WorldWideScience

Sample records for defense waste section

  1. Defense waste management plan

    International Nuclear Information System (INIS)

    1983-06-01

    Defense high-level waste (HLW) and defense transuranic (TRU) waste are in interim storage at three sites, namely: at the Savannah River Plant, in South Carolina; at the Hanford Reservation, in Washington; and at the Idaho National Engineering Laboratory, in Idaho. Defense TRU waste is also in interim storage at the Oak Ridge National Laboratory, in Tennessee; at the Los Alamos National Laboratory, in New Mexico; and at the Nevada Test Site, in Nevada. (Figure E-2). This document describes a workable approach for the permanent disposal of high-level and transuranic waste from atomic energy defense activities. The plan does not address the disposal of suspect waste which has been conservatively considered to be high-level or transuranic waste but which can be shown to be low-level waste. This material will be processed and disposed of in accordance with low-level waste practices. The primary goal of this program is to utilize or dispose of high-level and transuranic waste routinely, safely, and effectively. This goal will include the disposal of the backlog of stored defense waste. A Reference Plan for each of the sites describes the sequence of steps leading to permanent disposal. No technological breakthroughs are required to implement the reference plan. Not all final decisions concerning the activities described in this document have been made. These decisions will depend on: completion of the National Environmental Policy Act process, authorization and appropriation of funds, agreements with states as appropriate, and in some cases, the results of pilot plant experiments and operational experience. The major elements of the reference plan for permanent disposal of defense high-level and transuranic waste are summarized

  2. Defense radioactive waste management

    International Nuclear Information System (INIS)

    Hindman, T.B. Jr.

    1988-01-01

    The Office of Defense Programs (DP), U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. Pursuant to this mission, DP operates a large industrial complex that employs over 60,000 people at various installations across the country. As a byproduct of their activities, these installations generate radioactive, hazardous, or mixed wastes that must be managed in a safe and cost-effective manner in compliance with all applicable Federal and STate environmental requirements. At the Federal level such requirements derive primarily from the Atomic Energy Act, the Resource Conservation and Recovery Act (RCRA), the comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) and the Superfund Amendments and Reauthorization Act (SARA). Responsibility for DP activities in connection with the disposal of defense wastes is consolidated within the Office of Defense Waste and Transportation Management (DWTM). This paper discusses these activities which consist of five principal elements: the environmental restoration of inactive DP facilities and sites, the processing storage and disposal of wastes associated with ongoing operations at active DP facilities, research and development directed toward the long-term disposal of radioactive, hazardous, mixed wastes, technology development directly supporting regulatory compliance, and the development of policies, procedures, and technologies for assuring the safe transportation of radioactive and hazardous materials

  3. Defense Transuranic Waste Program Strategy Document

    International Nuclear Information System (INIS)

    1984-01-01

    The Defense Transuranic Waste Program (DTWP) Strategy Document presents the general strategy for managing transuranic (TRU) waste materials generated during defense and research activities regulated by the US Department of Energy. The Strategy Document includes discussion of objectives and activities relating to the entire Defense Transuranic Waste Program. However, the primary focus is on the specific management responsibilities of the Transuranic Waste Lead Organization (TLO). The document also includes an updated summary of progress on TLO-managed activities over the past year

  4. FY85 Program plan for the Defense Transuranic Waste Program (DTWP)

    International Nuclear Information System (INIS)

    1984-11-01

    The Defense TRU Waste Program (DTWP) is the focal point for the Department of Energy in national planning, integration, and technical development for TRU waste management. The scope of this program extends from the point of TRU waste generation through delivery to a permanent repository. The TRU program maintains a close interface with repository development to ensure program compatibility and coordination. The defense TRU program does not directly address commercial activities that generate TRU waste. Instead, it is concerned with providing alternatives to manage existing and future defense TRU wastes. The FY85 Program Plan is consistent with the Defense TRU Waste Program goals and objectives stated in the Defense Transuranic Waste Program Strategy Document, January 1984. The roles of participants, the responsibilities and authorities for Research and Development (R and D), the organizational interfaces and communication channels for R and D and the establishment of procedures for planning, reporting, and budgeting of all R and D activities meet requirements stated in the Technical Management Plan for the Transuranic Waste Management Program. The Program Plan is revised as needed. The work breakdown structure is reflected graphically immediately following the Administration section and is described in the subsequent narrative. Detailed budget planning (i.e., programmatic funding and capital equipment) is presented for FY85; outyear budget projections are presented for future years

  5. Status of defense radioactive waste disposal activities

    International Nuclear Information System (INIS)

    Wade, T.W.

    1988-01-01

    The Office of Defense Programs, U.S. Department of Energy, is responsible for the production of nuclear weapons and materials for national defense. As a byproduct to their activities, nuclear production facilities have generated, and will continue to generate, certain radioactive, hazardous, or mixed wastes that must be managed and disposed of in a safe and cost-effective manner. Compliance with all applicable Federal and State regulations is required. This paper describes the principal elements that comprise Defense Programs' approach to waste management and disposal. The status of high-level, transuranic, and low-level radioactive waste disposal is set forth. Defense Programs' activities in connection with the environmental restoration of inactive facilities and with the safe transport of waste materials are summarized. Finally, the principal challenges to realizing the goals set for the defense waste program are discussed in terms of regulatory, public acceptance, technical, and budget issues

  6. Status of DOE defense waste management policy

    International Nuclear Information System (INIS)

    Oertel, K.G.; Scott, R.S.

    1983-01-01

    This paper very briefly traces the statutory basis for DOE management of atomic energy defense activity wastes, touches on the authority of the Federal agencies involved in the regulation of defense nuclear waste management, and addresses the applicable regulations and their status. This background sets the stage for a fairly detailed discussion of management and disposal strategies of the Defense Waste and Byproducts Management Program

  7. Overview: Defense high-level waste technology program

    International Nuclear Information System (INIS)

    Shupe, M.W.; Turner, D.A.

    1987-01-01

    Defense high-level waste generated by atomic energy defense activities is stored on an interim basis at three U.S. Department of Energy (DOE) operating locations; the Savannah River Plant in South Carolina, the Hanford Site in Washington, and the Idaho National Engineering Laboratory in Idaho. Responsibility for the permanent disposal of this waste resides with DOE's Office of Defense Waste and Transportation Management. The objective of the Defense High-Level Wast Technology Program is to develop the technology for ending interim storage and achieving permanent disposal of all U.S. defense high-level waste. New and readily retrievable high-level waste are immobilized for disposal in a geologic repository. Other high-level waste will be stabilized in-place if, after completion of the National Environmental Policy Act (NEPA) process, it is determined, on a site-specific basis, that this option is safe, cost effective and environmentally sound. The immediate program focus is on implementing the waste disposal strategy selected in compliance with the NEPA process at Savannah River, while continuing progress toward development of final waste disposal strategies at Hanford and Idaho. This paper presents an overview of the technology development program which supports these waste management activities and an assessment of the impact that recent and anticipated legal and institutional developments are expected to have on the program

  8. Management of remote-handled defense transuranic wastes

    International Nuclear Information System (INIS)

    Ebra, M.A.; Pierce, G.D.; Carson, P.H.

    1988-01-01

    Transuranic (TRU) wastes generated by defense-related activities are scheduled for emplacement at the Waste Isolation Pilot Plant (WIPP) in New Mexico beginning in October 1988. After five years of operation as a research and development facility, the WIPP may be designated as a permanent repository for these wastes, if it has been demonstrated that this deep, geologically stable formation is a safe disposal option. Defense TRU wastes are currently stored at various Department of Energy (DOE) sites across the nation. Approximately 2% by volume of currently stored TRU wastes are defined, on the basis of dose rates, as remote-handled (RH). RH wastes continue to be generated at various locations operated by DOE contractors. They require special handling and processing prior to and during emplacement in the WIPP. This paper describes the strategy for managing defense RH TRU wastes

  9. Defense waste transportation: cost and logistics studies

    International Nuclear Information System (INIS)

    Andrews, W.B.; Cole, B.M.; Engel, R.L.; Oylear, J.M.

    1982-08-01

    Transportation of nuclear wastes from defense programs is expected to significantly increase in the 1980s and 1990s as permanent waste disposal facilities come into operation. This report uses models of the defense waste transportation system to quantify potential transportation requirements for treated and untreated contact-handled transuranic (CH-TRU) wastes and high-level defense wastes (HLDW). Alternative waste management strategies in repository siting, waste retrieval and treatment, treatment facility siting, waste packaging and transportation system configurations were examined to determine their effect on transportation cost and hardware requirements. All cost estimates used 1980 costs. No adjustments were made for future changes in these costs relative to inflation. All costs are reported in 1980 dollars. If a single repository is used for defense wastes, transportation costs for CH-TRU waste currently in surface storage and similar wastes expected to be generated by the year 2000 were estimated to be 109 million dollars. Recovery and transport of the larger buried volumes of CH-TRU waste will increase CH-TRU waste transportation costs by a factor of 70. Emphasis of truck transportation and siting of multiple repositories would reduce CH-TRU transportation costs. Transportation of HLDW to repositories for 25 years beginning in 1997 is estimated to cost $229 M in 1980 costs and dollars. HLDW transportation costs could either increase or decrease with the selection of a final canister configuration. HLDW transportation costs are reduced when multiple repositories exist and emphasis is placed on truck transport

  10. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    International Nuclear Information System (INIS)

    Radulesscu, G.; Tang, J.S.

    2000-01-01

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M andO [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M andO 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M andQ 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M andO 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable canisters. The intended use of this

  11. DESIGN ANALYSIS FOR THE DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER

    Energy Technology Data Exchange (ETDEWEB)

    G. Radulesscu; J.S. Tang

    2000-06-07

    The purpose of ''Design Analysis for the Defense High-Level Waste Disposal Container'' analysis is to technically define the defense high-level waste (DHLW) disposal container/waste package using the Waste Package Department's (WPD) design methods, as documented in ''Waste Package Design Methodology Report'' (CRWMS M&O [Civilian Radioactive Waste Management System Management and Operating Contractor] 2000a). The DHLW disposal container is intended for disposal of commercial high-level waste (HLW) and DHLW (including immobilized plutonium waste forms), placed within disposable canisters. The U.S. Department of Energy (DOE)-managed spent nuclear fuel (SNF) in disposable canisters may also be placed in a DHLW disposal container along with HLW forms. The objective of this analysis is to demonstrate that the DHLW disposal container/waste package satisfies the project requirements, as embodied in Defense High Level Waste Disposal Container System Description Document (SDD) (CRWMS M&O 1999a), and additional criteria, as identified in Waste Package Design Sensitivity Report (CRWMS M&Q 2000b, Table 4). The analysis briefly describes the analytical methods appropriate for the design of the DHLW disposal contained waste package, and summarizes the results of the calculations that illustrate the analytical methods. However, the analysis is limited to the calculations selected for the DHLW disposal container in support of the Site Recommendation (SR) (CRWMS M&O 2000b, Section 7). The scope of this analysis is restricted to the design of the codisposal waste package of the Savannah River Site (SRS) DHLW glass canisters and the Training, Research, Isotopes General Atomics (TRIGA) SNF loaded in a short 18-in.-outer diameter (OD) DOE standardized SNF canister. This waste package is representative of the waste packages that consist of the DHLW disposal container, the DHLW/HLW glass canisters, and the DOE-managed SNF in disposable

  12. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    Pettit, N. E.

    2001-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms [IPWF]) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. US Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as co-disposal. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister inserted in the center and/or one or more DOE SNF canisters displacing a HLW canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by

  13. Defense High Level Waste Disposal Container System Description Document

    International Nuclear Information System (INIS)

    2000-01-01

    The Defense High Level Waste Disposal Container System supports the confinement and isolation of waste within the Engineered Barrier System of the Monitored Geologic Repository (MGR). Disposal containers are loaded and sealed in the surface waste handling facilities, transferred to the underground through the accesses using a rail mounted transporter, and emplaced in emplacement drifts. The defense high level waste (HLW) disposal container provides long-term confinement of the commercial HLW and defense HLW (including immobilized plutonium waste forms (IPWF)) placed within disposable canisters, and withstands the loading, transfer, emplacement, and retrieval loads and environments. U.S. Department of Energy (DOE)-owned spent nuclear fuel (SNF) in disposable canisters may also be placed in a defense HLW disposal container along with commercial HLW waste forms, which is known as 'co-disposal'. The Defense High Level Waste Disposal Container System provides containment of waste for a designated period of time, and limits radionuclide release. The disposal container/waste package maintains the waste in a designated configuration, withstands maximum handling and rockfall loads, limits the individual canister temperatures after emplacement, resists corrosion in the expected handling and repository environments, and provides containment of waste in the event of an accident. Defense HLW disposal containers for HLW disposal will hold up to five HLW canisters. Defense HLW disposal containers for co-disposal will hold up to five HLW canisters arranged in a ring and one DOE SNF canister in the ring. Defense HLW disposal containers also will hold two Multi-Canister Overpacks (MCOs) and two HLW canisters in one disposal container. The disposal container will include outer and inner cylinders, outer and inner cylinder lids, and may include a canister guide. An exterior label will provide a means by which to identify the disposal container and its contents. Different materials

  14. Balancing the technical, administrative, and institutional forces in defense waste management

    International Nuclear Information System (INIS)

    Hindman, T.B.

    1988-01-01

    Defense radioactive waste results from the Department of Energy's (DOE) national defense and nuclear weapons production activities. In 1983, the President submitted to Congress the Defense Waste Management Plan (DWMP) for defense high-level and transuranic wastes. The Plan proposed a workable approach for the final disposition of these wastes. The Department is still following the path laid out in this Plan. The proper management of this waste requires that technical, administrative, and institutional forces which are often neither well understood nor well documented be properly balanced. This paper clarifies the role these three forces play in the Defense waste management programs and provides examples of their impacts on specific programs

  15. Nevada test site defense waste acceptance criteria, certification, and transfer requirements

    International Nuclear Information System (INIS)

    1988-10-01

    The Nevada Test Site (NTS) Defense Waste Acceptance Criteria, Certification and Transfer Requirements establishes procedures and criteria for safe transfer, disposal, and storage of defense transuranic, low-level, and mixed waste at the NTS. Included are an overview of the NTS defense waste management program; the NTS waste acceptance criteria for transuranic, low-level, and mixed wastes; waste certification requirements and guidance; application to submit waste; and requirements for waste transfer and receipt. 5 figs., 16 tabs

  16. Activities in department of energy hazardous and mixed waste defense waste management

    International Nuclear Information System (INIS)

    Eyman, L.D.

    1988-01-01

    In January 1986, the U.S. Department of Energy (DOE) Office of Assistant Secretary for Defense Programs (DP) created the Hazardous Waste and Remedial Actions Division within the Office of Defense Waste and Transportation Management. The Oak Ridge Operations Office (ORO) was assigned the responsibility for supporting DOE Headquarters (HQ) in planning nationally integrated activities for Resource Conservation and Recovery Act/Comprehensive Environmental Response, Compensation, and Liability Act/Superfund Amendments and Reauthorization Act (RCRA/CERCLA/SARA) compliance. In turn, ORO created the Hazardous Waste Remedial Actions Program Support Contractor Office (HAZWRAPSCO) to assist with the expanded lead assignment. The HAZWRAPSCO activities are currently supported by three distinct DOE-HQ funding elements: the Environmental Restoration Program, the Hazardous Waste Compliance Technology Program, and the Hazardous Waste Research and Development R and D Program. The Environmental Restoration Program is discussed in the paper, entitled The DOE Defense Program for Environmental Restoration

  17. Achieving RCRA compliance in DOE defense waste management operations

    International Nuclear Information System (INIS)

    Frankhauser, W.A.; Shepard, M.D.

    1989-01-01

    The U.S. Department of Energy (DOE) generates significant volumes of radioactive mixed waste (RMW) through its defense-related activities. Defense RMW is co-regulated by DOE and the U.S. Environmental Protection Agency/State agencies in accordance with requirements of the Resource Conservation and Recovery Act (RCRA) and the Atomic Energy Act (AEA). This paper highlights some of the problems encountered in co-regulation and discusses achievements of the defense waste management program in integrating RCRA requirements into RMW operations. Defense waste sites are planning facility modifications and major new construction projects to develop treatment, storage and disposal capacity for existing RMW inventories and projected needs

  18. Future directions of defense programs high-level waste technology programs

    International Nuclear Information System (INIS)

    Chee, T.C.; Shupe, M.W.; Turner, D.A.; Campbell, M.H.

    1987-01-01

    The Department of Energy has been managing high-level waste from the production of nuclear materials for defense activities over the last forty years. An objective for the Defense Waste and Transportation Management program is to develop technology which ensures the safe, permanent disposal of all defense radioactive wastes. Technology programs are underway to address the long-term strategy for permanent disposal of high-level waste generated at each Department of Energy site. Technology is being developed for assessing the hazards, environmental impacts, and costs of each long-term disposal alternative for selection and implementation. This paper addresses key technology development areas, and consideration of recent regulatory requirements associated with the long-term management of defense radioactive high-level waste

  19. The defense waste processing facility: the final processing step for defense high-level waste disposal

    International Nuclear Information System (INIS)

    Cowan, S.P.; Sprecher, W.M.; Walton, R.D.

    1983-01-01

    The policy of the U.S. Department of Energy is to pursue an aggressive and credible waste management program that advocates final disposal of government generated (defense) high-level nuclear wastes in a manner consistent with environmental, health, and safety responsibilities and requirements. The Defense Waste Processing Facility (DWPF) is an essential component of the Department's program. It is the first project undertaken in the United States to immobilize government generated high-level nuclear wastes for geologic disposal. The DWPF will be built at the Department's Savannah River Plant near Aiken, South Carolina. When construction is complete in 1989, the DWPF will begin processing the high-level waste at the Savannah River Plant into a borosilicate glass form, a highly insoluble and non-dispersable product, in easily handled canisters. The immobilized waste will be stored on site followed by transportation to and disposal in a Federal repository. The focus of this paper is on the DWPF. The paper discusses issues which justify the project, summarizes its technical attributes, analyzes relevant environmental and insitutional factors, describes the management approach followed in transforming technical and other concepts into concrete and steel, and concludes with observations about the future role of the facility

  20. Economics of defense high level waste management in the United States

    International Nuclear Information System (INIS)

    McDonell, W.R.

    1987-01-01

    Life-cycle costs of defense waste disposal, as presented in the foregoing sections, are summarized. Expressed as incremental costs per canister of waste deposited in a Federal geologic repository and per gallon of decontaminated salt solution immobilized in onsite concrete vaults, the tabulated values provide a measure of waste management costs relatively independent of the inventories of waste processed. Total values are about $350,000 per glass waste canister processed and $4.68 per gallon of decontaminated salt immobilized. These costs do not generally include contributions of fixed charges, such as capital costs, except in the case of transport and repository charges for which the quantities of waste handled determine allocation of fixed costs included in the fee assessments. 14 refs., 2 figs., 3 tabs

  1. Integration of long-range planning for management of defense transuranic waste

    International Nuclear Information System (INIS)

    Gilbert, K.V.; McFadden, M.H.; Raudenbush, M.H.; Smith, L.J.

    1984-01-01

    As described in The Defense Waste Management Plan, the defense TRU program goal is to achieve permanent disposal and to end interim storage. TRU waste is currently stored at six Department of Energy (DOE) sites, and new waste is generated at several more sites. The Waste Isolation Pilot Plant (WIPP) project is well defined, and it has been necessary to integrate the activities of other parts of the TRU program in support of DOE Headquarters policy and the WIPP schedules and technical requirements. The strategy is described in the Defense Transuranic Waste Program Strategy Document. More detailed, quantitative plans have been developed through the use of several system models, with a Long-Range Master Plan for Defense Transuranic Waste Management as the focal point for coordination of proposed plans with all the parties involved

  2. Defense Waste Processing Facility, Savannah River Plant

    International Nuclear Information System (INIS)

    After 10 years of research, development, and testing, the US Department of Energy is building a new facility which will prepare high-level radioactive waste for permanent disposal. The Defense Waste Processing Facility, known as the DWPF, will be the first production-scale facility of its kind in the United States. In the DWPF, high-level waste produced by defense activities at the Savannah River Plant will be processed into a solid form, borosilicate glass, suitable for permanent off-site geologic disposal. With construction beginning in the fall of 1983, the DWPT is scheduled to be operational in 1989. By 2005, the DWPF will have immobilized the backlog of high-level waste which has been accumulating in storage tanks at the Savannah River Plant since 1954. Canisters of the immobilized waste will then be ready for permanent disposal deep under the ground, safely isolated from the environment

  3. Defense-in-depth evaluation for the New Waste Transfer Facility

    International Nuclear Information System (INIS)

    Hayes, T.G.; Kelly, J.L.

    1995-01-01

    This report fulfills part of the requirements of References 2 and 3 by documenting a Defense-In-Depth evaluation for the New Waste Transfer Facility (NWTF). This evaluation was performed using methodology similar to that used in an evaluation for the Defense Waste Processing Facility (DWPF). It differs because the DWPF evaluation was based on an existing Process Hazards Analysis (PHA) while NWTF's is based on a Preoperational Process Hazards Review (PHR) (Ref. 1). The accidents in the Process Hazards Review (PHR) were reviewed to determine those that might have significant consequences. Significance was based on the findings of the PHR, The facility design was reviewed to determine the Structures, Systems, and Components (SSCs) and administrative controls available before and after each accident. From this was developed a list of the Lines of Defense (LODs) available to contain the hazard associated with the accident. A summary of these LODs is given in Appendix C. Items are tabulated that are suggested for consideration in the functional classification as worker protection items. The specific criteria used in the evaluation is given in the methodology section of this report. The results are documented in Appendices A, B, C, and D

  4. Hanford defense waste studies

    International Nuclear Information System (INIS)

    Napier, B.A.; Zimmerman, M.G.; Soldat, J.K.

    1981-01-01

    PNL is assisting Rockwell Hanford Operations to prepare a programmatic environmental impact statement for the management of Hanford defense nuclear waste. The Ecological Sciences Department is leading the task of calculation of public radiation doses from a large matrix of potential routine and accidental releases of radionuclides to the environment

  5. Evaluation of health and safety impacts of defense high-level waste in geologic repositories

    International Nuclear Information System (INIS)

    Smith, E.D.; Kocher, D.C.; Witherspoon, J.P.

    1985-02-01

    Pursuant to the requirement of the Nuclear Waste Policy Act of 1982 that the President evaluate the use of commercial high-level waste repositories for the disposal of defense high-level wastes, a comparative assessment has been performed of the potential health and safety impacts of disposal of defense wastes in commercial or defense-only repositories. Simplified models were used to make quantitative estimates of both long- and short-term health and safety impacts of several options for defense high-level waste disposal. The results indicate that potential health and safety impacts are not likely to vary significantly among the different disposal options for defense wastes. Estimated long-term health and safety impacts from all defense-waste disposal options are somewhat less than those from commercial waste disposal, while short-term health and safety impacts appear to be insensitive to the differences between defense and commercial wastes. In all cases, potential health and safety impacts are small because of the need to meet stringent standards promulgated by the US Environmental Protection Agency and the US Nuclear Regulatory Commission. We conclude that health and safety impacts should not be a significant factor in the choice of a disposal option for defense high-level wastes. 20 references, 14 tables

  6. Defense transuranic waste program strategy document

    International Nuclear Information System (INIS)

    1982-07-01

    This document summarizes the strategy for managing transuranic (TRU) wastes generated in defense and research activities regulated by the US Department of Energy. It supercedes a document issued in July 1980. In addition to showing how current strategies of the Defense Transuranic Waste Program (DTWP) are consistent with the national objective of isolating radioactive wastes from the biosphere, this document includes information about the activities of the Transuranic Lead Organization (TLO). To explain how the DTWP strategy is implemented, this document also discusses how the TLO coordinates and integrates the six separate elements of the DTWP: (1) Waste Generation Site Activities, (2) Storage Site Activities, (3) Burial Site Activities, (4) Technology Development, (5) Transportation Development, and (6) Permanent Disposal. Storage practices for TRU wastes do not pose short-term hazards to public health and safety or to the environment. Isolation of TRU wastes in a deep-mined geologic repository is considered the most promising of the waste disposal alternatives available. This assessment is supported by the DOE Record of Decision to proceed with research and development work at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico - a deep-mined geologic research and development project. In support of the WIPP research project and the permanent disposal of TRU waste, the DTWP strategy for the near term will concentrate on completion of procedures and the design and construction of all facilities necessary to certify newly-generated (NG) and stored TRU wastes for emplacement in the WIPP. In addition, the strategy involves evaluating alternatives for disposing of some transuranic wastes by methods which may allow for on-site disposal of these wastes and yet preserve adequate margins of safety to protect public health and the environment

  7. Defense waste processing facility startup progress report

    International Nuclear Information System (INIS)

    Iverson, D.C.; Elder, H.H.

    1992-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950's to produce nuclear materials in support of the national defense effort. About 83 million gallons of high level waste produced since operation began have been consolidated into 33 million gallons by evaporation at the waste tank farm. The Department of Energy has authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters, prior to emplacement in a federal repository. The DWPF is now mechanically complete and undergoing commissioning and run-in activities. Cold startup testing using simulated non-radioactive feeds is scheduled to begin in November 1992 with radioactive operation scheduled to begin in May 1994. While technical issues have been identified which can potentially affect DWPF operation, they are not expected to negatively impact the start of non-radioactive startup testing

  8. A truck cask design for shipping defense high-level waste

    International Nuclear Information System (INIS)

    Madsen, M.M.; Zimmer, A.

    1985-01-01

    The Defense High-Level Waste (DHLW) cask is a Type B packaging currently under development by the U.S. Department of Energy (DOE). This truck cask has been designed to initially transport borosilicate glass waste from the Defense Waste Processing Facility (DWPF) to the Waste Isolation Pilot Plant (WIPP). Specific program activities include designing, testing, certifying, and fabricating a prototype legal-weight truck cask system. The design includes such state-of-the-art features as integral impact limiters and remote handling features. A replaceable shielding liner provides the flexibility for shipping a wide range of waste types and activity levels

  9. Impact of transporting defense high-level waste to a geologic repository

    International Nuclear Information System (INIS)

    Joy, D.S.; Shappert, L.B.; Boyle, J.W.

    1984-12-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425) provides for the development of repositories for the disposal of high-level radioactive waste and spent nuclear fuel and requires the Secretary of Energy to evaluate five potential repository sites. One factor that is to be examined is transportation of radioactive materials to such a repository and whether transportation might be affected by shipments to a defense-only repository, or to one that accepts both defense and commercial waste. In response to this requirement, The Department of Energy has undertaken an evaluation of the cost and risk associated with the potential shipments. Two waste-flow scenarios are considered which are related to the total quantity of defense high-level waste which will be placed in a repository. The low-flow case is based on a total of 6700 canisters being transported from one site, while the high-flow case assumes that a total of 20,000 canisters will be transported from three sites. For the scenarios considered, the estimated shipping costs range from $105 million to $257 million depending upon the mode of transport and the repository location. The total risks associated with shipping defense high-level waste to a repository are estimated to be significantly smaller than predicted for other transportation activities. In addition, the cost of shipping defense high-level waste to a repository does not depend on whether the site is a defense-only or a commercial repository. Therefore, the transportation considerations are not a basis for the selection of one of the two disposal options

  10. U.S. Department of Energy defense waste management program implementation plan

    International Nuclear Information System (INIS)

    Jordan, E.A.

    1988-01-01

    The Program Implementation Plan describes the Department of Energy's current approach to managing its defense high-level, low-level, and transuranic radioactive waste. It documents implementation of the policies described in the 1983 Defense Waste Management Plan

  11. Process arrangement options for Defense waste immobilization

    International Nuclear Information System (INIS)

    1980-02-01

    Current plans are to immobilize the SRP high-level liquid wastes in a high integrity form. Borosilicate glass was selected in 1977 as the reference waste form and a mjaor effort is currently underway to develop the required technology. A large new facility, referred to as the Defense Waste Processing Facility (DWPF) is being designed to carry out this mission, with project authorization targeted for 1982 and plant startup in 1989. However, a number of other process arrangements or manufacturing strategies, including staging the major elements of the project or using existing SRP facilities for some functions, have been suggested in lieu of building the reference DWPF. This study assesses these various options and compares them on a technical and cost basis with the DWPF. Eleven different manufacturing options for SRP defense waste solidification were examined in detail. These cases are: (1) vitrification of acid waste at current generation rate; (2) vitrification of current rate acid waste and caustic sludge; (3 and 4) vitrification of the sludge portion of neutralized waste; (5) decontamination of salt cake and storage of concentrated cesium and strontium for later immobilization; (6) processing waste in a facility with lower capacity than the DWPF; (7) processing waste in a combination of existing and new facilities; (8) waste immobilization in H Canyon; (9) vitrification of both sludge and salt; (10) DWPF with onsite storage; (11) deferred authorization of DWPF

  12. U.S. Department of Energy, defense waste management program implementation plan

    International Nuclear Information System (INIS)

    Chee, T.

    1988-01-01

    This paper reports that the program implementation plan describes the Department of Energy's current approach to managing its defense high-level, low-level, and transuranic radioactive waste. It documents implementation of the policies described in the 1983 Defense Waste Management Plan

  13. Disposal of Hanford defense waste

    International Nuclear Information System (INIS)

    Holten, R.A.; Burnham, J.B.; Nelson, I.C.

    1986-01-01

    An Environmental Impact Statement (EIS) on the disposal of Hanford Defense Waste is scheduled to be released near the end of March, 1986. This EIS will evaluate the impacts of alternatives for disposal of high-level, tank, and transuranic wastes which are now stored at the Department of Energy's Hanford Site or will be produced there in the future. In addition to releasing the EIS, the Department of Energy is conducting an extensive public participation process aimed at providing information to the public and receiving comments on the EIS

  14. Economic considerations/comparisons for the disposal of defense high-level waste

    International Nuclear Information System (INIS)

    Leclaire, D.B.; Lazur, E.G.

    1985-01-01

    This paper provides a summary, in a generic sense, of the economic considerations and comparisons of permanent isolation of defense high-level waste (DHLW) in a licensed geologic repository. Topics considered include underground disposal, economic analysis, comparative evaluations, national defense, radioactive waste facilities, and licensing

  15. Defense waste processing facility project at the Savannah River Plant

    International Nuclear Information System (INIS)

    Baxter, R.G.; Maher, R.; Mellen, J.B.; Shafranek, L.F.; Stevens, W.R. III.

    1984-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level waste at the Savannah River Plant near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes produced by defense activities at the site. At the present time engineering and design are 45% complete, the site has been cleared, and startup is expected in 1989. This paper will describe project status as well as features of the design. 9 figures

  16. Flow measurement and control in the defense waste process

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1985-01-01

    The Defense Waste Processing Facility (DWPF) for immobilizing Savannah River Plant (SRP) high-level radioactive waste is now under construction. Previously stored waste is retrieved and processed into a glass matrix for permanent storage. The equipment operates in an entirely remote environment for both processing and maintenance due to the highly radioactive nature of the waste. A fine powdered glass frit is mixed with the waste prior to its introduction as a slurry into an electric glass furnace. The slurry is Bingham plastic in nature and of high viscosity. This combination of factors has created significant problems in flow measurement and control. Specialized pieces of equipment have been demonstrated that will function properly in a highly abrasive environment while receiving no maintenance during their lifetime. Included are flow meters, flow control technology, flow switching, and remote connections. No plastics or elastomers are allowed in contact with fluids and all electronic components are mounted remotely. Both two- and three-way valves are used. Maintenance is by crane replacement of process sections, utilizing specialized connectors. All portions of the above are now operating full scale (radioactively cold) at the test facility at SRP. 4 references, 8 figures

  17. Materials evaluation programs at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Gee, J.T.; Iverson, D.C.; Bickford, D.F.

    1992-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950s to produce nuclear materials in support of the national defense effort. About 83 million gallons of high-level waste produced since operations began has been consolidated by evaporation into 33 million gallons at the waste tank farm. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF), the function of which is to immobilize the waste as a durable borosilicate glass contained in stainless steel canisters prior to the placement of the canisters in a federal repository. The DWPF is now mechanically complete and is undergoing commissioning and run-in activities. A brief description of the DWPF process is provided

  18. Perspective on methods to calculate a fee for disposal of defense high-level waste in combined (civilian/defense) repositories

    International Nuclear Information System (INIS)

    1986-12-01

    The Department of Energy intends to send the high-level waste from defense operations to combined civilian/defense repositories for disposal. The federal government must pay a fee to cover its fair share of the cost for the disposal system. This report provides an overview perspective on the defense high-level waste (DHLW) quantities and characteristics and on potential alternatives for calculation and payment of the disposal fee. Information on the DHLW expected from government sites includes the number of waste canisters, radioactivity, thermal decay power, mass of defense reactor fuel, and total electrical energy-equivalents. Ranges in quantities are shown where different operating scenarios are being considered. Several different fee determination methods are described and fees for different quantities of waste are estimated. Information is also included on possible payment alternatives, production and shipping schedules, and credits which could be applied to the fee

  19. The Defense Waste Processing Facility: an innovative process for high-level waste immobilization

    International Nuclear Information System (INIS)

    Cowan, S.P.

    1985-01-01

    The Defense Waste Processing Facility (DWPF), under construction at the Department of Energy's Savannah River Plant (SRP), will process defense high-level radioactive waste so that it can be disposed of safely. The DWPF will immobilize the high activity fraction of the waste in borosilicate glass cast in stainless steel canisters which can be handled, stored, transported and disposed of in a geologic repository. The low-activity fraction of the waste, which represents about 90% of the high-level waste HLW volume, will be decontaminated and disposed of on the SRP site. After decontamination the canister will be welded shut by an upset resistance welding technique. In this process a slightly oversized plug is pressed into the canister opening. At the same time a large current is passed through the canister and plug. The higher resistance of the canister/plug interface causes the heat which welds the plug in place. This process provides a high quality, reliable weld by a process easily operated remotely

  20. Preliminary estimates of cost savings for defense high level waste vitrification options

    International Nuclear Information System (INIS)

    Merrill, R.A.; Chapman, C.C.

    1993-09-01

    The potential for realizing cost savings in the disposal of defense high-level waste through process and design modificatins has been considered. Proposed modifications range from simple changes in the canister design to development of an advanced melter capable of processing glass with a higher waste loading. Preliminary calculations estimate the total disposal cost (not including capital or operating costs) for defense high-level waste to be about $7.9 billion dollars for the reference conditions described in this paper, while projected savings resulting from the proposed process and design changes could reduce the disposal cost of defense high-level waste by up to $5.2 billion

  1. Quality assurance in Hanford site defense waste operations

    International Nuclear Information System (INIS)

    Wojtasek, R.D.

    1989-01-01

    This paper discusses quality assurance as an integral part of conducting waste management operations. The storage, treatment, and disposal of radioactive and non- radioactive hazardous wastes at Hanford are described. The author reports that quality assurance programs provide confidence that storage, treatment, and disposal facilities and systems perform as intended. Examples of how quality assurance is applied to Hanford defense waste operations are presented

  2. Application of SYNROC to high-level defense wastes

    International Nuclear Information System (INIS)

    Tewhey, J.D.; Hoenig, C.L.; Newkirk, H.W.; Rozsa, R.B.; Coles, D.G.; Ryerson, F.J.

    1981-01-01

    The SYNROC method for immobilization of high-level nuclear reactor wastes is currently being applied to US defense wastes in tank storage at Savannah River, South Carolina. The minerals zirconolite, perovskite, and hollandite are used in SYNROC D formulations to immobilize fission products and actinides that comprise up to 10% of defense waste sludges and coexisting solutions. Additional phase in SYNROC D are nepheline, the host phase for sodium; and spinel, the host for excess aluminum and iron. Up to 70 wt % of calcined sludge can be incorporated with 30 wt % of SYNROC additives to produce a waste form consisting of 10% nepheline, 30% spinel, and approximately 20% each of the radioactive waste-bearing phases. Urea coprecipitation and spray drying/calcining methods have been used in the laboratory to produce homogeneous, reactive ceramic powders. Hot pressing and sintering at temperatures from 1000 to 1100 0 C result in waste form products with greater than 97% of theoretical density. Hot isostatic pressing has recently been implemented as a processing alternative. Characterization of waste-form mineralogy has been done by means of XRD, SEM, and electron microprobe. Leaching of SYNROC D samples is currently being carried out. Assessment of radiation damage effects and physical properties of SYNROC D will commence in FY81

  3. Developing an institutional strategy for transporting defense transuranic waste materials

    International Nuclear Information System (INIS)

    Guerrero, J.V.; Kresny, H.S.

    1986-01-01

    In late 1988, the US Department of Energy (DOE) expects to begin emplacing transuranic waste materials in the Waste Isolation Pilot Plant (WIPP), an R and D facility to demonstrate the safe disposal of radioactive wastes resulting from defense program activities. Transuranic wastes are production-related materials, e.g., clothes, rags, tools, and similar items. These materials are contaminated with alpha-emitting transuranium radionuclides with half-lives of > 20 yr and concentrations > 100 nCi/g. Much of the institutional groundwork has been done with local communities and the State of New Mexico on the siting and construction of the facility. A key to the success of the emplacement demonstration, however, will be a qualified transportation system together with institutional acceptance of the proposed shipments. The DOE's Defense Transuranic Waste Program, and its contractors, has lead responsibility for achieving this goal. The Joint Integration Office (JIO) of the DOE, located in Albuquerque, New Mexico, is taking the lead in implementing an integrated strategy for assessing nationwide institutional concerns over transportation of defense transuranic wastes and in developing ways to resolve or mitigate these concerns. Parallel prototype programs are under way to introduce both the new packaging systems and the institutional strategy to interested publics and organizations

  4. Integrating the commercial and defense high level waste programs - A utility perspective

    International Nuclear Information System (INIS)

    Tomonto, J.R.

    1986-01-01

    The Nuclear Waste Policy Act of 1982 provided that disposal of high-level wastes resulting from defense activities be included in the authorized repository unless the President determined that separate facilities are required. President Reagan approved commingling of defense and civilian wastes on April 30, 1985. The impacts of this decision on the repository schedule, civilian spent fuel acceptance rates, and cost sharing are reviewed and recommendations for resolving these issues are presented

  5. Defense Waste Processing Facility prototypic analytical laboratory

    International Nuclear Information System (INIS)

    Policke, T.A.; Bryant, M.F.; Spencer, R.B.

    1991-01-01

    The Defense Waste Processing Technology (DWPT) Analytical Laboratory is a relatively new laboratory facility at the Savannah River Site (SRS). It is a non-regulated, non-radioactive laboratory whose mission is to support research and development (R ampersand D) and waste treatment operations by providing analytical and experimental services in a way that is safe, efficient, and produces quality results in a timely manner so that R ampersand D personnel can provide quality technical data and operations personnel can efficiently operate waste treatment facilities. The modules are sample receiving, chromatography I, chromatography II, wet chemistry and carbon, sample preparation, and spectroscopy

  6. Environmental information document defense waste processing facility

    International Nuclear Information System (INIS)

    1981-07-01

    This report documents the impact analysis of a proposed Defense Waste Processing Facility (DWPF) for immobilizing high-level waste currently being stored on an interim basis at the Savannah River Plant (SRP). The DWPF will process the waste into a form suitable for shipment to and disposal in a federal repository. The DWPF will convert the high-level waste into: a leach-resistant form containing above 99.9% of all the radioactivity, and a residue of slightly contaminated salt. The document describes the SRP site and environs, including population, land and water uses; surface and subsurface soils and waters; meteorology; and ecology. A conceptual integrated facility for concurrently producing glass waste and saltcrete is described, and the environmental effects of constructing and operating the facility are presented. Alternative sites and waste disposal options are addressed. Also environmental consultations and permits are discussed

  7. Quality Assurance Program description, Defense Waste Processing Facility (DWPF)

    International Nuclear Information System (INIS)

    Maslar, S.R.

    1992-01-01

    This document describes the Westinghouse Savannah River Company's (WSRC) Quality Assurance Program for Defense Waste Processing at the Savannah River Site (SRS). WSRC is the operating contractor for the US Department of Energy (DOE) at the SRS. The following objectives are achieved through developing and implementing the Quality Assurance Program: (1) Ensure that the attainment of quality (in accomplishing defense high-level waste processing objectives at the SRS) is at a level commensurate with the government's responsibility for protecting public health and safety, the environment, the public investment, and for efficiently and effectively using national resources. (2) Ensure that high-level waste from qualification and production activities conform to requirements defined by OCRWM. These activities include production processes, equipment, and services; and products that are planned, designed, procured, fabricated, installed, tested, operated, maintained, modified, or produced

  8. Post-test evaluations of Waste Isolation Pilot Plant - Savannah River simulated defense HLW canisters and waste form

    International Nuclear Information System (INIS)

    Molecke, M.A.; Sorensen, N.R.; Harbour, J.R.; Ferrara, D.M.

    1993-01-01

    Eighteen nonradioactive defense high-level waste (DHLW) canisters were emplaced in and subjected to accelerated overtest thermal conditions for about three years at the bedded salt Waste Isolation Pilot Plant (WIPP) facility. Post-test laboratory corrosion results of several stainless steel 304L waste canisters, cast steel overpacks, and associated instruments ranged from negligible to moderate. We found appreciable surface corrosion and corrosion products on the cast steel overpacks. Pieces of both 304L and 316 stainless steel test apparatus underwent extensive stress-corrosion cracking failure and nonuniform attack. One of the retrieved test packages contained nonradioactive glass waste form from the Savannah River Site. We conducted post-test analyses of this glass to determine the degree of resultant glass fracturing, and whether any respirable fines were present. Linear glass fracture density ranged from about 1 to 8 fractures intersecting every 5 cm (2 inch) segment along a diameter line of the canister cross-section. Glass fines between 1 and 10 microns in diameter were detected, but were not quantified

  9. Processing and certification of defense transuranic waste at the INEL

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cargo, C.H.; McKinley, K.B.; Smith, T.H.; Anderson, B.C.

    1984-01-01

    Since 1970, defense-generated transuranic waste has been placed into 20-year retrievable storage at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL). A major objective of the US Department of Energy (DOE) Nuclear Waste Management Program is to remove all retrievably stored transuranic waste form the INEL. To support this objective, the Stored Waste Examination Pilot Plant (SWEPP) and the Process Experimental Pilot Plant (PREPP) are currently being constructed. SWEPP will certify waste, using nondestructive examination techniques, for shipment to the Waste Isolation Pilot Plant (WIPP). PREPP will process uncertifiable waste into a certifiable waste form. 3 references

  10. Operational radioactive defense waste management plan for the Nevada Test Site

    International Nuclear Information System (INIS)

    1981-07-01

    The Operational Radioactive Defense Waste Management Plan for the Nevada Test Site establishes procedures and methods for the safe shipping, receiving, processing, disposal, and storage of radioactive waste. Included are NTS radioactive waste disposition program guidelines, procedures for radioactive waste management, a description of storage and disposal areas and facilities, and a glossary of specifications and requirements

  11. Proceedings of the Sandia Laboratories workshop on the use of titanate ion exchangers for defense waste management

    International Nuclear Information System (INIS)

    Schwoebel, R.L.; Northrup, C.J.

    1978-01-01

    Abstracts and visual aids from the following talks are presented: removal of radionuclides from Hanford defense waste solutions; waste management programs at Savannah River Plant; application of defense waste decontamination; americium and curium recovery from nuclear waste using inorganic ion exchanger materials; removal of trace 106 Ru in nuclear waste processing; and titanate characterization and consolidation processes. Copies of three memos are included: 90 Sr radiation effects on sodium titanate loaded macroreticular resin; 238 239 Pu content in defense waste; and preparation and physical properties of sodium titanate in ion exchange resin

  12. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    1983-08-01

    Nuclear wastes from the defense production cycle contain many uniquely useful, intrinsically valuable, and strategically important materials. These materials have a wide range of known and potential applications in food technology, agriculture, energy, public health, medicine, industrial technology, and national security. Furthermore, their removal from the nuclear waste stream can facilitate waste management and yield economic, safety, and environmental advantages in the management and disposal of the residual nuclear wastes that have no redemptive value. This document is the program plan for implementing the recovery and beneficial use of these valuable materials. An Executive Summary of this document, DOE/DP-0013, Vol. 1, January 1983, is available. Program policy, goals and strategy are stated in Section 2. Implementation tasks, schedule and funding are detailed in Section 3. The remaining five sections and the appendixes provide necessary background information to support these two sections. Section 4 reviews some of the unique properties of the individual byproduct materials and describes both demonstrated and potential applications. The amounts of byproduct materials that are available now for research and demonstration purposes, and the amounts that could be recovered in the future for expanded applications are detailed in Section 5. Section 6 describes the effects byproduct recovery and utilization have on the management and final disposal of nuclear wastes. The institutional issues that affect the recovery, processing and utilization of nuclear byproducts are discussed in Section 7. Finally, Section 8 presents a generalized mathematical process by which applications can be evaluated and prioritized (rank-ordered) to provide planning data for program management.

  13. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 2

    International Nuclear Information System (INIS)

    1983-08-01

    Nuclear wastes from the defense production cycle contain many uniquely useful, intrinsically valuable, and strategically important materials. These materials have a wide range of known and potential applications in food technology, agriculture, energy, public health, medicine, industrial technology, and national security. Furthermore, their removal from the nuclear waste stream can facilitate waste management and yield economic, safety, and environmental advantages in the management and disposal of the residual nuclear wastes that have no redemptive value. This document is the program plan for implementing the recovery and beneficial use of these valuable materials. An Executive Summary of this document, DOE/DP-0013, Vol. 1, January 1983, is available. Program policy, goals and strategy are stated in Section 2. Implementation tasks, schedule and funding are detailed in Section 3. The remaining five sections and the appendixes provide necessary background information to support these two sections. Section 4 reviews some of the unique properties of the individual byproduct materials and describes both demonstrated and potential applications. The amounts of byproduct materials that are available now for research and demonstration purposes, and the amounts that could be recovered in the future for expanded applications are detailed in Section 5. Section 6 describes the effects byproduct recovery and utilization have on the management and final disposal of nuclear wastes. The institutional issues that affect the recovery, processing and utilization of nuclear byproducts are discussed in Section 7. Finally, Section 8 presents a generalized mathematical process by which applications can be evaluated and prioritized (rank-ordered) to provide planning data for program management

  14. Analytical methods and laboratory facility for the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Coleman, C.J.; Dewberry, R.A.; Lethco, A.J.; Denard, C.D.

    1985-01-01

    This paper describes the analytical methods, instruments, and laboratory that will support vitrification of defense waste. The Defense Waste Processing Facility (DWPF) is now being constructed at Savannah River Plant (SRP). Beginning in 1989, SRP high-level defense waste will be immobilized in borosilicate glass for disposal in a federal repository. The DWPF will contain an analytical laboratory for performing process control analyses. Additional analyses will be performed for process history and process diagnostics. The DWPF analytical facility will consist of a large shielded sampling cell, three shielded analytical cells, a laboratory for instrumental analysis and chemical separations, and a counting room. Special instrumentation is being designed for use in the analytical cells, including microwave drying/dissolution apparatus, and remote pipetting devices. The instrumentation laboratory will contain inductively coupled plasma, atomic absorption, Moessbauer spectrometers, a carbon analyzer, and ion chromatography equipment. Counting equipment will include intrinsic germanium detectors, scintillation counters, Phoswich alpha, beta, gamma detectors, and a low-energy photon detector

  15. The Defense Waste Processing Facility, from vision to reality

    International Nuclear Information System (INIS)

    Randall, C.T.

    2000-01-01

    When the Savannah River Plant began operation in the early 1950's producing nuclear materials for the National defense, liquid, highly radioactive waste was generated as a by-product. Since that time the waste has been stored in large, carbon steel tanks that are buried underground. In 1960 one of the tanks developed a leak, and before recovery measures could be taken, about 25-gallons of radioactive salt solution had overflowed the secondary liner and seeped into the soil surrounding the tank. Significant improvements to the tanks were made, but constant surveillance was still required. Thus, the opinion began forming that storage of the mobile, highly radioactive waste in tanks was not a responsible long-term practice. So in the late 1960's the Savannah River Laboratory began research to find a suitable long-term solution to the waste disposal problem. Several alternative waste forms were evaluated, and in 1972 the first Savannah River waste was vitrified on a laboratory scale. By the mid-1970's, the DuPont Company, prime contractor at the Savannah River Plant, began to develop a vision of constructing America's first vitrification plant to immobilize the high level radioactive waste in borosilicate glass. This vision was later championed by DuPont in the form of a vitrification plant called the Defense Waste Processing Facility (DWPF). Today, the DWPF processes Savannah River High Level Waste sludge turning it into a solid, durable waste form of borosilicate glass. The DWPF is the world's largest vitrification facility. It was brought to reality through over 25-years of research and 13-years of careful construction, tests, and reviews at a cost of approximately $3 billion dollars

  16. The defense waste processing facility: A status report

    International Nuclear Information System (INIS)

    Cowan, S.P.; Fulmer, D.C.

    1987-01-01

    The Defense Waste Processing Fascility (DWPF) will be the nation's first production scale facility for immobilizing high-level waste for disposal. It will also be the largest facility of its kind in the world. The technology, design, and construction efforts are on schedule for ''hot'' operation in fiscal year 1990. This paper provides a status report on the DWPF technology, design, and construction, and describes some of the challenges that have arisen during design and construction

  17. Allowable residual contamination levels: transuranic advanced disposal systems for defense waste

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.; Napier, B.A.

    1982-01-01

    An evaluation of advanced disposal systems for defense transuranic (TRU) wastes is being conducted using the Allowable Residual Contamination Level (ARCL) method. The ARCL method is based on compliance with a radiation dose rate limit through a site-specific analysis of the potential for radiation exposure to individuals. For defense TRU wastes at the Hanford Site near Richland, Washington, various advanced disposal techniques are being studied to determine their potential for application. This paper presents a discussion of the results of the first stage of the TRU advanced disposal systems project

  18. Defense waste processing facility precipitate hydrolysis process

    International Nuclear Information System (INIS)

    Doherty, J.P.; Eibling, R.E.; Marek, J.C.

    1986-03-01

    Sodium tetraphenylborate and sodium titanate are used to assist in the concentration of soluble radionuclide in the Savannah River Plant's high-level waste. In the Defense Waste Processing Facility, concentrated tetraphenylborate/sodium titanate slurry containing cesium-137, strontium-90 and traces of plutonium from the waste tank farm is hydrolyzed in the Salt Processing Cell forming organic and aqueous phases. The two phases are then separated and the organic phase is decontaminated for incineration outside the DWPF building. The aqueous phase, containing the radionuclides and less than 10% of the original organic, is blended with the insoluble radionuclides in the high-level waste sludge and is fed to the glass melter for vitrification into borosilicate glass. During the Savannah River Laboratory's development of this process, copper (II) was found to act as a catalyst during the hydrolysis reactions, which improved the organic removal and simplified the design of the reactor

  19. Defense-waste vitrification studies during FY-1981. Summary report

    International Nuclear Information System (INIS)

    Bjorklund, W.J.

    1982-09-01

    Both simulated alkaline defense wastes and simulated acidic defense wastes (formed by treating alkaline waste with formic acid) were successfully vitrified in direct liquid-fed melter experiments. The vitrification process was improved while using the formate-treated waste. Leach resistance was essentially the same. Off-gas entrainment was the primary mechanism for material exiting the melter. When formate waste was vitrified, the flow behavior of the off gas from the melter changed dramatically from an erratic surging behavior to a more quiet, even flow. Hydrogen and CO were detectable while processing formate feed; however, levels exceeding the flamability limits in air were never approached. Two types of melter operation were tested during the year, one involving boost power. Several boosting methods located within the melter plenum were tested. When lid heating was being used, water spray cooling in the off gas was required. Countercurrent spray cooling was more effective than cocurrent spray cooling. Materials of construction for the off-gas system were examined. Inconel-690 is preferred in the plenum area. Inspection of the pilot-scale melter found that corrosion of the K-3 refractory and Inconel-690 electrodes was minimal. An overheating incident occurred with the LFCM in which glass temperatures up to 1480 0 C were experienced. Lab-scale vitrification tests to study mercury behavior were also completed this year. 53 figures, 63 tables

  20. Remote viewing of melter interior Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1986-01-01

    A remote system has been developed and demonstrated for continuous reviewing of the interior of a glass melter, which is used to vitrify highly radioactive waste. The system is currently being implemented with the Defense Waste Processing Facility (DWPF) now under construction at the Savannah River Plant (SRP). The environment in which the borescope/TV unit is implemented combines high temperature, high ionizing radiation, low light, spattering, deposition, and remote maintenance

  1. Defense High-Level Waste Leaching Mechanisms Program. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mendel, J.E. (compiler)

    1984-08-01

    The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90/sup 0/C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations.

  2. Defense High-Level Waste Leaching Mechanisms Program. Final report

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1984-08-01

    The Defense High-Level Waste Leaching Mechanisms Program brought six major US laboratories together for three years of cooperative research. The participants reached a consensus that solubility of the leached glass species, particularly solubility in the altered surface layer, is the dominant factor controlling the leaching behavior of defense waste glass in a system in which the flow of leachant is constrained, as it will be in a deep geologic repository. Also, once the surface of waste glass is contacted by ground water, the kinetics of establishing solubility control are relatively rapid. The concentrations of leached species reach saturation, or steady-state concentrations, within a few months to a year at 70 to 90 0 C. Thus, reaction kinetics, which were the main subject of earlier leaching mechanisms studies, are now shown to assume much less importance. The dominance of solubility means that the leach rate is, in fact, directly proportional to ground water flow rate. Doubling the flow rate doubles the effective leach rate. This relationship is expected to obtain in most, if not all, repository situations

  3. Conceptual waste package interim product specifications and data requirements for disposal of borosilicate glass defense high-level waste forms in salt geologic repositories

    International Nuclear Information System (INIS)

    1983-06-01

    The conceptual waste package interim product specifications and data requirements presented are applicable specifically to the normal borosilicate glass product of the Defense Waste Processing Facility (DWPF). They provide preliminary numerical values for the defense high-level waste form parameters and properties identified in the waste form performance specification for geologic isolation in salt repositories. Subject areas treated include containment and isolation, operational period safety, criticality control, waste form/production canister identification, and waste package performance testing requirements. This document was generated for use in the development of conceptual waste package designs in salt. It will be revised as additional data, analyses, and regulatory requirements become available

  4. Independent technical review of Savannah River Site Defense Waste Processing Facility technical issues

    International Nuclear Information System (INIS)

    1992-07-01

    The Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) will vitrify high-level radioactive waste that is presently stored as liquid, salt-cake, and sludge in 51 waste-storage tanks. Construction of the DWPF began in 1984, and the Westinghouse Savannah Company (WSRC) considers the plant to be 100% turned over from construction and 91% complete. Cold-chemical runs are scheduled to begin in November 1992, and hot start up is projected for June 1994. It is estimated that the plant lifetime must exceed 15 years to complete the vitrification of the current, high-level tank waste. In a memo to the Assistant Secretary for Defense Programs (DP-1), the Assistant Secretary for Environmental Restoration and Waste management (EM-1) established the need for an Independent Technical Review (ITR), or the Red Team, to ''review process technology issues preventing start up of the DWPF.'' This report documents the findings of an Independent Technical Review (ITR) conducted by the Department of Energy (DOE), Office of Environmental Restoration and Waste Management (EM), at the request of the Assistant Secretary for Environmental Restoration and Waste Management, of specified aspects of Defense Waste Process Facility (DWPF) process technology. Information for the assessment was drawn from documents provided to the ITR Team by the Westinghouse Savannah River Company (WSRC), and presentations, discussions, interviews, and tours held at the Savannah River Site (SRS) during the weeks of February and March 9, 1992

  5. Accident Fault Trees for Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Sarrack, A.G.

    1999-06-22

    The purpose of this report is to document fault tree analyses which have been completed for the Defense Waste Processing Facility (DWPF) safety analysis. Logic models for equipment failures and human error combinations that could lead to flammable gas explosions in various process tanks, or failure of critical support systems were developed for internal initiating events and for earthquakes. These fault trees provide frequency estimates for support systems failures and accidents that could lead to radioactive and hazardous chemical releases both on-site and off-site. Top event frequency results from these fault trees will be used in further APET analyses to calculate accident risk associated with DWPF facility operations. This report lists and explains important underlying assumptions, provides references for failure data sources, and briefly describes the fault tree method used. Specific commitments from DWPF to provide new procedural/administrative controls or system design changes are listed in the ''Facility Commitments'' section. The purpose of the ''Assumptions'' section is to clarify the basis for fault tree modeling, and is not necessarily a list of items required to be protected by Technical Safety Requirements (TSRs).

  6. Defense Waste Processing Facility radioactive operations -- Part 2, Glass making

    International Nuclear Information System (INIS)

    Carter, J.T.; Rueter, K.J.; Ray, J.W.; Hodoh, O.

