WorldWideScience

Sample records for defense nanotechnology research

  1. Overview of nanotechnology and its applicability to the Department of Defense

    Science.gov (United States)

    Hernandez, Allison; Stevens, Rick; Thorson, Kevin; Whaley, Gregory J.

    2005-08-01

    Advances in a wide variety of nanotechnologies are expected to substantially benefit future military weapon systems. The technology development cycle for military platforms requires a given technology to reach a defined state of maturity before its use in a deployable system. Nanotechnologies such as quantum dots and carbon nanotubes, while showing great promise of performance benefits, are still considered too immature for immediate use. Defense contractors are in active research of applications of nanoscale engineered materials and devices and are beginning to engage nanotechnology suppliers for future military platforms.

  2. Offense-defense aspects of nanotechnologies: a forecast of potential military applications.

    Science.gov (United States)

    Shipbaugh, Calvin

    2006-01-01

    Potential military applications of nanotechnology will evolve in the next few decades. The implications for both defense and offense should be carefully assessed. Nanotechnology can push major changes in stability, and shape the consequences of future conflict.

  3. Multifunctional Nanotechnology Research

    Science.gov (United States)

    2016-03-01

    MULTIFUNCTIONAL NANOTECHNOLOGY RESEARCH MARCH 2016 INTERIM TECHNICAL REPORT APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED STINFO COPY AIR...REPORT 3. DATES COVERED (From - To) JAN 2015 – JAN 2016 4. TITLE AND SUBTITLE MULTIFUNCTIONAL NANOTECHNOLOGY RESEARCH 5a. CONTRACT NUMBER IN-HOUSE...H. Yoon, and C. S. Hwang, “Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures.,” Nanotechnology , vol

  4. Nanotechnology research: applications in nutritional sciences.

    Science.gov (United States)

    Srinivas, Pothur R; Philbert, Martin; Vu, Tania Q; Huang, Qingrong; Kokini, Josef L; Saltos, Etta; Saos, Etta; Chen, Hongda; Peterson, Charles M; Friedl, Karl E; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M; Dwyer, Johanna; Milner, John; Ross, Sharon A

    2010-01-01

    The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of approximately 1-100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled "Nanotechnology Research: Applications in Nutritional Sciences" was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities.

  5. International strategy for Nanotechnology Research

    International Nuclear Information System (INIS)

    Roco, M.C.

    2001-01-01

    The worldwide nanotechnology research and development (R and D) investment reported by government organizations has increased by a factor of 3.5 between 1997 and 2001, and the highest rate of 90% is in 2001. At least 30 countries have initiated or are beginning national activities in this field. Scientists have opened a broad net of discoveries that does not leave any major research area untouched in physical, biological, and engineering sciences. Industry has gained confidence that nanotechnology will bring competitive advantages. The worldwide annual industrial production is estimated to exceed $1 trillion in 10-15 years from now, which would require about 2 million nanotechnology workers. U.S. has initiated a multidisciplinary strategy for development of science and engineering fundamentals through the National Nanotechnology Initiative. Japan and Europe have broad programs, and their current plans look ahead to four to five years. Other countries have encouraged their own areas of strength, several of them focusing on fields of the potential markets. Differences among countries are observed in the research domain they are aiming for, the level of program integration into various industrial sectors, and in the time scale of their R and D targets. Nanotechnology is growing in an environment where international interactions accelerate in science, education and industrial R and D. A global strategy of mutual interest is envisioned by connecting individual programs of contributing countries, professional communities, and international organizations

  6. Nanotechnology Research: Applications in Nutritional Sciences12

    Science.gov (United States)

    Srinivas, Pothur R.; Philbert, Martin; Vu, Tania Q.; Huang, Qingrong; Kokini, Josef L.; Saos, Etta; Chen, Hongda; Peterson, Charles M.; Friedl, Karl E.; McDade-Ngutter, Crystal; Hubbard, Van; Starke-Reed, Pamela; Miller, Nancy; Betz, Joseph M.; Dwyer, Johanna; Milner, John; Ross, Sharon A.

    2010-01-01

    The tantalizing potential of nanotechnology is to fabricate and combine nanoscale approaches and building blocks to make useful tools and, ultimately, interventions for medical science, including nutritional science, at the scale of ∼1–100 nm. In the past few years, tools and techniques that facilitate studies and interventions in the nanoscale range have become widely available and have drawn widespread attention. Recently, investigators in the food and nutrition sciences have been applying the tools of nanotechnology in their research. The Experimental Biology 2009 symposium entitled “Nanotechnology Research: Applications in Nutritional Sciences” was organized to highlight emerging applications of nanotechnology to the food and nutrition sciences, as well as to suggest ways for further integration of these emerging technologies into nutrition research. Speakers focused on topics that included the problems and possibilities of introducing nanoparticles in clinical or nutrition settings, nanotechnology applications for increasing bioavailability of bioactive food components in new food products, nanotechnology opportunities in food science, as well as emerging safety and regulatory issues in this area, and the basic research applications such as the use of quantum dots to visualize cellular processes and protein-protein interactions. The session highlighted several emerging areas of potential utility in nutrition research. Nutrition scientists are encouraged to leverage ongoing efforts in nanomedicine through collaborations. These efforts could facilitate exploration of previously inaccessible cellular compartments and intracellular pathways and thus uncover strategies for new prevention and therapeutic modalities. PMID:19939997

  7. Intellectual property rights in nanotechnology

    International Nuclear Information System (INIS)

    Bastani, Behfar; Fernandez, Dennis

    2002-01-01

    Intellectual property (IP) rights are essential in today's technology-driven age. Building a strategic IP portfolio is economically important from both an offensive and defensive standpoint. After an introduction to intellectual property rights and acquisitions, we provide an overview of current efforts in nanotechnology. Research into nano-scale materials and devices and requirements for their efficient mass production are outlined, with focus on the applicable IP rights and strategies. We present current and future applications of nanotechnology to such fields as electronics, sensors, aerospace, medicine, environment and sanitation, together with the IP rights that can be brought to bear in each. Finally, some challenging issues surrounding the acquisition of intellectual property rights in nanotechnology are presented

  8. Nanotechnology in Cancer Research

    Science.gov (United States)

    The NCI Office of Cancer Nanotechnology Research has had a major impact on bringing novel nano-enabled solutions through the pre-clinical space. The strategic framework of this effort is presented here.

  9. Nanotechnology

    International Nuclear Information System (INIS)

    Abdul Kadir Masrom

    2005-01-01

    The following subjects discussed: What is nanotechnology, Nanotechnology research and development, whats new about nanosciences, nano research facilities, impact of nanotechnology, commercially available nanotechnology, review on research status

  10. Sociocultural Meanings of Nanotechnology: Research Methodologies

    Science.gov (United States)

    Bainbridge, William Sims

    2004-06-01

    This article identifies six social-science research methodologies that will be useful for charting the sociocultural meaning of nanotechnology: web-based questionnaires, vignette experiments, analysis of web linkages, recommender systems, quantitative content analysis, and qualitative textual analysis. Data from a range of sources are used to illustrate how the methods can delineate the intellectual content and institutional structure of the emerging nanotechnology culture. Such methods will make it possible in future to test hypotheses such as that there are two competing definitions of nanotechnology - the technical-scientific and the science-fiction - that are influencing public perceptions by different routes and in different directions.

  11. Nanotechnology: Advancing the translational respiratory research

    OpenAIRE

    Dua, Kamal; Shukla, Shakti Dhar; de Jesus Andreoli Pinto, Terezinha; Hansbro, Philip Michael

    2017-01-01

    Considering the various limitations associated with the conventional dosage forms, nanotechnology is gaining increased attention in drug delivery particularly in respiratory medicine and research because of its advantages like targeting effects, improved pharmacotherapy, and patient compliance. This paper provides a quick snapshot about the recent trends and applications of nanotechnology to various translational and formulation scientists working on various respiratory diseases, which can he...

  12. Engaging Undergraduates through Interdisciplinary Research in Nanotechnology

    Science.gov (United States)

    Goonewardene, Anura U.; Offutt, Christine; Whitling, Jacqueline; Woodhouse, Donald

    2012-01-01

    To recruit and retain more students in all science disciplines at our small (5,000 student) public university, we implemented an interdisciplinary strategy focusing on nanotechnology and enhanced undergraduate research. Inherently interdisciplinary, the novelty of nanotechnology and its growing career potential appeal to students. To engage…

  13. Nanotechnology and nuclear medicine; research and preclinical applications.

    Science.gov (United States)

    Assadi, Majid; Afrasiabi, Kolsoom; Nabipour, Iraj; Seyedabadi, Mohammad

    2011-01-01

    The birth of nanotechnology in human society was around 2000 years ago and soon found applications in various fields. In this article, we highlight the current status of research and preclinical applications and also future prospects of nanotechnology in medicine and in nuclear medicine. The most important field is cancer. A regular nanotechnology training program for nuclear medicine physicians may be welcome.

  14. Published Research - NCI Alliance for Nanotechnology in Cancer

    Science.gov (United States)

    The NCI Alliance for Nanotechnology in Cancer has published much exciting and impactful research over the years. Find here a list of all of these listed in PubMed and others across the field of Cancer Nanotechnology.

  15. Researcher views about funding sources and conflicts of interest in nanotechnology.

    Science.gov (United States)

    McComas, Katherine A

    2012-12-01

    Dependence in nanotechnology on external funding and academic-industry relationships has led to questions concerning its influence on research directions, as well as the potential for conflicts of interest to arise and impact scientific integrity and public trust. This study uses a survey of 193 nanotechnology industry and academic researchers to explore whether they share similar concerns. Although these concerns are not unique to nanotechnology, its emerging nature and the prominence of industry funding lend credence to understanding its researchers' views, as these researchers are shaping the norms and direction of the field. The results of the survey show general agreement that funding sources are influencing research directions in nanotechnology; many respondents saw this influence in their own work as well as other researchers' work. Respondents also agreed that funding considerations were likely to influence whether researchers shared their results. Irrespective of their institutional affiliation or funding status, twice as many researchers as not considered financial conflicts of interest a cause for concern, and three times as many respondents as not disagreed financial conflicts of interest in nanotechnology were uncommon. Only a third was satisfied with the way that conflicts of interest are currently managed and believed current procedures would protect the integrity of nanotechnology research. The results also found differences in views depending on researchers' institutional affiliation and funding status.

  16. Nanotechnology research among some leading OIC member states

    International Nuclear Information System (INIS)

    Bajwa, R. S.; Yaldram, K.; Hussain, S. S.; Ahmed, T.

    2012-01-01

    In this study we present an overview of the research activities in nanotechnology for the period 2001–2011 for six selected countries belonging to the Organization of Islamic cooperation (OIC). The selection has been made based on the research output of these countries. The countries are Iran, Turkey, Egypt, Malaysia, Saudi Arabia, and Pakistan. The factors considered are the number of publications, citations per paper, p-index, and collaborative research output. Iran with 7,795 publications and an annual growth rate of 41 % leads the group, followed by Turkey with 3,169 publications and an annual growth rate of 29 %. Turkey however, has a much better citation per paper (8.96), and p-index (63.34) as compared to Iran (4.59 and 54.36, respectively). We can classify the six countries into two categories. Those, that have a well coordinated national program in nanotechnology, namely, Iran, Malaysia, and Saudi Arabia and those that do not have any national program but are still showing a reasonable good activity in nanotechnology namely Turkey, Egypt, and Pakistan. A brief account of the initiatives taken by the six selected countries of OIC in the field of nanotechnology is also presented.

  17. Nanotechnology research for aerospace applications

    Science.gov (United States)

    Agee, Forrest J.; Lozano, Karen; Gutierrez, Jose M.; Chipara, Mircea; Thapa, Ram; Chow, Alice

    2009-04-01

    Nanotechnology is impacting the future of the military and aerospace. The increasing demands for high performance and property-specific applications are forcing the scientific world to take novel approaches in developing programs and accelerating output. CONTACT or Consortium for Nanomaterials for Aerospace Commerce and Technology is a cooperative nanotechnology research program in Texas building on an infrastructure that promotes collaboration between universities and transitioning to industry. The participants of the program include the US Air Force Research Laboratory (AFRL), five campuses of the University of Texas (Brownsville, Pan American, Arlington, Austin, and Dallas), the University of Houston, and Rice University. Through the various partnerships between the intellectual centers and the interactions with AFRL and CONTACT's industrial associates, the program represents a model that addresses the needs of the changing and competitive technological world. Into the second year, CONTACT has expanded to twelve projects that cover four areas of research: Adaptive Coatings and Surface Engineering, Nano Energetics, Electromagnetic Sensors, and Power Generation and Storage. This paper provides an overview of the CONTACT program and its projects including the research and development of new electrorheological fluids with nanoladen suspensions and composites and the potential applications.

  18. Military Applications of Nanotechnology: Implications for Strategic Cooperation & Conflict

    OpenAIRE

    Center on Contemporary Conflict

    2012-01-01

    FY 2012-2013. Project Leads: Kosal, Margaret E. The report will advance critical thinking on the potential role and impact of nanotechnology on defense policy. It will view nanotechnology through the prism of international cooperation and competition, examining whether emerging nanotechnology will exacerbate or mitigate regional security challenges. NA

  19. EDITORIAL: Nanopores—the 'Holey Grail' in nanotechnology research Nanopores—the 'Holey Grail' in nanotechnology research

    Science.gov (United States)

    Demming, Anna

    2012-06-01

    'Negative space' may be as important in the development of nanomaterials as it is in creating works of art. The term refers to the space around and between objects, an important aspect in artistic composition. In nanotechnology, while nanoposts and nanowires have been assiduously studied and exploited for enhancing the performance of solar cells [1], real-time chemical sensors [2], UV emitters [3] and many other applications, nanopore structures have also yielded important advances in a wide range of fields. In this issue Melnikov, Leburton and Gracheva report on the electrostatic properties of nanopores in a layered semiconductor, and show how they allow a more accurate characterization of DNA than pores in other membranes [4]. Nanoporous materials have been applied to a diverse range of technological challenges. In recognition of its potential in high-efficiency solar cells, Prakasam and colleagues in the US reported the first ever synthesis of self-aligned nanoporous haematite [5]. Haematite is abundant, stable, non-toxic and has a band gap in the visible region and, as their work demonstrates, the photoresponse of nanoporous haematite is very promising for energy harvesting applications. Nanoporous aluminum oxide has also proved to be a particularly valuable material in applications ranging from liquid display panels to biosensor microchips. A collaboration of researchers in Taiwan demonstrated that porous aluminum oxide on an indium tin oxide surface could act as an alignment layer in liquid crystal display panels that have a transmittance of 60-80%, and switch from black to bright with a response time of 62.5 ms [6]. In Korea, Chung, Son and Min investigated the effect of nanostructural parameters of porous aluminum oxide on cell adhesion and proliferation for cell-based microchips [7]. While aluminum oxide without any modifications is not favourable for adherent cell culture, the proliferation of cells dramatically increased in porous aluminum oxide

  20. [Nanotechnology future of medicine].

    Science.gov (United States)

    Terlega, Katarzyna; Latocha, Małgorzata

    2012-10-01

    Nanotechnology enables to produce products with new, exactly specified, unique properties. Those products are finding application in various branches of electronic, chemical, food and textile industry as well as in medicine, pharmacy, agriculture, architectural engineering, aviation and in defense. In this paper structures used in nanomedicine were characterized. Possibilities and first effort of application of nanotechnology in diagnostics and therapy were also described. Nanotechnology provides tools which allow to identifying changes and taking repair operations on cellular and molecular level and applying therapy oriented for specific structures in cell. Great hope are being associated with entering nanotechnology into the regenerative medicine. It requires astute recognition bases of tissue regeneration biology--initiating signals as well as the intricate control system of the progress of this process. However application of nanotechnology in tissue engineering allows to avoiding problems associated with loss properties of implants what is frequent cause of performing another surgical procedure at present.

  1. DNA nanotechnology and its applications in biomedical research.

    Science.gov (United States)

    Sun, Lifan; Yu, Lu; Shen, Wanqiu

    2014-09-01

    DNA nanotechnology, which uses DNA as a material to self-assemble designed nanostructures, including DNA 2D arrays, 3D nanostructures, DNA nanotubes and DNA nanomechanical devices, has showed great promise in biomedical applications. Various DNA nanostructures have been used for protein characterization, enzyme assembly, biosensing, drug delivery and biomimetic assemblies. In this review, we will present recent advances of DNA nanotechnology and its applications in biomedical research field.

  2. The state of research after 25 years of Nanotechnology

    Science.gov (United States)

    Demming, Anna

    2013-01-01

    In 1990 the transistor was big—not just hugely prevalent in day-to-day devices but literally large in size compared with present day counterparts. Still, as Christoph Gerber describes in our latest Nanotechnology Discussions podcast [1], with transistor footprints decreasing every two years as described in Moore's law, by 1990 the electronics industry saw itself broaching new territory: nanotechnology. Atoms had made their debut as real-world observables with the first scanning probe microscopes only a few years previously, prompted by efforts to understand how physical systems behave at this scale. And in this heady climate of burgeoning nanoscale innovations Nanotechnology published its first issue, the world's first academic journal dedicated to nanoscale science and technology. This year the journal publishes its 25th volume and to celebrate we have commissioned a special issue presenting a snapshot of developments leading some of the most active areas in the field today [2]. As nanotechnology has matured both device-focused and fundamental research have placed high demands on improving fabrication processes to generate structures cheaply, efficiently and reliably. Since its discovery graphene has been under close scrutiny for the potential to exploit its optical transparency, mechanical flexibility and high carrier mobility. 'However', point out Ho Cho, Jong-Hyun Ahn and colleagues in Korea, 'it is still significantly challenging to develop clean and simple fabrication procedures'. They demonstrate how photo-curable ion gel gate dielectrics can be used to produce self-aligned flexible graphene transistors and inverters [3] simply without extra graphene-patterning steps. Sang Ouk Kim and colleagues at the Korea Advanced Institute of Science and Technology demonstrate another method for avoiding complex fabrication techniques, creating highly aligned graphene nanoribbon with their mussel-inspired block copolymer lithography and directed self-assembly [4

  3. Societal response to nanotechnology: converging technologies–converging societal response research?

    International Nuclear Information System (INIS)

    Ronteltap, Amber; Fischer, Arnout R. H.; Tobi, Hilde

    2011-01-01

    Nanotechnology is an emerging technology particularly vulnerable to societal unrest, which may hinder its further development. With the increasing convergence of several technological domains in the field of nanotechnology, so too could convergence of social science methods help to anticipate societal response. This paper systematically reviews the current state of convergence in societal response research by first sketching the predominant approaches to previous new technologies, followed by an analysis of current research into societal response to nanotechnology. A set of 107 papers on previous new technologies shows that rational actor models have played an important role in the study of societal response to technology, in particular in the field of information technology and the geographic region of Asia. Biotechnology and nuclear power have, in contrast, more often been investigated through risk perception and other affective determinants, particularly in Europe and the USA. A set of 42 papers on societal response to nanotechnology shows similarities to research in biotechnology, as it also builds on affective variables such as risk perception. Although there is a tendency to extend the rational models with affective variables, convergence in social science approaches to response to new technologies still has a long way to go. The challenge for researchers of societal response to technologies is to converge to some shared principles by taking up the best parts from the rational actor models dominant in information technology, whilst integrating non-rational constructs from biotechnology research. The introduction of nanotechnology gives a unique opportunity to do so.

  4. The use of environmental, health and safety research in nanotechnology research.

    Science.gov (United States)

    Youtie, Jan; Porter, Alan; Shapira, Philip; Tang, Li; Benn, Troy

    2011-01-01

    Environmental, health, and safety (EHS) concerns are receiving considerable attention in nanoscience and nanotechnology (nano) research and development (R&D). Policymakers and others have urged that research on nano's EHS implications be developed alongside scientific research in the nano domain rather than subsequent to applications. This concurrent perspective suggests the importance of early understanding and measurement of the diffusion of nano EHS research. The paper examines the diffusion of nano EHS publications, defined through a set of search terms, into the broader nano domain using a global nanotechnology R&D database developed at Georgia Tech. The results indicate that nano EHS research is growing rapidly although it is orders of magnitude smaller than the broader nano S&T domain. Nano EHS work is moderately multidisciplinary, but gaps in biomedical nano EHS's connections with environmental nano EHS are apparent. The paper discusses the implications of these results for the continued monitoring and development of the cross-disciplinary utilization of nano EHS research.

  5. Defense Nanotechnology Research and Development Program

    National Research Council Canada - National Science Library

    2007-01-01

    ...), Army Research Office (ARO) and the Air Force Office of Scientific Research (AFOSR)initiated numerous research and development programs focusing on advancing science and technology below one micron in size...

  6. Bio-Nanotechnology: Challenges for Trainees in a Multidisciplinary Research Program

    Science.gov (United States)

    Koehne, Jessica Erin

    2009-01-01

    The recent developments in the field of nanotechnology have provided scientists with a new set of nanoscale materials, tools and devices in which to investigate the biological science thus creating the mulitdisciplinary field of bio-nanotechnology. Bio-nanotechnology merges the biological sciences with other scientific disciplines ranging from chemistry to engineering. Todays students must have a working knowledge of a variety of scientific disciplines in order to be successful in this new field of study. This talk will provide insight into the issue of multidisciplinary education from the perspective of a graduate student working in the field of bio-nanotechnology. From the classes we take to the research we perform, how does the modern graduate student attain the training required to succeed in this field?

  7. Wondrous nanotechnology

    International Nuclear Information System (INIS)

    Awan, I.Z.; Hussain, S.B.

    2016-01-01

    In the last two decades, a lot of progress has been made in Nanotechnology and Nanoscience, an exploitation of matter on atomic, molecular and supermolecular scale. Nanotechnology because of its size is widely used in such varied fields as surface science, molecular biology, organic chemistry, semi-conductor physics, micro fabrication, medical sciences, electronics, biomaterials, energy production, etc. Using nanotechnology, Researchers have been able to develop new materials with nanoscale dimensions to directly control matter on the atomic or molecular scale. Due to the range of many potential applications, both industrial and military, many governments boast invested billions of dollars in nanotechnology and nanoscience research. This brief review deals with the fundamentals of nanotechnology and nanoscience and its application in various fields. It also discusses the future of nanotechnology and the risks involved in it. (author)

  8. Nanotechnology in stem cells research: advances and applications.

    Science.gov (United States)

    Deb, Kaushik Dilip; Griffith, May; Muinck, Ebo De; Rafat, Mehrdad

    2012-01-01

    Human beings suffer from a myriad of disorders caused by biochemical or biophysical alteration of physiological systems leading to organ failure. For a number of these conditions, stem cells and their enormous reparative potential may be the last hope for restoring function to these failing organ or tissue systems. To harness the potential of stem cells for biotherapeutic applications, we need to work at the size scale of molecules and processes that govern stem cells fate. Nanotechnology provides us with such capacity. Therefore, effective amalgamation of nanotechnology and stem cells - medical nanoscience or nanomedicine - offers immense benefits to the human race. The aim of this paper is to discuss the role and importance of nanotechnology in stem cell research by focusing on several important areas such as stem cell visualization and imaging, genetic modifications and reprogramming by gene delivery systems, creating stem cell niche, and similar therapeutic applications.

  9. Nanotechnology on a dime: building affordable research facilities

    Science.gov (United States)

    DiBattista, Jeff; Clare, Donna; Lynch, David

    2005-08-01

    Designing buildings to house nanotechnology research presents a multitude of well-recognized challenges to architectural and engineering design teams, from environmental control to spatial arrangements to operational functionality. These technical challenges can be solved with relative ease on projects with large budgets: designers have the option of selecting leading-edge systems without undue regard for their expense. This is reflected in the construction cost of many nanotechnology research facilities that run well into the hundreds of millions of dollars. Smaller universities and other institutions need not be shut out of the nanotechnology research field simply because their construction budgets are tens of millions of dollars or less. The key to success for these less expensive projects lies with making good strategic decisions: identifying priorities for the facility in terms of what it will is--and will not--provide to the researchers. Making these strategic decisions puts bounds on the tactical, technical problems that the design team at large must address, allowing them to focus their efforts on the key areas for success. The process and challenges of this strategic decision-making process are examined, with emphasis placed on the types of decisions that must be made and the factors that must be considered when making them. Case study examples of projects undertaken at the University of Alberta are used to illustrate how strategic-level decision-making sets the stage for cutting-edge success on a modest budget.

  10. Applications of nanotechnology, next generation sequencing and microarrays in biomedical research.

    Science.gov (United States)

    Elingaramil, Sauli; Li, Xiaolong; He, Nongyue

    2013-07-01

    Next-generation sequencing technologies, microarrays and advances in bio nanotechnology have had an enormous impact on research within a short time frame. This impact appears certain to increase further as many biomedical institutions are now acquiring these prevailing new technologies. Beyond conventional sampling of genome content, wide-ranging applications are rapidly evolving for next-generation sequencing, microarrays and nanotechnology. To date, these technologies have been applied in a variety of contexts, including whole-genome sequencing, targeted re sequencing and discovery of transcription factor binding sites, noncoding RNA expression profiling and molecular diagnostics. This paper thus discusses current applications of nanotechnology, next-generation sequencing technologies and microarrays in biomedical research and highlights the transforming potential these technologies offer.

  11. Nanotechnology for missiles

    Science.gov (United States)

    Ruffin, Paul B.

    2004-07-01

    Nanotechnology development is progressing very rapidly. Several billions of dollars have been invested in nanoscience research since 2000. Pioneering nanotechnology research efforts have been primarily conducted at research institutions and centers. This paper identifies developments in nanoscience and technology that could provide significant advances in missile systems applications. Nanotechnology offers opportunities in the areas of advanced materials for coatings, including thin-film optical coatings, light-weight, strong armor and missile structural components, embedded computing, and "smart" structures; nano-particles for explosives, warheads, turbine engine systems, and propellants to enhance missile propulsion; nano-sensors for autonomous chemical detection; and nano-tube arrays for fuel storage and power generation. The Aviation and Missile Research, Development, and Engineering Center (AMRDEC) is actively collaborating with academia, industry, and other Government agencies to accelerate the development and transition of nanotechnology to favorably impact Army Transformation. Currently, we are identifying near-term applications and quantifying requirements for nanotechnology use in Army missile systems, as well as monitoring and screening research and developmental efforts in the industrial community for military applications. Combining MicroElectroMechanical Systems (MEMS) and nanotechnology is the next step toward providing technical solutions for the Army"s transformation. Several research and development projects that are currently underway at AMRDEC in this technology area are discussed. A top-level roadmap of MEMS/nanotechnology development projects for aviation and missile applications is presented at the end.

  12. Nanotechnology applications and implications research supported by the US Environmental Protection Agency STAR grants program.

    Science.gov (United States)

    Savage, Nora; Thomas, Treye A; Duncan, Jeremiah S

    2007-10-01

    Since 2002, the US Environmental Protection Agency (EPA) has been funding research on the environmental aspects of nanotechnology through its Science to Achieve Results (STAR) grants program. In total, more than $25 million has been awarded for 86 research projects on the environmental applications and implications of nanotechnology. In the applications area, grantees have produced promising results in green manufacturing, remediation, sensors, and treatment using nanotechnology and nanomaterials. Although there are many potential benefits of nanotechnology, there has also been increasing concern about the environmental and health effects of nanomaterials, and there are significant gaps in the data needed to address these concerns. Research performed by STAR grantees is beginning to address these needs.

  13. The role of nanotechnology in induced pluripotent and embryonic stem cells research.

    Science.gov (United States)

    Chen, Lukui; Qiu, Rong; Li, Lushen

    2014-12-01

    This paper reviews the recent studies on development of nanotechnology in the field of induced pluripotent and embryonic stem cells. Stem cell therapy is a promising therapy that can improve the quality of life for patients with refractory diseases. However, this option is limited by the scarcity of tissues, ethical problem, and tumorigenicity. Nanotechnology is another promising therapy that can be used to mimic the extracellular matrix, label the implanted cells, and also can be applied in the tissue engineering. In this review, we briefly introduce implementation of nanotechnology in induced pluripotent and embryonic stem cells research. Finally, the potential application of nanotechnology in tissue engineering and regenerative medicine is also discussed.

  14. Disciplinary Identity of Nanoscience and Nanotechnology Research- A Study of Postgraduate Researchers’ Experiences

    OpenAIRE

    Chari, Deepa Nathamuni; Howard, Robert; Bowe, Brian

    2012-01-01

    Nanoscience and Nanotechnology research although growing at very fast rate, its disciplinary identity remains ‘ill-defined’. It is often viewed as multidisciplinary; and/or interdisciplinary science or even as a unique discipline on its own way. As a consequence, whether this growing research area requires researchers that have studied specialised undergraduate or postgraduate nanoscience and nanotechnology programmes; or traditional science and engineering disciplines is still less understoo...

  15. Nanotechnology in the marketplace: how the nanotechnology industry views risk

    International Nuclear Information System (INIS)

    Becker, Sean

    2013-01-01

    Despite uncertainty about the potential human health and environmental risks of nanotechnology, major stakeholders such as regulatory agencies and the nanotechnology industry are already negotiating the emerging regulatory framework for nanotechnology. Because of a relative lack of nano-specific regulations, the future of nanotechnology development will depend greatly on the views held by the nanotechnology industry. This study fills the research gap in understanding how the nanotechnology industry perceives the risks of nanotechnology. This is the first interview-based study of the nanotechnology industry in the United States. Semi-structured, open-ended phone interviews were conducted with 17 individuals involved in the commercialization of nanotechnology in the United States. Results indicate that while the industry acknowledges uncertainty about the potential risks of nanotechnology and takes significant precaution in ensuring the safety of their products, they do not see nanotechnology as novel or risky. They do not believe that uncertainty over risk ought to delay the further development of nanotechnology. The industry sees itself as the primary agent in ensuring consumer safety and believes that consumers are adequately protected. They are also largely benefit-centric and view product labeling as inefficacious.

  16. Nanotechnology in the marketplace: how the nanotechnology industry views risk

    Energy Technology Data Exchange (ETDEWEB)

    Becker, Sean, E-mail: seanlouisbecker@gmail.com [University of Wisconsin-Madison (United States)

    2013-05-15

    Despite uncertainty about the potential human health and environmental risks of nanotechnology, major stakeholders such as regulatory agencies and the nanotechnology industry are already negotiating the emerging regulatory framework for nanotechnology. Because of a relative lack of nano-specific regulations, the future of nanotechnology development will depend greatly on the views held by the nanotechnology industry. This study fills the research gap in understanding how the nanotechnology industry perceives the risks of nanotechnology. This is the first interview-based study of the nanotechnology industry in the United States. Semi-structured, open-ended phone interviews were conducted with 17 individuals involved in the commercialization of nanotechnology in the United States. Results indicate that while the industry acknowledges uncertainty about the potential risks of nanotechnology and takes significant precaution in ensuring the safety of their products, they do not see nanotechnology as novel or risky. They do not believe that uncertainty over risk ought to delay the further development of nanotechnology. The industry sees itself as the primary agent in ensuring consumer safety and believes that consumers are adequately protected. They are also largely benefit-centric and view product labeling as inefficacious.

  17. Highlights of recent developments and trends in cancer nanotechnology research--view from NCI Alliance for Nanotechnology in Cancer.

    Science.gov (United States)

    Hull, L C; Farrell, D; Grodzinski, P

    2014-01-01

    Although the incidence of cancer and cancer related deaths in the United States has decreased over the past two decades due to improvements in early detection and treatment, cancer still is responsible for a quarter of the deaths in this country. There is much room for improvement on the standard treatments currently available and the National Cancer Institute (NCI) has recognized the potential for nanotechnology and nanomaterials in this area. The NCI Alliance for Nanotechnology in Cancer was formed in 2004 to support multidisciplinary researchers in the application of nanotechnology to cancer diagnosis and treatment. The researchers in the Alliance have been productive in generating innovative solutions to some of the central issues of cancer treatment including how to detect tumors earlier, how to target cancer cells specifically, and how to improve the therapeutic index of existing chemotherapies and radiotherapy treatments. Highly creative ideas are being pursued where novelty in nanomaterial development enables new modalities of detection or therapy. This review highlights some of the innovative materials approaches being pursued by researchers funded by the NCI Alliance. Their discoveries to improve the functionality of nanoparticles for medical applications includes the generation of new platforms, improvements in the manufacturing of nanoparticles and determining the underlying reasons for the movement of nanoparticles in the blood. © 2013.

  18. Microsystems and nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Zhaoying [Tsinghua Univ., Beijing (China). Dept. of Precision Instruments and Mechanology; Lin, Liwei [California Univ., Berkeley, CA (United States). Dept. of Mechanical Engineering; Wang, Zhonglin (eds.) [Georgia Institute of Technology, Atlanta, GA (United States). Center for Nanostructure Characterization and Fabrication (CNCF)

    2012-07-01

    This book presents the latest science and engineering research and achievements in the fields of microsystems and nanotechnology, bringing together contributions by authoritative experts from the United States, Germany, Great Britain, Japan and China to discuss the latest advances in microelectromechanical systems (MEMS) technology and micro/nanotechnology. The book is divided into five parts - the fundamentals of microsystems and nanotechnology, microsystems technology, nanotechnology, application issues, and the developments and prospects.

