WorldWideScience

Sample records for defense technology lasers

  1. Lasers technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    The Lasers Technology Program of IPEN is committed to the development of new lasers based on the research of optical materials and new technologies, as well to laser applications in several areas: Nuclear, Medicine, Dentistry, Industry, Environment and Advanced Research. The Program is basically divided into two main areas: Material and Laser Development and Laser Applications.

  2. Lasers technology

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-01

    The Laser Technology Program of IPEN is developed by the Center for Lasers and Applications (CLA) and is committed to the development of new lasers based on the research of new optical materials and new resonator technologies. Laser applications and research occur within several areas such as Nuclear, Medicine, Dentistry, Industry, Environment and Advanced Research. Additional goals of the Program are human resource development and innovation, in association with Brazilian Universities and commercial partners.

  3. Defense Technology Objectives of the Joint Warfighting Science and Technology and Defense Technology Area Plan.

    Science.gov (United States)

    1996-05-01

    occlusion , multipath etc.) through the use of inertial measurement systems (Interferometric Fiber Optic Gyro, Dynamically Tuned Gyro) and will...management systems provide mobile and semi- mobile assets (e.g., Abrams, Theater Missile Defense - TMD ) with low cost, low burden survivability...technology for development of an operational high energy Airborne Laser (ABL) for Theater Missile Defense ( TMD ). Address risk reduction issues for develop

  4. Excimer Laser Technology

    CERN Document Server

    Basting, Dirk

    2005-01-01

    This comprehensive survey on Excimer Lasers investigates the current range of the technology, applications and devices of this commonly used laser source, as well as the future of new technologies, such as F2 laser technology. Additional chapters on optics, devices and laser systems complete this compact handbook. A must read for laser technology students, process application researchers, engineers or anyone interested in excimer laser technology. An effective and understandable introduction to the current and future status of excimer laser technology.

  5. Application of Defense Technology Commonly Used in Boxing Match

    Institute of Scientific and Technical Information of China (English)

    Zhixiao Li[1; Jianjun Liu[2

    2015-01-01

    Boxing defense technology is a kind of techniques to prevent the opponent from attacking successfully. Boxing is a kind of sports that needs close cooperation between attack and defense. Attack is used for defense, where there is no attack, there will be no defense, and vice versa. Defense technology is the foundation of attack technology, therefore, defense is of vital importance in boxing match.

  6. April 25, 2003, FY2003 Progress Summary and FY2002 Program Plan, Statement of Work and Deliverables for Development of High Average Power Diode-Pumped Solid State Lasers,and Complementary Technologies, for Applications in Energy and Defense

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W; Bibeau, C

    2005-10-25

    The High Average Power Laser Program (HAPL) is a multi-institutional, synergistic effort to develop inertial fusion energy (IFE). This program is building a physics and technology base to complement the laser-fusion science being pursued by DOE Defense programs in support of Stockpile Stewardship. The primary institutions responsible for overseeing and coordinating the research activities are the Naval Research Laboratory (NRL) and Lawrence Livermore National Laboratory (LLNL). The current LLNL proposal is a companion document to the one submitted by NRL, for which the driver development element is focused on the krypton fluoride excimer laser option. The NRL and LLNL proposals also jointly pursue complementary activities with the associated rep-rated laser technologies relating to target fabrication, target injection, final optics, fusion chamber, target physics, materials and power plant economics. This proposal requests continued funding in FY03 to support LLNL in its program to build a 1 kW, 100 J, diode-pumped, crystalline laser, as well as research into high gain fusion target design, fusion chamber issues, and survivability of the final optic element. These technologies are crucial to the feasibility of inertial fusion energy power plants and also have relevance in rep-rated stewardship experiments. The HAPL Program pursues technologies needed for laser-driven IFE. System level considerations indicate that a rep-rated laser technology will be needed, operating at 5-10 Hz. Since a total energy of {approx}2 MJ will ultimately be required to achieve suitable target gain with direct drive targets, the architecture must be scaleable. The Mercury Laser is intended to offer such an architecture. Mercury is a solid state laser that incorporates diodes, crystals and gas cooling technologies.

  7. FY2002 Progress Summary Program Plan, Statement of Work and Deliverables for Development of High Average Power Diode-Pumped Solid State Lasers, and Complementary Technologies, for Applications in Energy and Defense

    Energy Technology Data Exchange (ETDEWEB)

    Bayramian, A; Bibeau, C; Beach, R; Behrendt, B; Ebbers, C; Latkowski, J; Meier, W; Payne, S; Perkins, J; Schaffers, K; Skulina, K; Ditmire, T; Kelly, J; Waxer, L; Rudi, P; Randles, M; Witter, D; Meissner, H; Merissner, O

    2001-12-13

    The High Average Power Laser Program (HAPL) is a multi-institutional, coordinated effort to develop a high-energy, repetitively pulsed laser system for Inertial Fusion Energy and other DOE and DOD applications. This program is building a laser-fusion energy base to complement the laser-fusion science developed by DOE Defense programs over the past 25 years. The primary institutions responsible for overseeing and coordinating the research activities are the Naval Research Laboratory (NRL) and LLNL. The current LLNL proposal is a companion proposal to that submitted by NRL, for which the driver development element is focused on the krypton fluoride excimer laser option. Aside from the driver development aspect, the NRL and LLNL companion proposals pursue complementary activities with the associated rep-rated laser technologies relating to target fabrication, target injection, final optics, fusion chamber, materials and power plant economics. This report requests continued funding in FY02 to support LLNL in its program to build a 1kW, 100J, diode-pumped, crystalline laser. In addition, research in high gain laser target design, fusion chamber issues and survivability of the final optic element will be pursued. These technologies are crucial to the feasibility of inertial fusion energy power plants and also have relevance in rep-rated stewardship experiments.

  8. Introduction to laser technology

    CERN Document Server

    Hitz, C Breck; Hecht, Jeff; Hitz, C Breck; John Wiley & Sons

    2001-01-01

    Electrical Engineering Introduction to Laser Technology , Third Edition. Would you like to know how a laser works, and how it can be modified for your own specific tasks? This intuitive third edition-previously published as Understanding Laser Technology , First and Second Editions-introduces engineers, scientists, technicians, and novices alike to the world of modern lasers, without delving into the mathematical details of quantum electronics. It is the only introductory text on the market today that explains the underlying physics and engineering applicable to all lasers. A unique combinatio.

  9. High energy laser demonstrators for defense applications

    Science.gov (United States)

    Jung, M.; Riesbeck, Th.; Schmitz, J.; Baumgärtel, Th.; Ludewigt, K.; Graf, A.

    2017-01-01

    Rheinmetall Waffe Munition has worked since 30 years in the area of High Energy Laser (HEL) for defence applications, starting from pulsed CO2 to pulsed glass rods lasers. In the last decade Rheinmetall Waffe Munition changed to diode pumped solid state laser (DPSSL) technology and has successfully developed, realised and tested a variety of versatile HEL weapon demonstrators for air- and ground defence scenarios like countering rocket, artillery, mortar, missile (RAMM), unmanned aerial systems (UAS) and unexploded ordnances clearing. By employing beam superimposing technology and a modular laser weapon concept, the total optical power has been successively increased. Stationary weapon platforms, military vehicles and naval platforms have been equipped with high energy laser effectors. The contribution gives a summary of the most recent development stages of Rheinmetalls HEL weapon program. In addition to the stationary 30 kW laser weapon demonstrator, we present vehicle based HEL demonstrators: the 5 kW class Mobile HEL Effector Track V, the 20 kW class Mobile HEL Effector Wheel XX and the 50 kW class Mobile HEL Effector Container L and the latest 10 kW HEL effector integrated in the naval weapon platform MLG 27. We describe the capabilities of these demonstrators against different potential targets. Furthermore, we will show the capability of the 30 kW stationary Laser Weapon Demonstrator integrated into an existing ground based air defence system to defeat saturated attacks of RAMM and UAS targets.

  10. Laser science and technology update - 1999

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H L; Powell, H T

    1999-09-23

    The Laser Science and Technology (LS and T) Program's mission is to provide advanced solid-state laser and optics technologies for the Laboratory, government, and industry. The primary activities of LS and T in 1998 have been threefold--to complete the laser technology development and laser component testing for the ICF/NIF Program, to develop advanced solid-state laser systems and optical components for the Department of Defense (DoD) and DOE, and to address the needs of other government agencies and U.S. industry. After a four-year campaign, the LS and T Program achieved timely completion of the laser development effort for the NIF in 1998. This effort includes the special laser and component development, integrated performance testing on Beamlet, and detailed design and cost optimization using computation codes. Upon completing the Title II design review, the focus of the LS and T support effort has been shifted toward NIF laser hardware acquisition and deployment. The LS and T team also continued to develop advanced high-power solid-state laser technology for both the U.S. government and industrial partners. Progress was also made in several new areas: (a) diode-pumped solid-state laser drivers for high-energy-density physics and inertial fusion energy; (b) high-average-power femtosecond and nanosecond lasers for materials processing; and (c) femtosecond lasers for the generation of advanced light sources.

  11. Physics of a ballistic missile defense - The chemical laser boost-phase defense

    Science.gov (United States)

    Grabbe, Crockett L.

    1988-01-01

    The basic physics involved in proposals to use a chemical laser based on satellites for a boost-phase defense are investigated. After a brief consideration of simple physical conditions for the defense, a calculation of an equation for the number of satellites needed for the defense is made along with some typical values of this for possible future conditions for the defense. Basic energy and power requirements for the defense are determined. A sumary is made of probable minimum conditions that must be achieved for laser power, targeting accuracy, number of satellites, and total sources for power needed.

  12. Introduction to laser technology

    CERN Document Server

    Hitz, C Breck; Hecht, Jeff

    2012-01-01

    The only introductory text on the market today that explains the underlying physics and engineering applicable to all lasersAlthough lasers are becoming increasingly important in our high-tech environment, many of the technicians and engineers who install, operate, and maintain them have had little, if any, formal training in the field of electro-optics. This can result in less efficient usage of these important tools. Introduction to Laser Technology, Fourth Edition provides readers with a good understanding of what a laser is and what it can and cannot do. The book explains what types of las.

  13. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2008-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last five years, and many of the traditional manufactures of gas and solid-state lasers are pursuing the attractive fiber-based systems, which are now displacing the old technology in many areas. High-power fiber laser...... laser system. We present the latest advancements within airclad fiber technology including a new 70 μm single-mode polarization-maintaining rod-type fiber capable of amplifying to MW power levels. Furthermore we describe the novel airclad based pump combiners and their use in a completely monolithic 350...... W CW fiber laser system with an M2 of less than 1.1. Finally, we briefly touch upon the subject of photo darkening and its origin....

  14. Airclad fiber laser technology

    DEFF Research Database (Denmark)

    Hansen, Kim P.; Olausson, Christina Bjarnal Thulin; Broeng, Jes

    2011-01-01

    High-power fiber lasers and amplifiers have gained tremendous momentum in the last 5 years. Many of the traditional manufacturers of gas and solid-state lasers are now pursuing the fiber-based systems, which are displacing the conventional technology in many areas. High-power fiber laser systems...... laser system. We present the latest advancements within airclad fiber technology including a new 100 m single-mode polarization-maintaining rod-type fiber capable of amplifying to megawatt power levels. Furthermore, we describe the novel airclad-based pump combiners and their use in a completely...... monolithic 350 W cw fiber laser system with an M2 of less than 1.1. © 2011 Society of Photo-Optical Instrumentation Engineers (SPIE)....

  15. Development of Information Technology for Smart Defense

    Energy Technology Data Exchange (ETDEWEB)

    Chung, Kyoil; Lee, So Yeon; Park, Sangjoon; Park, Jonghyun [ETRI, Daejeon (Korea, Republic of); Han, Sangcheol [KEIT, Seoul (Korea, Republic of)

    2014-03-15

    Recently, there has been demand for the convergence of IT (Information and communication Technologies, ICT) with defense, as has already been achieved in civilian fields such as healthcare and construction. It is expected that completely new and common requirements would emerge from the civilian and military domains and that the shape of war field would change rapidly. Many military scientists forecast that future wars would be network-centric and be based on C4I(Command, Control, Communication and Computer, Intelligence), ISR(Intelligence, Surveillance and Reconnaissance), and PGM(Precision Guided Munitions). For realizing the smart defense concept, IT should act as a baseline technology even for simulating a real combat field using virtual reality. In this paper, we propose the concept of IT-based smart defense with a focus on accurate detection in real and cyber wars, effective data communication, automated and unmanned operation, and modeling and simulation.

  16. Photon technology. Laser processing technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Survey has been conducted to develop laser processing technology utilizing the interaction between substance and photon. This is a part of the leading research on photon technology development. The photon technology development is aimed at novel technology development highly utilizing the quantum nature of photons. In the field of laser processing, high quality photons are used as tools, special functions of atoms and molecules will be discovered, and processing for functional fabrication (photon machining) will be established. A role of laser processing in industries has become significant, which is currently spreading not only into cutting and welding of materials and scalpels but also into such a special field as ultrafine processing of materials. The spreading is sometimes obstructed due to the difficulty of procurement of suitable machines and materials, and the increase of cost. The purpose of this study is to develop the optimal laser technology, to elucidate the interaction between substance and photon, and to develop the laser system and the transmission and regulation systems which realize the optimal conditions. 387 refs., 115 figs., 25 tabs.

  17. Terahertz Technology for Defense and Security-Related Applications

    DEFF Research Database (Denmark)

    Iwaszczuk, Krzysztof

    This thesis deals with chosen aspects of terahertz (THz) technology that have potential in defense and security-related applications. A novel method for simultaneous data acquisition in time-resolved THz spectroscopy experiments is developed. This technique is demonstrated by extracting the sheet...... conductivity of photoexcited charge carriers in semi-insulating gallium arsenide. Comparison with results obtained using a standard data acquisition scheme shows that the new method minimizes errors originating from uctuations in the laser system output and timing errors in the THz pulse detection. Furthermore...

  18. 75 FR 40857 - Webinar About Advanced Defense Technologies RFP

    Science.gov (United States)

    2010-07-14

    ... ADMINISTRATION Webinar About Advanced Defense Technologies RFP AGENCY: U.S. Small Business Administration (SBA). ACTION: Notice of open webinar meeting to discuss Advanced Defense Technologies (ADT) Request for... webinar it is hosting to answer questions from potential Offerors about the Advanced Defense...

  19. Laser Science and Technology Program Update 2002

    Energy Technology Data Exchange (ETDEWEB)

    Hackel, L A; Chen, H L

    2003-03-01

    The Laser Science and Technology (LS&T) Program's mission is to develop advanced lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the nation and the Laboratory. A top, near-term priority is to provide technical support in the deployment and upgrade of the National Ignition Facility (NIF). Our other program activities synergistically develop technologies that are of interest to the NIF Directorate but outside the scope of the NIF funding. The primary objectives of LS&T activities in 2002 have been fourfold--(a) to support deployment of hardware and to enhance laser and optics performance for NIF, (b) to develop high-energy petawatt laser science and technology for the Department of Energy (DOE), (c) to develop advanced solid-state laser systems and optical components for the Department of Defense (DoD), and to invent develop, and deliver improved concepts and hardware for other government agencies and industry. Special efforts have been devoted to building and maintaining our capabilities in three technology areas: high-power short-pulse solid-state lasers, high-power optical materials, and applications of advanced lasers. LS&T activities during 2002 focused on seven major areas: (1) NIF Project--LS&T led major advances in the deployment of NIF Final Optics Assembly (FOA) and the development of 3{omega} optics processing and treatment technologies to enhance NIF's operations and performance capabilities. (2) Stockpile Stewardship Program (SSP)--LS&T personnel continued development of ultrashort-pulse lasers and high-power, large-aperture optics for applications in SSP, extreme-field science and national defense. To enhance the high-energy petawatt (HEPW) capability in NIF, LS&T continued development of advanced compressor-grating and front-end laser technologies utilizing optical-parametric chirped-pulse amplification (OPCPA). (3) High-energy-density physics and inertial fusion energy

  20. Laser Science and Technology Program Update 2002

    Energy Technology Data Exchange (ETDEWEB)

    Hackel, L A; Chen, H L

    2003-03-01

    The Laser Science and Technology (LS&T) Program's mission is to develop advanced lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the nation and the Laboratory. A top, near-term priority is to provide technical support in the deployment and upgrade of the National Ignition Facility (NIF). Our other program activities synergistically develop technologies that are of interest to the NIF Directorate but outside the scope of the NIF funding. The primary objectives of LS&T activities in 2002 have been fourfold--(a) to support deployment of hardware and to enhance laser and optics performance for NIF, (b) to develop high-energy petawatt laser science and technology for the Department of Energy (DOE), (c) to develop advanced solid-state laser systems and optical components for the Department of Defense (DoD), and to invent develop, and deliver improved concepts and hardware for other government agencies and industry. Special efforts have been devoted to building and maintaining our capabilities in three technology areas: high-power short-pulse solid-state lasers, high-power optical materials, and applications of advanced lasers. LS&T activities during 2002 focused on seven major areas: (1) NIF Project--LS&T led major advances in the deployment of NIF Final Optics Assembly (FOA) and the development of 3{omega} optics processing and treatment technologies to enhance NIF's operations and performance capabilities. (2) Stockpile Stewardship Program (SSP)--LS&T personnel continued development of ultrashort-pulse lasers and high-power, large-aperture optics for applications in SSP, extreme-field science and national defense. To enhance the high-energy petawatt (HEPW) capability in NIF, LS&T continued development of advanced compressor-grating and front-end laser technologies utilizing optical-parametric chirped-pulse amplification (OPCPA). (3) High-energy-density physics and inertial fusion energy

  1. Photon technology. Laser process technology; Photon technology. Laser process gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-01

    For developing laser process technology by interaction between substance and photon, the present state, system, R and D issues and proposal of such technology were summarized. Development of the photon technology aims at the modification of bonding conditions of substances by quantum energy of photon, and the new process technology for generating ultra- high temperature and pressure fields by concentrating photon on a minute region. Photon technology contributes to not only the conventional mechanical and thermal forming and removal machining but also function added machining (photon machining) in quantum level and new machining technology ranging from macro- to micro-machining, creating a new industrial field. This technology extends various fields from the basis of physics and chemistry to new bonding technology. Development of a compact high-quality high-power high-efficiency photon source, and advanced photon transmission technology are necessary. The basic explication of an unsolved physicochemical phenomenon related to photon and substance, and development of related application technologies are essential. 328 refs., 147 figs., 13 tabs.

  2. Department of Defense Laboratories: Finding a Future in Technology Transfer

    Science.gov (United States)

    1993-04-01

    investment. There is no mention of DoD even trying. This, then, presents a problem for Defense technology transfer management. The President expects both...effort, but nonetheless felt unable to express their effort quantitatively. The potential size and demand for Defense technology transfer calls for some... Defense technology transfer is taking place, it is doing so on the enthusiasm and drive of a few key individuals. Political demand and legislation

  3. Laser Science and Technology Program Update 2001

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H L; Hackel, L A

    2002-01-01

    The Laser Science and Technology (LS&T) Program's mission is to develop advanced solid-state lasers, optics, materials technologies, and applications to solve problems and create new capabilities of importance to the Nation and the Laboratory. A top, near-term priority is to provide technical support to the National Ignition Facility (NIF) to ensure activation success. LS&T provides the NIF Programs with core competencies and supports its economic viability. The primary objectives of LS&T activities in fiscal year (FY) 2001 have been threefold: (1) to support deployment of hardware and to enhance lasers and optics performance for NIF, (2) to develop advanced solid-state laser systems and optical components for the Department of Energy (DOE) and the Department of Defense (DoD), and (3) to invent, develop, and deliver improved concepts and hardware for other government agencies and U.S. industry. Special efforts have also been devoted to building and maintaining our capabilities in three technology areas: high-power solid-state lasers, high-power optical materials, and applications of advanced lasers.

  4. Methane LIDAR Laser Technology Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fibertek proposes to develop laser technology intended to meet NASA's need for innovative lidar technologies for atmospheric measurements of methane. NASA and the...

  5. Application and the key technology on high power fiber-optic laser in laser weapon

    Science.gov (United States)

    Qu, Zhou; Li, Qiushi; Meng, Haihong; Sui, Xin; Zhang, Hongtao; Zhai, Xuhua

    2014-12-01

    The soft-killing laser weapon plays an important role in photoelectric defense technology. It can be used for photoelectric detection, search, blinding of photoelectric sensor and other devices on fire control and guidance devices, therefore it draws more and more attentions by many scholars. High power fiber-optic laser has many virtues such as small volume, simple structure, nimble handling, high efficiency, qualified light beam, easy thermal management, leading to blinding. Consequently, it may be used as the key device of soft-killing laser weapon. The present study introduced the development of high power fiber-optic laser and its main features. Meanwhile the key technology of large mode area (LMA) optical fiber design, the beam combination technology, double-clad fiber technology and pumping optical coupling technology was stated. The present study is aimed to design high doping LMA fiber, ensure single mode output by increasing core diameter and decrease NA. By means of reducing the spontaneous emission particle absorbed by fiber core and Increasing the power density in the optical fiber, the threshold power of nonlinear effect can increase, and the power of single fiber will be improved. Meantime, high power will be obtained by the beam combination technology. Application prospect of high power fiber laser in photoelectric defense technology was also set forth. Lastly, the present study explored the advantages of high power fiber laser in photoelectric defense technology.

  6. Laser technologies in ophthalmic surgery

    Science.gov (United States)

    Atezhev, V. V.; Barchunov, B. V.; Vartapetov, S. K.; Zav'yalov, A. S.; Lapshin, K. E.; Movshev, V. G.; Shcherbakov, I. A.

    2016-08-01

    Excimer and femtosecond lasers are widely used in ophthalmology to correct refraction. Laser systems for vision correction are based on versatile technical solutions and include multiple hard- and software components. Laser characteristics, properties of laser beam delivery system, algorithms for cornea treatment, and methods of pre-surgical diagnostics determine the surgical outcome. Here we describe the scientific and technological basis for laser systems for refractive surgery developed at the Physics Instrumentation Center (PIC) at the Prokhorov General Physics Institute (GPI), Russian Academy of Sciences.

  7. CSIR eNews: Laser technology

    CSIR Research Space (South Africa)

    CSIR

    2007-12-01

    Full Text Available The CSIR provides a critical core of laser technology knowledge and expertise through the research, development and implementation of laser based technologies and applications in Africa. This knowledge, housed at the CSIR National Laser Centre...

  8. NASA Space Laser Technology

    Science.gov (United States)

    Krainak, Michael A.

    2015-01-01

    Over the next two decades, the number of space based laser missions for mapping, spectroscopy, remote sensing and other scientific investigations will increase several fold. The demand for high wall-plug efficiency, low noise, narrow linewidth laser systems to meet different systems requirements that can reliably operate over the life of a mission will be high. The general trends will be for spatial quality very close to the diffraction limit, improved spectral performance, increased wall-plug efficiency and multi-beam processing. Improved spectral performance will include narrower spectral width (very near the transform limit), increased wavelength stability and or tuning (depending on application) and lasers reaching a wider range of wavelengths stretching into the mid-infrared and the near ultraviolet. We are actively developing high efficiency laser transmitter and high-sensitivity laser receiver systems that are suitable for spaceborne applications.

  9. Ultraviolet laser technology and applications

    CERN Document Server

    Elliott, David L

    1995-01-01

    Ultraviolet Laser Technology and Applications is a hands-on reference text that identifies the main areas of UV laser technology; describes how each is applied; offers clearly illustrated examples of UV opticalsystems applications; and includes technical data on optics, lasers, materials, and systems. This book is unique for its comprehensive, in-depth coverage. Each chapter deals with a different aspect of the subject, beginning with UV light itself; moving through the optics, sources, and systems; and concluding with detailed descriptions of applications in various fields.The text enables pr

  10. 5th International Conference OTEH 2012 - defense technology (Proceedings review)

    OpenAIRE

    Vlado Petar Đurković

    2013-01-01

    This article gives an overview of all papers and events at the Fifth International ScientificConference on Defense Technologies OTEH 2012 held in Belgrade, in the Military Technical Institute (VTI), from 18th to 19th September 2012.The paper review presents the Conference Sections by subjects and guest-lectureres as well as the institutions of all authors who actively participated at the Conference.About the ConferenceThe Fifth International Scientific Conference on Defense Technologies OTEH ...

  11. Laser dye technology

    Energy Technology Data Exchange (ETDEWEB)

    Hammond, P R

    1999-09-01

    The author has worked with laser dyes for a number of years. A first interest was in the Navy blue-green program where a flashlamp pumped dye laser was used as an underwater communication and detection device. It made use of the optical window of sea-water--blue for deep ocean, green for coastal water. A major activity however has been with the Atomic Vapor Laser Isotope Separation Program (AVLIS) at the Lawrence Livermore National Laboratory. The aim here has been enriching isotopes for the nuclear fuel cycle. The tunability of the dye laser is utilized to selectively excite one isotope in uranium vapor, and this isotope is collected electrostatically as shown in Figure 1. The interests in the AVLIS program have been in the near ultra-violet, violet, red and deep-red.

  12. The Defense Science Board 1999 Summer Study Task Force on 21st Century Defense Technology Strategies. Volume 1

    Science.gov (United States)

    2016-06-07

    Study Task Force On 21ST Century Defense Technology Strategies Volume 1 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR...3. Defense Technology Strategy and Management PART 4. Strategic Agility PART 5. Analysis and Quantitative Results iii PREFACE The Defense Science...Board (DSB) 1999 Summer Study Task Force on 21st Century Defense Technology Strategies continues a series of studies that have examined key challenges

  13. Defense Science and Technology Success Stories

    Science.gov (United States)

    2007-01-01

    program. POC: Mr. Paul Koskey, MDA/ DVI , 703-882-6154 Year: FY 2006/2007 Fiber Grating Sensor for Damage Assessment MISSILE DEFENSE AGENCY (MDA) 43...sulfur, these microorganisms remove a potentially fouling precipitate from the anode. Collective activity of the biofilm and continuous flux of fuel by

  14. Department of Defense Space Technology Guide

    Science.gov (United States)

    2007-11-02

    out integrated circuits (ROICs), quantum well IR photodetectors (QWIPs) • Advanced small, high-capacity, space-qualified cryocoolers – More efficient...passive) • Space-based laser, lidar or relay mirrors for remote optical sensing – Large-aperture, lightweight, modular, deployable membrane mirrors...change materials • Space-based laser/ lidar remote optical sensing • Sensors to monitor the space environment and alert host spacecraft of natural

  15. School on Laser Physics & Technology

    CERN Document Server

    Khare, Rajeev

    2015-01-01

    The book, ‘Laser Physics and Technology’, addresses fundamentals of laser physics, representative laser systems and techniques, and some important applications of lasers. The present volume is a collection of articles based on some of the lectures delivered at the School on ‘Laser Physics and Technology’ organized at Raja Ramanna Centre for Advanced Technology during March, 12-30, 2012. The objective of the School was to provide an in-depth knowledge of the important aspects of laser physics and technology to doctoral students and young researchers and motivate them for further work in this area. In keeping with this objective, the fourteen chapters, written by leading Indian experts, based on the lectures delivered by them at the School, provide along with class room type coverage of the fundamentals of the field, a brief review of the current status of the field. The book will be useful for doctoral students and young scientists who are embarking on a research in this area as well as to professional...

  16. Ultrashort pulse laser technology laser sources and applications

    CERN Document Server

    Schrempel, Frank; Dausinger, Friedrich

    2016-01-01

    Ultrashort laser pulses with durations in the femtosecond range up to a few picoseconds provide a unique method for precise materials processing or medical applications. Paired with the recent developments in ultrashort pulse lasers, this technology is finding its way into various application fields. The book gives a comprehensive overview of the principles and applications of ultrashort pulse lasers, especially applied to medicine and production technology. Recent advances in laser technology are discussed in detail. This covers the development of reliable and cheap low power laser sources as well as high average power ultrashort pulse lasers for large scale manufacturing. The fundamentals of laser-matter-interaction as well as processing strategies and the required system technology are discussed for these laser sources with respect to precise materials processing. Finally, different applications within medicine, measurement technology or materials processing are highlighted.

  17. Development of laser technology in Poland: 2016

    Science.gov (United States)

    Jankiewicz, Zdzisław; Jabczyński, Jan K.; Romaniuk, Ryszard S.

    2016-12-01

    The paper is an introduction to the volume of proceedings and a concise digest of works presented during the XIth National Symposium on Laser Technology (SLT2016) [1]. The Symposium is organized since 1984 every three years [2-8]. SLT2016 was organized by the Institute of Optoelectronics, Military University of Technology (IO, WAT) [9], Warsaw, with cooperation of Warsaw University of Technology (WUT) [10], in Jastarnia on 27-30 September 2016. Symposium Proceedings are traditionally published by SPIE [11-19]. The meeting has gathered around 150 participants who presented around 120 research and technical papers. The Symposium, organized every 3 years is a good portrait of laser technology and laser applications development in Poland at university laboratories, governmental institutes, company R&D laboratories, etc. The SLT also presents the current technical projects under realization by the national research, development and industrial teams. Topical tracks of the Symposium, traditionally divided to two large areas - sources and applications, were: laser sources in near and medium infrared, picosecond and femtosecond lasers, optical fiber lasers and amplifiers, semiconductor lasers, high power and high energy lasers and their applications, new materials and components for laser technology, applications of laser technology in measurements, metrology and science, military applications of laser technology, laser applications in environment protection and remote detection of trace substances, laser applications in medicine and biomedical engineering, laser applications in industry, technologies and material engineering.

  18. Accurate manipulation using laser technology

    Science.gov (United States)

    Hoving, Willem

    1997-08-01

    In the industrial production of electrical, optical, and micro-mechanical components, progress in miniaturization requires improved adjusting techniques. Sub-micrometer accuracy adjustment must be obtained within seconds, and the accuracy should be stable over many years. All methods that are presently applied for manipulation in sub-micron dimensions are cumbersome, time-consuming, and tedious, and require expensive equipment. A novel method, laser adjustment, is being explored in which permanent deformation of thin metal sheets are obtained by using thermo-mechanical stresses that occur when the sheets are locally heated using short, intense laser pulses. Manipulation along several degrees of freedom can be realized by both out-of-plane and in-plane laser adjustment or a combination thereof. Within the Brite-Euram project AMULET this new automated micro- manufacturing technology for mass production is developed in order to assemble components where tolerance conditions and accessibility are beyond human capability.

  19. Science and Technology for Bioterrorism Defense

    Energy Technology Data Exchange (ETDEWEB)

    Fitch, J P

    2004-05-04

    The Lawrence Livermore National Laboratory (LLNL) Chemical & Biological National Security Program (CBNP) provides science, technology, and integrated systems for chemical and biological security. Our approach is to develop and field systems that dramatically improve the nation's capabilities to prevent, prepare for, detect, and respond to terrorist use of chemical or biological weapons.

  20. EAU guidelines on laser technologies.

    Science.gov (United States)

    Herrmann, Thomas R W; Liatsikos, Evangelos N; Nagele, Udo; Traxer, Olivier; Merseburger, Axel S

    2012-04-01

    The European Association of Urology (EAU) Guidelines Office has set up a guideline working panel to analyse the scientific evidence published in the world literature on lasers in urologic practice. Review the physical background and physiologic and technical aspects of the use of lasers in urology, as well as current clinical results from these new and evolving technologies, together with recommendations for the application of lasers in urology. The primary objective of this structured presentation of the current evidence base in this area is to assist clinicians in making informed choices regarding the use of lasers in their practice. Structured literature searches using an expert consultant were designed for each section of this document. Searches were carried out in the Cochrane Database of Systematic Reviews, the Cochrane Central Register of Controlled Trials, and Medline and Embase on the Dialog/DataStar platform. The controlled terminology of the respective databases was used, and both Medical Subject Headings and EMTREE were analysed for relevant entry terms. One Cochrane review was identified. Depending on the date of publication, the evidence for different laser treatments is heterogeneous. The available evidence allows treatments to be classified as safe alternatives for the treatment of bladder outlet obstruction in different clinical scenarios, such as refractory urinary retention, anticoagulation, and antiplatelet medication. Laser treatment for bladder cancer should only be used in a clinical trial setting or for patients who are not suitable for conventional treatment due to comorbidities or other complications. For the treatment of urinary stones and retrograde endoureterotomy, lasers provide a standard tool to augment the endourologic procedure. In benign prostatic obstruction (BPO), laser vaporisation, resection, or enucleation are alternative treatment options. The standard treatment for BPO remains transurethral resection of the prostate for

  1. Exemplar Practices for Department of Defense Technology Transfer

    Science.gov (United States)

    2013-01-01

    as Amazon, Discovery Studios, Google, Under Armour , McCormick, and Cisco are invited to speak to researchers about innovation, how they manage it...commercialization and marketing strategies for each of the selected DoD technologies; • actively markets these technologies to industry...Publication This work was conducted by the Institute for Defense Analyses (IDA) under contract DASW01-04-C-0003, Task AI-6-3558 “Review of DoD

  2. Development of Solid State Laser Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cha, Byung Heon; Kwon, Seong Ok; Kim, Yong Ki (and others)

    2007-04-15

    Recently, diode-pumped solid state lasers(DPSSL) have been developed to have a diffraction limited beam quality and high average output powers beyond kW. The lifetime extends to have several thousand hours. Due to such merits, the DPSSLs are now replacing previous application fields of CO{sub 2} laser, lamp-pumped solid-state lasers, Excimer laser, etc. The DPSSLs have broad application fields, such as laser spectroscopy and analysis, laser micromachining, precision measurement, laser range findings, laser pump sources, medical lasers, etc. In this project, various DPSSLs are developed for use in laser isotope production. Many new laser modules are designed and used to develop high power pulsed IR lasers and green lasers. In addition, a quasi CW driven compact DPSSL is developed to have high pulse energy DPSSL technologies.

  3. Malpractice liability, technology choice and negative defensive medicine.

    Science.gov (United States)

    Feess, Eberhard

    2012-04-01

    We extend the theoretical literature on the impact of malpractice liability by allowing for two treatment technologies, a safe and a risky one. The safe technology bears no failure risk, but leads to patient-specific disutility since it cannot completely solve the health problems. By contrast, the risky technology (for instance a surgery) may entirely cure patients, but fail with some probability depending on the hospital's care level. Tight malpractice liability increases care levels if the risky technology is chosen at all, but also leads to excessively high incentives for avoiding the liability exposure by adopting the safe technology. We refer to this distortion toward the safe technology as negative defensive medicine. Taking the problem of negative defensive medicine seriously, the second best optimal liability needs to balance between the over-incentive for the safe technology in case of tough liability and the incentive to adopt little care for the risky technology in case of weak liability. In a model with errors in court, we find that gross negligence where hospitals are held liable only for very low care levels outperforms standard negligence, even though standard negligence would implement the first best efficient care level.

  4. FACTORS EFFECTING TECHNOLOGY ACQUISITION DECISIONS IN NATIONAL DEFENSE PROJECTS

    OpenAIRE

    2015-01-01

    Defense Industry” (DI) not only strengthens the military power of a country, but also effects other fields of technology and economy positively and enables countries to be much more powerful in terms of their competitiveness in technology and knowledge instead of merely being a follower and a continuous customer. If a state seeks to have high-tech and capable DI the only foundation is to create a national environment which is managed based on a systematic ”Technology Management” philosophy a...

  5. Development of laser technology in Poland

    CERN Document Server

    Gajda, J

    2009-01-01

    The paper presents chosen development threads of laser technology and associated branches of optoelectronics in this country. An occasion to summarize the work and show their current status is the 50 th anniversary of construction of the first laser. The first laser in Poland was launched successfully in 1969, almost simultaneously at WAT and PW. Domestic achievements in this area are summarized every three years by Symposium on Laser Technology held traditionally in Swinoujscie. The work carried on in Poland concerns technology of laser materials, construction of new lasers and associated equipment as well as laser applications. Many technical teams participate in laser oriented European structural and framework projects. Ths is an invited paper to present participation of Polish teams in such European projects as EuCARD - European Coordination of Accelerator Research, FLASH - Free ELctron Laser in DESY Hamburg, E-XFEL - European X-Ray FEL, ELI - Extreme Light Infrastructure, and HIPER.

  6. Object/Shape Recognition Technology: An Assessment of the Feasibility of Implementation at Defense Logistics Agency Disposition Services

    Science.gov (United States)

    2015-02-25

    IV.  ANALYSIS OF THE CURRENT PROPERTY PROCESS AT DEFENSE LOGISTICS AGENCY DISPOSITION SERVICES AND MATURITY ASSESSMENT OF OBJECT/SHAPE RECOGNITION...implement full automation with optical sorting and data mining that included sensors, laser, object/shape recognition technology on conveyor belt...the current state of object/shape recognition technology and assess the feasibility of implementing it at DLA DS. C. RESEARCH QUESTIONS, SCOPE AND

  7. The evolution of the laser: A systems perspective on science, technology and society

    Science.gov (United States)

    Deruiter, Willem

    The evolution of laser technology is addressed, and an attempt is made to correlate this evolution to the macrosociological theory of Juergen Habermas. The economic and social consequences of innovations are evaluated. Different laser applications are described. The evolution of the semiconductor laser is discussed. The evolution of optical telecommunication systems is outlined. The Habermas theory of communicative action, focussing on the theoretical distinction between 'system' and 'lifeworld,' is treated. The modified theory of Habermas is applied to the evolution of the laser. The embedding of a number of laser applications in the social context is discussed: laser isotope separation, compact disc players, and the Strategic Defense Initiative.

  8. FACTORS EFFECTING TECHNOLOGY ACQUISITION DECISIONS IN NATIONAL DEFENSE PROJECTS

    Directory of Open Access Journals (Sweden)

    Gökhan ASTAN

    2015-04-01

    Full Text Available “Defense Industry” (DI not only strengthens the military power of a country, but also effects other fields of technology and economy positively and enables countries to be much more powerful in terms of their competitiveness in technology and knowledge instead of merely being a follower and a continuous customer. If a state seeks to have high-tech and capable DI the only foundation is to create a national environment which is managed based on a systematic ”Technology Management” philosophy and well-defined “Acquisition” process. With already reduced resources, it is crucial to spend money for the most needed and right technology. Consequently, the focus of this study is on the “Acquisition" and "Technology Transfer" (TT concepts and approaches. As such the different TT methods are compared and their advantages and disadvantages discussed. In the last part of the study, DI is described and assessed in terms of the TT methods.

  9. Analysis of Laser Sintering Technology

    Directory of Open Access Journals (Sweden)

    Vladislav Markovič

    2014-02-01

    Full Text Available The new, high-tech development and customization is one ofthe most important factors in promoting the country‘s economicgrowth indicators. The economic downturn in the industryrequires technology and equipment using a minimumof raw materials and providing maximum performance. Thisstatement perfectly describes the innovative, forward-looking,cost-effective laser powder sintering (SLS technology. Here,thanks to the latest engineering achievements, product surfacesare modified and improved, they gain new characteristics. SLSis viable in automobile, engineering, construction, aerospace,aircraft, printing, medical and other areas.In order to create a product which meets the standards andtechnical documentation it is necessary to use and ensure highquality of raw materials, high-end equipment, qualified personnel,the working environment with proper climatic conditions, ergonomics,etc. But all of these, the quality of the product becomesthe decisive indicators meaningless if know how to properly selectthe laser processing operation. Scanning speed, beam power,pulse frequency, protective gases, powder layer thickness – allof them are the physical and mechanical characteristics of thechange in a small range changes the quality of the product of thefuture, the field of application and performance characteristics.

  10. Active, Non-Intrusive Inspection Technologies for Homeland Defense

    Energy Technology Data Exchange (ETDEWEB)

    James L. Jones

    2003-06-01

    Active, non-intrusive inspection or interrogation technologies have been used for 100 years - with the primary focus being radiographic imaging. During the last 50 years, various active interrogation systems have been investigated and most have revealed many unique and interesting capabilities and advantages that have already benefited the general public. Unfortunately, except for medical and specific industrial applications, these unique capabilities have not been widely adopted, largely due to the complexity of the technology, the overconfident reliance on passive detection systems to handle most challenges, and the unrealistic public concerns regarding radiation safety issues for a given active inspection deployment. The unique homeland security challenges facing the United States today are inviting more "out-of-the-box" solutions and are demanding the effective technological solutions that only active interrogation systems can provide. While revolutionary new solutions are always desired, these technology advancements are rare, and when found, usually take a long time to fully understand and implement for a given application. What's becoming more evident is that focusing on under-developed, but well-understood, active inspection technologies can provide many of the needed "out-of-the-box" solutions. This paper presents a brief historical overview of active interrogation. It identifies some of the major homeland defense challenges being confronted and the commercial and research technologies presently available and being pursued. Finally, the paper addresses the role of the Idaho National Engineering and Environmental Laboratory and its partner, the Idaho Accelerator Center at Idaho State University, in promoting and developing active inspection technologies for homeland defense.

  11. Galvanometer scanning technology for laser additive manufacturing

    Science.gov (United States)

    Luo, Xi; Li, Jin; Lucas, Mark

    2017-02-01

    A galvanometer laser beam scanning system is an essential element in many laser additive manufacturing (LAM) technologies including Stereolithography (SLA), Selective Laser Sintering (SLS) and Selective Laser Melting (SLM). Understanding the laser beam scanning techniques and recent innovations in this field will greatly benefit the 3D laser printing system integration and technology advance. One of the challenges to achieve high quality 3D printed parts is due to the non-uniform laser power density delivered on the materials caused by the acceleration and deceleration movements of the galvanometer at ends of the hatching and outlining patterns. One way to solve this problem is to modulate the laser power as the function of the scanning speed during the acceleration or deceleration periods. Another strategy is to maintain the constant scanning speed while accurately coordinating the laser on and off operation throughout the job. In this paper, we demonstrate the high speed, high accuracy and low drift digital scanning technology that incorporates both techniques to achieve uniform laser density with minimal additional process development. With the constant scanning speed method, the scanner not only delivers high quality and uniform results, but also a throughput increase of 23% on a typical LAM job, compared to that of the conventional control method that requires galvanometer acceleration and deceleration movements.

  12. FY2005 Progress Summary and FY2006 Program Plan Statement of Work and Deliverables for Development of High Average Power Diode-Pumped Solid State Lasers, and Complementary Technologies, for Applications in Energy and Defense

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, C

    2006-03-24

    The primary focus this year was to operate the system with two amplifiers populated with and pumped by eight high power diode arrays. The system was operated for extended run periods which enabled average power testing of components, diagnostics, and controls. These tests were highly successful, with a demonstrated energy level of over 55 joules for 4 cumulative hours at a repetition rate of 10 Hz (average power 0.55 kW). In addition, high average power second harmonic generation was demonstrated, achieving 227 W of 523.5 nm light (22.7 J, 10 Hz, 15 ns, 30 minutes) Plans to achieve higher energy levels and average powers are in progress. The dual amplifier system utilizes a 4-pass optical arrangement. The Yb:S-FAP slabs were mounted in aerodynamic aluminum vane structures to allow turbulent helium gas flow across the faces. Diagnostic packages that monitored beam performance were deployed during operation. The laser experiments involved injecting a seed beam from the front end into the system and making four passes through both amplifiers. Beam performance diagnostics monitored the beam on each pass to assess system parameters such as gain and nearfield intensity profiles. This year, an active mirror and wavefront sensor were procured and demonstrated in an off-line facility. The active mirror technology can correct for low order phase distortions at user specified operating conditions (such as repetition rates different than 10 Hz) and is a complementary technology to the static phase plates used in the system for higher order distortions. A picture of the laser system with amplifier No.2 (foreground) and amplifier No.1 (background) is shown in Fig. 1.0.1.1. The control system and diagnostics were recently enhanced for faster processing and allow remote operation of the system. The growth and fabrication of the Yb:S-FAP slabs constituted another major element of our program objectives. Our goal was to produce at least fourteen 4x6 cm2 crystalline slabs. These

  13. Commissioning of laser assisted cold spraying technology

    CSIR Research Space (South Africa)

    Tlotleng, Monnamme

    2012-10-01

    Full Text Available This study demonstrates the potential of a newly designed, assembled and commissioned laser assisted cold spraying (LACS) technology at the National Laser Centre, Pretoria, South Africa, to deposit Al-12wt%Si coatings on stainless steel substrate...

  14. Laser Science & Technology Program Annual Report - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H-L

    2001-03-20

    The Laser Science and Technology (LS&T) Program Annual Report 2001 provides documentation of the achievements of the LLNL LS&T Program during the April 2001 to March 2002 period using three formats: (1) an Overview that is a narrative summary of important results for the year; (2) brief summaries of research and development activity highlights within the four Program elements: Advanced Lasers and Components (AL&C), Laser Optics and Materials (LO&M), Short Pulse Laser Applications and Technologies (SPLAT), and High-Energy Laser System and Tests (HELST); and (3) a compilation of selected articles and technical reports published in reputable scientific or technology journals in this period. All three elements (Annual Overview, Activity Highlights, and Technical Reports) are also on the Web: http://laser.llnl.gov/lasers/pubs/icfq.html. The underlying mission for the LS&T Program is to develop advanced lasers, optics, and materials technologies and applications to solve problems and create new capabilities of importance to the Laboratory and the nation. This mission statement has been our guide for defining work appropriate for our Program. A major new focus of LS&T beginning this past year has been the development of high peak power short-pulse capability for the National Ignition Facility (NIF). LS&T is committed to this activity.

  15. High Power Diode Lasers Technology and Applications

    CERN Document Server

    Bachmann, Friedrich; Poprawe, Reinhart

    2007-01-01

    In a very comprehensive way this book covers all aspects of high power diode laser technology for materials processing. Basics as well as new application oriented results obtained in a government funded national German research project are described in detail. Along the technological chain after a short introduction in the second chapter diode laser bar technology is discussed regarding structure, manufacturing technology and metrology. The third chapter illuminates all aspects of mounting and cooling, whereas chapter four gives wide spanning details on beam forming, beam guiding and beam combination, which are essential topics for incoherently coupled multi-emitter based high power diode lasers. Metrology, standards and safety aspects are the theme of chapter five. As an outcome of all the knowledge from chapter two to four various system configurations of high power diode lasers are described in chapter six; not only systems focussed on best available beam quality but especially also so called "modular" set...

  16. Korean and U.S. Economic and Technological Capabilities to Support Defense Burdens

    Science.gov (United States)

    1991-01-01

    AD-A25 7 085 A RAND NOTE Korean and U.S. Economic and Technological Capabilities to Support Defense Burdens Charles Wolf, Jr., Yong-Sup Han DTI ova6...collaboration with the Korea Institute for Defense Analyses (KIDA), that addresses possible changes in the roles, structures, and responsibilities of...center supported by the Office of the Secretary of Defense and the Joint Staff. The KIDA work was sponsored by the Korean Ministry of National Defense

  17. Laser technology inspires new accelerator concepts

    CERN Multimedia

    Katarina Anthony

    2012-01-01

    A new EU-funded research network, LA³NET, is bringing together universities, research centres and industry partners worldwide to explore the use of laser technology in particle beam generation, acceleration and diagnostics. As one of the network partners, CERN will be hosting three early stage researchers in the BE and EN Departments.   One of the laser systems now in use in the ISOLDE experiment. If you take a closer look at recent experimental developments, you’ll notice a new topic trending: laser technology. It’s being used to study the characteristics of particles, as incorporated into the new ALPHA-2 set-up; to conduct diagnostics of particle beams, as used in a laser wire scanner at Petra III; to “breed” unusual ion beams, as carried out by ISOLDE’s Resonance Ionization Laser Ion Source (RILIS); and even to accelerate particles to high energies, as explored at Berkeley’s BELLA facility. These projects notwithstanding...

  18. Using Science Driven Technologies for the Defense and Security Applications

    Science.gov (United States)

    Habib, Shahid; Zukor, Dorthy; Ambrose, Stephen D.

    2004-01-01

    For the past three decades, Earth science remote sensing technologies have been providing enormous amounts of useful data and information in broadening our understanding of our home planet as a system. This research, as it has expanded our learning process, has also generated additional questions. This has further resulted in establishing new science requirements, which have culminated in defining and pushing the state-of-the-art technology needs. NASA s Earth science program has deployed 18 highly complex satellites, with a total of 80 sensors, so far and is in a process of defining and launching multiple observing systems in the next decade. Due to the heightened security alert of the nation, researchers and technologists are paying serious attention to the use of these science driven technologies for dual use. In other words, how such sophisticated observing and measuring systems can be used in detecting multiple types of security concerns with a substantial lead time so that the appropriate law enforcement agencies can take adequate steps to defuse any potential risky scenarios. This paper examines numerous NASA technologies such as laser/lidar systems, microwave and millimeter wave technologies, optical observing systems, high performance computational techniques for rapid analyses, and imaging products that can have a tremendous pay off for security applications.

  19. 5th International Conference OTEH 2012 - defense technology (Proceedings review

    Directory of Open Access Journals (Sweden)

    Vlado Petar Đurković

    2013-02-01

    Full Text Available This article gives an overview of all papers and events at the Fifth International ScientificConference on Defense Technologies OTEH 2012 held in Belgrade, in the Military Technical Institute (VTI, from 18th to 19th September 2012.The paper review presents the Conference Sections by subjects and guest-lectureres as well as the institutions of all authors who actively participated at the Conference.About the ConferenceThe Fifth International Scientific Conference on Defense Technologies OTEH 2012  was held in Belgrade in the Military Technical Institute in Žarkovo, from 18th to 19thSeptember 2012..The Conference program was organized in two plenary sessions and a working part which took place in four halls.In the plenary session, two key lectures were held by eminent experts from abroad. The first lecture entitled „An adaptive remeshing technique for 3D crack growth simulations”, was given by Dr Vincent Chiaruttini (ONERA Institute, Paris, France. The second one, „New Technologies for Advanced Defence Systems”, was held by Dr Filippo Neri (Virtualabs Company, Rome, Italy.Fifteen sessions were organised at the Conference. The authors presented their works in open discussions answering questions from the audience. The average number of attendees at each session was about 40.The papers were sorted by topic areas:Aerodynamics and flight dynamics: 12 papersAircraft: 23 papersWeapon systems, ammunition, energy materials, combat vehicles: 29 papersIntegrated sensor systems and robotic systems: 16 papersTelecommunication and information systems: 18 papersMaterials and technologies: 34 papersQuality, standardization, metrology, maintenance and exploitation: 11 papersOut of 163 submitted papers for this Conference, 145 papers were accepted and distributed in an electronic form on CDs to the present authors, co-authors, guests and invitees to the Conference. The number of participants with authors and co-authors was impressive - 243. The

  20. The Mercury Laser Advances Laser Technology for Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Ebbers, C A; Caird, J; Moses, E

    2009-01-21

    The National Ignition Facility (NIF) at Lawrence Livermore Laboratory is on target to demonstrate 'breakeven' - creating as much fusion-energy output as laser-energy input. NIF will compress a tiny sphere of hydrogen isotopes with 1.8 MJ of laser light in a 20-ns pulse, packing the isotopes so tightly that they fuse together, producing helium nuclei and releasing energy in the form of energetic particles. The achievement of breakeven will culminate an enormous effort by thousands of scientists and engineers, not only at Livermore but around the world, during the past several decades. But what about the day after NIF achieves breakeven? NIF is a world-class engineering research facility, but if laser fusion is ever to generate power for civilian consumption, the laser will have to deliver pulses nearly 100,000 times faster than NIF - a rate of perhaps 10 shots per second as opposed to NIF's several shots a day. The Mercury laser (named after the Roman messenger god) is intended to lead the way to a 10-shots-per-second, electrically-efficient, driver laser for commercial laser fusion. While the Mercury laser will generate only a small fraction of the peak power of NIF (1/30,000), Mercury operates at higher average power. The design of Mercury takes full advantage of the technology advances manifest in its behemoth cousin (Table 1). One significant difference is that, unlike the flashlamp-pumped NIF, Mercury is pumped by highly efficient laser diodes. Mercury is a prototype laser capable of scaling in aperture and energy to a NIF-like beamline, with greater electrical efficiency, while still running at a repetition rate 100,000 times greater.

  1. Laser technology in biomimetics basics and applications

    CERN Document Server

    Belegratis, Maria

    2013-01-01

    Lasers are progressively more used as versatile tools for fabrication purposes. The wide range of available powers, wavelengths, operation modes, repetition rates etc. facilitate the processing of a large spectrum of materials at exceptional precision and quality. Hence, manifold methods were established in the past and novel methods are continuously under development. Biomimetics, the translation from nature-inspired principles to technical applications, is strongly multidisciplinary. This field offers intrinsically a wide scope of applications for laser based methods regarding structuring and modification of materials. This book is dedicated to laser fabrication methods in biomimetics. It introduces both, a laser technology as well as an application focused approach.  The book covers the most important laser lithographic methods and various biomimetics application scenarios ranging from coatings and biotechnology to construction, medical applications and photonics.

  2. CSIR eNews: Laser technology

    CSIR Research Space (South Africa)

    CSIR

    2009-08-01

    Full Text Available prizes awarded by the Laser, Optics and Spectroscopy Specialised Group. The winners were: Cobus Jacobs: Best paper in refereed journals Jacobs is involved in research into electronic feedback control of solid-state lasers (PhD topic), as well... as the development of mid-infrared laser technology. His winning paper related to the former and will be published in the internationally recognised IEEE Journal of Quantum Electronics. Daniel Esser: Best PhD oral presentation Esser is project leader...

  3. The story of laser brazing technology

    Science.gov (United States)

    Hoffmann, Peter; Dierken, Roland

    2012-03-01

    This article gives an overview on the development of laser brazing technology as a new joining technique for car body production. The story starts with fundamental research work at German institutes in 1993, continues with the first implementations in automobile production in 1998, gives examples of applications since then and ends with an outlook. Laser brazing adapted design of joints and boundary conditions for a safe processing are discussed. Besides a better understanding for the sensitivity of the process against joint irregularities and misalignment, the key to successful launch was an advanced system technology. Different working heads equipped with wire feeding device, seam tracking system or tactile sensors for an automated teaching are presented in this paper. Novel laser heads providing a two beam technology will allow improved penetration depth of the filler wire and a more ecological processing by means of energy consumption.

  4. Laser technology in solar absorber manufacturing; Laser punktet

    Energy Technology Data Exchange (ETDEWEB)

    Berner, Joachim

    2009-12-07

    No other solar collector manufacturing stage is as fully automatic as absorber fabrication. Laser welding systems are well established in the market. In addition to welding machines, some manufacturers are also offering complete assembly lines for solar collector production. SONNE WIND and WAeRME presents technologies and manufacturers. (orig./AKB)

  5. Technological particularities of laser manufacturing

    Directory of Open Access Journals (Sweden)

    Besnea Daniel

    2017-01-01

    Full Text Available The paper presents some investigations about the influence of the Nd:YAG laser welding parameters on the penetration and metal evaporation of single and dual pass weld in the case of thin sections of stainless steel sample. The metal loss during welding process was measured in order to establish the optimal values of welding parameters. The geometric size of the welded zone was measured using an SEM microscope in order to establish the correlation between the penetration and with at different values of welding parameters.

  6. Laser powder technology for cladding and welding

    Science.gov (United States)

    Arnold, J.; Volz, R.

    1999-06-01

    Laser powder technology offers several advantages compared to conventional cladding and welding techniques and is attracting increasing industrial interest. The laser materials processing group of the German Aerospace Center at Stuttgart, Germany, is currently developing these new methods for application in industrial process engineering. Key areas of the work include the design and implementation of a modular working head that can be universally used for laser welding and surface treatment, the development of powder nozzles for cladding and welding, and the construction of new systems for special applications (e.g., for inner cladding). Some of these developments are described, as well as some important examples that highlight the potential of welding and surface treatment using laser powder techniques.

  7. Pulsed UV laser technologies for ophthalmic surgery

    Science.gov (United States)

    Razhev, A. M.; Chernykh, V. V.; Bagayev, S. N.; Churkin, D. S.; Kargapol’tsev, E. S.; Iskakov, I. A.; Ermakova, O. V.