    1996-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and world's largest vitrification facility. Following a ten year construction period and nearly 3 year non-radioactive test program, the DWPF began radioactive operations in March, 1996. The results of the first 8 months of radioactive operations are presented. Topics include facility production from waste preparation batching to canister filling

  7. Improved polyphase ceramic form for high-level defense nuclear waste

    International Nuclear Information System (INIS)

    Harker, A.B.; Morgan, P.E.D.; Clarke, D.R.; Flintoff, J.J.; Shaw, T.M.

    1983-01-01

    An improved ceramic nuclear waste form and fabrication process have been developed using simulated Savannah River Plant defense high-level waste compositions. The waste form provides flexibility with respect to processing conditions while exhibiting superior resistance to ground water leaching than other currently proposed forms. The ceramic, consolidated by hot-isostatic pressing at 1040 0 C and 10,000 psi, is composed of six major phases, nepheline, zirconolite, a murataite-type cubic phase, magnetite-type spinel, a magnetoplumbite solid solution, and perovskite. The waste form provides multiple crystal lattice sites for the waste elements, minimizes amorphous intergranular material, and can accommodate waste loadings in excess of 60 wt %. The fabrication of the ceramic can be accomplished with existing manufacturing technology and eliminates the effects of radionuclide volatilization and off-gas induced corrosion experienced with the molten processes for vitreous form production

  8. Criticality assessment of initial operations at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Ha, B.C.; Williamson, T.G.

    1993-01-01

    At the Savannah River Site (SRS), high level radioactive wastes will be immobilized into borosilicate glass for long term storage and eventual disposal. Since the waste feed streams contain uranium and plutonium, the Defense Waste Processing Facility (DWPF) process has been evaluated to ensure that a subcritical condition is maintained. It was determined that the risk of nuclear criticality in the DWPF during initial, sludge-only operations is minimal due to the dilute concentration of fissile material in the sludge combined with excess neutron absorbers

  9. High level waste vitrification at the SRP [Savannah River Plant] (DWPF [Defense Waste Processing Facility] summary)

    International Nuclear Information System (INIS)

    Weisman, A.F.; Knight, J.R.; McIntosh, D.L.; Papouchado, L.M.

    1988-01-01

    The Savannah River Plant has been operating a nuclear fuel cycle since the early 1950's. Fuel and target elements are fabricated and irradiated to produce nuclear materials. After removal from the reactors, the fuel elements are processed to extract the products, and waste is stored. During the thirty years of operation including evaporation, about 30 million gallons of high level radioactive waste has accumulated. The Defense Waste Processing Facility (DWPF) under construction at Savannah River will process this waste into a borosilicate glass for long-term geologic disposal. The construction of the DWPF is about 70% complete; this paper will describe the status of the project, including design demonstrations, with an emphasis on the melter system. 9 figs

  10. Overview - Defense Waste Processing Facility Operating Experience

    International Nuclear Information System (INIS)

    Norton, M.R.

    2002-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the world's largest radioactive waste vitrification facility. Radioactive operations began in March 1996 and over 1,000 canisters have been produced. This paper presents an overview of the DWPF process and a summary of recent facility operations and process improvements. These process improvements include efforts to extend the life of the DWPF melter, projects to increase facility throughput, initiatives to reduce the quantity of wastewater generated, improved remote decontamination capabilities, and improvements to remote canyon equipment to extend equipment life span. This paper also includes a review of a melt rate improvement program conducted by Savannah River Technology Center personnel. This program involved identifying the factors that impacted melt rate, conducting small scale testing of proposed process changes and developing a cost effective implementation plan

  11. Defense waste processing facility at Savannah River Plant. Instrument and power jumpers

    International Nuclear Information System (INIS)

    Heckendorm, F.M. II.

    1983-06-01

    The Defense Waste Processing Facility (DWPF) for waste vitrification at the Savannah River Plant is in the final design stage. Development of equipment interconnecting devices or jumpers for use within the remotely operated processing canyon is now complete. These devices provide for the specialized instrument and electrical requirements of the DWPF process for low-voltage, high-frequency, and high-power interconnections

  12. Devitrification of defense nuclear waste glasses: role of melt insolubles

    International Nuclear Information System (INIS)

    Bickford, D.F.; Jantzen, C.M.

    1985-01-01

    Time-temperature-transformation (TTT) curves have been determined for simulated nuclear waste glasses bounding the compositional range in the Defense Waste Processing Facility (DWPF). Formulations include all of the minor chemical elements such as ruthenium and chromium which have limited solubility in borosilicate glasses. Heterogeneous nucleation of spinel on ruthenium dioxide, and subsequent nucleation of acmite on spinel is the major devitrification path. Heterogeneous nucleation on melt insolubles causes more rapid growth of crystalline devitrification phases, than in glass free of melt insolubles. These studies point out the importance of simulating waste glass composition and processing as accurately as possible to obtain reliable estimates of glass performance. 11 refs., 8 figs., 1 tab

  13. Statistical process control support during Defense Waste Processing Facility chemical runs

    International Nuclear Information System (INIS)

    Brown, K.G.

    1994-01-01

    The Product Composition Control System (PCCS) has been developed to ensure that the wasteforms produced by the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) will satisfy the regulatory and processing criteria that will be imposed. The PCCS provides rigorous, statistically-defensible management of a noisy, multivariate system subject to multiple constraints. The system has been successfully tested and has been used to control the production of the first two melter feed batches during DWPF Chemical Runs. These operations will demonstrate the viability of the DWPF process. This paper provides a brief discussion of the technical foundation for the statistical process control algorithms incorporated into PCCS, and describes the results obtained and lessons learned from DWPF Cold Chemical Run operations. The DWPF will immobilize approximately 130 million liters of high-level nuclear waste currently stored at the Site in 51 carbon steel tanks. Waste handling operations separate this waste into highly radioactive sludge and precipitate streams and less radioactive water soluble salts. (In a separate facility, soluble salts are disposed of as low-level waste in a mixture of cement slag, and flyash.) In DWPF, the precipitate steam (Precipitate Hydrolysis Aqueous or PHA) is blended with the insoluble sludge and ground glass frit to produce melter feed slurry which is continuously fed to the DWPF melter. The melter produces a molten borosilicate glass which is poured into stainless steel canisters for cooling and, ultimately, shipment to and storage in a geologic repository

  14. Economic evaluation of volume reduction for Defense transuranic waste

    International Nuclear Information System (INIS)

    Brown, C.M.

    1982-03-01

    The economics of volume reduction of retrievably stored and newly generated DOE transuranic wastes are evaluated by comparing the costs of reduction of the wastes with the savings possible in transportation and disposal. A general approach to the comparison of TRU waste volume reduction costs and cost savings is developed, an initial set of cost data is established, conclusions to support selecting technologies and facilities for the disposal of DOE transuranic waste are developed. Section I outlines the analysis which considers seven types of volume reduction from incineration and compaction of combustibles to compaction, size reduction, shredding, melting, and decontamination of metals. The study considers the volume reduction of contact-handled, newly generated and retrievably stored DOE transuranic wastes. Section II of this report describes the analytical approach, assumptions, and flow of waste material through sites. Section III presents the waste inventories, disposal and transportation savings, and volume reduction techniques and costs. Section IV contains the results and conclusions of the study. The major conclusions drawn from the study are: For DOE sites with a small amount of waste requiring disposal ( 3 /year) the cost of volume reduction is greater than the transportation and disposal savings from volume reduction provided the waste requires little additional preparation to meet transportation and disposal criteria. Wastes that do not meet these criteria require site specific economic analysis outside the general evaluations of this study. For Idaho National Engineering Laboratory, incineration and metal shredding are cost-effective, provided a facility is to be constructed as a consequence of repackaging the fraction of stored waste which may require repackaging and immobilizing chemical process waste to meet disposal criteria

  15. RECENT PROCESS AND EQUIPMENT IMPROVEMENTS TO INCREASE HIGH LEVEL WASTE THROUGHPUT AT THE DEFENSE WASTE PROCESSING FACILITY (DWPF)

    International Nuclear Information System (INIS)

    Smith, M; Allan Barnes, A; Jim Coleman, J; Robert Hopkins, R; Dan Iverson, D; Richard Odriscoll, R; David Peeler, D

    2006-01-01

    The Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF), the world's largest operating high level waste (HLW) vitrification plant, began stabilizing about 35 million gallons of SRS liquid radioactive waste by-product in 1996. The DWPF has since filled over 2000 canisters with about 4000 pounds of radioactive glass in each canister. In the past few years there have been several process and equipment improvements at the DWPF to increase the rate at which the waste can be stabilized. These improvements have either directly increased waste processing rates or have desensitized the process and therefore minimized process upsets and thus downtime. These improvements, which include glass former optimization, increased waste loading of the glass, the melter glass pump, the melter heated bellows liner, and glass surge protection software, will be discussed in this paper

  16. Methods for estimating costs of transporting spent fuel and defense high-level radioactive waste for the civilian radioactive waste management program

    International Nuclear Information System (INIS)

    Darrough, M.E.; Lilly, M.J.

    1989-01-01

    The US Department of Energy (DOE), through the Office of Civilian Radioactive Waste Management, is planning and developing a transportation program for the shipment of spent fuel and defense high-level waste from current storage locations to the site of the mined geologic repository. In addition to its responsibility for providing a safe transportation system, the DOE will assure that the transportation program will function with the other system components to create an integrated waste management system. In meeting these objectives, the DOE will use private industry to the maximum extent practicable and in a manner that is cost effective. This paper discusses various methodologies used for estimating costs for the national radioactive waste transportation system. Estimating these transportation costs is a complex effort, as the high-level radioactive waste transportation system, itself, will be complex. Spent fuel and high-level waste will be transported from more than 100 nuclear power plants and defense sites across the continental US, using multiple transport modes (truck, rail, and barge/rail) and varying sizes and types of casks. Advance notification to corridor states will be given and scheduling will need to be coordinated with utilities, carriers, state and local officials, and the DOE waste acceptance facilities. Additionally, the waste forms will vary in terms of reactor type, size, weight, age, radioactivity, and temperature

  17. Preliminary technical data summary No. 3 for the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Landon, L.F.

    1980-05-01

    This document presents an update on the best information presently available for the purpose of establishing the basis for the design of a Defense Waste Processing Facility. Objective of this project is to provide a facility to fix the radionuclides present in Savannah River Plant (SRP) high-level liquid waste in a high-integrity form (glass). Flowsheets and material balances reflect the alternate CAB case including the incorporation of low-level supernate in concrete

  18. Remote instrument/electrical wall nozzle replaement in the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Heckendorn, F.M. II.

    1983-09-01

    The Defense Waste Processing Facility (DWPF) for waste vitrification at the Savannah River Plant is in the final design stage. Development of remotely replaceable instrument and electrical through-wall wiring is now complete. These assemblies connect the power and control signals from the high radiation environment to the personnel access areas. The ability to replace them will extend the life and lower the cost of the DWPF. 3 references, 22 figures, 2 tables

  19. FY 1987 program summary document: Office of Defense Waste and Transportation Management

    International Nuclear Information System (INIS)

    1987-04-01

    This document describes the Office of Defense Waste and Transportation Management (DWTM) Program as supported by the President's Fiscal Year (FY) 1987 Budget Request to Congress. It specifically addresses the program's organization, objectives, strategies, and plans for FY 1987

  20. Nuclear criticality safety analysis summary report: The S-area defense waste processing facility

    International Nuclear Information System (INIS)

    Ha, B.C.

    1994-01-01

    The S-Area Defense Waste Processing Facility (DWPF) can process all of the high level radioactive wastes currently stored at the Savannah River Site with negligible risk of nuclear criticality. The characteristics which make the DWPF critically safe are: (1) abundance of neutron absorbers in the waste feeds; (2) and low concentration of fissionable material. This report documents the criticality safety arguments for the S-Area DWPF process as required by DOE orders to characterize and to justify the low potential for criticality. It documents that the nature of the waste feeds and the nature of the DWPF process chemistry preclude criticality

  1. Reevaluation Of Vitrified High-Level Waste Form Criteria For Potential Cost Savings At The Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Ray, J. W.; Marra, S. L.; Herman, C. C.

    2013-01-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form

  2. Comprehensive implementation plan for the DOE defense buried TRU- contaminated waste program

    International Nuclear Information System (INIS)

    Everette, S.E.; Detamore, J.A.; Raudenbush, M.H.; Thieme, R.E.

    1988-02-01

    In 1970, the US Atomic Energy Commission established a ''transuranic'' (TRU) waste classification. Waste disposed of prior to the decision to retrievably store the waste and which may contain TRU contamination is referred to as ''buried transuranic-contaminated waste'' (BTW). The DOE reference plan for BTW, stated in the Defense Waste Management Plan, is to monitor it, to take such remedial actions as may be necessary, and to re-evaluate its safety as necessary or in about 10-year periods. Responsibility for management of radioactive waste and byproducts generated by DOE belongs to the Secretary of Energy. Regulatory control for these sites containing mixed waste is exercised by both DOE (radionuclides) and EPA (hazardous constituents). Each DOE Operations Office is responsible for developing and implementing plans for long-term management of its radioactive and hazardous waste sites. This comprehensive plan includes site-by-site long-range plans, site characteristics, site costs, and schedules at each site. 13 figs., 15 tabs

  3. Solidification of commercial and defense low-level radioactive waste in polyethylene

    International Nuclear Information System (INIS)

    Franz, E.M.; Heiser, L.H.; Colombo, P.

    1987-08-01

    A process was developed for the solidification of salt wastes, incinerator ash and ion-exchange resins in polyethylene. Of the salt wastes, sodium sulfate and boric acid are representative of the wastes produced at commercial nuclear facilities while sodium nitrate in a typical high-volume waste generated at defense-related facilities. Ease of processibility and high loading efficiencies were obtained through the use of low-density polyethylene with melt indices ranging from 2.0 to 55.0 g/minute. The process utilized a commercially available single-screw extruder to incorporate the wastes into the polyethylene at about 120 0 C to produce a homogeneous mixture. Although present studies utilize dry wastes, wet wastes can also be processed using vented extruders of the type used commercially for the bitumen solidification process. Tests were performed on the waste forms to determine leachability and mechanical properties. To confirm the compatibility of polyethylene and nitrate salt waste at elevated temperatures, the self-ignition temperatures were measured and a differential scanning calorimeter was used to characterize the thermal behavior of oxidizing compounds contained in the simulated waste, as well as the real Savannah River Plant waste. No exothermic reactions were observed over the temperature range studied from 50 0 C to 400 0 C. 18 refs., 7 figs., 8 tabs

  4. Anticipating Potential Waste Acceptance Criteria for Defense Spent Nuclear Fuel

    International Nuclear Information System (INIS)

    Rechard, R.P.; Lord, M.E.; Stockman, C.T.; McCurley, R.D.

    1997-01-01

    The Office of Environmental Management of the U.S. Department of Energy is responsible for the safe management and disposal of DOE owned defense spent nuclear fuel and high level waste (DSNF/DHLW). A desirable option, direct disposal of the waste in the potential repository at Yucca Mountain, depends on the final waste acceptance criteria, which will be set by DOE's Office of Civilian Radioactive Waste Management (OCRWM). However, evolving regulations make it difficult to determine what the final acceptance criteria will be. A method of anticipating waste acceptance criteria is to gain an understanding of the DOE owned waste types and their behavior in a disposal system through a performance assessment and contrast such behavior with characteristics of commercial spent fuel. Preliminary results from such an analysis indicate that releases of 99Tc and 237Np from commercial spent fuel exceed those of the DSNF/DHLW; thus, if commercial spent fuel can meet the waste acceptance criteria, then DSNF can also meet the criteria. In large part, these results are caused by the small percentage of total activity of the DSNF in the repository (1.5%) and regulatory mass (4%), and also because commercial fuel cladding was assumed to provide no protection

  5. Defense Waste Processing Facility staged operations: environmental information document

    International Nuclear Information System (INIS)

    1981-11-01

    Environmental information is presented relating to a staged version of the proposed Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The information is intended to provide the basis for an Environmental Impact Statement. In either the integral or the staged design, the DWPF will convert the high-level waste currently stored in tanks into: a leach-resistant form containing about 99.9% of all the radioactivity, and a residual, slightly contaminated salt, which is disposed of as saltcrete. In the first stage of the staged version, the insoluble sludge portion of the waste and the long lived radionuclides contained therein will be vitrified. The waste glass will be sealed in canisters and stored onsite until shipped to a Federal repository. In the second stage, the supernate portion of the waste will be decontaminated by ion exchange. The recovered radionuclides will be transferred to the Stage 1 facility, and mixed with the sludge feed before vitrification. The residual, slightly contaminated salt solution will be mixed with Portland cement to form a concrete product (saltcrete) which will be buried onsite in an engineered landfill. This document describes the conceptual facilities and processes for producing glass waste and decontaminated salt. The environmental effects of facility construction, normal operations, and accidents are then presented. Descriptions of site and environs, alternative sites and waste disposal options, and environmental consultations and permits are given in the base Environmental Information Document

  6. Proposed method for assigning metric tons of heavy metal values to defense high-level waste forms to be disposed of in a geologic repository

    International Nuclear Information System (INIS)

    1987-08-01

    A proposed method is described for assigning an equivalent metric ton heavy metal (eMTHM) value to defense high-level waste forms to be disposed of in a geologic repository. This method for establishing a curie equivalency between defense high-level waste and irradiated commercial fuel is based on the ratio of defense fuel exposure to the typical commercial fuel exposure, MWd/MTHM. application of this technique to defense high-level wastes is described. Additionally, this proposed technique is compared to several alternate calculations for eMTHM. 15 refs., 2 figs., 10 tabs

  7. Master slave manipulator maintenance at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Lethco, A.J.; Beasley, K.M.

    1991-01-01

    Equipment has been developed and tested to provide transport, installation, removal, decontamination, and repair for the master slave manipulators that are required for thirty-five discrete work locations in the 221-S Vitrification Building of the Defense Waste Processing Facility at the Westinghouse Savannah River Company. This specialized equipment provides a standardized scheme for work locations at different elevations with two types of manipulators

  8. The WIPP research and development program: providing the technical basis for defense waste disposal

    International Nuclear Information System (INIS)

    Hunter, Th.O.

    1983-01-01

    The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, is being developed by the US Department of Energy as a research and development facility to demonstrate the safe disposal of radioactive wastes from the defense programs of the United States. Underground workings are at a depth of 660 in a bedded-salt formation. Site investigations began in the early 1970s and are culminating with the completion of the Site and Preliminary Design Validation (SPDV) program in 1983 in which two shafts and several thousand feet of underground drifts are being constructed. The underground facility will be used for in situ tests and demonstrations that address technical issues associated with the disposal of transuranic and defense high-level wastes (DHLW) in bedded salt. These tests are based on several years of laboratory tests, field tests in mines, and analytical modeling studies. They primarily address repository development in bedded salt, including thermal-structural interactions plugging and sealing, and facility operations; and waste package interactions, including the effects of the waste on local rock salt and the evaluation of waste package materials. In situ testing began in the WIPP with the initiation of the SPDV program in 1981. In 1983, a major series of tests will begin to investigate the response of the rock salt without the use of any radioactivity

  9. Economics of defense high-level waste management in the United States

    International Nuclear Information System (INIS)

    Slate, S.C.; McDonell, W.R.

    1987-01-01

    The Department of Energy (DOE) is responsible for managing defense high-level wastes (DHLW) from U.S. defense activities using environmentally safe and cost-effective methods. In parallel with its technical programs, the DOE is performing economic studies to ensure that costs are minimized. To illustrate the cost estimating techniques and to provide a sense of cost magnitude, the DHLW costs for the Savannah River Plant (SRP) are calculated. Since operations at SRP must be optimized within relatively fixed management practices, the estimation of incremental costs is emphasized. Treatment and disposal costs are shown to equally contribute to the incremental cost of almost $400,000/canister

  10. Defense Waste Processing Facility Process Simulation Package Life Cycle

    International Nuclear Information System (INIS)

    Reuter, K.

    1991-01-01

    The Defense Waste Processing Facility (DWPF) will be used to immobilize high level liquid radioactive waste into safe, stable, and manageable solid form. The complexity and classification of the facility requires that a performance based operator training to satisfy Department of Energy orders and guidelines. A major portion of the training program will be the application and utilization of Process Simulation Packages to assist in training the Control Room Operators on the fluctionality of the process and the application of the Distribution Control System (DCS) in operating and managing the DWPF process. The packages are being developed by the DWPF Computer and Information Systems Simulation Group. This paper will describe the DWPF Process Simulation Package Life Cycle. The areas of package scope, development, validation, and configuration management will be reviewed and discussed in detail

  11. Note from the Radioactive Waste Section

    CERN Multimedia

    TS Department

    2008-01-01

    The Radioactive Waste Section of the Radiation Protection Group wishes to announce that the radioactive waste treatment centre will be closed on Friday, 19 December. In addition, waste reception will be limited to a strict minimum on Thursday, 18 December. Users of the centre are requested to adjust their plans accordingly. For more information, call 73875.

  12. International technology exchange in support of the Defense Waste Processing Facility wasteform production

    International Nuclear Information System (INIS)

    Kitchen, B.G.

    1989-01-01

    The nearly completed Defense Waste Processing Facility (DWPF) is a Department of Energy (DOE) facility at the Savannah River Site that is designed to immobilize defense high level radioactive waste (HLW) by vitrification in borosilicate glass and containment in stainless steel canisters suitable for storage in the future DOE HLW repository. The DWPF is expected to start cold operation later this year (1990), and will be the first full scale vitrification facility operating in the United States, and the largest in the world. The DOE has been coordinating technology transfer and exchange on issues relating to HLW treatment and disposal through bi-lateral agreements with several nations. For the nearly fifteen years of the vitrification program at Savannah River Laboratory, over two hundred exchanges have been conducted with a dozen international agencies involving about five-hundred foreign national specialists. These international exchanges have been beneficial to the DOE's waste management efforts through confirmation of the choice of the waste form, enhanced understanding of melter operating phenomena, support for paths forward in political/regulatory arenas, confirmation of costs for waste form compliance programs, and establishing the need for enhancements of melter facility designs. This paper will compare designs and schedules of the international vitrification programs, and will discuss technical areas where the exchanges have provided data that have confirmed and aided US research and development efforts, impacted the design of the DWPF and guided the planning for regulatory interaction and product acceptance

  13. Process technology for vitrification of defense high-level waste at the Savannah River Plant

    International Nuclear Information System (INIS)

    Boersma, M.D.

    1984-01-01

    Vitrification in borosilicate glass is now the leading worldwide process for immobilizing high-level radioactive waste. Each vitrification project, however, has its unique mission and technical challenges. The Defense Waste Vitrification Facility (DWPF) now under construction at the Savannah River Plant will concentrate and vitrify a large amount of relatively low-power alkaline waste. Process research and development for the DWPF have produced significant advances in remote chemical operations, glass melting, off-gas treatment, slurry handling, decontamination, and welding. 6 references, 1 figure, 5 tables

  14. Terminating Safeguards on Excess Special Nuclear Material: Defense TRU Waste Clean-up and Nonproliferation - 12426

    Energy Technology Data Exchange (ETDEWEB)

    Hayes, Timothy [Los Alamos National Laboratory, Carlsbad Operations Group (United States); Nelson, Roger [Department Of Energy, Carlsbad Operations Office (United States)

    2012-07-01

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes at the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an

  15. Reevaluation of Vitrified High-Level Waste Form Criteria for Potential Cost Savings at the Defense Waste Processing Facility - 13598

    Energy Technology Data Exchange (ETDEWEB)

    Ray, J.W. [Savannah River Remediation (United States); Marra, S.L.; Herman, C.C. [Savannah River National Laboratory, Savannah River Site, Aiken, SC 29808 (United States)

    2013-07-01

    At the Savannah River Site (SRS) the Defense Waste Processing Facility (DWPF) has been immobilizing SRS's radioactive high level waste (HLW) sludge into a durable borosilicate glass since 1996. Currently the DWPF has poured over 3,500 canisters, all of which are compliant with the U. S. Department of Energy's (DOE) Waste Acceptance Product Specifications for Vitrified High-Level Waste Forms (WAPS) and therefore ready to be shipped to a federal geologic repository for permanent disposal. Due to DOE petitioning to withdraw the Yucca Mountain License Application (LA) from the Nuclear Regulatory Commission (NRC) in 2010 and thus no clear disposal path for SRS canistered waste forms, there are opportunities for cost savings with future canister production at DWPF and other DOE producer sites by reevaluating high-level waste form requirements and compliance strategies and reducing/eliminating those that will not negatively impact the quality of the canistered waste form. (authors)

  16. Nuclear waste form risk assessment for US defense waste at Savannah River Plant. Annual report fiscal year 1980

    International Nuclear Information System (INIS)

    Cheung, H.; Jackson, D.D.; Revelli, M.A.

    1981-07-01

    Waste form dissolution studies and preliminary performance analyses were carried out to contribute a part of the data needed for the selection of a waste form for the disposal of Savannah River Plant defense waste in a deep geologic repository. The first portion of this work provides descriptions of the chemical interactions between the waste form and the geologic environment. We reviewed critically the dissolution/leaching data for borosilicate glass and SYNROC. Both chemical kinetic and thermodynamic models were developed to describe the dissolution process of these candidate waste forms so as to establish a fundamental basis for interpretation of experimental data and to provide directions for future experiments. The complementary second portion of this work is an assessment of the impacts of alternate waste forms upon the consequences of disposal in various proposed geological media. Employing systems analysis methodology, we began to evaluate the performance of a generic waste form for the case of a high risk scenario for a bedded salt repository. Results of sensitivity analysis, uncertainty analyses, and sensitivity to uncertainty analysis are presented

  17. TRU [transuranic] waste certification compliance requirements for acceptance of newly generated contact-handled wastes to be shipped to the Waste Isolation Pilot Plant: Revision 2

    International Nuclear Information System (INIS)

    1989-01-01

    Compliance requirements are presented for certifying that unclassified, newly generated (NG), contact-handled (CH) transuranic (TRU) solid wastes from defense programs meet the Waste Isolation Pilot Plant (WIPP) Waste Acceptance Criteria (WAC). Where appropriate, transportation and interim storage requirements are incorporated; however, interim storage sites may have additional requirements consistent with these requirements. All applicable Department of Energy (DOE) orders must continue to be met. The compliance requirements for stored or buried waste are not addressed in this document. The compliance requirements are divided into four sections, primarily determined by the general feature that the requirements address. These sections are General Requirements, Waste Container Requirements, Waste Form Requirements, and Waste Package Requirements. The waste package is the combination of waste container and waste. 10 refs., 1 fig

  18. Defense-Waste-Processing Faclity, Savannah River Plant, Aiken, SC: Draft environmental impact statement

    International Nuclear Information System (INIS)

    1981-09-01

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into both the selection of an appropriate strategy for the permanent disposal of the high-level radioactive waste (HLW) currently stored at the Savannah River Plant (SRP) and the subsequent decision to construct and operate a Defense Waste Processing Facility (DWPF) at the SRP site. The SRP is a major US Department of Energy (DOE) installation for the production of nuclear materials for national defense. Approximately 83 x 10 3 m 3 (22 million gal) of HLW currently are stored in tanks at the SRP site. The proposed DWPF would process the liquid HLW generated by SRP operations into a stable form for ultimate disposal. This EIS assesses the effects of the proposed immobilization project on land use, air quality, water quality, ecological systems, health risk, cultural resources, endangered species, wetlands protection, resource depletion, and regional social and economic systems. The radiological and nonradiological risks of transporting the immobilized wastes are assessed. The environmental impacts of disposal alternatives have recently been evaluated in a previous EIS and are therefore only summarized in this EIS

  19. Defense Waste Processing Facility: Savannah River Plant, Aiken, SC. Final environmental impact statement

    International Nuclear Information System (INIS)

    1982-02-01

    The purpose of this Environmental Impact Statement (EIS) is to provide environmental input into both the selection of an appropriate strategy for the permanent disposal of the high-level radioactive waste (HLW) currently stored at the Savannah River Plant (SRP) and the subsequent decision to construct and operate a Defense Waste Processing Facility (DWPF) at the SRP site. The SRP is a major US Department of Envgy (DOE) installation for the production of nuclear materials for national defense. Approximately 83 x 10 3 m 3 (22 million gal) of HLW currently are stored in tanks at the SRP site. The proposed DWPF would process the liquid HLW generated by SRP operations into a stable form for ultimate disposal. This EIS assesses the effects of the proposed immobilization project on land use, air quality, water quality, ecological systems, health risk, cultural resources, endangered species, wetlands protection, resource depletion, and regional social and economic systems. The radiological and nonradiological risks of transporting the immobilized wastes are assessed. The environmental impacts of disposal alternatives have recently been evaluated in a previous EIS and are therefore only summarized in this EIS

  20. Control of DWPF [Defense Waste Processing Facility] melter feed composition

    International Nuclear Information System (INIS)

    Edwards, R.E. Jr.; Brown, K.G.; Postles, R.L.

    1990-01-01

    The Defense Waste Processing Facility will be used to immobilize Savannah River Site high-level waste into a stable borosilicate glass for disposal in a geologic repository. Proper control of the melter feed composition in this facility is essential to the production of glass which meets product durability constraints dictated by repository regulations and facility processing constraints dictated by melter design. A technique has been developed which utilizes glass property models to determine acceptable processing regions based on the multiple constraints imposed on the glass product and to display these regions graphically. This system along with the batch simulation of the process is being used to form the basis for the statistical process control system for the facility. 13 refs., 3 figs., 1 tab

  1. Vacuum evaporator-crystallizer process development for Hanford defense waste

    International Nuclear Information System (INIS)

    Tanaka, K.H.

    1978-04-01

    One of the major programs in the Department of Energy (DOE) waste management operations at Hanford is the volume reduction and solidification of Hanford Defense Residual Liquor (HDRL) wastes. These wastes are neutralized radioactive wastes that have been concentrated and stored in single-shell underground tanks. Two production vacuum evaporator-crystallizers were built and are operating to reduce the liquid volume and solidify these wastes. The process involves evaporating water under vacuum and thus concentrating and crystallizing the salt waste. The high caustic residual liquor is composed primarily of nitrate, nitrite, aluminate, and carbonate salts. Past evaporator-crystallizer operation was limited to crystallizing nitrate, nitrite, and carbonate salts. These salts formed a drainable salt cake that was acceptable for storage in the original single-shell tanks. The need for additional volume reduction and further concentration necessitated this process development work. Further concentration forms aluminate salts which pose unique processing problems. The aluminate salts are very fine crystals, non-drainable, and suitable only for storage in new double-shell tanks where the fluid waste can be continuously monitored. A pilot scale vacuum evaporator-crystallizer system was built and operated by Rockwell Hanford Operations to support flowsheet development for the production evaporator-crystallizers. The process developed was the concentration of residual liquor to form aluminate salts. The pilot plant tests demonstrated that residual liquors with high aluminum concentrations could be concentrated and handled in a vacuum evaporator-crystallizer system. The dense slurry with high solids content and concentrated liquor was successfully pumped in the insulated heated piping system. The most frequent problem encountered in the pilot plant was the failure of mechanical pump seals due to the abrasive slurry

  2. Preliminary technical data summary defense waste processing facility stage 2

    International Nuclear Information System (INIS)

    1980-12-01

    This Preliminary Technical Data Summary presents the technical basis for design of Stage 2 of the Staged Defense Waste Processing Facility (DWPF). Process changes incorporated in the staged DWPF relative to the Alternative DWPF described in PTDS No. 3 (DPSTD-77-13-3) are the result of ongoing research and development and are aimed at reducing initial capital investment and developing a process to efficiently immobilize the radionuclides in Savannah River Plant (SRP) high-level liquid waste. The radionuclides in SRP waste are present in sludge that has settled to the bottom of waste storage tanks and in crystallized salt and salt solution (supernate). Stage 1 of the DWPF receives washed, aluminum dissolved sludge from the waste tank farms and immobilizes it in a borosilicate glass matrix. The supernate is retained in the waste tank farms until completion of Stage 2 of the DWPF at which time it is filtered and decontaminated by ion exchange in the Stage 2 facility. The decontaminated supernate is concentrated by evaporation and mixed with cement for burial. The radioactivity removed from the supernate is fixed in borosilicate glass along with the sludge. This document gives flowsheets, material and curie balances, material and curie balance bases, and other technical data for design of Stage 2 of the DWPF. Stage 1 technical data are presented in DPSTD-80-38

  3. Waste Isolation Pilot Plant Initial Report for PCB Disposal Authorization (40 CFR (section) 761.75[c])

    International Nuclear Information System (INIS)

    Westinghouse TRU Solutions

    2002-01-01

    This initial report is being submitted pursuant to Title 40 Code of Federal Regulations (CFR) (section) 761.75(c) to request authorization to allow the disposal of transuranic (TRU) wastes containing polychlorinated biphenyls (PCBs) which are duly regulated under the Toxic Substances Control Act (TSCA). Approval of this initial report will not affect the disposal of TRU or TRU mixed wastes that do not contain PCBs. This initial report also demonstrates how the Waste Isolation Pilot Plant (WIPP) meets or exceeds the technical standards for a Chemical Waste Landfill. Approval of this request will allow the U.S. Department of Energy (DOE) to dispose of approximately 88,000 cubic feet (ft3) (2,500 cubic meters [m3]) of TRU wastes containing PCBs subject to regulation under the TSCA. This approval will include only those PCB/TRU wastes, which the TSCA regulations allow for disposal of the PCB component in municipal solid waste facilities or chemical waste landfills (e.g., PCB remediation waste, PC B articles, and bulk PCB product waste). Disposal of TRU waste by the DOE is congressionally mandated in Public Law 102-579 (as amended by the National Defense Authorization Act for Fiscal Year 1997, Pub. L. 104-201, referred to as the WIPP Land Withdrawal Act [LWA]). Portions of the TRU waste inventory contain hazardous waste constituents regulated under 40 CFR Parts 260 through 279, and/or PCBs and PCB Items regulated under 40 CFR Part 761. Therefore, the DOE TRU waste program must address the disposal requirements for these hazardous waste constituents and PCBs. To facilitate the disposal of TRU wastes containing hazardous waste constituents, the owner/operators received a Hazardous Waste Facility Permit (HWFP) from the New Mexico Environment Department (NMED) on October 27, 1999. The permit allows the disposal of TRU wastes subject to hazardous waste disposal requirements (TRU mixed waste). Informational copies of this permit and other referenced documents are available

  4. Management of defense beta-gamma contaminated solid low-level wastes

    International Nuclear Information System (INIS)

    Sease, J.D.

    1983-01-01

    In DOE defense operations, approx. 70,000 m 3 of beta-gamma low-level radioactive waste are disposed of annually by shallow land burial operations at six primary sites. Waste generated at other DOE sites are transported on public roads to the primary sites for disposal. In the practice of low-level waste (LLW) disposal in the US, the site hydrology and geology are the primary barriers to radioactive migration. To date, little emphasis has been placed on waste form improvements or engineered site modifications to reduce migration potential. Compaction is the most common treatment step employed. The performance of ground disposal of radioactive waste in this country, in spite of many practices that we would consider unacceptable in today's light, has resulted in very little migration of radioactivity outside site boundaries. Most problems with previously used burial grounds have been from subsidence at the arid sites and subsidence and groundwater contact at the humid sites. The radionuclides that have shown the most significant migration are tritium, 90 Sr, and 99 Tc. The unit cost for disposal operations at a given DOE site is dependent on many variables, but the annual volume to be disposed is probably the major factor. The average cost for current DOE burial operation is approximately $170/m 3 . 23 figures

  5. Inorganic analyses of volatilized and condensed species within prototypic Defense Waste Processing Facility (DWPF) canistered waste

    International Nuclear Information System (INIS)

    Jantzen, C.M.

    1992-01-01

    The high-level radioactive waste currently stored in carbon steel tanks at the Savannah River Site (SRS) will be immobilized in a borosilicate glass in the Defense Waste Processing Facility (DWPF). The canistered waste will be sent to a geologic repository for final disposal. The Waste Acceptance Preliminary Specifications (WAPS) require the identification of any inorganic phases that may be present in the canister that may lead to internal corrosion of the canister or that could potentially adversely affect normal canister handling. During vitrification, volatilization of mixed (Na, K, Cs)Cl, (Na, K, Cs) 2 SO 4 , (Na, K, Cs)BF 4 , (Na, K) 2 B 4 O 7 and (Na,K)CrO 4 species from glass melt condensed in the melter off-gas and in the cyclone separator in the canister pour spout vacuum line. A full-scale DWPF prototypic canister filled during Campaign 10 of the SRS Scale Glass Melter was sectioned and examined. Mixed (NaK)CI, (NaK) 2 SO 4 , (NaK) borates, and a (Na,K) fluoride phase (either NaF or Na 2 BF 4 ) were identified on the interior canister walls, neck, and shoulder above the melt pour surface. Similar deposits were found on the glass melt surface and on glass fracture surfaces. Chromates were not found. Spinel crystals were found associated with the glass pour surface. Reference amounts of the halides and sulfates were found retained in the glass and the glass chemistry, including the distribution of the halides and sulfates, was homogeneous. In all cases where rust was observed, heavy metals (Zn, Ti, Sn) from the cutting blade/fluid were present indicating that the rust was a reaction product of the cutting fluid with glass and heat sensitized canister or with carbon-steel contamination on canister interior. Only minimal water vapor is present so that internal corrosion of the canister, will not occur

  6. Preliminary technical data summary for the Defense Waste Processing Facility, Stage 1

    International Nuclear Information System (INIS)

    1980-09-01

    This Preliminary Technical Data Summary presents the technical basis for design of Stage 1 of the Staged Defense Waste Processing Facility (DWPF), a process to efficiently immobilize the radionuclides in Savannah River Plant (SRP) high-level liquid waste. The radionuclides in SRP waste are present in sludge that has settled to the bottom of waste storage tanks and in crystallized salt and salt solution (supernate). Stage 1 of the DWPF receives washed, aluminum dissolved sludge from the waste tank farms and immobilizes it in a borosilicate glass matrix. The supernate is retained in the waste tank farms until completion of Stage 2 of the DWPF at which time it filtered and decontaminated by ion exchange in the Stage 2 facility. The decontaminated supernate is concentrated by evaporation and mixed with cement for burial. The radioactivity removed from the supernate is fixed in borosilicate glass along with the sludge. This document gives flowsheets, material, and curie balances, material and curie balance bases, and other technical data for design of the Stage 1 DWPF

  7. PROBCON-HDW: A probability and consequence system of codes for long-term analysis of Hanford defense wastes

    International Nuclear Information System (INIS)

    Piepho, M.G.; Nguyen, T.H.

    1988-12-01

    The PROBCON-HDW (PROBability and CONsequence analysis for Hanford defense waste) computer code system calculates the long-term cumulative releases of radionuclides from the Hanford defense wastes (HDW) to the accessible environment and compares the releases to environmental release limits as defined in 40 CFR 191. PROBCON-HDW takes into account the variability of input parameter values used in models to calculate HDW release and transport in the vadose zone to the accessible environment (taken here as groundwater). A human intrusion scenario, which consists of drilling boreholes into the waste beneath the waste sites and bringing waste to the surface, is also included in PROBCON-HDW. PROBCON-HDW also includes the capability to combine the cumulative releases according to various long-term (10,000 year) scenarios into a composite risk curve or complementary cumulative distribution function (CCDF). The system structure of the PROBCON-HDW codes, the mathematical models in PROBCON-HDW, the input files, the input formats, the command files, and the graphical output results of several HDW release scenarios are described in the report. 3 refs., 7 figs., 9 tabs

  8. Design ampersand construction innovations of the defense waste processing facility

    International Nuclear Information System (INIS)

    McKibben, J.M.; Pair, C.R.; Bethmann, H.K.

    1990-01-01

    Construction of the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) is essentially complete. The facility is designed to convert high-level radioactive waste, now contained in large steel tanks as aqueous salts and sludge, into solid borosilicate glass in stainless steel canisters. All processing of the radioactive material and operations in a radioactive environment will be done remotely. The stringent requirements dictated by remote operation and new approaches to the glassification process led to the development of a number of first-of-a-kind pieces of equipment, new construction fabrication and erection techniques, and new applications of old techniques. The design features and construction methods used in the vitrification building and its equipment were to accomplish the objective of providing a state-of-the-art vitrification facility. 3 refs., 10 figs

  9. Design and construction of the defense waste processing facility project at the Savannah River Plant

    International Nuclear Information System (INIS)

    Baxter, R.G.

    1986-01-01

    The Du Pont Company is building for the Department of Energy a facility to vitrify high-level radioactive waste at the Savannah River Plant (SRP) near Aiken, South Carolina. The Defense Waste Processing Facility (DWPF) will solidify existing and future radioactive wastes by immobilizing the waste in Processing Facility (DWPF) will solidify existing and future radioactives wastes by immobilizing the waste in borosilicate glass contained in stainless steel canisters. The canisters will be sealed, decontaminated and stored, prior to emplacement in a federal repository. At the present time, engineering and design is 90% complete, construction is 25% complete, and radioactive processing in the $870 million facility is expected to begin by late 1989. This paper describes the SRP waste characteristics, the DWPF processing, building and equipment features, and construction progress of the facility

  10. Preliminary assessment of the aquatic impacts of a proposed defense waste processing facility at the Savannah River Plant

    International Nuclear Information System (INIS)

    Mackey, H.E. Jr.

    1979-01-01

    A review of the literature indicates that a significant body of descriptive information exists concerning the aquatic ecology of Upper Three Runs Creek and Four Mile Creek of the Savannah River Plant south of Aiken, South Carolina. This information is adequate for preparation of an environmental document evaluating these streams. These streams will be impacted by construction and operation of a proposed Defense Waste Processing Facility for solidification of high level defense waste. Potential impacts include (1) construction runoff, erosion, and siltation, (2) effluents from a chemical and industrial waste treatment facility, and (3) radionuclide releases. In order to better evaluate potential impacts, recommend mitigation methods, and comply with NEPA requirements, additional quantitative biological information should be obtained through implementation of an aquatic baseline program

  11. Preliminary assessment of the aquatic impacts of a proposed defense waste processing facility at the Savannah River Plant

    Energy Technology Data Exchange (ETDEWEB)

    Mackey, H.E. Jr.

    1979-01-01

    A review of the literature indicates that a significant body of descriptive information exists concerning the aquatic ecology of Upper Three Runs Creek and Four Mile Creek of the Savannah River Plant south of Aiken, South Carolina. This information is adequate for preparation of an environmental document evaluating these streams. These streams will be impacted by construction and operation of a proposed Defense Waste Processing Facility for solidification of high level defense waste. Potential impacts include (1) construction runoff, erosion, and siltation, (2) effluents from a chemical and industrial waste treatment facility, and (3) radionuclide releases. In order to better evaluate potential impacts, recommend mitigation methods, and comply with NEPA requirements, additional quantitative biological information should be obtained through implementation of an aquatic baseline program.

  12. Erosion/corrosion concerns in feed preparation systems at the Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Gee, J.T.; Chandler, C.T.; Daugherty, W.L.; Imrich, K.J.; Jenkins, C.F.

    1997-01-01

    The Savannah River Site (SRS) has been operating a nuclear fuel cycle since the 1950's to produce nuclear materials in support of the national defense effort. The Department of Energy authorized the construction of the Defense Waste Processing Facility (DWPF) to immobilize the high level radioactive waste resulting from these processes as a durable borosilicate glass. The DWPF, after having undergone extensive testing, has been approved for operations and is currently immobilizing radioactive waste. To ensure reliability of the DWPF remote canyon processing equipment, a materials evaluation program was performed prior to radioactive operations to determine to what extent erosion/corrosion would impact design life of equipment. The program consisted of performing pre-service baseline inspections on critical equipment and follow-up inspections after completion of DWPF cold chemical demonstration runs. Non-destructive examination (NDE) techniques were used to assess erosion/corrosion as well as evaluation of corrosion coupon racks. These results were used to arrive at predicted equipment life for selected feed preparation equipment. It was concluded with the exception of the coil and agitator for the slurry mix evaporator (SME), which are exposed to erosive glass frit particles, all of the equipment should meet its design life

  13. Use of titanates in decontamination of defense waste

    International Nuclear Information System (INIS)

    Dosch, R.G.

    1978-06-01

    Sodium titanate, an inorganic ion exchange material, has been evaluated for use in a process to remove strontium from Defense Waste or other high-sodium, caustic solutions. Distribution coefficients on the order of 10 5 were observed at sub part per million concentrations of Sr, and the effects of other cation impurities and complexants in the waste were investigated. The preparation and general chemical properties of the exchange material are discussed. This information was used in developing a commercial source which has since supplied a 200 kg batch of the material for evaluation. In column ion exchange experiments with 85 Sr-doped simulated waste, decontamination factors of 500 or greater were observed in the first 2000 to 3500 bed volumes of effluent, depending on the impurities in the simulant. A -40 to +130 mesh range of sodium titanate powder was used as the baseline material, but a study to produce alternate forms of the titanate was carried in parallel. This has resulted in two materials which appear promising with respect to both simplification of handling and chemical properties. One of the materials is an agglomerated form of the titanate formed by extrusion pelletizing using water as a binder, and the second is a macroreticular organic anion resin which was loaded with 30 to 40% (by weight) of sodium titanate. The results of initial testing of these materials are discussed

  14. Ego defense mechanisms in Pakistani medical students: a cross sectional analysis

    Directory of Open Access Journals (Sweden)

    Khalid Roha

    2010-01-01

    Full Text Available Abstract Background Ego defense mechanisms (or factors, defined by Freud as unconscious resources used by the ego to reduce conflict between the id and superego, are a reflection of how an individual deals with conflict and stress. This study assesses the prevalence of various ego defense mechanisms employed by medical students of Karachi, which is a group with higher stress levels than the general population. Methods A questionnaire based cross-sectional study was conducted on 682 students from five major medical colleges of Karachi over 4 weeks in November 2006. Ego defense mechanisms were assessed using the Defense Style Questionnaire (DSQ-40 individually and as grouped under Mature, Immature, and Neurotic factors. Results Lower mean scores of Immature defense mechanisms (4.78 were identified than those for Neurotic (5.62 and Mature (5.60 mechanisms among medical students of Karachi. Immature mechanisms were more commonly employed by males whereas females employed more Neurotic mechanisms than males. Neurotic and Immature defenses were significantly more prevalent in first and second year students. Mature mechanisms were significantly higher in students enrolled in Government colleges than Private institutions (p Conclusions Immature defense mechanisms were less commonly employed than Neurotic and Mature mechanisms among medical students of Karachi. The greater employment of Neurotic defenses may reflect greater stress levels than the general population. Employment of these mechanisms was associated with female gender, enrollment in a private medical college, and students enrolled in the first 2 years of medical school.

  15. Evaluation of commercial repository capacity for the disposal of defense high-level waste. Comments and responses for DOE/DP--0020

    International Nuclear Information System (INIS)

    1985-12-01

    The Nuclear Waste Policy Act of 1982 (Public Law 97-425) requires that the President evaluate the use of disposal capacity at one or more repositories to be developed for permanent disposal of civilian spent nuclear fuel and high-level radioactive waste for the disposal of defense high-level radioactive waste. The Department of Energy prepared a report titled ''An Evaluation of Commercial Repository Capacity for the Disposal of Defense High-Level Waste,'' DOE/DP-0020, to provide input for the President's evaluation. The report constituted the Department's input and recommendation to be considered by the President in making his evaluation. Although not required by the Act, the Department made the July 1984 draft of the report available to the general public for review and comment in order to increase public awareness, and develop a public record on the issue of disposal of defense high-level waste. Over 400 copies of the draft report were distributed. Thirty comment letters containing over 400 comments were received from representatives of states, localities, and Indian tribes, federal agencies, organizations representing utilities, public interest groups, individual utilities, and private citizens. All letters were reviewed and considered. Where appropriate, changes were made in the final report reflecting the comments received

  16. CLASSIFICATION OF THE MGR DEFENSE HIGH-LEVEL WASTE DISPOSAL CONTAINER SYSTEM

    International Nuclear Information System (INIS)

    J.A. Ziegler

    1999-01-01

    The purpose of this analysis is to document the Quality Assurance (QA) classification of the Monitored Geologic Repository (MGR) defense high-level waste disposal container system structures, systems and components (SSCs) performed by the MGR Safety Assurance Department. This analysis also provides the basis for revision of YMP/90-55Q, Q-List (YMP 1998). The Q-List identifies those MGR SSCs subject to the requirements of DOE/RW-0333PY ''Quality Assurance Requirements and Description'' (QARD) (DOE 1998)

  17. Supplemental environmental impact statement - defense waste processing facility

    International Nuclear Information System (INIS)

    1994-11-01

    This document supplements the Final Environmental Impact Statement (EIS) DOE Issued in 1982 (DOE/EIS-0082) to construct and operate the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS), a major DOE installation in southwestern South Carolina. That EIS supported the decision to construct and operate the DWPF to immobilize high-level waste generated as a result of nuclear materials processing at SRS. The DWPF would use a vitrification process to incorporate the radioactive waste into borosilicate glass and seal it in stainless steel canisters for eventual disposal at a permanent geologic repository. The DWPF is now mostly constructed and nearly ready for full operation. However, DOE has made design changes to the DWPF since the 1982 EIS to improve efficiency and safety of the facility. Each of these modifications was subjected to appropriate NEPA review. The purpose of this Supplemental EIS is to assist DOE in deciding whether and how to proceed with operation of the DWPF as modified since 1982 while ensuring appropriate consideration of potential environmental effects. In this document, DOE assesses the potential environmental impacts of completing and operating the DWPF in light of these design changes, examines the impact of alternatives, and identifies potential actions to be taken to reduce adverse impacts. Evaluations of impacts on water quality, air quality, ecological systems, land use, geologic resources, cultural resources, socioeconomics, and health and safety of onsite workers and the public are included in the assessment

  18. Planning a transportation system for US Defense Transuranic waste

    International Nuclear Information System (INIS)

    Gilbert, K.V.; Hurley, J.D.; Smith, L.J.; McFadden, M.H.; Raudenbush, M.H.; Fedie, M.L.

    1983-05-01

    The development and planning of a transportation system for US Department of Energy (USDOE) Defense Transuranic (TRU) waste has required the talents and expertise of many people. Coordination activities, design activities, fabrication, research and development, operations, and transportation are but a few of the areas around which this system is built. Due to the large number of organizations, regulations and personalities the planning task becomes extremely complex. The intent of this paper is to discuss the steps taken in planning this system, to identify the various organizations around which this system is designed, and to discuss program progress to date, scheduling, and future plans. 9 figures, 1 table

  19. Planning a transportation system for US defense transuranic waste

    International Nuclear Information System (INIS)

    Gilbert, K.V.; Hurley, J.D.; Smith, L.J.; McFadden, M.H.; Raudenbush, M.H.; Fedie, M.L.

    1983-01-01

    The development and planning of a transportation system for US Department of Energy (USDOE) Defense Transuranic (TRU) waste has required the talents and expertise of many people. Coordination activities, design activities, fabrication, research and development, operations, and transportation are but a few of the areas around which this system is built. Due to the large number of organizations, regulations and personalities the planning task becomes extremely complex. The intent of this paper is to discuss the steps taken in planning this system, to identify the various organizations around which this system is designed, and to discuss program progress to date, scheduling, and future plans

  20. Investigation of foaming during nuclear defense-waste solidification by electric melting

    International Nuclear Information System (INIS)

    Blair, H.T.; Lukacs, J.M.

    1980-12-01

    To determine the cause of foaming, the physical and chemical composition of the glass formers that are added to the waste to produce a borosilicate melt were investigated. It was determined that the glass-forming frit was not the source of the foam-causing gases. Incomplete calcination of the waste, which results in residual hydrates, carbonates and nitrates, and the relatively high carbon and sulfate contents of the waste glass composition were also eliminated as possible sources of the foam. It was finally shown that the oxides of the multivalent ions of manganese and iron that are in the defense waste in high concentrations are the source of the foaming. Nickel oxide is also present in the waste and is suspected of contributing to the foaming. In investigating methods to reduce the foam, the focus was on the chemistry of the materials being processed rather than on the mechanical aspects of the processing equipment to avoid increasing the mechanical complexity of the melter operation. Reducing the waste loading in the host glass from 28 to 14 wt. % produced the most significant reduction in the foam. Of course this did not increase the rate at which waste can be processed. Adding carbonaceous additives or barium metaphosphate to the waste/frit mixture (batch) reduced the foaming somewhat. However, if too much reducing agent was added to the batch, iron-nickel alloys separated from the melt. Likewise, melting the batch in an inert or a reducing atmosphere reduced the foaming but produced a heterogeneous product. Finally, initial attempts to control foaming by adding reducing agents to the liquid waste and then spray-calcining it using an inert atomizing gas were not successful. The possibilities for liquid-waste treatment need to be investigated further

  1. Preliminary evaluation of alternative forms for immobilization of Hanford high-level defense wastes

    International Nuclear Information System (INIS)

    Schulz, W.W.; Beary, M.M.; Gallagher, S.A.; Higley, B.A.; Johnston, R.G.; Jungfleisch, F.M.; Kupfer, M.J.; Palmer, R.A.; Watrous, R.A.; Wolf, G.A.

    1980-09-01

    A preliminary evaluation of solid waste forms for immobilization of Hanford high-level radioactive defense wastes is presented. Nineteen different waste forms were evaluated and compared to determine their applicability and suitability for immobilization of Hanford salt cake, sludge, and residual liquid. This assessment was structured to address waste forms/processes for several different leave-retrieve long-term Hanford waste management alternatives which give rise to four different generic fractions: (1) sludge plus long-lived radionuclide concentrate from salt cake and residual liquid; (2) blended wastes (salt cake plus sludge plus residual liquid); (3) residual liquid; and (4) radionuclide concentrate from residual liquid. Waste forms were evaluated and ranked on the basis of weighted ratings of seven waste form and seven process characteristics. Borosilicate Glass waste forms, as marbles or monoliths, rank among the first three choices for fixation of all Hanford high-level wastes (HLW). Supergrout Concrete (akin to Oak Ridge National Laboratory Hydrofracture Process concrete) and Bitumen, low-temperature waste forms, rate high for bulk disposal immobilization of high-sodium blended wastes and residual liquid. Certain multi-barrier (e.g., Coated Ceramic) and ceramic (SYNROC Ceramic, Tailored Ceramics, and Supercalcine Ceramic) waste forms, along with Borosilicate Glass, are rated as the most satisfactory forms in which to incorporate sludges and associated radionuclide concentrates. The Sol-Gel process appears superior to other processes for manufacture of a generic ceramic waste form for fixation of Hanford sludge. Appropriate recommendations for further research and development work on top ranking waste forms are made

  2. Hanford Site Waste Management Plan

    International Nuclear Information System (INIS)

    1988-12-01

    The Hanford Site Waste Management Plan (HWMP) was prepared in accordance with the outline and format described in the US Department of Energy Orders. The HWMP presents the actions, schedules, and projected costs associated with the management and disposal of Hanford defense wastes, both radioactive and hazardous. The HWMP addresses the Waste Management Program. It does not include the Environmental Restoration Program, itself divided into the Environmental Restoration Remedial Action Program and the Decontamination and Decommissioning Program. The executive summary provides the basis for the plans, schedules, and costs within the scope of the Waste Management Program at Hanford. It summarizes fiscal year (FY) 1988 including the principal issues and the degree to which planned activities were accomplished. It further provides a forecast of FY 1989 including significant milestones. Section 1 provides general information for the Hanford Site including the organization and administration associated with the Waste Management Program and a description of the Site focusing on waste management operations. Section 2 and Section 3 describe radioactive and mixed waste management operations and hazardous waste management, respectively. Each section includes descriptions of the waste management systems and facilities, the characteristics of the wastes managed, and a discussion of the future direction of operations

  3. Hydroceramics, a ''new'' cementitious waste form material for U.S. defense-type reprocessing waste

    International Nuclear Information System (INIS)

    Siemer, Darryl D.

    2002-01-01

    A ''hydroceramic'' (HC) is a concrete which possesses mineralogy similar to the zeolitized rock indigenous to the USA's current ''basis'' high level radioactive waste (HLW) repository site, Yucca Mountain (YM). It is made by curing a mixture of inorganic waste, calcined clay, vermiculite, Na 2 S, NaOH, plus water under hydrothermal conditions. The product differs from conventional Portland cement and/or slag-based concretes (''grouts'') in that it is primarily comprised of alkali aluminosilicate ''cage minerals'' (cancrinites, sodalites, and zeolites)rather than hydrated calcium silicates (C-S-H in cement-chemistry shorthand). Consequently it microencapsulates individual salt molecules thereby rendering them less leachable than they are from conventional grouts. A fundamental difference between the formulations of HCs and radwaste-type glasses is that the latter contain insufficient aluminum to form insoluble minerals with all of the alkali metals in them. This means that the imposition of worst-case ''repository failure'' (hydrothermal) conditions would cause a substantial fraction of such glasses to alter to water-soluble forms. Since the same conditions tend to reduce the solubility of HC concretes, they constitute a more rugged immobilization sub-system. This paper compares leach characteristics of HCs with those of radwaste-type glasses and points out why hydroceramic solidification makes more sense than vitrification for US defense-type reprocessing waste. (orig.)