  19. 76 FR 8788 - National Nanotechnology Coordination Office; Bridging NanoEHS Research Efforts: A Joint US-EU...

    Science.gov (United States)

    2011-02-15

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY National Nanotechnology Coordination Office; Bridging NanoEHS Research Efforts: A Joint US-EU Workshop: Public Meeting AGENCY: National Nanotechnology Coordination Office, STPO. ACTION: Notice of public meeting. SUMMARY: The National Nanotechnology Coordination...

  20. Nanotechnology Research Directions for Societal Needs in 2020 Retrospective and Outlook

    CERN Document Server

    Roco, Mihail C; Mirkin, Chad A

    2011-01-01

    This volume presents a comprehensive perspective on the global scientific, technological, and societal impact of nanotechnology since 2000, and explores the opportunities and research directions in the next decade to 2020.  The vision for the future of nanotechnology presented here draws on scientific insights from U.S. experts in the field, examinations of lessons learned, and international perspectives shared by participants from 35 countries in a series of high-level workshops organized by Mike Roco of the National Science Foundation (NSF), along with a team of American co-hosts that includes Chad Mirkin, Mark Hersam, Evelyn Hu, and several other eminent U.S. scientists.  The study performed in support of the U.S. National Nanotechnology Initiative (NNI) aims to redefine the R&D goals for nanoscale science and engineering integration and to establish nanotechnology as a general-purpose technology in the next decade. It intends to provide decision makers in academia, industry, and government with a n...

  1. Developing nanotechnology in Latin America

    International Nuclear Information System (INIS)

    Kay, Luciano; Shapira, Philip

    2009-01-01

    This article investigates the development of nanotechnology in Latin America with a particular focus on Argentina, Brazil, Chile, and Uruguay. Based on data for nanotechnology research publications and patents and suggesting a framework for analyzing the development of R and D networks, we identify three potential strategies of nanotechnology research collaboration. Then, we seek to identify the balance of emphasis upon each of the three strategies by mapping the current research profile of those four countries. In general, we find that they are implementing policies and programs to develop nanotechnologies but differ in their collaboration strategies, institutional involvement, and level of development. On the other hand, we find that they coincide in having a modest industry participation in research and a low level of commercialization of nanotechnologies.

  2. Potential of nanotechnology as a delivery platform against tuberculosis: current research review.

    Science.gov (United States)

    Choudhary, S; Kusum Devi, V

    2015-03-28

    This review focusses on the current ongoing research in the field of tuberculosis comprising the resistant strains. It specifies a proper data analysis with results in concise form from areas gripping in: diagnostic nanotechnology, vaccine nanotechnology and the prime field of interest i.e., therapeutic nanotechnology. Primarily, therapeutic area recollects the research findings from advanced drug delivery (primary era) to the targeted drug delivery (modern era). The vaccine-based area derives the immune-specific targeting with enhanced emphasis on vaccine extraction and preparation of nanoparticles. Finally, the diagnostic area signifies the imaging techniques that may be employed in the diagnosis of TB. Not only that, there are some researches that emphasized on finding the comparable diagnostic differences between normal and resistant strains. With the advent of carbon nanotubes, metallic NPs, a newer hope has emerged out in diagnostic research, which may extend to therapeutic research applications too. Modifications of natural polymers, least or no use of organic solvents, size controlled NPs, optimized methodology, etc., are fields that need more effort to bypass toxicity. If above desired possibilities get the priority during research, it may lead to shift in the timeline towards much more oriented research. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Concise review: carbon nanotechnology: perspectives in stem cell research.

    Science.gov (United States)

    Pryzhkova, Marina V

    2013-05-01

    Carbon nanotechnology has developed rapidly during the last decade, and carbon allotropes, especially graphene and carbon nanotubes, have already found a wide variety of applications in industry, high-tech fields, biomedicine, and basic science. Electroconductive nanomaterials have attracted great attention from tissue engineers in the design of remotely controlled cell-substrate interfaces. Carbon nanoconstructs are also under extensive investigation by clinical scientists as potential agents in anticancer therapies. Despite the recent progress in human pluripotent stem cell research, only a few attempts to use carbon nanotechnology in the stem cell field have been reported. However, acquired experience with and knowledge of carbon nanomaterials may be efficiently used in the development of future personalized medicine and in tissue engineering.

  4. Nanotechnology solutions for Alzheimer's disease: advances in research tools, diagnostic methods and therapeutic agents.

    Science.gov (United States)

    Nazem, Amir; Mansoori, G Ali

    2008-03-01

    A century of research has passed since the discovery and definition of Alzheimer's disease (AD), the primary common dementing disorder worldwide. However, AD lacks definite diagnostic approaches and effective cure at the present. Moreover, the currently available diagnostic tools are not sufficient for an early screening of AD in order to start preventive approaches. Recently the emerging field of nanotechnology has promised new techniques to solve some of the AD challenges. Nanotechnology refers to the techniques of designing and manufacturing nanosize (1-100 nm) structures through controlled positional and/or self-assembly of atoms and molecules. In this report, we present the promises that nanotechnology brings in research on the AD diagnosis and therapy. They include its potential for the better understanding of the AD root cause molecular mechanisms, AD's early diagnoses, and effective treatment. The advances in AD research offered by the atomic force microscopy, single molecule fluorescence microscopy and NanoSIMS microscopy are examined here. In addition, the recently proposed applications of nanotechnology for the early diagnosis of AD including bio-barcode assay, localized surface plasmon resonance nanosensor, quantum dot and nanomechanical cantilever arrays are analyzed. Applications of nanotechnology in AD therapy including neuroprotections against oxidative stress and anti-amyloid therapeutics, neuroregeneration and drug delivery beyond the blood brain barrier (BBB) are discussed and analyzed. All of these applications could improve the treatment approach of AD and other neurodegenerative diseases. The complete cure of AD may become feasible by a combination of nanotechnology and some other novel approaches, like stem cell technology.

  5. Nanotechnology knowledge diffusion: measuring the impact of the research networking and a strategy for improvement

    Science.gov (United States)

    Liu, Xuan; Jiang, Shan; Chen, Hsinchun; Larson, Catherine A.; Roco, Mihail C.

    2014-09-01

    Given the global increase in public funding for nanotechnology research and development, it is even more important to support projects with promising return on investment. A main return is the benefit to other researchers and to the entire field through knowledge diffusion, invention, and innovation. The social network of researchers is one of the channels through which this happens. This study considers the scientific publication network in the field of nanotechnology, and evaluates how knowledge diffusion through coauthorship and citations is affected in large institutions by the location and connectivity of individual researchers in the network. The relative position and connectivity of a researcher is measured by various social network metrics, including degree centrality, Bonacich Power centrality, structural holes, and betweenness centrality. Leveraging the Cox regression model, we analyzed the temporal relationships between knowledge diffusion and social network measures of researchers in five leading universities in the United States using papers published from 2000 to 2010. The results showed that the most significant effects on knowledge diffusion in the field of nanotechnology were from the structural holes of the network and the degree centrality of individual researchers. The data suggest that a researcher has potential to perform better in knowledge creation and diffusion on boundary-spanning positions between different communities and when he or she has a high level of connectivity in the knowledge network. These observations may lead to improved strategies in planning, conducting, and evaluating multidisciplinary nanotechnology research. The paper also identifies the researchers who made most significant contributions to nanotechnology knowledge diffusion in the networks of five leading U.S. universities.

  6. Nanotechnologies in Latvia: Commercialisation Aspect

    Directory of Open Access Journals (Sweden)

    Geipele I.

    2014-12-01

    Full Text Available The authors consider the possibilities to apply the nanotechnology products of manufacturing industries in Latvia for further commercialisation. The purpose of the research is to find out the preliminary criteria for the system of engineering economic indicators for multifunctional nanocoating technologies. The article provides new findings and calculations for the local nanotechnology market research characterising the development of nanotechnology industry. The authors outline a scope of issues as to low activities rankings in Latvia on application of locally produced nanotechnologies towards efficiency of the resource use for nanocoating technologies. For the first time in Latvia, the authors make the case study research and summarise the latest performance indicators of the Latvian companies operating in the nanotechnology industry.

  7. Nanotechnology at KT

    DEFF Research Database (Denmark)

    Glarborg, Peter; Hassager, Ole; Jonsson, Gunnar Eigil

    2002-01-01

    The objective of this report is to provide the reader an overview of the research activities at the Department of Chemical Engineering in the area of "nanotechnology"......The objective of this report is to provide the reader an overview of the research activities at the Department of Chemical Engineering in the area of "nanotechnology"...

  8. Public Attitudes Toward Nanotechnology

    International Nuclear Information System (INIS)

    Sims Bainbridge, William

    2002-01-01

    Data from 3909 respondents to an Internet survey questionnaire provide the first insights into public perceptions of nanotechnology. Quantitative analysis of statistics about agreement and disagreement with two statements, one positive and the other negative, reveals high levels of enthusiasm for the potential benefits of nanotechnology and little concern about possible dangers. The respondents mentally connect nanotechnology with the space program, nuclear power, and cloning research, but rate it more favorably. In contrast, they do not associate nanotechnology with pseudoscience, despite its imaginative exploitation by science fiction writers. Qualitative analysis of written comments from 598 respondents indicates that many ideas about the value of nanotechnology have entered popular culture, and it provides material for an additional 108 questionnaire items that can be used in future surveys on the topic. The findings of this exploratory study can serve as benchmarks against which to compare results of future research on the evolving status of nanotechnology in society

  9. Methodological proposal for occupational health and safety actions in research laboratories with nanotechnologies activities.

    Science.gov (United States)

    Andrade, Luís Renato Balbão; Amaral, Fernando Gonçalves

    2012-01-01

    Nanotechnologies is a multidisciplinary set of techniques to manipulate matter on nanoscale level, more precisely particles below 100 nm whose characteristic due to small size is essentially different from those found in macro form materials. Regarding to these new properties of the materials there are knowledge gaps about the effects of these particles on human organism and the environment. Although it still being considered emerging technology it is growing increasingly fast as well as the number of products using nanotechnologies in some production level and so the number of researchers involved with the subject. Given this scenario and based on literature related, a comprehensive methodology for health and safety at work for researching laboratories with activities in nanotechnologies was developed, based on ILO structure guidelines for safety and health at work system on which a number of nanospecific recommendations were added to. The work intends to offer food for thought on controlling risks associated to nanotechnologies.

  10. Acquisition of Cleanroom Research Equipment to Support Ongoing DoD Programs at ASU

    Science.gov (United States)

    2017-12-12

    research and to educate scientists and engineers in selected technical areas of importance to national defense. DURIP funding provides for the acquisition...infrastructure for nanotechnology discovery and innovation. The ASU NanoFab is one of the 16 sites in the new NSF National Nanotechnology ...National Nanotechnology Infrastructure Network (NNIN). NNCI sites provide researchers from academia, small and large companies and government labs with

  11. The Nanotechnology R(evolution)

    OpenAIRE

    Tahan, Charles

    2006-01-01

    Nanotechnology as a social concept and investment focal point has drawn much attention. Here we consider the place of nanotechnology in the second great technological revolution of mankind that began some 200 years ago. The so-called nanotechnology revolution represents both a continuation of prior science and technology trends and a re-awakening to the benefits of significant investment in fundamental research. We consider the role the military might play in the development of nanotechnology...

  12. EDITORIAL: Quantum phenomena in Nanotechnology Quantum phenomena in Nanotechnology

    Science.gov (United States)

    Loss, Daniel

    2009-10-01

    Twenty years ago the Institute of Physics launched the journal Nanotechnology from its publishing house based in the home town of Paul Dirac, a legendary figure in the development of quantum mechanics at the turn of the last century. At the beginning of the 20th century, the adoption of quantum mechanical descriptions of events transformed the existing deterministic world view. But in many ways it also revolutionised the progress of research itself. For the first time since the 17th century when Francis Bacon established inductive reasoning as the means of advancing science from fact to axiom to law, theory was progressing ahead of experiments instead of providing explanations for observations that had already been made. Dirac's postulation of antimatter through purely theoretical investigation before its observation is the archetypal example of theory leading the way for experiment. The progress of nanotechnology and the development of tools and techniques that enabled the investigation of systems at the nanoscale brought with them many fascinating observations of phenomena that could only be explained through quantum mechanics, first theoretically deduced decades previously. At the nanoscale, quantum confinement effects dominate the electrical and optical properties of systems. They also render new opportunities for manipulating the response of systems. For example, a better understanding of these systems has enabled the rapid development of quantum dots with precisely determined properties, which can be exploited in a range of applications from medical imaging and photovoltaic solar cells to quantum computation, a radically new information technology being currently developed in many labs worldwide. As the first ever academic journal in nanotechnology, {\\it Nanotechnology} has been the forum for papers detailing progress of the science through extremely exciting times. In the early years of the journal, the investigation of electron spin led to the formulation

  13. Strategies on Technology Transfer and Patents Commercialization for Nanotechnology at the Spanish National Research Council.

    Science.gov (United States)

    Maira, Javier; Etxabe, Javier; Serena, Pedro A

    2018-02-14

    Nanoscience and nanotechnology made their appearance in the scientific scene at a time when both the economy of Spain and the Spanish Research and Innovation System were experiencing strong growth. This circumstance resulted in a remarkable development of nanoscience and nanotechnology especially in universities and public research institutions such as the Spanish National Research Council (Consejo Superior de Investigaciones Científicas-CSIC). However, this development in academia has not been reflected in a similar increment in the transfer of knowledge to the productive sector despite several efforts and initiatives were launched. The CSIC, the main generator of scientific knowledge in Spain, has designed and implemented a series of actions in order to take advantage of the knowledge generated in nanotechnology by its research groups by mean of an appropriate transfer to both the Spanish and the international industry. Internal methodologies used in CSIC in order to protect and commercialize nanotechnology based intellectual property as well as their effects are reviewed. The evolution of CSIC nanotechnology patents portfolio is also analyzed. There has been a clear increase in the patent license agreements of CSIC in the period 2002- 2015 in the field of nanotechnology. This increase is correlated to these facts: (i) Highly qualified team managing Intellectual Property issues, (ii) The presence of CSIC in international fairs, and (iii) Proactive search of companies and investors. Successful results can be achieved in technology transfer when the appropriate resources are available and properly organized with an adequate combination of efforts in knowledge protection, promotion and commercialization of technologies and support to the scientific entrepreneurs of the institution. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  14. Devices of Responsibility: Over a Decade of Responsible Research and Innovation Initiatives for Nanotechnologies.

    Science.gov (United States)

    Shelley-Egan, Clare; Bowman, Diana M; Robinson, Douglas K R

    2017-10-10

    Responsible research and innovation (RRI) has come to represent a change in the relationship between science, technology and society. With origins in the democratisation of science, and the inclusion of ethical and societal aspects in research and development activities, RRI offers a means of integrating society and the research and innovation communities. In this article, we frame RRI activities through the lens of layers of science and technology governance as a means of characterising the context in which the RRI activity is positioned and the goal of those actors promoting the RRI activities in shaping overall governance patterns. RRI began to emerge during a time of considerable deliberation about the societal and governance challenges around nanotechnology, in which stakeholders were looking for new ways of integrating notions of responsibility in nanotechnology research and development. For this reason, this article focuses on nanotechnology as the site for exploring the evolution and growth of RRI.

  15. Refining search terms for nanotechnology

    International Nuclear Information System (INIS)

    Porter, Alan L.; Youtie, Jan; Shapira, Philip; Schoeneck, David J.

    2008-01-01

    The ability to delineate the boundaries of an emerging technology is central to obtaining an understanding of the technology's research paths and commercialization prospects. Nowhere is this more relevant than in the case of nanotechnology (hereafter identified as 'nano') given its current rapid growth and multidisciplinary nature. (Under the rubric of nanotechnology, we also include nanoscience and nanoengineering.) Past efforts have utilized several strategies, including simple term search for the prefix nano, complex lexical and citation-based approaches, and bootstrapping techniques. This research introduces a modularized Boolean approach to defining nanotechnology which has been applied to several research and patenting databases. We explain our approach to downloading and cleaning data, and report initial results. Comparisons of this approach with other nanotechnology search formulations are presented. Implications for search strategy development and profiling of the nanotechnology field are discussed

  16. Nanotechnology: Fundamental Principles and Applications

    Science.gov (United States)

    Ranjit, Koodali T.; Klabunde, Kenneth J.

    Nanotechnology research is based primarily on molecular manufacturing. Although several definitions have been widely used in the past to describe the field of nanotechnology, it is worthwhile to point out that the National Nanotechnology Initiative (NNI), a federal research and development scheme approved by the congress in 2001 defines nanotechnology only if the following three aspects are involved: (1) research and technology development at the atomic, molecular, or macromolecular levels, in the length scale of approximately 1-100 nanometer range, (2) creating and using structures, devices, and systems that have novel properties and functions because of their small and/or intermediate size, and (3) ability to control or manipulate on the atomic scale. Nanotechnology in essence is the technology based on the manipulation of individual atoms and molecules to build complex structures that have atomic specifications.

  17. Refining search terms for nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Alan L. [Georgia Institute of Technology (United States); Youtie, Jan [Georgia Institute of Technology, Enterprise Innovation Institute (United States)], E-mail: jan.youtie@innovate.gatech.edu; Shapira, Philip [Georgia Institute of Technology (United States); Schoeneck, David J. [Search Technology, Inc. (United States)

    2008-05-15

    The ability to delineate the boundaries of an emerging technology is central to obtaining an understanding of the technology's research paths and commercialization prospects. Nowhere is this more relevant than in the case of nanotechnology (hereafter identified as 'nano') given its current rapid growth and multidisciplinary nature. (Under the rubric of nanotechnology, we also include nanoscience and nanoengineering.) Past efforts have utilized several strategies, including simple term search for the prefix nano, complex lexical and citation-based approaches, and bootstrapping techniques. This research introduces a modularized Boolean approach to defining nanotechnology which has been applied to several research and patenting databases. We explain our approach to downloading and cleaning data, and report initial results. Comparisons of this approach with other nanotechnology search formulations are presented. Implications for search strategy development and profiling of the nanotechnology field are discussed.

  18. Determining the efficacy of a nanotechnology media product in enhancing children’s engagement with nanotechnology

    International Nuclear Information System (INIS)

    Waldron, Anna M.; Batt, Carl A.; Lui, Clarissa S.

    2011-01-01

    Public engagement in nanotechnology media products can lead to a greater interest in understanding of nanotechnology. A study was undertaken to determine middle school student engagement in Nanooze, a magazine featuring nanotechnology research that has been developed for a young adult audience. Teachers at 116 Detroit middle schools distributed two issues of the magazine to their students, and surveys were collected from 870 students after reading the magazines. Results suggest that the majority of students liked reading the magazine and learned something about nanotechnology. Engagement in nanotechnology led to understanding of nanotechnology. The Nanooze magazine was an effective medium for engaging middle school students in learning about nanotechnology.

  19. 2nd FP7 Conference and International Summer School Nanotechnology : From Fundamental Research to Innovations

    CERN Document Server

    Yatsenko, Leonid

    2015-01-01

    This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 2nd International Summer School “Nanotechnology: From Fundamental Research to Innovations” and International Research and Practice Conference “Nanotechnology and Nanomaterials”, NANO-2013, which were held in Bukovel, Ukraine on August 25-September 1, 2013. These events took place within the framework of the European Commission FP7 project Nanotwinning, and were organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications. Pr...

  20. Nanotechnologies. Proceedings of Kharkiv Nanotechnology Congress-2008. Volume 1

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Shulaeva, V.M.

    2008-01-01

    The materials of Kharkiv Nanotechnology Congress-2008 held in Kharkiv of 26-30 May, 2008 are presented here. The scientific and practical research aspects as well as development of ion-plasma nanotechnologies, current problems of thin film physics in optics and electronics, as well as the issues of creation of new type of vacuum technological equipment are considered in papers to be published.

  1. "Extremely minimally invasive": recent advances in nanotechnology research and future applications in neurosurgery.

    Science.gov (United States)

    Mattei, Tobias A; Rehman, Azeem A

    2015-01-01

    The term "nanotechnology" refers to the development of materials and devices that have been designed with specific properties at the nanometer scale (10(-9) m), usually being less than 100 nm in size. Recent advances in nanotechnology have promised to enable visualization and intervention at the subcellular level, and its incorporation to future medical therapeutics is expected to bring new avenues for molecular imaging, targeted drug delivery, and personalized interventions. Although the central nervous system presents unique challenges to the implementation of new therapeutic strategies involving nanotechnology (such as the heterogeneous molecular environment of different CNS regions, the existence of multiple processing centers with different cytoarchitecture, and the presence of the blood-brain barrier), numerous studies have demonstrated that the incorporation of nanotechnology resources into the armamentarium of neurosurgery may lead to breakthrough advances in the near future. In this article, the authors present a critical review on the current 'state-of-the-art' of basic research in nanotechnology with special attention to those issues which present the greatest potential to generate major therapeutic progresses in the neurosurgical field, including nanoelectromechanical systems, nano-scaffolds for neural regeneration, sutureless anastomosis, molecular imaging, targeted drug delivery, and theranostic strategies.

  2. Nanotechnology: Future of Oncotherapy.

    Science.gov (United States)

    Gharpure, Kshipra M; Wu, Sherry Y; Li, Chun; Lopez-Berestein, Gabriel; Sood, Anil K

    2015-07-15

    Recent advances in nanotechnology have established its importance in several areas including medicine. The myriad of applications in oncology range from detection and diagnosis to drug delivery and treatment. Although nanotechnology has attracted a lot of attention, the practical application of nanotechnology to clinical cancer care is still in its infancy. This review summarizes the role that nanotechnology has played in improving cancer therapy, its potential for affecting all aspects of cancer care, and the challenges that must be overcome to realize its full promise. ©2015 American Association for Cancer Research.

  3. nanoSTAIR: a new strategic proposal to impulse standardization in nanotechnology research

    Science.gov (United States)

    López de Ipiña, J. M.; Salvi, O.; Hazebrouck, B.; Jovanovic, A.; Carre, F.; Saamanen, A.; Brouwer, D.; Schmitt, M.; Martin, S.

    2015-05-01

    Nanotechnology is considered one of the key technologies of the 21st century within Europe and a Key-Enabling Technology (KET) by Horizon 2020. Standardization has been identified in H2020 as one of the innovation-support measures by bridging the gap between research and the market, and helping the fast and easy transfer of research results to the European and international market. The development of new and improved standards requires high quality technical information, creating a fundamental interdependency between the standardization and research communities. In the frame of project nanoSTAIR (GA 319092), the present paper describes the European scenario on research and standardization in nanotechnology and presents a proposal of a European strategy (nanoSTAIR) to impulse direct “pipelines” between research and standardization. In addition, strategic actions focused on integration of standardization in the R&D projects, from the early stages of the design of a future business (Project Proposal), are also described.

  4. nanoSTAIR: a new strategic proposal to impulse standardization in nanotechnology research

    International Nuclear Information System (INIS)

    De Ipiña, J M López; Salvi, O; Hazebrouck, B; Jovanovic, A; Carre, F; Saamanen, A; Brouwer, D; Schmitt, M; Martin, S

    2015-01-01

    Nanotechnology is considered one of the key technologies of the 21 st century within Europe and a Key-Enabling Technology (KET) by Horizon 2020. Standardization has been identified in H2020 as one of the innovation-support measures by bridging the gap between research and the market, and helping the fast and easy transfer of research results to the European and international market. The development of new and improved standards requires high quality technical information, creating a fundamental interdependency between the standardization and research communities. In the frame of project nanoSTAIR (GA 319092), the present paper describes the European scenario on research and standardization in nanotechnology and presents a proposal of a European strategy (nanoSTAIR) to impulse direct “pipelines” between research and standardization. In addition, strategic actions focused on integration of standardization in the R and D projects, from the early stages of the design of a future business (Project Proposal), are also described. (paper)

  5. EDITORIAL: Terahertz nanotechnology Terahertz nanotechnology

    Science.gov (United States)

    Demming, Anna; Tonouchi, Masayoshi; Reno, John L.

    2013-05-01

    A useful synergy is being established between terahertz research and nanotechnology. High power sources [1-3] and detectors [4] in what was once considered the terahertz 'frequency gap' [5] in the electromagnetic spectrum have stimulated research with huge potential benefits in a range of industries including food, medicine and security, as well as fundamental physics and astrophysics. This special section, with guest editors Masayoshi Tonouchi and John Reno, gives a glimpse of the new horizons nanotechnology is broaching in terahertz research. While the wavelengths relevant to the terahertz domain range from hundreds of micrometres to millimetres, structures at the nanoscale reveal interesting low energy dynamics in this region. As a result terahertz spectroscopy techniques are becoming increasingly important in nanomaterial characterization, as demonstrated in this special section by colleagues at the University of Oxford in the UK and the Australian National University. They use terahertz spectroscopy to identify the best nanostructure parameters for specific applications [6]. The low energy dynamics in nanostructures also makes them valuable tools for terahertz detection [7]. In addition the much sought after terahertz detection over broadband frequency ranges has been demonstrated, providing versatility that has been greatly in demand, particularly in spectroscopy applications [8, 9]. Also in this special section, researchers in Germany and China tackle some of the coupling issues in terahertz time domain spectroscopy with an emitter specifically well suited for systems operated with an amplified fibre [3]. 'In medical imaging, the advantage of THz radiation is safety, because its energy is much lower than the ionization energy of biological molecules, in contrast to hazardous x-ray radiation,' explains Joo-Hiuk Son from the University of Seoul in Korea in his review [10]. As he also points out, the rotational and vibrational energies of water molecules are

  6. Nanotechnology R and D Policy of Japan and Nanotechnology Support Project

    International Nuclear Information System (INIS)

    Kishi, Teruo

    2004-01-01

    In the 2nd Science and Technology Basic Plan (2001-2005), the area of nanotechnology and materials is designated one of the four prioritized areas in funding. Following this plan, Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Ministry of Economy, Trade and Industries (METI), the main funding ministries, and their organizations, Japan Society for the Promotion of Science (JSPS), Japan Science and Technology Agency (JST), National Institute for Materials Science (NIMS), RIKEN, New Energy and Industrial Technology Organization (NEDO), and National Institute of Advanced Industrial Science and Technology (AIST) promotes their research programs. Besides, in order to promote interdisciplinary, interorganizational, and international collaboration of researchers, Nanotechnology Support Project (NSP) was started by MEXT in 2002. The project has two missions: informational support and common use facility support. Nanotechnology Researchers Network Center of Japan is responsible for informational support, and 14 universities and national research institutes are responsible for common use facility support

  7. NANOTECHNOLOGY, NANOMEDICINE; ETHICAL ASPECTS.

    Science.gov (United States)

    Gökçay, Banu; Arda, Berna

    2015-01-01

    Nanotechnology is a field that we often hear of its name nowadays. Altough what we know about it is soo poor, we admire this field of technlogy, moreover some societies even argues that nanotechnology will cause second endustrial revolution. In addition, nanotechnology makes our basic scientific knowledge upside down and is soo powerfull that it is potent in nearly every scientific field. Thereby, it is imposible to say that nanotechnology; which is soo effective on human and human life; will not cause social and ethical outcomes. In general, the definition of nanotechnology is the reconfiguration of nanomaterials by human; there also are different definitions according to the history of nanotechnology and different point of views. First of all, in comparison to the other tehnology fields, what is the cause of excellence of nanotechnology, what human can do is to foresee the advantages and disadvantages of it, what are the roles of developed and developping countries for the progression of nanotechnology, what is the attitude of nanoethics and what is view of global politics to nanotechological research according to international regulations are all the focus of interests of this study. Last but not least, our apprehension capacity of nanotechnology, our style of adoption and evaluation of it and the way that how we locate nanotechnology in our lifes and ethical values are the other focus of interests.

  8. Review of defense display research programs

    Science.gov (United States)

    Tulis, Robert W.; Hopper, Darrel G.; Morton, David C.; Shashidhar, Ranganathan

    2001-09-01

    Display research has comprised a substantial portion of the defense investment in new technology for national security for the past 13 years. These investments have been made by the separate service departments and, especially, via several Defense Research Projects Agency (DARPA) programs, known collectively as the High Definition Systems (HDS) Program (which ended in 2001) and via the Office of the Secretary of Defense (OSD) Defense Production Act (DPA) Title III Program (efforts ended in 2000). Using input from the Army, Navy, and Air Force to focus research and identify insertion opportunities, DARPA and the Title III Program Office have made investments to develop the national technology base and manufacturing infrastructure necessary to meet the twin challenge of providing affordable displays in current systems and enabling the DoD strategy of winning future conflicts by getting more information to all participants during the battle. These completed DARPA and DPA research and infrastructure programs are reviewed. Service investments have been and are being made to transition display technology; examples are described. Display science and technology (S&T) visions are documented for each service to assist the identification of areas meriting consideration for future defense research.

  9. The effect of nanotechnology on education

    Science.gov (United States)

    Viriyavejakul, Chantana

    2008-04-01

    The research objective was to study 1) the situation and readiness of the Thai education for the integration of nanotechnology and 2) to propose the plans, the strategies and guidelines for educational reform to adapt nanotechnology to the system. The data collection was done by 4 methods: 1) documentary study, 2) observation, 3) informal interviews, and 4) group discussion. The findings revealed that: 1. William Wresch's Theory (1997) was used in this research to study of the situation and readiness of the Thai education for the integration of nanotechnology. 1) Getting connected to nanotechnology by search engine websites, libraries, magazines, books, and discussions with experts. 2) Curriculum integration: nanotechnology should be integrated in many branches of engineering, such as industrial, computer, civil, chemical, electrical, mechanical, etc. 3) Resources for educators: nanotechnology knowledge should be spread in academic circles by publications and the Internet websites. 4) Training and professional resources for teachers: Teachers should be trained by experts in nanotechnology and researchers from the National Nanotechnology Center. This will help trainees get correct knowledge, comprehension, and awareness in order to apply to their professions and businesses in the future. 2. As for the plans, the strategies, and guidelines for educational reform to adapt nanotechnology to the present system, I analyzed the world nanotechnology situation that might have an effect on Thai society. The study is based on the National Plan to Develop Nanotechnology. The goal of this plan is to develop nanotechnology to be the national strategy within 10 years (2004-2013) and have it integrated into the Thai system. There are 4 parts in this plan: 1) nanomaterials, 2) nanoelectronics, 3) nanobiotechnology, and 4) human resources development. Data for human resource development should be worked with the present technology and use the country's resources to produce many

  10. Nanotechnology in the Security

    CERN Document Server

    Kruchinin, Sergei

    2015-01-01

    The topics discussed at the NATO Advanced Research Workshop "Nanotechnology in the Security Systems" included nanophysics,   nanotechnology,  nanomaterials, sensors, biosensors security systems, explosive  detection . There have been many significant advances in the past two years and some entirely new directions of research are just opening up. Recent advances in nanoscience have demonstrated that fundamentally new physical phenomena  are found when systems are reduced in size with  dimensions, comparable to the fundamental microscopic  length scales of the investigated material. Recent developments in nanotechnology and measurement techniques now allow experimental investigation of transport properties of nanodevices. This work will be of interest to researchers working in spintronics, molecular electronics and quantum information processing.

  11. Current situation and industrialization of Taiwan nanotechnology

    International Nuclear Information System (INIS)

    Su, H.-N.; Lee, P.-C.; Tsai, M.-H.; Chien, K.-M.

    2007-01-01

    Nanotechnology is projected to be a very promising field, and the impact of nanotechnology on society is increasingly significant as the research funding and manufactured goods increase exponentially. A clearer picture of Taiwan's current and future nanotechnology industry is an essential component for future planning. Therefore, this investigation studies the progress of industrializing nanotechnology in Taiwan by surveying 150 companies. Along with understanding Taiwan's current nanotechnology industrialization, this paper also suggests ways to promote Taiwan's nanotechnology. The survey results are summarized and serve as the basis for planning a nanotechnology industrialization strategy

  12. Analysis of Co-Authorship Indicators, Betweenness Centrality and Structural Holes of the Iranian Nanotechnology Researchers in Science Citation Index (1991-2011

    Directory of Open Access Journals (Sweden)

    Mohammad Hassanzadeh

    2012-12-01

    Full Text Available This research aimed to investigate Iranian papers on nanotechnology area against some scientometrics indicators such as most prolific, most cited and so on. The statistical population were all papers have been published by Iranian researchers on nanotechnology in the Science Citation Index (SCI from 1991 to 7 August 2011 (4605 records that has been done with the aim of identifying, the most prolific, most cited and most effect of Iranian nanotechnology scientists. The results showed that the collaborative index in per-document was 3.39. The highest collaborative index was in 1997 with six authors by per-document. Iranian nanotechnology researchers' degree of collaboration was 0.96 this indicates, greater tendency of nanotechnology authors towards co-authorship. Considering total collaboration coefficient (0.64, nanotechnology authors have shown tendency to production of scientific collaborative document. The highest collaboration coefficient (0.83 And the lowest collaboration coefficient (0.5 have been allocated to the 1997 and 1991 respectively.

