; Xu, Jing; Imaoka, Susumu

    2014-02-28

    NADPH-P450 reductase (NPR) was previously found to contribute to the hypoxic response of cells, but the mechanism was not clarified. In this study, we identified a cellular stress response (CSR) as a new factor interacting with NPR by a yeast two-hybrid system. Overexpression of CSR enhanced the induction of erythropoietin and hypoxia response element (HRE) activity under hypoxia in human hepatocarcinoma cell lines (Hep3B), while knockdown of CSR suppressed them. This new finding regarding the interaction of NPR with CSR provides insight into the function of NPR in hypoxic response. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Protein Turnover and Cellular Stress in Mildly and Severely Affected Muscles from Patients with Limb Girdle Muscular Dystrophy Type 2I

    DEFF Research Database (Denmark)

    Hauerslev, Simon; Sveen, Marie-Louise; Vissing, John

    2013-01-01

    by using the developmental markers embryonic myosin heavy chain (eMHC) and neural cell adhesion molecule (NCAM) and also assessing satellite cell activation status by myogenin positivity. Severe muscle histopathology was occasionally observed in the proximal muscles of patients with LGMD2I whereas distal...... muscles were always relatively spared. No difference was found in the regeneration markers internally nucleated fibers, actively regenerating fibers or activation status of satellite cells between proximal and distal muscles. Protein turnover, both synthesis and breakdown, as well as cellular stress were...

  5. Stress biology and aging mechanisms: toward understanding the deep connection between adaptation to stress and longevity.

    Science.gov (United States)

    Epel, Elissa S; Lithgow, Gordon J

    2014-06-01

    The rate of biological aging is modulated in part by genes interacting with stressor exposures. Basic research has shown that exposure to short-term stress can strengthen cellular responses to stress ("hormetic stress"). Hormetic stress promotes longevity in part through enhanced activity of molecular chaperones and other defense mechanisms. In contrast, prolonged exposure to stress can overwhelm compensatory responses ("toxic stress") and shorten lifespan. One key question is whether the stressors that are well understood in basic models of aging can help us understand psychological stressors and human health. The psychological stress response promotes regulatory changes important in aging (e.g., increases in stress hormones, inflammation, oxidative stress, insulin). The negative effects of severe stress are well documented in humans. Potential positive effects of acute stress (stress resistance) are less studied, especially at the cellular level. Can stress resistance slow the rate of aging in humans, as it does in model organisms? If so, how can we promote stress resistance in humans? We urge a new research agenda embracing the continuum from cellular stress to psychological stress, using basic and human research in tandem. This will require interdisciplinary novel approaches that hold much promise for understanding and intervening in human chronic disease. © The Author 2014. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Investigating the Role of the Arabidopsis Homologue of the Human G3BP in RNA Metabolism, Cellular Stress Responses and Innate Immunity

    KAUST Repository

    Abulfaraj, Aala A.

    2018-04-01

    Mitogen-activated protein kinases (MAPKs) belong to the most conserved signaling pathways and are found in all eukaryotes, including humans where they play important roles in various diseases and cancer. Stimulation of this signal transduction pathway by microbe-associated molecular patterns (MAMP) results in a multitude of events to regulate innate immune responses in Arabidopsis thaliana stimulating large-scale changes in gene expression. Starting from a phosphoproteomic screen in Arabidopsis thaliana wild type and mpk3, mpk4 and mpk6 mutants following microbe-associated molecular pattern (MAMP) treatment, several novel chromatin-associated proteins were identified that are differentially phosphorylated by stress-induced protein kinases. Arabidopsis Ras GTPase-activating protein SH3-domain-binding protein (AtG3BP-1) is a downstream putative substrate of the MAMP-stimulated MAPK pathway that is phosphorylated by MPK3, 4 and 6 in in vitro kinase assays. AtG3BP1 belongs to a highly conserved family of RNA-binding proteins in eukaryotes that link kinase receptormediated signaling to RNA metabolism. Here, we report the characterization of the Arabidopsis homolog of human G3BP1 in plant innate immunity. AtG3BP1 negatively regulates plant immunity and defense immune responses. Atg3bp1 mutant lines show constitutive stomata closure, expression of a number of key defense marker genes, and accumulate salicylic acid but not jasmonic acid. Furthermore, Atg3bp1 plants exhibit enhanced resistance to the biotrophic pathogen Pseudomonas syringae pv. tomato. Pathogen resistance was mediated by stomatal and apoplastic immunity in Atg3bp1. More generally, our data reinforce that AtG3BP1 is a key mediator of plant defense responses and transient expression of AtG3BP1 delivered striking disease resistance in the absence of yield penalty, highlighting a potential application of this gene in crop protection.

  7. The first assessment of the stress inducible defense of Leucaena leucocephala with acaricidal potential effect against Rhipicephalus (Boophilus microplus (Acari: Ixodidae

    Directory of Open Access Journals (Sweden)

    Lêdia Feitosa Wanderley

    Full Text Available Abstract Plants respond to wounding caused by mechanical stress or herbivory by synthesizing defense proteins. There are no studies reporting the action of induced plant proteins against ticks. The aim of this study was to investigate the effect of mechanically wounded Leucaena leucocephala leaves against Rhipicephalus (Boophilus microplus. Initially, we carried out time course experiments to evaluate the impact of mechanical wounding on the protein content and the peroxidase, catalase and protease inhibitor activities in L. leucocephala. We then evaluated the acaricidal activity on R. (B. microplus from protein extract collected from L. leucocephala after mechanical wounding. L. leucocephala leaves were artificially wounded, and after 6, 12, 24 and 48h, the leaves were collected for protein extraction. Quantitative and qualitative analyses of the proteins were performed. The protein content and peroxidase and protease activities increased 12h after wounding, and the acaricidal activity of this protein extract was evaluated using engorged R. (B. microplus females. The protein extract obtained after wounding reduced egg production (8.5% compared to those without wounding. Furthermore, the extract reduced egg hatching by 47.7% and showed an overall efficacy of 56.3% at 0.1 mgP/mL of the protein. We demonstrated that L. leucocephala defensive proteins could be effective against R. (B. microplus.

  8. Activation of Antioxidant Defenses in Whole Saliva by Psychosocial Stress Is More Manifested in Young Women than in Young Men

    OpenAIRE

    Tsuber, Viktoriia; Kadamov, Yunus; Tarasenko, Lydia

    2014-01-01

    Psychosocial stress has been long known to have deleterious effects on health. Nevertheless, an exposure to moderate stressors enhances resilience and promotes health benefits. Male and female organisms differ in many aspects of health and disease. The aim of this study was to investigate antioxidant activity and oxidative damage in saliva in a psychosocial stress paradigm in men and women. Here, we show that an acute stressor of moderate strength augments antioxidant activity and decreases o...

  9. Positive tertiary appraisals and posttraumatic stress disorder in U.S. male veterans of the war in Vietnam: the roles of positive affirmation, positive reformulation, and defensive denial.

    Science.gov (United States)

    Dohrenwend, Bruce P; Neria, Yuval; Turner, J Blake; Turse, Nicholas; Marshall, Randall; Lewis-Fernandez, Roberto; Koenen, Karestan C

    2004-06-01

    A 70.9% majority of the U.S. male veterans in a nationwide sample appraised the impact of their service in Vietnam on their present lives as mainly positive. A substantial minority, 41.7%, judged the effects to be highly salient. With controls on level of exposure to war-zone stressors measured with data from military records, the valence and salience of these appraisals are investigated in relation to posttraumatic stress disorder (PTSD) and other indicators of wartime and postwar functioning. The results are consistent with the hypothesis that mainly positive tertiary appraisals are affirmations of successful wartime and postwar adaptation rather than defensive denials related to maladaptive outcomes. The possibility that mainly positive tertiary appraisals also contribute to successful postwar adaptation is discussed. (c) 2004 APA, all rights reserved

  10. Silicon improves seed germination and alleviates drought stress in lentil crops by regulating osmolytes, hydrolytic enzymes and antioxidant defense system.

    Science.gov (United States)

    Biju, Sajitha; Fuentes, Sigfredo; Gupta, Dorin

    2017-10-01

    Silicon (Si) has been widely reported to have beneficial effect on mitigating drought stress in plants. However, the effect of Si on seed germination under drought conditions is still poorly understood. This research was carried out to ascertain the role of Si to abate polyethylene glycol-6000 mediated drought stress on seed germination and seedling growth of lentil. Results showed that drought stress significantly decreased the seed germination traits and increased the concentration of osmolytes (proline, glycine betaine and soluble sugars), reactive oxygen species (hydrogen peroxide and superoxide anion) and lipid peroxides in lentil seedlings. The activities of hydrolytic enzymes and antioxidant enzymes increased significantly under osmotic stress. The application of Si significantly enhanced the plants ability to withstand drought stress conditions through increased Si content, improved antioxidants, hydrolytic enzymes activity, decreased concentration of osmolytes and reactive oxygen species. Multivariate data analysis showed statistically significant correlations among the drought-tolerance traits, whereas cluster analysis categorised the genotypes into distinct groups based on their drought-tolerance levels and improvements in expression of traits due to Si application. Thus, these results showed that Si supplementation of lentil was effective in alleviating the detrimental effects of drought stress on seed germination and increased seedling vigour. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  11. Assertion and Defense Mechanism Preference.

    Science.gov (United States)

    Massong, Stefan R.; And Others

    1982-01-01

    Investigated whether assertive and nonassertive individuals differ in defense mechanisms they most typically rely on when confronted with interpersonal stress and conflict. Results indicated assertive males and females both endorsed the most adaptive defense mechanism cluster, whereas nonassertive males and females endorsed more primitive defense…

  12. Phytohormones and induction of plant-stress tolerance and defense genes by seed and foliar inoculation with Azospirillum brasilense cells and metabolites promote maize growth.

    Science.gov (United States)

    Fukami, Josiane; Ollero, Francisco Javier; Megías, Manuel; Hungria, Mariangela

    2017-12-01

    Azospirillum spp. are plant-growth-promoting bacteria used worldwide as inoculants for a variety of crops. Among the beneficial mechanisms associated with Azospirillum inoculation, emphasis has been given to the biological nitrogen fixation process and to the synthesis of phytohormones. In Brazil, the application of inoculants containing A. brasilense strains Ab-V5 and Ab-V6 to cereals is exponentially growing and in this study we investigated the effects of maize inoculation with these two strains applied on seeds or by leaf spray at the V2.5 stage growth-a strategy to relieve incompatibility with pesticides used for seed treatment. We also investigate the effects of spraying the metabolites of these two strains at V2.5. Maize growth was promoted by the inoculation of bacteria and their metabolites. When applied via foliar spray, although A. brasilense survival on leaves was confirmed by confocal microscopy and cell recovery, few cells were detected after 24 h, indicating that the effects of bacterial leaf spray might also be related to their metabolites. The major molecules detected in the supernatants of both strains were indole-3-acetic acid, indole-3-ethanol, indole-3-lactic acid and salicylic acid. RT-PCR of genes related to oxidative stress (APX1, APX2, CAT1, SOD2, SOD4) and plant defense (pathogenesis-related PR1, prp2 and prp4) was evaluated on maize leaves and roots. Differences were observed according to the gene, plant tissue, strain and method of application, but, in general, inoculation with Azospirillum resulted in up-regulation of oxidative stress genes in leaves and down-regulation in roots; contrarily, in general, PR genes were down-regulated in leaves and up-regulated in roots. Emphasis should be given to the application of metabolites, especially of Ab-V5 + Ab-V6 that in general resulted in the highest up-regulation of oxidative-stress and PR genes both in leaves and in roots. We hypothesize that the benefits of inoculation of Azospirillum on

  13. DNA and RNA polymerase activity in a Moniliophthora perniciosa mitochondrial plasmid and self-defense against oxidative stress.

    Science.gov (United States)

    Andrade, B S; Villela-Dias, C; Gomes, D S; Micheli, F; Góes-Neto, A

    2013-06-13

    Moniliophthora perniciosa (Stahel) Aime and Phillips-Mora is a hemibiotrophic basidiomycete (Agaricales, Tricholomataceae) that causes witches' broom disease in cocoa (Theobroma cacao L.). This pathogen carries a stable integrated invertron-type linear plasmid in its mitochondrial genome that encodes viral-like DNA and RNA polymerases related to fungal senescence and longevity. After culturing the fungus and obtaining its various stages of development in triplicate, we carried out total RNA extraction and subsequent complementary DNA synthesis. To analyze DNA and RNA polymerase expression levels, we performed real-time reverse transcriptase polymerase chain reaction for various fungal phases of development. Our results showed that DNA and RNA polymerase gene expression in the primordium phase of M. perniciosa is related to a potential defense mechanism against T. cacao oxidative attack.

  14. Markers of Oxidative Stress and Antioxidant Defense in Romanian Patients with Type 2 Diabetes Mellitus and Obesity.

    Science.gov (United States)

    Picu, Ariana; Petcu, Laura; Ştefan, Simona; Mitu, Manuela; Lixandru, Daniela; Ionescu-Tîrgovişte, Constantin; Pîrcălăbioru, Grațiela Grădișteanu; Ciulu-Costinescu, Felicia; Bubulica, Maria-Viorica; Chifiriuc, Mariana Carmen

    2017-05-01

    Type 2 diabetes mellitus (T2DM) is strongly associated with obesity. The adipose tissue secretes bioactive adipokines leading to low grade inflammation, amplified by oxidative stress, which promotes the formation of advanced glycation end products and eventually leads to dyslipidemia and vascular complications. The aim of this study was to correlate anthropometric, biochemical and oxidative stress parameters in newly diagnosed (ND) T2DM patients and to investigate the role of oxidative stress in T2DM associated with obesity. A group of 115 ND- T2DM patients was compared to a group of 32 healthy subjects in terms of clinical, anthropometric, biochemical and oxidative stress parameters. ND-T2DM patients had significantly lower adiponectin, glutathione (GSH) and gluthatione peroxidase (GPx) and elevated insulin, proinsulin, HOMA-IR index, proinsulin/insulin (P/I) and proinsulin/adiponectin (P/A) ratio, fructosamine, and total oxidant status (TOS). The total body fat mass was positively correlated with total oxidant status (TOS). Positive correlations were found between TOS and glycated hemoglobin (HbA1c), and between TOS and glycaemia. Negative correlations were identified between: GPx and glycaemia, GPx and HbA1c, and also between GSH and fructosamine. The total antioxidant status was negatively correlated with the respiratory burst. The identified correlations suggest the existence of a complex interplay between diabetes, obesity and oxidative stress.

  15. Effects of dietary oxidized fish oil supplementation on oxidative stress and antioxidant defense system in juvenile rainbow trout (Oncorhynchus mykiss).

    Science.gov (United States)

    Fontagné-Dicharry, Stéphanie; Larroquet, Laurence; Dias, Karine; Cluzeaud, Marianne; Heraud, Cécile; Corlay, Dominique

    2018-03-01

    The objective of the study was to characterize the response of the antioxidant defense system against dietary prooxidant conditions in rainbow trout juveniles. Fish (initial mean weight: 62 ± 1 g) were fed three fishmeal and plant-derived protein-based diets supplemented with 15% fresh fish oil (CTL diet), 15% fresh fish oil from tuna by-products (BYP diet) or 15% autooxidized fish oil (OX diet) over a 12-week growth trial at 17.5 ± 0.5 °C. No significant differences in growth performance were recorded between dietary groups. Muscle lipid content was reduced and n-6 PUFA levels were increased in rainbow trout fed diets BYP and OX compared to CTL. After 12 weeks of feeding, the level of lipid peroxidation products in muscle was not affected whereas the 8-isoprostane content in liver was increased in fish fed diet OX as well as plasma total and oxidized glutathione contents. The hepatic and muscle contents for α-tocopherol were decreased in fish fed BYP and OX. Hepatic antioxidant enzyme activities and mRNA levels were not affected after 12 weeks of feeding, except for catalase and glutathione peroxidase 1b2 mRNA levels that were decreased in trout fed diet OX. Fish fed diet OX and BYP displayed also reduced cytosolic Nrf2 and both cytosolic and nuclear NF-κB protein levels in liver. The present work indicates that feeding rainbow trout juveniles with fresh fish oil from by-products or moderately oxidized lipid appears not to be detrimental to the growth performance of fish. The mechanisms beyond the control of the antioxidant defense system by moderately oxidized lipid require further investigations in rainbow trout juveniles. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Impact of osmotic stress on seedling growth observations, membrane characteristics and antioxidant defense system of different wheat genotypes

    Directory of Open Access Journals (Sweden)

    Bardees M. Mickky

    2017-03-01

    Full Text Available The objective of the present study was to find out a straightforward technique for screening the tolerance of ten wheat genotypes to two levels of osmotic stress at early seedling stage. Data revealed that polyethylene glycol-induced drought had general negative effect on seedling morphological characters indicated by plumule and radicle length, number of adventitious roots as well as seedling biomass and water content. Water deficit could also suppress membrane integrity by stimulating lipid peroxidation with marked increase in membrane leakage and subsequent decrease in its stability index. For all the addressed germination parameters and seedling membrane features, the impact of severe drought was more pronounced than that of moderate drought. Simultaneously, moderate stress could activate peroxidase, polyphenol oxidase and ascorbic peroxidase of the studied genotypes; but these enzymes were inhibited by severe stress. The activity of catalase, superoxide dismutase and glutathione reductase was conversely retarded by drought whether at moderate or severe level. More interestingly, a novel function “Stress Impact Index; SII” was introduced to rank the estimated morpho-physiological traits (SIItrait as well as the considered genotypes (SIIgenotype according to their sensitivity to stress. Values of SIItrait implied that germination parameters were generally affected by drought more intensively than membrane characteristics and finally came the antioxidant enzymes with the least degree of suppression when applying stress. Based on the magnitudes of SIIgenotype, Sids 13 seemed to be the most drought-tolerant wheat cultivar while Shandawel 1 could be the most sensitive one at their juvenile growth stage.

  17. H2O2 generation by BCG induces the cellular oxidative stress response required for BCG’s direct effects on urothelial carcinoma tumor biology

    Science.gov (United States)

    Shah, Gopitkumar; Zielonka, Jacek; Chen, Fanghong; Zhang, Guangjian; Cao, YanLi; Kalyanaraman, Balaraman; See, William

    2018-01-01

    INTRODUCTION Exposure of urothelial carcinoma (UC) cells to Bacille Calmette Guerin (BCG) affects cellular redox status and tumor cell biology but mechanism(s) remains unclear. This study examined free radical production by BCG, and in tumor cells in response to BCG, using global profiling of Reactive oxygen species/reactive nitrogen species (ROS/RNS). The relationship between free radical generation and downstream cellular events was evaluated. MATERIALS AND METHODS Using fluorescent probes, global profiling of ROS/RNS was carried out in Heat killed (hk) BCG, viable BCG, and in two UC cell lines post BCG exposure (253J and T24). Inhibition of BCG internalization and pharmacologic scavenging of H2O2 was studied for their effect on cellular ROS/RNS generation and various physiological end points. RESULTS Viable BCG produced H2O2 (Hydrogen peroxide) and O2− (Superoxides) but did not show NO (Nitric oxide) generation. Loss of viability decreased production of H2O2 by 50% compared to viable BCG. BCG internalization was necessary for BCG induced ROS/RNS generation in UC cells. Pharmacologic H2O2 scavenging reversed the ROS/RNS mediated signaling in UC cells. BCG dependent alterations in tumor biology including intracellular signaling, gene expression and cytotoxicity were dependent on free radical generation. CONCLUSIONS This study demonstrates the importance of free radical generation by BCG, and intracellular generation of Cellular oxidative stress (COS), on the UC cell response to BCG. Manipulation of the BCG induced COS represents a potential target for increasing BCG efficacy. PMID:24928267

  18. Mercury chloride-induced oxidative stress in human erythrocytes ...

    African Journals Online (AJOL)

    Mercury can exist in the environment as metal, as monovalent and divalent salts and as organomercurials, one of the most important of which is mercuric chloride (HgCl2). It has been shown to induce oxidative stress in erythrocytes through the generation of free radicals and alteration of the cellular antioxidant defense ...

  19. Deciphering Staphylococcus sciuri SAT-17 Mediated Anti-oxidative Defense Mechanisms and Growth Modulations in Salt Stressed Maize (Zea mays L.).

    Science.gov (United States)

    Akram, Muhammad S; Shahid, Muhammad; Tariq, Mohsin; Azeem, Muhammad; Javed, Muhammad T; Saleem, Seemab; Riaz, Saba

    2016-01-01

    Soil salinity severely affects plant nutrient use efficiency and is a worldwide constraint for sustainable crop production. Plant growth-promoting rhizobacteria, with inherent salinity tolerance, are able to enhance plant growth and productivity by inducing modulations in various metabolic pathways. In the present study, we reported the isolation and characterization of a salt-tolerant rhizobacterium from Kallar grass [Leptochloa fusca (L.) Kunth]. Sequencing of the 16S rRNA gene revealed its lineage to Staphylococcus sciuri and it was named as SAT-17. The strain exhibited substantial potential of phosphate solubilization as well as indole-3-acetic acid production (up to 2 M NaCl) and 1-aminocyclopropane-1-carboxylic acid deaminase activity (up to 1.5 M NaCl). Inoculation of a rifampicin-resistant derivative of the SAT-17 with maize, in the absence of salt stress, induced a significant increase in plant biomass together with decreased reactive oxygen species and increased activity of cellular antioxidant enzymes. The derivative strain also significantly accumulated nutrients in roots and shoots, and enhanced chlorophyll and protein contents in comparison with non-inoculated plants. Similar positive effects were observed in the presence of salt stress, although the effect was more prominent at 75 mM in comparison to higher NaCl level (150 mM). The strain survived in the rhizosphere up to 30 days at an optimal population density (ca. 1 × 10(6) CFU mL(-1)). It was concluded that S. sciuri strain SAT-17 alleviated maize plants from salt-induced cellular oxidative damage and enhanced growth. Further field experiments should be conducted, considering SAT-17 as a potential bio-fertilizer, to draw parallels between PGPR inoculation, elemental mobility patterns, crop growth and productivity in salt-stressed semi-arid and arid regions.

  20. Hypoxic Air Inhalation and Ischemia Interventions Both Elicit Preconditioning Which Attenuate Subsequent Cellular Stress In vivo Following Blood Flow Occlusion and Reperfusion

    Directory of Open Access Journals (Sweden)

    James H. Barrington

    2017-08-01

    Full Text Available Ischemic preconditioning (IPC is valid technique which elicits reductions in femoral blood flow occlusion mediated reperfusion stress (oxidative stress, Hsp gene transcripts within the systemic blood circulation and/or skeletal muscle. It is unknown whether systemic hypoxia, evoked by hypoxic preconditioning (HPC has efficacy in priming the heat shock protein (Hsp system thus reducing reperfusion stress following blood flow occlusion, in the same manner as IPC. The comparison between IPC and HPC being relevant as a preconditioning strategy prior to orthopedic surgery. In an independent group design, 18 healthy men were exposed to 40 min of (1 passive whole-body HPC (FiO2 = 0.143; no ischemia. N = 6, (2 IPC (FiO2 = 0.209; four bouts of 5 min ischemia and 5 min reperfusion. n = 6, or (3 rest (FiO2 = 0.209; no ischemia. n = 6. The interventions were administered 1 h prior to 30 min of tourniquet derived femoral blood flow occlusion and were followed by 2 h subsequent reperfusion. Systemic blood samples were taken pre- and post-intervention. Systemic blood and gastrocnemius skeletal muscle samples were obtained pre-, 15 min post- (15PoT and 120 min (120PoT post-tourniquet deflation. To determine the cellular stress response gastrocnemius and leukocyte Hsp72 mRNA and Hsp32 mRNA gene transcripts were determined by RT-qPCR. The plasma oxidative stress response (protein carbonyl, reduced glutathione/oxidized glutathione ratio was measured utilizing commercially available kits. In comparison to control, at 15PoT a significant difference in gastrocnemius Hsp72 mRNA was seen in HPC (−1.93-fold; p = 0.007 and IPC (−1.97-fold; p = 0.006. No significant differences were observed in gastrocnemius Hsp32 and Hsp72 mRNA, leukocyte Hsp72 and Hsp32 mRNA, or oxidative stress markers (p > 0.05 between HPC and IPC. HPC provided near identical amelioration of blood flow occlusion mediated gastrocnemius stress response (Hsp72 mRNA, compared to an established IPC

  1. Antimicrobial defense of the earthworm

    Czech Academy of Sciences Publication Activity Database

    Bilej, Martin; De Baetselier, P.; Beschin, A.

    2000-01-01

    Roč. 45, č. 4 (2000), s. 283-300 ISSN 0015-5632 R&D Projects: GA ČR GA310/99/1385; GA ČR GA310/00/1372 Institutional research plan: CEZ:AV0Z5020903 Keywords : cellular defense mechanisms * humoral defense mechanisms Subject RIV: EE - Microbiology, Virology Impact factor: 0.752, year: 2000

  2. Chronic unpredictable mild stress alters an anxiety-related defensive response, Fos immunoreactivity and hippocampal adult neurogenesis.

    Science.gov (United States)

    de Andrade, J S; Céspedes, I C; Abrão, R O; Dos Santos, T B; Diniz, L; Britto, L R G; Spadari-Bratfisch, R C; Ortolani, D; Melo-Thomas, L; da Silva, R C B; Viana, M B

    2013-08-01

    Previous results show that elevated T-maze (ETM) avoidance responses are facilitated by acute restraint. Escape, on the other hand, was unaltered. To examine if the magnitude of the stressor is an important factor influencing these results, we investigated the effects of unpredictable chronic mild stress (UCMS) on ETM avoidance and escape measurements. Analysis of Fos protein immunoreactivity (Fos-ir) was used to map areas activated by stress exposure in response to ETM avoidance and escape performance. Additionally, the effects of the UCMS protocol on the number of cells expressing the marker of migrating neuroblasts doublecortin (DCX) in the hippocampus were investigated. Corticosterone serum levels were also measured. Results showed that UCMS facilitates ETM avoidance, not altering escape. In unstressed animals, avoidance performance increases Fos-ir in the cingulate cortex, hippocampus (dentate gyrus) and basomedial amygdala, and escape increases Fos-ir in the dorsolateral periaqueductal gray and locus ceruleus. In stressed animals submitted to ETM avoidance, increases in Fos-ir were observed in the cingulate cortex, ventrolateral septum, hippocampus, hypothalamus, amygdala, dorsal and median raphe nuclei. In stressed animals submitted to ETM escape, increases in Fos-ir were observed in the cingulate cortex, periaqueductal gray and locus ceruleus. Also, UCMS exposure decreased the number of DCX-positive cells in the dorsal and ventral hippocampus and increased corticosterone serum levels. These data suggest that the anxiogenic effects of UCMS are related to the activation of specific neurobiological circuits that modulate anxiety and confirm that this stress protocol activates the hypothalamus-pituitary-adrenal axis and decreases hippocampal adult neurogenesis. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. UBL/BAG-domain co-chaperones cause cellular stress upon overexpression through constitutive activation of Hsf1

    DEFF Research Database (Denmark)

    Poulsen, Esben Guldahl; Kampmeyer, Caroline; Kriegenburg, Franziska

    2017-01-01

    of molecular chaperones and other stress-relieving proteins. Here, we show that the fission yeast Schizosaccharomyces pombe orthologues of human BAG-1, Bag101, and Bag102, are Hsp70 co-chaperones that associate with 26S proteasomes. Only a subgroup of Hsp70-type chaperones, including Ssa1, Ssa2, and Sks2...

  4. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    Energy Technology Data Exchange (ETDEWEB)

    Phung, Thu-Ha; Jung, Sunyo, E-mail: sjung@knu.ac.kr

    2015-04-03

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F{sub v}/F{sub m}, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H{sub 2}O{sub 2} production and greater increases in H{sub 2}O{sub 2}-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress.

  5. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen

    International Nuclear Information System (INIS)

    Phung, Thu-Ha; Jung, Sunyo

    2015-01-01

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, F v /F m , as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H 2 O 2 production and greater increases in H 2 O 2 -decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. - Highlights: • We employ two different types of photodynamic stress, white and brown necrosis. • We examine molecular mechanisms of antioxidative and detoxification systems. • ALA and OF develop differential actions of antioxidant and detoxification systems. • Coordinated mechanism of antioxidants and detoxification works against toxic ROS. • Detoxification system plays critical roles in protection against photodynamic stress

  6. Role of Trichoderma harzianum in mitigating NaCl stress in Indian mustard (Brassica juncea L through antioxidative defense system

    Directory of Open Access Journals (Sweden)

    Parvaiz eAhmad

    2015-10-01

    Full Text Available Salinity stress affected crop production of more than 20% of irrigated land globally. In the present study the effect of different concentrations of NaCl (0, 100 and 200 mM on growth, physio-biochemical attributes, antioxidant enzymes, oil content, etc in Brassica juncea and the protective role of Trichoderma harzanium (TH was investigated. Salinity stress deteriorates growth, physio-biochemical attributes, that ultimately leads to decreased biomass yield in mustard seedlings. Higher concentration of NaCl (200 mM decreased the plant height by 33.79%, root length by 29.79% and plant dry weight (DW by 34.50%. On the other hand, supplementation of TH to NaCl treated mustard seedlings showed elevation by 13.81%, 11.83% and 16.76% in shoot, root length and plant DW respectively as compared to plants treated with NaCl (200 mM alone. Oil content was drastically affected by NaCl treatment; however, TH added plants showed enhanced oil percentage from 19.35% to 23.44% in the present study. NaCl also degenerate the pigment content and the maximum drop of 52.00% was recorded in Chl. ‘a’. Enhanced pigment content was observed by the application of TH to NaCl treated plants. Proline content showed increase by NaCl stress and maximum accumulation of 59.12% was recorded at 200 mM NaCl. Further enhancement to 70.37% in proline content was recorded by supplementation of TH. NaCl stress (200 mM affirms the increase in H2O2 by 69.57% and MDA by 36.56%, but reduction in the accumulation is recorded by addition of TH to mustard seedlings. 200 mM NaCl elevated SOD, POD, APX, GR, GST, GPX, GSH and GSSG by 31.17%, 43.15%, 26.25%, 29.78%, 40.07%, 31.81%, 42.26% and 64.50% respectively. Further enhancement was observed by the application of TH to the NaCl fed seedlings. NaCl stress suppresses the uptake of important elements in both roots and shoots, however addition of TH restored the elemental uptake in the present study. Mustard seedlings treated with NaCl and TH

  7. Stress Biology and Aging Mechanisms: Toward Understanding the Deep Connection Between Adaptation to Stress and Longevity

    Science.gov (United States)

    2014-01-01

    The rate of biological aging is modulated in part by genes interacting with stressor exposures. Basic research has shown that exposure to short-term stress can strengthen cellular responses to stress (“hormetic stress”). Hormetic stress promotes longevity in part through enhanced activity of molecular chaperones and other defense mechanisms. In contrast, prolonged exposure to stress can overwhelm compensatory responses (“toxic stress”) and shorten lifespan. One key question is whether the stressors that are well understood in basic models of aging can help us understand psychological stressors and human health. The psychological stress response promotes regulatory changes important in aging (e.g., increases in stress hormones, inflammation, oxidative stress, insulin). The negative effects of severe stress are well documented in humans. Potential positive effects of acute stress (stress resistance) are less studied, especially at the cellular level. Can stress resistance slow the rate of aging in humans, as it does in model organisms? If so, how can we promote stress resistance in humans? We urge a new research agenda embracing the continuum from cellular stress to psychological stress, using basic and human research in tandem. This will require interdisciplinary novel approaches that hold much promise for understanding and intervening in human chronic disease. PMID:24833580

  8. Impact of silicon on Indian mustard (Brassica juncea L.) root traits by regulating growth parameters, cellular antioxidants and stress modulators under arsenic stress.