  4. A two-state citizen task force responds to Dept. of Energy on defense waste

    International Nuclear Information System (INIS)

    Peelle, E.

    1990-01-01

    Successes in public involvement efforts for nuclear waste management are so few that they deserve careful documentation and analysis. This paper chronicles the goals, process, problems and outcomes of one such success, the Northwest Defense Waste Citizens Forum (CF), created by the DOE-Richland manager in 1986 to advise DOE on its plans for nuclear waste disposal and cleanup of the Hanford site in eastern Washington state. DOE under-took an extensive multi-facted public involvement program to gain advice, understanding and support on heretofore neglected defense waste (DW) cleanup problems. DOE sought broad public input for a draft environmental impact statement (DEIS) at an early stage before all characterization data were complete and before a recommended alternative was formulated. In the evolving, often-controversial, highly-visible area of agency-public interactions, citizen task forces (TFs) have been shown to be useful in developing public policy at the local level. For DOE-Richland, the high-risk gamble in undertaking a public involvement program involving reversals of long-term DOE policies of secrecy and unresponsiveness to its host area paid off handsomely in an improved EIS, better relationships with state agencies and regional businesses, and unexpected political support for DW cleanup funding. The Hanford citizen forum was highly successful in both DOE's and participant views, with significant achievements, unusual process and technical findings of its own. By the authors' criteria discussed earlier for public participation efforts, the CF effort was successful in all 3 areas. The success of this approach suggests its use as a model for other federal cleanup activities

  5. Compatibility tests of materials for a prototype ceramic melter for defense glass-waste products

    International Nuclear Information System (INIS)

    Wicks, G.G.

    1979-01-01

    Objective is to evaluate the corrosion/erosion resistance of melter materials. Materials tested were Monofrox K3 and E, Serv, Inconel 690, Pt, and SnO. Results show that Inconel 690 is the leading electrode material and Monofrox K3 the leading refractory candidate. Melter lifetime is estimated to be 2 to 5 years for defense waste

  6. DEFENSE HIGH LEVEL WASTE GLASS DEGRADATION

    International Nuclear Information System (INIS)

    Ebert, W.

    2001-01-01

    The purpose of this Analysis/Model Report (AMR) is to document the analyses that were done to develop models for radionuclide release from high-level waste (HLW) glass dissolution that can be integrated into performance assessment (PA) calculations conducted to support site recommendation and license application for the Yucca Mountain site. This report was developed in accordance with the ''Technical Work Plan for Waste Form Degradation Process Model Report for SR'' (CRWMS M andO 2000a). It specifically addresses the item, ''Defense High Level Waste Glass Degradation'', of the product technical work plan. The AP-3.15Q Attachment 1 screening criteria determines the importance for its intended use of the HLW glass model derived herein to be in the category ''Other Factors for the Postclosure Safety Case-Waste Form Performance'', and thus indicates that this factor does not contribute significantly to the postclosure safety strategy. Because the release of radionuclides from the glass will depend on the prior dissolution of the glass, the dissolution rate of the glass imposes an upper bound on the radionuclide release rate. The approach taken to provide a bound for the radionuclide release is to develop models that can be used to calculate the dissolution rate of waste glass when contacted by water in the disposal site. The release rate of a particular radionuclide can then be calculated by multiplying the glass dissolution rate by the mass fraction of that radionuclide in the glass and by the surface area of glass contacted by water. The scope includes consideration of the three modes by which water may contact waste glass in the disposal system: contact by humid air, dripping water, and immersion. The models for glass dissolution under these contact modes are all based on the rate expression for aqueous dissolution of borosilicate glasses. The mechanism and rate expression for aqueous dissolution are adequately understood; the analyses in this AMR were conducted to

  7. Implementation plans for buried transuranic waste and stored special-case waste at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Bullock, M.G.; Rodriguez, R.R.

    1987-05-01

    This document presents the current implementation plans for buried transuranic waste and stored special-case waste at the Idaho National Engineering Laboratory. Information contained in this report was also included in several Department of Energy (DOE) planning documents for the Defense Transuranic Waste Program. This information can be found in the following DOE documents: Comprehensive Implementation Plan for the DOE Defense Buried TRU Waste Program; Defense Waste Management Plan for Buried Transuranic-Contaminated Waste, Transuranic-Contaminated Waste, Transuranic-Contaminated Soil, and Difficult-to-Certify Transuranic Waste; and Defense Special-Case Transuranic Waste Implementation Plan. 11 refs

  8. SPEEDUP modeling of the defense waste processing facility at the SRS

    International Nuclear Information System (INIS)

    Smith, F.G. III.

    1997-01-01

    A computer model has been developed for the dynamic simulation of batch process operations within the Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS). The DWPF chemically treats high level waste materials from the site tank farm and vitrifies the resulting slurry into a borosilicate glass for permanent disposal. The DWPF consists of three major processing areas: Salt Processing Cell (SPC), Chemical Processing Cell (CPC) and the Melt Cell. A fully integrated model of these process units has been developed using the SPEEDUP trademark software from Aspen Technology. Except for glass production in the Melt Cell, all of the chemical operations within DWPF are batch processes. Since SPEEDUP is designed for dynamic modeling of continuous processes, considerable effort was required to device batch process algorithms. This effort was successful and the model is able to simulate batch operations and the dynamic behavior of the process. The model also includes an optimization calculation that maximizes the waste content in the final glass product. In this paper, we will describe the process model in some detail and present preliminary results from a few simulation studies

  9. Acceptable knowledge document for INEEL stored transuranic waste - Rocky Flats Plant waste. Revision 2

    International Nuclear Information System (INIS)

    1998-01-01

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRA regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems

  10. Acceptable knowledge document for INEEL stored transuranic waste -- Rocky Flats Plant waste. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-23

    This document and supporting documentation provide a consistent, defensible, and auditable record of acceptable knowledge for waste generated at the Rocky Flats Plant which is currently in the accessible storage inventory at the Idaho National Engineering and Environmental Laboratory. The inventory consists of transuranic (TRU) waste generated from 1972 through 1989. Regulations authorize waste generators and treatment, storage, and disposal facilities to use acceptable knowledge in appropriate circumstances to make hazardous waste determinations. Acceptable knowledge includes information relating to plant history, process operations, and waste management, in addition to waste-specific data generated prior to the effective date of the RCRA regulations. This document is organized to provide the reader a comprehensive presentation of the TRU waste inventory ranging from descriptions of the historical plant operations that generated and managed the waste to specific information about the composition of each waste group. Section 2 lists the requirements that dictate and direct TRU waste characterization and authorize the use of the acceptable knowledge approach. In addition to defining the TRU waste inventory, Section 3 summarizes the historical operations, waste management, characterization, and certification activities associated with the inventory. Sections 5.0 through 26.0 describe the waste groups in the inventory including waste generation, waste packaging, and waste characterization. This document includes an expanded discussion for each waste group of potential radionuclide contaminants, in addition to other physical properties and interferences that could potentially impact radioassay systems.

  11. Processing of tetraphenylborate precipitates in the Savannah River Site Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Eibling, R.E.

    1990-01-01

    The Savannah River Site has generated 77 million gallons of high level radioactive waste since the early 1950's. By 1987, evaporation had reduced the concentration of the waste inventory to 35 million gallons. Currently, the wastes reside in large underground tanks as a soluble fraction stored, crystallized salts, and an insoluble fraction, sludge, which consists of hydrated transition metal oxides. The bulk of the radionuclides, 67 percent, are in the sludge while the crystallized salts and supernate are composed of the nitrates, nitrites, sulfates and hydroxides of sodium, potassium, and cesium. The principal radionuclide in the soluble waste is 137 Cs with traces of 90 Sr. The transformation of the high level wastes into a borosilicate glass suitable for permanent disposal is the goal of the Defense Waste Processing Facility (DWPF). To minimize the volume of glass produced, the soluble fraction of the waste is treated with sodium tetraphenylborate and sodium titanate in the waste tanks to precipitate the radioactive cesium ion and absorb the radioactive strontium ion. The precipitate is washed in the waste tanks and is then pumped to the DWPF. The precipitate, as received, is incompatible with the vitrification process because of the high aromatic carbon content and requires further chemical treatment. Within the DWPF, the precipitate is processed in the Salt Processing Cell to remove the aromatic carbon as benzene. The precipitate hydrolysis process hydrolyzes the tetraphenylborate anion to produce borate anion and benzene. The benzene is removed by distillation, decontaminated and transferred out of the DWPF for disposal

  12. 1987 monitoring report for the defense waste lysimeters

    International Nuclear Information System (INIS)

    McIntyre, P.F.

    1987-01-01

    Low levels of radionuclides migrate through the soil to the sump. This report updates previous monitoring reports and discusses results obtained during the past year of operation. The effluents from the forty defense waste lysimeters continue to be analyzed on a monthly basis for gamma emitting radionuclides and quarterly for alpha emitting radionuclides and Sr-90. Cobalt-60, Sr-90, Sb-125, U-235, Pu-238, Pu-239 and Am-241 continue to be detected in sump effluent. Detectable levels of cobalt-60 and antimony-125 are each observed in only one lysimeter. Manganese-54, Ru-106 and Th-234 are no longer detected in effluent from any lysimeter. Significant levels of Sr-90 and Pu-238 are observed from several lysimeters, while others continue to show low levels of U-235, Pu-239 and Am-241. The release rates for transporting radionuclides through the soil to the sump indicate that migration is independent of whether a lysimeter is operated in a saturated or unsaturated mode. Pine trees continue to grow on the ten foot diameter lysimeters. No sampling of needles or woody stem portions was performed. The purpose of analyzing pine trees growing on lysimeters is to measure the amount of radionuclide uptake by the pine trees as their root systems come in contact with the waste material. 6 refs., 2 figs., 49 tabs

  13. Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste

    Energy Technology Data Exchange (ETDEWEB)

    Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

    1986-02-01

    The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose.

  14. Potential radiological impacts of upper-bound operational accidents during proposed waste disposal alternatives for Hanford defense waste

    International Nuclear Information System (INIS)

    Mishima, J.; Sutter, S.L.; Hawley, K.A.; Jenkins, C.E.; Napier, B.A.

    1986-02-01

    The Geologic Disposal Alternative, the In-Place Stabilization and Disposal Alternative, and the Reference Disposal Alternative are being evaluated for disposal of Hanford defense high-level, transuranic, and tank wastes. Environmental impacts associated with disposal of these wastes according to the alternatives listed above include potential doses to the downwind population from operation during the application of the handling and processing techniques comprising each disposal alternative. Scenarios for operational accident and abnormal operational events are postulated, on the basis of the currently available information, for the application of the techniques employed for each waste class for each disposal alternative. From these scenarios, an upper-bound airborne release of radioactive material was postulated for each waste class and disposal alternative. Potential downwind radiologic impacts were calculated from these upper-bound events. In all three alternatives, the single postulated event with the largest calculated radiologic impact for any waste class is an explosion of a mixture of ferri/ferro cyanide precipitates during the mechanical retrieval or microwave drying of the salt cake in single shell waste tanks. The anticipated downwind dose (70-year dose commitment) to the maximally exposed individual is 3 rem with a total population dose of 7000 man-rem. The same individual would receive 7 rem from natural background radiation during the same time period, and the same population would receive 3,000,000 man-rem. Radiological impacts to the public from all other postulated accidents would be less than that from this accident; furthermore, the radiological impacts resulting from this accident would be less than one-half that from the natural background radiation dose

  15. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1993-04-01

    Three different simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C--1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentrum Karlsruhe (KfK) in Germany were used. The samples were thin-sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. Behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied

  16. An overview of the hazardous waste remedial actions program: hazardous and mixed waste activities for the U.S. Departments of energy and defense

    International Nuclear Information System (INIS)

    Craig, Robert B.; Rothermich, Nancy E.

    1991-01-01

    In May 1987 all mixed waste generated at the U.S. Department of Energy (DOE) facilities became jointly regulated by the U.S. Environmental Protection Agency (EPA) and DOE. The Department of Defense (DOD) generates hazardous wastes and is also regulated by the EPA. To maintain or attain compliance, both DOE and DOD have initiated compliance activities on all hazardous and mixed waste streams. This compliance includes the development of innovative technologies and processes to avoid the generation of hazardous and mixed wastes, development of technologies to treat the process wastes that are unavoidably generated, development of technologies to restore the environment where wastes have been released to the environment, the cleanup of asbestos and the monitoring of radon in federal facilities, the completion of remedial investigation/feasibility studies, and development of the data systems that are necessary to compile this information. This paper will describe each of these activities as they relate to compliance with the Resource Conservation and Recovery Act and/or CERCLA and their implementing regulations

  17. Discrete event simulation of the Defense Waste Processing Facility (DWPF) analytical laboratory

    International Nuclear Information System (INIS)

    Shanahan, K.L.

    1992-02-01

    A discrete event simulation of the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) analytical laboratory has been constructed in the GPSS language. It was used to estimate laboratory analysis times at process analytical hold points and to study the effect of sample number on those times. Typical results are presented for three different simultaneous representing increasing levels of complexity, and for different sampling schemes. Example equipment utilization time plots are also included. SRS DWPF laboratory management and chemists found the simulations very useful for resource and schedule planning

  18. Environmental Assessment for the Above Ground Storage Capability at the Waste Isolation Pilot Plant. Draft

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-12-01

    The Waste Isolation Pilot Plant (WIPP) is the nation’s only approved repository for the disposal of defense related/defense generated transuranic (TRU) and mixed hazardous TRU waste (henceforth called TRU waste). The mission of the WIPP Project is to realize the safe disposal of TRU waste from TRU waste generator sites in the Department of Energy waste complex. The WIPP Project was authorized by Title II, Section 213(a) of Public Law 96-164 (U. S. Congress 1979). Congress designated the WIPP facility “for the express purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States exempted from regulation by the Nuclear Regulatory Commission (NRC).” The WIPP facility is operated by the U. S. Department of Energy (DOE). Transuranic waste that is disposed in the WIPP facility is defined by Section 2(18) the WIPP Land Withdrawal Act of 1992 (LWA) (U. S. Congress, 1992) as: “waste containing more than 100 nanocuries of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years, except for: (A) high-level radioactive waste; (B) waste that the Secretary has determined, with the concurrence of the Administrator, does not need the degree of isolation required by the disposal regulations; or (C) waste that the NRC has approved for disposal on a case-by-case basis in accordance with part 61 of title 10, Code of Federal Regulations (CFR).

  19. No-migration variance petition for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    Carnes, R.G.; Hart, J.S. (Benchmark Environmental Corp., Albuquerque, NM (USA)); Knudtsen, K. (International Technology Corp., Albuquerque, NM (USA))

    1990-01-01

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) project to provide a research and development facility to demonstrate the safe disposal of radioactive waste resulting from US defense activities and programs. The DOE is developing the WIPP facility as a deep geologic repository in bedded salt for transuranic (TRU) waste currently stored at or generated by DOE defense installations. Approximately 60 percent of the wastes proposed to be emplaced in the WIPP are radioactive mixed wastes. Because such mixed wastes contain a hazardous chemical component, the WIPP is subject to requirements of the Resource Conservation and Recovery Act (RCRA). In 1984 Congress amended the RCRA with passage of the Hazardous and Solid Waste Amendments (HSWA), which established a stringent regulatory program to prohibit the land disposal of hazardous waste unless (1) the waste is treated to meet treatment standards or other requirements established by the Environmental Protection Agency (EPA) under {section}3004(n), or (2) the EPA determines that compliance with the land disposal restrictions is not required in order to protect human health and the environment. The DOE WIPP Project Office has prepared and submitted to the EPA a no-migration variance petition for the WIPP facility. The purpose of the petition is to demonstrate, according to the requirements of RCRA {section}3004(d) and 40 CFR {section}268.6, that to a reasonable degree of certainty, there will be no migration of hazardous constituents from the WIPP facility for as long as the wastes remain hazardous. This paper provides an overview of the petition and describes the EPA review process, including key issues that have emerged during the review. 5 refs.

  20. No-migration variance petition for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Carnes, R.G.; Hart, J.S.; Knudtsen, K.

    1990-01-01

    The Waste Isolation Pilot Plant (WIPP) is a US Department of Energy (DOE) project to provide a research and development facility to demonstrate the safe disposal of radioactive waste resulting from US defense activities and programs. The DOE is developing the WIPP facility as a deep geologic repository in bedded salt for transuranic (TRU) waste currently stored at or generated by DOE defense installations. Approximately 60 percent of the wastes proposed to be emplaced in the WIPP are radioactive mixed wastes. Because such mixed wastes contain a hazardous chemical component, the WIPP is subject to requirements of the Resource Conservation and Recovery Act (RCRA). In 1984 Congress amended the RCRA with passage of the Hazardous and Solid Waste Amendments (HSWA), which established a stringent regulatory program to prohibit the land disposal of hazardous waste unless (1) the waste is treated to meet treatment standards or other requirements established by the Environmental Protection Agency (EPA) under section 3004(n), or (2) the EPA determines that compliance with the land disposal restrictions is not required in order to protect human health and the environment. The DOE WIPP Project Office has prepared and submitted to the EPA a no-migration variance petition for the WIPP facility. The purpose of the petition is to demonstrate, according to the requirements of RCRA section 3004(d) and 40 CFR section 268.6, that to a reasonable degree of certainty, there will be no migration of hazardous constituents from the WIPP facility for as long as the wastes remain hazardous. This paper provides an overview of the petition and describes the EPA review process, including key issues that have emerged during the review. 5 refs

  1. Defense waste processing facility radioactive operations. Part 1 - operating experience

    International Nuclear Information System (INIS)

    Little, D.B.; Gee, J.T.; Barnes, W.M.

    1997-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, SC is the nation's first and the world's largest vitrification facility. Following a ten year construction program and a 3 year non-radioactive test program, DWPF began radioactive operations in March 1996. This paper presents the results of the first 9 months of radioactive operations. Topics include: operations of the remote processing equipment reliability, and decontamination facilities for the remote processing equipment. Key equipment discussed includes process pumps, telerobotic manipulators, infrared camera, Holledge trademark level gauges and in-cell (remote) cranes. Information is presented regarding equipment at the conclusion of the DWPF test program it also discussed, with special emphasis on agitator blades and cooling/heating coil wear. 3 refs., 4 figs

  2. Defense Waste Processing Facility -- Radioactive operations -- Part 3 -- Remote operations

    International Nuclear Information System (INIS)

    Barnes, W.M.; Kerley, W.D.; Hughes, P.D.

    1997-01-01

    The Savannah River Site's Defense Waste Processing Facility (DWPF) near Aiken, South Carolina is the nation's first and world's largest vitrification facility. Following a ten year construction period and nearly three years of non-radioactive testing, the DWPF began radioactive operations in March 1996. Radioactive glass is poured from the joule heated melter into the stainless steel canisters. The canisters are then temporarily sealed, decontaminated, resistance welded for final closure, and transported to an interim storage facility. All of these operations are conducted remotely with equipment specially designed for these processes. This paper reviews canister processing during the first nine months of radioactive operations at DWPF. The fundamental design consideration for DWPF remote canister processing and handling equipment are discussed as well as interim canister storage

  3. Waste glass melting stages

    International Nuclear Information System (INIS)

    Anderson, L.D.; Dennis, T.; Elliott, M.L.; Hrma, P.

    1994-01-01

    Three simulated nuclear waste glass feeds, consisting of dried waste and glass frit, were heat treated for 1 hour in a gradient furnace at temperatures ranging from approximately 600 degrees C to 1000 degrees C. Simulated melter feeds from the Hanford Waste Vitrification Plant (HWVP), the Defense Waste Processing Facility (DWPF), and Kernforschungszentru Karlsruhe (KfK) in Germany were used. The samples were thin sectioned and examined by optical microscopy to investigate the stages of the conversion from feed to glass. Various phenomena were seen, such as frit softening, bubble formation, foaming, bubble motion and removal, convective mixing, and homogenization. The behavior of different feeds was similar, although the degree of gas generation and melt homogenization varied. 2 refs., 8 tabs

  4. Silicate Based Glass Formulations for Immobilization of U.S. Defense Wastes Using Cold Crucible Induction Melters

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Gary L.; Kim, Dong-Sang; Schweiger, Michael J.; Marra, James C.; Lang, Jesse B.; Crum, Jarrod V.; Crawford, Charles L.; Vienna, John D.

    2014-05-22

    The cold crucible induction melter (CCIM) is an alternative technology to the currently deployed liquid-fed, ceramic-lined, Joule-heated melter for immobilizing of U.S. tank waste generated from defense related reprocessing. In order to accurately evaluate the potential benefits of deploying a CCIM, glasses must be developed specifically for that melting technology. Related glass formulation efforts have been conducted since the 1990s including a recent study that is first documented in this report. The purpose of this report is to summarize the silicate base glass formulation efforts for CCIM testing of U.S. tank wastes. Summaries of phosphate based glass formulation and phosphate and silicate based CCIM demonstration tests are reported separately (Day and Ray 2013 and Marra 2013, respectively). Combined these three reports summarize the current state of knowledge related to waste form development and process testing of CCIM technology for U.S. tank wastes.

  5. Characterization of the Defense Waste Processing Facility (DWPF) Environmental Assessment (EA) glass Standard Reference Material. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.M.; Bibler, N.E.; Beam, D.C.; Crawford, C.L.; Pickett, M.A.

    1993-06-01

    Liquid high-level nuclear waste at the Savannah River Site (SRS) will be immobilized by vitrification in borosilicate glass. The glass will be produced and poured into stainless steel canisters in the Defense Waste Processing Facility (DWPF). Other waste form producers, such as West Valley Nuclear Services (WVNS) and the Hanford Waste Vitrification Project (HWVP), will also immobilize high-level radioactive waste in borosilicate glass. The canistered waste will be stored temporarily at each facility for eventual permanent disposal in a geologic repository. The Department of Energy has defined a set of requirements for the canistered waste forms, the Waste Acceptance Product Specifications (WAPS). The current Waste Acceptance Primary Specification (WAPS) 1.3, the product consistency specification, requires the waste form producers to demonstrate control of the consistency of the final waste form using a crushed glass durability test, the Product Consistency Test (PCI). In order to be acceptable, a waste glass must be more durable during PCT analysis than the waste glass identified in the DWPF Environmental Assessment (EA). In order to supply all the waste form producers with the same standard benchmark glass, 1000 pounds of the EA glass was fabricated. The chemical analyses and characterization of the benchmark EA glass are reported. This material is now available to act as a durability and/or redox Standard Reference Material (SRM) for all waste form producers.

  6. Defense Waste Processing Facility Recycle Stream Evaporation

    International Nuclear Information System (INIS)

    STONE, MICHAEL

    2006-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) stabilizes high level radioactive waste (HLW) by vitrification of the waste slurries. DWPF currently produces approximately five gallons of dilute recycle for each gallon of waste vitrified. This recycle stream is currently sent to the HLW tank farm at SRS where it is processed through the HLW evaporators with the concentrate eventually sent back to the DWPF for stabilization. Limitations of the HLW evaporators and storage space constraints in the tank farm have the potential to impact the operation of the DWPF and could limit the rate that HLW is stabilized. After an evaluation of various alternatives, installation of a dedicated evaporator for the DWPF recycle stream was selected for further evaluation. The recycle stream consists primarily of process condensates from the pretreatment and vitrification processes. Other recycle streams consist of process samples, sample line flushes, sump flushes, and cleaning solutions from the decontamination and filter dissolution processes. The condensate from the vitrification process contains some species, such as sulfate, that are not appreciably volatile at low temperature and could accumulate in the system if 100% of the evaporator concentrate was returned to DWPF. These species are currently removed as required by solids washing in the tank farm. The cleaning solutions are much higher in solids content than the other streams and are generated 5-6 times per year. The proposed evaporator would be required to concentrate the recycle stream by a factor of 30 to allow the concentrate to be recycled directly to the DWPF process, with a purge stream sent to the tank farm as required to prevent buildup of sulfate and similar species in the process. The overheads are required to meet stringent constraints to allow the condensate to be sent directly to an effluent treatment plant. The proposed evaporator would nearly de-couple the DWPF process from the

  7. Hazardous Waste Remedial Actions Program: integrating waste management

    International Nuclear Information System (INIS)

    Petty, J.L.; Sharples, F.E.

    1986-01-01

    The Hazardous Waste Remedial Actions Program was established to integrate Defense Programs' activities in hazardous and mixed waste management. The Program currently provides centralized planning and technical support to the Office of the Assistant Secretary for Defense Programs. More direct project management responsibilities may be assumed in the future. The Program, under the direction of the ASDP's Office of Defense Waste and Transportation Management, interacts with numerous organizational entities of the Department. The Oak Ridge Operations Office has been designated as the Lead Field Office. The Program's four current components cover remedial action project identification and prioritization; technology adaptation; an informative system; and a strategy study for long-term, ''corporate'' project and facility planning

  8. Comparative risk assessments for the production and interim storage of glass and ceramic waste forms: defense waste processing facility

    International Nuclear Information System (INIS)

    Huang, J.C.; Wright, W.V.

    1982-04-01

    The Defense Waste Processing Facility (DWPF) for immobilizing nuclear high level waste (HLW) is scheduled to be built at the Savannah River Plant (SRP). High level waste is produced when SRP reactor components are subjected to chemical separation operations. Two candidates for immobilizing this HLW are borosilicate glass and crystalline ceramic, either being contained in weld-sealed stainless steel canisters. A number of technical analyses are being conducted to support a selection between these two waste forms. The present document compares the risks associated with the manufacture and interim storage of these two forms in the DWPF. Process information used in the risk analysis was taken primarily from a DWPF processibility analysis. The DWPF environmental analysis provided much of the necessary environmental information. To perform the comparative risk assessments, consequences of the postulated accidents are calculated in terms of: (1) the maximum dose to an off-site individual; and (2) the dose to off-site population within 80 kilometers of the DWPF, both taken in terms of the 50-year inhalation dose commitment. The consequences are then multiplied by the estimated accident probabilities to obtain the risks. The analyses indicate that the maximum exposure risk to an individual resulting from the accidents postulated for both the production and interim storage of either waste form represents only an insignificant fraction of the natural background radiation of about 90 mrem per year per person in the local area. They also show that there is no disaster potential to the off-site population. Therefore, the risks from abnormal events in the production and the interim storage of the DWPF waste forms should not be considered as a dominant factor in the selection of the final waste form

  9. Modeling the dissolution behavior of defense waste glass in a salt repository environment

    International Nuclear Information System (INIS)

    McGrain, B.P.

    1988-02-01

    A mechanistic model describing a dynamic mass balance between the production and consumption of dissolved silica was found to describe the dissolution behavior of SRL-165 defense waste glass in a high-magnesium brine (PBB3) at a temperature of 90 0 C. The synergistic effect of the waste package container on the glass dissolution rate was found to depend on a precipitation reaction for a ferrous silicate mineral. The model predicted that the ferrous silicate precipitate should be variable in composition where the iron/silica stoichiometry depended on the metal/glass surface area ratio used in the experiment. This prediction was confirmed experimentally by the variable iron/silica ratios observed in filtered leachates. However, the interaction between dissolved silica and iron corrosion products needs to be much better understood before the model can be used with confidence in predicting radionuclide release rates for a salt repository. 25 refs., 4 figs., 1 tab

  10. Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site

    International Nuclear Information System (INIS)

    Glover, T.

    1999-01-01

    The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task

  11. Proposed Use of a Constructed Wetland for the Treatment of Metals in the S-04 Outfall of the Defense Waste Processing Facility at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Glover, T.

    1999-11-23

    The DWPF is part of an integrated waste treatment system at the SRS to treat wastes containing radioactive contaminants. In the early 1980s the DOE recognized that there would be significant safety and cost advantages associated with immobilizing the radioactive waste in a stable solid form. The Defense Waste Processing Facility was designed and constructed to accomplish this task.

  12. Topical report on release scenario analysis of long-term management of high-level defense waste at the Hanford Site

    International Nuclear Information System (INIS)

    Wallace, R.W.; Landstrom, D.K.; Blair, S.C.; Howes, B.W.; Robkin, M.A.; Benson, G.L.; Reisenauer, A.E.; Walters, W.H.; Zimmerman, M.G.

    1980-11-01

    Potential release scenarios for the defense high-level waste (HLW) on the Hanford Site are presented. Presented in this report are the three components necessary for evaluating the various alternatives under consideration for long-term management of Hanford defense HLW: identification of scenarios and events which might directly or indirectly disrupt radionuclide containment barriers; geotransport calculations of waste migration through the site media; and consequence (dose) analyses based on groundwater and air pathways calculations. The scenarios described in this report provide the necessary parameters for radionuclide transport and consequence analysis. Scenarios are categorized as either bounding or nonbounding. Bounding scenarios consider worst case or what if situations where an actual and significant release of waste material to the environment would happen if the scenario were to occur. Bounding scenarios include both near-term and long-term scenarios. Near-term scenarios are events which occur at 100 years from 1990. Long term scenarios are potential events considered to occur at 1000 and 10,000 years from 1990. Nonbounding scenarios consider events which result in insignificant releases or no release at all to the environment. Three release mechanisms are described in this report: (1) direct exposure of waste to the biosphere by a defined sequence of events (scenario) such as human intrusion by drilling; (2) radionuclides contacting an unconfined aquifer through downward percolation of groundwater or a rising water table; and (3) cataclysmic or explosive release of radionuclides by such mechanisms as meteorite impact, fire and explosion, criticality, or seismic events. Scenarios in this report present ways in which these release mechanisms could occur at a waste management facility. The scenarios are applied to the two in-tank waste management alternatives: in-situ disposal and continued present action

  13. APET methodology for Defense Waste Processing Facility: Mode C operation

    International Nuclear Information System (INIS)

    Taylor, R.P. Jr.; Massey, W.M.

    1995-04-01

    Safe operation of SRS facilities continues to be the highest priority of the Savannah River Site (SRS). One of these facilities, the Defense Waste Processing Facility or DWPF, is currently undergoing cold chemical runs to verify the design and construction preparatory to hot startup in 1995. The DWPFF is a facility designed to convert the waste currently stored in tanks at the 200-Area tank farm into a form that is suitable for long term storage in engineered surface facilities and, ultimately, geologic isolation. As a part of the program to ensure safe operation of the DWPF, a probabilistic Safety Assessment of the DWPF has been completed. The results of this analysis are incorporated into the Safety Analysis Report (SAR) for DWPF. The usual practice in preparation of Safety Analysis Reports is to include only a conservative analysis of certain design basis accidents. A major part of a Probabilistic Safety Assessment is the development and quantification of an Accident Progression Event Tree or APET. The APET provides a probabilistic representation of potential sequences along which an accident may progress. The methodology used to determine the risk of operation of the DWPF borrows heavily from methods applied to the Probabilistic Safety Assessment of SRS reactors and to some commercial reactors. This report describes the Accident Progression Event Tree developed for the Probabilistic Safety Assessment of the DWPF

  14. Hanford Site Transuranic (TRU) Waste Certification Plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    2000-01-01

    addition, a TRU waste is eligible for disposal at WIPP only if it has been generated in whole or in part by one or more of the activities listed in Section 10101(3) of the Nuclear Waste Policy Act. DOE sites must determine that each waste stream to be disposed of at WIPP is ''defense'' TRU waste. (See also the definition of ''defense'' TRU waste.). Only CH TRU wastes meeting the requirements of the QAPjP, WIPP-WAP, WPP-WAC, and other requirements documents described above will be accepted for transportation and disposal at WIPP

  15. Radionuclide separations and processing for defense water management

    International Nuclear Information System (INIS)

    Fryberger, T.B.

    1993-01-01

    An overview is given of the Department of Energy's Efficient Separations and Processing Integrated Program (ESPIP). This program sponsors research in advanced chemical separations for removal of radionuclides and hazardous components from radioactive defense wastes. Separations processing will reduce the volume of high-level waste that must be disposed of in a deep geological repository and will improve the quality of low-level wastes acceptable for near-surface disposal. DOE defense complex processing needs as well as technologies that are currently under development in the program are discussed

  16. Environmental evaluation of alternatives for long-term management of Defense high-level radioactive wastes at the Idaho Chemical Processing Plant

    Energy Technology Data Exchange (ETDEWEB)

    1982-09-01

    The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24 figures, 60 tables.

  17. Environmental evaluation of alternatives for long-term management of Defense high-level radioactive wastes at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    1982-09-01

    The U.S. Department of Energy (DOE) is considering the selection of a strategy for the long-term management of the defense high-level wastes at the Idaho Chemical Processing Plant (ICPP). This report describes the environmental impacts of alternative strategies. These alternative strategies include leaving the calcine in its present form at the Idaho National Engineering Laboratory (INEL), or retrieving and modifying the calcine to a more durable waste form and disposing of it either at the INEL or in an offsite repository. This report addresses only the alternatives for a program to manage the high-level waste generated at the ICPP. 24 figures, 60 tables

  18. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    International Nuclear Information System (INIS)

    Scott, D.E.; Pechmann, J.H.K.; Knox, J.N.; Estes, R.A.; McGregor, J.H.; Bailey, K.

    1988-12-01

    The Savannah River Ecology Laboratory has completed 10 years of ecological studies related to the construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site. This progress report examines water quality studies on streams peripheral to the DWPF construction site and examines the effectiveness of ''refuge ponds'' in ameliorating the effects of construction on local amphibians. Individual papers on these topics are indexed separately. 93 refs., 15 figs., 15 tabs

  19. Preliminary Hanford Waste Vitrification Plan Waste Form Qualification Plan

    International Nuclear Information System (INIS)

    Nelson, J.L.

    1987-09-01

    This Waste Form Qualification Plan describes the waste form qualification activities that will be followed during the design and operation of the Hanford Waste Vitrification Plant to ensure that the vitrified Hanford defense high-level wastes will meet the acceptance requirements of the candidate geologic repositories for nuclear waste. This plan is based on the defense waste processing facility requirements. The content of this plan is based on the assumption that the Hanford Waste Vitrification Plant high-level waste form will be disposed of in one of the geologic repository projects. Proposed legislation currently under consideration by Congress may change or delay the repository site selection process. The impacts of this change will be assessed as details of the new legislation become available. The Plan describes activities, schedules, and programmatic interfaces. The Waste Form Qualification Plan is updated regularly to incorporate Hanford Waste Vitrification Plant-specific waste acceptance requirements and to serve as a controlled baseline plan from which changes in related programs can be incorporated. 10 refs., 5 figs., 5 tabs

  20. Conceptual process for immobilizing defense high level wastes in SYNROC-D

    International Nuclear Information System (INIS)

    Anon.

    1981-01-01

    It is believed that the immobilization of defense wastes in SYNROC-D possesses important advantages over an alternative process which involves immobilizing the sludges in borosilicate glass. (1) It is possible to immobilize about 3 times the weight of sludge in a given volume of SYNROC-D as compared to borosilicate glass. The costs of fabrications, transport and ultimate geologic storage are correspondingly reduced; (2) the mineral assemblage of SYNROC-D is vastly more stable in the presence of groundwaters than are borosilicate glasses. The long-lived actinide elements, in particular, are immobilized much more securely in SYNROC-D than in glass; and (3) SYNROC-D is composed of thermodynamically compatible phases which possess crystal structures identical to those of natural minerals which are known to have survived in geological environments at elevated pressures and temperatures for periods of 500 to 2000 million years and to have retained radioactive elements quantitatively for these periods despite strong radiation damage. It is this evidence, provided by nature herself, which can demonstrate to the community that the shorter times required for radwaste immobilization under the much less extreme pressure, temperature conditions present in a suitable geological repository can be successfully achieved. Glass, as a waste-form, is intrinsically incapable of providing this assurance

  1. Concept of Operations for Waste Transport, Emplacement, and Retrieval

    International Nuclear Information System (INIS)

    Raczka, Norman T.

    2001-01-01

    The preparation of this technical report has two objectives. The first objective is to discuss the base case concepts of waste transport, emplacement, and retrieval operations and evaluate these operations relative to a lower-temperature repository design. Aspects of the operations involved in waste transport, emplacement and retrieval may be affected by the lower-temperature operating schemes. This report evaluates the effects the lower-temperature alternatives may have on the operational concepts involved in emplacing and retrieving waste. The second objective is to provide backup material for the design description, in a traceable and defensible format, for Section 2 of the Waste Emplacement/Retrieval System Description Document

  2. Basic data report for drillhole WIPP 13 (Waste isolation pilot plant - WIPP)

    International Nuclear Information System (INIS)

    1979-10-01

    The borehole WIPP-13 was drilled in the SW 1/4 section 17, T22S, R31E of eastern Eddy County during July and August, 1978, to investigate the nature of a resistivity anomaly. The stratigraphic section was normal, consisting of 13 feet of Quaternary deposits (including artificial fill for drill pad), 53 feet of the Triassic Santa Rosa Sandstone, 451 feet of Dewey Lake Red Beds, 269 feet of the Rustler Formation and 179 feet of the upper member of the Salado Formation. Consecutive cores were taken from 570 to 595, 656 to 729, and 827 to 878 feet. Cuttings were collected at 10-foot intervals throughout the rest of the hole. Geophysical logs were run to aid in interpretation of the stratigraphy. The WIPP is to demonstrate (through limited operations) disposal technology for transuranic (TRU) defense wastes. Eventual conversion of the facility to a repository for TRU defense wastes is anticipated. The WIPP will also provide research facilities for interactions between high-level waste and salt

  3. Ecological studies related to construction of the Defense Waste Processing Facility on the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Scott, D.E.; Pechmann, J.H.K.; Knox, J.N.; Estes, R.A.; McGregor, J.H.; Bailey, K. (ed.)

    1988-12-01

    The Savannah River Ecology Laboratory has completed 10 years of ecological studies related to the construction of the Defense Waste Processing Facility (DWPF) on the Savannah River Site. This progress report examines water quality studies on streams peripheral to the DWPF construction site and examines the effectiveness of refuge ponds'' in ameliorating the effects of construction on local amphibians. Individual papers on these topics are indexed separately. 93 refs., 15 figs., 15 tabs. (MHB)

  4. The transuranic waste management program at Savannah River

    International Nuclear Information System (INIS)

    D'Ambrosia, J.

    1986-01-01

    Defense transuranic waste at the Savannah River site results from the Department of Energy's national defense activities, including the operation of production reactors, fuel reprocessing plants, and research and development activities. TRU waste has been retrievably stored at the Savannah River Plant since 1974 awaiting disposal. The Waste Isolation Pilot Plant, now under construction in New Mexico, is a research and development facility for demonstrating the safe disposal of defense TRU waste, including that in storage at the Savannah River Plant. The major objective of the TRU Program at SR is to support the TRU National Program, which is dedicated to preparing waste for, and emplacing waste in, the WIPP. Thus, the SR Program also supports WIPP operations. The SR site specific goals are to phase out the indefinite storage of TRU waste, which has been the mode of waste management since 1974, and to dispose of the defense TRU waste. This paper describes the specific activities at SR which will provide for the disposal of this TRU waste

  5. Formic Acid Free Flowsheet Development To Eliminate Catalytic Hydrogen Generation In The Defense Waste Processing

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P.; Stone, Michael E.; Newell, J. David; Fellinger, Terri L.; Bricker, Jonathan M.

    2012-09-14

    The Defense Waste Processing Facility (DWPF) processes legacy nuclear waste generated at the Savannah River Site (SRS) during production of plutonium and tritium demanded by the Cold War. The nuclear waste is first treated via a complex sequence of controlled chemical reactions and then vitrified into a borosilicate glass form and poured into stainless steel canisters. Converting the nuclear waste into borosilicate glass canisters is a safe, effective way to reduce the volume of the waste and stabilize the radionuclides. Testing was initiated to determine whether the elimination of formic acid from the DWPF's chemical processing flowsheet would eliminate catalytic hydrogen generation. Historically, hydrogen is generated in chemical processing of alkaline High Level Waste sludge in DWPF. In current processing, sludge is combined with nitric and formic acid to neutralize the waste, reduce mercury and manganese, destroy nitrite, and modify (thin) the slurry rheology. The noble metal catalyzed formic acid decomposition produces hydrogen and carbon dioxide. Elimination of formic acid by replacement with glycolic acid has the potential to eliminate the production of catalytic hydrogen. Flowsheet testing was performed to develop the nitric-glycolic acid flowsheet as an alternative to the nitric-formic flowsheet currently being processed at the DWPF. This new flowsheet has shown that mercury can be reduced and removed by steam stripping in DWPF with no catalytic hydrogen generation. All processing objectives were also met, including greatly reducing the Slurry Mix Evaporator (SME) product yield stress as compared to the baseline nitric/formic flowsheet. Ten DWPF tests were performed with nonradioactive simulants designed to cover a broad compositional range. No hydrogen was generated in testing without formic acid.

  6. Technical status report on environmental aspects of long-term management of high-level defense waste at the Hanford Site

    International Nuclear Information System (INIS)

    1980-10-01

    Since 1944, radioactive wastes have accumulated at the US Department of Energy's (DOE) 1500-km 2 Hanford Site in southeastern Washington, where nine nuclear reactors have produced nuclear materials for National defense. Today, only one production reactor is still operating, but a large inventory of radioactive high-level waste (HLW), the residue from processing the spent fuel to recover plutonium and uranium, remains stored in underground tanks and in metal capsules in water basins. So that this waste will pose no significant threat to the public health and safety, it must be isolated from the biosphere for thousands of years. This document contains an evaluation of environmental impacts of four alternative methods for long-term management of these HLW. The alternatives range from continuing the present action of storing the waste near the surface of the ground to retrieving the waste and disposing of it deep underground in a mined geologic repository. The alternatives are: near-term geologic disposal of stored waste; deferred geologic disposal of in-tank waste; in situ disposal of in-tank waste; and continued present action for stored waste. The environmental impacts of the four alternatives are small relative to that radiation received from natural sources or the available natural resources in the earth

  7. Environmental restoration and waste management

    International Nuclear Information System (INIS)

    Middleman, L.I.

    1989-01-01

    The purpose of this Five-Year Plan is to establish an agenda for compliance and cleanup against which progress will be measured. DOE is committed to an open and participatory process for developing a national priority system for expenditure of funds. This system will be based on scientific principles and risk reduction in terms that are understandable to the public. The Plan will be revised annually, with a five-year planning horizon. For FY 1991--1995, this Plan encompasses total program activities and costs for DOE Corrective Activities, Environmental Restoration, Waste Management Operations, and Applied R ampersand D. It addresses hazardous wastes, radioactive wastes, mixed wastes (radioactive and hazardous), and sanitary wastes. It also addresses facilities and sites contaminated with or used in the management of those wastes. The Plan does not include the Safety and Health Program (Office of the Assistant Secretary for Environment, Safety, and Health) or programs of the Office of Civilian Radioactive Waste Management. It does include the annual Defense Programs contribution to the Nuclear Waste Fund for disposal of defense high-level waste and research toward characterizing the defense waste form for repository disposal

  8. The waste isolation pilot plant. Permanent isolation of defense transuranic waste in deep geologic salt. A national solution and international model

    International Nuclear Information System (INIS)

    Franco, Jose; Van Luik, Abraham

    2015-01-01

    The Waste Isolation Pilot Plant is located about 42 kilometers from the city of Carlsbad, New Mexico. It is an operating deep geologic repository in bedded salt 657 meters below the surface of the Chihuahuan desert. Since its opening in March of 1999, it has received about 12,000 shipments totaling about 91,000 cubic meters of defense related transuranic (TRU) wastes. Twenty-two sites have been cleaned up of their defense-legacy TRU waste. The WIPP's shipping program has an untarnished safety record and its trucks and trailers have safely traveled the equivalent of about 60 round-trips to the Moon. WIPP received, and deserved, a variety of safety accolades over its nearly 15 year working life. In February of 2014, however, two incidents resulted in a major operational suspension and reevaluation of its safety systems, processes and equipment. The first incident was an underground mining truck fire, followed nine days later by an airborne radiation release incident. Accident Investigation Board (AIB) reports on both incidents point to failures of plans, procedures and persons. The AIB recommendations for recovery from both these incidents are numerous and are being carefully implemented. One major recommendation is to no longer have different maintenance and safety requirements for nuclear handling equipment and mining equipment. Maintenance and cleanliness of mining equipment was cited as a contributing cause to the underground fire, and the idea that there can be lesser rigor in taking care of mining equipment, when it is being operated in the same underground space as the waste handling equipment, is not tenable. At some point in the future, the changes made in response to these two incidents will be seen as a valuable lesson learned on behalf of future repository programs. WIPP will once again be seen as a ''pilot'' in the nautical sense, in terms of 'showing the way' - the way to a national and international radioactive waste

  9. The waste isolation pilot plant. Permanent isolation of defense transuranic waste in deep geologic salt. A national solution and international model

    Energy Technology Data Exchange (ETDEWEB)

    Franco, Jose; Van Luik, Abraham [US Department of Energy, Carlsbad, NM (United States). Carlsbad Field Office

    2015-07-01

    The Waste Isolation Pilot Plant is located about 42 kilometers from the city of Carlsbad, New Mexico. It is an operating deep geologic repository in bedded salt 657 meters below the surface of the Chihuahuan desert. Since its opening in March of 1999, it has received about 12,000 shipments totaling about 91,000 cubic meters of defense related transuranic (TRU) wastes. Twenty-two sites have been cleaned up of their defense-legacy TRU waste. The WIPP's shipping program has an untarnished safety record and its trucks and trailers have safely traveled the equivalent of about 60 round-trips to the Moon. WIPP received, and deserved, a variety of safety accolades over its nearly 15 year working life. In February of 2014, however, two incidents resulted in a major operational suspension and reevaluation of its safety systems, processes and equipment. The first incident was an underground mining truck fire, followed nine days later by an airborne radiation release incident. Accident Investigation Board (AIB) reports on both incidents point to failures of plans, procedures and persons. The AIB recommendations for recovery from both these incidents are numerous and are being carefully implemented. One major recommendation is to no longer have different maintenance and safety requirements for nuclear handling equipment and mining equipment. Maintenance and cleanliness of mining equipment was cited as a contributing cause to the underground fire, and the idea that there can be lesser rigor in taking care of mining equipment, when it is being operated in the same underground space as the waste handling equipment, is not tenable. At some point in the future, the changes made in response to these two incidents will be seen as a valuable lesson learned on behalf of future repository programs. WIPP will once again be seen as a ''pilot'' in the nautical sense, in terms of 'showing the way' - the way to a national and international radioactive waste

  10. Actual waste demonstration of the nitric-glycolic flowsheet for sludge batch 9 qualification

    Energy Technology Data Exchange (ETDEWEB)

    Newell, D. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Pareizs, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Martino, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Reboul, S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Coleman, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Johnson, F. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-03-09

    For each sludge batch that is processed in the Defense Waste Processing Facility (DWPF), the Savannah River National Laboratory (SRNL) performs qualification testing to demonstrate that the sludge batch is processable. Based on the results of this actual-waste qualification and previous simulant studies, SRNL recommends implementation of the nitric-glycolic acid flowsheet in DWPF. Other recommendations resulting from this demonstration are reported in section 5.0.

  11. Alternatives for long-term management of defense high-level radioactive waste, Hanford Reservations, Richland, Washington

    International Nuclear Information System (INIS)

    1977-09-01

    The objective of this document is to provide information or alternatives that are being considered for the long-term management of defense high-level radioactive waste stored at Hanford in underground tanks and in stainless steel-lined concrete basins. For purposes of basic programmatic decision making, four major alternatives based on disposal location are considered. The steps leading to placement of the waste in the following locations are illustrated: existing waste tanks; onsite engineered surface facilities; onsite geologic repository; and offsite geologic repository. The four major disposal alternatives are expanded into 27 alternative plans by considering: (1) variations in the final form of the high-level fraction (with radionuclide removal) to include glass, concrete, and powder; (2) variations in the final form of the dehydrated waste product to include glass, calcined clay, and powder; and (3) variations in the treatment and handling of encapsulated waste to include packaging of capsules in canisters and conversion of the strontium fluoride and cesium chloride to glass; canisters stored in sealed casks on the surface are disposed of in a surface vault after the radionuclides have decayed sufficiently to avoid a heat-transfer problem. A description of the technology, a preliminary risk assessment, and preliminary cost estimates for each of these 27 plans are presented. The technology required to implement any of the 27 alternative plans has not been developed to the point where any plan can be considered completely technically sound and feasible

  12. The TRansUranium EXtraction (TRUEX) process: A vital tool for disposal of US defense nuclear waste

    International Nuclear Information System (INIS)

    Horwitz, E.P.; Schulz, W.W.

    1990-01-01

    The TRUEX (TRansUranium EXtraction) process is a generic actinide extraction/recovery process for the removal of all actinides from acidic nitrate and chloride nuclear waste solutions. Because of its high efficiency and flexibility and its compatibility with existing process facilities, TRUEX has now become a vital tool for the disposal of certain US defense nuclear waste. The development of TRUEX is closely coupled to the development of bifunctional extractants belonging to the carbamoylphosphoryl class and CMPO in particular. A brief review of the development of CMPO and its relationship to other bifunctional and monofunctional extractants is presented. The effect of TBP on CMPO, the selectivity of CMPO for actinides extracted from acidic nitrate media, the influence of diluents on CMPO behavior and 3rd phase formation, and the radiolysis/hydrolysis of CMPO and subsequent solvent cleanup will be highlighted. Application of TRUEX in the chemical pretreatment of specific nuclear waste streams and a summary of the current status of development and deployment of TRUEX is presented. 15 refs., 10 figs., 3 tabs

  13. Transuranic waste management program and facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-01-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PRFPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  14. Transuranic Waste Management Program and Facilities

    International Nuclear Information System (INIS)

    Clements, T.L. Jr.; Cook, L.A.; Stallman, R.M.; Hunter, E.K.

    1986-02-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). Prior to 1970, approximately 2.2 million cubic feet of transuranic waste were buried in shallow-land trenches and pits at the RWMC. Since 1970, an additional 2.1 million cubic feet of waste have been retrievably stored in aboveground engineered confinement. A major objective of the Department of Energy (DOE) Nuclear Waste Management Program is the proper management of defense-generated transuranic waste. Strategies have been developed for managing INEL stored and buried transuranic waste. These strategies have been incorporated in the Defense Waste Management Plan and are currently being implemented with logistical coordination of transportation systems and schedules for the Waste Isolation Pilot Plant (WIPP). The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored, contact-handled TRU waste. Construction of the Process Experimental Pilot Plant (PREPP) was recently completed, and PREPP is currently undergoing system checkout. The PREPP will provide processing capabilities for contact-handled waste not meeting WIPP-Waste Acceptance Criteria (WAC). In addition, ongoing studies and technology development efforts for managing the TRU waste such as remote-handled and buried TRU waste, are being conducted

  15. Procedures for aggregating citizen preferences in the context of the nuclear waste management problem. Final report

    International Nuclear Information System (INIS)

    Brock, H.W.; Sauer, G.L.

    1978-10-01

    The purpose of the present paper is to provide an introduction to the theory of social choice and related disciplines, and to relate this theory to the concrete problem of nuclear waste management. In Section I of this report, an overview of the problem is provided. In Section II, two candidate preference aggregation procedures that can be used to identify a socially optimal waste management policy are identified. In Section III, a somewhat lengthy defense of the use of these two aggregation procedures is presented. Each is shown to be compatible with four intuitively appealing criteria of collective decision-making. In Section IV the application of one of the procedures to the evaluation of waste management alternatives is discussed. In Section V the problem of inferring evaluation parameters from expert and laypersons' judgments is addressed

  16. Transportation considerations related to waste forms and canisters for Defense TRU wastes

    International Nuclear Information System (INIS)

    Schneider, K.J.; Andrews, W.B.; Schreiber, A.M.; Rosenthal, L.J.; Odle, C.J.

    1981-09-01

    This report identifies and discusses the considerations imposed by transportation on waste forms and canisters for contact-handled, solid transuranic wastes from the US Department of Energy (DOE) activities. The report reviews (1) the existing raw waste forms and potential immobilized waste forms, (2) the existing and potential future DOE waste canisters and shipping containers, (3) regulations and regulatory trends for transporting commercial transuranic wastes on the ISA, (4) truck and rail carrier requirements and preferences for transporting the wastes, and (5) current and proposed Type B external packagings for transporting wastes

  17. Review: Waste-Pretreatment Technologies for Remediation of Legacy Defense Nuclear Wastes

    Energy Technology Data Exchange (ETDEWEB)

    Wilmarth, William R.; Lumetta, Gregg J.; Johnson, Michael E.; Poirier, Micheal R.; Thompson, Major C.; Suggs, Patricia C.; Machara, N.

    2011-01-13

    The U.S. Department of Energy (DOE) is responsible for retrieving, immobilizing, and disposing of radioactive waste that has been generated during the production of nuclear weapons in the United States. The vast bulk of this waste material is stored in underground tanks at the Savannah River Site in South Carolina and the Hanford Site in Washington State. The general strategy for treating the radioactive tank waste consists of first separating the waste into high-level and low-activity fractions. This initial partitioning of the waste is referred to as pretreatment. Following pretreatment, the high-level fraction will be immobilized in a glass form suitable for disposal in a geologic repository. The low-activity waste will be immobilized in a waste form suitable for disposal at the respective site. This paper provides a review of recent developments in the application of pretreatment technologies to the processing of the Hanford and Savannah River radioactive tank wastes. Included in the review are discussions of 1) solid/liquid separations methods, 2) cesium separation technologies, and 3) other separations critical to the success of the DOE tank waste remediation effort. Also included is a brief discussion of the different requirements and circumstances at the two DOE sites that have in some cases led to different choices in pretreatment technologies.

  18. Rheological Properties of Defense Waste processing Facility Melter Feeds

    International Nuclear Information System (INIS)

    Ebadian, M.A.; Mao, F.

    1998-01-01

    In the present investigation, viscosity measurements have been carried out for two types of simulated Defense waste slurries, a Savannah River slurry and a Hanford slurry. The measurements were conducted in two experimental options. A rotational viscometer was used to measure viscosity under well-defined temperature and pH value operating conditions. The solids concentration used for this option was lower than 15 wt.%. Both the slurries have been investigated using this experimental option. The Savannah River slurry has also been investigated in a pipeline flow system, which measured the pressure drop as the slurry flowed through the pipe. The slurry's viscosity can be extracted from the pressure drop information. These investigations have been performed in relatively wide parameter ranges. The solids concentration of the slurry tested in the pipeline system was as high as 25 wt.%.The slurry pH in both experimental options covered a range of 4 to 13.5. The highest operating temperature was 66 C for the rotational viscometer and 55 C for the pipeline system. In FY97, the experiments for the Hanford slurry in the pipeline system will be performed

  19. Socioeconomic assessment of defense waste processing facility impacts in the Savannah River Plant region

    Energy Technology Data Exchange (ETDEWEB)

    Peelle, E.; Reed, J.H.; Stevenson, R.H.

    1981-09-01

    The DWPF will immobilize highly radioactive defense wastes for storage on site until shipment to an approved federal repository for radioactive wastes. This document assesses the socioeconomic impacts of constructing and operating the proposed facility and presents the assessment methodology. Because various schedules and various ways of staging the construction of the DWPF are considered and because in some of these instances a large nearby construction project (the Vogtle Nuclear Power Station) may influence the socioeconomic impacts, four scenarios involving different facility options and schedules are assessed. In general, the impacts were found not to be large. In the scenario where the socioeconomic effects were the greatest, it was found that there are likely to be some impacts on schools in Barnwell County as well as a shortage of mobile homes in that county. Aiken, Allendale, and Bamberg counties are also likely to experience slight-to-moderate housing shortages. Minor impacts are anticipated for fire and police services, roads, traffic, and land use. There will be noticeable economic impact from the project. Other scenarios had fewer socioeconomic impacts.

  20. Socioeconomic assessment of defense waste processing facility impacts in the Savannah River Plant region

    International Nuclear Information System (INIS)

    Peelle, E.; Reed, J.H.; Stevenson, R.H.

    1981-09-01

    The DWPF will immobilize highly radioactive defense wastes for storage on site until shipment to an approved federal repository for radioactive wastes. This document assesses the socioeconomic impacts of constructing and operating the proposed facility and presents the assessment methodology. Because various schedules and various ways of staging the construction of the DWPF are considered and because in some of these instances a large nearby construction project (the Vogtle Nuclear Power Station) may influence the socioeconomic impacts, four scenarios involving different facility options and schedules are assessed. In general, the impacts were found not to be large. In the scenario where the socioeconomic effects were the greatest, it was found that there are likely to be some impacts on schools in Barnwell County as well as a shortage of mobile homes in that county. Aiken, Allendale, and Bamberg counties are also likely to experience slight-to-moderate housing shortages. Minor impacts are anticipated for fire and police services, roads, traffic, and land use. There will be noticeable economic impact from the project. Other scenarios had fewer socioeconomic impacts

  1. Comparison of potential health and safety impacts of different disposal options for defense high-level wastes

    International Nuclear Information System (INIS)

    Kocher, D.C.; Smith, E.D.; Witherspoon, J.P.