  13. Fairness and nanotechnology concern.

    Science.gov (United States)

    McComas, Katherine A; Besley, John C

    2011-11-01

    Research suggests that fairness perceptions matter to people who are asked to evaluate the acceptability of risks or risk management. Two separate national random surveys (n = 305 and n = 529) addressed Americans' concerns about and acceptance of nanotechnology risk management in the context of the degree to which they view scientists and risk managers as fair. The first survey investigated general views about scientists across four proposed dimensions of fairness (distributional, procedural, interpersonal, and informational). The results show that respondents who believe that the outcomes of scientific research tend to result in unequal benefits (distributional fairness) and that the procedures meant to protect the public from scientific research are biased (procedural fairness) were more concerned about nanotechnology. Believing scientists would treat them with respect (interpersonal fairness) and ensure access to information (informational fairness) were not significant predictors of concern. The second study also looked at these four dimensions of fairness but focused on perceptions of risk managers working for government, universities, and major companies. In addition to concern, it also examined acceptance of nanotechnology risk management. Study 2 results were similar to those of study 1 for concern; however, only perceived informational fairness consistently predicted acceptance of nanotechnology risk management. Overall, the study points to the value of considering fairness perceptions in the study of public perceptions of nanotechnology. © 2011 Society for Risk Analysis.

  14. Advanced thermal management technologies for defense electronics

    Science.gov (United States)

    Bloschock, Kristen P.; Bar-Cohen, Avram

    2012-05-01

    Thermal management technology plays a key role in the continuing miniaturization, performance improvements, and higher reliability of electronic systems. For the past decade, and particularly, the past 4 years, the Defense Advanced Research Projects Agency (DARPA) has aggressively pursued the application of micro- and nano-technology to reduce or remove thermal constraints on the performance of defense electronic systems. The DARPA Thermal Management Technologies (TMT) portfolio is comprised of five technical thrust areas: Thermal Ground Plane (TGP), Microtechnologies for Air-Cooled Exchangers (MACE), NanoThermal Interfaces (NTI), Active Cooling Modules (ACM), and Near Junction Thermal Transport (NJTT). An overview of the TMT program will be presented with emphasis on the goals and status of these efforts relative to the current State-of-the-Art. The presentation will close with future challenges and opportunities in the thermal management of defense electronics.

  15. Review of the federal strategy for nanotechnology-related environmental, health, and safety research

    National Research Council Canada - National Science Library

    Committee for Review of the Federal Strategy to Address Environmental Health and Safety Research Needs for Engineered Nanoscale Materials; Committee on Toxicology; National Research Council

    .... The book recommends a robust national strategic plan for addressing nanotechnology-related EHS risks, which will need to focus on promoting research that can assist all stakeholders, including...

  16. Broader Societal Issues of Nanotechnology

    International Nuclear Information System (INIS)

    Roco, M.C.

    2003-01-01

    Nanoscale science and engineering are providing unprecedented understanding and control over the basic building blocks of matter, leading to increased coherence in knowledge, technology, and education. The main reason for developing nanotechnology is to advance broad societal goals such as improved comprehension of nature, increased productivity, better healthcare, and extending the limits of sustainable development and of human potential. This paper outlines societal implication activities in nanotechnology R and D programs. The US National Nanotechnology Initiative annual investment in research with educational and societal implications is estimated at about $30 million (of which National Science Foundation (NSF) awards about $23 million including contributions to student fellowships), and in nanoscale research with relevance to environment at about $50 million (of which NSF awards about $30 million and EPA about $6 million). An appeal is made to researchers and funding organizations worldwide to take timely and responsible advantage of the new technology for economic and sustainable development, to initiate societal implications studies from the beginning of the nanotechnology programs, and to communicate effectively the goals and potential risks with research users and the public

  17. Broader Societal Issues of Nanotechnology

    Science.gov (United States)

    Roco, M. C.

    2003-08-01

    Nanoscale science and engineering are providing unprecedented understanding and control over the basic building blocks of matter, leading to increased coherence in knowledge, technology, and education. The main reason for developing nanotechnology is to advance broad societal goals such as improved comprehension of nature, increased productivity, better healthcare, and extending the limits of sustainable development and of human potential. This paper outlines societal implication activities in nanotechnology R&D programs. The US National Nanotechnology Initiative annual investment in research with educational and societal implications is estimated at about 30 million (of which National Science Foundation (NSF) awards about 23 million including contributions to student fellowships), and in nanoscale research with relevance to environment at about 50 million (of which NSF awards about 30 million and EPA about 6 million). An appeal is made to researchers and funding organizations worldwide to take timely and responsible advantage of the new technology for economic and sustainable development, to initiate societal implications studies from the beginning of the nanotechnology programs, and to communicate effectively the goals and potential risks with research users and the public.

  18. Broader Societal Issues of Nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Roco, M.C. [National Science Foundation (NSF) (United States)], E-mail: mroco@nsf.gov

    2003-08-15

    Nanoscale science and engineering are providing unprecedented understanding and control over the basic building blocks of matter, leading to increased coherence in knowledge, technology, and education. The main reason for developing nanotechnology is to advance broad societal goals such as improved comprehension of nature, increased productivity, better healthcare, and extending the limits of sustainable development and of human potential. This paper outlines societal implication activities in nanotechnology R and D programs. The US National Nanotechnology Initiative annual investment in research with educational and societal implications is estimated at about $30 million (of which National Science Foundation (NSF) awards about $23 million including contributions to student fellowships), and in nanoscale research with relevance to environment at about $50 million (of which NSF awards about $30 million and EPA about $6 million). An appeal is made to researchers and funding organizations worldwide to take timely and responsible advantage of the new technology for economic and sustainable development, to initiate societal implications studies from the beginning of the nanotechnology programs, and to communicate effectively the goals and potential risks with research users and the public.

  19. Nanotechnology - An emerging technology

    Science.gov (United States)

    Buckingham, D.

    2007-01-01

    The science of nanotechnology is still in its infancy. However, progress is being made in research and development of potential beneficial properties of nanomaterials that could play an integral part in the development of new and changing uses for mineral commodities. Nanotechnology is a kind of toolbox that allows industry to make nanomaterials and nanostructures with special properties. New nanotechnology applications of mineral commodities in their nanoscale form are being discovered, researched and developed. At the same time, there is continued research into environmental, human health and safety concerns that inherently arise from the development of a new technology. Except for a few nanomaterials (CNTs, copper, silver and zinc oxide), widespread applications are hampered by processing and suitable commercial-scale production techniques, high manufacturing costs, product price, and environmental, and human health and safety concerns. Whether nanotechnology causes a tidal wave of change or is a long-term evolutionary process of technology, new applications of familiar mineral commodities will be created. As research and development continues, the ability to manipulate matter at the nanoscale into increasingly sophisticated nanomaterials will improve and open up new possibilities for industry that will change the flow and use of mineral commodities and the materials and products that are used.

  20. Visual framing of nanotechnology in newspapers

    DEFF Research Database (Denmark)

    Nielsen, Kristian Hvidtfelt

    discourse, very little research into to the visual communication of science in public has been carried out. Nanotechnology is an emerging scientific discipline that just recently has entered the public sphere. Surveys show that most Europeans and most Americans have very little knowledge about...... nanotechnology. Even so, there is a marked difference between Europeans who generally are cautious, it not skeptical about nanotechnology, and American who seem to have a much more positive attitude towards nanotechnology. Objective This paper surveys visual images used to communicate nanotechnology (and...... nanotechnology-related issues) in the printed press in Denmark from 1993 to 2006. Based on a representative sample of newspaper articles referring to nanotechnology, the survey categorizes and analyzes the images used. Studies have shown that to a high degree newspaper readers use images to navigate...

  1. Inequality gaps in nanotechnology development in Latin America

    Directory of Open Access Journals (Sweden)

    Guillermo Foladori

    2013-06-01

    Full Text Available Nanotechnology has been spurred by science, technology and innovation policies in most Latin American countries since the last decade. Public policies and funding have been accompanied by a common rhetoric, highlighting the potential of nanotechnology for increasing competitiveness and growth and providing the region with more efficient and innovative products. Based on an assessment of nanotechnology policies and capabilities in nine countries this article highlights three characteristics of nanotechnology in Latin America that might hinder its contribution to an equitable development within the region. The first characteristic is the conspicuous trend towards an intra-regional gap in capacity building as a result of the unequal historical development of science and technology among these countries and the large differences in equipment and financial resources devoted to nanotechnology.  The second characteristic is the strength of “international signals” vis-à-vis the national needs in the orientation of nanotechnology. On the one hand, nanotechnology is main and foremost oriented to achieve international competitiveness, which may lead its development to international market demands. On the other hand, nanotechnology research in Latin American countries has been configured within internationalized academic networks, which may influence local research agendas towards foreign research priorities. The third characteristic is the absence of research on potential impacts of nanotechnology on human health and the environment, as well as other societal implications, which may generate new forms of unequal distribution of benefits and risks.

  2. Nanomaterials for Defense Applications

    Science.gov (United States)

    Turaga, Uday; Singh, Vinitkumar; Lalagiri, Muralidhar; Kiekens, Paul; Ramkumar, Seshadri S.

    Nanotechnology has found a number of applications in electronics and healthcare. Within the textile field, applications of nanotechnology have been limited to filters, protective liners for chemical and biological clothing and nanocoatings. This chapter presents an overview of the applications of nanomaterials such as nanofibers and nanoparticles that are of use to military and industrial sectors. An effort has been made to categorize nanofibers based on the method of production. This chapter particularly focuses on a few latest developments that have taken place with regard to the application of nanomaterials such as metal oxides in the defense arena.

  3. The long view of nanotechnology development: the National Nanotechnology Initiative at 10 years

    International Nuclear Information System (INIS)

    Roco, Mihail C.

    2011-01-01

    A global scientific and societal endeavor was set in motion by the nanotechnology vision formulated in 1999 that inspired the National Nanotechnology Initiative (NNI) and other national and international R and D programs. Establishing foundational knowledge at the nanoscale has been the main focus of the nanotechnology research community in the first decade. As of 2009, this new knowledge underpinned about a quarter of a trillion dollars worldwide market, of which about $91 billion was in US products that incorporate nanoscale components. Nanotechnology is already evolving toward becoming a general-purpose technology by 2020, encompassing four generations of products with increasing structural and dynamic complexity: (1) passive nanostructures, (2) active nanostructures, (3) nanosystems, and (4) molecular nanosystems. By 2020, the increasing integration of nanoscale science and engineering knowledge and of nanosystems promises mass applications of nanotechnology in industry, medicine, and computing, and in better comprehension and conservation of nature. Nanotechnology’s rapid development worldwide is a testimony to the transformative power of identifying a concept or trend and laying out a vision at the synergistic confluence of diverse scientific research areas. This chapter provides a brief perspective on the development of the NNI since 2000 in the international context, the main outcomes of the R and D programs after 10 years, the governance aspects specific to this emerging field, lessons learned, and most importantly, how the nanotechnology community should prepare for the future.

  4. Nanotechnology: A Vast Field for the Creative Mind

    Science.gov (United States)

    Benavides, Jeannette

    2003-01-01

    Nanotechnology is a rapidly developing field worldwide. Nanotechnology is the development of smart systems for many different applications by building from the molecular level up. Current research, sponsored by The National Nanotechnology Alliance in the US will be described. Future needs in manpower of different disciplines will be discussed. Nanotechnology is a field of research that could allow developing countries to establish a technological infrastructure. The nature of nanotechnology requires professionals in many areas, such as engineers, chemists, physicists, mathematicians, computer scientists, materials scientists, etc. One of the materials that provide unique properties for nanotechnology is carbon nanotubes. At Goddard we have develop a process to produce nanotubes at lower costs and without metal catalysts which will be of great importance for the development of new materials for space applications and others outside NASA. Nanotechnology in general is a very broad and exciting field that will provide the technologies of tomorrow including biomedical applications for the betterment of mankind. There is room in this area for many researchers all over the world. The key is collaboration, nationally and internationally.

  5. Research councils facing new science and technology : the case of nanotechnology in Finland, the Netherlands, Norway and Switzerland

    NARCIS (Netherlands)

    van der Most, F.V.

    2009-01-01

    This thesis investigates how research funding organizations (RFOs) respond to a new emerging field of science and technology. It takes nanoscience and nanotechnology (nanotechnology for short) as its case and compares the responses of RFOs in Finland, the Netherlands, Norway and Finland.

  6. EDITORIAL: Nanotechnology under the skin Nanotechnology under the skin

    Science.gov (United States)

    Demming, Anna

    2011-07-01

    Concerns over health and ecological implications as living organisms are increasingly exposed to nanoparticles are constantly raised. Yet the use of nanoscale structures in technology and medicine has already infiltrated daily life in countless ways. from cosmetics and sun cream to mobile phones. The potential of nanotechnology in medicine is particularly difficult to ignore and ranges from cancer treatment to immune system activation [1]. The reduced dimensions of nanostructures lend them to targeted diagnostic and therapeutic practices that enable treatment with greater accuracy and less discomfort. Striking a balance between over caution and recklessness can be tricky, and provides an additional drive to investigate and learn more about the science of the nanoscale. Alongside investigations to exploit nanoparticles in medicine and technology, there have been a substantial number of studies to investigate the possible effects on our health, as well as some studies on the environmental ramifications. Researchers in the US have investigated the effects on aquatic life of ZnO nanoparticles, which may pollute lakes and rivers through accidental release during fabrication or as wash out from consumer materials [2]. The study is focused on zebrafish during early development. Zhu et al observe that while there may be evidence that Zn2+ ions and ZnO nanoparticles have toxic effects on zebrafish embryos, these effects are apparently mitigated by a type of sediment formulated from the nanoparticles. The positive contribution of nanotechnology in cancer treatment is an area of particularly high research activity at present. Although traditional chemotherapeutic agents can be effective against the growth of cancerous cells, they can have a detrimental effect on the immune system, which is critical in combating cancer. Researchers in China studied the behaviour of C60(OH)20 nanoparticles in vivo and found that they play important roles in the anti-tumour process by activating

  7. Thinking on the Application of Nanotechnology in the Mechanism Research on the Traditional Chinese Medicine Diagnosis and Treatment of Diabetes Mellitus

    International Nuclear Information System (INIS)

    Xu Yunxiang; Zhang Li; Chen Pengdian; Chen Guizhen

    2011-01-01

    Nanotechnology is an advanced scientific technique in the 21st century and diabetes mellitus (DM) is a commonly seen chronic disease, which seriously threatens the health of human beings. By analyzing the relationship between nanotechnology and biological medicine, nanotechnology and traditional Chinese medicine (TCM) and the advances and the existing problems of TCM diagnosing and treating DM, the application of nanotechnological methods for the mechanism research on TCM diagnosis and treatment of DM was discussed. It is indicated that nanotechnology is one of the fastest developmental, the most potential and the far-reaching high and new technologies in current world, and it greatly promotes the development of biological medicine and TCM. With the application of nanotechnology of medical diagnostics and medical materials, it will make the development of TCM possess an unprecedented field, which consequently could integrate the macroscopical and microscopical syndrome differentiation. It's pointed out that breakthrough will be achieved from the research of the administration route, the improvement of medical biological availability and the selection of the acupoint prescriptions on mechanism research on TCM for the diagnosis and treatment of diabetes mellitus.

  8. Thinking on the Application of Nanotechnology in the Mechanism Research on the Traditional Chinese Medicine Diagnosis and Treatment of Diabetes Mellitus

    Energy Technology Data Exchange (ETDEWEB)

    Xu Yunxiang; Zhang Li; Chen Pengdian [Acupuncture and Massage College, Guangzhou University of Chinese Medicine, Guangzhou, 510405 (China); Chen Guizhen, E-mail: cgzhen2000@163.com [Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405 (China)

    2011-02-01

    Nanotechnology is an advanced scientific technique in the 21st century and diabetes mellitus (DM) is a commonly seen chronic disease, which seriously threatens the health of human beings. By analyzing the relationship between nanotechnology and biological medicine, nanotechnology and traditional Chinese medicine (TCM) and the advances and the existing problems of TCM diagnosing and treating DM, the application of nanotechnological methods for the mechanism research on TCM diagnosis and treatment of DM was discussed. It is indicated that nanotechnology is one of the fastest developmental, the most potential and the far-reaching high and new technologies in current world, and it greatly promotes the development of biological medicine and TCM. With the application of nanotechnology of medical diagnostics and medical materials, it will make the development of TCM possess an unprecedented field, which consequently could integrate the macroscopical and microscopical syndrome differentiation. It's pointed out that breakthrough will be achieved from the research of the administration route, the improvement of medical biological availability and the selection of the acupoint prescriptions on mechanism research on TCM for the diagnosis and treatment of diabetes mellitus.

  9. Thinking on the Application of Nanotechnology in the Mechanism Research on the Traditional Chinese Medicine Diagnosis and Treatment of Diabetes Mellitus

    Science.gov (United States)

    Xu, Yunxiang; Zhang, Li; Chen, Guizhen; Chen, Pengdian

    2011-02-01

    Nanotechnology is an advanced scientific technique in the 21st century and diabetes mellitus (DM) is a commonly seen chronic disease, which seriously threatens the health of human beings. By analyzing the relationship between nanotechnology and biological medicine, nanotechnology and traditional Chinese medicine (TCM) and the advances and the existing problems of TCM diagnosing and treating DM, the application of nanotechnological methods for the mechanism research on TCM diagnosis and treatment of DM was discussed. It is indicated that nanotechnology is one of the fastest developmental, the most potential and the far-reaching high and new technologies in current world, and it greatly promotes the development of biological medicine and TCM. With the application of nanotechnology of medical diagnostics and medical materials, it will make the development of TCM possess an unprecedented field, which consequently could integrate the macroscopical and microscopical syndrome differentiation. It's pointed out that breakthrough will be achieved from the research of the administration route, the improvement of medical biological availability and the selection of the acupoint prescriptions on mechanism research on TCM for the diagnosis and treatment of diabetes mellitus.

  10. A longitudinal analysis of nanotechnology literature: 1976-2004

    International Nuclear Information System (INIS)

    Li Xin; Chen Hsinchun; Dang Yan; Lin Yiling; Larson, Catherine A.; Roco, Mihail C.

    2008-01-01

    Nanotechnology research and applications have experienced rapid growth in recent years. We assessed the status of nanotechnology research worldwide by applying bibliographic, content map, and citation network analysis to a data set of about 200,000 nanotechnology papers published in the Thomson Science Citation Index Expanded database (SCI) from 1976 to 2004. This longitudinal study shows a quasi-exponential growth of nanotechnology articles with an average annual growth rate of 20.7% after 1991. The United States had the largest contribution of nanotechnology research and China and Korea had the fastest growth rates. The largest institutional contributions were from the Chinese Academy of Sciences and the Russian Academy of Sciences. The high-impact papers generally described tools, theories, technologies, perspectives, and overviews of nanotechnology. From the top 20 institutions, based on the average number of paper citations in 1976-2004, 17 were in the Unites States, 2 in France and 1 in Germany. Content map analysis identified the evolution of the major topics researched from 1976 to 2004, including investigative tools, physical phenomena, and experiment environments. Both the country citation network and the institution citation network had relatively high clustering, indicating the existence of citation communities in the two networks, and specific patterns in forming citation communities. The United States, Germany, Japan, and China were major citation centers in nanotechnology research with close inter-citation relationships.

  11. Nanotechnology policy in Korea for sustainable growth

    International Nuclear Information System (INIS)

    So, Dae Sup; Kim, Chang Woo; Chung, Pil Seung; Jhon, Myung S.

    2012-01-01

    Korea has become one of the leading countries in nanotechnology along with the U.S., Japan, and Germany. Since 2001, the Korean Government established the “Nanotechnology Development Plan.” Since then, the trend in nanotechnology is steadily changing from fundamental research to application-driven technologies. In this paper, we examine the nanotechnology development and policy during the past decade, which includes the investments in R and D, infrastructure, and education. The Third Phase (2011–2020) on clean nanotechnology convergence and integration in information, energy, and the environmental sector is also given. Furthermore, the program on long-term strategy dealing with sustainability in resolving future societal demand and plans for sustainable energy and environmental activities will be discussed in depth. The outcomes and national evaluations of research and education are also given.

  12. Societal response to nanotechnology: converging technologies–converging societal response research?

    NARCIS (Netherlands)

    Ronteltap, A.; Fischer, A.R.H.; Tobi, H.

    2011-01-01

    Nanotechnology is an emerging technology particularly vulnerable to societal unrest, which may hinder its further development. With the increasing convergence of several technological domains in the field of nanotechnology, so too could convergence of social science methods help to anticipate

  13. German innovation initiative for nanotechnology

    International Nuclear Information System (INIS)

    Rieke, Volker; Bachmann, Gerd

    2004-01-01

    In many areas of nanotechnology, Germany can count on a good knowledge basis due to its diverse activities in nanosciences. This knowledge basis, when paired with the production and sales structures needed for implementation and the internationally renowned German talent for system integration, should consequently lead to success in the marketplace. And this is exactly the field of application for the innovation initiative 'Nanotechnologie erobert Maerkte' (nanotechnology conquers markets) and for the new BMBF strategy in support of nanotechnology. Until now, aspects of nanotechnology have been advanced within the confines of their respective technical subject areas. However, the primary aim of incorporating them into an overall national strategy is to build on Germany's well-developed and internationally competitive research in science and technology to tap the potential of Germany's important industrial sectors for the application of nanotechnology through joint research projects (leading-edge innovations) that strategically target the value-added chain. This development is to be supported by government education policy to remedy a threatening shortage of skilled professionals. To realize that goal, forward-looking political policymaking must become oriented to a uniform concept of innovation, one that takes into consideration all facets of new technological advances that can contribute to a new culture of innovation in Germany. And that includes education and research policy as well as a climate that encourages and supports innovation in science, business and society

  14. German innovation initiative for nanotechnology

    Science.gov (United States)

    Rieke, Volker; Bachmann, Gerd

    2004-10-01

    In many areas of nanotechnology, Germany can count on a good knowledge basis due to its diverse activities in nanosciences. This knowledge basis, when paired with the production and sales structures needed for implementation and the internationally renowned German talent for system integration, should consequently lead to success in the marketplace. And this is exactly the field of application for the innovation initiative "Nanotechnologie erobert Märkte" (nanotechnology conquers markets) and for the new BMBF strategy in support of nanotechnology. Until now, aspects of nanotechnology have been advanced within the confines of their respective technical subject areas. However, the primary aim of incorporating them into an overall national strategy is to build on Germany's well-developed and internationally competitive research in science and technology to tap the potential of Germany's important industrial sectors for the application of nanotechnology through joint research projects (leading-edge innovations) that strategically target the value-added chain. This development is to be supported by government education policy to remedy a threatening shortage of skilled professionals. To realize that goal, forward-looking political policymaking must become oriented to a uniform concept of innovation, one that takes into consideration all facets of new technological advances that can contribute to a new culture of innovation in Germany. And that includes education and research policy as well as a climate that encourages and supports innovation in science, business and society.

  15. Hearts and minds and nanotechnology

    Science.gov (United States)

    Toumey, Chris

    2009-03-01

    New research by social scientists is presenting a clearer picture of the factors that influence the public perception of nanotechnology and, as Chris Toumey reports, the results present challenges for those working to increase public acceptance of nanoscience and technology.See focus on public perceptions of nanotechnology.

  16. Nanotechnology Characterization Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — The Nanotechnology Characterization Laboratory (NCL) at the Frederick National Laboratory for Cancer Research performs preclinical characterization of nanomaterials...

  17. Nanotechnology Characterization Lab

    Data.gov (United States)

    Federal Laboratory Consortium — The Nanotechnology Characterization Laboratory (NCL) at the Frederick National Laboratory for Cancer Research performs preclinical characterization of nanomaterials...

  18. Nanotechnology in biorobotics: opportunities and challenges

    International Nuclear Information System (INIS)

    Ricotti, Leonardo; Menciassi, Arianna

    2015-01-01

    Nanotechnology recently opened a series of unexpected technological opportunities that drove the emergence of novel scientific and technological fields, which have the potential to dramatically change the lives of millions of citizens. Some of these opportunities have been already caught by researchers working in the different fields related to biorobotics, while other exciting possibilities still lie on the horizon. This article highlights how nanotechnology applications recently impacted the development of advanced solutions for actuation and sensing and the achievement of microrobots, nanorobots, and non-conventional larger robotic systems. The open challenges are described, together with the most promising research avenues involving nanotechnology

  19. How interdisciplinary is nanotechnology?

    International Nuclear Information System (INIS)

    Porter, Alan L.; Youtie, Jan

    2009-01-01

    Facilitating cross-disciplinary research has attracted much attention in recent years, with special concerns in nanoscience and nanotechnology. Although policy discourse has emphasized that nanotechnology is substantively integrative, some analysts have countered that it is really a loose amalgam of relatively traditional pockets of physics, chemistry, and other disciplines that interrelate only weakly. We are developing empirical measures to gauge and visualize the extent and nature of interdisciplinary interchange. Such results speak to research organization, funding, and mechanisms to bolster knowledge transfer. In this study, we address the nature of cross-disciplinary linkages using 'science overlay maps' of articles, and their references, that have been categorized into subject categories. We find signs that the rate of increase in nano research is slowing, and that its composition is changing (for one, increasing chemistry-related activity). Our results suggest that nanotechnology research encompasses multiple disciplines that draw knowledge from disciplinarily diverse knowledge sources. Nano research is highly, and increasingly, integrative-but so is much of science these days. Tabulating and mapping nano research activity show a dominant core in materials sciences, broadly defined. Additional analyses and maps show that nano research draws extensively upon knowledge presented in other areas; it is not constricted within narrow silos.

  20. How interdisciplinary is nanotechnology?

    Energy Technology Data Exchange (ETDEWEB)

    Porter, Alan L., E-mail: aporter@isye.gatech.ed [Georgia Institute of Technology, Technology Policy and Assessment Center, School of Public Policy (United States); Youtie, Jan, E-mail: jan.youtie@innovate.gatech.ed [Georgia Institute of Technology Enterprise Innovation Institute (United States)

    2009-07-15

    Facilitating cross-disciplinary research has attracted much attention in recent years, with special concerns in nanoscience and nanotechnology. Although policy discourse has emphasized that nanotechnology is substantively integrative, some analysts have countered that it is really a loose amalgam of relatively traditional pockets of physics, chemistry, and other disciplines that interrelate only weakly. We are developing empirical measures to gauge and visualize the extent and nature of interdisciplinary interchange. Such results speak to research organization, funding, and mechanisms to bolster knowledge transfer. In this study, we address the nature of cross-disciplinary linkages using 'science overlay maps' of articles, and their references, that have been categorized into subject categories. We find signs that the rate of increase in nano research is slowing, and that its composition is changing (for one, increasing chemistry-related activity). Our results suggest that nanotechnology research encompasses multiple disciplines that draw knowledge from disciplinarily diverse knowledge sources. Nano research is highly, and increasingly, integrative-but so is much of science these days. Tabulating and mapping nano research activity show a dominant core in materials sciences, broadly defined. Additional analyses and maps show that nano research draws extensively upon knowledge presented in other areas; it is not constricted within narrow silos.

  1. Computational Nanotechnology Molecular Electronics, Materials and Machines

    Science.gov (United States)

    Srivastava, Deepak; Biegel, Bryan A. (Technical Monitor)

    2002-01-01

    This presentation covers research being performed on computational nanotechnology, carbon nanotubes and fullerenes at the NASA Ames Research Center. Topics cover include: nanomechanics of nanomaterials, nanotubes and composite materials, molecular electronics with nanotube junctions, kinky chemistry, and nanotechnology for solid-state quantum computers using fullerenes.

  2. NanoParticle Ontology for Cancer Nanotechnology Research

    Science.gov (United States)

    Thomas, Dennis G.; Pappu, Rohit V.; Baker, Nathan A.

    2010-01-01

    Data generated from cancer nanotechnology research are so diverse and large in volume that it is difficult to share and efficiently use them without informatics tools. In particular, ontologies that provide a unifying knowledge framework for annotating the data are required to facilitate the semantic integration, knowledge-based searching, unambiguous interpretation, mining and inferencing of the data using informatics methods. In this paper, we discuss the design and development of NanoParticle Ontology (NPO), which is developed within the framework of the Basic Formal Ontology (BFO), and implemented in the Ontology Web Language (OWL) using well-defined ontology design principles. The NPO was developed to represent knowledge underlying the preparation, chemical composition, and characterization of nanomaterials involved in cancer research. Public releases of the NPO are available through BioPortal website, maintained by the National Center for Biomedical Ontology. Mechanisms for editorial and governance processes are being developed for the maintenance, review, and growth of the NPO. PMID:20211274

  3. Nanotechnology and Life Cycle Assessment. A systems approach to Nanotechnology and the environment

    DEFF Research Database (Denmark)

    Klöpffer, Walter; Curran, Mary Ann; Frankl, Paolo

    This report summarizes the results of “Nanotechnology and Life Cycle Assessment,” a twoday workshop jointly convened by the Woodrow Wilson Center Project on Emerging Nanotechnologies; the United States Environmental Protection Agency Office of Research and Development; and the European Commission......, RTD.G4 “Nano S&T: Converging Science and Technologies.” Held in October 2006, the workshop involved international experts from the fields of Life Cycle Assessment (LCA) and nanotechnology. The main program of the workshop consisted of introductory lectures, group discussions and a final plenary...... identified and discussed by the groups. The purpose of the workshop was to determine whether existing LCA tools and methods are adequate to use on a new technology. This document provides an overview of LCA and nanotechnology, discusses the current state of the art, identifies current knowledge gaps that may...

  4. NanoSTAIR: A new strategic proposal to impulse standardization in nanotechnology research

    NARCIS (Netherlands)

    Ipiña, J.M.L. de; Salvi, O.; Hazebrouck, B.; Jovanovic, A.; Carre, F.; Saamanen, A.; Brouwer, D.; Schmitt, M.; Martin, S.

    2015-01-01

    Nanotechnology is considered one of the key technologies of the 21st century within Europe and a Key-Enabling Technology (KET) by Horizon 2020. Standardization has been identified in H2020 as one of the innovation-support measures by bridging the gap between research and the market, and helping the

  5. Defense Department funds advanced military wireless networks research

    OpenAIRE

    Crumbley, Liz

    2005-01-01

    The U.S. Department of Defense has awarded a $246,000 Defense University Research Instrumentation Program (DURIP) grant to researchers in Virginia Tech's Bradley Department of Electrical and Computer Engineering for advanced research on wireless communications networks that are critical during military maneuvers.

  6. Nanotechnology in Dermatology*

    Science.gov (United States)

    Antonio, João Roberto; Antônio, Carlos Roberto; Cardeal, Izabela Lídia Soares; Ballavenuto, Julia Maria Avelino; Oliveira, João Rodrigo

    2014-01-01

    The scientific community and general public have been exposed to a series of achievements attributed to a new area of knowledge: Nanotechnology. Both abroad and in Brazil, funding agencies have launched programs aimed at encouraging this type of research. Indeed, for many who come into contact with this subject it will be clear the key role that chemical knowledge will play in the evolution of this subject. And even more, will see that it is a science in which the basic structure is formed by distilling different areas of inter-and multidisciplinary knowledge along the lines of new paradigms. In this article, we attempt to clarify the foundations of nanotechnology, and demonstrate their contribution to new advances in dermatology as well as medicine in general. Nanotechnology is clearly the future. PMID:24626657

  7. Nanotechnologies and Nanomaterials: Scientific, Economic and Political Realia of the New Century

    Directory of Open Access Journals (Sweden)

    Zaporotskova Irina Vladimirovna

    2015-05-01

    Full Text Available The current state and problems of nanotechnology development in the Russian Federation in modern economic, political and scientific conditions are presented. Nanotechnologies and nanomaterials have already been used in all developed countries of the world in the most significant areas of human activity industry, defense, information sphere, radio electronics, energy drinks, transport, biotechnology, medicine. The Government of the Russian Federation formulated the main objectives of scientific and economic community for the development of nanotechnologies in the conditions of the demanded import substitution. In the developed countries the comprehension of the key role of nanotechnologies led to the elaboration of large-scale programs for their development on the basis of state support. Similar programs are adopted more than in thirty countries around the world, including the Russian Federation. The author of the present article studies the current state of nanotech industry in Russia and classifies nanotechnologies according to the intrinsic principle. As a result, four main directions in the field of nanotechnologies are allocated: 1 nanomaterials; 2 photonics, spintronics, nanoelectronics (devices based on the nanoprinciples; 3 nanometrology, nanomanipulators and modeling; 4 nanosensors and nanodetectors. Some perspective scientific and technological projects of nanotech industry development in Russia are also considered. The author points to economic, social, ecological, and scientific and technical opportunities of nanotechnologies development in Russia, as well as their threats.

  8. Exploitation of Nanotechnology for the Monitoring of Waterborne Pathogens: State-of-the-Art and Future Research Priorities.

    Science.gov (United States)

    Bridle, Helen; Balharry, Dominique; Gaiser, Birgit; Johnston, Helinor

    2015-09-15

    Contaminated drinking water is one of the most important environmental contributors to the human disease burden. Monitoring of water for the presence of pathogens is an essential part of ensuring drinking water safety. In order to assess water quality it is essential to have methods available to sample and detect the type, level and viability of pathogens in water which are effective, cheap, quick, sensitive, and where possible high throughput. Nanotechnology has the potential to drastically improve the monitoring of waterborne pathogens when compared to conventional approaches. To date, there have been no reviews that outline the applications of nanotechnology in this area despite increasing exploitation of nanotechnology for this purpose. This review is therefore the first overview of the state-of-the-art in the application of nanotechnology to waterborne pathogen sampling and detection schemes. Research in this field has been centered on the use of engineered nanomaterials. The effectiveness and limitations of nanomaterial-based approaches is outlined. A future outlook of the advances that are likely to emerge in this area, as well as recommendations for areas of further research are provided.