    Science.gov (United States)

    Pandey, Chandana; Khan, Ehasanullah; Panthri, Medha; Tripathi, Rudra Deo; Gupta, Meetu

    2016-07-01

    Arsenic (As) is an emerging pollutant causing inhibition in growth and development of plants resulting into phytotoxicity. On the other hand, silicon (Si) has been suggested as a modulator in abiotic and biotic stresses that, enhances plant's physiological adaptations in response to several stresses including heavy metal stress. In this study, we used roots of hydroponically grown 14 day old seedlings of Brassica juncea var. Varuna treated with 150 μM As, 1.5 mM Si and both in combination for 96 h duration. Application of Si modulated the effect of As by improving morphological traits of root along with the development of both primary and lateral roots. Changes observed in root traits showed positive correlation with As induced cell death, accumulation of reactive oxygen species (ROS), nitric oxide (NO) and intracellular superoxide radicals (O2(-)). Addition of 1.5 mM Si during As stress increased accumulation of As in roots. Mineral nutrient analysis was done using energy-dispersive X-ray fluorescence (EDXRF) technique and positively correlated with increased cysteine, proline, MDA, H2O2 and activity of antioxidant enzymes (SOD, CAT and APX). The results obtained from the above biochemical approaches support the protective and active role of Si in the regulation of As stress through the changes in root developmental process. Copyright © 2016 Elsevier Masson SAS. All rights reserved.

  9. Differential antioxidant defense and detoxification mechanisms in photodynamically stressed rice plants treated with the deregulators of porphyrin biosynthesis, 5-aminolevulinic acid and oxyfluorfen.

    Science.gov (United States)

    Phung, Thu-Ha; Jung, Sunyo

    2015-04-03

    This study focuses on differential molecular mechanisms of antioxidant and detoxification systems in rice plants under two different types of photodynamic stress imposed by porphyrin deregulators, 5-aminolevulinic acid (ALA) and oxyfluorfen (OF). The ALA-treated plants with white necrosis exhibited a greater decrease in photochemical quantum efficiency, Fv/Fm, as well as a greater increase in activity of superoxide dismutase, compared to the OF-treated plants. By contrast, the brown necrosis in OF-treated plants resulted in not only more widely dispersed H2O2 production and greater increases in H2O2-decomposing enzymes, catalase and peroxidase, but also lower ascorbate redox state. In addition, ALA- and OF-treated plants markedly up-regulated transcript levels of genes involved in detoxification processes including transport and movement, cellular homeostasis, and xenobiotic conjugation, with prominent up-regulation of serine/threonine kinase and chaperone only in ALA-treated plants. Our results demonstrate that different photodynamic stress imposed by ALA and OF developed differential actions of antioxidant enzymes and detoxification. Particularly, detoxification system may play potential roles in plant protection against photodynamic stress imposed by porphyrin deregulators, thereby contributing to alleviation of photodynamic damage. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. Trichoderma-Plant Root Colonization: Escaping Early Plant Defense Responses and Activation of the Antioxidant Machinery for Saline Stress Tolerance

    OpenAIRE

    Brotman, Yariv; Landau, Udi; Cuadros-Inostroza, ?lvaro; Takayuki, Tohge; Fernie, Alisdair R.; Chet, Ilan; Viterbo, Ada; Willmitzer, Lothar

    2013-01-01

    Trichoderma spp. are versatile opportunistic plant symbionts which can colonize the apoplast of plant roots. Microarrays analysis of Arabidopsis thaliana roots inoculated with Trichoderma asperelloides T203, coupled with qPCR analysis of 137 stress responsive genes and transcription factors, revealed wide gene transcript reprogramming, proceeded by a transient repression of the plant immune responses supposedly to allow root colonization. Enhancement in the expression of WRKY18 and WRKY40, wh...

  11. Photo-oxidative stress by ultraviolet-B radiation and antioxidative defense of eckstolonol in human keratinocytes.

    Science.gov (United States)

    Jang, Jiyi; Ye, Bo-Ram; Heo, Soo-Jin; Oh, Chulhong; Kang, Do-Hyung; Kim, Ji Hyung; Affan, Abu; Yoon, Kon-Tak; Choi, Young-Ung; Park, Se Chang; Han, Seunghee; Qian, Zhong-Ji; Jung, Won-Kyo; Choi, Il-Whan

    2012-11-01

    Ultraviolet-B (UV-B) irradiation has been known to generate oxidative stress by increasing reactive oxygen species (ROS) in skin cells. Several naturally occurring antioxidant compounds isolated from marine algae are believed to protect against ROS. In this study, we assessed the antioxidative effect of eckstolonol isolated from Ecklonia cava against UV-B-induced ROS in human keratinocytes (HaCaTs). We investigated the effects of photo-oxidative stress by UV-B (50 mJ/cm(2)) and the antioxidative effects of eckstolonol using fluorometry, flow cytometry, microscopy, and cell viability and comet assays. UV-B irradiation decreased cell viability, which was restored in a dose-dependent manner with eckstolonol treatment (0, 5, 50, 100, and 200 μM). Moreover, eckstolonol reduced UV-B-induced ROS, lipid peroxidation, damaged DNA levels, and cell death. These antioxidative effects seem to be due to the enzymatic activities of catalase (CAT) and superoxide dismutase (SOD). Collectively, these results indicate that eckstolonol is capable of protecting keratinocytes from photo-oxidative stress. Copyright © 2012 Elsevier B.V. All rights reserved.

  12. CodY Regulates Thiol Peroxidase Expression as Part of the Pneumococcal Defense Mechanism against H2O2 Stress.

    Science.gov (United States)

    Hajaj, Barak; Yesilkaya, Hasan; Shafeeq, Sulman; Zhi, Xiangyun; Benisty, Rachel; Tchalah, Shiran; Kuipers, Oscar P; Porat, Nurith

    2017-01-01

    Streptococcus pneumoniae is a facultative anaerobic pathogen. Although it maintains fermentative metabolism, during aerobic growth pneumococci produce high levels of H 2 O 2 , which can have adverse effects on cell viability and DNA, and influence pneumococcal interaction with its host. The pneumococcus is unusual in its dealing with toxic reactive oxygen species (ROS) in that it neither has catalase nor the global regulators of peroxide stress resistance. Previously, we identified pneumococcal thiol peroxidase (TpxD) as the key enzyme for enzymatic removal of H 2 O 2 , and showed that TpxD synthesis is up-regulated upon exposure to H 2 O 2 . This study aimed to reveal the mechanism controlling TpxD expression under H 2 O 2 stress. We hypothesize that H 2 O 2 activates a transcription factor which in turn up-regulates tpxD expression. Microarray analysis revealed a pneumococcal global transcriptional response to H 2 O 2 . Mutation of tpxD abolished H 2 O 2 -mediated response to high H 2 O 2 levels, signifying the need for an active TpxD under oxidative stress conditions. Bioinformatic tools, applied to search for a transcription factor modulating tpxD expression, pointed toward CodY as a potential candidate. Indeed, a putative 15-bp consensus CodY binding site was found in the proximal region of tpxD- coding sequence. Binding of CodY to this site was confirmed by EMSA, and genetic engineering techniques demonstrated that this site is essential for TpxD up-regulation under H 2 O 2 stress. Furthermore, tpxD expression was reduced in a Δ codY mutant. These data indicate that CodY is an activator of tpxD expression, triggering its up-regulation under H 2 O 2 stress. In addition we show that H 2 O 2 specifically oxidizes the 2 CodY cysteines. This oxidation may trigger a conformational change in CodY, resulting in enhanced binding to DNA. A schematic model illustrating the contribution of TpxD and CodY to pneumococcal global transcriptional response to H 2 O 2 is

  13. CodY Regulates Thiol Peroxidase Expression as Part of the Pneumococcal Defense Mechanism against H2O2 Stress

    Directory of Open Access Journals (Sweden)

    Barak Hajaj

    2017-05-01

    Full Text Available Streptococcus pneumoniae is a facultative anaerobic pathogen. Although it maintains fermentative metabolism, during aerobic growth pneumococci produce high levels of H2O2, which can have adverse effects on cell viability and DNA, and influence pneumococcal interaction with its host. The pneumococcus is unusual in its dealing with toxic reactive oxygen species (ROS in that it neither has catalase nor the global regulators of peroxide stress resistance. Previously, we identified pneumococcal thiol peroxidase (TpxD as the key enzyme for enzymatic removal of H2O2, and showed that TpxD synthesis is up-regulated upon exposure to H2O2. This study aimed to reveal the mechanism controlling TpxD expression under H2O2 stress. We hypothesize that H2O2 activates a transcription factor which in turn up-regulates tpxD expression. Microarray analysis revealed a pneumococcal global transcriptional response to H2O2. Mutation of tpxD abolished H2O2-mediated response to high H2O2 levels, signifying the need for an active TpxD under oxidative stress conditions. Bioinformatic tools, applied to search for a transcription factor modulating tpxD expression, pointed toward CodY as a potential candidate. Indeed, a putative 15-bp consensus CodY binding site was found in the proximal region of tpxD-coding sequence. Binding of CodY to this site was confirmed by EMSA, and genetic engineering techniques demonstrated that this site is essential for TpxD up-regulation under H2O2 stress. Furthermore, tpxD expression was reduced in a ΔcodY mutant. These data indicate that CodY is an activator of tpxD expression, triggering its up-regulation under H2O2 stress. In addition we show that H2O2 specifically oxidizes the 2 CodY cysteines. This oxidation may trigger a conformational change in CodY, resulting in enhanced binding to DNA. A schematic model illustrating the contribution of TpxD and CodY to pneumococcal global transcriptional response to H2O2 is proposed.

  14. The sulfated laminarin triggers a stress transcriptome before priming the SA- and ROS-dependent defenses during grapevine's induced resistance against Plasmopara viticola.

    Directory of Open Access Journals (Sweden)

    Adrien Gauthier

    Full Text Available Grapevine (Vitis vinifera is susceptible to many pathogens which cause significant losses to viticulture worldwide. Chemical control is available, but agro-ecological concerns have raised interest in alternative methods, especially in triggering plant immunity by elicitor treatments. The β-glucan laminarin (Lam and its sulfated derivative (PS3 have been previously demonstrated to induce resistance in grapevine against downy mildew (Plasmopara viticola. However, if Lam elicits classical grapevine defenses such as oxidative burst, pathogenesis-related (PR-proteins and phytoalexin production, PS3 triggered grapevine resistance via a poorly understood priming phenomenon. The aim of this study was to identify the molecular mechanisms of the PS3-induced resistance. For this purpose we studied i the signaling events and transcriptome reprogramming triggered by PS3 treatment on uninfected grapevine, ii grapevine immune responses primed by PS3 during P. viticola infection. Our results showed that i PS3 was unable to elicit reactive oxygen species (ROS production, cytosolic Ca(2+ concentration variations, mitogen-activated protein kinase (MAPK activation but triggered a long lasting plasma membrane depolarization in grapevine cells, ii PS3 and Lam shared a common stress-responsive transcriptome profile that partly overlapped the salicylate- (SA and jasmonate-(JA-dependent ones. After P. viticola inoculation, PS3 specifically primed the SA- and ROS-dependent defense pathways leading to grapevine induced resistance against this biotroph. Interestingly pharmacological approaches suggested that the plasma membrane depolarization and the downstream ROS production are key events of the PS3-induced resistance.

  15. Oxidative stress, mitochondrial abnormalities and antioxidant defense in Ataxia-telangiectasia, Bloom syndrome and Nijmegen breakage syndrome

    Directory of Open Access Journals (Sweden)

    Mateusz Maciejczyk

    2017-04-01

    Full Text Available Rare pleiotropic genetic disorders, Ataxia-telangiectasia (A-T, Bloom syndrome (BS and Nijmegen breakage syndrome (NBS are characterised by immunodeficiency, extreme radiosensitivity, higher cancer susceptibility, premature aging, neurodegeneration and insulin resistance. Some of these functional abnormalities can be explained by aberrant DNA damage response and chromosomal instability. It has been suggested that one possible common denominator of these conditions could be chronic oxidative stress caused by endogenous ROS overproduction and impairment of mitochondrial homeostasis. Recent studies indicate new, alternative sources of oxidative stress in A-T, BS and NBS cells, including NADPH oxidase 4 (NOX4, oxidised low-density lipoprotein (ox-LDL or Poly (ADP-ribose polymerases (PARP. Mitochondrial abnormalities such as changes in the ultrastructure and function of mitochondria, excess mROS production as well as mitochondrial damage have also been reported in A-T, BS and NBS cells. A-T, BS and NBS cells are inextricably linked to high levels of reactive oxygen species (ROS, and thereby, chronic oxidative stress may be a major phenotypic hallmark in these diseases. Due to the presence of mitochondrial disturbances, A-T, BS and NBS may be considered mitochondrial diseases. Excess activity of antioxidant enzymes and an insufficient amount of low molecular weight antioxidants indicate new pharmacological strategies for patients suffering from the aforementioned diseases. However, at the current stage of research we are unable to ascertain if antioxidants and free radical scavengers can improve the condition or prolong the survival time of A-T, BS and NBS patients. Therefore, it is necessary to conduct experimental studies in a human model.

  16. Adaptation Mechanisms in the Evolution of Moss Defenses to Microbes

    Science.gov (United States)

    Ponce de León, Inés; Montesano, Marcos

    2017-01-01

    Bryophytes, including mosses, liverworts and hornworts are early land plants that have evolved key adaptation mechanisms to cope with abiotic stresses and microorganisms. Microbial symbioses facilitated plant colonization of land by enhancing nutrient uptake leading to improved plant growth and fitness. In addition, early land plants acquired novel defense mechanisms to protect plant tissues from pre-existing microbial pathogens. Due to its evolutionary stage linking unicellular green algae to vascular plants, the non-vascular moss Physcomitrella patens is an interesting organism to explore the adaptation mechanisms developed in the evolution of plant defenses to microbes. Cellular and biochemical approaches, gene expression profiles, and functional analysis of genes by targeted gene disruption have revealed that several defense mechanisms against microbial pathogens are conserved between mosses and flowering plants. P. patens perceives pathogen associated molecular patterns by plasma membrane receptor(s) and transduces the signal through a MAP kinase (MAPK) cascade leading to the activation of cell wall associated defenses and expression of genes that encode proteins with different roles in plant resistance. After pathogen assault, P. patens also activates the production of ROS, induces a HR-like reaction and increases levels of some hormones. Furthermore, alternative metabolic pathways are present in P. patens leading to the production of a distinct metabolic scenario than flowering plants that could contribute to defense. P. patens has acquired genes by horizontal transfer from prokaryotes and fungi, and some of them could represent adaptive benefits for resistance to biotic stress. In this review, the current knowledge related to the evolution of plant defense responses against pathogens will be discussed, focusing on the latest advances made in the model plant P. patens. PMID:28360923

  17. Adaptation Mechanisms in the Evolution of Moss Defenses to Microbes.

    Science.gov (United States)

    Ponce de León, Inés; Montesano, Marcos

    2017-01-01

    Bryophytes, including mosses, liverworts and hornworts are early land plants that have evolved key adaptation mechanisms to cope with abiotic stresses and microorganisms. Microbial symbioses facilitated plant colonization of land by enhancing nutrient uptake leading to improved plant growth and fitness. In addition, early land plants acquired novel defense mechanisms to protect plant tissues from pre-existing microbial pathogens. Due to its evolutionary stage linking unicellular green algae to vascular plants, the non-vascular moss Physcomitrella patens is an interesting organism to explore the adaptation mechanisms developed in the evolution of plant defenses to microbes. Cellular and biochemical approaches, gene expression profiles, and functional analysis of genes by targeted gene disruption have revealed that several defense mechanisms against microbial pathogens are conserved between mosses and flowering plants. P. patens perceives pathogen associated molecular patterns by plasma membrane receptor(s) and transduces the signal through a MAP kinase (MAPK) cascade leading to the activation of cell wall associated defenses and expression of genes that encode proteins with different roles in plant resistance. After pathogen assault, P. patens also activates the production of ROS, induces a HR-like reaction and increases levels of some hormones. Furthermore, alternative metabolic pathways are present in P. patens leading to the production of a distinct metabolic scenario than flowering plants that could contribute to defense. P. patens has acquired genes by horizontal transfer from prokaryotes and fungi, and some of them could represent adaptive benefits for resistance to biotic stress. In this review, the current knowledge related to the evolution of plant defense responses against pathogens will be discussed, focusing on the latest advances made in the model plant P. patens .

  18. Cultivar-specific high temperature stress responses in bread wheat (Triticum aestivum L.) associated with physicochemical traits and defense pathways.

    Science.gov (United States)

    Mishra, Divya; Shekhar, Shubhendu; Agrawal, Lalit; Chakraborty, Subhra; Chakraborty, Niranjan

    2017-04-15

    The increasing global temperature by 1°C is estimated to reduce the harvest index in a crop by 6%, and this would certainly have negative impact on overall plant metabolism. Wheat is one of the most important crops with global annual production of over 600million tonnes. We investigated an array of physicochemical and molecular indexes to unravel differential response of nine commercial wheat cultivars to high temperature stress (HTS). The reduced rate in relative water content, higher membrane stability, slow chlorophyll degradation and increased accumulation of proline and secondary metabolites ingrained higher thermotolerance in cv. Unnat Halna, among others. The altered expression of several stress-responsive genes, particularly the genes associated with photosynthesis, heat shock proteins and antioxidants impinge on the complexity of HTS-induced responses over different genetic backgrounds and connectivity of adaptive mechanisms. This may facilitate the targeted manipulation of metabolic routes in crops for agricultural and industrial exploitation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. TGF- β /NF1/Smad4-mediated suppression of ANT2 contributes to oxidative stress in cellular senescence

    Czech Academy of Sciences Publication Activity Database

    Kretová, M.; Sabová, L.; Hodný, Zdeněk; Bartek, Jiří; Kollárovič, G.; Nelson, B. D.; Hubáčková, Soňa; Luciaková, K.

    2014-01-01

    Roč. 26, č. 12 (2014), s. 2903-2911 ISSN 0898-6568 R&D Projects: GA ČR GA13-17658S; GA ČR GA13-17555S Grant - others:Slovak Grant Agency VEGA(SK) [2/0107/11; Academy of Sciences of the Czech Republic(CZ) L200521301 Institutional support: RVO:68378050 Keywords : Smad * Nuclear factor 1 * Senescence * Adenine nucleotide translocase-2 * Transforming growth factor- β * Oxidative stress Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.315, year: 2014

  20. TGF-β/NF1/Smad4-mediated suppression of ANT2 contributes to oxidative stress in cellular senescence

    Czech Academy of Sciences Publication Activity Database

    Kretová, M.; Šabová, L.; Hodný, Zdeněk; Bartek, Jiří; Kollárovič, G.; Nelson, B. D.; Hubáčková, Soňa; Luciaková, K.

    2014-01-01

    Roč. 26, č. 12 (2014), s. 2903-2911 ISSN 0898-6568 R&D Projects: GA ČR GA13-17658S; GA ČR GA13-17555S Grant - others:Slovak Grant Agency(SK) VEGA [2/0107/11] Institutional support: RVO:68378050 Keywords : Smad * Nuclear factor 1 * Senescence * Adenine nucleotide translocase-2 * Transforming growth factor-β * Oxidative stress Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.315, year: 2014

  1. Study of the impact of radionuclides discharges from nuclear industry in the northern Cotentin area on the oyster Crassostrea gigas: expression of cellular stress molecular markers

    International Nuclear Information System (INIS)

    Farcy, E.

    2006-11-01

    This thesis explores the potential radiological impact of radionuclide discharges from the nuclear industry on the Pacific oyster, Crassostrea gigas. One of the major goals of this research was to identify markers that could be used to monitor the effects of low-level chronic irradiation. We decided to focalize on the expression of stress-induced genes involved in the regulation of cellular stress, focusing on transcription. First, homology cloning was used to identify four new cDNAs encoding stress markers. Then data collected at various sites enabled to evidence that mRNA levels for each of the genes of interest naturally vary to a significant degree, based on individual differences and seasonal factors. Comparing oysters from exposed sites with those from a reference site located on the Atlantic coast did not suggest any relationship between mRNA levels changes and the oysters exposure to liquid radioactive waste from the A.R.E.V.A. reprocessing plant. In the environment, we found that those radionuclide releases resulted in a very small increase in radioactivity in oysters, especially compared with their natural radioactivity. In the laboratory, by exposing the oysters to higher radionuclide concentrations than those found in the environment, we were able to identify two genes as potential candidates for studying the effects of chronic exposure to low doses of ionizing radiations in the oyster: genes encoding MT and MXR. We confirmed that transcriptional induction of these two genes occurs in response to high doses of acute irradiation. Finally, the comparison between environmental results and the laboratory results underlined the complementarity of these two approaches. In particular, it revealed that seasonal variations in mRNA levels probably have a significant effect on the stress response. (author)

  2. Effect of electromagnetic fields at 2.45 GHz on the levels of cellular stress proteins HSP-90 and 70 in the rat thyroid; Efecto de los campos electromagneticos a 2,45 GHz sobre los niveles de proteinas de estres celular HSP-90 y 70 en el toroides de rata

    Energy Technology Data Exchange (ETDEWEB)

    Misa Agustino, M. J.; Alvarez-Folgueras, M.; Jorge-Mora, M. T.; Jorge Barreiro, F. J.; Ares Pena, F. J.; Lleiro, J.; Lopez Martin, M. E.

    2011-07-01

    In this study we analyzed the cellular stress levels achieved by heat shock proteins (HSP) 90 and 70 in rat thyroid tissue after exposure to radio waves in TWG experimental system. Parallel measurements of body stress in animals by rectal temperature probes allow us to determine whether there is any interaction between temperature increases and cellular stress.

  3. Neuroprotectin D1 upregulates Iduna expression and provides protection in cellular uncompensated oxidative stress and in experimental ischemic stroke.

    Science.gov (United States)

    Belayev, Ludmila; Mukherjee, Pranab K; Balaszczuk, Veronica; Calandria, Jorgelina M; Obenaus, Andre; Khoutorova, Larissa; Hong, Sung-Ha; Bazan, Nicolas G

    2017-06-01

    Ring finger protein 146 (Iduna) facilitates DNA repair and protects against cell death induced by NMDA receptor-mediated glutamate excitotoxicity or by cerebral ischemia. Neuroprotectin D1 (NPD1), a docosahexaenoic acid (DHA)-derived lipid mediator, promotes cell survival under uncompensated oxidative stress (UOS). Our data demonstrate that NPD1 potently upregulates Iduna expression and provides remarkable cell protection against UOS. Iduna, which was increased by the lipid mediator, requires the presence of the poly(ADP-ribose) (PAR) sites. Moreover, astrocytes and neurons in the penumbra display an enhanced abundance of Iduna, followed by remarkable neurological protection when DHA, a precursor of NPD1, is systemically administered 1 h after 2 h of ischemic stroke. These findings provide a conceptual advancement for survival of neural cells undergoing challenges to homeostasis because a lipid mediator, made 'on demand,' modulates the abundance of a critically important protein for cell survival.

  4. Carotenoids, inflammation, and oxidative stress--implications of cellular signaling pathways and relation to chronic disease prevention.

    Science.gov (United States)

    Kaulmann, Anouk; Bohn, Torsten

    2014-11-01

    Several epidemiologic studies have shown that diets rich in fruits and vegetables reduce the risk of developing several chronic diseases, such as type 2 diabetes, atherosclerosis, and cancer. These diseases are linked with systemic, low-grade chronic inflammation. Although controversy persists on the bioactive ingredients, several secondary plant metabolites have been associated with these beneficial health effects. Carotenoids represent the most abundant lipid-soluble phytochemicals, and in vitro and in vivo studies have suggested that they have antioxidant, antiapoptotic, and anti-inflammatory properties. Recently, many of these properties have been linked to the effect of carotenoids on intracellular signaling cascades, thereby influencing gene expression and protein translation. By blocking the translocation of nuclear factor κB to the nucleus, carotenoids are able to interact with the nuclear factor κB pathway and thus inhibit the downstream production of inflammatory cytokines, such as interleukin-8 or prostaglandin E2. Carotenoids can also block oxidative stress by interacting with the nuclear factor erythroid 2-related factor 2 pathway, enhancing its translocation into the nucleus, and activating phase II enzymes and antioxidants, such as glutathione-S-transferases. In this review, which is organized into in vitro, animal, and human investigations, we summarized current knowledge on carotenoids and metabolites with respect to their ability to modulate inflammatory and oxidative stress pathways and discuss potential dose-health relations. Although many pathways involved in the bioactivity of carotenoids have been revealed, future research should be directed toward dose-response relations of carotenoids, their metabolites, and their effect on transcription factors and metabolism. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. APOL1 kidney disease risk variants cause cytotoxicity by depleting cellular potassium and inducing stress-activated protein kinases

    Science.gov (United States)

    Olabisi, Opeyemi A.; Zhang, Jia-Yue; VerPlank, Lynn; Zahler, Nathan; DiBartolo, Salvatore; Heneghan, John F.; Schlöndorff, Johannes S.; Suh, Jung Hee; Yan, Paul; Alper, Seth L.; Friedman, David J.; Pollak, Martin R.

    2016-01-01

    Two specific genetic variants of the apolipoprotein L1 (APOL1) gene are responsible for the high rate of kidney disease in people of recent African ancestry. Expression in cultured cells of these APOL1 risk variants, commonly referred to as G1 and G2, results in significant cytotoxicity. The underlying mechanism of this cytotoxicity is poorly understood. We hypothesized that this cytotoxicity is mediated by APOL1 risk variant-induced dysregulation of intracellular signaling relevant for cell survival. To test this hypothesis, we conditionally expressed WT human APOL1 (G0), the APOL1 G1 variant, or the APOL1 G2 variant in human embryonic kidney cells (T-REx-293) using a tetracycline-mediated (Tet-On) system. We found that expression of either G1 or G2 APOL1 variants increased apparent cell swelling and cell death compared with G0-expressing cells. These manifestations of cytotoxicity were preceded by G1 or G2 APOL1-induced net efflux of intracellular potassium as measured by X-ray fluorescence, resulting in the activation of stress-activated protein kinases (SAPKs), p38 MAPK, and JNK. Prevention of net K+ efflux inhibited activation of these SAPKs by APOL1 G1 or G2. Furthermore, inhibition of SAPK signaling and inhibition of net K+ efflux abrogated cytotoxicity associated with expression of APOL1 risk variants. These findings in cell culture raise the possibility that nephrotoxicity of APOL1 risk variants may be mediated by APOL1 risk variant-induced net loss of intracellular K+ and subsequent induction of stress-activated protein kinase pathways. PMID:26699492

  6. Oxidative Stress Biomarkers in the Freshwater Fish, Heteropneustes fossilis (Bloch) Exposed to Sodium Fluoride: Antioxidant Defense and Role of Ascorbic Acid

    Science.gov (United States)

    Yadav, Shiv Shankar; Kumar, Rajesh; Khare, Puneet; Tripathi, Madhu

    2015-01-01

    The present study highlights fluoride -induced toxicity and the protective role of ascorbic acid in the liver and ovary of freshwater fish, Heteropneustis fossilis. The fish specimens were exposed to different concentrations (35 mg F/L and 70 mg F/L) of fluoride. Parameters related to oxidative stress were studied at the end of the experiment. The biomarkers selected for the study were thiobarbituric acid reactive substances for assessing the extent of lipid peroxidation (LPO) and antioxidant defense system such as reduced glutathione (GSH), superoxide dismutase (SOD) catalase (CAT) glutathione peroxidase (GPx), and glutathione S-transferase (GST) activities. The fluoride exposure significantly elevated the level of LPO, CAT, SOD, and GST in the tissues of treated group as well as modulated the activities of GSH and level of GPx after exposure as compared to the control. A significant decrease in GPx activity was found in these tissues suggesting that fluoride exposure increases the level of free radical, as well as CAT activity. Pre- and post treatment with ascorbic acid decreased the LPO, SOD, CAT, GST level, and increased GSH, GPx levels in the liver and ovary. PMID:26862264

  7. Long-duration effect of multi-factor stresses on the cellular biochemistry, oil-yielding performance and morphology of Nannochloropsis oculata.