    1984-01-01

    A comparative assessment has been performed of the potential long- and short-term health and safety impacts of different disposal options for defense high-level wastes. Conservative models and assumptions were used. The assessment suggests that considerations of health and safety will not be significant in choosing among disposal options, primarily because of the need to meet stringent standards in all cases. Rather, the ease and cost of assuring compliance of a particular disposal option with health and safety standards may be a more important factor. 11 references

  2. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 1. Executive summary

    International Nuclear Information System (INIS)

    1983-08-01

    Nuclear byproducts are a major national resource that has yet to be incorporated into the economy. The current Defense Byproducts Program is designed to match specific military and commercial needs with the availability of valuable products which are currently treated as waste at considerable expense in waste management costs. This program plan focuses on a few specific areas with the greatest potential for near-term development and application. It also recognizes the need for a continuing effort to develop new applications for byproducts and to continue to assess the impacts on waste management. The entire program has been, and will continue to be structured so as to ensure the safety of the public and maintain the purity of the environment. Social and institutional concerns have been recognized and will be handled appropriately. A significant effort will be undertaken to inform the public of the benefits of byproduct use and of the care being taken to ensure safe, efficient operation

  3. Department of Energy plan for recovery and utilization of nuclear byproducts from defense wastes. Volume 1. Executive summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1983-08-01

    Nuclear byproducts are a major national resource that has yet to be incorporated into the economy. The current Defense Byproducts Program is designed to match specific military and commercial needs with the availability of valuable products which are currently treated as waste at considerable expense in waste management costs. This program plan focuses on a few specific areas with the greatest potential for near-term development and application. It also recognizes the need for a continuing effort to develop new applications for byproducts and to continue to assess the impacts on waste management. The entire program has been, and will continue to be structured so as to ensure the safety of the public and maintain the purity of the environment. Social and institutional concerns have been recognized and will be handled appropriately. A significant effort will be undertaken to inform the public of the benefits of byproduct use and of the care being taken to ensure safe, efficient operation.

  4. Procedures for aggregating citizen preferences in the context of the nuclear waste management problem. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Brock, H.W.; Sauer, G.L.

    1978-10-01

    The purpose of the present paper is to provide an introduction to the theory of social choice and related disciplines, and to relate this theory to the concrete problem of nuclear waste management. In Section I of this report, an overview of the problem is provided. In Section II, two candidate preference aggregation procedures that can be used to identify a socially optimal waste management policy are identified. In Section III, a somewhat lengthy defense of the use of these two aggregation procedures is presented. Each is shown to be compatible with four intuitively appealing criteria of collective decision-making. In Section IV the application of one of the procedures to the evaluation of waste management alternatives is discussed. In Section V the problem of inferring evaluation parameters from expert and laypersons' judgments is addressed.

  5. Storage and disposal of nuclear wastes: prospects for the next 25 years

    International Nuclear Information System (INIS)

    Lyons, W.C.

    1978-01-01

    This paper discusses the processing, handling, storage, and disposal options available for both commercial high-level radioactive wastes and defense radioactive wastes. A review is made of the past performance of government in finding solutions for these pressing problems. The present inventory of commercial and defense waste is discussed and the inventory for the near future projected. The relationships between storage and disposal technologies and the commercial and defense wastes are discussed. It is suggested that the commercial fuel cycle will be delayed as long as defense and commercial wastes disposal technologies are not demonstrated. An assessment is made as to which technologies and techniques appear to be the most useful for accomplishing the critical near term task of isolating the defense wastes. A discussion is then made as to how these technologies and techniques will be used for the commercial fuel cycle

  6. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2013-06-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: • DOE hazardous and non-hazardous non-radioactive classified waste • DOE low-level radioactive waste (LLW) • DOE mixed low-level waste (MLLW) • U.S. Department of Defense (DOD) classified waste The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  7. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2013-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept the following: DOE hazardous and non-hazardous non-radioactive classified waste; DOE low-level radioactive waste (LLW); DOE mixed low-level waste (MLLW); and, U.S. Department of Defense (DOD) classified waste. The LLW and MLLW listed above may also be classified waste. Classified waste is the only waste accepted for disposal that may be non-radioactive and shall be required to meet the waste acceptance criteria for radioactive waste as specified in this document. Classified waste may be sent to the NNSS as classified matter. Section 3.1.18 provides the requirements that must be met for permanent burial of classified matter. The NNSA/NFO and support contractors are available to assist the generator in understanding or interpreting this document. For assistance, please call the NNSA/NFO Environmental Management Operations (EMO) at (702) 295-7063, and the call will be directed to the appropriate contact.

  8. Overview of DOE's Transuranic Waste Program

    International Nuclear Information System (INIS)

    McFadden, M.H.; Detamore, J.A.

    1987-01-01

    The US Department of Energy has assigned to Albuquerque Operations the Defense Transuranic Waste Program responsibility for long-range planning and management of defense transuranic (TRU) waste. The Transuranic Waste Lead Organization (TLO) has divided the Program into seven elements which support it's primary goal of ending interim storage and achieving permanent disposal. These are: waste generation site activities, storage site activities, burial site activities, technology development, transportation, institutional activities, and permanent disposal. This paper will briefly discuss these seven elements and how they are integrated to provide for successful achievement of the primary goal

  9. Corrosion Testing of Monofrax K-3 Refractory in Defense Waste Processing Facility (DWPF) Alternate Reductant Feeds

    Energy Technology Data Exchange (ETDEWEB)

    Williams, M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Burket, P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-06

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) uses a combination of reductants and oxidants while converting high level waste (HLW) to a borosilicate waste form. A reducing flowsheet is maintained to retain radionuclides in their reduced oxidation states which promotes their incorporation into borosilicate glass. For the last 20 years of processing, the DWPF has used formic acid as the main reductant and nitric acid as the main oxidant. During reaction in the Chemical Process Cell (CPC), formate and formic acid release measurably significant H2 gas which requires monitoring of certain vessel’s vapor spaces. A switch to a nitric acid-glycolic acid (NG) flowsheet from the nitric-formic (NF) flowsheet is desired as the NG flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing from a safety standpoint as close monitoring of the H2 gas concentration could become less critical. In terms of the waste glass melter vapor space flammability, the switch from the NF flowsheet to the NG flowsheet showed a reduction of H2 gas production from the vitrification process as well. Due to the positive impact of the switch to glycolic acid determined on the flammability issues, evaluation of the other impacts of glycolic acid on the facility must be examined.

  10. Measurements of neutron cross sections of radioactive waste nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Katoh, Toshio [Gifu College of Medical Technology, Seki, Gifu (Japan); Harada, Hideo; Nakamura, Shoji; Tanase, Masakazu; Hatsukawa, Yuichi

    1998-01-01

    Accurate nuclear reaction cross sections of radioactive fission products and transuranic elements are required for research on nuclear transmutation methods in nuclear waste management. Important fission products in the nuclear waste management are {sup 137}Cs, {sup 135}Cs, {sup 90}Sr, {sup 99}Tc and {sup 129}I because of their large fission yields and long half-lives. The present authors have measured the neutron capture cross sections and resonance integrals of {sup 137}Cs, {sup 90}Sr and {sup 99}Tc. The purpose of this study is to measure the neutron capture cross sections and resonance integrals of nuclides, {sup 129}I and {sup 135}Cs accurately. Preliminary experiments were performed by using Rikkyo University Reactor and JRR-3 reactor at Japan Atomic Energy Research Institute (JAERI). Then, it was decided to measure the cross section and resonance integral of {sup 135}Cs by using the JRR-3 Reactor because this measurement required a high flux reactor. On the other hand, those of {sup 129}I were measured at the Rikkyo Reactor because the product nuclides, {sup 130}I and {sup 130m}I, have short half-lives and this reactor is suitable for the study of short lived nuclide. In this report, the measurements of the cross section and resonance integral of {sup 135}Cs are described. To obtain reliable values of the cross section and resonance integral of {sup 135}Cs(n, {gamma}){sup 136}Cs reaction, a quadrupole mass spectrometer was used for the mass analysis of nuclide in the sample. A progress report on the cross section of {sup 134}Cs, a neighbour of {sup 135}Cs, is included in this report. A report on {sup 129}I will be presented in the Report on the Joint-Use of Rikkyo University Reactor. (author)

  11. Transuranic (TRU) waste management at Savannah River - past, present and future

    International Nuclear Information System (INIS)

    D'Ambrosia, J.T.

    1985-01-01

    Defense TRU waste at Savannah River (SR) results from the Department of Energy's (DOE) national defense activities, including the operation of production reactors and fuel reprocessing plants and research and development activities. TRU waste is material declared as having negligible economic value, contaminated with alpha-emitting radionuclides of atomic number greater than 92, and half-lives longer than 20 years, in concentrations greater than 100 nCi/g. TRU waste has been retrievably stored at SR since 1974 awaiting disposal. The Waste Isolation Pilot Plant (WIPP), now under construction in New Mexico, is a research and development facility for demonstrating the safe disposal of defense TRU waste, including that in storage at SR. The major objective of the TRU program at SR is to support the TRU National Program, which is dedicated to preparing waste for, and emplacing waste in, the WIPP. Thus, the SR Program also supports WIPP operations. The SR Site specific goals are to phase out the indefinite storage of TRU waste, which has been the mode of waste management since 1974, and to dispose of SR's Defense TRU waste

  12. Comparison of elastic and inelastic analysis and test results for the defense high level waste shipping cask

    International Nuclear Information System (INIS)

    Zimmer, A.; Koploy, M.A.; Madsen, M.M.

    1991-01-01

    In the early 1980s, the US DOE/Defense Programs (DOE/DP) initiated a project to develop a safe and efficient transportation system for defense high level waste (DHLW). A long-standing objective of the DHLW transportation project is to develop a truck cask that represents the leading edge of cask technology as well as fully complies with all applicable DOE, Nuclear Regulatory Commission, and DOT regulations. General Atomics designed the DHLW Truck Shipping Cask using state-of-the-art analytical techniques verified by model testing performed by Sandia National Labs. (SNL). The analytical techniques include two approaches, inelastic analysis and elastic analysis. This paper will compare the results of the two analytical approaches and with model testing results. The purpose of this work is to provide data to support licensing of the DHLW cask and to support the acceptance by the NRC of inelastic analysis as a tool in packaging design and licensing

  13. Waste Determination Equivalency - 12172

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Rebecca D. [Savannah River Remediation (United States)

    2012-07-01

    The Savannah River Site (SRS) is a Department of Energy (DOE) facility encompassing approximately 800 square kilometers near Aiken, South Carolina which began operations in the 1950's with the mission to produce nuclear materials. The SRS contains fifty-one tanks (2 stabilized, 49 yet to be closed) distributed between two liquid radioactive waste storage facilities at SRS containing carbon steel underground tanks with storage capacities ranging from 2,800,000 to 4,900,000 liters. Treatment of the liquid waste from these tanks is essential both to closing older tanks and to maintaining space needed to treat the waste that is eventually vitrified or disposed of onsite. Section 3116 of the Ronald W. Reagan National Defense Authorization Act of Fiscal Year 2005 (NDAA) provides the Secretary of Energy, in consultation with the Nuclear Regulatory Commission (NRC), a methodology to determine that certain waste resulting from prior reprocessing of spent nuclear fuel are not high-level radioactive waste if it can be demonstrated that the waste meets the criteria set forth in Section 3116(a) of the NDAA. The Secretary of Energy, in consultation with the NRC, signed a determination in January 2006, pursuant to Section 3116(a) of the NDAA, for salt waste disposal at the SRS Saltstone Disposal Facility. This determination is based, in part, on the Basis for Section 3116 Determination for Salt Waste Disposal at the Savannah River Site and supporting references, a document that describes the planned methods of liquid waste treatment and the resulting waste streams. The document provides descriptions of the proposed methods for processing salt waste, dividing them into 'Interim Salt Processing' and later processing through the Salt Waste Processing Facility (SWPF). Interim Salt Processing is separated into Deliquification, Dissolution, and Adjustment (DDA) and Actinide Removal Process/Caustic Side Solvent Extraction Unit (ARP/MCU). The Waste Determination was signed

  14. Compliance status report for the Waste Isolation Pilot Plant

    Energy Technology Data Exchange (ETDEWEB)

    1994-03-31

    The US Department of Energy (DOE) is responsible for the disposition of transuranic (TRU) waste generated through national defense-related activities. Approximately 53,700 m{sup 2} of these wastes have been generated and are currently stored at government defense installations across the country. The Waste Isolation Pilot Plant (WIPP), located in southeastern New Mexico, has been sited and constructed to meet the criteria established by the scientific and regulatory community for the safe, long-term disposal of TRU and TRU-mixed wastes. This Compliance Status Report (CSR) provides an assessment of the progress of the WIPP Program toward compliance with long-term disposal regulations, set forth in Title 40 CFR 191 (EPA, 1993a), Subparts B and C, and Title 40 CFR {section}268.6 (EPA, 1993b), in order to focus on-going and future experimental and engineering activities. The CSR attempts to identify issues associated with the performance of the WIPP as a long-term repository and to focus on the resolution of these issues. This report will serve as a tool to focus project resources on the areas necessary to ensure complete, accurate, and timely submittal of the compliance application. This document is not intended to constitute a statement of compliance or a demonstration of compliance.

  15. Alternate approaches to verifying the structural adequacy of the Defense High Level Waste Shipping Cask

    International Nuclear Information System (INIS)

    Zimmer, A.; Koploy, M.

    1991-12-01

    In the early 1980s, the US Department of Energy/Defense Programs (DOE/DP) initiated a project to develop a safe and efficient transportation system for defense high level waste (DHLW). A long-standing objective of the DHLW transportation project is to develop a truck cask that represents the leading edge of cask technology as well as one that fully complies with all applicable DOE, Nuclear Regulatory Commission (NRC), and Department of Transportation (DOT) regulations. General Atomics (GA) designed the DHLW Truck Shipping Cask using state-of-the-art analytical techniques verified by model testing performed by Sandia National Laboratories (SNL). The analytical techniques include two approaches, inelastic analysis and elastic analysis. This topical report presents the results of the two analytical approaches and the model testing results. The purpose of this work is to show that there are two viable analytical alternatives to verify the structural adequacy of a Type B package and to obtain an NRC license. It addition, this data will help to support the future acceptance by the NRC of inelastic analysis as a tool in packaging design and licensing

  16. Overview of DOE's transuranic waste program

    International Nuclear Information System (INIS)

    McFadden, M.H.; Detamore, J.A.

    1988-01-01

    The United States Department of Energy (DOE) has assigned to Albuquerque Operations the Defense Transuranic Waste Program (DTWP) responsibility for long-range planning and management for defense transuranic (TRU) waste. The Transuranic Waste Lead Organization (TLO) has divided the Program into seven elements that support its primary goal of ending interim storage and achieving permanent disposal. These elements include waste generation site activities, storage site activities, burial site activities, technology development, transportation, institutional activities and permanent disposal. This paper briefly discusses these seven elements and how they are integrated to provide for successful achievement of the primary goal

  17. Hanford Waste Vitrification Plant: Preliminary description of waste form and canister

    International Nuclear Information System (INIS)

    Mitchell, D.E.

    1986-01-01

    In July 1985, the US Department of Energy's Office of Civilian Radioactive Waste Management established the Waste Acceptance Process as the means by which defense high-level waste producers, such as the Hanford Waste Vitrification Plant, will develop waste acceptance requirements with the candidate geologic repositories. A complete description of the Waste Acceptance Process is contained in the Preliminary Hanford Waste Vitrification Plant Waste Form Qualification Plan. The Waste Acceptance Process defines three documents that high-level waste producers must prepare as a part of the process of assuming that a high-level waste product will be acceptable for disposal in a geologic repository. These documents are the Description of Waste Form and Canister, Waste Compliance Plan, and Waste Qualification Report. This document is the Hanford Waste Vitrification Plant Preliminary Description of Waste Form and Canister for disposal of Neutralized Current Acid Waste. The Waste Acceptance Specifications for the Hanford Waste Vitrification Plant have not yet been developed, therefore, this document has been structured to corresponds to the Waste Acceptance Preliminary Specifications for the Defense Waste Processing Facility High-Level Waste Form. Not all of the information required by these specifications is appropriate for inclusion in this Preliminary Description of Waste Form and Canister. Rather, this description is limited to information that describes the physical and chemical characteristics of the expected high-level waste form. The content of the document covers three major areas: waste form characteristics, canister characteristics, and canistered waste form characteristics. This information will be used by the candidate geologic repository projects as the basis for preliminary repository design activities and waste form testing. Periodic revisions are expected as the Waste Acceptance Process progresses

  18. Transportation packagings for high-level wastes and unprocessed transuranic wastes

    International Nuclear Information System (INIS)

    Wilmot, E.L.; Romesberg, L.E.

    1982-01-01

    Packagings used for nuclear waste transport are varied in size, shape, and weight because they must accommodate a wide variety of waste forms and types. However, this paper will discuss the common characteristics among the packagings in order to provide a broad understanding of packaging designs. The paper then discusses, in some detail, a design that has been under development recently at Sandia National Laboratories (SNL) for handling unprocessed, contact-handled transuranic (CHTRU) wastes as well as a cask design for defense high-level wastes (HLW). As presently conceived, the design of the transuranic package transporter (TRUPACT) calls for inner and outer boxes that are separated by a rigid polyurethane foam. The inner box has a steel frame with stainless steel surfaces; the outer box is similarly constructed except that carbon steel is used for the outside surfaces. The access to each box is through hinged doors that are sealed after loading. To meet another waste management need, a cask is being developed to transport defense HLW. The cask, which is at the preliminary design stage, is being developed by General Atomic under the direction of the TTC. The cask design relies heavily on state-of-the-art spent-fuel cask designs though it can be much simpler due to the characteristics of the HLW. A primary purpose of this paper is to show that CHTRU waste and defense HLW currently are and will be transported in packagings designed to meet the hazards of transportation that are present in general commerce

  19. Immobilization of high-level defense waste in a slurry-fed electric glass melter

    International Nuclear Information System (INIS)

    Brouns, R.A.; Mellinger, G.B.; Nelson, T.A.; Oma, K.H.

    1980-11-01

    Scoping studies have been performed at the Pacific Northwest Laboratory related to the direct liquid-feeding of a generic high-level defense waste to a joule-heated ceramic melter. Tests beginning on the laboratory scale and progressing to full-scale operation are reported. Laboratory work identified the need for a reducing agent in the feed to help control the foaming tendencies of the waste glass. These tests also indicated that suspension agents were helpful in reducing the tendency of solids to settle out of the liquid feed. Testing was then moved to a larger pilot-scale melter (designed for approx. 2.5 kg/h) where verification of the flowsheet examined in the lab was accomplished. It was found that the reducing agent controlled foaming and did not result in the precipitation of metals. Pumping problems were encountered when slurries with higher than normal solids content were fed. A demonstration (designed for approx. 50 kg/h) in a full-scale melter was then made with the tested flowsheet; however, the amount of reducing agent had to be increased. In addition, it was found that feed control needed further development; however, steady-state operation was achieved giving encouraging results on process capacities. During steady-state operation, ruthenium losses to the offgas system averaged less than 0.16%, while cesium losses were somewhat higher, ranging from 0.91 to 24% and averaging 13%. Particulate decontamination factors from feed to offgas in the melter ranged from 5 x 10 2 to greater than 10 3 without any filtration or treatment. Approximately 1050 kg of glass was produced from 2900 L of waste at rates up to 40 kg/h

  20. High level radioactive waste vitrification process equipment component testing

    International Nuclear Information System (INIS)

    Siemens, D.H.; Heath, W.O.; Larson, D.E.; Craig, S.N.; Berger, D.N.; Goles, R.W.

    1985-04-01

    Remote operability and maintainability of vitrification equipment were assessed under shielded-cell conditions. The equipment tested will be applied to immobilize high-level and transuranic liquid waste slurries that resulted from plutonium production for defense weapons. Equipment tested included: a turntable for handling waste canisters under the melter; a removable discharge cone in the melter overflow section; a thermocouple jumper that extends into a shielded cell; remote instrument and electrical connectors; remote, mechanical, and heat transfer aspects of the melter glass overflow section; a reamer to clean out plugged nozzles in the melter top; a closed circuit camera to view the melter interior; and a device to retrieve samples of the glass product. A test was also conducted to evaluate liquid metals for use in a liquid metal sealing system

  1. Waste Package Design Methodology Report

    Energy Technology Data Exchange (ETDEWEB)

    D.A. Brownson

    2001-09-28

    The objective of this report is to describe the analytical methods and processes used by the Waste Package Design Section to establish the integrity of the various waste package designs, the emplacement pallet, and the drip shield. The scope of this report shall be the methodology used in criticality, risk-informed, shielding, source term, structural, and thermal analyses. The basic features and appropriateness of the methods are illustrated, and the processes are defined whereby input values and assumptions flow through the application of those methods to obtain designs that ensure defense-in-depth as well as satisfy requirements on system performance. Such requirements include those imposed by federal regulation, from both the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), and those imposed by the Yucca Mountain Project to meet repository performance goals. The report is to be used, in part, to describe the waste package design methods and techniques to be used for producing input to the License Application Report.

  2. Waste Package Design Methodology Report

    International Nuclear Information System (INIS)

    D.A. Brownson

    2001-01-01

    The objective of this report is to describe the analytical methods and processes used by the Waste Package Design Section to establish the integrity of the various waste package designs, the emplacement pallet, and the drip shield. The scope of this report shall be the methodology used in criticality, risk-informed, shielding, source term, structural, and thermal analyses. The basic features and appropriateness of the methods are illustrated, and the processes are defined whereby input values and assumptions flow through the application of those methods to obtain designs that ensure defense-in-depth as well as satisfy requirements on system performance. Such requirements include those imposed by federal regulation, from both the U.S. Department of Energy (DOE) and U.S. Nuclear Regulatory Commission (NRC), and those imposed by the Yucca Mountain Project to meet repository performance goals. The report is to be used, in part, to describe the waste package design methods and techniques to be used for producing input to the License Application Report

  3. Nuclear hazardous waste cost control management

    International Nuclear Information System (INIS)

    Selg, R.A.

    1991-01-01

    The effects of the waste content of glass waste forms on Savannah River high-level waste disposal costs are currently under study to adjust the glass frit content to optimize the glass waste loadings and therefore significantly reduce the overall waste disposal cost. Changes in waste content affect onsite Defense Waste Changes in waste contents affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt% waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Optimization of the glass waste forms to be produced in the SWPF is being supported by economic evaluations of the impact of the forms on waste disposal costs. Glass compositions are specified for acceptable melt processing and durability characteristics, with economic effects tracked by the number of waste canisters produced. This paper presents an evaluation of the effects of variations in waste content of the glass waste forms on the overall cost of the disposal, including offsite shipment and repository emplacement, of the Savannah River high-level wastes

  4. Hanford Waste Vitrification Plant Technology Plan

    International Nuclear Information System (INIS)

    Sexton, R.A.

    1988-06-01

    The reference Hanford plan for disposal of defense high-level waste is based on waste immobilization in glass by the vitrification process and temporary vitrified waste storage at the Hanford Site until final disposal in a geologic repository. A companion document to the Hanford Waste Management Plan (HWMP) is the Draft, Interim Hanford Waste Management Technology Plan (HWMTP), which provides a description of the technology that must be developed to meet the reference waste management plan. One of the issues in the HWMTP is DST-6, Immobilization (Glass). The HWMTP includes all expense funding needed to complete the Hanford Waste Vitrification Plant (HWVP) project. A preliminary HWVP Technology Plan was prepared in 1985 as a supporting document to the HWMTP to provide a more detailed description of the technology needed to construct and operate a vitrification facility. The plan was updated and issued in 1986, and revised in 1987. This document is an annual update of the plan. The HWVP Technology Plan is limited in scope to technology that requires development or confirmation testing. Other expense-funded activities are not included. The relationship between the HWVP Technology Plan and other waste management issues addressed in the HWMTP is described in section 1.6 of this plan. 6 refs., 4 figs., 34 tabs

  5. Fiscal year 1999 waste information requirements document

    International Nuclear Information System (INIS)

    Adams, M.R.

    1998-01-01

    The Waste Information Requirements Document (WIRD) has the following purposes: To describe the overall drivers that require characterization information and to document their source; To define how characterization is going to satisfy the drivers, close issues, and measure and report progress; and To describe deliverables and acceptance criteria for characterization. Characterization information is required to maintain regulatory compliance, perform operations and maintenance, resolve safety issues, and prepare for disposal of waste. Commitments addressing these requirements are derived from the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement; the Recommendation 93-5 Implementation Plan (DOE-RL 1996a) to the Defense Nuclear Facilities Safety Board (DNFSB); and other requirement sources listed in Section 2.0. The Waste Information Requirements Document replaces the tank waste analysis plans and the tank characterization plan previously required by the Tri-Party Agreement, Milestone M-44-01 and M-44-02 series

  6. Low-level tank waste simulant data base

    International Nuclear Information System (INIS)

    Lokken, R.O.

    1996-04-01

    The majority of defense wastes generated from reprocessing spent N- Reactor fuel at Hanford are stored in underground Double-shell Tanks (DST) and in older Single-Shell Tanks (SST) in the form of liquids, slurries, sludges, and salt cakes. The tank waste remediation System (TWRS) Program has the responsibility of safely managing and immobilizing these tank wastes for disposal. This report discusses three principle topics: the need for and basis for selecting target or reference LLW simulants, tanks waste analyses and simulants that have been defined, developed, and used for the GDP and activities in support of preparing and characterizing simulants for the current LLW vitrification project. The procedures and the data that were generated to characterized the LLW vitrification simulants were reported and are presented in this report. The final section of this report addresses the applicability of the data to the current program and presents recommendations for additional data needs including characterization and simulant compositional variability studies

  7. Effects of waste content of glass waste forms on Savannah River high-level waste disposal costs

    International Nuclear Information System (INIS)

    McDonell, W.R.; Jantzen, C.M.

    1985-01-01

    Effects of the waste content of glass waste forms of Savannah River high-level waste disposal costs are evaluated by their impact on the number of waste canisters produced. Changes in waste content affect onsite Defense Waste Processing Facility (DWPF) costs as well as offsite shipping and repository emplacement charges. A nominal 1% increase over the 28 wt % waste loading of DWPF glass would reduce disposal costs by about $50 million for Savannah River wastes generated to the year 2000. Waste form modifications under current study include adjustments of glass frit content to compensate for added salt decontamination residues and increased sludge loadings in the DWPF glass. Projected cost reductions demonstrate significant incentives for continued optimization of the glass waste loadings. 13 refs., 3 figs., 3 tabs

  8. Product/Process (P/P) Models For The Defense Waste Processing Facility (DWPF): Model Ranges And Validation Ranges For Future Processing

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-09-25

    Radioactive high level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository.

  9. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class-C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types. The paper discusses site selection; establishment of the Radioactive Waste Management Project; operations with respect to low-level radioactive wastes, transuranic waste storage, greater confinement disposal test, and mixed waste management facility; and related research activities such as tritium migration studies, revegetation studies, and in-situ monitoring of organics

  10. Waste acceptance product specifications for vitrified high-level waste forms

    International Nuclear Information System (INIS)

    Applewhite-Ramsey, A.; Sproull, J.F.

    1994-01-01

    The Department of Energy (DOE) Office of Environmental Restoration and Waste Management (EM) has developed Waste Acceptance Product Specifications (EM-WAPS). The EM-WAPS will be the basis for defining product acceptance criteria compatible with the requirements of the Civilian Radioactive Waste Management System (CRWMS). The relationship between the EM-WAPS and the CRWMS Systems Requirements document (WA-SRD) will be discussed. The impact of the EM-WAPS on the Savannah River Sit (SRS) Defense Waste Processing Facility's (DWPF) Waste Acceptance Program, Waste Qualification Run planning, and startup schedule will also be reported. 14 refs., 2 tabs

  11. Hanford Waste Vitrification Plant - the project and process systems

    International Nuclear Information System (INIS)

    Swenson, L.D.; Miller, W.C.; Smith, R.A.

    1990-01-01

    The Hanford Waste Vitrification Plant (HWVP) project is scheduled to start construction on the Hanford reservation in southeastern Washington State in 1991. The project will immobilize the liquid high-level defense waste stored there. The HWVP represents the third phase of the U.S. Department of Energy (DOE) activities that are focused on the permanent disposal of high-level radioactive waste, building on the experience of Defense Waste Processing Facility (DWPF) at the Savannah River site, South Carolina, and of the West Valley Demonstration Plant (WVDP), New York. This sequential approach to disposal of the country's commercial and defense high-level radioactive waste allows HWVP to make extensive use of lessons learned from the experience of its predecessors, using mature designs from the earlier facilities to achieve economies in design and construction costs while enhancing operational effectiveness

  12. 47 CFR 90.411 - Civil defense communications.

    Science.gov (United States)

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Civil defense communications. 90.411 Section 90... PRIVATE LAND MOBILE RADIO SERVICES Operating Requirements § 90.411 Civil defense communications. The... necessary for the implementation of civil defense activities assigned such station by local civil defense...

  13. Rock mechanics contributions from defense programs

    International Nuclear Information System (INIS)

    Heuze, F.E.

    1992-02-01

    An attempt is made at illustrating the many contributions to rock mechanics from US defense programs, over the past 30-plus years. Large advances have been achieved in the technology-base area covering instrumentation, material properties, physical modeling, constitutive relations and numerical simulations. In the applications field, much progress has been made in understanding and being able to predict rock mass behavior related to underground explosions, cratering, projectile penetration, and defense nuclear waste storage. All these activities stand on their own merit as benefits to national security. But their impact is even broader, because they have found widespread applications in the non-defense sector; to name a few: the prediction of the response of underground structures to major earthquakes, the physics of the earth's interior at great depths, instrumentation for monitoring mine blasting, thermo-mechanical instrumentation useful for civilian nuclear waste repositories, dynamic properties of earthquake faults, and transient large-strain numerical modeling of geological processes, such as diapirism. There is not pretense that this summary is exhaustive. It is meant to highlight success stories representative of DOE and DOD geotechnical activities, and to point to remaining challenges

  14. Reconnaissance hydrogeologic investigation of the Defense Waste Processing Facility and Vicinity, Savannah River Plant, South Carolina

    International Nuclear Information System (INIS)

    Dennehy, K.F.; Prowell, D.C.; McMahon, P.B.

    1989-01-01

    The purposes of this report are two-fold: (1) to define the hydrogeologic conditions in the vicinity of the defense waste processing facility (DWPF) and, (2) to evaluate the potential for movement of a concentrated salt-solution waste if released at or near the DWPF. These purposes were accomplished by assembling and evaluating existing hydrogeologic data; collecting additional geologic, hydrologic, and water-quality data; developing a local geologic framework; developing a conceptual model of the local ground-water flow system; and by performing laboratory experiments to determine the mobility of salt-solution waste in surface and near-surface sediments. Although the unconsolidated sediments are about 1000 ft thick in the study area, only the Tertiary age sediments, or upper 300 ft are discussed in this report. The top of the Ellenton Formation acts as the major confining unit between the overlying aquifers in Tertiary sediments and the underlying aquifers in Cretaceous sediments; therefore, the Ellenton Formation is the vertical limit of our hydrogeologic investigation. The majority of the hydrologic data for this study come from monitoring wells at the saltstone disposal site (SDS) in Z Area (fig. 3). No recent water-level data were collected in S Area owing to the removal of S Area monitoring wells prior to construction at the DWPF. 46 refs., 26 figs., 7 tabs

  15. REMOTE IN-CELL SAMPLING IMPROVEMENTS PROGRAM AT THESAVANNAH RIVER SITE (SRS) DEFENSE WASTE PROCESSING FACILITY (DWPF)

    International Nuclear Information System (INIS)

    Marzolf, A

    2007-01-01

    Remote Systems Engineering (RSE) of the Savannah River National Lab (SRNL) in combination with the Defense Waste Processing Facility(DWPF) Engineering and Operations has evaluated the existing equipment and processes used in the facility sample cells for 'pulling' samples from the radioactive waste stream and performing equipment in-cell repairs/replacements. RSE has designed and tested equipment for improving remote in-cell sampling evolutions and reducing the time required for in-cell maintenance of existing equipment. The equipment within the present process tank sampling system has been in constant use since the facility start-up over 17 years ago. At present, the method for taking samples within the sample cells produces excessive maintenance and downtime due to frequent failures relative to the sampling station equipment and manipulator. Location and orientation of many sampling stations within the sample cells is not conducive to manipulator operation. The overextension of manipulators required to perform many in-cell operations is a major cause of manipulator failures. To improve sampling operations and reduce downtime due to equipment maintenance, a Portable Sampling Station (PSS), wireless in-cell cameras, and new commercially available sampling technology has been designed, developed and/or adapted and tested. The uniqueness of the design(s), the results of the scoping tests, and the benefits relative to in-cell operation and reduction of waste are presented

  16. WIPP: construction and progress on a successful nuclear waste repository

    International Nuclear Information System (INIS)

    Cooper, W.R.; Sankey, C.A.

    1985-01-01

    The Department of Energy is constructing the Waste Isolation Pilot Plant (WIPP) in Southeastern New Mexico. The facility will retrievably store transuranic waste from defense activities of the United States and conduct experiments with Defense high-level waste which will be retrieved at the end of the experiments. This paper describes the progress and the present status of activities at WIPP. 4 refs

  17. Defense Waste Management Plan for buried transuranic-contaminated waste, transuranic-contaminated soil, and difficult-to-certify transuranic waste

    International Nuclear Information System (INIS)

    1987-06-01

    GAO recommended that DOE provide specific plans for permanent disposal of buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste; cost estimates for permanent disposal of all TRU waste, including the options for the buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste; and specific discussions of environmental and safety issues for the permanent disposal of TRU waste. Purpose of this document is to respond to the GAO recommendations by providing plans and cost estimates for the long-term isolation of the buried TRU-contaminated waste, TRU-contaminated soil, and difficult-to-certify TRU waste. This report also provides cost estimates for processing and certifying stored and newly generated TRU waste, decontaminating and decommissioning TRU waste processing facilities, and interim operations

  18. Program summary for the Office of Remedial Action and Waste Technology

    International Nuclear Information System (INIS)

    1989-10-01

    The US Department of Energy is the lead Federal agency responsible for planning and implementing the programs that ensure safe and efficient management of nuclear wastes from both civilian and defense activities. Within the Department, three offices share this responsibility: the Office of Remedial Action and Waste Technology, the Office of Civilian Radioactive Waste Management, and the Office of Defense Waste and Transportation Management. This document summarizes the programs managed by the Office of Remedial Action and Waste Technology

  19. Feed Materials Production Center Waste Management Plan

    International Nuclear Information System (INIS)

    Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

    1986-01-01

    In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the waste generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF 2 , slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program

  20. 22 CFR 120.9 - Defense service.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Defense service. 120.9 Section 120.9 Foreign... Defense service. (a) Defense service means: (1) The furnishing of assistance (including training) to..., educational, or information publications and media of all kinds, training aid, orientation, training exercise...

  1. Nuclear Waste Fund fee adequacy: An assessment: Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1987-06-01

    The estimated long-term impact of the costs and fees associated with disposal of defense high-level wastes (DHLW) in the Office of Civilian Radioactive Waste Management (OCRWM) repository system is assessed. It is assumed that the DHLW disposal fees paid will provide funds equivalent to the OCRWM costs for disposing of this waste, including interest on costs incurred before the payment of the fee(s) to cover these costs, and the appropriate share of the common costs of the OCRWM waste disposal system. The DHLW disposal fee payments into the Nuclear Waste Fund will be subject to Congressional appropriations. This report is based on the assumptions that the first repository will open in 2003 and the second repository in 2023. In addition, this analysis features an Improved Performance System (IPS), a major component of which is a proposed (but currently unauthorized) Monitored Retrievable Storage (MRS) facility that is assumed to open in 1998. The possibility of adverse developments in inflation and real interest rates should be considered in assessing the findings of this analysis which are based on a cash flow analysis that utilized methods very similar to those employed in previous fee adequacy studies. Revisions were made in the areas of system logistics, repository schedules, real interest rates, inflation rates, and the estimation of costs for design and evaluation work, transportation, and repositories in differing host rocks. The principal recommendation is that the ongoing disposal fee should remain at 1.0 mill per (net) kilowatt-hour (kWh) for 1987 based on the assumption that defense waste fees will be adequate to cover the defense share of the program costs

  2. Nuclear energy: Environmental issues at DOE's nuclear defense facilities

    International Nuclear Information System (INIS)

    1986-01-01

    GAO's review of nine Department of Energy defense facilities identified a number of significant environmental issues: (1) eight facilities have groundwater contaminated with radioactive and/or hazardous substances to high levels; (2) six facilities have soil contamination in unexpected areas, including offsite locations; (3) four facilities are not in full compliance with the Clean Water Act; and (4) all nine facilities are significantly changing their waste disposal practices to obtain a permit under the Resource Conservation and Recovery Act. GAO is recommending that DOE develop and overall groundwater and soil protection strategy that would provide a better perspective on the environmental risks and impacts associated with operating DOE's nuclear defense facilities. GAO also recommends that DOE allow outside independent inspections of the disposal practices used for any waste DOE self-regulates and revise its order governing the management of hazardous and mixed waste

  3. Nuclear waste

    International Nuclear Information System (INIS)

    1990-06-01

    DOE estimates that disposing of radioactive waste from civilian nuclear power plants and its defense-related nuclear facilities could eventually end up costing $32 billion. To pay for this, DOE collects fees from utilities on electricity generated by nuclear power plants and makes payments from its defense appropriation. This report states that unless careful attention is given to its financial condition, the nuclear waste program is susceptible to future shortfalls. Without a fee increase, the civilian-waste part of the program may already be underfunded by at least $2.4 billion (in discounted 1988 dollars). Also, DOE has not paid its share of cost-about $480 million-nor has it disclosed this liability in its financial records. Indexing the civilian fee to the inflation rate would address one major cost uncertainty. However, while DOE intends to do this at an appropriate time, it does not use a realistic rate of inflation as its most probable scenario in assessing whether that time has arrived

  4. Environmental and other evaluations of alternatives for management of defense transuranic waste at the Idaho National Engineering Laboratory. Volume 1 of 2

    International Nuclear Information System (INIS)

    1982-04-01

    The US Department of Energy (DOE) is responsible for developing and implementing methods for the safe and environmentally acceptable disposal of radioactive wastes. In connection with this responsibility, the DOE is formulating a program for the long-term management of transuranic (TRU) waste buried and stored at the Idaho National Engineering Laboratory (INEL). This report has been prepared to document the results of environmental and other evaluations for three decisions that the DOE is considering: (1) the selection of a general method for the long-term management of the buried TRU waste; (2) the selection of a method for processing the stored waste and for processing the buried waste, if it is retrieved; (3) the selection of a location for the waste-processing facility. This document pertains only to the contact-handled TRU waste buried in pits and trenches and the contact-handled TRU waste held in aboveground storage at the INEL. A decision has previously been made on a method for the long-term management of the stored waste; it will be retrieved and shipped to the Waste Isolation Pilot Plant (WIPP) near Carlsbad, New Mexico. The WIPP is also used in this report as a reference repository for evaluation purposes for the buried waste. This report is contained in two volumes. Volume I is arranged as follows: the summary is an overview of the analyses contained in this document. Section 1 is a statement of the underlying purpose and need to which the report is responding. Section 2 describes the alterntives. Section 3 describes the affected environment at the INEL and the WIPP sites. Section 4 analyzes the environmental effects of each alternative. The appendices in Volume II contain data and discussions supporting the material presented in Volume I

  5. Defense waste management operations at the Nevada Test Site

    International Nuclear Information System (INIS)

    Williams, R.E.; Kendall, E.W.

    1988-01-01

    Waste management activities were initiated at the Nevada Test Site (NTS) to dispose of low-level wastes (LLW) produced by the Department of Energy's (DOE's) weapons testing program. Disposal activities have expanded from the burial of atmospheric weapons testing debris to demonstration facilities for greater-than-Class C (GTCC) waste, transuranic (TRU) waste storage and certification, and the development of a mixed waste (MW) facility. Site specific operational research projects support technology development required for the various disposal facilities. The annual cost of managing the facilities is about $6 million depending on waste volumes and types

  6. Defense Waste Processing Facility Nitric- Glycolic Flowsheet Chemical Process Cell Chemistry: Part 2

    Energy Technology Data Exchange (ETDEWEB)

    Zamecnik, J. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-06-06

    The conversions of nitrite to nitrate, the destruction of glycolate, and the conversion of glycolate to formate and oxalate were modeled for the Nitric-Glycolic flowsheet using data from Chemical Process Cell (CPC) simulant runs conducted by Savannah River National Laboratory (SRNL) from 2011 to 2016. The goal of this work was to develop empirical correlation models to predict these values from measureable variables from the chemical process so that these quantities could be predicted a-priori from the sludge or simulant composition and measurable processing variables. The need for these predictions arises from the need to predict the REDuction/OXidation (REDOX) state of the glass from the Defense Waste Processing Facility (DWPF) melter. This report summarizes the work on these correlations based on the aforementioned data. Previous work on these correlations was documented in a technical report covering data from 2011-2015. This current report supersedes this previous report. Further refinement of the models as additional data are collected is recommended.

  7. Impacts of hazardous waste regulation on low-level waste management

    International Nuclear Information System (INIS)

    Sharples, F.E.; Eyman, L.D.

    1987-01-01

    Since passage of the 1984 amendments to the Resource Conservation and Recovery Act (RCRA), major changes have occurred in the regulation of hazardous waste. The US Environmental Protection Agency (EPA) has also greatly modified its interpretation of how these regulations apply to wastes from federal facilities, including defense wastes from US Department of Energy (DOE) sites. As a result, the regulatory distinctions between low-level radioactive waste (LLW) and hazardous waste are becoming blurred. This paper discusses recent statutory and regulatory changes and how they might affect the management of LLW at DOE facilities. 6 references

  8. Hanford land disposal restrictions plan for mixed wastes

    International Nuclear Information System (INIS)

    1990-10-01

    Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs

  9. Hanford land disposal restrictions plan for mixed wastes

    Energy Technology Data Exchange (ETDEWEB)

    1990-10-01

    Since the early 1940s, the Hanford Site has been involved in the production and purification of nuclear defense materials. These production activities have resulted in the generation of large quantities of liquid and solid radioactive mixed waste. This waste is subject to regulation under authority of both the Resource Conservation and Recovery Act of 1976 (RCRA) and the Atomic Energy Act. The State of Washington Department of Ecology (Ecology), the US Environmental Protection Agency (EPA), and the US Department of Energy (DOE) have entered into an agreement, the Hanford Federal Facility Agreement and Consent Order (Tri-Party Agreement) to bring Hanford Site Operations into compliance with dangerous waste regulations. The Tri-Party Agreement was amended to require development of the Hanford Land Disposal Restrictions Plan for Mixed Wastes (this plan) to comply with land disposal restrictions requirements for radioactive mixed waste. The Tri-Party Agreement requires, and the this plan provides, the following sections: Waste Characterization Plan, Storage Report, Treatment Report, Treatment Plan, Waste Minimization Plan, a schedule, depicting the events necessary to achieve full compliance with land disposal restriction requirements, and a process for establishing interim milestones. 34 refs., 28 figs., 35 tabs.

  10. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Husler, R.O.; Weir, T.J.

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I ampersand C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility

  11. Heat transfer in high-level waste management

    International Nuclear Information System (INIS)

    Dickey, B.R.; Hogg, G.W.

    1979-01-01

    Heat transfer in the storage of high-level liquid wastes, calcining of radioactive wastes, and storage of solidified wastes are discussed. Processing and storage experience at the Idaho Chemical Processing Plant are summarized for defense high-level wastes; heat transfer in power reactor high-level waste processing and storage is also discussed

  12. The role of weapons production and military waste in the repository selection process

    International Nuclear Information System (INIS)

    Nelson, D.; Hope, J.; Power, W.; Hunter, T.

    1987-01-01

    The decision to commingle defense waste with commercial waste in the nuclear waste repository program has many impacts on that program. There will be more waste to place in the two repositories authorized under the Nuclear Waste Policy Act, more transport miles to get the waste to a repository, and more costs associated with environmental and socio-economic impact mitigation. This paper explores the links between weapons production and military waste, and the repository selection process. The paper first describes the importance of state, tribe and public participation to the acceptance of a repository site selection. The paper then examines the various estimates of amounts of existing and future military nuclear wastes, and how these estimates affect repository siting decisions. The final section addresses the public policy questions which surround this issue. Repository siting may be jeopardized unless there is open public discussion about existing radioactive contamination at military production sites and about future nuclear weapons production. Cost-sharing is considered within this context

  13. Fiscal year 1997-1998 waste information requirements document

    International Nuclear Information System (INIS)

    Poppiti, J.A.

    1997-01-01

    The Waste Information Requirements Document describes the activities of the Tank Waste Remediation System (TWRS) Characterization Project that provide characterization information on Hanford Site waste tanks. The characterization information is required to perform operations and meet the commitments of TWRS end users. These commitments are derived from the Hanford Federal Facility Agreement and Consent Order, also known as the Tri-Party Agreement; the Recommendation 93-5 Implementation Plan to the Defense Nuclear Facilities Safety Board (DNFSB); and other directives as listed in Section 4.0. This Waste Information Requirement Document applies to Fiscal Years 1997 and 1998 activities. Its contents are based on the best information available in August 1997. The format and content are based on the directions of DOE-RL (Sieracki, 1997) and Fluor Daniel Hanford Incorporated (Umek, 1997). Activities, such as the revision of the Tank Characterization Technical Sampling Basis (Brown et al. 1997), the revision of the data quality objectives (DQOs), issue closures, discussions with Ecology, and management decisions may cause subsequent updates to the Waste Information Requirements Document

  14. 22 CFR 120.6 - Defense article.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Defense article. 120.6 Section 120.6 Foreign Relations DEPARTMENT OF STATE INTERNATIONAL TRAFFIC IN ARMS REGULATIONS PURPOSE AND DEFINITIONS § 120.6 Defense article. Defense article means any item or technical data designated in § 121.1 of this subchapter...

  15. Waste Package Lifting Calculation

    International Nuclear Information System (INIS)

    H. Marr

    2000-01-01

    The objective of this calculation is to evaluate the structural response of the waste package during the horizontal and vertical lifting operations in order to support the waste package lifting feature design. The scope of this calculation includes the evaluation of the 21 PWR UCF (pressurized water reactor uncanistered fuel) waste package, naval waste package, 5 DHLW/DOE SNF (defense high-level waste/Department of Energy spent nuclear fuel)--short waste package, and 44 BWR (boiling water reactor) UCF waste package. Procedure AP-3.12Q, Revision 0, ICN 0, calculations, is used to develop and document this calculation

  16. Alexithymia, Defenses, and Ego Strength: Cross-sectional and Longitudinal Relationships with Psychological Well-Being and Depression.

    Science.gov (United States)

    Ziadni, Maisa S; Jasinski, Matthew J; Labouvie-Vief, Gisela; Lumley, Mark A

    2017-12-01

    Affect regulation is important to mental health. A deficit in one's ability to identify and express emotions (alexithymia), cognitive styles of regulating emotional conflict (defenses), and the capacity for integrative and complex self-other understanding (ego strength or maturity) need to be studied to understand how they relate to each other as well as to mental health and well-being. A sample of 415 community-dwelling adults from a major metropolitan area in the Midwest U.S., stratified for gender, age, and ethnicity, completed three methodologically different measures of affect regulation along with measures of well-being and depression. Six years later, 49% of the sample again reported their well-being and depression. At baseline, ego strength and the defenses of principalization and reversal correlated negatively with alexithymia and the other defenses (turning against self, turning against object and projection), even after controlling for negative affect. Cross-sectionally, relationships were largely as hypothesized, with low alexithymia, use of mature defenses, and greater ego strength correlating with less depression and greater well-being, although some of these relationships were attenuated after controlling for negative affect. Prospectively, each of the affect regulation measures predicted hypothesized changes in well-being after 6 years, after controlling for baseline well-being, but affect regulation did not predict changes in depression. These findings illuminate similarities and differences among these affect regulation constructs, suggest the importance of differentiating well-being from depression, and reveal that affect regulation uniquely predicts changes in long-term well-being.

  17. Savannah River Site chemical, metal, and pesticide (CMP) waste vitrification treatability studies

    International Nuclear Information System (INIS)

    Cicero, C.A.

    1997-01-01

    Numerous Department of Energy (DOE) facilities, as well as Department of Defense (DOD) and commercial facilities, have used earthen pits for disposal of chemicals, organic contaminants, and other waste materials. Although this was an acceptable means of disposal in the past, direct disposal into earthen pits without liners or barriers is no longer a standard practice. At the Savannah River Site (SRS), approximately three million pounds of such material was removed from seven chemical, metal, and pesticide disposal pits. This material is known as the Chemical, Metal, and Pesticide (CMP) Pit waste and carries several different listed waste codes depending on the contaminants in the respective storage container. The waste is not classified as a mixed waste because it is believed to be non-radioactive; however, in order to treat the material in a non-radioactive facility, the waste would first have to be screened for radioactivity. The Defense Waste Processing Technology (DWPT) Section of the Savannah River Technology Center (SRTC) was requested by the DOE-Savannah River (SR) office to determine the viability of vitrification of the CMP Pit wastes. Radioactive vitrification facilities exist which would be able to process this waste, so the material would not have to be analyzed for radioactive content. Bench-scale treatability studies were performed by the DWPT to determine whether a homogeneous and durable glass could be produced from the CMP Pit wastes. Homogeneous and durable glasses were produced from the six pits sampled. The optimum composition was determined to be 68.5 wt% CMP waste, 7.2 wt% Na 2 O, 9 wt% CaO, 7.2 wt% Li 2 O and 8.1 wt% Fe 2 O 3 . This glass melted at 1,150 C and represented a two fold volume reduction

  18. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Summary

    International Nuclear Information System (INIS)

    1997-05-01

    This Waste Management Programmatic Environmental Impact Statement (WM PEIS) is a nationwide study examining the environmental impacts of managing five types of radioactive and hazardous wastes generated by past and future nuclear defense and research activities at a variety of sites located around the United States. The five waste types are low-level mixed waste (LLMW), low-level waste (LLW), transuranic waste (TRUW), high-level waste (HLW), and hazardous waste (HW)

  19. H.R. 1526: A Bill to the Defense Nuclear Waste Cleanup Privatization Act. Introduced in the House of Representatives, One Hundred Fourth Congress, First session

    International Nuclear Information System (INIS)

    1995-01-01

    This report discusses a bill to authorize the Secretary of Energy to enter into privatization arrangements for activities carried out in connection with defense nuclear facilities, and for other purposes like: waste remediation and environmental restoration, including treatment, storage, and disposal; technical services; energy production; utility services; effluent treatment; general storage; fabrication and maintenance; and research and testing

  20. Russian low-level waste disposal program

    Energy Technology Data Exchange (ETDEWEB)

    Lehman, L. [L. Lehman and Associates, Inc., Burnsville, MN (United States)

    1993-03-01

    The strategy for disposal of low-level radioactive waste in Russia differs from that employed in the US. In Russia, there are separate authorities and facilities for wastes generated by nuclear power plants, defense wastes, and hospital/small generator/research wastes. The reactor wastes and the defense wastes are generally processed onsite and disposed of either onsite, or nearby. Treating these waste streams utilizes such volume reduction techniques as compaction and incineration. The Russians also employ methods such as bitumenization, cementation, and vitrification for waste treatment before burial. Shallow land trench burial is the most commonly used technique. Hospital and research waste is centrally regulated by the Moscow Council of Deputies. Plans are made in cooperation with the Ministry of Atomic Energy. Currently the former Soviet Union has a network of low-level disposal sites located near large cities. Fifteen disposal sites are located in the Federal Republic of Russia, six are in the Ukraine, and one is located in each of the remaining 13 republics. Like the US, each republic is in charge of management of the facilities within their borders. The sites are all similarly designed, being modeled after the RADON site near Moscow.

  1. 6 CFR 25.8 - Government contractor Defense.

    Science.gov (United States)

    2010-01-01

    ... 6 Domestic Security 1 2010-01-01 2010-01-01 false Government contractor Defense. 25.8 Section 25.8...-TERRORISM BY FOSTERING EFFECTIVE TECHNOLOGIES § 25.8 Government contractor Defense. (a) Criteria for... applicability of the government contractor defense. In determining whether to issue such Certification, the...

  2. Defense Remote Handled Transuranic Waste Cost/Schedule Optimization Study

    International Nuclear Information System (INIS)

    Pierce, G.D.; Wolaver, R.W.; Carson, P.H.

    1986-11-01

    The purpose of this study is to provide the DOE information with which it can establish the most efficient program for the long management and disposal, in the Waste Isolation Pilot Plant (WIPP), of remote handled (RH) transuranic (TRU) waste. To fulfill this purpose, a comprehensive review of waste characteristics, existing and projected waste inventories, processing and transportation options, and WIPP requirements was made. Cost differences between waste management alternatives were analyzed and compared to an established baseline. The result of this study is an information package that DOE can use as the basis for policy decisions. As part of this study, a comprehensive list of alternatives for each element of the baseline was developed and reviewed with the sites. The principle conclusions of the study follow. A single processing facility for RH TRU waste is both necessary and sufficient. The RH TRU processing facility should be located at Oak Ridge National Laboratory (ORNL). Shielding of RH TRU to contact handled levels is not an economic alternative in general, but is an acceptable alternative for specific waste streams. Compaction is only cost effective at the ORNL processing facility, with a possible exception at Hanford for small compaction of paint cans of newly generated glovebox waste. It is more cost effective to ship certified waste to WIPP in 55-gal drums than in canisters, assuming a suitable drum cask becomes available. Some waste forms cannot be packaged in drums, a canister/shielded cask capability is also required. To achieve the desired disposal rate, the ORNL processing facility must be operational by 1996. Implementing the conclusions of this study can save approximately $110 million, compared to the baseline, in facility, transportation, and interim storage costs through the year 2013. 10 figs., 28 tabs

  3. Waste Isolation Pilot Plant 2003 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services

    2005-09-03

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to convey that performance to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2003. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through the research and production of nuclear weapons and other activities related to the national defense of the United States. TRU waste is defined in the WIPP LWA as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years. Exceptions are noted as high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools, and sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. A TRU waste is eligible for disposal at WIPP if it has been generated in whole or in partby one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] §10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by

  4. Waste Isolation Pilot Plant 2003 Site Environmental Report

    International Nuclear Information System (INIS)

    2005-01-01

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to convey that performance to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2003. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through the research and production of nuclear weapons and other activities related to the national defense of the United States. TRU waste is defined in the WIPP LWA as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting transuranic isotopes per gram of waste, with half-lives greater than 20 years. Exceptions are noted as high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools, and sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. A TRU waste is eligible for disposal at WIPP if it has been generated in whole or in partby one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] 10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by

  5. Defense AT&L (Volume 36, Number 3, May-June 2007)

    Science.gov (United States)

    2007-06-01

    recruit from the heritage community; their recruits are known by their MOS [Military Occupational Specialty] “09 Limas ”—es- sentially interpreters...Defense AT&L: May-June 2007 Acquisition & Logistics Excellence Defense AT&L: May-June 2007 86 Acquisition & Logistics Excellence at Huntington Beach , Calif...programs in endangered species protection, historic preservation, waste reduction, environmental cleanup, and pollution prevention. Installation

  6. Nuclear Waste Management. Semiannual progress report, October 1984-March 1985

    Energy Technology Data Exchange (ETDEWEB)

    McElroy, J.L.; Powell, J.A. (comps.)

    1985-06-01

    Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs.

  7. Nuclear Waste Management. Semiannual progress report, October 1984-March 1985

    International Nuclear Information System (INIS)

    McElroy, J.L.; Powell, J.A.