  9. Nanotechnology: The new perspective in precision agriculture

    Directory of Open Access Journals (Sweden)

    Joginder Singh Duhan

    2017-09-01

    Full Text Available Nanotechnology is an interdisciplinary research field. In recent past efforts have been made to improve agricultural yield through exhaustive research in nanotechnology. The green revolution resulted in blind usage of pesticides and chemical fertilizers which caused loss of soil biodiversity and developed resistance against pathogens and pests as well. Nanoparticle-mediated material delivery to plants and advanced biosensors for precision farming are possible only by nanoparticles or nanochips. Nanoencapsulated conventional fertilizers, pesticides and herbicides helps in slow and sustained release of nutrients and agrochemicals resulting in precise dosage to the plants. Nanotechnology based plant viral disease detection kits are also becoming popular and are useful in speedy and early detection of viral diseases. In this article, the potential uses and benefits of nanotechnology in precision agriculture are discussed. The modern nanotechnology based tools and techniques have the potential to address the various problems of conventional agriculture and can revolutionize this sector.

  10. Nanotechnology: Development and challenges in Indonesia

    Science.gov (United States)

    Joni, I. Made; Muthukannan, Vanitha; Hermawan, Wawan; Panatarani, Camellia

    2018-02-01

    Nanotechnology today is regarded as a revolutionary technology that can help to address the key needs related to energy, environment, health and agriculture in developing countries. This paper is a short review on the development and challenges of nanotechnology in Indonesia. Nanotechnology offers great potential benefits, there is emerging concerns arising from its novel physicochemical properties. The main applications of nanotechnology in the different sectors which is vital and its economic impact in Indonesia is also discussed. The achievment and development of nanotechnology including synthesis and dispersion of nanoparticles (NPs) and its applications in various fields is briefly addressed in Nanotehcnology and Graphene Research Center, Universitas Padjadjaran (Unpad). Despite significant progress in developmental goals, many challenges in the development of nanotechnology proccesing need to be resolved such as support infrastructure and evolution of new form of collaborative arrangements between various sectors and policies which is emerged as an important factor enabling development.

  11. Nanotechnology in corneal neovascularization therapy--a review.

    Science.gov (United States)

    Gonzalez, Lilian; Loza, Raymond J; Han, Kyu-Yeon; Sunoqrot, Suhair; Cunningham, Christy; Purta, Patryk; Drake, James; Jain, Sandeep; Hong, Seungpyo; Chang, Jin-Hong

    2013-03-01

    Nanotechnology is an up-and-coming branch of science that studies and designs materials with at least one dimension sized from 1-100 nm. These nanomaterials have unique functions at the cellular, atomic, and molecular levels. The term "nanotechnology" was first coined in 1974. Since then, it has evolved dramatically and now consists of distinct and independent scientific fields. Nanotechnology is a highly studied topic of interest, as nanoparticles can be applied to various fields ranging from medicine and pharmacology, to chemistry and agriculture, to environmental science and consumer goods. The rapidly evolving field of nanomedicine incorporates nanotechnology with medical applications, seeking to give rise to new diagnostic means, treatments, and tools. Over the past two decades, numerous studies that underscore the successful fusion of nanotechnology with novel medical applications have emerged. This has given rise to promising new therapies for a variety of diseases, especially cancer. It is becoming abundantly clear that nanotechnology has found a place in the medical field by providing new and more efficient ways to deliver treatment. Ophthalmology can also stand to benefit significantly from the advances in nanotechnology research. As it relates to the eye, research in the nanomedicine field has been particularly focused on developing various treatments to prevent and/or reduce corneal neovascularization among other ophthalmologic disorders. This review article aims to provide an overview of corneal neovascularization, currently available treatments, and where nanotechnology comes into play.

  12. Advanced Environment Friendly Nanotechnologies

    Science.gov (United States)

    Figovsky, O.; Beilin, D.; Blank, N.

    The economic, security, military and environmental implications of molecular manufacturing are extreme. Unfortunately, conflicting definitions of nanotechnology and blurry distinctions between significantly different fields have complicated the effort to understand those differences and to develop sensible, effective policy for each. The risks of today's nanoscale technologies cannot be treated the same as the risks of longer-term molecular manufacturing. It is a mistake to put them together in one basket for policy consideration — each is important to address, but they offer different problems and will require far different solutions. As used today, the term nanotechnology usually refers to a broad collection of mostly disconnected fields. Essentially, anything sufficiently small and interesting can be called nanotechnology. Much of it is harmless. For the rest, much of the harm is of familiar and limited quality. Molecular manufacturing, by contrast, will bring unfamiliar risks and new classes of problems. The advanced environment friendly nanotechnologies elaborated by Israel Company Polymate Ltd. — International Research Center are illustrated.

  13. Nanotechnology for membranes, filters and sieves

    NARCIS (Netherlands)

    Eijkel, Jan C.T.; van den Berg, Albert

    2006-01-01

    This mini-review is dedicated to the use of nanotechnology for membranes, filters and sieves. With the advent of nanotechnology researchers have acquired an unprecedented freedom to sculpt device geometry almost down to the molecular scale. Such structures can now replace the gels, membranes and

  14. Nanotechnology Innovations

    Science.gov (United States)

    Malroy, Eric

    2010-01-01

    Nanotechnology is rapidly affecting all engineering disciplines as new products and applications are being found and brought to market. This session will present an overview of nanotechnology and let you learn about the advances in the field and how it could impact you. Some of the areas touched upon will be nanomaterials with their multifunctional capabilities, nanotechnology impact on energy systems, nanobiotechnology including nanomedicine, and nanotechnology relevant to space systems with a focus on ECLSS. Also, some important advances related to thermal systems will be presented as well as future predictions on nanotechnology.

  15. NANOTECHNOLOGY WHITE PAPER | Science Inventory | US ...

    Science.gov (United States)

    Nanotechnology is the science of manipulating materials at the atomic and molecular level to develop new or enhanced materials and products. In December 2004, EPA’s Science Policy Council created a cross-Agency workgroup to identify and describe the issues EPA must address to ensure protection of human health and the environment as this new technology is developed. The draft white paper on nanotechnology is the product of the workgroup. The draft white paper describes the technology, and provides a discussion of the potential environmental benefits of nanotechnology and its applications that can foster sustainable use of resources. Risk management issues and the Agency’s statutory mandates are outlined, followed by an extensive discussion of risk assessment issues. The paper identifies research needs for both environmental applications and implications of nanotechnology and concludes with recommendations on next steps for addressing science policy issues and research needs. Supplemental information is provided in a number of appendices. The Agency will use the white paper to address research needs and risk assessment issues concerning nanotechnology. The draft white paper will undergo independent expert review, which will be conducted in the February time frame. All public comments received by January 31, 2006 will be submitted to the external review panel for their consideration. Comments received beyond that time will be considered by EPA. Follo

  16. Nanotechnology: Scientific challenges and societal benefits and risks

    Science.gov (United States)

    Romig, A. D.

    2004-12-01

    The field of nanotechnology is developing rapidly, as are its practical application in society. In this article, we give examples that demonstrate the enormous potential that exists for this new class of materials, and for devices with critical dimensions of less than 100 nm. We also identify some of the challenges that need to be faced in order to fully realize the practical benefits of nanotechnology, and discuss possible risks that may come with this new technology. In all cases, the unique advantage of nanotechnology can be traced back to nanoscale physical and chemical properties that are quite different from those encountered in more traditional microscopic (micro) or macroscopic (macro) materials and devices. Unique nanoscale properties and behaviors are already being used to increase energy efficiency, improve healthcare, and strengthen national security. However, while progress is rapid, many challenges remain. These include manufacturing at the nanoscale, integration of nanoscale materials and devices with more conventional technology, and predictive modeling that will allow nanotechnology to be engineered reliably into useful applications and products. Nanotechnology can be expected to have an increasing impact on human lives and society at large. As we strive to use nanotechnology to improve human life through better healthcare, cleaner environment, and improved national security, we must also work to detect and assess the negative impacts that nanotechnology science (or any new technology) might bring. We suggest that the conduct of should be allowed to proceed unimpeded, so that we can fully understand and appreciate the rules of nature at the nanometer scale. That said, scientific pursuits that involve self-replication in synthetic systems, encryption, defense technology, or the enhancement of human intelligence should be reviewed. The development of new technology from fundamental science and the process of deciding what new technology is to be

  17. Nanophotonics: The link between nanotechnology and photonics

    CSIR Research Space (South Africa)

    Sinha Ray, S

    2012-10-01

    Full Text Available and importance ? CSIR 2012 www.csir.co.za/nano Slide 2 ? Birth and definition of nanotechnology ? Benefits of nanotechnology ? The link between nanotechnology and photonics: Nanophotonics ? Importance and future of nanophotonics... ? Conclusions ? Our on-going research on nanophotonics ? CSIR 2006 www.csir.co.zaSlide 3 MISSION: The DST/CSIR NATIONAL CENTRE FOR NANOSTRUCTURED MATERIALS coordinates, facilitates, disseminates new knowledge, and expedites...

  18. Perceptions and attitude effects on nanotechnology acceptance: an exploratory framework

    International Nuclear Information System (INIS)

    Ganesh Pillai, Rajani; Bezbaruah, Achintya N.

    2017-01-01

    Existing literature in people’s attitude toward nanotechnology and acceptance of nanotechnology applications has generally investigated the impact of factors at the individual or context levels. While this vast body of research is very informative, a comprehensive understanding of how attitude toward nanotechnology are formed and factors influencing the acceptance of nanotechnology are elusive. This paper proposes an exploratory nanotechnology perception-attitude-acceptance framework (Nano-PAAF) to build a systematic understanding of the phenomenon. The framework proposes that perceptions of risks and benefits of nanotechnology are influenced by cognitive, affective, and sociocultural factors. The sociodemographic factors of consumers and contextual factors mitigate the influence of cognitive, affective, and sociocultural factors on the perception of risks and benefits. The perceived risks and benefits in turn influence people’s attitude toward nanotechnology, which then influences acceptance of nanotechnology products. This framework will need further development over time to incorporate emerging knowledge and is expected to be useful for researchers, decision and policy makers, industry, and business entities.

  19. Perceptions and attitude effects on nanotechnology acceptance: an exploratory framework

    Energy Technology Data Exchange (ETDEWEB)

    Ganesh Pillai, Rajani, E-mail: rajani.pillai@ndsu.edu [North Dakota State University, Department of Management and Marketing, College of Business (United States); Bezbaruah, Achintya N., E-mail: a.bezbaruah@ndsu.edu [North Dakota State University, Civil and Environmental Engineering (United States)

    2017-02-15

    Existing literature in people’s attitude toward nanotechnology and acceptance of nanotechnology applications has generally investigated the impact of factors at the individual or context levels. While this vast body of research is very informative, a comprehensive understanding of how attitude toward nanotechnology are formed and factors influencing the acceptance of nanotechnology are elusive. This paper proposes an exploratory nanotechnology perception-attitude-acceptance framework (Nano-PAAF) to build a systematic understanding of the phenomenon. The framework proposes that perceptions of risks and benefits of nanotechnology are influenced by cognitive, affective, and sociocultural factors. The sociodemographic factors of consumers and contextual factors mitigate the influence of cognitive, affective, and sociocultural factors on the perception of risks and benefits. The perceived risks and benefits in turn influence people’s attitude toward nanotechnology, which then influences acceptance of nanotechnology products. This framework will need further development over time to incorporate emerging knowledge and is expected to be useful for researchers, decision and policy makers, industry, and business entities.

  20. Nanotechnology and Ethics: The Role of Regulation Versus Self-Commitment in Shaping Researchers' Behavior

    NARCIS (Netherlands)

    Fink, M.; Harms, Rainer; Hatak, Isabella

    2012-01-01

    The governance of nanotechnology seeks to limit its risks, without constraining opportunities. The literature on the effectiveness of approaches to governance has neglected approaches that impact directly on the behavior of a researcher. We analyze the effectiveness of legal regulations versus

  1. Structural DNA Nanotechnology: Artificial Nanostructures for Biomedical Research.

    Science.gov (United States)

    Ke, Yonggang; Castro, Carlos; Choi, Jong Hyun

    2018-04-04

    Structural DNA nanotechnology utilizes synthetic or biologic DNA as designer molecules for the self-assembly of artificial nanostructures. The field is founded upon the specific interactions between DNA molecules, known as Watson-Crick base pairing. After decades of active pursuit, DNA has demonstrated unprecedented versatility in constructing artificial nanostructures with significant complexity and programmability. The nanostructures could be either static, with well-controlled physicochemical properties, or dynamic, with the ability to reconfigure upon external stimuli. Researchers have devoted considerable effort to exploring the usability of DNA nanostructures in biomedical research. We review the basic design methods for fabricating both static and dynamic DNA nanostructures, along with their biomedical applications in fields such as biosensing, bioimaging, and drug delivery. Expected final online publication date for the Annual Review of Biomedical Engineering Volume 20 is June 4, 2018. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.

  2. Nanotechnology, nanotoxicology, and neuroscience.

    Science.gov (United States)

    Suh, Won Hyuk; Suslick, Kenneth S; Stucky, Galen D; Suh, Yoo-Hun

    2009-02-01

    Nanotechnology, which deals with features as small as a 1 billionth of a meter, began to enter into mainstream physical sciences and engineering some 20 years ago. Recent applications of nanoscience include the use of nanoscale materials in electronics, catalysis, and biomedical research. Among these applications, strong interest has been shown to biological processes such as blood coagulation control and multimodal bioimaging, which has brought about a new and exciting research field called nanobiotechnology. Biotechnology, which itself also dates back approximately 30 years, involves the manipulation of macroscopic biological systems such as cells and mice in order to understand why and how molecular level mechanisms affect specific biological functions, e.g., the role of APP (amyloid precursor protein) in Alzheimer's disease (AD). This review aims (1) to introduce key concepts and materials from nanotechnology to a non-physical sciences community; (2) to introduce several state-of-the-art examples of current nanotechnology that were either constructed for use in biological systems or that can, in time, be utilized for biomedical research; (3) to provide recent excerpts in nanotoxicology and multifunctional nanoparticle systems (MFNPSs); and (4) to propose areas in neuroscience that may benefit from research at the interface of neurobiologically important systems and nanostructured materials.

  3. Proceedings of the international conference on nanoscience and nanotechnology: abstracts

    International Nuclear Information System (INIS)

    2011-01-01

    In recent years nanoscience has started to enter every field of science and technology. Recent research has shown that the development towards the nanotechnology domains are tremendous and without doubt, the major themes of the conference like nanomaterials - synthesis and characterization, nanotubes, nanowires and nanorods, bio-nanotechnology, nanotechnology for energy, quantum computing etc. will trigger the researchers and scientists and make them to do innovative work in the area of nanoscience and nanotechnology. Papers relevant to INIS are indexed separately

  4. Nanotechnology and Secondary Science Teacher's Self-Efficacy

    Science.gov (United States)

    Cox, Elena K.

    The recommendations of the United States President's Council of Advisors on Science and Technology and the multi-agency National Nanotechnology Initiative (NNI) identified the need to prepare the workforce and specialists in the field of nanotechnology in order for the United States to continue to compete in the global marketplace. There is a lack of research reported in recent literature on the readiness of secondary science teachers to introduce higher level sciences---specifically nanotechnology---in their classes. The central research question of this study examined secondary science teachers' beliefs about teaching nanotechnology comfortably, effectively, and successfully. Bandura's self-efficacy theory provided the conceptual framework for this phenomenological study. A data analysis rubric was used to identify themes and patterns that emerged from detailed descriptions during in-depth interviews with 15 secondary science teachers. The analysis revealed the shared, lived experiences of teachers and their beliefs about their effectiveness and comfort in teaching higher-level sciences, specifically nanotechnology. The results of the study indicated that, with rare exceptions, secondary science teachers do not feel comfortable or effective, nor do they believe they have adequate training to teach nanotechnology concepts to their students. These teachers believed they were not prepared or trained in incorporating these higher level science concepts in the curriculum. Secondary science teachers' self-efficacy and personal beliefs of effectiveness in teaching nanotechnology can be an important component in achieving a positive social change by helping to familiarize high school students with nanotechnology and how it can benefit society and the future of science.

  5. Nanotechnology impact on the automotive industry.

    Science.gov (United States)

    Wong, Kaufui V; Paddon, Patrick A

    2014-01-01

    Nanotechnology has been implemented widely in the automotive industry. This technology is particularly useful in coatings, fabrics, structural materials, fluids, lubricants, tires, and preliminary applications in smart glass/windows and video display systems. A special sub-class of improved materials, alternative energy, has also seen a boost from advances in nanotechnology, and continues to be an active research area. A correlation exists in the automotive industry between the areas with increased nanotechnology incorporation and those with increased profit margins via improvements and customer demands.

  6. Scientists' Ethical Obligations and Social Responsibility for Nanotechnology Research.

    Science.gov (United States)

    Corley, Elizabeth A; Kim, Youngjae; Scheufele, Dietram A

    2016-02-01

    Scientists' sense of social responsibility is particularly relevant for emerging technologies. Since a regulatory vacuum can sometimes occur in the early stages of these technologies, individual scientists' social responsibility might be one of the most significant checks on the risks and negative consequences of this scientific research. In this article, we analyze data from a 2011 mail survey of leading U.S. nanoscientists to explore their perceptions the regarding social and ethical responsibilities for their nanotechnology research. Our analyses show that leading U.S. nanoscientists express a moderate level of social responsibility about their research. Yet, they have a strong sense of ethical obligation to protect laboratory workers (in both universities and industry) from unhealthy exposure to nanomaterials. We also find that there are significant differences in scientists' sense of social and ethical responsibility depending on their demographic characteristics, job affiliation, attention to media content, risk perceptions and benefit perceptions. We conclude with some implications for future research.

  7. Nanotechnology applications in medicine and dentistry.

    Science.gov (United States)

    Gupta, Jyoti

    2011-05-01

    Nanotechnology, or nanoscience, refers to the research and development of an applied science at the atomic, molecular, or macromolecular levels (i.e. molecular engineering, manufacturing). The prefix "nano" is defined as a unit of measurement in which the characteristic dimension is one billionth of a unit. Although the nanoscale is small in size, its potential is vast. As nanotechnology expands in other fields, clinicians, scientists, and manufacturers are working to discover the uses and advances in biomedical sciences. Applications of nanotechnology in medical and dental fields have only approached the horizon with opportunities and possibilities for the future that can only be limited by our imagination. This paper provides an early glimpse of nanotechnology applications in medicine and dentistry to illustrate their potentially far-reaching impacts on clinical practice. It also narrates the safety issues concerning nanotechnology applications. © 2011 Blackwell Publishing Asia Pty Ltd.

  8. Responsible nanotechnology development

    Science.gov (United States)

    Forloni, Gianluigi

    2012-08-01

    Nanotechnologies have an increasing relevance in our life, numerous products already on the market are associated with this new technology. Although the chemical constituents of nanomaterials are often well known, the properties at the nano level are completely different from the bulk materials. Independently from the specific application the knowledge in this field involves different type of scientific competence. The accountability of the nanomaterial research imply the parallel development of innovative methodological approaches to assess and manage the risks associated to the exposure for humans and environmental to the nanomaterials for their entire life-cycle: production, application, use and waste discharge. The vast numbers of applications and the enormous amount of variables influencing the characteristics of the nanomaterials make particularly difficult the elaboration of appropriate nanotoxicological protocols. According to the official declarations exist an awareness of the public institutions in charge of the regulatory system, about the environmental, health and safety implications of nanotechnology, but the scientific information is insufficient to support appropriate mandatory rules. Public research programmers must play an important role in providing greater incentives and encouragement for nanotechnologies that support sustainable development to avoid endangering humanity's well being in the long-term. The existing imbalance in funds allocated to nanotech research needs to be corrected so that impact assessment and minimization and not only application come high in the agenda. Research funding should consider as a priority the elimination of knowledge gaps instead of promoting technological application only. With the creation of a public register collecting nanomaterials and new applications it is possible, starting from the information available, initiate a sustainable route, allowing the gradual development of a rational and informed approach to

  9. Nanotechnology Research Directions: IWGN Workshop Report. Vision for Nanotechnology R&D in the Next Decade

    National Research Council Canada - National Science Library

    Roco, M

    1999-01-01

    Nanotechnology is the creation and utilization of materials, devices, and systems through the control of matter on the nanometer-length scale, that is, at the level of atoms, molecules, and supramolecular structures...

  10. National nanotechnology partnership to protect workers

    Science.gov (United States)

    Howard, John; Murashov, Vladimir

    2009-10-01

    Nanotechnology is predicted to improve many aspects of human life. By 2015, it is estimated to represent 3.1 trillion in manufactured goods. Data is emerging that exposure to nanomaterials may pose a health risk to workers. If the economic promise of nanotechnology is to be achieved, ways need to be found to protect nanotechnology workers now. The Occupational Safety and Health Act of 1970 (OSHAct) gave the responsibility to protect workers to the Occupational Safety and Health Administration (OSHA) and the National Institute for Occupational Safety and Health (NIOSH) through research, standards adoption, and standards enforcement. Since 1980, adopting new occupational health standards has grown more complex. The increased complexity has greatly slowed efforts to adopt protective standards for toxic agents that are well-known to pose significant risks. The likelihood of rapidly adopting standards to protect workers from nanomaterials, whose risks are just emerging, seems even more unlikely. Use of the OSHAct's general duty clause to protect workers also seems uncertain at this time. In the interim, a national partnership led by NIOSH involving nanotech manufacturers and downstream users, workers, academic researchers, safety, and health practitioners is proposed. A National Nanotechnology Partnership would generate knowledge about the nature and the extent of worker risk, utilize that knowledge to develop risk control strategies to protect nanotechnology workers now, and provide an evidence base for NIOSH recommendations to OSHA for a nanotechnology program standard at a future date.

  11. How nanotechnology works in medicine

    OpenAIRE

    Arshpreet Kaur; Ms. Amandeep Kaur; Ms. Nitika Shahi

    2012-01-01

    Nanomedicine is the medical application of nanotechnology. Nanomedicine ranges from the medical applications of nanomaterials, to nanoelectronic biosensors, and even possible future applications of molecular nanotechnology. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials. Nanomedicine seeks to deliver a valuable set of research tools and clinically useful devices in the near future. The National Nanotechnol...

  12. EDITORIAL: Multitasking in nanotechnology Multitasking in nanotechnology

    Science.gov (United States)

    Demming, Anna

    2013-06-01

    O nanowires generate a piezoelectric signal that acts as both the power source and the gas sensing information as a result of the different screening effects different gases present on the piezoelectric charges. As they explain 'Our results can provoke a possible new direction for the development of next-generation gas sensors and will further expand the scope of self-powered nanosystems'. Over 50 years ago C P Snow delivered and subsequently published a lecture entitled 'The Two Cultures and the Scientific Revolution'. In it he lamented a gaping fissure separating the sciences and the humanities to the ultimate detriment of civilization and progress. The increasingly specialized activities in academia may suggest that if anything the gulf separating the two cultures may yet be increasing. It may seem that not only do 'natural scientists' speak a different language from 'literary intellectuals' but that biologists speak a different language from physicists, and so on down the increasingly fine dichotomies of academic endeavour. One of the exciting accompaniments to the rise in nanotechnology research has been a certain amount of liberation from these academic segregations. The breadth of fascinating properties found in a single system beg a strongly multidisciplinary approach and has attracted conversations not only between different sectors within the sciences, but with art as well [12]. The resulting cross-fertilisation between disciplines has already yielded an awesome cornucopia of multitasking devices, and no doubt the best is yet to come. References [1] Xue X, Nie Y, He B, Xing L, Zhang Y and Wang Z L 2013 Surface free-carrier screening effect on the output of ZnO nanowire nanogenerator and its potential as self-powered active gas sensors Nanotechnology 24 225501 [2] Torchilin V P 2006 Multifunctional nanocarriers Adv. Drug Deliv. Rev. 58 1532-55 [3] Weissleder R, Lee A S, Khaw B A, Shen T and Brady T J 1992 Antimyosin-labeled monocrystalline iron oxide allows detection

  13. Nanotechnology Education: Contemporary Content and Approaches

    Science.gov (United States)

    Ernst, Jeremy V.

    2009-01-01

    Nanotechnology is a multidisciplinary field of research and development identified as a major priority in the United States. Progress in science and engineering at the nanoscale is critical for national security, prosperity of the economy, and enhancement of the quality of life. It is anticipated that nanotechnology will be a major transitional…

  14. Nanotechnology in Corneal Neovascularization Therapy—A Review

    Science.gov (United States)

    Gonzalez, Lilian; Loza, Raymond J.; Han, Kyu-Yeon; Sunoqrot, Suhair; Cunningham, Christy; Purta, Patryk; Drake, James; Jain, Sandeep; Hong, Seungpyo

    2013-01-01

    Abstract Nanotechnology is an up-and-coming branch of science that studies and designs materials with at least one dimension sized from 1–100 nm. These nanomaterials have unique functions at the cellular, atomic, and molecular levels.1 The term “nanotechnology” was first coined in 1974.2 Since then, it has evolved dramatically and now consists of distinct and independent scientific fields. Nanotechnology is a highly studied topic of interest, as nanoparticles can be applied to various fields ranging from medicine and pharmacology, to chemistry and agriculture, to environmental science and consumer goods.3 The rapidly evolving field of nanomedicine incorporates nanotechnology with medical applications, seeking to give rise to new diagnostic means, treatments, and tools. Over the past two decades, numerous studies that underscore the successful fusion of nanotechnology with novel medical applications have emerged. This has given rise to promising new therapies for a variety of diseases, especially cancer. It is becoming abundantly clear that nanotechnology has found a place in the medical field by providing new and more efficient ways to deliver treatment. Ophthalmology can also stand to benefit significantly from the advances in nanotechnology research. As it relates to the eye, research in the nanomedicine field has been particularly focused on developing various treatments to prevent and/or reduce corneal neovascularization among other ophthalmologic disorders. This review article aims to provide an overview of corneal neovascularization, currently available treatments, and where nanotechnology comes into play. PMID:23425431

  15. Nanotechnology and bone healing.

    Science.gov (United States)

    Harvey, Edward J; Henderson, Janet E; Vengallatore, Srikar T

    2010-03-01

    Nanotechnology and its attendant techniques have yet to make a significant impact on the science of bone healing. However, the potential benefits are immediately obvious with the result that hundreds of researchers and firms are performing the basic research needed to mature this nascent, yet soon to be fruitful niche. Together with genomics and proteomics, and combined with tissue engineering, this is the new face of orthopaedic technology. The concepts that orthopaedic surgeons recognize are fabrication processes that have resulted in porous implant substrates as bone defect augmentation and medication-carrier devices. However, there are dozens of applications in orthopaedic traumatology and bone healing for nanometer-sized entities, structures, surfaces, and devices with characteristic lengths ranging from 10s of nanometers to a few micrometers. Examples include scaffolds, delivery mechanisms, controlled modification of surface topography and composition, and biomicroelectromechanical systems. We review the basic science, clinical implications, and early applications of the nanotechnology revolution and emphasize the rich possibilities that exist at the crossover region between micro- and nanotechnology for developing new treatments for bone healing.

  16. Artificial intelligence in nanotechnology.

    Science.gov (United States)

    Sacha, G M; Varona, P

    2013-11-15

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  17. Artificial intelligence in nanotechnology

    Science.gov (United States)

    Sacha, G. M.; Varona, P.

    2013-11-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines.

  18. Artificial intelligence in nanotechnology

    International Nuclear Information System (INIS)

    Sacha, G M; Varona, P

    2013-01-01

    During the last decade there has been increasing use of artificial intelligence tools in nanotechnology research. In this paper we review some of these efforts in the context of interpreting scanning probe microscopy, the study of biological nanosystems, the classification of material properties at the nanoscale, theoretical approaches and simulations in nanoscience, and generally in the design of nanodevices. Current trends and future perspectives in the development of nanocomputing hardware that can boost artificial-intelligence-based applications are also discussed. Convergence between artificial intelligence and nanotechnology can shape the path for many technological developments in the field of information sciences that will rely on new computer architectures and data representations, hybrid technologies that use biological entities and nanotechnological devices, bioengineering, neuroscience and a large variety of related disciplines. (topical review)

  19. Colloid and interface chemistry for nanotechnology

    CERN Document Server

    Kralchevsky, Peter; Ravera, Francesca

    2016-01-01

    Colloid and interface science dealt with nanoscale objects for nearly a century before the term nanotechnology was coined. An interdisciplinary field, it bridges the macroscopic world and the small world of atoms and molecules. Colloid and Interface Chemistry for Nanotechnology is a collection of manuscripts reflecting the activities of research teams that have been involved in the networking project Colloid and Interface Chemistry for Nanotechnology (2006-2011), Action D43, the European Science Foundation. The project was a part of the intergovernmental framework for Cooperation in Science and Technology (COST), allowing the coordination of nationally funded research across Europe. With contributions by leading experts, this book covers a wide range of topics. Chapters are grouped into three sections: "Nanoparticle Synthesis and Characterization," "New Experimental Tools and Interpretation," and "Nanocolloidal Dispersions and Interfaces." The topics covered belong to six basic research areas: (1) The synthes...

  20. Effect of Nanotechnology Instructions on Senior High School Students

    Science.gov (United States)

    Lu, Chow-Chin; Sung, Chia-Chi

    2011-01-01

    In this research, we cooperate with senior high school teachers to understand current nanotechnology model of senior high school nanotechnology curriculum in Taiwan. Then design senior high school nanotechnology (nano-tech) curriculum to teach 503 senior high school students. After teaching the nano-tech curriculum we use the "Nanotechnology…

  1. The Formation of Data on Nanotechnological Processes

    Directory of Open Access Journals (Sweden)

    Oleynik Olga Stepanovna

    2015-05-01

    Full Text Available The article presents the statistical monitoring of the main trends of nanotechnology development in Russia, as well as the review of the modern programs and documents devoted to urgent issues of nanotechnology development. The formation of system of statistical monitoring of nanotechnologies development in the Russian Federation includes the development of methodology and tools of statistical supervision over creation, commercialization, the use of nanotechnologies, and also the nanotechnological production. The authors carry out the analysis of the main directions and structure of co-funding of “The Program of nanotech industry development in the Russian Federation till 2015”. The sources of official statistical data on nanotechnologies in Russia are considered. The purpose of forming this essentially new direction of statistics consists in the creation of system of collecting, processing and submission of the regular, systematized and complex data which are adequately reflecting the state, the level of development and the prospects of nanotechnological sphere capacity which provide informational support to state policy and adoption of reasonable administrative decisions. The authors describe the system of statistical observations in the sphere of nanotechnologies. Today the statistics of nanotechnologies in Russia remains at the stage of formation and modernization according to the international standards, being supplemented every year with the new indicators which allow investigating different sides and tendencies of nanotech industry development. Nowadays the following aspects of the activity connected with nanotechnologies have already being studied by means of statistical methods: scientific research and developments; creation and use of nanotechnologies; demand for staff; production, including the innovative one.

  2. Selected proceedings of the FP7 International Summer School Nanotechnology: From Fundamental Research to Innovations

    CERN Document Server

    Yatsenko, Leonid; Brodin, Mikhaylo; Nanomaterials imaging techniques, surface studies, and applications

    2013-01-01

    This book presents cutting-edge research on a wide range of nanotechnology techniques and applications.  It features contributions from scientists who participated in the International Summer School “Nanotechnology: From Fundamental Research to Innovations” in Bukovel, Ukraine on August 26 – September 2, 2012 funded by the European Commission FP7 project Nanotwinning implemented by the Institute of Physics of National Academy of Sciences of Ukraine and partner institutions: University of Tartu (Estonia), European Profiles A.E. (Greece), University of Turin (Italy) and Université Pierre et Marie Curie (France).  Worldwide experts present the latest results on such key topics as microscopy of nanostructures; nanocomposites; nanostructured interfaces and surfaces; nanooptics; nanoplasmonics; and enhanced vibrational spectroscopy.  Imaging technique coverage ranges from atomic force microscopy and spectroscopy, multiphoton imagery, and laser diagnostics of nanomaterials and nanostructures, to resonance ...

  3. Nanomaterials and nanotechnologies in nuclear energy chemistry

    International Nuclear Information System (INIS)

    Shi, W.Q.; Yuan, L.Y.; Li, Z.J.; Lan, J.H.; Zhao, Y.L.; Chai, Z.F.

    2012-01-01

    With the rapid growth of human demands for nuclear energy and in response to the challenges of nuclear energy development, the world's major nuclear countries have started research and development work on advanced nuclear energy systems in which new materials and new technologies are considered to play important roles. Nanomaterials and nanotechnologies, which have gained extensive attention in recent years, have shown a wide range of application potentials in future nuclear energy system. In this review, the basic research progress in nanomaterials and nanotechnologies for advanced nuclear fuel fabrication, spent nuclear fuel reprocessing, nuclear waste disposal and nuclear environmental remediation is selectively highlighted, with the emphasis on Chinese research achievements. In addition, the challenges and opportunities of nanomaterials and nanotechnologies in future advanced nuclear energy system are also discussed. (orig.)