    Directory of Open Access Journals (Sweden)

    Likun Wei

    Full Text Available Microalga Nannochloropsis oculata is a promising alternative feedstock for biodiesel. Elevating its oil-yielding capacity is conducive to cost-saving biodiesel production. However, the regulatory processes of multi-factor collaborative stresses (MFCS on the oil-yielding performance of N. oculata are unclear. The duration effects of MFCS (high irradiation, nitrogen deficiency and elevated iron supplementation on N. oculata were investigated in an 18-d batch culture. Despite the reduction in cell division, the biomass concentration increased, resulting from the large accumulation of the carbon/energy-reservoir. However, different storage forms were found in different cellular storage compounds, and both the protein content and pigment composition swiftly and drastically changed. The analysis of four biodiesel properties using pertinent empirical equations indicated their progressive effective improvement in lipid classes and fatty acid composition. The variation curve of neutral lipid productivity was monitored with fluorescent Nile red and was closely correlated to the results from conventional methods. In addition, a series of changes in the organelles (e.g., chloroplast, lipid body and vacuole and cell shape, dependent on the stress duration, were observed by TEM and LSCM. These changes presumably played an important role in the acclimation of N. oculata to MFCS and accordingly improved its oil-yielding performance.

  8. Salt stress-induced changes in antioxidative defense system and proteome profiles of salt-tolerant and sensitive Frankia strains.

    Science.gov (United States)

    Srivastava, Amrita; Singh, Anumeha; Singh, Satya S; Mishra, Arun K

    2017-04-16

    An appreciation of comparative microbial survival is most easily done while evaluating their adaptive strategies during stress. In the present experiment, antioxidative and whole cell proteome variations based on spectrophotometric analysis and SDS-PAGE and 2-dimensional gel electrophoresis have been analysed among salt-tolerant and salt-sensitive Frankia strains. This is the first report of proteomic basis underlying salt tolerance in these newly isolated Frankia strains from Hippophae salicifolia D. Don. Salt-tolerant strain HsIi10 shows higher increment in the contents of superoxide dismutase, catalase and ascorbate peroxidase as compared to salt-sensitive strain HsIi8. Differential 2-DGE profile has revealed differential profiles for salt-tolerant and salt-sensitive strains. Proteomic confirmation of salt tolerance in the strains with inbuilt efficiency of thriving in nitrogen-deficient locales is a definite advantage for these microbes. This would be equally beneficial for improvement of soil nitrogen status. Efficient protein regulation in HsIi10 suggests further exploration for its potential use as biofertilizer in saline soils.

  9. Strong Associations Exist among Oxidative Stress and Antioxidant Biomarkers in the Circulating, Cellular and Urinary Anatomical Compartments in Guatemalan Children from the Western Highlands.

    Directory of Open Access Journals (Sweden)

    María J Soto-Méndez

    Full Text Available A series of antioxidant enzymes and non-enzymatic compounds act to protect cells from uncontrolled propagation of free radicals. It is poorly understood, though, to what extent and how their interaction is harmonized.To explore associative interactions among a battery of urinary and blood biomarkers of oxidative stress and enzymatic and non-enzymatic markers of the antioxidant defense system in children from low income households.For this cross-sectional descriptive study, urine, red cells, and plasma were sampled in 82 preschool children attending three daycare centers in Quetzaltenango Guatemala. The urinary oxidative stress biomarkers studied were F2-isoprostanes and 8-hydroxy-deoxy-guanosine. Red cell enzyme activities measured were: catalase, superoxide dismutase, glutathione peroxidase and glutathione reductase. Circulating non-enzymatic antioxidants selected were: retinol, tocopherols, β-carotene and coenzymes Q9 and Q10.In a Spearman rank-order correlation hemi-matrix, of 55 paired combinations of the 11 biomarkers, 28 (51% were significantly correlated among each other (p ≤ 0.05, with the strongest association being retinol and tocopherols (r = 0.697, p 0.5 to ≤ 0.10. F2-isoprostanes showed the greatest number of cross-associations, having significant interactions with 8 of the 10 remaining biomarkers. Goodness-of-fit modeling improved or maintained the r value for 24 of the significant interactions and for one of the 5 borderline associations. Multiple regression backward stepwise analysis indicated that plasma retinol, β-carotene and coenzyme Q10 were independent predictors of urinary F2-isoprostanes.Numerous significant associations resulted among biomarkers of oxidation and responders to oxidation. Interesting findings were the apparent patterns of harmonious interactions among the elements of the oxidation-antioxidation systems in this population.

  10. The effects of zinc nanooxide on cellular stress responses of the freshwater mussels Unio tumidus are modulated by elevated temperature and organic pollutants

    International Nuclear Information System (INIS)

    Falfushynska, Halina; Gnatyshyna, Lesya; Yurchak, Irina; Sokolova, Inna; Stoliar, Oksana

    2015-01-01

    Highlights: • Effects of nano-ZnO (n-ZnO) in combination with other stressors were studied. • At 18 °C, exposures to n-ZnO caused up-regulation of lysosomal cathepsin D. • Cellular responses to n-ZnO and Zn 2+ were distinct. • Warming to 25 °C activated caspase-3 and abolished antioxidants response to n-ZnO. • Biological effects of n-ZnO in mussels are strongly modulated by other stressors. - Abstract: Nanoparticle toxicity is a growing concern in freshwater habitats. However, understanding of the nanoparticle effects on aquatic organisms is impeded by the lack of the studies of the nanoparticles effects in the environmentally relevant context of multiple stress exposures. Zinc oxide nanoparticles (n-ZnO) are widely used metal-based nanoparticles in electronics and personal care products that accumulate in aquatic environments from multiple non-point sources. In this study, we evaluated the effects of n-ZnO in a model organism, a mussel Unio tumidus, and the potential modulation of these effects by common co-occurring environmental stressors. Male U. tumidus were exposed for 14 days to n-ZnO (3.1 μM), Zn 2+ (3.1 μM), Ca-channel blocker nifedipine (Nfd 10 μM), combinations of n-ZnO and Nfd or n-ZnO and thiocarbamate fungicide Tattoo (Ta, 91 μg L −1 ) at 18 °C, and n-ZnO at 25 °C (n-ZnO + t°). Total and metallothionein-bound Zn levels as well as levels of metallothioneins (MT), cellular stress responses and cytotoxicity biomarkers were assessed in the mussels. The key biomarkers that showed differential responses to different single and combined stressors in this study were activities of caspase-3 and lysosomal cathepsin D, as well as protein carbonyl content. At 18 °C, exposures to n-ZnO, organic pollutants and their combinations led to a prominent up-regulation of MT levels (by ∼30%) and oxidative stress response including up-regulation of superoxide dismutase activity, an increase in oxyradical production, and a 2–3-fold decrease in the

  11. The effects of zinc nanooxide on cellular stress responses of the freshwater mussels Unio tumidus are modulated by elevated temperature and organic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Falfushynska, Halina; Gnatyshyna, Lesya; Yurchak, Irina [Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, 46027, Kryvonosa Str. 2, Ternopil (Ukraine); Sokolova, Inna, E-mail: isokolov@uncc.edu [Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd., Charlotte, NC 28223 (United States); Stoliar, Oksana [Research Laboratory of Comparative Biochemistry and Molecular Biology, Ternopil National Pedagogical University, 46027, Kryvonosa Str. 2, Ternopil (Ukraine)

    2015-05-15

    Highlights: • Effects of nano-ZnO (n-ZnO) in combination with other stressors were studied. • At 18 °C, exposures to n-ZnO caused up-regulation of lysosomal cathepsin D. • Cellular responses to n-ZnO and Zn{sup 2+} were distinct. • Warming to 25 °C activated caspase-3 and abolished antioxidants response to n-ZnO. • Biological effects of n-ZnO in mussels are strongly modulated by other stressors. - Abstract: Nanoparticle toxicity is a growing concern in freshwater habitats. However, understanding of the nanoparticle effects on aquatic organisms is impeded by the lack of the studies of the nanoparticles effects in the environmentally relevant context of multiple stress exposures. Zinc oxide nanoparticles (n-ZnO) are widely used metal-based nanoparticles in electronics and personal care products that accumulate in aquatic environments from multiple non-point sources. In this study, we evaluated the effects of n-ZnO in a model organism, a mussel Unio tumidus, and the potential modulation of these effects by common co-occurring environmental stressors. Male U. tumidus were exposed for 14 days to n-ZnO (3.1 μM), Zn{sup 2+} (3.1 μM), Ca-channel blocker nifedipine (Nfd 10 μM), combinations of n-ZnO and Nfd or n-ZnO and thiocarbamate fungicide Tattoo (Ta, 91 μg L{sup −1}) at 18 °C, and n-ZnO at 25 °C (n-ZnO + t°). Total and metallothionein-bound Zn levels as well as levels of metallothioneins (MT), cellular stress responses and cytotoxicity biomarkers were assessed in the mussels. The key biomarkers that showed differential responses to different single and combined stressors in this study were activities of caspase-3 and lysosomal cathepsin D, as well as protein carbonyl content. At 18 °C, exposures to n-ZnO, organic pollutants and their combinations led to a prominent up-regulation of MT levels (by ∼30%) and oxidative stress response including up-regulation of superoxide dismutase activity, an increase in oxyradical production, and a 2–3-fold

  12. Plants versus fungi and oomycetes: pathogenesis, defense and counter-defense in the proteomics era.

    Science.gov (United States)

    El Hadrami, Abdelbasset; El-Bebany, Ahmed F; Yao, Zhen; Adam, Lorne R; El Hadrami, Ismailx; Daayf, Fouad

    2012-01-01

    Plant-fungi and plant-oomycete interactions have been studied at the proteomic level for many decades. However, it is only in the last few years, with the development of new approaches, combined with bioinformatics data mining tools, gel staining, and analytical instruments, such as 2D-PAGE/nanoflow-LC-MS/MS, that proteomic approaches thrived. They allow screening and analysis, at the sub-cellular level, of peptides and proteins resulting from plants, pathogens, and their interactions. They also highlight post-translational modifications to proteins, e.g., glycosylation, phosphorylation or cleavage. However, many challenges are encountered during in planta studies aimed at stressing details of host defenses and fungal and oomycete pathogenicity determinants during interactions. Dissecting the mechanisms of such host-pathogen systems, including pathogen counter-defenses, will ensure a step ahead towards understanding current outcomes of interactions from a co-evolutionary point of view, and eventually move a step forward in building more durable strategies for management of diseases caused by fungi and oomycetes. Unraveling intricacies of more complex proteomic interactions that involve additional microbes, i.e., PGPRs and symbiotic fungi, which strengthen plant defenses will generate valuable information on how pathosystems actually function in nature, and thereby provide clues to solving disease problems that engender major losses in crops every year.

  13. Mitigating effects of L-selenomethionine on low-dose iron ion radiation-induced changes in gene expression associated with cellular stress.

    Science.gov (United States)

    Nuth, Manunya; Kennedy, Ann R

    2013-07-01

    Ionizing radiation associated with highly energetic and charged heavy (HZE) particles poses a danger to astronauts during space travel. The aim of the present study was to evaluate the patterns of gene expression associated with cellular exposure to low-dose iron ion irradiation, in the presence and absence of L-selenomethionine (SeM). Human thyroid epithelial cells (HTori-3) were exposed to low-dose iron ion (1 GeV/n) irradiation at 10 or 20 cGy with or without SeM pretreatment. The cells were harvested 6 and 16 h post-irradiation and analyzed by the Affymetrix U133Av2 gene chip arrays. Genes exhibiting a 1.5-fold expression cut-off and 5% false discovery rate (FDR) were considered statistically significant and subsequently analyzed using the Database for Annotation, Visualization and Integrated Discovery (DAVID) for pathway analysis. Representative genes were further validated by real-time RT-PCR. Even at low doses of radiation from iron ions, global genome profiling of the irradiated cells revealed the upregulation of genes associated with the activation of stress-related signaling pathways (ubiquitin-mediated proteolysis, p53 signaling, cell cycle and apoptosis), which occurred in a dose-dependent manner. A 24-h pretreatment with SeM was shown to reduce the radiation effects by mitigating stress-related signaling pathways and downregulating certain genes associated with cell adhesion. The mechanism by which SeM prevents radiation-induced transformation in vitro may involve the suppression of the expression of genes associated with stress-related signaling and certain cell adhesion events.

  14. Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress.

    Science.gov (United States)

    Sallah-Ud-Din, Rasham; Farid, Mujahid; Saeed, Rashid; Ali, Shafaqat; Rizwan, Muhammad; Tauqeer, Hafiz Muhammad; Bukhari, Syed Asad Hussain

    2017-07-01

    Phytoextraction is a cost-effective and eco-friendly technique for the removal of pollutants, mainly heavy metal(loids) especially from polluted water and metal-contaminated soils. The phytoextraction of heavy metals is, in general, limited due to the low availability of heavy metals in the growth medium. Organic chelators can help to improve the phytoextraction by increasing metal mobility and solubility in the growth medium. The present research was carried out to examine the possibility of citric acid (CA) in improving chromium (Cr) phytoextraction by Lemna minor (duckweed). For this purpose, healthy plants were collected from nearby marsh and grown in hydroponics under controlled conditions. Initial metal contents of both marsh water and plant were measured along with physico-chemical properties of the marsh water. Different concentrations of Cr and CA were applied in the hydroponics in different combinations after defined intervals. Continuous aeration was supplied and pH maintained at 6.5 ± 0.1. Results showed that increasing concentration of Cr significantly decreased the plant biomass, photosynthetic pigments, leaf area, and antioxidant enzyme activities (like catalase, ascorbate peroxidase, superoxide dismutase, peroxidase). Furthermore, Cr stress increased the Cr concentrations, electrolyte leakage, hydrogen peroxide, and malondialdehyde contents in plants. The addition of CA alleviated the Cr-induced toxicity in plants and further enhanced the Cr uptake and its accumulation in L. minor. The addition of CA enhanced the Cr concentration in L. minor by 6.10, 26.5, 20.5, and 20.2% at 0, 10, 100, and 200 μM Cr treatments, respectively, compared to the respective Cr treatments without CA. Overall, the results of the present study showed that CA addition may enhance the Cr accumulation and tolerance in L. minor by enhancing the plant growth and activities of antioxidant enzymes.

  15. The PhyR homolog RSP_1274 of Rhodobacter sphaeroides is involved in defense of membrane stress and has a moderate effect on RpoE (RSP_1092) activity.

    Science.gov (United States)

    Li, Qingfeng; Peng, Tao; Klug, Gabriele

    2018-02-27

    A major role of the PhyR-NepR-σ(EcfG) cascade in the general stress response was demonstrated for some bacterial species and considered as conserved in Alphaproteobacteria. The σ(EcfG) factor activates its target genes in response to diverse stresses and NepR represents its anti-sigma factor. PhyR comprises a response regulator domain and a sigma factor domain and acts as anti-sigma factor antagonist. The facultative phototrophic alphaproteobacterium Rhodobacter sphaeroides harbours a PhyR homolog in the same genomic context as found in other members of this class. Our study reveals increased expression of the phyR gene in response to superoxide, singlet oxygen, and diamide and also an effect of PhyR on rpoE expression. RpoE has a central role in mounting the response to singlet oxygen in R. sphaeroides. Despite these findings a mutant lacking PhyR was not significantly impeded in resistance to oxidative stress, heat stress or osmotic stress. However a role of PhyR in membrane stress is demonstrated. These results support the view that the effect of the PhyR-NepR-σ(EcfG) cascade on diverse stress responses varies among members of the Alphaproteobacteria. In the facultative phototroph Rhodobacter sphaeroides PhyR plays no major role in the general stress or the oxidative stress response but rather has a more specialized role in defense of membrane stress.

  16. A physical/psychological and biological stress combine to enhance endoplasmic reticulum stress

    International Nuclear Information System (INIS)

    Mondal, Tapan Kumar; Emeny, Rebecca T.; Gao, Donghong; Ault, Jeffrey G.; Kasten-Jolly, Jane; Lawrence, David A.

    2015-01-01

    The generation of an immune response against infectious and other foreign agents is substantially modified by allostatic load, which is increased with chemical, physical and/or psychological stressors. The physical/psychological stress from cold-restraint (CR) inhibits host defense against Listeria monocytogenes (LM), due to early effects of the catecholamine norepinephrine (NE) from sympathetic nerves on β1-adrenoceptors (β1AR) of immune cells. Although CR activates innate immunity within 2 h, host defenses against bacterial growth are suppressed 2–3 days after infection (Cao and Lawrence 2002). CR enhances inducible nitric oxide synthase (iNOS) expression and NO production. The early innate activation leads to cellular reduction-oxidation (redox) changes of immune cells. Lymphocytes from CR-treated mice express fewer surface thiols. Splenic and hepatic immune cells also have fewer proteins with free thiols after CR and/or LM, and macrophages have less glutathione after the in vivo CR exposure or exposure to NE in vitro. The early induction of CR-induced oxidative stress elevates endoplasmic reticulum (ER) stress, which could interfere with keeping phagocytized LM within the phagosome or re-encapsuling LM by autophagy once they escape from the phagosome. ER stress-related proteins, such as glucose-regulated protein 78 (GRP78), have elevated expression with CR and LM. The results indicate that CR enhances the unfolded protein response (UPR), which interferes with host defenses against LM. Thus, it is postulated that increased stress, as exists with living conditions at low socioeconomic conditions, can lower host defenses against pathogens because of oxidative and ER stress processes. - Highlights: • Cold-restraint (physical/psychological stress) induces early oxidative stress. • The oxidative stress relates to catecholamine signaling beta-adrenoceptors. • Physical/psychological stress combines infection enhancing inflammation. • Endoplasmic reticulum

  17. Cellular automata

    CERN Document Server

    Codd, E F

    1968-01-01

    Cellular Automata presents the fundamental principles of homogeneous cellular systems. This book discusses the possibility of biochemical computers with self-reproducing capability.Organized into eight chapters, this book begins with an overview of some theorems dealing with conditions under which universal computation and construction can be exhibited in cellular spaces. This text then presents a design for a machine embedded in a cellular space or a machine that can compute all computable functions and construct a replica of itself in any accessible and sufficiently large region of t

  18. Uptake of L-cystine via an ABC transporter contributes defense of oxidative stress in the L-cystine export-dependent manner in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Iwao Ohtsu

    Full Text Available Intracellular thiols like L-cystine and L-cystine play a critical role in the regulation of cellular processes. Here we show that Escherichia coli has two L-cystine transporters, the symporter YdjN and the ATP-binding cassette importer FliY-YecSC. These proteins import L-cystine, an oxidized product of L-cystine from the periplasm to the cytoplasm. The symporter YdjN, which is expected to be a new member of the L-cystine regulon, is a low affinity L-cystine transporter (Km = 1.1 μM that is mainly involved in L-cystine uptake from outside as a nutrient. E. coli has only two L-cystine importers because ΔydjNΔyecS mutant cells are not capable of growing in the minimal medium containing L-cystine as a sole sulfur source. Another protein YecSC is the FliY-dependent L-cystine transporter that functions cooperatively with the L-cystine transporter YdeD, which exports L-cystine as reducing equivalents from the cytoplasm to the periplasm, to prevent E. coli cells from oxidative stress. The exported L-cystine can reduce the periplasmic hydrogen peroxide to water, and then generated L-cystine is imported back into the cytoplasm via the ATP-binding cassette transporter YecSC with a high affinity to L-cystine (Km = 110 nM in a manner dependent on FliY, the periplasmic L-cystine-binding protein. The double disruption of ydeD and fliY increased cellular levels of lipid peroxides. From these findings, we propose that the hydrogen peroxide-inducible L-cystine/L-cystine shuttle system plays a role of detoxification of hydrogen peroxide before lipid peroxidation occurs, and then might specific prevent damage to membrane lipids.

  19. Stomatal regulation, structural acclimation and metabolic shift towards defensive compounds reduce O3 load in birch under chronic O3 stress

    Science.gov (United States)

    Oksanen, E.; Riikonen, J.; Kontunen-Soppela, S.; Maenpaa, M.; Rousi, M.

    2009-12-01

    Northern forests are encountering new threats due to continuously increasing load of oxidative stress, e.g. due to rising tropospheric O3 levels, and simultaneous climate warming, which is more intense in northern latitudes as compared to global means. The proportion of silver birch (Betula pendula) in Finnish forests is expected to increase with climate warming. Unfortunately, we have growing evidence that the vitality and the carbon sink strength of birch trees are weakened under chronic O3 stress. In this study we investigated the effects of slightly elevated O3 concentration (1.3 x the ambient), temperature (T) and their combination on the antioxidant defense, gas exchange and leaf growth of Betula pendula saplings (clone 12) growing in open-field conditions over two growing seasons. The plants were measured for SLA (specific leaf area), total leaf area, net photosynthesis (Pn), stomatal conductance (gs), maximum rate of carboxylation (Vc,max), maximum rate of electron transport (Jmax), relative stomatal limitation to photosynthesis (ls), dark respiration (Rd), apoplastic concentrations of AA (ascorbic acid), DHA (dehydroascobate) and total ascorbate, the redox state of apoplastic ascorbate, and total antioxidant capacity. Elevated O3 enhanced the total antioxidant capacity in the apoplast in the first year of the experiment at the ambient T. However, during the second year of the experiment, the saplings responded to elevated O3 level by closing the stomata and by developing leaves with a lower leaf area per mass, rather than by accumulating ascorbate in the apoplast. O3 did not affect the total leaf area, whereas Pn was slightly and gs significantly reduced in the second year. Elevated T enhanced the total leaf area, Pn and Vc,max, redox state of ascorbate and total antioxidant capacity in the apoplast. The effects of T and O3 on total leaf area and net photosynthesis were counteractive. We were not able to detect significant differences in Rd between the

  20. Poor maternal nutrition leads to alterations in oxidative stress, antioxidant defense capacity, and markers of fibrosis in rat islets: potential underlying mechanisms for development of the diabetic phenotype in later life.

    Science.gov (United States)

    Tarry-Adkins, Jane L; Chen, Jian-Hua; Jones, Richard H; Smith, Noel H; Ozanne, Susan E

    2010-08-01

    Low birth weight is associated with glucose intolerance, insulin resistance, and type 2 diabetes (T2D) in later life. Good evidence indicates that the environment plays an important role in this relationship. However, the mechanisms underlying these relationships are defined poorly. Islets are particularly susceptible to oxidative stress, and this condition combined with fibrosis is thought to be instrumental in T2D pathogenesis. Here we use our maternal low-protein (LP) rat model to determine the effect of early diet on oxidative stress and fibrosis in pancreatic islets of male offspring at 3 and 15 mo of age. Islet xanthine oxidase (XO) expression was increased in 15-mo LP offspring, which suggests increased oxidative-stress. Manganese superoxide-dismutase (MnSOD), copper-zinc superoxide dismutase (CuZnSOD), and heme oxygenase-1 (HO-1) (antioxidant enzymes) were reduced significantly in LP offspring, which indicated impairment of oxidative defense. Expression of fibrosis markers collagen I and collagen III also increased in 15-mo LP offspring. Angiotensin II receptor type I (AT(II)R(1)), induced by hyperglycemia and oxidative-stress, was significantly up-regulated in 15-mo LP offspring. Lipid peroxidation was also increased in 15-mo LP animals. We conclude that maternal protein restriction causes age-associated increased oxidative stress, impairment of oxidative defense, and fibrosis. These findings provide mechanisms by which suboptimal early nutrition can lead to T2D development later in life.

  1. Effect of fraxetin on antioxidant defense and stress proteins in human neuroblastoma cell model of rotenone neurotoxicity. Comparative study with myricetin and N-acetylcysteine

    International Nuclear Information System (INIS)

    Molina-Jimenez, Maria Francisca; Sanchez-Reus, Maria Isabel; Cascales, Maria; Andres, David; Benedi, Juana

    2005-01-01

    Mitochondrial complex I inhibitor rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Recently, it has been shown that fraxetin (coumarin) and myricetin (flavonoid) have significant neuroprotective effects against apoptosis induced by rotenone, increase the total glutathione levels in vitro, and inhibit lipid peroxidation. Thus, these considerations prompted us to investigate the way in which fraxetin and myricetin affect the endogenous antioxidant defense system, such as Mn and CuZn superoxide dismutase (MnSOD, CuZnSOD), catalase, glutathione reductase (GR), and glutathione peroxidase (GPx) on rotenone neurotoxicity in neuroblastoma cells. N-acetylcysteine (NAC), a potent antioxidant, was employed as a comparative agent. Also, the expression and protein levels of HSP70 by Northern and Western blot analysis were assayed in SH-SY5Y cells. After incubation for 16 h, rotenone significantly increased the expression and activity of MnSOD, GPx, and catalase. When cells were preincubated with fraxetin, there was a decrease in the protein levels and activity of both MnSOD and catalase, in comparison with the rotenone treatment. The myricetin effect was less pronounced. Activity and expression of GPx were increased by rotenone and pre-treatment with fraxetin did not modify significantly these levels. The significant enhancement in HSP70 expression at mRNA and protein levels induced by fraxetin was observed by pre-treatment of cells 0.5 h before rotenone insult. These data suggest that major features of rotenone-induced neurotoxicity are partially mediated by free radical formation and oxidative stress, and that fraxetin partially protects against rotenone toxicity affecting the main protection system of the cells against oxidative injury

  2. Diabetic beta-cells can achieve self-protection against oxidative stress through an adaptive up-regulation of their antioxidant defenses.

    Directory of Open Access Journals (Sweden)

    Grégory Lacraz

    Full Text Available BACKGROUND: Oxidative stress (OS, through excessive and/or chronic reactive oxygen species (ROS, is a mediator of diabetes-related damages in various tissues including pancreatic beta-cells. Here, we have evaluated islet OS status and beta-cell response to ROS using the GK/Par rat as a model of type 2 diabetes. METHODOLOGY/PRINCIPAL FINDINGS: Localization of OS markers was performed on whole pancreases. Using islets isolated from 7-day-old or 2.5-month-old male GK/Par and Wistar control rats, 1 gene expression was analyzed by qRT-PCR; 2 insulin secretion rate was measured; 3 ROS accumulation and mitochondrial polarization were assessed by fluorescence methods; 4 antioxidant contents were quantified by HPLC. After diabetes onset, OS markers targeted mostly peri-islet vascular and inflammatory areas, and not islet cells. GK/Par islets revealed in fact protected against OS, because they maintained basal ROS accumulation similar or even lower than Wistar islets. Remarkably, GK/Par insulin secretion also exhibited strong resistance to the toxic effect of exogenous H(2O(2 or endogenous ROS exposure. Such adaptation was associated to both high glutathione content and overexpression (mRNA and/or protein levels of a large set of genes encoding antioxidant proteins as well as UCP2. Finally, we showed that such a phenotype was not innate but spontaneously acquired after diabetes onset, as the result of an adaptive response to the diabetic environment. CONCLUSIONS: The GK/Par model illustrates the effectiveness of adaptive response to OS by beta-cells to achieve self-tolerance. It remains to be determined to what extend such islet antioxidant defenses upregulation might contribute to GK/Par beta-cell secretory dysfunction.

  3. Determination of oxidative stress and cellular inflammation in patients with diabetic nephropathy and non-diabetic nephropathy being administered hemodialysis treatment due to chronic renal failure.

    Science.gov (United States)

    Avci, Emre; Cakir, Erdinc; Cevher, Sule Coskun; Yaman, Halil; Agilli, Mehmet; Bilgi, Cumhur

    2014-06-01

    We aimed to evaluate oxidative stress [8-hydroxydeoxyguanosine (8-OHdG), malondialdehyde (MDA)] endothelial damage [asymmetric dimethylarginine (ADMA)] and markers of cellular inflammation [interleukin 6 (IL-6), tumor necrosis factor-alpha (TNF-α), neopterin (NP) and high-sensitivity C-reactive protein (hsCRP)] in patients with diabetic nephropathy (DN) and non-diabetic nephropathy who were being administered hemodialysis treatment because of chronic renal failure. In determining 8-OHdG, IL-6 and TNF-α levels, Enzyme-Linked Immuno-Sorbent Assay method was used. Serum MDA, ADMA and NP levels were determined by using high performance liquid chromatography (HPLC). And hs-CRP values were measured with nephelometric method. Serum 8-OHdG and MDA levels were found statistically to have increased when compared with those of the control group in patients groups after dialysis. However, serum ADMA and neopterin levels were observed statistically to have decreased when compared with those of the control group in patients groups after dialysis. But, decreases on ADMA and neopterin levels are still much higher than those of control. IL-6 and TNF-α levels were found to have increased when compared with those of control group in patients groups before dialysis. The oxidative stress in patients with DN, who were being treated with hemodialysis due to chronic renal failure, was higher than that of non-DN patients who were being treated with hemodialysis. In contrast with this, inflammation occurring in non-DN patients was found to have been higher than that of in patients with DN.

  4. La Autoantigen Induces Ribosome Binding Protein 1 (RRBP1 Expression through Internal Ribosome Entry Site (IRES-Mediated Translation during Cellular Stress Condition

    Directory of Open Access Journals (Sweden)

    Wenqing Gao

    2016-07-01

    Full Text Available The function of ribosome binding protein 1 (RRBP1 is regulating the transportation and secretion of some intracellular proteins in mammalian cells. Transcription of RRBP1 is induced by various cytokines. However, few studies focused on the process of RRPB1 mRNA translation. The RRBP1 mRNA has a long 5′ untranslated region that potentially formed a stable secondary structure. In this study, we show that the 5′ UTR of RRBP1 mRNA contains an internal ribosome entry site (IRES. Moreover, the RRBP1 expression is induced by chemotherapeutic drug paclitaxel or adriamycin in human hepatocellular carcinoma cells and accompanied with the increased expression of La autoantigen (La, which binds to RRBP1 IRES element and facilitates translation initiation. Interestingly, we found IRES-mediated RRBP1 translation is also activated during serum-starvation condition which can induce cytoplasmic localization of La. After mapping the entire RRBP1 5′ UTR, we determine the core IRES activity is located between nt-237 and -58. Furthermore, two apical GARR loops within the functional RRBP1 IRES elements may be important for La binding. These results strongly suggest an important role for IRES-dependent translation of RRBP1 mRNA in hepatocellular carcinoma cells during cellular stress conditions.