    1985-06-01

    Progress reports are presented for the following studies on radioactive waste management: defense waste technology; nuclear waste materials characterization center; and supporting studies. 19 figs., 29 tabs

  8. Analysis of the total system life cycle cost for the Civilian Radioactive Waste Management Program: Volume 2, Supporting information

    International Nuclear Information System (INIS)

    1987-06-01

    This report provides cost estimates for the fifth evaluation of the adequacy of the fee and is consistent with the program strategy and plans. The total-system cost for the reference cases in the improved-performance system is estimated at $32.1 to $38.2 billion (expressed in constant 1986 collars) over the entire life of the system, or $1.5 to $1.6 billion more than that of the authorized system (i.e., the system without an MRS facility). The current estimate of the total-system cost for the reference cases in the improved-performance system is $3.8 to $5.4 billion higher than the estimate for the same system in the 1986 TSLCC analysis. In the case with the maximum increase, nearly all of the higher cost is due to a $5.2-billion increase in the costs of development and evaluation (D and E); all other system costs are essentially unchanged. The cost difference between the improved-performance system and the authorized system is smaller than the difference estimated in last year's TSLCC analysis. Volume 2 presents the detailed results for the 1987 analysis of the total-system life cycle cost (TSLCC). It consists of four sections: Section A presents the yearly flows of waste between waste-management facilities for the 12 aggregate logistics cases that were studied; Section B presents the annual total-system costs for each of the 30 TSLCC cases by major cost category; Section C presents the annual costs for the disposal of 16,000 canisters of defense high-level waste (DHLW) by major cost category for each of the 30 TSLCC cases; and Section D presents a summary of the cost-allocation factors that were calculated to determine the defense waste share of the total-system costs

  9. Immobilization and Waste Form Product Acceptance for Low Level and TRU Waste Forms

    International Nuclear Information System (INIS)

    Holtzscheiter, E.W.; Harbour, J.R.

    1998-05-01

    The Tanks Focus Area is supporting technology development in immobilization of both High Level (HLW) and Low Level (LLW) radioactive wastes. The HLW process development at Hanford and Idaho is patterned closely after that of the Savannah River (Defense Waste Processing Facility) and West Valley Sites (West Valley Demonstration Project). However, the development and options open to addressing Low Level Waste are diverse and often site specific. To start, it is important to understand the breadth of Low Level Wastes categories

  10. Understanding radioactive waste

    International Nuclear Information System (INIS)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes)

  11. Understanding radioactive waste

    Energy Technology Data Exchange (ETDEWEB)

    Murray, R.L.

    1981-12-01

    This document contains information on all aspects of radioactive wastes. Facts are presented about radioactive wastes simply, clearly and in an unbiased manner which makes the information readily accessible to the interested public. The contents are as follows: questions and concerns about wastes; atoms and chemistry; radioactivity; kinds of radiation; biological effects of radiation; radiation standards and protection; fission and fission products; the Manhattan Project; defense and development; uses of isotopes and radiation; classification of wastes; spent fuels from nuclear reactors; storage of spent fuel; reprocessing, recycling, and resources; uranium mill tailings; low-level wastes; transportation; methods of handling high-level nuclear wastes; project salt vault; multiple barrier approach; research on waste isolation; legal requiremnts; the national waste management program; societal aspects of radioactive wastes; perspectives; glossary; appendix A (scientific American articles); appendix B (reference material on wastes). (ATT)

  12. Risk assessment and ranking methodologies for hazardous chemical defense waste: a state-of-the-art review and evaluation. Task 1 report

    International Nuclear Information System (INIS)

    Chu, M.S.Y.; Rodricks, J.V.; St Hilaire, C.; Bras, R.L.

    1986-06-01

    This report summarizes the work performed under Task 1 of the Risk Assessment Evaluation Task under the Hazardous Chemical Defense Waste Management Program of the Department of Energy (DOE). The objective of Task 1 was to identify, review, and evaluate the state-of-the-art tools and techniques available for ranking and evaluating disposal facilities. These tools were evaluated for their applicability to DOE's mixed hazardous chemical and radioactive waste sites. Various ranking methodologies were reviewed and three were evaluated in detail. Areas that were found to be deficient in each ranking methodology were presented in the report. Recommendations were given for the development of an improved ranking methodology for use on DOE's sites. A literature review was then performed on the various components of a risk assessment methodology. They include source term evaluation, geosphere transport models, exposure pathways models, dose effects models, and sensitivity/uncertainty techniques. A number of recommendations have been made in the report based on the review and evaluation for the development of a comprehensive risk assessment methodology in evaluating mixed waste disposal sites

  13. Demonstration of the Defense Waste Processing Facility vitrification process for Tank 42 radioactive sludge -- Glass preparation and characterization

    International Nuclear Information System (INIS)

    Bibler, N.E.; Fellinger, T.L.; Marshall, K.M.; Crawford, C.L.; Cozzi, A.D.; Edwards, T.B.

    1999-01-01

    The Defense Waste Processing Facility (DWPF) at the Savannah River Site (SRS) is currently processing and immobilizing the radioactive high level waste sludge at SRS into a durable borosilicate glass for final geological disposal. The DWPF has recently finished processing the first radioactive sludge batch, and is ready for the second batch of radioactive sludge. The second batch is primarily sludge from Tank 42. Before processing this batch in the DWPF, the DWPF process flowsheet has to be demonstrated with a sample of Tank 42 sludge to ensure that an acceptable melter feed and glass can be made. This demonstration was recently completed in the Shielded Cells Facility at SRS. An earlier paper in these proceedings described the sludge composition and processes necessary for producing an acceptable melter fee. This paper describes the preparation and characterization of the glass from that demonstration. Results substantiate that Tank 42 sludge after mixing with the proper amount of glass forming frit (Frit 200) can be processed to make an acceptable glass

  14. Defense Waste Processing Facility (DWPF) Viscosity Model: Revisions for Processing High TiO2 Containing Glasses

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Edwards, T. B. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-30

    Radioactive high-level waste (HLW) at the Savannah River Site (SRS) has successfully been vitrified into borosilicate glass in the Defense Waste Processing Facility (DWPF) since 1996. Vitrification requires stringent product/process (P/P) constraints since the glass cannot be reworked once it is poured into ten foot tall by two foot diameter canisters. A unique “feed forward” statistical process control (SPC) was developed for this control rather than statistical quality control (SQC). In SPC, the feed composition to the DWPF melter is controlled prior to vitrification. In SQC, the glass product would be sampled after it is vitrified. Individual glass property-composition models form the basis for the “feed forward” SPC. The models transform constraints on the melt and glass properties into constraints on the feed composition going to the melter in order to guarantee, at the 95% confidence level, that the feed will be processable and that the durability of the resulting waste form will be acceptable to a geologic repository. The DWPF SPC system is known as the Product Composition Control System (PCCS). The DWPF will soon be receiving wastes from the Salt Waste Processing Facility (SWPF) containing increased concentrations of TiO2, Na2O, and Cs2O . The SWPF is being built to pretreat the high-curie fraction of the salt waste to be removed from the HLW tanks in the F- and H-Area Tank Farms at the SRS. In order to process TiO2 concentrations >2.0 wt% in the DWPF, new viscosity data were developed over the range of 1.90 to 6.09 wt% TiO2 and evaluated against the 2005 viscosity model. An alternate viscosity model is also derived for potential future use, should the DWPF ever need to process other titanate-containing ion exchange materials. The ultimate limit on the amount of TiO2 that can be accommodated from SWPF will be determined by the three PCCS models, the waste composition of a given sludge

  15. Waste Isolation Pilot Plant 2005 Site Environmental Report

    Energy Technology Data Exchange (ETDEWEB)

    Washington Regulatory and Environmental Services

    2006-10-13

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to make WIPP environmental information available to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2004. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through defense activities and programs. TRU waste is defined, in the WIPP LWA, as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting TRU isotopes per gram of waste, with half-lives greater than 20 years except for high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools; sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. TRU waste is eligible for disposal at WIPP if it has been generated in whole or in part by one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] §10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by-products management,defense nuclear materials security and safeguards and security

  16. Interim Hanford Waste Management Plan

    International Nuclear Information System (INIS)

    1985-09-01

    The September 1985 Interim Hanford Waste Management Plan (HWMP) is the third revision of this document. In the future, the HWMP will be updated on an annual basis or as major changes in disposal planning at Hanford Site require. The most significant changes in the program since the last release of this document in December 1984 include: (1) Based on studies done in support of the Hanford Defense Waste Environmental Impact Statement (HDW-EIS), the size of the protective barriers covering contaminated soil sites, solid waste burial sites, and single-shell tanks has been increased to provide a barrier that extends 30 m beyond the waste zone. (2) As a result of extensive laboratory development and plant testing, removal of transuranic (TRU) elements from PUREX cladding removal waste (CRW) has been initiated in PUREX. (3) The level of capital support in years beyond those for which specific budget projections have been prepared (i.e., fiscal year 1992 and later) has been increased to maintain Hanford Site capability to support potential future missions, such as the extension of N Reactor/PUREX operations. The costs for disposal of Hanford Site defense wastes are identified in four major areas in the HWMP: waste storage and surveillance, technology development, disposal operations, and capital expenditures

  17. 12 CFR 411.500 - Secretary of Defense.

    Science.gov (United States)

    2010-01-01

    ... 12 Banks and Banking 4 2010-01-01 2010-01-01 false Secretary of Defense. 411.500 Section 411.500 Banks and Banking EXPORT-IMPORT BANK OF THE UNITED STATES NEW RESTRICTIONS ON LOBBYING Exemptions § 411.500 Secretary of Defense. (a) The Secretary of Defense may exempt, on a case-by-case basis, a covered...

  18. Report on the emergency response training and equipment activities through fiscal year 1992 for the transportation of transuranic waste to the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1992-11-01

    The Waste Isolation Pilot Plant (WIPP) is a research and development facility with the mission of demonstrating the safe shipment, emplacement, and retrieval of radioactive transuranic (TRU) wastes resulting from the defense activities and programs of the United States. It is the only long-term storage facility constructed for TRU waste. This report provides the status on the Department of Energy (DOE) efforts as of September 30, 1992, regarding emergency response training provided to local, state, and tribal governments for waste shipments to the WIPP, as required by section 16(c)(1)(A) of the Waste Isolation Pilot Plant Land Withdrawal Act (Public Law 102-579). This is an update to the April 1992 report (DOE/WIPP 92003) which provided status through 1991. This report will be updated and issued annually. Because of a growing public awareness of transportation-activities involving nuclear materials, this report was prepared to provide a status of the DOE's activities in this regard, as well as the cooperative efforts between the DOE and state and tribal governments

  19. Evaluation and selection of candidate high-level waste forms

    International Nuclear Information System (INIS)

    1982-03-01

    Seven candidate waste forms being developed under the direction of the Department of Energy's National High-Level Waste (HLW) Technology Program, were evaluated as potential media for the immobilization and geologic disposal of high-level nuclear wastes. The evaluation combined preliminary waste form evaluations conducted at DOE defense waste-sites and independent laboratories, peer review assessments, a product performance evaluation, and a processability analysis. Based on the combined results of these four inputs, two of the seven forms, borosilicate glass and a titanate based ceramic, SYNROC, were selected as the reference and alternative forms for continued development and evaluation in the National HLW Program. Both the glass and ceramic forms are viable candidates for use at each of the DOE defense waste-sites; they are also potential candidates for immobilization of commercial reprocessing wastes. This report describes the waste form screening process, and discusses each of the four major inputs considered in the selection of the two forms

  20. History of Hanford Site Defense Production (Brief)

    Energy Technology Data Exchange (ETDEWEB)

    GERBER, M S

    2001-02-01

    This paper acquaints the audience with the history of the Hanford Site, America's first full-scale defense plutonium production site. The paper includes the founding and basic operating history of the Hanford Site, including World War II construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), a brief production spurt from 1984-86, the end of the Cold War, and the beginning of the waste cleanup mission. The paper also delineates historical waste practices and policies as they changed over the years at the Hanford Site, past efforts to chemically treat, ''fractionate,'' and/or immobilize Hanford's wastes, and resulting major waste legacies that remain today. This paper presents original, primary-source research into the waste history of the Hanford Site. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history.

  1. History of Hanford Site Defense Production (Brief)

    International Nuclear Information System (INIS)

    GERBER, M.S.

    2001-01-01

    This paper acquaints the audience with the history of the Hanford Site, America's first full-scale defense plutonium production site. The paper includes the founding and basic operating history of the Hanford Site, including World War II construction and operations, three major postwar expansions (1947-55), the peak years of production (1956-63), production phase downs (1964-the present), a brief production spurt from 1984-86, the end of the Cold War, and the beginning of the waste cleanup mission. The paper also delineates historical waste practices and policies as they changed over the years at the Hanford Site, past efforts to chemically treat, ''fractionate,'' and/or immobilize Hanford's wastes, and resulting major waste legacies that remain today. This paper presents original, primary-source research into the waste history of the Hanford Site. Finally, the paper places the current Hanford Site waste remediation endeavors in the broad context of American and world history

  2. The Stored Waste Examination Pilot Plant program at the INEL

    International Nuclear Information System (INIS)

    McKinley, K.B.; Anderson, B.C.; Clements, T.L.; Hinckley, J.P.; Mayberry, J.L.; Smith, T.H.

    1983-01-01

    Since 1970, defense transuranic waste has been placed into 20-year retrievable storage at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory (INEL). A major objective of the U.S. Department of Energy (DOE) Nuclear Waste Management Program is to remove all retrievably stored transuranic waste from the INEL. The January 1981 DOE Record of Decision on the Waste Isolation Pilot Plant (WIPP) stated, ''The WIPP facility will dispose of defense transuranic waste stored retrievably at the Idaho National Engineering Laboratory.'' After retrieval and before shipment, processing may be necessary to prepare the waste for acceptance, handling, and enhanced long-term isolation in the WIPP. However, some of the waste is certifiable to the WIPP waste acceptance criteria without container opening or waste processing. To minimize costs, the Stored Waste Examination Pilot Plant (SWEPP) is being developed to certify INEL stored transuranic waste without container opening or waste processing. The SWEPP certification concept is based on records assessment, nondestructive examination techniques, assay techniques, health physics examinations, and limited opening of containers at another facility for quality control

  3. 29 CFR 790.13 - General nature of defense.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false General nature of defense. 790.13 Section 790.13 Labor... Administrative Regulations, Etc. § 790.13 General nature of defense. (a) Under the provisions of sections 9 and... Fair Labor Standards Act, where the employer pleads and proves that “the act or omission complained of...

  4. Operating document on management division waste management section in Tokai works in the 2003 fiscal year

    International Nuclear Information System (INIS)

    Kobayashi, Kentarou; Akutu, Shigeru; Sasayama, Yasuo; Nakanishi, Masahiro; Ozone, Takashi; Terunuma, Tomomi; Mogaki, Isao; Aizawa, Syuichi; Sugawara, Hiroyuki

    2005-07-01

    This document is announced about the task of Waste Management Section of Waste Management Division in 2003. Mainly, our tasks are fractionating, incinerating and storing low active solid waste and storing high active solid waste. In addition, we are performing required correspondence about management program of low level waste. We had treated and stored waste safely according to our plan. As a result, we have achieved following outcomes. (1) We incinerated the combustible low active solid waste that is generated by the operation of Tokai Reprocessing Plant and the recovery operation of incident at Low Active Liquid Waste Asphalt Solidification Facility. Waste of this recovery operation is stored in the 2nd Low Active Liquid Waste Asphalt Solidification Storage Facility. We incinerated 58 ton of wastes. (2) We stored low active solid waste 854 drums that accommodate 200L. According to the time of Low-Level Waste Treatment Facility completion, we will be able to avoid full of storage. (3) We stored high active solid waste of 148 drums that accommodate 200L. For the time being, there is no problem as regards the administration of storage facility. (4) We carried out the management program of low level solid waste according to plan. (author)

  5. Operating document on Management Division Waste Management Section in Tokai Works in the 2002 fiscal year

    International Nuclear Information System (INIS)

    Kobayashi, Kentarou; Isozaki, Kouei; Akutu, Shigeru; Nakanishi, Masahiro; Ozone, Takashi; Terunuma, Tomomi

    2004-05-01

    This document is announced about the task of Waste Management Section of Waste Management Division in 2004. Mainly, our tasks are fractionating, incinerating and storing low active solid waste and storing high active solid waste. In addition, we are performing required correspondence about management program of low level waste. We had treated and stored waste safely according to our plan. As a result, we have achieved following outcomes. (1) We incinerated the combustible low active solid waste that is generated by the operation of Tokai Reprocessing Plant and the recovery operation of incident at Low Active Liquid Waste Asphalt Solidification Facility. Waste of this recovery operation is stored in the 2nd Low Active Liquid Waste Asphalt Solidification Storage Facility. We incinerated 66.7 ton of wastes. (2) We stored low active solid waste 858 drums that accommodate 200L. According to the time of Low-Level Waste Treatment Facility completion, we will be able to avoid full of storage. (3) We stored high active solid waste of 154 drums that accommodate 200 L. For the time being, there is no problem as regards the administration of storage facility. (4) We carried out the management program of low level solid waste according to plan. (author)

  6. Implementation of flowsheet change to minimize hydrogen and ammonia generation during chemical processing of high level waste in the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Lambert, Dan P. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, Matthew S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Luther, Michelle C. [Auburn Univ., AL (United States); Brandenburg, Clayton H. [Univ.of South Carolina, Columbia, SC (United States)

    2016-09-27

    Testing was completed to develop a chemical processing flowsheet for the Defense Waste Processing Facility (DWPF), designed to vitrify and stabilize high level radioactive waste. DWPF processing uses a reducing acid (formic acid) and an oxidizing acid (nitric acid) to rheologically thin the slurry and complete the necessary acid base and reduction reactions (primarily mercury and manganese). Formic acid reduces mercuric oxide to elemental mercury, allowing the mercury to be removed during the boiling phase of processing through steam stripping. In runs with active catalysts, formic acid can decompose to hydrogen and nitrate can be reduced to ammonia, both flammable gases, due to rhodium and ruthenium catalysis. Replacement of formic acid with glycolic acid eliminates the generation of rhodium- and ruthenium-catalyzed hydrogen and ammonia. In addition, mercury reduction is still effective with glycolic acid. Hydrogen, ammonia and mercury are discussed in the body of the report. Ten abbreviated tests were completed to develop the operating window for implementation of the flowsheet and determine the impact of changes in acid stoichiometry and the blend of nitric and glycolic acid as it impacts various processing variables over a wide processing region. Three full-length 4-L lab-scale simulations demonstrated the viability of the flowsheet under planned operating conditions. The flowsheet is planned for implementation in early 2017.

  7. Characterization of past and present solid waste streams from the Plutonium-Uranium Extraction Plant

    International Nuclear Information System (INIS)

    Pottmeyer, J.A.; Weyns, M.I.; Lorenzo, D.S.; Vejvoda, E.J.; Duncan, D.R.

    1993-04-01

    During the next two decades the transuranic wastes, now stored in the burial trenches and storage facilities at the Hanford Site, are to be retrieved, processed at the Waste Receiving and Processing Facility, and shipped to the Waste Isolation Pilot Plant near Carlsbad, New Mexico for final disposal. Over 7% of the transuranic waste to be retrieved for shipment to the Waste Isolation Pilot Plant has been generated at the Plutonium-Uranium Extraction (PUREX) Plant. The purpose of this report is to characterize the radioactive solid wastes generated by PUREX using process knowledge, existing records, and oral history interviews. The PUREX Plant is currently operated by the Westinghouse Hanford Company for the US Department of Energy and is now in standby status while being prepared for permanent shutdown. The PUREX Plant is a collection of facilities that has been used primarily to separate plutonium for nuclear weapons from spent fuel that had been irradiated in the Hanford Site's defense reactors. Originally designed to reprocess aluminum-clad uranium fuel, the plant was modified to reprocess zirconium alloy clad fuel elements from the Hanford Site's N Reactor. PUREX has provided plutonium for research reactor development, safety programs, and defense. In addition, the PUREX was used to recover slightly enriched uranium for recycling into fuel for use in reactors that generate electricity and plutonium. Section 2.0 provides further details of the PUREX's physical plant and its operations. The PUREX Plant functions that generate solid waste are as follows: processing operations, laboratory analyses and supporting activities. The types and estimated quantities of waste resulting from these activities are discussed in detail

  8. Survey of concrete waste forms

    International Nuclear Information System (INIS)

    Moore, J.G.

    1981-01-01

    The incorporation of radioactive waste in cement has been widely studied for many years. It has been routinely used at nuclear research and production sites for some types of nuclear waste for almost three decades and at power reactor plants for nearly two decades. Cement has many favorable characteristics that have contributed to its popularity. It is a readily available material and has not required complex and/or expensive equipment to solidify radioactive waste. The resulting solid products are noncombustible, strong, radiation resistant, and have reasonable chemical and thermal stability. As knowledge increased on the possible dangers from radioactive waste, requirements for waste fixation became more stringent. A brief survey of some of the research efforts used to extend and improve cementitious waste hosts to meet these requirements is given in this paper. Selected data are presented from the rather extensive study of the applicability of concrete as a waste form for Savannah River defense waste and the use of polymer impregnation to reduce the leachability and improve the durability of such waste forms. Hot-pressed concretes that were developed as prospective host solids for high-level wastes are described. Highlights are given from two decades of research on cementitious waste forms at Oak Ridge National Laboratory. The development of the hydrofracture process for the disposal of all locally generated radioactive waste led to a process for the disposal of I-129 and to the current research on the German in-situ solidification process for medium-level waste and the Oak Ridge FUETAP process for all classes of waste including commercial and defense high-level wastes. Finally, some of the more recent ORNL concepts are presented for the use of cement in the disposal of inorganic and biological sludges, waste inorganic salts, trash, and krypton

  9. Knowledge, attitude, and practices about biomedical waste management among healthcare personnel: A cross-sectional study

    Directory of Open Access Journals (Sweden)

    Vanesh Mathur

    2011-01-01

    Full Text Available Background: The waste produced in the course of healthcare activities carries a higher potential for infection and injury than any other type of waste. Inadequate and inappropriate knowledge of handling of healthcare waste may have serious health consequences and a significant impact on the environment as well. Objective: The objective was to assess knowledge, attitude, and practices of doctors, nurses, laboratory technicians, and sanitary staff regarding biomedical waste management. Materials and Methods: This was a cross-sectional study. Setting: The study was conducted among hospitals (bed capacity >100 of Allahabad city. Participants: Medical personnel included were doctors (75, nurses (60, laboratory technicians (78, and sanitary staff (70. Results: Doctors, nurses, and laboratory technicians have better knowledge than sanitary staff regarding biomedical waste management. Knowledge regarding the color coding and waste segregation at source was found to be better among nurses and laboratory staff as compared to doctors. Regarding practices related to biomedical waste management, sanitary staff were ignorant on all the counts. However, injury reporting was low across all the groups of health professionals. Conclusion: The importance of training regarding biomedical waste management needs emphasis; lack of proper and complete knowledge about biomedical waste management impacts practices of appropriate waste disposal.

  10. Analysis of the total system life cycle cost for the Civilian Radioactive Waste Management Program: Volume 1, The analysis and its results

    International Nuclear Information System (INIS)

    1987-06-01

    This report provides cost estimates for the fifth evaluation of the adequacy of the fee and is consistent with the program strategy and plans. The total-system cost for the reference cases in the improved-performance system is estimated at $32.1 to $38.2 billion (expressed in constant 1986 dollars) over the entire life of the system...or $1.5 to $1.6 billion more than that of the authorized system (i.e., the system without an MRS facility). The current estimate of the total-system cost for the reference cases in the improved-performance system is $3.8 to $5.4 billion higher than the estimate for the same system in the 1986 TSLCC analysis. In the case with the maximum increase, nearly all of the higher cost is due to a $5.2-billion increase in the costs of development and evaluation (D and E); all other system costs are essentially unchanged. The cost difference between the improved-performance system and the authorized system is smaller than the difference estimated in last year's TSLCC analysis. Volume 2 presents the detailed results for the 1987 analysis of the total-system life cycle cost (TSLCC). It consists of four sections: Section A presents the yearly flows of waste between waste-management facilities for the 12 aggregate logistics cases that were studied; Section B presents the annual total-system costs for each of the 30 TSLCC cases by major cost category; Section C presents the annual costs for the disposal of 16,000 canisters of defense high-level waste (DHLW) by major cost category for each of the 30 TSLCC cases; and Section D presents a summary of the cost-allocation factors that were calculated to determine the defense waste share of the total-system costs

  11. Interim glycol flowsheet reduction/oxidation (redox) model for the Defense Waste Processing Facility (DWPF)

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Williams, M. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Zamecnik, J. R. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Missimer, D. M. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-03-08

    Control of the REDuction/OXidation (REDOX) state of glasses containing high concentrations of transition metals, such as High Level Waste (HLW) glasses, is critical in order to eliminate processing difficulties caused by overly reduced or overly oxidized melts. Operation of a HLW melter at Fe+2/ΣFe ratios of between 0.09 and 0.33, a range which is not overly oxidizing or overly reducing, helps retain radionuclides in the melt, i.e. long-lived radioactive 99Tc species in the less volatile reduced Tc4+ state, 104Ru in the melt as reduced Ru+4 state as insoluble RuO2, and hazardous volatile Cr6+ in the less soluble and less volatile Cr+3 state in the glass. The melter REDOX control balances the oxidants and reductants from the feed and from processing additives such as antifoam. Currently, the Defense Waste Processing Facility (DWPF) is running a formic acid-nitric acid (FN) flowsheet where formic acid is the main reductant and nitric acid is the main oxidant. During decomposition formate and formic acid releases H2 gas which requires close control of the melter vapor space flammability. A switch to a nitric acid-glycolic acid (GN) flowsheet is desired as the glycolic acid flowsheet releases considerably less H2 gas upon decomposition. This would greatly simplify DWPF processing. Development of an EE term for glycolic acid in the GN flowsheet is documented in this study.

  12. IMPACTS OF ANTIFOAM ADDITIONS AND ARGON BUBBLING ON DEFENSE WASTE PROCESSING FACILITY REDUCTION/OXIDATION

    Energy Technology Data Exchange (ETDEWEB)

    Jantzen, C.; Johnson, F.

    2012-06-05

    During melting of HLW glass, the REDOX of the melt pool cannot be measured. Therefore, the Fe{sup +2}/{Sigma}Fe ratio in the glass poured from the melter must be related to melter feed organic and oxidant concentrations to ensure production of a high quality glass without impacting production rate (e.g., foaming) or melter life (e.g., metal formation and accumulation). A production facility such as the Defense Waste Processing Facility (DWPF) cannot wait until the melt or waste glass has been made to assess its acceptability, since by then no further changes to the glass composition and acceptability are possible. therefore, the acceptability decision is made on the upstream process, rather than on the downstream melt or glass product. That is, it is based on 'feed foward' statistical process control (SPC) rather than statistical quality control (SQC). In SPC, the feed composition to the melter is controlled prior to vitrification. Use of the DWPF REDOX model has controlled the balanjce of feed reductants and oxidants in the Sludge Receipt and Adjustment Tank (SRAT). Once the alkali/alkaline earth salts (both reduced and oxidized) are formed during reflux in the SRAT, the REDOX can only change if (1) additional reductants or oxidants are added to the SRAT, the Slurry Mix Evaporator (SME), or the Melter Feed Tank (MFT) or (2) if the melt pool is bubble dwith an oxidizing gas or sparging gas that imposes a different REDOX target than the chemical balance set during reflux in the SRAT.

  13. Waste Isolation Pilot Plant Annual Site Environmental Report for 2005

    International Nuclear Information System (INIS)

    2006-01-01

    The purpose of this report is to provide information needed by the DOE to assess WIPP's environmental performance and to make WIPP environmental information available to stakeholders and members of the public. This report has been prepared in accordance with DOE Order 231.1A and DOE guidance. This report documents WIPP's environmental monitoring programs and their results for 2004. The WIPP Project is authorized by the DOE National Security and Military Applications of Nuclear Energy Authorization Act of 1980 (Pub. L. 96-164). After more than 20 years of scientific study and public input, WIPP received its first shipment of waste on March 26, 1999. Located in southeastern New Mexico, WIPP is the nation's first underground repository permitted to safely and permanently dispose of TRU radioactive and mixed waste (as defined in the WIPP LWA) generated through defense activities and programs. TRU waste is defined, in the WIPP LWA, as radioactive waste containing more than 100 nanocuries (3,700 becquerels [Bq]) of alpha-emitting TRU isotopes per gram of waste, with half-lives greater than 20 years except for high-level waste, waste that has been determined not to require the degree of isolation required by the disposal regulations, and waste the U.S. Nuclear Regulatory Commission (NRC) has approved for disposal. Most TRU waste is contaminated industrial trash, such as rags and old tools; sludges from solidified liquids; glass; metal; and other materials from dismantled buildings. TRU waste is eligible for disposal at WIPP if it has been generated in whole or in part by one or more of the activities listed in the Nuclear Waste Policy Act of 1982 (42 United States Code [U.S.C.] 10101, et seq.), including naval reactors development, weapons activities, verification and control technology, defense nuclear materials production, defense nuclear waste and materials by-products management,defense nuclear materials security and safeguards and security investigations, and defense

  14. Nuclear wastes and public trust

    International Nuclear Information System (INIS)

    Flynn, J.; Slovic, P.

    1993-01-01

    Citing public fear and mistrust, strong opposition to the proposed Yucca Mountain repository site, and less-than-exemplary performance by the Department of Energy (DOE), two private researchers believe present high-level radioactive waste-disposal plans may have to be scrapped. Government and the nuclear industry may have to start over. Policy makers should seek to develop new relationships with communities and states where suitable disposal sites exist. These relationships may require that citizen groups and local institutions be given unprecedented authority in locating and operating such facilities. Contrary to popular impressions, there is still time to take a new approach. The US Nuclear Regulatory Commission says present on-site storage arrangements offer a safe alternative for 100 years or more. The sense of immediate crisis and cries for immediate solutions should be calmed and a more considered strategy brought to the public debate. For starters, the researchers propose that the problems of defense waste be separated from the problems of commercial waste. They also suggest that DOE be assigned responsibility for defense waste and a new agency be created to handle high-level commercial waste

  15. Defense waste salt disposal at the Savannah River Plant

    International Nuclear Information System (INIS)

    Langton, C.A.; Dukes, M.D.

    1984-01-01

    A cement-based waste form, saltstone, has been designed for disposal of Savannah River Plant low-level radioactive salt waste. The disposal process includes emplacing the saltstone in engineered trenches above the water table but below grade at SRP. Design of the waste form and disposal system limits the concentration of salts and radionuclides in the groundwater so that EPA drinking water standards will not be exceeded at the perimeter of the disposal site. 10 references, 4 figures, 3 tables

  16. Defense Waste Processing Facility Canister Closure Weld Current Validation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Korinko, P. S. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Maxwell, D. N. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2018-01-29

    Two closure welds on filled Defense Waste Processing Facility (DWPF) canisters failed to be within the acceptance criteria in the DWPF operating procedure SW4-15.80-2.3 (1). In one case, the weld heat setting was inadvertently provided to the canister at the value used for test welds (i.e., 72%) and this oversight produced a weld at a current of nominally 210 kA compared to the operating procedure range (i.e., 82%) of 240 kA to 263 kA. The second weld appeared to experience an instrumentation and data acquisition upset. The current for this weld was reported as 191 kA. Review of the data from the Data Acquisition System (DAS) indicated that three of the four current legs were reading the expected values, approximately 62 kA each, and the fourth leg read zero current. Since there is no feasible way by further examination of the process data to ascertain if this weld was actually welded at either the target current or the lower current, a test plan was executed to provide assurance that these Nonconforming Welds (NCWs) meet the requirements for strength and leak tightness. Acceptance of the welds is based on evaluation of Test Nozzle Welds (TNW) made specifically for comparison. The TNW were nondestructively and destructively evaluated for plug height, heat tint, ultrasonic testing (UT) for bond length and ultrasonic volumetric examination for weld defects, burst pressure, fractography, and metallography. The testing was conducted in agreement with a Task Technical and Quality Assurance Plan (TTQAP) (2) and applicable procedures.

  17. Ranking system for mixed radioactive and hazardous waste sites

    International Nuclear Information System (INIS)

    Hawley, K.A.; Napier, B.A.

    1985-01-01

    The Environmental Protection Agency's Hazard Ranking System (HRS) is a simplified management decision tool that provides a common basis for evaluating a multitude of hazardous waste sites. A deficiency in the HRS for application to Department of Energy mixed radioactive and hazardous waste sites is its inability to explicitly handle radioactive material. A modification to the basic HRS to add the capability to consider radioactivity is described. The HRS considers the exposure routes of direct contact, fire/explosion, atmospheric release, surface-water release, and ground-water release. Each exposure route is further divided into release, route, containment, waste, and target characteristics. To maintain the basic HRS structure, only the waste characteristics section of each exposure route was modified. A ranking system was developed, using radiation dose pathway analysis, to group radionuclides by dose factors. For mixed waste sites, the ranking factor derived for radionuclides is compared with the ranking factor obtained for hazardous chemicals and the most restrictive is used in the overall ranking. The modified HRS has the advantages of being compatible with the original HRS, has reasonable information requirements, and provides scientifically defensible conclusions. 17 references, 2 figures, 6 tables

  18. Thermal phase stability of some simulated Defense waste glasses

    International Nuclear Information System (INIS)

    May, R.P.

    1981-04-01

    Three simulated defense waste glass compositions developed by Savannah River Laboratories were studied to determine viscosity and compositional effects on the comparative thermal phase stabilities of these glasses. The glass compositions are similar except that the 411 glasses are high in lithium and low in sodium compared to the 211 glass, and the T glasses are high in iron and low in aluminum compared to the C glass. Specimens of these glasses were heat treated using isothermal anneals as short as 10 min and up to 15 days over the temperature range of 450 0 C to 1100 0 C. Additionally, a specimen of each glass was cooled at a constant cooling rate of 7 0 C/hour from an 1100 0 C melt down to 500 0 C where it was removed from the furnace. The following were observed. The slow cooling rate of 7 0 C/hour is possible as a canister centerline cooling rate for large canisters. Accordingly, it is important to note that a short range diffusion mechanism like cooperative growth phenomena can result in extensive devitrification at lower temperatures and higher yields than a long-range diffusion mechanism can; and can do it without the growth of large crystals that can fracture the glass. Refractory oxides like CeO 2 and (Ni, Mn, Fe) 2 O 4 form very rapidly at higher temperatures than silicates and significant yields can be obtained at sufficiently high temperatures that settling of these dense phases becomes a major microstructural feature during slow cooling of some glasses. These annealing studies further show that below 500 0 C there is but little devitrification occurring implying that glass canisters stored at 300 0 C may be kinetically stable despite not being thermodynamically so

  19. Thermal phase stability of some simulated Defense waste glasses

    Energy Technology Data Exchange (ETDEWEB)

    May, R.P.

    1981-04-01

    Three simulated defense waste glass compositions developed by Savannah River Laboratories were studied to determine viscosity and compositional effects on the comparative thermal phase stabilities of these glasses. The glass compositions are similar except that the 411 glasses are high in lithium and low in sodium compared to the 211 glass, and the T glasses are high in iron and low in aluminum compared to the C glass. Specimens of these glasses were heat treated using isothermal anneals as short as 10 min and up to 15 days over the temperature range of 450/sup 0/C to 1100/sup 0/C. Additionally, a specimen of each glass was cooled at a constant cooling rate of 7/sup 0/C/hour from an 1100/sup 0/C melt down to 500/sup 0/C where it was removed from the furnace. The following were observed. The slow cooling rate of 7/sup 0/C/hour is possible as a canister centerline cooling rate for large canisters. Accordingly, it is important to note that a short range diffusion mechanism like cooperative growth phenomena can result in extensive devitrification at lower temperatures and higher yields than a long-range diffusion mechanism can; and can do it without the growth of large crystals that can fracture the glass. Refractory oxides like CeO/sub 2/ and (Ni, Mn, Fe)/sub 2/O/sub 4/ form very rapidly at higher temperatures than silicates and significant yields can be obtained at sufficiently high temperatures that settling of these dense phases becomes a major microstructural feature during slow cooling of some glasses. These annealing studies further show that below 500/sup 0/C there is but little devitrification occurring implying that glass canisters stored at 300/sup 0/C may be kinetically stable despite not being thermodynamically so.

  20. The DWPF waste form qualification program

    International Nuclear Information System (INIS)

    Marra, S.L.; Plodinec, M.J.

    1994-01-01

    Prior to the introduction of radioactive feed into the Defense Waste Processing Facility for immobilization in borosilicate glass an extensive waste qualification program must be completed. The DWPF must demonstrate its ability to comply with the Waste Acceptance Product Specifications. This ability is being demonstrated through laboratory and pilot scale work and will be completed after the full operation of the DWPF using various simulated feeds

  1. Determination of nitrate and nitrite in Hanford defense waste (HDW) by reverse polarity capillary zone electrophoresis (RPCE) method

    International Nuclear Information System (INIS)

    Metcalf, S.G.

    1998-01-01

    This paper describes the first application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in Hanford Defense Waste (HDW). The method development was carried out by using Synthetic Hanford Waste (SHW), followed by the analysis of 4 real HDW samples. Hexamethonium bromide (HMB) was used as electroosmotic flow modifier in borate buffer at pH 9.2 to decrease the electroosmotic flow (EOF) in order to enhance the speed of analysis and the resolution of nitrate and nitrite in high ionic strength HDW samples. The application of this capillary zone electrophoresis method, when compared with ion chromatography for two major components of HDW, nitrate and nitrite slightly reduced analysis time, eliminated most pre-analysis handling of the highly radioactive sample, and cut analysis wastes by more than 2 orders of magnitude. The analysis of real HDW samples that were validated by using sample spikes showed a concentration range of 1.03 to 1.42 M for both nitrate. The migration times of the real HDW and the spiked HDW samples were within a precision of less than 3% relative standard deviation. The selectivity ratio test used for peak confirmation of the spiked samples was within 96% of the real sample. Method reliability was tested by spiking the matrix with 72.4 mM nitrate and nitrite. Recoveries for these spiked samples were 93-103%

  2. Remote crane control techniques and closed-circuit television for the U.S. Department of Energy, Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    DaSilva, D.A.

    1988-01-01

    The Defense Waste Processing Facility (DWPF) located at the Savannah River Plant (SRP), South Carolina is a nuclear waste facility being built to vitrify and containerize high level radioactive waste products. DWPF has a unique requirement for an unmanned crane system to install and replace equipment in the high humidity, high radiation and harsh chemical environment of permanently inaccessible processing cells. A radio control system is provided to control a 117 ton capacity bridge crane that is equipped with various power tools for remote handling of crane replaceable and maintained equipment. High resolution black and white closed circuit television (CTV) assemblies mounted on the crane and on the walls of the various processing cells are provided for viewing the equipment during normal operations and maintenance. The main process cell (MPC) crane is designed as the vehicle to be the eyes, ears and hands for remote in-cell operations and maintenance. The crane runs on elevated rails above the process cells. A trailer-like-electrical equipment compartment (EEC) containing control and radio communications equipment for the crane; is dragged along on rails in a heavily shielded corridor by a drag bar mounted to the crane. A two way RF system is the communications link for all control and video signals between the crane and two stationary crane control consoles

  3. Phase I: the pipeline-gas demonstration plant. Demonstration plant engineering and design. Volume 18. Plant Section 2700 - Waste Water Treatment

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-05-01

    Contract No. EF-77-C-01-2542 between Conoco Inc. and the US Department of Energy provides for the design, construction, and operation of a demonstration plant capable of processing bituminous caking coals into clean pipeline quality gas. The project is currently in the design phase (Phase I). This phase is scheduled to be completed in June 1981. One of the major efforts of Phase I is the process and project engineering design of the Demonstration Plant. The design has been completed and is being reported in 24 volumes. This is Volume 18 which reports the design of Plant Section 2700 - Waste Water Treatment. The objective of the Waste Water Treatment system is to collect and treat all plant liquid effluent streams. The system is designed to permit recycle and reuse of the treated waste water. Plant Section 2700 is composed of primary, secondary, and tertiary waste water treatment methods plus an evaporation system which eliminates liquid discharge from the plant. The Waste Water Treatment Section is designed to produce 130 pounds per hour of sludge that is buried in a landfill on the plant site. The evaporated water is condensed and provides a portion of the make-up water to Plant Section 2400 - Cooling Water.

  4. Incorporation of high-level nuclear waste in gel spheres

    International Nuclear Information System (INIS)

    Robinson, S.M.; Arnold, W.D.; Bond, W.D.; Angelini, P.; Stinton, D.P.

    1981-01-01

    Waste sludge is incorporated in gel spheres by the method of internal gelation. Gel spheres containing up to 90 wt % waste have been produced from defense and commercial wastes. A generic cesium-bearing waste form has been developed. Pyrolytic carbon and SiC coatings reduce the leachability of all tested articles to the detection limits

  5. Retrieval process development and enhancements waste simulant compositions and defensibility

    International Nuclear Information System (INIS)

    Powell, M.R.; Golcar, G.R.; Geeting, J.G.H.

    1997-09-01

    The purpose of this report is to document the physical waste simulant development efforts of the EM-50 Tanks Focus Area at the Hanford Site. Waste simulants are used in the testing and development of waste treatment and handling processes because performing such tests using actual tank waste is hazardous and prohibitively expensive. This document addresses the simulant development work that supports the testing of waste retrieval processes using simulants that mimic certain key physical properties of the tank waste. Development and testing of chemical simulants are described elsewhere. This work was funded through the EM-50 Tanks Focus Area as part of the Retrieval Process Development and Enhancements (RPD ampersand E) Project at the Pacific Northwest National Laboratory (PNNL). The mission of RPD ampersand E is to understand retrieval processes, including emerging and existing processes, gather performance data on those processes, and relate the data to specific tank problems to provide end users with the requisite technical bases to make retrieval and closure decisions. Physical simulants are prepared using relatively nonhazardous and inexpensive materials rather than the chemicals known to be in tank waste. Consequently, only some of the waste properties are matched by the simulant. Deciding which properties need to be matched and which do not requires a detailed knowledge of the physics of the process to be tested using the simulant. Developing this knowledge requires reviews of available literature, consultation with experts, and parametric tests. Once the relevant properties are identified, waste characterization data are reviewed to establish the target ranges for each property. Simulants are then developed that possess the desired ranges of properties

  6. Wastes from plutonium conversion and scrap recovery operations

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, D.C.; Bowersox, D.F.; McKerley, B.J.; Nance, R.L.

    1988-03-01

    This report deals with the handling of defense-related wastes associated with plutonium processing. It first defines the different waste categories along with the techniques used to assess waste content. It then discusses the various treatment approaches used in recovering plutonium from scrap. Next, it addresses the various waste management approaches necessary to handle all wastes. Finally, there is a discussion of some future areas for processing with emphasis on waste reduction. 91 refs., 25 figs., 4 tabs.

  7. Wastes from plutonium conversion and scrap recovery operations

    International Nuclear Information System (INIS)

    Christensen, D.C.; Bowersox, D.F.; McKerley, B.J.; Nance, R.L.

    1988-03-01

    This report deals with the handling of defense-related wastes associated with plutonium processing. It first defines the different waste categories along with the techniques used to assess waste content. It then discusses the various treatment approaches used in recovering plutonium from scrap. Next, it addresses the various waste management approaches necessary to handle all wastes. Finally, there is a discussion of some future areas for processing with emphasis on waste reduction. 91 refs., 25 figs., 4 tabs

  8. Engineered waste-package-system design specification

    International Nuclear Information System (INIS)

    1983-05-01

    This report documents the waste package performance requirements and geologic and waste form data bases used in developing the conceptual designs for waste packages for salt, tuff, and basalt geologies. The data base reflects the latest geotechnical information on the geologic media of interest. The parameters or characteristics specified primarily cover spent fuel, defense high-level waste, and commercial high-level waste forms. The specification documents the direction taken during the conceptual design activity. A separate design specification will be developed prior to the start of the preliminary design activity

  9. Hanford Waste Vitrification Plant Quality Assurance Program description for high-level waste form development and qualification

    International Nuclear Information System (INIS)

    1993-08-01

    The Hanford Waste Vitrification Plant Project has been established to convert the high-level radioactive waste associated with nuclear defense production at the Hanford Site into a waste form suitable for disposal in a deep geologic repository. The Hanford Waste Vitrification Plant will mix processed radioactive waste with borosilicate material, then heat the mixture to its melting point (vitrification) to forin a glass-like substance that traps the radionuclides in the glass matrix upon cooling. The Hanford Waste Vitrification Plant Quality Assurance Program has been established to support the mission of the Hanford Waste Vitrification Plant. This Quality Assurance Program Description has been written to document the Hanford Waste Vitrification Plant Quality Assurance Program

  10. Nuclear waste: Department of Energy's Transuranic Waste Disposal Plan needs revision

    International Nuclear Information System (INIS)

    1986-01-01

    Transuranic waste consists of discarded tools, rags, machinery, paper, sheet metal, and glass containing man-made radioactive elements that can be dangerous if inhaled, ingested, or absorbed into the body through an open wound. GAO found that the Defense Waste Management Plan does not provide the Congress with complete inventory and cost data or details on environmental and safety issues related to the permanent disposal of TRU waste; the Plan's $2.8 billion costs are understated by at least $300 million. Further, it does not include costs for disposing of buried waste, contaminated soil, and TRU waste that may not be accepted at the Waste Isolation Pilot Plant. Lastly, the Plan provides no details on the environmental and safety issues related to the permanent disposal of TRU waste, nor does it discuss the types of or timing for environmental analyses needed before WIPP starts operating

  11. Hanford Waste Vitrification Plant quality assurance program description for defense high-level waste form development and qualification

    International Nuclear Information System (INIS)

    Hand, R.L.

    1990-12-01

    The US Department of Energy-Office of Civilian Radioactive Waste Management has been designated the national high-level waste repository licensee and the recipient for the canistered waste forms. The Office of Waste Operations executes overall responsibility for producing the canistered waste form. The Hanford Waste Vitrification Plant Project, as part of the waste form producer organization, consists of a vertical relationship. Overall control is provided by the US Department of Energy-Environmental Restoration and Waste Management Headquarters; with the US Department of Energy-Office of Waste Operations; the US Department of Energy- Headquarters/Vitrification Project Branch; the US Department of Energy-Richland Operations Office/Vitrification Project Office; and the Westinghouse Hanford Company, operations and engineering contractor. This document has been prepared in response to direction from the US Department of Energy-Office of Civilian Radioactive Waste Management through the US Department of Energy-Richland Operations Office for a quality assurance program that meets the requirements of the US Department of Energy. This document provides guidance and direction for implementing a quality assurance program that applies to the Hanford Waste Vitrification Plant Project. The Hanford Waste Vitrification Plant Project management commits to implementing the quality assurance program activities; reviewing the program periodically, and revising it as necessary to keep it current and effective. 12 refs., 6 figs., 1 tab

  12. Science, society, and America's nuclear waste: Unit 1, Nuclear waste

    International Nuclear Information System (INIS)

    1992-01-01

    This is unit 1 in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  13. Hanford Waste Vitrification Plant technology progress

    International Nuclear Information System (INIS)

    Wolfe, B.A.; Scott, J.L.; Allen, C.R.

    1989-10-01

    The Hanford Waste Vitrification Plant (HWVP) is currently being designed to safely process and temporarily store immobilized defense liquid high-level wastes from the Hanford Site. These wastes will be immobilized in a borosilicate glass waste form in the HWVP and stored onsite until a qualified geologic waste repository is ready for permanent disposal. Because of the diversity of wastes to be disposed of, specific technical issues are being addressed so that the plant can be designed and operated to produce a waste form that meets the requirements for permanent disposal in a geologic repository. This paper reports the progress to date in addressing these issues. 2 figs., 3 tabs

  14. 76 FR 13297 - Defense Federal Acquisition Regulation Supplement; Technical Amendments

    Science.gov (United States)

    2011-03-11

    ... 215 Government procurement. Ynette R. Shelkin, Editor, Defense Acquisition Regulations System... Director, Defense Procurement and Acquisition Policy. DATES: Effective Date: March 11, 2011. Applicability... adding a section at 215.300 with a reference to Director, Defense Procurement and Acquisition Policy...

  15. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    1992-01-01

    This is unit 4 (The Waste Management System) in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  16. HORIZONTAL LIFTING OF 5 DHLW/DOE LONG, 12-PWR LONG AND 24-BWR WASTE PACKAGES

    International Nuclear Information System (INIS)

    V. de la Brosse

    2001-01-01

    The objective of this calculation was to determine the structural response of a 12-Pressurized Water Reactor (PWR) Long, a 24-Boiling Water Reactor (BWR) and a 5-Defense High Level Waste/Department of Energy (DHLW/DOE)--Long spent nuclear fuel waste packages lifted in a horizontal position. The scope of this calculation was limited to reporting the calculation results in terms of maximum stress intensities in the trunnion collar sleeves. In addition, the maximum stress intensities in the inner and outer shells of the waste packages were presented for illustrative purposes. The information provided by the sketches (Attachments I, II and III) is that of the potential design of the types of waste packages considered in this calculation, and all obtained results are valid for these designs only. This calculation is associated with the waste package design and was performed by the Waste Package Design Section in accordance with the ''Technical work plan for: Waste Package Design Description for LA'' (Ref. 7). AP-3.12Q, Calculations (Ref. 13), was used to perform the calculation and develop the document

  17. Measuring Stability and Security in Iraq: Report to Congress in Accordance with the Department of Defense Appropriations Act 2007 (Section 9010, Public Law 109-289)

    National Research Council Canada - National Science Library

    2006-01-01

    This report to Congress includes specific performance indicators and measures of progress toward political, economic, and security stability in Iraq, as directed in Section 9010, DoD Defense Appropriations Act 2007...

  18. Application of the iron-enriched basalt waste form for immobilizing commercial transuranic waste

    International Nuclear Information System (INIS)

    Owen, D.E.

    1981-08-01

    The principal sources of commercial transuranic (TRU) waste in the United States are identified. The physical and chemical nature of the wastes from these sources are discussed. The fabrication technique and properties of iron-enriched basalt, a rock-like waste form developed for immobilizing defense TRU wastes, are discussed. The application of iron-enriched basalt to commercial TRU wastes is discussed. Review of commercial TRU wastes from mixed-oxide fuel fabrication, light water reactor fuel reprocessing, and miscellaneous medical, research, and industrial sources, indicates that iron-enriched basalt is suitable for most types of commercial TRU wastes. Noncombustible TRU wastes are dissolved in the high temperature, oxidizing iron-enriched basalt melt. Combustible TRU wastes are immobilized in iron-enriched basalt by incinerating the wastes and adding the TRU-bearing ash to the melt. Casting and controlled cooling of the melt produces a devitrified, rock-like iron-enriched basalt monolith. Recommendations are given for testing the applicability of iron-enriched basalt to commercial TRU wastes

  19. Defense Acquisition Reform: Background, Analysis, and Issues for Congress

    Science.gov (United States)

    2014-05-23

    provided to CRS by Semiconductor Industry, October, 2013. 33 Zachary Fryer- Biggs , “Looking Beyond Defense: Firms Grow Revenue—By Diversifying,” DefenseNews...was chartered based on the authority set forth in Section 854 of the John Warner National Defense Authorization Act for 2007 (P.L. 109-364). See...Secretary of Defense for Acquisition, Technology, and Logistics John Young echoed this sentiment, stating “the enterprise will often pressure acquisition

  20. Hanford Waste Management Plan, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The purpose of the Hanford Waste Management Plan (HWMP) is to provide an integrated plan for the safe storage, interim management, and disposal of existing waste sites and current and future waste streams at the Hanford Site. The emphasis of this plan is, however, on the disposal of Hanford Site waste. The plans presented in the HWMP are consistent with the preferred alternative which is based on consideration of comments received from the public and agencies on the draft Hanford Defense Waste Environmental Impact Statement (HDW-EIS). Low-level waste was not included in the draft HDW-EIS whereas it is included in this plan. The preferred alternative includes disposal of double-shell tank waste, retrievably stored and newly generated TRU waste, one pre-1970 TRU solid waste site near the Columbia River and encapsulated cesium and strontium waste

  1. 76 FR 14589 - Defense Federal Acquisition Regulation Supplement; Repeal of Restriction on Ballistic Missile...

    Science.gov (United States)

    2011-03-17

    ...-AH18 Defense Federal Acquisition Regulation Supplement; Repeal of Restriction on Ballistic Missile...). Section 222 repeals the restriction on purchase of Ballistic Missile Defense research, development, test... Ballistic Missile Defense research, development, test, and evaluation that was required by section 222 of...

  2. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    International Nuclear Information System (INIS)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-01-01

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL's Program is utilizing nearly all areas in PMI's Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?'' and ''How are you approaching similar challenges?'' will be questions for a dialog with the audience

  3. Preliminary assessment of the controlled release of radionuclides from waste packages containing borosilicate waste glass

    International Nuclear Information System (INIS)

    Strachan, D.M.; McGrail, B.P.; Apted, M.J.; Engle, D.W.; Eslinger, P.W.

    1990-06-01

    The purpose of this report is to provide a preliminary assessment of the release-rate for an engineered barriers subsystem (EBS) containing waste packages of defense high-level waste borosilicate glass at geochemical and hydrological conditions similar to the those at Yucca Mountain. The relationship between the proposed Waste Acceptance Preliminary Specifications (WAPS) test of glass- dissolution rate and compliance with the NRC's release-rate criterion is also evaluated. Calculations are reported for three hierarchical levels: EBS analysis, waste-package analysis, and waste-glass analysis. The following conclusions identify those factors that most acutely affect the magnitude of, or uncertainty in, release-rate performance

  4. Disposal of Savannah River Plant waste salt

    International Nuclear Information System (INIS)

    Dukes, M.D.

    1982-01-01

    Approximately 26-million gallons of soluble low-level waste salts will be produced during solidification of 6-million gallons of high-level defense waste in the proposed Defense Waste Processing Facility (DWPF) at the Savannah River Plant (SRP). Soluble wastes (primarily NaNO 3 , NaNO 2 , and NaOH) stored in the waste tanks will be decontaminated by ion exchange and solidified in concrete. The resulting salt-concrete mixture, saltcrete, will be placed in a landfill on the plantsite such that all applicable federal and state disposal criteria are met. Proposed NRC guidelines for the disposal of waste with the radionuclide content of SRP salt would permit shallow land burial. Federal and state rules require that potentially hazardous chemical wastes (mainly nitrate-nitrate salts in the saltcrete) be contained to the degree necessary to meet drinking water standards in the ground water beneath the landfill boundary. This paper describes the proposed saltcrete landfill and tests under way to ensure that the landfill will meet these criteria. The work includes laboratory and field tests of the saltcrete itself, a field test of a one-tenth linear scale model of the entire landfill system, and a numerical model of the system

  5. Waste Package and Material Testing for the Proposed Yucca Mountain High Level Waste Repository

    International Nuclear Information System (INIS)

    Doering, Thomas; Pasupathi, V.

    2002-01-01

    Over the repository lifetime, the waste package containment barriers will perform various functions that will change with time. During the operational period, the barriers will function as vessels for handling, emplacement, and waste retrieval (if necessary). During the years following repository closure, the containment barriers will be relied upon to provide substantially complete containment, through 10,000 years and beyond. Following the substantially complete containment phase, the barriers and the waste package internal structures help minimize release of radionuclides by aqueous- and gaseous-phase transport. These requirements have lead to a defense-in-depth design philosophy. A multi-barrier design will result in a lower breach rate distributed over a longer period of time, thereby ensuring the regulatory requirements are met. The design of the Engineered Barrier System (EBS) has evolved. The initial waste package design was a thin walled package, 3/8 inch of stainless steel 304, that had very limited capacity, (3 PWR and 4 BWR assemblies) and performance characteristics, 300 to 1,000 years. This design required over 35,000 waste packages compared to today's design of just over 10,000 waste packages. The waste package designs are now based on a defense-in-depth/multi-barrier philosophy and have a capacity similar to the standard storage and rail transported spent nuclear fuel casks. Concurrent with the development of the design of the waste packages, a comprehensive waste package materials testing program has been undertaken to support the selection of containment barrier materials and to develop predictive models for the long-term behavior of these materials under expected repository conditions. The testing program includes both long-term and short-term tests and the results from these tests combination with the data published in the open literature are being used to develop models for predicting performance of the waste packages

  6. Implementation plan for the Defense Nuclear Facilities Safety Board Recommendation 90-7

    International Nuclear Information System (INIS)

    Borsheim, G.L.; Cash, R.J.; Dukelow, G.T.

    1992-12-01

    This document revises the original plan submitted in March 1991 for implementing the recommendations made by the Defense Nuclear Facilities Safety Board in their Recommendation 90-7 to the US Department of Energy. Recommendation 90-7 addresses safety issues of concern for 24 single-shell, high-level radioactive waste tanks containing ferrocyanide compounds at the Hanford Site. The waste in these tanks is a potential safety concern because, under certain conditions involving elevated temperatures and low concentrations of nonparticipating diluents, ferrocyanide compounds in the presence of oxidizing materials can undergo a runaway (propagating) chemical reaction. This document describes those activities underway by the Hanford Site contractor responsible for waste tank safety that address each of the six parts of Defense Nuclear Facilities Safety Board Recommendation 90-7. This document also identifies the progress made on these activities since the beginning of the ferrocyanide safety program in September 1990. Revised schedules for planned activities are also included

  7. DEFENSE ACQUISITIONS: Collection and Reporting of Information Technology Purchases

    National Research Council Canada - National Science Library

    2002-01-01

    ... of Representatives by March 15,2002. Section 812 also directed us to issue a report to the congressional defense committees by January 31,2002, assessing the progress the Department of Defense (DOD...