  4. Nanotechnology for social needs: contributions from Latin American research in the areas of health, energy and water

    International Nuclear Information System (INIS)

    Invernizzi, Noela; Foladori, Guillermo; Robles-Belmont, Eduardo; Záyago Lau, Edgar; Figueroa, Edgar Arteaga; Bagattolli, Carolina; Carrozza, Tomás Javier; Chiancone, Adriana; Urquijo, William

    2015-01-01

    This paper reviews, based on data from scientific publications and research groups, the state of the art of nanotechnology research applied to the areas of medicine, energy and water in Latin America. Such areas have been considered as particularly relevant in order to meet the social needs of the developing countries. It is shown that the countries in the region have incorporated these areas to their nanotechnology agendas and several countries have increasing research capacities. However, such capacities are concentrated in Brazil and Mexico, while the regional cooperation networks are still weak. Although the research topics tend to align with relevant social issues, there are still a number of challenges so as the results of such investigations may be effectively reflected in quality of life improvements; one of them is that many publications and research topics are on basic science, which makes it difficult to evaluate their potential application field

  5. Nanotechnology for social needs: contributions from Latin American research in the areas of health, energy and water

    Energy Technology Data Exchange (ETDEWEB)

    Invernizzi, Noela, E-mail: noela@ufpr.br; Foladori, Guillermo; Robles-Belmont, Eduardo; Záyago Lau, Edgar; Figueroa, Edgar Arteaga; Bagattolli, Carolina; Carrozza, Tomás Javier; Chiancone, Adriana; Urquijo, William [Universidade Federal do Paraná, Programa de Pós-Graduação em Políticas Públicas (Brazil)

    2015-05-15

    This paper reviews, based on data from scientific publications and research groups, the state of the art of nanotechnology research applied to the areas of medicine, energy and water in Latin America. Such areas have been considered as particularly relevant in order to meet the social needs of the developing countries. It is shown that the countries in the region have incorporated these areas to their nanotechnology agendas and several countries have increasing research capacities. However, such capacities are concentrated in Brazil and Mexico, while the regional cooperation networks are still weak. Although the research topics tend to align with relevant social issues, there are still a number of challenges so as the results of such investigations may be effectively reflected in quality of life improvements; one of them is that many publications and research topics are on basic science, which makes it difficult to evaluate their potential application field.

  6. Advances in Nanotechnology for Restorative Dentistry

    Science.gov (United States)

    Khurshid, Zohaib; Zafar, Muhammad; Qasim, Saad; Shahab, Sana; Naseem, Mustafa; AbuReqaiba, Ammar

    2015-01-01

    Rationalizing has become a new trend in the world of science and technology. Nanotechnology has ascended to become one of the most favorable technologies, and one which will change the application of materials in different fields. The quality of dental biomaterials has been improved by the emergence of nanotechnology. This technology manufactures materials with much better properties or by improving the properties of existing materials. The science of nanotechnology has become the most popular area of research, currently covering a broad range of applications in dentistry. This review describes the basic concept of nanomaterials, recent innovations in nanomaterials and their applications in restorative dentistry. Advances in nanotechnologies are paving the future of dentistry, and there are a plenty of hopes placed on nanomaterials in terms of improving the health care of dental patients. PMID:28787967

  7. Medical applications of nanotechnology.

    Science.gov (United States)

    Zdrojewicz, Zygmunt; Waracki, Mateusz; Bugaj, Bartosz; Pypno, Damian; Cabała, Krzysztof

    2015-10-29

    Nanotechnologies are new areas of research focusing on affecting matter at the atomic and molecular levels. It is beyond doubt that modern medicine can benefit greatly from it; thus nanomedicine has become one of the main branches of nanotechnological research. Currently it focuses on developing new methods of preventing, diagnosing and treating various diseases. Nanomaterials show very high efficiency in destroying cancer cells and are already undergoing clinical trials. The results are so promising that nanomaterials might become an alternative to traditional cancer therapy, mostly due to the fact that they allow cancer cells to be targeted specifically and enable detailed imaging of tissues, making planning further therapy much easier. Nanoscience might also be a source of the needed breakthrough in the fight against atherosclerosis, since nanostructures may be used in both preventing and increasing the stability of atherosclerotic lesions. One area of interest is creating nanomaterials that are not only efficient, but also well tolerated by the human body. Other potential applications of nanotechnology in medicine include: nanoadjuvants with immunomodulatory properties used to deliver vaccine antigens; the nano-knife, an almost non-invasive method of destroying cancer cells with high voltage electricity; and carbon nanotubes, which are already a popular way of repairing damaged tissues and might be used to regenerate nerves in the future. The aim of this article is to outline the potential uses of nanotechnology in medicine. Original articles and reviews have been used to present the new developments and directions of studies.

  8. Consumer attitudes towards nanotechnology in food products

    NARCIS (Netherlands)

    Steenis, Nigel D.; Fischer, Arnout R.H.

    2016-01-01

    Purpose – Nanotechnology is a technology that holds much promise for food production. It is, however not clear to what extent consumers will accept different types of nanotechnologies in food products. The purpose of this paper is to research consumer attitudes towards differing applications of

  9. Nanotechnology for chemical engineers

    CERN Document Server

    Salaheldeen Elnashaie, Said; Hashemipour Rafsanjani, Hassan

    2015-01-01

    The book describes the basic principles of transforming nano-technology into nano-engineering with a particular focus on chemical engineering fundamentals. This book provides vital information about differences between descriptive technology and quantitative engineering for students as well as working professionals in various fields of nanotechnology. Besides chemical engineering principles, the fundamentals of nanotechnology are also covered along with detailed explanation of several specific nanoscale processes from chemical engineering point of view. This information is presented in form of practical examples and case studies that help the engineers and researchers to integrate the processes which can meet the commercial production. It is worth mentioning here that, the main challenge in nanostructure and nanodevices production is nowadays related to the economic point of view. The uniqueness of this book is a balance between important insights into the synthetic methods of nano-structures and nanomaterial...

  10. Nanotechnology - A path forward for developing nations

    Science.gov (United States)

    Shah, S. Ismat; Powers, Thomas M.

    2015-10-01

    One of the major issues with technology in general, and nanotechnology in particular, is that it could exacerbate the divide between developed and developing nations. If the benefits of the research do not flow beyond the national and geographical borders of the traditional major bastions of R&D, these benefits will not be equally and globally available. The consequence is that the technological divide becomes wider at the expense of mutual reliance. As much as developed nations need to rethink the strategy and the policy to bring nanotechnology products to market with the goal of global prosperity, developing nations cannot afford to simply wait for the lead from the developed nations. In the spirit of collaboration and collegiality, we describe issues with the current practices in nanotechnology R&D in the developing world and suggest a path for nanotechnology research in energy, water and the environment that developing nations could follow in order to become contributors rather than simply consumers.

  11. Nanoparticles, nanotechnology and pulmonary nanotoxicology

    OpenAIRE

    Ferreira, AJ; Cemlyn-Jones, J; Robalo-Cordeiro, C

    2012-01-01

    The recently emergent field of Nanotechnology involves the production and use of structures at the nanoscale. Research at atomic, molecular or macromolecular levels, has led to new materials, systems and structures on a scale consisting of particles less than 100 nm and showing unique and unusual physical, chemical and biological properties, which has enabled new applications in diverse fields, creating a multimillion-dollar high-tech industry. Nanotechnologies have a wide variety of uses fro...

  12. The NCI Alliance for Nanotechnology in Cancer: achievement and path forward.

    Science.gov (United States)

    Ptak, Krzysztof; Farrell, Dorothy; Panaro, Nicholas J; Grodzinski, Piotr; Barker, Anna D

    2010-01-01

    Nanotechnology is a 'disruptive technology', which can lead to a generation of new diagnostic and therapeutic products, resulting in dramatically improved cancer outcomes. The National Cancer Institute (NCI) of National Institutes of Health explores innovative approaches to multidisciplinary research allowing for a convergence of molecular biology, oncology, physics, chemistry, and engineering and leading to the development of clinically worthy technological approaches. These initiatives include programmatic efforts to enable nanotechnology as a driver of advances in clinical oncology and cancer research, known collectively as the NCI Alliance for Nanotechnology in Cancer (ANC). Over the last 5 years, ANC has demonstrated that multidisciplinary approach catalyzes scientific developments and advances clinical translation in cancer nanotechnology. The research conducted by ANC members has improved diagnostic assays and imaging agents, leading to the development of point-of-care diagnostics, identification and validation of numerous biomarkers for novel diagnostic assays, and the development of multifunctional agents for imaging and therapy. Numerous nanotechnology-based technologies developed by ANC researchers are entering clinical trials. NCI has re-issued ANC program for next 5 years signaling that it continues to have high expectations for cancer nanotechnology's impact on clinical practice. The goals of the next phase will be to broaden access to cancer nanotechnology research through greater clinical translation and outreach to the patient and clinical communities and to support development of entirely new models of cancer care.

  13. A bibliometric analysis of the development of next generation active nanotechnologies

    International Nuclear Information System (INIS)

    Suominen, Arho; Li, Yin; Youtie, Jan; Shapira, Philip

    2016-01-01

    Delineating the emergence of nanotechnologies that offer new functionalities is an important element in an anticipatory approach to the governance of nanotechnology and its potential impacts. This paper examines the transition to next generation active nanotechnologies which incorporate functions that respond to the environment or systems concepts that combine devices and structures that are dynamic and which may change their states in use. We develop an approach to identifying these active nanotechnologies and then use bibliometric analysis to examine the extent of research papers and patents involving these concepts. We also examine references to environmental, health, and safety concepts in these papers, given that these next generation nanotechnologies are likely to have risk profiles that are different from those of first-generation passive nanomaterials. Our results show a steady growth overall in focus on active nanotechnologies in the research literature and in patents over the study period of 1990–2010. We also find an increase in consideration given to environmental, health, and safety topics. While gaps are highlighted in our understanding of research and innovation in active nanotechnologies, the results suggest that there is beginning to be a shift to active nanotechnologies, with the implication that governance processes need to be conscious of this shift and to prepare for it.

  14. A bibliometric analysis of the development of next generation active nanotechnologies

    Energy Technology Data Exchange (ETDEWEB)

    Suominen, Arho [VTT Technical Research Centre of Finland (Finland); Li, Yin; Youtie, Jan, E-mail: jan.youtie@innovate.gatech.edu; Shapira, Philip [Georgia Institute of Technology (United States)

    2016-09-15

    Delineating the emergence of nanotechnologies that offer new functionalities is an important element in an anticipatory approach to the governance of nanotechnology and its potential impacts. This paper examines the transition to next generation active nanotechnologies which incorporate functions that respond to the environment or systems concepts that combine devices and structures that are dynamic and which may change their states in use. We develop an approach to identifying these active nanotechnologies and then use bibliometric analysis to examine the extent of research papers and patents involving these concepts. We also examine references to environmental, health, and safety concepts in these papers, given that these next generation nanotechnologies are likely to have risk profiles that are different from those of first-generation passive nanomaterials. Our results show a steady growth overall in focus on active nanotechnologies in the research literature and in patents over the study period of 1990–2010. We also find an increase in consideration given to environmental, health, and safety topics. While gaps are highlighted in our understanding of research and innovation in active nanotechnologies, the results suggest that there is beginning to be a shift to active nanotechnologies, with the implication that governance processes need to be conscious of this shift and to prepare for it.

  15. Responsible nanotechnology development

    International Nuclear Information System (INIS)

    Forloni, Gianluigi

    2012-01-01

    Nanotechnologies have an increasing relevance in our life, numerous products already on the market are associated with this new technology. Although the chemical constituents of nanomaterials are often well known, the properties at the nano level are completely different from the bulk materials. Independently from the specific application the knowledge in this field involves different type of scientific competence. The accountability of the nanomaterial research imply the parallel development of innovative methodological approaches to assess and manage the risks associated to the exposure for humans and environmental to the nanomaterials for their entire life-cycle: production, application, use and waste discharge. The vast numbers of applications and the enormous amount of variables influencing the characteristics of the nanomaterials make particularly difficult the elaboration of appropriate nanotoxicological protocols. According to the official declarations exist an awareness of the public institutions in charge of the regulatory system, about the environmental, health and safety implications of nanotechnology, but the scientific information is insufficient to support appropriate mandatory rules. Public research programmers must play an important role in providing greater incentives and encouragement for nanotechnologies that support sustainable development to avoid endangering humanity’s well being in the long-term. The existing imbalance in funds allocated to nanotech research needs to be corrected so that impact assessment and minimization and not only application come high in the agenda. Research funding should consider as a priority the elimination of knowledge gaps instead of promoting technological application only. With the creation of a public register collecting nanomaterials and new applications it is possible, starting from the information available, initiate a sustainable route, allowing the gradual development of a rational and informed approach

  16. Potentials of nanotechnology application in forest protection

    Science.gov (United States)

    Yadong Qi; K. Lian; Q. Wu; Y. Li; M. Danzy; R. Menard; K.L. Chin; D. Collins; F. Oliveria; Kier Klepzig

    2013-01-01

    This joint research project formed by Southern University, Louisiana State University, and the USDA Forest Service focuses on applying nanotechnology in forest health and natural resource management. The targeted nanotechnology is derived from a new generation of renewable composite nano-material called Copper-Carbon Core-Shell Nanoparticles (CCCSNs), which have...

  17. Nanotechnology in bone tissue engineering.

    Science.gov (United States)

    Walmsley, Graham G; McArdle, Adrian; Tevlin, Ruth; Momeni, Arash; Atashroo, David; Hu, Michael S; Feroze, Abdullah H; Wong, Victor W; Lorenz, Peter H; Longaker, Michael T; Wan, Derrick C

    2015-07-01

    Nanotechnology represents a major frontier with potential to significantly advance the field of bone tissue engineering. Current limitations in regenerative strategies include impaired cellular proliferation and differentiation, insufficient mechanical strength of scaffolds, and inadequate production of extrinsic factors necessary for efficient osteogenesis. Here we review several major areas of research in nanotechnology with potential implications in bone regeneration: 1) nanoparticle-based methods for delivery of bioactive molecules, growth factors, and genetic material, 2) nanoparticle-mediated cell labeling and targeting, and 3) nano-based scaffold construction and modification to enhance physicochemical interactions, biocompatibility, mechanical stability, and cellular attachment/survival. As these technologies continue to evolve, ultimate translation to the clinical environment may allow for improved therapeutic outcomes in patients with large bone deficits and osteodegenerative diseases. Traditionally, the reconstruction of bony defects has relied on the use of bone grafts. With advances in nanotechnology, there has been significant development of synthetic biomaterials. In this article, the authors provided a comprehensive review on current research in nanoparticle-based therapies for bone tissue engineering, which should be useful reading for clinicians as well as researchers in this field. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Cancer Nanotechnology Plan

    Science.gov (United States)

    The Cancer Nanotechnology Plan serves as a strategic document to the NCI Alliance for Nanotechnology in Cancer as well as a guiding document to the cancer nanotechnology and oncology fields, as a whole.

  19. Consumer attitudes towards nanotechnologies applied to food production

    NARCIS (Netherlands)

    Frewer, L.J.; Gupta, N.; George, S.; Fischer, A.R.H.; Giles, E.L.; Coles, D.G.

    2014-01-01

    The literature on public perceptions of, and attitudes towards, nanotechnology used in the agrifood sector is reviewed. Research into consumer perceptions and attitudes has focused on general applications of nanotechnology, rather than within the agrifood sector. Perceptions of risk and benefit

  20. Applications of nanotechnology in cancer.

    Science.gov (United States)

    Johnson, Laura; Gunasekera, Ayanthi; Douek, Michael

    2010-04-01

    Modern cancer therapy is more individualized to specific cancer subtypes, in an attempt to treat those patients who are likely to obtain greater benefit and avoid treatment induced side effects in those who will not. Nanotechnology heralds an era whereby cancer could be diagnosed by a single agent, treated simultaneously while the diagnosis is being made, and its response to treatment monitored. Whilst nanotechnology is still mostly in the research stage, several applications are ready for translation from the bench to the bedside, in particular in the field of breast cancer. This is exciting new area of research where science fiction may become a reality.

  1. Using a Deliberative Exercise to Foster Public Engagement in Nanotechnology

    Science.gov (United States)

    Jones, Angela R.; Anderson, Ashley A.; Yeo, Sara K.; Greenberg, Andrew E.; Brossard, Dominique; Moore, John W.

    2014-01-01

    Nanotechnology is an emerging technology poised to benefit society both technically and socially, but as with any new advance, there is potential risk. This paper describes a novel deliberative exercise involving nanotechnology that engages the public in debate regarding the funding of nanotechnology-related research while also discussing…

  2. Medical applications of nanotechnology

    Directory of Open Access Journals (Sweden)

    Zygmunt Zdrojewicz

    2015-10-01

    Full Text Available Nanotechnologies are new areas of research focusing on affecting matter at the atomic and molecular levels. It is beyond doubt that modern medicine can benefit greatly from it; thus nanomedicine has become one of the main branches of nanotechnological research. Currently it focuses on developing new methods of preventing, diagnosing and treating various diseases. Nanomaterials show very high efficiency in destroying cancer cells and are already undergoing clinical trials. The results are so promising that nanomaterials might become an alternative to traditional cancer therapy, mostly due to the fact that they allow cancer cells to be targeted specifically and enable detailed imaging of tissues, making planning further therapy much easier. Nanoscience might also be a source of the needed breakthrough in the fight against atherosclerosis, since nanostructures may be used in both preventing and increasing the stability of atherosclerotic lesions. One area of interest is creating nanomaterials that are not only efficient, but also well tolerated by the human body. Other potential applications of nanotechnology in medicine include: nanoadjuvants with immunomodulatory properties used to deliver vaccine antigens; the nano-knife, an almost non-invasive method of destroying cancer cells with high voltage electricity; and carbon nanotubes, which are already a popular way of repairing damaged tissues and might be used to regenerate nerves in the future.The aim of this article is to outline the potential uses of nanotechnology in medicine. Original articles and reviews have been used to present the new developments and directions of studies.

  3. Institutional profile: the London Centre for Nanotechnology.

    Science.gov (United States)

    Weston, David; Bontoux, Thierry

    2009-12-01

    Located in the London neighborhoods of Bloomsbury and South Kensington, the London Centre for Nanotechnology is a UK-based multidisciplinary research center that operates at the forefront of science and technology. It is a joint venture between two of the world's leading institutions, UCL and Imperial College London, uniting their strong capabilities in the disciplines that underpin nanotechnology: engineering, the physical sciences and biomedicine. The London Centre for Nanotechnology has a unique operating model that accesses and focuses the combined skills of the Departments of Chemistry, Physics, Materials, Medicine, Electrical and Electronic Engineering, Mechanical Engineering, Chemical Engineering, Biochemical Engineering and Earth Sciences across the two universities. It aims to provide the nanoscience and nanotechnology required to solve major problems in healthcare, information processing, energy and the environment.

  4. Toward Sustainable Anticipatory Governance: Analyzing and Assessing Nanotechnology Innovation Processes

    Science.gov (United States)

    Foley, Rider Williams

    Cities around the globe struggle with socio-economic disparities, resource inefficiency, environmental contamination, and quality-of-life challenges. Technological innovation, as one prominent approach to problem solving, promises to address these challenges; yet, introducing new technologies, such as nanotechnology, into society and cities has often resulted in negative consequences. Recent research has conceptually linked anticipatory governance and sustainability science: to understand the role of technology in complex problems our societies face; to anticipate negative consequences of technological innovation; and to promote long-term oriented and responsible governance of technologies. This dissertation advances this link conceptually and empirically, focusing on nanotechnology and urban sustainability challenges. The guiding question for this dissertation research is: How can nanotechnology be innovated and governed in responsible ways and with sustainable outcomes? The dissertation: analyzes the nanotechnology innovation process from an actor- and activities-oriented perspective (Chapter 2); assesses this innovation process from a comprehensive perspective on sustainable governance (Chapter 3); constructs a small set of future scenarios to consider future implications of different nanotechnology governance models (Chapter 4); and appraises the amenability of sustainability problems to nanotechnological interventions (Chapter 5). The four studies are based on data collected through literature review, document analysis, participant observation, interviews, workshops, and walking audits, as part of process analysis, scenario construction, and technology assessment. Research was conducted in collaboration with representatives from industry, government agencies, and civic organizations. The empirical parts of the four studies focus on Metropolitan Phoenix. Findings suggest that: predefined mandates and economic goals dominate the nanotechnology innovation process

  5. The National Nanotechnology Initiative. Strategic Plan

    National Research Council Canada - National Science Library

    2007-01-01

    .... Realizing these possibilities requires continued research and accelerated innovation. The United States has been and is now the recognized leader in nanotechnology research and development (R&D...

  6. Nanotechnology and its applications in Veterinary and Animal Science

    Directory of Open Access Journals (Sweden)

    S. S. Patil

    Full Text Available Nanotechnology has a tremendous potential to revolutionize agriculture and livestock sector. It can provide new tools for molecular and cellular biology, biotechnology, veterinary physiology, animal genetics, reproduction etc. which will allow researchers to handle biological materials such as DNA, proteins or cells in minute quantities usually nano-liters or pico-liters. Nanotechnology tools like microfluidics, nanomaterials, bioanalytical nanosensors, etc. has the potential to solve many more puzzles related to animal health, production, reproduction and prevention and treatment of diseases. It is reasonable to presume that in the upcoming year’s nanotechnology research will reform the science and technology of the animal health and will help to boost up the livestock production. Nanotechnology will have a profound impact, but not in the immediate future as it is in the early stages of its development and needs to equip scientists, engineers and biologists to work at the cellular and molecular levels for significant benefits in healthcare and animal medicine. But It is reasonable to presume that in the upcoming year’s nanotechnology research will revolutionize animal health and help to boost up livestock production. [Vet World 2009; 2(12.000: 475-477

  7. The Grand Challenges of Nanotechnology

    International Nuclear Information System (INIS)

    Lane, Neal

    2001-01-01

    Amazing breakthroughs and advances continue to be made in nanoscale science and engineering and the rapidly emerging field of nanotechnology, including near-commercial applications in biomedicine, computing and environmental protection. The National Nanotechnology Initiative, begun by the Clinton Administration has placed nanoscale research on a new funding trajectory. But, many 'grand challenges' must be overcome, technical ones as well as those related to funding, science and technology workforce, and the need for stronger collaboration across discipline, organizations, government agencies and with other countries

  8. EDITORIAL: Ensuring sustainability with green nanotechnology Ensuring sustainability with green nanotechnology

    Science.gov (United States)

    Wong, Stanislaus; Karn, Barbara

    2012-07-01

    Nanotechnology offers immense promise for developing new technologies that are more sustainable than current technologies. All major industrial sectors have felt nanotechnology's impact, mainly from the incorporation of nanomaterials into their products. For example, nanotechnology has improved the design and performance of products in areas as diverse as electronics, medicine and medical devices, food and agriculture, cosmetics, chemicals, materials, coatings, energy, as well as many others. Moreover, the revenues from nanotechnology-enabled products are not trivial. For instance, Lux Research maintains that commercial sales in both Europe and the USA will attain revenues of over 1 trillion from nano-enabled products by 2015. The manufacturing of the nanomaterials for these products uses many processes equivalent to chemical manufacturing processes. As a result, manufacturing nanomaterials can produce either harmful pollutants or adverse environmental impacts similar to those from chemical manufacturing. Unlike the chemical industry, however, those same processes are not ingrained in the manufacturing of nanomaterials, and the opportunity exists at the initial design stage to purposely account for and mitigate out potentially harmful environmental impacts. While prevention has not been a priority in current industries, it can become a main concern for the new and future industries that manufacture nanomaterials on a bulk commercial scale. This is where green nanotechnology comes in. Green nanotechnology involves deliberate efforts aimed at developing meaningful and reasonable protocols for generating products and their associated production processes in a benign fashion. The goal is a conscious minimization of risks associated with the products of nanoscience. The green products of nanotechnology are those that are used in either direct or indirect environmental applications. Direct environmental applications provide benefits such as monitoring using nano

  9. Federal Aviation Administration's behavioral research program for defense against hijackings.

    Science.gov (United States)

    Dailey, J T; Pickrel, E W

    1975-04-01

    Behavioral research has been significant contributions to the government's successful program for defense against hijackers. Today's boarding gate defenses have a leading role in that program, but they were rejected until creation of the behavioral profile made selective search feasible. Metal detectors now make search of all travelers practical but with increasing involvement of boarding gate employees, so a behavioral program is used to monitor their performance. Experience shows that some persons have penetrated boarding gate defenses, so another requirement was in-flight defenses. Flightpersonnel had defeated some past hijackers, so a behavioral analysis of past hijackings was used to identify tactics for in-flight defense. These were incorporated into training programs and distributed to all U.S. airlines, many government organizations, and foreign carriers. Research continues for updating these and developing new courses for special needs, such as defense against gangs.

  10. Review on Early Technology Assessment of Nanotechnologies in oncology.

    NARCIS (Netherlands)

    Retel, Valesca; Retèl, Valesca P.; Hummel, J. Marjan; van Harten, Willem H.

    2009-01-01

    Nanotechnology is expected to play an increasingly important role in the diagnostics, prognostics, and management of targeted cancer treatments. While papers have described promising results for nanotechnology in experimental settings, the translation of fundamental research into clinical

  11. Defense Coastal/Estuarine Research Program (DCERP)

    Science.gov (United States)

    2007-09-19

    activities, splash points and Landing Craft Air Cushion (LCAC) operations) and non-military Base activities (e.g., sewage treatment , storm water runoff and...We will measure the metabolism of benthic microalgae, the water column, eelgrass, and any dominant macroalgae by developing series of photosynthesis...activities (storm water control and sewage treatment ). Defense Coastal/Estuarine Research Program (DCERP) Research Plan DCERP Research Plan 32 September 19

  12. 78 FR 60319 - Request for Information: NNI Nanotechnology for Sensors and Sensors for Nanotechnology Signature...

    Science.gov (United States)

    2013-10-01

    ... OFFICE OF SCIENCE AND TECHNOLOGY POLICY NATIONAL NANOTECHNOLOGY COORDINATION OFFICE Request for Information: NNI Nanotechnology for Sensors and Sensors for Nanotechnology Signature Initiative ACTION: Notice... the value of the National Nanotechnology Initiative (NNI) and of the Nanotechnology Signature...

  13. Nanovate commercializing disruptive nanotechnologies

    CERN Document Server

    Anis, Mohab; Sarhan, Wesam; Elsemary, Mona

    2017-01-01

    This book introduces readers from diverse backgrounds to the principles underlying nanotechnology, from devices to systems, while also describing in detail how businesses can use nanotechnology to redesign their products and processes, in order to have a clear edge over their competition. The authors include 75 case studies, describing in a highly-accessible manner, real nanotechnology innovations from 15 different industrial sectors. For each case study, the technology or business challenges faced by the company are highlighted, the type of nanotechnology adopted is defined, and the eventual economic and social impact is described. Introduces fundamentals of nanotechnology and its applications in a highly-accessible manner Includes 75 case studies of commercializing nanotechnology from 15 industrial sectors, including Automotive, Consumer Electronics, and Renewable Energy Enables nanotechnology experts to learn simple and important business concepts to facilitate the transfer of science to the market Introdu...

  14. Nanotechnology in medicine emerging applications

    CERN Document Server

    Koprowski, Gene

    2014-01-01

    This book will describe some of the most recent breakthroughs and promising developments in the search for improved diagnostics and therapies at the very small scales of living biological systems. While still very much a technology in the research and development stage, nanotechnology is already transforming today's medicine. This book, written by a general science author, provides a general overview of medical treatment potentials of nanotechnology in new, more effective drug delivery systems, in less invasive, ultra-small scale medical tools, and in new materials that can mimic or enhance natural materials like living tissue.

  15. The industrial relevance of nanotechnology and nanomaterial

    International Nuclear Information System (INIS)

    Porcari, Andrea; Mantovani, Elvio

    2015-01-01

    The article consists of four parts: a brief summary of the EU policy for nanotechnology and for Key Enabling Technologies; a general information framework, including definitions, fields of application, on production and market data; a general examination of the actors and of the application areas in Italy; conclusions. Nanotechnology, along with five other Key Enabling Technologies (Kets), have been identified as the engine for industrial growth in Europe within the Horizon 2020 program and other EU initiatives. These technologies promise to have a growing impact on materials, tools and processes through a great variety of industries important to the Italian economy and the European one. Nanotechnology is still largely a phase of research and development and other challenges are still to be solved for their full value. The Innovation and Research Manager are among those challenges, and are critical to their success [it

  16. The social responsibility of Nanoscience and Nanotechnology: an integral approach

    Science.gov (United States)

    Caballero-Díaz, Encarnación; Simonet, Bartolomé M.; Valcárcel, Miguel

    2013-04-01

    The concept of social responsibility provides the ideal framework for raising awareness and arousing reflection on the social and environmental impact of nanoparticles in the range of 1-100 nm generated from research activities in nanoscience and production-related activities in nanotechnology. The model proposed here relates the essential aspects of these concepts by connecting the classical sequence Research-Development-Innovation (R&D&I) to nanoscience and nanotechnology (N&N) and social responsibility (SR). This paper identifies the stakeholders of the process and provides an extensive definition of Social Responsibility and related concepts. In addition, it describes the internal and external connotations of the implementation of SR at research centers and nanotechnological industries, and discusses the social implications of nanoscience and nanotechnology with provision for subjects such as nanoethics, nanotoxicity, and nanomedicine, which have emerged from the widespread use of nanomaterials by today's society.

  17. The social responsibility of Nanoscience and Nanotechnology: an integral approach

    Energy Technology Data Exchange (ETDEWEB)

    Caballero-Diaz, Encarnacion; Simonet, Bartolome M.; Valcarcel, Miguel, E-mail: qa1vacam@uco.es [University of Cordoba, Department of Analytical Chemistry (Spain)

    2013-04-15

    The concept of social responsibility provides the ideal framework for raising awareness and arousing reflection on the social and environmental impact of nanoparticles in the range of 1-100 nm generated from research activities in nanoscience and production-related activities in nanotechnology. The model proposed here relates the essential aspects of these concepts by connecting the classical sequence Research-Development-Innovation (R and D and I) to nanoscience and nanotechnology (N and N) and social responsibility (SR). This paper identifies the stakeholders of the process and provides an extensive definition of Social Responsibility and related concepts. In addition, it describes the internal and external connotations of the implementation of SR at research centers and nanotechnological industries, and discusses the social implications of nanoscience and nanotechnology with provision for subjects such as nanoethics, nanotoxicity, and nanomedicine, which have emerged from the widespread use of nanomaterials by today's society.

  18. Monitoring nanotechnology using patent classifications: an overview and comparison of nanotechnology classification schemes

    Energy Technology Data Exchange (ETDEWEB)

    Jürgens, Björn, E-mail: bjurgens@agenciaidea.es [Agency of Innovation and Development of Andalusia, CITPIA PATLIB Centre (Spain); Herrero-Solana, Victor, E-mail: victorhs@ugr.es [University of Granada, SCImago-UGR (SEJ036) (Spain)

    2017-04-15

    Patents are an essential information source used to monitor, track, and analyze nanotechnology. When it comes to search nanotechnology-related patents, a keyword search is often incomplete and struggles to cover such an interdisciplinary discipline. Patent classification schemes can reveal far better results since they are assigned by experts who classify the patent documents according to their technology. In this paper, we present the most important classifications to search nanotechnology patents and analyze how nanotechnology is covered in the main patent classification systems used in search systems nowadays: the International Patent Classification (IPC), the United States Patent Classification (USPC), and the Cooperative Patent Classification (CPC). We conclude that nanotechnology has a significantly better patent coverage in the CPC since considerable more nanotechnology documents were retrieved than by using other classifications, and thus, recommend its use for all professionals involved in nanotechnology patent searches.

  19. Monitoring nanotechnology using patent classifications: an overview and comparison of nanotechnology classification schemes

    International Nuclear Information System (INIS)

    Jürgens, Björn; Herrero-Solana, Victor

    2017-01-01

    Patents are an essential information source used to monitor, track, and analyze nanotechnology. When it comes to search nanotechnology-related patents, a keyword search is often incomplete and struggles to cover such an interdisciplinary discipline. Patent classification schemes can reveal far better results since they are assigned by experts who classify the patent documents according to their technology. In this paper, we present the most important classifications to search nanotechnology patents and analyze how nanotechnology is covered in the main patent classification systems used in search systems nowadays: the International Patent Classification (IPC), the United States Patent Classification (USPC), and the Cooperative Patent Classification (CPC). We conclude that nanotechnology has a significantly better patent coverage in the CPC since considerable more nanotechnology documents were retrieved than by using other classifications, and thus, recommend its use for all professionals involved in nanotechnology patent searches.

  20. Lipid Nanotechnology

    Directory of Open Access Journals (Sweden)

    Gijsje Koenderink

    2013-02-01

    Full Text Available Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and diagnosis of pathologies at early stages. In these applications, nano-devices typically interface with the plasma membrane of cells. On the other hand, naturally occurring nanostructures in biology have been a source of inspiration for new nanotechnological designs and hybrid nanostructures made of biological and non-biological, organic and inorganic building blocks. Lipids, with their amphiphilicity, diversity of head and tail chemistry, and antifouling properties that block nonspecific binding to lipid-coated surfaces, provide a powerful toolbox for nanotechnology. This review discusses the progress in the emerging field of lipid nanotechnology.