  5. Isonitrosoacetophenone drives transcriptional reprogramming in Nicotiana tabacum cells in support of innate immunity and defense.

    Directory of Open Access Journals (Sweden)

    Arnaud T Djami-Tchatchou

    Full Text Available Plants respond to various stress stimuli by activating broad-spectrum defense responses both locally as well as systemically. As such, identification of expressed genes represents an important step towards understanding inducible defense responses and assists in designing appropriate intervention strategies for disease management. Genes differentially expressed in tobacco cell suspensions following elicitation with isonitrosoacetophenone (INAP were identified using mRNA differential display and pyro-sequencing. Sequencing data produced 14579 reads, which resulted in 198 contigs and 1758 singletons. Following BLAST analyses, several inducible plant defense genes of interest were identified and classified into functional categories including signal transduction, transcription activation, transcription and protein synthesis, protein degradation and ubiquitination, stress-responsive, defense-related, metabolism and energy, regulation, transportation, cytoskeleton and cell wall-related. Quantitative PCR was used to investigate the expression of 17 selected target genes within these categories. Results indicate that INAP has a sensitising or priming effect through activation of salicylic acid-, jasmonic acid- and ethylene pathways that result in an altered transcriptome, with the expression of genes involved in perception of pathogens and associated cellular re-programming in support of defense. Furthermore, infection assays with the pathogen Pseudomonas syringae pv. tabaci confirmed the establishment of a functional anti-microbial environment in planta.

  6. Differential uptake and oxidative stress response in zebrafish fed a single dose of the principal copper and zinc enriched sub-cellular fractions of Gammarus pulex

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Farhan R., E-mail: f.khan@nhm.ac.uk [Nutritional Sciences Division, King' s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom); Bury, Nicolas R.; Hogstrand, Christer [Nutritional Sciences Division, King' s College London, Franklin-Wilkins Building, 150 Stamford Street, London SE1 9NH (United Kingdom)

    2010-09-15

    The sub-cellular compartmentalisation of trace metals and its effect on trophic transfer and toxicity in the aquatic food chain has been a subject of growing interest. In the present study, the crustacean Gammarus pulex was exposed to either 11 {mu}g Cu l{sup -1}, added solely as the enriched stable isotope {sup 65}Cu, or 660 {mu}g Zn l{sup -1}, radiolabeled with 2MBq {sup 65}Zn, for 16 days. Post-exposure the heat stable cytosol containing metallothionein-like proteins (MTLP) and a combined granular and exoskeletal (MRG + exo) fractions were isolated by differential centrifugation, incorporated into gelatin and fed to zebrafish as a single meal. Assimilation efficiency (AE) and intestinal lipid peroxidation, as malondialdehyde (MDA) were measured. There was a significant difference (p < 0.05) between the retention of the MTLP-Zn (39.0 {+-} 6.4%) and MRG + exo-Zn (17.2 {+-} 3.7%) and of this zinc retained by the zebrafish a significantly greater proportion of the MTLP-Zn feed had been transported away from the site of uptake. For {sup 65}Cu, although the results pointed towards greater bioavailability of the MTLP fraction compared to MRG + exo during the slow elimination phase (24-72 h) these results were not significant (p = 0.155). Neither zinc feed provoked a lipid peroxidation response in the intestinal tissue of zebrafish compared to control fish (gelatin fed), but both {sup 65}Cu labeled feeds did. The greater effect was exerted by the MRG + exo (2.96 {+-} 0.29 nmol MDA mg protein{sup -1}) feed which three-fold greater than control (p < 0.01) and almost twice the MDA concentration of the MTLP feed (1.76 {+-} 0.21 nmol MDA mg protein{sup -1}, p < 0.05). The oxidative stress response produced by Zn and Cu is in keeping with their respective redox potentials; Zn being oxidatively inert and Cu being redox active. These results are similar, in terms of bioavailability and stress response of each feed, to those in our previous study in which {sup 109}Cd labeled G

  7. Discovery and cellular stress pathway analysis of 1,4-naphthoquinone derivatives with novel, highly potent broad-spectrum anticancer activity.

    Science.gov (United States)

    Ghosh, Sajal K; Ganta, Abhishek; Spanjaard, Remco A

    2018-02-08

    potential. The pyrrolidine in the 3 position of the 1,4-NQ nucleus of Pyr-1 is a critical component of the pharmacophore. Pyr-1-induced cellular stress was mediated by an ERK, and to a lesser extent by an AKT-dependent pathway without involving apoptosis. Our data suggest that Pyr-1 derives its greatly enhanced antitumor activity via mimicking ROS-induced stress signaling without generating ROS, and likely committing cells to autophagy.

  8. Assessment of Cellular Responses to Oxidative Stress using MCF-7 Breast Cancer Cells, Black Seed (N. Sativa L. Extracts and H2O2

    Directory of Open Access Journals (Sweden)

    Ibrahim O. Farah

    2005-12-01

    Full Text Available Black seed (N. Sativa L is an oriental spice of the family Ranunculaceae that has long been rationally used as a natural medicine for treatment of many acute as well as chronic conditions including cardiovascular disease and immunological disorders. It has been used in the treatment of diabetes, hypertension, and dermatological conditions. There have been very few studies on the effects of N. Sativa as a chemoprevention of chronic diseases as well as in cancer prevention and/or therapy. Oxidative stress is a condition that underlies many acute as well as chronic conditions. The combination and role of oxidative stress and antioxidants in vivo is still a matter of conjecture. Our objective for the present study was to expose MCF-7 breast cancer cells in vitro (as a chronic disease example to aqueous and alcohol extracts and in combination with H2O2 as an oxidative stressor. Measurement of cell survival under various concentrations and mixtures was conducted using standard cell culture techniques, exposure protocols in 96 well plates and Fluorospectrosphotometry. Following cellular growth to 90% confluencey, exposure to water (WE and ethanol (AE extracts of N. sativa and H2O2 was performed. Cell survival indices were calculated from percent survival using regression analysis. Results showed that the alcohol extract and its mixtures were able to influence the survival of MCF-7 cells (indices ranged from 357.15- 809.50 Bg/ml in descending potency for H2O2+AE to the mix of 3. In contrast, H2O2 alone reduced effectively the survival of MCF-7 cells and the least effective combinations in descending potency were AE+H2O2, WE+H2O2, AE+WE, and WE+AE+H2O2. Mixtures other than AE+H2O2 showed possible interactions and loss of potency. In conclusion, N. Sativa alone or in combination with oxidative stress was found to be effective (in vitro in influencing the survival of MCF-7 breast cancer cells, unveiling promising opportunities in the field of cancer

  9. Effect of contrast dose in the quantification of myocardial extra-cellular volume in adenosine stress/rest perfusion cardiac magnetic resonance examinations.

    Science.gov (United States)

    Caballeros, Meylin; Bartolomé, Pablo; Fernández González, Óscar; Greiser, Andreas; García Del Barrio, Loreto; Pueyo, Jesús; Bastarrika, Gorka

    2017-07-01

    Background Diffuse myocardial fibrosis can be quantified by calculating extra-cellular volume (ECV) from native and post-contrast T1 values using dedicated single bolus contrast medium injection protocols. Purpose To evaluate differences in T1 maps and myocardial ECV measurements in routine stress/rest perfusion cardiovascular magnetic resonance (CMR) examinations after injection of single and double dose of contrast medium. Material and Methods Thirty-seven consecutive patients (30 men; mean age, 62 ± 13 years) underwent clinically indicated adenosine stress/rest perfusion CMR examination to rule out myocardial ischemia following a conventional split-dose contrast medium injection strategy. Native and post-contrast T1 mapping was performed 15 min after the first (0.1 mmol/kg) and second (0.1 mmol/kg) dose of contrast medium using a breath-held Modified Look-Locker Inversion recovery (MOLLI) sequence. Student's t-test for paired samples, Bland-Altman plots, and concordance-correlation coefficients (CCC) for agreement between T1 and ECV calculations after single and double dose of contrast medium were calculated. Intra- and inter-observer agreement for measurements was also analyzed. Results Myocardial T1 values after single and double dose of contrast medium significantly differed (mean difference of 114.1 ± 19.9 ms, P < 0.01). A single dose of contrast agent provided slightly higher ECV values (mean difference of 2.3 ± 1.1%). CCC for ECV calculations was 0.66. Intra- and inter-observer agreement for all measurements was excellent (CCC ≥ 0.83). Conclusion Quantification of myocardial ECV on conventional stress/rest perfusion CMR examination is feasible. T1 maps obtained 15 min after 0.1 mmol/kg of contrast medium provide slightly higher myocardial T1 measurements and ECV values compared with T1 maps obtained after a total dose of 0.2 mmol/kg.

  10. Redox signalling and mitochondrial stress responses; lessons from inborn errors of metabolism

    DEFF Research Database (Denmark)

    Olsen, Rikke K J; Cornelius, Nanna; Gregersen, Niels

    2015-01-01

    chain -- regulates cellular stress responses by redox regulation of nuclear gene networks involved in repair systems to maintain cellular homeostasis and health. Based on our own and other's studies we re-introduce the ROS triangle model and discuss how inborn errors of mitochondrial metabolism......Mitochondria play a key role in overall cell physiology and health by integrating cellular metabolism with cellular defense and repair mechanisms in response to physiological or environmental changes or stresses. In fact, dysregulation of mitochondrial stress responses and its consequences...... in the form of oxidative stress, has been linked to a wide variety of diseases including inborn errors of metabolism. In this review we will summarize how the functional state of mitochondria -- and especially the concentration of reactive oxygen species (ROS), produced in connection with the respiratory...

  11. A new role for oxidative stress in aging: The accelerated aging phenotype in Sod1−/− mice is correlated to increased cellular senescence

    Directory of Open Access Journals (Sweden)

    Yiqiang Zhang

    2017-04-01

    Full Text Available In contrast to other mouse models that are deficient in antioxidant enzymes, mice null for Cu/Zn-superoxide dismutase (Sod1−/− mice show a major decrease in lifespan and several accelerated aging phenotypes. The goal of this study was to determine if cell senescence might be a contributing factor in the accelerated aging phenotype observed in the Sod1−/− mice. We focused on kidney because it is a tissue that has been shown to a significant increase in senescent cells with age. The Sod1−/− mice are characterized by high levels of DNA oxidation in the kidney, which is attenuated by DR. The kidney of the Sod1−/− mice also have higher levels of double strand DNA breaks than wild type (WT mice. Expression (mRNA and protein of p16 and p21, two of the markers of cellular senescence, which increased with age, are increased significantly in the kidney of Sod1−/− mice as is β-gal staining cells. In addition, the senescence associated secretory phenotype was also increased significantly in the kidney of Sod1−/− mice compared to WT mice as measured by the expression of transcripts for IL-6 and IL-1β. Dietary restriction of the Sod1−/− mice attenuated the increase in DNA damage, cellular senescence, and expression of IL-6 and IL-1β. Interestingly, the Sod1−/− mice showed higher levels of circulating cytokines than WT mice, suggesting that the accelerated aging phenotype shown by the Sod1−/− mice could result from increased inflammation arising from an accelerated accumulation of senescent cells. Based on our data with Sod1−/− mice, we propose that various bouts of increased oxidative stress over the lifespan of an animal leads to the accumulation of senescent cells. The accumulation of senescent cells in turn leads to increased inflammation, which plays a major role in the loss of function and increased pathology that are hallmark features of aging.

  12. A new role for oxidative stress in aging: The accelerated aging phenotype in Sod1-/-mice is correlated to increased cellular senescence.

    Science.gov (United States)

    Zhang, Yiqiang; Unnikrishnan, Archana; Deepa, Sathyaseelan S; Liu, Yuhong; Li, Yan; Ikeno, Yuji; Sosnowska, Danuta; Van Remmen, Holly; Richardson, Arlan

    2017-04-01

    In contrast to other mouse models that are deficient in antioxidant enzymes, mice null for Cu/Zn-superoxide dismutase (Sod1 -/ - mice) show a major decrease in lifespan and several accelerated aging phenotypes. The goal of this study was to determine if cell senescence might be a contributing factor in the accelerated aging phenotype observed in the Sod1 -/ - mice. We focused on kidney because it is a tissue that has been shown to a significant increase in senescent cells with age. The Sod1 -/ - mice are characterized by high levels of DNA oxidation in the kidney, which is attenuated by DR. The kidney of the Sod1 -/ - mice also have higher levels of double strand DNA breaks than wild type (WT) mice. Expression (mRNA and protein) of p16 and p21, two of the markers of cellular senescence, which increased with age, are increased significantly in the kidney of Sod1 -/ - mice as is β-gal staining cells. In addition, the senescence associated secretory phenotype was also increased significantly in the kidney of Sod1 -/ - mice compared to WT mice as measured by the expression of transcripts for IL-6 and IL-1β. Dietary restriction of the Sod1 -/ - mice attenuated the increase in DNA damage, cellular senescence, and expression of IL-6 and IL-1β. Interestingly, the Sod1 -/ - mice showed higher levels of circulating cytokines than WT mice, suggesting that the accelerated aging phenotype shown by the Sod1 -/ - mice could result from increased inflammation arising from an accelerated accumulation of senescent cells. Based on our data with Sod1 -/ - mice, we propose that various bouts of increased oxidative stress over the lifespan of an animal leads to the accumulation of senescent cells. The accumulation of senescent cells in turn leads to increased inflammation, which plays a major role in the loss of function and increased pathology that are hallmark features of aging. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Defense Islands in Bacterial and Archaeal Genomes and Prediction of Novel Defense Systems ▿†‡

    OpenAIRE

    Makarova, Kira S.; Wolf, Yuri I.; Snir, Sagi; Koonin, Eugene V.

    2011-01-01

    The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enrich...

  14. [Vitamins and oxidative stress].

    Science.gov (United States)

    Kodentsova, V M; Vrzhesinskaia, O A; Mazo, V K

    2013-01-01

    The central and local stress limiting systems, including the antioxidant defense system involved in defending the organism at the cellular and systemic levels from excess activation response to stress influence, leading to damaging effects. The development of stress, regardless of its nature [cold, increased physical activity, aging, the development of many pathologies (cardiovascular, neurodegenerative diseases, diseases of the gastrointestinal tract, ischemia, the effects of burns), immobilization, hypobaric hypoxia, hyperoxia, radiation effects etc.] leads to a deterioration of the vitamin status (vitamins E, A, C). Damaging effect on the antioxidant defense system is more pronounced compared to the stress response in animals with an isolated deficiency of vitamins C, A, E, B1 or B6 and the combined vitamins deficiency in the diet. Addition missing vitamin or vitamins restores the performance of antioxidant system. Thus, the role of vitamins in adaptation to stressors is evident. However, vitamins C, E and beta-carotene in high doses, significantly higher than the physiological needs of the organism, may be not only antioxidants, but may have also prooxidant properties. Perhaps this explains the lack of positive effects of antioxidant vitamins used in extreme doses for a long time described in some publications. There is no doubt that to justify the current optimal doses of antioxidant vitamins and other dietary antioxidants specially-designed studies, including biochemical testing of initial vitamin and antioxidant status of the organism, as well as monitoring their change over time are required.

  15. Oxidative stress in mammalian cells impinges on the cysteines redox state of human XRCC3 protein and on its cellular localization.

    Directory of Open Access Journals (Sweden)

    Pierre-Marie Girard

    Full Text Available In vertebrates, XRCC3 is one of the five Rad51 paralogs that plays a central role in homologous recombination (HR, a key pathway for maintaining genomic stability. While investigating the potential role of human XRCC3 (hXRCC3 in the inhibition of DNA replication induced by UVA radiation, we discovered that hXRCC3 cysteine residues are oxidized following photosensitization by UVA. Our in silico prediction of the hXRCC3 structure suggests that 6 out of 8 cysteines are potentially accessible to the solvent and therefore potentially exposed to ROS attack. By non-reducing SDS-PAGE we show that many different oxidants induce hXRCC3 oxidation that is monitored in Chinese hamster ovarian (CHO cells by increased electrophoretic mobility of the protein and in human cells by a slight decrease of its immunodetection. In both cell types, hXRCC3 oxidation was reversed in few minutes by cellular reducing systems. Depletion of intracellular glutathione prevents hXRCC3 oxidation only after UVA exposure though depending on the type of photosensitizer. In addition, we show that hXRCC3 expressed in CHO cells localizes both in the cytoplasm and in the nucleus. Mutating all hXRCC3 cysteines to serines (XR3/S protein does not affect the subcellular localization of the protein even after exposure to camptothecin (CPT, which typically induces DNA damages that require HR to be repaired. However, cells expressing mutated XR3/S protein are sensitive to CPT, thus highlighting a defect of the mutant protein in HR. In marked contrast to CPT treatment, oxidative stress induces relocalization at the chromatin fraction of both wild-type and mutated protein, even though survival is not affected. Collectively, our results demonstrate that the DNA repair protein hXRCC3 is a target of ROS induced by environmental factors and raise the possibility that the redox environment might participate in regulating the HR pathway.

  16. Altered poly(ADP-ribose) metabolism impairs cellular responses to genotoxic stress in a hypomorphic mutant of poly(ADP-ribose) glycohydrolase

    International Nuclear Information System (INIS)

    Gao Hong; Coyle, Donna L.; Meyer-Ficca, Mirella L.; Meyer, Ralph G.; Jacobson, Elaine L.; Wang, Zhao-Qi; Jacobson, Myron K.

    2007-01-01

    Genotoxic stress activates nuclear poly(ADP-ribose) (PAR) metabolism leading to PAR synthesis catalyzed by DNA damage activated poly(ADP-ribose) polymerases (PARPs) and rapid PAR turnover by action of nuclear poly(ADP-ribose) glycohydrolase (PARG). The involvement of PARP-1 and PARP-2 in responses to DNA damage has been well studied but the involvement of nuclear PARG is less well understood. To gain insights into the function of nuclear PARG in DNA damage responses, we have quantitatively studied PAR metabolism in cells derived from a hypomorphic mutant mouse model in which exons 2 and 3 of the PARG gene have been deleted (PARG-Δ2,3 cells), resulting in a nuclear PARG containing a catalytic domain but lacking the N-terminal region (A domain) of the protein. Following DNA damage induced by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), we found that the activity of both PARG and PARPs in intact cells is increased in PARG-Δ2,3 cells. The increased PARG activity leads to decreased PARP-1 automodification with resulting increased PARP activity. The degree of PARG activation is greater than PARP, resulting in decreased PAR accumulation. Following MNNG treatment, PARG-Δ2,3 cells show reduced formation of XRCC1 foci, delayed H2AX phosphorylation, decreased DNA break intermediates during repair, and increased cell death. Our results show that a precise coordination of PARPs and PARG activities is important for normal cellular responses to DNA damage and that this coordination is defective in the absence of the PARG A domain

  17. ZmMKK1, a novel group A mitogen-activated protein kinase kinase gene in maize, conferred chilling stress tolerance and was involved in pathogen defense in transgenic tobacco.

    Science.gov (United States)

    Cai, Guohua; Wang, Guodong; Wang, Li; Pan, Jiaowen; Liu, Yang; Li, Dequan

    2014-01-01

    As an important intracellular signaling module, the mitogen-activated protein kinase (MAPK) cascades have been previously implicated in signal transduction during plants responsing to various environmental stresses as well as pathogen attack. The mitogen-activated protein kinase kinase acts as the convergent point of MAPK cascades during a variety of stress signaling. In this study, a novel MAPKK gene, ZmMKK1, in maize (Zea mays L.) belonging to group A MAPKK was isolated and functionally characterized. ZmMKK1 was mainly localized in the cytoplasm and its constitutive kinase-active form ZmMKK1DD was localized in both cytoplasm and nucleus. QRT-PCR analysis uncovered that ZmMKK1 expression was triggered by abiotic and biotic stresses and exogenous signaling molecules. Moreover, hydrogen peroxide (H2O2) and Ca(2+) mediated 12°C-induced up-regulated expressing of ZmMKK1 at mRNA level. Ectopic expression of ZmMKK1 in tobacco (Nicotiana tabacum) conferred tolerance to chilling stress by higher antioxidant enzyme activities, more accumulation of osmoregulatory substances and more significantly up-expression of ROS-related and stress-responsive genes compared with empty vector control plants. Furthermore, ZmMKK1 played differential functions in biotrophic versus necrotrophic pathogen-induced responses. These results suggested ZmMKK1 played a crucial role in chilling stress and pathogen defense in plants. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  18. Estresse oxidativo: relação entre geração de espécies reativas e defesa do organismo Oxidative stress: relations between the formation of reactive species and the organism's defense

    Directory of Open Access Journals (Sweden)

    André L. B. S. Barreiros

    2006-02-01

    Full Text Available This work describes the mechanism of action of some reactive oxygen species (ROS and reactive nitrogen species (RNS in the oxidative stress of the human body, and their consequences on damage to DNA, RNA, proteins and lipids. It also illustrates the defense system of our organism against these ROS and RNS species. The action of nonenzymatic protection systems is reported, with emphasis on micromolecules like Q10 coenzyme, vitamin C, alpha-tocopherol, carotenoids and flavonoids. The importance of flavonoids is also emphasized, and their body protection mechanism is detailed.

  19. Evaluación de ansiedad y estrategias de afrontamiento de estrés en socorristas de la Defensa Civil. Assessment of anxiety and stress coping strategies in the Civil Defense rescuers.

    OpenAIRE

    Amorocho – Lozano, Pablo Miguel; Uribe Rodríguez, Ana Fernanda

    2014-01-01

    Evaluación  de ansiedad y estrategias de afrontamiento de estrés en socorristas  de la Defensa Civil.  Assessment of anxiety and stress coping strategies in the Civil Defense rescuers. Resumen El artículo presenta resultados de un estudio cuyo objetivo fue dirigido a detectar el nivel de ansiedad de socorristas activos y evaluar su forma de afrontamiento del estrés,  condicionada a edad actual, entorno social y ambiental, dinámica familiar, desarrollo de actividad académica y laboral. La mues...

  20. Interactive effects of CO₂ and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria

    Energy Technology Data Exchange (ETDEWEB)

    Götze, Sandra [Alfred Wegener Institute, Helmholtz Centre for Polar, Marine Research, Functional Ecology, 27570 Bremerhaven (Germany); Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Matoo, Omera B. [Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States); Beniash, Elia [Department of Oral Biology, University of Pittsburgh, Pittsburgh, PA (United States); Saborowski, Reinhard [Alfred Wegener Institute, Helmholtz Centre for Polar, Marine Research, Functional Ecology, 27570 Bremerhaven (Germany); Sokolova, Inna M., E-mail: isokolov@uncc.edu [Department of Biology, University of North Carolina at Charlotte, Charlotte, NC 28223 (United States)

    2014-04-01

    Highlights: • Elevated PCO₂ enhanced accumulation of Cu and Cd in the gills of mollusks. • The proteasome activities were affected by metals but robust to elevated PCO₂. • Exposure to Cd and Cu had opposite effects on the proteasome activity. • Combined exposure to Cu and elevated PCO₂ negatively affected energy status. - Abstract: Increased anthropogenic emission of CO₂ changes the carbonate chemistry and decreases the pH of the ocean. This can affect the speciation and the bioavailability of metals in polluted habitats such as estuaries. However, the effects of acidification on metal accumulation and stress response in estuarine organisms including bivalves are poorly understood. We studied the interactive effects of CO₂ and two common metal pollutants, copper (Cu) and cadmium (Cd), on metal accumulation, intracellular ATP/ubiquitin-dependent protein degradation, stress response and energy metabolism in two common estuarine bivalves—Crassostrea virginica (eastern oyster) and Mercenaria mercenaria (hard shell clam). Bivalves were exposed for 4–5 weeks to clean seawater (control) and to either 50 μg L⁻¹ Cu or 50 μg L⁻¹ Cd at one of three partial pressures of CO₂ PCO₂ ~395, ~800 and ~1500 μatm) representative of the present-day conditions and projections of the Intergovernmental Panel for Climate Change (IPCC) for the years 2100 and 2250, respectively. Clams accumulated lower metal burdens than oysters, and elevated PCO₂ enhanced the Cd and Cu accumulation in mantle tissues in both species. Higher Cd and Cu burdens were associated with elevated mRNA expression of metal binding proteins metallothionein and ferritin. In the absence of added metals, proteasome activities of clams and oysters were robust to elevated PCO₂, but PCO₂ modulated the proteasome response to metals. Cd exposure stimulated the chymotrypsin-like activity of the oyster proteasome

  1. Interactive effects of CO₂ and trace metals on the proteasome activity and cellular stress response of marine bivalves Crassostrea virginica and Mercenaria mercenaria.

    Science.gov (United States)

    Götze, Sandra; Matoo, Omera B; Beniash, Elia; Saborowski, Reinhard; Sokolova, Inna M

    2014-04-01

    Increased anthropogenic emission of CO2 changes the carbonate chemistry and decreases the pH of the ocean. This can affect the speciation and the bioavailability of metals in polluted habitats such as estuaries. However, the effects of acidification on metal accumulation and stress response in estuarine organisms including bivalves are poorly understood. We studied the interactive effects of CO2 and two common metal pollutants, copper (Cu) and cadmium (Cd), on metal accumulation, intracellular ATP/ubiquitin-dependent protein degradation, stress response and energy metabolism in two common estuarine bivalves-Crassostrea virginica (eastern oyster) and Mercenaria mercenaria (hard shell clam). Bivalves were exposed for 4-5 weeks to clean seawater (control) and to either 50 μg L(-1) Cu or 50 μg L(-1) Cd at one of three partial pressures of CO2 ( [Formula: see text] ∼ 395, ∼ 800 and ∼ 1500 μatm) representative of the present-day conditions and projections of the Intergovernmental Panel for Climate Change (IPCC) for the years 2100 and 2250, respectively. Clams accumulated lower metal burdens than oysters, and elevated [Formula: see text] enhanced the Cd and Cu accumulation in mantle tissues in both species. Higher Cd and Cu burdens were associated with elevated mRNA expression of metal binding proteins metallothionein and ferritin. In the absence of added metals, proteasome activities of clams and oysters were robust to elevated [Formula: see text] , but [Formula: see text] modulated the proteasome response to metals. Cd exposure stimulated the chymotrypsin-like activity of the oyster proteasome at all CO2 levels. In contrast, trypsin- and caspase-like activities of the oyster proteasome were slightly inhibited by Cd exposure in normocapnia but this inhibition was reversed at elevated [Formula: see text] . Cu exposure inhibited the chymotrypsin-like activity of the oyster proteasome regardless of the exposure [Formula: see text] . The effects of metal exposure on

  2. Sustained mitogen-activated protein kinase activation reprograms defense metabolism and phosphoprotein profile in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Ines eLassowskat

    2014-10-01

    Full Text Available Mitogen-activated protein kinases (MAPKs target a variety of protein substrates to regulate cellular signaling processes in eukaryotes. In plants, the number of identified MAPK substrates that control plant defense responses is still limited. Here, we generated transgenic Arabidopsis thaliana plants with an inducible system to simulate in vivo activation of two stress-activated MAPKs, MPK3 and MPK6. Metabolome analysis revealed that this artificial MPK3/6 activation (without any exposure to pathogens or other stresses is sufficient to drive the production of major defense-related metabolites, including various camalexin, indole glucosinolate and agmatine derivatives. An accompanying (phosphoproteome analysis led to detection of hundreds of potential phosphoproteins downstream of MPK3/6 activation. Besides known MAPK substrates, many candidates on this list possess typical MAPK-targeted phosphosites and in many cases, the corresponding phosphopeptides were detected by mass spectrometry. Notably, several of these putative phosphoproteins have been reported to be associated with the biosynthesis of antimicrobial defense substances (e.g. WRKY transcription factors and proteins encoded by the genes from the PEN pathway required for penetration resistance to filamentous pathogens. Thus, this work provides an inventory of candidate phosphoproteins, including putative direct MAPK substrates, for future analysis of MAPK-mediated defense control. (Proteomics data are available with the identifier PXD001252 via ProteomeXchange, http://proteomecentral.proteomexchange.org.

  3. Regulation of Heat Stress by HSF1 and GR

    Science.gov (United States)

    2016-09-01

    is to examine how activation of two cellular defense mechanisms involving heat shock transcription factor 1 (HSF1) and glucocorticoid receptor (GR) is...factor 1 (HSF1) and glucocorticoid receptor (GR) are known to provide primary protection against immediate and prolonged stress. The purpose of this...affect UCPs. For example, glucocorticoid can activate the transcription of UCP3 gene. 5 Figure 1. Comparison of HSF1, Hsp72, GR, p-GR, UCP3

  4. Environmental exposure to lead induces oxidative stress and modulates the function of the antioxidant defense system and the immune system in the semen of males with normal semen profile

    Energy Technology Data Exchange (ETDEWEB)

    Kasperczyk, Aleksandra; Dobrakowski, Michał [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze (Poland); Czuba, Zenon P. [Dept. of Microbiology and Immunology, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze (Poland); Horak, Stanisław [I-st Chair and Clin. Dept. of Gynecology, Obstetrics and Gynecological Oncology, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Batorego 15, 41-902 Bytom (Poland); Kasperczyk, Sławomir, E-mail: kaslav@mp.pl [Dept. of Biochemistry, School of Medicine with the Division of Dentistry, Medical University of Silesia, Katowice, Jordana 19, 41-808 Zabrze (Poland)

    2015-05-01

    We investigated the associations between environmental exposure to lead and a repertoire of cytokines in seminal plasma of males with normal semen profile according to the WHO criteria. Based on the median lead concentration in seminal plasma, 65 samples were divided into two groups: low (LE) and high exposure to lead (HE). Differences in semen volume and the pH, count, motility and morphology of sperm cells were not observed between the examined groups. The total oxidant status value and the level of protein sulfhydryl groups as well as the activities of manganese superoxide dismutase and catalase were significantly higher in the HE group, whereas the total antioxidant capacity value and the activities of glutathione reductase and glutathione-S-transferase were depressed. IL-7, IL-10, IL-12, and TNF-α levels were significantly higher in the HE group compared with the LE group. Environmental exposure to lead is sufficient to induce oxidative stress in seminal plasma and to modulate antioxidant defense system. - Highlights: • Lead induces oxidative stress in seminal plasma in human. • Lead modulates antioxidant defense system in seminal plasma in human. • Lead does not change a Th1/Th2 imbalance in seminal plasma in human.