  8. Waste management - sewage - special wastes

    International Nuclear Information System (INIS)

    1987-01-01

    The 27 papers represent a cross-section of the subject waste management. Particular attention is paid to the following themes: waste avoidance, waste product utilization, household wastes, dumping technology, sewage sludge treatments, special wastes, seepage from hazardous waste dumps, radioactive wastes, hospital wastes, purification of flue gas from waste combustion plants, flue gas purification and heavy metals, as well as combined sewage sludge and waste product utilization. The examples given relate to plants in Germany and other European countries. 12 papers have been separately recorded in the data base. (DG) [de

  9. Development, evaluation, and selection of candidate high-level waste forms

    International Nuclear Information System (INIS)

    Bernadzikowski, T.A.; Allender, J.S.; Gordon, D.E.; Gould, T.H. Jr.

    1982-01-01

    The seven candidate waste forms, evaluated as potential media for the immobilization and gelogic disposal of high-level nuclear wastes were borosilicate glass, SYNROC, tailored ceramic, high-silica glass, FUETAP concrete, coated sol-gel particles, and glass marbles in a lead matrix. The evaluation, completed on August 1, 1981, combined preliminary waste form evaluations conducted at Department of Energy (DOE) defense waste-sites and at independent laboratories, peer review assessments, a product performance evaluation, and a processability analysis. Based on the combined results of these four inputs, two of the seven forms, borosilicate glass and a titanate-based ceramic, SYNROC, were selected as the reference and alternative forms, respectively, for continued development and evaluation in the National HLW Program. The borosilicate glass and ceramic forms were further compared during FY-1982 on the basis of risk assessments, cost comparisons, properties comparisons, and conformance with proposed regulatory and repository criteria. Both the glass and ceramic forms are viable candidates for use at DOE defense HLW sites; they are also candidates for immobilization of commercial reprocessing wastes. This paper describes the waste form screening process, discusses each of the four major inputs considered in the selection of the two forms in 1981, and presents a brief summary of the comparisons of the two forms during 1982 and the selection process to determine the final form for SRP defense HLW

  10. Verifying generator waste certification: NTS waste characterization QA requirements

    International Nuclear Information System (INIS)

    Williams, R.E.; Brich, R.F.

    1988-01-01

    Waste management activities managed by the US Department of Energy (DOE) at the Nevada Test Site (NTS) include the disposal of low-level wastes (LLW) and mixed waste (MW), waste which is both radioactive and hazardous. A majority of the packaged LLW is received from offsite DOE generators. Interim status for receipt of MW at the NTS Area 5 Radioactive Waste Management Site (RWMS) was received from the state of Nevada in 1987. The RWMS Mixed Waste Management Facility (MWMF) is expected to be operational in 1988 for approved DOE MW generators. The Nevada Test Site Defense Waste Acceptance Criteria and Certification Requirements (NVO-185, Revision 5) delineates waste acceptance criteria for waste disposal at the NTS. Regulation of the hazardous component of mixed waste requires the implementation of US Environmental Protection Agency (EPA) requirements pursuant to the Resource Conservation and Recovery Act (RCRA). Waste generators must implement a waste certification program to provide assurance that the disposal site waste acceptance criteria are met. The DOE/Nevada Operations Office (NV) developed guidance for generator waste certification program plans. Periodic technical audits are conducted by DOE/NV to assess performance of the waste certification programs. The audit scope is patterned from the waste certification program plan guidance as it integrates and provides a common format for the applicable criteria. The criteria focus on items and activities critical to processing, characterizing, packaging, certifying, and shipping waste

  11. Modeling by GASP-IV simulation of high-level nuclear waste disposal

    International Nuclear Information System (INIS)

    Kurstedt, H.A. Jr.; DePorter, E.L.; Turek, J.L.; Funk, S.K.; Rasbach, C.E.

    1981-01-01

    High-level nuclear waste generated by defense-oriented and commercial nuclear energy activities are to be stored ultimately in underground repositories. Research continues on the waste-form and waste-form processing. DOE managers must coordinate the results of this research, the capacities and availability times of the permanent geologic storage repositories, and the capacities and availability times of interim storage facilities (pending availability of permanent repositories). Comprehensive and active DOE program-management information systems contain predicted generation of nuclear wastes from defense and commercial activities; milestones on research on waste-forms; and milestones on research and development, design, acquisition, and construction of facilities and repositories. A GASP IV simulation model is presented which interfaces all of these data. The model accepts alternate management decisions; relates all critical milestones, all research and development data, and the generation of waste nuclear materials; simulates the passage of time; then, predicts the impact of those alternate decisions on the availability of storage capacity for waste nuclear materials. 3 references, 3 figures

  12. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1992-01-01

    This is the 3rd unit, (The Nuclear Waste Policy Act) a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  13. Basic Data Report -- Defense Waste Processing Facility Sludge Plant, Savannah River Plant 200-S Area

    Energy Technology Data Exchange (ETDEWEB)

    Amerine, D.B.

    1982-09-01

    This Basic Data Report for the Defense Waste Processing Facility (DWPF)--Sludge Plant was prepared to supplement the Technical Data Summary. Jointly, the two reports were intended to form the basis for the design and construction of the DWPF. To the extent that conflicting information may appear, the Basic Data Report takes precedence over the Technical Data Summary. It describes project objectives and design requirements. Pertinent data on the geology, hydrology, and climate of the site are included. Functions and requirements of the major structures are described to provide guidance in the design of the facilities. Revision 9 of the Basic Data Report was prepared to eliminate inconsistencies between the Technical Data Summary, Basic Data Report and Scopes of Work which were used to prepare the September, 1982 updated CAB. Concurrently, pertinent data (material balance, curie balance, etc.) have also been placed in the Basic Data Report. It is intended that these balances be used as a basis for the continuing design of the DWPF even though minor revisions may be made in these balances in future revisions to the Technical Data Summary.

  14. Science, society, and America's nuclear waste: Unit 4, The waste management system

    International Nuclear Information System (INIS)

    1992-01-01

    This is the teachers guide to unit 4, (The Waste Management System), of a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear powerplants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  15. Evaluation and compilation of DOE waste package test data: Biannual report, August 1986-January 1987

    International Nuclear Information System (INIS)

    Interrante, C.; Escalante, E.; Fraker, A.; Harrison, S.; Shull, R.; Linzer, M.; Ricker, R.; Ruspi, J.

    1987-10-01

    This report summarizes results of the National Bureau of Standards (NBS) evaluations of Department of Energy (DOE) activities on waste packages designed for containment of radioactive high-level nuclear waste (HLW). The waste package is a proposed engineered barrier that is part of a permanent repository for HLW. Metal alloys are the principal barriers within the engineered system. Technical discussions are given for the corrosion of metals proposed for the canister, particularly carbon and stainless steels, and copper. In the section on tuff, the current level of understanding of several canister materials is questioned. Within the Basalt Waste Isolation Project (BWIP) section, discussions are given on problems concerning groundwater, materials for use in the metallic overpack, and diffusion through the packing. For the proposed salt site, questions are raised on the work on both ASTM A216 Steel and Ti-Code 12. NBS work related to the vitrification of HLW borosilicate glass at the West Valley Demonstration Project (WVDP) and the Defense Waste Processing Facility (DWPF) is covered. NBS reviews of selected DOE technical reports and a summary of current waste-package activities of the Materials Characterization Center (MCC) is presented. Using a database management system, a computerized database for storage and retrieval of reviews and evaluations of HLW data has been developed and is described. 17 refs., 2 figs., 2 tabs

  16. Review of the WIPP draft application to show compliance with EPA transuranic waste disposal standards

    Energy Technology Data Exchange (ETDEWEB)

    Neill, R.H.; Chaturvedi, L.; Clemo, T.M. [and others

    1996-03-01

    The purpose of the New Mexico Environmental Evaluation Group (EEG) is to conduct an independent technical evaluation of the Waste Isolation Pilot Plant (WIPP) Project to ensure the protection of the public health and safety and the environment. The WIPP Project, located in southeastern New Mexico, is being constructed as a repository for the disposal of transuranic (TRU) radioactive wastes generated by the national defense programs. The EEG was established in 1978 with funds provided by the U.S. Department of Energy (DOE) to the State of New Mexico. Public Law 100-456, the National Defense Authorization Act, Fiscal Year 1989, Section 1433, assigned EEG to the New Mexico Institute of Mining and Technology and continued the original contract DE-AC04-79AL10752 through DOE contract DE-AC04-89AL58309. The National Defense Authorization Act for Fiscal Year 1994, Public Law 103-160, continues the authorization. EEG performs independent technical analyses of the suitability of the proposed site; the design of the repository, its planned operation, and its long-term integrity; suitability and safety of the transportation systems; suitability of the Waste Acceptance Criteria and the generator sites` compliance with them; and related subjects. These analyses include assessments of reports issued by the DOE and its contractors, other federal agencies and organizations, as they relate to the potential health, safety and environmental impacts from WIPP. Another important function of EEG is the independent environmental monitoring of background radioactivity in air, water, and soil, both on-site and off-site.

  17. Review of the WIPP draft application to show compliance with EPA transuranic waste disposal standards

    International Nuclear Information System (INIS)

    Neill, R.H.; Chaturvedi, L.; Clemo, T.M.

    1996-03-01

    The purpose of the New Mexico Environmental Evaluation Group (EEG) is to conduct an independent technical evaluation of the Waste Isolation Pilot Plant (WIPP) Project to ensure the protection of the public health and safety and the environment. The WIPP Project, located in southeastern New Mexico, is being constructed as a repository for the disposal of transuranic (TRU) radioactive wastes generated by the national defense programs. The EEG was established in 1978 with funds provided by the U.S. Department of Energy (DOE) to the State of New Mexico. Public Law 100-456, the National Defense Authorization Act, Fiscal Year 1989, Section 1433, assigned EEG to the New Mexico Institute of Mining and Technology and continued the original contract DE-AC04-79AL10752 through DOE contract DE-AC04-89AL58309. The National Defense Authorization Act for Fiscal Year 1994, Public Law 103-160, continues the authorization. EEG performs independent technical analyses of the suitability of the proposed site; the design of the repository, its planned operation, and its long-term integrity; suitability and safety of the transportation systems; suitability of the Waste Acceptance Criteria and the generator sites' compliance with them; and related subjects. These analyses include assessments of reports issued by the DOE and its contractors, other federal agencies and organizations, as they relate to the potential health, safety and environmental impacts from WIPP. Another important function of EEG is the independent environmental monitoring of background radioactivity in air, water, and soil, both on-site and off-site

  18. Section 10: Ground Water - Waste Characteristics & Targets

    Science.gov (United States)

    HRS Training. The waste characteristics factor category in the ground water pathway is made up of two components: the toxicity/mobility of the most hazardous substance associated with the site and the hazardous waste quantity at the site.

  19. Feed Materials Production Center waste management plan (Revision to NLCO-1100, R.6)

    International Nuclear Information System (INIS)

    Watts, R.E.; Allen, T.; Castle, S.A.; Hopper, J.P.; Oelrich, R.L.

    1986-01-01

    In the process of producing uranium metal products used in Department of Energy (DOE) defense programs at other DOE facilities, various types of wastes are generated at the Feed Materials Production Center (FMPC). Process wastes, both generated and stored, are discussed in the Waste Management Plan and include low-level radioactive waste (LLW), mixed hazardous/radioactive waste, and sanitary/industrial waste. Scrap metal waste and wastes requiring special remediation are also addressed in the Plan. The Waste Management Plan identifies the comprehensive programs developed to address safe storage and disposition of all wastes from past, present, and future operations at the FMPC. Waste streams discussed in this Plan are representative of the wastes generated and waste types that concern worker and public health and safety. Budgets and schedules for implementation of waste disposition are also addressed. The waste streams receiving the largest amount of funding include LLW approved for shipment by DOE/ORO to the Nevada Test Site (NTS) (MgF 2 , slag leach filter cake, and neutralized raffinate); remedial action wastes (waste pits, K-65 silo waste); thorium; scrap metal (contaminated and noncontaminated ferrous and copper scrap); construction rubble and soil generated from decontamination and decommissioning of outdated facilities; and low-level wastes that will be handled through the Low-Level Waste Processing and Shipping System (LLWPSS). Waste Management milestones are also provided. The Waste Management Plan is divided into eight major sections: Introduction; Site Waste and Waste Generating Process; Strategy; Projects and Operations; Waste Stream Budgets; Milestones; Quality Assurance for Waste Management; and Environmental Monitoring Program

  20. Hanford site waste tank characterization

    International Nuclear Information System (INIS)

    De Lorenzo, D.S.; Simpson, B.C.

    1994-08-01

    This paper describes the on-going work in the characterization of the Hanford-Site high-level waste tanks. The waste in these tanks was produced as part of the nuclear weapons materials processing mission that occupied the Hanford Site for the first 40 years of its existence. Detailed and defensible characterization of the tank wastes is required to guide retrieval, pretreatment, and disposal technology development, to address waste stability and reactivity concerns, and to satisfy the compliance criteria for the various regulatory agencies overseeing activities at the Hanford Site. The resulting Tank Characterization Reports fulfill these needs, as well as satisfy the tank waste characterization milestones in the Hanford Federal Facility Agreement and Consent Order

  1. Commercial nuclear-waste management

    International Nuclear Information System (INIS)

    Andress, D.A.

    1981-04-01

    This report is primarily concerned with nuclear waste generated by commercial power operations. It is clear, however, that the total generation of commercial nuclear waste does not tell the whole story, there are sizeable stockpiles of defense nuclear wastes which will impact areas such as total nuclide exposure to the biosphere and the overall economics of waste disposal. The effects of these other nuclear waste streams can be factored in as exogenous inputs. Their generation is essentially independent of nuclear power operations. The objective of this report is to assess the real-world problems associated with nuclear waste management and to design the analytical framework, as appropriate, for handling nuclear waste management issues in the International Nuclear Model. As such, some issues that are not inherently quantifiable, such as the development of environmental Impact Statements to satisfy the National Environmental Protection Act requirements, are only briefly mentioned, if at all

  2. Recent developments in the DOE Waste Minimization Pollution Prevention Program

    International Nuclear Information System (INIS)

    Hancock, J.K.

    1993-01-01

    The U.S. Department of Energy (DOE) is involved in a wide variety of research and development, remediation, and production activities at more than 100 sites throughout the United States. The wastes generated cover a diverse spectrum of sanitary, hazardous, and radioactive waste streams, including typical office environments, power generation facilities, laboratories, remediation sites, production facilities, and defense facilities. The DOE's initial waste minimization activities pre-date the Pollution Prevention Act of 1990 and focused on the defense program. Little emphasis was placed on nonproduction activities. In 1991 the Office of Waste Management Operations developed the Waste Minimization Division with the intention of coordinating and expanding the waste minimization pollution prevention approach to the entire complex. The diverse nature of DOE activities has led to several unique problems in addressing the needs of waste minimization and pollution prevention. The first problem is developing a program that addresses the geographical and institutional hurdles that exist; the second is developing a monitoring and reporting mechanism that one can use to assess the overall performance of the program

  3. Overview of mixed waste issues at the Department of Energy defense installations

    International Nuclear Information System (INIS)

    Mezga, L.J.; Eisenhower, B.M.

    1988-01-01

    Due to the /open quotes/double hazard/close quotes/ associated with these waste materials, the ability to manage these mixed wastes has been somewhat limited. The unavailability of acceptable and proven treatment and/or disposal systems has forced the Department of Energy (DOE) installations to place these materials in storage. The limited capacity of permitted storage areas and the desire to move forward in the overall waste management cycle have placed an increased emphasis on the need to develop treatment/disposal technologies for mixed wastes. Programs have been initiated by contractors who operate the DOE installations to provide the technical basis for selecting technologies to render these wastes nonhazardous through treatment by destroying the hazardous constituent, to separate the hazardous constituents from the radioactive constituents, to treat the wastes and place them in a form that will meet EPA requirements to be classified as nonhazardous, and to provide facilities for the disposal of wastes which cannot be changed into a nonhazardous form. These wastes include a variety of materials such as chlorinated solvents and waste oils contaminated with uranium or fission products, liquid scintillation wastes, and sludges from wastewater treatment plants contaminated with uranium or fission products. By volume, the largest mixed waste streams are the contaminated wastewater treatment sludges. Plans for the management of the major categories of mixed waste are presented below. More detailed information on plans for specific waste streams is presented in the paper

  4. 29 CFR 570.128 - Good faith defense.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 3 2010-07-01 2010-07-01 false Good faith defense. 570.128 Section 570.128 Labor... Provisions of the Fair Labor Standards Act of 1938, as Amended Enforcement § 570.128 Good faith defense. Link... commerce goods which he acquired in good faith in reliance on written assurance from the producer...

  5. Precipitation affects plant communication and defense.

    Science.gov (United States)

    Pezzola, Enrico; Mancuso, Stefano; Karban, Richard

    2017-06-01

    Anti-herbivore defense shows high levels of both inter- and intraspecific variability. Defending against herbivores may be costly to the plant when it requires a tradeoff in allocation between defense and other missed opportunities, such as reproduction. Indeed, the plastic expression of defensive traits allows the plant to invest resources in defense only when the risk of being damaged actually increases, avoiding wasted resources. Plants may assess risk by responding to volatile cues emitted by neighbors that are under attack. Most plastic responses likely depend on environmental conditions. In this experiment, we investigated the effect of water availability on resistance induced by volatile cues in sagebrush. We found that plants receiving additional water over summer and/or volatile cues from neighbor donor plants showed reduced herbivore damage compared to control plants. Interestingly, we found no evidence of interactions between additional water and volatile cues. We performed an inferential analysis comparing historical records of the levels of herbivore damage during different years that had different temperature and precipitation accumulations. Results confirmed findings from the experiment, as the regression model indicated that sagebrush was better defended during wetter and hotter seasons. Reports from the literature indicated that sagebrush is extremely sensitive to water availability in the soil. We suggest that water availability may directly affect resistance of herbivory as well as sensitivity to cues of damage. Costs and benefits of allocating resources to defensive traits may vary with environmental conditions. © 2017 by the Ecological Society of America.

  6. Cermet high level waste forms: a pregress report

    International Nuclear Information System (INIS)

    Aaron, W.S.; Quinby, T.C.; Kobisk, E.H.

    1978-06-01

    The fixation of high level radioactive waste from both commercial and DOE defense sources as cermets is currently under study. This waste form consists of a continuous iron-nickel base metal matrix containing small particles of fission product oxides. Preliminary evaluations of cermets fabricated from a variety of simulated wastes indicate they possess properties providing advantages over other waste forms presently being considered, namely thermal conductivity, waste loading levels, and leach resistance. This report describes the progress of this effort, to date, since its initiation in 1977

  7. Acceptable Knowledge Summary Report for Waste Stream: SR-T001-221F-HET/Drums

    Energy Technology Data Exchange (ETDEWEB)

    Lunsford, G.F.

    1998-10-26

    Since beginning operations in 1954, the Savannah River Site FB-Line produced Weapons Grade Plutonium for the United States National Defense Program. The facility mission was mainly to process dilute plutonium solution received from the 221-F Canyon into highly purified plutonium metal. As a result of various activities (maintenance, repair, clean up, etc.) in support of the mission, the facility generated a transuranic heterogeneous debris waste stream. Prior to January 25, 1990, the waste stream was considered suspect mixed transuranic waste (based on potential for inclusion of F-Listed solvent rags/wipes) and is not included in this characterization. Beginning January 25, 1990, Savannah River Site began segregation of rags and wipes containing F-Listed solvents thus creating a mixed transuranic waste stream and a non-mixed transuranic waste stream. This characterization addresses the non-mixed transuranic waste stream packaged in 55-gallon drums after January 25, 1990.Characterization of the waste stream was achieved using knowledge of process operations, facility safety basis documentation, facility specific waste management procedures and storage / disposal records. The report is fully responsive to the requirements of Section 4.0 "Acceptable Knowledge" from the WIPP Transuranic Waste Characterization Quality Assurance Plan, CAO-94-1010, and provides a sound, (and auditable) characterization that satisfies the WIPP criteria for Acceptable Knowledge.

  8. Application of accident progression event tree technology to the Savannah River Site Defense Waste Processing Facility SAR analysis

    International Nuclear Information System (INIS)

    Brandyberry, M.D.; Baker, W.H.; Wittman, R.S.; Amos, C.N.

    1993-01-01

    The Accident Analysis in the Safety Analysis Report (SAR) for the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF) has recently undergone an upgrade. Non-reactor SARs at SRS (and other Department of Energy (DOE) sites) use probabilistic techniques to assess the frequency of accidents at their facilities. This paper describes the application of an extension of the Accident Progression Event Tree (APET) approach to accidents at the SRS DWPF. The APET technique allows an integrated model of the facility risk to be developed, where previous probabilistic accident analyses have been limited to the quantification of the frequency and consequences of individual accident scenarios treated independently. Use of an APET allows a more structured approach, incorporating both the treatment of initiators that are common to more than one accident, and of accident progression at the facility

  9. Ferrocyanide Safety Project: Comparison of actual and simulated ferrocyanide waste properties

    International Nuclear Information System (INIS)

    Scheele, R.D.; Burger, L.L.; Sell, R.L.; Bredt, P.R.; Barrington, R.J.

    1994-09-01

    In the 1950s, additional high-level radioactive waste storage capacity was needed to accommodate the wastes that would result from the production of recovery of additional nuclear defense materials. To provide this additional waste storage capacity, the Hanford Site operating contractor developed a process to decontaminate aqueous wastes by precipitating radiocesium as an alkali nickel ferrocyanide; this process allowed disposal of the aqueous waste. The radiocesium scavenging process as developed was used to decontaminate (1) first-cycle bismuth phosphate (BiPO 4 ) wastes, (2) acidic wastes resulting from uranium recovery operations, and (3) the supernate from neutralized uranium recovery wastes. The radiocesium scavenging process was often coupled with other scavenging processes to remove radiostrontium and radiocobalt. Because all defense materials recovery processes used nitric acid solutions, all of the wastes contained nitrate, which is a strong oxidizer. The variety of wastes treated, and the occasional coupling of radiostrontium and radiocobalt scavenging processes with the radiocesium scavenging process, resulted in ferrocyanide-bearing wastes having many different compositions. In this report, we compare selected physical, chemical, and radiochemical properties measured for Tanks C-109 and C-112 wastes and selected physical and chemical properties of simulated ferrocyanide wastes to assess the representativeness of stimulants prepared by WHC

  10. Can we talk? Communications management for the Waste Isolation Pilot Plant, a complex nuclear waste management project

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, S.A.; Pullen, G.M.; Brewer, D.R.

    1995-07-01

    Sandia Nuclear Waste Management Program is pursuing for DOE an option for permanently disposing radioactive waste in deep geologic repositories. Included in the Program are the Waste Isolation Pilot Plant (WIPP) Project for US defense program mixed waste the Yucca Mountain Project (YMP) for spent power reactor fuel and vitrified high-level waste, projects for other waste types, and development efforts in environmental decision support technologies. WIPP and YMP are in the public arena, of a controversial nature, and provide significant management challenges. Both projects have large project teams, multiple organization participants, large budgets, long durations, are very complex, have a high degree of programmatic risk, and operate in an extremely regulated environment requiring legal defensibility. For environmental projects like these to succeed, SNL`s Program is utilizing nearly all areas in PMI`s Project Management Body of Knowledge (PMBOK) to manage along multiple project dimensions such as the physical sciences (e.g., geophysics and geochemistry; performance assessment; decision analysis) management sciences (controlling the triple constraint of performance, cost and schedule), and social sciences (belief systems; public participation; institutional politics). This discussion focuses primarily on communication challenges active on WIPP. How is the WIPP team meeting the challenges of managing communications?`` and ``How are you approaching similar challenges?`` will be questions for a dialog with the audience.

  11. Transuranic waste management at Savannah River - past, present, and future

    International Nuclear Information System (INIS)

    D'Ambrosia, J.

    1985-01-01

    The major objective of the TRU program at Savannah River is to support the TRU National Program, which is dedicated to preparing waste for, and emplacing waste in, the Waste Isolation Pilot Plant, (WIPP). Thus, the Savannah River Program also supports WIPP operations. The Savannah River site specific goals to phase out the indefinite storage of TRU waste, which has been the mode of waste management since 1974, and to dispose of Savannah River's Defense TRU waste

  12. Science, society, and America's nuclear waste: Unit 3, The Nuclear Waste Policy Act

    International Nuclear Information System (INIS)

    1992-01-01

    This teachers guide is unit 3, the nuclear waste policy act, in a four-unit secondary curriculum. It is intended to provide information about scientific and societal issues related to the management of spent nuclear fuel from generation of electricity at nuclear powerplants and high-level radioactive waste from US national defense activities. The curriculum, supporting classroom activities, and teaching materials present a brief discussion of energy and electricity generation, including that produced at nuclear power plants; information on sources, amounts, location, and characteristics of spent nuclear fuel and high-level radioactive waste; sources, types and effects of radiation; US policy for managing and disposing of spent nuclear fuel and high-level radioactive waste and what other countries are doing; and the components of the nuclear waste management system

  13. Waste Acceptance System Requirements document (WASRD)

    International Nuclear Information System (INIS)

    1993-01-01

    This Waste Acceptance System Requirements document (WA-SRD) describes the functions to be performed and the technical requirements for a Waste Acceptance System for accepting spent nuclear fuel (SNF) and high-level radioactive waste (HLW) into the Civilian Radioactive Waste Management System (CRWMS). This revision of the WA-SRD addresses the requirements for the acceptance of HLW. This revision has been developed as a top priority document to permit DOE's Office of Environmental Restoration and Waste Management (EM) to commence waste qualification runs at the Savannah River Site's (SRS) Defense Waste Processing Facility (DWPF) in a timely manner. Additionally, this revision of the WA-SRD includes the requirements from the Physical System Requirements -- Accept Waste document for the acceptance of SNF. A subsequent revision will fully address requirements relative to the acceptance of SNF

  14. A Versatile System for the In-Field Non-Destructive Characterization of Radioactive Waste Packages and of Objects in the Defense against Nuclear Threats

    International Nuclear Information System (INIS)

    Buecherl, T.; Gostomski, Ch.-Lierse-von

    2013-06-01

    In-filed non-destructive characterization of radioactive waste packages and of objects in the defense of nuclear threats requires purpose-built but similar equipment. Based on commercially available measuring devices like dose-rate and gamma detectors, X-ray and gamma-transmission sources etc. a versatile and mobile mechanical positioning system for these devices is designed, assembled and operated facilitating basic to even complex measuring procedures. Several in-field measuring campaigns resulted in its further optimization. Today an highly mobile and flexible mechanical manipulator system is available supporting nearly all types of required measuring devices thus rising to nearly all occasions. (authors)

  15. Systems costs for disposal of Savannah River high-level waste sludge and salt

    International Nuclear Information System (INIS)

    McDonell, W.R.; Goodlett, C.B.

    1984-01-01

    A systems cost model has been developed to support disposal of defense high-level waste sludge and salt generated at the Savannah River Plant. Waste processing activities covered by the model include decontamination of the salt by a precipitation process in the waste storage tanks, incorporation of the sludge and radionuclides removed from the salt into glass in the Defense Waste Processing Facility (DWPF), and, after interim storage, final disposal of the DWPF glass waste canisters in a federal geologic repository. Total costs for processing of waste generated to the year 2000 are estimated to be about $2.9 billion (1984 dollars); incremental unit costs for DWPF and repository disposal activities range from $120,000 to $170,000 per canister depending on DWPF processing schedules. In a representative evaluation of process alternatives, the model is used to demonstrate cost effectiveness of adjustments in the frit content of the waste glass to reduce impacts of wastes generated by the salt decontamination operations. 13 references, 8 tables

  16. Neutron and gamma-ray nondestructive examination of contact-handled transuranic waste at the ORNL TRU Waste Drum Assay Facility

    International Nuclear Information System (INIS)

    Schultz, F.J.; Coffey, D.E.; Norris, L.B.; Haff, K.W.

    1985-03-01

    A nondestructive assay system, which includes the Neutron Assay System (NAS) and the Segmented Gamma Scanner (SGS), for the quantification of contact-handled (<200 mrem/h total radiation dose rate at contact with container) transuranic elements (CH-TRU) in bulk solid waste contained in 208-L and 114-L drums has been in operation at the Oak Ridge National Laboratory since April 1982. The NAS has been developed and demonstrated by Los Alamos National Laboratory (LANL) and the Oak Ridge National Laboratory (ORNL) for use by most US Department of Energy Defense Plant (DOE-DP) sites. More research and development is required, however, before the NAS can provide complete assay results for other than routine defense waste. To date, 525 ORNL waste drums have been assayed, with varying degrees of success. The isotopic complexity of the ORNL waste creates a correspondingly complex assay problem. The NAS and SGS assay data are presented and discussed. Neutron matrix effects, the destructive examination facility, and enriched uranium fuel-element assays are also discussed

  17. Rheological properties of defense waste slurries

    International Nuclear Information System (INIS)

    Ebadian, M.A.

    1998-01-01

    The major objective of this two-year project has been to obtain refined and reliable experimental data about the rheological properties of melter feeds. The research has involved both experimental studies and model development. Two experimental facilities have been set up to measure viscosity and pressure drop. Mathematical models have been developed as a result of experimental observation and fundamental rheological theory. The model has the capability to predict the viscosity of melter slurries in a range of experimental conditions. The final results of the investigation could be used to enhance the current design base for slurry transportation systems and improve the performance of the slurry mixing process. If successful, the cost of this waste treatment will be reduced, and disposal safety will be increased. The specific objectives for this project included: (1) the design, implementation, and validation of the experimental facility in both batch and continuous operating modes; (2) the identification and preparation of melter feed samples of both the SRS and Hanford waste slurries at multiple solids concentration levels; (3) the measurement and analysis of the melter feeds to determine the effects of the solids concentration, pH value, and other factors on the rheological properties of the slurries; (4) the correlation of the rheological properties as a function of the measured physical and chemical parameters; and (5) transmission of the experimental data and resulting correlation to the DOE site user to guide melter feed preparation and transport equipment design

  18. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposal of radioactive and hazardous waste. Volume III of V

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type

  19. Hanford long-term high-level waste management program overview

    International Nuclear Information System (INIS)

    Reep, I.E.

    1978-05-01

    The objective is the long-term disposition of the defense high-level radioactive waste which will remain upon completion of the interim waste management program in the mid-1980s, plus any additional high-level defense waste resulting from the future operation of N Reactor and the Purex Plant. The high-level radioactive waste which will exist in the mid-1980s and is addressed by this plan consists of approximately 3,300,000 ft 3 of damp salt cake stored in single-shell and double-shell waste tanks, 1,500,000 ft 3 of damp sludge stored in single-shell and double-shell waste tanks, 11,000,000 gallons of residual liquor stored in double-shell waste tanks, 3,000,000 gallons of liquid wastes stored in double-shell waste tanks awaiting solidification, and 2,900 capsules of 90 SR and 137 Cs compounds stored in water basins. Final quantities of waste may be 5 to 10% greater, depending on the future operation of N Reactor and the Purex Plant and the application of waste treatment techniques currently under study to reduce the inventory of residual liquor. In this report, the high-level radioactive waste addressed by this plan is briefly described, the major alternatives and strategies for long-term waste management are discussed, and a description of the long-term high-level waste management program is presented. Separate plans are being prepared for the long-term management of radioactive wastes which exist in other forms. 14 figures

  20. Removal of organics from radioactive waste. V. 2

    International Nuclear Information System (INIS)

    Williams, J.; Kitchin, J.; Burton, W.H.

    1989-05-01

    This report reviews the available literature concerning the removal of organic substances from radioactive waste streams. A substantial portion of low level wastes generated in the various parts of the nuclear fuel cycle, nuclear laboratories and other places where radionuclides are used for research, industrial medical and defense related activities is organic (paper, wood, plastics, rubber etc.) and combustible. These combustible wastes can be processed by incineration. Incineration converts combustible wastes into radioactive ashes and residues that are non-flammable, chemically inert and more homogenous than the initial waste. (author)

  1. Basic data report for deepening of drillhole WIPP 13 (Waste Isolation Pilot Plant-WIPP)

    International Nuclear Information System (INIS)

    1982-10-01

    WIPP 13 is a borehole drilled in eastern Eddy County, New Mexico, in section 17, T22S,R31E, in order to investigate a subsurface seismic disturbed zone. The first 1035 ft of the borehole were drilled in July and August 1978. The deepening of WIPP 13 was performed in 1979 between August and October. This report documents the deepening of WIPP 13 to 3861.8 ft. Only rocks of the Permian, Salado and Castile Formations were penetrated in the deepening. Cores were obtained for some portions of the hole and cuttings were collected from some of the sections which were not cored (see Table 1). A suite of geophysical logs was run to provide information on lithology, structure and geochemistry. The WIPP is a demonstration facility for the disposal of transuranic (TRU) waste from defense programs. The WIPP will also provide a research facility to investigate the interactions between bedded salt and high level wastes

  2. Assuring safe interim storage of Hanford high-level tank wastes

    International Nuclear Information System (INIS)

    Bacon, R.F.; Babad, H.; Lerch, R.E.

    1996-01-01

    The federal government established the Hanford Site in South-Eastern Washington near the City of Richland in 1943 to produce plutonium for national defense purposes. The Hanford Site occupies approximately 1,450 square kilometers (560 square miles) of land North of the City of Richland. The production mission ended in 1988, transforming the Hanford Site mission to waste management, environmental restoration, and waste disposal. Thus the primary site mission has shifted from production to the management and disposal of radioactive, hazardous, and mixed waste that exist at the Hanford Site. This paper describes the focus and challenges facing the Tank Waste Remediation System (TWRS) Program related to the dual and parallel missions of interim safe storage and disposal of the tank associated waste. These wastes are presently stored in 2.08E+05 liters (55,000) to 4.16E+06 liters (1,100,000) gallon low-carbon steel tanks. There are 149 single- and 28 double-shell radioactive underground storage tanks, as well as approximately 40 inactive miscellaneous underground storage tanks. In addition, the TWRS mission includes the storage and disposal of the inventory of 1,929 cesium and strontium capsules created as part of waste management efforts. Tank waste was a by-product of producing plutonium and other defense related materials. From 1944 through 1990, four (4) different major chemical processing facilities at the Hanford Site processed irradiated (spent) fuel from defense reactors to separate and recover plutonium for weapons production. As new and improved processes were developed over the last 50 years, the processing efficiency improved and the waste compositions sent to the tanks for storage changed both chemically and radiologically. The earliest separation processes (e.g., bismuth phosphate coprecipitation) carried out in T Plant (1944-1956) and B Plant (1945-1952) recovered only plutonium

  3. Basic data report for drillhole WIPP 19 (Waste Isolation Pilot Plant-WIPP)

    International Nuclear Information System (INIS)

    1980-03-01

    WIPP 19 is an exploratory borehole whose objective was to determine the nature of the near-surface formations after seismic information indicated a possible fault. The borehole is located in section 20, T.22S., R.31E., in eastern Eddy County, New Mexico, and was drilled between April 6 and May 4, 1978. The hole was drilled to a depth of 1038.2 feet and encountered, from top to bottom, surficial Holocene deposits (7', including artificial fill for drill pad), the Mescalero caliche (7'), the Santa Rosa Sandstone (82'), the Dewey Lake Red Beds (494'), the Rustler Formation (315'), and the upper portion of the Salado Formation (143'). Cuttings were collected at 10-foot intervals. A suite of geophysical logs was run to measure acoustic velocities, density, and radioactivity. On the basis of comparison with other geologic sections drilled in the area, the WIPP 19 section is a normal stratigraphic sequence and it does not show structural disruption. The WIPP is to demonstrate (through limited operations) disposal technology for transuranic defense wastes. The WIPP will also provide facilities to research interactions between high-level waste and salt

  4. Basic data report for drillhole WIPP 21 (Waste Isolation Pilot Plant - WIPP)

    International Nuclear Information System (INIS)

    1980-03-01

    WIPP 21 is an exploratory borehole whose objective is to determine the nature of the near-surface formations after seismic information indicated a possible fault. The borehole is located in section 20, T.22S., R.31E., in eastern Eddy County, New Mexico, and was drilled between May 24 and 26, 1978. The hole was drilled to a depth of 1046 feet and encountered, from top to bottom, surficial Holocene deposits (6', including artificial fill for drill pad), the Mescalero caliche (6'), the Santa Rosa Sandstone (34'), the Dewey Lake Red Beds (487'), the Rustler Formation (308'), and the upper portion of the Salado Formation (178'). Cuttings were collected at 10-foot intervals. A suite of goephysical logs was run to measure acoustic velocities, density, and radioactivity. On the basis of comparison with other geologic sections drilled in the area, the WIPP 21 section is a normal stratigraphic sequence and it does not show structural disruption. The WIPP is to demonstrate (through limited operations) disposal technology for transuranic defense wastes. The WIPP will also provide facilities to research interactions between high-level waste and salt

  5. Basic data report for drillhole WIPP 18 (Waste Isolation Pilot Plant - WIPP)

    International Nuclear Information System (INIS)

    1980-03-01

    WIPP 18 is an exploratory borehole whose objective is to determine the nature of the near-surface formations after seismic information indicated a possible fault. The borehole is located in section 20, T.22S., R.31E., in eastern Eddy County, New Mexico, and was drilled between March 14 and 30, 1978. The hole was drilled to a depth of 1060 feet and encountered, from top to bottom, surficial Holocene deposits (5', including artificial fill for drill pad), the Mescalero caliche (4'), the Santa Rosa Sandstone (129'), the Dewey Lake Red Beds (475'), the Rustler Formation (315'), and the upper portion of the Salado Formation (132'). Cuttings were collected at 10-foot intervals. A suite of geophysical logs was run to measure acoustic velocities, density, and radioactivity. On the basis of comparison with other geologic sections drilled in the area, the WIPP 18 section is a normal stratigraphic sequence and it does not show structural disruption. The WIPP is to demonstrate (through limited operations) disposal technology for transuranic defense wastes. The WIPP will also provide facilities to research interactions between high-level waste and salt

  6. Basic data report for Drillhole WIPP 22 (Waste Isolation Pilot Plant, WIPP)

    International Nuclear Information System (INIS)

    1980-03-01

    WIPP 22 is an exploratory borehole whose objective is to determine the nature of the near-surface formations after seismic information indicated a possible fault. The borehole is located in section 20, T.22S., R.31E., in eastern Eddy County, New Mexico, and was drilled between March 14 and 30, 1978. The hole was drilled to a depth of 1448 feet and encountered, from top to bottom, surficial Holocene deposits (6', including artificial fill for drill pad), the Mescalero caliche (7'), the Santa Rosa Sandstone (68'), the Dewey Lake Red Beds (492'), the Rustler Formation (311'), and the upper portion of the Salado Formation (565'). Cuttings were collected at 10-foot intervals. A suite of geophysical logs was run to measure acoustic velocities, density, and radioactivity. On the basis of comparison with other geologic sections drilled in the area, the WIPP 22 section is a normal stratigraphic sequence and it does not show structural disruption. The WIPP is to demonstrate (through limited operations) disposal technology for transuranic defense wastes. The WIPP will also provide facilities to research interactions between high-level waste and salt

  7. Commercial and ERDA waste packaging criteria: possible similarities and differences

    International Nuclear Information System (INIS)

    Lowrie, B.

    1977-01-01

    The schedule calls for hot operation of two waste repositories by the end of 1985, and these facilities will have to be licensed. This licensing requirement sets the commercial program apart from the ERDA defense waste program. Packaging criteria are discussed for commercial and ERDA wastes. The different NRC, DOT, and EPA criteria are considered

  8. An update on the quality assurance for the waste vitrification plants

    Energy Technology Data Exchange (ETDEWEB)

    Caplinger, W.H.; Shugars, D.L.; Carlson, M.K.

    1990-01-01

    Immobilization of high-level defense production wastes is an important step in environmental restoration. The best available technology for immobilization of this waste currently is by incorporation into borosilicate glass, i.e., vitrification. Three US sites are active in the design, construction, or operation of vitrification facilities. The status, facility description and Quality Assurance (QA) development for each facility was presented at the 1989 Energy Division Conference. This paper presents the developments since that time. The West Valley Demonstration Project (WVDP) in northwestern New York State has demonstrated the technology. At the Savannah River Site (SRS) in South Carolina the Defense Waste Processing Facility (DWPF) has completed design, construction is essentially complete, and preparation for operation is underway. The Hanford Waste Vitrification Plant (HWVP) in Washington State is in initial Detailed Design. 4 refs.

  9. An update on the quality assurance for the waste vitrification plants

    International Nuclear Information System (INIS)

    Caplinger, W.H.; Shugars, D.L.; Carlson, M.K.

    1990-01-01

    Immobilization of high-level defense production wastes is an important step in environmental restoration. The best available technology for immobilization of this waste currently is by incorporation into borosilicate glass, i.e., vitrification. Three US sites are active in the design, construction, or operation of vitrification facilities. The status, facility description and Quality Assurance (QA) development for each facility was presented at the 1989 Energy Division Conference. This paper presents the developments since that time. The West Valley Demonstration Project (WVDP) in northwestern New York State has demonstrated the technology. At the Savannah River Site (SRS) in South Carolina the Defense Waste Processing Facility (DWPF) has completed design, construction is essentially complete, and preparation for operation is underway. The Hanford Waste Vitrification Plant (HWVP) in Washington State is in initial Detailed Design. 4 refs

  10. Nuclear waste. DOE's program to prepare high-level radioactive waste for final disposal

    International Nuclear Information System (INIS)

    Bannerman, Carl J.; Owens, Ronald M.; Dowd, Leonard L.; Herndobler, Christopher S.; Purvine, Nancy R.; Stenersen, Stanley G.

    1989-11-01

    years later than the schedule established in early 1984, and the cost could be about $1.1 billion, more than double the 1984 cost estimate. DOE has plans for immobilization facilities at the other two Sites, but unresolved issues could affect the reliability of current cost and schedule estimates; the Hanford facility, currently in the design phase, has an estimated immobilization completion date of 2008, but this date assumes that Hanford's defense mission nuclear processing activities will end in the mid 1990s and only the waste stored in Hanford's double-shell tanks will be immobilized; the INEL facility is currently in such an early planning phase that DOE has not yet selected the waste immobilization technology that it will use. The waste may be transformed into a glass-ceramic or other material instead of being vitrified. DOE expects to make this decision in 1993. Section 1 contains an overview of DOE's high-level waste immobilization program. Sections 2 through 5 contain more detailed information about each of the four projects

  11. Hanford Waste Vitrification Plant Quality Assurance Program description for high-level waste form development and qualification. Revision 3, Part 2

    Energy Technology Data Exchange (ETDEWEB)

    1993-08-01

    The Hanford Waste Vitrification Plant Project has been established to convert the high-level radioactive waste associated with nuclear defense production at the Hanford Site into a waste form suitable for disposal in a deep geologic repository. The Hanford Waste Vitrification Plant will mix processed radioactive waste with borosilicate material, then heat the mixture to its melting point (vitrification) to forin a glass-like substance that traps the radionuclides in the glass matrix upon cooling. The Hanford Waste Vitrification Plant Quality Assurance Program has been established to support the mission of the Hanford Waste Vitrification Plant. This Quality Assurance Program Description has been written to document the Hanford Waste Vitrification Plant Quality Assurance Program.

  12. Waste Management Program. Technical progress report, July-December, 1984

    International Nuclear Information System (INIS)

    1986-10-01

    This report provides information on operations and development programs for the management of radioactive wastes from operation of the Savannah River Plant and offplant participants. The studies on environmental and safety assessments, other support, in situ storage or disposal, waste form development and characterization, process and equipment development, and the Defense Waste Processing Facility are a part of the Long-Term Waste Management Technology Program. The following studies are reported for the SR Interim Waste Operations: tank farm operation, inspection program, burial ground operations, and waste transfer/tank replacement

  13. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    Energy Technology Data Exchange (ETDEWEB)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ``Safety Measures for Waste Tanks at Hanford Nuclear Reservation,`` of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues.

  14. Safe interim storage of Hanford tank wastes, draft environmental impact statement, Hanford Site, Richland, Washington

    International Nuclear Information System (INIS)

    1994-07-01

    This Draft EIS is prepared pursuant to the National Environmental Policy Act (NEPA) and the Washington State Environmental Policy Act (SEPA). DOE and Ecology have identified the need to resolve near-term tank safety issues associated with Watchlist tanks as identified pursuant to Public Law (P.L.) 101-510, Section 3137, ''Safety Measures for Waste Tanks at Hanford Nuclear Reservation,'' of the National Defense Authorization Act for Fiscal Year 1991, while continuing to provide safe storage for other Hanford wastes. This would be an interim action pending other actions that could be taken to convert waste to a more stable form based on decisions resulting from the Tank Waste Remediation System (TWRS) EIS. The purpose for this action is to resolve safety issues concerning the generation of unacceptable levels of hydrogen in two Watchlist tanks, 101-SY and 103-SY. Retrieving waste in dilute form from Tanks 101-SY and 103-SY, hydrogen-generating Watchlist double shell tanks (DSTs) in the 200 West Area, and storage in new tanks is the preferred alternative for resolution of the hydrogen safety issues

  15. Process description and plant design for preparing ceramic high-level waste forms

    International Nuclear Information System (INIS)

    Grantham, L.F.; McKisson, R.L.; Guon, J.; Flintoff, J.F.; McKenzie, D.E.

    1983-01-01

    The ceramics process flow diagram has been simplified and upgraded to utilize only two major processing steps - fluid-bed calcination and hot isostatic press consolidating. Full-scale fluid-bed calcination has been used at INEL to calcine high-level waste for 18 y; and a second-generation calciner, a fully remotely operated and maintained calciner that meets ALARA guidelines, started calcining high-level waste in 1982. Full-scale hot isostatic consolidation has been used by DOE and commercial enterprises to consolidate radioactive components and to encapsulate spent fuel elements for several years. With further development aimed at process integration and parametric optimization, the operating knowledge of full-scale demonstration of the key process steps should be rapidly adaptable to scale-up of the ceramic process to full plant size. Process flowsheets used to prepare ceramic and glass waste forms from defense and commercial high-level liquid waste are described. Preliminary layouts of process flow diagrams in a high-level processing canyon were prepared and used to estimate the preliminary cost of the plant to fabricate both waste forms. The estimated costs for using both options were compared for total waste management costs of SRP high-level liquid waste. Using our design, for both the ceramic and glass plant, capital and operating costs are essentially the same for both defense and commercial wastes, but total waste management costs are calculated to be significantly less for defense wastes using the ceramic option. It is concluded from this and other studies that the ceramic form may offer important advantages over glass in leach resistance, waste loading, density, and process flexibility. Preliminary economic calculations indicate that ceramics must be considered a leading candidate for the form to immobilize high-level wastes

  16. Microstructural characterization of nuclear-waste ceramics

    International Nuclear Information System (INIS)

    Ryerson, F.J.; Clarke, D.R.

    1982-01-01

    Characterization of nuclear waste ceramics requires techniques possessing high spatial and x-ray resolution. XRD, SEM, electron microprobe, TEM and analytical EM techniques are applied to ceramic formulations designed to immobilize both commercial and defense-related reactor wastes. These materials are used to address the strengths and limitations of the techniques above. An iterative approach combining all these techniques is suggested. 16 figures, 2 tables

  17. Mixed waste treatment capabilities at Envirocare

    International Nuclear Information System (INIS)

    Rafati, A.

    1994-01-01

    This presentation gives an overview of the business achievements and presents a corporate summary for the whole handling company Envirocare located in Clive, Utah. This company operates a permitted low-level radioactive and mixed waste facility which handles waste from the United States Department of Energy, Environmental Protection Agency, Department of Defense, and Fortune 500 companies. A description of business services and treatment capabilities is presented

  18. Intruder scenarios for site-specific waste classification

    International Nuclear Information System (INIS)

    Kennedy, W.E. Jr.

    1988-01-01

    The US Department of Energy (DOE) is currently revising its low-level radioactive waste (LLW) management requirements and guidelines for waste generated at its facilities that support defense missions. Specifically, draft DOE 5820.2A, Chapter 3, describes the purpose, policy, and requirements necessary for the management of defense LLW. The draft DOE policy calls for DOE LLW operations to be managed to protect the health and safety of the public, preserve the environment, and ensure that no remedial action will be necessary after termination of operations. The requirements and guidelines apply to radioactive wastes but are also intended to apply to mixed hazardous and radioactive wastes as defined in draft DOE 5400.5, Hazardous and Radioactive Mixed Waste. The basic approach used by DOE is to establish overall performance objectives in terms of ground-water protection and public radiation dose limits and to require site-specific performance assessments to determine compliance. As a result of these performance assessments, each site shall develop waste acceptance criteria that define the allowable quantities and concentrations of specific radioisotopes. Additional limitations on waste disposal design, waste form, and waste treatment shall also be developed on a site-specific basis. As a key step in the site-specific performance assessments, an evaluation must be conducted of potential radiation doses to intruders who may inadvertently move onto a closed DOE LLW disposal site after loss of institutional controls must be conducted. This paper describes the types of intruder scenarios that should be considered when performing this step of the site-specific performance assessment

  19. Letter Report. Defense Waste Processing Facility Pour Spout Heaters - Conceptual Designs and Modeling

    Energy Technology Data Exchange (ETDEWEB)

    SK Sundaram; JM Perez, Jr.

    2000-09-06

    The Tanks Focus Area (TFA) identified a major task to address performance limitations and deficiencies of the Defense Waste Processing Facility (DWPF) now in its sixth year of operation. Design, installation, testing, monitoring, operability, and a number of other characteristics were studied by research personnel collaboratively at a number of facilities: Savannah River Technology Center (SRTC), Clemson Environmental Technologies Laboratory (CETL), Pacific Northwest National Laboratory (PNNL), and the Idaho National Engineering and Environmental Laboratory (INEEL). Because the potential limiting feature to the DWPF was identified as the pour spout/riser heater, researches on alternative design concepts originally proposed in the past were revisited. In the original works, finite element modeling was performed to evaluate temperature distribution and stress of the design currently used at the DWPF. Studies were also made to define the requirements of the design and to consider the approaches for remote removal/replacement. Their heater type/location, their remotely replaceable thermocouples, and their capabilities for remote handling characterized the five alternative designs proposed. Review comments on the alternative designs indicated a relatively wide range of advantages and disadvantages of the designs. The present report provides an overview of the design criteria, modeling results, and alternative designs. Based on a review of the past design optimization activities and an assessment of recent experience, recommendations are proposed for future consideration and improvement.

  20. Letter Report. Defense Waste Processing Facility Pour Spout Heaters - Conceptual Designs and Modeling

    International Nuclear Information System (INIS)

    Sundaram, S.K.; Perez, J.M. Jr.

    2000-01-01

    The Tanks Focus Area (TFA) identified a major task to address performance limitations and deficiencies of the Defense Waste Processing Facility (DWPF) now in its sixth year of operation. Design, installation, testing, monitoring, operability, and a number of other characteristics were studied by research personnel collaboratively at a number of facilities: Savannah River Technology Center (SRTC), Clemson Environmental Technologies Laboratory (CETL), Pacific Northwest National Laboratory (PNNL), and the Idaho National Engineering and Environmental Laboratory (INEEL). Because the potential limiting feature to the DWPF was identified as the pour spout/riser heater, researches on alternative design concepts originally proposed in the past were revisited. In the original works, finite element modeling was performed to evaluate temperature distribution and stress of the design currently used at the DWPF. Studies were also made to define the requirements of the design and to consider the approaches for remote removal/replacement. Their heater type/location, their remotely replaceable thermocouples, and their capabilities for remote handling characterized the five alternative designs proposed. Review comments on the alternative designs indicated a relatively wide range of advantages and disadvantages of the designs. The present report provides an overview of the design criteria, modeling results, and alternative designs. Based on a review of the past design optimization activities and an assessment of recent experience, recommendations are proposed for future consideration and improvement

  1. 48 CFR 752.228-3 - Worker's compensation insurance (Defense Base Act).

    Science.gov (United States)

    2010-10-01

    ... insurance (Defense Base Act). 752.228-3 Section 752.228-3 Federal Acquisition Regulations System AGENCY FOR... Clauses 752.228-3 Worker's compensation insurance (Defense Base Act). As prescribed in 728.309, the... contracting officer. (a) The Contractor agrees to procure Defense Base Act (DBA) insurance pursuant to the...

  2. 48 CFR 52.228-3 - Workers' Compensation Insurance (Defense Base Act).

    Science.gov (United States)

    2010-10-01

    ... Insurance (Defense Base Act). 52.228-3 Section 52.228-3 Federal Acquisition Regulations System FEDERAL... Provisions and Clauses 52.228-3 Workers' Compensation Insurance (Defense Base Act). As prescribed in 28.309(a), insert the following clause: Workers' Compensation Insurance (Defense Base Act) (APR 1984) The Contractor...

  3. 48 CFR 225.7016 - Restriction on Ballistic Missile Defense research, development, test, and evaluation.

    Science.gov (United States)

    2010-10-01

    ... Missile Defense research, development, test, and evaluation. 225.7016 Section 225.7016 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS... Acquisition 225.7016 Restriction on Ballistic Missile Defense research, development, test, and evaluation. [68...

  4. Low-level waste research and development activities of the Department of Energy

    International Nuclear Information System (INIS)

    Barainca, M.J.

    1986-01-01

    This paper presents an overview of the technical activities of the Department of Energy's Defense and Nuclear Energy Low-Level Radioactive Waste Management Programs (LLWPs). Although each Program was established with a different purpose, the technologies developed and demonstrated by each are transferable for use in both the commercial and DOE sectors. This paper presents an overview of the technical activities being pursued through both the Defense and Nuclear Energy LLWP's. These technologies have been placed in the following categories; Criteria and Standards, Systems Analysis, Information and Technology Transfer, Waste Treatment and Wast Form, Improved Near Surface Disposal, Greater Confinement Disposal, Corrective Measures, and Monitoring

  5. Prediction of waste glass melt rates

    International Nuclear Information System (INIS)

    Lee, L.

    1987-01-01

    Under contract to the Department of Energy, the Du Pont Company has begun construction of a Defense Waste Processing Facility to immobilize radioactive wastes now stored as liquids at the Department of Energy's Savannah River Plant. The immobilization process solidifies waste sludge by vitrification into a leach-resistant borosilicate glass. Development of this process has been the responsibility of the Savannah River Laboratory. As part of the development, a simple model was developed to predict the melt rates for the waste glass melter. This model is based on an energy balance for the cold cap and gives very good agreement with melt rate data obtained from experimental campaigns in smaller scale waste glass melters

  6. Seventh annual DOE LLWMP participants' information meeting. DOE Low-Level Waste Management Program. Abstracts

    International Nuclear Information System (INIS)

    1985-08-01

    The following sessions were held: International Low-Level Waste Management Activities; Low-Level Waste Disposal; Characteristics and Treatment of Low-Level Waste; Environmental Monitoring and Performance; Greater Confinement and Alternative Disposal Methods; Low-Level Waste Management; Corrective Measures; Performance Prediction and Assessment; and Siting New Defense and Commercial Low-Level Waste Disposal Facilities

  7. Proceedings of the international topical meeting on nuclear and hazardous waste management

    International Nuclear Information System (INIS)

    Anon.

    1988-01-01

    This book contains the proceedings of the 1988 International Topical Meeting on Nuclear and Hazardous Waste Management. Included are the following articles: Defense radioactive waste management: status and challenges, Secrets of successful siting legislation for low-level radioactive waste disposal facilities, A generic hazardous waste management training program, Status of industry standards for decommissioning of nuclear facilities

  8. 8 CFR 274a.4 - Good faith defense.

    Science.gov (United States)

    2010-01-01

    ... 8 Aliens and Nationality 1 2010-01-01 2010-01-01 false Good faith defense. 274a.4 Section 274a.4... ALIENS Employer Requirements § 274a.4 Good faith defense. An employer or a recruiter or referrer for a fee for employment who shows good faith compliance with the employment verification requirements of...

  9. S. 1030: A bill to authorize private sector participation in providing products and services to support Department of Energy defense waste cleanup and modernization missions, introduced in the US Senate, One Hundred Second Congress, First Session, May 9, 1991

    International Nuclear Information System (INIS)

    Anon.

    1991-01-01

    This bill was introduced into the US Senate on May 9, 1991 to authorize private sector participation in providing products and services to support Department of Energy defense waste cleanup and modernization. Congress finds that the management and cleanup of nuclear and hazardous waste and the modernization of Department of Energy facilities must be pursued expeditiously in order to protect the health and safety of the public and workers

  10. Effects of composition on waste glass properties

    International Nuclear Information System (INIS)

    Mellinger, G.B.; Chick, L.A.