  1. Nanotechnology in agri-food production: an overview

    Science.gov (United States)

    Sekhon, Bhupinder Singh

    2014-01-01

    arisen regarding the safety of nanomaterials, and researchers and companies will need to prove that these nanotechnologies do not have more of a negative impact on the environment. PMID:24966671

  2. Nanotechnology publications and citations by leading countries and blocs

    International Nuclear Information System (INIS)

    Youtie, Jan; Shapira, Philip; Porter, Alan L.

    2008-01-01

    This article examines the relative positions with respect to nanotechnology research publications of the European Union (EU), the United States (US), Japan, Germany, China, and three Asian Tiger nations (South Korea, Singapore, and Taiwan). The analysis uses a dataset of nanotechnology publication records for the time period 1990 through 2006 (part year) extracted from the Science Citation Index obtained through the Web of Science and was developed through a two-stage modularized Boolean approach. The results show that although the EU and the US have the highest number of nanotechnology publications, China and other Asian countries are increasing their publications rapidly, taking an ever-larger proportion of the total. When viewed in terms of the quality-based measure of citations, Asian nanotechnology researchers also show growth in recent years. However, by such citation measures, the US still maintains a strongly dominant position, followed by the EU.

  3. EDITORIAL: Nanotechnological selection Nanotechnological selection

    Science.gov (United States)

    Demming, Anna

    2013-01-01

    across the channel. The aim of achieving selectivity encompasses a huge range of fields in nanotechnology research, from sensing and medicine to nanoelectronics and self-assembly. As our understanding of how nanosystems behave deepens, so too does the hunger to improve our capabilities, allowing greater precision and control in manipulating these systems. Selectivity is far from trivial when shrinking to systems of nanoscale dimensions, but the range of opportunities it brings just keeps on growing. References [1] Gong X, Li J, Guo C, Xu K and Hui Y 2012 Molecular switch for tuning ions across nanopores by an external electric field Nanotechnology 24 025502 [2] Brannon-Peppas L and Blanchette J O 2004 Nanoparticle and targeted systems for cancer therapy Adv. Drug Deliv. Rev 56 1649-59 [3] Lukianova-Hleb E Y, Hanna E Y, Hafner J H and Lapotko D O 2010 Tunable plasmonic nanobubbles for cell theranostics Nanotechnology 21 085102 [4] Zhang T, Mubeen S, Myung N V and Deshusses M A 2008 Recent progress in carbon nanotube-based gas sensors Nanotechnology 19 332001 [5] Mangu R, Rajaputra S and Singh V P 2011 MWCNT-polymer composites as highly sensitive and selective room temperature gas sensors Nanotechnology 22 215502 [6]Meller A, Nivon L, Brandin E, Golovchenko J and Branton D 2000 Rapid nanopore discrimination between single polynucleotide molecules Proc. Natl Acad. Sci. 97 1079-84 [7] Asghar W, Ilyas A, Deshmukh R R, Sumitsawan S, Timmons R B and Iqbal S M 2011 Pulsed plasma polymerization for controlling shrinkage and surface composition of nanopores Nanotechnology 22 285304

  4. 2003 annual report. Information and health, defense, energy; Rapport annuel 2003. Information et sante, defense, energie

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This document is the 2003 annual report of the French atomic energy commission (CEA). It presents, first, the main highlights of the research activity of the CEA in three domains: the national defense (the Simulation program and the share of the technical means with the scientific community, the nuclear warheads, the nuclear propulsion, the cleansing of the Rhone valley facilities, the monitoring of treaties respect and the fight against proliferation and terrorism; the energy: the researches on nuclear wastes, the optimization of industrial nuclear systems, the innovations devoted to future nuclear systems, the new energy-related technologies, the basic energy research; the technologies devoted to information and health: micro- and nano-technologies, the software technologies, the basic research. It presents also the main research facilities opened to the community of scientific and industrial users, the training activities, partnerships, agreements and the improvements made in the general organization of the CEA: scientific evaluation, planning, optimization, manpower, international relations, communication, risk management, certification, radiation protection and environmental monitoring. The financial data are added at the end of the document. (J.S.)

  5. Nanotechnology and the public: Effectively communicating nanoscale science and engineering concepts

    International Nuclear Information System (INIS)

    Castellini, O. M.; Walejko, G. K.; Holladay, C. E.; Theim, T. J.; Zenner, G. M.; Crone, W. C.

    2007-01-01

    Researchers are faced with challenges when addressing the public on concepts and applications associated with nanotechnology. The goal of our work was to understand the public's knowledge of nanotechnology in order to identify appropriate starting points for dialog. Survey results showed that people lack true understanding of concepts associated with atoms and the size of the nanoscale regime. Such gaps in understanding lead to a disappointing lack of communication between researchers and the public concerning fundamental concepts in nanoscale science and engineering. Strategies are offered on how scientists should present their research when engaging the public on nanotechnology topics

  6. Some applications of nanotechnologies in stem cells research

    International Nuclear Information System (INIS)

    Belicchi, M.; Cancedda, R.; Cedola, A.; Fiori, F.; Gavina, M.; Giuliani, A.; Komlev, V.S.; Lagomarsino, S.; Mastrogiacomo, M.; Renghini, C.; Rustichelli, F.

    2009-01-01

    Stem cell based tissue engineering therapies involve the administration of ex vivo manipulated stem cell populations with the purpose of repairing and regenerating damaged or diseased tissue. Currently available methods of monitoring transplanted cells are quite limited. To monitor the outcomes of stem cell therapy longitudinally requires the development of non-destructive strategies that are capable of identifying the location, magnitude, and duration of cellular survival and fate. The recent development of imaging techniques offers great potential to address these critical issues by non-invasively tracking the fate of the transplanted cells. This review offers a focused presentation of some examples of the use of imaging techniques connected to the nanotechnological world in research areas related to stem cells. In particular investigations will be considered concerning tissue-engineered bone, treatment of intervertebral disc degeneration, treatment by human stem cells of muscular dystrophy of Duchenne in small animal models and the repair of spinal cord injuries.

  7. Some applications of nanotechnologies in stem cells research

    Energy Technology Data Exchange (ETDEWEB)

    Belicchi, M. [Fondazione IRCCS Ospedale Policlinico di Milano, Via Francesco Sforza, Milano 20122 (Italy); Cancedda, R. [Istituto Nazionale per la Ricerca sul Cancro and Dipartimento di Oncologia Biologia e Genetica - Universita di Genova, Largo R. Benzi 10, Genova 16132 (Italy); Cedola, A. [Istituto di Fotonica e Nanotecnologie - CNR, Via Cinto Romano 42, Roma 00156 (Italy); Fiori, F. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); INBB - Istituto Nazionale Biostrutture e Biosistemi (Italy); CNISM - Matec (Ancona) (Italy); Gavina, M. [Fondazione IRCCS Ospedale Policlinico di Milano, Via Francesco Sforza, Milano 20122 (Italy); Giuliani, A. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); CNISM - Matec (Ancona) (Italy); Komlev, V.S. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); Institute for Physical Chemistry of Ceramics, Russian Academy of Sciences, Ozernaya 48, 119361 Moscow (Russian Federation); Lagomarsino, S. [Istituto di Fotonica e Nanotecnologie - CNR, Via Cinto Romano 42, Roma 00156 (Italy); Mastrogiacomo, M. [Istituto Nazionale per la Ricerca sul Cancro and Dipartimento di Oncologia Biologia e Genetica - Universita di Genova, Largo R. Benzi 10, Genova 16132 (Italy); Renghini, C. [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); INBB - Istituto Nazionale Biostrutture e Biosistemi (Italy); CNISM - Matec (Ancona) (Italy); Rustichelli, F., E-mail: f.rustichelli@univpm.i [Dipartimento S.A.I.F.E.T. Sezione di Scienze Fisiche - Universita' Politecnica delle Marche, Via Brecce Bianche, Ancona 60131 (Italy); INBB - Istituto Nazionale Biostrutture e Biosistemi (Italy); CNISM - Matec (Ancona) (Italy)

    2009-12-15

    Stem cell based tissue engineering therapies involve the administration of ex vivo manipulated stem cell populations with the purpose of repairing and regenerating damaged or diseased tissue. Currently available methods of monitoring transplanted cells are quite limited. To monitor the outcomes of stem cell therapy longitudinally requires the development of non-destructive strategies that are capable of identifying the location, magnitude, and duration of cellular survival and fate. The recent development of imaging techniques offers great potential to address these critical issues by non-invasively tracking the fate of the transplanted cells. This review offers a focused presentation of some examples of the use of imaging techniques connected to the nanotechnological world in research areas related to stem cells. In particular investigations will be considered concerning tissue-engineered bone, treatment of intervertebral disc degeneration, treatment by human stem cells of muscular dystrophy of Duchenne in small animal models and the repair of spinal cord injuries.

  8. Nanotechnology and nanomedicine: going small means aiming big.

    Science.gov (United States)

    Teli, Mahesh Kumar; Mutalik, Srinivas; Rajanikant, G K

    2010-06-01

    Nanotechnology is an emerging branch of science for designing tools and devices of size 1 to 100 nm with specific function at the cellular, atomic and molecular levels. The concept of employing nanotechnology in biomedical research and clinical practice is best known as nanomedicine. Nanomedicine is an upcoming field that could potentially make a major impact to human health. Nanomaterials are increasingly used in diagnostics, imaging and targeted drug delivery. Nanotechnology will assist the integration of diagnostics/imaging with therapeutics and facilitates the development of personalized medicine, i.e. prescription of specific medications best suited for an individual. This review provides an integrated overview of application of nanotechnology based molecular diagnostics and drug delivery in the development of nanomedicine and ultimately personalized medicine. Finally, we identify critical gaps in our knowledge of nanoparticle toxicity and how these gaps need to be evaluated to enable nanotechnology to transit safely from bench to bedside.

  9. Nanotechnology in agri-food production: an overview

    Directory of Open Access Journals (Sweden)

    Sekhon BS

    2014-05-01

    one of the keys to influencing consumer acceptance. On the basis of only a handful of toxicological studies, concerns have arisen regarding the safety of nanomaterials, and researchers and companies will need to prove that these nanotechnologies do not have more of a negative impact on the environment.Keywords: agriculture, food, nanotechnology, nanoparticle, nanopesticides, nanosensors, smart delivery systems

  10. 75 FR 24972 - Notice Pursuant to the National Cooperative Research and Production Act of 1993-Nanotechnology...

    Science.gov (United States)

    2010-05-06

    ... Production Act of 1993--Nanotechnology Enterprise Consortium Notice is hereby given that, on April 1, 2010... identities of the parties to the venture are: Nanotechnology Enterprise, Inc. Columbia, MO; The Boeing..., and government and private funders to collaborate on applying nanotechnology to create innovation...

  11. [New sector of employment--a review of data on nanoproduction, research and development in the field of nanotechnology in Poland].

    Science.gov (United States)

    Popławska, Magdalena; Mikołajczyk, Urszula; Bujak-Pietrek, Stella

    2015-01-01

    Nanotechnology is currently one of the fastest developing areas of science, focusing on the design, manufacture and use of nanomaterials. The term "nanomaterial" means any product made of nanometer-size (1-100 nm) structures. Due to the small size and unique properties of the applied nanomaterials there is a growing interest in their aplication in various fields of industry and science. In Poland, there are very few companies that carry on nanotechnology activities. Research institutes, universities and research units of the Polish Academy of Sciences predominate in these activities. This work is available in Open Access model and licensed under a CC BY-NC 3.0 PL license.

  12. DNA nanotechnology and fluorescence applications.

    Science.gov (United States)

    Schlichthaerle, Thomas; Strauss, Maximilian T; Schueder, Florian; Woehrstein, Johannes B; Jungmann, Ralf

    2016-06-01

    Structural DNA nanotechnology allow researchers to use the unique molecular recognition properties of DNA strands to construct nanoscale objects with almost arbitrary complexity in two and three dimensions. Abstracted as molecular breadboards, DNA nanostructures enable nanometer-precise placement of guest molecules such as proteins, fluorophores, or nanoparticles. These assemblies can be used to study biological phenomena with unprecedented control over number, spacing, and molecular identity. Here, we give a general introduction to structural DNA nanotechnology and more specifically discuss applications of DNA nanostructures in the field of fluorescence and plasmonics. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. 75 FR 75707 - Request for Public Comment on the Draft National Nanotechnology Initiative Strategy for...

    Science.gov (United States)

    2010-12-06

    ... Nanotechnology Initiative Strategy for Nanotechnology-Related Environmental, Health, and Safety Research AGENCY..., Engineering, and Technology Subcommittee of the National Science and Technology Council request comments from the public regarding the draft National Nanotechnology Initiative (NNI) Strategy for Nanotechnology...

  14. 76 FR 2428 - Request for Public Comment on the Draft National Nanotechnology Initiative Strategy for...

    Science.gov (United States)

    2011-01-13

    ... Nanotechnology Initiative Strategy for Nanotechnology-Related Environmental, Health, and Safety Research AGENCY..., Engineering, and Technology Subcommittee of the National Science and Technology Council request comments from the public regarding the draft National Nanotechnology Initiative (NNI) Strategy for Nanotechnology...

  15. Perceived risks and perceived benefits of different nanotechnology foods and nanotechnology food packaging.

    Science.gov (United States)

    Siegrist, Michael; Stampfli, Nathalie; Kastenholz, Hans; Keller, Carmen

    2008-09-01

    Nanotechnology has the potential to generate new food products and new food packaging. In a mail survey in the German speaking part of Switzerland, lay people's (N=337) perceptions of 19 nanotechnology applications were examined. The goal was to identify food applications that are more likely and food applications that are less likely to be accepted by the public. The psychometric paradigm was employed, and applications were described in short scenarios. Results suggest that affect and perceived control are important factors influencing risk and benefit perception. Nanotechnology food packaging was assessed as less problematic than nanotechnology foods. Analyses of individual data showed that the importance of naturalness in food products and trust were significant factors influencing the perceived risk and the perceived benefit of nanotechnology foods and nanotechnology food packaging.

  16. Animal and non-animal experiments in nanotechnology - the results of a critical literature survey.

    Science.gov (United States)

    Sauer, Ursula G

    2009-01-01

    A literature survey funded by the Foundation Animalfree Research was performed to obtain an overview on animal experiments in nanotechnology. Scientific articles from Germany, France, the United Kingdom, Italy, the Netherlands and Switzerland published between 2004 and 2007 were collected. A total of 164 articles was retrieved covering in vivo nanotechnological research. The majority of animal experiments were conducted in "nanomedicine", i.e. nanotechnology in the health care area, to study targeted drug, vaccine or gene delivery. Further areas of research relate to nanotechnology-based imaging technologies, the toxicity of nanomaterials, tissue engineering for regenerative treatments, and magnetic tumour thermotherapy. Many experiments were classified as moderately and even severely distressful to the animals. Due to the significance of the scientific topics pursued, the possible scientific benefit of the research depicted in the articles is also assigned to be moderate to high. Nevertheless, it has to be asked whether such animal experiments are truly the only means to answer the scientific questions addressed in nanotechnology. An overview on non-animal test methods used in nanotechnological research revealed a broad spectrum of methodologies applied in a broad spectrum of scientific areas, including those for which animal experiments are being performed. Explicit incentives to avoid animal experiments in nanotechnology currently can only be found in the area of nanotoxicology, but not in the area of nanomedicine. From the point of view of animal welfare, not least because of the new technologies that arise due to nanotechnology, it is time for a paradigm change both in fundamental and applied biomedical research to found research strategies on non-animal test methods.

  17. Toward the responsible innovation with nanotechnology in Japan: our scope

    International Nuclear Information System (INIS)

    Ishizu, Saori; Sekiya, Mizuki; Ishibashi, Ken-ichi; Negami, Yumi; Ata, Masafumi

    2008-01-01

    The societal impacts of nanotechnology have attracted growing attention in the United States and Europe in recent years. In Japan, the National Institute of Advanced Industrial Science and Technology (Technology Information Department) has played a central role in promoting discussions on this topic by collecting information from Japan and overseas, creating a network of the interested parties, and providing a forum for discussion. This paper presents a summary of recent activities in Japan relating to the societal impacts of nanotechnology, fro the launch of the 'Nanotechnology and Society' open forum (August 2004) until the 'Nanotechnology Debate' discussion forum (February 2007), and outlines the policy recommendations that came out of a project entitled 'Research on Facilitation of Public Acceptance of Nanotechnology' (March 2006)

  18. Nanotechnology in electrocatalysis for energy

    CERN Document Server

    Lavacchi, Alessandro; Vizza, Francesco

    2014-01-01

    Accessible to researchers in a wide range of disciplines, this book examines the energy applications of using nanotechnology in electrocatalysis. It covers their use in numerous contexts including low-temperature fuel cells and electrochemical valorization.

  19. Consumer acceptance of and willingness to pay for food nanotechnology: a systematic review

    International Nuclear Information System (INIS)

    Giles, Emma L.; Kuznesof, Sharron; Clark, Beth; Hubbard, Carmen; Frewer, Lynn J.

    2015-01-01

    Consumer’s attitudes to, and acceptance of, emerging technologies and their applications, are important determinants of their successful implementation and commercialisation. Understanding the range of socio-psychological, cultural and affective factors which may influence consumer responses to applications of nanotechnology will help “fine-tune” the development of consumer products in line with their expectations and preferences. This is particularly true of applications in the food area, where consumer concerns about technologies applied to food production may be elevated. This research applied systematic review methodology to synthesise current knowledge regarding societal acceptance or rejection of nanotechnology applied to agri-food production. The objective was to aggregate knowledge derived from different research areas to gain an overall picture of consumer responses to nanotechnology applied to food production. Relevant electronic databases of peer-reviewed literature were searched from the earliest date available, for peer-reviewed papers which reported primary empirical data on consumer and expert acceptance of agri-food nanotechnology, using a formal systematic review protocol. Inclusion criteria for papers to be included in the review were: empirical peer-reviewed papers written in English; a population sample of adults aged 18 years and over used in the research; a research focus on consumer and expert acceptance of agri-food nanotechnology; and research on attitudes towards, and willingness to pay for, different applications of agri-food nanotechnology. Two researchers independently appraised the papers using NVivo 10 QSR software. Studies examining consumer and expert acceptance were thematically analysed, and key information was collated. The results were synthesised in order to identify trends in information relevant to consumer acceptance of nanotechnology applied to food production. Eight key themes were identified from the 32 papers

  20. Consumer acceptance of and willingness to pay for food nanotechnology: a systematic review.

    Science.gov (United States)

    Giles, Emma L; Kuznesof, Sharron; Clark, Beth; Hubbard, Carmen; Frewer, Lynn J

    Consumer's attitudes to, and acceptance of, emerging technologies and their applications, are important determinants of their successful implementation and commercialisation. Understanding the range of socio-psychological, cultural and affective factors which may influence consumer responses to applications of nanotechnology will help "fine-tune" the development of consumer products in line with their expectations and preferences. This is particularly true of applications in the food area, where consumer concerns about technologies applied to food production may be elevated. This research applied systematic review methodology to synthesise current knowledge regarding societal acceptance or rejection of nanotechnology applied to agri-food production. The objective was to aggregate knowledge derived from different research areas to gain an overall picture of consumer responses to nanotechnology applied to food production. Relevant electronic databases of peer-reviewed literature were searched from the earliest date available, for peer-reviewed papers which reported primary empirical data on consumer and expert acceptance of agri-food nanotechnology, using a formal systematic review protocol. Inclusion criteria for papers to be included in the review were: empirical peer-reviewed papers written in English; a population sample of adults aged 18 years and over used in the research; a research focus on consumer and expert acceptance of agri-food nanotechnology; and research on attitudes towards, and willingness to pay for, different applications of agri-food nanotechnology. Two researchers independently appraised the papers using NVivo 10 QSR software. Studies examining consumer and expert acceptance were thematically analysed, and key information was collated. The results were synthesised in order to identify trends in information relevant to consumer acceptance of nanotechnology applied to food production. Eight key themes were identified from the 32 papers which were

  1. Consumer acceptance of and willingness to pay for food nanotechnology: a systematic review

    Energy Technology Data Exchange (ETDEWEB)

    Giles, Emma L., E-mail: e.giles@tees.ac.uk [Teesside University, Health and Social Care Institute (United Kingdom); Kuznesof, Sharron; Clark, Beth; Hubbard, Carmen; Frewer, Lynn J. [Newcastle University, School of Agriculture, Food and Rural Development (United Kingdom)

    2015-12-15

    Consumer’s attitudes to, and acceptance of, emerging technologies and their applications, are important determinants of their successful implementation and commercialisation. Understanding the range of socio-psychological, cultural and affective factors which may influence consumer responses to applications of nanotechnology will help “fine-tune” the development of consumer products in line with their expectations and preferences. This is particularly true of applications in the food area, where consumer concerns about technologies applied to food production may be elevated. This research applied systematic review methodology to synthesise current knowledge regarding societal acceptance or rejection of nanotechnology applied to agri-food production. The objective was to aggregate knowledge derived from different research areas to gain an overall picture of consumer responses to nanotechnology applied to food production. Relevant electronic databases of peer-reviewed literature were searched from the earliest date available, for peer-reviewed papers which reported primary empirical data on consumer and expert acceptance of agri-food nanotechnology, using a formal systematic review protocol. Inclusion criteria for papers to be included in the review were: empirical peer-reviewed papers written in English; a population sample of adults aged 18 years and over used in the research; a research focus on consumer and expert acceptance of agri-food nanotechnology; and research on attitudes towards, and willingness to pay for, different applications of agri-food nanotechnology. Two researchers independently appraised the papers using NVivo 10 QSR software. Studies examining consumer and expert acceptance were thematically analysed, and key information was collated. The results were synthesised in order to identify trends in information relevant to consumer acceptance of nanotechnology applied to food production. Eight key themes were identified from the 32 papers

  2. Consumer acceptance of and willingness to pay for food nanotechnology: a systematic review

    Science.gov (United States)

    Giles, Emma L.; Kuznesof, Sharron; Clark, Beth; Hubbard, Carmen; Frewer, Lynn J.

    2015-12-01

    Consumer's attitudes to, and acceptance of, emerging technologies and their applications, are important determinants of their successful implementation and commercialisation. Understanding the range of socio-psychological, cultural and affective factors which may influence consumer responses to applications of nanotechnology will help "fine-tune" the development of consumer products in line with their expectations and preferences. This is particularly true of applications in the food area, where consumer concerns about technologies applied to food production may be elevated. This research applied systematic review methodology to synthesise current knowledge regarding societal acceptance or rejection of nanotechnology applied to agri-food production. The objective was to aggregate knowledge derived from different research areas to gain an overall picture of consumer responses to nanotechnology applied to food production. Relevant electronic databases of peer-reviewed literature were searched from the earliest date available, for peer-reviewed papers which reported primary empirical data on consumer and expert acceptance of agri-food nanotechnology, using a formal systematic review protocol. Inclusion criteria for papers to be included in the review were: empirical peer-reviewed papers written in English; a population sample of adults aged 18 years and over used in the research; a research focus on consumer and expert acceptance of agri-food nanotechnology; and research on attitudes towards, and willingness to pay for, different applications of agri-food nanotechnology. Two researchers independently appraised the papers using NVivo 10 QSR software. Studies examining consumer and expert acceptance were thematically analysed, and key information was collated. The results were synthesised in order to identify trends in information relevant to consumer acceptance of nanotechnology applied to food production. Eight key themes were identified from the 32 papers which were

  3. Situation in France: Ethical Reflection on Research in Nanoscience and Nanotechnology

    Science.gov (United States)

    Bordé, Jacques

    By the end of the 1990s, the possible impacts of nanotechnologies on humans and the environment had already come under the spotlight. Owing to the tremendous promise of the development programmes for these technologies, it seemed important to reflect upon a responsible way of implementing them. Even in 1989, as part of the MIT course on Law, Technology and Public Policy, David Forrest spoke in particular on the subject of regulating nanotechnology development, and in February 1999 a seminar was organised in California to devise guidelines on how to control the new risks associated with these recent technological possibilities [1].

  4. The nanotech R&D situation in Japan and ethics of nanotechnology.

    Science.gov (United States)

    Kato, Yutaka

    2011-01-01

    The aim of this paper is to introduce some characteristics of the historical as well as current situation of nanotech research and development in Japan in particular including regulations, and to discuss how ethical issues of nanotechnology should be addressed or how the ethics of nanotechnology should be constructed to fit the situation. The first part will center around the strength and weakness of Japan's nanotech R&D (research and development) and new circumstances which nanotechnology has prompted in Japan and alongside which nanotechnology has arrived (especially interdisciplinarity). The following prescriptive argument will, based on the descriptive account, question how to address ethical issues of nanotechnology, taking into consideration the nature of nanotech R&D, namely continuity, uniqueness, international dimension and political intervention, citing the example of the pharmaceutical industry. I will argue that international cooperation in the form of mutual reference to, replication of and the integration of guidelines and regulations, can enhance cost-effectiveness to ensure the comprehensiveness of regulatory measures.

  5. Cancer nanotechnology: emerging role of gold nanoconjugates.

    Science.gov (United States)

    Kudgus, Rachel A; Bhattacharya, Resham; Mukherjee, Priyabrata

    2011-12-01

    Over the last few decades, the study of nanotechnology has grown exponentially. Nanotechnology bridges science, engineering and technology; it continues to expand in definition as well as practice. One sub-set of nanotechnology is bionanotechnology, this will be the focus of this review. Currently, bionanotechnology is being studied and exploited for utility within medicinal imaging, diagnosis and therapy in regard to cancer. Cancer is a world-wide health problem and the implication rate as well as the death rate increase year to year. However promising work is being done with gold nanoparticles for detection, diagnosis and targeted drug delivery therapy. Gold nanoparticles can be synthesized in various shapes and sizes, which directly correlates to the color; they can also be manipulated to carry various antibody, protein, plasmid, DNA or small molecule drug. Herein we summarize some of the very influential research being done in the field of Cancer Nanotechnology with an emphasis on gold nanoparticles.

  6. Nanotechnologies for sustainable construction

    NARCIS (Netherlands)

    Lazaro Garcia, A.; Yu, Q.; Brouwers, H.J.H.; Khatib, J.M.

    2016-01-01

    Nanotechnology has been gaining popularity among the industrial sector and researchers in the last decades. The number of products containing nanomaterials that enter the market has also increased rapidly, and this trend is going to be even more pronounced in the coming years. The total value of

  7. 48 CFR 225.7016 - Restriction on Ballistic Missile Defense research, development, test, and evaluation.

    Science.gov (United States)

    2010-10-01

    ... Missile Defense research, development, test, and evaluation. 225.7016 Section 225.7016 Federal Acquisition Regulations System DEFENSE ACQUISITION REGULATIONS SYSTEM, DEPARTMENT OF DEFENSE SOCIOECONOMIC PROGRAMS... Acquisition 225.7016 Restriction on Ballistic Missile Defense research, development, test, and evaluation. [68...

  8. Nanotechnology and health: From boundary object to bodily intervention

    Science.gov (United States)

    Perry, Karen-Marie Elah

    Nanotechnology is commonly understood to involve the manipulation of individual molecules and atoms. Increasingly, healthcare practices in British Columbia are articulated through the nanotechnological in relationship to the body. The hope for better treatment and diagnosis of disease is located in the specificity of nanotechnological applications -- the finely tuned targeting of cells and treatments geared towards individual molecular profiles. However, this same specificity also alarms regulators, activists and consumer groups in the potential for increased toxicity. Drawing from participant observation, ethnographic interviews, and theoretical orientations adopted by Susan Leigh Star and Jeffrey Bowker, this thesis explores three questions: 1) How can nanotechnology inhabit multiple contexts at once and have both local and shared meaning; 2) How can people who live in one community draw their meanings from people and objects situated there and communicate with those inhabiting another; and 3) What moral and political consequences attend each of these questions? Keywords: nanotechnology; medical anthropology; anthropology of the body; science studies; critical theory; feminist theory; ethnography; qualitative research; biomedicine; nanotoxicology; bionanotechnology; British Columbia; Canada; nanomedicine; medical nanotechnology.

  9. EDITORIAL: Nanotechnology impact on sensors Nanotechnology impact on sensors

    Science.gov (United States)

    Brugger, Jürgen

    2009-10-01

    A sensor is a device that responds to a stimulus by generating a functional output induced by a change in some intrinsic properties. We are surrounded by sensors and sensing networks that monitor a multitude of parameters in view of enhancing our safety and quality of life. Sensors assist us in health care and diagnostics, they monitor our environment, our aeroplanes and automobiles, our mobile phones, game consoles and watches, and last but not least, many of our human body functions. Modern sensing systems have greatly benefited in recent decades from advances in microelectronics and microengineering, mainly in view of making sensors smaller, cheaper, more sensitive, more selective, and with a better signal-to-noise ratio, following classical scaling rules. So how about nanotechnology-enabled sensing? Nanoscale features have a great impact on many (though not all) sensing systems, in particular where the surface-to-volume ratio plays a fundamental role, such as in certain chemical and gas sensors. The high surface-to-volume ratios of nanoporous and nanostructured materials have led to their implementation in sensing systems since sensing research first began to engage with the nanotechnology. The surface plasmon resonances of nanostructures have also enriched the scope for developing novel sensing devices. On the other hand, sensors where bulk properties dominate, such as inertial sensors, are less likely to benefit from extreme scaling. Advances in thin film techniques and chemical synthesis have allowed material properties to be tailored to sensing requirements for enhanced performance. These bottom-up fabrication techniques enable parallel fabrication of ordered nanostructures, often in domain-like areas with molecular precision. At the same time the progress in top-down methods such as scanning probe lithography, nanoimprint lithography, soft-lithography and stencil lithography have also facilitated research into sensing and actuating nanotechnology. Although

  10. Nanotechnology for sustainability: what does nanotechnology offer to address complex sustainability problems?

    Energy Technology Data Exchange (ETDEWEB)

    Wiek, Arnim, E-mail: arnim.wiek@asu.edu; Foley, Rider W. [Arizona State University, School of Sustainability (United States); Guston, David H. [Arizona State University, Center for Nanotechnology in Society, Consortium for Science, Policy and Outcomes (United States)

    2012-09-15

    Nanotechnology is widely associated with the promise of positively contributing to sustainability. However, this view often focuses on end-of-pipe applications, for instance, for water purification or energy efficiency, and relies on a narrow concept of sustainability. Approaching sustainability problems and solution options from a comprehensive and systemic perspective instead may yield quite different conclusions about the contribution of nanotechnology to sustainability. This study conceptualizes sustainability problems as complex constellations with several potential intervention points and amenable to different solution options. The study presents results from interdisciplinary workshops and literature reviews that appraise the contribution of the selected nanotechnologies to mitigate such problems. The study focuses exemplarily on the urban context to make the appraisals tangible and relevant. The solution potential of nanotechnology is explored not only for well-known urban sustainability problems such as water contamination and energy use but also for less obvious ones such as childhood obesity. Results indicate not only potentials but also limitations of nanotechnology's contribution to sustainability and can inform anticipatory governance of nanotechnology in general, and in the urban context in particular.

  11. Nutritional and nanotechnological modulators of microglia

    Directory of Open Access Journals (Sweden)

    Dusica Maysinger

    2016-07-01

    Full Text Available Microglia are the essential responders to alimentary, pharmacological and nanotechnological immunomodulators. These neural cells play multiple roles as surveyors, sculptors, and guardians of essential parts of complex neural circuitries. Microglia can play dual roles in the central nervous system; they can be deleterious and/or protective. The immunomodulatory effects of alimentary components, gut microbiota and nanotechnological products have been investigated in microglia at the single cell level and in vivo using intravital imaging approaches, and different biochemical assays. This review highlights some of the emerging questions and topics from studies involving alimentation, microbiota, nanotechnological products, and associated problems in this area of research. Some of the advantages and limitations of in vitro and in vivo models used to study the neuromodulatory effects of these factors, as well as the merits and pitfalls of intravital imaging modalities employed are presented.

  12. NANOTECHNOLOGY, NANOMEDICINE; ETHICAL ASPECTS

    OpenAIRE

    G?K?AY, Banu; ARDA, Berna

    2015-01-01

    Nanotechnology is a field that we often hear of its name nowadays. Altough what we know about it is soo poor, we admire this field of technlogy, moreover some societies even argues that nanotechnology will cause second endustrial revolution. In addition, nanotechnology makes our basic scientific knowledge upside down and is soo powerfull that it is potent in nearly every scientific field. Thereby, it is imposible to say that nanotechnology; which is soo effective on human and human life; will...

  13. Nanotechnology in food processing sector-An assessment of emerging trends.

    Science.gov (United States)

    Kalpana Sastry, R; Anshul, Shrivastava; Rao, N H

    2013-10-01

    Use of nanoscience based technology in the food industry is fast emerging as new area for research and development. Several research groups including private companies in the industry have initiated research programmes for exploring the wide scope of nanotechnology into the value chain of food processing and manufacturing. This paper discusses the current focus of research in this area and assesses its potential impacts. Using the developed relational database framework with R&D indicators like literature and patent documents for assessment of the potential of nanotechnology in food sector, a model to organize and map nanoresearch areas to the food processing sector was developed. The study indicates that the about five basic categories of nanotechnology applications and functionalities currently in the development of food sector, include food processing, packaging, nutraceuticals delivery, food safety and functional foods.