  5. The 6-a-day study: effects of fruit and vegetables on markers of oxidative stress and antioxidative defense in healthy nonsmokers

    DEFF Research Database (Denmark)

    Dragsted, Lars Ove; Pedersen, A.; Hermetter, A.

    2004-01-01

    Background: Fruit and vegetables contain both nutritive and nonnutritive factors that might contribute to redox (antioxidant and prooxidant) actions. Objective: We investigated the relative influence of nutritive and nonnutritive factors in fruit and vegetables on oxidative damage and enzymatic...... defense. Design: A 25-d intervention study with complete control of dietary intake was performed in 43 healthy male and female nonsmokers who were randomly assigned to 1 of 3 groups. In addition to a basic diet devoid of fruit and vegetables, the fruit and vegetables (Fruveg) group received 600 g fruit...... and vegetables/d; the placebo group received a placebo pill, and the supplement group received a vitamin pill designed to contain vitamins and minerals corresponding to those in 600 g fruit and vegetables. Biomarkers of oxidative damage to protein and lipids and of antioxidant nutrients and defense enzymes were...

  6. Evaluation of whole antioxidant defenses of human mononuclear cells by a new in vitro biological test: lack of correlation between erythrocyte and mononuclear cell resistance to oxidative stress.

    Science.gov (United States)

    Caspar-Bauguil, Sylvie; Maestre, Nicolas; Segafredo, Céline; Galinier, Anne; Garcia, Jésus; Prost, Michel; Périquet, Brigitte; Pénicaud, Luc; Salvayre, Robert; Casteilla, Louis

    2009-04-01

    This work aims to evaluate the resistance of mononuclear cells to oxidative stress using a "KRL" test, formerly utilized to evaluate the resistance of erythrocyte to free radicals. The "KRL" test evaluates the resistance to lysis of cells treated by free radicals generated under standardized conditions. We defined new analytical parameters (level of radical production, time course, number of cells) to obtain an accurate assay determining the resistance to oxidative stress of mononuclear cells, in comparison to that of erythrocytes. This test allows the evaluation of change in the redox state of mononuclear cells (improved by an antioxidant mix or deteriorated by antimycin A-induced mitochondrial radical overproduction). Interestingly, our data show that the sensitivity of mononuclear cells to oxidative stress is not correlated with the susceptibility of erythrocytes to oxidative stress. The quantification of the susceptibility of mononuclear cells to oxidative stress gives additional information (in addition to erythrocyte resistance) and could be helpful for patients with chronic inflammation.

  7. The humic acid-induced changes in the water status, chlorophyll fluorescence and antioxidant defense systems of wheat leaves with cadmium stress.

    Science.gov (United States)

    Ozfidan-Konakci, Ceyda; Yildiztugay, Evren; Bahtiyar, Mustafa; Kucukoduk, Mustafa

    2018-07-15

    The using of bio-stimulant in plants grown under stress conditions for enhancing nutrition efficiency and crop quality traits is an effective approach. One of the bio-stimulants, humus material, is defined as humic acid (HA). HA application as a promotion of plant growth to plants grown in the heavy metals-contaminated soils has promised hope in terms of effects on plants but the its limiting effect is the application dose. Therefore, the wheat seedlings were grown in hydroponic culture for 21 d and the various concentrations of humic acid (HA; 750 or 1500 mg L -1 ) were treated alone or in combination with cadmium (Cd) stress (100 or 200 μM) for 7 d. The results showed that after Cd stress treatment, water content (RWC), osmotic potential (Ψ Π ) and chlorophyll fluorescence parameters decreased and proline content (Pro) increased for 7 d. In spite of activated peroxidase (POX) and ascorbate peroxidase (APX), stress induced the toxic levels of hydrogen peroxide (H 2 O 2 ) accumulation. Cd stress triggered lipid peroxidation (TBARS content). HA application successfully eliminated the negative effects of stress on RWC, Ψ Π and photosynthetic parameters. In the presence of HA under stress, the increased activation of superoxide dismutase (SOD), catalase (CAT) and NADPH-oxidase (NOX) enzymes and ascorbate, glutathione and GSH/GSSG ratio observed. Only 750 mg L -1 HA under stress conditions induced the activities of monodehydroascorbate reductase (MDHAR) and dehydroascorbate reductase (DHAR), and dehydroascorbate (DHA) content. After the combined application of HA and Cd stress, the low contents of H 2 O 2 and TBARS maintained in wheat leaves. Hence, HA successfully eliminated the toxicity of Cd stress by modulating the water status, photosynthetic apparatus and antioxidant activity in wheat leaves. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Genome-wide analysis of yeast stress survival and tolerance acquisition to analyze the central trade-off between growth rate and cellular robustness

    NARCIS (Netherlands)

    Zakrzewska, A.; van Eikenhorst, G.; Burggraaff, J.E.C.; Vis, D.J.; Hoefsloot, H.; Delneri, D.; Oliver, S.G.; Brul, S.; Smits, G.J.

    2011-01-01

    All organisms have evolved to cope with changes in environmental conditions, ensuring the optimal combination of proliferation and survival. In yeast, exposure to a mild stress leads to an increased tolerance for other stresses. This suggests that yeast uses information from the environment to

  9. Extracellular heat shock proteins, cellular export vesicles, and the Stress Observation System: a form of communication during injury, infection, and cell damage. It is never known how far a controversial finding will go! Dedicated to Ferruccio Ritossa.

    Science.gov (United States)

    De Maio, Antonio

    2011-05-01

    Heat shock proteins (hsp) have been found to play a fundamental role in the recovery from multiple stress conditions and to offer protection from subsequent insults. The function of hsp during stress goes beyond their intracellular localization and chaperone role as they have been detected outside cells activating signaling pathways. Extracellular hsp are likely to act as indicators of the stress conditions, priming other cells, particularly of the immune system, to avoid the propagation of the insult. Some extracellular hsp, for instance Hsp70, are associated with export vesicles, displaying a robust activation of macrophages. We have coined the term Stress Observation System (SOS) for the mechanism for sensing extracellular hsp, which we propose is a form of cellular communication during stress conditions. An enigmatic and still poorly understood process is the mechanism for the release of hsp, which do not contain any consensus secretory signal. The export of hsp appears to be a very complex phenomenon encompassing different alternative pathways. Moreover, extracellular hsp may not come in a single flavor, but rather in a variety of physical conditions. This review addresses some of our current knowledge about the release and function of extracellular hsp, in particular those associated with vesicles.

  10. Defense islands in bacterial and archaeal genomes and prediction of novel defense systems.

    Science.gov (United States)

    Makarova, Kira S; Wolf, Yuri I; Snir, Sagi; Koonin, Eugene V

    2011-11-01

    The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic "sinks" that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands.

  11. Arabidopsis flower specific defense gene expression patterns affect resistance to pathogens

    KAUST Repository

    Ederli, Luisa

    2015-02-20

    We investigated whether the Arabidopsis flower evolved protective measures to increase reproductive success. Firstly, analyses of available transcriptome data show that the most highly expressed transcripts in the closed sepal (stage 12) are enriched in genes with roles in responses to chemical stimuli and cellular metabolic processes. At stage 15, there is enrichment in transcripts with a role in responses to biotic stimuli. Comparative analyses between the sepal and petal in the open flower mark an over-representation of transcripts with a role in responses to stress and catalytic activity. Secondly, the content of the biotic defense-associated phytohormone salicylic acid (SA) in sepals and petals is significantly higher than in leaves. To understand whether the high levels of stress responsive transcripts and the higher SA content affect defense, wild-type plants (Col-0) and transgenic plants defective in SA accumulation (nahG) were challenged with the biotrophic fungus Golovinomyces cichoracearum, the causal agent of powdery mildew, and the necrotrophic fungus Botrytis cinerea. NahG leaves were more sensitive than those of Col-0, suggesting that in leaves SA has a role in the defense against biotrophs. In contrast, sepals and petals of both genotypes were resistant to G. cichoracearum, indicating that in the flower, resistance to the biotrophic pathogen is not critically dependent on SA, but likely dependent on the up-regulation of stress-responsive genes. Since sepals and petals of both genotypes are equally susceptible to B. cinerea, we conclude that neither stress-response genes nor increased SA accumulation offers protection against the necrotrophic pathogen. These results are interpreted in the light of the distinctive role of the flower and we propose that in the early stages, the sepal may act as a chemical defense barrier of the developing reproductive structures against biotrophic pathogens.

  12. Stress !!!

    OpenAIRE

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten. Opvallend is dat mannelijke studenten uit Twente zich veel minder druk lijken te maken over hun studie. Onder vrouwen ligt de stress juist erg hoog ten opzichte van het landelijk gemiddelde.

  13. Stress

    DEFF Research Database (Denmark)

    Keller, Hanne Dauer

    2015-01-01

    Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb.......Kapitlet handler om stress som følelse, og det trækker primært på de få kvalitative undersøgelser, der er lavet af stressforløb....

  14. The nociception genes painless and Piezo are required for the cellular immune response of Drosophila larvae to wasp parasitization.

    Science.gov (United States)

    Tokusumi, Yumiko; Tokusumi, Tsuyoshi; Schulz, Robert A

    2017-05-13

    In vertebrates, interaction between the nervous system and immune system is important to protect a challenged host from stress inputs from external sources. In this study, we demonstrate that sensory neurons are involved in the cellular immune response elicited by wasp infestation of Drosophila larvae. Multidendritic class IV neurons sense contacts from external stimuli and induce avoidance behaviors for host defense. Our findings show that inactivation of these sensory neurons impairs the cellular response against wasp parasitization. We also demonstrate that the nociception genes encoding the mechanosensory receptors Painless and Piezo, both expressed in class IV neurons, are essential for the normal cellular immune response to parasite challenge. Copyright © 2017. Published by Elsevier Inc.

  15. Primitive defenses: cognitive aspects and therapeutic handling.

    Science.gov (United States)

    Groh, L S

    In this paper the primitive defenses first described by Melanie Klein under the label of "schizoid mechanisms" are examined. The defenses considered are splitting the pathological uses of identification and projective identification, and the psychotic forms of denial. This examination is twofold: (1) the cognitive aspects of these defenses as described in terms of concepts developed by Jean Piaget; (2) concrete examples of the operation of these defenses during the treatment of schizophrenic patients are given and the effects of interventions based on the cognitive analysis are described. It is stressed that at times interventions, such as interpretation and confrontation, based on cognitive analysis, can temporarily and in some instances even permanently stop the operation of these defenses, allowing emotionally meaningful material to emerge which expedites the therapeutic process.

  16. Cellular stress-induced up-regulation of FMRP promotes cell survival by modulating PI3K-Akt phosphorylation cascades

    Directory of Open Access Journals (Sweden)

    Wells David

    2011-02-01

    Full Text Available Abstract Background Fragile X syndrome (FXS, the most commonly inherited mental retardation and single gene cause of autistic spectrum disorder, occurs when the Fmr1 gene is mutated. The product of Fmr1, fragile X linked mental retardation protein (FMRP is widely expressed in HeLa cells, however the roles of FMRP within HeLa cells were not elucidated, yet. Interacting with a diverse range of mRNAs related to cellular survival regulatory signals, understanding the functions of FMRP in cellular context would provide better insights into the role of this interesting protein in FXS. Using HeLa cells treated with etoposide as a model, we tried to determine whether FMRP could play a role in cell survival. Methods Apoptotic cell death was induced by etoposide treatment on Hela cells. After we transiently modulated FMRP expression (silencing or enhancing by using molecular biotechnological methods such as small hairpin RNA virus-induced knock down and overexpression using transfection with FMRP expression vectors, cellular viability was measured using propidium iodide staining, TUNEL staining, and FACS analysis along with the level of activation of PI3K-Akt pathway by Western blot. Expression level of FMRP and apoptotic regulator BcL-xL was analyzed by Western blot, RT-PCR and immunocytochemistry. Results An increased FMRP expression was measured in etoposide-treated HeLa cells, which was induced by PI3K-Akt activation. Without FMRP expression, cellular defence mechanism via PI3K-Akt-Bcl-xL was weakened and resulted in an augmented cell death by etoposide. In addition, FMRP over-expression lead to the activation of PI3K-Akt signalling pathway as well as increased FMRP and BcL-xL expression, which culminates with the increased cell survival in etoposide-treated HeLa cells. Conclusions Taken together, these results suggest that FMRP expression is an essential part of cellular survival mechanisms through the modulation of PI3K, Akt, and Bcl-xL signal

  17. Cellular dosimetry

    International Nuclear Information System (INIS)

    Humm, J.L.; Chin, L.M.

    1989-01-01

    Radiation dose is a useful predictive parameter for describing radiation toxicity in conventional radiotherapy. Traditionally, in vitro radiation biology dose-effect relations are expressed in the form of cell survival curves, a semilog plot of cell survival versus dose. However, the characteristic linear or linear quadratic survival curve shape, for high- and low-LET radiations respectively, is only strictly valid when the radiation dose is uniform across the entire target population. With an external beam of 60 Co gamma rays or x-rays, a uniform field may be readily achievable. When radionuclides are incorporated into a cell milieu, several new problems emerge which can result in a departure from uniformity in energy deposition throughout a cell population. This nonuniformity can have very important consequences for the shape of the survival curve. Cases in which perturbations of source uniformity may arise include: 1. Elemental sources may equilibrate in the cell medium with partition coefficients between the extracellular, cytosol, and nuclear compartments. The effect of preferential cell internalization or binding to cell membrane of some radionuclides can increase or decrease the slope of the survival curve. 2. Radionuclides bound to antibodies, hormones, metabolite precursors, etc., may result in a source localization pattern characteristic of the carrier agent, i.e., the sources may bind to cell surface receptors or antigens, be internalized, bind to secreted antigen concentrated around a fraction of the cell population, or become directly incorporated into the cell DNA. We propose to relate the distribution of energy deposition in cell nuclei to biological correlates of cellular inactivation. The probability of each cell's survival is weighted by its individual radiation burden, and the summation of these probabilities for the cell population can be used to predict the number or fraction of cell survivors

  18. Altering endoplasmic reticulum stress in a model of blast-induced traumatic brain injury controls cellular fate and ameliorates neuropsychiatric symptoms

    Directory of Open Access Journals (Sweden)

    Aric Flint Logsdon

    2014-12-01

    Full Text Available Neuronal injury following blast-induced traumatic brain injury (bTBI increases the risk for neuropsychiatric disorders, yet the pathophysiology remains poorly understood. Blood-brain-barrier (BBB disruption, endoplasmic reticulum (ER stress, and apoptosis have all been implicated in bTBI. Microvessel compromise is a primary effect of bTBI and is postulated to cause subcellular secondary effects such as ER stress. What remains unclear is how these secondary effects progress to personality disorders in humans exposed to head trauma. To investigate this we exposed male rats to a clinically relevant bTBI model we have recently developed. The study examined initial BBB disruption using Evan’s blue, ER stress mechanisms, apoptosis and impulsive-like behavior measured with elevated plus maze (EPM. Large BBB openings were observed immediately following bTBI, and persisted for at least 6 h. Data showed increased mRNA abundance of stress response genes at 3 h, with subsequent increases in the ER stress markers C/EBP homologous protein (CHOP and growth arrest and DNA damage-inducible protein 34 (GADD34 at 24 h. Caspase-12 and Caspase-3 were both cleaved at 24 h following bTBI. The ER stress inhibitor, salubrinal (SAL, was administered (1mg/kg i.p. to investigate its’ effects on neuronal injury and impulsive-like behavior associated with bTBI. SAL reduced CHOP protein expression, and diminished Caspase-3 cleavage, suggesting apoptosis attenuation. Interestingly, SAL also ameliorated impulsive-like behavior indicative of head trauma. These results suggest SAL plays a role in apoptosis regulation and the pathology of chronic disease. These observations provide evidence that bTBI involves ER stress and that the UPR is a promising molecular target for the attenuation of neuronal injury.

  19. Cellular Dynamics of Rad51 and Rad54 in Response to Postreplicative Stress and DNA Damage in HeLa Cells.

    Science.gov (United States)

    Choi, Eui-Hwan; Yoon, Seobin; Hahn, Yoonsoo; Kim, Keun P

    2017-02-01

    Homologous recombination (HR) is necessary for maintenance of genomic integrity and prevention of various mutations in tumor suppressor genes and proto-oncogenes. Rad51 and Rad54 are key HR factors that cope with replication stress and DNA breaks in eukaryotes. Rad51 binds to single-stranded DNA (ssDNA) to form the presynaptic filament that promotes a homology search and DNA strand exchange, and Rad54 stimulates the strand-pairing function of Rad51. Here, we studied the molecular dynamics of Rad51 and Rad54 during the cell cycle of HeLa cells. These cells constitutively express Rad51 and Rad54 throughout the entire cell cycle, and the formation of foci immediately increased in response to various types of DNA damage and replication stress, except for caffeine, which suppressed the Rad51-dependent HR pathway. Depletion of Rad51 caused severe defects in response to postreplicative stress. Accordingly, HeLa cells were arrested at the G2-M transition although a small amount of Rad51 was steadily maintained in HeLa cells. Our results suggest that cell cycle progression and proliferation of HeLa cells can be tightly controlled by the abundance of HR proteins, which are essential for the rapid response to postreplicative stress and DNA damage stress.

  20. Acute phase protein mRNA expressions and enhancement of antioxidant defense system in Black-meated Silkie Fowls supplemented with clove (Eugenia caryophyllus extracts under the influence of chronic heat stress

    Directory of Open Access Journals (Sweden)

    Alhassan Usman Bello

    2016-11-01

    negative effects of heat stress via improvement in growth performance, antioxidant defense mechanisms, immunity, and regulate the expression of acute phase genes in the liver and immunological organs.

  1. Phosphorylation of eIF4E Confers Resistance to Cellular Stress and DNA-Damaging Agents through an Interaction with 4E-T: A Rationale for Novel Therapeutic Approaches.

    Directory of Open Access Journals (Sweden)

    Alba Martínez

    Full Text Available Phosphorylation of the eukaryotic translation initiation factor eIF4E is associated with malignant progression and poor cancer prognosis. Accordingly, here we have analyzed the association between eIF4E phosphorylation and cellular resistance to oxidative stress, starvation, and DNA-damaging agents in vitro. Using immortalized and cancer cell lines, retroviral expression of a phosphomimetic (S209D form of eIF4E, but not phospho-dead (S209A eIF4E or GFP control, significantly increased cellular resistance to stress induced by DNA-damaging agents (cisplatin, starvation (glucose+glutamine withdrawal, and oxidative stress (arsenite. De novo accumulation of eIF4E-containing cytoplasmic bodies colocalizing with the eIF4E-binding protein 4E-T was observed after expression of phosphomimetic S209D, but not S209A or wild-type eIF4E. Increased resistance to cellular stress induced by eIF4E-S209D was lost upon knockdown of endogenous 4E-T or use of an eIF4E-W73A-S209D mutant unable to bind 4E-T. Cancer cells treated with the Mnk1/2 inhibitor CGP57380 to prevent eIF4E phosphorylation and mouse embryonic fibroblasts derived from Mnk1/2 knockout mice were also more sensitive to arsenite and cisplatin treatment. Polysome analysis revealed an 80S peak 2 hours after arsenite treatment in cells overexpressing phosphomimetic eIF4E, indicating translational stalling. Nonetheless, a selective increase was observed in the synthesis of some proteins (cyclin D1, HuR, and Mcl-1. We conclude that phosphorylation of eIF4E confers resistance to various cell stressors and that a direct interaction or regulation of 4E-T by eIF4E is required. Further delineation of this process may identify novel therapeutic avenues for cancer treatment, and these results support the use of modern Mnk1/2 inhibitors in conjunction with standard therapy.

  2. Phosphorylation of eIF4E Confers Resistance to Cellular Stress and DNA-Damaging Agents through an Interaction with 4E-T: A Rationale for Novel Therapeutic Approaches

    Science.gov (United States)

    Martínez, Alba; Sesé, Marta; Losa, Javier Hernandez; Robichaud, Nathaniel; Sonenberg, Nahum; Aasen, Trond; Ramón y Cajal, Santiago

    2015-01-01

    Phosphorylation of the eukaryotic translation initiation factor eIF4E is associated with malignant progression and poor cancer prognosis. Accordingly, here we have analyzed the association between eIF4E phosphorylation and cellular resistance to oxidative stress, starvation, and DNA-damaging agents in vitro. Using immortalized and cancer cell lines, retroviral expression of a phosphomimetic (S209D) form of eIF4E, but not phospho-dead (S209A) eIF4E or GFP control, significantly increased cellular resistance to stress induced by DNA-damaging agents (cisplatin), starvation (glucose+glutamine withdrawal), and oxidative stress (arsenite). De novo accumulation of eIF4E-containing cytoplasmic bodies colocalizing with the eIF4E-binding protein 4E-T was observed after expression of phosphomimetic S209D, but not S209A or wild-type eIF4E. Increased resistance to cellular stress induced by eIF4E-S209D was lost upon knockdown of endogenous 4E-T or use of an eIF4E-W73A-S209D mutant unable to bind 4E-T. Cancer cells treated with the Mnk1/2 inhibitor CGP57380 to prevent eIF4E phosphorylation and mouse embryonic fibroblasts derived from Mnk1/2 knockout mice were also more sensitive to arsenite and cisplatin treatment. Polysome analysis revealed an 80S peak 2 hours after arsenite treatment in cells overexpressing phosphomimetic eIF4E, indicating translational stalling. Nonetheless, a selective increase was observed in the synthesis of some proteins (cyclin D1, HuR, and Mcl-1). We conclude that phosphorylation of eIF4E confers resistance to various cell stressors and that a direct interaction or regulation of 4E-T by eIF4E is required. Further delineation of this process may identify novel therapeutic avenues for cancer treatment, and these results support the use of modern Mnk1/2 inhibitors in conjunction with standard therapy. PMID:25923732

  3. Loss of Sfrp2 in the Niche Amplifies Stress-Induced Cellular Responses, and Impairs the In Vivo Regeneration of the Hematopoietic Stem Cell Pool.

    Science.gov (United States)

    Ruf, Franziska; Schreck, Christina; Wagner, Alina; Grziwok, Sandra; Pagel, Charlotta; Romero, Sandra; Kieslinger, Matthias; Shimono, Akihiko; Peschel, Christian; Götze, Katharina S; Istvanffy, Rouzanna; Oostendorp, Robert A J

    2016-09-01

    Sfrp2 is overexpressed in stromal cells which maintain hematopoietic stem cells (HSCs) during in vitro culture. We here showed, that coculture of hematopoetic cells with stromal cells with reduced expression of Sfrp2 increases the number lineage-negative Kit(+) Sca-1(+) (LSK) and progenitor cells in vitro. The LSK cells from these cocultures showed activation of canonical Wnt signaling, higher levels of Ki-67, BrdU incorporation, and the number of γH2A.X positive foci. Total repopulating activity of these cultures was, however, diminished, indicating loss of HSC. To extend these in vitro data, we modelled stress in vivo, i.e., by aging, or 5-FU treatment in Sfrp2(-) (/) (-) mice, or replicative stress in regeneration of HSCs in Sfrp2(-) (/) (-) recipients. In all three in vivo stress situations, we noted an increase of LSK cells, characterized by increased levels of β-catenin and cyclin D1. In the transplantation experiments, the increase in LSK cells in primary recipients was subsequently associated with a progressive loss of HSCs in serial transplantations. Similar to the in vitro coculture stress, in vivo genotoxic stress in 5-FU-treated Sfrp2(-) (/) (-) mice increased cell cycle activity of LSK cells with higher levels of BrdU incorporation, increased expression of Ki-67, and canonical Wnt signaling. Importantly, as noted in vitro, increased cycling of LSKs in vivo was accompanied by a defective γH2A.X-dependent DNA damage response and depolarized localization of acetylated H4K16. Our experiments support the view that Sfrp2 expression in the niche is required to maintain the HSC pool by limiting stress-induced DNA damage and attenuating canonical Wnt-mediated HSC activation. Stem Cells 2016;34:2381-2392. © 2016 AlphaMed Press.

  4. Stress !!!

    NARCIS (Netherlands)

    Fledderus, M.

    2012-01-01

    Twee op de vijf UT-studenten hebben last van ernstige studiestress, zo erg zelfs dat het ze in hun privéleven belemmert. Die cijfers komen overeen met het landelijk beeld van stress onder studenten. Samen met 14 andere universiteits- en hogeschoolbladen enquêteerde UT Nieuws bijna 5500 studenten.

  5. Real-time label-free monitoring of the cellular response to osmotic stress using conventional and long-range surface plasmons

    Czech Academy of Sciences Publication Activity Database

    Vala, Milan; Roberek, R.; Bocková, Markéta; Wegener, J.; Homola, Jiří

    2013-01-01

    Roč. 40, č. 1 (2013), s. 417-421 ISSN 0956-5663 R&D Projects: GA ČR GBP205/12/G118 Institutional support: RVO:67985882 Keywords : surface plasmon resonance * NRK cells * osmotic stress Subject RIV: JA - Electronics ; Optoelectronics, Electrical Engineering Impact factor: 6.451, year: 2013

  6. Cold priming drives the sub-cellular antioxidant systems to protect photosynthetic electron transport against subsequent low temperature stress in winter wheat

    DEFF Research Database (Denmark)

    Li, Xiangnan; Cai, Jian; Liu, Fulai

    2014-01-01

    Low temperature seriously depresses the growth of wheat through inhibition of photosynthesis, while earlier cold priming may enhance the tolerance of plants to subsequent low temperature stress. Here, winter wheat plants were firstly cold primed (5.2°C lower temperature than the ambient temperatu...

  7. Understanding Defense Mechanisms.

    Science.gov (United States)

    Cramer, Phebe

    2015-12-01

    Understanding defense mechanisms is an important part of psychotherapy. In this article, we trace the history of the concept of defense, from its origin with Freud to current views. The issue of defense as an unconscious mechanism is examined. The question of whether defenses are pathological, as well as their relation to pathology, is discussed. The effect of psychotherapy on the use of defenses, and their relation to a therapeutic alliance is explored. A series of empirical research studies that demonstrate the functioning of defense mechanisms and that support the theory is presented. Research also shows that as part of normal development, different defenses emerge at different developmental periods, and that gender differences in defense use occur.

  8. Defense mechanisms in ethics consultation.

    Science.gov (United States)

    Agich, George J

    2011-12-01

    While there is no denying the relevance of ethical knowledge and analytical and cognitive skills in ethics consultation, such knowledge and skills can be overemphasized. They can be effectively put into practice only by an ethics consultant, who has a broad range of other skills, including interpretive and communicative capacities as well as the capacity effectively to address the psychosocial needs of patients, family members, and healthcare professionals in the context of an ethics consultation case. In this paper, I discuss how emotion can play an important interpretive role in clinical ethics consultation and why attention to the role of defense mechanisms can be helpful. I concentrate on defense mechanisms, arguing first, that the presence of these mechanisms is understandable given the emotional stresses and communicative occlusions that occur between the families of patients and critical care professionals in the circumstances of critical care; second, that identifying these mechanisms is essential for interpreting and managing how these factors influence the way that the "facts" of the case are understood by family members; and, third, that effectively addressing these mechanisms is an important component for effectively doing ethics consultation. Recognizing defense mechanisms, understanding how and why they operate, and knowing how to deal with these defense mechanisms when they pose problems for communication or decision making are thus essential prerequisites for effective ethics consultation, especially in critical care.

  9. The 6-a-day study: effects of fruit and vegetables on markers of oxidative stress and antioxidative defense in healthy nonsmokers

    DEFF Research Database (Denmark)

    Dragsted, Lars Ove; Pedersen, A.; Hermetter, A.

    2004-01-01

    Background: Fruit and vegetables contain both nutritive and nonnutritive factors that might contribute to redox (antioxidant and prooxidant) actions. Objective: We investigated the relative influence of nutritive and nonnutritive factors in fruit and vegetables on oxidative damage and enzymatic d...... lipoproteins to oxidation more efficiently than do the vitamins and minerals that fruit and vegetables are known to contain. Plasma protein carbonyl formation at lysine residues increases because of the vitamins and minerals in fruit and vegetables.......Background: Fruit and vegetables contain both nutritive and nonnutritive factors that might contribute to redox (antioxidant and prooxidant) actions. Objective: We investigated the relative influence of nutritive and nonnutritive factors in fruit and vegetables on oxidative damage and enzymatic...... and vegetables/d; the placebo group received a placebo pill, and the supplement group received a vitamin pill designed to contain vitamins and minerals corresponding to those in 600 g fruit and vegetables. Biomarkers of oxidative damage to protein and lipids and of antioxidant nutrients and defense enzymes were...

  10. Deltamethrin-induced oxidative stress and biochemical changes in tissues and blood of catfish (Clarias gariepinus: antioxidant defense and role of alpha-tocopherol

    Directory of Open Access Journals (Sweden)

    Amin Kamal A

    2012-04-01

    Full Text Available Abstract Background The pyrethroid class of insecticides, including deltamethrin, is being used as substitutes for organochlorines and organophosphates in pest-control programs because of their low environmental persistence and toxicity. This study was aimed to investigate the impact of commonly used pesticides (deltamethrin on the blood and tissue oxidative stress level in catfish (Clarias gariepinus; in addition to the protective effect of α-tocopherol on deltamethrin induced oxidative stress. Catfish were divided into three groups, 1st control group include 20 fish divided into two tanks each one contain 10 fish, 2nd deltamethrin group, where Fish exposed to deltamethrin in a concentration (0.75 μg/l and 3rd Vitamin E group, Fish exposed to deltamethrin and vitamin E at a dose of 12 μg/l for successive 4 days. Serum, liver, kidney and Gills were collected for biochemical assays. Tissue oxidative stress biomarkers malondialdhyde (MDA and catalase activity in liver, kidney and gills tissues, serum liver enzymes (ALT and AST, serum albumin, total protein, urea and creatinine were analysed. Results Our results showed that 48 h. exposure to 0.75 μg/l deltamethrin significantly (p  Conclusions It could be concluded that deltamethrin is highly toxic to catfish even in very low concentration (0.75 μg/l. Moreover the effect of deltamethrin was pronounced in the liver of catfish in comparison with kidneys and gills. Moreover fish antioxidants and oxidative stress could be used as biomarkers for aquatic pollution, thus helping in the diagnosis of pollution. Adminstration of 12 μg/l α-tocopherol restored the quantified tissue and serum parameters, so supplementation of α-tocopherol consider an effective way to counter the toxicity of deltamethrin in the catfish.