    2017-01-01

    The paper provides an overview of the results of multiyear joint researches of team of collaborators of Institute of Laser Physics SB RAS together with NF IRTC “Eye Microsurgery” for the period from 1988 to the present, in which were first proposed and experimentally realized laser medical technologies for correction of refractive errors of known today as LASIK, the treatment of ophthalmic herpes and open-angle glaucoma. It is proposed to carry out operations for the correction of refractive errors the use of UV excimer KrCl laser with a wavelength of 222 nm. The same laser emission is the most suitable for the treatment of ophthalmic herpes, because it has a high clinical effect, combined with many years of absence of recrudescence. A minimally invasive technique of glaucoma operations using excimer XeCl laser (λ=308 nm) is developed. Its wavelength allows perform all stages of glaucoma operations, while the laser head itself has high stability and lifetime, will significantly reduce operating costs, compared with other types of lasers.

  8. Clock comparison based on laser ranging technologies

    Science.gov (United States)

    Samain, Etienne

    2015-06-01

    Recent progress in the domain of time and frequency standards has required some important improvements of existing time transfer links. Several time transfer by laser link (T2L2) projects have been carried out since 1972 with numerous scientific or technological objectives. There are two projects currently under exploitation: T2L2 and Lunar Reconnaissance Orbiter (LRO). The former is a dedicated two-way time transfer experiment embedded on the satellite Jason-2 allowing for the synchronization of remote clocks with an uncertainty of 100 ps and the latter is a one-way link devoted for ranging a spacecraft orbiting around the Moon. There is also the Laser Time Transfer (LTT) project, exploited until 2012 and designed in the frame of the Chinese navigation constellation. In the context of future space missions for fundamental physics, solar system science or navigation, laser links are of prime importance and many missions based on that technology have been proposed for these purposes.

  9. 3D Laser Scanning in Technology Education.

    Science.gov (United States)

    Flowers, Jim

    2000-01-01

    A three-dimensional laser scanner can be used as a tool for design and problem solving in technology education. A hands-on experience can enhance learning by captivating students' interest and empowering them with creative tools. (Author/JOW)

  10. Laser Coating Technology; A Commercial Reality

    Science.gov (United States)

    Blake, Andrew G.; Mangaly, A. A.; Everett, M. A.; Hammeke, A. H.

    1988-10-01

    Commercial acceptance of laser coating technology suffered for many years due to questions about its economic viability. During this period, however, many companies, universities, and government research groups were busy developing the technology to overcome these questions. Today, laser coating technology is having a major impact as a high quality, economical method of hardfacing for wear and corrosion resistance in several key industries. This has occurred because of advances in five key areas: 1. High power laser design 2. Method of alloy deposition, and associated hardware 3. In-process feed back control system hardware/software development 4. Alloy systems 5. Marketing/sales sophistication High power lasers have improved in mode stability, power conversion efficiency, and optical flexibility (reflective vs. transmissive materials). This has enabled the process engineer to increase deposition efficiency, and maintain flexibility on the use of optics specifically designed for a user application. Improvements in the method of alloy deposition have led to developments such as the DPF system with specialized nozzles developed for specific user applications. Another effective technique includes the use of pre-fabricated cast alloy chips that are welded to the component surface on the specific area requiring protection. The development of feedback control systems that integrate process control software with hard tooling, the laser, and the alloy delivery system are greatly improving process reliability and product quality. Because of this, "in-process" quality control is becoming a viable alternative to traditional methods of quality control. Metallurgical evaluations of some of the most widely used hardfacing alloys and base materials have been investigated by numerous researchers. Analysis has confirmed that laser applied coatings are of high metallurgical quality, extremely low in dilution, and distort less due to low heat input. The technology can also be used to

  11. Integrated Applications with Laser Technology

    Directory of Open Access Journals (Sweden)

    Octavian DOSPINESCU

    2013-01-01

    Full Text Available The introduction of new materials as Power Point presentations are the most convenient way of teaching a course or to display a scientific paper. In order to support this function, most schools, universities, institutions, are equipped with projectors and computers. For controlling the presentation of the materials, the persons that are in charge with the presentation use, in most cases, both the keyboard of the computer as well as the mouse for the slides, thing that burdens, in a way, the direct communication (face to face with the audience. Of course, the invention of the wireless mouse allowed a sort of freedom in controlling from the distance the digital materials. Although there seems to appear a certain impediment: in order to be used, the mouse requires to be placed on a flat surface. This article aims at creating a new application prototype that will manipulate, only through the means of a light-beam instrument (laser fascicle, both the actions of the mouse as well as some of the elements offered by the keyboard on a certain application or presentation. The light fascicle will be „connected” to a calculus system only through the images that were captured by a simple webcam.

  12. Space-Based Chemical Lasers in Strategic Defense

    Science.gov (United States)

    2007-11-02

    using <fJ*™’™ „, „,,„,,; rrÄr^ÄSXnceuea. MlRACL Chemical laser at White planned for 1995. ssssSS Sands New Mexico ^f Tit:*n s«ron»1 «>ta<J*’f...AsswnHY P«o Su<«y CS2 Secwios CaoaMitv LPE 10,412 OPE 12.323 S/C with Test Objects 12,382 Subtotal 35,117 Titan IVA Margin !32.7°.o

  13. Report of the Defense Science Board Task Force on Defense Science and Technology Base for the 21st Century

    Science.gov (United States)

    2016-06-07

    equations are likely to be non- linear , the standard-matrix algebra -solution approach will probably not be applicable. Instead, an iterative optimization...and ultimately combat outcome. The depiction makes the problem seem fairly simple and linear . There is a flow from the technology base through...observation is that industry does not manage its research and development process in a linear fashion as does the Department of Defense. By linear , it is

  14. The science, technology, and politics of ballistic missile defense

    Science.gov (United States)

    Coyle, Philip E.

    2014-05-01

    America's missile defense systems are deployed at home and abroad. This includes the Groundbased Missile Defense (GMD) system in Alaska and California, the Phased Adaptive Approach in Europe (EPAA), and regional systems in the Middle East and Asia. Unfortunately these systems lack workable architectures, and many of the required elements either don't work or are missing. Major review and reconsideration is needed of all elements of these systems. GMD performance in tests has gotten worse with time, when it ought to be getting better. A lack of political support is not to blame as the DoD spends about 10 billion per year, and proposes to add about 5 billion over the next five years. Russia objects to the EPAA as a threat to its ICBM forces, and to the extensive deployment of U.S. military forces in countries such as Poland, the Czech Republic and Romania, once part of the Soviet Union. Going forward the U.S. should keep working with Russia whose cooperation will be key to diplomatic gains in the Middle East and elsewhere. Meanwhile, America's missile defenses face an enduring set of issues, especially target discrimination in the face of attacks designed to overwhelm the defenses, stage separation debris, chaff, decoys, and stealth. Dealing with target discrimination while also replacing, upgrading, or adding to the many elements of U.S. missiles defenses presents daunting budget priorities. A new look at the threat is warranted, and whether the U.S. needs to consider every nation that possesses even short-range missiles a threat to America. The proliferation of missiles of all sizes around the world is a growing problem, but expecting U.S. missile defenses to deal with all those missiles everywhere is unrealistic, and U.S. missile defenses, effective or not, are justifying more and more offensive missiles.

  15. The science, technology, and politics of ballistic missile defense

    Energy Technology Data Exchange (ETDEWEB)

    Coyle, Philip E. [Center for Arms Control and Non-Proliferation, Washington, DC (United States)

    2014-05-09

    America's missile defense systems are deployed at home and abroad. This includes the Groundbased Missile Defense (GMD) system in Alaska and California, the Phased Adaptive Approach in Europe (EPAA), and regional systems in the Middle East and Asia. Unfortunately these systems lack workable architectures, and many of the required elements either don't work or are missing. Major review and reconsideration is needed of all elements of these systems. GMD performance in tests has gotten worse with time, when it ought to be getting better. A lack of political support is not to blame as the DoD spends about $10 billion per year, and proposes to add about $5 billion over the next five years. Russia objects to the EPAA as a threat to its ICBM forces, and to the extensive deployment of U.S. military forces in countries such as Poland, the Czech Republic and Romania, once part of the Soviet Union. Going forward the U.S. should keep working with Russia whose cooperation will be key to diplomatic gains in the Middle East and elsewhere. Meanwhile, America's missile defenses face an enduring set of issues, especially target discrimination in the face of attacks designed to overwhelm the defenses, stage separation debris, chaff, decoys, and stealth. Dealing with target discrimination while also replacing, upgrading, or adding to the many elements of U.S. missiles defenses presents daunting budget priorities. A new look at the threat is warranted, and whether the U.S. needs to consider every nation that possesses even short-range missiles a threat to America. The proliferation of missiles of all sizes around the world is a growing problem, but expecting U.S. missile defenses to deal with all those missiles everywhere is unrealistic, and U.S. missile defenses, effective or not, are justifying more and more offensive missiles.

  16. Laser Processed Condensing Heat Exchanger Technology Development

    Science.gov (United States)

    Hansen, Scott; Wright, Sarah; Wallace, Sarah; Hamilton, Tanner; Dennis, Alexander; Zuhlke, Craig; Roth, Nick; Sanders, John

    2017-01-01

    The reliance on non-permanent coatings in Condensing Heat Exchanger (CHX) designs is a significant technical issue to be solved before long-duration spaceflight can occur. Therefore, high reliability CHXs have been identified by the Evolvable Mars Campaign (EMC) as critical technologies needed to move beyond low earth orbit. The Laser Processed Condensing Heat Exchanger project aims to solve these problems through the use of femtosecond laser processed surfaces, which have unique wetting properties and potentially exhibit anti-microbial growth properties. These surfaces were investigated to identify if they would be suitable candidates for a replacement CHX surface. Among the areas researched in this project include microbial growth testing, siloxane flow testing in which laser processed surfaces were exposed to siloxanes in an air stream, and manufacturability.

  17. Laser technologies - ready to take the economy into the plasma age

    Energy Technology Data Exchange (ETDEWEB)

    White, C.

    The author notes that the spinoff benefits from the Strategic Defense Initiative program are ready to provide a shot in the arm to the ailing US economy, generating the increased productivity and increased tax revenue that would more than pay for the entire beam defense program. These laser technologies, if applied to the civilian economy, would be the peacetime equivalent of the World War II economic mobilization. A crash program to develop the Strategic Defense Initiative and its spinoff technologies would cause a fourfold increase of economic productivity, an increase of 4 million jobs per year, elimination of the US trade deficit within a two-year period, and a rise in real per capita income by 5% per year, according to White. All it takes is a political decision to reduce interest rates and issue low-interest credits to American industry, she says. 1 reference, 4 tables.

  18. Hybrid laser technology and doped biomaterials

    Science.gov (United States)

    Jelínek, Miroslav; Zemek, Josef; Remsa, Jan; Mikšovský, Jan; Kocourek, Tomáš; Písařík, Petr; Trávníčková, Martina; Filová, Elena; Bačáková, Lucie

    2017-09-01

    Hybrid laser-based technologies for deposition of new types of doped thin films are presented. The focus is on arrangements combining pulsed laser deposition (PLD) with magnetron sputtering (MS), and on the setup with two simultaneously running PLD systems (dual PLD). Advantages and disadvantages of both arrangements are discussed. Layers of different dopants concentration were prepared. Experience with deposition of chromium and titanium doped diamond-like carbon (DLC) films for potential coating of bone implants is presented. Properties of the layers prepared by both technologies are compared and discussed. The suitability of the layers for colonization with human bone marrow mesenchymal stem cells and human osteoblast-like cells, were also evaluated under in vitro conditions.

  19. Direct metal laser sintering: a digitised metal casting technology.

    Science.gov (United States)

    Venkatesh, K Vijay; Nandini, V Vidyashree

    2013-12-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  20. Direct Metal Laser Sintering: A Digitised Metal Casting Technology

    OpenAIRE

    Venkatesh, K. Vijay; Nandini, V Vidyashree

    2013-01-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  1. Direct Metal Laser Sintering: A Digitised Metal Casting Technology

    OpenAIRE

    Venkatesh, K. Vijay; Nandini, V Vidyashree

    2013-01-01

    Dental technology is undergoing advancements at a fast pace and technology is being imported from various other fields. One such imported technology is direct metal laser sintering technology for casting metal crowns. This article will discuss the process of laser sintering for making metal crowns and fixed partial dentures with a understanding of their pros and cons.

  2. Applications and Technologies of All-Solid State Blue Laser

    Institute of Scientific and Technical Information of China (English)

    JING Zhuo; XUE Jun-wen; JIA Fu-qiang; ZHENG Quan; YE Zi-qing

    2006-01-01

    @@ 1 Introduction Along with the matureness of laser diode (LD) manufacturing technology, the performance of LD has been improved greatly since 1980s, so various kinds of laser devices based on LD have been developed rapidly, especially the all-solid state lasers. After early experiments and researches, the all-solid state lasers have been commercialized successfully.

  3. Value Proposition of Department of Defense Domestic Technology Transfer

    Science.gov (United States)

    2010-01-15

    Systems Center, Pacific Aplus Mobile, Inc., Oregon City, OR CRADA On-Hold Demonstration of Low-Cost Expendable Bottom Crawling Vehicles Naval...Circuits Defense Microelectronics Activity Packet Digital Corporation, Fargo, ND CRADA On-Hold Preventing Severe Infections in Infants and Children...Health Sciences Bard Access Systems, Lake City, UT PLA Preventing Severe Infections in Infants and Children Uniformed Services University of the

  4. Technology and applications of ultrafast fiber lasers

    Science.gov (United States)

    Lang, Marion; Hellerer, Thomas; Stuhler, Juergen

    2012-03-01

    We briefly review the key technology of modern fiber based femtosecond laser sources summarizing advantages and disadvantages of different mode-locking solutions. A description of possible extensions of a FemtoFiber-type modelocked Er-doped fiber laser oscillator (1560 nm) reveals the flexibility with respect to wavelength coverage (488 nm .. 2200 nm) and pulse duration (10 fs .. 10 ps). The resulting FemtoFiber family and its versions for instrument integration allow one to use these state-of-the-art light sources in many important applications, e.g. THz spectroscopy and microscopy. We show that, depending on the fiber laser model and the THz emitter, THz radiation can be produced with 4-10 THz bandwidth and detected with up to 60 dB signal-to-noise ratio (SNR). Electronically controlled optical scanning (ECOPS) - a unique method for fast, precise and comfortable sampling of the THz pulse or other pump-probe experiments - is described and recommended for efficient data acquisition. As examples for modern microscopy with ultrafast fiber lasers we present results of two-photon fluorescence, coherent microscopy techniques (SHG/THG/CARS) and fluorescence lifetime imaging (FLIM).

  5. Laser Ignition Technology for Bi-Propellant Rocket Engine Applications

    Science.gov (United States)

    Thomas, Matt; Bossard, John; Early, Jim; Trinh, Huu; Dennis, Jay; Turner, James (Technical Monitor)

    2001-01-01

    This viewgraph presentation gives an overview of laser ignition technology for bipropellant rocket engines applications. The objectives of this project include: (1) the selection test chambers and flows; (2) definition of the laser ignition setup; (3) pulse format optimization; (4) fiber optic coupled laser ignition system analysis; and (5) chamber integration issues definition. The testing concludes that rocket combustion chamber laser ignition is imminent. Support technologies (multiplexing, window durability/cleaning, and fiber optic durability) are feasible.

  6. SDI (Strategic Defense Initiative) Technology, Survivability and Software.

    Science.gov (United States)

    2007-11-02

    deploy This section addresses strategic uefense genetically —i.e., goals for defense against all means of delivering nuclear weap- ons, not just...34 --■■v■""• o■ ’-j-:o-;.•:/:■ ’■,--i\\’’ •e.ry^vY.’.v’y-’ ftd » 6-1. Number of Space-Based Interceptors Launched Into Space .. ,y.V.,171 6-2. Number of...times." Each make and model of computer has a unique set of instructions in which it must be pro- grammed, genetically known as machine in- structions

  7. Overview of laser technology at Los Alamos National Laboratory

    Science.gov (United States)

    Lewis, G. K.; Cremers, D. A.

    Los Alamos National Laboratory has had a long history of involvement in laser sciences and has been recognized both for its large laser programs and smaller scale developments in laser technology and applications. The first significant program was with the Rover nuclear-based rocket propulsion system in 1968 to study laser initiated fusion. From here applications spread to programs in laser isotope separation and development of large lasers for fusion. These programs established the technological human resource base of highly trained laser physicists, engineers, and chemists that remain at the Laboratory today. Almost every technical division at Los Alamos now has some laser capability ranging from laser development, applications, studies on nonlinear processes, modeling and materials processing. During the past six years over eight R&D-100 Awards have been received by Los Alamos for development of laser-based techniques and instrumentation. Outstanding examples of technology developed include LIDAR applications to environmental monitoring, single molecule detection using fluorescence spectroscopy, a laser-based high kinetic energy source of oxygen atoms produced by a laser-sustained plasma, laser-induced breakdown spectroscopy (LIBS) for compositional, analysis, thin film high temperature superconductor deposition, multi-station laser welding, and direct metal deposition and build-up of components by fusing powder particles with a laser beam.

  8. Research and application of ARP protocol vulnerability attack and defense technology based on trusted network

    Science.gov (United States)

    Xi, Huixing

    2017-03-01

    With the continuous development of network technology and the rapid spread of the Internet, computer networks have been around the world every corner. However, the network attacks frequently occur. The ARP protocol vulnerability is one of the most common vulnerabilities in the TCP / IP four-layer architecture. The network protocol vulnerabilities can lead to the intrusion and attack of the information system, and disable or disable the normal defense function of the system [1]. At present, ARP spoofing Trojans spread widely in the LAN, the network security to run a huge hidden danger, is the primary threat to LAN security. In this paper, the author summarizes the research status and the key technologies involved in ARP protocol, analyzes the formation mechanism of ARP protocol vulnerability, and analyzes the feasibility of the attack technique. Based on the summary of the common defensive methods, the advantages and disadvantages of each defense method. At the same time, the current defense method is improved, and the advantage of the improved defense algorithm is given. At the end of this paper, the appropriate test method is selected and the test environment is set up. Experiment and test are carried out for each proposed improved defense algorithm.

  9. Review of the National Defense Intelligence College's Master's Degree in Science and Technology Intelligence

    Science.gov (United States)

    National Academies Press, 2011

    2011-01-01

    The National Research Council (NRC) was asked by the National Defense Intelligence College (NDIC) to convene a committee to review the curriculum and syllabi for their proposed master of science degree in science and technology intelligence. The NRC was asked to review the material provided by the NDIC and offer advice and recommendations…

  10. Commercializing Defense Technologies and Helping Defense Firms Succeed in Commercial Markets: A Report on the Objectives, Activities, and Accomplishments of the TAP-IN Program

    Science.gov (United States)

    1997-01-01

    Technology Access for Product Innovation (TAP-IN), the largest technology deployment project funded by TRP, was competitively selected through a national solicitation for proposals. TAP-IN was created to help companies access and apply defense technologies and help defense-dependent companies enter new commercial markets. Defense technologies included technologies developed by DoD, DOE, NASA, and their contractors. TAP-IN was structured to provide region-based technology access services that were able to draw on technology resources nationwide. TAP-IN provided expert assistance in all stages of the commercialization process from concept through prototype design to capital sourcing and marketing strategy. TAP-IN helped companies locate new technology, identify business partners, secure financing, develop ideas for new products, identify new markets, license technology, solve technical problems, and develop company-specific applications of federal technology. TAP-IN leveraged NASA's existing commercial technology network to create an integrated national network of organizations that assisted companies in every state. In addition to NASA's six regional technology transfer centers (RTTCs), TAP-IN included business and technology development organizations in every state, the Industrial Designers Society of America, and the Federal Laboratory Consortium (FLC).

  11. Development of Ultra-sensitive Laser Spectroscopic Analysis Technology

    Energy Technology Data Exchange (ETDEWEB)

    Cha, H. K.; Kim, D. H.; Song, K. S. (and others)

    2007-04-15

    Laser spectroscopic analysis technology has three distinct merits in detecting various nuclides found in nuclear fields. High selectivity originated from small bandwidth of tunable lasers makes it possible to distinguish various kinds of isotopes and isomers. High intensity of focused laser beam makes it possible to analyze ultratrace amount. Remote delivery of laser beam improves safety of workers who are exposed in dangerous environment. Also it can be applied to remote sensing of environment pollution.

  12. The research of laser marking control technology

    Science.gov (United States)

    Zhang, Qiue; Zhang, Rong

    2009-08-01

    In the area of Laser marking, the general control method is insert control card to computer's mother board, it can not support hot swap, it is difficult to assemble or it. Moreover, the one marking system must to equip one computer. In the system marking, the computer can not to do the other things except to transmit marking digital information. Otherwise it can affect marking precision. Based on traditional control methods existed some problems, introduced marking graphic editing and digital processing by the computer finish, high-speed digital signal processor (DSP) control marking the whole process. The laser marking controller is mainly contain DSP2812, digital memorizer, DAC (digital analog converting) transform unit circuit, USB interface control circuit, man-machine interface circuit, and other logic control circuit. Download the marking information which is processed by computer to U disk, DSP read the information by USB interface on time, then processing it, adopt the DSP inter timer control the marking time sequence, output the scanner control signal by D/A parts. Apply the technology can realize marking offline, thereby reduce the product cost, increase the product efficiency. The system have good effect in actual unit markings, the marking speed is more quickly than PCI control card to 20 percent. It has application value in practicality.

  13. Analyzing Department of Defense's use of other transactions as a method for accessing non-traditional technology

    OpenAIRE

    Gilliland, John E.

    2001-01-01

    As U.S. Defense budgets and military research and development spending experienced significant decline between 1988 and 1998, the Defense Technology and Industrial Base essentially merged with the national industrial base. DOD reform occurred more slowly than changes in the private sector fueled by advances in technology. U.S. national security relies upon the ability of the military to maintain technological superiority. To attract advanced technology companies that normally do not participa...

  14. SDI (Strategic Defense Initiative) Software Technology Program Plan

    Science.gov (United States)

    1987-06-01

    Computing Initiative program under Simpson and Sears . Industrial research labs are studying fundamental issues of the man-machine interface to formulate...Reform," The Brookings Review, Summer 1986, pp. 11-16. [Maidique 80] Maidique, Modesto , "Entrepreneurs, Champions, and % Technological Innovation...Management Tasks Area," from Computer t. Special Issue on STARS Program, (November 1983), pp. 56-62. [Maidique 80] Maidique, Modesto A., "Entrepreneurs

  15. Hypermedia Laboratory, Defense Applied Information Technology Center; Review for 1988

    Science.gov (United States)

    1988-12-01

    des images. La proliferation des reseatix publics et prives et des services de messagerie oti courrier electronique utilisant de larges bandes et des...technologies tres fiables permer de transporter du texte integral et de proceder a des transferts eLectroniques de documents la oti pour l’instant on...des reseaux de coumrer electronique (comme Infotap et Geomail), et des possibilites de transferts rapides entre collections archivees sur disques et

  16. Current and long-term technologies of laser therapy

    Science.gov (United States)

    Ulashcyk, Vladimir S.; Volotovskaya, Anna V.

    2007-06-01

    Laser therapy, using low-energy laser radiation, is being more and more applied. The most applied technology is transcutaneous radiation of tissues by laser radiation. Originally, a direct action on a pathological site was mostly used, but recently more attention is given to reflexogenic areas, acupuncture points, and endocrine organ projection sites. The development of light-conductive engineering made it possible to practically apply intraorgan laser therapy. This technology is widely spread in gynecology, otorhinolaryngology, urology, gastroenterology, etc. Close to it are different versions of intratissue laser therapy (intraosteal, periosteal, myofascial). A special kind of laser therapy is laser hemotherapy. Depending on the techniques and protocol of its application, there are extracorporeal, intravascular, and supravenous ways of action. According to our comparative investigations, supravenous hemotherapy by its therapeutic efficacy and major medicinal effects can be well compared with intravascular laser hemotherapy. With good prospects and efficiency is laser therapy as a combination of laser and other physical factors. Magnetolaser therapy has been scientifically substantiated and practically applied so far. Theoretically and experimentally substantiated is a combined application of laser radiation and physical factors such as ultrasound, direct current field, vacuum, cryotherapy, etc. Experimental research and few so far clinical observations are indicative of prospects of a complex application of laser radiation and drugs. To improve light absorption, laser radiation is combined with different dyes. Photodynamic therapy, originally used in oncology, is applied today in treating different diseases. We showed a possibility of using a number of drugs possessing simultaneously photosensitizing properties to this end. Laser radiation significantly influences pharmacokinetics and pharmacodynamics of drugs, which gives reason to practically implement laser

  17. Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation

    NARCIS (Netherlands)

    Habbema, L.; Verhagen, R.; Van Hal, R.; Liu, Y.; Varghese, B.

    2011-01-01

    We describe a novel, minimally invasive laser technology for skin rejuvenation by creating isolated microscopic lesions within tissue below the epidermis using laser induced optical breakdown. Using an in-house built prototype device, tightly focused near-infrared laser pulses are used to create opt

  18. Minimally invasive non-thermal laser technology using laser-induced optical breakdown for skin rejuvenation

    NARCIS (Netherlands)

    Habbema, L.; Verhagen, R.; Van Hal, R.; Liu, Y.; Varghese, B.

    2011-01-01

    We describe a novel, minimally invasive laser technology for skin rejuvenation by creating isolated microscopic lesions within tissue below the epidermis using laser induced optical breakdown. Using an in-house built prototype device, tightly focused near-infrared laser pulses are used to create

  19. ICESat-2 laser technology readiness level evolution

    Science.gov (United States)

    Sawruk, Nicholas W.; Burns, Patrick M.; Edwards, Ryan E.; Wysocki, Theodore; VanTuijl, Andre; Litvinovitch, Viatcheslav; Sullivan, Edward; Hovis, Floyd E.

    2015-02-01

    We report on the completion of the space qualification testing program for NASA Goddard Space Flight Center's (GSFC) Ice, Cloud, and Land Elevation Satellite 2 (ICESat-2) program. This paper describes the final performance results of the fully integrated (laser and electronics) flight laser system with an emphasis on the system design evolution from a breadboard demonstration to a fully space-qualified laser system. The 532 nm ICESat-2 laser transmitter generates diffraction limited pulse energies of 1 mJ, pulsewidths of laser development to facilitate future space-qualified laser developments, improve reliability, and increase performance.

  20. Terrestrial laser scanning of anthropogenic beach berms for urban flood defense

    Science.gov (United States)

    Sanders, B. F.; Schubert, J.; Gallien, T.; Shakeri Majd, M.

    2013-12-01

    Globally, over 20 million people reside below present high tide levels and as many as 200 million are vulnerable to flooding during extreme events. In California, coastal flooding is driven by a combination of factors such as high astronomical tides, waves, storm surge, and other fluctuations such as those caused by the El Nino Southern Oscillation (ENSO), and climate change is likely to exacerbate those factors testing the limits of coastal flood defenses. Beaches provide natural flood protection during storms by mitigating the effects of high water levels and wave runup, and a process known as beach berming can be used to temporarily enhance the ability of beaches to withstand overtopping. In cases where beaches serve as primary protection for development, anthropogenic berms may represent an attractive management option for temporarily addressing future flood hazards. Terrestrial laser scanning (TLS) or lidar has emerged as a valuable technology for capturing the three dimensional geometry of complex surfaces and objects, and in the context of coastal flood prediction mobile TLS could prove invaluable by quickly mapping beach topography before an imminent flood threat and reducing associated uncertainties in coastal flood forecasting systems. The research presented here highlights the results of a field campaign to document the initial conditions and dynamic erosion of anthropogenic berms using TLS. On three occasions in February and March of 2012, a prototype berm was constructed on the foreshore of the city of Newport Beach, CA at low tide, and was scanned to document its initial shape, and then scanned in near-continuous fashion with the rising tide to characterize its subsequent erosion. The purpose is two-fold: (1) to measure the performance of the TLS system relative to accuracy and assess strengths and drawbacks that are likely to bear on the suitability of this technology to support flood prediction as described above, and (2) to develop a better

  1. CSIR eNews: Laser technology

    CSIR Research Space (South Africa)

    CSIR

    2008-03-01

    Full Text Available , enables the South African industry to improve their global competitiveness and expand their market share. The CSIR National Laser Centre works closely with local higher education institutions and support laser related research at these institutions....

  2. CSIR eNews: Laser technology

    CSIR Research Space (South Africa)

    CSIR

    2008-12-01

    Full Text Available , enables the South African industry to improve their global competitiveness and expand their market share. The CSIR National Laser Centre works closely with local higher education institutions and support laser related research at these institutions...

  3. Laser technology and applications in gynaecology.

    Science.gov (United States)

    Adelman, M R; Tsai, L J; Tangchitnob, E P; Kahn, B S

    2013-04-01

    The term 'laser' is an acronym for Light Amplification by Stimulated Emission of Radiation. Lasers are commonly described by the emitted wavelength, which determines the colour of the light, as well as the active lasing medium. Currently, over 40 types of lasers have been developed with a wide range of both industrial and medical uses. Gas and solid-state lasers are frequently used in surgical applications, with CO2 and Ar being the most common examples of gas lasers, and the Nd:YAG and KTP:YAG being the most common examples of solid-state lasers. At present, it appears that the CO2, Nd:YAG, and KTP lasers provide alternative methods for achieving similar results, as opposed to superior results, when compared with traditional endoscopic techniques, such as cold-cutting monopolar and bipolar energy. This review focuses on the physics, tissue interaction, safety and applications of commonly used lasers in gynaecological surgery.

  4. Impact of industrial needs on advances in laser technology

    Science.gov (United States)

    Denney, Paul E.

    2005-03-01

    Lasers have become accepted "tools" by a number of industries. Everything from cars to heart pacemakers to greeting cards are now using lasers to cut, drill, clad, heat treat, and weld/join. The market for industrial laser systems is expanding. For the first quarter of 2004 the sales in lasers systems increased 40% to over $120 million1. Some of this increase in sales may be due to the fact that lasers are now considered reliable and have proven to be economical. The primary industrial laser systems today are the CO2 and Nd:YAG (lamp pumped) lasers especially at the higher powers. Both laser designs have evolved in power, beam quality, and reliability. At the same time laser manufacturers have developed methods to decrease the fabrication cost for the lasers. While these improvements have had a major impact on the operating cost of lasers, significant additional improvements do not seem possible in the near future for these lasers. As a result other advances in laser technologies (diode, diode pumped Nd:YAG, disc, and Yb fiber) are being examined.

  5. Second-generation dental laser technology

    Science.gov (United States)

    Moretti, Michael

    1993-07-01

    The first generation of dental lasers proved limited to soft tissue applications. Due to the thermal properties of these lasers, drilling of enamel and dentin is harmful to the underlying nerve tissue. As a solution to this problem, more sophisticated solidstate lasers are under commercial development for hard tissue applications. The first of these second generation lasers to emerge is the erbium:YAG now marketed in Europe by KaVo. This system relies on a cumbersome articulated arm delivery device. Other manufacturers have overcome this delivery problem with the introduction of flexible delivery methods. Another hard tissue laser that has been introduced is the short-pulsed Nd:YAG. This laser uses shaped pulses to drill teeth without thermal damage. An overview of these and other second generation dental lasers is presented.

  6. Laser cutting, State of the art and technological trends

    DEFF Research Database (Denmark)

    Olsen, Flemming Ove

    1999-01-01

    In this paper a short review of the development trends in laser cutting will be given. The technoloty which is the fastest expanding industrial production technology will develop in both its core market segment: Flat bed cutting of sheet metal as it will expand in heavy industry and in cutting of......-dimensional shapes. The CO2 laser will also in the near futre be the domination laser source in the market, although the new developments in ND-YAG-lasers opens for new possibilities for this laser type.......In this paper a short review of the development trends in laser cutting will be given. The technoloty which is the fastest expanding industrial production technology will develop in both its core market segment: Flat bed cutting of sheet metal as it will expand in heavy industry and in cutting of 3...

  7. Impact of the Defense Critical Technologies Plan on Weapon Systems Test and Evaluation

    Science.gov (United States)

    1990-12-01

    middle of the 1980’s several factors led to the realization that DoD’s T&E capabilities were approaching a crisis situation. These factors included...techologies most critica to saing the long-term quai.- tative superiority of United States wampon syvtme. The number of such technologie identified in any...United States, The Defense Technology Base, Introduction and Overview, U.S. Government Printing Office, March 1988. Pastine, John, D. Dr., "A Crisis

  8. Development of Laser Application Technology for Stable Isotope Production

    Energy Technology Data Exchange (ETDEWEB)

    Jeong, Do Young; Ko, Kwang Hoon; Kwon, Duck Hee [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)] (and others)

    2007-04-15

    Tl-203 is used as a source material to produce Tl-201 radioisotope which is produced in a cyclotron by irradiating the enriched Tl-203 target. Tl-201 is a radiopharmaceutical for SPECT (single photon emission computerized tomography) to diagnose heart diseases and tumors. This Project aim to develop laser application technology to product stable isotopes such as Tl-203, Yb-168, and Yb-176. For this, photoion extraction device, atomic beam generator, dye lasers, and high power IR lasers are developed.

  9. Coherent Doppler Laser Radar: Technology Development and Applications

    Science.gov (United States)

    Kavaya, Michael J.; Arnold, James E. (Technical Monitor)

    2000-01-01

    NASA's Marshall Space Flight Center has been investigating, developing, and applying coherent Doppler laser radar technology for over 30 years. These efforts have included the first wind measurement in 1967, the first airborne flights in 1972, the first airborne wind field mapping in 1981, and the first measurement of hurricane eyewall winds in 1998. A parallel effort at MSFC since 1982 has been the study, modeling and technology development for a space-based global wind measurement system. These endeavors to date have resulted in compact, robust, eyesafe lidars at 2 micron wavelength based on solid-state laser technology; in a factor of 6 volume reduction in near diffraction limited, space-qualifiable telescopes; in sophisticated airborne scanners with full platform motion subtraction; in local oscillator lasers capable of rapid tuning of 25 GHz for removal of relative laser radar to target velocities over a 25 km/s range; in performance prediction theory and simulations that have been validated experimentally; and in extensive field campaign experience. We have also begun efforts to dramatically improve the fundamental photon efficiency of the laser radar, to demonstrate advanced lower mass laser radar telescopes and scanners; to develop laser and laser radar system alignment maintenance technologies; and to greatly improve the electrical efficiency, cooling technique, and robustness of the pulsed laser. This coherent Doppler laser radar technology is suitable for high resolution, high accuracy wind mapping; for aerosol and cloud measurement; for Differential Absorption Lidar (DIAL) measurements of atmospheric and trace gases; for hard target range and velocity measurement; and for hard target vibration spectra measurement. It is also suitable for a number of aircraft operations applications such as clear air turbulence (CAT) detection; dangerous wind shear (microburst) detection; airspeed, angle of attack, and sideslip measurement; and fuel savings through

  10. 2nd Topical Workshop on Laser Technology and Optics Design

    CERN Document Server

    2013-01-01

    Lasers have a variety of applications in particle accelerator operation and will play a key role in the development of future particle accelerators by improving the generation of high brightness electron and exotic ion beams and through increasing the acceleration gradient. Lasers will also make an increasingly important contribution to the characterization of many complex particle beams by means of laser-based beam diagnostics methods. The second LANET topical workshop will address the key aspects of laser technology and optics design relevant to laser application to accelerators. The workshop will cover general optics design, provide an overview of different laser sources and discuss methods to characterize beams in details. Participants will be able to choose from a range of topical areas that go deeper in more specific aspects including tuneable lasers, design of transfer lines, noise sources and their elimination and non-linear optics effects. The format of the workshop will be mainly training-based wit...

  11. CERN's web application updates for electron and laser beam technologies

    CERN Document Server

    Sigas, Christos

    2017-01-01

    This report describes the modifications at CERN's web application for electron and laser beam technologies. There are updates at both the front and the back end of the application. New electron and laser machines were added and also old machines were updated. There is also a new feature for printing needed information.

  12. Information Technologies for the 1980's: Lasers and Microprocessors.

    Science.gov (United States)

    Mathews, William D.

    This discussion of the development and application of lasers and microprocessors to information processing stresses laser communication in relation to capacity, reliability, and cost and the advantages of this technology to real-time information access and information storage. The increased capabilities of microprocessors are reviewed, and a…

  13. Research on key technology of space laser communication network

    Science.gov (United States)

    Chang, Chengwu; Huang, Huiming; Liu, Hongyang; Gao, Shenghua; Cheng, Liyu

    2016-10-01

    Since the 21st century, Spatial laser communication has made a breakthrough development. Europe, the United States, Japan and other space powers have carried out the test of spatial laser communication technology on-orbit, and put forward a series of plans. In 2011, China made the first technology demonstration of satellite-ground laser communication carried by HY-2 satellite. Nowadays, in order to improve the transmission rate of spatial network, the topic of spatial laser communication network is becoming a research hotspot at home and abroad. This thesis, from the basic problem of spatial laser communication network to solve, analyzes the main difference between spatial network and ground network, which draws forth the key technology of spatial laser communication backbone network, and systematically introduces our research on aggregation, addressing, architecture of spatial network. From the perspective of technology development status and trends, the thesis proposes the development route of spatial laser communication network in stages. So as to provide reference about the development of spatial laser communication network in China.

  14. The solid state detector technology for picosecond laser ranging

    Science.gov (United States)

    Prochazka, Ivan

    1993-01-01

    We developed an all solid state laser ranging detector technology, which makes the goal of millimeter accuracy achievable. Our design and construction philosophy is to combine the techniques of single photon ranging, ultrashort laser pulses, and fast fixed threshold discrimination while avoiding any analog signal processing within the laser ranging chain. The all solid state laser ranging detector package consists of the START detector and the STOP solid state photon counting module. Both the detectors are working in an optically triggered avalanche switching regime. The optical signal is triggering an avalanche current buildup which results in the generation of a uniform, fast risetime output pulse.

  15. Applications of Laser Precisely Processing Technology in Solar Cells

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    According to the design method of laser resonator cavity, we optimized the primary parameters of resonator and utilized LD arrays symmetrically pumping manner to implementing output of the high-brightness laser in our laser cutter, then which was applied to precisely cutting the conductive film of CuInSe2 solar cells, the buried contact silicon solar cells' electrode groove, and perforating in wafer which is used to the emitter wrap through silicon solar cells. Laser processing precision was less than 40μm, the results have met solar cell's fabrication technology, and made finally the buried cells' conversion efficiency be improved from 18% to 21% .

  16. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix II research laboratories and facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    This document contains summaries of the research facilities that support the Defense Programs Research and Technology Development Program for FY 1993. The nine program elements are aggregated into three program clusters as follows: (1) Advanced materials sciences and technologies; chemistry and materials, explosives, special nuclear materials (SNM), and tritium. (2) Design sciences and advanced computation; physics, conceptual design and assessment, and computation and modeling. (3) Advanced manufacturing technologies and capabilities; system engineering science and technology, and electronics, photonics, sensors, and mechanical components. Section I gives a brief summary of 23 major defense program (DP) research and technology facilities and shows how these major facilities are organized by program elements. Section II gives a more detailed breakdown of the over 200 research and technology facilities being used at the Laboratories to support the Defense Programs mission.

  17. Research of laser cleaning technology for steam generator tubing

    Science.gov (United States)

    Hou, Suixa; Luo, Jijun; Xu, Jun; Yuan, Bo

    2010-10-01

    Surface cleaning based on the laser-induced breakdown of gas and subsequent shock wave generation can remove small particles from solid surfaces. Accordingly, several studies in steam generator tubes of nuclear power plants were performed to expand the cleaning capability of the process. In this work, experimental apparatus of laser cleaning was designed in order to clean heat tubes in steam generator. The laser cleaning process is monitored by analyzing acoustic emission signal experimentally. Experiments demonstrate that laser cleaning can remove smaller particles from the surface of steam generator tubes better than other cleaning process. It has advantages in saving on much manpower and material resource, and it is a good cleaning method for heat tubes, which can be real-time monitoring in laser cleaning process of heat tubes by AE signal. As a green cleaning process, laser cleaning technology in equipment maintenance will be a good prospect.

  18. Laser thermographic technologies for hard copy recording

    Science.gov (United States)

    Bessmel'tsev, Viktor P.; Baev, Sergej G.

    1995-04-01

    Methods of hard copies recording based on thermal interaction of the beam from CO2 or YAG lasers with various kinds of films on any substrates have been developed. The recording processes are single-step and require no additional development. Among them are: (1) Laser thermodestruction of thin mask layers or of a material surface on any kinds of substrates. (2) Laser thermochemical reactions of thermal decomposition of metal salts in solid state phase on a surface of various hygroscopic substrates. The laser recording devices using the methods, described above have been developed and are manufactured now; they allow one to record hard copies with a size of up to 27 X 31 inches, a resolution of 4000 dpi.

  19. Advanced sensors, telecommunications and data processing: Technological spin-offs from the Strategic Defense Initiative

    Energy Technology Data Exchange (ETDEWEB)

    Wood, L.L.

    1986-10-01

    While the details of Nitze Criteria-satisfying architectures for defense against strategic attack with ballistic missiles are still being worked out, it is already clear that quite advanced sensors, telecommunications and data processing technologies will be features of all of them. It is concluded that the SDI, due to its institutional youthfulness, its charter for large-scale research and its self-evident need for such technologies, is likely to dominate many aspects of these technology development areas during the next two decades, especially if it continues more-or-less as the current American Administration contemplates. Both the technical and the economic aspects of data-gathering and manipulation seem likely to be substantially enhanced, due to the existence of the SDI.

  20. Technological study of oxygen aided laser cutting silicon steel

    Science.gov (United States)

    Hong, Lei; Mi, Chenglong; Wu, Gang

    2008-03-01

    It is easy to produce molten dross by using traditional laser cutting technology in laser cutting silicon steel sheet. The main reason is that oxidizing reaction will take place inevitably by using oxygen as aided gas, so high pressure and high purity N II or inert gases is used as aided cutting gas in laser cutting process. Although the cut quality is improved, the cutting efficiency is dropped because of the lack of energy resulting from an exothermic oxidation reaction. A fire new laser cutting technology by using an additional nozzle put under the workpiece that will form lateral gas flow to control the direction of the flowing dross gas is raised. In this technology oxygen is still used as aided gas, the laser power is reduced and the cut is fine. The experiments prove that by controlling the technical parameter reasonably, glossy and dross-free cutting kerfs are obtained. The gas flow acting under the workpiece is simulated by Finite Element Method (FEM). The varieties of pneumatic fields when the additional nozzle is in different degree and flow velocity are analyzed, which provides academic basis for controlling the flowing direction of the dross gas more reasonably. This laser cutting technology is practical and feasible.

  1. Airborne megawatt class free-electron laser for defense and security

    Energy Technology Data Exchange (ETDEWEB)

    Roy Whitney; David Douglas; George Neil

    2005-03-01

    An airborne megawatt (MW) average power Free-Electron Laser (FEL) is now a possibility. In the process of shrinking the FEL parameters to fit on ship, a surprisingly lightweight and compact design has been achieved. There are multiple motivations for using a FEL for a high-power airborne system for Defense and Security: Diverse mission requirements can be met by a single system. The MW of light can be made available with any time structure for time periods from microseconds to hours, i.e. there is a nearly unlimited magazine. The wavelength of the light can be chosen to be from the far infrared (IR) to the near ultraviolet (UV) thereby best meeting mission requirements. The FEL light can be modulated for detecting the same pattern in the small fraction of light reflected from the target resulting in greatly enhanced targeting control. The entire MW class FEL including all of its subsystems can be carried by large commercial size airplanes or on an airship. Adequate electrical power can be generated on the plane or airship to run the FEL as long as the plane or airship has fuel to fly. The light from the FEL will work well with relay mirror systems. The required R&D to achieve the MW level is well understood. The coupling of the capabilities of an airborne FEL to diverse mission requirements provides unique opportunities.

  2. Lessons learned from U.S. Department of Defense 911-Bio Advanced Concept Technology Demonstrations.

    Energy Technology Data Exchange (ETDEWEB)

    Baldwin, T.; Gasper, W.; Lacher, L.; Newsom, D.; Yantosik, G.

    1999-07-06

    The US Department of Defense (DoD), in cooperation with other federal agencies, has taken many initiatives to improve its ability to support civilian response to a domestic biological terrorism incident. This paper discusses one initiative, the 911-Bio Advanced Concept Technology Demonstrations (ACTDs), conducted by the Office of the Secretary of Defense during 1997 to better understand: (1) the capability of newly developed chemical and biological collection and identification technologies in a field environment; (2) the ability of specialized DoD response teams to use these new technologies within the structure of cooperating DoD and civilian consequence management organizations; and (3) the adequacy of current modeling tools for predicting the dispersal of biological hazards. This paper discusses the experience of the ACTDs from the civilian community support perspective. The 911-Bio ACTD project provided a valuable opportunity for DoD and civilian officials to learn how they should use their combined capabilities to manage the aftermath of a domestic biological terrorism incident.

  3. A study of laser-beam welding conducted at the Centre for Laser Technologies of Metals

    Science.gov (United States)

    Antoszewski, Bogdan; Gradoń, Ryszard; Trela, Paweł; Cendrowicz, Edward

    2013-01-01

    The study reported here is part of a larger research project on laser-beam welding conducted at the Centre for Laser Technologies of Metals. The primary objectives were to compare laser-beam welding with a conventional process when used for longitudinal seams in street lamp posts, to select the process parameters for girth welds in cylindrical high-strength steel machine elements, and to assess whether laser-beam welding can be used for magnesium alloys. The paper includes recommendations for the selection of welding parameters.

  4. Technology of Laser Protection and Defrosting Film①

    Institute of Scientific and Technical Information of China (English)

    CHEYing; SHENYuzhi; 等

    1997-01-01

    A compound coating of electrically conductive and visible transparent film and laser protective film has been developed,this coating has light densities of no less than 4 against 0.53μm and no less than 3 against 1.06μm in the range of ±30°angular field.The average transmittance value as high as 60% from 0.4μm to 0.7μm has been achieved.The structures of the laser protective filters are compared.The refractive index of a compound material used in the matching layer has been given.Measured results of the laser protective film coating are compared with that of the compound coating.

  5. Overview on the high power excimer laser technology

    Science.gov (United States)

    Liu, Jingru

    2013-05-01

    High power excimer laser has essential applications in the fields of high energy density physics, inertial fusion energy and industry owing to its advantages such as short wavelength, high gain, wide bandwidth, energy scalable and repetition operating ability. This overview is aimed at an introduction and evaluation of enormous endeavor of the international high power excimer laser community in the last 30 years. The main technologies of high power excimer laser are reviewed, which include the pumping source technology, angular multiplexing and pulse compressing, beam-smoothing and homogenous irradiation, high efficiency and repetitive operation et al. A high power XeCl laser system developed in NINT of China is described in detail.

  6. Storage Ring Technology for Free Electron Lasers.

    Science.gov (United States)

    1984-04-01

    new starting mode, it is clear that an arbitrary third mode amplitude can be added 1ithout changing the result. It follows by induction that for an...du laser. On montre que la puissance moyenne est en accord avec la limite imposee par le chauffage du paquet d’electrons (limite de Renieri

  7. Tissue blood flow mapping using laser technology

    Science.gov (United States)

    Wardell, Karin; Linden, Maria; Nilsson, Gert E.

    1995-03-01

    By the introduction of the laser Doppler perfusion imager (LDPI) the microvascular blood flow in a tissue area can be mapped by sequentially moving a laser beam over the tissue. The measurement is performed without touching the tissue and the captured perfusion values in the peripheral circulation are presented as a color-coded image. In the ordinary LDPI-set-up, 64 X 64 measurement sites cover an area in the range of about 10 - 150 cm2 depending on system settings. With a high resolution modification, recordings can be done on tissue areas as small as 1 cm2. This high resolution option has been assessed in animal models for the mapping of small vessels. To be able to record not only spatial but also temporal perfusion components of tissue blood flow, different local area scans (LAS) have been developed. These include single point recording as well as integration of either 2 X 2, 3 X 3, or 4 X 4 measurement sites. The laser beam is repeatedly moved in a quadratic pattern over the small tissue area of interest and the output value constitutes the average perfusion of all captured values within the actual region. For the evaluation, recordings were performed on healthy volunteers before and after application of a vasodilatating cream on the dorsal side of the hand.

  8. Response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings exposed to UV-B

    Science.gov (United States)

    2009-01-01

    To determine the response of antioxidant defense system to laser radiation apical meristem of Isatis indigotica seedlings, Isatis indigotica seedlings were subjected to UV-B radiation (10.08 kJ m−2) for 8 h day−1 for 8 days (PAR, 220 µmol m−2 s−1) and then exposed to He-Ne laser radiation (633 nm; 5.23 mW mm−2; beam diameter: 1.5 mm) for 5 min each day without ambient light radiation. Changes in free radical elimination systems were measured, the results indicate that: (1) UV-B radiation enhanced the concentration of Malondialdahyde (MDA) and decreased the activities of superoxide dismutase (SOD), catalase (CAT) and peroxidase (POD) in seedlings compared with the control. The concentration of MDA was decreased and the activities of SOD, CAT and POD were increased when seedlings were subjected to elevated UV-B damage followed by laser; (2) the concentration of UV absorbing compounds and proline were increased progressively with UV-B irradiation, laser irradiation and He-Ne laser irradiation plus UV-B irradiation compared with the control. These results suggest that laser radiation has an active function in repairing UV-B-induced lesions in seedlings. PMID:19820308

  9. Science and Technology in Development Environments - Findings and Observations for the Missile Defense Agency from Commercial Industry and Defense Programs

    Science.gov (United States)

    2003-05-01

    Rachel Dubin , Gerald Epstein, Forrest Frank, Donald Goldstein, Bradley Hartfield, Ivars Gutmanis, Yevgeny Macheret, Jack Nunn, and Richard White...nation, engagement planning, threat engagement, and kill assessment. The notice called for concepts in radar systems, lasers, and electro -optical

  10. Selectively oxidized vertical-cavity laser performance and technology

    Energy Technology Data Exchange (ETDEWEB)

    Choquette, K.D.; Hou, H.Q.; Geib, K.M.; Hammons, B.E.

    1998-02-01

    The authors discuss revolutionary performance advances in selectively oxidized vertical-cavity surface emitting lasers (VCSELs), which have enabled low operating power laser diodes appropriate for aerospace applications. Incorporating buried oxide layers converted from AIGaAs layers within the laser cavity produces enhanced optical and electrical confinement enabling superior laser performance, such as high efficiency and modulation bandwidth. VCSELs also shown to be viable over varied environmental conditions such as ambient temperature and ionized radiation. The development of novel VCSEL technologies for advanced system applications is also described. Two dimensional individually addressable VCSEL arrays exhibit uniform threshold and operating characteristics. Bottom emitting 850 nm VCSEL arrays fabricated using wafer fusion are also reported.

  11. Transition metal dichalcogenides based saturable absorbers for pulsed laser technology

    Science.gov (United States)

    Mohanraj, J.; Velmurugan, V.; Sivabalan, S.

    2016-10-01

    Ultrashort pulsed laser is an indispensable tool for the evolution of photonic technology in the present and future. This laser has been progressing tremendously with new pulse regimes and incorporating novel devices inside its cavity. Recently, a nanomaterial based saturable absorber (SA) was used in ultrafast laser that has improved the lasing performance and caused a reduction in the physical dimension when compared to conventional SAs. To date, the nanomaterials that are exploited for the development of SA devices are carbon nanotubes, graphene, topological insulators, transition metal dichalcogenides (TMDs) and black phosphorous. These materials have unique advantages such as high nonlinear optical response, fiber compatibility and ease of fabrication. In these, TMDs are prominent and an emerging two-dimensional nanomaterial for photonics and optoelectronics applications. Therefore, we review the reports of Q-switched and mode-locked pulsed lasers using TMDs (specifically MoS2, MoSe2, WS2 and WSe2) based SAs.

  12. Advanced Rock Drilling Technologies Using High Laser Power

    Science.gov (United States)

    Buckstegge, Frederik; Michel, Theresa; Zimmermann, Maik; Roth, Stephan; Schmidt, Michael

    Drilling through hard rock formations causes high mechanical wear and most often environmental disturbance. For the realization of an Advanced Adiabatic Compressed Air Energy Storage (AA-CAES) power plant a new and efficient method for tunneling utilising laser technology to support mechanical ablation of rock formations will be developed. Laser irradiation of inhomogeneous rock surfaces causes irregular thermal expansion leading to the formation of cracks and splintering as well as melting and slag-formation. This study focuses on the interaction of laser irradiation with calcite, porphyrite and siderite rock formations. A high power disc laser system at 1030nm wavelength is used to investigate the specific energy necessary to remove a unit volume depending on interaction times and applied power. Specific energies have been measured and an increase of fragility and brittleness of the rock surface has been observed.

  13. Advanced lasers laser physics and technology for applied and fundamental science

    CERN Document Server

    Sukhoivanov, Igor

    2015-01-01

    Presenting a blend of applied and fundamental research in highly interdisciplinary subjects of rapidly developing areas, this book contains contributions on the frontiers and hot topics of laser physics, laser technology and laser engineering, and covers a wide range of laser topics, from all-optical signal processing and chaotic optical communication to production of superwicking surfaces, correction of extremely high-power beams, and generation of ultrabroadband spectra. It presents both review-type contributions and well researched and documented case studies, and is intended for graduate students, young scientist, and emeritus scientist working/studying in laser physics, optoelectronics, optics, photonics, and adjacent areas. The book contains both experimental and theoretical studies, as well as combinations of these two, which is known to be a most useful and interesting form of reporting scientific results, allowing students to really learn from each contribution. The book contains over 130 illustratio...

  14. Advanced laser sensing receiver concepts based on FPA technology.

    Energy Technology Data Exchange (ETDEWEB)

    Jacobson, P. L. (Phillip L.); Petrin, R. R. (Roger R.); Jolin, J. L. (John L.); Foy, B. R. (Bernard R.); Lowrance, J. L.; Renda, G. (George)

    2002-01-01

    The ultimate performance of any remote sensor is ideally governed by the hardware signal-to-noise capability and allowed signal-averaging time. In real-world scenarios, this may not be realizable and the limiting factors may suggest the need for more advanced capabilities. Moving from passive to active remote sensors offers the advantage of control over the illumination source, the laser. Added capabilities may include polarization discrimination, instantaneous imaging, range resolution, simultaneous multi-spectral measurement, or coherent detection. However, most advanced detection technology has been engineered heavily towards the straightforward passive sensor requirements, measuring an integrated photon flux. The need for focal plane array technology designed specifically for laser sensing has been recognized for some time, but advances have only recently made the engineering possible. This paper will present a few concepts for laser sensing receiver architectures, the driving specifications behind those concepts, and test/modeling results of such designs.

  15. THE DEVELOPMENT OF COAL-BASED TECHNOLOGIES FOR DEPARTMENT OF DEFENSE FACILITIES

    Energy Technology Data Exchange (ETDEWEB)

    Bruce G. Miller; Sharon Falcone Miller; Sarma V. Pisupati; Chunshan Song; Ronald S. Wasco; Ronald T. Wincek; Xiaochun Xu; Alan W. Scaroni; Richard Hogg; Subhash Chander; M. Thaddeus Ityokumbul; Mark S. Klima; Peter T. Luckie; Adam Rose; Richard L. Gordon; Jeffrey Lazo; A. Michael Schaal

    2004-01-30

    The third phase of a three-phase project investigating the development of coal-based technologies for US Department of Defense (DOD) facilities was completed. The objectives of the project were to: decrease DOD's dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase III activities were focused on evaluating deeply-cleaned coals as fuels for industrial boilers and investigating emissions control strategies for providing ultra-low emissions when firing coal-based fuels. This was addressed by performing coal beneficiation and preparation studies, and bench- to demonstration-scale emissions reduction studies. In addition, economic studies were conducted focused on determining cost and market penetration, selection of incentives, and regional economic impacts of coal-based technologies.

  16. An Analysis of Rapid Technology Transfer Solutions and Best Practices for Use by the Department of Defense

    OpenAIRE

    Holden, Dennis R.

    2010-01-01

    Approved for public release; distribution is unlimited The DoD is burdened by an Integrated Defense Acquisition, Technology, and Logistics Life Cycle Management System that is designed to acquire large systems, such as ships, and that takes years to complete. Information technology evolves at a rapid pace because it is driven by industry. The DoD acquisition system is therefore at odds with industry development, at least with respect to information technology. Acquisition of informatio...