  14. 3rd International Summer School Nanotechnology : From Fundamental Research to Innovations

    CERN Document Server

    Yatsenko, Leonid

    2015-01-01

    This book highlights the most recent advances in nanoscience from leading researchers in Ukraine, Europe, and beyond.  It features contributions from participants of the 3rd International Summer School “Nanotechnology: From Fundamental Research to Innovations,” held in Yaremche, Ukraine on August 23-26, 2014 and of the 2nd International NANO-2014 Conference, held in Lviv, Ukraine on August 27-30, 2014.  These events took place within the framework of the European Commission FP7 project Nanotwinning, and were organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France).  Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results in the areas of nanocomposites and nanomaterials, nanostructured surfaces, microscopy of nano-objects, nano-optics and nanophotonics, nanoplasmonics, nanochemistry, na...

  15. Defining Nano, Nanotechnology and Nanomedicine: Why Should It Matter?

    Science.gov (United States)

    Satalkar, Priya; Elger, Bernice Simone; Shaw, David M

    2016-10-01

    Nanotechnology, which involves manipulation of matter on a 'nano' scale, is considered to be a key enabling technology. Medical applications of nanotechnology (commonly known as nanomedicine) are expected to significantly improve disease diagnostic and therapeutic modalities and subsequently reduce health care costs. However, there is no consensus on the definition of nanotechnology or nanomedicine, and this stems from the underlying debate on defining 'nano'. This paper aims to present the diversity in the definition of nanomedicine and its impact on the translation of basic science research in nanotechnology into clinical applications. We present the insights obtained from exploratory qualitative interviews with 46 stakeholders involved in translational nanomedicine from Europe and North America. The definition of nanomedicine has implications for many aspects of translational research including: fund allocation, patents, drug regulatory review processes and approvals, ethical review processes, clinical trials and public acceptance. Given the interdisciplinary nature of the field and common interest in developing effective clinical applications, it is important to have honest and transparent communication about nanomedicine, its benefits and potential harm. A clear and consistent definition of nanomedicine would significantly facilitate trust among various stakeholders including the general public while minimizing the risk of miscommunication and undue fear of nanotechnology and nanomedicine.

  16. The social responsibility of Nanoscience and Nanotechnology: an integral approach

    International Nuclear Information System (INIS)

    Caballero-Díaz, Encarnación; Simonet, Bartolomé M.; Valcárcel, Miguel

    2013-01-01

    The concept of social responsibility provides the ideal framework for raising awareness and arousing reflection on the social and environmental impact of nanoparticles in the range of 1–100 nm generated from research activities in nanoscience and production-related activities in nanotechnology. The model proposed here relates the essential aspects of these concepts by connecting the classical sequence Research–Development–Innovation (R and D and I) to nanoscience and nanotechnology (N and N) and social responsibility (SR). This paper identifies the stakeholders of the process and provides an extensive definition of Social Responsibility and related concepts. In addition, it describes the internal and external connotations of the implementation of SR at research centers and nanotechnological industries, and discusses the social implications of nanoscience and nanotechnology with provision for subjects such as nanoethics, nanotoxicity, and nanomedicine, which have emerged from the widespread use of nanomaterials by today’s society.

  17. Nanotechnology and regenerative therapeutics in plastic surgery: The next frontier

    Science.gov (United States)

    Tan, Aaron; Chawla, Reema; Natasha, G; Mahdibeiraghdar, Sara; Jeyaraj, Rebecca; Rajadas, Jayakumar; Hamblin, Michael R.; Seifalian, Alexander M.

    2015-01-01

    Summary The rapid ascent of nanotechnology and regenerative therapeutics as applied to medicine and surgery has seen an exponential rise in the scale of research generated in this field. This is evidenced not only by the sheer volume of papers dedicated to nanotechnology but also in a large number of new journals dedicated to nanotechnology and regenerative therapeutics specifically to medicine and surgery. Aspects of nanotechnology that have already brought benefits to these areas include advanced drug delivery platforms, molecular imaging and materials engineering for surgical implants. Particular areas of interest include nerve regeneration, burns and wound care, artificial skin with nanoelectronic sensors and head and neck surgery. This study presents a review of nanotechnology and regenerative therapeutics, with focus on its applications and implications in plastic surgery. PMID:26422652

  18. Nanotechnology and its relationship to interventional radiology. Part I: imaging.

    LENUS (Irish Health Repository)

    Power, Sarah

    2011-04-01

    Nanotechnology refers to the design, creation, and manipulation of structures on the nanometer scale. Interventional radiology stands to benefit greatly from advances in nanotechnology because much of the ongoing research is focused toward novel methods of imaging and delivery of therapy through minimally invasive means. Through the development of new techniques and therapies, nanotechnology has the potential to broaden the horizon of interventional radiology and ensure its continued success. This two-part review is intended to acquaint the interventionalist with the field of nanotechnology, and provide an overview of potential applications, while highlighting advances relevant to interventional radiology. Part I of the article deals with an introduction to some of the basic concepts of nanotechnology and outlines some of the potential imaging applications, concentrating mainly on advances in oncological and vascular imaging.

  19. Nanotechnology and its relationship to interventional radiology. Part I: imaging.

    LENUS (Irish Health Repository)

    Power, Sarah

    2012-02-01

    Nanotechnology refers to the design, creation, and manipulation of structures on the nanometer scale. Interventional radiology stands to benefit greatly from advances in nanotechnology because much of the ongoing research is focused toward novel methods of imaging and delivery of therapy through minimally invasive means. Through the development of new techniques and therapies, nanotechnology has the potential to broaden the horizon of interventional radiology and ensure its continued success. This two-part review is intended to acquaint the interventionalist with the field of nanotechnology, and provide an overview of potential applications, while highlighting advances relevant to interventional radiology. Part I of the article deals with an introduction to some of the basic concepts of nanotechnology and outlines some of the potential imaging applications, concentrating mainly on advances in oncological and vascular imaging.

  20. Toward the responsible innovation with nanotechnology in Japan: our scope

    Energy Technology Data Exchange (ETDEWEB)

    Ishizu, Saori, E-mail: ishizu-saori@aist.go.jp; Sekiya, Mizuki [National Institute of Advanced Industrial Science and Technology (AIST), Technology Information Department (Japan); Ishibashi, Ken-ichi [Sony Corporation (Japan); Negami, Yumi [Trade and Industry (METI), Ministry of Economy (Japan); Ata, Masafumi [National Institute of Advanced Industrial Science and Technology (AIST), Technology Information Department (Japan)

    2008-02-15

    The societal impacts of nanotechnology have attracted growing attention in the United States and Europe in recent years. In Japan, the National Institute of Advanced Industrial Science and Technology (Technology Information Department) has played a central role in promoting discussions on this topic by collecting information from Japan and overseas, creating a network of the interested parties, and providing a forum for discussion. This paper presents a summary of recent activities in Japan relating to the societal impacts of nanotechnology, fro the launch of the 'Nanotechnology and Society' open forum (August 2004) until the 'Nanotechnology Debate' discussion forum (February 2007), and outlines the policy recommendations that came out of a project entitled 'Research on Facilitation of Public Acceptance of Nanotechnology' (March 2006)

  1. Nanotechnology and its Relationship to Interventional Radiology. Part I: Imaging

    International Nuclear Information System (INIS)

    Power, Sarah; Slattery, Michael M.; Lee, Michael J.

    2011-01-01

    Nanotechnology refers to the design, creation, and manipulation of structures on the nanometer scale. Interventional radiology stands to benefit greatly from advances in nanotechnology because much of the ongoing research is focused toward novel methods of imaging and delivery of therapy through minimally invasive means. Through the development of new techniques and therapies, nanotechnology has the potential to broaden the horizon of interventional radiology and ensure its continued success. This two-part review is intended to acquaint the interventionalist with the field of nanotechnology, and provide an overview of potential applications, while highlighting advances relevant to interventional radiology. Part I of the article deals with an introduction to some of the basic concepts of nanotechnology and outlines some of the potential imaging applications, concentrating mainly on advances in oncological and vascular imaging.

  2. Nanotechnology for the Solid Waste Reduction of Military Food Packaging

    Science.gov (United States)

    2016-06-01

    WP-200816) Nanotechnology for the Solid Waste Reduction of Military Food Packaging June 2016 This document has been cleared for public release...NAME OF RESPONSIBLE PERSON 19b. TELEPHONE NUMBER (Include area code) 01/06/2016 Cost and Performance Report 04/01/2008 - 01/01/2015 Nanotechnology for...Soldier Research, Development and Engineering Center Robin Altmeyer - AmeriQual U.S. Army Natick Soldier Research, Development and Engineering

  3. Editorial: Trends in Nanotechnology (TNT2005)

    Science.gov (United States)

    Correia, Antonio; Serena, Pedro A.; José Saenz, Juan; Reifenberger, Ron; Ordejón, Pablo

    2006-05-01

    This special issue of physica status solidi (a) presents representative contributions describing the main topics covered at the sixth Trends in Nanotechnology (TNT2005) International Conference, held in Oviedo (Spain), 29 August-2 September 2005.During the last years many international or national conferences have emerged in response to the growing awareness of the importance of nanotechnology as key issue for the future scientific and technological development. Among these, the conference series Trends in Nanotechnology has become one of the most important meeting points in the nanotechnology field: it provides fresh organisation ideas, brings together well known speakers, and promotes a suitable environment for discussions, exchanging ideas, enhancing scientific and personal relations among participants. TNT2005 was organised in a similar way to the five prior TNT conferences, with an impressive scientific programme including 40 Keynote lectures and two Nobel prizes, without parallel sessions, covering a wide spectrum of Nanotechnology research. In 2005, more than 360 scientists worldwide attended this event and contributed with more than 60 oral contributions and 250 posters, stimulating discussions about their most recent research.The aim of the conference was to focus on the applications of Nanotechnology and to bring together, in a scientific forum, various worldwide groups belonging to industry, universities and government institutions. TNT2005 was particularly effective at transmitting information and establishing contacts among workers in this field. Graduate students attending such conferences have understood the importance of interdisciplinary skills to afford their future research lines. 76 graduate students received a grant allowing them to present their work. 28 prizes to the best posters were awarded during this event. We would like to thank all the participants for their assistance, as well as the authors for their written contributions.TNT2005 is

  4. Nanotechnology: An Untapped Resource for Food Packaging.

    Science.gov (United States)

    Sharma, Chetan; Dhiman, Romika; Rokana, Namita; Panwar, Harsh

    2017-01-01

    Food commodities are packaged and hygienically transported to protect and preserve them from any un-acceptable alteration in quality, before reaching the end-consumer. Food packaging continues to evolve along-with the innovations in material science and technology, as well as in light of consumer's demand. Presently, the modern consumers of competitive economies demands for food with natural quality, assured safety, minimal processing, extended shelf-life and ready-to-eat concept. Innovative packaging systems, not only ascertains transit preservation and effective distribution, but also facilitates communication at the consumer levels. The technological advances in the domain of food packaging in twenty-first century are mainly chaired by nanotechnology, the science of nano-materials. Nanotechnology manipulates and creates nanometer scale materials, of commercial and scientific relevance. Introduction of nanotechnology in food packaging sector has significantly addressed the food quality, safety and stability concerns. Besides, nanotechnology based packaging intimate's consumers about the real time quality of food product. Additionally, nanotechnology has been explored for controlled release of preservatives/antimicrobials, extending the product shelf life within the package. The promising reports for nanotechnology interventions in food packaging have established this as an independent priority research area. Nanoparticles based food packages offer improved barrier and mechanical properties, along with food preservation and have gained welcoming response from market and end users. In contrary, recent advances and up-liftment in this area have raised various ethical, environmental and safety concerns. Policies and regulation regarding nanoparticles incorporation in food packaging are being reviewed. This review presents the existing knowledge, recent advances, concerns and future applications of nanotechnology in food packaging sector.

  5. Citizenship Education to Nanotechnologies: Teaching Knowledge About Nanotechnologies and Educating for Responsible Citizenship

    Directory of Open Access Journals (Sweden)

    Nathalie Panissal

    2012-12-01

    Full Text Available We present a research based on a project for citizenship education tonanotechnologies in a French high school which aims at teaching the specific characteristics of nanotechnologies, of their fields of application and of the controversies which are linked to them. At the junction of Socially Acute Questions didactics and of the cultural-historical Vygotskian theory, we analyze the knowledge at work in a debate on the promises and risks connected with nanotechnologies. The knowledge mobilized by the students (17- to 18 yearsold in their dialogical interactions can refer back to the archetypal narrativeswhose origin lies in men’s social and cultural history. Through the joint effect of cumulative talk and exploratory talk, the students co-construct the concepts linked to the Social Ethical Issues: risks and human enhancement. We show that the debate at school leads students to be able to construct reasoned opinion and to position themselves in their environment in a responsible way. This educational innovation appears to be relevant for combining the learning of academic and cultural contents with social competencies necessary for committed citizenship education in the field of nanotechnologies.

  6. Nano Mapper: an Internet knowledge mapping system for nanotechnology development

    International Nuclear Information System (INIS)

    Li Xin; Hu, Daning; Dang Yan; Chen Hsinchun; Roco, Mihail C.; Larson, Catherine A.; Chan, Joyce

    2009-01-01

    Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (http://nanomapper.eller.arizona.eduhttp://nanomapper.eller.arizona.edu), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976-2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005-2006 identified through the Nano Mapper system.

  7. Nano Mapper: an Internet knowledge mapping system for nanotechnology development

    Energy Technology Data Exchange (ETDEWEB)

    Li Xin, E-mail: xinli@eller.arizona.edu; Hu, Daning, E-mail: hud@eller.arizona.edu; Dang Yan, E-mail: ydang@eller.arizona.edu; Chen Hsinchun, E-mail: hchen@eller.arizona.ed [University of Arizona, Departmet of Management Information Systems, Eller College of Management (United States); Roco, Mihail C., E-mail: mroco@nsf.go [National Science Foundation (United States); Larson, Catherine A., E-mail: cal@eller.arizona.edu; Chan, Joyce, E-mail: joycepchan@eller.arizona.ed [University of Arizona, Department of Management Information Systems, Eller College of Management (United States)

    2009-04-15

    Nanotechnology research has experienced rapid growth in recent years. Advances in information technology enable efficient investigation of publications, their contents, and relationships for large sets of nanotechnology-related documents in order to assess the status of the field. This paper presents the development of a new knowledge mapping system, called Nano Mapper (http://nanomapper.eller.arizona.eduhttp://nanomapper.eller.arizona.edu), which integrates the analysis of nanotechnology patents and research grants into a Web-based platform. The Nano Mapper system currently contains nanotechnology-related patents for 1976-2006 from the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO), as well as grant documents from the U.S. National Science Foundation (NSF) for the same time period. The system provides complex search functionalities, and makes available a set of analysis and visualization tools (statistics, trend graphs, citation networks, and content maps) that can be applied to different levels of analytical units (countries, institutions, technical fields) and for different time intervals. The paper shows important nanotechnology patenting activities at USPTO for 2005-2006 identified through the Nano Mapper system.

  8. Influence of IR sensor technology on the military and civil defense

    Science.gov (United States)

    Becker, Latika

    2006-02-01

    Advances in basic infrared science and developments in pertinent technology applications have led to mature designs being incorporated in civil as well as military area defense systems. Military systems include both tactical and strategic, and civil area defense includes homeland security. Technical challenges arise in applying infrared sensor technology to detect and track targets for space and missile defense. Infrared sensors are valuable due to their passive capability, lower mass and power consumption, and their usefulness in all phases of missile defense engagements. Nanotechnology holds significant promise in the near future by offering unique material and physical properties to infrared components. This technology is rapidly developing. This presentation will review the current IR sensor technology, its applications, and future developments that will have an influence in military and civil defense applications.

  9. Nanotechnology in the 21st century

    International Nuclear Information System (INIS)

    Aguilar, Zoraida P.; Xu, Hengyi; Al Ogaidi, Israa; Wu, Nianqiang

    2015-01-01

    promises to bring the next wave of industrial production in various industries. Based on global market research, nanotechnology is expected to reach $1 trillion in 2015 according to the National Science Foundation in the USA. Nanotech is growing strong in the USA with the help of universities, startups and local government. This presentation will focus on various areas of nanotechnology that could benefit the academic, technology, and economic situation in the Philippines. The status of nanotechnology worldwide will be compared with that of the Philippines. (author)

  10. South African research agenda to investigate the potential environmental, health and safety risks of nanotechnology

    CSIR Research Space (South Africa)

    Musee, N

    2010-04-01

    Full Text Available The South African perspective on nanotechnology, recently articulated through its national strategy, envisages nanotechnology to provide solutions to some of the country’s key development challenges, such as the provision of safe water...

  11. Nanotechnology and regenerative therapeutics in plastic surgery: The next frontier.

    Science.gov (United States)

    Tan, Aaron; Chawla, Reema; G, Natasha; Mahdibeiraghdar, Sara; Jeyaraj, Rebecca; Rajadas, Jayakumar; Hamblin, Michael R; Seifalian, Alexander M

    2016-01-01

    The rapid ascent of nanotechnology and regenerative therapeutics as applied to medicine and surgery has seen an exponential rise in the scale of research generated in this field. This is evidenced not only by the sheer volume of papers dedicated to nanotechnology but also in a large number of new journals dedicated to nanotechnology and regenerative therapeutics specifically to medicine and surgery. Aspects of nanotechnology that have already brought benefits to these areas include advanced drug delivery platforms, molecular imaging and materials engineering for surgical implants. Particular areas of interest include nerve regeneration, burns and wound care, artificial skin with nanoelectronic sensors and head and neck surgery. This study presents a review of nanotechnology and regenerative therapeutics, with focus on its applications and implications in plastic surgery. Copyright © 2015 British Association of Plastic, Reconstructive and Aesthetic Surgeons. All rights reserved.

  12. Nanotechnology for sustainable development: retrospective and outlook

    Science.gov (United States)

    Diallo, Mamadou S.; Fromer, Neil A.; Jhon, Myung S.

    2013-11-01

    The world is facing great challenges in meeting rising demands for basic commodities (e.g., food, water and energy), finished goods (e.g., cell phones, cars and airplanes) and services (e.g., shelter, healthcare and employment) while reducing and minimizing the impact of human activities on Earth's global environment and climate. Nanotechnology has emerged as a versatile platform that could provide efficient, cost-effective and environmentally acceptable solutions to the global sustainability challenges facing society. This special issue of the Journal of Nanoparticle Research is devoted to the utilization of nanotechnology to improve or achieve sustainable development. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address global challenges in (1) water purification, (2) clean energy technologies, (3) greenhouse gases management, (4) materials supply and utilization, and (5) green manufacturing and chemistry. In addition to the technical challenges listed above, we also discuss societal perspectives and provide an outlook of the role of nanotechnology in the convergence of knowledge, technology and society for achieving sustainable development.

  13. Nanotechnology for sustainable development: retrospective and outlook

    International Nuclear Information System (INIS)

    Diallo, Mamadou S.; Fromer, Neil A.; Jhon, Myung S.

    2013-01-01

    The world is facing great challenges in meeting rising demands for basic commodities (e.g., food, water and energy), finished goods (e.g., cell phones, cars and airplanes) and services (e.g., shelter, healthcare and employment) while reducing and minimizing the impact of human activities on Earth’s global environment and climate. Nanotechnology has emerged as a versatile platform that could provide efficient, cost-effective and environmentally acceptable solutions to the global sustainability challenges facing society. This special issue of the Journal of Nanoparticle Research is devoted to the utilization of nanotechnology to improve or achieve sustainable development. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address global challenges in (1) water purification, (2) clean energy technologies, (3) greenhouse gases management, (4) materials supply and utilization, and (5) green manufacturing and chemistry. In addition to the technical challenges listed above, we also discuss societal perspectives and provide an outlook of the role of nanotechnology in the convergence of knowledge, technology and society for achieving sustainable development

  14. Nanotechnology for sustainable development: retrospective and outlook

    Energy Technology Data Exchange (ETDEWEB)

    Diallo, Mamadou S., E-mail: mdiallo@kaist.ac.kr [Korea Advanced Institute of Science and Technology (KAIST), Graduate School of Energy, Environment, Water and Sustainability (EEWS) (Korea, Republic of); Fromer, Neil A. [California Institute of Technology, Resnick Sustainability Institute (United States); Jhon, Myung S. [Carnegie Mellon University, Department of Chemical Engineering (United States)

    2013-11-15

    The world is facing great challenges in meeting rising demands for basic commodities (e.g., food, water and energy), finished goods (e.g., cell phones, cars and airplanes) and services (e.g., shelter, healthcare and employment) while reducing and minimizing the impact of human activities on Earth’s global environment and climate. Nanotechnology has emerged as a versatile platform that could provide efficient, cost-effective and environmentally acceptable solutions to the global sustainability challenges facing society. This special issue of the Journal of Nanoparticle Research is devoted to the utilization of nanotechnology to improve or achieve sustainable development. We highlight recent advances and discuss opportunities of utilizing nanotechnology to address global challenges in (1) water purification, (2) clean energy technologies, (3) greenhouse gases management, (4) materials supply and utilization, and (5) green manufacturing and chemistry. In addition to the technical challenges listed above, we also discuss societal perspectives and provide an outlook of the role of nanotechnology in the convergence of knowledge, technology and society for achieving sustainable development.

  15. Nanosciences and Nanotechnologies Learning and Teaching in Secondary Education: A Review of Literature

    Science.gov (United States)

    Hingant, Benedicte; Albe, Virginie

    2010-01-01

    This literature review provides an overview of recent studies on the introduction of nanosciences and nanotechnologies in secondary education. Four salient research topics have emerged: questions and reflections preceding curriculum development on nanosciences and nanotechnologies lessons; research on students' conceptualisations of nano-related…

  16. Factors influencing nanotechnology commercialization: an empirical analysis of nanotechnology firms in South Korea

    Science.gov (United States)

    Lee, Cheol-Ju; Lee, SuKap; Jhon, Myung S.; Shin, Juneseuk

    2013-02-01

    Nanotechnology is a representative emerging technology in an embryonic stage. Due to the continuous support provided by both the public and private sectors of many countries, nanotechnologies have increasingly been commercialized in a wide array of industries, but also produce many commercialization failures. Tackling this problem, we investigate key factors affecting the commercialization of nanotechnologies. Identifying key factors of nanotechnology commercialization through literature review and interview with CEOs, we collected data of 206 Korean nanotechnology-based companies, and analyzed the causal relationship between key factors and financial performance. Logistic and Tobit regression models are used. Overall, companies achieving successful commercialization hold some common characteristics including consistent exploratory R&D, governmental funding, and nano-instrument/energy/environment-related products. Also, the use of potentially toxic materials makes commercialization difficult even if the products are not toxic.

  17. What Students and Researchers in Nanoscience and Nanotechnology Should Know about PUS and STS: A Look at Fages and Albe's Viewpoint on Social Issues in Nanoscience and Nanotechnology Master's Degrees

    Science.gov (United States)

    Pouliot, Chantal

    2015-01-01

    In this paper, in order to pursue the conversation begun by Fages and Albe ("Cult Stud Sci Educ" 2014), I highlight three conceptual contributions that could be made by familiarizing nanoscience and nanotechnology researchers and engineers with the work being carried out in science and technology studies and public understanding of…

  18. Commercialization of nanotechnology.

    Science.gov (United States)

    Hobson, David W

    2009-01-01

    The emerging and potential commercial applications of nanotechnologies clearly have great potential to significantly advance and even potentially revolutionize various aspects of medical practice and medical product development. Nanotechnology is already touching upon many aspects of medicine, including drug delivery, diagnostic imaging, clinical diagnostics, nanomedicines, and the use of nanomaterials in medical devices. This technology is already having an impact; many products are on the market and a growing number is in the pipeline. Momentum is steadily building for the successful development of additional nanotech products to diagnose and treat disease; the most active areas of product development are drug delivery and in vivo imaging. Nanotechnology is also addressing many unmet needs in the pharmaceutical industry, including the reformulation of drugs to improve their bioavailability or toxicity profiles. The advancement of medical nanotechnology is expected to advance over at least three different generations or phases, beginning with the introduction of simple nanoparticulate and nanostructural improvements to current product and process types, then eventually moving on to nanoproducts and nanodevices that are limited only by the imagination and limits of the technology itself. This review looks at some recent developments in the commercialization of nanotechnology for various medical applications as well as general trends in the industry, and explores the nanotechnology industry that is involved in developing medical products and procedures with a view toward technology commercialization. (c) 2009 John Wiley & Sons, Inc.

  19. Nanotechnology: emerging tools for biology and medicine.

    Science.gov (United States)

    Wong, Ian Y; Bhatia, Sangeeta N; Toner, Mehmet

    2013-11-15

    Historically, biomedical research has been based on two paradigms. First, measurements of biological behaviors have been based on bulk assays that average over large populations. Second, these behaviors have then been crudely perturbed by systemic administration of therapeutic treatments. Nanotechnology has the potential to transform these paradigms by enabling exquisite structures comparable in size with biomolecules as well as unprecedented chemical and physical functionality at small length scales. Here, we review nanotechnology-based approaches for precisely measuring and perturbing living systems. Remarkably, nanotechnology can be used to characterize single molecules or cells at extraordinarily high throughput and deliver therapeutic payloads to specific locations as well as exhibit dynamic biomimetic behavior. These advances enable multimodal interfaces that may yield unexpected insights into systems biology as well as new therapeutic strategies for personalized medicine.

  20. Technical structure of the global nanoscience and nanotechnology literature

    Energy Technology Data Exchange (ETDEWEB)

    Kostoff, Ronald N., E-mail: kostofr@onr.navy.mil; Koytcheff, Raymond G. [Office of Naval Research (United States); Lau, Clifford G. Y. [Institute for Defense Analyses (United States)

    2007-10-15

    Text mining was used to extract technical intelligence from the open source global nanotechnology and nanoscience research literature. An extensive nanotechnology/nanoscience-focused query was applied to the Science Citation Index/Social Science Citation Index (SCI/SSCI) databases. The nanotechnology/nanoscience research literature technical structure (taxonomy) was obtained using computational linguistics/document clustering and factor analysis. The infrastructure (prolific authors, key journals/institutions/countries, most cited authors/journals/documents) for each of the clusters generated by the document clustering algorithm was obtained using bibliometrics. Another novel addition was the use of phrase auto-correlation maps to show technical thrust areas based on phrase co-occurrence in Abstracts, and the use of phrase-phrase cross-correlation maps to show technical thrust areas based on phrase relations due to the sharing of common co-occurring phrases. The {approx}400 most cited nanotechnology papers since 1991 were grouped, and their characteristics generated. Whereas the main analysis provided technical thrusts of all nanotechnology papers retrieved, analysis of the most cited papers allowed their characteristics to be displayed. Finally, most cited papers from selected time periods were extracted, along with all publications from those time periods, and the institutions and countries were compared based on their representation in the most cited documents list relative to their representation in the most publications list.

  1. Technical structure of the global nanoscience and nanotechnology literature

    International Nuclear Information System (INIS)

    Kostoff, Ronald N.; Koytcheff, Raymond G.; Lau, Clifford G. Y.

    2007-01-01

    Text mining was used to extract technical intelligence from the open source global nanotechnology and nanoscience research literature. An extensive nanotechnology/nanoscience-focused query was applied to the Science Citation Index/Social Science Citation Index (SCI/SSCI) databases. The nanotechnology/nanoscience research literature technical structure (taxonomy) was obtained using computational linguistics/document clustering and factor analysis. The infrastructure (prolific authors, key journals/institutions/countries, most cited authors/journals/documents) for each of the clusters generated by the document clustering algorithm was obtained using bibliometrics. Another novel addition was the use of phrase auto-correlation maps to show technical thrust areas based on phrase co-occurrence in Abstracts, and the use of phrase-phrase cross-correlation maps to show technical thrust areas based on phrase relations due to the sharing of common co-occurring phrases. The ∼400 most cited nanotechnology papers since 1991 were grouped, and their characteristics generated. Whereas the main analysis provided technical thrusts of all nanotechnology papers retrieved, analysis of the most cited papers allowed their characteristics to be displayed. Finally, most cited papers from selected time periods were extracted, along with all publications from those time periods, and the institutions and countries were compared based on their representation in the most cited documents list relative to their representation in the most publications list

  2. International Perspective on Government Nanotechnology Funding in 2005

    International Nuclear Information System (INIS)

    Roco, M. C.

    2005-01-01

    The worldwide investment in nanotechnology research and development (R and D) reported by national government organizations and EC has increased approximately 9-fold in the last 8 years - from $432 million in 1997 to about $4,100 million in 2005. The proportion of national government investments for: academic R and D and education are between 20% (Korea, Taiwan) and 65% (US), industrial R and D - between 5% (US) and 60% (Korea, Taiwan), and core facilities and government laboratories - about 20-25% in all major contributing economies. This evaluation uses the NNI definition of nanotechnology (that excludes MEMS or microelectronics), and is based on direct information and analysis with managers of nanotechnology R and D programs in the respective countries

  3. International Perspective on Government Nanotechnology Funding in 2005

    Science.gov (United States)

    Roco, M. C.

    2005-12-01

    The worldwide investment in nanotechnology research and development (R&D) reported by national government organizations and EC has increased approximately 9-fold in the last 8 years - from 432 million in 1997 to about 4,100 million in 2005. The proportion of national government investments for: academic R&D and education are between 20% (Korea, Taiwan) and 65% (US), industrial R&D - between 5% (US) and 60% (Korea, Taiwan), and core facilities and government laboratories - about 20-25% in all major contributing economies. This evaluation uses the NNI definition of nanotechnology (that excludes MEMS or microelectronics), and is based on direct information and analysis with managers of nanotechnology R&D programs in the respective countries.

  4. ACCELERATING NANO-TECHNOLOGICAL

    DEFF Research Database (Denmark)

    Jensen, Jens Stissing; Koch, Christian

    2007-01-01

    By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which concludes...... of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support “incubation rooms” or marked niches in order...

  5. Public perception of nanotechnology

    International Nuclear Information System (INIS)

    Burri, Regula Valerie; Bellucci, Sergio

    2008-01-01

    While several studies on the public opinion of nanotechnology have pointed to a rather enthusiastic U.S. public, the public uptake of nanotechnology in Europe is more contained. The results of the Swiss publifocus on nanotechnology reveal a pragmatic attitude of citizens toward the emerging technologies, thus confirming what has been identified as a 'balanced approach' in the NanoJury UK

  6. Nanomaterials. Proceedings of Kharkiv Nanotechnology Congress-2008. Volume 2

    International Nuclear Information System (INIS)

    Neklyudov, I.M.; Shulaeva, V.M.

    2008-01-01

    The materials of Kharkiv Nanotechnology Congress-2008 held in Kharkiv of 26-30 May, 2008 are presented here. The scientific and practical research aspects as well as development of ion-plasma nanotechnologies, current problems of thin film physics in optics and electronics, as well as the issues of creation of new type of vacuum technological equipment are considered in papers to be published.

  7. [Nanotechnology: a big revolution from the small world].

    Science.gov (United States)

    Bassi, Matteo; Santinello, Irene; Bevilacqua, Andrea; Bassi, Pierfrancesco

    2013-01-01

    Nanotechnology is a multidisciplinary field originating from the interaction of several different disciplines, such as engineering, physics, biology and chemistry. New materials and devices effectively interact with the body at molecular level, yielding a brand new range of highly selective and targeted applications designed to maximize the therapeutic efficiency while reducing the side effects. Liposomes, quantum dots, carbon nanotubes and superparamagnetic nanoparticles are among the most assessed nanotechnologies. Meanwhile, other futuristic platforms are paving the way toward a new scientific paradigm, able to deeply change the research path in the medical science. The growth of nanotechnology, driven by the dramatic advances in science and technology, clearly creates new opportunities for the development of the medical science and disease treatment in human health care. Despite the concerns and the on-going studies about their safety, nanotechnology clearly emerges as holding the promise of delivering one of the greatest breakthroughs in the history of medical science.

  8. Factors influencing nanotechnology commercialization: an empirical analysis of nanotechnology firms in South Korea

    International Nuclear Information System (INIS)

    Lee, Cheol-Ju; Lee, SuKap; Jhon, Myung S.; Shin, Juneseuk

    2013-01-01

    Nanotechnology is a representative emerging technology in an embryonic stage. Due to the continuous support provided by both the public and private sectors of many countries, nanotechnologies have increasingly been commercialized in a wide array of industries, but also produce many commercialization failures. Tackling this problem, we investigate key factors affecting the commercialization of nanotechnologies. Identifying key factors of nanotechnology commercialization through literature review and interview with CEOs, we collected data of 206 Korean nanotechnology-based companies, and analyzed the causal relationship between key factors and financial performance. Logistic and Tobit regression models are used. Overall, companies achieving successful commercialization hold some common characteristics including consistent exploratory R and D, governmental funding, and nano-instrument/energy/environment-related products. Also, the use of potentially toxic materials makes commercialization difficult even if the products are not toxic.