    1979-01-01

    The electrical conductivity, viscosity, chemical durability, devitrification, and crystallinity of a defense waste glass were measured. Each oxide component in the glass was varied to determine its effect on these properties. A generic study is being developed which will determine the effects of 26 oxides on the above and additional properties of a wide field of possible waste glasses. 5 figures, 2 tables

  11. Engineering considerations for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Scully, L.W.

    1978-01-01

    The WIPP, located at Los Medanos in New Mexico, is to be used for DOE transuranic and high-level defense wastes. On the surface, there are contact-handled and remote-handled waste facilities. Package size, delivery rates, shipping, shielding and thermal considerations, underground transport and emplacement, retrievability, ventilation, and hoist conveyence safety are discussed

  12. Waste reduction at the Savannah River Site

    International Nuclear Information System (INIS)

    Stevens, W.E.; Lee, R.A.; Reynolds, R.W.

    1990-01-01

    The Savannah River Site (SRS) is a key installation for the production and research of nuclear materials for national defense and peace time applications and has been operating a full nuclear fuel cycle since the early 1950s. Wastes generated include high level radioactive, transuranic, low level radioactive, hazardous, mixed, sanitary, and aqueous wastes. Much progress has been made during the last several years to reduce these wastes including management systems, characterization, and technology programs. The reduction of wastes generated and the proper handling of the wastes have always been a part of the Site's operation. This paper summarizes the current status and future plans with respect to waste reduction to waste reduction and reviews some specific examples of successful activities

  13. ORNL nuclear waste programs annual progress report for period ending September 30, 1982

    International Nuclear Information System (INIS)

    1983-05-01

    Research progress is reported in 20 activities under the headings: spent fuels, defense waste management, commercial waste management, remedial action, and conventional reactors. Separate entries were prepared for each activity

  14. Flowsheets and source terms for radioactive waste projections

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1985-03-01

    Flowsheets and source terms used to generate radioactive waste projections in the Integrated Data Base (IDB) Program are given. Volumes of each waste type generated per unit product throughput have been determined for the following facilities: uranium mining, UF 6 conversion, uranium enrichment, fuel fabrication, boiling-water reactors (BWRs), pressurized-water reactors (PWRs), and fuel reprocessing. Source terms for DOE/defense wastes have been developed. Expected wastes from typical decommissioning operations for each facility type have been determined. All wastes are also characterized by isotopic composition at time of generation and by general chemical composition. 70 references, 21 figures, 53 tables

  15. Groundwater monitoring at the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    Kehrman, R.; Broberg, K.; Tatro, G.; Richardson, R.; Dasczcyszak, W.

    1990-01-01

    This paper discusses the Groundwater Monitoring Program (GPM) being conducted at the Waste Isolation Pilot Plant (WIPP) in Carlsbad, New Mexico. The Regulatory and Environmental Programs (REP) section of the Environment, Safety and Health department (ES ampersand H) is responsible for conducting environmental monitoring at the WIPP. Groundwater monitoring is one of the ongoing environmental activities currently taking place. The REP section includes water quality sampling and water level monitoring. The WIPP Project is a research and develop facility designed to demonstrate the safe disposal of defense-generated waste in a geologic repository. Water quality sampling for physical, chemical, and radiological parameters has been an ongoing activity at the WIPP site for the past six years, and will continue through the life of the project. The water quality of a well is sampled while the well is continuously pumped. Serial samples of the pumped water are collected and tested for pH, Eh, temperature, specific gravity, specific conductivity, alkalinity, chlorides, divalent cations, ferrous iron, and total iron. Stabilization of serial sampling parameters determined if a representative sample is being obtained, Representative samples are sent to contract laboratories and analyzed for general chemistry, major cations and anions, and radionuclides. 13 refs., 4 figs., 1 tab

  16. Proceedings of the Department of Energy Defense Programs hazardous and mixed waste minimization workshop: Hazardous Waste Remedial Actions Program

    International Nuclear Information System (INIS)

    1988-09-01

    The first workshop on hazardous and mixed waste minimization was held in Las Vegas, Nevada, on July 26--28, 1988. The objective of this workshop was to establish an interchange between DOE headquarters (DOE-HQ) DP, Operations Offices, and contractors of waste minimization strategies and successes. The first day of the workshop began with presentations stressing the importance of establishing a waste minimization program at each site as required by RCRA, the land ban restrictions, and the decrease in potential liabilities associated with waste disposal. Discussions were also centered on pending legislation which would create an Office of Waste Reduction in the Environmental Protection Agency (EPA). The Waste Minimization and Avoidance Study was initiated by DOE as an addition to the long-term productivity study to address the issues of evolving requirements facing RCRA waste management activities at the DP sites, to determine how major operations will be affected by these requirements, and to determine the available strategies and options for waste minimization and avoidance. Waste minimization was defined in this study as source reduction and recycling

  17. Department of Energy Defense Programs Environmental Restoration Program update

    International Nuclear Information System (INIS)

    Lehr, J.C.; Eyman, L.D.; Thompson, W.W. Jr.

    1989-01-01

    Federal facilities are under increasing pressure to remediate inactive hazardous waste sites and associated off-site areas. The Superfund Amendments and Reauthorization Act federal facilities provision requires that the Environmental Protection Agency establish a public docket to list all federal sites contaminated by hazardous wastes or substances and to monitor the progress of investigations and cleanups against an established schedule. In addition, the Resource Conservation and Recovery Act requires that operating permits for hazardous waste treatment, storage, and disposal facilities be issued only upon binding agreements that identify specific schedules for corrective action for all hazardous waste releases that have or are occurring at the facility. Defense Programs (DP) must make remedial actions integral to its mission. Environmental cleanups are given increased emphasis with the new regulations/laws providing the right to private citizens and the states to sue to enforce these statutes and schedule commitments. 1 fig., 2 tabs

  18. Mixed waste study, Lawrence Livermore National Laboratory Hazardous Waste Management facilities

    International Nuclear Information System (INIS)

    1990-11-01

    This document addresses the generation and storage of mixed waste at Lawrence Livermore National Laboratory (LLNL) from 1984 to 1990. Additionally, an estimate of remaining storage capacity based on the current inventory of low-level mixed waste and an approximation of current generation rates is provided. Section 2 of this study presents a narrative description of Environmental Protection Agency (EPA) and Department of Energy (DOE) requirements as they apply to mixed waste in storage at LLNL's Hazardous Waste Management (HWM) facilities. Based on information collected from the HWM non-TRU radioactive waste database, Section 3 presents a data consolidation -- by year of storage, location, LLNL generator, EPA code, and DHS code -- of the quantities of low-level mixed waste in storage. Related figures provide the distribution of mixed waste according to each of these variables. A historical review follows in Section 4. The trends in type and quantity of mixed waste managed by HWM during the past five years are delineated and graphically illustrated. Section 5 provides an estimate of remaining low-level mixed waste storage capacity at HWM. The estimate of remaining mixed waste storage capacity is based on operational storage capacity of HWM facilities and the volume of all waste currently in storage. An estimate of the time remaining to reach maximum storage capacity is based on waste generation rates inferred from the HWM database and recent HWM documents. 14 refs., 18 figs., 9 tabs

  19. The Waste Isolation Pilot Plant status and related socioeconomic impacts

    International Nuclear Information System (INIS)

    Little, C.C.; Adcock, L.D.; Hohmann, G.L.

    1984-01-01

    The Waste Isolation Pilot Plant (WIPP) has been ''authorized as a defense activity of the Department of Energy...for the express purpose of providing a research and development facility to demonstrate the safe disposal of radioactive wastes resulting from the defense activities and programs of the United States...'' (PL 96-164). As reported in previous conferences, WIPP continues ahead of schedule and below budget with full facility construction well underway. To date, based on recent review, the socioeconomic impacts have been negligible and steps have been taken to ensure that they remain that way throughout operations

  20. Site characterization in connection with the low level defense waste management site in Area 5 of the Nevada Test Site, Nye County, Nevada. Final report

    International Nuclear Information System (INIS)

    Case, C.; Davis, J.; French, R.; Raker, S.

    1984-09-01

    The Site Characterization Report for the Defense Low Level Waste Management Site (RWMS) in Area 5 of the Nevada Test Site deals with the FY80-FY84 DRI activities. The areas that have been studied include geology, hydrology, unsaturated flow, soil and soil water chemistry, flood hazard, and economics-demographics. During this time the site characterization effort focussed on the following items as requested by NVO: geological and hydrological limitations to greater depth disposal of radioactive waste; potential for tectonic, seismic or volcanic activity (extent and frequency which these processes significantly affect the ability of the disposal operation to meet performance objectives); the possibility of groundwater intrusion into the waste zone, and its significance; topography of the RWMS with significance to drainage and flood potential (100-year flood plain, coastal high-hazard area or wetland); upstream drainage which may require modification to avoid erosion; population growth and future development; and the presence or absence of economically significant natural resources which, if exploited, would result in failure to meet performance objectives. The items mentioned above are dealt with in the description of activities and results in the body of the report. Extensive references, 32 figures, 20 tables

  1. Task plan: Temperatures in DWPF Glass Waste Storage Building

    International Nuclear Information System (INIS)

    Hardy, B.J.

    1993-01-01

    The Bechtel National, Inc. Detailed Design Instructions for Structural Design (DDI-02) requires that concrete components of the GWSB not exceed 150 degrees F for structural elements and 200 degrees F locally over a 24 hour period. In addition, the Waste Acceptance Product Specifications (WAPS) sets the maximum post cooldown temperature of the glass waste-form at 400 degrees C. Various scenarios can be postulated which result in elevated glass and concrete temperatures in the GWSB. Therefore, it is important to determine the concrete and glass temperatures during both normal and off-normal conditions. This document details specific tasks required to develop a technically defensible and verifiable methodology for determining maximum temperatures for the waste-forms and the GWSB concrete structures. All models used in this analysis will satisfy Quality Assurance requirements and be defensible to review and oversight committees

  2. Solidification of Savannah River Plant high-level waste

    International Nuclear Information System (INIS)

    Maher, R.; Shafranek, L.F.; Stevens, W.R. III.

    1983-01-01

    The Department of Energy, in accord with recommendations from the Du Pont Company, has started construction of a Defense Waste Processing Facility (DWPF) at the Savannah River Plant. The facility should be completed by the end of 1988, and full-scale operation should begin in 1990. This facility will immobilize in borosilicate glass the large quantity of high-level radioactive waste now stored at the plant plus the waste to be generated from continued chemical reprocessing operations. The existing wastes at the Savannah River Plant will be completely converted by about 2010. 21 figures

  3. Transuranic waste examination quality assurance at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Bower, J.M.

    1987-01-01

    Since 1954, defense-generated transuranic (TRU) waste has been received at the Radioactive Waste Management Complex (RWMC) at the Idaho National Engineering Laboratory (INEL). A major objective of the Department of Energy (DOE) Nuclear Waste Management Programs is the proper management of the defense-generated TRU waste. The Stored Waste Examination Pilot Plant (SWEPP) is providing nondestructive examination and assay of retrievably stored contact handled TRU waste in order to certify it to the Waste Isolation Pilot Plant Waste Acceptance Crtieria (WIPP-WAC). SWEPP's capabilities for certifying contact handled waste containers include weighing, real-time radiographic examination, fissile material assay examination, container integrity examination, radiological surveys and labeling of waste containers. These processes involve not only instrument accuracy but also a wide range of technician interpretation from moderate on the assay to 100% on the radiograph. This, therefore, requires a variety of quality assurance techniques to ensure that the examinations and certifications are being performed correctly. The purpose of this paper is to discuss the methods utilized by SWEPP for checking on the examination process and to ensure that waste certifications are being properly performed. Included is the application of the quality assurance techniques to each examination system, the management of the data generated by the examination, and the verifications to ensure accurate certification. 1 ref

  4. Advanced waste form and melter development for treatment of troublesome high-level wastes

    Energy Technology Data Exchange (ETDEWEB)

    Marra, James [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Kim, Dong -Sang [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Maio, Vincent [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-09-02

    A number of waste components in US defense high level radioactive wastes (HLW) have proven challenging for current Joule heated ceramic melter (JHCM) operations and have limited the ability to increase waste loadings beyond already realized levels. Many of these "troublesome" waste species cause crystallization in the glass melt that can negatively impact product quality or have a deleterious effect on melter processing. Recent efforts at US Department of Energy laboratories have focused on understanding crystallization behavior within HLW glass melts and investigating approached to mitigate the impacts of crystallization so that increases in waste loading can be realized. Advanced glass formulations have been developed to highlight the unique benefits of next-generation melter technologies such as the Cold Crucible Induction Melter (CCIM). Crystal-tolerant HLW glasses have been investigated to allow sparingly soluble components such as chromium to crystallize in the melter but pass out of the melter before accumulating.

  5. Defense Contracting in Iraq: Issues and Options for Congress

    Science.gov (United States)

    2008-08-15

    9 Rapid Acquisition Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10 Audits, Investigations, and...01468/]. 5 LOGCAP contracts have been previously awarded for work in Rwanda, Haiti, Saudi Arabia, Kosovo, Ecuador, Q atar , Italy, southeastern Europe...Acquisition Methods . Section 811 of the FY2005 National Defense Authorization Act32 grants the Secretary of Defense limited rapid acquisition

  6. Savannah River waste plant takes another broadside

    International Nuclear Information System (INIS)

    Setzer, S.W.

    1992-01-01

    This article is a discussion of Government Accounting Office findings related to the high-level waste disposal facilities, and in particular the Defense Waste Processing Facility, at Savannah River. Cost and schedule problems are noted, and the report concluded that ineffective management, both by DOE personnel and M ampersand AO contractor personnel, was a principal factor contributing to these problems at the DWPF and supporting facilities

  7. Immobilization in ceramic waste forms of the residues from treatment of mixed wastes

    International Nuclear Information System (INIS)

    Oversby, V.M.; van Konynenburg, R.A.; Glassley, W.E.; Curtis, P.G.

    1993-11-01

    The Environmental Restoration and Waste Management Applied Technology Program at LLNL is developing a Mixed Waste Management Facility to demonstrate treatment technologies that provide an alternative to incineration. As part of that program, we are developing final waste forms using ceramic processing methods for the immobilization of the treatment process residues. The ceramic phase assemblages are based on using Synroc D as a starting point and varying the phase assemblage to accommodate the differences in chemistry between the treatment process residues and the defense waste for which Synroc D was developed. Two basic formulations are used, one for low ash residues resulting from treatment of organic materials contaminated with RCRA metals, and one for high ash residues generated from the treatment of plastics and paper products. Treatment process residues are mixed with ceramic precursor materials, dried, calcined, formed into pellets at room temperature, and sintered at 1150 to 1200 degrees C to produce the final waste form. This paper discusses the chemical composition of the waste streams and waste forms, the phase assemblages that serve as hosts for inorganic waste elements, and the changes in waste form characteristics as a function of variation in process parameters

  8. Reliability evaluation methodologies for ensuring container integrity of stored transuranic (TRU) waste

    International Nuclear Information System (INIS)

    Smith, K.L.

    1995-06-01

    This report provides methodologies for providing defensible estimates of expected transuranic waste storage container lifetimes at the Radioactive Waste Management Complex. These methodologies can be used to estimate transuranic waste container reliability (for integrity and degradation) and as an analytical tool to optimize waste container integrity. Container packaging and storage configurations, which directly affect waste container integrity, are also addressed. The methodologies presented provide a means for demonstrating Resource Conservation and Recovery Act waste storage requirements

  9. Paper Study Evaluations Of The Introduction Of Small Column Ion Exchange Waste Streams To The Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Fox, K.; Edwards, T.; Stone, M.; Koopman, D.

    2010-01-01

    The objective of this paper study is to provide guidance on the impact of Monosodium Titanate (MST) and Crystalline Silicotitanate (CST) streams from the Small Column Ion Exchange (SCIX) process on the Defense Waste Processing Facility (DWPF) flowsheet and glass waste form. A series of waste processing scenarios was evaluated, including projected compositions of Sludge Batches 8 through 17 (SB8 through SB17), MST additions, CST additions to Tank 40 or to a sludge batch preparation tank (Tank 42 or Tank 51, referred to generically as Tank 51 in this report), streams from the Salt Waste Processing Facility (SWPF), and two canister production rates. A wide array of potential glass frit compositions was used to support this assessment. The sludge and frit combinations were evaluated using the predictive models in the current DWPF Product Composition Control System (PCCS). The results were evaluated based on the number of frit compositions available for a particular sludge composition scenario. A large number of candidate frit compositions (e.g., several dozen to several hundred) is typically a good indicator of a sludge composition for which there is flexibility in forming an acceptable waste glass and meeting canister production rate commitments. The MST and CST streams will significantly increase the concentrations of certain components in glass, such as Nb 2 O 5 , TiO 2 , and ZrO 2 , to levels much higher than have been previously processed at DWPF. Therefore, several important assumptions, described in detail in the report, had to be made in performing the evaluations. The results of the paper studies, which must be applied carefully given the assumptions made concerning the impact of higher Ti, Zr, and Nb concentrations on model validity, provided several observations: (1) There was difficulty in identifying a reasonable number of candidate frits (and in some cases an inability to identify any candidate frits) when a waste loading of 40% is targeted for Sludge

  10. 78 FR 65218 - Defense Federal Acquisition Regulation Supplement: Private Sector Notification Requirements of In...

    Science.gov (United States)

    2013-10-31

    ... Federal Acquisition Regulation Supplement: Private Sector Notification Requirements of In-Sourcing Actions... Supplement (DFARS) to implement a section of the National Defense Authorization Act regarding private sector... section 938 of the National Defense Authorization Act (NDAA) for Fiscal Year 2012 regarding private sector...

  11. Quarterly report on Defense Nuclear Facilities Safety Board Recommendation 90-7 for the period ending December 31, 1992

    International Nuclear Information System (INIS)

    Cash, R.J.; Dukelow, G.T.; Forbes, C.J.

    1993-03-01

    This is the seventh quarterly report on the progress of activities addressing safety issues associated with Hanford Site high-level radioactive waste tanks that contain ferrocyanide compounds. In the presence of oxidizing materials, such as nitrates or nitrites, ferrocyanide can be made to explode in the laboratory by heating it to high temperatures [above 285 degrees C (545 degrees F)]. In the mid 1950s approximately 140 metric tons of ferrocyanide were added to 24 underground high-level radioactive waste tanks. An implementation plan (Cash 1991) responding to the Defense Nuclear Facilities Safety Board Recommendation 90-7 (FR 1990) was issued in March 1991 describing the activities that were planned and underway to address each of the six parts of Recommendation 90-7. A revision to the original plan was transmitted to US Department of Energy by Westinghouse Hanford Company in December 1992. Milestones completed this quarter are described in this report. Contents of this report include: Introduction; Defense Nuclear Facilities Safety Board Implementation Plan Task Activities (Defense Nuclear Facilities Safety Board Recommendation for enhanced temperature measurement, Recommendation for continuous temperature monitoring, Recommendation for cover gas monitoring, Recommendation for ferrocyanide waste characterization, Recommendation for chemical reaction studies, and Recommendation for emergency response planning); Schedules; and References. All actions recommended by the Defense Nuclear Facilities Safety Board for emergency planning by Hanford Site emergency preparedness organizations have been completed

  12. Waste Package Component Design Methodology Report

    International Nuclear Information System (INIS)

    D.C. Mecham

    2004-01-01

    requirements of the YMP. Four waste package configurations have been selected to illustrate the application of the methodology during the licensing process. These four configurations are the 21-pressurized water reactor absorber plate waste package (21-PWRAP), the 44-boiling water reactor waste package (44-BWR), the 5 defense high-level radioactive waste (HLW) DOE spent nuclear fuel (SNF) codisposal short waste package (5-DHLWDOE SNF Short), and the naval canistered SNF long waste package (Naval SNF Long). Design work for the other six waste packages will be completed at a later date using the same design methodology. These include the 24-boiling water reactor waste package (24-BWR), the 21-pressurized water reactor control rod waste package (21-PWRCR), the 12-pressurized water reactor waste package (12-PWR), the 5 defense HLW DOE SNF codisposal long waste package (5-DHLWDOE SNF Long), the 2 defense HLW DOE SNF codisposal waste package (2-MC012-DHLW), and the naval canistered SNF short waste package (Naval SNF Short). This report is only part of the complete design description. Other reports related to the design include the design reports, the waste package system description documents, manufacturing specifications, and numerous documents for the many detailed calculations. The relationships between this report and other design documents are shown in Figure 1

  13. Waste Package Component Design Methodology Report

    Energy Technology Data Exchange (ETDEWEB)

    D.C. Mecham

    2004-07-12

    and operational requirements of the YMP. Four waste package configurations have been selected to illustrate the application of the methodology during the licensing process. These four configurations are the 21-pressurized water reactor absorber plate waste package (21-PWRAP), the 44-boiling water reactor waste package (44-BWR), the 5 defense high-level radioactive waste (HLW) DOE spent nuclear fuel (SNF) codisposal short waste package (5-DHLWDOE SNF Short), and the naval canistered SNF long waste package (Naval SNF Long). Design work for the other six waste packages will be completed at a later date using the same design methodology. These include the 24-boiling water reactor waste package (24-BWR), the 21-pressurized water reactor control rod waste package (21-PWRCR), the 12-pressurized water reactor waste package (12-PWR), the 5 defense HLW DOE SNF codisposal long waste package (5-DHLWDOE SNF Long), the 2 defense HLW DOE SNF codisposal waste package (2-MC012-DHLW), and the naval canistered SNF short waste package (Naval SNF Short). This report is only part of the complete design description. Other reports related to the design include the design reports, the waste package system description documents, manufacturing specifications, and numerous documents for the many detailed calculations. The relationships between this report and other design documents are shown in Figure 1.

  14. Hanford site transuranic waste certification plan

    International Nuclear Information System (INIS)

    GREAGER, T.M.

    1999-01-01

    As a generator of transuranic (TRU) and TRU mixed waste destined for disposal at the Waste Isolation Pilot Plant (WIPP), the Hanford Site must ensure that its TRU waste meets the requirements of U.S. Department of Energy (DOE) Order 5820.2A, ''Radioactive Waste Management, and the Waste Acceptance Criteria for the Waste Isolation Pilot Plant' (DOE 1996d) (WIPP WAC). The WIPP WAC establishes the specific physical, chemical, radiological, and packaging criteria for acceptance of defense TRU waste shipments at WIPP. The WIPP WAC also requires that participating DOE TRU waste generator/treatment/storage sites produce site-specific documents, including a certification plan, that describe their management of TRU waste and TRU waste shipments before transferring waste to WIPP. The Hanford Site must also ensure that its TRU waste destined for disposal at WIPP meets requirements for transport in the Transuranic Package Transporter41 (TRUPACT-11). The U.S. Nuclear Regulatory Commission (NRC) establishes the TRUPACT-I1 requirements in the ''Safety Analysis Report for the TRUPACT-II Shipping Package'' (NRC 1997) (TRUPACT-I1 SARP)

  15. Preliminary comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1990

    International Nuclear Information System (INIS)

    Bertram-Howery, S.G.; Marietta, M.G.; Rechard, R.P.; Anderson, D.R.; Swift, P.N.; Baker, B.L.; Bean, J.E. Jr.; McCurley, R.D.; Rudeen, D.K.; Beyeler, W.; Brinster, K.F.; Guzowski, R.V.; Schreiber, J.D.; Helton, J.C.; Vaughn, P.

    1990-12-01

    The Waste Isolation Pilot Plant (WIPP) is planned as the first mined geologic repository for transuranic (TRU) wastes generated by defense programs of the United States Department of Energy (DOE). Before disposing of waste at the WIPP, the DOE must evaluate compliance with the United states Environmental Protection Agency's (EPA) Standard, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR Part 191, US EPA, 1985). Sandia National Laboratories (SNL) is evaluating long-term performance against criteria in Subpart B of the Standard. ''Performance assessment'' as used in this report includes analyses for the Containment Requirements (section 191.13(a)) and the Individual Protection Requirements (section 191.15). Because proving predictions about future human actions or natural events is not possible, the EPA expects compliance to be determined on the basis of specified quantitative analyses and informed, qualitative judgment. The goal of the WIPP performance-assessment team at SNL is to provide as detailed and thorough a basis as practical for the quantitative aspects of that decision. This report summarizes SNL's late-1990 understanding of the WIPP Project's ability to evaluate compliance with Subpart B. 245 refs., 88 figs., 23 tabs

  16. Preliminary comparison with 40 CFR Part 191, Subpart B for the Waste Isolation Pilot Plant, December 1990

    Energy Technology Data Exchange (ETDEWEB)

    Bertram-Howery, S.G.; Marietta, M.G.; Rechard, R.P.; Anderson, D.R. (Sandia National Labs., Albuquerque, NM (USA)); Swift, P.N. (Tech. Reps., Inc., Albuquerque, NM (USA)); Baker, B.L. (Technadyne Engineering Consultants, Inc., Albuquerque, NM (USA)); Bean, J.E. Jr.; McCurley, R.D.; Rudeen, D.K. (New Mexico Engineering Research Inst., Albuquerque, NM (USA)); Beyeler, W.; Brinster, K.F.; Guzowski, R.V.; Sch

    1990-12-01

    The Waste Isolation Pilot Plant (WIPP) is planned as the first mined geologic repository for transuranic (TRU) wastes generated by defense programs of the United States Department of Energy (DOE). Before disposing of waste at the WIPP, the DOE must evaluate compliance with the United states Environmental Protection Agency's (EPA) Standard, Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level and Transuranic Radioactive Wastes (40 CFR Part 191, US EPA, 1985). Sandia National Laboratories (SNL) is evaluating long-term performance against criteria in Subpart B of the Standard. Performance assessment'' as used in this report includes analyses for the Containment Requirements ({section} 191.13(a)) and the Individual Protection Requirements ({section} 191.15). Because proving predictions about future human actions or natural events is not possible, the EPA expects compliance to be determined on the basis of specified quantitative analyses and informed, qualitative judgment. The goal of the WIPP performance-assessment team at SNL is to provide as detailed and thorough a basis as practical for the quantitative aspects of that decision. This report summarizes SNL's late-1990 understanding of the WIPP Project's ability to evaluate compliance with Subpart B. 245 refs., 88 figs., 23 tabs.

  17. Emotional exhaustion and defense mechanisms in intensive therapy unit nurses.

    Science.gov (United States)

    Regan, Anna; Howard, Ruth A; Oyebode, Jan R

    2009-05-01

    Contrary to its original conceptualization, research has found that emotional demands do not lead to burnout in nurses. According to psychoanalytic theory, unconscious defense mechanisms may protect nurses from conscious awareness of work-related anxiety. This prevents self-report and may explain research findings. The maturity of defense style influences how anxiety is managed. Immature defenses prevent the conscious processing necessary for resolution of anxiety. Therefore, it is hypothesized that the use of immature defenses will lead to emotional exhaustion. This cross-sectional study used questionnaires to explore the defense mechanisms of 87 Intensive Therapy Unit nurses. Although the sample endorsed a predominantly mature defense style, the use of immature defenses predicted emotional exhaustion. Also, lower levels of reported stress associated with emotional demands predicted emotional exhaustion. Although this strongly implies the mediating role of immature defense mechanisms, the results were not statistically significant.

  18. Happiness and Defense Styles in Psychiatrists.

    Science.gov (United States)

    Machado, Leonardo; Tavares, Hermano; Petribú, Kátia; Pinto, Tiago; Cantilino, Amaury

    2016-03-01

    The aim of this study was to measure happiness in a sample of Brazilian psychiatrists and correlate it with the defense styles used by them and sociodemographic data. This study was observational, cross-sectional, and analytical. Data were collected through self-administered questionnaires by Brazilian psychiatrists who participated in the XXXII Brazilian Congress of Psychiatry, 2014. In this sample of psychiatrists, happiness levels were high (scoring 5.69 of a total of 7), and mature defense styles prevailed, especially humor and anticipation. In a multivariate analysis, having children, good sleep quality, increased sexual interest, and use of defense styles such as humor, anticipation, and idealization all showed a positive relationship with happiness; on the other hand, using defense style such as acting out or annulment demonstrated a negative relationship with happiness. Despite the well-known professional burden that they bear, Brazilian psychiatrists surveyed presented, in general, high levels of subjective well-being and happiness.

  19. Approved reference and testing materials for use in Nuclear Waste Management Research and Development Programs

    International Nuclear Information System (INIS)

    Mellinger, G.B.; Daniel, J.L.

    1984-12-01

    This document, addressed to members of the waste management research and development community summarizes reference and testing materials available from the Nuclear Waste Materials Characterization Center (MCC). These materials are furnished under the MCC's charter to distribute reference materials essential for quantitative evaluation of nuclear waste package materials under development in the US. Reference materials with known behavior in various standard waste management related tests are needed to ensure that individual testing programs are correctly performing those tests. Approved testing materials are provided to assist the projects in assembling materials data base of defensible accuracy and precision. This is the second issue of this publication. Eight new Approved Testing Materials are listed, and Spent Fuel is included as a separate section of Standard Materials because of its increasing importance as a potential repository storage form. A summary of current characterization information is provided for each material listed. Future issues will provide updates of the characterization status of the materials presented in this issue, and information about new standard materials as they are acquired. 7 references, 1 figure, 19 tables

  20. WIPP waste package testing on simulated DHLW: emplacement

    International Nuclear Information System (INIS)

    Molecke, M.A.

    1984-01-01

    Several series of simulated (nonradioactive) defense high-level waste (DHLW) package tests have been emplaced in the WIPP, a research and development facility authorized to demonstrate the safe disposal of defense-related wastes. The primary purpose of these 3-to-7 year duration tests is to evaluate the in situ materials performance of waste package barriers (canisters, overpacks, backfills, and nonradioactive DHLW glass waste form) for possible future application to a licensed waste repository in salt. This paper describes all test materials, instrumentation, and emplacement and testing techniques, and discusses progress of the various tests. These tests are intended to provide information on materials behavior (i.e., corrosion, metallurgical and geochemical alterations, waste form durability, surface interactions, etc.), as well as comparison between several waste package designs, fabrications details, and actual costs. These experiments involve 18 full-size simulated DHLW packages (approximately 3.0 m x 0.6 m diameter) emplaced in vertical boreholes in the salt drift floor. Six of the test packages contain internal electrical heaters (470 W/canister), and were emplace under approximately reference DHLW repository conditions. Twelve other simulated DHLW packages were emplaced under accelerated-aging or overtest conditions, including the artificial introduction of brine, and a thermal loading approximately three to four times higher than reference. Eight of these 12 test packages contain 1500 W/canister electrical heaters; the other four are filled with DHLW glass. 9 refs., 1 fig

  1. Nevada National Security Site Waste Acceptance Criteria

    International Nuclear Information System (INIS)

    2012-01-01

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  2. Nevada National Security Site Waste Acceptance Criteria

    Energy Technology Data Exchange (ETDEWEB)

    NSTec Environmental Management

    2012-02-28

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO), Nevada National Security Site Waste Acceptance Criteria (NNSSWAC). The NNSSWAC provides the requirements, terms, and conditions under which the Nevada National Security Site (NNSS) will accept DOE non-radioactive classified waste, DOE non-radioactive hazardous classified waste, DOE low-level radioactive waste (LLW), DOE mixed low-level waste (MLLW), and U.S. Department of Defense (DOD) classified waste for permanent disposal. Classified waste is the only waste accepted for disposal that may be non-radioactive and will be required to meet the waste acceptance criteria for radioactive waste as specified in this document. The NNSA/NSO and support contractors are available to assist you in understanding or interpreting this document. For assistance, please call the NNSA/NSO Waste Management Project (WMP) at (702) 295-7063, and your call will be directed to the appropriate contact.

  3. The waste isolation pilot plant transuranic waste repository: A case study in radioactive waste disposal safety and risk

    Energy Technology Data Exchange (ETDEWEB)

    Eriksson, Leif G. [GRAM, Inc., Albuquerque, NM (United States)

    1999-12-01

    The Waste Isolation Pilot Plant (WIPP) deep geological defense-generated transuranic radioactive waste (TRUW) repository in the United States was certified on the 13 of May 1998 and opened on the 26 of March 1999. Two sets of safety/performance assessment calculations supporting the certification of the WIPP TRUW repository show that the maximum annual individual committed effective dose will be 32 times lower than the regulatory limit and that the cumulative amount of radionuclide releases will be at least 10 times, more likely at least 20 times, lower than the regulatory limits. Yet, perceptions remain among the public that the WIPP TRUW repository imposes an unacceptable risk.

  4. The waste isolation pilot plant transuranic waste repository: A case study in radioactive waste disposal safety and risk

    International Nuclear Information System (INIS)

    Eriksson, Leif G.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) deep geological defense-generated transuranic radioactive waste (TRUW) repository in the United States was certified on the 13 of May 1998 and opened on the 26 of March 1999. Two sets of safety/performance assessment calculations supporting the certification of the WIPP TRUW repository show that the maximum annual individual committed effective dose will be 32 times lower than the regulatory limit and that the cumulative amount of radionuclide releases will be at least 10 times, more likely at least 20 times, lower than the regulatory limits. Yet, perceptions remain among the public that the WIPP TRUW repository imposes an unacceptable risk

  5. Documentation of acceptable knowledge for LANL Plutonium Facility transuranic waste streams

    International Nuclear Information System (INIS)

    Montoya, A.J.; Gruetzmacher, K.; Foxx, C.; Rogers, P.S.Z.

    1998-01-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site-specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the transuranic waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility's mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC

  6. Off-gas characteristics of defense waste vitrification using liquid-fed Joule-heated ceramic melters

    International Nuclear Information System (INIS)

    Goles, R.W.; Sevigny, G.J.

    1983-09-01

    Off-gas and effluent characterization studies have been established as part of a PNL Liquid-Fed Ceramic Melter development program supporting the Savannah River Laboratory Defense Waste Processing Facility (SRL-DWPF). The objectives of these studies were to characterize the gaseous and airborne emission properties of liquid-fed joule-heated melters as a function of melter operational parameters and feed composition. All areas of off-gas interest and concern including effluent characterization, emission control, flow rate behavior and corrosion effects have been studied using alkaline and formic-acid based feed compositions. In addition, the behavioral patterns of gaseous emissions, the characteristics of melter-generated aerosols and the nature and magnitude of melter effluent losses have been established under a variety of feeding conditions with and without the use of auxiliary plenum heaters. The results of these studies have shown that particulate emissions are responsible for most radiologically important melter effluent losses. Melter-generated gases have been found to be potentially flammable as well as corrosive. Hydrogen and carbon monoxide present the greatest flammability hazard of the combustibles produced. Melter emissions of acidic volatile compounds of sulfur and the halogens have been responsible for extensive corrosion observed in melter plenums and in associated off-gas lines and processing equipment. The use of auxiliary plenum heating has had little effect upon melter off-gas characteristics other than reducing the concentrations of combustibles

  7. Nuclear waste management at DOE

    International Nuclear Information System (INIS)

    Perge, A.F.

    1979-01-01

    DOE is responsible for interim storage for some radioactive wastes and for the disposal for most of them. Of the wastes that have to be managed a significant part are a result of treatment systems and devices for cleaning gases. The long term waste management objectives place minimal reliance on surveillance and maintenance. Thus, the concerns about the chemical, thermal, and radiolytic degradation of wastes require technology for converting the wastes to forms acceptable for long term isolation. The strategy of the DOE airborne radioactive waste management program is to increase the service life and reliability of filters; to reduce filter wastes; and in anticipation of regulatory actions that would require further reductions in airborne radioactive releases from defense program facilities, to develop improved technology for additional collection, fixation, and long-term management of gaseous wastes. Available technology and practices are adequate to meet current health and safety standards. The program is aimed primarily at cost effective improvements, quality assurance, and the addition of new capability in areas where more restrictive standards seem likely to apply in the future

  8. DHLW Glass Waste Package Criticality Analysis (SCPB:N/A)

    International Nuclear Information System (INIS)

    Davis, J.W.

    1996-01-01

    This analysis is prepared by the Mined Geologic Disposal System (MGDS) Waste Package Development Department (WPDD) to determine the viability of the Defense High-Level Waste (DHLW) Glass waste package concept with respect to criticality regulatory requirements in compliance with the goals of the Waste Package Implementation Plan (Ref. 5.1) for conceptual design. These design calculations are performed in sufficient detail to provide a comprehensive comparison base with other design alternatives. The objective of this evaluation is to show to what extent the concept meets the regulatory requirements or indicate additional measures that are required for the intact waste package

  9. Mixed Waste Management Facility (MWMF) closure, Savannah River Plant: Clay cap test section construction report

    Energy Technology Data Exchange (ETDEWEB)

    1988-02-26

    This report contains appendices 3 through 6 for the Clay Cap Test Section Construction Report for the Mixed Waste Management Facility (MWMF) closure at the Savannah River Plant. The Clay Cap Test Program was conducted to evaluate the source, lab. permeability, in-situ permeability, and compaction characteristics, representative of kaolin clays from the Aiken, South Carolina vicinity. (KJD)

  10. SUMMARY OF FY11 SULFATE RETENTION STUDIES FOR DEFENSE WASTE PROCESSING FACILITY GLASS

    Energy Technology Data Exchange (ETDEWEB)

    Fox, K.; Edwards, T.

    2012-05-08

    This report describes the results of studies related to the incorporation of sulfate in high level waste (HLW) borosilicate glass produced at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). A group of simulated HLW glasses produced for earlier sulfate retention studies was selected for full chemical composition measurements to determine whether there is any clear link between composition and sulfate retention over the compositional region evaluated. In addition, the viscosity of several glasses was measured to support future efforts in modeling sulfate solubility as a function of predicted viscosity. The intent of these studies was to develop a better understanding of sulfate retention in borosilicate HLW glass to allow for higher loadings of sulfate containing waste. Based on the results of these and other studies, the ability to improve sulfate solubility in DWPF borosilicate glasses lies in reducing the connectivity of the glass network structure. This can be achieved, as an example, by increasing the concentration of alkali species in the glass. However, this must be balanced with other effects of reduced network connectivity, such as reduced viscosity, potentially lower chemical durability, and in the case of higher sodium and aluminum concentrations, the propensity for nepheline crystallization. Future DWPF processing is likely to target higher waste loadings and higher sludge sodium concentrations, meaning that alkali concentrations in the glass will already be relatively high. It is therefore unlikely that there will be the ability to target significantly higher total alkali concentrations in the glass solely to support increased sulfate solubility without the increased alkali concentration causing failure of other Product Composition Control System (PCCS) constraints, such as low viscosity and durability. No individual components were found to provide a significant improvement in sulfate retention (i.e., an increase of the magnitude

  11. Sources, classification, and disposal of radioactive wastes: History and legal and regulatory requirements

    International Nuclear Information System (INIS)

    Kocher, D.C.

    1991-01-01

    This report discusses the following topics: (1) early definitions of different types (classes) of radioactive waste developed prior to definitions in laws and regulations; (2) sources of different classes of radioactive waste; (3) current laws and regulations addressing classification of radioactive wastes; and requirements for disposal of different waste classes. Relationship between waste classification and requirements for permanent disposal is emphasized; (4) federal and state responsibilities for radioactive wastes; and (5) distinctions between radioactive wastes produced in civilian and defense sectors

  12. Categorizing operational radioactive wastes

    International Nuclear Information System (INIS)

    2007-04-01

    The primary objective of this publication is to improve communications among waste management professionals and Member States relative to the properties and status of radioactive waste. This is accomplished by providing a standardized approach to operational waste categorization using accepted industry practices and experience. It is a secondary objective to draw a distinction between operational waste categorization and waste disposal classification. The approach set forth herein is applicable to waste generation by mature (major, advanced) nuclear programmes, small-to-medium sized nuclear programmes, and programmes with waste from other nuclear applications. It can be used for planning, developing or revising categorization methodologies. For existing categorization programmes, the approach set forth in this publication may be used as a validation and evaluation tool for assessing communication effectiveness among affected organizations or nations. This publication is intended for use by waste management professionals responsible for creating, implementing or communicating effective categorization, processing and disposal strategies. For the users of this publication, it is important to remember that waste categorization is a communication tool. As such, the operational waste categories are not suitable for regulatory purposes nor for use in health and safety evaluations. Following Section 1 (Introduction) Section 2 of this publication defines categorization and its relationship to existing waste classification and management standards, regulations and practices. It also describes the benefits of a comprehensive categorization programme and fundamental record considerations. Section 3 provides an overview of the categorization process, including primary categories and sub-categories. Sections 4 and 5 outline the specific methodology for categorizing unconditioned and conditioned wastes. Finally, Section 6 provides a brief summary of critical considerations that

  13. Naval Waste Package Design Report

    International Nuclear Information System (INIS)

    M.M. Lewis

    2004-01-01

    A design methodology for the waste packages and ancillary components, viz., the emplacement pallets and drip shields, has been developed to provide designs that satisfy the safety and operational requirements of the Yucca Mountain Project. This methodology is described in the ''Waste Package Design Methodology Report'' Mecham 2004 [DIRS 166168]. To demonstrate the practicability of this design methodology, four waste package design configurations have been selected to illustrate the application of the methodology. These four design configurations are the 21-pressurized water reactor (PWR) Absorber Plate waste package, the 44-boiling water reactor (BWR) waste package, the 5-defense high-level waste (DHLW)/United States (U.S.) Department of Energy (DOE) spent nuclear fuel (SNF) Co-disposal Short waste package, and the Naval Canistered SNF Long waste package. Also included in this demonstration is the emplacement pallet and continuous drip shield. The purpose of this report is to document how that design methodology has been applied to the waste package design configurations intended to accommodate naval canistered SNF. This demonstrates that the design methodology can be applied successfully to this waste package design configuration and support the License Application for construction of the repository

  14. Nuclear Waste Vitrification in the U.S.: Recent Developments and Future Options

    International Nuclear Information System (INIS)

    Vienna, John D.

    2010-01-01

    Nuclear power plays a key role in maintaining current world wide energy growth while minimizing the greenhouse gas emissions. A disposition path for used nuclear fuel (UNF) must be found for this technology to achieve its promise. One likely option is the recycling of UNF and immobilization of the high-level waste (HLW) by vitrification. Vitrification is the technology of choice for immobilizing HLW from defense and commercial fuel reprocessing around the world. Recent advances in both recycling technology and vitrification show great promise in closing the nuclear fuel cycle in an efficient and economical fashion. This article summarizes the recent trends developments and future options in waste vitrification for both defense waste cleanup and closing the nuclear fuel cycle in the U.S.

  15. Application of titanates, niobates, and tantalates to neutralized defense waste decontamination: materials properties, physical forms, and regeneration techniques. Final report

    International Nuclear Information System (INIS)

    Dosch, R.G.

    1981-01-01

    A study of the application of sodium titanate (ST) to the decontamination of neutralized defense waste has been completed. The work was directed at Sr removal from dissolved salt cake, simulated in this work with a 6.0 N NaNO 3 - 0.6 N NaOH solution. Three physical forms of the titanates were developed including powder, pellets, and titanate-loaded resin beads and all were found to be superior to conventional organic ion exchange in this application. When spent, the titanate materials can be calcined to an oxide from which is a stable waste form in itself or can be added directly to a glass melter to become part of a vitrified waste form. Radiation stability of titanate powder and resin forms was assessed in tests in which these materials were exposed to 60 Co radiation. The strontium exchange capacity of the powder remained constant through a dose of 3 x 10 7 rads and retained 50% capacity after a dose of 2 x 10 9 rads. The primary mechanism involved in loss of capacity was believed to be heating associated with the irradiation. The resin forms were unchanged through a dose of 5 x 10 8 rads and retained 30% capacity after a dose of 2 x 10 9 rads. The latter dose resulted in visible degradation of the resin matrix. Anion exchange resins loaded with sodium niobate and sodium tantalate were also prepared by similar methods and evaluated for this application. These materials had Sr sorption properties comparable to the titanate material; however, they would have to provide a significant improvement to justify their higher cost

  16. Final report on cermet high-level waste forms

    International Nuclear Information System (INIS)

    Kobisk, E.H.; Quinby, T.C.; Aaron, W.S.

    1981-08-01

    Cermets are being developed as an alternate method for the fixation of defense and commercial high level radioactive waste in a terminal disposal form. Following initial feasibility assessments of this waste form, consisting of ceramic particles dispersed in an iron-nickel base alloy, significantly improved processing methods were developed. The characterization of cermets has continued through property determinations on samples prepared by various methods from a variety of simulated and actual high-level wastes. This report describes the status of development of the cermet waste form as it has evolved since 1977. 6 tables, 18 figures

  17. Notice of intent to discharge water contaminants. Waste Isolation Pilot Plant, Eddy County, NM

    International Nuclear Information System (INIS)

    Hart, J.S.; Porter, K.R.; Register, J.K.

    1983-04-01

    This report provides information in support of a ''Notice of Intent to Discharge Water Contaminants,'' pursuant to Section 1-201 of the New Mexico Water Quality Control Commission Regulations. The anticipated discharges are not expected to move directly or indirectly into groundwater. These discharges will be caused by activities related to the construction of the Waste Isolation Pilot Plant (WIPP), a US Department of Energy (DOE) research and development program to demonstrate the safe disposal of radioactive wastes resulting from defense activities and programs of the United States. The facility is to be developed in deep layers of bedded salt. The WIPP site is located in Eddy County, New Mexico, about 26 miles east of Carlsbad. The US Department of Energy, WIPP Project Office, Albuquerque, New Mexico, as the sponsor of the project, is responsible for any discharges from the site. The following sections describe generally the WIPP construction activities. Pertinent site conditions, potential sources of discharges and their expected effects, and proposed groundwater monitoring efforts are also described

  18. Certification document for newly generated contact-handled transuranic waste

    International Nuclear Information System (INIS)

    Box, W.D.; Setaro, J.

    1984-01-01

    The US Department of Energy has requested that all national laboratories handling defense waste develop and augment a program whereby all newly generated contact-handled transuranic (TRU) waste be contained, stored, and then shipped to the Waste Isolation Pilot Plant (WIPP) in accordance with the requirements set forth in WIPP-DOE-114. The program described in this report delineates how Oak Ridge National Laboratory intends to comply with these requirements and lists the procedures used by each generator to ensure that their TRU wastes are certifiable for shipment to WIPP

  19. An overview of radioactive waste management in the United States of America

    International Nuclear Information System (INIS)

    Luik, A.E. van

    1991-01-01

    The U.S. radioactive waste management program is implemented by the U.S. Department of Energy (U.S. DOE) for high-level radioactive wastes and spent nuclear fuel; defense-related transuranic wastes; and U.S. DOE-generated low-level and mixed wastes. The various states are responsible for the disposal of civilian low-level wastes. Selected radioactive waste management and disposal topics will be overviewed, followed by a more detailed discussion of the high-level and low-level waste disposal regulatory framework and some issues involved in showing compliance with the applicable regulations. (author)

  20. Waste management at Los Alamos: Protecting our environment

    International Nuclear Information System (INIS)

    1993-01-01

    This report consists of a broad overview of activities at Los Alamos National Laboratory (LANL). The following topics are discussed: The growth of the waste management group; what we do today; the mission of the waste management group; the liquid waste treatment section; the radioactive liquid waste project office; the chemical waste section; the radioactive waste section; and the technical support section

  1. Waste management at Los Alamos: Protecting our environment

    Energy Technology Data Exchange (ETDEWEB)

    1993-11-01

    This report consists of a broad overview of activities at Los Alamos National Laboratory (LANL). The following topics are discussed: The growth of the waste management group; what we do today; the mission of the waste management group; the liquid waste treatment section; the radioactive liquid waste project office; the chemical waste section; the radioactive waste section; and the technical support section.

  2. Independent engineering review of the Hanford Waste Vitrification System

    International Nuclear Information System (INIS)

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) was initiated in June 1987. The HWVP is an essential element of the plan to end present interim storage practices for defense wastes and to provide for permanent disposal. The project start was justified, in part, on efficient technology and design information transfer from the prototype Defense Waste Processing Facility (DWPF). Development of other serial Hanford Waste Vitrification System (HWVS) elements, such as the waste retrieval system for the double-shell tanks (DSTs), and the pretreatment system to reduce the waste volume converted into glass, also was required to accomplish permanent waste disposal. In July 1991, at the time of this review, the HWVP was in the Title 2 design phase. The objective of this technical assessment is to determine whether the status of the technology development and engineering practice is sufficient to provide reasonable assurance that the HWVP and the balance of the HWVS system will operate in an efficient and cost-effective manner. The criteria used to facilitate a judgment of potential successful operation are: vitrification of high-level radioactive waste from specified DSTs on a reasonably continuous basis; and glass produced with physical and chemical properties formally acknowledge as being acceptable for disposal in a repository for high-level radioactive waste. The criteria were proposed specifically for the Independent Engineering Review to focus that assessment effort. They are not represented as the criteria by which the Department will judge the prudence of the Project. 78 refs., 10 figs., 12 tabs

  3. Independent engineering review of the Hanford Waste Vitrification System

    Energy Technology Data Exchange (ETDEWEB)

    1991-10-01

    The Hanford Waste Vitrification Plant (HWVP) was initiated in June 1987. The HWVP is an essential element of the plan to end present interim storage practices for defense wastes and to provide for permanent disposal. The project start was justified, in part, on efficient technology and design information transfer from the prototype Defense Waste Processing Facility (DWPF). Development of other serial Hanford Waste Vitrification System (HWVS) elements, such as the waste retrieval system for the double-shell tanks (DSTs), and the pretreatment system to reduce the waste volume converted into glass, also was required to accomplish permanent waste disposal. In July 1991, at the time of this review, the HWVP was in the Title 2 design phase. The objective of this technical assessment is to determine whether the status of the technology development and engineering practice is sufficient to provide reasonable assurance that the HWVP and the balance of the HWVS system will operate in an efficient and cost-effective manner. The criteria used to facilitate a judgment of potential successful operation are: vitrification of high-level radioactive waste from specified DSTs on a reasonably continuous basis; and glass produced with physical and chemical properties formally acknowledge as being acceptable for disposal in a repository for high-level radioactive waste. The criteria were proposed specifically for the Independent Engineering Review to focus that assessment effort. They are not represented as the criteria by which the Department will judge the prudence of the Project. 78 refs., 10 figs., 12 tabs.

  4. Waste management and chemical inventories

    Energy Technology Data Exchange (ETDEWEB)

    Gleckler, B.P.

    1995-06-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site.

  5. Waste management and chemical inventories

    International Nuclear Information System (INIS)

    Gleckler, B.P.

    1995-01-01

    This section of the 1994 Hanford Site Environmental Report summarizes the classification and handling of waste at the Hanford Site. Waste produced at the Hanford Site is classified as either radioactive, nonradioactive, or mixed waste. Radioactive wastes are further categorized as transuranic, high-level, and low-level. Mixed waste may contain both radioactive and hazardous nonradioactive substances. This section describes waste management practices and chemical inventories at the site

  6. Waste retrieval plan for the Waste Isolation Pilot Plant

    International Nuclear Information System (INIS)

    1993-03-01

    The US DOE has prepared this plan to meet the requirements of Public Law 102579, the Waste Isolation Pilot Plant (WIPP) LWA, The purpose. is to demonstrate readiness to retrieve from the WIPP underground transuranic radioactive waste that will be used for testing should retrieval be needed. The WIPP, a potential geologic repository for transuranic wastes generated in national-defense activities, has been constructed in southeastern New Mexico. Because the transuranic wastes will remain radioactive for a very long time, the WIPP must reasonably ensure safe performance over thousands of years. The DOE therefore decided to develop the facility in phases, to preclude premature decisions and to conduct the performance assessments needed to demonstrate long-term safety. Surface facilities for receiving waste have been built, and considerable underground excavation, 2150 feet below the surface, has been completed. The next step is a test phase, including underground experiments called ''bin tests'' and ''alcove test(s)'' with contact-handled transuranic waste. The objective of these waste tests is to collect relevant data about the gas-generation potential and volatile organic compound (VOC) source term of the waste for developing a basis for demonstrating long term safety by compliance with the applicable disposal regulations (40 CFR 191, 264 and 268). The test phase will end when a decision is made to begin disposal in the WIPP or to terminate the project if regulatory compliance cannot be determined and demonstrated. Authorization to receive transuranic waste at the WIPP for the test phase is given by the WIPP LWA provided certain requirements are met

  7. Disposal Notifications and Quarterly Membership Updates for the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of PCB Remediation Waste Under Title 40 of the Code of Federal Regulations Section 761.61(c)

    Science.gov (United States)

    Disposal Notifications and Quarterly Membership Updates for the Utility Solid Waste Group Members’ Risk-Based Approvals to Dispose of Polychlorinated Biphenyl (PCB) Remediation Waste Under Title 40 of the Code of Federal Regulations Section 761.61(c)

  8. Final waste management programmatic environmental impact statement for managing treatment, storage, and disposl of radioactive and hazardous waste. Volume II

    International Nuclear Information System (INIS)

    1997-01-01

    The Final Waste Management Programmatic Environmental Impact Statement (WM PEIS) examines the potential environmental and cost impacts of strategic management alternatives for managing five types of radioactive and hazardous wastes that have resulted and will continue to result from nuclear defense and research activities at a variety of sites around the United States. The five waste types are low-level mixed waste, low-level waste, transuranic waste, high-level waste, and hazardous waste. The WM PEIS provides information on the impacts of various siting alternatives which the Department of Energy (DOE) will use to decide at which sites to locate additional treatment, storage, and disposal capacity for each waste type.Volume II is an integral part of the Office of Environmental Management''s (EM''s) Waste Management Programmatic Environmental Impact Statement (WM PEIS), which portrays the impacts of EM''s waste management activities at each of the 17 major DOE sites evaluated in the WM PEIS

  9. Economic comparison of centralizing or decentralizing processing facilities for defense transuranic waste

    International Nuclear Information System (INIS)

    Brown, C.M.

    1980-07-01

    This study is part of a set of analyses under direction of the Transuranic Waste Management Program designed to provide comprehensive, systematic methodology and support necessary to better understand options for national long-term management of transuranic (TRU) waste. The report summarizes activities to evaluate the economics of possible alternatives in locating facilities to process DOE-managed transuranic waste. The options considered are: (1) Facilities located at all major DOE TRU waste generating sites. (2) Two or three regional facilities. (3) Central processing facility at only one DOE site. The study concludes that processing at only one facility is the lowest cost option, followed, in order of cost, by regional then individual site processing

  10. Calculation of radionuclides in the defense waste processing facility

    International Nuclear Information System (INIS)

    Chandler, J.R.; Finch, D.R.; Becker, G.W. Jr.

    1979-01-01

    SHIELD system calculations yield the isotopic inventory, activity, decay heat, and multigroup radiation source spectra for all of the DWPF process streams and for the solidified waste products. One application of these results is the analysis of the radiation emissions of the stored waste. Another application is the analysis of time dependent properties of the solidified waste. Initially, gamma radiation from /sup 137m/Ba decay contributes approximately one-third of the total energy. As the 137 Cs content decreases, the gamma contribution declines. The major producers of beta radiation are the 90 Sr, 137 Cs, and 144 Pr decay chains. As the glass age increases, however, the contribution from the actinides dominates increasingly. The inital activity level in the glass is 2000 curies per gallon. The activity and decay heat decrease by a factor of 2 in about fifteen years, and by a factor of 4 in fifty years. A similar analysis was made for the salt cake. Initially, the salt cake produces 0.01 watts per gallon from 2.4 curies per gallon of activity. In five years, the activity is reduced by a factor of 19, and the decay heat declines by a factor of 24. After ten years, both the activity and decay heat levels are less than 1% of their initial values. 7 figures, 4 tables

  11. Field lysimeter studies for performance evaluation of grouted Hanford defense wastes

    International Nuclear Information System (INIS)

    Last, G.V.; Serne, R.J.; LeGore, V.L.

    1995-02-01

    The Grout Waste Test Facility (GWTF) consisted of four large field lysimeters designed to test the leaching and migration rates of grout-solidified low-level radioactive wastes generated by Hanford Site operations. Each lysimeter was an 8-m-deep by 2-media closed-bottom caisson that was placed in the ground such that the uppermost rim remained just above grade. Two of these lysimeters were used; the other two remained empty. The two lysimeters that were used (A-1 and B-1) were backfilled with a two-layer soil profile representative of the proposed grout disposal site. The proposed grout disposal site (termed the Grout Treatment Facility Landfill) is located immediately east of the Hanford Site's 200 East Area. This soil profile consisted of a coarse sand into which the grout waste forms were placed and covered by 4 m of a very fine sand. The A-1 lysimeter was backfilled in March 1985, with a grout-solidified phosphate/sulfate liquid waste from N Reactor decontamination and ion exchange resin regeneration. The B-1 lysimeter was backfilled in September 1985 and received a grout-solidified simulated cladding removal waste representative of waste generated from fuel reprocessing operations at the head end of the Plutonium Uranium Extraction (PUREX) plant. Routine monitoring and leachate collection activities were conducted for over three years, terminating in January 1989. Drainage was collected sporadically between January 1989 and December 1992. Decontamination and decommissioning of these lysimeters during the summer of 1994, confirmed the presence of a 15 to 20-cm-long hairline crack in one of the bottom plate welds. This report discusses the design and construction of the GWTF, presents the routine data collected from this facility through January 1989 and subsequent data collected sporadically between 1989 and 1993, and provides a brief discussion concerning preliminary interpretation of the results

  12. U.S. Nuclear Regulatory Commission Role and Activities Related to U.S. Department of Energy Incidental Waste Determinations

    International Nuclear Information System (INIS)

    Bradford, A.H.; Esh, D.W.; Ridge, A.C.