  17. Repeat scanning technology for laser ultrasonic propagation imaging

    Science.gov (United States)

    Lee, Jung-Ryul; Yenn Chong, See; Sunuwar, Nitam; Park, Chan Yik

    2013-08-01

    Laser ultrasonic scanning in combination with contact or non-contact sensors provides new paradigms in structural health management (SHM) and non-destructive in-process quality control (IPQC) for large composite structures. Wave propagation imaging technology based on laser ultrasonic scanning and fixed-point sensing shows remarkable advantages, such as minimal need for embedded sensors in SHM, minimum invasive defect visualization in IPQC and general capabilities of curved and complex target inspection, and temporal reference-free inspection. However, as with other SHM methods and non-destructive evaluation based on ultrasound, the signal-to-noise ratio (SNR) is a prevalent issue in real structural applications, especially with non-contact thin-composite sensing or with thick and heterogeneous composites. This study proposes a high-speed repeat scanning technique for laser ultrasonic propagation imaging (UPI) technology, which is realized with the scanning speed of 1 kHz of a Q-switched continuous wave laser, and precise control of the laser beam pulses for identical point scanning. As a result, the technique enables the achievement of significant improvement in the SNR to inspect real-world composite structures. The proposed technique provides enhanced results for impact damage detection in a 2 mm thick wing box made of carbon-fiber-reinforced plastic, despite the low sensitivity of non-contact laser ultrasonic sensing. A field-applicable pure laser UPI system has been developed using a laser Doppler vibrometer as the non-contact ultrasonic sensor. The proposed technique enables the visualization of the disbond defect in a 15 mm thick wind blade specimen made of glass-fiber-reinforced plastic, despite the high dissipation of ultrasound in the thick composite.

  18. Technical Training Seminar: Laser Trackers: the Local Positioning Technology (LPT)

    CERN Multimedia

    Davide Vitè

    2005-01-01

    Friday 20 May from 10:00 to 16:00, Training Centre (bldg. 593) Laser Trackers: the Local Positioning Technology (LPT) Simon Moser, Michael Lettau, Achim Lupus, Niklaus Suter, Leica GEOSYSTEMS AG, Switzerland Laser trackers are used at CERN for different applications within the LHC Project. Leica Geosystems AG have been developing during the last four years the revolutionary Local Positioning Technology (LPT). Laser trackers are increasingly used to ensure accuracy of large fabrications, and alignment in the final assembly process. Competing portable Coordinate Measuring Machines (CMM) with articulated arms require a frequent repositioning, known to lead to a loss of accuracy and efficiency. Leica Geosystems developed armless solutions, the T-Probe and T-Scan, for use with its laser trackers. The combination of the tracker technology with photogrammetry is the base of LPT, enabling real time measurements with free hand-held devices, such as the T-Probe and T-Scan. T-Probe and T-Scan overcome the proble...

  19. Application of laser technology in high efficiency silicon solar cell manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Long, W.X.; Tu, J.L.; Wang, Z.G.; Cui, H.Y.; Deng, J.L.; Liu, Z.M.; Liao, H. [Yunnan Normal Univ., Yunnan (China). Solar Energy Research Inst., Education Ministry Key Laboratory of Renewable Energy Advanced Materials and Manufacturing Technology

    2008-07-01

    This paper examined the use of laser processing applications in solar cell fabrication. Laser processing is used to improve the electrical performance of solar cells as well as to reduce their manufacturing cost. Laser processes included laser scribing and cutting; laser fired contacts; wrap through technology; laser chemical processing; and the application of thin film devices. The study also examined the use of laser-fired contact (LFC) process schemes for the production of silicon (Si) Results of the study indicated that the lasers resulted in decreased wafer thickness and increased wafer sizes. LFC schemes can be applied on almost all advanced solar cell structures, including metal or emitter wrap-through cells and interdigitated back contact cells. Laser doping and via hole drilling techniques are also feasible in industrial applications. The use of laser technologies is expected to reduce costs. It was concluded that laser technologies are an appropriate choice for solar cell manufacturing processes. 12 refs., 8 figs.

  20. The laser measurement technology of combustion flow field

    Science.gov (United States)

    Wang, Mingdong; Wang, Guangyu; Qu, Dongsheng

    2014-07-01

    The parameters of combustion flow field such as temperature, velocity, pressure and mole-fraction are of significant value in engineering application. The laser spectroscopy technology which has the non-contact and non- interference properties has become the most important method and it has more advantages than conventionally contacting measurement. Planar laser induced fluorescence (PLIF/LIF) is provided with high sensibility and resolution. Filtered Rayleigh scattering (FRS) is a good measurement method for complex flow field .Tunable diode laser absorption spectroscopy (TDLAS) is prosperity on development and application. This article introduced the theoretical foundation, technical principle, system structure, merits and shortages. It is helpful for researchers to know about the latest development tendency and do the related research.

  1. Symbol RFID Technology to be Deployed at United States Defense Logistics Agency’s Distribution Centers Worldwide

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    Symbol Technologies, Inc., The Enterprise Mobility Company, today announced that it had been selected by ODIN technologies, the leader in the physics of RFID testing, software and deployment, to support its recent contract win with the United States Defense Logistics Agency (DLA), the United States Department of Defense’s (DoD) logistics combat support agency that provides supplies and services to America’s military forces worldwide.

  2. Component technologies for a recirculating linac free-electron laser

    Science.gov (United States)

    Litvinenko, Vladimir N.; Madey, John M. J.; Vinokurov, Nikolai A.

    1994-05-01

    The key component technologies required for a high average power free-electron laser (FEL) are described. Some basic aspects of approaches for high average power (scalable to megawatt level) accelerators and FELs are presented. A short description of the Novosibirsk 100 kW average power near infrared (IR) FEL driven by a race-track microtron-recuperator is given. The current status and plans for this facility are provided by Institute of Nuclear Physics (Novosibirsk).

  3. 3rd International Conference on Photonics, Optics and Laser Technology

    CERN Document Server

    Raposo, Maria

    2016-01-01

    The book provides a collection of selected papers presented to the third International Conference on Photonics, Optics and Laser Technology PHOTOPTICS 2015, covering the three main conference scientific areas of “Optics”, “Photonics” and “Lasers”. The selected papers, in two classes full and short, result from a double blind review carried out by the conference program committee members which are highly qualified experts in conference topic areas.

  4. 2nd International Conference on Photonics, Optics and Laser Technology

    CERN Document Server

    Raposo, Maria

    2016-01-01

    This collection of the selected papers presented to the Second International Conference on Photonics, Optics and laser technology PHOTOPTICS 2014 covers the three main conference scientific areas of “Optics”, “Photonics” and “Lasers”. The selected papers, in two classes full and short, result from a double blind review carried out by conference Program Committee members who are highly qualified experts in the conference topic areas.

  5. Study on analysis technology of the leakage current from Power facilities by using the laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Won Bin; Lee, Bok Kyu; Ohk, Young Hwan [Korea Electric Power Corp. (KEPCO), Taejon (Korea, Republic of). Research Center; Han, Min Koo; Seung, Hwang Bo; Kwack, Hee Ro; Kim, Jae Chul [Electrical Engineering and Science Research Institute (Korea, Republic of)

    1995-12-31

    In order to apply the laser technology to the power systems, we widely investigated and analyzed optic fiber technology for signal transmissions, optic-sensor technology for detecting the physical quantum such as mechanical and electrical, and the base technology of laser application. The prototype was designed to detect the whole and the third harmonic current, for the analysis of the leakage current from gapless arrester. Also, the device was designed for portable use and for on-line checking. This prototype enables us to store and analyze the data easily by using the computer. Those stored data can be used as the reference data for estimating the extent of badness by analyzing and evaluating the trend of the leakage current with time. (author). 36 refs., 78 figs.

  6. Laser radar technology and applications; Proceedings of the Meeting, Quebec, Canada, June 3-5, 1986

    Science.gov (United States)

    Cruickshank, James M.; Harney, Robert C.

    1986-01-01

    Various papers on laser radar technology and applications are presented. The topics considered include: eye-safe solid lasers for lidar applications, practical DF laser for ranging applications, ultrafast surface barrier photodetectors, performance analyses for peak-detecting laser radars, multiple scattering for laser beams propagating in a layered atmosphere, laser radar cross section of objects immersed in the earth's atmosphere, measurements of pulse coherence in mode-locked TEA-CO2 lasers, and single longitudinal mode operation of a continuously tunable high pressure TE-CO2. Also discussed are: amplitude-modulated laser system for distance and displacement measurement, minilaser rangefinder, laser docking system radar flight experiment, improved optical resonator for laser radars, design of frequency-stable TEA-CO2 lasers, HgCdTe photodiodes for heterodyne applications, acoustooptic spectrum analyzer for laser radar applications, laser cloud mapper and its applications, scanning lidar bathymeter for water depth measurement, and fluorescence lidar for land and sea remote sensing.

  7. Progress in the Science and Technology of Direct Drive Laser Fusion with the KrF Laser

    Science.gov (United States)

    2010-12-01

    important parameters KrF technology leads) Direct Laser Drive is a better choice for Energy Indirect Drive (initial path for NIF ) Laser Beams x-rays Hohlraum...Pellet Direct Drive (IFE) Laser Beams Pellet .. • ID Ignition being explored on NIF • Providing high enough gain for pure fusion energy is...challenging. • DD Ignition physics can be explored on NIF . • More efficient use of laser light, and greater flexibility in applying drive provides potential for

  8. Advanced excimer laser technologies enable green semiconductor manufacturing

    Science.gov (United States)

    Fukuda, Hitomi; Yoo, Youngsun; Minegishi, Yuji; Hisanaga, Naoto; Enami, Tatsuo

    2014-03-01

    "Green" has fast become an important and pervasive topic throughout many industries worldwide. Many companies, especially in the manufacturing industries, have taken steps to integrate green initiatives into their high-level corporate strategies. Governments have also been active in implementing various initiatives designed to increase corporate responsibility and accountability towards environmental issues. In the semiconductor manufacturing industry, there are growing concerns over future environmental impact as enormous fabs expand and new generation of equipments become larger and more powerful. To address these concerns, Gigaphoton has implemented various green initiatives for many years under the EcoPhoton™ program. The objective of this program is to drive innovations in technology and services that enable manufacturers to significantly reduce both the financial and environmental "green cost" of laser operations in high-volume manufacturing environment (HVM) - primarily focusing on electricity, gas and heat management costs. One example of such innovation is Gigaphoton's Injection-Lock system, which reduces electricity and gas utilization costs of the laser by up to 50%. Furthermore, to support the industry's transition from 300mm to the next generation 450mm wafers, technologies are being developed to create lasers that offer double the output power from 60W to 120W, but reducing electricity and gas consumption by another 50%. This means that the efficiency of lasers can be improve by up to 4 times in 450mm wafer production environments. Other future innovations include the introduction of totally Heliumfree Excimer lasers that utilize Nitrogen gas as its replacement for optical module purging. This paper discusses these and other innovations by Gigaphoton to enable green manufacturing.

  9. The DoD Manufacturing Technology Program Strategic Plan: Delivering Defense Affordability

    Science.gov (United States)

    2009-03-01

    laboratories and RDECs to RDECOM SOSI. The first level of review for ATO-Ms is the Warfighter Technical Council ( WTC ). The WTC is a one-star level body that...and cost. Tracked efforts: this category consists of smaller stand-alone ManTech projects. Typically, the WTC approves tracked efforts...National Defense Authorization Act NDE non- destructive examination NDIA National Defense Industrial Association NDS National Defense Strategy Net

  10. Technology of discharge and laser resonators for high power CO2 lasers. Koshutsuryoku CO2 laser ni tsukawareru hoden reiki laser kyoshinki gijutsu

    Energy Technology Data Exchange (ETDEWEB)

    Takenaka, Y.; Kuzumoto, M. (Mitsubishi Electric Corp., Tokyo (Japan))

    1994-03-20

    This paper describes discharge excitation technology and resonator technology as basic technologies for high power CO2 lasers. As a result of progress in high-frequency power element techniques, the discharge excitation technology now generally uses laser excitation using AC discharge of capacity coupling type. Its representative example is silent discharge (SD) excitation. This is a system to excite laser by applying high voltages with as high frequency as 100 kHz to 1 MHz across a pair of electrodes covered with a dielectric material. The system maintains stability in discharge even if power supply voltage amplitude is modulated, and easily provides pulse outputs. Discharge excitation for diffusion cooled type CO2 laser generates a discharge in a gap with a gap length of about 2 mm, and can perform gas cooling by means of thermal conduction of gas, whereas a compact resonator can be fabricated. A resonator for the diffusion cooled type CO2 laser eliminates gas circulation and cooling systems, hence the device can be made more compact. A report has been given that several of these compact resonators were combined, from which a laser output of 85W was obtained by using RF discharge of 2kW. 43 refs., 21 figs.

  11. PRODUCTION OF PROTOTYPE PARTS USING DIRECT METAL LASER SINTERING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Josef Sedlak

    2015-08-01

    Full Text Available Unconventional methods of modern materials preparation include additive technologies which involve the sintering of powders of different chemical composition, granularity, physical, chemical and other utility properties. The technology called Rapid Prototyping, which uses different technological principles of producing components, belongs to this type of material preparation. The Rapid Prototyping technology facilities use photopolymers, thermoplastics, specially treated paper or metal powders. The advantage is the direct production of metal parts from input data and the fact that there is no need for the production of special tools (moulds, press tools, etc.. Unused powder from sintering technologies is re-used for production 98% of the time, which means that the process is economical, as well as ecological.The present paper discusses the technology of Direct Metal Laser Sintering (DMLS, which falls into the group of additive technologies of Rapid Prototyping (RP. The major objective is a detailed description of DMLS, pointing out the benefits it offers and its application in practice. The practical part describes the production and provides an economic comparison of several prototype parts that were designed for testing in the automotive industry.

  12. The evolution of advanced mechanical defenses and potential technological applications of diatom shells.

    Science.gov (United States)

    Hamm, Christian E

    2005-01-01

    Diatoms are unicellular algae with silicified cell walls, which exhibit a high degree of symmetry and complexity. Their diversity is extraordinarily high; estimates suggest that about 10(5) marine and limnic species may exist. Recently, it was shown that diatom frustules are mechanically resilient, statically sophisticated structures made of a tough glass-like composite. Consequently, to break the frustules, predators have to generate large forces and invest large amounts of energy. In addition, they need feeding tools (e.g., mandibles or gastric mills) which are hard, tough, and resilient enough to resist high stress and wear, which are bound to occur when they feed on biomineralized objects such as diatoms or other biomineralized protists. Indeed, many copepods feeding on diatoms possess, in analogy to the enamelcoated teeth of mammals, amazingly complex, silica-laced mandibles. The highly developed adaptations both to protect and to break diatoms indicate that selection pressure is high to optimize material properties and the geometry of the shells to achieve mechanical strength of the overall structure. This paper discusses the mechanical challenges which force the development of mechanical defenses, and the structural components of the diatom frustules which indicate that evolutionary optimization has led to mechanically sophisticated structures. Understanding the diatom frustule from the nanometer scale up to the whole shell will provide new insights to advanced combinations of nanostructured composite ceramic materials and lightweight architecture for technological applications.

  13. Field precision machining technology of target chamber in ICF lasers

    Science.gov (United States)

    Xu, Yuanli; Wu, Wenkai; Shi, Sucun; Duan, Lin; Chen, Gang; Wang, Baoxu; Song, Yugang; Liu, Huilin; Zhu, Mingzhi

    2016-10-01

    In ICF lasers, many independent laser beams are required to be positioned on target with a very high degree of accuracy during a shot. The target chamber provides a precision platform and datum reference for final optics assembly and target collimation and location system. The target chamber consists of shell with welded flanges, reinforced concrete pedestal, and lateral support structure. The field precision machining technology of target chamber in ICF lasers have been developed based on ShenGuangIII (SGIII). The same center of the target chamber is adopted in the process of design, fabrication, and alignment. The technologies of beam collimation and datum reference transformation are developed for the fabrication, positioning and adjustment of target chamber. A supporting and rotating mechanism and a special drilling machine are developed to bore the holes of ports. An adjustment mechanism is designed to accurately position the target chamber. In order to ensure the collimation requirements of the beam leading and focusing and the target positioning, custom-machined spacers are used to accurately correct the alignment error of the ports. Finally, this paper describes the chamber center, orientation, and centering alignment error measurements of SGIII. The measurements show the field precision machining of SGIII target chamber meet its design requirement. These information can be used on similar systems.

  14. Torsional and Bending Vibration Measurement on Rotors Using Laser Technology

    Science.gov (United States)

    MILES, T. J.; LUCAS, M.; HALLIWELL, N. A.; ROTHBERG, S. J.

    1999-09-01

    Based on the principles of laser Doppler velocimetry, the laser torsional vibrometer (LTV) was developed for non-contact measurement of torsional oscillation of rotating shafts, offering significant advantages over conventional techniques. This paper describes comprehensive theory to account for the sensitivity of the LTV's measurements to shaft motion in all degrees of freedom. The optical geometry of the LTV offers inherent immunity to translational motion of the target shaft, either axial or radial. However, its measurements are sensitive to angular lateral vibration of the shaft. The significance of this sensitivity is compared with the instrument noise floor and typical torsional and lateral vibration levels. Optimum alignments of the instrument are then specified to ensure effective immunity to all lateral motion in typical applications. To overcome this problem more reliably, a new technique is proposed permitting unambiguous measurement of pure torsional vibration in situations where use of a single LTV demonstrates unacceptable sensitivity to angular lateral vibrations. Practical application of this technology is demonstrated with torsional vibration measurements from a diesel engine crankshaft. Simultaneously, previously unattained measurements of shaft bending vibration measurements are made. The first bending mode of the crankshaft was identified and its vibration amplitude and damping estimated. This application of laser vibrometry for non-contact measurements of shaft vibration represents a further step forward in the use of this technology for machinery diagnostics.

  15. Transmission of large amounts of scientific data using laser technology

    Science.gov (United States)

    Isaev, E. A.; Tarasov, P. A.

    2016-08-01

    Currently, the volume of figures generated by different research scientific projects (the Large Hadron Collider (Large Hadron Collider, LHC), The Square Kilometre Array (SKA)), can reach tens of petabytes per day. The only technical solution that allows you to transfer such large amounts of scientific data to the places of their processing is the transfer of information by means of laser technology, using different propagation environment. This article discusses the possibility of data transmission via fiber-optic networks, data transmission using the modulation binary stream of light source by a special LED light source, the neccessity to apply laser technologies for deep space communications, the principle for an unlimited expansion of the capacity of laser data link. Also in this study is shown the need for a substantial increase in data transfer speed via a pre-existing communication networks and via the construction of new channels of communication that will cope with the transfer of very large scale data volumes, taking into account the projected rate of growth.

  16. Future of laser electrophotographic technology for color document printing

    Science.gov (United States)

    Shahin, Michael M.

    1997-04-01

    Recent years have witnessed the development of laser electrophotography as one of the major technologies for document printing, serving a wide range of market applications. With the evolution of color and market demand for color hard copy, electrophotography is again taking center stage to serve the customer need in quality, cost and convenience. Today, electrophotographic technology is used to offer products for color document printing for desktop, mid-volume and high-speed applications. Total cost of ownership, convenience and quality today favor the use of this technology over alternatives in many applications. Development of higher speed color electrophotographic engines demands very high speed, Raster Input Processors and pre-press applications that are expected to become available in the market during the next five years. This presentation will cover the changing environment of office communication and the continuing role of electrophotography in color document printing.

  17. Lean Principles and Defense Information Technology Acquisition: An Investigation of the Determinants of Successful Application

    Science.gov (United States)

    Haley, M.

    2013-01-01

    The purpose of this study was to investigate whether or not there have been successful applications of lean manufacturing principles in highly variable defense IT environments. Specifically, the study assessed if implementation of the lean philosophies by a defense organization yielded repeatable, predictable results in software release schedules…

  18. Lean Principles and Defense Information Technology Acquisition: An Investigation of the Determinants of Successful Application

    Science.gov (United States)

    Haley, M.

    2013-01-01

    The purpose of this study was to investigate whether or not there have been successful applications of lean manufacturing principles in highly variable defense IT environments. Specifically, the study assessed if implementation of the lean philosophies by a defense organization yielded repeatable, predictable results in software release schedules…

  19. Research progress of laser welding process dynamic monitoring technology based on plasma characteristics signal

    Directory of Open Access Journals (Sweden)

    Teng WANG

    2017-02-01

    Full Text Available During the high-power laser welding process, plasmas are induced by the evaporation of metal under laser radiation, which can affect the coupling of laser energy and the workpiece, and ultimately impact on the reliability of laser welding quality and process directly. The research of laser-induced plasma is a focus in high-power deep penetration welding field, which provides a promising research area for realizing the automation of welding process quality inspection. In recent years, the research of laser welding process dynamic monitoring technology based on plasma characteristics is mainly in two aspects, namely the research of plasma signal detection and the research of laser welding process modeling. The laser-induced plasma in the laser welding is introduced, and the related research of laser welding process dynamic monitoring technology based on plasma characteristics at home and abroad is analyzed. The current problems in the field are summarized, and the future development trend is put forward.

  20. Ta Keo Temple Reconstruction Based on Terrestrial Laser Scanning Technology

    Science.gov (United States)

    Xi, X.; Wang, C.; Wan, Y. P.; Khuon, K. N.

    2015-08-01

    Ta Keo temple is one of the very famous temple complex of Angkor Wat in northwestern Cambodia. It has been suffering massive collapse and other serious damages in recent years. Nowadays, Terrestrial Laser Scanning(TLS) technology is considered as a wellestablished resource for heritage documentation and protection (Lerma et al, 2008; Reshetyuk, 2009). This paper used TLS to reconstruct Ta Keo Temple. Firstly, we acquired 71 scanning stations of points cloud data with high density and high accuracy, and over one thousand images with high spatial resolution about the temple. Secondly, the raw points cloud data were denoised, reduced and managed efficiently, and registrated using an adjusted ICP algorithm. Thirdly, a triangulation method was used to model most objects. At last, we mapped the texture data into the digital model and a 3-D model of Ta Keo with high accuracy was achieved. The authors focus on large object reconstruction by TLS technology, and pay much attention to the scanning design, multi-station data and the whole project's data registration, and texture mapping and so on. The research result will be useful for Ta Keo restoration, reconstruction and protection. Also, it is a good reference source for large complex buildings reconstruction when using terrestrial laser scanning technology.

  1. A Study on: Exploring U.S. Missile Defense Requirements in 2010: What Are the Policy and Technology Challenges?

    Science.gov (United States)

    1997-04-01

    military offi- cers, law enforcement personnel, and organized crime groups are willing to engage in illegal activ- ities for a price. This willingness...Interview with Gennady G. Yanpolsky, "A New Era for Russian Defense Export," Military Technology, December 1995, p. 33. Vago Muradian, "Russia Wants...34 that have hindered ballistic missile devel- opment in the past. For example, rocket- society papers on staging problems, discussions on guid- ance

  2. 移动目标防御技术综述%Overview on Moving Target Defense Technology

    Institute of Scientific and Technical Information of China (English)

    张晓玉; 李振邦

    2013-01-01

    Moving target defense technology is one of the cyberspace game-changing revolutionary technologies proposed by Federal Networking and Information technology Research and Development (NITRD) in recent years. Not alike to the prior efforts in cybersecurity research, moving target defense technology, through diverse and continually-changing evaluation, deployment mechanisms and strategy, raises the complexity and costs for attackers, and effectively restricts the vulnerabilities exposure and the opportunities for attack. Therefore, the in-depth study on this technology is of great improtance for future development of china’s communication network and cybersecurity. This paper gives an overview on the goals and development stragegies, including feasibility, recent progress, prospects and challenges of moving target defense technology.%  移动目标防御技术是近年来美国科学技术委员会提出的网络空间“改变游戏规则”的革命性技术之一。它完全不同于以往的网络安全研究思路,通过多样的、不断变化的构建、评价和部署机制及策略来增加攻击者的攻击难度及代价,有效限制脆弱性暴露及被攻击的机会。因此,深入研究该技术对我国未来通信网络及网络安全的发展具有重要意义。主要对移动目标防御技术的目标和发展战略、可行性、最新进展、以及未来发展前景及面临的挑战等方面进行了全面概述。

  3. ANALYSIS AND CONCEPTION DEVELOPMENT OF INFORMATION DEFENSE CID AND CLOUD PLATFORM ON THE BASE OF INTELLIGENCE TECHNOLOGIES

    Directory of Open Access Journals (Sweden)

    V. A. Vishniakov

    2014-01-01

    Full Text Available Two problems the use of intelligence technologies in information defense (ITID – creating specialized knowledge bases with threats simulation and high the security level in corporative nets and cloud computing are presented. The analysis of t wo directions of the second ITID problem: the intelligence decision support systems and the malt y-agent system use are given. As trends and conception development of intelligence technologies are the perfection of methods. models, architectures, and hard-sot ware tools for ITID in corporative systems and cloud computing.

  4. New technology update: femtosecond laser in cataract surgery

    Directory of Open Access Journals (Sweden)

    Nagy ZZ

    2014-06-01

    Full Text Available Zoltan Z NagyDepartment of Ophthalmology, Semmelweis University, Budapest, HungaryAbstract: Femtosecond lasers represent a new frontier in cataract surgery. Since their ­introduction and first human treatment in 2008, a lot of new developments have been achieved. In this review article, the physical principle of femtolasers is discussed, together with the indications and side effects of the method in cataract surgery. The most important clinical results are also presented regarding capsulotomy, fragmentation of the crystalline lens, corneal wound creation, and refractive results. Safety issues such as endothelial and macular changes are also discussed. The most important advantage of femtolaser cataract technology at present is that all the important surgical steps of cataract surgery can be planned and customized, delivering unparalleled accuracy, repeatability, and consistency in surgical results. The advantages of premium lenses can be maximally used in visual and presbyopia restoration as well. The advantages of ­premium lenses can be maximally used, not only in visual, but in presbyopia restoration as well. Quality of vision can be improved with less posterior chamber lens (PCL tilt, more centralized position of the PCL, possibly less endothelial damage, less macular edema, and less posterior capsule opacification (PCO formation. This technological achievement should be followed by other technical developments in the lens industry. Hopefully this review article will help us to understand the technology and the results to ­demonstrate the differences between the use of femtolasers and phacoemulsification-based cataract surgery. The most important data of the literature are summarized to show ophthalmologists the benefits of the technology in order to provide the best refractive results to the patient.Keywords: femtosecond laser-assisted cataract surgery, capsulotomy, lens fragmentation, corneal wound, arcuate keratotomy, safety

  5. Adaptive optics scanning laser ophthalmoscope imaging: technology update

    Directory of Open Access Journals (Sweden)

    Merino D

    2016-04-01

    Full Text Available David Merino, Pablo Loza-Alvarez The Institute of Photonic Sciences (ICFO, The Barcelona Institute of Science and Technology, Castelldefels, Barcelona, Spain Abstract: Adaptive optics (AO retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it. Keywords: high-resolution, in vivo retinal imaging, AOSLO

  6. Space Solar Power Technology Demonstration for Lunar Polar Applications: Laser-Photovoltaic Wireless Power Transmission

    Science.gov (United States)

    Henley, M. W.; Fikes, J. C.; Howell, J.; Mankins, J. C.; Howell, Joe T. (Technical Monitor)

    2002-01-01

    Space Solar Power technology offers unique benefits for near-term NASA space science missions, which can mature this technology for other future applications. "Laser-Photo-Voltaic Wireless Power Transmission" (Laser-PV WPT) is a technology that uses a laser to beam power to a photovoltaic receiver, which converts the laser's light into electricity. Future Laser-PV WPT systems may beam power from Earth to satellites or large Space Solar Power satellites may beam power to Earth, perhaps supplementing terrestrial solar photo-voltaic receivers. In a near-term scientific mission to the moon, Laser-PV WPT can enable robotic operations in permanently shadowed lunar polar craters, which may contain ice. Ground-based technology demonstrations are proceeding, to mature the technology for this initial application, in the moon's polar regions.

  7. Fusion technologies for Laser Inertial Fusion Energy (LIFE∗

    Directory of Open Access Journals (Sweden)

    Kramer K.J.

    2013-11-01

    Full Text Available The Laser Inertial Fusion-based Energy (LIFE engine design builds upon on going progress at the National Ignition Facility (NIF and offers a near-term pathway to commercial fusion. Fusion technologies that are critical to success are reflected in the design of the first wall, blanket and tritium separation subsystems. The present work describes the LIFE engine-related components and technologies. LIFE utilizes a thermally robust indirect-drive target and a chamber fill gas. Coolant selection and a large chamber solid-angle coverage provide ample tritium breeding margin and high blanket gain. Target material selection eliminates the need for aggressive chamber clearing, while enabling recycling. Demonstrated tritium separation and storage technologies limit the site tritium inventory to attractive levels. These key technologies, along with the maintenance and advanced materials qualification program have been integrated into the LIFE delivery plan. This describes the development of components and subsystems, through prototyping and integration into a First Of A Kind power plant.

  8. Contributions of the Department of Defense Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs to Training and Education: FY1999-FY2004

    Science.gov (United States)

    2006-01-01

    allows visual tracking, free-floating Magnetic Levitation ( Maglev ) haptic feedback with real surgical tools and sce- nario-based training that can be...Defense Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs to Training and Education: FY1999–FY2004 J.D...Department of Defense Small Business Innovation Research (SBIR) and Small Business Technology Transfer (STTR) Programs to Training and Education: FY1999

  9. Navy Shipboard Lasers for Surface, Air, and Missile Defense: Background and Issues for Congress

    Science.gov (United States)

    2013-06-27

    community that extends back to the 1970s. The danger, of course, is that this poor past performance could lead decision-makers to downplay or ignore... eyesight devices. The United States ratified Protocol IV on December 23, 2008, and it entered into force for the United States on July 21, 2009.99 DOD...prohibiting the use of lasers specifically designed to cause permanent blindness to the naked eye or to the eye with corrective eyesight devices. Article-by

  10. The research and application of the NDP protocol vulnerability attack and the defense technology based on SEND

    Science.gov (United States)

    Xi, Huixing

    2017-05-01

    Neighbor discovery protocol (NDP) is the underlying protocol in the IPv6 protocol, which is mainly used to solve the problem of interconnection between nodes on the same link. But with wide use of IPV6, NDP becomes the main objects of a variety of attacks due to a lack of security mechanism. The paper introduces the working principle of the NDP and methods of how the SEND protocol to enhance NDP security defense. It also analyzes and summarizes the security threats caused by the defects of the protocol itself. On the basis of the SEND protocol, the NDP data packet structure is modified to enhance the security of the SEND. An improved NDP cheating defense technology is put forward to make up the defects of the SEND protocol which can't verify the correctness of the public key and cannot bind the MAC address.

  11. USAF Expeditionary Security Operations 2040:A Technology Vision For Deployed Air Base Defense Capabilities

    Science.gov (United States)

    2014-04-09

    laser truck that zaps enemy missiles,” 8 October 2012, http://theweek.com/article/index/234467/the-armys-eight-wheeled-laser-truck-that- zaps -enemy...Army’s eight-wheeled laser truck that zaps enemy missiles.” 8 October 2012. http://theweek.com/article/index/234467/the-armys-eight-wheeled-laser-truck...that- zaps -enemy- missiles (accessed 16 February 2014). Weiss, Brian A., and Craig I. Schlenoff. “Performance Assessments of Two-Way, Free-Form

  12. Development of Laser Surface Technologies for Anti-Corrosion on Magnesium Alloys: a Review

    Science.gov (United States)

    Sun, Rujian; Guan, Yingchun; Zhu, Ying

    2016-03-01

    Magnesium (Mg) alloys have been increasingly used in industries and biomaterial fields due to low density, high specific strength and biodegradability. However, poor surface-related properties are major factors that limit their practical applications. This paper mainly focuses on laser-based anti-corrosion technologies for Mg alloys, beginning with a brief review of conventional methods, and then demonstrates the feasibility of laser surface technologies including laser surface melting (LSM), laser surface alloying (LSA), laser surface cladding (LSC) and laser shock peening (LSP) in achieving enhancement of corrosion resistance. The mechanism and capability of each technique in corrosion resistance is carefully discussed. Finally, an outlook of the development of laser surface technology for Mg alloy is further concluded, aiming to serve as a guide for further research both in industry applications and biomedical devices.

  13. Physics and technology of tunable pulsed single longitudinal mode dye laser

    Indian Academy of Sciences (India)

    G Sridhar; V S Rawat; Nitin Kawade; Sunita Singh; L M Gantayet

    2010-11-01

    Design and technology demonstration of compact, narrow bandwidth, high repetition rate, tunable SLM dye lasers in two different configurations, namely Littrow and grazing incidence grating (GIG), were carried out in our lab at BARC, India. The single longitudinal mode (SLM) dye laser generates single-mode laser beams of ∼ 400 MHz (GIG configuration) and ∼ 600 MHz (Littrow configuration) bandwidth. Detailed performance studies of the Littrow and GIG dye laser resonators showed that GIG dye laser results in narrower linewidth and broad mode hop free wavelength scanning over 70 GHz. In this paper we present experimental studies carried out on the high repetition rate SLM dye laser system.

  14. Adaptive optics scanning laser ophthalmoscope imaging: technology update.

    Science.gov (United States)

    Merino, David; Loza-Alvarez, Pablo

    2016-01-01

    Adaptive optics (AO) retinal imaging has become very popular in the past few years, especially within the ophthalmic research community. Several different retinal techniques, such as fundus imaging cameras or optical coherence tomography systems, have been coupled with AO in order to produce impressive images showing individual cell mosaics over different layers of the in vivo human retina. The combination of AO with scanning laser ophthalmoscopy has been extensively used to generate impressive images of the human retina with unprecedented resolution, showing individual photoreceptor cells, retinal pigment epithelium cells, as well as microscopic capillary vessels, or the nerve fiber layer. Over the past few years, the technique has evolved to develop several different applications not only in the clinic but also in different animal models, thanks to technological developments in the field. These developments have specific applications to different fields of investigation, which are not limited to the study of retinal diseases but also to the understanding of the retinal function and vision science. This review is an attempt to summarize these developments in an understandable and brief manner in order to guide the reader into the possibilities that AO scanning laser ophthalmoscopy offers, as well as its limitations, which should be taken into account when planning on using it.

  15. Development of superconducting acceleration cavity technology for free electron lasers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jong Min; Lee, Byung Cheol; Kim, Sun Kook; Jeong, Young Uk; Cho, Sung Oh

    2000-10-01

    As a result of the cooperative research between the KAERI and Peking University, the key technologies of superconducting acceleration cavity and photoelectron gun have been developed for the application to high power free electron lasers. A 1.5-GHz, 1-cell superconducting RF cavity has been designed and fabricated by using pure Nb sheets. The unloaded Q values of the fabricated superconducting cavity has been measured to be 2x10{sup 9} at 2.5K, and 8x10{sup 9} at 1.8K. The maximum acceleration gradient achieved was 12 MeV/m at 2.5K, and 20MV/m at 1.8 K. A cryostat for the 1-cell superconducting cavity has been designed. As a source of electron beam, a DC photocathode electron gun has been designed and fabricated, which is composed of a photocathode evaporation chamber and a 100-keV acceleration chamber. The efficiency of the Cs2Te photocathode is 3% nominally at room temperature, 10% at 290 deg C. The superconducting photoelectron gun system developed has been estimated to be a good source of high-brightness electron beam for high-power free electron lasers.

  16. Laser-Hybrid welding, an innovative technology to join automotive body parts

    Science.gov (United States)

    Sieben, Manuel; Brunnecker, Frank

    The design of Tail lamps has been changed dramatically since cars built. At modern lamps, the lenses are absolutely transparent and allow a direct view onto the weld seam. Conventional welding technologies, such as vibration and hot plate welding cannot compete with this demand. Focused on this targeted application, LPKF Laser & Electronics AG has developed in cooperation with the Bavarian Laser Centre a unique Laser welding technology called hybrid welding.

  17. LATIST: A Performance Support Tool for Integrating Technologies into Defense Acquisition University Learning Assets

    Science.gov (United States)

    2011-07-01

    is exemplified through its Performance Learning Model ( PLM ) (DAU, 2010, p. 28). The three pillars of the PLM (Career Development, Job Perfor- mance...University. (2010). Defense Acquisition University 2010 catalog. Retrieved from http://icatalog.dau.mil/onlinecatalog/doc/Catalog2010. pdf Department of

  18. Targeting U.S. Technologies: A Trend Analysis of Reporting from Defense Industry 2008

    Science.gov (United States)

    2009-01-16

    involving attempts to intrude or “ hack ” into the defense industrial base’s computer systems or networks originated from East Asia and the Pacifi c...easily mask IP addresses, utilize freely available anonymous proxies, or launch attacks from any of the open WiFi hotspots across the globe. These

  19. DNA Sequencing Technologies within the Chemical and Biological Defense Enterprise: How to Position the Department of Defense to Maximize the Use of These Emerging Technologies - JUPITR

    Science.gov (United States)

    2015-07-01

    computers, tablets , and smartphones have stretched the bounds of how we perceive and use communications data, the rapidly evolving science of DNA...included to ensure the single deployed platform is replaced when scientific evidence dictates the need. 3. RECOMMENDATIONS FOR THE FUTURE OF DNA...actionable information. 4.4 DNA as Archival Storage Material The evaluation of DNA technologies to support or replace modern long-term data

  20. Microbial Monitoring from the Frontlines to Space: Department of Defense Small Business Innovation Research Technology Aboard the International Space Station

    Science.gov (United States)

    Oubre, Cherie M.; Khodadad, Christina L.; Castro, Victoria A.; Ott, C. Mark; Flint, Stephanie; Pollack, Lawrence P.; Roman, Monserrate C.

    2017-01-01

    The RAZOR (trademark) EX, a quantitative Polymerase Chain Reaction (qPCR) instrument, is a portable, ruggedized unit that was designed for the Department of Defense (DoD) with its reagent chemistries traceable to a Small Business Innovation Research (SBIR) contract beginning in 2002. The PCR instrument's primary function post 9/11 was to enable frontline soldiers and first responders to detect biological threat agents and bioterrorism activities in remote locations to include field environments. With its success for DoD, the instrument has also been employed by other governmental agencies including Department of Homeland Security (DHS). The RAZOR (Trademark) EX underwent stringent testing by the vendor, as well as through the DoD, and was certified in 2005. In addition, the RAZOR (trademark) EX passed DHS security sponsored Stakeholder Panel on Agent Detection Assays (SPADA) rigorous evaluation in 2011. The identification and quantitation of microbial pathogens is necessary both on the ground as well as during spaceflight to maintain the health of astronauts and to prevent biofouling of equipment. Currently, culture-based monitoring technology has been adequate for short-term spaceflight missions but may not be robust enough to meet the requirements for long-duration missions. During a NASA-sponsored workshop in 2011, it was determined that the more traditional culture-based method should be replaced or supplemented with more robust technologies. NASA scientists began investigating innovative molecular technologies for future space exploration and as a result, PCR was recommended. Shortly after, NASA sponsored market research in 2012 to identify and review current, commercial, cutting edge PCR technologies for potential applicability to spaceflight operations. Scientists identified and extensively evaluated three candidate technologies with the potential to function in microgravity. After a thorough voice-of-the-customer trade study and extensive functional and

  1. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    Light-based hair removal (LHR) is one of the fastest growing, nonsurgical aesthetic cosmetic procedures in the United States and Europe. A variety of light sources including lasers, e.g. alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), Nd:YAG laser (1064 nm) and broad-spectrum intense...

  2. 78 FR 22841 - Defense Federal Acquisition Regulation Supplement: Encouragement of Science, Technology...

    Science.gov (United States)

    2013-04-17

    ... Regulation Supplement: Encouragement of Science, Technology, Engineering, and Mathematics (STEM) Programs... contractors to develop science, technology, engineering, and mathematics (STEM) programs. FOR FURTHER... 2012, which requires DoD to encourage contractors to develop science, technology, engineering,...

  3. Current Laser Resurfacing Technologies: A Review that Delves Beneath the Surface

    Science.gov (United States)

    Preissig, Jason; Hamilton, Kristy; Markus, Ramsey

    2012-01-01

    Numerous laser platforms exist that rejuvenate the skin by resurfacing its upper layers. In varying degrees, these lasers improve the appearance of lentigines and rhytides, eliminate photoaging, soften scarring due to acne and other causes, and treat dyspigmentation. Five major classes of dermatologic lasers are currently in common use: ablative and nonablative lasers in both fractionated and unfractionated forms as well as radiofrequency technologies. The gentler nonablative lasers allow for quicker healing, whereas harsher ablative lasers tend to be more effective. Fractionating either laser distributes the effect, increasing the number of treatments but minimizing downtime and complications. In this review article, the authors seek to inform surgeons about the current laser platforms available, clarify the differences between them, and thereby facilitate the identification of the most appropriate laser for their practice. PMID:23904818

  4. Testing relativity again, laser, laser, laser, laser

    NARCIS (Netherlands)

    Einstein, A.

    2015-01-01

    laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser, laser,

  5. Defense Technology and Trade Initiative: Ashton Carter’s Strategy in India

    Science.gov (United States)

    2016-03-01

    product assembly in India : Rather, it aims at joint development of new technologies through design, engineering, manufacturing, testing, production...Technology Development and Transfer Steps Technology Transferred Transfer Media Research Product Design Documentation & Hardware Laboratory...staunchly advocates treating India like some of the closest U.S. partners in terms of the extent and level of technology transfer, co- develop - ment

  6. Laser Technology for Advanced Acceleration: Accelerating Beyond TeV

    Science.gov (United States)

    Wheeler, Jonathan; Mourou, Gérard; Tajima, Toshiki

    The implementation of the suggestion of thin film compression (TFC) allows the newest class of high power, ultrafast laser pulses (typically 20fs at near-infrared wavelengths) to be compressed to the limit of a single-cycle laser pulse (2fs). Its simplicity and high efficiency, as well as its accessibility to a single-cycle laser pulse, introduce a new regime of laser-plasma interaction that enhances laser acceleration. Single-cycle laser acceleration of ions is a far more efficient and coherent process than the known laser-ion acceleration mechanisms. The TFC-derived single-cycle optical pulse is capable of inducing a single-cycle X-ray laser pulse (with a far shorter pulse length and thus an extremely high intensity) through relativistic compression. The application of such an X-ray pulse leads to the novel regime of laser wakefield acceleration of electrons in the X-ray regime, yielding a prospect of “TeV on a chip.” This possibility of single-cycle X-ray pulses heralds zeptosecond and EW lasers (and zeptoscience). The additional invention of the coherent amplification network (CAN) fiber laser pushes the frontier of high repetition, high efficiency lasers, which are the hallmark of needed applications such as laser-driven LWFA colliders and other, societal applications. CAN addresses the crucial aspect of intense lasers that have traditionally lacked the above properties.

  7. Lean principles and defense information technology acquisition: An investigation of the determinants of successful application

    Science.gov (United States)

    Haley, M.

    The purpose of this study was to investigate whether or not there have been successful applications of lean manufacturing principles in highly variable defense IT environments. Specifically, the study assessed if implementation of the lean philosophies by a defense organization yielded repeatable, predictable results in software release schedules reductions. Additionally, the study set out to determine what potential critical success factors (CSF's) were documented in the secondary data captured for each release, and extracted the variables used in the decision making for acceptability of fielding. In evaluating lean applicability to the high variability environment of USAF IT acquisitions, the research was conducted using non-experimental quantitative methods of archival secondary data. The sample for this case study was compiled from a USAF office that had implemented these techniques in pre-development, development and testing, and fielding phases. Based on the research data, acquisitionists and lean practitioners are inherently interconnected. Therefore, an understanding that critical success factors (CSFs) are integral to successful lean application in DoD IT acquisitions is crucial. Through a combination of synergistic alignments, plyometric CSFs were discovered to maximize the effects of each single CSF to produce rapid results in defense IT acquisitions. These include: (1) Enterprise Incorporation, (2) Team Trust, (3) Transformational Leadership, (4) Recursive Improvement, (5) Integrated Synergy, (6) Customer-Centric Culture and (7) Heuristic Communication.

  8. Diode Pumped Alkaline Laser System: A High Powered, Low SWaP Directed Energy Option for Ballistic Missile Defense High-Level Summary - April 2017

    Energy Technology Data Exchange (ETDEWEB)

    Wisoff, P. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-04-28

    The Diode-Pumped Alkali Laser (DPAL) system is an R&D effort funded by the Missile Defense Agency (MDA) underway at Lawrence Livermore National Laboratory (LLNL). MDA has described the characteristics needed for a Boost Phase directed energy (DE) weapon to work against ICBM-class threat missiles. In terms of the platform, the mission will require a high altitude Unmanned Aerial Vehicle (UAV) that can fly in the “quiet” stratosphere and display long endurance – i.e., days on station. In terms of the laser, MDA needs a high power, low size and weight laser that could be carried by such a platform and deliver lethal energy to an ICBM-class threat missile from hundreds of kilometers away. While both the military and industry are pursuing Directed Energy for tactical applications, MDA’s objectives pose a significantly greater challenge than other current efforts in terms of the power needed from the laser, the low size and weight required, and the range, speed, and size of the threat missiles. To that end, MDA is funding two R&D efforts to assess the feasibility of a high power (MWclass) and low SWaP (size, weight and power) laser: a fiber combining laser (FCL) project at MIT’s Lincoln Laboratory, and LLNL’s Diode-Pumped Alkali Laser (DPAL) system.

  9. Laser and intense pulsed light hair removal technologies

    DEFF Research Database (Denmark)

    Haedersdal, M; Beerwerth, F; Nash, J F

    2011-01-01

    Light-based hair removal (LHR) is one of the fastest growing, nonsurgical aesthetic cosmetic procedures in the United States and Europe. A variety of light sources including lasers, e.g. alexandrite laser (755 nm), pulsed diode lasers (800, 810 nm), Nd:YAG laser (1064 nm) and broad-spectrum intense...... and discuss the efficacy and human safety implications of home-use devices....

  10. Ultrafast Optics: Vector Cavity Laser - Physics and Technology

    Science.gov (United States)

    2016-06-14

    fiber lasers the effective cavity gain bandwidth could be far broader than the laser emission bandwidth, if the optical field is in resonance with the...periodic modulation on the CW laser field , where fc is the modulation frequency. Fig. 2.1 shows the evolution of the laser emission under existence of...real saturable absorber (SA) mode locking techniques, such as the carbon nanotube mode locking, 2D-nano-materials mode locking, formation of bound

  11. Ultrafast Optics: Vector Cavity Fiber Lasers - Physics and Technology

    Science.gov (United States)

    2016-06-14

    fiber lasers the effective cavity gain bandwidth could be far broader than the laser emission bandwidth, if the optical field is in resonance with the...periodic modulation on the CW laser field , where fc is the modulation frequency. Fig. 2.1 shows the evolution of the laser emission under existence of...real saturable absorber (SA) mode locking techniques, such as the carbon nanotube mode locking, 2D-nano-materials mode locking, formation of bound

  12. Ultrafast Optics - Vector Cavity Lasers: Physics and Technology

    Science.gov (United States)

    2016-06-14

    fiber lasers the effective cavity gain bandwidth could be far broader than the laser emission bandwidth, if the optical field is in resonance with the...periodic modulation on the CW laser field , where fc is the modulation frequency. Fig. 2.1 shows the evolution of the laser emission under existence of...real saturable absorber (SA) mode locking techniques, such as the carbon nanotube mode locking, 2D-nano-materials mode locking, formation of bound

  13. Repairing an implant titanium milled framework using laser welding technology: a clinical report.

    Science.gov (United States)

    Prasad, Soni; Monaco, Edward A

    2009-04-01

    The application of laser welding technology allows titanium to be welded predictably and precisely to achieve accurate fit of a milled framework. Laser energy results in localized heat production, thereby reducing thermal expansion. Unlike soldering, laser energy can be directed to a small area, making it possible to laser weld close to acrylic resin or ceramic. This article describes the use of laser welding to repair an implant titanium milled fixed denture. A quick, cost-effective, accurate repair was accomplished, and the repaired framework possessed adequate strength and the same precise fit as the original framework.

  14. Directed Energy Missions for Planetary Defense

    OpenAIRE

    Lubin, P.; Hughes, GB; Eskenazi, M; Kosmo, K.; Johansson, IE; Griswold, J., Ian,;Zhou, Hongjun,;Matison, Mikenzie,;Swanson, V., Ronald,;McIntosh, P., Lawrence,;Simon, I., Melvin,;Dahlquist, W., Frederick,; Pryor, M; O'Neill, H.; Meinhold, P.; Suen, J; J; Riley; Zhang, Q.; Walsh, K.; Melis, C.; Kangas, M

    2016-01-01

    Directed energy for planetary defense is now a viable option and is superior in many ways to other proposed technologies, being able to defend the Earth against all known threats. This paper presents basic ideas behind a directed energy planetary defense system that utilizes laser ablation of an asteroid to impart a deflecting force on the target. A conceptual philosophy called DE-STAR, which stands for Directed Energy System for Targeting of Asteroids and exploRation, is an orbiting stand-of...

  15. 78 FR 13604 - Defense Federal Acquisition Regulation Supplement: Encouragement of Science, Technology...

    Science.gov (United States)

    2013-02-28

    ... Regulation Supplement: Encouragement of Science, Technology, Engineering, and Mathematics (STEM) Programs..., which requires DoD to take steps to encourage contractors to develop science, technology, engineering... (FY12), which requires DoD to encourage contractors to develop science, technology, engineering,...

  16. Sealed all-metal CO2 laser tube technology

    Science.gov (United States)

    Byron, Stanley; Laakmann, Peter

    A newly developed RF plasma configuration for CO2 lasers is described, that offers high performance at low cost, using an all-metal, sealed-off laser tube design. The plasma bore of 5-mm square cross section supports a free-space TEM(00) optical model and a laser power density 1/3 that of CO2 waveguide lasers, allowing fabrication of compact sealed-off CO2 lasers from 10 to 100 watts with good optical and mechanical integrity. Design and manufacturing factors are discussed that affect gas life, beam quality, modulation, optical stability, and cost.

  17. An Illustrative Case Study for Twentieth Century Defense Planners: The Technology and Politics of United States Coastal Defense, 1880-1898.

    Science.gov (United States)

    1980-04-24

    932. 2 lGoodrich, Our New Naval Guns," pp. 667-68. 22"Modern Artillery," p. 296. 36 in the nineteenth century by the crucible or open- hearth methods...comments on coast defense ships. "Seaport Defenses: Proposes Artificial Islands to Protect the Approache to the Harbors." Scientific American 63 (23...August 1890): 112. 157 Particularly interesting: proposed artificial islands similar to fixed concrete battleships to be built in harbors; system

  18. High Power Fiber Lasers and Applications to Manufacturing

    Science.gov (United States)

    Richardson, Martin; McComb, Timothy; Sudesh, Vikas

    2008-09-01

    We summarize recent developments in high power fiber laser technologies and discuss future trends, particularly in their current and future use in manufacturing technologies. We will also describe our current research programs in fiber laser development, ultra-fast and new lasers, and will mention the expectations in these areas for the new Townes Laser Institute. It will focus on new core laser technologies and their applications in medical technologies, advanced manufacturing technologies and defense applications. We will describe a program on large mode area fiber development that includes results with the new gain-guiding approach, as well as high power infra-red fiber lasers. We will review the opportunities for high power fiber lasers in various manufacturing technologies and illustrate this with applications we are pursuing in the areas of femtosecond laser applications, advanced lithographies, and mid-IR technologies.

  19. Laser cleaning of steam generator tubing based on acoustic emission technology

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Su-xia; Luo, Ji-jun; Shen, Tao; Li, Ru-song [Xi' an Hi-Tech Institute, Xi' an (China)

    2015-12-15

    As a physical method, laser cleaning technology in equipment maintenance will be a good prospect. The experimental apparatus for laser cleaning of heat tubes in the steam generator was designed according to the results of theoretical analysis. There are two conclusions; one is that laser cleaning technology is attached importance to traditional methods. Which has advantages in saving on much manpower and material resource and it is a good cleaning method for heat tubes. The other is that the acoustic emission signal includes lots of information on the laser cleaning process, which can be used as real-time monitoring in laser cleaning processes. When the laser acts for 350 s, 100 % contaminants of heat tubes is cleaned off, and the sensor only receives weak AE signal at that time.

  20. The development of coal-based technologies for Department of Defense Facilities. Interim report, March 27, 1993--July 30, 1993

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Morrison, J.L.; Sharifi, R. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1993-09-24

    The US Department of Defense (DOD), through an Interagency Agreement with the US Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first phase of the program is underway. Phase I activities are focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water slurry fuels (MCWSFs) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. Phase II research and development activities will continue to focus on industrial boiler retrofit technologies by addressing emissions control and precombustion (i.e., slagging combustion and/or gasification) strategies for the utilization of high ash, high sulfur coals. Phase III activities will examine coal-based fuel combustion systems that cofire wastes. Each phase includes an engineering cost analysis and technology assessment. The activities and status of Phase I are described below. The objective in Phase I is to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWSF or DMC. This will be achieved through a program consisting of the following five tasks: (1) Coal Beneficiation and Preparation; (2) Combustion Performance Evaluation; (3) Engineering Design; (4) Engineering and Economic Analysis; and (5) Final Report/Submission of Design Package.

  1. The development of coal-based technologies for Department of Defense facilities: Phase 1 final report. Volume 1: Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Morrison, J.L.; Pisupati, S.V. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1997-01-31

    The first phase of a three-phase project investigating the development of coal-based technologies for Department of Defense facilities has been completed. The objectives of the project are to: decrease DOD`s dependence on foreign oil and increase its use of coal; promote public and private sector deployment of technologies for utilizing coal-based fuels in oil-designed combustion equipment; and provide a continuing environment for research and development of coal-based fuel technologies for small-scale applications at a time when market conditions in the US are not favorable for the introduction of coal-fired equipment in the commercial and industrial capacity ranges. The Phase 1 activities were focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water mixtures (MCWMs) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. The specific objective in Phase 1 was to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWM or DMC. This was achieved through a project consisting of fundamental, pilot-sale, and demonstration-scale activities investigating coal beneficiation and preparation, and MCWM and DMC combustion performance. In addition, detailed engineering designs and an economic analysis were conducted for a boiler located at the Naval Surface Warfare Center, near Crane, Indiana. Results are reported on MCWM and DMC combustion performance evaluation; engineering design; and cost/economic analysis.

  2. Clock Technology Development for the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Klipstein, W. M.; Thompson, R. J.; Seidel, D. J.; Kohel, J.; Maleki, L.

    1998-01-01

    The Time and Frequency Sciences and Technology Group at Jet Propulsion Laboratory (JPL) has developed a laser cooling capability for flight and has been selected by NASA to support the Laser-Cooling and Atomic Physics (LCAP) program. Current work in the group includes design and development for tee two laser-cooled atomic clock experiments which have been selected for flight on the International Space Station.

  3. Laser Spectroscopy Based Multi-Gas Monitor Technology Demonstration

    Science.gov (United States)

    Mudgett, Paul D.; Pilgrim, Jeffrey S.

    2016-01-01

    The timing was right in the “evolution” of low power tunable diode laser spectroscopy (TDLS) to design a spacecraft cabin air monitor around technology being developed at a small company funded by SBIR grants. NASA Centers had been monitoring their progress hoping that certain key gaps in the long term gas monitoring development roadmap could be filled by TDLS. The first iteration of a monitor for multiple gases called the Multi-Gas Monitor (MGM) which measures oxygen, carbon dioxide, ammonia and water vapor, as well as temperature and pressure. In January 2013, the ISS Program being particularly interested in ammonia funded a technology demonstration of MGM. The project was a joint effort between Vista Photonics for the sensor, NASA-JSC for project management and laboratory calibration, and Nanoracks for the enclosure and payload certification/integration. Nanoracks was selected in order to use their new experimental infrastructure located in an EXPRESS rack in the JEM. The MGM enclosure has multiple power supply options including 5VDC USB interface to the Nanoracks Frame, 28VDC Express Rack power and internal rechargeable batteries. MGM was calibrated at NASA-JSC in July 2013, delivered to ISS on 37 Soyuz in November 2013 and was installed and activated in February 2014. MGM resided in the Nanoracks Frame making continuous measurements the majority of the time, but also spent a day in Node 3 on battery power, and a month in the US Lab Module on 28VDC power, as part of the demonstration. Data was downloaded via Nanoracks on roughly a weekly basis. Comparisons were made with data from the Major Constituents Analyzer (MCA) which draws and analyzes air from JEM and other modules several times per hour. A crewmember challenged the carbon dioxide channel by breathing into the intake upon startup, and challenged the ammonia channel later using a commercial ammonia inhalant. Many interesting phenomena in the cabin atmosphere were detected during the tech demo

  4. High power CO II lasers and their material processing applications at Centre for Advanced Technology, India

    Science.gov (United States)

    Nath, A. K.; Paul, C. P.; Rao, B. T.; Kau, R.; Raghu, T.; Mazumdar, J. Dutta; Dayal, R. K.; Mudali, U. Kamachi; Sastikumar, D.; Gandhi, B. K.