  11. Salinity modulates thermotolerance, energy metabolism and stress response in amphipods Gammarus lacustris

    OpenAIRE

    Vereshchagina, Kseniya P.; Lubyaga, Yulia A.; Shatilina, Zhanna; Bedulina, Daria; Gurkov, Anton; Axenov-Gribanov, Denis V.; Baduev, Boris; Kondrateva, Elizaveta S.; Gubanov, Mikhail; Zadereev, Egor; Sokolova, Inna; Timofeyev, Maxim

    2016-01-01

    Temperature and salinity are important abiotic factors for aquatic invertebrates. We investigated the influence of different salinity regimes on thermotolerance, energy metabolism and cellular stress defense mechanisms in amphipods Gammarus lacustris Sars from two populations. We exposed amphipods to different thermal scenarios and determined their survival as well as activity of major antioxidant enzymes (peroxidase, catalase, glutathione S-transferase) and parameters of energy metabolism (c...

  12. Role of two-sided crosstalk between NO and H2S on improvement of mineral homeostasis and antioxidative defense in Sesamum indicum under lead stress.

    Science.gov (United States)

    Amooaghaie, Rayhaneh; Zangene-Madar, Faezeh; Enteshari, Shekoofeh

    2017-05-01

    H 2 S and NO are two important gasotransmitters that modulate stress responses in plants. There are the contradictory data on crosstalk between NO and H 2 S in the studies. Hence, in the present study, the role of interplay between NO and H 2 S was assessed on the Pb tolerance of Sesamum indicum using pharmacological and biochemical approaches. Results revealed that Pb stress reduced the plant growth and the content of photosynthetic pigments and Fv/Fm ratio, increased the lipid peroxidation and the H 2 O 2 content, elevated the endogenous contents of nitric oxide (NO), H 2 S and enhanced the activities of antioxidant enzymes (except APX). Additionally, concentrations of most mineral ions (K, P, Mg, Fe, Mn and Zn) in both shoots and roots decreased. Pb accumulation in roots was more than it in shoots. Both sodium hydrosulfide (NaHS as a donor of H 2 S) and sodium nitroprusside (SNP as an NO donor) improved the plant growth, the chlorophyll and carotenoid contents and PSII efficiency, reduced oxidative damage, increased the activities of antioxidant enzymes and reduced the proline content in Pb-stressed plants. Furthermore, both NaHS and SNP significantly restricted the uptake and translocation of Pb, thereby minimizing antagonistic effects of Pb on essential mineral contents in sesame plants. NaHS increased the NO generation and many NaHS-induced responses were completely reversed by cPTIO, as the specific NO scavenger. Applying SNP also enhanced H 2 S release levels in roots of Pb-stressed plants and only some NO-driven effects were partially weakened by hypotuarine (HT), as the scavenger of H 2 S.These findings proposed for the first time that two-sided interplay between H 2 S and NO might confer an increased tolerance to Pb stress via activating the antioxidant systems, reducing the uptake and translocation of Pb, and harmonizing the balance of mineral nutrient. Copyright © 2017 Elsevier Inc. All rights reserved.

  13. Reducing residual stresses and deformations in selective laser melting through multi-level multi-scale optimization of cellular scanning strategy

    DEFF Research Database (Denmark)

    Mohanty, Sankhya; Hattel, Jesper Henri

    2016-01-01

    Residual stresses and deformations continue to remain one of the primary challenges towards expanding the scope of selective laser melting as an industrial scale manufacturing process. While process monitoring and feedback-based process control of the process has shown significant potential......, there is still dearth of techniques to tackle the issue. Numerical modelling of selective laser melting process has thus been an active area of research in the last few years. However, large computational resource requirements have slowed the usage of these models for optimizing the process.In this paper......, a calibrated, fast, multiscale thermal model coupled with a 3D finite element mechanical model is used to simulate residual stress formation and deformations during selective laser melting. The resulting reduction in thermal model computation time allows evolutionary algorithm-based optimization of the process...

  14. Transcriptome wide analyses reveal a sustained cellular stress response in the gill tissue of Trematomus bernacchii after acclimation to multiple stressors

    OpenAIRE

    Huth, Troy J.; Place, Sean P.

    2016-01-01

    Background As global climate change progresses, the Southern Ocean surrounding Antarctica is poised to undergo potentially rapid and substantial changes in temperature and pCO2. To survive in this challenging environment, the highly cold adapted endemic fauna of these waters must demonstrate sufficient plasticity to accommodate these changing conditions or face inexorable decline. Previous studies of notothenioids have focused upon the short-term response to heat stress; and more recently the...

  15. Identification and characterization of molluscan caveolin-1 ortholog from Haliotis discus discus: Possible involvement in embryogenesis and host defense mechanism against pathogenic stress.

    Science.gov (United States)

    Udayantha, H M V; Bathige, S D N K; Priyathilaka, Thanthrige Thiunuwan; Lee, Sukkyoung; Kim, Myoung-Jin; Lee, Jehee

    2018-01-01

    Caveolins are principal membrane proteins of caveolae that play a central role in signal transduction, substrate transport, and membrane trafficking in various cell types. Numerous studies have reported the crucial role of caveolin-1 (CAV1) in response to invading microbes; yet, very little is known about molluscan CAV1. In this study, we identified and characterized CAV1 ortholog from the disk abalone, Haliotis discus discus (HdCAV1). The cDNA sequence of HdCAV1 is 826 bp long and encodes a 127-amino acid polypeptide. Characteristic caveolin superfamily domain (Glu 3 - Lys 126 ) and two possible transmembrane domains (Cys 48 - Tyr 67 and Ile 103 - Phe 120 ) were identified in the HdCAV1 protein. Homology analysis revealed that HdCAV1 shared higher identity (>47%) with molluscans, but lower identity with other species. Phylogenetic tree constructed by the neighbor-joining (NJ) method revealed a distinct evolutionary pathway for molluscans. Transcriptional analysis by SYBR Green qPCR showed the highest expression of HdCAV1 mRNA in late veliger stage, as compared to that in other embryonic developmental stages of disk abalone. In adult animals, gill tissue showed highest HdCAV1 transcript levels under normal physiological condition. Stimulations with two bacteria (Vibrio parahaemolyticus and Listeria monocytogenes), viral hemorrhagic septicemia virus, and two pathogen-associated molecular patterns (LPS and poly I:C) significantly modulated the expression of HdCAV1 transcripts. Collectively, these data suggest that CAV1 plays an important role in embryogenesis and host immune defense in disk abalone. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Melatonin Reduces Oxidative Stress Damage Induced by Hydrogen Peroxide in Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Jennifer Vázquez

    2017-06-01

    Full Text Available Melatonin (N-acetyl-5-methoxytryptamine, which is synthesized from tryptophan, is formed during alcoholic fermentation, though its role in yeast is unknown. This study employed Saccharomyces cerevisiae as an eukaryote model to evaluate the possible effects of melatonin supplementation on endogenous cellular defense systems by measuring its effects on various cellular targets. Cell viability, intracellular reduced and oxidized glutathione levels (GSH and GSSG, respectively, reactive oxygen species (ROS production, and expression of genes related to antioxidant defense in yeast, such as the glutathione system, catalase, superoxide dismutase, glutaredoxin, and thioredoxin, were assessed. Melatonin alone decreased GSH, increased GSSG, and activated antioxidant defense system genes, which reached maximum levels in the stationary phase. These results indicate that melatonin supplementation enables cells to resist better the stress generated in the stationary phase. However, when cells were subjected to oxidative stress induced by H2O2, melatonin was able to partially mitigate cell damage by decreasing ROS accumulation and GSH and increasing GSSG; this was followed by enhanced cell viability after stress exposure, mostly when occurring in the early stationary phase. Additionally, under such conditions, most genes related to endogenous antioxidant defense continued to be up-regulated with melatonin supplementation. The findings demonstrate that melatonin can act as antioxidant in S. cerevisiae.

  17. For a Limited Time Only? How Long Can Trees Maintain Enhanced Chemical Defenses During Pre-Mortality Heat and Drought Stress

    Science.gov (United States)

    Trowbridge, A.; Adams, H. D.; Cook, A. A.; Hofland, M.; Weaver, D.; McDowell, N. G.

    2016-12-01

    The relative contribution of forest pests to climate and drought-induced tree mortality is complex and largely absent from current process-based models. Recent efforts have focused on developing frameworks to integrate insects into models of tree mortality, citing the need for a better mechanistic understanding of the links between stress-induced tree physiology and insect behavior and population dynamics. Secondary plant metabolites (SPMs) play a critical role in plant resistance and their synthesis and mobilization are coupled to carbon assimilation, hydraulic conductivity, and herbivory itself. Insect host choice also depends in part on behavioral responses to host SPMs. Monoterpenes are the dominant SPMs in conifers, and while high concentrations of monoterpenes are toxic to bark beetles, lower concentrations serve as precursors for a number of aggregation pheromones. Thus, the impact of monoterpenes on bark beetle behavior is complex and is impacted by environmental effects on primary metabolism including heat and drought stress. Here, we quantify the dynamics of piñon pine monoterpene chemistry as a function of predicted and prolonged drought stress implemented at the SUrvival MOrtality (SUMO) experimental site at the Los Alamos National Laboratory, NM, USA. In both woody and needle tissues, total monoterpene concentrations in ambient trees were not significantly different from those observed in trees exposed to heat stress, but drought trees showed higher total concentration while heat+drought trees were observed to have the highest levels (2 fold increase over ambient). These treatment effects were sustained over a two-year period despite seasonal variation in tree water status; however, total concentration in the xylem and phloem were closely coupled to tree water potential and treatment effects took longer to manifest relative to the needles. Individual compounds responded differently to the treatments, suggesting cyclase-level enzyme regulation, while

  18. Protective effect of taurine against potassium bromate-induced hemoglobin oxidation, oxidative stress, and impairment of antioxidant defense system in blood.

    Science.gov (United States)

    Ahmad, Mir Kaisar; Mahmood, Riaz

    2016-03-01

    Potassium bromate (KBrO3 ) is widely used as a food-additive and is a major water disinfection by-product. KBrO3 causes severe toxicity in humans and experimental animals. Bromate is considered a probable human carcinogen and a complete carcinogen in animals. We have investigated the potential role of taurine in protecting against KBrO3 -induced oxidative stress in rat blood. Animals were given taurine for 5 days prior to KBrO3 and then sacrificed. Blood was collected and used to prepare hemolysates and plasma, which were then used for the analysis of several biochemical parameters. Administration of single oral dose of KBrO3 alone induced hepato- and nephro-toxicity as evident by elevated marker levels in plasma. Lipid peroxidation and protein oxidation were increased both in plasma and erythrocytes, suggesting the induction of oxidative stress. KBrO3 increased methemoglobin, nitric oxide, and hydrogen peroxide levels. It also altered the activities of the major antioxidant enzymes and lowered the antioxidant power of blood. Administration of taurine, prior to treatment with KBrO3 , resulted in significant attenuation in all these parameters but the administration of taurine alone had no effect. These results show that taurine is effective in mitigating the oxidative insult induced in rat blood by KBrO3 . © 2014 Wiley Periodicals, Inc.

  19. Cellular responses in sea fan corals: granular amoebocytes react to pathogen and climate stressors.

    Directory of Open Access Journals (Sweden)

    Laura D Mydlarz

    Full Text Available BACKGROUND: Climate warming is causing environmental change making both marine and terrestrial organisms, and even humans, more susceptible to emerging diseases. Coral reefs are among the most impacted ecosystems by climate stress, and immunity of corals, the most ancient of metazoans, is poorly known. Although coral mortality due to infectious diseases and temperature-related stress is on the rise, the immune effector mechanisms that contribute to the resistance of corals to such events remain elusive. In the Caribbean sea fan corals (Anthozoa, Alcyonacea: Gorgoniidae, the cell-based immune defenses are granular acidophilic amoebocytes, which are known to be involved in wound repair and histocompatibility. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate for the first time in corals that these cells are involved in the organismal response to pathogenic and temperature stress. In sea fans with both naturally occurring infections and experimental inoculations with the fungal pathogen Aspergillus sydowii, an inflammatory response, characterized by a massive increase of amoebocytes, was evident near infections. Melanosomes were detected in amoebocytes adjacent to protective melanin bands in infected sea fans; neither was present in uninfected fans. In naturally infected sea fans a concurrent increase in prophenoloxidase activity was detected in infected tissues with dense amoebocytes. Sea fans sampled in the field during the 2005 Caribbean Bleaching Event (a once-in-hundred-year climate event responded to heat stress with a systemic increase in amoebocytes and amoebocyte densities were also increased by elevated temperature stress in lab experiments. CONCLUSIONS/SIGNIFICANCE: The observed amoebocyte responses indicate that sea fan corals use cellular defenses to combat fungal infection and temperature stress. The ability to mount an inflammatory response may be a contributing factor that allowed the survival of even infected sea fan corals during a

  20. Biomonitoring role of some cellular markers during heat stress-induced changes in highly representative fresh water mollusc, Bellamya bengalensis: Implication in climate change and biological adaptation.

    Science.gov (United States)

    Dutta, Sangita Maiti; Mustafi, Soumyajit Banerjee; Raha, Sanghamitra; Chakraborty, Susanta Kumar

    2018-04-12

    Owing to increasing concern of global climate-change, temperature rise is of great interest which can be primarily evaluated from the seasonal variations in some organisms. Aquatic environment can be extremely stressful to its inhabitants because most of them are poikilothermous. In the present study, attempt was made to evaluate the biological effects of oxidative-stress and adaptive/antioxidant capacities during temperature variations (36-40 °C for 24hrs to 72hrs) in Bellamya bengalensis both in environmental and laboratory conditions by testing some biomarkers like HSP70, catalase (CAT), superoxide dismutase (SOD), reduced glutathione (GSH) and glutathione reductase (GR). The biomarker potency of the molecules and the anti-oxidative metabolic-network was postulated and extrapolated to find its resemblance to the climate-change associated organismal variations. In a natural and eco-restored environment in the Eastern part of India, 10-20 fold increases in CAT, SOD and HSP70 protein expressions (Western blot results) were noticed in Bellamya paralleling to their increased enzymatic activities (gel zymogram studies) due to the seasonal (summer versus winter) temperature variation. It is evident from the consecutive three years' study that this variation resulted in the unfavorable physico-chemical changes of water quality parameters like dissolved oxygen, biochemical oxygen demand, alkalinity and consequently decreased the animal density in summer. And that was revived due to their higher reproduction-rate in post rainy/winter season when temperature normalizes resulting in a restoration of favorable environment. In laboratory condition, the reduced GR and increased GPx indicated the oxidative damage as evident by higher tissue MDA level following to higher mortality. Changes in SOD and CAT activities suggest activation of physiological mechanism to scavenge the ROS produced during heat stress. However, when mortality increased at different time points (36

  1. Defense Co-Production: Collaborative National Defense

    National Research Council Canada - National Science Library

    Richardson, Robert R

    2005-01-01

    ...) and the defense industry at large. The aim of the study will be to examine the evolution of the procurement and contracting process since World War II with a qualitative and quantitative evaluation of the increasingly symbiotic...

  2. PTSD as a criminal defense: a review of case law.

    Science.gov (United States)

    Berger, Omri; McNiel, Dale E; Binder, Renée L

    2012-01-01

    Posttraumatic stress disorder (PTSD) has been offered as a basis for criminal defenses, including insanity, unconsciousness, self-defense, diminished capacity, and sentencing mitigation. Examination of case law (e.g., appellate decisions) involving PTSD reveals that when offered as a criminal defense, PTSD has received mixed treatment in the judicial system. Courts have often recognized testimony about PTSD as scientifically reliable. In addition, PTSD has been recognized by appellate courts in U.S. jurisdictions as a valid basis for insanity, unconsciousness, and self-defense. However, the courts have not always found the presentation of PTSD testimony to be relevant, admissible, or compelling in such cases, particularly when expert testimony failed to show how PTSD met the standard for the given defense. In cases that did not meet the standard for one of the complete defenses, PTSD has been presented as a partial defense or mitigating circumstance, again with mixed success.

  3. Stress.

    Science.gov (United States)

    Chambers, David W

    2008-01-01

    We all experience stress as a regular, and sometimes damaging and sometimes useful, part of our daily lives. In our normal ups and downs, we have our share of exhaustion, despondency, and outrage--matched with their corresponding positive moods. But burnout and workaholism are different. They are chronic, dysfunctional, self-reinforcing, life-shortening habits. Dentists, nurses, teachers, ministers, social workers, and entertainers are especially susceptible to burnout; not because they are hard-working professionals (they tend to be), but because they are caring perfectionists who share control for the success of what they do with others and perform under the scrutiny of their colleagues (they tend to). Workaholics are also trapped in self-sealing cycles, but the elements are ever-receding visions of control and using constant activity as a barrier against facing reality. This essay explores the symptoms, mechanisms, causes, and successful coping strategies for burnout and workaholism. It also takes a look at the general stress response on the physiological level and at some of the damage American society inflicts on itself.

  4. Cytotoxicity and expression of genes involved in the cellular stress response and apoptosis in mammalian fibroblast exposed to cotton cellulose nanofibers

    Science.gov (United States)

    Pereira, M. M.; Raposo, N. R. B.; Brayner, R.; Teixeira, E. M.; Oliveira, V.; Quintão, C. C. R.; Camargo, L. S. A.; Mattoso, L. H. C.; Brandão, H. M.

    2013-02-01

    Cellulose nanofibers (CNF) have mechanical properties that make them very attractive for applications in the construction of polymeric matrices, drug delivery and tissue engineering. However, little is known about their impact on mammalian cells. The objective of this study was to evaluate the cytotoxicity of CNF and their effect on gene expression of fibroblasts cultured in vitro. The morphology of CNF was analyzed by transmission electron microscopy and the surface charge by Zeta potential. Cell viability was analyzed by flow cytometry assay and gene expression of biomarkers focused on cell stress response such as Heat shock protein 70.1 (HSP70.1) and Peroxiredoxin 1 (PRDX1) and apoptosis as B-cell leukemia (BCL-2) and BCL-2 associated X protein (BAX) by RT-PCR assay. Low concentrations of CNF (0.02-100 μg ml-1) did not cause cell death; however, at concentrations above 200 μg ml-1, the nanofibers significantly decreased cell viability (86.41 ± 5.37%). The exposure to high concentrations of CNF (2000 and 5000 μg ml-1) resulted in increased HSP70.1, PRDX1 and BAX gene expression. The current study concludes that, under the conditions tested, high concentrations (2000 and 5000 μg ml-1) of CNF cause decreased cell viability and affect the expression of stress- and apoptosis-associated molecular markers.

  5. Cytotoxicity of CdTe quantum dots in human umbilical vein endothelial cells: the involvement of cellular uptake and induction of pro-apoptotic endoplasmic reticulum stress

    Directory of Open Access Journals (Sweden)

    Yan M

    2016-02-01

    Full Text Available Ming Yan,1,* Yun Zhang,2,* Haiyan Qin,3 Kezhou Liu,1 Miao Guo,1 Yakun Ge,1 Mingen Xu,1 Yonghong Sun,4 Xiaoxiang Zheng4 1Department of Biomedical Engineering, College of Life Information Science and Instrument Engineering, Hangzhou Dianzi University, Hangzhou, 2Basic Medical Sciences, College of Medicine, Shaoxing University, Shaoxing, 3Department of Chemistry, Zhejiang University, 4Zhejiang Provincial Key Laboratory of Cardio-Cerebral Vascular Detection Technology and Medicinal Effectiveness Appraisal, Department of Biomedical Engineering, Zhejiang University, Hangzhou, People’s Republic of China *These authors contributed equally to this work Abstract: Cadmium telluride quantum dots (CdTe QDs have been proposed to induce oxidative stress, which plays a crucial role in CdTe QDs-mediated mitochondrial-dependent apoptosis in human umbilical vein endothelial cells (HUVECs. However, the direct interactions of CdTe QDs with HUVECs and their potential impairment of other organelles like endoplasmic reticulum (ER in HUVECs are poorly understood. In this study, we reported that the negatively charged CdTe QDs (–21.63±0.91 mV, with good dispersity and fluorescence stability, were rapidly internalized via endocytosis by HUVECs, as the notable internalization could be inhibited up to 95.52% by energy depletion (NaN3/deoxyglucose or low temperature. The endocytosis inhibitors (methyl-β-cyclodextrin, genistein, sucrose, chlorpromazine, and colchicine dramatically decreased the uptake of CdTe QDs by HUVECs, suggesting that both caveolae/raft- and clathrin-mediated endocytosis were involved in the endothelial uptake of CdTe QDs. Using immunocytochemistry, a striking overlap of the internalized CdTe QDs and ER marker was observed, which indicates that QDs may be transported to ER. The CdTe QDs also caused remarkable ER stress responses in HUVECs, confirmed by significant dilatation of ER cisternae, upregulation of ER stress markers GRP78/GRP94, and

  6. Markers of cellular senescence. Telomere shortening as a marker of cellular senescence.

    Science.gov (United States)

    Bernadotte, Alexandra; Mikhelson, Victor M; Spivak, Irina M

    2016-01-01

    The cellular senescence definition comes to the fact of cells irreversible proliferation disability. Besides the cell cycle arrest, senescent cells go through some morphological, biochemical, and functional changes which are the signs of cellular senescence. The senescent cells (including replicative senescence and stress-induced premature senescence) of all the tissues look alike. They are metabolically active and possess the set of characteristics in vitro and in vivo, which are known as biomarkers of aging and cellular senescence. Among biomarkers of cellular senescence telomere shortening is a rather elegant frequently used biomarker. Validity of telomere shortening as a marker for cellular senescence is based on theoretical and experimental data.

  7. Adverse effects of microplastics and oxidative stress-induced MAPK/Nrf2 pathway-mediated defense mechanisms in the marine copepod Paracyclopina nana

    Science.gov (United States)

    Jeong, Chang-Bum; Kang, Hye-Min; Lee, Min-Chul; Kim, Duck-Hyun; Han, Jeonghoon; Hwang, Dae-Sik; Souissi, Sami; Lee, Su-Jae; Shin, Kyung-Hoon; Park, Heum Gi; Lee, Jae-Seong

    2017-01-01

    Microplastic pollution causes a major concern in the marine environment due to their worldwide distribution, persistence, and adverse effects of these pollutants in the marine ecosystem. Despite its global presence, there is still a lack of information on the effect of microplastics on marine organisms at the molecular level. Herein we demonstrated ingestion and egestion of nano- (0.05 μm) and micro-sized (0.5 and 6 μm) polystyrene microbeads in the marine copepod Paracyclopina nana, and examined molecular responses to exposure to microbeads with in vivo endpoints such as growth rate and fecundity. Also, we proposed an adverse outcome pathway for microplastic exposure that covers molecular and individual levels. This study provides the first insight into the mode of action in terms of microplastic-induced oxidative stress and related signaling pathways in P. nana.

  8. Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses.

    Science.gov (United States)

    Xia, Ning; Zhang, Gang; Liu, Xin-Ying; Deng, Lin; Cai, Gao-Lei; Zhang, Yi; Wang, Xiao-Jie; Zhao, Jie; Huang, Li-Li; Kang, Zhen-Sheng

    2010-12-01

    Proteins encoded by the NAC gene family constitute one of the largest plant-specific transcription factors, which have been identified to play many important roles in both abiotic and biotic stress adaptation, as well as in plant development regulation. In the current paper, a full-length cDNA sequence of a novel wheat NAC gene, designated as TaNAC4, was isolated using in silico cloning and the reverse transcription PCR (RT-PCR) methods. TaNAC4 sharing high homology with rice OsNAC4 gene was predicted to encode a protein of 308 amino acid residues, which contained a plant-specific NAC domain in the N-terminus. Transient expression analysis indicated that the deduced TaNAC4 protein was localized in the nucleus of onion epidemical cells. Yeast one-hybrid assay revealed that the C-terminal region of the TaNAC4 protein had transcriptional activity. The expression of TaNAC4 was largely higher in the wheat seedling roots, than that in leaves and stems. TaNAC4 transcript in wheat leaves was induced by the infection of strip rust pathogen, and also by exogenous applied methyl jasmonate (MeJA), ABA and ethylene. However, salicylic acid (SA) had no obvious effect on TaNAC4 expression. Environmental stimuli, including high salinity, wounding, and low-temperature also induced TaNAC4 expression. These results indicate that this novel TaNAC4 gene functions as a transcriptional activator involved in wheat response to biotic and abiotic stresses.

  9. Aging, Cellular Senescence, and Cancer

    Science.gov (United States)

    Campisi, Judith

    2014-01-01

    For most species, aging promotes a host of degenerative pathologies that are characterized by debilitating losses of tissue or cellular function. However, especially among vertebrates, aging also promotes hyperplastic pathologies, the most deadly of which is cancer. In contrast to the loss of function that characterizes degenerating cells and tissues, malignant (cancerous) cells must acquire new (albeit aberrant) functions that allow them to develop into a lethal tumor. This review discusses the idea that, despite seemingly opposite characteristics, the degenerative and hyperplastic pathologies of aging are at least partly linked by a common biological phenomenon: a cellular stress response known as cellular senescence. The senescence response is widely recognized as a potent tumor suppressive mechanism. However, recent evidence strengthens the idea that it also drives both degenerative and hyper-plastic pathologies, most likely by promoting chronic inflammation. Thus, the senescence response may be the result of antagonistically pleiotropic gene action. PMID:23140366

  10. Functional interaction of protein kinase CK2 and activating transcription factor 4 (ATF4), a key player in the cellular stress response.

    Science.gov (United States)

    Ampofo, Emmanuel; Sokolowsky, Tasja; Götz, Claudia; Montenarh, Mathias

    2013-03-01

    Protein kinase CK2 is a pleiotropic enzyme, which is implicated in the regulation of numerous biological processes. It seems to regulate the various functions by binding to other proteins and by phosphorylation of many different substrates. Here, we identified the activating transcription factor 4 (ATF4), an essential component of the ER stress signaling, as a new binding partner and a new substrate of CK2 in vitro and in vivo. Bifluorescence complementation analysis (BiFC) revealed that CK2α and ATF4 associate in the nucleus. By using mutants of ATF4 we identified serine 215 as the main CK2 phosphorylation site. The ATF4 S215A mutant turned out to be more stable than the wild-type form. We further noticed that an inhibition of CK2 caused an increased transcription of the ATF4 gene. Analyses of the transcription factor activity revealed an impaired activity of the CK2 phosphorylation mutant of ATF4. Thus, we show that (i) ATF4 is a binding partner of CK2α (ii) ATF4 is a substrate of CK2, (iii) the phosphorylation of ATF4 by CK2 influences the stability of ATF4, (iv) the transcription of ATF4 is regulated by CK2 and (v) the transcription factor activity of ATF4 is regulated by the CK2 phosphorylation of ATF4. Thus, CK2 plays an essential role in the regulation of the ER-stress induced signaling pathway. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Low-dose occupational exposure to benzene and signal transduction pathways involved in the regulation of cellular response to oxidative stress.

    Science.gov (United States)

    Fenga, Concettina; Gangemi, Silvia; Giambò, Federica; Tsitsimpikou, Christina; Golokhvast, Kirill; Tsatsakis, Aristidis; Costa, Chiara

    2016-02-15

    Benzene metabolism seems to modulate NF-κB, p38-MAPK (mitogen-activated protein kinase) and signal transducer and activator of transcription 3 (STAT3) signalling pathways via the production of reactive oxygen species. This study aims to evaluate the effects of low-dose, long-term exposure on NF-κB, STAT3, p38-MAPK and stress-activated protein kinase/Jun amino-terminal kinase (SAPK/JNK) signal transduction pathways in peripheral blood mononuclear cells in gasoline station attendants. The influence of consumption of vegetables and fruits on these pathways has also been evaluated. A total of 91 men, employed in gasoline stations located in eastern Sicily, were enrolled for this study and compared with a control group of 63 male office workers with no history of exposure to benzene. The exposure was assessed by measuring urinary trans,trans-muconic acid (t,t-MA) concentration. Quantitative analyses were performed for proteins NF-κB p65, phospho-NF-κB p65, phospho-IκB-α, phospho-SAPK/JNK, phospho-p38 MAPK and phospho-STAT3 using an immunoenzymatic assay. The results of this study indicate significantly higher t,t-MA levels in gasoline station attendants. With regard to NF-κB, phospho-IκB-α and phospho-STAT3 proteins, statistically significant differences were observed in workers exposed to benzene. However, no differences were observed in SAPK/JNK and p38-MAPK activation. These changes were positively correlated with t,t-MA levels, but only phospho-NF-κB p65 was associated with the intake of food rich in antioxidant active principles. Chronic exposure to low-dose benzene can modulate signal transduction pathways activated by oxidative stress and involved in cell proliferation and apoptosis. This could represent a possible mechanism of carcinogenic action of chronic benzene exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Gastrointestinal defense mechanisms.