    2006-01-01

    Section 3116 of the Ronald W. Reagan National Defense Authorization Act for Fiscal Year 2005 (NDAA) requires the U.S. Department of Energy (DOE) to consult with the U.S. Nuclear Regulatory Commission (NRC) for certain non-high level waste (HLW) determinations. Under the NDAA, NRC performs consultative technical reviews of DOE's waste determinations and monitors DOE's disposal actions for such waste, but the NRC does not have regulatory authority over DOE's waste disposal activities. The NDAA provides the criteria that must be met to determine that waste is not HLW. The criteria require that the waste does not need to be disposed of in a geologic repository, that highly radioactive radionuclides be removed to the maximum extent practical, and that the performance objectives of 10 CFR 61, Subpart C, be met. The performance objectives contain criteria for protection of the public, protection of inadvertent intruders, protection of workers, and stability of the disposal site after closure. This paper describes NRC's approach to implementing its responsibilities under the NDAA, as well as similar activities being performed for sites not covered by the NDAA. (authors)

  13. Transporting transuranic waste to the Waste Isolation Pilot Plant: Risk and cost perspectives

    International Nuclear Information System (INIS)

    Biwer, B. M.; Gilette, J. L.; Poch, L. A.; Suermann, J. F.

    1999-01-01

    The Waste Isolation Pilot Plant (WIPP) is an authorized US Department of Energy (DOE) research and development facility constructed near the city of Carlsbad in southeastern New Mexico. The facility is intended to demonstrate the safe disposal of transuranic (TRU) radioactive waste resulting from US defense activities. Under the WIPP Land Withdrawal Act of 1992 (LWA), federal lands surrounding the WIPP facility were withdrawn from all public use and the title of those lands was transferred to the Secretary of Energy. The DOE's TRU waste is stored, and in some cases is still being generated, at 10 large-quantity and 13 small-quantity sites across the US. After applicable certification requirements have been met, the TRU waste at these sites will be sent to the WIPP to initiate the disposal phase of the facility, which according to current planning is projected to last for approximately 35 years

  14. Operating document on management division waste management section in Tokai works in the 2002 fiscal year. Document on present of affairs

    International Nuclear Information System (INIS)

    Kobayashi, Kentarou; Isozaki, Kouei; Akutu, Shigeru; Nakanishi, Masahiro; Ozone, Takashi; Terunuma, Tomomi

    2003-04-01

    This document is announced about task of Waste Management Division Waste Management Section in the 2002 fiscal year. Mainly, our task is that treated Low level solid waste, stored Low level solid waste and stored High level solid waste. Those wastes are generated from Tokai reprocessing plant in Tokai Works. We carried out task safely as planned. The results are as follows. (1) We incinerated that combustible Low level solid waste of 70.5 ton in Incinerate facility. Such wastes were generated from operation of Tokai reprocessing plant and cleaned up operation of Tokai bituminization facility (The fire and explosion incident of Tokai bituminization facility). (2) We stored Low level solid waste that generated the waste of 1,071 drums. It is found that Storage facilities will not fill on this condition Low level radioactive waste treatment facility is started operation. (3) We stored High level solid waste that generated the waste of 117 drums from Tokai reprocessing plant. And, it is found that there facilities will not fill on this condition generated wastes of about 100 drams by a year. (4) We started printing of the data from the 2002 fiscal year to intranet which amount of stored Low level solid waste and High level solid waste in order to educate-the amount reduction of waste generating (at those facilities). (author)

  15. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    International Nuclear Information System (INIS)

    Smith, Tara E.; Newell, J. David; Woodham, Wesley H.

    2016-01-01

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  16. Defense Waste Processing Facility Simulant Chemical Processing Cell Studies for Sludge Batch 9

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Tara E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Newell, J. David [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL); Woodham, Wesley H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-08-10

    The Savannah River National Laboratory (SRNL) received a technical task request from Defense Waste Processing Facility (DWPF) and Saltstone Engineering to perform simulant tests to support the qualification of Sludge Batch 9 (SB9) and to develop the flowsheet for SB9 in the DWPF. These efforts pertained to the DWPF Chemical Process Cell (CPC). CPC experiments were performed using SB9 simulant (SB9A) to qualify SB9 for sludge-only and coupled processing using the nitric-formic flowsheet in the DWPF. Two simulant batches were prepared, one representing SB8 Tank 40H and another representing SB9 Tank 51H. The simulant used for SB9 qualification testing was prepared by blending the SB8 Tank 40H and SB9 Tank 51H simulants. The blended simulant is referred to as SB9A. Eleven CPC experiments were run with an acid stoichiometry ranging between 105% and 145% of the Koopman minimum acid equation (KMA), which is equivalent to 109.7% and 151.5% of the Hsu minimum acid factor. Three runs were performed in the 1L laboratory scale setup, whereas the remainder were in the 4L laboratory scale setup. Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on nine of the eleven. The other two were SRAT cycles only. One coupled flowsheet and one extended run were performed for SRAT and SME processing. Samples of the condensate, sludge, and off-gas were taken to monitor the chemistry of the CPC experiments.

  17. Managing the Department of Energy's hazardous and mixed defense wastes

    International Nuclear Information System (INIS)

    Daly, G.H.; Sharples, F.E.; McBrayer, J.F.

    1986-04-01

    Like other large and complex industries, the nuclear weapons programs produce hazardous chemical wastes, many of which require special handling for the protection of health, safety, and the environment. This requires the interaction of a multiplicity of organizational entities. The HAZWRAP was established to provide centralized planning and technical support for DP RCRA- and CERCLA-related activities. The benefits of a centralized program integrator include DP-wide consistency in regulatory compliance, effective setting and execution of priorities, and development of optimal long-term waste management strategies for the DP complex

  18. Hanford Waste Vitrification Plant Project advanced conceptual design summary report

    International Nuclear Information System (INIS)

    Anderson, T.D.

    1988-11-01

    The Hanford Waste Vitrification Plant (HWVP) will immobilize Hanford defense liquid high-level waste in borosilicate glass in preparation for shipment to a geologic repository. The shipment of the waste to the repository will satisfy an objective in the President's Defense Waste Management Plan. The glass product will be cast into stainless steel canisters, which will be sealed and stored at Hanford until they are shipped. This document summarizes work performed during the Advance Conceptual Design (ACD) of the HWVP. In the Reference Conceptual Design phase, which preceded the ACD, a number of design issues were identified with the potential to improve cost effectiveness, safety, constructibility, and operability. The ACD addressed and evaluated these design issues. Implementation of recommendations derived from ACD work will occur in subsequent design phases. The next design phase is preliminary design which will be followed by detailed design and construction. Net potential cost improvements of more than $36.9M were identified along with improvements in safety, constructibility, and operability. No negative schedule impacts will result from implementation of the improvements. 11 refs., 5 figs., 3 tabs

  19. 75 FR 20578 - Availability of the Fiscal Year 2008 Defense Threat Reduction Agency Services Contracts Inventory

    Science.gov (United States)

    2010-04-20

    ... DEPARTMENT OF DEFENSE Office of the Secretary Availability of the Fiscal Year 2008 Defense Threat... amended by the National Defense Authorization Act for Fiscal Year 2008 (NDAA 08) section 807, the Director of DTRA and the Office of the Director, Defense Procurement and Acquisition Policy, Office of...

  20. 40 CFR 268.35 - Waste specific prohibitions-petroleum refining wastes.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste specific prohibitions-petroleum refining wastes. 268.35 Section 268.35 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... generator may use knowledge of the waste. If the waste contains constituents in excess of the applicable...

  1. 40 CFR 268.36 - Waste specific prohibitions-inorganic chemical wastes

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 26 2010-07-01 2010-07-01 false Waste specific prohibitions-inorganic chemical wastes 268.36 Section 268.36 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... generator may use knowledge of the waste. If the waste contains regulated constituents in excess of the...

  2. Reduced waste generation technical work plan

    International Nuclear Information System (INIS)

    1987-05-01

    The United States Department of Energy has established policies for avoiding plutonium losses to the waste streams and minimizing the generation of wastes produced at its nuclear facilities. This policy is evidenced in DOE Order 5820.2, which states ''Technical and administrative controls shall be directed towards reducing the gross volume of TRU waste generated and the amount of radioactivity in such waste.'' To comply with the DOE directive, the Defense Transuranic Waste Program (DTWP) supports and provides funding for specific research and development tasks at the various DOE sites to reduce the generation of waste. This document has been prepared to give an overview of current and past Reduced Waste Generation task activities which are to be based on technical and cost/benefit factors. The document is updated annually, or as needed, to reflect the status of program direction. Reduced Waste Generation (RWG) tasks encompass a wide range of goals which are basically oriented toward (1) avoiding the generation of waste, (2) changing processes or operations to reduce waste, (3) converting TRU waste into LLW by sorting or decontamination, and (4) reducing volumes through operations such as incineration or compaction

  3. What to do with radioactive wastes?

    International Nuclear Information System (INIS)

    2006-01-01

    This power point presentation (82 slides) gives information on what is a radioactive waste, radioactivity and historical review of radioactivity, radioactive period, natural radioactivity (with examples of data), the three main radiation types (α, β, γ), the origin of radioactive wastes (nuclear power, research, defense, other), the proportion of radioactive wastes in the total of industrial wastes in France, the classification of nuclear wastes according to their activity and period, the quantities and their storage means, the 1991 december 30 law (France) related to the radioactive waste management, the situation in other countries (Germany, Belgium, Canada, USA, Finland, Japan, Netherlands, Sweden, Switzerland), volume figures and previsions for the various waste types in 2004, 2010 and 2020, the storage perspectives, the French national debate on radioactive waste management and the objective of perpetuated solutions, the enhancement of the public information, the 15 June 2006 law on a sustainable management of radioactive materials and wastes with three main axis (deep separation and transmutation, deep storage, waste conditioning and long term surface storage), and the development of a nuclear safety and waste culture that could be extended to other types of industry

  4. Waste Management Project fiscal year 1998 multi-year work plan, WBS 1.2

    International Nuclear Information System (INIS)

    Jacobsen, P.H.

    1997-01-01

    The Waste Management Project manages and integrates (non-TWRS) waste management activities at the site. Activities include management of Hanford wastes as well as waste transferred to Hanford from other DOE, Department of Defense, or other facilities. This work includes handling, treatment, storage, and disposal of radioactive, nonradioactive, hazardous, and mixed solid and liquid wastes. Major Waste Management Projects are the Solid Waste Project, Liquid Effluents Project, and Analytical Services. Existing facilities (e.g., grout vaults and canyons) shall be evaluated for reuse for these purposes to the maximum extent possible

  5. Coastal structures, waste materials and fishery enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Collins, K.J.; Jensen, A.C.; Lockwood, A.P.M.; Lockwood, S.J. [University of Southampton, Southampton (United Kingdom). Dept. of Oceanography

    1994-09-01

    Current UK practice relating to the disposal of material at sea is reviewed. The use of stabilization technology relating to bulk waste materials, coal ash, oil ash and incinerator ash is discussed. The extension of this technology to inert minestone waste and tailings, contaminated dredged sediments and phosphogypsum is explored. Uses of stabilized wastes are considered in the areas of habitat restoration, coastal defense and fishery enhancement. It is suggested that rehabilitation of marine dump sites receiving loose waste such as pulverized fuel ash (PFA) could be enhanced by the continued dumping of the material but in a stabilized block form, so creating new habitat diversity. Global warming predictions include sea level rise and increased storm frequency. This is of particular concern along the southern and eastern coasts of the UK. The emphasis of coastal defense is changing from hard seawalls to soft options which include offshore barriers to reduce wave energy reaching the coast. Stabilized waste materials could be included in these and other marine constructions with possible economic benefit. Ministry of Agriculture, Fisheries and Food (MAFF), the regulatory authority in England and Wales for marine disposal/construction, policy regarding marine structures and fishery enhancement is outlined. A case is made for the inclusion of fishery enhancement features in future coastal structures. Examples of the productivity of man-made structures are given. Slight modification of planned structures and inclusion of suitable habitat niches could allow for the cultivation of kelp, molluscs, crustacea and fish.

  6. Regulation of Federal radioactive waste activities. Summary of report to Congress on extending the Nuclear Regulatory Commission's licensing or regulatory authority to Federal radioactive waste storage and disposal activities

    International Nuclear Information System (INIS)

    Smith, R.D.

    1979-09-01

    The NRC Authorization Bill for FY 1979 directed NRC to conduct a study of extending the Commission's licensing or regulatory authority to include categories of existing and future Federal radioactive waste storage and disposal activities not presently subject to such authority. The report includes a complete listing and inventory of all radioactive waste storage and disposal activities now being conducted or planned by Federal agencies. The NRC study has attempted to present a general comparison of the relative hazards associated with defense-generated and commercial wastes. Options for extending Commission authority were developed and analyzed. The implications of NEPA were analyzed in the context of these options. The national security implications of extending NRC's regulatory authority over DOE programs are examined and evaluated. Costs and benefits are identified and assessed. The Commission's recommendations, based on the study, are to extend licensing authority over new DOE disposal activities involving transuranic wastes and non-defense low-level waste and to initiate a pilot program to test the feasibility of NRC playing a consultative role in the evaluation of existing DOE activities

  7. Back to the Future: Integrated Air and Missile Defense in the Pacific

    Science.gov (United States)

    2015-02-01

    US assets with those of our allies and partners, we have optimized our defense design, pre- venting the waste of precious interceptors. The Pacific...Good Offense: Attack Operations Power projection is, and always will be, th e bread and butter of the US Air Force. Only the United States can

  8. 76 FR 4322 - Availability of the Fiscal Year 2009 Missile Defense Agency Services Contracts Inventory Pursuant...

    Science.gov (United States)

    2011-01-25

    ... DEPARTMENT OF DEFENSE Office of the Secretary Availability of the Fiscal Year 2009 Missile Defense... Act AGENCY: Missile Defense Agency (MDA), DoD. ACTION: Notice of availability. SUMMARY: In accordance... for Fiscal Year 2008 (NDAA 08) Section 807, the Director of the Missile Defense Agency and the Office...

  9. Updated Liquid Secondary Waste Grout Formulation and Preliminary Waste Form Qualification

    Energy Technology Data Exchange (ETDEWEB)

    Saslow, Sarah A. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Um, Wooyong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Russell, Renee L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Guohui [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Asmussen, Robert M. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Sahajpal, Rahul [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-07-01

    This report describes the results from liquid secondary waste grout (LSWG) formulation and cementitious waste form qualification tests performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). New formulations for preparing a cementitious waste form from a high-sulfate liquid secondary waste stream simulant, developed for Effluent Management Facility (EMF) process condensates merged with low activity waste (LAW) caustic scrubber, and the release of key constituents (e.g. 99Tc and 129I) from these monoliths were evaluated. This work supports a technology development program to address the technology needs for Hanford Site Effluent Treatment Facility (ETF) liquid secondary waste (LSW) solidification and supports future Direct Feed Low-Activity Waste (DFLAW) operations. High-priority activities included simulant development, LSWG formulation, and waste form qualification. The work contained within this report relates to waste form development and testing and does not directly support the 2017 integrated disposal facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY17, and for future waste form development efforts. The provided data should be used by (i) cementitious waste form scientists to further understanding of cementitious dissolution behavior, (ii) IDF PA modelers who use quantified constituent leachability, effective diffusivity, and partitioning coefficients to advance PA modeling efforts, and (iii) the U.S. Department of Energy (DOE) contractors and decision makers as they assess the IDF PA program. The results obtained help fill existing data gaps, support final selection of a LSWG waste form, and improve the technical defensibility of long-term waste form performance estimates.

  10. Low level waste management at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Rodgers, A.D.; Truitt, D.J.; Logan, J.A.; Brown, R.M.

    1986-02-01

    EG and G Idaho, Inc. is the lead contractor for the Department of Energy (DOE) National Low Level Waste Management Program, established in 1979. In this role, the company uses its waste management expertise to provide management and technical direction to support the disposal of low-level waste (LLW) in a manner that protects the environment and the public health and safety while improving efficiency and cost-effectiveness. Program activities are divided into two areas: defense-related and commercial nuclear reactor programs. The defense program was established to develop technology improvements, provide technology transfer, and to ensure a more efficient and uniform system for low level waste disposal. To achieve the program's goals, it is necessary to improve, document, and, where necessary, develop new methods for waste generation reduction, waste treatment, shallow-land burial, greater confinement disposal, and measures to correct existing site deficiencies. The commercial low level waste management program provides support to assist the states in developing an effective national low level waste management system and provides technical assistance for siting of regional commercial LLW disposal sites. The program provides technical and informational support to state officials, low level waste generators, managers, and facility operators to resolve low level waste problems and to improve the systems' overall effectiveness. Procedures are developed and documented and made available to commercial users through this program. Additional work is being conducted to demonstrate the stabilization and closure of low level radioactive waste disposal sites and develop the criteria and procedures for acceptance of such sites by the Department of Energy after closure has been completed. 7 refs., 6 figs., 1 tab

  11. 2009 National inventory of radioactive material and wastes. Geographical inventory

    International Nuclear Information System (INIS)

    2009-01-01

    A geographical inventory of the radioactive wastes present on the French territory (as recorded until the 31 of december, 2007) is presented, region by region. The various types of waste sites (production, processing, conditioning and storage sites, Uranium mines, ANDRA storage centers, historical storage sites and polluted sites where wastes are stored) are listed and located on maps. Details are given on the nature and origin of these wastes (nuclear industry, medical domain, scientific research, conventional industry, Defense...). A total of 1121 sites have been recorded, among which 163 are presented with details and charts

  12. Developing the strategic plan for pollution prevention in defense programs

    International Nuclear Information System (INIS)

    Marchetti, John A.; Betschart, James F.; Suffern, J. Samuel

    1992-01-01

    In order to provide effective leadership and to ensure a consistent pollution prevention effort in all of its production facilities and laboratories, Defense Programs (DP) Headquarters, in close cooperation with the Field, has developed a strategic plan for its Pollution Prevention Program. The strategic plan is built upon the history of waste minimization, waste reduction, and pollution prevention activity to date, and articulates both long- and short-term strategies to ensure program initiation, growth, and stability. The organization of the program, including Headquarters staffing and linkages to the Geld, is described. Life-cycle analysis of program barriers and bottlenecks, along with associated initiatives and action plans are discussed. (author)

  13. Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion

    Science.gov (United States)

    2016-06-01

    ENGINEERING GUIDANCE REPORT Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion ESTCP Project ER-200933 JUNE...Defense. Page Intentionally Left Blank Renewable Energy Production From DoD Installation Solid Wastes by Anaerobic Digestion ii June 2016 REPORT...3. DATES COVERED (2009 – 2016) 4. TITLE AND SUBTITLE Renewable Energy Production from DoD Installation Solid Wastes by Anaerobic Digestion 5a

  14. Hazardous Waste Disposal Costs for The Defense Logistics Agency

    National Research Council Canada - National Science Library

    1999-01-01

    This audit is part of the overall audit, "DoD Hazardous Waste Disposal Costs," (Project No. 9CK-5021). The overall audit was jointly conducted by the Inspector General, DoD, and the Army, Navy, and Air Force audit agencies...

  15. Where are the radioactive wastes in France? 2006 geographic inventory of radioactive wastes

    International Nuclear Information System (INIS)

    2006-01-01

    This document presents, by region, the localization of existing radioactive wastes in France at the date of December 31, 2004. In addition to the geographic situation, this inventory is presented by site and by category of waste producer or owner. The collection of these data is based on the free declaration made by waste owners or producers. The gathered information has been reformatted and homogenized and is reported in a synthetic way in the form of tables and files. Thus, 899 sites have been indexed, among which 159 are presented in the form of a detailed file. For each region, a table details the registered sites by category of producer/owner and the location of the main ones is reported on a regional map. The registered waste producers are radionuclide users belonging to 4 specific domains: medical, research, industry and national defense. The corresponding wastes are in general modest both in quantity and activity. The sites polluted by radioactive substances are also mentioned, even if they are already decontaminated or not. (J.S.)

  16. Nuclear waste: Quarterly report on DOE's Nuclear Waste Program as of March 31, 1987

    International Nuclear Information System (INIS)

    1987-01-01

    The Nuclear Waste Policy Act established a national program and policy for safely storing, transporting, and disposing of nuclear waste. This fact sheet provides the status of the Department of Energy's program activities. They include (1) the release of a draft amendment to the mission plan in which DOE extends by 5 years its target date for beginning first repository operations and information on DOE's decision to postpone site-specific activities for the second repository; (2) a monitored retrievable storage proposal and related documents; (3) receipts of comments from utilities, state regulators, and others on its Notice of Inquiry on proposals for the calculation of fees for defense waste disposal; and (4) information on the Nuclear Waste Fund collection of over /135.4 million in fees and investment income and obligations of $139 million for program activities. The fund balance as of March 31, 1987, was about $1.5 billion

  17. Waste and Simulant Precipitation Issues

    International Nuclear Information System (INIS)

    Steele, W.V.

    2000-01-01

    As Savannah River Site (SRS) personnel have studied methods of preparing high-level waste for vitrification in the Defense Waste Processing Facility (DWPF), questions have arisen with regard to the formation of insoluble waste precipitates at inopportune times. One option for decontamination of the SRS waste streams employs the use of an engineered form of crystalline silicotitanate (CST). Testing of the process during FY 1999 identified problems associated with the formation of precipitates during cesium sorption tests using CST. These precipitates may, under some circumstances, obstruct the pores of the CST particles and, hence, interfere with the sorption process. In addition, earlier results from the DWPF recycle stream compatibility testing have shown that leaching occurs from the CST when it is stored at 80 C in a high-pH environment. Evidence was established that some level of components of the CST, such as silica, was leached from the CST. This report describes the results of equilibrium modeling and precipitation studies associated with the overall stability of the waste streams, CST component leaching, and the presence of minor components in the waste streams

  18. Fiscal Year 1985 Congressional budget request. Volume 1. Atomic energy defense activities

    Energy Technology Data Exchange (ETDEWEB)

    1984-02-01

    Contents include: summaries of estimates by appropriation, savings from management initiatives, staffing by subcommittee, staffing appropriation; appropriation language; amounts available for obligation; estimates by major category; program overview; weapons activities; verification and control technology; materials production; defense waste and by-products management; nuclear safeguards and security; security investigations; and naval reactors development.

  19. Treatment needs for greater-than-Class C low-level wastes

    International Nuclear Information System (INIS)

    Ross, W.A.; Brouns, R.A.; Burkholder, H.C.

    1988-01-01

    Greater-than-Class C (GTCC) radioactive wastes are those low-level wastes that exceed the 10CFR61 limits for shallow-land burial but are not within the historical definition of high-level wastes (i.e., spent fuel and first-cycle reprocessing wastes). The GTCC category can include all transuranic (TRU) wastes, although for the purposes of this paper, contact-handled defense TRU wastes are excluded because of the major efforts in the past decade to prepare them for disposal at the Waste Isolation Pilot Plant (WIPP). Thus, the GTCC category includes all high-activity and remote-handled TRU wastes regardless of origin. This paper defines the need for treatment of existing and projected GTCC low-level radioactive wastes in the United States. The sources, characteristics, treatment considerations, and methods for treatment are reviewed

  20. 75 FR 52650 - Defense Federal Acquisition Regulation Supplement; Acquisition of Commercial Items (2008-D011)

    Science.gov (United States)

    2010-08-27

    ...: Defense Acquisition Regulations System, Department of Defense (DoD). ACTION: Interim rule; delay in... rule that amended the Defense Federal Acquisition Regulation Supplement (DFARS) to implement sections... comments on the interim rule were located, which had not been addressed in finalization of the interim rule...

  1. 75 FR 64710 - Availability of the Fiscal Year 2009 Department of Defense Services Contracts Inventory

    Science.gov (United States)

    2010-10-20

    ... DEPARTMENT OF DEFENSE Office of the Secretary Availability of the Fiscal Year 2009 Department of... National Defense Authorization Act for Fiscal Year 2008 (NDAA 08) section 807, the Office of the Director, Defense Procurement and Acquisition Policy, Office of Program Acquisition and Strategic Sourcing (DPAP...

  2. 40 CFR 148.10 - Waste specific prohibitions-solvent wastes.

    Science.gov (United States)

    2010-07-01

    ... injection unless the solvent waste is a solvent-water mixture or solvent-containing sludge containing less... 40 Protection of Environment 22 2010-07-01 2010-07-01 false Waste specific prohibitions-solvent wastes. 148.10 Section 148.10 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) WATER...

  3. Defense Business Board

    Science.gov (United States)

    Skip to main content (Press Enter). Toggle navigation Defense Business Board Search Search Defense Business Board: Search Search Defense Business Board: Search Defense Business Board Business Excellence in Defense of the Nation Defense Business Board Home Charter Members Meetings Studies Contact Us The Defense

  4. 75 FR 50751 - Federal Advisory Committee; Department of Defense Wage Committee

    Science.gov (United States)

    2010-08-17

    ... Wage Committee ACTION: Notice of closed meetings. SUMMARY: Pursuant to the provisions of section 10 of... Wage Committee will meet on September 21, October 5, and October 19, 2010, in Rosslyn, VA. The meetings... meetings may be obtained by writing to the Chairman, Department of Defense Wage Committee, 4000 Defense...

  5. 24 CFR 100.308 - Good faith defense against civil money damages.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 1 2010-04-01 2010-04-01 false Good faith defense against civil money damages. 100.308 Section 100.308 Housing and Urban Development Regulations Relating to Housing and... Good faith defense against civil money damages. (a) A person shall not be held personally liable for...

  6. Examining patterns of association with defensive information processing about colorectal cancer screening.

    Science.gov (United States)

    McQueen, Amy; Swank, Paul R; Vernon, Sally W

    2014-11-01

    To reduce negative psychological affect from information or behavior that is inconsistent with one's positive self-concept, individuals use a variety of defensive strategies. It is unknown whether correlates differ across defenses. We examined correlates of four levels of defensive information processing about colorectal cancer screening. Cross-sectional surveys were completed by a convenience sample of 287 adults aged 50-75 years. Defenses measures were more consistently associated with individual differences (especially avoidant coping styles); however, situational variables involving health-care providers also were important. Future research should examine changes in defenses after risk communication and their relative impact on colorectal cancer screening. © The Author(s) 2013.

  7. Decontamination processes for waste glass canisters

    International Nuclear Information System (INIS)

    Rankin, W.N.

    1982-01-01

    A Defense Waste Processing Facility (DWPF) is currently being designed to convert Savannah River Plant liquid, high-level radioactive waste into a solid form, such as borosilicate glass. To prevent the spread of radioactivity, the outside of the canisters of waste glass must have very low levels of smearable radioactive contamination before they are removed from the DWPF. Several techniques were considered for canister decontamination: high-pressure water spray, electropolishing, chemical dissolution, and abrasive blasting. An abrasive blasting technique using a glass frit slurry has been selected for use in the DWPF. No additional equipment is needed to process waste generated from decontamination. Frit used as the abrasive will be mixed with the waste and fed to the glass melter. In contrast, chemical and electrochemical techniques require more space in the DWPF, and produce large amounts of contaminated by-products, which are difficult to immobilize by vitrification

  8. Long-term high-level waste technology program

    International Nuclear Information System (INIS)

    1980-04-01

    The Department of Energy (DOE) is conducting a comprehensive program to isolate all US nuclear wastes from the human environment. The DOE Office of Nuclear Energy - Waste (NEW) has full responsibility for managing the high-level wastes resulting from defense activities and additional responsiblity for providing the technology to manage existing commercial high-level wastes and any that may be generated in one of several alternative fuel cycles. Responsibilities of the Three Divisions of DOE-NEW are shown. This strategy document presents the research and development plan of the Division of Waste Products for long-term immobilization of the high-level radioactive wastes resulting from chemical processing of nuclear reactor fuels and targets. These high-level wastes contain more than 99% of the residual radionuclides produced in the fuels and targets during reactor operations. They include essentially all the fission products and most of the actinides that were not recovered for use

  9. Effluent Management Facility Evaporator Bottom-Waste Streams Formulation and Waste Form Qualification Testing

    Energy Technology Data Exchange (ETDEWEB)

    Saslow, Sarah A.; Um, Wooyong; Russell, Renee L.

    2017-08-02

    This report describes the results from grout formulation and cementitious waste form qualification testing performed by Pacific Northwest National Laboratory (PNNL) for Washington River Protection Solutions, LLC (WRPS). These results are part of a screening test that investigates three grout formulations proposed for wide-range treatment of different waste stream compositions expected for the Hanford Effluent Management Facility (EMF) evaporator bottom waste. This work supports the technical development need for alternative disposition paths for the EMF evaporator bottom wastes and future direct feed low-activity waste (DFLAW) operations at the Hanford Site. High-priority activities included simulant production, grout formulation, and cementitious waste form qualification testing. The work contained within this report relates to waste form development and testing, and does not directly support the 2017 Integrated Disposal Facility (IDF) performance assessment (PA). However, this work contains valuable information for use in PA maintenance past FY 2017 and future waste form development efforts. The provided results and data should be used by (1) cementitious waste form scientists to further the understanding of cementitious leach behavior of contaminants of concern (COCs), (2) decision makers interested in off-site waste form disposal, and (3) the U.S. Department of Energy, their Hanford Site contractors and stakeholders as they assess the IDF PA program at the Hanford Site. The results reported help fill existing data gaps, support final selection of a cementitious waste form for the EMF evaporator bottom waste, and improve the technical defensibility of long-term waste form risk estimates.

  10. High Level Waste (HLW) Processing Experience with Increased Waste Loading

    International Nuclear Information System (INIS)

    JANTZEN, CAROL

    2004-01-01

    The Defense Waste Processing Facility (DWPF) Engineering requested characterization of glass samples that were taken after the second melter had been operational for about 5 months. After the new melter had been installed, the waste loading had been increased to about 38 weight percentage after a new quasicrystalline liquidus model had been implemented. The DWPF had also switched from processing with refractory Frit 200 to a more fluid Frit 320. The samples were taken after DWPF observed very rapid buildup of deposits in the upper pour spout bore and on the pour spout insert while processing the high waste loading feedstock. These samples were evaluated using various analytical techniques to determine the cause of the crystallization. The pour stream sample was homogeneous, amorphous, and representative of the feed batch from which it was derived. Chemical analysis of the pour stream sample indicated that a waste loading of 38.5 weight per cent had been achieved. The data analysis indicated that surface crystallization, induced by temperature and oxygen fugacity gradients in the pour spout, caused surface crystallization to occur in the spout and on the insert at the higher waste loadings even though there was no crystallization in the pour stream

  11. A history of solid waste packaging at the Hanford Site

    International Nuclear Information System (INIS)

    Duncan, D.R.; Weyns-Rollosson, D.I.; Pottmeyer, J.A.; Stratton, T.J.

    1995-02-01

    Since the initiation of the defense materials product mission, a total of more than 600,000 m 3 of radioactive solid waste has been stored or disposed at the US Department of Energy's (DOE) Hanford Site, located in southeastern Washington State. As the DOE complex prepares for its increasing role in environmental restoration and waste remediation, the characterization of buried and retrievably stored waste will become increasingly important. Key to this characterization is an understanding of the standards and specifications to which waste was packaged; the regulations that mandated these standards and specifications; the practices used for handling and packaging different waste types; and the changes in these practices with time

  12. Proceedings of the second Department Of Energy Defense Programs waste reduction workshop

    International Nuclear Information System (INIS)

    1989-04-01

    The second waste reduction workshop was held at the Rocky Flats Plant (RFP). The objective of this workshop was to exchange specific information (successes and failures) on education and training programs for waste reduction. Each facility was asked to provide a description of their programs to include information on formal, informal, and planned employee training programs; employee incentive programs; pamphlets, posters, books, magazines, communications, and publicity; procurement control and awareness in minimizing hazardous materials; housekeeping successes; waste minimization surveys; and implementation successes and failures. This document contains copies of the demonstrations and not the text of the presentations

  13. Savannah River Plant Separations Department mixed waste program

    International Nuclear Information System (INIS)

    Wierzbicki, W.M.

    1988-01-01

    The Department of Energy's (DOE) Savannah River Plant (SRP) generates radioactive and mixed waste as a result of the manufacture of nuclear material for the national defense program. The radioactive portion of the mixed waste and all nonhazardous radioactive wastes would continue to be regulated by DOE under the Atomic Energy Act. The Separations Department is the largest generator of solid radioactive waste at the Savannah River Plant. Over the last three years, the Separations Department has developed and implemented a program to characterize candidate mixed-waste streams. The program consisted of facility personnel interviews, a waste-generation characterization program and waste testing to determine whether a particular waste form was hazardous. The Separations Department changed waste-handling practices and procedures to meet the requirements of the generator standards. For each Separation Department Facility, staging areas were established, inventory and reporting requirements were developed, operating procedures were revised to ensure proper waste handling, and personnel were provided hazardous waste training. To emphasize the importance of the new requirements, a newsletter was developed and issued to all Separations supervisory personnel

  14. Liquid level measurement in high level nuclear waste slurries

    International Nuclear Information System (INIS)

    Weeks, G.E.; Heckendorn, F.M.; Postles, R.L.

    1990-01-01

    Accurate liquid level measurement has been a difficult problem to solve for the Defense Waste Processing Facility (DWPF). The nuclear waste sludge tends to plug or degrade most commercially available liquid-level measurement sensors. A liquid-level measurement system that meets demanding accuracy requirements for the DWPF has been developed. The system uses a pneumatic 1:1 pressure repeater as a sensor and a computerized error correction system. 2 figs

  15. Documentation of acceptable knowledge for Los Alamos National Laboratory Plutonium Facility TRU waste stream

    International Nuclear Information System (INIS)

    Montoya, A.J.; Gruetzmacher, K.M.; Foxx, C.L.; Rogers, P.Z.

    1998-03-01

    Characterization of transuranic waste from the LANL Plutonium Facility for certification and transportation to WIPP includes the use of acceptable knowledge as specified in the WIPP Quality Assurance Program Plan. In accordance with a site specific procedure, documentation of acceptable knowledge for retrievably stored and currently generated transuranic waste streams is in progress at LANL. A summary overview of the TRU waste inventory is complete and documented in the Sampling Plan. This document also includes projected waste generation, facility missions, waste generation processes, flow diagrams, times, and material inputs. The second part of acceptable knowledge documentation consists of assembling more detailed acceptable knowledge information into auditable records and is expected to require several years to complete. These records for each waste stream must support final assignment of waste matrix parameters, EPA hazardous waste numbers, and radionuclide characterization. They must also include a determination whether waste streams are defense waste streams for compliance with the WIPP Land Withdrawal Act. The LANL Plutonium Facility's mission is primarily plutonium processing in basic special nuclear material (SNM) research activities to support national defense and energy programs. It currently has about 100 processes ranging from SNM recovery from residues to development of plutonium 238 heat sources for space applications. Its challenge is to characterize and certify waste streams from such diverse and dynamic operations using acceptable knowledge. This paper reports the progress on the certification of the first of these waste streams to the WIPP WAC

  16. Organic diagenesis in commercial nuclear wastes

    International Nuclear Information System (INIS)

    Toste, A.P.; Lechner-Fish, T.J.

    1988-01-01

    The nuclear industry currently faces numerous challenges. Large volumes of already existing wastes must be permanently disposed using environmentally acceptable technologies. Numerous criteria must be addressed before wastes can be permanently disposed. Waste characterization is certainly one of the key criteria for proper waste management. some wastes are complex melting pots of inorganics, radiochemicals, and, occasionally, organics. It is clear, for example, that organics have been used extensively in nuclear operations, such as waste reprocessing, and continue to be used widely as solvents, decontamination agents, etc. The authors have analyzed the organic content of many kinds of nuclear wastes, ranging from commercial to defense wastes. In this paper, the finale analyses are described of three commercial wastes: one waste from a pressurized water reactor (PWR) and two wastes from a boiling water reactor (BWR). The PWR waste is a boric acid concentrate waste. The two BWR wastes, BWR wastes Nos. 1 and 2, are evaporator concentrates of liquid wastes produced during the regeneration of ion-exchange resins used to purify reactor process water. In preliminary analyses, which were reported previously, a few know organics and myriad unknowns were detected. Recent reexamination of mass-spectral data, coupled with reanalysis of the wastes, has resulted in the firm identification of the unknowns. Most of the compounds, over thirty distinct organics, are derived from the degradation, or diagenesis, of source-term organics, revealing, for the first time, that organic diagenesis in commercial wastes is both vigorous and varied

  17. Airborne radionuclide waste-management reference document

    International Nuclear Information System (INIS)

    Brown, R.A.; Christian, J.D.; Thomas, T.R.

    1983-07-01

    This report provides the detailed data required to develop a strategy for airborne radioactive waste management by the Department of Energy (DOE). The airborne radioactive materials of primary concern are tritium (H-3), carbon-14 (C-14), krypton-85 (Kr-85), iodine-129 (I-129), and radioactive particulate matter. The introductory section of the report describes the nature and broad objectives of airborne waste management. The relationship of airborne waste management to other waste management programs is described. The scope of the strategy is defined by considering all potential sources of airborne radionuclides and technologies available for their management. Responsibilities of the regulatory agencies are discussed. Section 2 of this document deals primarily with projected inventories, potential releases, and dose commitments of the principal airborne wastes from the light water reactor (LWR) fuel cycle. In Section 3, dose commitments, technologies, costs, regulations, and waste management criteria are analyzed. Section 4 defines goals and objectives for airborne waste management

  18. The LAW Library -- A multigroup cross-section library for use in radioactive waste analysis calculations

    International Nuclear Information System (INIS)

    Greene, N.M.; Arwood, J.W.; Wright, R.Q.; Parks, C.V.

    1994-08-01

    The 238-group LAW Library is a new multigroup neutron cross-section library based on ENDF/B-V data, with five sets of data taken from ENDF/B-VI ( 14 N 7 , 15 N 7 , 16 O 8 , 154Eu 63 , and 155 Eu 63 ). These five nuclides are included because the new evaluations are thought to be superior to those in Version 5. The LAW Library contains data for over 300 materials and will be distributed by the Radiation Shielding Information Center, located at Oak Ridge National Laboratory. It was generated for use in neutronics calculations required in radioactive waste analyses, although it has equal utility in any study requiring multigroup neutron cross sections

  19. Antifoam Degradation Products in Off Gas and Condensate of Sludge Batch 9 Simulant Nitric-Formic Flowsheet Testing for the Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Smith, T. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2016-04-14

    Ten chemical processing cell (CPC) experiments were performed using simulant to evaluate Sludge Batch 9 for sludge-only and coupled processing using the nitric-formic flowsheet in the Defense Waste Processing Facility (DWPF). Sludge Receipt and Adjustment Tank (SRAT) and Slurry Mix Evaporator (SME) cycles were performed on eight of the ten. The other two were SRAT cycles only. Samples of the condensate, sludge, and off gas were taken to monitor the chemistry of the CPC experiments. The Savannah River National Laboratory (SRNL) has previously shown antifoam decomposes to form flammable organic products, (hexamethyldisiloxane (HMDSO), trimethylsilanol (TMS), and propanal), that are present in the vapor phase and condensate of the CPC vessels. To minimize antifoam degradation product formation, a new antifoam addition strategy was implemented at SRNL and DWPF to add antifoam undiluted.

  20. Evaluation Of A Turbidity Meter For Use At The Defense Waste Processing Facility

    International Nuclear Information System (INIS)

    Mahannah, R. N.; Edwards, T. B.

    2013-01-01

    Savannah River Remediation's (SRR's) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a ''peanut'' vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 wt%. A ''go/no-go'' decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a ''go'' decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a ''no-go'' determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. A sludge simulant was used to develop standards

  1. Evaluation Of A Turbidity Meter For Use At The Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Mahannah, R. N.; Edwards, T. B.

    2013-01-15

    Savannah River Remediation's (SRR's) Defense Waste Processing Facility (DWPF) Laboratory currently tests for sludge carry-over into the Recycle Collection Tank (RCT) by evaluating the iron concentration in the Slurry Mix Evaporator Condensate Tank (SMECT) and relating this iron concentration to the amount of sludge solids present. A new method was proposed for detecting the amount of sludge in the SMECT that involves the use of an Optek turbidity sensor. Waste Services Laboratory (WSL) personnel conducted testing on two of these units following a test plan developed by Waste Solidification Engineering (WSE). Both Optek units (SN64217 and SN65164) use sensor model AF16-N and signal converter model series C4000. The sensor body of each unit was modified to hold a standard DWPF 12 cc sample vial, also known as a ''peanut'' vial. The purpose of this testing was to evaluate the use of this model of turbidity sensor, or meter, to provide a measurement of the sludge solids present in the SMECT based upon samples from that tank. During discussions of the results from this study by WSE, WSL, and Savannah River National Laboratory (SRNL) personnel, an upper limit on the acceptable level of solids in SMECT samples was set at 0.14 wt%. A ''go/no-go'' decision criterion was to be developed for the critical turbidity response, which is expressed in concentration units (CUs), for each Optek unit based upon the 0.14 wt% solids value. An acceptable or a ''go'' decision for the SMECT should reflect the situation that there is an identified risk (e.g. 5%) for a CU response from the Optek unit to be less than the critical CU value when the solids content of the SMECT is actually 0.14 wt% or greater, while a ''no-go'' determination (i.e., an Optek CU response above the critical CU value, a conservative decision relative to risk) would lead to additional evaluations of the SMECT to better quantify the possible solids content of the tank. A sludge simulant was used to develop standards

  2. Alternative solid forms for Savannah River Plant defense waste

    International Nuclear Information System (INIS)

    Stone, J.A.; Goforth, S.T.; Smith, P.K.

    1980-01-01

    Solid forms and processes were evaluated for immobilization of SRP high-level radioactive waste, which contains bulk chemicals such as hydrous iron and aluminium oxides. Borosilicate glass currently is the best overall choice. High-silica glass, tailored ceramics, and coated ceramics are potentially superior products, but require more difficult processes

  3. Nuclear engineering questions: power, reprocessing, waste, decontamination, fusion

    International Nuclear Information System (INIS)

    Walton, R.D. Jr.

    1979-01-01

    This volume contains papers presented at the chemical engineering symposium on nuclear questions. Specific questions addressed by the speakers included: nuclear power - why and how; commercial reprocessing - permanent death or resurrection; long-term management of commercial high-level wastes; long-term management of defense high-level waste; decontamination and decommissioning of nuclear facilities, engineering aspects of laser fusion I; and engineering aspects of laser fusion II. Individual papers have been input to the Energy Data Base previously

  4. Conditioning CANDU reactor wastes for disposal

    International Nuclear Information System (INIS)

    Beamer, N.V.; Bourns, W.T.; Buckley, L.P.; Speranzini, R.A.

    1981-12-01

    A Waste Treatment Centre (WTC) is being constructed at the Chalk River Nuclear Laboratories to develop and demonstrate processes for converting reactor wastes to a form suitable for disposal. The WTC contains a starved air incinerator for reducing the volume of combustible solid wastes, a reverse osmosis section for reducing the volume of liquid wastes and an immobilization section for incorporating the conditioned wastes in bitumen. The incinerator is commissioned on inactive waste: approximately 16.5 Mg of waste packaged in polyethylene bags has been incinerated in 17 burns. Average weight and volume reductions of 8.4:1 and 32:1, respectively, have been achieved. Construction of the reverse osmosis section of WTC is complete and inactive commissioning will begin in 1982 January. The reverse osmosis section was designed to process 30,000 m 3 /a of dilute radioactive waste. The incinerator ash and concentrated aqueous waste will be immobiblized in bitumen using a horizontal mixer and wiped-film evaporator. Results obtained during inactive commissioning of the incinerator are described along with recent results of laboratory programs directed at demonstrating the reverse osmosis and bituminization processes

  5. US Department of Energy National Solid Waste Information Management System (NSWIMS): Annual report for calendar year 1987

    Energy Technology Data Exchange (ETDEWEB)

    Scott, W.L.

    1988-07-01

    The Solid Waste Information Management System (SWIMS) is the database used to gather information for the US Department of Energy (DOE) on DOE and Department of Defense solid low-level radioactive waste (LLW). The National SWIMS Annual Report (NSWIMS) provides officials of the DOE with management information on the entire DOE/defense solid LLW cycle. The acronym for the annual report, NSWIMS, signifies that an improved format has been developed to make this document a more useful tool for assessing solid LLW management performance. Part I provides a composite summary of the DOE/defense solid LLW management. It includes data related to waste generation, forecasting, treatment, and disposal. Part II contains SWIMS computer-supplied information with discussions of the data presented, standardized and simplified data tables, and revised figures. All data are presented without interpretation and are potentially useful to users for evaluating trends, identifying possible problem areas, and defining future implications. 33 figs., 29 tabs.

  6. Changing needs in a waste information management system: A disposer's viewpoint

    International Nuclear Information System (INIS)

    Fauver, S.L.

    1987-01-01

    An enhanced radioactive waste management information system (RWMIS) is currently under development to accommodate more specific reporting requirements. Radioactive waste management project (RWMP) has recently completed a draft revision of its Operational Radioactive Defense Waste Management Plan for the Nevada Test Site which identifies NTS waste acceptance criteria and revised data requirements for waste generators. Emphasis shifts to the characterization of individual waste packages. RWMP proposes that the waste generator number individual waste packages in a manner which identifies the generator, waste stream, container type, and method of treatment or stabilization. A listing of radionuclides and concentrations will be required, as well as physical and chemical data specific to each waste package. Analytical methods and techniques used for waste package characterization must be detailed by each generator in their quality assurance plan which is reviewed by DOE Nevada Operations Office

  7. Low-activity waste feed delivery -- Minimum duration between successive batches

    International Nuclear Information System (INIS)

    Peters, B.B.

    1998-01-01

    The purpose of this study is to develop a defensible basis for establishing what ''minimum duration'' will provide acceptable risk mitigation for low-activity waste feed delivery to the privatization vendors. The study establishes a probabilistic-based duration for staging of low-activity waste feed batches. A comparison is made of the durations with current feed delivery plans and potential privatization vendor facility throughput rates

  8. Low-activity waste feed delivery -- Minimum duration between successive batches

    Energy Technology Data Exchange (ETDEWEB)

    Peters, B.B.

    1998-08-25

    The purpose of this study is to develop a defensible basis for establishing what ``minimum duration`` will provide acceptable risk mitigation for low-activity waste feed delivery to the privatization vendors. The study establishes a probabilistic-based duration for staging of low-activity waste feed batches. A comparison is made of the durations with current feed delivery plans and potential privatization vendor facility throughput rates.

  9. Critique of Hanford Waste Vitrification Plant off-gas sampling requirements

    International Nuclear Information System (INIS)

    Goles, R.W.

    1996-03-01

    Off-gas sampling and monitoring activities needed to support operations safety, process control, waste form qualification, and environmental protection requirements of the Hanford Waste Vitrification Plant (HWVP) have been evaluated. The locations of necessary sampling sites have been identified on the basis of plant requirements, and the applicability of Defense Waste Processing Facility (DWPF) reference sampling equipment to these HWVP requirements has been assessed for all sampling sites. Equipment deficiencies, if present, have been described and the bases for modifications and/or alternative approaches have been developed

  10. Defense Forensic Enterprise: Assessment and Status Report Personnel Accounting Extract

    Science.gov (United States)

    2013-12-01

    pathology , forensic anthropology, forensic toxicology, and DNA analysis to iden- tify human remains. Per DOD Directive 5205.15E, the stakeholders fall...Defense Forensic Enterprise Assessment and Status Report Personnel Accounting Extract Christine A. Hughes • Jeffrey E. Chilton John J. Clifford • C...community-related sections from a CNA report titled, “Defense Forensic Enterprise Assessment and Status Report” [1]. The first sec- tion within this

  11. Technology for the long-term management of defense HLW at the Idaho Chemical Processing Plant

    International Nuclear Information System (INIS)

    Staples, B.A.; Berreth, J.R.; Knecht, D.A.

    1986-01-01

    The Defense Waste Management Plan of June 1983 includes a reference plan for the long-term management of Idaho Chemical Processing Plant (ICPP) high-level waste (HLW), with a goal of disposing of the annual output in 500 canisters a year by FY-2008. Based on the current vitrification technology, the ICPP base-glass case would produce 1700 canisters per year after FY-2007. Thus, to meet the DWMP goal processing steps including fuel dissolution, waste treatment, and waste immobilization are being studied as areas where potential modifications could result in HLW volume reductions for repository disposal. It has been demonstrated that ICPP calcined wastes can be densified by hot isostatic pressing to multiphase ceramic forms of high loading and density. Conversion of waste by hot isostatic pressing to these forms has the potential of reducing the annual ICPP waste production to volumes near those of the goal of the DWMP. This report summarizes the laboratory-scale information currently available on the development of these forms

  12. A new waste minimization method for the determination of total nonhalogenated volatile organic compounds in TRU wastes

    International Nuclear Information System (INIS)

    Sandoval, W.; Quintana, B.D.; Ortega, L.

    1997-01-01

    As part of the technical support CST-12 provides for a wide variety of defense and nondefense programs within Los Alamos National Laboratory (LANL) and the Department of Energy (DOE) complex, new waste minimization technique is under development for radiological volatile organic analysis (Hot VOA). Currently all HOT VOA must be run in a glovebox. Several types of sample contain TRU radiological waste in the form of particulates. By prefiltering the samples through a 1.2 micron syringe and counting the radioactivity, it has been found that many of the samples can be analyzed outside a glovebox. In the present investigation, the types of Hot VOA samples that can take advantage of this new technique, the volume and types of waste reduced and the experimental parameters will be discussed. Overall, the radioactive waste generated is minimized

  13. Hanford Waste Vitrification Plant Quality Assurance Program description for defense high-level waste form development and qualification

    International Nuclear Information System (INIS)

    Hand, R.L.

    1992-01-01

    This document describes the quality assurance (QA) program of the Hanford Waste Vitrification Plant (HWVP) Project. The purpose of the QA program is to control project activities in such a manner as to achieve the mission of the HWVP Project in a safe and reliable manner. A major aspect of the HWVP Project QA program is the control of activities that relate to high-level waste (HLW) form development and qualification. This document describes the program and planned actions the Westinghouse Hanford Company (Westinghouse Hanford) will implement to demonstrate and ensure that the HWVP Project meets the US Department of Energy (DOE) and ASME regulations. The actions for meeting the requirements of the Waste Acceptance Preliminary Specifications (WAPS) will be implemented under the HWVP product qualification program with the objective of ensuring that the HWVP and its processes comply with the WAPS established by the federal repository

  14. Evaluation of forms for the immobilization of high-level and transuranic wastes

    International Nuclear Information System (INIS)

    Schuman, R.P.; Cox, N.D.; Gibson, G.W.; Kelsey, P.V. Jr.

    1982-08-01

    A figure-of-merit (FOM) analysis has been made of a number of waste forms for solidifying both defense and commercial high-level reprocessing waste (HLW) and transuranic (TRU) wastes. The evaluation includes iron-enriched basalt (IEB), a fusion-produced glass-ceramic, which has not been included in other assessments. For HLW, concrete receives the highest FOM, but may not meet regulatory requirements; IEB and glass are the best choices of the materials that should easily meet regulatory requirements. Concrete waste forms are the best choice for TRU wastes, with IEB a close contender. 116 references, 3 figures, 112 tables

  15. Quality assurance criteria for Waste Isolation Pilot Plant performance assessment modeling

    International Nuclear Information System (INIS)

    1995-07-01

    The US Department of Energy (DOE) is developing the Waste Isolation Pilot Plant (WIPP) as a deep geologic repository for transuranic (TRU) and TRU-mixed wastes generated by DOE Defense Program activities. Regulatory agencies, including the Environmental Protection Agency (EPA) and New Mexico Environment Department, will be forced to rely upon system modeling to determine the potential compliance of the WIPP facility with federal regulations. Specifically, long-term modeling efforts are focused on compliance with 40 CFR Part 268, ''Land Disposal Restrictions,'' and 40 CFR Part 191, ''Environmental Radiation Protection Standards for Management and Disposal of Spent Nuclear Fuel, High-Level, and Transuranic Radioactive Wastes.'' DOE plans to use the similar conceptual models and numerical codes to demonstrate compliance under both of these regulations. Sandia National Laboratories (SNL) has been developing a system model that will be used to demonstrate potential waste migration from the WIPP facility. Because the geologic system underlying the WIPP site is not completely understood, the software code to model the system must be developed to exacting standards for its predictions to be reliable and defensible. This is a complex model that consists of many submodules used to describe various migration pathways and processes that affect potential waste migration

  16. Waste Vitrification Projects Throughout the US Initiated by SRS

    International Nuclear Information System (INIS)

    Jantzen, C.M.; Whitehouse, J.C.; Smith, M.E.; Pickett, J.B.; Peeler, D.K.

    1998-05-01

    Technologies are being developed by the U. S. Department of Energy's (DOE) Nuclear Facility sites to convert high-level, low-level, and mixed wastes to a solid stabilized waste form for permanent disposal. Vitrification is one of the most important and environmentally safest technologies being developed. The Environmental Protection Agency (EPA) has declared vitrification the best demonstrated available technology for high-level radioactive waste and produced a Handbook of Vitrification Technologies for Treatment of Hazardous and Radioactive Waste. The Defense Waste Processing Facility being tested at will soon start vitrifying the high-level waste at. The DOE Office of Technology Development has taken the position that mixed waste needs to be stabilized to the highest level reasonably possible to ensure that the resulting waste forms will meet both current and future regulatory specifications. Vitrification produces durable waste forms at volume reductions up to 97%. Large reductions in volume minimize long-term storage costs making vitrification cost effective on a life cycle basis

  17. 40 CFR 761.61 - PCB remediation waste.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 30 2010-07-01 2010-07-01 false PCB remediation waste. 761.61 Section... PROHIBITIONS Storage and Disposal § 761.61 PCB remediation waste. This section provides cleanup and disposal options for PCB remediation waste. Any person cleaning up and disposing of PCBs managed under this section...

  18. Sampling and analysis plan for ORNL filter press cake waste from the Liquid and Gaseous Waste Operations Department

    International Nuclear Information System (INIS)

    Bartling, M.H.; Bayne, C.K.; Cunningham, G.R.

    1994-09-01

    This document defines the sampling and analytical procedures needed for the initial characterization of the filter press cake waste from the Process Waste Treatment Plant (PWTP) at the Oak Ridge National Laboratory (ORNL). It is anticipated that revisions to this document will occur as operating experience and sample results suggest appropriate changes be made. Application of this document will be controlled through the ORNL Waste Management and Remedial Action Division. The sampling strategy is designed to ensure that the samples collected present an accurate representation of the waste process stream. Using process knowledge and preliminary radiological activity screens, the filter press cake waste is known to contain radionuclides. Chemical characterization under the premise of this sampling and analysis plan will provide information regarding possible treatments and ultimately, disposal of filter press cake waste at an offsite location. The sampling strategy and analyses requested are based on the K-25 waste acceptance criteria and the Nevada Test Site Defense Waste Acceptance Criteria, Certification, and Transfer Requirements [2, NVO-325, Rev. 1]. The sampling strategy will demonstrate that for the filter press cake waste there is (1) an absence of RCRA and PCBs wastes, (2) an absence of transuranic (TRU) wastes, and (3) a quantifiable amount of radionuclide activity

  19. Nuclear Waste Materials Characterization Center. Semiannual progress report, April 1985-September 1985

    International Nuclear Information System (INIS)

    Mendel, J.E.

    1985-12-01

    Work continued on converting MCC Quality Assurance practices to comply with the national QA standard for nuclear facilities, ANSI/ASME NQA-1. Support was provided to the following: Office of Geologic Repositories; Salt Repository Project; Basalt Waste Isolation Project; Office of Defense Waste and Byproducts Management; Hanford Programs; Transportation Technology Center; and West Valley Demonstration Project. (LM)

  20. Analyzing Department of Defense's Use of Other Transactions as a Method for Accessing Non-Traditional Technology

    National Research Council Canada - National Science Library

    Gilliland, John

    2001-01-01

    ... technological superiority To attract advanced technology companies that normally do not participate in defense business to the defense market, Congress provided a new contracting authority, Section 845...