    2006-01-01

    We have developed high power transverse flow (TF) CW CO II lasers up to 15kW, a high repetition rate TEA CO II laser of 500Hz, 500W average power and a RF excited fast axial flow CO II laser at the Centre for Advanced Technology and have carried out various material processing applications with these lasers. We observed very little variation of discharge voltage with electrode gap in TF CO II lasers. With optimally modulated laser beam we obtained better results in laser piercing and cutting of titanium and resolidification of 3 16L stainless steel weld-metal for improving intergranular corrosion resistance. We carried out microstructure and phase analysis of laser bent 304 stainless steel sheet and optimum process zones were obtained. We carried out laser cladding of 316L stainless steel and Al-alloy substrates with Mo, WC, and Cr IIC 3 powder to improve their wear characteristics. We developed a laser rapid manufacturing facility and fabricated components of various geometries with minimum surface roughness of 5-7 microns Ra and surface waviness of 45 microns between overlapped layers using Colmonoy-6, 3 16L stainless steel and Inconel powders. Cutting of thick concrete blocks by repeated laser glazing followed by mechanical scrubbing process and drilling holes on a vertical concrete with laser beam incident at an optimum angle allowing molten material to flow out under gravity were also done. Some of these studies are briefly presented here.

  5. XSS攻击机制及防御技术浅谈%Discussion on XSS attack mechanism and defense technology

    Institute of Scientific and Technical Information of China (English)

    葛强; 李俊; 胡永权

    2016-01-01

    跨站脚本攻击(XSS)是客户端Web安全的主要威胁。因跨站脚本攻击的多样性以及Web安全漏洞的隐蔽性,使得该类型的攻击很难彻底防御。介绍了跨站脚本攻击的基本概念,针对不同环境发生的跨站脚本攻击机制进行了分析,探讨了不同环境下如何防御跨站脚本攻击的具体技术。%Cross site scripting (XSS) attack is a major threat to the security of Web client. Because of the diversity of XSS attacks and Web security vulnerabilities hidden, this type of attack is very difficult to completely defense. This paper introduces the basic concept of XSS attacks, analyzes the XSS attack mechanisms of different environment, and discusses the specific technology to defense the XSS attacks of different environment.

  6. In Defense of Engineering Sciences: On the Epistemological Relations Between Science and Technology

    NARCIS (Netherlands)

    Boon, Mieke

    2011-01-01

    This article presents an overview of discussions in the philosophy of technology on epistemological relations between science and technology, illustrating that often several mutually entangled issues are at stake. The focus is on conceptual and ideological issues concerning the relationship between

  7. Laser Communications and Fiber Optics Lab Manual. High-Technology Training Module.

    Science.gov (United States)

    Biddick, Robert

    This laboratory training manual on laser communications and fiber optics may be used in a general technology-communications course for ninth graders. Upon completion of this exercise, students achieve the following goals: match concepts with laser communication system parts; explain advantages of fiber optic cable over conventional copper wire;…

  8. An evaluation of the efficiency of laser scanning technology in the ...

    African Journals Online (AJOL)

    PROMOTING ACCESS TO AFRICAN RESEARCH ... An evaluation of the efficiency of laser scanning technology in the quantitative analysis of corrosion ... In the case where “as-built” specifications differ for the initial design, laser scanning ... scanned under laboratory conditions using two types of conventional scanners.

  9. Laser Light Scattering, from an Advanced Technology Development Program to Experiments in a Reduced Gravity Environment

    Science.gov (United States)

    Meyer, William V.; Tscharnuter, Walther W.; Macgregor, Andrew D.; Dautet, Henri; Deschamps, Pierre; Boucher, Francois; Zuh, Jixiang; Tin, Padetha; Rogers, Richard B.; Ansari, Rafat R.

    1994-01-01

    Recent advancements in laser light scattering hardware are described. These include intelligent single card correlators; active quench/active reset avalanche photodiodes; laser diodes; and fiber optics which were used by or developed for a NASA advanced technology development program. A space shuttle experiment which will employ aspects of these hardware developments is previewed.

  10. Innovative Science and Technology, Ballistic Missile Defense Organization, Technical Program Information.

    Science.gov (United States)

    2007-11-02

    will be encouraged to follow-up with additional documentation - for example, a white paper or formal proposal. In addition to basic program efforts...related devices for opto-electronics, double heterostructures composed of AlGaN, GaN, and InGaN based layers for laser diode applications, as well...emitting diode ( LED ) structures. Opportunities Unique chemical approaches for ultra-fast EO external modulators; opto-electronic, ultra-high-speed signal

  11. Planetary Defense is More Than Science and Technology: Policy, People, and Disaster Management

    Science.gov (United States)

    Harrison, A. A.

    2009-12-01

    Physical scientists and engineers who work to identify and then deflect or destroy threatening Near Earth Objects deserve the support of colleagues who have a thorough understanding of human psychology, society and culture. Behavioral and social scientists can help build governmental and public support for vigorous and comprehensive programs of planetary defense as well as apply their work to minimize the human cost of NEO threats and impacts. Tasks include preparing the public for a succession of possible threats of differing levels; developing effective warning and evacuation strategies; and supporting residents of affected areas during the impact and recovery phases. Although much can be learned from the pre-existing disaster literature, it is important to remain mindful of differences between asteroid or comet impacts and other natural disasters such as hurricanes and earthquakes. After identifying widespread but erroneous stereotypes that exaggerate human weakness and interfere with effective disaster planning, we turn to models whereby international, national, and regional organizations help local communities and citizens develop the skills, attitudes and resources that they need to help protect their own welfare. These models view residents of disaster areas as part of the solution as well as part of the problem, acknowledge dangers and disruptions outside of the immediate impact area, and demand high sensitivity to political and cultural issues. We conclude with a brief discussion of strategies for preserving the human legacy under worst-case scenarios including the construction and administration of survival communities and sending time capsules into space. Anthropology, political science, psychology and sociology are already contributing to astrobiology and SETI, and it is time for researchers and practitioners in these areas to become conspicuous partners in the pursuit of planetary defense.

  12. Mobile 3D laser scanning technology application in the surveying of urban underground rail transit

    Science.gov (United States)

    Han, Youmei; Yang, Bogang; Zhen, Yinan

    2016-11-01

    Mobile 3D laser scanning technology is one hot kind of digital earth technology. 3D completion surveying is relative new concept in surveying and mapping. A kind of mobile 3D laser scanning system was developed for the urban underground rail 3D completion surveying. According to the characteristics of underground rail environment and the characters of the mobile laser scanning system, it designed a suitable test scheme to improving the accuracy of this kind of mobile laser scanning system when it worked under no GPS signal environment. Then it completed the application of this technology in the No.15 rail 3D completion surveying. Meanwhile a set of production process was made for the 3D completion surveying based on this kind of mobile 3D laser scanning technology. These products were also proved the efficiency of the new technology in the rail 3D completion surveying. Using mobile 3D laser scanning technology to complete underground rail completion surveying has been the first time in China until now. It can provide a reference for 3D measurement of rail completion surveying or the 3D completion surveying of other areas.

  13. Overview of the Defense Programs Research and Technology Development Program for Fiscal Year 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    This documents presents a programmatic overview and program element plan summaries for conceptual design and assessment; physics; computation and modeling; system engineering science and technology; electronics, photonics, sensors, and mechanical components; chemistry and materials; special nuclear materials, tritium, and explosives.

  14. A Methodology for Assessing and Ranking Ballistic Missile Defense Technologies Using a System Performance Index

    Science.gov (United States)

    2007-11-02

    suggestions, and guidance concerning the technology assessment process. References 1. Using ACEIT for Total Ownership Cost Modeling and Analysis...2001 World Population Data Sheet, Population Reference Bureau, Washington, DC List of Acronyms ACEIT – Automated Cost Estimating Integrated

  15. The development of coal-based technologies for Department of Defense facilities. Technical progress report, September 1995 - March 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Pisupati, S.V.; Scaroni, A.W. [and others

    1996-10-01

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Activities this reporting period are summarized by phase. During this reporting period, the Phase I final report was completed. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included completing a study to identify appropriate SO{sub 2} and NO{sub x} control technologies for coal-fired industrial boilers. In addition, work continued on the design of a ceramic filtering device for installation on the demonstration boiler. The ceramic filtering device will be used to demonstrate a smaller and more efficient filtering device for retrofit applications. Work related to coal preparation and utilization, and the economic analysis was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies and economic analyses of coal use. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. The economic study focused on community sensitivity to coal usage, regional economic impacts of new coal utilization technologies, and constructing a national energy portfolio.

  16. Emerging terawatt picosecond CO{sub 2} laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Pogorelsky, I.V. [Accelerator Test Facility, Brookhaven National Lab., Upton, NY (United States)

    1998-03-01

    The first terawatt picosecond (TWps) CO{sub 2} laser is under construction at the BNL Accelerator Test Facility (ATF). TWps-CO{sub 2} lasers, having an order of magnitude longer wavelength than the well-known table-top terawatt solid state lasers, offer new opportunities for strong-field physics research. For laser wakefield accelerators (LWFA) the advantage of the new class of lasers is due to a gain of two orders of magnitude in the ponderomotive potential. The large average power of CO{sub 2} lasers is important for the generation of hard radiation through Compton back-scattering of the laser off energetic electron beams. We discuss applications of TWps-CO{sub 2} lasers for LWFA modules of a tentative electron-positron collider, for {gamma}-{gamma} (or {gamma}-lepton) colliders, for a possible `table-top` source of high-intensity x-rays and gamma rays, and the generation of polarized positron beams. (author)

  17. High-performance GaSb laser diodes and diode arrays in the 2.1-3.3 micron wavelength range for sensing and defense applications

    Science.gov (United States)

    Dvinelis, Edgaras; TrinkÅ«nas, Augustinas; Greibus, Mindaugas; Kaušylas, Mindaugas; Žukauskas, Tomas; Å imonytÄ--, Ieva; Songaila, RamÅ«nas; Vizbaras, Augustinas; Vizbaras, Kristijonas

    2015-01-01

    Mid-infrared spectral region (2-4 μm) is gaining significant attention recently due to the presence of numerous enabling applications in the field of gas sensing, medical, and defense applications. Gas sensing in this spectral region is attractive due to the presence of numerous absorption lines for such gases as methane, ethane, ozone, carbon dioxide, carbon monoxide, etc. Sensing of the mentioned gas species is of particular importance for applications such as atmospheric LIDAR, petrochemical industry, greenhouse gas monitoring, etc. Defense applications benefit from the presence of covert atmospheric transmission window in the 2.1-2.3 micron band which is more eye-safe and offers less Rayleigh scattering than the conventional atmospheric windows in the near-infrared. Major requirement to enable these application is the availability of high-performance, continuous-wave laser sources in this window. Type-I GaSb-based laser diodes are ideal candidates for these applications as they offer direct emission possibility, high-gain and continuous wave operation. Moreover, due to the nature of type-I transition, these devices have a characteristic low operation voltage, which results in very low input powers and high wall-plug efficiency. In this work, we present recent results of 2 μm - 3.0 μm wavelength room-temperature CW light sources based on type-I GaSb developed at Brolis Semiconductors. We discuss performance of defense oriented high-power multimode laser diodes with superluminescent gain chips will be presented.

  18. New technology developments make passive laser/fiber alignment a reality

    Science.gov (United States)

    Collins, John V.; MacDonald, Brian M.; Lealman, I. F.; Jones, C. A.

    1996-01-01

    In this paper we report on the combination of a precision cleaved large spot laser and a silicon micromachined optical bench to achieve high coupling efficiencies by purely passive alignment. Coupling efficiencies of over 50% have been obtained by passively aligning precision cleaved large spot sized lasers to singlemode fiber on a silicon micromachined substrate. This is the highest known coupling figure reported for passive alignment. The packaging of semiconductor laser chips has always presented a range of technical problems due to the sub-micron tolerances required to obtain optimum coupling of the small laser spot size to the larger spot size of a singlemode fiber. Lasers have been developed that can ease these tolerances by matching the laser spot size to that of cleaved fiber. This is achieved by tapering the active layer to adiabatically expand the laser mode size. A method of controlling the physical size of laser diode chips to sub-micron accuracy has enabled these lasers to be bonded against substantial alignment features on a silicon micro-engineered optical bench which also includes a V-groove into which a cleaved single-mode optical fiber can be fixed. Results are also discussed for an alternative ferrule-based, non-hermetic laser packaging design which utilizes the relaxed alignment tolerances of the large spot lasers to give simple package assembly suitable for automation. Both of the packaging technologies discussed offer a viable route to obtaining the very low cost optoelectronic components required for fiber to the home networks.

  19. Test technology on divergence angle of laser range finder based on CCD imaging fusion

    Science.gov (United States)

    Shi, Sheng-bing; Chen, Zhen-xing; Lv, Yao

    2016-09-01

    Laser range finder has been equipped with all kinds of weapons, such as tank, ship, plane and so on, is important component of fire control system. Divergence angle is important performance and incarnation of horizontal resolving power for laser range finder, is necessary appraised test item in appraisal test. In this paper, based on high accuracy test on divergence angle of laser range finder, divergence angle test system is designed based on CCD imaging, divergence angle of laser range finder is acquired through fusion technology for different attenuation imaging, problem that CCD characteristic influences divergence angle test is solved.

  20. Online compositional analysis in coal gasification environment using laser-induced plasma technology

    Science.gov (United States)

    Deng, Kung-Li; Wu, Juntao; Wang, Zhe; Lee, Boon; Guida, Renato

    2006-08-01

    Integrated Gasification Combined Cycle (IGCC) power plants have great potential for future clean-coal power generation. Today, the quality of coal is measured by sampling coal using various offline methods, and the syn-gas composition is determined by taking samples downstream of the gasifier and measured by gas chromatograph (GC). Laser induced plasma technology has demonstrated high sensitivity for elementary detection. The capability of free space transmission and focusing of laser beam makes laser induced plasma a unique technology for online compositional analysis in coal gasification environment and optimization control.

  1. Advances in AlGaInN laser diode technology for defence, security and sensing applications

    Science.gov (United States)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Boćkowski, M.; Leszczyński, M.; Wisnieski, P.; Czernecki, R.; Targowski, G.

    2016-10-01

    Laser diodes fabricated from the AlGaInN material system is an emerging technology for defence, security and sensing applications. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., 380nm, to the visible 530nm, by tuning the indium content of the laser GaInN quantum well, giving rise to new and novel applications including displays and imaging systems, free-space and underwater telecommunications and the latest quantum technologies such as optical atomic clocks and atom interferometry.

  2. The role of lasers and intense pulsed light technology in dermatology

    Directory of Open Access Journals (Sweden)

    Husain Z

    2016-02-01

    Full Text Available Zain Husain,1 Tina S Alster1,2 1Department of Dermatology, Georgetown University Hospital, 2Washington Institute of Dermatologic Laser Surgery, Washington, DC, USA Abstract: The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. Keywords: laser, intense pulsed light, treatment, dermatology, technology

  3. Laser-assisted cataract surgery and other emerging technologies for cataract removal

    Directory of Open Access Journals (Sweden)

    Aasuri Murali

    1999-01-01

    Full Text Available As we near the end of this century, refractive cataract surgery has become a reality through concerted contributions from ultrasonic phacoemulsification, foldable intraocular lens (IOL implantation technology and keratorefractive surgery. As we enter the new millennium, our sights are set on realizing another dream: accommodative IOL surgery. Towards achieving this goal, many advances have been made in both techniques and technology of cataract removal. Lasers in particular have been under investigation for cataract removal for nearly two decades. The technology has now reached a stage where cataract can indeed be removed entirely with laser alone. Neodymium:YAG and erbium:YAG are the laser sources currently utilized by manufacturers of laser phaco systems. Initial clinical experience reported in the literature has served to highlight the capabilities of lasers and the need for further refinement. Despite the excitement associated with the availability of this alluring new technology for cataract removal, it is necessary to develop more effective laser systems and innovative surgical techniques that optimize its capabilities if laser phaco surgery is to be a genuine improvement over current techniques.

  4. Aura of technology and the cutting edge: a history of lasers in neurosurgery.

    Science.gov (United States)

    Ryan, Robert W; Spetzler, Robert F; Preul, Mark C

    2009-09-01

    In this historical review the authors examine the important developments that have led to the availability of laser energy to neurosurgeons as a unique and sometimes invaluable tool. They review the physical science behind the function of lasers, as well as how and when various lasers based on different lasing mediums were discovered. They also follow the close association between advances in laser technology and their application in biomedicine, from early laboratory experiments to the first clinical experiences. Because opinions on the appropriate role of lasers in neurosurgery vary widely, the historical basis for some of these views is explored. Initial enthusiasm for a technology that appears to have innate advantages for safe resections has often given way to the strict limitations and demands of the neurosurgical operating theater. However, numerous creative solutions to improve laser delivery, power, safety, and ergonomics demonstrate the important role that technological advances in related scientific fields continue to offer neurosurgery. Benefiting from the most recent developments in materials science, current CO(2) laser delivery systems provide a useful addition to the neurosurgical armamentarium when applied in the correct circumstances and reflect the important historical advances that come about from the interplay between neurosurgery and technology.

  5. Trust, Engagement, and Technology Transfer: Underpinnings for U.S.-Brazil Defense Cooperation (Strategic Forum, no. 279)

    Science.gov (United States)

    2012-08-01

    percent of do- mestic defense output. COMDEFESA teaches defense resources management at the National War College, the Escola Superior de Guerra , with the...National Defense Strategy,” 35, 17. 24 Fernando Bustamante, “La Transferencia de Tecnologica Militar desde Estados Unidos al Brasil,” Documento de

  6. AlGaInN laser diode technology and systems for defence and security applications

    Science.gov (United States)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lujca; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Scott; Kelly, Antony E.

    2015-10-01

    AlGaInN laser diodes is an emerging technology for defence and security applications such as underwater communications and sensing, atomic clocks and quantum information. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Thus AlGaInN laser diode technology is a key enabler for the development of new disruptive system level applications in displays, telecom, defence and other industries. Ridge waveguide laser diodes are fabricated to achieve single mode operation with optical powers up to 100mW with the 400-440nm wavelength range with high reliability. Visible free-space and underwater communication at frequencies up to 2.5GHz is reported using a directly modulated 422nm GaN laser diode. Low defectivity and highly uniform GaN substrates allow arrays and bars to be fabricated. High power operation operation of AlGaInN laser bars with up to 20 emitters have been demonstrated at optical powers up to 4W in a CS package with common contact configuration. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space or optical fibre system integration with a very small form-factor.

  7. LDRD Final Report for''Tactical Laser Weapons for Defense'' SI (Tracking Code 01-SI-011)

    Energy Technology Data Exchange (ETDEWEB)

    Beach, R; Zapata, L

    2002-01-30

    The focus of this project was a convincing demonstration of two new technological approaches to high beam quality; high average power solid-state laser systems that would be of interest for tactical laser weapon applications. Two pathways had been identified to such systems that built on existing thin disk and fiber laser technologies. This SI was used as seed funding to further develop and vet these ideas. Significantly, the LLNL specific enhancements to these proposed technology paths were specifically addressed for devising systems scaleable to the 100 kW average power level. In the course of performing this work we have established an intellectual property base that protects and distinguishes us from other competitive approaches to the same end.

  8. Application of lap laser welding technology on stainless steel railway vehicles

    Science.gov (United States)

    Wang, Hongxiao; Wang, Chunsheng; He, Guangzhong; Li, Wei; Liu, Liguo

    2016-10-01

    Stainless steel railway vehicles with so many advantages, such as lightweight, antirust, low cost of maintenance and simple manufacturing process, so the production of high level stainless steel railway vehicles has become the development strategy of European, American and other developed nations. The current stainless steel railway vehicles body and structure are usually assembled by resistance spot welding process. The weak points of this process are the poor surface quality and bad airtight due to the pressure of electrodes. In this study, the partial penetration lap laser welding process was investigated to resolve the problems, by controlling the laser to stop at the second plate in the appropriate penetration. The lap laser welding joint of stainless steel railway vehicle car body with partial penetration has higher strength and surface quality than those of resistance spot welding joint. The biggest problem of lap laser welding technology is to find the balance of the strength and surface quality with different penetrations. The mechanism of overlap laser welding of stainless steel, mechanical tests, microstructure analysis, the optimization of welding parameters, analysis of fatigue performance, the design of laser welding stainless steel railway vehicles structure and the development of non-destructive testing technology were systematically studied before lap laser welding process to be applied in manufacture of railway vehicles. The results of the experiments and study show that high-quality surface state and higher fatigue strength can be achieved by the partial penetration overlap laser welding of the side panel structure, and the structure strength of the car body can be higher than the requirements of En12663, the standard of structural requirements of railway vehicles bodies. Our company has produced the stainless steel subway and high way railway vehicles by using overlap laser welding technology. The application of lap laser welding will be a big

  9. Laser technologies for ultrasensitive groundwater dating using long-lived isotopes

    Energy Technology Data Exchange (ETDEWEB)

    Backus, Sterling [KMLabs Inc., Boulder, CO (United States)

    2017-01-31

    In this phase I work, we propose to construct and demonstrate a 103 nm laser based on resonantly enhanced and phase matched fifth harmonic generation in hollow waveguides driven by a high power, low cost and compact ultrafast fiber laser. (Figure 4) This VUV laser source can potentially produce >100 milliwatts of VUV light at 103 nm with pulse repetition-rates of 100 kHz to 100 MHz, ideal for the above-mentioned applications. This technology is state-of-the-art and potentially compact, fieldable, low-cost, and of broad interest for a variety of science and technology applications. Laser-based VUV sources in the past have exhibited low repetition rate, low efficiency, low beam quality, and are based on expensive laser sources. Our approch is to combine ultrafast fiber laser drive technology, ultrafast pulses, and our proven waveguide technology, to create a high repetition rate, high average power VUV source for producing high yield metastable Krypton. At KMLabs we have been offering EUV light sources employing the high harmonic generation (HHG) process driven by high-power femtosecond lasers for >5 years now. Recently, we have developed much smaller scale (briefcase size), but still high average power femtosecond fiber laser sources to supply other markets, and create new ones. By combining these new laser sources with our patented waveguide frequency upconversion technology, we expect to be able to obtain >20mW average power initially, with potentially much higher powers depending on wavelength, in an affordable VUV product. For comparison, our current EUV light sources based on ti:sapphire generate an average power of ~5 µW (albeit at shorter 29 nm wavelength), and we are aware of one other supplier that has developed a VUV (112 nm) light source with ~10-20 µW power.

  10. The state-of-the-art laser bio-cladding technology

    Science.gov (United States)

    Liu, Jichang; Fuh, J. Y. H.; Lü, L.

    2010-11-01

    The current state and future trend of laser bio-cladding technology are discussed. Laser bio-cladding is used in implants including fabrication of metal scaffolds and bio-coating on the scaffolds. Scaffolds have been fabricated from stainless steel, Co-based alloy or Ti alloy using laser cladding, and new laser-deposited Ti alloys have been developed. Calcium phosphate bioceramic coatings have been deposited on scaffolds with laser to improve the wear resistence and corrosion resistence of implants and to induce bone regeneration. The types of biomaterial devices currently available in the market include replacement heart valve prosthesis, dental implants, hip/knee implants, catheters, pacemakers, oxygenators and vascular grafts. Laser bio-cladding process is attracting more and more attentions of people.

  11. 国防科技战略管理的理论探讨%Theoretical Study of Strategic Management of Defense Science and Technology

    Institute of Scientific and Technical Information of China (English)

    林聪榕

    2013-01-01

    Strategic management of defense science and technology (SMDST) is an important guarantee of effective implementation of developing strategy of defense science and technology. The paper studies the relevant theoretical problems of SMDST, including connotation of SMDST, development status of SMDST, basic process of SMDST, several major problems of SMDST in China, it is of important meaning to work out Chinese developing strategy of defense science and technology and speed development of defense science and technology.%国防科技战略管理是国防科技发展战略有效实施的重要保证.系统研究国防科技战略管理的有关理论问题,包括国防科技战略管理的内涵、国防科技战略管理的发展现状、国防科技战略管理的基本过程、我国国防科技战略管理中应重视的问题等,对于科学制定我国的国防科技发展战略,加快国防科技发展具有重要意义.

  12. Integration of photodetectors with lasers for optical interconnects using 200 mm waferscale III-V/SOI technology

    DEFF Research Database (Denmark)

    Spuesens, Thijs; Liu, Liu; Vermeulen, Diedrik;

    2011-01-01

    We demonstrate efficient photodetectors on top of a laser epitaxial structure completely fabricated using 200 mm wafer scale III-V/SOI technology enabling very dense integration of lasers and detectors for optical interconnect circuits....

  13. Handbook for Implementing Agile in Department of Defense Information Technology Acquisition

    Science.gov (United States)

    2010-12-15

    9-42 9.2.2 Storyboarding and Mockups ...Wire-frame Mockup of iTunes Cover Flow Feature (source: http://www.balsamiq.com/products/ mockups /examples#mytunez...patterns. The decision to use web technologies, for instance, implies that the team member have extensive knowledge of the HTTP protocol, HTML, Javascript

  14. DEFENSE SCIENCE AND TECHNOLOGY Adopting Best Practices Can Improve Innovation Investments and Management

    Science.gov (United States)

    2017-06-01

    approach to organizing and executing their technology development activities by grouping them into two portfolios: incremental and disruptive, as shown in...for product development . Disruptive R&D is often sponsored by a corporate research organization , which makes project investment decisions... development investments. To develop these plans, companies solicit ideas and information from people across the organization to determine the

  15. Defining Moments: Selected Highlights from 25 Years of Missile Defense Technology Development and Transfer. A Technology Applications Report

    Science.gov (United States)

    2006-05-23

    magnetoresistive random access memory ( MRAM ), that might withstand radiation. Although MRAM would com- bine the advantages of existing types of memory, it is...still being developed. However, devices needed for MRAM are being used to improve medical products. Technology Solutions. MRAM uses magnetic fields to...extremely sensitive sensor. Most hard drives use this to read data and NVE has developed several GMR tech- nologies in its push toward MRAM . Cashing In

  16. SLS: One of the Modern Technologies of Laser Surface Treatment

    Science.gov (United States)

    Musztyfaga-Staszuk, M. M.

    2017-09-01

    Photovoltaic cells are one way of achieving solar energy. One of the stages of their fabrication is the production of front electrode. The application of an unconventional method of selective laser sintering using the CO_{2} laser for the fabrication of front electrode of silicon photovoltaic cell was a real challenge. The most notable research results yielded by the research indicate what should be the focus of further investigation. The main objective of the paper is to work out the guidelines to be applied to laser micromachining of the front electrode of the photovoltaic cell concerning the selection of parameters such as the laser beam and laser beam feed rate, which give the possibility to assure its proper quality and suitable operating properties (including also its electrical properties). The investigation results obtained should yield the precise assessment of the laser micromachining conditions for the fabrication of front electrode of photovoltaic cells to improve their quality by the minimization of the Ag-Si interface resistance.

  17. The Department of Defense’s Second Chasm in RFID-UID Technology Adoption

    Science.gov (United States)

    2007-12-01

    Electronic Funds Transfer EPC Electronics Product Code FOC Full Operational Capability FPDS-NG Federal Procurement Data System-Next Generation...technology, when they knew that the Electronics Product Code ( EPC ) global Generation 2 (Gen 2) standard had already been developed. Further, DoD...all material with pRFID tags attached. The rationale offered for instituting the change after the deadline was to help ensure that contractors would

  18. Analysis of Expedited Defense Contracting Methods in the Acquisition of Emerging Technology

    Science.gov (United States)

    2016-12-01

    to develop it. Taking a step back requires considering how businesses and market segments view the government as a buying organization. The...government’s purchasing role and magnitude varies by vendor and market segment . Some vendors rely predominantly or almost entirely on government sales. For...cost-effective buyer in the marketplace, especially in crowded and critical market segments like emerging technology. Competing buyers—private firms

  19. [Research on spectrum technology based on SG-DBR laser].

    Science.gov (United States)

    Shao, Jie; Han, Ye-Xing; Guo, Jie; Wang, Li-Ming; Han, Ying; Ying, Chao-Fu; Wang, Yao

    2014-07-01

    Tunable diode laser absorption spectroscopy (TDLAS) is a highly sensitive, highly selective, noninvasive and real-time trace gas detection technique, which has been widely used in atmospheric monitoring and industrial control. In the present research, a new type of widely tunable SG-DBR diode laser (WTDL) with a tunable range of about 1 520-1 570 nm was use as the light source for tunable diode laser absorption spectroscopy combined with the wavelength modulation (wm) to measure the spectrum of multi-gases. Also the structure, performance and other characteristics of WTDL were introduced. There were 18 channels compiled to the SG-DBR laser, which emitted central wavelength at the optimum absorption transitions of CO, CO2 and H2O by homemade program, of which 14 channels (corresponding to absorption lines of CO and CO2) were investigated by second harmonic detection technique. Meanwhile, the detectabilities in these channel were analyzed which are about 10(-5) at the peak absorbance. The experiment results validate the feasibility of SG-DBR laser used as light source in multi-gases detection using wavelength modulation absorption spectroscopy technique in practical application. That could effectively reduce the cost and complexity of system in the field of TDLAS technique.

  20. Laser technology to monitor atmospheric pollution. Tecnologia laser para medicion de la contaminacion atmosferica

    Energy Technology Data Exchange (ETDEWEB)

    Guerao, A.; Caceci, M.

    1993-01-01

    Air quality and pollution can be monitored in a reliable way using LIDAR. Light detection and measurement by using a Laser beam can identify gases, particles, smoke, water vapor and other contaminants. Radiance and directionality of the laser beam are useful for this application. Activities of CISE in this field are presented.

  1. Calibration technology in application of robot-laser scanning system

    Science.gov (United States)

    Ren, YongJie; Yin, ShiBin; Zhu, JiGui

    2012-11-01

    A system composed of laser sensor and 6-DOF industrial robot is proposed to obtain complete three-dimensional (3-D) information of the object surface. Suitable for the different combining ways of laser sensor and robot, a new method to calibrate the position and pose between sensor and robot is presented. By using a standard sphere with known radius as a reference tool, the rotation and translation matrices between the laser sensor and robot are computed, respectively in two steps, so that many unstable factors introduced in conventional optimization methods can be avoided. The experimental results show that the accuracy of the proposed calibration method can be achieved up to 0.062 mm. The calibration method is also implemented into the automated robot scanning system to reconstruct a car door panel.

  2. AlGaInN laser diode technology for defence, security and sensing applications

    Science.gov (United States)

    Najda, Stephen P.; Perlin, Piotr; Suski, Tadek; Marona, Lucja; Boćkowski, Mike; Leszczyński, Mike; Wisniewski, Przemek; Czernecki, Robert; Kucharski, Robert; Targowski, Grzegorz; Watson, Scott; Kelly, Antony E.

    2014-10-01

    The latest developments in AlGaInN laser diode technology are reviewed for defence, security and sensing applications. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., i.e, 380nm, to the visible, i.e., 530nm, by tuning the indium content of the laser GaInN quantum well. Advantages of using Plasma assisted MBE (PAMBE) compared to more conventional MOCVD epitaxy to grow AlGaInN laser structures are highlighted. Ridge waveguide laser diode structures are fabricated to achieve single mode operation with optical powers of communications at high frequency (up to 2.5 Gbit/s) using a directly modulated 422nm Gallium-nitride (GaN) blue laser diode is reported. High power operation of AlGaInN laser diodes is demonstrated with a single chip, AlGaInN laser diode `mini-array' with a common p-contact configuration at powers up to 2.5W cw at 410nm. Low defectivity and highly uniform GaN substrates allow arrays and bars of nitride lasers to be fabricated. GaN laser bars of up to 5mm with 20 emitters, mounted in a CS mount package, give optical powers up to 4W cw at ~410nm with a common contact configuration. An alternative package configuration for AlGaInN laser arrays allows for each individual laser to be individually addressable allowing complex free-space and/or fibre optic system integration within a very small form-factor.or.

  3. Numerical investigation of a technological CO2 laser with a closed gasdynamic channel

    Science.gov (United States)

    Breev, V. V.; Gubarev, A. V.; Kazhidub, A. V.; Kukharenko, A. T.; Lebedev, F. V.; Panchenko, V. P.

    1981-08-01

    A brief description is given of a new mathematical model developed for comprehensive calculations of the parameters of an electric-discharge CO2 laser, comprising a discharge chamber, optical resonator-amplifier, focusing system, nozzle, diffuser, coolers, compressor, and connecting pipes. A file of programs developed for this purpose was applied to investigate numerically a technological CO2 laser with an output power of 10 kW.

  4. Clock Technology Development in the Laser Cooling and Atomic Physics (LCAP) Program

    Science.gov (United States)

    Seidel, Dave; Thompson, R. J.; Klipstein, W. M.; Kohel, J.; Maleki, L.

    2000-01-01

    This paper presents the Laser Cooling and Atomic Physics (LCAP) program. It focuses on clock technology development. The topics include: 1) Overview of LCAP Flight Projects; 2) Space Clock 101; 3) Physics with Clocks in microgravity; 4) Space Clock Challenges; 5) LCAP Timeline; 6) International Space Station (ISS) Science Platforms; 7) ISS Express Rack; 8) Space Qualification of Components; 9) Laser Configuration; 10) Clock Rate Comparisons: GPS Carrier Phase Frequency Transfer; and 11) ISS Model Views. This paper is presented in viewgraph form.

  5. Unfolding Green Defense

    DEFF Research Database (Denmark)

    Larsen, Kristian Knus

    2015-01-01

    consumption in military operations, defense expenditure, energy security, and global climate change. The report then proceeds to introduce the NATO Green Defence Framework before exploring specific current uses of green technologies and green strategies for defense. The report concludes that a number...

  6. Investigations in Support of High Energy Laser Technology

    Science.gov (United States)

    1975-06-01

    results. 39 REFERENCES 1. R L. Taylor, P. Lewis, J. D. Teare, R Naismith and R Cavalleri, Final Report for Phase I of the NRML Laser, ARC 47-5629...Los Angeles Attn: Mr. A. Colin Stancliffe 43 Atlantic Res. Corp., Virginia Attn: Mr. Robert Naismith AVCO - Everett Res. Lab., MA Attn: Dr

  7. Ultrafast Laser Interaction Processes for LIBS and Other Sensing Technologies

    Science.gov (United States)

    2013-04-05

    channeled laser-induced breakdown spectroscopy on carbon-based samples: Thermochemistry leading to molecular formation in air”; 2010 Winter...based samples: Thermochemistry leading to molecular formation in air”; 2010 Winter Conference on Plasma Spectrochemistry; Fort Myers, FL, USA; 01/05...University of Nebraska Wide Teaching Award, 2011 Dr. Alexander: College of Engineering Holling Family Master Teaching Award, 2011

  8. Technology and engineering aspects of high power pulsed single longitudinal mode dye lasers

    Science.gov (United States)

    Rawat, V. S.; Mukherjee, Jaya; Gantayet, L. M.

    2015-09-01

    Tunable single mode pulsed dye lasers are capable of generating optical radiations in the visible range having very small bandwidths (transform limited), high average power (a few kW) at a high pulse repetition rate (a few tens of kHz), small beam divergence and relatively higher efficiencies. These dye lasers are generally utilized laser dyes dissolved in solvents such as water, heavy water, ethanol, methanol, etc. to provide a rapidly flowing gain medium. The dye laser is a versatile tool, which can lase either in the continuous wave (CW) or in the pulsed mode with pulse duration as small as a few tens of femtoseconds. In this review, we have examined the several cavity designs, various types of gain mediums and numerous types of dye cell geometries for obtaining the single longitudinal mode pulsed dye laser. Different types of cavity configuration, such as very short cavity, short cavity with frequency selective element and relatively longer cavity with multiple frequency selective elements were reviewed. These single mode lasers have been pumped by all kinds of pumping sources such as flash lamps, Excimer, Nitrogen, Ruby, Nd:YAG, Copper Bromide and Copper Vapor Lasers. The single mode dye lasers are either pumped transversely or longitudinally to the resonator axis. The pulse repletion rate of these pump lasers were ranging from a few Hz to a few tens of kHz. Physics technology and engineering aspects of tuning mechanism, mode hop free scanning and dye cell designs are also presented in this review. Tuning of a single mode dye laser with a resolution of a few MHz per step is a technologically challenging task, which is discussed here.

  9. Research on the method of precise alignment technology of atmospheric laser communication

    Science.gov (United States)

    Chen, Wen-jian; Gao, Wei; Duan, Yuan-yuan; Ma, Shi-wei; Chen, Jian

    2016-10-01

    Atmosphere laser communication takes advantage of laser as the carrier transmitting the voice, data, and image information in the atmosphere. Because of its high reliability, strong anti-interference ability, the advantages of easy installation, it has great potential and development space in the communications field. In the process of establish communication, the capture, targeting and tracking of the communication signal is the key technology. This paper introduce a method of targeting the signal spot in the process of atmosphere laser communication, which through the way of making analog signal addition and subtraction directly and normalized to obtain the target azimuth information to drive the servo system to achieve precise alignment of tracking.

  10. The role of lasers and intense pulsed light technology in dermatology

    Science.gov (United States)

    Husain, Zain; Alster, Tina S

    2016-01-01

    The role of light-based technologies in dermatology has expanded dramatically in recent years. Lasers and intense pulsed light have been used to safely and effectively treat a diverse array of cutaneous conditions, including vascular and pigmented lesions, tattoos, scars, and undesired hair, while also providing extensive therapeutic options for cosmetic rejuvenation and other dermatologic conditions. Dermatologic laser procedures are becoming increasingly popular worldwide, and demand for them has fueled new innovations and clinical applications. These systems continue to evolve and provide enhanced therapeutic outcomes with improved safety profiles. This review highlights the important roles and varied clinical applications that lasers and intense pulsed light play in the dermatologic practice. PMID:26893574

  11. Technology of laser repair welding of nickel superalloy inner flaps of jet engine

    Directory of Open Access Journals (Sweden)

    A. Klimpel

    2011-07-01

    Full Text Available Purpose: of this paper: work out laser welding repair technology of cracked MIG 29 jet engine inner flaps made of cast nickel superalloy ŻS-3DK (ЖС-3ДК, Russian designation.Design/methodology/approach: The study were based on the analysis of laser HPDL powder INCONEL 625 welding of nickel superalloy using wide range of welding parameters to provide highest quality repair welds.Findings: Study of automatic welding technologies GTA, PTA and laser HPDL has shown that just laser welding can provide high quality repair welds. In order to establish the properties of welded joints repair cracks in the inner flap HPDL laser, studied the hardness, mechanical properties and erosive wear resistance.Research limitations/implications: It was found that only laser HPDL welding can provide high quality repair welds.Practical implications: The technology can be applied for repair cracked MIG 29 jet engine inner flaps.Originality/value: Repairing cracked MIG 29 jet engine inner flaps.

  12. Reach on laser imaging technology to terminal guidance

    Science.gov (United States)

    Tan, Xue-chun; Jin, Guang-yong; Wu, Zhi-chao; Ling, Ming; Liang, Zhu

    2009-07-01

    The development of range-imaging devices is motivated by various ground and space applications. Tasks in space missions include docking, rendezvous, manipulating robotic arms, landing and autonomous rover applications, sample identification and surface mapping. The ground applications include the guidance of vehicles, robotic and manipulator arms, and other autonomous or teleoperated machines, as well as surface or construction model generation. Without the scanner devices, scannerless imaging lidars have the characteristic of high frame rate, wide field of view and high reliability,which can be successful used in terminal guidance. Diode pumped laser radar with high repetition rate is studied in this paper. A bistatic system is set up and a high speed signal processor for the system is researched. In a conceptual sense, the imaging lidar has two parts, a transmitter and a receiver. Their field of views overlap throughout the measuring range.The imaging lidar operates as follows. Based on principle of pulsed time-of-flight (TOF) laser range finding, the solid-state laser diode-pumped laser produces short laser pulses, which though the expanded lens, then reach the target. The back reflected light is collected with a receiver lens and fed through optical fibres to discrete avalanche photo diodes (APDs). When a received pulse is detected by the comparator a time to digital converter (TDC) stops counting and a time interval, corresponding to the range, is produced. The precision of a single measurement is about +/-4.0cm, but better precision is achieved by averaging. Information about the reflectivity of the target is gathered by recording the amplitude of the received pulse. Range images with the lidar prototype were taken indoors, the measuring distance was about 14m.

  13. Laser Ranging to the Moon: How Evolving Technology Enables New Science

    Science.gov (United States)

    Faller, James

    2010-03-01

    Technological advances have long been the enabler of scientific progress. The invention of the laser is a prime example of this symbiotic relationship between technical progress and scientific advances. The laser, which today is omnipresent in each of our lives, made its first appearance during the time that I was a graduate student in Professor Dicke's group at Princeton. A major change occurring during that time period was that technology was transforming the study of gravitational physics from just a theoretical subject into also an experimental subject where one could hope to measure things using by-then-available laboratory technologies and techniques. During this same time, the idea for the lunar laser ranging experiment was born. The history and accomplishments of this experiment--a still ongoing experiment which is one of the real scientific triumphs of NASA's Apollo program--will be given.

  14. Laser pulse spatial-temporal inversion technology for ICF laser facility

    Science.gov (United States)

    Zhang, Ying; Geng, Yuanchao; Chen, Lin; Huang, Wanqing; Zhao, Junpu; Wang, Wenyi; Liu, Lanqin; Zheng, Kuixing; Zhu, Qihua; Wei, Xiaofeng

    2017-05-01

    The laser pulse should be shaped to satisfy the ICF physical requirement and the profile should be flattened to increase the extraction efficiency of the disk amplifiers and to ensure system safety in ICF laser facility. The spatial-temporal distribution of the laser pulse is affected by the gain saturation, uniformity gain profile of the amplifiers, and the frequency conversion process. The pulse spatial-temporal distribution can't be described by simply analytic expression, so new iteration algorithms are needed. We propose new inversion method and iteration algorithms in this paper. All of these algorithms have been integrated in SG99 software and the validity has been demonstrated. The result could guide the design of the ICF laser facility in the future.

  15. [INVITED] Laser-induced forward transfer: A high resolution additive manufacturing technology

    Science.gov (United States)

    Delaporte, Philippe; Alloncle, Anne-Patricia

    2016-04-01

    Among the additive manufacturing techniques, laser-induced forward transfer addresses the challenges of printing thin films in solid phase or small volume droplets in liquid phase with very high resolution. This paper reviews the physics of this process and explores the pros and cons of this technology versus other digital printing technologies. The main field of applications are printed electronics, organic electronics and tissue engineering, and the most promising short terms ones concern digital laser printing of sensors and conductive tracks. Future directions and emerging areas of interest are discussed such as printing solid from a liquid phase and 3D digital nanomanufacturing.

  16. Application and prospect of laser manufacture technology%激光制造技术的应用与展望

    Institute of Scientific and Technical Information of China (English)

    辛晨光

    2012-01-01

    Laser manufacturing technology is a kind of green manufacturing technology which is full of potential for development of high flexibility. Describes applications of laser technology in different areas, different manufacturing process including laser welding , laser cladding and laser surface alloying, laser quenching, laser surface modification, laser cutting, laser rapid forming, laser drilling,laser nanometer manufacturing,and prospects the research and development tend of laser manufacturing technology.%激光制造技术是一种具有巨大发展潜力的高柔性、绿色制造技术.阐述了目前激光制造技术在不同制造领域、不同工艺范围的应用现状,包括激光焊接、激光熔覆及激光表面合金化、激光淬火、激光表面改性、激光切割、激光快速成形、激光打孔和激光纳米制造,并展望了激光制造技术未来的研究及发展趋势.

  17. Experimental examinations of semiconductor laser amplifiers for optical communication technology

    Science.gov (United States)

    Ludwig, Reinhold

    1993-01-01

    Properties of SLA (Semiconductor Laser Amplifier), which are particularly interesting for application to linear repeaters in coherent multichannel systems, are studied and design rules for future optimized amplifier structure are deduced. Laser diode antireflection was examined and reflection factor was measured. Low signal properties were discussed considering injection current, wavelengths, temperature and polarization. The coupling between amplifiers and glass fibers was examined. The utilization of cascade amplifiers as linear repeaters in multichannel heterodyne systems and television distribution systems was investigatied. The following results are obtained: measurement and calculation of the paradiaphony between two signals radiated in a SLA; multichannel data transfer through a SLA; polarization independent amplification with SLA configurations; measurement of the frequency dependence of four wave mixing sidelines in a SLA; measurement of the system degradation through echoes in a bidirectional SLA chain; data transmission with frequency conversion and calculation of multichannel transmission systems with cascade SLA, taking into account saturation, signal to noise ratio, bandwidth reduction and echo.

  18. Er:YAG laser technology for remote sensing applications

    Science.gov (United States)

    Chen, Moran; Burns, Patrick M.; Litvinovitch, Viatcheslav; Storm, Mark; Sawruk, Nicholas W.

    2016-10-01

    Fibertek has developed an injection locked, resonantly pumped Er:YAG solid-state laser operating at 1.6 μm capable of pulse repetition rates of 1 kHz to 10 kHz for airborne methane and water differential absorption lidars. The laser is resonantly pumped with a fiber-coupled 1532 nm diode laser minimizing the quantum defect and thermal loading generating tunable single-frequency output of 1645-1646 nm with a linewidth of tuning range covering multiple water absorption lines, with a pulse energy of 1 mJ and a pulse repetition frequency of 1 kHz. The resonator cavity was locked to the seed wavelength via a Pound Drever Hall (PDH) technique and an analog Proportional Integral Derivative (PID) Controller driving a high-bandwidth piezoelectric (PZT)-mounted cavity mirror. Two seed sources lasing on and off the methane absorption line were optically switched to tune the resonator wavelength on and off the methane absorption line between each sequential output pulse. The cavity locking servo maintained the cavity resonance for each pulse.

  19. Laser technologies in treatment of degenerative-dystrophic bone diseases in children

    Science.gov (United States)

    Abushkin, Ivan A.; Privalov, Valery A.; Lappa, Alexander V.; Noskov, Nikolay V.; Neizvestnykh, Elena A.; Kotlyarov, Alexander N.; Shekunova, Yulia G.

    2014-03-01

    Two low invasive laser technologies for treatment of degenerative-dystrophic bone diseases in children are presented. The first is the transcutaneous laser osteoperforation developed by us and initially applied for treatment of different inflammatory and traumatic diseases (osteomyelitides, osteal and osteoarticular panaritiums, delayed unions, false joints, and others). Now the technology was applied to treatment of aseptic osteonecrosis of different localizations in 134 children aged from 1 to 16 years, including 56 cases with necrosis of femoral head (Legg-Calve-Perthes disease), 42 with necrosis of 2nd metatarsal bone head (Kohler II disease), and 36 with necrosis of tibial tuberosity (Osgood-Schlatter disease). The second technology is the laser intracystic thermotherapy for treatment of bone cysts. The method was applied to 108 children aged from 3 to 16 years with aneurismal and solitary cysts of different localizations. In both technologies a 970 nm diode laser was used. The suggested technologies increase the efficiency of treatment, reduce its duration, can be performed on outpatient basis, which resulted in great economical effect.

  20. Development of Technology and Equipment of the Automated Laser Welding for Manufacturing Heat Exchanger Details of Marine Engines

    Directory of Open Access Journals (Sweden)

    Shelyagin, V.D.

    2014-09-01

    Full Text Available Based on the developed automated laser welding technology for flat tubes of copper-nickel alloys laser welding complex technological equipment, which can be applied on the enterprises of machine building, aerospace, shipbuilding and automobile industries, was designed and created. To control the integrity of welded flat tubes a technique, which consists in testing sample pressure and finding defective sections by laser interferometry in the automated mode, was developed. Specialized welding head was designed and manufactured for the industrial use of the developed laser welding technology.

  1. Manifesto of Technological Culture: a Critically Annotated Defense of Technepolitanism and The Hollow Revolution: Alienation and Manipulation in the Digital Age

    OpenAIRE

    Dagenais, Christopher

    2013-01-01

    Manifesto of Technological Culture: a Critically Annotated Defense of Technepolitanism- A critical analysis of our emerging technocracy unfolds through an annotated commentary on an imagined technocrat’s manifesto. The essay contrasts the romanticization of technology’s liberating qualities with a sober warning about its tendency towards oppression.The Hollow Revolution: Alienation and Manipulation in the Digital Age- Approximately one third of the world’s population uses the Internet. It is ...

  2. A novel polishing technology for epoxy resin based on 355 nm UV laser

    Science.gov (United States)

    Meng, Xinling; Tao, Luqi; Liu, Zhaolin; Yang, Yi; Ren, Tianling

    2017-06-01

    The electromagnetic shielding film has drawn much attention due to its wide applications in the integrated circuit package, which demands a high surface quality of epoxy resin. However, gaseous Cu will splash and adhere to epoxy resin surface when the Cu layer in PCB receives enough energy in the process of laser cutting, which has a negative effect on the quality of the shielding film. Laser polishing technology can solve this problem and it can effectively improve the quality of epoxy resin surface. The paper studies the mechanism of Cu powder spraying on the compound surface by 355 nm ultraviolet (UV) laser, including the parameters of laser polishing process and the remains of Cu content on compound surface. The results show that minimal Cu content can be realized with a scanning speed of 700 mm/s, a laser frequency of 50 kHz and the distance between laser focus and product top surface of -1.3 mm. This result is important to obtain an epoxy resin surface with high quality. Project supported by the National Natural Science Foundation of China (Nos. 61574083, 61434001), the National Basic Research Program (No. 2015CB352100), the National Key Project of Science and Technology (No. 2011ZX02403-002), the Special Fund for Agroscientic Research in the Public Interest of China (No 201303107), the support of the Independent Research Program of Tsinghua University (No. 2014Z01006), and Advanced Sensor and Integrated System Lab of Tsinghua University Graduate School at Shenzhen (No. ZDSYS20140509172959969).

  3. Silicon PV module customization using laser technology for new BIPV applications

    Science.gov (United States)

    García-Ballesteros, Juan José; Lauzurica, Sara; Morales, Miguel; del Caño, Teodosio; Valencia, Daniel; Casado, Leonardo; Balenzategui, José Lorenzo; Molpeceres, Carlos

    2014-10-01

    It is well known that lasers have helped to increase efficiency and to reduce production costs in the photovoltaic (PV) sector in the last two decades, appearing in most cases as the ideal tool to solve some of the critical bottlenecks of production both in thin film (TF) and crystalline silicon (c-Si) technologies. The accumulated experience in these fields has brought as a consequence the possibility of using laser technology to produce new Building Integrated Photovoltaics (BIPV) products with a high degree of customization. However, to produce efficiently these personalized products it is necessary the development of optimized laser processes able to transform standard products in customized items oriented to the BIPV market. In particular, the production of semitransparencies and/or freeform geometries in TF a-Si modules and standard c-Si modules is an application of great interest in this market. In this work we present results of customization of both TF a-Si modules and standard monocrystalline (m-Si) and policrystalline silicon (pc-Si) modules using laser ablation and laser cutting processes. A discussion about the laser processes parameterization to guarantee the functionality of the device is included. Finally some examples of final devices are presented with a full discussion of the process approach used in their fabrication.

  4. Fabrication of four-channel DFB laser array using nanoimprint technology for 1.3 μm CWDM systems

    Institute of Scientific and Technical Information of China (English)

    Zhao Jianyi; Chen Xin; Zhou Ning; Huang Xiaodong; Liu Wen

    2014-01-01

    Four-channel monolithically integrated index-coupled distributed-feedback laser array has been fabricated using nanoimprint technology for 1.3 μm CWDM system.Selective lasing wavelength with 20 nm wavelength space is obtained.The present results show that the nanoimprint technology is mature and reliable in the fabrication of DFB laser array.

  5. Trial of human laser epilation technology for permanent wool removal in Merino sheep.

    Science.gov (United States)

    Colditz, I G; Cox, T; Small, A H

    2015-01-01

    To assess whether human laser epilation technology can permanently prevent wool growth in sheep. An observational study. Two commercial human epilation lasers (Sharplan alexandrite 755 nm laser, and Lumenis LightSheer 800 nm diode laser) were tested at energies between 10 and 100 J/cm2 and pulse widths from 2 to 400 ms. Wool was clipped from flank, breech, pizzle and around the eyes of superfine Merino sheep with Oster clippers. After initial laser removal of residual wool to reveal bare skin, individual skin sites were treated with up to 15 cycles of laser irradiation. Behavioural responses during treatment, skin temperature immediately after treatment and skin and wool responses for 3 months after treatment were monitored. A clear transudate was evident on the skin surface within minutes. A dry superficial scab developed by 24 h and remained adherent for at least 6 weeks. When scabs were shed, there was evidence of scarring at sites receiving multiple treatment cycles and normal wool growth in unscarred skin. There was no evidence of laser energy level or pulse width affecting the response of skin and wool to treatment and no evidence of permanent inhibition of wool growth by laser treatment. Laser treatment was well tolerated by the sheep. Treatment of woolled skin with laser parameters that induce epilation by selective photothermolysis in humans failed to induce permanent inhibition of wool growth in sheep. Absence of melanin in wool may have contributed to the result. © 2015 Australian Veterinary Association.

  6. Laser Marketplace 2007 and Technologies%2007年激光市场和技术

    Institute of Scientific and Technical Information of China (English)

    马要武

    2007-01-01

    本文叙述了2007年激光市场及相关的技术状况.2007 年的激光市场规模预计为60亿美元,比去年增加8%.半导体激光器的销售额占总数的一半以上.半导体激光器的主要应用是光学数据储存和长途光通讯.非半导体激光器具有比较强大的激光能力和广泛的应用,但是比较复杂.非半导体激光器主要用于与半导体及汽车商业有关的材料加工.非半导体激光器的第二个用途是与整容化妆有关的医学治疗.光纤激光器是最有魅力的非半导体激光器.%This paper described the situation of laser marketplace 2007 and related technologies. Laser market scale in 2007 is predicted as US$6 billions with 8% increase over last year. The diode laser sale is more than half of the total. The applications of diode laser are mainly optical storage and optical telecommunications. The nondiode lasers have stronger laser ability and wider applications but more complicated. Nondiode lasers are mainly used in material processing that is largely related with semiconductor and automobile business. The second application of nondiode lasers is medical therapy that is mainly cosmetic applications. Fiber laser is the most charming nondiode laser.

  7. Key Laser Technologies for X-Ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Kaertner, Franz [MIT

    2013-08-31

    In the final project period, we demonstrated sub femtosecond timing distribution over a 1.2 km polarization-maintaining (PM) fiber-optic link using balanced optical cross-correlators (BOCs) for link stabilization. By eliminating polarization mode dispersion, link operation for 16 days maintained 0.6 fs RMS timing drift and during a 3-day interval only 0.13 fs drift, which corresponds to a stability level of 10-21. To improve the overall system efficiency and robustness, we developed fiber-coupled, hybrid-integrated BOCs using waveguides in periodically-poled KTiOPO4 (PPKTP). The measured second-harmonic conversion efficiency in the waveguides is a factor of 50 higher than that of bulk-optic crystals. Characterization of 1st-generation devices shows performance comparable to free-space BOCs, with the potential for significant improvement in future devices. For optical-to-RF conversion, we developed two balanced optical-microwave phase detectors (BOM-PD) based on the Sagnac and Mach-Zehnder interferometers. RF extraction using BOM-PDs in phase-locked loops yielded sub-10-fs residual timing jitter for locking bandwidths on the order of several hundred kHz. Finally, we characterized the timing jitter of ultralow-noise Ti:Sapphire oscillators, demonstrating an unprecedented 13 as of jitter integrated over the entire Nyquist band. Our measurements agreed well with theory, confirming our models for quantum-limited laser noise. Measurements of commercially available solid-state lasers at 1550 nm showed that there are laser sources already available with sufficiently low noise to achieve sub-femtosecond performance as master oscillators within a timing distribution system.