    Science.gov (United States)

    Said, Hyder; Kaunitz, Jonathan D

    2016-11-01

    To summarize and illuminate the recent findings regarding gastroduodenal mucosal defense mechanisms and the specific biomolecules involved in regulating this process, such as glucagon-like peptides (GLPs). There has been a growing interest in luminal nutrient chemosensing and its physiological effects throughout the digestive system. From the ingestion of food in the oral cavity to the processing and absorption of nutrients in the intestines, nutrient chemosensing receptors signal the production and release of numerous bioactive peptides from enteroendocrine cells, such as the proglucagon-derived peptides. There has been a major emphasis on two proglucagon-derived peptides, namely GLP-1 and GLP-2, due to their apparent beneficial effect on gut structure, function, and on metabolic processes. As an incretin, GLP-1 not only enhances the effect and release of insulin on pancreatic βcells but also has been implicated in having trophic effects on the intestinal epithelium. In addition, GLP-2, the other major proglucagon-derived peptide, has potent intestinotrophic effects, such as increasing the rate of mucosal stem cell proliferation, mucosal blood flow, and fluid absorption, as well as augmenting the rate of duodenal bicarbonate secretion to improve gastric mucosal health and longevity. Understanding the mechanisms underlying nutrient chemosensing and how it relates to GLP release can further elucidate how the gut functions in response to cellular changes and disturbances. Furthermore, a more in-depth comprehension of GLP release and its tissue-specific effects will help improve the utility of GLP-1 and GLP-2 receptor agonists in clinical settings. This, in turn, should help patients suffering from intestinal failure, malabsorption, and mucosal injury.

  13. Proteomic analysis of the defense response of wheat to the powdery mildew fungus, Blumeria graminis f. sp. tritici.

    Science.gov (United States)

    Mandal, Md Siddikun Nabi; Fu, Ying; Zhang, Sheng; Ji, Wanquan

    2014-12-01

    Powdery mildew of wheat is caused by Blumeria graminis f. sp. tritici (Bgt). Although many wheat cultivars resistant to this disease have been developed, little is known about their resistance mechanisms. The aim of this study was to identify proteins showing changes in abundance during the resistance response of the wheat line N0308 infected by Bgt. In two-dimensional electrophoresis analyses, 45 spots on the gels showed significant changes in abundance at 24, 48, and 72 h after inoculation, as compared to non-inoculated plants. Of these 45 proteins, 44 were identified by mass spectrometry analysis using the NCBInr database of Triticum aestivum (26 spots) and closely related species in the Triticum genus (18 spots). These proteins were associated with the defense response, photosynthesis, metabolism, and other cellular processes in wheat. Most of the up-regulated proteins were identified as stress- and defense-related proteins. In particular, the product of a specific powdery mildew resistance gene (Pm3b and its homolog) and some other defense- and pathogenesis-related proteins were overexpressed. The resistance gene product mediates the immune response and coordinates other cellular processes during the resistance response to Bgt.

  14. Cellular: Toward personal communications

    Science.gov (United States)

    Heffernan, Stuart

    1991-09-01

    The cellular industry is one of the fastest growing segment of the telecommunications industry. With an estimated penetration rate of 20 percent in the near future, cellular is becoming an ubiquitous telecommunications service in the U.S. In this paper we will examine the major advancements in the cellular industry: customer equipment, cellular networks, engineering tools, customer support, and nationwide seamless service.

  15. Multiple cellular roles of Neurospora crassa plc-1, splA2, and cpe-1 in regulation of cytosolic free calcium, carotenoid accumulation, stress responses, and acquisition of thermotolerance.

    Science.gov (United States)

    Barman, Ananya; Tamuli, Ranjan

    2015-04-01

    Phospholipase C1 (PLC1), secretory phospholipase A2 (sPLA2) and Ca(2+)/H(+) exchanger proteins regulate calcium signaling and homeostasis in eukaryotes. In this study, we investigate functions for phospholipase C1 (plc-1), sPLA2 (splA2) and a Ca(2+)/H(+) exchanger (cpe-1) in the filamentous fungus Neurospora crassa. The Δplc-1, ΔsplA2, and Δcpe-1 mutants exhibited a growth defect on medium supplemented with the divalent ionophore A23187, suggesting that these genes might play a role in regulation of cytosolic free Ca(2+) concentration ([Ca(2+)](c)) in N. crassa. The strains lacking plc-1, splA2, and cpe-1 possessed higher carotenoid content than wild type at 8°C, 22°C, and 30°C, and showed increased ultraviolet (UV)-survival under conditions that induced carotenoid accumulation. Moreover, Δplc-1, ΔsplA2, and Δcpe-1 mutants showed reduced survival rate under hydrogen peroxide-induced oxidative stress and induced thermotolerance after exposure to heat shock temperatures. Thus, this study revealed multiple cellular roles for plc-1, splA2, and cpe-1 genes in regulation of [Ca(2+)](c), carotenoid accumulation, survival under stress conditions, and acquisition of thermotolerance induced by heat shock.

  16. Treatment seeking for posttraumatic stress in Israel Defense Forces veterans deployed in the Second Lebanon War (2006) and "Operation Cast Lead" in the Gaza Strip (2009): a comparative study.

    Science.gov (United States)

    Levi, Ofir; Lubin, Gadi

    2018-01-04

    The goal of the study was to determine the long-term prevalence of combat-related treatment seeking and posttraumatic stress disorder (PTSD) in Israel's veterans deployed to the Second Lebanon War (2006) and "Operation Cast Lead" in the Gaza Strip (2009). The prevalence of treatment seeking and DSM-IV-TR diagnoses among Israel Defense Force (IDF) veterans was assessed using seven and five year's surveillance and records. The whereabouts and combat exposure of veterans during the war was determined based on the IDF's Operations Directorate records. Overall prevalence of treatment seeking was 1.32% and 0.38% in the Second Lebanon War and "Operation Cast Lead", respectively. The prevalence of treatment-seeking veterans from the Second Lebanon War and in "Operation Cast Lead" was significantly higher in soldiers deployed to high combat-exposure zones (2.19% and 3.1%, respectively), relative to low combat-exposure zones (0.24% and 0.06%, respectively), and relative to soldiers deployed elsewhere (0.26% and 0.02%, respectively). PTSD prevalence was similar among treatment-seeking veterans deployed in high combat-exposure zones in both combats. There is a gap of anywhere between 3% and 11% between treatment seeking by IDF veterans following war deployment and the actual prevalence of PTSD in this soldier population.

  17. Oxidative stress in the pathogenesis of psoriasis.

    Science.gov (United States)

    Zhou, Qiang; Mrowietz, Ulrich; Rostami-Yazdi, Martin

    2009-10-01

    Psoriasis is a chronic immune-mediated hyperproliferative inflammatory skin disease in which a cytokine network concept is well established. Skin is a major target of oxidative stress mainly due to reactive oxygen species (ROS) originating from the environment and skin metabolism itself. Although endogenous antioxidants attenuate the harmful effects of ROS, increased or prolonged presence of free radicals can override ROS defense mechanisms and mediate numerous cellular responses that contribute to the development of a variety of skin disorders, including psoriasis. Regarding psoriasis, antioxidant strategies have proven to be beneficial therapeutics. The cellular signaling pathways such as mitogen-activated protein kinase/activator protein 1, nuclear factor kappaB, and Janus kinase-signal transducers and activators of transcription are known to be redox sensitive and proven to be involved in the progress of psoriasis. This review summarizes the current knowledge of the role of the redox system in regulating these signaling pathways related to the pathogenesis of psoriasis.

  18. Penitentiary integral defense

    OpenAIRE

    Francisco Javier Rodríguez Román

    2012-01-01

    Penitentiary integral defense is a set of techniques designed to solve the breach of the peace that may appear in the penitentiary world. This paper studies the scope and legal framework of penitentiary self-defense. This kind of self-defense is defined by the particular characteristics of a confinement context and a very specific regulation aimed at preserving the integrity of prisoners and penitentiary staff as well as prison facilities. A technical section illustrating the main penitentiar...

  19. Adaptational changes in cellular phospholipids and fatty acid composition of the food pathogen Listeria monocytogenes as a stress response to disinfectant sanitizer benzalkonium chloride.

    Science.gov (United States)

    Bisbiroulas, P; Psylou, M; Iliopoulou, I; Diakogiannis, I; Berberi, A; Mastronicolis, S K

    2011-03-01

    This study provides a first approach to observing the alterations of the cell membrane lipids in the adaptation response of Listeria monocytogenes to the sanitizer benzalkonium chloride. A thorough investigation of the composition of polar and neutral lipids from L. monocytogenes grown when exposed to benzalkonium chloride is compared to cells optimally grown. The adaptation mechanism of L. monocytogenes in the presence of benzalkonium chloride caused (i) an increase in saturated-chain fatty acids (mainly C(16:0) and C(18:0) ) and unsaturated fatty acids (mainly C(16:1) and C(18:1) ) at the expense of branched-chain fatty acids (mainly C(a-15:0) and C(a-17:0) ) mainly because of neutral fatty acids; (ii) no alteration in the percentage of neutral and polar lipid content among total lipids; (iii) a decrease in lipid phosphorus and (iv) an obvious increase in the anionic phospholipids and a decrease in the amphiphilic phosphoaminolipid. These lipid changes could lead to decreased membrane fluidity and also to modifications of physicochemical properties of cell surface and thus changes in bacterial adhesion to abiotic surfaces. The adaptation and resistance of L. monocytogenes to disinfectants is able to change its physiology to allow growth in food-processing plants. Understanding microbial stress response mechanisms would improve the effective use of disinfectants. © 2011 The Authors. Letters in Applied Microbiology © 2011 The Society for Applied Microbiology.

  20. Dynamic defense workshop :

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Sean Michael; Doak, Justin E.; Haas, Jason Juedes.; Helinski, Ryan; Lamb, Christopher C.

    2013-02-01

    On September 5th and 6th, 2012, the Dynamic Defense Workshop: From Research to Practice brought together researchers from academia, industry, and Sandia with the goals of increasing collaboration between Sandia National Laboratories and external organizations, de ning and un- derstanding dynamic, or moving target, defense concepts and directions, and gaining a greater understanding of the state of the art for dynamic defense. Through the workshop, we broadened and re ned our de nition and understanding, identi ed new approaches to inherent challenges, and de ned principles of dynamic defense. Half of the workshop was devoted to presentations of current state-of-the-art work. Presentation topics included areas such as the failure of current defenses, threats, techniques, goals of dynamic defense, theory, foundations of dynamic defense, future directions and open research questions related to dynamic defense. The remainder of the workshop was discussion, which was broken down into sessions on de ning challenges, applications to host or mobile environments, applications to enterprise network environments, exploring research and operational taxonomies, and determining how to apply scienti c rigor to and investigating the eld of dynamic defense.

  1. Role of glutathione redox cycle and catalase in defense against oxidative stress induced by endosulfan in adrenocortical cells of rainbow trout (Oncorhynchus mykiss)

    International Nuclear Information System (INIS)

    Dorval, J.; Hontela, A.

    2003-01-01

    The role of antioxidants in maintaining the functional integrity of adrenocortical cells during in vitro exposure to endosulfan, an organochlorine pesticide, was investigated in rainbow trout (Oncorhynchus mykiss). Aminotriazole (ATA), an inhibitor of catalase (CAT), L-buthionine sulfoximine (L-BSO), an inhibitor of glutathione (GSH) synthesis, and N-acetyl cysteine (NAC), a glutathione precursor, were used to investigate the role of CAT and GSH redox cycle in protection against the adrenal toxicity of endosulfan, a pesticide that impairs cell viability (LC 50 366 μM) and cortisol secretion (EC 50 19 μM) in a concentration-related manner. Pretreatment with ATA and L-BSO enhanced the toxicity of endosulfan (LC 50 and EC 50 , respectively, 302 and 2.6 μM with ATA, 346 and 3.1 μM with L-BSO), while pretreatment with NAC had no significant effect on cell viability and increased the EC 50 of endosulfan to 51 μM. CAT activity was significantly reduced following exposure to endosulfan when cells were pretreated with ATA. Pretreatment with L-BSO significantly decreased glutathione peroxidase (GPx) activity and reduced glutathione (GSH) levels in a concentration-related manner following exposure to endosulfan, while GSH levels were significantly higher in NAC pretreated cells compared to untreated cells. Finally, pretreatment with ATA and L-BSO increased, while pretreatment with NAC decreased, lipid hydroperoxides (LOOH) levels. CAT, GPx, and GSH were identified as important antioxidants in maintaining the function and integrity of rainbow trout adrenocortical cells and ATA, L-BSO, and NAC were identified as effective modulators of CAT and GSH redox cycle. Moreover, this study suggests that the glutathione redox cycle may be more efficient than catalase in protecting adrenocortical cells against endosulfan-induced oxidative stress

  2. Small Non-coding RNA RyhB Mediates Persistence to Multiple Antibiotics and Stresses in Uropathogenic Escherichia coli by Reducing Cellular Metabolism

    Directory of Open Access Journals (Sweden)

    Shanshan Zhang

    2018-02-01

    Full Text Available As dormant phenotypic variants of bacteria, persisters account for many chronic infections affecting human health. Despite numerous studies, the role of small non-coding RNA (sRNA in bacterial persistence has not been reported. To investigate the role of Hfq-interacting sRNA in persistence, we constructed the deletion mutants of 20 Hfq-interacting sRNAs (RyhB, GcvB, MgrR, RybB, MicF, SgrS, RprA, DicF, SsrS, FnrS, GadY, DsrA, OmrB, ArcZ, RyeB, RydC, OmrA, MicA, MicC, and ChiX to assess their persistence capacity in uropathogenic Escherichia coli strain UTI89 and identified a new sRNA RyhB being involved in persister formation. The ryhB-knockout mutant had significant defect in persistence to a diverse range of antibiotics (levofloxacin, cefotaxime, gentamicin and stresses (hyperosmosis, acid, and heat in both exponential phase and stationary phase. In addition, the effect of RyhB on persistence was synergistic with ppGpp and Fur protein. RNA-Seq analysis indicated that the ryhB-knockout mutant had a hyperactive metabolic state compared with the parent strain. Interestingly, increased adenosine triphosphate (ATP levels and altered NAD+/NADH ratios were observed in the ryhB-knockout mutant. Our findings represent a new level of persistence regulation via sRNA and may provide novel therapeutic targets for interventions.

  3. Small Non-coding RNA RyhB Mediates Persistence to Multiple Antibiotics and Stresses in UropathogenicEscherichia coliby Reducing Cellular Metabolism.

    Science.gov (United States)

    Zhang, Shanshan; Liu, Shuang; Wu, Nan; Yuan, Youhua; Zhang, Wenhong; Zhang, Ying

    2018-01-01

    As dormant phenotypic variants of bacteria, persisters account for many chronic infections affecting human health. Despite numerous studies, the role of small non-coding RNA (sRNA) in bacterial persistence has not been reported. To investigate the role of Hfq-interacting sRNA in persistence, we constructed the deletion mutants of 20 Hfq-interacting sRNAs (RyhB, GcvB, MgrR, RybB, MicF, SgrS, RprA, DicF, SsrS, FnrS, GadY, DsrA, OmrB, ArcZ, RyeB, RydC, OmrA, MicA, MicC, and ChiX) to assess their persistence capacity in uropathogenic Escherichia coli strain UTI89 and identified a new sRNA RyhB being involved in persister formation. The ryhB -knockout mutant had significant defect in persistence to a diverse range of antibiotics (levofloxacin, cefotaxime, gentamicin) and stresses (hyperosmosis, acid, and heat) in both exponential phase and stationary phase. In addition, the effect of RyhB on persistence was synergistic with ppGpp and Fur protein. RNA-Seq analysis indicated that the ryhB -knockout mutant had a hyperactive metabolic state compared with the parent strain. Interestingly, increased adenosine triphosphate (ATP) levels and altered NAD + /NADH ratios were observed in the ryhB -knockout mutant. Our findings represent a new level of persistence regulation via sRNA and may provide novel therapeutic targets for interventions.

  4. Global Metabolic Responses to Salt Stress in Fifteen Species.

    Science.gov (United States)

    Sévin, Daniel C; Stählin, Jacqueline N; Pollak, Georg R; Kuehne, Andreas; Sauer, Uwe

    2016-01-01

    Cells constantly adapt to unpredictably changing extracellular solute concentrations. A cornerstone of the cellular osmotic stress response is the metabolic supply of energy and building blocks to mount appropriate defenses. Yet, the extent to which osmotic stress impinges on the metabolic network remains largely unknown. Moreover, it is mostly unclear which, if any, of the metabolic responses to osmotic stress are conserved among diverse organisms or confined to particular groups of species. Here we investigate the global metabolic responses of twelve bacteria, two yeasts and two human cell lines exposed to sustained hyperosmotic salt stress by measuring semiquantitative levels of hundreds of cellular metabolites using nontargeted metabolomics. Beyond the accumulation of osmoprotectants, we observed significant changes of numerous metabolites in all species. Global metabolic responses were predominantly species-specific, yet individual metabolites were characteristically affected depending on species' taxonomy, natural habitat, envelope structure or salt tolerance. Exploiting the breadth of our dataset, the correlation of individual metabolite response magnitudes across all species implicated lower glycolysis, tricarboxylic acid cycle, branched-chain amino acid metabolism and heme biosynthesis to be generally important for salt tolerance. Thus, our findings place the global metabolic salt stress response into a phylogenetic context and provide insights into the cellular phenotype associated with salt tolerance.

  5. Aluminium-induced excessive ROS causes cellular damage and metabolic shifts in black gram Vigna mungo (L.) Hepper.

    Science.gov (United States)

    Chowra, Umakanta; Yanase, Emiko; Koyama, Hiroyuki; Panda, Sanjib Kumar

    2017-01-01

    Aluminium-induced oxidative damage caused by excessive ROS production was evaluated in black gram pulse crop. Black gram plants were treated with different aluminium (Al 3+ ) concentrations (10, 50 and 100 μM with pH 4.7) and further the effects of Al 3+ were characterised by means of root growth inhibition, histochemical assay, ROS content analysis, protein carbonylation quantification and 1 H-NMR analysis. The results showed that aluminium induces excessive ROS production which leads to cellular damage, root injury, stunt root growth and other metabolic shifts. In black gram, Al 3+ induces cellular damage at the earliest stage of stress which was characterised from histochemical analysis. From this study, it was observed that prolonged stress can activate certain aluminium detoxification defence mechanism. Probably excessive ROS triggers such defence mechanism in black gram. Al 3+ can induce excessive ROS initially in the root region then transported to other parts of the plant. As much as the Al 3+ concentration increases, the rate of cellular injury and ROS production also increases. But after 72 h of stress, plants showed a lowered ROS level and cellular damage which indicates the upregulation of defensive mechanisms. Metabolic shift analysis also showed that the black gram plant under stress has less metabolic content after 24 h of treatment, but gradually, it was increased after 72 h of treatment. It was assumed that ROS played the most important role as a signalling molecule for aluminium stress in black gram.

  6. Defense Islands in Bacterial and Archaeal Genomes and Prediction of Novel Defense Systems ▿†‡

    Science.gov (United States)

    Makarova, Kira S.; Wolf, Yuri I.; Snir, Sagi; Koonin, Eugene V.

    2011-01-01

    The arms race between cellular life forms and viruses is a major driving force of evolution. A substantial fraction of bacterial and archaeal genomes is dedicated to antivirus defense. We analyzed the distribution of defense genes and typical mobilome components (such as viral and transposon genes) in bacterial and archaeal genomes and demonstrated statistically significant clustering of antivirus defense systems and mobile genes and elements in genomic islands. The defense islands are enriched in putative operons and contain numerous overrepresented gene families. A detailed sequence analysis of the proteins encoded by genes in these families shows that many of them are diverged variants of known defense system components, whereas others show features, such as characteristic operonic organization, that are suggestive of novel defense systems. Thus, genomic islands provide abundant material for the experimental study of bacterial and archaeal antivirus defense. Except for the CRISPR-Cas systems, different classes of defense systems, in particular toxin-antitoxin and restriction-modification systems, show nonrandom clustering in defense islands. It remains unclear to what extent these associations reflect functional cooperation between different defense systems and to what extent the islands are genomic “sinks” that accumulate diverse nonessential genes, particularly those acquired via horizontal gene transfer. The characteristics of defense islands resemble those of mobilome islands. Defense and mobilome genes are nonrandomly associated in islands, suggesting nonadaptive evolution of the islands via a preferential attachment-like mechanism underpinned by the addictive properties of defense systems such as toxins-antitoxins and an important role of horizontal mobility in the evolution of these islands. PMID:21908672

  7. Forgiveness and Defense Style

    Science.gov (United States)

    Maltby, John; Day, Liz

    2004-01-01

    Within the literature on the psychology of forgiveness, researchers have hypothesized that the 1st stage in the process of being able to forgive is the role of psychological defense. To examine such a hypothesis, the authors explored the relationship between forgiveness and defense style. The 304 respondents (151 men, 153 women) completed measures…

  8. Defense Signaling in Plants

    Indian Academy of Sciences (India)

    Self defense is the basic response of every living organism. This response is readily observed in animals because of their physical movements typically involved in that pro- cess. Being immobile, plants have evolved highly complex defense mechanisms that differ from those commonly seen in animals. Plants are able to ...

  9. Defense Mechanisms: A Bibliography.

    Science.gov (United States)

    Pedrini, D. T.; Pedrini, Bonnie C.

    This bibliography includes studies of defense mechanisms, in general, and studies of multiple mechanisms. Defense mechanisms, briefly and simply defined, are the unconscious ego defendants against unpleasure, threat, or anxiety. Sigmund Freud deserves the clinical credit for studying many mechanisms and introducing them in professional literature.…

  10. High-potential defense mechanisms of neocortex in a rat model of transient asphyxia induced cardiac arrest.

    Science.gov (United States)

    Keilhoff, Gerburg; Esser, Torben; Titze, Maximilian; Ebmeyer, Uwe; Schild, Lorenz

    2017-11-01

    Cardiac arrest (CA) is a common cause of disability and mortality and thus an important risk for human health. Circulatory failure has dramatic consequences for the brain as one of the most oxygen-consuming organs. Hippocampus, striatum and neocortex rate among the most vulnerable brain regions. The neocortex is less sensitive to hypoxia/reperfusion in comparison with the hippocampal CA1 region. That implicates the existence of efficient defense mechanisms in the neocortex against hypoxia/reperfusion injury, which we analyzed in a well-established CA rat model. We explored different immunohistochemical markers (NeuN, MAP2, GFAP, IBA1, NOX4, MnSOD, Bax, caspase 3, cfos, nNOS, eNOS, iNOS, TUNEL), amount of mitochondria, activities of respiratory chain complexes and amount/composition of cardiolipin. CA induced a moderate degeneration of cortical neurons. As possible defense mechanisms the study revealed: (i) increased activities of respiratory chain complexes of cortical mitochondria as response to increased energy demand after ACA-induced cell stress; (ii) increase of cardiolipin content as cellular stress response, which might contribute to the promotion of mitochondrial ATP synthesis; (iii) strengthening of the fast, effective and long-lasting mitochondrial MnSOD defense system; (iv) ACA-induced increase in expression of eNOS and nNOS in vasculature being able to reduce ischemic injury by vasodilation. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Unfolding Green Defense

    DEFF Research Database (Denmark)

    Larsen, Kristian Knus

    2015-01-01

    to inform and support the further development of green solutions by unfolding how green technologies and green strategies have been developed and used to handle current security challenges. The report, initially, focuses on the security challenges that are being linked to green defense, namely fuel......In recent years, many states have developed and implemented green solutions for defense. Building on these initiatives NATO formulated the NATO Green Defence Framework in 2014. The framework provides a broad basis for cooperation within the Alliance on green solutions for defense. This report aims...... consumption in military operations, defense expenditure, energy security, and global climate change. The report then proceeds to introduce the NATO Green Defence Framework before exploring specific current uses of green technologies and green strategies for defense. The report concludes that a number...

  12. Acrolein toxicity involves oxidative stress caused by glutathione depletion in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kwolek-Mirek, M; Bednarska, S; Bartosz, G; Biliński, T

    2009-08-01

    Exposure of yeast cells to allyl alcohol results in intracellular production of acrolein. The toxicity of so formed acrolein involves oxidative stress, as (1) strains deficient in antioxidant defense are hypersensitive to allyl alcohol, (2) exposure to allyl alcohol increases the level of thiobarbituric-acid-reactive substances and decreases glutathione level in the cells, (3) hypoxic and anoxic atmosphere and antioxidants protect against allyl alcohol toxicity, and (4) allyl alcohol causes activation of Yap1p. No increased formation of reactive oxygen species was detected in cells exposed to allyl alcohol, so oxidative stress is due to depletion of cellular thiols and thus alteration in the redox state of yeast cells.

  13. Plant defense against insect herbivores

    DEFF Research Database (Denmark)

    Fürstenberg-Hägg, Joel; Zagrobelny, Mika; Bak, Søren

    2013-01-01

    Plants have been interacting with insects for several hundred million years, leading to complex defense approaches against various insect feeding strategies. Some defenses are constitutive while others are induced, although the insecticidal defense compound or protein classes are often similar......, defense compounds. These bioactive specialized plant defense compounds may repel or intoxicate insects, while defense proteins often interfere with their digestion. Volatiles are released upon herbivory to repel herbivores, attract predators or for communication between leaves or plants, and to induce...

  14. Cellular senescence and tumor suppressor gene p16

    OpenAIRE

    Rayess, Hani; Wang, Marilene B.; Srivatsan, Eri S.

    2011-01-01

    Cellular senescence is an irreversible arrest of cell growth. Biochemical and morphological changes occur during cellular senescence, including the formation of a unique cellular morphology such as flattened cytoplasm. Function of mitochondria, endoplasmic reticulum and lysosomes are affected resulting in the inhibition of lysosomal and proteosomal pathways. Cellular senescence can be triggered by a number of factors including, aging, DNA damage, oncogene activation and oxidative stress. Whil...

  15. Flat Cellular (UMTS) Networks

    NARCIS (Netherlands)

    Bosch, H.G.P.; Samuel, L.G.; Mullender, Sape J.; Polakos, P.; Rittenhouse, G.

    Traditionally, cellular systems have been built in a hierarchical manner: many specialized cellular access network elements that collectively form a hierarchical cellular system. When 2G and later 3G systems were designed there was a good reason to make system hierarchical: from a cost-perspective

  16. Ascorbic acid and beta-carotene reduce stress-induced oxidative organ damage in rats.

    Science.gov (United States)

    Esrefoglu, M; Akinci, A; Taslidere, E; Elbe, H; Cetin, A; Ates, B

    2016-10-01

    Antioxidants are potential therapeutic agents for reducing stress-induced organ damage. We investigated the effects of ascorbic acid and β-carotene on oxidative stress-induced cerebral, cerebellar, cardiac and hepatic damage using microscopy and biochemistry. Male Wistar albino rats were divided into five groups: untreated control, stressed, stressed + saline, stressed + ascorbic acid and stressed + β-carotene. The rats in the stressed groups were subjected to starvation, immobilization and cold. The histopathological damage scores for the stressed and stressed + saline groups were higher than those of the control group for all organs examined. The histopathological damage scores and mean tissue malondialdehyde levels for the groups treated with antioxidants were lower than those for the stressed and stressed + saline groups. Mean tissue superoxide dismutase activities for groups that received antioxidants were higher than those for the stressed + saline group for most organs evaluated. Ascorbic acid and β-carotene can reduce stress-induced organ damage by both inhibiting lipid oxidation and supporting the cellular antioxidant defense system.

  17. Defense Mechanisms in Adolescence.

    Science.gov (United States)

    Cramer, Phebe

    1979-01-01

    Results showed that by ninth or tenth grade, males begin to externalize conflict while females tend to deal with conflict internally. This differentiation of defense choice by sex is clearly established by the last two years of high school. (JMB)

  18. Cruise Missile Defense

    National Research Council Canada - National Science Library

    Hichkad, Ravi R; Bolkcom, Christopher

    2004-01-01

    Congress has expressed interest in cruise missile defense for years. Cruise missiles (CMs) are essentially unmanned attack aircraft -- vehicles composed of an airframe, propulsion system, guidance system, and weapons payload...

  19. Cruise Missile Defense

    National Research Council Canada - National Science Library

    Hichkad, Ravi R; Bolkcom, Christopher

    2005-01-01

    Congress has expressed interest in cruise missile defense for years. Cruise missiles (CMs) are essentially unmanned attack aircraft -- vehicles composed of an airframe, propulsion system, guidance system, and weapons payload...

  20. Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports.

    Science.gov (United States)

    Pingitore, Alessandro; Lima, Giuseppina Pace Pereira; Mastorci, Francesca; Quinones, Alfredo; Iervasi, Giorgio; Vassalle, Cristina

    2015-01-01

    Free radicals are produced during aerobic cellular metabolism and have key roles as regulatory mediators in signaling processes. Oxidative stress reflects an imbalance between production of reactive oxygen species and an adequate antioxidant defense. This adverse condition may lead to cellular and tissue damage of components, and is involved in different physiopathological states, including aging, exercise, inflammatory, cardiovascular and neurodegenerative diseases, and cancer. In particular, the relationship between exercise and oxidative stress is extremely complex, depending on the mode, intensity, and duration of exercise. Regular moderate training appears beneficial for oxidative stress and health. Conversely, acute exercise leads to increased oxidative stress, although this same stimulus is necessary to allow an up-regulation in endogenous antioxidant defenses (hormesis). Supporting endogenous defenses with additional oral antioxidant supplementation may represent a suitable noninvasive tool for preventing or reducing oxidative stress during training. However, excess of exogenous antioxidants may have detrimental effects on health and performance. Whole foods, rather than capsules, contain antioxidants in natural ratios and proportions, which may act in synergy to optimize the antioxidant effect. Thus, an adequate intake of vitamins and minerals through a varied and balanced diet remains the best approach to maintain an optimal antioxidant status. Antioxidant supplementation may be warranted in particular conditions, when athletes are exposed to high oxidative stress or fail to meet dietary antioxidant requirements. Aim of this review is to discuss the evidence on the relationship between exercise and oxidative stress, and the potential effects of dietary strategies in athletes. The differences between diet and exogenous supplementation as well as available tools to estimate effectiveness of antioxidant intake are also reported. Finally, we advocate the need

  1. Engineered Nanomaterials Elicit Cellular Stress Responses

    Science.gov (United States)

    Engineered nanomaterials are being developed continuously and incorporated into consumer products, resulting in increased human exposures. The study of engineered nanomaterials has focused largely on toxicity endpoints without further investigating potential mechanisms or pathway...