  8. SLEDs and Swept Source Laser Technology for OCT

    Science.gov (United States)

    Duelk, Marcus; Hsu, Kevin

    EXALOS offers broadband and high-power superluminescent light-emitting diodes (SLEDs) and high-speed wavelength-swept lasers, covering various visible and near-infrared wavelength regions (390-1,700 nm). These diverse wavelengths are realized in different semiconductor material systems such as GaN, GaAs, or InP. Those light sources are used in various fields such as navigation, optical coherence tomography (OCT), metrology, sensing, and microscopy. Detailed discussions on SLED characteristics and key swept-source OCT system design parameters are presented.

  9. Lasers in InP generic photonic integration technology platforms

    Science.gov (United States)

    Latkowski, Sylwester; Lenstra, Daan

    2015-04-01

    A review is given of a number of lasers in a form of photonic integrated circuits realized on InP substrate using a generic integration approach. The potential of these photonic circuits lies in their compactness, low power consumption, and significant reduction of fabrication cost by realization in generic foundry runs. Generic integration platforms offer the possibility of realizing functionally advanced photonic circuits using combinations of just a few standardized and parameterized building blocks. This vibrant field opens new doors to innovative product development for SMEs as well as curiosity-driven research.

  10. High power diode laser array development using completely indium free packaging technology with narrow spectrum

    Science.gov (United States)

    Hou, Dong; Wang, Jingwei; Gao, Lijun; Liang, Xuejie; Li, Xiaoning; Liu, Xingsheng

    2016-03-01

    The high power diode lasers have been widely used in many fields. In this work, a sophisticated high power and high performance horizontal array of diode laser stacks have been developed and fabricated with high duty cycle using hard solder bonding technology. CTE-matched submount and Gold Tin (AuSn) hard solder are used for bonding the diode laser bar to achieve the performances of anti-thermal fatigue, higher reliability and longer lifetime. This array consists of 30 bars with the expected optical output peak power of 6000W. By means of numerical simulation and analytical results, the diode laser bars are aligned on suitable positions along the water cooled cooler in order to achieve the uniform wavelength with narrow spectrum and accurate central wavelength. The performance of the horizontal array, such as output power, spectrum, thermal resistance, life time, etc., is characterized and analyzed.

  11. Determining the nonlinear refractive index of fused quartz by femtosecond laser Z-scan technology

    Science.gov (United States)

    Zhang, Lin; Ren, Huan; Ma, Hua; Shi, Zhendong; Yang, Yi; Yuan, Quan; Feng, Xiaoxuan; Ma, Yurong; Chen, Bo

    2016-10-01

    Z-scan technology is an experimental technique for determining the nonlinear refractive index based on the principle of transformation of phase distortion to amplitude distortion when a laser beam propagates through a nonlinear material. For most of the Z-scan system based on the nanosecond or picosecond laser, the accumulation of thermal effects becomes a big problem in nonlinear refractive index measurement especially for the nonlinear materials such as fused quartz and neodymium glass which have a weak nonlinear refractive effect. To overcome this problem, a system for determining the nonlinear refractive index of optical materials based on the femtosecond laser Z-scan technology is presented. Using this system, the nonlinear refractive index of the fused quartz is investigated.

  12. Packaging and testing of multi-wavelength DFB laser array using REC technology

    Science.gov (United States)

    Ni, Yi; Kong, Xuan; Gu, Xiaofeng; Chen, Xiangfei; Zheng, Guanghui; Luan, Jia

    2014-02-01

    Packaging of distributed feedback (DFB) laser array based on reconstruction-equivalent-chirp (REC) technology is a bridge from chip to system, and influences the practical process of REC chip. In this paper, DFB laser arrays of 4-channel @1310 nm and 8-channel @1550 nm are packaged. Our experimental results show that both these laser arrays have uniform wavelength spacing and larger than 35 dB average Side Mode Suppression Ratio (SMSR). When I=35 mA, we obtain the total output power of 1 mW for 4-channel @1310 nm, and 227 μw for 8-channel @1550 nm respectively. The high frequency characteristics of the packaged chips are also obtained, and the requirements for 4×10 G or even 8×10 G systems can be reached. Our results demonstrate the practical and low cost performance of REC technology and indicate its potential in the future fiber-to-the-home (FTTH) application.

  13. SQL注入攻击与防御技术研究%Research on SQL Injection Attack and Defense Technology

    Institute of Scientific and Technical Information of China (English)

    刘文生; 乐德广; 刘伟

    2015-01-01

    With the rapid development of computer network technology, the human is more and more reliance on the ubiquitous network, and a series of network security problem that make people pay more attention on it. At present, the SQL injection attack has become one of the primary means of hacking by hackers. This paper introduces the principle of SQL injection, depth study on the cause of SQL injection and actual combat encounter common SQL injection attack, proposed a new SQL injection detection techniques and tools to achieve in practice on the basis of actual penetration testing, and provides strong technical support for future testing SQL injection attacks or provides powerful guarantee for the information system in the SQL injection defense.%随着计算机网络技术的飞速发展,人们对无处不在的网络依赖程度越来越高,随之而来的一系列网络安全问题也越来越受到人们的重视.目前,SQL注入攻击已成为了黑客攻击的主要手段之一.文章介绍了SQL注入原理,对产生SQL注入原因以及实战中遇到的常见SQL注入攻击方式进行了深入研究,并在实际渗透测试的实践基础上提出一种新的SQL注入检测技术及工具实现,为日后测试SQL注入攻击提供有力的技术支持,为信息系统在SQL注入防御方面提供有力保障.

  14. Defense technology of phishing attack and design of defense framework%网络钓鱼攻击的防御技术及防御框架设计

    Institute of Scientific and Technical Information of China (English)

    赵跃华; 胡向涛

    2013-01-01

    现有的反钓鱼技术多是通过检测可疑网站与真实网站的URL和网页相似度来检测钓鱼攻击,而对于新出现的在网页中嵌入恶意代码的钓鱼攻击防御效果不佳.在分析当前的网络钓鱼攻击防御技术的基础上,针对传统方法不能防御的新型钓鱼攻击给出了解决方法,并融合传统的防御技术提出了一个防御钓鱼攻击的整体框架,弥补现有防御方法的不足,从而提高了钓鱼攻击的检测率,降低了漏报率.实验结果表明,提出的方法是有效的.%The current anti-phishing technologies detect the phishing attacks through comparing similarity of URL or Web pages between suspect Website and real Website.However,it cannot work effectively on those new attacks by the insertion of malicious code to Web pages.Based on analysis of existing defense technologies of phishing attacks,this paper put forward solutions to those new attacks which couldn't be prevented by traditional methods.It also proposed a further new overall defensive framework which incorporated traditional ones,to make up defects of the original methods,increased the detection rate of phishing attacks,and decreased the false negative rate.Experimental results show that the proposed defense methods are effective.

  15. Laser welding of SSM Cast A356 aluminium alloy processed with CSIR-Rheo technology

    CSIR Research Space (South Africa)

    Akhter, R

    2006-01-01

    Full Text Available Samples of aluminium alloy A356 were manufactured by Semi Solid Metals HPDC technology, developed recently in CSIR, Pretoria. They were butt welded in as cast conditions using as Nd: YAG laser. The best metal and weld microstructure were presented...

  16. TECHNOLOGICAL METHODS FOR LASER HARDENING OF INTERNAL CONTACT SURFACES OF «BELARUS» TRACTOR BRAKE MECHANISMS

    Directory of Open Access Journals (Sweden)

    O. S. Kobjakov

    2008-01-01

    Full Text Available The paper considers pertaining to higher wear resistance of «Belarus» tractor brake mechanisms details are considered. Properties of ВЧ-50-cast iron are investigated due to laser hardening while using various technological methods.

  17. FY07 LDRD Final Report Precision, Split Beam, Chirped-Pulse, Seed Laser Technology

    Energy Technology Data Exchange (ETDEWEB)

    Dawson, J W; Messerly, M J; Phan, H H; Crane, J K; Beach, R J; Siders, C W; Barty, C J

    2009-11-12

    The goal of this LDRD ER was to develop a robust and reliable technology to seed high-energy laser systems with chirped pulses that can be amplified to kilo-Joule energies and recompressed to sub-picosecond pulse widths creating extremely high peak powers suitable for petawatt class physics experiments. This LDRD project focused on the development of optical fiber laser technologies compatible with the current long pulse National Ignition Facility (NIF) seed laser. New technologies developed under this project include, high stability mode-locked fiber lasers, fiber based techniques for reduction of compressed pulse pedestals and prepulses, new compact stretchers based on chirped fiber Bragg gratings (CFBGs), new techniques for manipulation of chirped pulses prior to amplification and new high-energy fiber amplifiers. This project was highly successful and met virtually all of its goals. The National Ignition Campaign has found the results of this work to be very helpful. The LDRD developed system is being employed in experiments to engineer the Advanced Radiographic Capability (ARC) front end and the fully engineered version of the ARC Front End will employ much of the technology and techniques developed here.

  18. Quantification of aggregate grain shape characteristics using 3-D laser scanning technology

    CSIR Research Space (South Africa)

    Mgangira, Martin B

    2013-07-01

    Full Text Available scanner technology. A sample of coarse aggregate andesite particles passing 19.0 mm and retained on 13.2 mm sieve was used for the study. The 3-D images from the laser scanning device were fully utilized in quantifying the shape descriptors in order...

  19. An Analysis of Second-Tier Arms Producing Countries’ Offset Policies: Technology Transfer and Defense Industrial Base Establishment

    Science.gov (United States)

    2008-03-01

    and those that rem of offsets to establish a defense industrial base in the recipient country defense offsets extensively since the 1970s (Perlo...the British/French Jaguar, the British/German/ Italian Tornado, and the French/German Alpha Jet emerged from Thus, the U.S. succeeded in achieving...Other indications of Brazil’s failure to establish self- production which were discussed in Chapter II include the Italian and components to equip their

  20. Defense Technology Area Plan.

    Science.gov (United States)

    1996-05-01

    will be demonstrated as a remediation alternative for hydrocarbon-contaminated sites. Compliance -- The use of plasma arc pyrolysis to destroy ships...development will use an airborne radar test to collect amplitude and phase information on clutter backgrounds representative of those expected for a SBR ...the validity of SBR models and simulations. Upcoming studies of non-conventional radar processing against diverse clutter environments, and automatic

  1. Defense Technology Plan

    Science.gov (United States)

    1994-09-01

    solid waste evaporative treatment for * Supercritical water oxidation treatment ships liquid wastes for destruction of ships liquid - Alternative...Prcpulsion track and amphibious support over water waterjet drive vehicle 4 X current capability SDem•o reduced * Demo reduced length diameter, high...integral steering efficiency waterjet waterjets propulsors_ Future Vehicle * Complete FMBT user- * Demo a main battle FMBT Integration developer studies

  2. Advantages of Picosecond Laser Machining for Cutting-Edge Technologies

    Science.gov (United States)

    Moorhouse, C.

    The demand to reduce the size, weight and material cost of modern electronic devices results in a requirement for precision micromachining to aid product development. Examples include making smaller and more powerful smartphones with brighter displays, eliminating the requirement for post-process cleaning and machining the latest bio- absorbable medical stents. The pace of innovation in high-tech industries has led to ultrafast (picosecond) industrial lasers becoming an important tool for many applications and the high repetition rates now available help to meet industrial throughput levels. This is due to the unique operating regime (megawatts of peak power) enabling clean cutting and patterning of sensitive materials and thin films used in a number of novel devices and allows micromachining of wide bandgap, "difficult" materials such as glass.

  3. Chinese Commission of Science Technology and Industry for National Defense Senior Vice Minister CHEN Qiufa exchanging gifts at luncheon and signing the Guest Book on 1st November 2007 with CERN Director-General R. Aymar.

    CERN Multimedia

    Maximilien Brice

    2007-01-01

    Chinese Commission of Science Technology and Industry for National Defense Senior Vice Minister CHEN Qiufa exchanging gifts at luncheon and signing the Guest Book on 1st November 2007 with CERN Director-General R. Aymar.

  4. Nondestructive Evaluation Technology Working Group Report (IDA/OSD R&M (Institute for Defense Analyses/Office of the Secretary of Defense Reliability and Maintainability Study).

    Science.gov (United States)

    1983-08-01

    repeat inspections reduc- tions is possible through the use of embedded acoustic sensors during initial component production. For example, the fabrica ...area of engineering requirements, i.e., technologies and *" techniques, there are many redundancies. Present plans call for carcelling most ot the

  5. JPRS Report, Science & Technology, China, High-Power Lasers & Laser Fusion Research

    Science.gov (United States)

    1991-10-18

    pcvx [Article by Sun Kexi [1327 0668 3556], Xu Heping [1776 0735 1627], Tang Yongjiang [0781 3075 0256], Zheng Zhijian [6774 1807 1017], and Yang...October 1991 targets. This indicates that Hohlraum targets have a The authors wish to thank Zheng Zhijian [6774 1807 relatively abundant amount of dilute...Guanlong [7806 7070 7893], Dai Dazhi [2071 6671 2535], Wu Fengchun [0702 The amplified spontaneous emission (ASE) of a laser 6646 2504], and Cai Xijie

  6. Technological Aspects of High Speed Direct Laser Deposition Based on Heterophase Powder Metallurgy

    Science.gov (United States)

    Turichin, G. A.; Klimova, O. G.; Zemlyakov, E. V.; Babkin, K. D.; Kolodyazhnyy, D. Yu.; Shamray, F. A.; Travyanov, A. Ya.; Petrovskiy, P. V.

    The article deals with physical peculiarities and technology of high speed processes of direct laser deposition. On the base of theoretic research and computer modeling the powder transfer has been optimized, increasing process stability and productivity. Principles of nozzles design also have been developed in accordance with technological needs. An influence of process mode on product properties and material structure was defined for heat resisted Ni-based superalloys. Developed technology provided the mechanic properties of products on the level of rolled material and allows avoid heat treatment and HIP in production process. Possible ways for increasing process performance and economic efficiency also have been discussed.

  7. Defect Detection in Pipes using a Mobile Laser-Optics Technology and Digital Geometry

    Directory of Open Access Journals (Sweden)

    Tezerjani Abbasali Dehghan

    2015-01-01

    Full Text Available This paper presents a novel method for defect detection in pipes using a mobile laser-optics technology and conventional digital-geometry-based image processing techniques. The laser-optics consists of a laser that projects a line onto the pipe’s surface, and an omnidirectional camera. It can be mounted on a pipe crawling robot for conducting continuous inspection. The projected laser line will be seen as a half-oval in the image. When the laser line passes over defected points, the image moments on the pixel information would change. We propose a B-spline curve fitting on the digitally-convoluted image and a curvature estimation algorithm to detect the defects from the image. Defect sizes of 2 mm or larger can be detected using this method in pipes of up to 24 inch in diameter. The proposed sensor can detect 180-degree (i.e., upper half surface of the pipe. By turning the sensor 180 degrees, one will be able to detect the other half (i.e., lower half of the pipe’s surface. While, 360-degree laser rings are available commercially, but they did not provide the intensity needed for our experimentation. We also propose a fast boundary extraction algorithm for real time detection of defects, where a trace of consecutive images are used to track the image features. Tests were carried out on PVC and steel pipes.

  8. [Study on wavelength locking technology in trace gases detection system based on laser techniques].

    Science.gov (United States)

    Wang, Li-ming; Zhang, Yu-jun; He, Ying; You, Kun; Liu, Jian-guo; Liu, Wen-qing

    2012-04-01

    In the trace gases detection system with tunable diode laser absorption spectroscopy (TDLAS) technology, the measurement of trace gases concentration was influenced by the laser wavelength drift resulting from the change in ambient temperature and noise of laser control electronics. With open-path TDLAS ammonia concentration detection system as an example, in the present paper the scanning law of laser center wavelength with current was analyzed, and the adaptive locking method of scanning laser center wavelength was presented based on controlling laser current. The aligning algorithm of measurement spectroscopy with calibration reference spectroscopy was studied. The open-path ammonia concentration was achieved in real time. Experiment results show that the precision and the stability of retrieving the concentration of trace gases were improved satisfactorily by wavelength locking. The variation of ammonia concentration has an obvious diurnal periodicity, which increased in rush hour time and got to the maximum at noon, then decreased at night. The system detection limit is about 3.8 mg x m(-3) x m.

  9. Development of a new technology of deformable mirror for ultra intense laser applications

    Energy Technology Data Exchange (ETDEWEB)

    Lefaudeux, Nicolas, E-mail: nlefaudeux@imagine-optic.com [Imagine Optic, 18 rue charles de gaulle, 91400 Orsay (France); Levecq, Xavier; Dovillaire, Guillaume; Ballesta, Jerome; Lavergne, Emeric [Imagine Optic, 18 rue charles de gaulle, 91400 Orsay (France); Sauvageot, Paul; Escolano, Lionnel [ISP System (France)

    2011-10-11

    Adaptive optics is now a standard feature for the current ultra high intensity lasers facilities. Aberration induced by both the optical components and the thermal effects in the amplification stages can be corrected with an adaptive optics system to reach both maximum peak energy and fluence. In this article, we present the development of a new technology of deformable mirror. These mirrors are designed taking into account the needs and specificities of ultra intense laser applications. They provide exceptional stability, optical quality and innovative features like scalability and maintenance of the reflective surface.

  10. Solid state laser technology for inertial confinement fusion: A collection of articles from ''Energy and Technology Review''

    Energy Technology Data Exchange (ETDEWEB)

    1988-06-01

    This paper contains reprinted articles that record several milestones in laser research at LLNL. ''Neodymium-Glass Laser Research and Development at LLNL'' recounts the history of the Laser Program and our work on neodymium-glass lasers. ''Nova Laser Technology'' describes the capabilities of the Nova laser and some of its uses. ''Building Nova: Industry Relations and Technology Transfer'' illustrates the Laboratory's commitment to work with US industry in technology development. ''Managing the Nova Laser Project'' details the organization and close monitoring of costs and schedules during the construction of the Nova laser facility. The article ''Optical Coatings by the Sol-Gel Process,'' describes our chemical process for making the damage-resistant, antireflective silica coatings used on the Nova laser glass. The technical challenges in designing and fabricating the KDP crystal arrays used to convert the light wave frequency of the Nova lasers are reported in ''Frequency Conversion of the Nova Laser.'' Two articles, ''Eliminating Platinum Inclusions in Laser Glass'' and ''Detecting Microscopic Inclusions in Optical Glass,'' describe how we dealt with the problem of damaging metal inclusions in the Nova laser glass. The last article reprinted here, ''Auxilliary Target Chamber for Nova,'' discusses the diversion of two of Nova's ten beamlines into a secondary chamber for the purpose of increasing our capacity for experimentation.

  11. Laser formed intentional firearm microstamping technology: counterinsurgency intelligence gathering tool

    Science.gov (United States)

    Lizotte, Todd E.; Ohar, Orest P.

    2009-09-01

    Warfare relies on effective, accurate and timely intelligence an especially critical task when conducting a counterinsurgency operation [1]. Simply stated counterinsurgency is an intelligence war. Both insurgents and counterinsurgents need effective intelligence capabilities to be successful. Insurgents and counterinsurgents therefore attempt to create and maintain intelligence networks and fight continuously to neutralize each other's intelligence capabilities [1][2]. In such an environment it is obviously an advantage to target or proactively create opportunities to track and map an insurgent movement. Quickly identifying insurgency intelligence assets (Infiltrators) within a host government's infrastructure is the goal. Infiltrators can occupy various areas of government such as security personnel, national police force, government offices or military units. Intentional Firearm Microstamping offers such opportunities when implemented into firearms. Outfitted within firearms purchased and distributed to the host nation's security forces (civilian and military), Intentional Firearm Microstamping (IFM) marks bullet cartridge casings with codes as they are fired from the firearm. IFM is incorporated onto optimum surfaces with the firearm mechanism. The intentional microstamp tooling marks can take the form of alphanumeric codes or encoded geometric codes that identify the firearm. As the firearm is discharged the intentional tooling marks transfer a code to the cartridge casing which is ejected out of the firearm. When recovered at the scene of a firefight or engagement, the technology will provide forensic intelligence allowing the mapping and tracking of small arms traffic patterns within the host nation or identify insurgency force strength and pinpoint firearm sources, such as corrupt/rogue military units or police force. Intentional Firearm Microstamping is a passive mechanical trace technology that can be outfitted or retrofitted to semiautomatic handguns and

  12. Legacy of the X-Ray Laser Program

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, J.

    1993-08-06

    The X-Ray Laser Program has evolved from a design effort focusing on developing a Strategic Defense Initiative weapon that protects against Soviet ICBMs to a scientific project that is producing new technologies for industrial and medical research. While the great technical successes and failures of the X-ray laser itself cannot be discussed, this article presents the many significant achievements made as part of the X-ray laser effort that are now being used for other applications at LLNL.

  13. Study on the high-precision laser welding technology of nuclear fuel elements processing

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Soo Sung; Yang, M. S.; Kim, W. K.; Lee, D. Y

    2001-01-01

    The proper welding method for appendage of bearing pads and spacers of PHWR nuclear fuel elements is considered important in respect to the soundness of weldments and the improvement of the performance of nuclear fuels during the operation in reactor. The probability of welding defects of the appendage parts is mostly apt to occur and it is connected directly with the safty and life prediction of the nuclear reactor in operation. Recently there has been studied all over the world to develope welding technology by laser in nuclear fuel processing, and the appendage of bearing pads and spacers of PHWR nuclear fuel elements. Therefore, the purpose of this study is to investigate the characteristics of the laser welded specimens and make some samples for the appendage of bearing pads of PHWR nuclear fuel elements. This study will be also provide the basic data for the fabrications of the appendage of bearing pads and spacers. Especially the laser welding is supposed to be used in the practical application such as precise materials manufacturing fields. In this respect this technology is not only a basic advanced technology with wide applications but also likely to be used for the development of directly applicable technologies for industries, with high potential benefits derived in the view point of economy and industry.

  14. Overview of laser warning technology%"解剖"激光告警

    Institute of Scientific and Technical Information of China (English)

    朱家健

    2009-01-01

    介绍了激光告警的作用,分析了激光告警器的原理、性能要求和分类,然后分别阐述了典型的光谱识别型、相干识别型和散射探测型激光告警器,并对不同类型的激光告警器进行了比较评价.%An introduction to the role of laser warning on the battlefield is presented, with an overview of the principle, required specifications and classification of laser warning devices. Specific types are described, including those devoted to spectrum recognition, coherent recognition, and scattering detection, and their properties compared. Finally, future developments of laser warning technology are discussed.

  15. [The use of laser technology for the treatment of ureterointestinal stenosis].

    Science.gov (United States)

    Serrano, Alvaro; Fernández, Inmaculada; Otero, Ignacio; González-Peramato, Pilar; Chicharro, Javier; Escolano, Antonio; Herrero, Lorenzo; Golbano, Jesús

    2008-11-01

    Ureteral-intestinal anastomosis represent on important problem in patients undergoing radical cystectomy with urinary diversion using intestinal segments, either small or large intestine. With the incorporation of laser technology in urology, new therapeutic possibilities have been opened for the section of these ureteral intestinal stenosis. Various types of laser had been employed to perform the incision, Nd:YAG, KTP:YAG, Ho:YAG, Er:YAG, and Th:YAG. The experience is limited in terms of use and results don't give clear therapeutic orientation. The section of ureteral-intestinal stenosis with laser has advantages and disadvantages, but the application of this energy source with various techniques of endoscopic section, such as the Lovaco's technique of endoluminal invagination and endoureterotomy gives satisfactory results in the short-midterm.

  16. Implementation of the Defense Business Operations Fund (DBOF) Policies and Unit Costing in the Air Force Institute of Technology (AFIT)

    Science.gov (United States)

    1993-09-01

    a bussines . The "fee for service" program may enable part of the DOD perform better, but other parts of DOD cannot use the program effectively. You...research or class development. What makes AFRT different from MIT, Harvard , or Yale? 3.1. 1 agree. 0 4. In the era of defense drawdown, the DOD may

  17. Slope excavation quality assessment and excavated volume calculation in hydraulic projects based on laser scanning technology

    Directory of Open Access Journals (Sweden)

    Chao Hu

    2015-04-01

    Full Text Available Slope excavation is one of the most crucial steps in the construction of a hydraulic project. Excavation project quality assessment and excavated volume calculation are critical in construction management. The positioning of excavation projects using traditional instruments is inefficient and may cause error. To improve the efficiency and precision of calculation and assessment, three-dimensional laser scanning technology was used for slope excavation quality assessment. An efficient data acquisition, processing, and management workflow was presented in this study. Based on the quality control indices, including the average gradient, slope toe elevation, and overbreak and underbreak, cross-sectional quality assessment and holistic quality assessment methods were proposed to assess the slope excavation quality with laser-scanned data. An algorithm was also presented to calculate the excavated volume with laser-scanned data. A field application and a laboratory experiment were carried out to verify the feasibility of these methods for excavation quality assessment and excavated volume calculation. The results show that the quality assessment indices can be obtained rapidly and accurately with design parameters and scanned data, and the results of holistic quality assessment are consistent with those of cross-sectional quality assessment. In addition, the time consumption in excavation project quality assessment with the laser scanning technology can be reduced by 70%−90%, as compared with the traditional method. The excavated volume calculated with the scanned data only slightly differs from measured data, demonstrating the applicability of the excavated volume calculation method presented in this study.

  18. Fiber-Based, Trace-Gas, Laser Transmitter Technology Development for Space

    Science.gov (United States)

    Stephen, Mark; Yu, Anthony; Chen, Jeffrey; Nicholson, Jeffrey; Engin, Doruk; Mathason, Brian; Wu, Stewart; Allan, Graham; Hasselbrack, William; Gonzalez, Brayler; Han, Lawrence; Numata, Kenji; Storm, Mark; Abshire, James

    2015-01-01

    NASA’s Goddard Space Flight Center (GSFC) is working on maturing the technology readiness of a laser transmitter designed for use in atmospheric CO2 remote-sensing. GSFC has been developing an airplane-based CO2 lidar instrument over several years to demonstrate the efficacy of the instrumentation and measurement technique and to link the science models to the instrument performance. The ultimate goal is to make space-based satellite measurements with global coverage. In order to accomplish this, we must demonstrate the technology readiness and performance of the components as well as demonstrate the required power-scaling to make the link with the required signal-to-noise-ratio (SNR). To date, all the instrument components have been shown to have the required performance with the exception of the laser transmitter.In this program we are working on a fiber-based master oscillator power amplifier (MOPA) laser transmitter architecture where we will develop a ruggedized package and perform the relevant environmental tests to demonstrate TRL-6. In this paper we will review our transmitter architecture and progress on the performance and packaging of the laser transmitter.

  19. High-precision pose measurement method in wind tunnels based on laser-aided vision technology

    Directory of Open Access Journals (Sweden)

    Liu Wei

    2015-08-01

    Full Text Available The measurement of position and attitude parameters for the isolated target from a high-speed aircraft is a great challenge in the field of wind tunnel simulation technology. In this paper, firstly, an image acquisition method for small high-speed targets with multi-dimensional movement in wind tunnel environment is proposed based on laser-aided vision technology. Combining with the trajectory simulation of the isolated model, the reasonably distributed laser stripes and self-luminous markers are utilized to capture clear images of the object. Then, after image processing, feature extraction, stereo correspondence and reconstruction, three-dimensional information of laser stripes and self-luminous markers are calculated. Besides, a pose solution method based on projected laser stripes and self-luminous markers is proposed. Finally, simulation experiments on measuring the position and attitude of high-speed rolling targets are conducted, as well as accuracy verification experiments. Experimental results indicate that the proposed method is feasible and efficient for measuring the pose parameters of rolling targets in wind tunnels.

  20. Quality control of laser- and powder bed-based Additive Manufacturing (AM) technologies

    Science.gov (United States)

    Berumen, Sebastian; Bechmann, Florian; Lindner, Stefan; Kruth, Jean-Pierre; Craeghs, Tom

    The quality of metal components manufactured by laser- and powder bed-based additive manufacturing technologies has continuously been improved over the last years. However, to establish this production technology in industries with very high quality standards the accessibility of prevalent quality management methods to all steps of the process chain needs still to be enhanced. This publication describes which tools are and will be available to fulfil those requirements from the perspective of a laser machine manufacturer. Generally five aspects of the part building process are covered by separate Quality Management (QM) modules: the powder quality, the temperature management, the process gas atmosphere, the melt pool behaviour and the documentation module. This paper sets the focus on melt pool analysis and control.

  1. Laser Ablation as Enabling Technology for the Structuring of Optical Multilayer Structures

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickx, N; Steenberge, G Van; Geerinck, P; Daele, P Van [TFCG Microsystems, Department of Information Technology, Ghent University, Technologiepark Zwijnaarde, Building 914A, B-9052 Ghent (Belgium)

    2007-04-15

    In this paper, laser ablation is presented as a versatile technology that can be used for the fabrication of all building blocks and functional elements required for an optical interconnection, integrated in printed circuit boards (PCBs). The integration of optical interconnections in PCBs is an emerging field in which interest worldwide is rapidly growing. The limiting factor is mainly the compatibility of new technologies, used to define and fabricate the optical interconnections, with standard FR4-processing steps, temperatures and lamination pressures. Laser ablation, which is currently frequently used for the drilling of electrical micro-vias in PCBs, has proven to be fully compatible with standard PCB manufacturing. An optical two layer structure is studied that can make full use of the functionalities of 2D elements such as VCSEL or photodiode arrays.

  2. Ethical Defense and Reflection on "Designed Babies" Technology%“设计婴儿”技术的伦理辩护及反思

    Institute of Scientific and Technical Information of China (English)

    刘欣怡; 刘俊荣; 黄海

    2012-01-01

    Ethical defense of "designed babies" technology is based on the religious and philosophical reasons. The justification is according to the following standpoints: not natural does not meaning immoral; religious laws are not common command; respect of the dignity and rights of women; causing the moral hazard is the usage of people not the technology itself. However, the defense will bring out some ethical reflections, such as might lead to "designed babies" technology into a "rationalist" trap and put us into a moral dilemma.%“设计婴儿”技术合理性的伦理辩护是基于反对“设计婴儿”技术的宗教和哲学的两种依据,分别从不自然不一定意味着不道德,宗教法则并不是普遍命令,维护妇女的尊严和权利,产生道德滑坡现象的关键是人运用的问题等角度进行伦理辩护.但是,这些伦理辩护会带来某些反思,如可能导致“设计婴儿”技术陷入“理性主义”的陷阱和于伦理辩护外的两难抉择.

  3. A Technology Demonstration Experiment for Laser Cooled Atomic Clocks in Space

    Science.gov (United States)

    Klipstein, W. M.; Kohel, J.; Seidel, D. J.; Thompson, R. J.; Maleki, L.; Gibble, K.

    2000-01-01

    We have been developing a laser-cooling apparatus for flight on the International Space Station (ISS), with the intention of demonstrating linewidths on the cesium clock transition narrower than can be realized on the ground. GLACE (the Glovebox Laser- cooled Atomic Clock Experiment) is scheduled for launch on Utilization Flight 3 (UF3) in 2002, and will be mounted in one of the ISS Glovebox platforms for an anticipated 2-3 week run. Separate flight definition projects funded at NIST and Yale by the Micro- gravity Research Division of NASA as a part of its Laser Cooling and Atomic Physics (LCAP) program will follow GLACE. Core technologies for these and other LCAP missions are being developed at JPL, with the current emphasis on developing components such as the laser and optics subsystem, and non-magnetic vacuum-compatible mechanical shutters. Significant technical challenges in developing a space qualifiable laser cooling apparatus include reducing the volume, mass, and power requirements, while increasing the ruggedness and reliability in order to both withstand typical launch conditions and achieve several months of unattended operation. This work was performed at the Jet Propulsion Laboratory under a contract with the National Aeronautics and Space Administration.

  4. Directed energy missions for planetary defense

    Science.gov (United States)

    Lubin, Philip; Hughes, Gary B.; Eskenazi, Mike; Kosmo, Kelly; Johansson, Isabella E.; Griswold, Janelle; Pryor, Mark; O'Neill, Hugh; Meinhold, Peter; Suen, Jonathan; Riley, Jordan; Zhang, Qicheng; Walsh, Kevin; Melis, Carl; Kangas, Miikka; Motta, Caio; Brashears, Travis

    2016-09-01

    Directed energy for planetary defense is now a viable option and is superior in many ways to other proposed technologies, being able to defend the Earth against all known threats. This paper presents basic ideas behind a directed energy planetary defense system that utilizes laser ablation of an asteroid to impart a deflecting force on the target. A conceptual philosophy called DE-STAR, which stands for Directed Energy System for Targeting of Asteroids and exploration, is an orbiting stand-off system, which has been described in other papers. This paper describes a smaller, stand-on system known as DE-STARLITE as a reduced-scale version of DE-STAR. Both share the same basic heritage of a directed energy array that heats the surface of the target to the point of high surface vapor pressure that causes significant mass ejection thus forming an ejection plume of material from the target that acts as a rocket to deflect the object. This is generally classified as laser ablation. DE-STARLITE uses conventional propellant for launch to LEO and then ion engines to propel the spacecraft from LEO to the near-Earth asteroid (NEA). During laser ablation, the asteroid itself provides the propellant source material; thus a very modest spacecraft can deflect an asteroid much larger than would be possible with a system of similar mission mass using ion beam deflection (IBD) or a gravity tractor. DE-STARLITE is capable of deflecting an Apophis-class (325 m diameter) asteroid with a 1- to 15-year targeting time (laser on time) depending on the system design. The mission fits within the rough mission parameters of the Asteroid Redirect Mission (ARM) program in terms of mass and size. DE-STARLITE also has much greater capability for planetary defense than current proposals and is readily scalable to match the threat. It can deflect all known threats with sufficient warning.

  5. The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, March 28, 1994--September 27, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Bartley, D.A.; Morrison, J.L. [and others

    1995-04-14

    The US Department of Defense (DOD), through an Interagency Agreement with the US Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first two phases of the program are underway. Activities this reporting period included performing coal beneficiation/preparation studies, conducting combustion performance evaluations, preparing retrofit engineering designs, determining retrofit economics, and installing a micronized coal-water mixture (MCWM) circuit.

  6. Hard rock drilling: from conventional technologies to the potential use of laser; Perfuracao em rochas duras: das tecnologias convencionais ate o potencial uso do laser

    Energy Technology Data Exchange (ETDEWEB)

    Amaro, Renato; Lomba, Rosana Fatima Teixieira [Petroleo Brasileiro S.A. (PETROBRAS), Rio de Janeiro, RJ (Brazil); Perez, Maria Angelica Acosta; Valente, Luiz Carlos Guedes; Braga, Arthur Martins Barbosa [Pontificia Universidade Catolica do Rio de Janeiro (PUC-Rio), RJ (Brazil)

    2012-07-01

    One of the biggest challenges in the drilling of the carbonate rocks of the Pre-salt is to overcome the low penetration rates that have been obtained in the drilling of the reservoir rock in the vertical and directional wells. To overcome this challenge, a great effort is being developed in several lines of research, both in developing new concepts in drill bits and in the selection of a drilling system that together with appropriate type of bit provide an expected improvement in performance. To achieve these results, procedures are being prioritized and drilling systems with lower vibration levels are being used, since this phenomenon of vibration reduces the performance of penetration rate also affecting the lifetime of the equipment and consequently causes a reduction in reliability of all system and raises the cost per meter of drilling. Thus, new drill bit technology and new drilling systems are under development and, among these technologies we can distinguish those that promote improvements in conventional technologies and innovative technologies frankly which uses new mechanisms to cut or weaken the rock. This paper presents an overview of the conventional technology of drilling systems and drill bits, and provides information about the researches that have been developed with the use of innovative technologies which is presented as highly promising, among these innovative technologies, laser drilling and the drilling itself assisted by laser. In this process the laser beam has the main function to weaken the rock improving the rate of penetration. This paper presents a summary of studies and analyzes which are underway to investigate the potential of laser technology, also presents some results of laboratory tests already carried out. The drilling fluid in which the laser will have to pass through in the future applications is analyzed on the approach of their physicochemical properties. Thus, a better understanding of the interaction with the drilling

  7. Prospects for a novel ultrashort pulsed laser technology for pathogen inactivation

    Directory of Open Access Journals (Sweden)

    Tsen Shaw-Wei D

    2012-07-01

    Full Text Available Abstract The threat of emerging pathogens and microbial drug resistance has spurred tremendous efforts to develop new and more effective antimicrobial strategies. Recently, a novel ultrashort pulsed (USP laser technology has been developed that enables efficient and chemical-free inactivation of a wide spectrum of viral and bacterial pathogens. Such a technology circumvents the need to introduce potentially toxic chemicals and could permit safe and environmentally friendly pathogen reduction, with a multitude of possible applications including the sterilization of pharmaceuticals and blood products, and the generation of attenuated or inactivated vaccines.

  8. Technological study of laser cutting silicon steel controlled by rotating gas flow

    Science.gov (United States)

    Lei, Hong; Yi, Zhang; chenglong, Mi

    2009-04-01

    Using traditional laser cutting technology, it is easy to produce molten slag in laser cutting silicon steel sheet. The main reason is the inevitable oxidizing reaction in the process caused by the use of oxygen as the aided gas. As a common solution, high pressure and high purity N 2 or an inert gas is therefore used instead of oxygen. Although the cut quality is improved, the cutting efficiency is reduced because of the lack of energy generated from an exothermic oxidation reaction. The technology used in this paper is to employ a newly developed cyclone slag separator. The slag separator is located under the workpiece to form rotating gas flow for controlling the direction of the flowing slag gas. Adopting the new technology reported here, oxygen is still used as the aided gas. The experiments prove that, by controlling the technical parameters reasonably tightly, glossy and dross-free cutting kerfs are obtained for reduced laser power. The gas flow acting under the workpiece is simulated using the finite element method (FEM). The operating law of the rotating gas flow is verified by ANSYS, which provides an academic basis for controlling the flowing direction of the slag gas.

  9. Laser microprocessing technologies for automotive, flexible electronics, and solar energy sectors

    Science.gov (United States)

    Nikumb, Suwas; Bathe, Ravi; Knopf, George K.

    2014-10-01

    Laser microprocessing technologies offer an important tool to fulfill the needs of many industrial sectors. In particular, there is growing interest in applications of these processes in the manufacturing areas such as automotive parts fabrication, printable electronics and solar energy panels. The technology is primarily driven by our understanding of the fundamental laser-material interaction, process control strategies and the advancement of significant fabrication experience over the past few years. The wide-ranging operating parameters available with respect to power, pulse width variation, beam quality, higher repetition rates as well as precise control of the energy deposition through programmable pulse shaping technologies, enables pre-defined material removal, selective scribing of individual layer within a stacked multi-layer thin film structure, texturing of material surfaces as well as precise introduction of heat into the material to monitor its characteristic properties are a few examples. In this research, results in the area of laser surface texturing of metals for added hydrodynamic lubricity to reduce friction, processing of ink-jet printed graphene oxide for flexible printed electronic circuit fabrication and scribing of multi-layer thin films for the development of photovoltaic CuInGaSe2 (CIGS) interconnects for solar panel devices will be discussed.

  10. Technological and Physical Compatibilities in Hybrid Integration of Laser and Monolithic Integration of Waveguide, Photodetector and CMOS Circuits on Silicon

    NARCIS (Netherlands)

    Zhou, M.J.; Ikkink, T.; Chalmers, J.; Kranenburg, H. van; Albers, H.; Holleman, J.; Lambeck, P.V.; Joppe, J.L.; Bekman, H.H.P.T.; Krijger, A.J.T. de

    1994-01-01

    In this paper, technological and physical compatibilities in hybrid integration of AlInGaP laser and monolithic integration of ZnO monomode waveguide, pin-photodetector, CMOS circuits for laser power control and signal amplification on silicon substrate are studied. Prospective problems and their po

  11. Technological and physical compatibilities in hybrid integration of laser and monolithic integration of waveguide, photodetector and CMOS circuits on silicon

    NARCIS (Netherlands)

    Zhou, Ming-Jiang; Ikkink, Ton; Chalmers, John; Kranenburg, van Herma; Albers, Hans; Holleman, Jisk; Lambeck, Paul; Joppe, Jan Leendert; Bekman, Herman; Krijger, de Ton; Lambeck, P.V.

    1994-01-01

    In this paper, technological and physical compatibilities in hybrid integration of AlInGaP laser and monolithic integration of ZnO monomode waveguide, pin-photodetector, CMOS circuits for laser power control and signal amplification on silicon substrate are studied. Prospective problems and their po

  12. Issues in defense training systems immersive displays

    Science.gov (United States)

    Gaylord, Philip

    2006-05-01

    Display technology for DOD immersive projector-based flight training systems are at a crossroads as CRT technology slowly disappears from the market place. From the DOD perspective, emerging technologies arrive poorly matched to satisfy training needs. The DOD represents a minority voice in the marketplace. Current issues include: Satisfying requirements for black level, brightness and contrast ratio, Establishing standard metrics for resolution, system performance and reliability, Obtaining maintainability and self-calibration in multi-channel arrays, Reducing screen cross-reflection in wrap-around immersive display arrays. Laser, DLP, and LCOS projector systems are compared for their current acceptance and problems in defense flight training systems. General requirements of visual display systems are discussed and contrasted for flight trainers for low flyers (helicopters) high flyers (tactical aircraft) in real-time immersive, networked systems. FLIR and NVG simulation techniques are described.

  13. Survey of Laboratories and Implementation of the Federal Defense Laboratory Diversification Program

    Science.gov (United States)

    1994-02-01

    Defense Technology Transfer Working Group AGENCY...Director, Defense Research and Engineering. ACTION: solicitation in inputs for defense technology transfer . The Defense Technology Transfer Working...DAILY, 2.3 July 1993 Detense Nuclear Agency, 6801 Telegraph Road, Alexandria,, VA 22310D-3398 A - SOURCES SOUGHT FOR INPUTS FOR DEFENSE TECHNOLOGY TRANSFER

  14. Advanced technologies in the ASI MLRO towards a new generation laser ranging system

    Science.gov (United States)

    Varghese, Thomas; Bianco, Giuseppe

    1994-01-01

    Matera Laser Ranging Observatory (MLRO) is a high performance, highly automated optical and astronomical observatory currently under design and development by AlliedSignal for the Italian Space Agency (ASI). It is projected to become operational at the Centro Geodesia Spaziale in Matera, Italy, in 1997. MLRO, based on a 1.5-meter astronomical quality telescope, will perform ranging to spacecraft in earthbound orbits, lunar reflectors, and specially equipped deep space missions. The primary emphasis during design is to incorporate state-of-the-art technologies to produce an intelligent, automated, high accuracy ranging system that will mimic the characteristic features of a fifth generation laser ranging system. The telescope has multiple ports and foci to support future experiments in the areas of laser communications, lidar, astrometry, etc. The key features providing state-of-the-art ranging performance include: a diode-pumped picosecond (50 ps) laser, high speed (3-5 GHz) optoelectronic detection and signal processing, and a high accuracy (6 ps) high resolution (less than 2 ps) time measurement capability. The above combination of technologies is expected to yield millimeter laser ranging precision and accuracy on targets up to 300,000 km, surpassing the best operational instrument performance to date by a factor of five or more. Distributed processing and control using a state-of-the-art computing environment provides the framework for efficient operation, system optimization, and diagnostics. A computationally intelligent environment permits optimal planning, scheduling, tracking, and data processing. It also supports remote access, monitor, and control for joint experiments with other observatories.

  15. Accelerator Technology Division

    Science.gov (United States)

    1992-04-01

    In fiscal year (FY) 1991, the Accelerator Technology (AT) division continued fulfilling its mission to pursue accelerator science and technology and to develop new accelerator concepts for application to research, defense, energy, industry, and other areas of national interest. This report discusses the following programs: The Ground Test Accelerator Program; APLE Free-Electron Laser Program; Accelerator Transmutation of Waste; JAERI, OMEGA Project, and Intense Neutron Source for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Super Collider; The High-Power Microwave Program; (Phi) Factory Collaboration; Neutral Particle Beam Power System Highlights; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  16. An assessment of Turkish Defense Industry and Turkey's efforts to transfer military technology: strategies for arming the future

    OpenAIRE

    2001-01-01

    The end of the cold war has created a safer environment for most nations and reduced the need for fielding huge armed forces and vast investments for defense. However, due to her very special strategic position and historical responsibilities, Turkey still faces a range of substantial threats to its national interests, physical security, economic well being. These threats require the maintenance of a broad set of military capabilities in order to deter, and if necessary, to fight and win any ...

  17. 我国全固态激光技术研发情况及发展趋势%New Progress on All Solid State Laser Technology in China

    Institute of Scientific and Technical Information of China (English)

    姚建铨

    2007-01-01

    @@ 1 Significance of All Solid State Laser (DPL)Technology in Field of Laser Because of the advantages of high conversion efficiency, good beam quality, small size and light weight, DPL becomes the hotspot and priority of development of laser technology. It may be the main body of laser in the future and replace gas laser and liquid laser. It is a great revolution of laser technology.

  18. Aerospace laser communications technology as enabler for worldwide quantum key distribution

    Science.gov (United States)

    Moll, Florian; Weinfurter, Harald; Rau, Markus; Schmidt, Christopher; Melén, Gwen; Vogl, Tobias; Nauerth, Sebastian; Fuchs, Christian

    2016-04-01

    A worldwide growing interest in fast and secure data communications pushes technology development along two lines. While fast communications can be realized using laser communications in fiber and free-space, inherently secure communications can be achieved using quantum key distribution (QKD). By combining both technologies in a single device, many synergies can be exploited, therefore reducing size, weight and power of future systems. In recent experiments we demonstrated quantum communications over large distances as well as between an aircraft and a ground station which proved the feasibility of QKD between moving partners. Satellites thus may be used as trusted nodes in combination with QKD receiver stations on ground, thereby enabling fast and secure communications on a global scale. We discuss the previous experiment with emphasis on necessary developments to be done and corresponding ongoing research work of German Aerospace Center (DLR) and Ludwig Maximilians University Munich (LMU). DLR is performing research on satellite and ground terminals for the high-rate laser communication component, which are enabling technologies for the QKD link. We describe the concept and hardware of three generations of OSIRIS (Optical High Speed Infrared Link System) laser communication terminals for low Earth orbiting satellites. The first type applies laser beam pointing solely based on classical satellite control, the second uses an optical feedback to the satellite bus and the third, currently being in design phase, comprises of a special coarse pointing assembly to control beam direction independent of satellite orientation. Ongoing work also targets optical terminals for CubeSats. A further increase of beam pointing accuracy can be achieved with a fine pointing assembly. Two ground stations will be available for future testing, an advanced stationary ground station and a transportable ground station. In parallel the LMU QKD source size will be reduced by more than an

  19. Research on Proactive Defense Model Based on Virtualization Technology%基于硬件虚拟化的主动防御模型研究

    Institute of Scientific and Technical Information of China (English)

    徐鲲; 廖小飞

    2012-01-01

    基于HOOK内核代码的传统主动防御软件在放行恶意驱动后对于高危险的恶意代码无法做到有效防御,因此在在已有的病毒行为分析和模式识别技术的基础上,提出了一种基于硬件虚拟化的主动防御模型.详细阐述了硬件虚拟化的主动防御系统的主体构架和实现,系统功能模块的划分及实现原理,行为视窗监控、黑白名单等关键技术的实现方法,从更底层的角度进行行为检测防御,并通过影子页表可以实现高强度的自我保护.%The traditional proactive defense software based on HOOK Kernel code can't defend effectively to the high risk of malicious code after releasing malicious drivers. So based on existing virus behavior analysis and patternrecognition technology, we put forward a new proactive defense model based on Hardware virtualization. It describes in detail the main structure and realization of active defense system of hardware virtualization, the divisionof the module and the principle of realization of the system function, the behavior of Windows monitoring, the black and white lists and so on, all the Implementation of key technologies. It can undertake the behavior detection defensefrom the perspective of lower-level, and it can also achieve high strength of the self-protection through the shadow page table.

  20. Free-space and underwater GHz data transmission using AlGaInN laser diode technology

    Science.gov (United States)

    Najda, S. P.; Perlin, P.; Suski, T.; Marona, L.; Boćkowski, M.; Leszczyński, M.; Wisniewski, P.; Czernecki, R.; Kucharski, R.; Targowski, G.; Watson, S.; Kelly, A. E.

    2016-05-01

    Laser diodes fabricated from the AlGaInN material system is an emerging technology for defence and security applications; in particular for free space laser communication. Conventional underwater communication is done acoustically with very slow data rates, short reach, and vulnurable for interception. AlGaInN blue-green laser diode technology allows the possibility of both airbourne links and underwater telecom that operate at very fast data rates (GHz), long reach (100's of metres underwater) and can also be quantum encrypted. The latest developments in AlGaInN laser diode technology are reviewed for defence and security applications. The AlGaInN material system allows for laser diodes to be fabricated over a very wide range of wavelengths from u.v., ~380nm, to the visible ~530nm, by tuning the indium content of the laser GaInN quantum well. Ridge waveguide laser diode structures are fabricated to achieve single mode operation with optical powers of communications at high frequency (up to 2.5 Gbit/s) using a directly modulated 422nm Galliumnitride (GaN) blue laser diode is reported in free-space and underwater.

  1. Self-Raman Nd:YVO4 laser and electro-optic technology for space-based sodium lidar instrument

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-02-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nm. A CW External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nm. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nm. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9W @ 532 nm wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  2. Self-Raman Nd:YVO4 Laser and Electro-Optic Technology for Space-Based Sodium Lidar Instrument

    Science.gov (United States)

    Krainak, Michael A.; Yu, Anthony W.; Janches, Diego; Jones, Sarah L.; Blagojevic, Branimir; Chen, Jeffrey

    2014-01-01

    We are developing a laser and electro-optic technology to remotely measure Sodium (Na) by adapting existing lidar technology with space flight heritage. The developed instrumentation will serve as the core for the planning of an Heliophysics mission targeted to study the composition and dynamics of Earth's mesosphere based on a spaceborne lidar that will measure the mesospheric Na layer. We present performance results from our diode-pumped tunable Q-switched self-Raman c-cut Nd:YVO4 laser with intra-cavity frequency doubling that produces multi-watt 589 nm wavelength output. The c-cut Nd:YVO4 laser has a fundamental wavelength that is tunable from 1063-1067 nanometers. A CW (Continuous Wave) External Cavity diode laser is used as a injection seeder to provide single-frequency grating tunable output around 1066 nanometers. The injection-seeded self-Raman shifted Nd:VO4 laser is tuned across the sodium vapor D2 line at 589 nanometers. We will review technologies that provide strong leverage for the sodium lidar laser system with strong heritage from the Ice Cloud and Land Elevation Satellite-2 (ICESat-2) Advanced Topographic Laser Altimeter System (ATLAS). These include a space-qualified frequency-doubled 9 watts-at-532-nanometer wavelength Nd:YVO4 laser, a tandem interference filter temperature-stabilized fused-silica-etalon receiver and high-bandwidth photon-counting detectors.

  3. Application of SFM and laser scanning technology to the description of mosaics piece by piece

    Science.gov (United States)

    Ajioka, O.; Hori, Y.

    2014-06-01

    Mosaic floors of surviving buildings in Ostia have been mainly recorded in photographs. From 2008, Japanese research group carries out a project of 3d measuring of the whole structure of ancient Roman city Ostia using laser scanners, including its landscape, city blocks, streets, buildings, wall paintings and mosaics. The laser scanner allows for a more detailed analysis and a greater potential for recording mosaics. We can record the data of mosaics, which are described piece by piece. However it is hard to acquire enough high dense point cloud and the internal camera of the laser scanner produce low quality images. We introduce a possible technology of 3D recording of mosaics with high-quality colour information; SFM. The use of this technique permits us to create 3D models from images provided from a CCD camera without heavy and large laser scanners. We applied SFM system to different three types of the mosaics laid down on the floors of "the House of the Dioscuroi", "the Insula of the Muse" and "the House of Jove and Ganymede", and created high resolution orthographic images. Then we examined to compare these orthographic images with that are created from the point cloud data. As a result, we confirmed that SFM system has sufficient practical utility for the mosaic research. And we present how much of density of point cloud or ground resolution are required for the documentation of mosaics accurately.

  4. Theory modeling and experimental research of external-cavity frequency doubling technology of short pulse laser

    Science.gov (United States)

    Duan, Cun-li; Zhang, Su-juan; He, Jiang-long

    2011-06-01

    Q-switched Short pulse laser has been widely applied in many fields, such as optical ranging, remote sensing, communications, nonlinear optics and spectroscopy etc. Q-switched Nd3+: YAG laser, with its high thermal conductivity and resistance to damage threshold, longer energy levels were generally used especially. Second harmonics generation was usually obtained through optical nonlinear effects in crystal. To the frequency doubling technology, poor conversion efficiency and multi-output frequency are the main problems. Researchers focus more on phase and group velocity matching induced by nonlinear effects, but pays less attention on theoretical modeling and numerical calculation of factors affecting frequency doubling of pulsed laser. In this article, nonlinear effects of double frequency crystals in Q-switched Nd3+: YAG laser was first analyzed in theory, then we deduced the relation expressions between factors affecting the efficiency of frequency doubling( thickness of frequency doubling crystal, cross section area of incident beam, power of the fundamental field, phase matching of incidence light)and double frequency efficiency. Secondly, taken KTP Crystal for example; numerical results and theirs' corresponding curves on these relation expressions was calculated and drawn with MATLAB software. These findings can be used for processing the specific requests of frequency doubling crystal. Finally, Theory modeling and numerical calculation were tested in experiment. The experiment results are in good agreement with those obtained in theory.

  5. Technology insight: Laser-scanning confocal microscopy and endocytoscopy for cellular observation of the gastrointestinal tract.

    Science.gov (United States)

    Inoue, Haruhiro; Kudo, Shin-ei; Shiokawa, Akira

    2005-01-01

    Recent advances in endoscopic imaging technology have enabled the visualization of early-stage cancer and its precursors in the gastrointestinal tract. Chromoendoscopy, magnifying endoscopy, endoscopic optical coherent tomography, spectroscopy, and various combinations of these technologies, are all important for the recognition of small and unclear lesions. To observe cancer cells in vivo, two types of ultra-high magnifying endoscope--'laser-scanning confocal endoscopy series' and 'contact endoscopy series'--that have a maximum of more than 1,000x magnifying power have been developed. These endoscopes can generate high-quality images of both living cancer cells and normal cells in the gastrointestinal tract, with a quality comparable to that possible with conventional cytology. These novel imaging technologies may make in vivo histological diagnosis by virtual histology possible.

  6. Inner structure detection by optical tomography technology based on feedback of microchip Nd:YAG lasers.

    Science.gov (United States)

    Xu, Chunxin; Zhang, Shulian; Tan, Yidong; Zhao, Shijie

    2013-05-20

    We describe a new optical tomography technology based on feedback of microchip Nd:YAG lasers. In the case of feedback light frequency-shifted, light can be magnified by a fact of 10(6) in the Nd:YAG microchip lasers, which makes it possible to realize optical tomography with a greater depth than current optical tomography. The results of the measuring and imaging of kinds of samples are presented, which demonstrate the feasibility and potential of this approach in the inner structure detection. The system has a lateral resolution of ~1 μm, a vertical resolution of 15 μm and a longitudinal scanning range of over 10mm.

  7. Future prospects in dermatologic applications of lasers, nanotechnology, and other new technologies.

    Science.gov (United States)

    Boixeda, P; Feltes, F; Santiago, J L; Paoli, J

    2015-04-01

    We review novel technologies with diagnostic and therapeutic applications in dermatology. Among the diagnostic techniques that promise to become part of dermatologic practice in the future are optical coherence tomography, multiphoton laser scanning microscopy, Raman spectroscopy, thermography, and 7-T magnetic resonance imaging. Advances in therapy include novel light-based treatments, such as those applying lasers to new targets and in new wavelengths. Devices for home therapy are also appearing. We comment on the therapeutic uses of plasma, ultrasound, radiofrequency energy, total reflection amplification of spontaneous emission of radiation, light stimulation, and transepidermal drug delivery. Finally, we mention some basic developments in nanotechnology with prospects for future application in dermatology. Copyright © 2014 Elsevier España, S.L.U. and AEDV. All rights reserved.

  8. TECHNOLOGY OF REVERSE-BLAST CORROSION CLEANING OF STEEL SHEETS PRIOR TO LASER CUTTING

    Directory of Open Access Journals (Sweden)

    A. N. Zguk

    2017-01-01

    Full Text Available Quality of surface cleaning against corrosion influences on efficiency in realization of a number of technological processes. While using bentonite clays in power fluid reverse-blast cleaning ensures formation of anticorrosion protective coating with light absorbing properties on the cleaned surface and prevents formation of the repeated corrosion. The paper presents results of the investigations pertaining to influence of reverse-blast cleaning parameters of steel sheets on quality of the cleaned surface prior to laser cutting. Processing conditions, applied compositions of power fluid and also properties of the protective film coatings on the cleaned surface have been given in the paper. The paper considers topography, morphology and chemical composition of the given coating while applying complex metal micrographic, X-ray diffraction and electronic and microscopic investigations. A complex of laser cutting (refer to gas lasers with output continuous capacity of 2.5/4.0 kW has been applied for experimental works to evaluate influence of the formed surface quality on efficiency of laser cutting process. Specimens having dimension 120×120 mm, made of steel Ст3пс, with thickness from 3 to 10 mm have been prepared for the experiments. An analysis has shown that the application of reverse-blast cleaning ensures higher speed in laser cutting by a mean of 10–20 %. The investigations have made it possible to determine optimum cleaning modes: distance from a nozzle to the surface to be cleaned, jet velocity, pressure. It has been revealed that after drying of the specimens processed by power fluid based on water with concentrations of bentonite clay and calcined soda a protective film coating with thickness of some 5–7 µm has been formed on the whole cleaned specimen surfaces. Chemical base of the coating has been formed by the elements which are included in the composition of bentonite clay being the basic component of the power fluid. 

  9. 导弹防御系统中红外光电识别技术分析%Analyses on infrared optoelectronics recognition technology in missile defense system

    Institute of Scientific and Technical Information of China (English)

    吴瑕; 周焰; 崔建; 杨龙坡

    2009-01-01

    目标识别问题是弹道导弹防御系统中的核心难题之一,针对弹道导弹突防中威胁目标群飞行各阶段呈现出的不同红外特性.介绍了天基红外系统和拦截弹的最新研究进展及其红外目标识别技术手段.在温度测量、测辐射强度、红外成像等关键技术方面,系统地论述了其在反导系统弹道目标识别中所运用的红外光电子学方法与技术,并且就相应的反红外识别手段--红外隐身与红外诱饵,进行了探讨.最后对导弹防御系统中红外目标识别与反识别的研究动向进行了展望,提出了进行导弹防御系统目标识别研究的总体建议.%The target recognition is one of the core difficult problems of ballistic missile defense system. According to the different infrared characteristics of all sorts of dangerous targets in the apiece phases of ballistic missile flying, the newest development and the technical means of infrared target recognition for SBIRS and kinetic kill vehicle were introduced. The means and technologies of infrared optoelectronics applying in target recognition were depicted systematically considering the development of some key technologies, such as infrared temperature measurement, radiant intensity test and infrared imaging. Infrared stealth and infrared decoy technique were also discussed, which were the relevant infrared target counter-recognition means and technologies during ballistic missile attacking. Finally, some new representative developments for infrared target recognition and counter-recognition in ballistics missile defense system were expected, and some general suggestions to develop target recognition in ballistic missile defense system were provided.

  10. Research on free curved surface reconstructing technology based on laser tracker

    Science.gov (United States)

    He, Binggao; An, Zhiyong; Gao, Yuhan; Li, Lijuan

    2011-11-01

    This paper studied the 3-D reconstructing technology of free curved surface. Initially, it scanned the local model of flight vehicle to use the new digital measuring equipment-laser tracker, got the point clouds of the model. And then, it reconstructed curved surface of the model by using the powerful modeling function of CATIA. Finally, the paper also utilized the units of alignment and data processing to make a relative error analysis of the reconstructed model and point clouds. The experiment conclusion showed that the method of measurement accorded with error requirements, and had the practical value of industrial application and production.

  11. Noncontact laser sensing technology for structural health monitoring and nondestructive testing (presentation video)

    Science.gov (United States)

    Sohn, Hoon

    2014-03-01

    Noncontact sensing techniques is gaining prominence for structural health monitoring (SHM) and nondestructive testing (NDT) due to (1) their noncontact and nonintrusive natures, (2) their spatial resolution much higher than conventional discrete sensors can achieve, (3) their less dependency on baseline data obtained from the pristine condition of a target structure (reference-free diagnosis), (4) cost and labor reduction in sensor installation and maintenance. In this talk, a suite of noncontact sensing techniques particularly based on laser technology will be presented for SHM and NDT of aircraft, wind turbine blades, high-speed trains, nuclear power plants, bridges, automobile manufacturing facilities and semiconductors.

  12. Use of Terrestrial Laser Scanning Technology for Long Term High Precision Deformation Monitoring

    Science.gov (United States)

    Vezočnik, Rok; Ambrožič, Tomaž; Sterle, Oskar; Bilban, Gregor; Pfeifer, Norbert; Stopar, Bojan

    2009-01-01

    The paper presents a new methodology for high precision monitoring of deformations with a long term perspective using terrestrial laser scanning technology. In order to solve the problem of a stable reference system and to assure the high quality of possible position changes of point clouds, scanning is integrated with two complementary surveying techniques, i.e., high quality static GNSS positioning and precise tacheometry. The case study object where the proposed methodology was tested is a high pressure underground pipeline situated in an area which is geologically unstable. PMID:22303152

  13. Assuring the U.S. Department of Defense a Strong Science, Technology, Engineering, and Mathematics (STEM) Workforce

    Science.gov (United States)

    National Academies Press, 2012

    2012-01-01

    The ability of the nation's military to prevail during future conflicts, and to fulfill its humanitarian and other missions, depends on continued advances in the nation's technology base. A workforce with robust Science, Technology, Engineering and Mathematics (STEM) capabilities is critical to sustaining U.S. preeminence. Today, however, the STEM…

  14. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Husler, R.O. (Westinghouse Savannah River Co., Aiken, SC (United States)); Weir, T.J. (Pentek, Inc., Coraopolis, PA (United States))

    1991-01-01

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.

  15. Geomorphological analysis and classification of foredune ridges based on Terrestrial Laser Scanning (TLS) technology

    Science.gov (United States)

    Fabbri, Stefano; Giambastiani, Beatrice M. S.; Sistilli, Flavia; Scarelli, Frederico; Gabbianelli, Giovanni

    2017-10-01

    Along the North Adriatic Sea coast (Italy), vulnerability to climate change is further aggravated by anthropogenic influences, such as strong subsidence rate due to deep groundwater and gas abstraction, tourism and industry impacts. In this context, conservation and restoration of coastal sand dunes become extremely important especially because of their importance in terms of 'natural' coastal defense. This paper proposes an innovative geomorphological approach based on Terrestrial Laser Scanning - TLS, which allows us to measure and monitor morphometric dune evolution with high precision and details. Several TLS surveys were performed along the Ravenna coast (Adriatic Sea, Italy) and the resulting Digital Elevation Models (DEMs) were analyzed in order to classify the foredune ridges in three geomorphological sub-zones. The topographic, areal and volumetric variations over time of geomorphological units were calculated by GIS tools in order to identify seasonal trends or particular pattern. Meteo-marine climate conditions were also analyzed and Principal Component Analysis (PCA) was performed to correlate changes in morphology with meteo-marine forcing factors, highlighting the ones that most influence dune evolution and dynamics.

  16. Structural properties of H13 tool steel parts produced with use of selective laser melting technology

    Science.gov (United States)

    Šafka, J.; Ackermann, M.; Voleský, L.

    2016-04-01

    This paper deals with establishing of building parameters for 1.2344 (H13) tool steel processed using Selective Laser Melting (SLM) technology with layer thickness of 50 µm. In the first part of the work, testing matrix of models in the form of a cube with chamfered edge were built under various building parameters such as laser scanning speed and laser power. Resulting models were subjected to set of tests including measurement of surface roughness, inspection of inner structure with aid of Light Optical Microscopy and Scanning Electron Microscopy and evaluation of micro-hardness. These tests helped us to evaluate an influence of changes in building strategy to the properties of the resulting model. In the second part of the work, mechanical properties of the H13 steel were examined. For this purpose, the set of samples in the form of “dog bone” were printed under three different alignments towards the building plate and tested on universal testing machine. Mechanical testing of the samples should then reveal if the different orientation and thus different layering of the material somehow influence its mechanical properties. For this type of material, the producer provides the parameters for layer thickness of 30 µm only. Thus, our 50 µm building strategy brings shortening of the building time which is valuable especially for large models. Results of mechanical tests show slight variation in mechanical properties for various alignment of the sample.

  17. Naval Science & Technology: Enabling the Future Force

    Science.gov (United States)

    2013-04-01

    Peer Competitors • Security of Global Commons (Cyber/Piracy) • Climate Change & Natural Disasters • Revised Defense Strategy, Re-Balance to Pacific... corn for disruptive technologies Laser Cooling Spintronics Bz 1st U.S. Intel satellite GRAB Semiconductors GaAs, GaN, SiC GPS

  18. Technology of High-speed Direct Laser Deposition from Ni-based Superalloys

    Science.gov (United States)

    Klimova-Korsmik, Olga; Turichin, Gleb; Zemlyakov, Evgeniy; Babkin, Konstantin; Petrovsky, Pavel; Travyanov, Andrey

    Recently, additive manufacturing is the one of most perspective technologies; it can replace conventional methods of casting and subsequent time-consuming machining. One of the most interesting additive technologies - high-speed direct laser deposition (HSDLD) allows realizing heterophase process during the manufacturing, which there is process takes place with a partial melting of powder. This is particularly important for materials, which are sensitive to strong fluctuations of temperature treatment regimes, like nickel base alloys with high content of gamma prime phase. This alloys are interested for many industrial areas, mostly there are used in engine systems, aircraft and shipbuilding, aeronautics. Heating and cooling rates during the producing process determine structure and affect on its properties. Using HSDLD process it possible to make a products from Ni superalloys with ultrafine microstructure and satisfactory mechanical characteristics without special subsequent heatreatment.

  19. Accelerator Technology Division progress report, FY 1992

    Energy Technology Data Exchange (ETDEWEB)

    Schriber, S.O.; Hardekopf, R.A.; Heighway, E.A.

    1993-07-01

    This report briefly discusses the following topics: The Ground Test Accelerator Program; Defense Free-Electron Lasers; AXY Programs; A Next Generation High-Power Neutron-Scattering Facility; JAERI OMEGA Project and Intense Neutron Sources for Materials Testing; Advanced Free-Electron Laser Initiative; Superconducting Supercollider; The High-Power Microwave (HPM) Program; Neutral Particle Beam (NPB) Power Systems Highlights; Industrial Partnering; Accelerator Physics and Special Projects; Magnetic Optics and Beam Diagnostics; Accelerator Design and Engineering; Radio-Frequency Technology; Accelerator Theory and Free-Electron Laser Technology; Accelerator Controls and Automation; Very High-Power Microwave Sources and Effects; and GTA Installation, Commissioning, and Operations.

  20. Discussion on the Hospital Computer Security Active Defense Technology%医院计算机安全主动防御技术探讨

    Institute of Scientific and Technical Information of China (English)

    彭利华

    2014-01-01

    With the development of computer network technology, it has been widely used in hospitals, especial y with the arrival of the era of big data, the hospital computer management and ef ective implementation of the network management of patient information, treatment of case data, has become an important part of hospital information, but facing the hospital computer security issues have become increasingly prominent. In this paper, a detailed analysis of the relevant factors of hospital computer security, at the same time, the model of computer security active defense, and in-depth analysis of the architecture of computer security active defense technology, so as to bet er use the computer, computer use perception.%随着计算机网络技术的发展,其在医院得到了广泛地应用,尤其是随着大数据时代的到来,医院计算机网络的使用有效地实现了患者信息、治疗案例等数据的联网管理,已经成为医院信息化的重要组成部分,但是医院计算机网络安全面临的问题日益突出。本文分析了医院计算机网络安全的相关因素,阐述了计算机网络安全主动防御模型,同时深入地分析了计算机网络安全主动防御技术的体系架构,以便人们更好地使用计算机,提升计算机使用的感知度。

  1. Development of coal-based technologies for Department of Defense Facilities. Semiannual technical progress report, March 28, 1997--September 27, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Miller, S.F.; Morrison, J.L. [and others

    1998-01-06

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of developing technologies which can potentially decrease DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Phase I was completed on November 1, 1995. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included performing pilot-scale air toxics (i.e., trace elements and volatile organic compounds) testing and evaluating a ceramic filtering device on the demonstration boiler. Also, a sodium bicarbonate duct injection system was installed on the demonstration boiler. An economic analysis was conducted which investigated the benefits of decreased dependence on imported oil by using new coal combustion technologies. Work related to coal preparation and utilization was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies, pilot-scale NO{sub x} reduction studies, economic analyses of coal use, and evaluation of deeply-cleaned coal as boiler fuel. Coal preparation studies were focused on continuing activities on particle size control, physical separations, and surface-based separation processes. The evaluation of deeply-cleaned coal as boiler fuel included receiving three cleaned coals from Cyprus-Amax.

  2. [The development of acetylene on-line monitoring technology based on laser absorption spectrum].

    Science.gov (United States)

    He, Ying; Zhang, Yu-jun; Kan, Rui-feng; Xia, Hui; Wang, Min; Cui, Xiao-juan; Chen, Jiu-ying; Chen, Dong; Liu, Wen-qing; Liu, Jian-guo

    2008-10-01

    As one of the materials in organic chemical industry, acetylene has been used in many aspects of chemical industry. But acetylene is a very dangerous inflammable and explosive gas, so it needs in-situ monitoring during industrial storage and production. Tunable diode laser absorption spectroscopy (TDLAS) technology has been widely used in atmospheric trace gases detection, because it has a lot of advantageous characteristics, such as high sensitivity, good selectivity, and rapid time response. The distribution characteristics of absorption lines of acetylene in near infrared band were studied, and then the system designing scheme of acetylene on-line monitoring based on near infrared tunable diode laser absorption spectroscopy technology was discussed in detail. Moreover, the system of experiment measurement was set up and the method of signal detection and the algorithm of concentration inversion were studied. In addition, the sample cell with a path length of 10 cm, and the acetylene of different known concentrations were measured. As a result, the detection limit obtained reached 1.46 cm3 x m(-3). Finally the dynamic detection experiment was carried out, and the measurement result is stable and reliable, so the design of the system is practicable through experiment analysis. On-line acetylene leakage monitoring system was developed based on the experiment, and it is suitable for giving a leakage alarm of acetylene during its storage, transportation and use.

  3. Automatic Measurement in Large-Scale Space with the Laser Theodolite and Vision Guiding Technology

    Directory of Open Access Journals (Sweden)

    Bin Wu

    2013-01-01

    Full Text Available The multitheodolite intersection measurement is a traditional approach to the coordinate measurement in large-scale space. However, the procedure of manual labeling and aiming results in the low automation level and the low measuring efficiency, and the measurement accuracy is affected easily by the manual aiming error. Based on the traditional theodolite measuring methods, this paper introduces the mechanism of vision measurement principle and presents a novel automatic measurement method for large-scale space and large workpieces (equipment combined with the laser theodolite measuring and vision guiding technologies. The measuring mark is established on the surface of the measured workpiece by the collimating laser which is coaxial with the sight-axis of theodolite, so the cooperation targets or manual marks are no longer needed. With the theoretical model data and the multiresolution visual imaging and tracking technology, it can realize the automatic, quick, and accurate measurement of large workpieces in large-scale space. Meanwhile, the impact of artificial error is reduced and the measuring efficiency is improved. Therefore, this method has significant ramification for the measurement of large workpieces, such as the geometry appearance characteristics measuring of ships, large aircraft, and spacecraft, and deformation monitoring for large building, dams.

  4. A high resolution laser ranging system based on time-correlated single-photon counting technology

    Science.gov (United States)

    Yang, Yixin; Wang, Huanqin; Huang, Zhe; Cao, Yangyang; Gui, Huaqiao

    2014-12-01

    Laser ranging has become an important method for both distance measurements and acquisition of threedimensional (3D) images. In this paper, a laser ranging system based on Time-Correlated Single-Photon Counting technology (TCSPC) is developed. A Geiger-mode avalanche photodiode (G-APD), which has the ability of detecting single-photon events, is used to capture the weak light scattered from the long-range target. In order to improve the ranging resolution of TCSPC based measurement system, a high repetition frequency of subnanosecond narrow pulse generator circuit based on the avalanche effect of RF-BJT is designed and applied as the light source. Moreover, some optimized optical light designs have been done to improve the system signal to noise rate (SNR), including using a special aspherical lens as projecting lens, adopting a telephoto camera lens with small view angle and short depth of field before detector. Experimental tests for evaluation of the laser raging system performance are described. As a means of echo signal analysis, three different algorithms have been introduced, in which the cross-correlation algorithm was demonstrated to be the most effective algorithm to determining the round trip time to a target, even based on histograms with a significant amount of background noise photons. It was found that centimeter ranging resolution can be achieved thanks to the use of Time-to-Digital Converter (TDC) with picosecond resolution and the Cross-Correlation algorithm. The proposed laser ranging system has advantages of high range resolution, short response time and simple structure, which was potential applications for 3D object recognition, computer vision, reverse engineering and virtual reality.

  5. Laser ablation and competitive technologies in paint stripping of heavy anticorrosion coatings

    Science.gov (United States)

    Schuöcker, Georg D.; Bielak, Robert

    2007-05-01

    During the last years surface preparation prior to coating operations became an important research and development task, since tightened environmental regulations have to be faced in view of the deliberation of hazardous compounds of coatings. Especially, ship-yards get more and more under pressure, because the environmental commitment of their Asian competitors is fairly limited. Therefore, in the US and in Europe several technology evaluation projects have been launched to face this challenge. The majority of coating service providers and ship yards use grit blasting; this process causes heavy emissions as of dust and enormous amounts of waste as polluted sand. Coating removal without any blasting material would reduce the environmental impact. Laser processing offers ecological advantages. Therefore thermal processes like laser ablation have been studied thoroughly in several published projects and also in this study. Many of these studies have been focused on the maintenance of airplanes, but not on de-coating of heavy protective coatings. In this case the required laser power is extra-high. This study is focused on the maintenance of heavy anti-corrosion coatings and compares the industrial requirements and the opportunities of the innovative laser processes. Based on the results of this analysis similar approaches as e.g. plasma jet coating ablation have been studied. It was concluded that none of these methods can compete economically with the conventional processes as grit blasting and water jetting since the required ablation rate is very high (>60m2/h). A new process is required that is not based on any blasting operation and which does not depend strongly on the coating's characteristic. The delamination of the coating where the coatings is not removed by evaporation, but in little pieces of the complete coating system meets these requirements. The delamination can be accomplished by the thermal destruction of the primer coating by an intense heat pulse

  6. Needed Actions within Defense Acquisitions Based on a Forecast of Future Mobile Information and Communications Technologies Deployed in Austere Environments

    Science.gov (United States)

    2013-03-01

    almost autonomously by interacting within its environment without human intervention (Gorcin & Arslan, 2008). Accordingly, networks are increasingly...technology: The first technological steps-sharp edges, fire, the wheel -took tens of thousands of years. For people living in this era, there was...Keeney, S., McKenna, H. (2000). Research Guidelines for the Delphi Survey Technique. Journal of Advanced Nursing , 32(4), 1008-1015. Hasson, F

  7. Development and application of fiber laser cutting technology%光纤激光切割技术

    Institute of Scientific and Technical Information of China (English)

    沈海平; 陈欣; 陈阳

    2013-01-01

    The laser cutting technology has been widely applied in cutting industry due to its perfect cutting quality,high dimension accuracy and small heat influence area.The advantages of fiber laser cutting machine in technology,structure and cost are analyzed by the description of fiber laser cutting and comparison with carbon dioxide laser cutting technology.In addition,relatively faster cutting speed,higher conversion rate from electricity to laser and flexible manufacturing ability promote fiber laser cuter to be advanced equipment in cutting industry.The intensive research topic about fiber laser cutting is introduced.Lastly,the current challenges with fiber laser cutting technology such as body security and the limit for thick steel plate cutting are discussed.%激光切割质量好,尺寸精度高,热影响小,在切割行业应用越来越广泛.通过对光纤激光切割机的介绍及其与二氧化碳激光切割机的对比,分析了光纤激光切割机在未来切割行业中的技术优势、结构优势、成本优势.光纤激光具有切割薄板速度快、能量集中、电光转化率高、柔性加工等众多优点.同时指出了目前光纤激光切割技术存在的安全问题及厚板切割局限性问题,提出了当前的一些解决方案及研究热点,并展望了光纤激光切割技术的发展前景.

  8. Study on synchronous detection method of methane and ethane with laser absorption spectroscopy technology

    Science.gov (United States)

    He, Ying; Zhang, Yu-jun; You, Kun; Gao, Yan-wei; Chen, Chen; Liu, Jian-guo; Liu, Wen-qing

    2016-10-01

    The main ingredient of mash gas is alkenes, and methane is the most parts of mash gas and ethane is a small portion of it. Fast, accurate, real-time measurement of methane and ethane concentration is an important task for preventing coal mining disaster. In this research, a monitoring system with tunable diode laser absorption spectroscopy (TDLAS) technology has been set up for simultaneous measurement of methane and ethane, and a DFB laser at wavelength of 1.653μm was used as the laser source. The absorption spectroscopy information of methane and ethane, especially the characteristic of the spectrum peak positions and relative intensity were determined by available spectral structures from previous study and available database. Then, the concentration inversion algorithm method based on the spectral resolution and feature extraction was designed for methane and ethane synchronous detection. At last, the continuously experimental results obtained by different concentration of methane and ethane sample gases with the multiple reflection cell and the standard distribution system. In this experiment, the standard distribution system made with the standard gas and two high precision mass flow meters of D07 Sevenstar series whose flow velocity is 1l/min and 5l/min respectively. When the multiple reflection cell work stably, the biggest detection error of methane concentration inversion was 3.7%, and the biggest detection error of ethane was 4.8%. So it is verified that this concentration inversion algorithm works stably and reliably. Thus, this technology could realize the real-time, fast and continuous measurement requirement of mash gas and it will provide the effective technical support to coal mining production in safety for our country.

  9. 激光雷达距离欺骗干扰技术研究%Research on deception jamming technology of laser radar

    Institute of Scientific and Technical Information of China (English)

    王萃; 张会彬

    2015-01-01

    This article mainly introduces the principle of laser ranging radar, the constituent parts of the laser rangefinder and the function of each part, and then this paper introduces a common method – the technology of Digital Radio Frequency Memory, expounding its deception principle of the false target and its working process for simulation. Research shows that using Digital Radio Frequency Memory technology can effectively carry out false targets deception. This technique can not only be used to cover the air defense, but also can be used for interfering with the enemy and decoying attack, exposing the real deployment of troops; therefore has considerable military significance.%文章主要介绍激光雷达测距的原理,激光测距机的组成及各部分的功能,根据其原理,介绍一种常用的距离欺骗的方法-数字储频技术,阐述其距离假目标欺骗的原理,对其工作过程进行仿真。研究表明,采用数字储频技术能够有效的进行欺骗,这种技术既可以用于掩护空防,又可以用于干扰敌方并诱敌开机,暴露其真实的兵力部署,因此具有相当大的军事意义。

  10. Decomposition strategies in the problems of simulation of additive laser technology processes

    Science.gov (United States)

    Khomenko, M. D.; Dubrov, A. V.; Mirzade, F. Kh.

    2016-11-01

    The development of additive technologies and their application in industry is associated with the possibility of predicting the final properties of a crystallized added material. This paper describes the problem characterized by a dynamic and spatially nonuniform computational complexity, which, in the case of uniform decomposition of a computational domain, leads to an unbalanced load on computational cores. The strategy of partitioning of the computational domain is used, which minimizes the CPU time losses in the serial computations of the additive technological process. The chosen strategy is optimal from the standpoint of a priori unknown dynamic computational load distribution. The scaling of the computational problem on the cluster of the Institute on Laser and Information Technologies (RAS) that uses the InfiniBand interconnect is determined. The use of the parallel code with optimal decomposition made it possible to significantly reduce the computational time (down to several hours), which is important in the context of development of the software package for support of engineering activity in the field of additive technology.

  11. Indoor radiation mapping using the Laser Assisted Ranging and Data System (LARADS). Innovative technology summary report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-11-01

    The US Department of Energy`s (DOE`s) nuclear facilities require characterization and documentation of the results as part of planning and decision-making for decontamination and decommissioning (D and D) projects and to release areas that have been cleaned up. Conducting radiation surveys of indoor and outdoor surfaces and generating accurate survey reports is an important component of the D and D program. The Laser Assisted Ranging and Data System (LARADS) is a characterization technology that provides real-time data on the location and concentration levels of radiological contamination. The system can be utilized with a number of available detection instruments and can be integrated with existing data analysis and mapping software technologies to generate superior quality survey data reports. This innovative technology is competitive with baseline technologies in terms of cost and survey times, but is much more flexible and provides more useful reports. The system also has the capability of electronically logging survey data, making it easy to store and retrieve. Such data are scientifically derived and not subject to interpretation. The LARADS is an extremely attractive alternative to manually generated survey data reports.

  12. Directed Energy Missions for Planetary Defense

    CERN Document Server

    Lubin, Philip; Eskenazi, Mike; Kosmo, Kelly; Johansson, Isabella E; Griswold, Janelle; Pryor, Mark; O'Neill, Hugh; Meinhold, Peter; Suen, Jonathon; Riley, Jordan; Zhang, Qicheng; Walsh, Kevin; Melis, Carl; Kangas, Miikka; Motta, Caio; Brashears, Travis

    2016-01-01

    Directed energy for planetary defense is now a viable option and is superior in many ways to other proposed technologies, being able to defend the Earth against all known threats. This paper presents basic ideas behind a directed energy planetary defense system that utilizes laser ablation of an asteroid to impart a deflecting force on the target. A conceptual philosophy called DE-STAR, which stands for Directed Energy System for Targeting of Asteroids and exploRation, is an orbiting stand-off system, which has been described in other papers. This paper describes a smaller, stand-on system known as DE-STARLITE as a reduced-scale version of DE-STAR. Both share the same basic heritage of a directed energy array that heats the surface of the target to the point of high surface vapor pressure that causes significant mass ejection thus forming an ejection plume of material from the target that acts as a rocket to deflect the object. This is generally classified as laser ablation. DE-STARLITE uses conventional prop...

  13. Laser & Fiber Optics: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    Science.gov (United States)

    Eickhoff, Luvern R.

    This instructional manual contains 20 learning activity packets for use in a workshop on lasers and fiber optics. The lessons cover the following topics: what a laser; coherent light; setting up the laser; characteristics of the laser beam; scattering of light; laser beam divergence, intensity, color, ophthalmology, and reflections; directivity of…

  14. Laser & Fiber Optics: Instructional Manual. The North Dakota High Technology Mobile Laboratory Project.

    Science.gov (United States)

    Eickhoff, Luvern R.

    This instructional manual contains 20 learning activity packets for use in a workshop on lasers and fiber optics. The lessons cover the following topics: what a laser; coherent light; setting up the laser; characteristics of the laser beam; scattering of light; laser beam divergence, intensity, color, ophthalmology, and reflections; directivity of…

  15. Development of realtime monitoring technology for laser photoreaction product - Study on spectroscopy of rare earth elements by using diode laser and hollow cathode glow discharge

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Sang Chun [Kyungnam University, Masan (Korea); Lee, Gea Ho [Chungnam National University, Taejon (Korea); Lee, Yong Il [Changwon National University, Changwon (Korea); Kim, Hyo Jin [Dongduk Women' s University, Seoul (Korea); Huh, Yong Dck [Dankook University, Seoul (Korea)

    1998-05-01

    Currently, fast and precise analysis of rare earth and actinide elements are much concerned and required for the safe treatments and storage of nuclear wastes generated by nuclear power plants. However, current technology is still far from the requirements for accurate realtime monitoring and measurement of radioactive elements. This project is of development of new technology of realtime monitoring and analysis of rare earth elements by using glow discharge and diode laser spectroscopy, and the study of spectroscopic characteristics of rare earth elements in glow discharge plasma. And, saturated absorption spectroscopy of rare earth elements was investigated with diode lasers. A see-through hollow cathode glow discharge (st-HCGD) cell was developed for the purpose of a portable atomizer and and its characteristics were investigated. High resolution spectroscopy was achieved with diode laser assisted saturated absorption spectroscopy. it is considered for major improvement of radioactive isotope detection technology. We expect a portable high resolution spectrometry with a see-through HCGD atomizer and diode lasers in near future. (Author). 63 refs., 39 figs., 7 tabs.

  16. Advanced technologies for maintenance of electrical systems and equipment at the Savannah River Site Defense Waste Processing Facility

    Energy Technology Data Exchange (ETDEWEB)

    Husler, R.O. [Westinghouse Savannah River Co., Aiken, SC (United States); Weir, T.J. [Pentek, Inc., Coraopolis, PA (United States)

    1991-12-31

    An enhanced maintenance program is being established to characterize and monitor cables, components, and process response at the Savannah River Site, Defense Waste Processing Facility. This facility was designed and constructed to immobilize the radioactive waste currently stored in underground storage tanks and is expected to begin operation in 1993. The plant is initiating the program to baseline and monitor instrument and control (I&C) and electrical equipment, remote process equipment, embedded instrument and control cables, and in-cell jumper cables used in the facility. This program is based on the electronic characterization and diagnostic (ECAD) system which was modified to include process response analysis and to meet rigid Department of Energy equipment requirements. The system consists of computer-automated, state-of-the-art electronics. The data that are gathered are stored in a computerized database for analysis, trending, and troubleshooting. It is anticipated that the data which are gathered and trended will aid in life extension for the facility.

  17. Defense Advanced Research Projects Agency: Key Factors Drive Transition of Technologies, but Better Training and Data Dissemination Can Increase Success

    Science.gov (United States)

    2015-11-01

    Self-Regenerative Systems STTR Small Business Technology Transfer TRANSTAC Spoken Language Communication and Translation System for Tactical Use...malicious attacks. Spoken Language Communication and Translation System for Tactical Use The program developed and demonstrated two-way translation...product, provided key feedback that can inform the future management of programs. However, in March 2013, we found that DOD stopped tracking transition

  18. The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, September 28, 1993--March 27, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Morrison, J.L.; Sharifi, R.; Shepard, J.F.; Scaroni, A.W.; Hogg, R.; Chander, S.; Cho, H.; Ityokumbul, M.T.; Klima, M.S. [and others

    1994-11-30

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE and the first two phases of the program are underway. To achieve the objectives of the program, a team of researchers was assembled. Phase I activities are focused on developing clean, coal-based combustion technologies for the utilization of both micronized coal-water slurry fuels (MCWSFS) and dry, micronized coal (DMC) in fuel oil-designed industrial boilers. Phase II research and development activities will continue to focus on industrial boiler retrofit technologies by addressing emissions control and precombustion (i.e., slagging combustion and/or gasification) strategies for the utilization of high ash, high sulfur coals. Phase III activities will examine coal-based fuel combustion systems that cofire wastes. Each phase includes an engineering cost analysis and technology assessment. The activities and status of Phases I and II are described below. The objective in Phase I is to deliver fully engineered retrofit options for a fuel oil-designed watertube boiler located on a DOD installation to fire either MCWSF or DMC. This will be achieved through a program consisting of the following five tasks: (1) Coal Beneficiation and Preparation; (2) Combustion Performance Evaluation; (3) Engineering Design; (4) Engineering and Economic Analysis; and (5) Final Report/Submission of Design Package.

  19. The development of coal-based technologies for Department of Defense facilities. Semiannual technical progress report, March 28, 1995--September 27, 1995

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Hatcher, P.; Knicker, H. [Pennsylvania State Univ., University Park, PA (United States). Energy and Fuels Research Center] [and others

    1996-10-21

    The U.S. Department of Defense (DOD), through the Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Mixture Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Activities this reporting period are summarized by phase. During this reporting period, preparation of the Phase I final report continued. Work on Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included initiating a study to identify appropriate SO{sub 2} and NO{sub x} control technologies for coal-fired industrial boilers. In addition, work started on the design of a ceramic filtering device for installation on the demonstration boiler. The ceramic filter device will be used to demonstrate a more compact and efficient filtering device for retrofit applications. Coal preparation and utilization activities, and the economic analysis were completed and work focused on preparing the final report. Work on Phase III focused on coal preparation studies and economic analyses of coal use. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. The economic study focused on selecting incentives for commercialization of coal using technologies, community sensitivity to coal usage, regional economic impacts of new coal utilization technologies, and constructing a national energy portfolio.

  20. Single application on iris localization technology in excimer laser for astigmatism

    Directory of Open Access Journals (Sweden)

    Jun-Hua Hao

    2014-06-01

    Full Text Available AIM:To discuss the single application on iris localization technology in excimer laser for the treatment of astigmatism. METHODS:Totally 203 cases(406 eyesof laser in situ keratomileusis(LASIKin the treatment of compound myopic astigmatism patients were operated from November 2011 to November 2012 in our hospital. They were divided into two groups. One was observation group using iris localization and the other was control group using routine operation. Patients in the observation group of 100 cases(200 eyes, aged 18-43 years old, spherical diopter was -1.25 to -8.75D, astigmatism was -1.0 to -3.25D. In control group, 103 patients(206 eyes, aged 19-44 years old, spherical diopter was -1.75-9.50D, astigmatism was -1.0 to -3.25D. The patients in the observation group before the application of WaveScan aberrometer check for iris image, spherical lens, cylindrical lens and astigmatism axis data operation, only single application of iris location, without using wavefront aberration guided technology, laser cutting patterns for conventional LASIK model, spherical, cylindrical mirror and astigmatism axis data source to preoperative wavefront aberration results. The control group received routine LASIK. It was applicated comprehensive optometry optometry respectively to examine astigmatism and axial, based on the computer analysis during the preoperative, 1wk after the operation, and 6mo. Analysis of using SPSS 17 statistical software, it was independent-sample t test between the two groups of residual astigmatism and astigmatism axis. RESULTS:Postoperative residual astigmatism, the observation group was significantly better than the control group. Astigmatism axial measurement after operation, the observation group was significantly less than that of the control group. Postoperative visual acuity at 6mo, the observation group was better than that of the control group. The difference was statistically significant. CONCLUSION: For patients who cannot

  1. The development of coal-based technologies for Department of Defense facilities. Semi-annual report, March 28, 1996--September 27, 1996

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Pisupati, S.V.; Scarone, A.W. [and others

    1996-12-13

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Fuel Technology, with the aim of decreasing DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Activities this reporting period are summarized by phase. Phase I was completed on November 1, 1995. Work on Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Emissions reductions investigations included continuing bench-scale tests to identify an NO{sub x} reduction catalyst which is appropriate for industrial boiler applications. In addition, installation of a ceramic filtering device on the demonstration boiler started. Also, a sodium bicarbonate duct injection system was procured for installation on the demonstration boiler. Work related to coal preparation and utilization, and the economic analysis was primarily focused on preparing the final report. Work in Phase III focused on coal preparation studies and economic analyses of coal use. Coal preparation studies were focused on continuing activities on particle size control, physical separations,surface-based separation processes, and dry processing. The economic study focused on community sensitivity to coal usage, regional/national economic impacts of new coal utilization technologies, and constructing a national energy portfolio.

  2. 移动目标防御技术研究进展%Research and Development of Moving Target Defense Technology

    Institute of Scientific and Technical Information of China (English)

    蔡桂林; 王宝生; 王天佐; 罗跃斌; 王小峰; 崔新武

    2016-01-01

    易攻难守是当前网络安全面临的核心问题之一。移动目标防御为解决这一问题提供了一种全新思路,其核心思想是通过内部可管理的方式对被保护目标的攻击面实施持续性的动态变换以迷惑攻击者,从而增加攻击者实施成功攻击的代价和复杂度,降低其攻击成功的概率,提高系统弹性和安全性。首先对移动目标防御的基本概念加以介绍,并依据研究内容的不同对已有的研究成果进行分类;然后对每类成果加以描述、分析和总结;最后对当前研究现状进行总结,并对未来研究方向进行了展望。%Nowadays ,network configurations are typically deterministic ,static ,and homogeneous . These features reduce the difficulties for cyber attackers scanning the network to identify specific targets and gather essential information ,which gives the attackers asymmetric advantages of building up ,launching and spreading attacks .Thus the defenders are always at a passive position ,and the existing defense mechanisms and approaches cannot reverse this situation . Moving target defense (M TD) is proposed as a new revolutionary technology to alter the asymmetric situation of attacks and defenses .It keeps moving the attack surface of the protected target through dynamic shifting ,which can be controlled and managed by the administrator . In this way , the attack surface exposed to attackers appears chaotic and changes over time . Therefore , the work effort ,i .e ., the cost and complexity ,for the attackers to launch a successful attack ,will be greatly increased .As a result ,the probability of successful attacks will be decreased ,and the resiliency and security of the protected target will be enhanced effectively .In this paper ,we firstly introduce the basic concepts of M TD ,and classify the related works into categories according to their research field .Then ,under each category , we give a detailed description on the

  3. 基于ARM平台的ROP攻击及防御技术%ROP Attack and Defense Technology based on ARM

    Institute of Scientific and Technical Information of China (English)

    钱逸; 王轶骏; 薛质

    2012-01-01

    With the development of mobile-phone field, ARM architecture is usually used in the mobile-phone and tablet computer, and the security issues on ARM platform always attract much attention from the researchers. ROP, a popular attack method on X86 is planted into ARM. This paper analyzes the different ROP defense methods on X86, presents the technical details of ROP attack, including specific implementation and gadgets search algorithm on ARM. Finally, a library sandbox technology is suggested to defense this kind of attack and secure the system.%随着智能手机领域的发展,几乎所有智能手机及平板电脑都采用了ARM架构,在此平台上的安全问题也越来越受到研究者的关注。X86平台上流行的返回导向编程被引入到了ARM平台上。通过研究总结X86平台上返回导向编程的攻击和防御机制,给出了该攻击移植到ARM平台上的技术细节,包括具体实现方式和gadget搜索算法的差异性,通过自动构建gadgets链加速Exploit开发,最后提出了一种系统库沙盒技术来防御此攻击。

  4. Research On the Computer Network Hacking Technology and Its Defense Technology%计算机网络中的黑客攻击技术及其防御技术研究

    Institute of Scientific and Technical Information of China (English)

    杨峰

    2013-01-01

    In modern society ,whether in learning or life ,with the development of computer science and technology ,com-puter network security risks exist more and more ,more and more network hacker attacks ,faster and faster ,especiallyhas a lot of damage national security or commercial confidentiality ,in view of this situation ,studying the hacker's network technology is the key to ensure network security ,has become the most important cash social security and defense .In this paper ,the analysis of a variety of computer network hacker attacks ,corresponding defense technology.%在现代社会,无论是在学习还是生活中,随着计算机科学技术的发展,计算机网络中存在的安全隐患越来越大,网络黑客的攻击活动方式越来越多、速度越来越快,特别是对国家安全或者商业机密上都有很大的破坏。研究防御黑客的网络技术是保证网络安全的关键,也是现今社会信息安全防御的重中之重。通过对各种计算机网络黑客的攻击手段的分析,提出了对应的防御技术。

  5. Application of FPGA technology for control of superconducting TESLA cavities in free electron laser

    Science.gov (United States)

    Pozniak, Krzysztof T.

    2006-10-01

    Contemporary fundamental research in physics, biology, chemistry, pharmacology, material technology and other uses frequently methods basing on collision of high energy particles or penetration of matter with ultra-short electromagnetic waves. Kinetic energy of involved particles, considerably greater than GeV, is generated in accelerators of unique construction. The paper presents a digest of working principles of accelerators. There are characterized research methods which use accelerators. A method to stabilize the accelerating EM field in superconducting (SC) resonant cavity was presented. An example was given of usage of TESLA cavities in linear accelerator propelling the FLASH free electron laser (FEL) in DESY, Hamburg. Electronic and photonic control system was debated. The system bases on advanced FPGA circuits and cooperating fast DSP microprocessor chips. Examples of practical solutions were described. Test results of the debated systems in the real-time conditions were given.

  6. Micro-fabricated packed gas chromatography column based on laser etching technology.

    Science.gov (United States)

    Sun, J H; Guan, F Y; Zhu, X F; Ning, Z W; Ma, T J; Liu, J H; Deng, T

    2016-01-15

    In this work, a micro packed gas chromatograph column integrated with a micro heater was fabricated by using laser etching technology (LET) for analyzing environmental gases. LET is a powerful tool to etch deep well-shaped channels on the glass wafer, and it is the most effective way to increase depth of channels. The fabricated packed GC column with a length of over 1.6m, to our best knowledge, which is the longest so far. In addition, the fabricated column with a rectangular cross section of 1.2mm (depth) × 0.6mm (width) has a large aspect ratio of 2:1. The results show that the fabricated packed column had a large sample capacity, achieved a separation efficiency of about 5800 plates/m and eluted highly symmetrical Gaussian peaks.

  7. Bioactive treatment promotes osteoblast differentiation on titanium materials fabricated by selective laser melting technology.

    Science.gov (United States)

    Tsukanaka, Masako; Fujibayashi, Shunsuke; Takemoto, Mitsuru; Matsushita, Tomiharu; Kokubo, Tadashi; Nakamura, Takashi; Sasaki, Kiyoyuki; Matsuda, Shuichi

    2016-01-01

    Selective laser melting (SLM) technology is useful for the fabrication of porous titanium implants with complex shapes and structures. The materials fabricated by SLM characteristically have a very rough surface (average surface roughness, Ra=24.58 µm). In this study, we evaluated morphologically and biochemically the specific effects of this very rough surface and the additional effects of a bioactive treatment on osteoblast proliferation and differentiation. Flat-rolled titanium materials (Ra=1.02 µm) were used as the controls. On the treated materials fabricated by SLM, we observed enhanced osteoblast differentiation compared with the flat-rolled materials and the untreated materials fabricated by SLM. No significant differences were observed between the flat-rolled materials and the untreated materials fabricated by SLM in their effects on osteoblast differentiation. We concluded that the very rough surface fabricated by SLM had to undergo a bioactive treatment to obtain a positive effect on osteoblast differentiation.

  8. Research on the mechanical behaviour of an airplane component made by selective laser melting technology

    Directory of Open Access Journals (Sweden)

    Păcurar Răzvan

    2017-01-01

    Full Text Available The main objective of the presented research consists in the redesign of an airplane component to decrease its weight, without affecting the mechanical behaviour of the component, at the end. Femap NX Nastran and ANSYS FEA programs were used for the shape optimization and for the estimation of the mechanical behaviour of a fixing clamp that was used to sustain the hydraulic pipes that are passing through an airplane fuselage, taking into consideration two types of raw materials – Ti6Al4V and AlSi12 powder from which this component could be manufactured by using the selective laser melting (SLM technology. Based on the obtained results, the airplane component was finally manufactured from titanium alloy using the SLM 250 HL equipment that is available at SLM Solutions GmbH company from Luebeck, in Germany.

  9. Decontamination of paint-coated concrete in nuclear plants using laser technology

    Energy Technology Data Exchange (ETDEWEB)

    Anthofer, Anton; Lippmann, Wolfgang; Hurtado, Antonio [Technische Univ. Dresden (Germany). Chair of Hydrogen and Nuclear Technology

    2013-07-01

    A review of the state of the art shows the technical novelty of the combined project. The development of an all-in-one process for treatment hazard chemical contamination on concrete structures with online monitoring method reduces the laborious mechanic decontamination and post-treatment. For safe experimental investigations, a three-barrier-system was constructed and can be used for tests with - first - epoxy paint in order to analyze and optimize the process. Simulation models help to formulate a mathematic scheme of the decontamination process by laser technology. The goal is a decontamination system with an online analyzing system of the flue gas for a mobile and extensive component in nuclear and conventional decommission. (orig.)

  10. [Influence of laser power and incident angle as well as testing distance on laser inducted breakdown spectroscopy (LIBS) technology for spectroscopy diagnosis and multi-element analysis].

    Science.gov (United States)

    Zhai, Yang; Zhu, Ri-Hong; Shen, Hua; Gu, Jin-Liang

    2011-10-01

    Laser inducted breakdown spectroscopy (LIBS) technology has been used widely for the multi-element analysis of different samples and also an effective way to realize the spectroscopy diagnosis applied to calculating the electron temperature and vibration-rotation temperature etc of some certain elements. It is a highly effective measurement for its non-contact and nondestructive on-line analysis with the help of a high-speed response CCD camera. In the present paper, the authors tested an alley though LIBS technology to determine its elements in terms of species and quantities and also discussed some influences of the incident angle and the power changes of the laser beam as well as the measurement distance changes on the experimental results and and gave appropriate theoretical explanation.

  11. Development of coal-based technologies for Department of Defense Facilities. Semiannual technical progress report, September 28, 1996--March 27, 1997

    Energy Technology Data Exchange (ETDEWEB)

    Miller, B.G.; Miller, S.F.; Pisupati, S.V. [and others

    1997-07-22

    The U.S. Department of Defense (DOD), through an Interagency Agreement with the U.S. Department of Energy (DOE), has initiated a three-phase program with the Consortium for Coal-Water Slurry Fuel Technology, with the aim of developing technologies which can potentially decrease DOD`s reliance on imported oil by increasing its use of coal. The program is being conducted as a cooperative agreement between the Consortium and DOE. Work in Phase II focused on emissions reductions, coal beneficiation/preparation studies, and economic analyses of coal use. Work in Phase III focused on coal preparation studies, pilot-scale NO{sub x} reduction studies, economic analyses of coal use, and evaluation of deeply-cleaned coal as boiler fuel. Coal preparation studies were focused on continuing activities on particle size control, physical separations, surface-based separation processes, and dry processing. Preliminary pilot-scale NO{sub x} reduction catalyst tests were conducted when firing natural gas in Penn State`s down-fired combustor. This is the first step in the scale-up of bench-scale results obtained in Phase II to the demonstration boiler scale when firing coal. The economic study focused on community sensitivity to coal usage, regional/national economic impacts of new coal utilization technologies, and constructing a national energy portfolio. The evaluation of deeply-cleaned coal as boiler fuel included installing a ribbon mixer into Penn State`s micronized coal-water mixture circuit for reentraining filter cake. In addition, three cleaned coals were received from CQ Inc. and three cleaned coals were received from Cyprus-Amax.

  12. Actual principles of the simulation of state-of-the-art technologies of laser processing of materials

    Science.gov (United States)

    Kovalev, Oleg B.

    2011-02-01

    Here we present the results of mathematical, numerical, and experimental simulation of the processes of interaction between the laser radiation and metals in the technologies of gas-laser cutting of thick-sheet materials and laser gas-powder cladding at the production of coatings and 3D objects by the DMD (Direct Material Deposition) method. The peculiarities of jet 3D flows of the working gases in narrow channels, geometrically identical to keyholes, are studied. It is demonstrated that during the stainless steel cutting, supersonic gas flows form local regions of separation flows which in turn result in the worse carry-away of the metal by the gas flow; these factors increase the roughness (striation) and worsen the surface quality. A vortex flow was found inside the cut at the subsonic jet flows typical for the oxygen gas-laser cutting of low-carbon steel; this flow causes slagging of the cut bottom edge. The processes running inside the laser cut at the fusible metals cutting with the low-power radiation were visualized under the laboratory conditions. Some new concepts of the processes running inside the keyhole have been gained; we also propose the explanations of the mechanisms of striation and other surface defects formation during the cutting of thick-sheet standard metals on the automate laser technological complex. A mathematical model of the volumetric laser-powder cladding is proposed. The submitted results concern the numerical simulation of multi-layer flows of shaping and carrier gases with the gas-jet transportation of powder particles into the laser spot on the substrate.

  13. Energy technology review, July--August 1991

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, K.C. (ed.)

    1991-01-01

    This issue of Energy Technology Review'' gives the annual review of the programs at Lawrence Livermore National Laboratory. This State of the Laboratory issue includes discussions of all major programs: Defense Systems; Laser Research; Magnetic Fusion Energy; Energy and Earth Sciences; Environmental Technology Program; Biomedical and Environmental Science; Engineering; Physics; Chemistry and Materials Science; Computations; and Administrative and Institutional Services. An index is also given of the 1991 achievements with contact names and telephone number.

  14. [Lasers].

    Science.gov (United States)

    Passeron, T

    2012-11-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  15. Lasers.

    Science.gov (United States)

    Passeron, T

    2012-12-01

    Lasers are a very effective approach for treating many hyperpigmented lesions. They are the gold standard treatment for actinic lentigos and dermal hypermelanocytosis, such as Ota nevus. Becker nevus, hyperpigmented mosaicisms, and lentigines can also be successfully treated with lasers, but they could be less effective and relapses can be observed. However, lasers cannot be proposed for all types of hyperpigmentation. Thus, freckles and café-au-lait macules should not be treated as the relapses are nearly constant. Due to its complex pathophysiology, melasma has a special place in hyperpigmented dermatoses. Q-switched lasers (using standard parameters or low fluency) should not be used because of consistent relapses and the high risk of post-inflammatory hyperpigmentation. Paradoxically, targeting the vascular component of the melasma lesion with lasers could have a beneficial effect. However, these results have yet to be confirmed. In all cases, a precise diagnosis of the type of hyperpigmentation is mandatory before any laser treatment, and the limits and the potential side effects of the treatment must be clearly explained to patients. Copyright © 2012 Elsevier Masson SAS. All rights reserved.

  16. Strategic Defense Initiative: Splendid Defense or Pipe Dream? Headline Series No. 275.

    Science.gov (United States)

    Armstrong, Scott; Grier, Peter

    This pamphlet presents a discussion of the various components of President Reagan's Strategic Defense Initiative (SDI) including the problem of pulling together various new technologies into an effective defensive system and the politics of the so-called "star wars" system. An important part of the defense initiative is the "layered" defense…

  17. Laser Quenching and Ion Sulphidizing Complex Surface Treat Technology for Diesel Engine Cylinder

    Institute of Scientific and Technical Information of China (English)

    XIE Zhaoqian; ZENG Qingqiang; HUANG Huayuan; Cai Zhihai; ZHAO Yuqiang

    2012-01-01

    In order to solve the problem of wear-out-failure of diesel engine cylinder,the laser-quenching and low temperature ion sulfurizing complex surface treatment technology was operated on the surface of 42MnCr52 steel.And the tribological properties of the complex layer were investigated.The experimental results indicated that the complex layer was composed of soft surface sulphide layer and sub-surface laserquenching harden layer,and showed excellent friction-reduction and wear-resistance performance at high temperature.The synergistic effect of the complex layer resulted in 20% increase in hardness,10% reduction in friction coefficient and 50% reduction in wear weight loss,respectively,compared with those of the standard samples.The bench-test further demonstrated that this technology can improve the lubricating condition between cylinder and piston ring,and reduce both abnormity wear when the lubricating oil is deficiency at the time of start-up and sticking wear at high temperature during the operating period,and then prolong the service life of engine.

  18. Active infrared systems: possible roles in ballistic missile defense?

    Science.gov (United States)

    Paleologue, A.

    2006-05-01

    Active Infra-Red (IR) systems developed in the past ten years are now available for missile defense applications. The main purpose of this paper is to describe the advantages an active IR system could offer to a ballistic missile defense (BMD). The active IR system considered in this paper is a LIDAR (LIght Detection And Ranging) system. Historically, the Lincoln Laboratory in the USA began using lasers in the early 1960's. The initial applications included the development of a LIDAR system enabling the measurement of the distance between the earth and the moon in 1962. Satellite tracking using LIDAR began early in 1973. Today, technological developments, with the miniaturization of systems and increased performance levels, have enabled new ambitious projects such as the Discrimination Interceptor Technology Program (DITP) program started in 1998 and the use of LIDAR to help in the discrimination of future exo-atmospheric interceptors within the framework of BMD. The first part of this paper presents the possible contribution of LIDAR to BMD: the main roles, objectives, and strategic advantages. The second part gives a brief overview of the technological features of a generic LIDAR instrument, rapidly addressing laser sources, detectors, optics and electronics. Finally, a modeling of an IR LIDAR system, limited solely to direct detection, and an estimation of performance levels will be presented. A list of possible IR active discriminators will be then presented on the basis of the previous analysis and proposed as new constraints in the design of discrete objects.

  19. Research on Laser Micro Polishing of SLS Technology Sintered Iron-Based Powder Surface

    Directory of Open Access Journals (Sweden)

    Gerda Vaitkūnaitė

    2015-03-01

    Full Text Available The article analyzes laser micro polishing of 1.2083 steel samples produced applying selective laser sintering (SLS method. The study has evaluated the distribution of the shape, size and temperature of the laser beam treated area in the surface layer of sintered and laser polished samples. Experimental tests have shown the impact of the technical parameters of laser micro polishing on the width and hardness of the impact zone of the treated sample. The microstructure analysis of laser treated and untreated areas of the material has been made.

  20. CMC Participation in the Regional Centre for Strategic Studies (RCSS) Workshop: Defense, Technology and Cooperative Security in South Asia

    Energy Technology Data Exchange (ETDEWEB)

    Biringer, K.L.; Olsen, J.

    1998-11-01

    As an ongoing part of the collaborative efforts between the Cooperative Monitoring Center (CMC) at Sandia National Laboratories, the United States Arms Control and Disarmament Agency (ACDA), and U.S. Department of Energy (DOE), staff from the CMC served as faculty in conducting a workshop in Shanghai, China. Sponsor of the workshop was the Regional Centre for Strategic Studies (RCSS) based in Colombo, Sri Lanka. The workshop included participants from throughout South Asia and China. The CMC presented four sessions related to the role of monitoring technologies in promoting regional security and building confidence among nations. Participation in these workshops supports U.S. efforts to further regional cooperation and promote arms control, nonproliferation and other cooperative securily measures and supplements efforts funded by DOE and ACDA over the past four years. The RCSS Shanghai meeting permitted a continued CMC involvement in regionally conducted training for anew generation of leaders in government, the military, and academia throughout South Asia and China. Nuclear issues are clearly a dominant South Asian concern since the nuclear tests of May 1998. However, there remains a strong interest in identifying opportunities for increased trade and reduced tensions in other areas. The RCSS and other regional organizations are enthusiastic about continued CMC involvement in future regional courses.

  1. THE COMBINATION OF LASER SCANNING AND STRUCTURE FROM MOTION TECHNOLOGY FOR CREATION OF ACCURATE EXTERIOR AND INTERIOR ORTHOPHOTOS OF ST. NICHOLAS BAROQUE CHURCH

    OpenAIRE

    B. Koska; Křemen, T.

    2013-01-01

    Terrestrial laser scanning technology is used for creation of building documentation and 3D building model from its emerging at the turn of the millennium. Photogrammetry has even longer tradition in this field. Both technologies have some technical limitations if they are used for creation of a façade or even an interior orthophoto, but combination of both technologies seems profitable. Laser scanning can be used for creation of an accurate 3D model and photogrammetry for consequent...

  2. 电网企业网络信息安全的威胁与攻防新技术研究%Threat to network information security and study on new defense technologies in power grid enterprises

    Institute of Scientific and Technical Information of China (English)

    龙震岳; 钱扬; 邹洪; 陈锐忠

    2015-01-01

    With the continuous development of management informationization of the power grid enterprises,automatic power grid operation and intelligent electrical equipment,the information security has become more important. For the serious situation of network information security,the new-type defense technologies are studied,which are consisted of advanced persistent threat (APT) protection technology and vulnerability scanning technology. Combining with the advantages and disadvantages of these technologies,the strategy of defense effectiveness analysis based on the minimum attack cost is proposed,which can compute the defense capability of the network.%随着电网企业管理信息化、电网运行自动化、电力设备智能化的不断发展,电网企业信息安全愈发重要.在此针对网络信息安全的严峻形势,通过研究电网企业出现的新型攻防技术,包括高级持续威胁(APT)防护技术、漏洞扫描技术等的优缺点,给出基于最小攻击代价的防御有效性分析策略,并计算网络的防御能力.