  2. Cellular Homeostasis and Antioxidant Response in Epithelial HT29 Cells on Titania Nanotube Arrays Surface

    Directory of Open Access Journals (Sweden)

    Rabiatul Basria SMN Mydin

    2017-01-01

    Full Text Available Cell growth and proliferative activities on titania nanotube arrays (TNA have raised alerts on genotoxicity risk. Present toxicogenomic approach focused on epithelial HT29 cells with TNA surface. Fledgling cell-TNA interaction has triggered G0/G1 cell cycle arrests and initiates DNA damage surveillance checkpoint, which possibly indicated the cellular stress stimuli. A profound gene regulation was observed to be involved in cellular growth and survival signals such as p53 and AKT expressions. Interestingly, the activation of redox regulator pathways (antioxidant defense was observed through the cascade interactions of GADD45, MYC, CHECK1, and ATR genes. These mechanisms furnish to protect DNA during cellular division from an oxidative challenge, set in motion with XRRC5 and RAD50 genes for DNA damage and repair activities. The cell fate decision on TNA-nanoenvironment has been reported to possibly regulate proliferative activities via expression of p27 and BCL2 tumor suppressor proteins, cogent with SKP2 and BCL2 oncogenic proteins suppression. Findings suggested that epithelial HT29 cells on the surface of TNA may have a positive regulation via cell-homeostasis mechanisms: a careful circadian orchestration between cell proliferation, survival, and death. This nanomolecular knowledge could be beneficial for advanced medical applications such as in nanomedicine and nanotherapeutics.

  3. 76 FR 72391 - Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense...

    Science.gov (United States)

    2011-11-23

    ... DEPARTMENT OF DEFENSE Office of the Secretary [Docket ID DOD-2011-OS-0055] Defense Logistics Agency Revised Regulation 1000.22, Environmental Considerations in Defense Logistics Agency Actions AGENCY: Defense Logistics Agency, Department of Defense. ACTION: Revised Defense Logistics Agency...

  4. 76 FR 28960 - Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting

    Science.gov (United States)

    2011-05-19

    ... DEPARTMENT OF DEFENSE Office of the Secretary Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting AGENCY: National Defense Intelligence College, Defense Intelligence Agency, Department of Defense. ACTION: Notice of Closed Meeting. SUMMARY: Pursuant to the...

  5. 75 FR 76423 - Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting

    Science.gov (United States)

    2010-12-08

    ... DEPARTMENT OF DEFENSE Office of the Secretary Defense Intelligence Agency National Defense Intelligence College Board of Visitors Closed Meeting AGENCY: National Defense Intelligence College, Defense Intelligence Agency, Department of Defense. ACTION: Notice of Closed Meeting. SUMMARY: Pursuant to the...

  6. Study of the impact of radionuclides discharges from nuclear industry in the northern Cotentin area on the oyster Crassostrea gigas: expression of cellular stress molecular markers; Etude de l'impact des radionucleides rejetes par les installations nucleaires du Nord Cotentin sur l'huitre creuse Crassostrea gigas: analyse de l'expression de marqueurs moleculaires de stress

    Energy Technology Data Exchange (ETDEWEB)

    Farcy, E

    2006-11-15

    This thesis explores the potential radiological impact of radionuclide discharges from the nuclear industry on the Pacific oyster, Crassostrea gigas. One of the major goals of this research was to identify markers that could be used to monitor the effects of low-level chronic irradiation. We decided to focalize on the expression of stress-induced genes involved in the regulation of cellular stress, focusing on transcription. First, homology cloning was used to identify four new cDNAs encoding stress markers. Then data collected at various sites enabled to evidence that mRNA levels for each of the genes of interest naturally vary to a significant degree, based on individual differences and seasonal factors. Comparing oysters from exposed sites with those from a reference site located on the Atlantic coast did not suggest any relationship between mRNA levels changes and the oysters exposure to liquid radioactive waste from the A.R.E.V.A. reprocessing plant. In the environment, we found that those radionuclide releases resulted in a very small increase in radioactivity in oysters, especially compared with their natural radioactivity. In the laboratory, by exposing the oysters to higher radionuclide concentrations than those found in the environment, we were able to identify two genes as potential candidates for studying the effects of chronic exposure to low doses of ionizing radiations in the oyster: genes encoding MT and MXR. We confirmed that transcriptional induction of these two genes occurs in response to high doses of acute irradiation. Finally, the comparison between environmental results and the laboratory results underlined the complementarity of these two approaches. In particular, it revealed that seasonal variations in mRNA levels probably have a significant effect on the stress response. (author)

  7. Ask yeast how to burn your fats: lessons learned from the metabolic adaptation to salt stress.

    Science.gov (United States)

    Pascual-Ahuir, Amparo; Manzanares-Estreder, Sara; Timón-Gómez, Alba; Proft, Markus

    2018-02-01

    Here, we review and update the recent advances in the metabolic control during the adaptive response of budding yeast to hyperosmotic and salt stress, which is one of the best understood signaling events at the molecular level. This environmental stress can be easily applied and hence has been exploited in the past to generate an impressively detailed and comprehensive model of cellular adaptation. It is clear now that this stress modulates a great number of different physiological functions of the cell, which altogether contribute to cellular survival and adaptation. Primary defense mechanisms are the massive induction of stress tolerance genes in the nucleus, the activation of cation transport at the plasma membrane, or the production and intracellular accumulation of osmolytes. At the same time and in a coordinated manner, the cell shuts down the expression of housekeeping genes, delays the progression of the cell cycle, inhibits genomic replication, and modulates translation efficiency to optimize the response and to avoid cellular damage. To this fascinating interplay of cellular functions directly regulated by the stress, we have to add yet another layer of control, which is physiologically relevant for stress tolerance. Salt stress induces an immediate metabolic readjustment, which includes the up-regulation of peroxisomal biomass and activity in a coordinated manner with the reinforcement of mitochondrial respiratory metabolism. Our recent findings are consistent with a model, where salt stress triggers a metabolic shift from fermentation to respiration fueled by the enhanced peroxisomal oxidation of fatty acids. We discuss here the regulatory details of this stress-induced metabolic shift and its possible roles in the context of the previously known adaptive functions.

  8. Promoter-Based Integration in Plant Defense Regulation

    DEFF Research Database (Denmark)

    Li, Baohua; Gaudinier, Allison; Tang, Michelle

    2014-01-01

    A key unanswered question in plant biology is how a plant regulates metabolism to maximize performance across an array of biotic and abiotic environmental stresses. In this study, we addressed the potential breadth of transcriptional regulation that can alter accumulation of the defensive...... validation, we showed that >75% of tested transcription factor (TF) mutants significantly altered the accumulation of the defensive glucosinolates. These glucosinolate phenotypes were conditional upon the environment and tissue type, suggesting that these TFs may allow the plant to tune its defenses...... to the local environment. Furthermore, the pattern of TF/promoter interactions could partially explain mutant phenotypes. This work shows that defense chemistry within Arabidopsis has a highly intricate transcriptional regulatory system that may allow for the optimization of defense metabolite accumulation...

  9. Linearizable cellular automata

    International Nuclear Information System (INIS)

    Nobe, Atsushi; Yura, Fumitaka

    2007-01-01

    The initial value problem for a class of reversible elementary cellular automata with periodic boundaries is reduced to an initial-boundary value problem for a class of linear systems on a finite commutative ring Z 2 . Moreover, a family of such linearizable cellular automata is given

  10. Cellular senescence in aging and osteoarthritis.

    Science.gov (United States)

    Toh, Wei Seong; Brittberg, Mats; Farr, Jack; Foldager, Casper Bindzus; Gomoll, Andreas H; Hui, James Hoi Po; Richardson, James B; Roberts, Sally; Spector, Myron

    2016-12-01

    - It is well accepted that age is an important contributing factor to poor cartilage repair following injury, and to the development of osteoarthritis. Cellular senescence, the loss of the ability of cells to divide, has been noted as the major factor contributing to age-related changes in cartilage homeostasis, function, and response to injury. The underlying mechanisms of cellular senescence, while not fully understood, have been associated with telomere erosion, DNA damage, oxidative stress, and inflammation. In this review, we discuss the causes and consequences of cellular senescence, and the associated biological challenges in cartilage repair. In addition, we present novel strategies for modulation of cellular senescence that may help to improve cartilage regeneration in an aging population.

  11. Chamomile confers protection against hydrogen peroxide-induced toxicity through activation of Nrf2-mediated defense response.

    Science.gov (United States)

    Bhaskaran, Natarajan; Srivastava, Janmejai K; Shukla, Sanjeev; Gupta, Sanjay

    2013-01-01

    Oxidative stress plays an important role in the development of various human diseases. Aqueous chamomile extract is used as herbal medicine, in the form of tea, demonstrated to possess antiinflammatory and antioxidant properties. We demonstrate the cytoprotective effects of chamomile on hydrogen peroxide (H₂O₂)-induced cellular damage in macrophage RAW 264.7 cells. Pretreatment of cells with chamomile markedly attenuated H₂O₂-induced cell viability loss in a dose-dependent manner. The mechanisms by which chamomile-protected macrophages from oxidative stress was through the induction of several antioxidant enzymes including NAD(P)H:quinone oxidoreductase, superoxide dismutase, and catalase and increase nuclear accumulation of the transcription factor Nrf2 and its binding to antioxidant response elements. Furthermore, chamomile dose-dependently reduced H₂O₂-mediated increase in the intracellular levels of reactive oxygen species. Our results, for the first time, demonstrate that chamomile has protective effects against oxidative stress and might be beneficial to provide defense against cellular damage. Copyright © 2012 John Wiley & Sons, Ltd.

  12. Prodrug Approach for Increasing Cellular Glutathione Levels

    Directory of Open Access Journals (Sweden)

    Ivana Cacciatore

    2010-03-01

    Full Text Available Reduced glutathione (GSH is the most abundant non-protein thiol in mammalian cells and the preferred substrate for several enzymes in xenobiotic metabolism and antioxidant defense. It plays an important role in many cellular processes, such as cell differentiation, proliferation and apoptosis. GSH deficiency has been observed in aging and in a wide range of pathologies, including neurodegenerative disorders and cystic fibrosis (CF, as well as in several viral infections. Use of GSH as a therapeutic agent is limited because of its unfavorable biochemical and pharmacokinetic properties. Several reports have provided evidence for the use of GSH prodrugs able to replenish intracellular GSH levels. This review discusses different strategies for increasing GSH levels by supplying reversible bioconjugates able to cross the cellular membrane more easily than GSH and to provide a source of thiols for GSH synthesis.

  13. Strategic Framework for the Defense Acquisition System Understanding Defense Consolidation

    National Research Council Canada - National Science Library

    Potts, Anthony W

    2007-01-01

    ...% of defense product sales annually. Defense consolidation has diminished the flexibility required for surge capacity, diminished competitive innovations in products, and reduced competitive pricing based on multiple sources for products...

  14. SDI (Strategic Defense Initiative) and the US defense posture

    Energy Technology Data Exchange (ETDEWEB)

    May, M.M.

    1986-07-01

    Issues surrounding the Strategic Defense Initiative are discussed. Comments are made on the research and development program and the effect of this program on the defensive posture of the United States.

  15. Strategic Framework for the Defense Acquisition System Understanding Defense Consolidation

    National Research Council Canada - National Science Library

    Potts, Anthony W

    2007-01-01

    The 1993 policy to promote the consolidation of the United States defense industry began a series of acquisitions and mergers that went beyond the intent of the policy and left the Department of Defense (DoD...

  16. L-Arginine supplementation improves antioxidant defenses through L-arginine/nitric oxide pathways in exercised rats.

    Science.gov (United States)

    Shan, Lingling; Wang, Bin; Gao, Guizhen; Cao, Wengen; Zhang, Yunkun

    2013-10-15

    l-Arginine (l-Arg) supplementation has been shown to enhance physical exercise capacity and delay onset of fatigue. This work investigated the potential beneficial mechanism(s) of l-Arg supplementation by examining its effect on the cellular oxidative and nitrosative stress pathways in the exercised rats. Forty-eight rats were randomly divided into six groups: sedentary control; sedentary control with l-Arg treatment; endurance training (daily swimming training for 8 wk) control; endurance training with l-Arg treatment; an exhaustive exercise (one time swimming to fatigue) control; and an exhaustive exercise with l-Arg treatment. l-Arg (500 mg/kg body wt) or saline was given to rats by intragastric administration 1 h before the endurance training and the exhaustive swimming test. Expression levels and activities of the l-Arg/nitric oxide (NO) pathway components and parameters of the oxidative stress and antioxidant defense capacity were investigated in l-Arg-treated and control rats. The result show that the l-Arg supplementation completely reversed the exercise-induced activation of NO synthase and superoxide dismutase, increased l-Arg transport capacity, and increased NO and anti-superoxide anion levels. These data demonstrate that l-Arg supplementation effectively reduces the exercise-induced imbalance between oxidative stress and antioxidant defense capacity, and this modulation is likely mediated through the l-Arg/NO pathways. The findings of this study improved our understanding of how l-Arg supplementation prevents elevations of reactive oxygen species and favorably enhances the antioxidant defense capacity during physical exercise.

  17. Stress og aldring

    DEFF Research Database (Denmark)

    Jørgensen, Anders; Jørgensen, Martin Balslev; Poulsen, Henrik Enghusen

    2012-01-01

    Accumulating evidence supports the popular notion that psychological stress states may accelerate aging. Stress has been shown to influence cellular systems known to be involved in the aging process. Furthermore, stress is associated with an increased risk of various age-related medical disorders....... These effects are likely mediated by the secretion of stress hormones. In this short review we focus on biochemical and epidemiological evidence for a link between stress and aging....

  18. Cognitive defenses and compliance with radiation treatment in cancer patients

    International Nuclear Information System (INIS)

    Karassik, B.M.

    1989-01-01

    The present study was undertaken to investigate the relationships between four cognitive defenses and compliance with radiation therapy in cancer patients. The role of accurate self-report of usage of each of the defenses was examined as well. A distinction between direct-action and emotion-focused coping was utilized to conceptualize the possible relationships between compliance and the defenses. Based on the proposals of Heilbrun and Renert (1986) regarding the relative evasiveness of the defenses and available evidence from the compliance literature, it was predicted that noncompliant patients would show more repression, projection, and denial and less rationalization than compliant patients. In addition, based upon the findings of Heilbrun and Pepe (1985) that related self-deception to effectiveness of the defenses in dealing with stress, predictions were also made regarding differences in accuracy of reported defense usage by compliant and noncompliant patients. Noncompliant repressors and projectors and compliant rationalizers were predicted to be less aware of their respective use of these defenses than their compliant counterparts; noncompliant deniers were predicted to be more aware of the use of this defense than compliant deniers

  19. Plasmonic Nanostructured Cellular Automata

    Science.gov (United States)

    Alkhazraji, Emad; Ghalib, A.; Manzoor, K.; Alsunaidi, M. A.

    2017-03-01

    In this work, we have investigated the scattering plasmonic resonance characteristics of silver nanospheres with a geometrical distribution that is modelled by Cellular Automata using time-domain numerical analysis. Cellular Automata are discrete mathematical structures that model different natural phenomena. Two binary one-dimensional Cellular Automata rules are considered to model the nanostructure, namely rule 30 and rule 33. The analysis produces three-dimensional scattering profiles of the entire plasmonic nanostructure. For the Cellular Automaton rule 33, the introduction of more Cellular Automata generations resulted only in slight red and blue shifts in the plasmonic modes with respect to the first generation. On the other hand, while rule 30 introduced significant red shifts in the resonance peaks at early generations, at later generations however, a peculiar effect is witnessed in the scattering profile as new peaks emerge as a feature of the overall Cellular Automata structure rather than the sum of the smaller parts that compose it. We strongly believe that these features that emerge as a result adopting the different 256 Cellular Automata rules as configuration models of nanostructures in different applications and systems might possess a great potential in enhancing their capability, sensitivity, efficiency, and power utilization.

  20. Defense Technology Area Plan.

    Science.gov (United States)

    1996-05-01

    evacuation , missile defense, reconnaissance and surveillance, sea lane control, search and rescue, special operations, strategic and theater airlift...decontamination technology advances. Recently, novel types of polymeric support termed “ starburst ” dendrimer polymers have been developed. The ability to...threats • Optimize military performance; survival and stabilization of combat casualties • Provide the world’s best casualty evacuation and medical

  1. Auxins in defense strategies

    Czech Academy of Sciences Publication Activity Database

    Čarná, Mária; Repka, V.; Skůpa, Petr; Šturdík, E.

    2014-01-01

    Roč. 69, č. 10 (2014), s. 1255-1263 ISSN 0006-3088 R&D Projects: GA TA ČR TA01011802 Institutional support: RVO:61389030 Keywords : auxin * defense responses * JA Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 0.827, year: 2014

  2. Hanford defense waste studies

    International Nuclear Information System (INIS)

    Napier, B.A.; Zimmerman, M.G.; Soldat, J.K.

    1981-01-01

    PNL is assisting Rockwell Hanford Operations to prepare a programmatic environmental impact statement for the management of Hanford defense nuclear waste. The Ecological Sciences Department is leading the task of calculation of public radiation doses from a large matrix of potential routine and accidental releases of radionuclides to the environment

  3. Ministries of Defense: Driving Force in Defense Restructuring

    OpenAIRE

    2003-01-01

    Introduction. For more effective democratic civilian control (and better defense decisions), Ministries of Defense bridge the gap between political institutions and the armed forces. These institutions translate political objectives into military capabilities. MODs, staffed with enough civilian defense experts, provide the continuity and stability needed in a democratic system.

  4. Heterogeneous cellular networks

    CERN Document Server

    Hu, Rose Qingyang

    2013-01-01

    A timely publication providing coverage of radio resource management, mobility management and standardization in heterogeneous cellular networks The topic of heterogeneous cellular networks has gained momentum in industry and the research community, attracting the attention of standardization bodies such as 3GPP LTE and IEEE 802.16j, whose objectives are looking into increasing the capacity and coverage of the cellular networks. This book focuses on recent progresses,  covering the related topics including scenarios of heterogeneous network deployment, interference management i

  5. Climate Change and Defense against Pathogens in Plants.

    Science.gov (United States)

    Newton, Adrian C; Torrance, Lesley; Holden, Nicola; Toth, Ian K; Cooke, David E L; Blok, Vivian; Gilroy, Eleanor M

    2012-01-01

    Most reviews of climate change are epidemiological, focusing on impact assessment and risk mapping. However, there are many reports of the effects of environmental stress factors on defense mechanisms in plants against pathogens. We review those representative of key climate change-related stresses to determine whether there are any patterns or trends in adaptation responses. We recognize the complexity of climate change itself and the multitrophic nature of the complex biological interactions of plants, microbes, soil, and the environment and, therefore, the difficulty of reductionist dissection approaches to resolving the problems. We review host defense genes, germplasm, and environmental interactions in different types of organisms but find no significant group-specific trends. Similarly, we review by host defense mechanism type and by host-pathogen trophic relationship but identify no dominating mechanism for stress response. However, we do identify core stress response mechanisms playing key roles in multiple response pathways whether to biotic or abiotic stress. We suggest that these should be central to mechanistic climate change plant defense research. We also recognize biodiversity, heterogeneity, and the need for understanding stress in a true systems biology approach as being essential components of progressing our understanding of and response to climate change. Copyright © 2012 Elsevier Inc. All rights reserved.

  6. Sexual Responsivity and Ego Defenses

    Science.gov (United States)

    Schill, Thomas; Bekker, Demoyne

    1976-01-01

    The present study sought to determine whether high- and low-sexual responders on a double-entendre word association test differed in defensive preference on Gleser and Ihilevich's Defense Mechanism Inventory. (Author)

  7. Defense Logistics Agency Revenue Eliminations

    National Research Council Canada - National Science Library

    1996-01-01

    The issue of revenue eliminations was identified during our work on the Defense Logistics Agency portion of the Audit of Revenue Accounts in the FY 1996 Financial Statements of the Defense Business Operations Fund...

  8. Defense mechanism differences between younger and older adults: A cross-sectional investigation.

    Science.gov (United States)

    Segal, Daniel L; Coolidge, Frederick L; Mizuno, Hideaki

    2007-07-01

    This study evaluated defense mechanism differences between younger and older adults and also assessed the relationship between defense mechanisms and perceived stress, in order to provide evidence of construct validity of a self-reported defense mechanisms scale. Community-dwelling younger (n = 259; M age = 19.7 years) and older adults (n = 69; M age = 70.8 years) completed the Defense Style Questionnaire and the Perceived Stress Scale. Whereas there were no age differences on adaptive defense mechanisms, younger adults scored higher than older adults on the Acting Out, Passive-Aggression, and Regression maladaptive defense mechanism scales. Maladaptive defenses were significantly and positively correlated (r = .57) with perceived stress. Cross-sectional results suggest a general stability of adaptive defense mechanisms across the lifespan but a lessening of maladaptive defense mechanisms with advancing age. These results dispel the myth that old age is associated with inevitable psychological impairment and suggest some specific positive psychological adaptations with age. The correlational findings provide partial support for the construct validity of a self-report measure of defense mechanisms.

  9. Joint stabilizing projects in defense

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.; Browne, J.C.; Joseph, R.J.

    1992-06-01

    Joint defensive projects could increase stability and decrease the alert rates of strategic forces. Areas include the defense of the US, Commonwealth of Independent States (CIS), and their allies against third world threats; protection against each other`s accidental or unauthorized launches; and defense against intentional attacks. The most promising area appears to be defining interfaces for the handover of satellite warning and trajectory information, which applies to most phases of theater defense and mutual protection. 19 refs.

  10. Joint stabilizing projects in defense

    Energy Technology Data Exchange (ETDEWEB)

    Canavan, G.H.; Browne, J.C.; Joseph, R.J.

    1992-06-01

    Joint defensive projects could increase stability and decrease the alert rates of strategic forces. Areas include the defense of the US, Commonwealth of Independent States (CIS), and their allies against third world threats; protection against each other's accidental or unauthorized launches; and defense against intentional attacks. The most promising area appears to be defining interfaces for the handover of satellite warning and trajectory information, which applies to most phases of theater defense and mutual protection. 19 refs.

  11. The Nobel Prize for understanding autophagy, a cellular mechanism ...

    Indian Academy of Sciences (India)

    This processof autophagy (self-eating) maintains cellular homeostasis and helps the cell and the organism to surviveduring periods of stress, such as starvation, by recycling the cellular components to generate amino acidsand nutrients needed for producing energy. Autophagy and ubiquitin-proteasome system are the two ...

  12. Modeling cellular systems

    CERN Document Server

    Matthäus, Franziska; Pahle, Jürgen

    2017-01-01

    This contributed volume comprises research articles and reviews on topics connected to the mathematical modeling of cellular systems. These contributions cover signaling pathways, stochastic effects, cell motility and mechanics, pattern formation processes, as well as multi-scale approaches. All authors attended the workshop on "Modeling Cellular Systems" which took place in Heidelberg in October 2014. The target audience primarily comprises researchers and experts in the field, but the book may also be beneficial for graduate students.

  13. Cellular MR Imaging

    OpenAIRE

    Michel Modo; Mathias Hoehn; Jeff W.M. Bulte

    2005-01-01

    Cellular MR imaging is a young field that aims to visualize targeted cells in living organisms. In order to provide a different signal intensity of the targeted cell, they are either labeled with MR contrast agents in vivo or prelabeled in vitro. Either (ultrasmall) superparamagnetic iron oxide [(U)SPIO] particles or (polymeric) paramagnetic chelates can be used for this purpose. For in vivo cellular labeling, Gd3+- and Mn2+- chelates have mainly been used for targeted hepatobiliary imaging, ...

  14. Magnetohydrodynamic cellular automata

    International Nuclear Information System (INIS)

    Hatori, Tadatsugu

    1990-01-01

    There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)

  15. Belowground herbivory and plant defenses

    NARCIS (Netherlands)

    Van Dam, N.M.

    2009-01-01

    Belowground-feeding herbivores may be very destructive to plants. Roots are known to produce various defense compounds to protect themselves against these herbivores, both with direct and indirect—inducible—defense compounds. Recent literature reviews reveal no overall pattern for root-shoot defense

  16. Cross talk in defense signaling

    NARCIS (Netherlands)

    Koornneef, A.; Pieterse, C.M.J.

    2008-01-01

    Plants are equipped with an array of defense mechanisms to protect themselves against attack by herbivorous insects and microbial pathogens. Some of these defense mechanisms are preexisting, whereas others are only activated upon insect or pathogen invasion. Induced defense responses entail fitness

  17. Defense Mechanisms in Group Counseling.

    Science.gov (United States)

    Clark, Arthur J.

    1992-01-01

    Presents considerations and strategies for conceptualizing, recognizing, and modifying defense mechanisms through the group counseling process. Provides awareness of defense mechanisms in planning for and implementation of group counseling, describes interaction patterns for identifying defenses among group participants, and clarifies modification…

  18. Defense on the Move: Ant-Based Cyber Defense

    Energy Technology Data Exchange (ETDEWEB)

    Fink, Glenn A.; Haack, Jereme N.; McKinnon, Archibald D.; Fulp, Errin W.

    2014-04-15

    Many common cyber defenses (like firewalls and IDS) are as static as trench warfare allowing the attacker freedom to probe them at will. The concept of Moving Target Defense (MTD) adds dynamism to the defender side, but puts the systems to be defended themselves in motion, potentially at great cost to the defender. An alternative approach is a mobile resilient defense that removes attackers’ ability to rely on prior experience without requiring motion in the protected infrastructure itself. The defensive technology absorbs most of the cost of motion, is resilient to attack, and is unpredictable to attackers. The Ant-Based Cyber Defense (ABCD) is a mobile resilient defense providing a set of roaming, bio-inspired, digital-ant agents working with stationary agents in a hierarchy headed by a human supervisor. The ABCD approach provides a resilient, extensible, and flexible defense that can scale to large, multi-enterprise infrastructures like the smart electric grid.

  19. Toxicology and cellular effect of manufactured nanomaterials

    Science.gov (United States)

    Chen, Fanqing

    2014-07-22

    The increasing use of nanotechnology in consumer products and medical applications underlies the importance of understanding its potential toxic effects to people and the environment. Herein are described methods and assays to predict and evaluate the cellular effects of nanomaterial exposure. Exposing cells to nanomaterials at cytotoxic doses induces cell cycle arrest and increases apoptosis/necrosis, activates genes involved in cellular transport, metabolism, cell cycle regulation, and stress response. Certain nanomaterials induce genes indicative of a strong immune and inflammatory response within skin fibroblasts. Furthermore, the described multiwall carbon nanoonions (MWCNOs) can be used as a therapeutic in the treatment of cancer due to its cytotoxicity.

  20. Cytoprotective Effects of Pumpkin (Cucurbita Moschata) Fruit Extract against Oxidative Stress and Carbonyl Stress.

    Science.gov (United States)

    Shayesteh, Reyhaneh; Kamalinejad, Mohammad; Adiban, Hasan; Kardan, Azin; Keyhanfar, Fariborz; Eskandari, Mohammad Reza

    2017-10-01

    Background Diabetes mellitus is a chronic endocrine disorder that is associated with significant mortality and morbidity due to microvascular and macrovascular complications. Diabetes complications accompanied with oxidative stress and carbonyl stress in different organs of human body because of the increased generation of free radicals and impaired antioxidant defense systems. In the meantime, reactive oxygen species (ROS) and reactive carbonyl species (RCS) have key mediatory roles in the development and progression of diabetes complications. Therapeutic strategies have recently focused on preventing such diabetes-related abnormalities using different natural and chemical compounds. Pumpkin ( Cucurbita moschata ) is one of the most important vegetables in the world with a broad-range of pharmacological activities such as antihyperglycemic effect. Methods In the present study, the cytoprotective effects of aqueous extract of C. moschata fruit on hepatocyte cytotoxicity induced by cumene hydroperoxide (oxidative stress model) or glyoxal (carbonylation model) were investigated using freshly isolated rat hepatocytes. Results The extract of C. moschata (50 μg/ml) excellently prevented oxidative and carbonyl stress markers, including hepatocyte lysis, ROS production, lipid peroxidation, glutathione depletion, mitochondrial membrane potential collapse, lysosomal damage, and cellular proteolysis. In addition, protein carbonylation was prevented by C. moschata in glyoxal-induced carbonyl stress. Conclusion It can be concluded that C. moschata has cytoprotective effects in oxidative stress and carbonyl stress models and this valuable vegetable can be considered as a suitable herbal product for the prevention of toxic subsequent of oxidative stress and carbonyl stress seen in chronic hyperglycemia. © Georg Thieme Verlag KG Stuttgart · New York.

  1. Surveillance-activated defenses block the ROS-induced mitochondrial unfolded protein response.

    Directory of Open Access Journals (Sweden)

    Eva D Runkel

    Full Text Available Disturbance of cellular functions results in the activation of stress-signaling pathways that aim at restoring homeostasis. We performed a genome-wide screen to identify components of the signal transduction of the mitochondrial unfolded protein response (UPR(mt to a nuclear chaperone promoter. We used the ROS generating complex I inhibitor paraquat to induce the UPR(mt, and we employed RNAi exposure post-embryonically to allow testing genes whose knockdown results in embryonic lethality. We identified 54 novel regulators of the ROS-induced UPR(mt. Activation of the UPR(mt, but not of other stress-signaling pathways, failed when homeostasis of basic cellular mechanisms such as translation and protein transport were impaired. These mechanisms are monitored by a recently discovered surveillance system that interprets interruption of these processes as pathogen attack and depends on signaling through the JNK-like MAP-kinase KGB-1. Mutation of kgb-1 abrogated the inhibition of ROS-induced UPR(mt, suggesting that surveillance-activated defenses specifically inhibit the UPR(mt but do not compromise activation of the heat shock response, the UPR of the endoplasmic reticulum, or the SKN-1/Nrf2 mediated response to cytosolic stress. In addition, we identified PIFK-1, the orthologue of the Drosophila PI 4-kinase four wheel drive (FWD, and found that it is the only known factor so far that is essential for the unfolded protein responses of both mitochondria and endoplasmic reticulum. This suggests that both UPRs may share a common membrane associated mechanism.