  3. The Influence of Organisational Defensive Patterns on Innovation Capacity and Learning of Information and Communication Technology: An Empirical Study in Hong Kong Transport Sector

    Science.gov (United States)

    Yau, Hon Keung; Cheng, Alison Lai Fong

    2010-01-01

    Organisational defensive patterns, including skilled incompetence, organisational defensive routines and fancy footwork, are considered to be a hindrance to effective learning and innovation capacity building in all organisations. The purpose of this research is to investigate: 1) the perceptions of the influence of organisational defensive…

  4. Fibre-Coupling Zig-Zag Beam Deflection Technology for Investigation of Attenuation Process of Laser-Induced Shock Waves

    Institute of Scientific and Technical Information of China (English)

    ZHANG Ping; BIAN Bao-Min; LI Zhen-Hua

    2005-01-01

    @@ A novel fibre-coupling zig-zag beam deflection technology is developed to investigate the attenuation process of laser-induced shock waves in air. Utilizing ordinal reflections of probe beams by a pair of parallel mirrors,a zig-zag beam field is formed, which has eleven probe beams in the horizontal plane. When a laser-induced shock wave propagates through the testing field, it causes eleven deflection signals one after another. The whole attenuation process of the shock wave in air can be detected and illuminated clearly on one experimental curve.

  5. Analysis of the restricting factors of laser countermeasure active detection technology

    Science.gov (United States)

    Zhang, Yufa; Sun, Xiaoquan

    2016-07-01

    The detection effect of laser active detection system is affected by various kinds of factors. In view of the application requirement of laser active detection, the influence factors for laser active detection are analyzed. The mathematical model of cat eye target detection distance has been built, influence of the parameters of laser detection system and the environment on detection range and the detection efficiency are analyzed. Various parameters constraint detection performance is simulated. The results show that the discovery distance of laser active detection is affected by the laser divergence angle, the incident angle and the visibility of the atmosphere. For a given detection range, the laser divergence angle and the detection efficiency are mutually restricted. Therefore, in view of specific application environment, it is necessary to select appropriate laser detection parameters to achieve optimal detection effect.

  6. Research Progress of Laser Cutting Technology Domestic and Overseas%激光切割技术国内外研究现状

    Institute of Scientific and Technical Information of China (English)

    孙晓东; 王松; 赵凯华; 李国庆

    2012-01-01

    Laser cutting is one kind of advanced technology in the world. It is one of the most important parts in laser machining area. The characters of laser cutting equipment and laser cutting process are introduced, and the development trend of laser cutting process in the future is suggested.%总结了激光切割技术的特点,介绍了国内外激光切割设备和加工工艺研究现状,对激光切割工艺未来的发展提出了建议.

  7. Development and application of high-precision laser welding technology for manufacturing Ti alloy frames of glasses

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. S.; Yang, M. S.; Kim, W. K.; Lee, D. Y.; Kim, J. M.; Leem, B. C.; Shin, J. S.; Lee, D. H

    1999-12-01

    The research and development efforts of the high precision laser welding technology for manufacturing titanium alloy frames of glasses. For this purpose, laser welding device with the high beam quality is designed and fabricated, which consists of a optical fiber transmission part, a welding monitoring part and a welding controller. The welding nozzle and holding fixtures for manufacturing titanium and shape memory alloy frames of glasses. Titanium and shape memory alloy frames of glasses to be developed were experimentally manufactured by utilizing the laser welding using the optical fiber of GI 400 {mu}m. As a result, the seam welding with the bead width of 0.3 mm or less and the weld penetration of 0.3-0.4mm could be accomplished. The fundamental technology was established through design of welding jigs with a variety of configurations and adequate welding conditions. Also, for the purpose to enable the companies participating in this project to commercialize the developed technology acceleratedly, a training program for the engineers belonging to such companies was conducted along with the technology transfer through joint experiments with the engineers. (author)

  8. 用于运动会安防工程的小型激光器的研制%Miniature solid-state laser used in games defense system

    Institute of Scientific and Technical Information of China (English)

    段宇程; 高中楠; 杨慧珠

    2012-01-01

    The paper introduces a kind of miniature laser which is used in Large Games defense system in Beijing. The laser is free of cooling water and uses Cr4 + : YAG as passively Q-switch. Its repetition is 2 Hz and output energy is 20 ~38 mJ. In order to improve the stability and reliability,Nd:Ce:YAG bonded crystal is used as active medium and a pyramid prism is used as the high reflector of the resonator. All of the 50 lasers worked well in the project in spite of the blighted outdoor operation environment in summer.%介绍了一种在大型运动会安保工程使用的一种小型化无水冷激光器,激光器采用Cr4+∶YAG作为被动Q开关,在重复频率2 Hz情况下可获得20 ~38 mJ的输出能量.为改善激光器的性能如稳定性和可靠性,激光工作物质采用了Nd∶ Ce∶ YAG键合晶体,并且使用角锥棱镜作为谐振腔的高反镜.在夏天炎热天气条件下,近50台激光器工作稳定可靠.

  9. Surface Contaminant Control Technologies to Improve Laser Damage Resistance of Optics

    OpenAIRE

    Xiaofeng Cheng; Xinxiang Miao; Hongbin Wang; Lang Qin; Yayun Ye; Qun He; Zhiqiang Ma; Longbiao Zhao; Shaobo He

    2014-01-01

    The large high-power solid lasers, such as the National Ignition Facility (NIF) of America and the Shenguang-III (SG-III) laser facility of China, can output over 2.1 MJ laser pulse for the inertial confinement fusion (ICF) experiments. Because of the enhancement of operating flux and the expansion of laser driver scale, the problem of contamination seriously influences their construction period and operation life. During irradiation by intense laser beams, the contaminants on the metallic su...

  10. Surface Contaminant Control Technologies to Improve Laser Damage Resistance of Optics

    Directory of Open Access Journals (Sweden)

    Xiaofeng Cheng

    2014-01-01

    Full Text Available The large high-power solid lasers, such as the National Ignition Facility (NIF of America and the Shenguang-III (SG-III laser facility of China, can output over 2.1 MJ laser pulse for the inertial confinement fusion (ICF experiments. Because of the enhancement of operating flux and the expansion of laser driver scale, the problem of contamination seriously influences their construction period and operation life. During irradiation by intense laser beams, the contaminants on the metallic surface of beam tubes can be transmitted to the optical surfaces and lead to damage of optical components. For the high-power solid-state laser facilities, contamination control focuses on the slab amplifiers, spatial filters, and final-optical assemblies. In this paper, an effective solution to control contaminations including the whole process of the laser driver is put forward to provide the safe operation of laser facilities, and the detailed technical methods of contamination control such as washing, cleanliness metrology, and cleanliness protecting are also introduced to reduce the probability of laser-induced damage of optics. The experimental results show that the cleanliness level of SG-III laser facility is much better to ensure that the laser facility can safely operate at high energy flux.

  11. Laser Spectroscopy Multi-Gas Monitor: Results of Technology Demonstration on ISS

    Science.gov (United States)

    Mudgett, Paul D.; Pilgrim, Jeffrey S.

    2015-01-01

    Tunable diode laser spectroscopy (TDLS) is an up and coming trace and major gas monitoring technology with unmatched selectivity, range and stability. The technology demonstration of the 4 gas Multi-Gas Monitor (MGM), reported at the 2014 ICES conference, operated continuously on the International Space Station (ISS) for nearly a year. The MGM is designed to measure oxygen, carbon dioxide, ammonia and water vapor in ambient cabin air in a low power, relatively compact device. While on board, the MGM experienced a number of challenges, unplanned and planned, including a test of the ammonia channel using a commercial medical ammonia inhalant. Data from the unit was downlinked once per week and compared with other analytical resources on board, notably the Major Constituent Analyzer (MCA), a magnetic sector mass spectrometer. MGM spent the majority of the time installed in the Nanoracks Frame 2 payload facility in front breathing mode (sampling the ambient environment of the Japanese Experiment Module), but was also used to analyze recirculated rack air. The capability of the MGM to be operated in portable mode (via internal rechargeable lithium ion polymer batteries or by plugging into any Express Rack 28VDC connector) was a part of the usability demonstration. Results to date show unprecedented stability and accuracy of the MGM vs. the MCA for oxygen and carbon dioxide. The ammonia challenge (approx. 75 ppm) was successful as well, showing very rapid response time in both directions. Work on an expansion of capability in a next generation MGM has just begun. Combustion products and hydrazine are being added to the measurable target analytes. An 8 to 10 gas monitor (aka Gas Tricorder 1.0) is envisioned for use on ISS, Orion and Exploration missions.

  12. Developing Magnetorheological Finishing (MRF) Technology for the Manufacture of Large-Aperture Optics in Megajoule Class Laser Systems

    Energy Technology Data Exchange (ETDEWEB)

    Menapace, J A

    2010-10-27

    Over the last eight years we have been developing advanced MRF tools and techniques to manufacture meter-scale optics for use in Megajoule class laser systems. These systems call for optics having unique characteristics that can complicate their fabrication using conventional polishing methods. First, exposure to the high-power nanosecond and sub-nanosecond pulsed laser environment in the infrared (>27 J/cm{sup 2} at 1053 nm), visible (>18 J/cm{sup 2} at 527 nm), and ultraviolet (>10 J/cm{sup 2} at 351 nm) demands ultra-precise control of optical figure and finish to avoid intensity modulation and scatter that can result in damage to the optics chain or system hardware. Second, the optics must be super-polished and virtually free of surface and subsurface flaws that can limit optic lifetime through laser-induced damage initiation and growth at the flaw sites, particularly at 351 nm. Lastly, ultra-precise optics for beam conditioning are required to control laser beam quality. These optics contain customized surface topographical structures that cannot be made using traditional fabrication processes. In this review, we will present the development and implementation of large-aperture MRF tools and techniques specifically designed to meet the demanding optical performance challenges required in large-aperture high-power laser systems. In particular, we will discuss the advances made by using MRF technology to expose and remove surface and subsurface flaws in optics during final polishing to yield optics with improve laser damage resistance, the novel application of MRF deterministic polishing to imprint complex topographical information and wavefront correction patterns onto optical surfaces, and our efforts to advance the technology to manufacture large-aperture damage resistant optics.

  13. Advancing adaptive optics technology: Laboratory turbulence simulation and optimization of laser guide stars

    Science.gov (United States)

    Rampy, Rachel A.

    Since Galileo's first telescope some 400 years ago, astronomers have been building ever-larger instruments. Yet only within the last two decades has it become possible to realize the potential angular resolutions of large ground-based telescopes, by using adaptive optics (AO) technology to counter the blurring effects of Earth's atmosphere. And only within the past decade have the development of laser guide stars (LGS) extended AO capabilities to observe science targets nearly anywhere in the sky. Improving turbulence simulation strategies and LGS are the two main topics of my research. In the first part of this thesis, I report on the development of a technique for manufacturing phase plates for simulating atmospheric turbulence in the laboratory. The process involves strategic application of clear acrylic paint onto a transparent substrate. Results of interferometric characterization of the plates are described and compared to Kolmogorov statistics. The range of r0 (Fried's parameter) achieved thus far is 0.2--1.2 mm at 650 nm measurement wavelength, with a Kolmogorov power law. These plates proved valuable at the Laboratory for Adaptive Optics at University of California, Santa Cruz, where they have been used in the Multi-Conjugate Adaptive Optics testbed, during integration and testing of the Gemini Planet Imager, and as part of the calibration system of the on-sky AO testbed named ViLLaGEs (Visible Light Laser Guidestar Experiments). I present a comparison of measurements taken by ViLLaGEs of the power spectrum of a plate and the real sky turbulence. The plate is demonstrated to follow Kolmogorov theory well, while the sky power spectrum does so in a third of the data. This method of fabricating phase plates has been established as an effective and low-cost means of creating simulated turbulence. Due to the demand for such devices, they are now being distributed to other members of the AO community. The second topic of this thesis pertains to understanding and

  14. GEOMETRIC COMPLEXITY ANALYSIS IN AN INTEGRATIVE TECHNOLOGY EVALUATION MODEL (ITEM FOR SELECTIVE LASER MELTING (SLM#

    Directory of Open Access Journals (Sweden)

    S. Merkt

    2012-01-01

    Full Text Available

    ENGLISH ABSTRACT: Selective laser melting (SLM is becoming an economically viable choice for manufacturing complex serial parts. This paper focuses on a geometric complexity analysis as part of the integrative technology evaluation model (ITEM presented here. In contrast to conventional evaluation methodologies, the ITEM considers interactions between product and process innovations generated by SLM. The evaluation of manufacturing processes that compete with SLM is the main goal of ITEM. The paper includes a complexity analysis of a test part from Festo AG. The paper closes with a discussion of how the expanded design freedom of SLM can be used to improve company operations, and how the complexity analysis presented here can be seen as a starting point for feature-based complexity analysis..

    AFRIKAANSE OPSOMMING: Selektiewe lasersmelting word geleidelik ’n gangbare ekonomiese keuse vir die vervaar-diging van opeenvolgende komplekse onderdele. Die navorsing is toegespits op die ontleding van meetkundige kompleksiteit as ’n gedeelte van ’n integrerende tegnologiese evalueringsmodel. Gemeet teen konvensionele evalueringsmodelle behandel die genoemde metode interaksies tussen produkte- en prosesinnovasies wat gegenereer word. Die navorsing behandel ’n kompleksiteitsontleding van ’n toetsonderdeel van die firma FESTO AG. Die resultaat toon hoe kompleksiteits-analise gebruik kan word as die vertrekpunt vir eienskapsgebaseerde analise.

  15. Laser diagnostic technology for early detection of pathogen infestation in orange fruits

    Energy Technology Data Exchange (ETDEWEB)

    Giubileo, Gianfranco, E-mail: gianfranco.giubileo@frascati.enea.i [ENEA Frascati, Via E. Fermi 45, 00044 (Italy); Lai, Antonella; Piccinelli, Delinda [ENEA Frascati, Via E. Fermi 45, 00044 (Italy); Puiu, Adriana [Tor Vergata University of Rome, Faculty of Engineering, Via del Politecnico 1, 00133 Rome (Italy)

    2010-11-11

    Due to an increased expectation of food products that respect high quality and safety standards, there is a need for the growth of accurate, fast, objective and non-destructive technologies for quality determination of food and agricultural products. For this purpose, a diagnostic system based on laser photoacoustic spectroscopy (LPAS) was developed at ENEA Frascati Molecular Spectroscopy Laboratory (Italy). In the design of the photoacoustic detector, particular emphasis was placed in attaining a high sensitivity in detecting ethylene (ET) down to sub-parts per billion level (minimum detectable concentration 0.2 ppb). This was required due to the necessity to monitor and follow up ET production at a single fruit scale. ET is normally synthesised in very low amounts by healthy citrus fruits; however stress conditions such as pathogen attack may induce a substantial increase in the synthesised ET. In the present paper, the comparison between the ET emitted by healthy oranges (Citrus sinensis L. Osbeck) cv Navel and by Phytophthora citrophthora infested Navel orange fruits are reported. The obtained results show a well evident increase in ET emission from the infested fruit with respect to the healthy one, even 24 h after the inoculation with the pathogen; at that time the tissue necrosis was not yet visible, and the fruit was also not yet damaged. The possibility to perform a real time non-destructive detection of ET traces makes the LPAS a powerful tool for monitoring the healthy state of the citrus fruits.

  16. Master on Photonics and Laser Technologies: on-line teaching experience

    Science.gov (United States)

    Paredes, Ángel; Michinel, Humberto; Salgueiro, José R.; Vázquez-Dorrío, Benito; Yáñez, Armando; Arines, Justo; Flores-Arias, M. Teresa

    2014-07-01

    The Galician Universitary System (SUG) in the framework of the European studies under the Bologna process presents a huge number of Masters courses. In this work we present the teaching framework of the Science Masters on "Photonics and Laser Technologies", coordinated by the University of Vigo (UVigo) and involving the three Universities of Galicia: University of Vigo (UVigo), University of Santiago de Compostela (USC) and University of Coruña (UdC). The aim of this work is to show how teaching at this Masters is carried out using an online platform so that the whole expertise of all the three Universities can be properly exploited and the geographic dispersion of lecturers and students overcame. The used platform permits the students to attend the lessons from their own Universities without wasting time and money on traveling. Besides, each lecturer can teach from his/her own University, allowing the combination of this activity with other professional and scientific duties. Thanks to this tool, the Masters could host students that followed the lessons from other different countries. The platform has been used for lectures, seminar classes, examinations, conferences and coordination activities between teachers and students.

  17. TECHNOLOGICAL ADVANCEMENT OF DEPOSIT WELDING AND GAS LASER CUTTING TO INCREASE THE EFFICIENCY OF THE BIMETALLIC TOOL PRODUCTION

    Directory of Open Access Journals (Sweden)

    Burlachenko Oleg Vasil’evich

    2017-08-01

    Full Text Available Deposit welding is the application of a layer of metal on the surface of a product using fusion welding. In this paper, we consider the method of improving the technology of gas laser cutting, which makes it possible to achieve a high productivity of manufacturing a bimetallic tool. The present paper is concerned with the advantages of gas laser cutting which allows to consider this particular process of separating materials as highly-productive, low-waste, and advanced method of removing allowances of weld-deposit high-speed steel on the working surfaces of bimetallic tool. Urgency of the use of deposit welding and gas laser cutting to improve the efficiency of production of bimetallic tool is shown. The comparative analysis of gas-laser cutting and other cutting methods is given according to the geometrical parameters of cutting and surface quality. Analysis of the results of experimental studies has confirmed the high technological attractiveness and economic efficiency of manufacturing composite structures of punches and matrices when applying deposit welding of cutting parts with high-speed steels. The cost of dimensional processing of the welded cutting part is reduced by 4 to 6 times, while the manufacturing time is reduced by 6 to 12 times.

  18. Towards a novel laser-driven method of exotic nuclei extraction-acceleration for fundamental physics and technology

    CERN Document Server

    Nishiuchi, Mamiko; Nishio, Katsuhisa; Orlandi, Riccard; Sako, Hiroyuki; Pikuz, Tatiana A; Faenov, Anatory Ya; Esirkepov, Timur Zh; Pirozhkov, Alexander S; Matsukawa, Kenya; Sagisaka, Akito; Ogura, Koichi; Kanasaki, Masato; Kiriyama, Hiromitsu; Fukuda, Yuji; Koura, Hiroyuki; Kando, Masaki; Yamauchi, Tomoya; Watanabe, Yukinobu; Bulanov, Sergei V; Kondo, Kiminori; Imai, Kenichi; Nagamiya, Shoji

    2014-01-01

    The measurement of properties of exotic nuclei, essential for fundamental nuclear physics, now confronts a formidable challenge for contemporary radiofrequency accelerator technology. A promising option can be found in the combination of state-of-the-art high-intensity short pulse laser system and nuclear measurement techniques. We propose a novel Laser-driven Exotic Nuclei extraction-acceleration method (LENex): a femtosecond petawatt laser, irradiating a target bombarded by an external ion beam, extracts from the target and accelerates to few GeV highly-charged nuclear reaction products. Here a proof-of-principle experiment of LENex is presented: a few hundred-terawatt laser focused onto an aluminum foil, with a small amount of iron simulating nuclear reaction products, extracts almost fully stripped iron nuclei and accelerate them up to 0.9 GeV. Our experiments and numerical simulations show that short-lived, heavy exotic nuclei, with a much larger charge-to-mass ratio than in conventional technology, can ...

  19. [The effect of technological parameters of wide-band laser cladding on microstructure and sinterability of gradient bioceramics composite coating].

    Science.gov (United States)

    Liu, Qibin; Zhu, Weidong; Zou, Longjiang; Zheng, Min; Dong, Chuang

    2005-12-01

    The gradient bioceramics coating was prepared on the surface of Ti-6Al-4V alloy by using wide-band laser cladding. And the effect of technological parameters of wide-band laser cladding on microstructure and sinterability of gradient bioceramics composite coating was studied. The experimental results indicated that in the circumstances of size of laser doze D and scanning velocity V being fixed, with the increasement of power P, the density of microstructure in bioceramics coating gradually degraded; with the increasement of power P, the pore rate of bioceramics gradually became high. While P = 2.3 KW, the bioceramics coating with dense structure and lower pore rate (5.11%) was obtained; while P = 2.9 KW, the bioceramics coating with disappointing density was formed and its pore rate was up to 21.32%. The microhardness of bioceramics coating demonstrated that while P = 2.3 KW, the largest value of microhardness of bioceramics coating was 1100 HV. Under the condition of our research work, the optimum technological parameters for preparing gradient bioceramics coating by wide-band laser cladding are: P = 2.3 KW, V = 145 mm/min, D = 16 mm x 2 mm.

  20. Manufacturing laser glass by continuous melting

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J H; Suratwala, T; krenitsky, S; Takeuchi, K

    2000-07-01

    A novel, continuous melting process is being used to manufacture meter-sized plates of laser glass at a rate 20-times faster, 5-times cheaper, and with 2-3 times better optical quality than with previous one-at-a-time, ''discontinuous'' technology processes. This new technology for manufacturing laser glass, which is arguably the most difficult continuously-melted optical material ever produced, comes as a result of a $60 million, six-year joint R&D program between government and industry. The glasses manufactured by the new continuous melting process are Nd-doped phosphate-based glasses and are marketed under the product names LG-770 (Schott Glass Technologies) and LHG-8 (Hoya Corporation USA). With this advance in glass manufacturing technology, it is now possible to construct high-energy, high-peak-power lasers for use in fusion energy development, national defense, and basic physics research that would have been impractical to build using the old melting technology. The development of continuously melted laser glass required technological advances that have lead to improvements in the manufacture of other optical glass products as well. For example, advances in forming, annealing, and conditioning steps of the laser glass continuous melting process are now being used in manufacture of other large-size optical glasses.

  1. System technology for laser-assisted milling with tool integrated optics

    Science.gov (United States)

    Hermani, Jan-Patrick; Emonts, Michael; Brecher, Christian

    2013-02-01

    High strength metal alloys and ceramics offer a huge potential for increased efficiency (e. g. in engine components for aerospace or components for gas turbines). However, mass application is still hampered by cost- and time-consuming end-machining due to long processing times and high tool wear. Laser-induced heating shortly before machining can reduce the material strength and improve machinability significantly. The Fraunhofer IPT has developed and successfully realized a new approach for laser-assisted milling with spindle and tool integrated, co-rotating optics. The novel optical system inside the tool consists of one deflection prism to position the laser spot in front of the cutting insert and one focusing lens. Using a fiber laser with high beam quality the laser spot diameter can be precisely adjusted to the chip size. A high dynamic adaption of the laser power signal according to the engagement condition of the cutting tool was realized in order not to irradiate already machined work piece material. During the tool engagement the laser power is controlled in proportion to the current material removal rate, which has to be calculated continuously. The needed geometric values are generated by a CAD/CAM program and converted into a laser power signal by a real-time controller. The developed milling tool with integrated optics and the algorithm for laser power control enable a multi-axis laser-assisted machining of complex parts.

  2. Antioxidative defense

    Directory of Open Access Journals (Sweden)

    Stevanović Jelka

    2011-01-01

    Full Text Available Free radicals occur constantly during metabolism and take part in numerous physiological processes, such as: intra-cellular and inter-cellular signalization, gene expression, removal of damaged or senescent cells, and control of the tone of blood vessels. However, there is an increased quantity of free radicals in situations of so-called oxidative stress, when they cause serious damage to cellular membranes (peroxidation of their lipids, damage of membrane proteins, and similar, to interior cellular protein molecules, as well as DNA molecules and carbohydrates. This is precisely why the organism has developed numerous mechanisms for removing free radicals and/or preventing their production. Some of these are enzyme-related and include superoxide-dismutase, catalase, glutathione-peroxidase, and others. Other, non-enzyme mechanisms, imply antioxidative activities of vitamins E and C, provitamin A, coenzyme Q, reduced glutation, and others. Since free radicals can leave the cell that has produced them and become dispersed throughout the body, in addition to antioxidative defense that functions within cellular structures, antioxidant extra-cellular defense has also been developed. This is comprised by: transferrin, lactoferrin, haptoglobin, hemopexin, ceruloplasmin, albumins, extra-cellular isoform SOD, extracellular glutathione-peroxidase, glucose, bilirubin, urates, and many other molecules.

  3. Pallet Management System: A Study of the Implementation of UID/RFID Technology for Tracking Shipping Materials Within the Department of Defense Distribution Network

    Science.gov (United States)

    2008-06-01

    San Joaquin DFARS: Defense Federal Acquisition Regulations DI: Data Identifier DoD: Department of Defense EPC : Electronic Product Code FOD...provides a coherent and stable interface between RFID hardware operations and the flow of data elements—such as electronic product code ( EPC ...custody (government or contractor ), and • How it is marked. (DoD AT&L 2006) Figure 11. Data Included in the UID Registry (DoD AT&L 2006

  4. Formation and Use of Taekwondo's "Defensive Back" Technology in Yan'an University%浅析延安大学跆拳道"防守反击"技术的形成与运用

    Institute of Scientific and Technical Information of China (English)

    张应龙; 王伟

    2011-01-01

    防守反击是跆拳道技术重要的组成部分,本文通过对延安大学体育学院跆拳道专修课的训练观察与求学实践以及对教练员的座谈法,做出了对跆拳道防守与反击的关系和防守反击技能形成的分析,从而达到防守反击技术在跆拳道实战中的灵活运用,使教练员能选择更合理的手段和方法,提高训练实效、减少训练中的盲目性,掌握技战术的提高.%Defensive back is an important part of taekwondo technology. The paper analyzed the relationship between defense and counterattack and the formation of defensive back skill, in order to flexibly use defensive back skill in actual combat of taekwondo, help coaches select proper way and method, promote trainirng effect and reduce blind train, and improve technique and tactics, through observing the training on taekwondo class of Institute of Physical Education Yah'an University, studying and practicing, and interviewing coaches.

  5. 高精度激光脉冲测距技术%High precision laser pulse distance measuring technology

    Institute of Scientific and Technical Information of China (English)

    李密; 宋影松; 虞静; 李春领; 唐丹

    2011-01-01

    激光测距技术是影响机载三维激光雷达性能的重要因素,研制高精度的激光测距系统对提高机载三维激光雷达的性能具有重要意义.开展了激光脉冲静态测距实验研究,对弱光探测和时间间隔测量技术进行了相应的研究,建立了激光测距实验平台和测量装置.通过选择合适的光电探测器和高性能的时间测量电路,初步实现了高精度激光脉冲静态测距,激光测距精度优于2.0 cm,平均误差不超过1.5 cm,达到了国内先进水平.实验结果充分证实了弱光探测和时间测量技术的可行性,为开展激光脉冲快速扫描测距积累了经验.%Laser distance measuring technology is an important influence factor to the capability of LIDAR. It is very important to develop high precision laser distance measuring system to improve the capability of LIDAR. The experiment of laser pulse distance measuring was carried out, and relevant research on weak light detecting and time interval measuring technology were started then the laser distance measuring experiment platform and measuring equipments were established. High precision laser pulse distance measuring under quiescent state was primarily realized by selecting excellent photodetector and designing high capability time interval measuring circuit. The distance measuring precision was better than 2.0 cm and the average relative error was less than 1.5 cm, which reached domestic advanced level. The experimental results of the laser pulse distance measuring under quiescent state prove that the weak light detecting and time interval measuring technology is feasible, and experience is accumulated for laser pulse distance measuring under scanning state.

  6. Korean Defense Industry: Threat or Ally?

    Science.gov (United States)

    1994-02-22

    framework for defense industrial cooperation with Korea . While Senator Dixon eventually dropped his opposition and the Korean Fighter Program is now...US defense firms to transfer technology to Korean firms, the US Government must recognize two realities: first, Korea will develop indigenous...serious Korean competition in the foreseeable future. 8 It does not appear that the Korea defense industry is poised to take away significant market

  7. Offset implementations for Turkey's International Defense Acquisitions

    OpenAIRE

    2008-01-01

    MBA Professional Report "Offsets" is the umbrella term for a broad range of industrial and commercial "compensatory" practices. Specifically, offset agreements in the defense environment are increasing globally as a percentage of exports. Developed countries with established defense industries use offsets to channel work or technology to their domestic defense companies. Countries with newly industrialized economies are utilizing both military and commercial related offsets that involv...

  8. A New Technology for Applanation Free Corneal Trephination: The Picosecond Infrared Laser (PIRL)

    OpenAIRE

    Linke, Stephan J; Andreas Frings; Ling Ren; Amadeus Gomolka; Udo Schumacher; Rudolph Reimer; Nils-Owe Hansen; Nathan Jowett; Gisbert Richard; R J Dwayne Miller

    2015-01-01

    The impact of using a Femtosecond laser on final functional results of penetrating kerato-plasty is low. The corneal incisions presented here result from laser ablations with ultrafastdesorption by impulsive vibrational excitation (DIVE). The results of the current study arebased on the first proof-of-principle experiments using a mobile, newly introduced picosec-ond infrared laser system, and indicate that wavelengths in the mid-infrared range centeredat 3 $\\mu$m are efficient for obtaining ...

  9. Test of the Capability of Laser Line Scan Technology to Support Benthic Habitat Mapping in Coral Reef Ecosystems, Maui Island, November 2006

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The utility of Laser Line Scan (LLS) Technology for optical validation of benthic habitat map data from coral reef ecosystems was tested with a deployment of a...

  10. Capabilities of laser technology for manufacturing diagnostic peptide matrices with maximal density

    Science.gov (United States)

    Baum, O. I.; Shcherbakov, E. M.; Nesterov-Müller, A.; Sobol', E. N.

    2016-02-01

    The process of manufacturing a matrix-gel biochip is modelled by means of laser fused deposition of a layer of polymer microparticles, containing a sensitive peptide element, onto a glass substrate. The limits of acceptable ranges and the optimal values of laser parameters, at which the melting of the polymer coating occurs without damaging the sensitive elements of the biochip, are theoretically determined. The results of the experiments on laser fused deposition of a layer of microparticles having the size 3 - 4 μm confirm the conservation of the functions of the biological complexes at optimal irradiation regimes. The parameters of the laser impact affecting the possible minimal separation between the zones of laser fused deposition are investigated. The essential role of heat conductivity and thermoplasticity of the polymer in increasing the size of the melted droplet is demonstrated. Using the laser radiation with the wavelength 532 nm focused into a spot with the diameter 6 μm (the laser pulse duration being 10 ms) the laser fused deposition density of 110000 spots per 1 cm2 is achieved. The maximal estimated density of laser fused deposition for the studied system amounts to 250000 spots per 1 cm2.

  11. Defense Headquarters: Improved Data Needed to Better Identify Streamlining and Cost Savings Opportunities by Function

    Science.gov (United States)

    2016-06-01

    approaches from the commercial sector to the department’s six core business processes— management of human resources , healthcare, financial flow... human resource programs for nonappropriated funds, and centrally managed information technology functions. Most of the personnel involved in these...Defense Contract Management Agency • Defense Finance and Accounting Service • Defense Health Agency • Defense Human Resource Activity • Defense

  12. 32 CFR 37.1030 - What information must I report to the Defense Technical Information Center?

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 1 2010-07-01 2010-07-01 false What information must I report to the Defense Technical Information Center? 37.1030 Section 37.1030 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS TECHNOLOGY INVESTMENT AGREEMENTS Executing...

  13. Teaching and Training of Hacking and Defense Technology in Teaching of Sanda of Vocational College%高职院校散打教学中攻防技术的教学及训练

    Institute of Scientific and Technical Information of China (English)

    周文龙

    2013-01-01

    在高职院校的散打教学中,对于教师如何能够快速高效的让学生准确的掌握散打的攻防技术是长此以往一直难以解决的问题,而笔者经过一段时间的教学实践,并通过与过去教学方法的比较,本人认为,在教学中融入有效的进攻、防守辅助于专项素质练习能够让学生更好的掌握攻防的技术。%In sanda teaching of vocational colleges, it is an difficulty for teachers to make students quickly and accurately grasp attacking and defense technology of sanda. Combined with teaching practice, compared with the traditional teaching method, the author thinks that integrating effective attacking and defense assisting special quality training in teaching can make students better master attacking and defense technology.

  14. Combining Frequency Doubling Technology Perimetry and Scanning Laser Polarimetry for Glaucoma Detection.

    Science.gov (United States)

    Mwanza, Jean-Claude; Warren, Joshua L; Hochberg, Jessica T; Budenz, Donald L; Chang, Robert T; Ramulu, Pradeep Y

    2015-01-01

    To determine the ability of frequency doubling technology (FDT) and scanning laser polarimetry with variable corneal compensation (GDx-VCC) to detect glaucoma when used individually and in combination. One hundred ten normal and 114 glaucomatous subjects were tested with FDT C-20-5 screening protocol and the GDx-VCC. The discriminating ability was tested for each device individually and for both devices combined using GDx-NFI, GDx-TSNIT, number of missed points of FDT, and normal or abnormal FDT. Measures of discrimination included sensitivity, specificity, area under the curve (AUC), Akaike's information criterion (AIC), and prediction confidence interval lengths. For detecting glaucoma regardless of severity, the multivariable model resulting from the combination of GDx-TSNIT, number of abnormal points on FDT (NAP-FDT), and the interaction GDx-TSNIT×NAP-FDT (AIC: 88.28, AUC: 0.959, sensitivity: 94.6%, specificity: 89.5%) outperformed the best single-variable model provided by GDx-NFI (AIC: 120.88, AUC: 0.914, sensitivity: 87.8%, specificity: 84.2%). The multivariable model combining GDx-TSNIT, NAP-FDT, and interaction GDx-TSNIT×NAP-FDT consistently provided better discriminating abilities for detecting early, moderate, and severe glaucoma than the best single-variable models. The multivariable model including GDx-TSNIT, NAP-FDT, and the interaction GDx-TSNIT×NAP-FDT provides the best glaucoma prediction compared with all other multivariable and univariable models. Combining the FDT C-20-5 screening protocol and GDx-VCC improves glaucoma detection compared with using GDx or FDT alone.

  15. The Department of Defense Statement on the Science and Technology Program by Mr. H. Mark Grove, Assistant Deputy Under Secretary of Defense for Research and Advanced Technology Before the Defense Subcommittee of the Committee on Appropriations of the United States House of Representatives, 97th Congress, Second Session,

    Science.gov (United States)

    1982-06-16

    important, the focused funding and technologi- cal efforts have provided the impetus to rapidly transfer and apply C/C technology to rocket motor ...velocities of 3 km/sec. o A revolutionary compact power source ( homopolar generator) has been designed capable of storing 6.2 megajoules. Component...Small projectiles (a few grams) have been accelerated to approxi- mately 10 km/sec. In FY 83 the rail gun and homopolar generator will be married for

  16. High beam quality and high power CO II lasers for technologies and medicine

    Science.gov (United States)

    Vasiltsov, V. V.; Berishvili, I. I.; Galushkin, M. G.; Golubev, V. S.; Panchenko, V. Ya.; Ulyanov, V. A.; Zinina, N. N.; Vakhromeeva, M. N.; Vakhrameeva, A. Y.

    2007-06-01

    The technical characteristics of the new three models of diffusion-cooled multichannel waveguide industrial CO II lasers excited with acoustic-frequency ac discharge are presented. The industrial lasers of this type have been developed for years at ILIT RAS. Generation of low (to 400 W) average power proved to be technically realizable through air cooling of the oscillator, which makes the laser performance even more attractive. The above lasers can be used to advantage in the laser processing systems intended for precision cutting of metallic (thickness to 10 mm) and non-metallic (thickness to 40 mm) materials; welding; surfacing and fabrication of parts from composite and metallic powder materials. The paper also provides the description and the technical characteristics of intellectual medical cardio-surgery laser systems of "Perfocor" family, developed at ILIT RAS for the transmyocardial laser revascularization (TMLR) which presents a promising method to cure the ischemic disease of heart. The clinical results (more than 800 operations) are presented. Owing to application of the TMLR technique the death rate at the A.N. Bakoulev Center is the lowest in the world. The project of a new CO II laser surgery plant "Khirurg" is discussed that would deliver up to 200 W power and is based on the model TL-300 with a system of biotissue diagnostics.

  17. LASER TECHNOLOGY FOR PRECISION MONOENERGETIC GAMMA-RAY SOURCE R&D AT LLNL

    Energy Technology Data Exchange (ETDEWEB)

    Shverdin, M Y; Bayramian, A; Albert, F; Anderson, S G; Betts, S M; Chu, T S; Cross, R R; Gibson, D J; Marsh, R; Messerly, M; Phan, H; Prantil, M; Wu, S; Ebbers, C; Scarpetti, R D; Hartemann, F V; Siders, C W; McNabb, D P; Bonanno, R E; Barty, C P

    2010-04-20

    Generation of mono-energetic, high brightness gamma-rays requires state of the art lasers to both produce a low emittance electron beam in the linac and high intensity, narrow linewidth laser photons for scattering with the relativistic electrons. Here, we overview the laser systems for the 3rd generation Monoenergetic Gamma-ray Source (MEGa-ray) currently under construction at Lawrence Livermore National Lab (LLNL). We also describe a method for increasing the efficiency of laser Compton scattering through laser pulse recirculation. The fiber-based photoinjector laser will produce 50 {micro}J temporally and spatially shaped UV pulses at 120 Hz to generate a low emittance electron beam in the X-band RF photoinjector. The interaction laser generates high intensity photons that focus into the interaction region and scatter off the accelerated electrons. This system utilizes chirped pulse amplification and commercial diode pumped solid state Nd:YAG amplifiers to produce 0.5 J, 10 ps, 120 Hz pulses at 1064 nm and up to 0.2 J after frequency doubling. A single passively mode-locked Ytterbium fiber oscillator seeds both laser systems and provides a timing synch with the linac.

  18. [The Early Years of Military Laser Research and Technology in the Federal Republic of Germany During the Cold War].

    Science.gov (United States)

    Albrecht, Helmuth

    2014-01-01

    The invention of the laser in 1960 and the innovation process of laser technology during the following years coincided with the dramatic increase of the East-West-conflict during the 1960s - the peak of the so-called Cold War after the erection of the Berlin Wall in 1961. The predictable features of the new device, not only for experimental sciences, but also for technical and military applications, led instantly to a laser hype all over the world. Military funding and research played a major part in this development. Especially in the United States military laser research and development played an important role in the formation of Cold War sciences. The European allies followed this example to a certain degree, but their specific national environments led to quite different solutions and results. This article describes and analyzes the special features and background of this development for the Federal Republic of Germany in the area of conflict between science, politics and industry from 1960 to the early 1970s.

  19. Defense Acquisition Performance Assessment Report

    Science.gov (United States)

    2006-01-01

    Incorporated – “Changing the System” HeLLeR , TRiCiA A., Deputy Director of Congressional Support, Technical and Analytical Support, USAF A-Team...Interview Recorder” HeLLieR, RiCHARD, Director of Air Force Programs, United Technologies – “Joint Stars System” HeRMAN , DR. ROBeRT, Member, Defense

  20. Damage Resistant Optical Glasses for High Power Lasers: A Continuing Glass Science and Technology Challenge

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, J H

    2002-08-28

    A major challenge in the development of optical glasses for high-power lasers is reducing or eliminating laser-induced damage to the interior (bulk) and the polished surface of the glass. Bulk laser damage in glass generally originates from inclusions. With the development of novel glass melting and forming processes it is now possible to make both fused silica and a suit of meta-phosphate laser glasses in large sizes ({approx}>0.5-lm diameter), free of inclusions and with high optical homogeneity ({approx} 10{sup -6}). Considerable attention also has been focused on improving the laser damage resistance to polished optical glass surfaces. Studies have shown that laser-induced damage to surfaces grows exponentially with the number of shots when illuminated with nano-second pulses at 351-nm above a given fluence threshold. A new approach for reducing and eliminating laser-induced surface damage relies on a series of post-polishing treatment steps. This damage improvement method is briefly reviewed.

  1. Laser metal deposition with spatial variable orientation based on hollow-laser beam with internal powder feeding technology

    Science.gov (United States)

    Shi, Tuo; Lu, Bingheng; Shi, Shihong; Meng, Weidong; Fu, Geyan

    2017-02-01

    In this study, a hollow-laser beam with internal powder feeding (HLB-IPF) head is applied to achieve non-horizontal cladding and deposition of overhanging structure. With the features of this head such as uniform scan energy distribution, thin and straight spraying of the powder beam, the deposition in spatial variable orientation is conducted using a 6-axis robot. During the deposition process the head keeps tangential to the growth direction of the part. In the experiment, a "vase" shaped metal part with overhanging structure is successfully deposited, and the largest overhanging angle achieves 80° to the vertical direction. The "step effect" between cladding layers is completely eliminated with the best surface roughness of Ra=3.864 μm. Cross section of cladding layers with unequal height are deposited for angle change. Test results indicate that the formed part has uniform wall thickness, fine microstructure and high microhardness.

  2. JPRS Report, Science & Technology, Japan

    Science.gov (United States)

    2007-11-02

    This is Japan Report with Science and Technology. It contains the issues with different topics on biotecnology , defense industry, nuclear engineering, Marine technology, science and technology policy.

  3. A new technology for applanation free corneal trephination: the picosecond infrared laser (PIRL.

    Directory of Open Access Journals (Sweden)

    Stephan J Linke

    Full Text Available The impact of using a Femtosecond laser on final functional results of penetrating keratoplasty is low. The corneal incisions presented here result from laser ablations with ultrafast desorption by impulsive vibrational excitation (DIVE. The results of the current study are based on the first proof-of-principle experiments using a mobile, newly introduced picosecond infrared laser system, and indicate that wavelengths in the mid-infrared range centered at 3 μm are efficient for obtaining applanation-free deep cuts on porcine corneas.

  4. A new technology for applanation free corneal trephination: the picosecond infrared laser (PIRL).

    Science.gov (United States)

    Linke, Stephan J; Frings, Andreas; Ren, Ling; Gomolka, Amadeus; Schumacher, Udo; Reimer, Rudolph; Hansen, Nils-Owe; Jowett, Nathan; Richard, Gisbert; Miller, R J Dwayne

    2015-01-01

    The impact of using a Femtosecond laser on final functional results of penetrating keratoplasty is low. The corneal incisions presented here result from laser ablations with ultrafast desorption by impulsive vibrational excitation (DIVE). The results of the current study are based on the first proof-of-principle experiments using a mobile, newly introduced picosecond infrared laser system, and indicate that wavelengths in the mid-infrared range centered at 3 μm are efficient for obtaining applanation-free deep cuts on porcine corneas.

  5. 从国外舰艇鱼雷防御技术谈火箭深弹在鱼雷防御领域的发展%Talk about development of rocket depth charge in the field of torpedo defense from the technology of foreign naval ships torpedo defense

    Institute of Scientific and Technical Information of China (English)

    刘劲军

    2012-01-01

    本文从分析国外舰艇鱼雷防御技术入手,提出硬杀伤方式将成为反鱼雷作战的发展趋势,进而分析了火箭深弹硬杀伤拦截鱼雷的可能性和发展方向.%This paper put forward the hard kill mode will become the development trend of anti torpedo warfare from the technology of foreign naval ships torpedo defense, and analyzes the probability and development direction of rocket depth charge hard kill intercepting torpedo.

  6. Investigation on a new local control technology with near-infrared spectroscopy for laser induced interstitial thermotherapy

    Energy Technology Data Exchange (ETDEWEB)

    Hua Guoran; Zhang Hua; Qian Aiping; Qian Zhiyu, E-mail: nuaazhh@126.com, E-mail: ntuzhh@ntu.edu.cn [School of Mechanical Engineering, Nantong University, Nantong, Jiangsu 226019 (China)

    2011-02-01

    In order to control the treatment of laser-induced interstitial thermotherapy, a new local control technique is put forward, which use a functional near infrared spectroscopy (fNIRS) system. The temperature of biological tissue is regarded as the most important indicator for treatment of LITT. So, based on the experiments of LITT being performed on a liver cancer, the temperature and reducing scattering coefficient have been obtained in real time, respectively, with probe-type thermometer and fNIRS system. The results of the two factors have the same trend with different power of laser. It is confirmed that the fNIRS can be a useful local control technology for LITT.

  7. The theory of laser materials processing heat and mass transfer in modern technology

    CERN Document Server

    Schulz, Wolfgang

    2017-01-01

    The revised edition of this important reference volume presents an expanded overview of the analytical and numerical approaches employed when exploring and developing modern laser materials processing techniques. The book shows how general principles can be used to obtain insight into laser processes, whether derived from fundamental physical theory or from direct observation of experimental results. The book gives readers an understanding of the strengths and limitations of simple numerical and analytical models that can then be used as the starting-point for more elaborate models of specific practical, theoretical or commercial value. Following an introduction to the mathematical formulation of some relevant classes of physical ideas, the core of the book consists of chapters addressing key applications in detail: cutting, keyhole welding, drilling, arc and hybrid laser-arc welding, hardening, cladding and forming. The second edition includes a new a chapter on glass cutting with lasers, as employed in the ...

  8. The science, technology and mission design for the Laser Astrometric test of relativity

    Science.gov (United States)

    Turyshev, Slava G.

    2006-01-01

    The Laser Astrometric Test of Relativity (LATOR) is a Michelson-Morley-type experiment designed to test the Einstein's general theory of relativity in the most intense gravitational environment available in the solar system - the close proximity to the Sun.

  9. Technology Development and Circuit Design for a Parallel Laser Programmable Floating Point Application Specific Processor

    Science.gov (United States)

    1989-12-01

    The laser programmable floating point application specific processor (LPASP) is a new approach at rapid development of custom VLSI chips. The LPASP...double precision floating point adder and the laser programmable read-only memory (LPROM) that are macrocells within the LPASP. In addition, the...thesis analyzes the applicability of an LPASP parallel processing system. The double precision floating point adder is an adder/subtractor macrocell

  10. Next Generation of Advanced Laser Fluorescence Technology for Characterization of Natural Aquatic Environments

    Science.gov (United States)

    2011-09-30

    The project research addresses our long-term goal to develop an analytical suite of the Advanced Laser Fluorescence (ALF) methods and instruments to...sucessfully tested. It provides the accuracy of CC fluorescnce measurments comparable to the accuracy of commonly accepted preparatory methods , such HPLC...Plankton Reseach (Chekalyuk et al. 2011). Task 2 Development of Aquatic Laser Fluorescence Analyzer (ALFA). The ALFA instrument development is

  11. Nondestructive thickness measurement system for multiple layers of paint based on femtosecond fiber laser technologies

    Science.gov (United States)

    Sudo, Masaaki; Takayanagi, Jun; Ohtake, Hideyuki

    2016-11-01

    Because optical fiber-based optical systems are generally robust against external interference, they can be used as reliable systems in industrial applications in various fields. This paper describes fiber lasers generating femtosecond pulses that use optical fibers as gain media and optical paths. Additionally, the nondestructive paint multilayer thickness measurement of automotive parts using terahertz waves generated and detected by femtosecond fiber laser systems was conducted.

  12. Laser Engineered Net Shape (LENS) Technology for the Repair of Ni-Base Superalloy Turbine Components

    Science.gov (United States)

    Liu, Dejian; Lippold, John C.; Li, Jia; Rohklin, Stan R.; Vollbrecht, Justin; Grylls, Richard

    2014-09-01

    The capability of the laser engineered net shape (LENS) process was evaluated for the repair of casting defects and improperly machined holes in gas turbine engine components. Various repair geometries, including indentations, grooves, and through-holes, were used to simulate the actual repair of casting defects and holes in two materials: Alloy 718 and Waspaloy. The influence of LENS parameters, including laser energy density, laser scanning speed, and deposition pattern, on the repair of these defects and holes was studied. Laser surface remelting of the substrate prior to repair was used to remove machining defects and prevent heat-affected zone (HAZ) liquation cracking. Ultrasonic nondestructive evaluation techniques were used as a possible approach for detecting lack-of-fusion in repairs. Overall, Alloy 718 exhibited excellent repair weldability, with essentially no defects except for some minor porosity in repairs representative of deep through-holes and simulated large area casting defects. In contrast, cracking was initially observed during simulated repair of Waspaloy. Both solidification cracking and HAZ liquation cracking were observed in the repairs, especially under conditions of high heat input (high laser power and/or low scanning speed). For Waspaloy, the degree of cracking was significantly reduced and, in most cases, completely eliminated by the combination of low laser energy density and relatively high laser scanning speeds. It was found that through-hole repairs of Waspaloy made using a fine powder size exhibited excellent repair weldability and were crack-free relative to repairs using coarser powder. Simulated deep (7.4 mm) blind-hole repairs, representative of an actual Waspaloy combustor case, were successfully produced by the combination use of fine powder and relatively high laser scanning speeds.

  13. Optical Material Researches for Frontier Optical Ceramics and Visible Fiber Laser Technologies

    Science.gov (United States)

    2016-07-07

    AM2A.2, 27 October - 01 November 2013, Paris Marriott Rive Gauche Hotel and Convention Center, Paris, France. 2) “ Development on advanced functional...DISTRIBUTION/AVAILABILITY STATEMENT A DISTRIBUTION UNLIMITED: PB Public Release 13. SUPPLEMENTARY NOTES 14. ABSTRACT We have successfully developed a new...are very useful for scientific and industrial applications. 15. SUBJECT TERMS Fibre Lasers, Laser Dynamics, Nonlinear Optical Materials 16. SECURITY

  14. Rapid Manufacturing Technology for Precision Casting MouldBased on Selective Laser Sintering

    Institute of Scientific and Technical Information of China (English)

    白培康; 程军; 王建宏; 刘斌

    2004-01-01

    The selective laser sintering (SLS) technique is introduced. A new type of rapid prototyping material (PCPI) has been developed, which can be used to produce precision casting mould directly and rapidly from a CAD model by the selective sintering of successive layers of PCPI with a laser beam. In comparison with conventional manufacturing methods, prominent features of this technique include high forming rate, low development cost and good flexibility. The rapid manufacturing process of precision casting mould based on SLS is discussed.

  15. Multispectral airborne laser scanning - a new trend in the development of LiDAR technology

    Science.gov (United States)

    Bakuła, K.

    2015-12-01

    Airborne laser scanning (ALS) is the one of the most accurate remote sensing techniques for data acquisition where the terrain and its coverage is concerned. Modern scanners have been able to scan in two or more channels (frequencies of the laser) recently. This gives the rise to the possibility of obtaining diverse information about an area with the different spectral properties of objects. The paper presents an example of a multispectral ALS system - Titan by Optech - with the possibility of data including the analysis of digital elevation models accuracy and data density. As a result of the study, the high relative accuracy of LiDAR acquisition in three spectral bands was proven. The mean differences between digital terrain models (DTMs) were less than 0.03 m. The data density analysis showed the influence of the laser wavelength. The points clouds that were tested had average densities of 25, 23 and 20 points per square metre respectively for green (G), near-infrared (NIR) and shortwave-infrared (SWIR) lasers. In this paper, the possibility of the generation of colour composites using orthoimages of laser intensity reflectance and its classification capabilities using data from airborne multispectral laser scanning for land cover mapping are also discussed and compared with conventional photogrammetric techniques.

  16. MULTISPECTRAL AIRBORNE LASER SCANNING - A NEW TREND IN THE DEVELOPMENT OF LIDAR TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Bakuła Krzysztof

    2015-12-01

    Full Text Available Airborne laser scanning (ALS is the one of the most accurate remote sensing techniques for data acquisition where the terrain and its coverage is concerned. Modern scanners have been able to scan in two or more channels (frequencies of the laser recently. This gives the rise to the possibility of obtaining diverse information about an area with the different spectral properties of objects. The paper presents an example of a multispectral ALS system - Titan by Optech - with the possibility of data including the analysis of digital elevation models accuracy and data density. As a result of the study, the high relative accuracy of LiDAR acquisition in three spectral bands was proven. The mean differences between digital terrain models (DTMs were less than 0.03 m. The data density analysis showed the influence of the laser wavelength. The points clouds that were tested had average densities of 25, 23 and 20 points per square metre respectively for green (G, near-infrared (NIR and shortwave-infrared (SWIR lasers. In this paper, the possibility of the generation of colour composites using orthoimages of laser intensity reflectance and its classification capabilities using data from airborne multispectral laser scanning for land cover mapping are also discussed and compared with conventional photogrammetric techniques.

  17. Silicon Based Photovoltaic Cells For Concentration-Research And Development Progress In Laser Grooved Buried Contact Cell Technology

    Science.gov (United States)

    Cole, A.; Baistow, I.; Brown, L.; Devenport, S.; Drew, K.; Heasman, K. C.; Morrison, D.; Bruton, T. M.; Serenelli, L.; De Iuliis, S.; Izzi, M.; Tucci, M.; Salza, E.; Pirozzi, L.

    2011-12-01

    The Laser grooved buried contact silicon solar cell (LGBC) process employed by Narec currently produces LGBC cells designed to operate at concentrations ranging from 1-100 suns and has demonstrated efficiencies at 50X of over 19% and at 100X of over 18.2% using 300 μm CZ silicon[1] wafers. As part of the LAB2LINE[1], APOLLON[2] and ASPIS[3] projects funded under the European Commission Framework Programs (FP6 and FP7) we have made improvements to the LGBC process to improve efficiency or make the cell technology more suitable for industrial CPV receiver manufacturing processes. We describe a process which hybridizes LGBC and more standard screen printing technologies which yields at least a 6% relative improvement at concentration when using more readily available 200 μm thick CZ wafers. We describe a pioneering front dicing technique (FDT). The FDT process is important in small cells where edge recombination effects are detrimental to the performance. We show that by using this new technique we can produce cells that perform better at concentration and improve the positioning of the front contact of the cell. We also describe a busbar technology that uses laser processing and electroless chemical plating to allow not only soldering to the front contact of the cell but also wire bonding. The advances in research and development of LGBC cells leading to improved cell performance may provide significant reductions in levilised cost of energy (LCOE) for low to medium CPV systems.

  18. Defense Science Board 1996 Summer Study Task Force On Tactics and Technology for 21st Century Military Superiority. Volume 2, Part 1. Supporting Materials

    Science.gov (United States)

    1996-10-01

    Nancy Chesser • Defense Science Board member ** Members Ex Officio Volume 2, Part 1, Conops 1- Leading Edge Strike Force Volume 2, Part 1, Conops 1...the Sense and Destroy Armor (SADARM) Munition (U), RAND, 1995, MR-510-A. Matsumura, J., E. Cardenas , K. Horn, E. McDonald, Future Army Long- Range

  19. On the Research Progress of Laser Cutting Technology%激光切割技术的研究进展

    Institute of Scientific and Technical Information of China (English)

    郭华锋; 李菊丽; 孙涛

    2015-01-01

    In response to the hot issues involved in the laser cutting technology research such as the cutting system innovation ,cutting process simulation ,cutting efficiency and quality control etc .,this paper , on the basis of the principle and classification of laser cutting technology ,reviewed and analyzed the re‐search progress of the key generic technologies in such aspects as the laser cutting system ,the numerical simulation of temperature field/stress field ,the planning and optimization of cutting path ,and the predic‐tion and control of cutting quality .It also pointed out the current problems and the development trend in the future .%针对激光切割技术研究中的切割系统创新、切割过程数值模拟、切割效率提高及切割质量控制等方面的热点问题,从激光切割技术的原理和分类出发,综述了切割系统、温度场与应力场数值模拟、切割路径规划及优化、切割质量预测及控制等关键共性技术方面的研究进展,并加以分析与展望,指出了目前激光切割技术中存在的问题及未来发展趋势。

  20. Advanced arc-welding robot with laser sensor technology and its application field; Laser sensor wo mochiita yosetsu robot no seigyo gijutsu no kaihatsu to tekiyo

    Energy Technology Data Exchange (ETDEWEB)

    Kugai, K.; Izawa, A. [Daihen Corporation, Osaka (Japan); Muto, S.; Mori, T. [NTT Fanet Systems Corp., Tokyo (Japan)

    1998-05-01

    A welding robot with a laser vision sensor was developed. The sensor used in this welding robot consists of a sensor head, a sensor controller, and a profile control board. The sensor controller calculates shapes of welding lines in the reference coordinates of a robot by processing different measurements, and the control board calculates them by using two-dimensional cross section information measured by the sensor. Distance from the sensor to the measurement point is measured as a result of the spot light injected from the sensor head being diffused and reflected on groove surface, part of which is collected to form an image. In addition, cross section shape of the groove is measured by giving the mirror a reciprocal arc movement in a direction perpendicular to the groove to move the mirror over the measurements points while making measurement. Influence of the arc light can be reduced by making the laser light flash sufficiently quicker than the changing speed of flashing of the arc light, and by removing information available when the light is cancelled from information available when it is lit. Extraction of points from an image as the sensor`s technological feature is performed by using the relationship between edge points and intersecting points in partial curve approximation. 10 figs., 1 tab.

  1. Microstructure and wear resistance of Ti-Cu-N composite coating prepared via laser cladding/laser nitriding technology on Ti-6Al-4V alloy

    Science.gov (United States)

    Yang, Yuling; Cao, Shiyin; Zhang, Shuai; Xu, Chuan; Qin, Gaowu

    2017-07-01

    Ti-Cu-N coatings with three different Cu contents on Ti-6Al-4V alloy (TC4) were obtained via laser cladding together with laser nitriding (LC/LN) technology. Phase constituents, microstructure, microhardness, and wear resistance of the coatings were investigated. The evolution of the coefficients of friction for the three coatings was measured under dry sliding conditions as a function of the revolutions until the coating failure. The results show that the coatings are mainly composed of TiN, CuTi3 and some TiO6 phases dispersed in the matrix. A good metallurgical bonding between the coating and substrate has been successfully obtained. The prepared Ti-Cu-N composite coatings almost doubly enhance the microhardness of the TC4 alloy and reduce the friction down to 1/4-1/2 of the TC4 alloy, and thus significantly improve the wear resistance. The coefficient of friction depends on the Cu content in the coating.

  2. Defense Advanced Research Projects Agency Strategic Plan

    Science.gov (United States)

    2007-02-01

    Autonomous Language Exploitation ...................................................................... 33 Figure 35: Bio-inspired "Big Dog" quadruped robot is... Acqusition , Technology and the United States, while creating Logistics Kenneth J. Krieg technological surprise for our • Under Secretaryof Defense for...working to maintain our global lead in this technology (Section 3.7). " Real-Time Accurate Language Translation: real-time machine language

  3. Harmonic technology versus neodymium-doped yttrium aluminium garnet laser and electrocautery for lung metastasectomy: an experimental study.

    Science.gov (United States)

    Fiorelli, Alfonso; Accardo, Marina; Carelli, Emanuele; Del Prete, Assunta; Messina, Gaetana; Reginelli, Alfonso; Berritto, Daniela; Papale, Ferdinando; Armenia, Emilia; Chiodini, Paolo; Grassi, Roberto; Santini, Mario

    2016-07-01

    We compared the efficacy of non-anatomical lung resections with that of three other techniques: monopolar electrocautery; neodymium-doped yttrium aluminium garnet laser and harmonic technology. We hypothesized that the thermal damage with harmonic technology could be reduced because of the lower temperatures generated by harmonic technology compared with that of other devices. Initial studies were performed in 13 isolated pig lungs for each group. A 1.5-cm capsule was inserted within the lung to mimic a tumour and a total of 25 non-anatomical resections were performed with each device. The damage of the resected lung surface and of the tumour border were evaluated according to the colour (ranging from 0-pink colour to 4-black colour), histological (ranging from Score 0-no changes to Score 3-presence of necrotic tissue) and radiological (ranging from Score 0-isointense T2 signal at magnetic resonance imaging to Score 3-hyperintense T2 signal) criteria. A total of seven non-anatomical resections with harmonic technology were also performed in two live pigs to assess if ex vivo results could be reproducible in live pigs with particular attention to haemostatic and air-tightness properties. In the ex vivo lung, there was a statistical significant difference between depth of thermal damage (P harmonic (0.4 [0.3-0.5]) groups. Electrocautery had a higher depth of thermal damage compared with that of the laser (P = 0.01) and harmonic groups (P = 0.0005). The harmonic group had a less depth of thermal damage than that of the laser group (P = 0.01). Also, histological damages of tumour borders (P harmonic technology. Our experimental data support the resections performed with the use of harmonic technology. The lack of severe tissue alterations could favour healing of parenchyma, assure air tightness and preserve functional lung parenchyma. However, randomized controlled studies are needed in an in vivo model to corroborate our findings. © The Author 2016. Published by

  4. Hybrid planar lightwave circuits for defense and aerospace applications

    Science.gov (United States)

    Zhang, Hua; Bidnyk, Serge; Yang, Shiquan; Balakrishnan, Ashok; Pearson, Matt; O'Keefe, Sean

    2010-04-01

    We present innovations in Planar Lightwave Circuits (PLCs) that make them ideally suited for use in advanced defense and aerospace applications. We discuss PLCs that contain no micro-optic components, no moving parts, pose no spark or fire hazard, are extremely small and lightweight, and are capable of transporting and processing a range of optical signals with exceptionally high performance. This PLC platform is designed for on-chip integration of active components such as lasers and detectors, along with transimpedance amplifiers and other electronics. These active components are hybridly integrated with our silica-on-silicon PLCs using fully-automated robotics and image recognition technology. This PLC approach has been successfully applied to the design and fabrication of multi-channel transceivers for aerospace applications. The chips contain hybrid DFB lasers and high-efficiency detectors, each capable of running over 10 Gb/s, with mixed digital and analog traffic multiplexed to a single optical fiber. This highlyintegrated functionality is combined onto a silicon chip smaller than 4 x 10 mm, weighing 125 degC, and more than 2,000 hours operating at 95 degC ambient air temperature. We believe that these recent advancements in planar lightwave circuits are poised to revolutionize optical communications and interconnects in the aerospace and defense industries.

  5. Financial analysis of technology acquisition using fractionated lasers as a model.

    Science.gov (United States)

    Jutkowitz, Eric; Carniol, Paul J; Carniol, Alan R

    2010-08-01

    Ablative fractional lasers are among the most advanced and costly devices on the market. Yet, there is a dearth of published literature on the cost and potential return on investment (ROI) of such devices. The objective of this study was to provide a methodological framework for physicians to evaluate ROI. To facilitate this analysis, we conducted a case study on the potential ROI of eight ablative fractional lasers. In the base case analysis, a 5-year lease and a 3-year lease were assumed as the purchase option with a $0 down payment and 3-month payment deferral. In addition to lease payments, service contracts, labor cost, and disposables were included in the total cost estimate. Revenue was estimated as price per procedure multiplied by total number of procedures in a year. Sensitivity analyses were performed to account for variability in model assumptions. Based on the assumptions of the model, all lasers had higher ROI under the 5-year lease agreement compared with that for the 3-year lease agreement. When comparing results between lasers, those with lower operating and purchase cost delivered a higher ROI. Sensitivity analysis indicates the model is most sensitive to purchase method. If physicians opt to purchase the device rather than lease, they can significantly enhance ROI. ROI analysis is an important tool for physicians who are considering making an expensive device acquisition. However, physicians should not rely solely on ROI and must also consider the clinical benefits of a laser.

  6. VCSELs Fundamentals, Technology and Applications of Vertical-Cavity Surface-Emitting Lasers

    CERN Document Server

    2013-01-01

    The huge progress which has been achieved in the field is covered here, in the first comprehensive monograph on vertical-cavity surface-emitting lasers (VCSELs) since eight years. Apart from chapters reviewing the research field and the laser fundamentals, there are comprehensive updates on red and blue emitting VCSELs, telecommunication VCSELs, optical transceivers, and parallel-optical links for computer interconnects. Entirely new contributions are made to the fields of vectorial three-dimensional optical modeling, single-mode VCSELs, polarization control, polarization dynamics, very-high-speed design, high-power emission, use of high-contrast gratings, GaInNAsSb long-wavelength VCSELs, optical video links, VCSELs for optical mice and sensing, as well as VCSEL-based laser printing. The book appeals to researchers, optical engineers and graduate students.

  7. Wireless fiber laser sensor combining photonic generation beat frequency demodulation technology

    Science.gov (United States)

    Liu, Shengchun; Gu, Rong; Yu, Xiujuan; Yin, Zuowei; Chen, Xiangfei

    2011-12-01

    A simple wireless-fiber laser sensor is proposed base on directly photonic generation of microwave beat signal. In this scheme, a multi-longitudinal modes fiber laser is formed by two fiber Bragg gratings and a section of erbium-doped fiber. Two same 2G-GSM mobile antennas are used as wireless transmitter and receiver. By this method, the real-time monitoring of fiber laser sensors can be achieved through over ultra-long distance. This technique offers a simple, all-electrical and cheap way for fiber sensor information accessing wireless net. The experiment result shows the root mean square deviations of the sensor are about 4.7 μɛ and 6.7 μɛ at 2.38 GHz before and after wireless transmission, respectively.

  8. Developing Capability: The Use of Laser Communication Technology to Operate in a Cyber-Denied Environment

    Science.gov (United States)

    2009-04-01

    technological gap , how to employ such a technology has a long road to travel. The means to deploy and employ the system will require an intense...with the technological gap , the equipment itself may or may not contain sensitive equipment US forces would not want in enemy hands. Considerations

  9. Domestic Technology Transfer versus Technology Export Control - The Emerging National Policies and the Role of the Bench Engineer

    Science.gov (United States)

    1984-01-01

    Defense Technology Transfer Fundamentals 10 B. Governmental Stimuli to Technology Transfer 1. Information Programs 2. Information Analysis Centers 3...networking. II. Domestic Technology Transfer A. Non- Defense Technology Transfer Fundamentals The nation’s technological reservoir is filled by

  10. Development of Mechanical Sealing and Laser Welding Technology to Instrument Thermocouple for Nuclear Fuel Test Rod

    Energy Technology Data Exchange (ETDEWEB)

    Joung, Chang-Young; Ahn, Sung-Ho; Hong, Jin-Tae; Kim, Ka-Hye; Huh, Sung-Ho [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-05-15

    Zircaloy-4 of the nuclear fuel test rod, AISI 316L of the mechanical sealing parts, and the MI (mineral insulated) cable at a thermocouple instrumentation are hetero-metals, and are difficult to weld to dissimilar materials. Therefore, a mechanical sealing method to instrument the thermocouple should be conducted using two kinds of sealing process as follows: One is a mechanical sealing process using Swagelok, which is composed of sealing components that consists of an end-cap, a seal tube, a compression ring and a Swagelok nut. The other is a laser welding process used to join a seal tube, and an MI cable, which are made of the same material. The mechanical sealing process should be sealed up with the mechanical contact compressed by the strength forced between a seal tube and an end-cap, and the laser welding process should be conducted to have no defects on the sealing area between a seal tube and an MI cable. Therefore, the mechanical sealing and laser welding techniques need to be developed to accurately measure the centerline temperature of the nuclear fuel test rod in an experimental reactor. The mechanical sealing and laser welding tests were conducted to develop the thermocouple instrumentation techniques for the nuclear fuel test rod. The optimum torque value of a Swagelok nut to seal the mechanical sealing part between the end-cap and seal tube was established through various torque tests using a torque wrench. The optimum laser welding conditions to seal the welding part between a seal tube and an MI cable were obtained through various welding tests using a laser welding system.

  11. The Laser Institute of Technology for Education and Research at Camden County College: how it has changed and evolved after 20 years

    Science.gov (United States)

    Seeber, Fred P.

    2009-06-01

    The Laser Institute of Technology for Education and Research (LITER), nationally and internationally recognized in the field of Photonics, is a state of the art facility built in 1989 on the campus of Camden County College, Blackwood, NJ. This building consists of six high power laser labs, five low power laser labs and four fiber-optic laboratories. It also contains classrooms and research labs and the facility houses over $5,000,000 in equipment. This paper will discuss the evolution of this facility in regards to enrollment in its photonics programs, funding for new equipment purchases and maintaining and updating the facility in laser safety requirements as required by the ANSI Z-136.5 Standard for Educational Institutions. The paper will also discuss how OP-TEC (The National Center for Optics and Photonics Education) has helped to keep this Laser Institute at the cutting edge of photonics education.

  12. Enhanced wear resistance by compressive strengthening : A novel combination of laser and ion implantation technology

    NARCIS (Netherlands)

    Beurs, H. de; Hosson, J.Th.M. De

    1988-01-01

    In general, neon implantation is not very effective in reducing wear rates. However, neon implantation into laser-melted steel turns out to reduce the wear rate substantially as a result of a conversion of residual tensile stresses into compressive ones. Nitrogen implantation, on the other hand, at

  13. Multi-Disciplinary Research for High Energy Chemical Lasers, Closed-Cycle ElectricOIL Technology

    Science.gov (United States)

    2007-10-31

    85 W. In (b) the scale is expanded to illustrate steady-state 02(b) concentrations. -1 I.1 koums ’) Sets of data from double discharge...Lasers and Intense Beam Applications 11, San Jose, CA, Jan , 1999. Morgan, W.L. and Penetrante, B.M., "ELENDIF: A Time-Dependent Boltzmann Solver

  14. 大气中激光通信技术%Technology of laser communication in atmosphere

    Institute of Scientific and Technical Information of China (English)

    王海先

    2001-01-01

    The history, development and classification of optic communication are introduced. The principle of laser communication in atmosphere, important devices, key technique and open questions are described. The causes of energy attenuation in laser communication through atmosphere are also analysed, and the method to reduce the attenuation is presented. The current situation of laser communication in atmosphere at home and abroad is studied. The development of laser communication in atmosphere in the future is discussed at last.%文中介绍了光通信的历史、发展和分类,阐述了大气中激光通信的工作原理、重要器件和关键技术,以及大气中激光通信存在的问题。分析了大气通信中能量衰减的原因,提出了减小衰减的方法。研究了目前国内外大气激光通信的应用现状,构思了实现大气激光准全天候通信和移动通信的蓝图,展望了未来大气激光通信的前景。

  15. Moving Object Tracking and Avoidance Algorithm for Differential Driving AGV Based on Laser Measurement Technology

    Directory of Open Access Journals (Sweden)

    Pandu Sandi Pratama

    2012-12-01

    Full Text Available This paper proposed an algorithm to track the obstacle position and avoid the moving objects for differential driving Automatic Guided Vehicles (AGV system in industrial environment. This algorithm has several abilities such as: to detect the moving objects, to predict the velocity and direction of moving objects, to predict the collision possibility and to plan the avoidance maneuver. For sensing the local environment and positioning, the laser measurement system LMS-151 and laser navigation system NAV-200 are applied. Based on the measurement results of the sensors, the stationary and moving obstacles are detected and the collision possibility is calculated. The velocity and direction of the obstacle are predicted using Kalman filter algorithm. Collision possibility, time, and position can be calculated by comparing the AGV movement and obstacle prediction result obtained by Kalman filter. Finally the avoidance maneuver using the well known tangent Bug algorithm is decided based on the calculation data. The effectiveness of proposed algorithm is verified using simulation and experiment. Several examples of experiment conditions are presented using stationary obstacle, and moving obstacles. The simulation and experiment results show that the AGV can detect and avoid the obstacles successfully in all experimental condition. [Keywords— Obstacle avoidance, AGV, differential drive, laser measurement system, laser navigation system].

  16. 板料激光校形技术%Laser correction of sheet metal technology

    Institute of Scientific and Technical Information of China (English)

    王秀凤

    2012-01-01

    A new correction process which can make sheet metals thermoplastic deformation without dies through the use of a laser as a heat source was described. The summary of the present situation at home and abroad was given in the laser correction. The possible application was suggested on the basis of current study status and the research that had been done on the sheet metal forming and laser heat processing. The feasible experiment was done. The factors influencing on laser correction were analyzed. The research direction was discussed.%介绍了一种利用激光作为热源使金属板料在无模具下发生热塑性变形的新的校形加工方法.综述了激光校形技术在国内外研究的现状,结合在薄板成形和激光热加工方面的研究积累,提出了可能的应用领域,并做了可行性试验.分析了激光校形技术的影响因素,明确了今后的研究方向.

  17. Development of Deep Penetration Welding Technology with High Brightness Laser under Vacuum

    Science.gov (United States)

    Katayama, Seiji; Yohei, Abe; Mizutani, Masami; Kawahito, Yousuke

    The authors have developed a new chamber for laser welding under the low vacuum conditions achieved by using rotary pumps. High-power disk laser bead-on-plate welding was performed on Type 304 stainless steel or A5052 aluminium alloy plate at the powers of 10, 16 and 26 kW at various welding speeds under low vacuum. The sound welds of more than 50 and 70 mm in penetration depth could be produced in Type 304 at the pressure of 0.1 kPa, the speed of 0.3 m/min and the power of 16 kW and 26 kW, respectively. Similar penetration was achieved in A 5052 aluminum alloy. Welding phenomena under low vacuum were also understood by observing the behavior of a keyhole inlet, a molten pool, melt flows and a plume ejected from a keyhole through high speed video cameras. Low interaction between a laser beam and a plume under low vacuum was confirmed by using probe laser beam method.

  18. 国防专利技术转移信息不对称及对策研究%Causes and Countermeasures of Information Asymmetry in Defense Patent Technology Transfer

    Institute of Scientific and Technical Information of China (English)

    武剑; 郑绍钰

    2016-01-01

    转移主体双方信息不对称是制约国防专利技术向民用领域转移的主要障碍.在分析国防专利技术转移信息不对称表现的基础上,剖析其背后的原因,并从转移相配套的解密机制、信息平台业务拓展以及审批与评价机制的建立完善等方面针对性地提出解决对策.%The information asymmetry of transfer of both entities poses a major restriction for the transfer of national defense patented technology to civil applications.Based on the analysis on the in-formation asymmetry of main entities of national defense patented technology transfer,the paper ana-lyzes the reasons behind and brings out countermeasures of transfer of corresponding decryption mechanism,expansion of information platform business and the establishment and completion of ap-proval and evaluation mechanism.

  19. Derivation of Ground Surface and Vegetation in a Coastal Florida Wetland with Airborne Laser Technology

    Science.gov (United States)

    Raabe, Ellen A.; Harris, Melanie S.; Shrestha, Ramesh L.; Carter, William E.

    2008-01-01

    The geomorphology and vegetation of marsh-dominated coastal lowlands were mapped from airborne laser data points collected on the Gulf Coast of Florida near Cedar Key. Surface models were developed using low- and high-point filters to separate ground-surface and vegetation-canopy intercepts. In a non-automated process, the landscape was partitioned into functional landscape units to manage the modeling of key landscape features in discrete processing steps. The final digital ground surface-elevation model offers a faithful representation of topographic relief beneath canopies of tidal marsh and coastal forest. Bare-earth models approximate field-surveyed heights by + 0.17 m in the open marsh and + 0.22 m under thick marsh or forest canopy. The laser-derived digital surface models effectively delineate surface features of relatively inaccessible coastal habitats with a geographic coverage and vertical detail previously unavailable. Coastal topographic details include tidal-creek tributaries, levees, modest topographic undulations in the intertidal zone, karst features, silviculture, and relict sand dunes under coastal-forest canopy. A combination of laser-derived ground-surface and canopy-height models and intensity values provided additional mapping capabilities to differentiate between tidal-marsh zones and forest types such as mesic flatwood, hydric hammock, and oak scrub. Additional derived products include fine-scale shoreline and topographic profiles. The derived products demonstrate the capability to identify areas of concern to resource managers and unique components of the coastal system from laser altimetry. Because the very nature of a wetland system presents difficulties for access and data collection, airborne coverage from remote sensors has become an accepted alternative for monitoring wetland regions. Data acquisition with airborne laser represents a viable option for mapping coastal topography and for evaluating habitats and coastal change on marsh

  20. 32 CFR 37.895 - How is the final performance report to be sent to the Defense Technical Information Center?

    Science.gov (United States)

    2010-07-01

    ... to the Defense Technical Information Center? 37.895 Section 37.895 National Defense Department of Defense OFFICE OF THE SECRETARY OF DEFENSE DoD GRANT AND AGREEMENT REGULATIONS TECHNOLOGY INVESTMENT... How is the final performance report to be sent to the Defense Technical Information Center?...

  1. Research Progress and Prospect on Laser Drilling Technology%激光钻井技术研究进展与展望∗

    Institute of Scientific and Technical Information of China (English)

    张世一; 韩彬; 李美艳; 王勇; 孙嘉楠

    2016-01-01

    采用传统旋转钻井技术钻井时钻具磨损严重,需经常更换钻头,钻井周期长,成本高。而激光钻井技术可大大提高钻井速度,缩短钻井周期。综述了国内外激光钻井技术在激光/岩石/流体相互作用原理和岩石快速相变的热力学与传热学2大基础学科中的研究成果。指出了激光钻井技术面临的诸多问题,深入分析了影响激光直接钻井破岩效率的因素。提出将激光钻井技术与机械旋转钻井技术相结合的激光辅助破岩技术,并阐述了激光辅助破岩技术的原理,为激光钻井技术的发展指明了研究方向。%The conventional rotary drilling usually leads to drilling tool wear, which results in frequent drill bit replacement, causing long drilling period and high cost. The laser drilling technology could greatly improve the drilling speed and shorten the drilling cycle. The domestic and international laser drilling technology research results in laser/rock/fluid interaction theory and thermodynamics and heat transfer on rock rapid phase transition have been reviewed. The issues faced by the laser drilling technology have been pointed out. In-depth analysis has been put on the factors affecting the direct laser drilling rock breaking efficiency. Laser assisted drilling technology com-bined laser drilling technology with mechanical rotating drilling technology has been proposed, and the principle of laser assisted rock breaking technology has been introduced, thus, providing the research direction of laser drilling techniques.

  2. Improving the appearance of all textile products from clothing to home textile using laser technology

    Science.gov (United States)

    Ondogan, Ziynet; Pamuk, Oktay; Ondogan, Ece Nuket; Ozguney, Arif

    2005-11-01

    Denim trousers, commonly known as "blue jeans", have maintained their popularity for many years. For the purpose of supporting customers' purchasing behaviour and to address their aesthetic taste, companies have been trying in recent years to develop various techniques to improve the visual aspects of denim fabrics. These techniques mainly include printing on fabrics, embroidery and washing the final product. Especially, fraying certain areas of the fabric by sanding and stone washing to create designs is a popular technique. However, due to certain inconveniences caused by these procedures and in response to growing demands, research is underway to obtain a similar appearance by creating better quality and more advantageous manufacturing conditions. As is known, the laser is a source of energy which can be directed on desired objects and whose power and intensity can be easily controlled. Use of the laser enables us to cut a great variety of material from metal to fabric. Starting off from this point, we thought it would be possible to transfer certain designs onto the surface of textile material by changing the dye molecules in the fabric and creating alterations in its colour quality values by directing the laser to the material at reduced intensity. This study mainly deals with a machine specially designed for making use of laser beams to transfer pictures, figures as well as graphics of desired variety, size and intensity on all kinds of surfaces in textile manufacturing such as knitted—woven fabrics, leather, etc. at desired precision and without damaging the texture of the material. In the designed system, computer-controlled laser beams are used to change the colour of the dye material on the textile surface by directing the laser beams at a desired wavelength and intensity onto various textile surfaces selected for application. For this purpose, a laser beam source that can reach the initial level of power and that can be controlled by means of a

  3. Discussion on the Applications of Laser Surface Treatment Technology%浅谈激光表面处理技术及应用

    Institute of Scientific and Technical Information of China (English)

    王洪奎

    2013-01-01

    激光是高能束加工的新型能源之一.激光加工技术具有清洁、环保、高效及易于实现自动化的优点,应用十分广泛.介绍了激光技术在电镀、化学镀、气相沉积、材料表面改性及精饰加工中的应用,简要分析了激光表面处理加工的特点及存在的问题,指出激光在表面工程技术领域应用的广阔前景.%Laser is one of the new energy using for high energy density beam process. Laser processing technology possesses a very wide range application since its advantages in clean, environmental friendly, high efficient and easy to automate. In this paper, the applications of laser technology in electroplating, electroless plating, vapor deposition, surface modification and finishing of materials were introduced. The characteristics as well as the existing problems of laser processing technology were analyzed briefly, and the broad prospects of laser in the field of surface engineering technology were also pointed out.

  4. Variation in the measurement of cranial volume and surface area using 3D laser scanning technology.

    Science.gov (United States)

    Sholts, Sabrina B; Wärmländer, Sebastian K T S; Flores, Louise M; Miller, Kevin W P; Walker, Phillip L

    2010-07-01

    Three-dimensional (3D) laser scanner models of human crania can be used for forensic facial reconstruction, and for obtaining craniometric data useful for estimating age, sex, and population affinity of unidentified human remains. However, the use of computer-generated measurements in a casework setting requires the measurement precision to be known. Here, we assess the repeatability and precision of cranial volume and surface area measurements using 3D laser scanner models created by different operators using different protocols for collecting and processing data. We report intraobserver measurement errors of 0.2% and interobserver errors of 2% of the total area and volume values, suggesting that observer-related errors do not pose major obstacles for sharing, combining, or comparing such measurements. Nevertheless, as no standardized procedure exists for area or volume measurements from 3D models, it is imperative to report the scanning and postscanning protocols employed when such measurements are conducted in a forensic setting.

  5. Semiconductor laser self-mixing micro-vibration measuring technology based on Hilbert transform

    Science.gov (United States)

    Tao, Yufeng; Wang, Ming; Xia, Wei

    2016-06-01

    A signal-processing synthesizing Wavelet transform and Hilbert transform is employed to measurement of uniform or non-uniform vibrations in self-mixing interferometer on semiconductor laser diode with quantum well. Background noise and fringe inclination are solved by decomposing effect, fringe counting is adopted to automatic determine decomposing level, a couple of exact quadrature signals are produced by Hilbert transform to extract vibration. The tempting potential of real-time measuring micro vibration with high accuracy and wide dynamic response bandwidth using proposed method is proven by both simulation and experiment. Advantages and error sources are presented as well. Main features of proposed semiconductor laser self-mixing interferometer are constant current supply, high resolution, simplest optical path and much higher tolerance to feedback level than existing self-mixing interferometers, which is competitive for non-contact vibration measurement.

  6. The Theory of Laser Materials Processing Heat and Mass Transfer in Modern Technology

    CERN Document Server

    Dowden, John

    2009-01-01

    The purpose of the book is to show how general principles can be used to obtain insight into laser processes. The principles used may come from fundamental physical theory or from direct observation of experimental results, but an understanding of the general characteristics of the behaviour of a process is essential for intelligent investigation and implementation, whether the approach is experimental, observational, numerical or analytical. The last two have a special value since the associated costs can be relatively low and may be used as a starting point for more expensive techniques. The construction of simple models whose underlying principles are easy to see is therefore of special value, and an understanding of their strengths and limitations is essential. The applications considered in detail are cutting, keyhole welding, drilling, arc and hybrid laser-arc welding, hardening, cladding, forming and cutting, but the general principles have a very wide application; metallurgical aspects are considered,...

  7. Evaluation of disparate laser beam deflection technologies by means of number and rate of resolvable spots.

    Science.gov (United States)

    Bechtold, Peter; Hohenstein, Ralph; Schmidt, Michael

    2013-08-15

    We introduce a method to objectively evaluate systems of differing beam deflection technologies that commonly are described by disparate technical specifications. Using our new approach based on resolvable spots we will compare commercially available random-access beam deflection technologies, namely galvanometer scanners, piezo scanners, MEMS scanners, acousto-optic deflectors, and electro-optic deflectors.

  8. Prospects for a Novel Ultrashort Pulsed Laser Technology for Pathogen Inactivation

    Science.gov (United States)

    2012-07-06

    Virus (HAV), Encephalomyocarditis Virus (EMCV), Tobacco Mosaic Virus (TMV) and M13 bacteriophage, as well as bacteria such as E. coli, Salmonella spp ...5 M13 bacteriophage Non-enveloped, single-stranded DNA 10 5 Escherichia coli Gram negative 10 4 Salmonella typhi Gram negative 10 5...Inactivation of bacteria by ultrashort pulsed lasers We take Salmonella typhimurium as an example. To obtain insight into the inactivation mechanisms

  9. Laser Programs Highlights 1998

    Energy Technology Data Exchange (ETDEWEB)

    Lowdermilk, H.; Cassady, C.

    1999-12-01

    This report covers the following topics: Commentary; Laser Programs; Inertial Confinement Fusion/National Ignition Facility (ICF/NIF); Atomic Vapor Laser Isotope Separation (AVLIS); Laser Science and Technology (LS&T); Information Science and Technology Program (IS&T); Strategic Materials Applications Program (SMAP); Medical Technology Program (MTP) and Awards.

  10. Janus Upgrade using brewster angle disk amplifier technology. [Janus laser system

    Energy Technology Data Exchange (ETDEWEB)

    Hunt, J.; Boben, R.; Blocker, R.; Clark, J.; Henesian, M.; Victoria, J.; Mayo, S.; Patton, H.; Pedersen, K.; Strange, N.; Swain, J.

    1990-10-24

    The Nuclear Test and Experimental Science Program (NTES) has requested that the Laser Program design and price an upgrade to the Janus laser system (JANUS UPGRADE) capable of reliably delivering in excess of 200 joules per beamline in a range of pulse forms to three experiment areas. The facility is to have the following characteristics: three experiment areas, two high energy beams, each with 200--400 joule/1 ns at a wavelength of 1.053 or 1.064 microns, and 125--250 J/1 ns when frequency doubled, one probe beam (0.1 J rated at 30 ps) to be used for interferometry, and reliable operation. The proposed facility would occupy approximately 5600 ft{sup 2} and be located in the Bldg. 174 complex. A block diagram of the entire facility is shown in Fig. 1. The facility is further defined by the Work Breakdown Structure (also shown in Fig. 1). The main elements of the WBS are the conventional facility and modifications thereof (WBS 1), special equipment (WBS 2), the laser (WBS 3), the experiment areas (WBS 4), the controls and data acquisition system (WBS 5), and the project integration (WBS 6). The experiment area has three target chambers and uses diagnostic hardware now in Janus. 12 figs., 4 tabs.

  11. Electro-optical equivalent calibration technology for high-energy laser energy meters.

    Science.gov (United States)

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  12. Electro-optical equivalent calibration technology for high-energy laser energy meters

    Science.gov (United States)

    Wei, Ji Feng; Chang, Yan; Sun, Li Qun; Zhang, Kai; Hu, Xiao Yang; Zhang, Wei

    2016-04-01

    Electro-optical equivalent calibration with high calibration power and high equivalence is particularly well-suited to the calibration of high-energy laser energy meters. A large amount of energy is reserved during this process, however, which continues to radiate after power-off. This study measured the radiation efficiency of a halogen tungsten lamp during power-on and after power-off in order to calculate the total energy irradiated by a lamp until the high-energy laser energy meter reaches thermal equilibrium. A calibration system was designed based on the measurement results, and the calibration equivalence of the system was analyzed in detail. Results show that measurement precision is significantly affected by the absorption factor of the absorption chamber and by heat loss in the energy meter. Calibration precision is successfully improved by enhancing the equivalent power and reducing power-on time. The electro-optical equivalent calibration system, measurement uncertainty of which was evaluated as 2.4% (k = 2), was used to calibrate a graphite-cone-absorption-cavity absolute energy meter, yielding a calibration coefficient of 1.009 and measurement uncertainty of 3.5% (k = 2). A water-absorption-type high-energy laser energy meter with measurement uncertainty of 4.8% (k = 2) was considered the reference standard, and compared to the energy meter calibrated in this study, yielded a correction factor of 0.995 (standard deviation of 1.4%).

  13. Laser Metal Deposition as Repair Technology for a Gas Turbine Burner Made of Inconel 718

    Science.gov (United States)

    Petrat, Torsten; Graf, Benjamin; Gumenyuk, Andrey; Rethmeier, Michael

    Maintenance, repair and overhaul of components are of increasing interest for parts of high complexity and expensive manufacturing costs. In this paper a production process for laser metal deposition is presented, and used to repair a gas turbine burner of Inconel 718. Different parameters for defined track geometries were determined to attain a near net shape deposition with consistent build-up rate for changing wall thicknesses over the manufacturing process. Spot diameter, powder feed rate, welding velocity and laser power were changed as main parameters for a different track size. An optimal overlap rate for a constant layer height was used to calculate the best track size for a fitting layer width similar to the part dimension. Deviations in width and height over the whole build-up process were detected and customized build-up strategies for the 3D sequences were designed. The results show the possibility of a near net shape repair by using different track geometries with laser metal deposition.

  14. Evolution of Technology Laser Scanner. Implications for use in Nuclear Power and Radioactive Facilities; Evolucion de la Tecnologia Laser Escaner. Implicaciones en uso en Centrales Nucleares e Instalaciones Radioactivas

    Energy Technology Data Exchange (ETDEWEB)

    Sarti Fernandez, F.; Bonet, J.

    2012-07-01

    The main technical factors affecting these teams their actual implementation in nuclear power plants will be analyzed: data acquisition speed, sensitivity, laser power, autonomy, contamination of equipment, radiation effect, etc. In conclusion, the real difference is displayed in the data collection in function of various technologies, embodied in field time, and costs.

  15. Recognizing plant defense priming

    NARCIS (Netherlands)

    Martinez-Medina, A.; Flors, V.; Heil, M.; Mauch-Mani, B.; Pieterse, C.M.J.; Pozo, M.J.; Ton, J.; Van Dam, N.M.; Conrath, U.

    2016-01-01

    Defense priming conditions diverse plant species for the superinduction of defense, often resulting in enhanced pest and disease resistance and abiotic stress tolerance. Here, we propose a guideline that might assist the plant research community in a consistent assessment of defense priming in plant

  16. Capturing Detailed Outcrop Geology Using Terrestrial Laser Scanning (Lidar) and Other Digital Technologies: Current Status and Future Directions

    Science.gov (United States)

    Jones, R. R.; McCaffrey, K. J.

    2007-12-01

    Geospatial data acquisition at global to regional scales has wide acceptance, and tools such as Google Earth have been instrumental in extending Earth visualisation far beyond specialist users of GIS and satellite imagery. At the outcrop scale, the number of industry and academic geoscientists adopting digital technologies to gather field data is steadily increasing. When integrated with traditional field skills, these technologies offer two fundamental advantages: firstly, outcrop geology can now be recorded with very high detail and precision; secondly, observations and data are precisely georeferenced, which is a prerequisite for 2D and 3D spatial analysis. Digital outcrop data are being used in a wide variety of ways, many of which can be characterised in terms of two end members. Firstly, using methods such as terrestrial laser scanning and digital photogrammetry, it is possible to create highly realistic virtual copies of the outcrop. These virtual outcrop models can be used to great effect to enhance teaching, to provide virtual field-trips (most effective in conjunction with a real visit to the outcrop), to promote group discussion and interpretation, or as part of Health & Safety briefing. Secondly, digital outcrop data is also being used to derive quantitative attribute measurements from specific geological features. Here the emphasis is not on capturing a photo-realistic copy of the outcrop, but rather on gathering the relevant types of data at the most appropriate resolution and geospatial precision for the type of analysis undertaken. In addition to laser scanning, useful technologies include dGPS, laser range-finding, and Total Station surveying. Examples of this kind of quantitative analysis include fault curvature, roughness, branch-line geometry, spatial variation in fault displacement, fracture spacing and 3D spatial clustering, fold curvature, sedimentary channel morphology, lateral and vertical facies variations, and geomorphological analysis of

  17. Laser Interstitial Thermal Therapy Technology, Physics of Magnetic Resonance Imaging Thermometry, and Technical Considerations for Proper Catheter Placement During Magnetic Resonance Imaging-Guided Laser Interstitial Thermal Therapy.

    Science.gov (United States)

    Patel, Nitesh V; Mian, Matthew; Stafford, R Jason; Nahed, Brian V; Willie, Jon T; Gross, Robert E; Danish, Shabbar F

    2016-12-01

    Laser-induced thermal therapy has become a powerful tool in the neurosurgical armamentarium. The physics of laser therapy are complex, but a sound understanding of this topic is clinically relevant, as many centers have incorporated it into their treatment algorithm, and educated patients are demanding consideration of its use for their disease. Laser ablation has been used for a wide array of intracranial lesions. Laser catheter placement is guided by stereotactic planning; however, as the procedure has popularized, the number of ways in which the catheter can be inserted has also increased. There are many technical nuances for laser placement, and, to date, there is not a clear understanding of whether any one technique is better than the other. In this review, we describe the basic physics of magnetic resonance-guided laser-induced thermal therapy and describe the several common techniques for accurate Visualase laser catheter placement in a stepwise fashion.

  18. Clinical experience with the first 40 cases with femtosecond laser cataract surgery technology: safety of the learning curve

    Directory of Open Access Journals (Sweden)

    Joao Crispim

    2015-10-01

    Full Text Available ABSTRACT Objective: To evaluate the introduction of the femtosecond laser (FSL to perform the key steps of the traditional cataract surgery process and the operational difficulties and safety of this new technology during routine use in an operating room in Brazil. Methods A retrospective study was conducted using the first cases operated on at a single center using the laser platform LenSx/Alcon with a soft contact lens patient interface.All patients underwent a detailed preoperative assessment.The anterior capsulotomy, nuclear fragmentation, and corneal incisions were created with the FSL; then, the surgery was completed following the standard phacoemulsification procedure. The main outcome measurements were difficulties and complications related to the learning curve and an analysis of postoperative uncorrected distance visual acuity (UDVA. Results: Of 31 patients (40 eyes, 9 patients had FSL cataract surgery in both eyes.The mean age was 64 ± 12 years (ranging from 42 to 82, the mean cataract nuclear sclerosis was grading 2 ± 0.6 (ranging from 1 to 4, and the preoperative mean UDVA in logMAR was 0.4 ± 0.2 (ranging from 0.1 to 1.3. Anterior capsulotomy was complete in all patients, and scissors were not needed to cut off any intact portion. The postoperative corneal incisions were not completely linear and showed some irregularities. Laser phaco-fragmentation was effective, with the division of the nucleus into smaller segments easily performed before phacoemulsification.After 1 month, the postoperative mean UDVA in logMAR was 0.1 ± 0.1 (ranging from 0.0 to 0.4 (P < 0.0001. Conclusion: With increasing surgical cases and experience, the phacoemulsification steps are performed precisely and effectively with FSL pretreatment, resulting in a safe learning curve.

  19. The Combination of Laser Scanning and Structure from Motion Technology for Creation of Accurate Exterior and Interior Orthophotos of ST. Nicholas Baroque Church

    Science.gov (United States)

    Koska, B.; Křemen, T.

    2013-02-01

    Terrestrial laser scanning technology is used for creation of building documentation and 3D building model from its emerging at the turn of the millennium. Photogrammetry has even longer tradition in this field. Both technologies have some technical limitations if they are used for creation of a façade or even an interior orthophoto, but combination of both technologies seems profitable. Laser scanning can be used for creation of an accurate 3D model and photogrammetry for consequent application of high quality colour information. Both technologies were used in synergy to create the building plans, 2D drawing documentation of facades and interior views and the orthophotos of St. Nicholas Baroque church in Prague. The case study is described in details in the paper.

  20. Applications and countermeasures of laser technology in space engineering%激光技术在航天工程中的应用及对策

    Institute of Scientific and Technical Information of China (English)

    沈自才; 崔云; 牛锦超

    2012-01-01

    激光技术在航天工程中具有重要的应用.对激光技术在航天材料加工、航天器空间环境效应地面模拟试验和航天器有效载荷上的应用进行了分析;对航天工程在激光晶体材料、激光薄膜材料、激光透明陶瓷材料及激光光纤材料等的需求和对策进行了探讨;对激光器系统在空间真空、温度交变、粒子辐射、太阳电磁辐射、等离子体以及振动等环境下的适应性及对策进行了研究.给出了建议,即应该进一步加强强激光材料的基础科学研究,研制性能优异的激光材料与有效载荷,加强激光器系统与载荷的空间环境适应性研究.%Laser technology has important application in space engineering. In this paper, applications of laser technology in spacecraft material processing, space environmental effect ground simulator test and spacecraft payload were discussed. The requirements and countermeasures of space engineering on laser crystal, laser thin film, laser transparent ceramic and laser fiber materials were discussed. The adaptibility and countermeasures of laser system in space environments as vacuum, temperature altering, particle radiation, solar electromagnetic radiation, plasma and vibration was studied. Key materials and space environment adaptibility of laser technology on space engineering were analyzed. Some advices were advanced such as strengthening the basic scientific study on laser material, preparing the laser materials and payload with excellent performance and strengthening the study on adaptibility of laser system and payload in space environments.

  1. The Science and Technologies for Fusion Energy With Lasers and Direct-Drive Targets

    Science.gov (United States)

    2010-04-01

    international efforts. Note that the National Ignition Fa- cility ( NIF ) will use the indirect-drive approach for the first laboratory demonstration of...thermonuclear ignition. This approach, where laser light is converted to X-rays that drive the target, was chosen based on the primary mission of the NIF to...pumped with an array of high-efficiency (> 60%) high-power (> 100-W) diodes. The medium is Yb:S-FAP, but other media, including the NIF choice of Nd:glass

  2. HYDRO-ABRASIVE JET CLEANING TECHNOLOGY OF STEEL SHEETS DESIGNED FOR LASER CUTTING

    Directory of Open Access Journals (Sweden)

    I. Kachanov

    2013-01-01

    Full Text Available Investigations executed by the BNTU “Shipbuilding and hydraulics” department have shown that rather efficient implementation of the requirements to the metal sheet surface designed for laser cutting can be achieved by using hydro-abrasive jet cleaning while applying water pump equipment with the range of pressure – 20–40 MPa. Type of working fluid plays a significant role for obtaining surface of the required quality. The conducted experiments have demonstrated that the efficient solution of the assigned problems can be ensured by using a working fluid containing bentonite clay, surface-active agent polyacrylamide, soda ash and the rest water.

  3. Comparing Laser Welding Technologies with Friction Stir Welding for Production of Aluminum Tailor-Welded Blanks

    Energy Technology Data Exchange (ETDEWEB)

    Hovanski, Yuri; Carsley, John; Carlson, Blair; Hartfield-Wunsch, Susan; Pilli, Siva Prasad

    2014-01-15

    A comparison of welding techniques was performed to determine the most effective method for producing aluminum tailor-welded blanks for high volume automotive applications. Aluminum sheet was joined with an emphasis on post weld formability, surface quality and weld speed. Comparative results from several laser based welding techniques along with friction stir welding are presented. The results of this study demonstrate a quantitative comparison of weld methodologies in preparing tailor-welded aluminum stampings for high volume production in the automotive industry. Evaluation of nearly a dozen welding variations ultimately led to down selecting a single process based on post-weld quality and performance.

  4. Laser technology of SNOM-tips fabrication: process diagnostics, processing, and testing

    Science.gov (United States)

    Veiko, Vadim P.; Kalachev, Alexey N.; Kaporsky, Lev N.; Volkov, Sergey A.; Voznesensky, Nikolay B.

    2003-09-01

    Basic principles of laser assisted process of fiber etching for scanning near-field optical (SNO) probes formation and control technique are presented. The thermal and temporal regimes are considered in order to provide stable reproducibility and high quality of a tapered end of the optical fiber. Problems of adequate definition of the scanning imaging properties of a SNO probe are discussed. Thus an optical method of far-field registration and processing together with a new autoelectric emission method are considered for solution of the task of a subwavelength SNO probe aperture measurement and estimation of its apparatus function.

  5. Make or Buy: Cost Impacts of Additive Manufacturing, 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship Maintenance and Modernization

    Science.gov (United States)

    2015-05-01

    1 Make or Buy: Cost Impacts of Additive Manufacturing, 3D Laser Scanning Technology, and Collaborative Product Lifecycle Management on Ship...and Collaborative Product Lifecycle Management on Ship Maintenance and Modernization 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER...plants 3 Potential Technology 2: Collaborative Product Lifecycle Management • To “integrate people, processes, and information” • Electronically

  6. Survey of Laboratories and Implementation of the Federal Defense Laboratory Diversification Program. Annex B. Department of the Navy Domestic Technology Transfer

    Science.gov (United States)

    1993-10-01

    T2 Program Manager: Angel Carreras , Jr., Code 01B Naval Air Warfare Center Aircraft Division Warminster, PA 18974-5000 2.3.7.3 Publications. The 123...polarizers using holographic techniques. The interference pattern from two intersecting laser beams is used to produce a plane grating in a layer of...photoresist which has been deposited on a layer of conductive material which in turn has been used to coat a substrate. Ion milling reproduces the plane

  7. Soviet debate on missile defense

    Energy Technology Data Exchange (ETDEWEB)

    Parrott, B.

    1987-04-01

    Although the Strategic Defense Initiative (SDI) is meant to cope with the danger of a Soviet nuclear attack, the recent US debate over SDI has paid surprisingly little attention to Soviet views of ballistic missile defense. Despite the existence of a substantial body of pertinent scholarship, the debate has failed to take adequate account of major changes in Soviet ballistic missile defense policy since the mid-1960s. It has also neglected the links between current Soviet military policy and broader Soviet political and economic choices. The Soviets regard SDI not as a novel undertaking to reduce the risks of nuclear war but as an extension of the geopolitical competition between the superpowers. This competition has been dominated in the 1980s, in the Soviet view, by sharply increased US assertiveness and the decline of detente. Viewing SDI as a manifestation of these general trends, Soviet decision makers find the prospect of an unregulated race in ballistic missile defenses and military space technologies deeply unsettling. The deterioration of superpower relations has raised serious doubts in Moscow about the wisdom of Soviet external policy during the 1970s and has provoked sharp internal differences over policy toward the US. Already highly suspicious of the Reagan administration, the elite is united by a general conviction that SDI is an American gambit that may ultimately undercut past Soviet strategic gains and pose a grave new threat to Soviet security. 14 references.

  8. Calculating point of origin of blood spatter using laser scanning technology.

    Science.gov (United States)

    Hakim, Nashad; Liscio, Eugene

    2015-03-01

    The point of origin of an impact pattern is important in establishing the chain of events in a bloodletting incident. In this study, the accuracy and reproducibility of the point of origin estimation using the FARO Scene software with the FARO Focus(3D) laser scanner was determined. Five impact patterns were created for each of three combinations of distances from the floor (z) and the front wall (x). Fifteen spatters were created using a custom impact rig, scanned using the laser scanner, photographed using a DSLR camera, and processed using the Scene software. Overall results gave a SD = 3.49 cm (p < 0.0001) in the x-direction, SD = 1.14 cm (p = 0.9291) in the y-direction, and SD = 9.08 cm (p < 0.0115) in the z-direction. The technique performs within literature ranges of accepted accuracy and reproducibility and is comparable to results reported for other virtual stringing software.

  9. Laser generated Ge ions accelerated by additional electrostatic field for implantation technology

    Science.gov (United States)

    Rosinski, M.; Gasior, P.; Fazio, E.; Ando, L.; Giuffrida, L.; Torrisi, L.; Parys, P.; Mezzasalma, A. M.; Wolowski, J.

    2013-05-01

    The paper presents research on the optimization of the laser ion implantation method with electrostatic acceleration/deflection including numerical simulations by the means of the Opera 3D code and experimental tests at the IPPLM, Warsaw. To introduce the ablation process an Nd:YAG laser system with repetition rate of 10 Hz, pulse duration of 3.5 ns and pulse energy of 0.5 J has been applied. Ion time of flight diagnostics has been used in situ to characterize concentration and energy distribution in the obtained ion streams while the postmortem analysis of the implanted samples was conducted by the means of XRD, FTIR and Raman Spectroscopy. In the paper the predictions of the Opera 3D code are compared with the results of the ion diagnostics in the real experiment. To give the whole picture of the method, the postmortem results of the XRD, FTIR and Raman characterization techniques are discussed. Experimental results show that it is possible to achieve the development of a micrometer-sized crystalline Ge phase and/or an amorphous one only after a thermal annealing treatment.

  10. Laser Beam Welding of Thick Titanium Sheets in the Field of Marine Technology

    Science.gov (United States)

    Schneider, André; Gumenyuk, Andrey; Lammers, Marco; Malletschek, Andreas; Rethmeier, Michael

    The ever larger requirements of the material selection in the range of maritime industry necessitate the application of high-tech materials. Titanium because of its excellent mechanical properties at low weight is an attractive alternative for the construction of ships. The goal of this investigation was to design a welding method for joining samples of 16 mm thick Ti3Al2.5 V. The welding experiments with a 20 kW Yb-fiber laser source and varying combinations of parameters were intended to qualify the laser beam welding process. The welding results were analyzed by non-destructive and destructive testing. In addition, the welding tests were recorded with two high-speed cameras to observe the weld pool and the vapor plume. The evaluation of the high-speed images in correlation with the results of non-destructive testing shows, that a significant improvement of process stability and weld quality can be achieved by the suppression of the vapor plume.

  11. Lidar and Laser Technology for NASA’S Cloud-Aerosol Transport System (CATS Payload on The International Space Station (JEM-EF

    Directory of Open Access Journals (Sweden)

    Storm Mark

    2016-01-01

    Full Text Available This paper describes the ISS lidar technology provided by Fibertek, Inc. in support of the NASA GSFC CATS mission and provides an assessment of the in-flight systems performance and lessons learned. During February the systems successfully operated in space for more than 300 hours using 25 W average power lasers and photon counting of aerosol atmospheric returns.

  12. Lidar and Laser Technology for NASA'S Cloud-Aerosol Transport System (CATS) Payload on The International Space Station (JEM-EF)

    Science.gov (United States)

    Storm, Mark; Stevenson, Gary; Hovis, Floyd; Gavert, William; Dang, Xung; Darab, Abe; Chuang, Ti; Burns, Patrick

    2016-06-01

    This paper describes the ISS lidar technology provided by Fibertek, Inc. in support of the NASA GSFC CATS mission and provides an assessment of the in-flight systems performance and lessons learned. During February the systems successfully operated in space for more than 300 hours using 25 W average power lasers and photon counting of aerosol atmospheric returns.

  13. Capabilities of technological innovation in companies involved in the defense industry; Capacidades de innovacion tecnologia en empresas relacionadas con la industria de defensa

    Energy Technology Data Exchange (ETDEWEB)

    Briones Penalver, A. J.; Laborda Penalver, F.

    2010-07-01

    This paper studies the capacities related with the innovation types, the technological development, the role of the innovation systems and the institutional aspects. It presents a study of 236 small and medium-sized companies which comprise the defence industry. It examines the innovation strategy and defines the most important factors of technological innovation processes (measures, values and results of innovation). It analyses statistically the causal relationship between strategy and structure, the role of innovation in cooperation and inter company relationships and the dependence relationship in technological innovation capacities of several variables in the innovation processes in these companies. (Author) 65 refs.

  14. 国防技术秘密登记备案管理制度有效实施的因素分析%The Factors Analysis of the National Defense of Technology Secret Grade Record of Management System

    Institute of Scientific and Technical Information of China (English)

    仇蕾安

    2015-01-01

    在分析国防科技工业技术秘密等级备案管理制度等理论的基础上,将国防秘密的相关主体细化为“军方、企业、技术人员”三个博弈主体,利用博弈原理归纳三主体间的博弈关系,提出相应的理论假设,构建技术人员、企业、军方三者之间的动态博弈模型,通过博弈均衡解,得出相关的影响因素以及这些影响因素的作用方式,为提高技术人员进行国防技术秘密登记备案、企业和军方稳定合作的相对收益,提供相应的政策参考依据。%This paper ,based on the analysis of the national defense science ,technology and industry technical secret level for the record manage‐ment system theory ,make the related subject divided into "the army ,enterprises ,technical personnel" ,using the game theory ,the game relation between the three subjects ,puts forward the corresponding theoretical assumptions. Building the dynamic game model among the technical person‐nel ,enterprises and military ,by the game equilibrium solution ,it is concluded that the related influence factors and the effect of these factors. In order to improve technical personnel register put on record ,corporate and military defense technology secret relative gains stable cooperation ,pro‐vide the corresponding policy reference .

  15. A Guide to International Participation in the Strategic Defense Initiative

    Science.gov (United States)

    2007-11-02

    methods , devices, or techniques. Alpha Laser Ground testing of the Alpha laser occurs in a 50-foot tall vacuum chamber on TRW’s Southern California test...Processing Mathematical Methods and Algorithms Self Adaptive Processing and Simulation SENSING, DISCRIMINATION AND SIGNAL PROCESSING Detectors for...Based Laser ( GBL ) Address: Commander U.S. Army Strategic Defense Command P.O. Box 1500 Huntsville, Alabama 35807 Tel: (205) 895-4340 HEDI

  16. Use of laser-scan technology to analyse topography and flow in a weir pool

    Directory of Open Access Journals (Sweden)

    P. E. Dresel

    2012-08-01

    Full Text Available The development of laser-scan techniques provides opportunity for detailed terrain analysis in hydrologic studies. Ground based scans were used to model the ground surface elevation in the area of a stream gauge weir over an area of 240 m2 at a resolution of 0.05 m. The terrain model was used to assess the possibility of flow bypassing the weir and to calculate stream flow during filling of the weir pool, prior to flow through the weir notch. The mapped surface shows a subtle low-lying area at the south end of the structure where flow could bypass the weir. The flow calculations quantify low-flows that do not reach the weir notch during small rain events and flow at the beginning of larger events in the ephemeral stream.

  17. YAG Laser Face Joining Technology of A6061 Aluminium and SPCC Plates

    Science.gov (United States)

    NISHIMOTO, K.; MARUO, T.; OUMI, M.; SEI, N.; FUJII, H.

    Laser and pressure roll combination joining tests on SPCC-A6061 plates were carried out by changing the roll pressure. Adhesive strengths on SPCC-A6061 were measured by peel tests. When the pressure increased from 80 MPa to 320 MPa, the adhesive strength increased from 10 N/mm to 30 N/mm. It was obvious that the higher pressure brought some good influence to the joint interface of the metals. From observation results on the joint layer by EDX, we recognized ductile compounds Fe3Al and metallic bonds when 320 MPa pressure was laid on by twin rolls. Moreover, it resulted in the achievement of high adhesive strength during the joining of SPCC-A6061 plates.

  18. Measuring the lens focal length by laser reflection-confocal technology.

    Science.gov (United States)

    Yang, Jiamiao; Qiu, Lirong; Zhao, Weiqian; Shao, Rongjun; Li, Zhigang

    2013-06-01

    A laser reflection-confocal focal-length measurement (LRCFM) is proposed for the high-accuracy measurement of lens focal length. LRCFM uses the peak points of confocal response curves to precisely identify the lens focus and vertex of the lens last surface. LRCFM then accurately measures the distance between the two positions to determine the lens focal length. LRCFM uses conic fitting, which significantly enhances measurement accuracy by inhibiting the influence of environmental disturbance and system noise on the measurement results. The experimental results indicate that LRCFM has a relative expanded uncertainty of less than 0.0015%. Compared with existing measurement methods, LRCFM has high accuracy and a concise structure. Thus, LRCFM is a feasible method for high-accuracy focal-length measurements.

  19. A photosynthetic biosensor with enhanced electron transfer generation realized by laser printing technology.

    Science.gov (United States)

    Touloupakis, Eleftherios; Boutopoulos, Christos; Buonasera, Katia; Zergioti, Ioanna; Giardi, Maria Teresa

    2012-04-01

    One of the limits of current electrochemical biosensors is a lack of methods providing stable and highly efficient junctions between biomaterial and solid-state devices. This paper shows how laser-induced forward transfer (LIFT) can enable efficient electron transfer from photosynthetic biomaterial immobilized on screen-printed electrodes (SPE). The ideal pattern, in terms of photocurrent signal of thylakoid droplets giving a stable response signal with a current intensity of approximately 335 ± 13 nA for a thylakoid mass of 28 ± 4 ng, was selected. It is shown that the efficiency of energy production of a photosynthetic system can be strongly enhanced by the LIFT process, as demonstrated by use of the technique to construct an efficient and sensitive photosynthesis-based biosensor for detecting herbicides at nanomolar concentrations.

  20. Review of technology development and clinical trials of transcranial laser therapy for acute ischemic stroke treatment

    Science.gov (United States)

    Catanzaro, Brian E.; Streeter, Jackson; de Taboada, Luis

    2010-02-01

    Stroke is the one of the leading causes of mortality in the United States, claiming 600,000 lives each year. Evidence suggests that near infrared (NIR) illumination has a beneficial effect on a variety of cells when these cells are exposed to adverse conditions. Among these conditions is the hypoxic state produced by acute ischemic stroke (AIS). To demonstrate the impact NIR Transcranial Laser Therapy (TLT) has on AIS in humans, a series of double blind, placebo controlled clinical trials were designed using the NeuroThera(R) System (NTS). The NTS was designed and developed to treat subjects non-invasively using 808 nm NIR illumination. TLT, as it applies to stroke therapy, and the NTS will be described. The results of the two clinical trials: NeuroThera(R) Safety and Efficacy Trial 1 (NEST-1) and NeuroThera(R) Safety and Efficacy Trial 2 (NEST-2) will be reviewed and discussed.