  9. Factors influencing nanotechnology commercialization: an empirical analysis of nanotechnology firms in South Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Cheol-Ju [SME Innovation Center, KEIT (Korea Evaluation Institute of Industrial Technology) (Korea, Republic of); Lee, SuKap [Nano and Convergence PD Team, KEIT, Korea Technology Center (Korea, Republic of); Jhon, Myung S. [Sungkyunkwan University, School of Advanced Materials Science and Engineering (Korea, Republic of); Shin, Juneseuk, E-mail: jsshin@skku.edu [Sungkyunkwan University, Department of Systems Management Engineering and Graduate School of Management of Technology (MOT) (Korea, Republic of)

    2013-02-15

    Nanotechnology is a representative emerging technology in an embryonic stage. Due to the continuous support provided by both the public and private sectors of many countries, nanotechnologies have increasingly been commercialized in a wide array of industries, but also produce many commercialization failures. Tackling this problem, we investigate key factors affecting the commercialization of nanotechnologies. Identifying key factors of nanotechnology commercialization through literature review and interview with CEOs, we collected data of 206 Korean nanotechnology-based companies, and analyzed the causal relationship between key factors and financial performance. Logistic and Tobit regression models are used. Overall, companies achieving successful commercialization hold some common characteristics including consistent exploratory R and D, governmental funding, and nano-instrument/energy/environment-related products. Also, the use of potentially toxic materials makes commercialization difficult even if the products are not toxic.

  10. From Vision to the Implementation of the U.S. National Nanotechnology Initiative

    International Nuclear Information System (INIS)

    Roco, M.C.

    2001-01-01

    All natural and living systems are governed by atomic and molecular behavior at the nanoscale. Research is now seeking systematic approaches to create revolutionary new products and technologies by control of matter at the same scale. Fundamental discoveries and potential implications of nanotechnology to wealth, health and peace have captured the imagination of scientists, industry and government experts. The National Nanotechnology Initiative (NNI) has become a top national priority in science and technology in U.S. for fiscal year 2001, with a Federal nanotechnology investment portfolio of $422 million. Nanotechnology is expected to have a profound impact on our economy and society in the earlier 21st century.The vision, research and development strategy, and timeline of NNI are presented by using several recent scientific discoveries and results from industry

  11. From Vision to the Implementation of the U.S. National Nanotechnology Initiative

    Science.gov (United States)

    Roco, M. C.

    2001-02-01

    All natural and living systems are governed by atomic and molecular behavior at the nanoscale. Research is now seeking systematic approaches to create revolutionary new products and technologies by control of matter at the same scale. Fundamental discoveries and potential implications of nanotechnology to wealth, health and peace have captured the imagination of scientists, industry and government experts. The National Nanotechnology Initiative (NNI) has become a top national priority in science and technology in U.S. for fiscal year 2001, with a Federal nanotechnology investment portfolio of 422 million. Nanotechnology is expected to have a profound impact on our economy and society in the earlier 21st century. The vision, research and development strategy, and timeline of NNI are presented by using several recent scientific discoveries and results from industry.

  12. Nanotechnology as a Novel Tool in Fisheries and Aquaculture Development: A Review

    OpenAIRE

    Mohd Ashraf; Md. Aklakur; Rupam Sharma; Shabir Ahmad; Mujhid Khan

    2011-01-01

    Application of nanotechnology has revolutionized many frontier areas; it is paving a way for the researchers for possible application in all sectors. Nanotechnology holds promise for various aspects of fisheries and aquaculture development, like fish health management, fish breeding, aquatic environment management and other areas. Nanotechnological intervention will help to meet the global challenges associated with aquatic organism production, including environmental sustainability, human he...

  13. Innovations in nanotechnology for water treatment

    Directory of Open Access Journals (Sweden)

    Gehrke I

    2015-01-01

    Full Text Available Ilka Gehrke, Andreas Geiser, Annette Somborn-SchulzFraunhofer Institute for Environmental, Safety and Energy Technology UMSICHT, Oberhausen, GermanyAbstract: Important challenges in the global water situation, mainly resulting from worldwide population growth and climate change, require novel innovative water technologies in order to ensure a supply of drinking water and reduce global water pollution. Against this background, the adaptation of highly advanced nanotechnology to traditional process engineering offers new opportunities in technological developments for advanced water and wastewater technology processes. Here, an overview of recent advances in nanotechnologies for water and wastewater treatment processes is provided, including nanobased materials, such as nanoadsorbents, nanometals, nanomembranes, and photocatalysts. The beneficial properties of these materials as well as technical barriers when compared with conventional processes are reported. The state of commercialization is presented and an outlook on further research opportunities is given for each type of nanobased material and process. In addition to the promising technological enhancements, the limitations of nanotechnology for water applications, such as laws and regulations as well as potential health risks, are summarized. The legal framework according to nanoengineered materials and processes that are used for water and wastewater treatment is considered for European countries and for the USA.Keywords: nanotechnology, water technology, nanoadsorbents, nanometals, nanomembranes, photocatalysis

  14. Machine Phase Fullerene Nanotechnology: 1996

    Science.gov (United States)

    Globus, Al; Chancellor, Marisa K. (Technical Monitor)

    1997-01-01

    NASA has used exotic materials for spacecraft and experimental aircraft to good effect for many decades. In spite of many advances, transportation to space still costs about $10,000 per pound. Drexler has proposed a hypothetical nanotechnology based on diamond and investigated the properties of such molecular systems. These studies and others suggest enormous potential for aerospace systems. Unfortunately, methods to realize diamonoid nanotechnology are at best highly speculative. Recent computational efforts at NASA Ames Research Center and computation and experiment elsewhere suggest that a nanotechnology of machine phase functionalized fullerenes may be synthetically relatively accessible and of great aerospace interest. Machine phase materials are (hypothetical) materials consisting entirely or in large part of microscopic machines. In a sense, most living matter fits this definition. To begin investigation of fullerene nanotechnology, we used molecular dynamics to study the properties of carbon nanotube based gears and gear/shaft configurations. Experiments on C60 and quantum calculations suggest that benzyne may react with carbon nanotubes to form gear teeth. Han has computationally demonstrated that molecular gears fashioned from (14,0) single-walled carbon nanotubes and benzyne teeth should operate well at 50-100 gigahertz. Results suggest that rotation can be converted to rotating or linear motion, and linear motion may be converted into rotation. Preliminary results suggest that these mechanical systems can be cooled by a helium atmosphere. Furthermore, Deepak has successfully simulated using helical electric fields generated by a laser to power fullerene gears once a positive and negative charge have been added to form a dipole. Even with mechanical motion, cooling, and power; creating a viable nanotechnology requires support structures, computer control, a system architecture, a variety of components, and some approach to manufacture. Additional

  15. [Nanopsychiatry. The potential role of nanotechnologies in the future of psychiatry. A systematic review].

    Science.gov (United States)

    Fond, G; Miot, S

    2013-09-01

    Nanomedicine is defined as the area using nanotechnology's concepts for the benefit of human beings, their health and well being. The field of nanotechnology opened new unsuspected fields of research a few years ago. To provide an overview of nanotechnology application areas that could affect care for psychiatric illnesses. We conducted a systematic review using the PRISMA criteria (preferred reporting items for systematic reviews and meta-analysis). Inclusion criteria were specified in advance: all studies describing the development of nanotechnology in psychiatry. The research paradigm was: "(nanotechnology OR nanoparticles OR nanomedicine) AND (central nervous system)" Articles were identified in three research bases, Medline (1966-present), Web of Science (1975-present) and Cochrane (all articles). The last search was carried out on April 2, 2012. Seventy-six items were included in this qualitative review. The main applications of nanotechnology in psychiatry are (i) pharmacology. There are two main difficulties in neuropharmacology. Drugs have to pass the blood brain barrier and then to be internalized by targeted cells. Nanoparticles could increase drugs' bioavailability and pharmacokinetics, especially improving safety and efficacy of psychotropic drugs. Liposomes, nanosomes, nanoparticle polymers, nanobubbles are some examples of this targeted drug delivery. Nanotechnologies could also add new pharmacological properties, like nanohells and dendrimers; (ii) living analysis. Nanotechnology provides technical assistance to in vivo imaging or metabolome analysis; (iii) central nervous system modeling. Research teams have modelized inorganic synapses and mimicked synaptic behavior, essential for further creation of artificial neural systems. Some nanoparticle assemblies present the same small world and free-scale network architecture as cortical neural networks. Nanotechnologies and quantum physics could be used to create models of artificial intelligence and

  16. Nanotechnology in paper electronics

    Science.gov (United States)

    Demming, Anna; Österbacka, Professor Ronald; Han, Jin-Woo, Dr

    2014-03-01

    devices. If 'writing is thinking on paper' [15], it seems researchers are finding yet more powerful means of putting their ideas on paper. References [1] Barquinha P, Martins R, Pereira L and Fortunato E 2012 Transparent Oxide Electronics: From Materials to Devices (Chichester: Wiley) [2] Zocco A T, You H, Hagen J A and Steckl A J 2014 Pentacene organic thin film transistors on flexible paper and glass substrates Nanotechnology 25 094005 [3] Pereira L, Gaspar D, Guerin D, Delattre A, Fortunato E and Martins R 2014 The influence of fibril composition and dimension on the performance of paper gated oxide transistors Nanotechnology 25 094007 [4] Wu G, Wan C, Zhou J, Zhu L and Wan Q 2014 Low-voltage protonic/electronic hybrid indium-zinc-oxide synaptic transistors on paper substrates Nanotechnology 25 094001 [5] Shin H, Yoon B, Park I S and Kim J-M 2014 An electrothermochromic paper display based on colorimetrically reversible polydiacetylenes Nanotechnology 25 094011 [6] Ihalainen P, Pettersson F, Pesonen M, Viitala T, Määttänen A, Österbacka R and Peltonen J 2014 An impedimetric study of DNA hybridization on paper supported inkjet-printed gold electrodes Nanotechnology 25 094009 [7] Wang Y, Shi Y, Zhao C X, Wong J I, Sun X W and Yang H Y 2014 Printed all-solid flexible microsupercapacitors: towards the general route for high energy storage device Nanotechnology 25 094010 [8] Andersson H A, Manuilskiy A, Haller S, Hummelgård M, Sidén J, Hummelgård C, Olin H and Nilsson H-E 2014 Assembling surface mounted components on ink-jet printed double sided paper circuit board Nanotechnology 25 094002 [9] Gaspar D, Fernandes S N, de Oliveira A G, Fernandes J G, Grey P, Pontes R V, Pereira L, Martins R, Godinho M H and Fortunato E 2014 Nanocrystalline cellulose applied simultaneously as gate dielectric and substrate on flexible field effect transistors Nanotechnology 25 094008 [10] Männl U, van den Berg C, Magunje B, Härting M, Britton D T, Jones S, Mvan Staden M J and Scriba M

  17. EDITORIAL: Nanotechnology in vivo Nanotechnology in vivo

    Science.gov (United States)

    Demming, Anna

    2010-04-01

    Since the development of x-rays the ability to image inside our bodies has provided medicine with a potent diagnostic tool, as well as fascinating us with the eerie evidence of our mechanistic mortality. In December 2008 Osamu Shimomura, Martin Chalfie and Roger Y Tsien received a Nobel Prize for the discovery and development of the green fluorescent protein. The award recognised a new discovery that further facilitated our abilities to follow cellular activities and delve deeper into the workings of living organisms. Since the first observation of green fluorescent protein in jelly fish over thirty years ago, quantum dots have emerged as a potential alternative tool for imaging [1]. The advantages of quantum dots over organic dyes and fluorescent proteins include intense luminescence, high molar extinction coefficient, resistance to photobleaching, and broad excitation with narrow emission bands. However, one drawback for biological applications has been the layer of hydrophobic organic ligands often present at the surface as a result of the synthesis procedures. One solution to improve the solubility of quantum dots has been to conjugate them with a hydrophilic substance, as reported by Nie et al [2]. Chitosan is a hydrophilic, non-toxic, biocompatible and biodegradable substance and has been conjugated with quantum dots such as CdSe-ZnS [2] for bioassays and intracellular labelling. As well as luminescence, different nanoparticles present a variety of exceptional properties that render them useful in a range of bio applications, including MRI, drug delivery and cancer hyperthermia therapy. The ability to harness these various attributes in one system was reported by researchers in China, who incorporated magnetic nanoparticles, fluorescent quantum dots and pharmaceutical drugs into chitosan nanoparticles for multifunctional smart drug delivery systems [3]. More recently silicon quantum dots have emerged as a less cytotoxic alternative to CdSe for bio

  18. Nanotechnology research and development for military and industrial applications

    Science.gov (United States)

    Ruffin, Paul B.; Brantley, Christina L.; Edwards, Eugene; Roberts, J. Keith; Chew, William; Warren, Larry C.; Ashley, Paul R.; Everitt, Henry O.; Webster, Eric; Foreman, John V.; Sanghadasa, Mohan; Crutcher, Sihon H.; Temmen, Mark G.; Varadan, Vijay; Hayduke, Devlin; Wu, Pae C.; Khoury, Christopher G.; Yang, Yang; Kim, Tong-Ho; Vo-Dinh, Tuan; Brown, April S.; Callahan, John

    2011-04-01

    Researchers at the Army Aviation and Missile Research, Development, and Engineering Center (AMRDEC) have initiated multidiscipline efforts to develop nano-based structures and components for insertion into advanced missile, aviation, and autonomous air and ground systems. The objective of the research is to exploit unique phenomena for the development of novel technology to enhance warfighter capabilities and produce precision weapons. The key technology areas that the authors are exploring include nano-based microsensors, nano-energetics, nano-batteries, nano-composites, and nano-plasmonics. By integrating nano-based devices, structures, and materials into weaponry, the Army can revolutionize existing (and future) missile systems by significantly reducing the size, weight and cost. The major research thrust areas include the development of chemical sensors to detect rocket motor off-gassing and toxic industrial chemicals; the development of highly sensitive/selective, self-powered miniaturized acoustic sensors for battlefield surveillance and reconnaissance; the development of a minimum signature solid propellant with increased ballistic and physical properties that meet insensitive munitions requirements; the development of nano-structured material for higher voltage thermal batteries and higher energy density storage; the development of advanced composite materials that provide high frequency damping for inertial measurement units' packaging; and the development of metallic nanostructures for ultraviolet surface enhanced Raman spectroscopy. The current status of the overall AMRDEC Nanotechnology research efforts is disclosed in this paper. Critical technical challenges, for the various technologies, are presented. The authors' approach for overcoming technical barriers and achieving required performance is also discussed. Finally, the roadmap for each technology, as well as the overall program, is presented.

  19. Impact of nanotechnology on drug delivery.

    Science.gov (United States)

    Farokhzad, Omid C; Langer, Robert

    2009-01-27

    Nanotechnology is the engineering and manufacturing of materials at the atomic and molecular scale. In its strictest definition from the National Nanotechnology Initiative, nanotechnology refers to structures roughly in the 1-100 nm size regime in at least one dimension. Despite this size restriction, nanotechnology commonly refers to structures that are up to several hundred nanometers in size and that are developed by top-down or bottom-up engineering of individual components. Herein, we focus on the application of nanotechnology to drug delivery and highlight several areas of opportunity where current and emerging nanotechnologies could enable entirely novel classes of therapeutics.

  20. Nanotechnology between the lab and the shop floor: what are the effects on labor?

    Energy Technology Data Exchange (ETDEWEB)

    Invernizzi, Noela, E-mail: noela.invernizzi@gmail.com [Woodrow Wilson International Center for Scholars, Science and Technology Innovation Program (United States)

    2011-06-15

    Nanotechnology's effects on labor and employment have received little attention within research and debates on the social implications of nanotechnology. This article shows that, in spite of its incipient development, nanotechnology is unquestionably moving toward manufacturing, involving a still very small but increasing component of the labor force. Based on secondary data and the literature review, I compose a picture of the emerging jobs in nanotechnology and highlight four emerging trends in nanotechnology workers' skills requirements. I show that, in addition to job creation, nanotechnology diffusion is likely to pose labor market changes that may be disruptive for some categories of workers.

  1. Socio-ethical education in nanotechnology engineering programmes: a case study in Malaysia.

    Science.gov (United States)

    Balakrishnan, Balamuralithara; Er, Pek Hoon; Visvanathan, Punita

    2013-09-01

    The unique properties of nanotechnology have made nanotechnology education and its related subjects increasingly important not only for students but for mankind at large. This particular technology brings educators to work together to prepare and produce competent engineers and scientists for this field. One of the key challenges in nanotechnology engineering is to produce graduate students who are not only competent in technical knowledge but possess the necessary attitude and awareness toward the social and ethical issues related to nanotechnology. In this paper, a research model has been developed to assess Malaysian nanotechnology engineering students' attitudes and whether their perspectives have attained the necessary objectives of ethical education throughout their programme of study. The findings from this investigation show that socio ethical education has a strong influence on the students' knowledge, skills and attitudes pertaining to socio ethical issues related to nanotechnology.

  2. Nanotechnology for sustainability: what does nanotechnology offer to address complex sustainability problems?

    International Nuclear Information System (INIS)

    Wiek, Arnim; Foley, Rider W.; Guston, David H.

    2012-01-01

    Nanotechnology is widely associated with the promise of positively contributing to sustainability. However, this view often focuses on end-of-pipe applications, for instance, for water purification or energy efficiency, and relies on a narrow concept of sustainability. Approaching sustainability problems and solution options from a comprehensive and systemic perspective instead may yield quite different conclusions about the contribution of nanotechnology to sustainability. This study conceptualizes sustainability problems as complex constellations with several potential intervention points and amenable to different solution options. The study presents results from interdisciplinary workshops and literature reviews that appraise the contribution of the selected nanotechnologies to mitigate such problems. The study focuses exemplarily on the urban context to make the appraisals tangible and relevant. The solution potential of nanotechnology is explored not only for well-known urban sustainability problems such as water contamination and energy use but also for less obvious ones such as childhood obesity. Results indicate not only potentials but also limitations of nanotechnology’s contribution to sustainability and can inform anticipatory governance of nanotechnology in general, and in the urban context in particular.

  3. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives

    Science.gov (United States)

    Prasad, Ram; Bhattacharyya, Atanu; Nguyen, Quang D.

    2017-01-01

    Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture. PMID:28676790

  4. Nanotechnology in Sustainable Agriculture: Recent Developments, Challenges, and Perspectives

    Directory of Open Access Journals (Sweden)

    Ram Prasad

    2017-06-01

    Full Text Available Nanotechnology monitors a leading agricultural controlling process, especially by its miniature dimension. Additionally, many potential benefits such as enhancement of food quality and safety, reduction of agricultural inputs, enrichment of absorbing nanoscale nutrients from the soil, etc. allow the application of nanotechnology to be resonant encumbrance. Agriculture, food, and natural resources are a part of those challenges like sustainability, susceptibility, human health, and healthy life. The ambition of nanomaterials in agriculture is to reduce the amount of spread chemicals, minimize nutrient losses in fertilization and increased yield through pest and nutrient management. Nanotechnology has the prospective to improve the agriculture and food industry with novel nanotools for the controlling of rapid disease diagnostic, enhancing the capacity of plants to absorb nutrients among others. The significant interests of using nanotechnology in agriculture includes specific applications like nanofertilizers and nanopesticides to trail products and nutrients levels to increase the productivity without decontamination of soils, waters, and protection against several insect pest and microbial diseases. Nanotechnology may act as sensors for monitoring soil quality of agricultural field and thus it maintain the health of agricultural plants. This review covers the current challenges of sustainability, food security and climate change that are exploring by the researchers in the area of nanotechnology in the improvement of agriculture.

  5. Nanotechnology in medicine and relevance to dermatology: Present concepts

    Directory of Open Access Journals (Sweden)

    K H Basavaraj

    2012-01-01

    Full Text Available Nanotechnology and nanomedicine are complementary disciplines aimed at the betterment of human life. Nanotechnology is an emerging branch of science for designing tools and devices of size 1-100 nm, with unique functions at the cellular, atomic and molecular levels. The concept of using nanotechnology in medical research and clinical practice is known as nanomedicine. Today, nanotechnology and nanoscience approaches to particle design and formulations are beginning to expand the market for many drugs and forming the basis for a highly profitable niche within the industry, but some predicted benefits are hyped. Under many conditions, dermal penetration of nanoparticles may be limited for consumer products such as sunscreens, although additional studies are needed on potential photooxidation products, experimental methods and the effect of skin condition on penetration. Today, zinc oxide and titanium dioxide nanoparticles (20-30 nm are widely used in several topical skin care products such as sunscreens. Thus, in the present scenario, nanotechnology is spreading its wings to address the key problems in the field of medicine. The benefits of nanoparticles have been shown in several scientific fields, but very little is known about their potential to penetrate the skin. Hence, this review discusses in detail the applications of nanotechnology in medicine with more emphasis on the dermatologic aspects.

  6. Nanotechnology: A Policy Primer

    Science.gov (United States)

    2013-06-24

    savings in the United States of 24 million barrels of oil.4 • Universal access to clean water. Nanotechnology water desalination and filtration...CRS Report for Congress Prepared for Members and Committees of Congress Nanotechnology : A Policy Primer John F. Sargent Jr. Specialist...COVERED 00-00-2013 to 00-00-2013 4. TITLE AND SUBTITLE Nanotechnology : A Policy Primer 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT

  7. Nanotechnology Review: Molecular Electronics to Molecular Motors

    Science.gov (United States)

    Srivastava, Deepak; Saini, Subhash (Technical Monitor)

    1998-01-01

    Reviewing the status of current approaches and future projections, as already published in scientific journals and books, the talk will summarize the direction in which computational and experimental nanotechnologies are progressing. Examples of nanotechnological approaches to the concepts of design and simulation of carbon nanotube based molecular electronic and mechanical devices will be presented. The concepts of nanotube based gears and motors will be discussed. The above is a non-technical review talk which covers long term precompetitive basic research in already published material that has been presented before many US scientific meeting audiences.

  8. Connecting NSF funding to patent innovation in nanotechnology (2001-2004)

    International Nuclear Information System (INIS)

    Huang Zan; Chen Hsinchun; Li Xin; Roco, Mihail C.

    2006-01-01

    Nanotechnology research has experienced growth rapid in knowledge and innovations; it also attracted significant public funding in recent years. Several countries have recognized nanotechnology as a critical research domain that promises to revolutionize a wide range of fields of applications. In this paper, we present an analysis of the funding for nanoscale science and engineering (NSE) at the National Science Foundation (NSF) and its implications on technological innovation (number of patents) in this field from 2001 to 2004. Using a combination of basic bibliometric analysis and content visualization tools, we identify growth trends, research topic distribution, and the evolution in NSF funding and commercial patenting activities recorded at the United States Patent Office (USPTO). The patent citations are used to compare the impact of the NSF-funded research on nanotechnology development with research supported by other sources in the United States and abroad. The analysis shows that the NSF-funded researchers and patents authored by them have significantly higher impact based on patent citation measures in the four-year period than other comparison groups. The NSF-authored patent impact is growing faster with the lifetime of a patent, indicating the long-term importance of fundamental research

  9. Nanotechnology applications in thoracic surgery.

    Science.gov (United States)

    Hofferberth, Sophie C; Grinstaff, Mark W; Colson, Yolonda L

    2016-07-01

    Nanotechnology is an emerging, rapidly evolving field with the potential to significantly impact care across the full spectrum of cancer therapy. Of note, several recent nanotechnological advances show particular promise to improve outcomes for thoracic surgical patients. A variety of nanotechnologies are described that offer possible solutions to existing challenges encountered in the detection, diagnosis and treatment of lung cancer. Nanotechnology-based imaging platforms have the ability to improve the surgical care of patients with thoracic malignancies through technological advances in intraoperative tumour localization, lymph node mapping and accuracy of tumour resection. Moreover, nanotechnology is poised to revolutionize adjuvant lung cancer therapy. Common chemotherapeutic drugs, such as paclitaxel, docetaxel and doxorubicin, are being formulated using various nanotechnologies to improve drug delivery, whereas nanoparticle (NP)-based imaging technologies can monitor the tumour microenvironment and facilitate molecularly targeted lung cancer therapy. Although early nanotechnology-based delivery systems show promise, the next frontier in lung cancer therapy is the development of 'theranostic' multifunctional NPs capable of integrating diagnosis, drug monitoring, tumour targeting and controlled drug release into various unifying platforms. This article provides an overview of key existing and emerging nanotechnology platforms that may find clinical application in thoracic surgery in the near future. © The Author 2016. Published by Oxford University Press on behalf of the European Association for Cardio-Thoracic Surgery. All rights reserved.

  10. Food nanotechnology – an overview

    Directory of Open Access Journals (Sweden)

    Bhupinder S Sekhon

    2010-05-01

    Full Text Available Bhupinder S SekhonInstitute of Pharmacy and Department of Biotechnology, Punjab College of Technical Education, Jhande, Ludhiana, IndiaAbstract: Food nanotechnology is an area of emerging interest and opens up a whole universe of new possibilities for the food industry. The basic categories of nanotechnology applications and functionalities currently in the development of food packaging include: the improvement of plastic materials barriers, the incorporation of active components that can deliver functional attributes beyond those of conventional active packaging, and the sensing and signaling of relevant information. Nano food packaging materials may extend food life, improve food safety, alert consumers that food is contaminated or spoiled, repair tears in packaging, and even release preservatives to extend the life of the food in the package. Nanotechnology applications in the food industry can be utilized to detect bacteria in packaging, or produce stronger flavors and color quality, and safety by increasing the barrier properties. Nanotechnology holds great promise to provide benefits not just within food products but also around food products. In fact, nanotechnology introduces new chances for innovation in the food industry at immense speed, but uncertainty and health concerns are also emerging. EU/WE/global legislation for the regulation of nanotechnology in food are meager. Moreover, current legislation appears unsuitable to nanotechnology specificity.Keywords: nanotechnology, nanofood, food packaging, nanoparticles, nanoencapsulation

  11. 2003 annual report. Information and health, defense, energy

    International Nuclear Information System (INIS)

    2004-01-01

    This document is the 2003 annual report of the French atomic energy commission (CEA). It presents, first, the main highlights of the research activity of the CEA in three domains: the national defense (the Simulation program and the share of the technical means with the scientific community, the nuclear warheads, the nuclear propulsion, the cleansing of the Rhone valley facilities, the monitoring of treaties respect and the fight against proliferation and terrorism; the energy: the researches on nuclear wastes, the optimization of industrial nuclear systems, the innovations devoted to future nuclear systems, the new energy-related technologies, the basic energy research; the technologies devoted to information and health: micro- and nano-technologies, the software technologies, the basic research. It presents also the main research facilities opened to the community of scientific and industrial users, the training activities, partnerships, agreements and the improvements made in the general organization of the CEA: scientific evaluation, planning, optimization, manpower, international relations, communication, risk management, certification, radiation protection and environmental monitoring. The financial data are added at the end of the document. (J.S.)

  12. Nanotechnology in Dutch science cafés: Public risk perceptions contextualised.

    Science.gov (United States)

    Dijkstra, Anne M; Critchley, Christine R

    2016-01-01

    Understanding public perceptions of and attitudes to nanotechnology is important in order to understand and facilitate processes of dialogue and public participation. This research quantitatively analysed risk perceptions and attitudes of Dutch science café participants (n = 233) and compared these with members of the Dutch public (n = 378) who had not attended a café but were interested in science and technology as well. A qualitative analysis of the meetings contextualised and enriched the quantitative findings. Both groups shared similar key attitudes and were positive about nanotechnology while the Dutch café participants were even more positive about nanotechnology than the group of non-participants. The perception that nanotechnology would lead to risk applications was only predictive of attitudes for the non-participants. The qualitative analysis showed that café participants and speakers considered discussion of the risks, benefits and related issues important. Further research could investigate how science cafés can play a role in the science-society debate. © The Author(s) 2014.

  13. Current applications of nanotechnology in dentistry: a review.

    Science.gov (United States)

    Bhavikatti, Shaeesta Khaleelahmed; Bhardwaj, Smiti; Prabhuji, M L V

    2014-01-01

    With the increasing demand for advances in diagnosis and treatment modalities, nanotechnology is being considered as a groundbreaking and viable research subject. This technology, which deals with matter in nanodimensions, has widened our views of poorly understood health issues and provided novel means of diagnosis and treatment. Researchers in the field of dentistry have explored the potential of nanoparticles in existing therapeutic modalities with moderate success. The key implementations in the field of dentistry include local drug delivery agents, restorative materials, bone graft materials, and implant surface modifications. This review provides detailed insights about current developments in the field of dentistry, and discusses potential future uses of nanotechnology.

  14. Nanotechnology and accounting issues

    OpenAIRE

    Abedalqader Rababah

    2017-01-01

    Nanotechnology is a new advanced technology used in the industry. This study conducted an investigation on the literature and highlighted the accounting issues which related to the implement of nanotechnology, especially the change of cost structure and expected solutions for the increasing of indirect costs which need more accurate allocation to the unit of products. Also, this study investigated on the future expected accounting risks for using nanotechnology. Finally, this study will open ...

  15. DNA nanotechnology from the test tube to the cell.

    Science.gov (United States)

    Chen, Yuan-Jyue; Groves, Benjamin; Muscat, Richard A; Seelig, Georg

    2015-09-01

    The programmability of Watson-Crick base pairing, combined with a decrease in the cost of synthesis, has made DNA a widely used material for the assembly of molecular structures and dynamic molecular devices. Working in cell-free settings, researchers in DNA nanotechnology have been able to scale up system complexity and quantitatively characterize reaction mechanisms to an extent that is infeasible for engineered gene circuits or other cell-based technologies. However, the most intriguing applications of DNA nanotechnology - applications that best take advantage of the small size, biocompatibility and programmability of DNA-based systems - lie at the interface with biology. Here, we review recent progress in the transition of DNA nanotechnology from the test tube to the cell. We highlight key successes in the development of DNA-based imaging probes, prototypes of smart therapeutics and drug delivery systems, and explore the future challenges and opportunities for cellular DNA nanotechnology.

  16. DNA nanotechnology from the test tube to the cell

    Science.gov (United States)

    Chen, Yuan-Jyue; Groves, Benjamin; Muscat, Richard A.; Seelig, Georg

    2015-09-01

    The programmability of Watson-Crick base pairing, combined with a decrease in the cost of synthesis, has made DNA a widely used material for the assembly of molecular structures and dynamic molecular devices. Working in cell-free settings, researchers in DNA nanotechnology have been able to scale up system complexity and quantitatively characterize reaction mechanisms to an extent that is infeasible for engineered gene circuits or other cell-based technologies. However, the most intriguing applications of DNA nanotechnology -- applications that best take advantage of the small size, biocompatibility and programmability of DNA-based systems -- lie at the interface with biology. Here, we review recent progress in the transition of DNA nanotechnology from the test tube to the cell. We highlight key successes in the development of DNA-based imaging probes, prototypes of smart therapeutics and drug delivery systems, and explore the future challenges and opportunities for cellular DNA nanotechnology.

  17. Biomedical Applications of Nanotechnology and Nanomaterials

    OpenAIRE

    Vinay Bhardwaj; Ajeet Kaushik

    2017-01-01

    The spurring growth and clinical adoption of nanomaterials and nanotechnology in medicine, i.e. “nanomedicine”, to shape global health care system is a collective effort that comprises academia research, industrial drive, and political and financial support from government.[...

  18. Nanotechnology for the Prevention and Treatment of Cataract.

    Science.gov (United States)

    Cetinel, Sibel; Montemagno, Carlo

    2015-01-01

    The purpose of this article was to review recent advances in the applications of nanotechnology in cataract treatment and prevention strategies. A literature review on the use of nanotechnology for the prevention and treatment of cataract was done. Research articles about nanotechnology-based treatments and prevention technologies for cataract were searched on Web of Science, and the most recent advances were reported. Nonsteroid anti-inflammatory drugs, natural antioxidants, biologic and chemical chaperones, and chaperones such as molecules have found great application in preventing and treating cataracts. Current scientific research on new treatment strategies, which focuses on the biochemical basis of the disease, will likely result in new anticataract agents. However, none of the drug formulations will be approved for use unless efficient delivery is promised. Nanoparticle engineering together with biomimetic strategies enable the development of next-generation, more efficient, less complex, and personalized treatments. The only currently available treatment for cataracts, surgical replacement of the opacified lens, is not an easily accessible option in developing countries. New treatment strategies based on topical drugs would enable treatment to reach massive populations facing the threat of blindness and more effectively deal with the postsurgical complications. Nanotechnology plays a key role in improving drug delivery systems with enhanced controlled release, targeted delivery, and bioavailability to overcome diffusion limitations in the eye.

  19. Nanotechnology between the lab and the shop floor: what are the effects on labor?

    International Nuclear Information System (INIS)

    Invernizzi, Noela

    2011-01-01

    Nanotechnology’s effects on labor and employment have received little attention within research and debates on the social implications of nanotechnology. This article shows that, in spite of its incipient development, nanotechnology is unquestionably moving toward manufacturing, involving a still very small but increasing component of the labor force. Based on secondary data and the literature review, I compose a picture of the emerging jobs in nanotechnology and highlight four emerging trends in nanotechnology workers’ skills requirements. I show that, in addition to job creation, nanotechnology diffusion is likely to pose labor market changes that may be disruptive for some categories of workers.

  20. Methodological bases of innovative training of specialists in nanotechnology field

    Directory of Open Access Journals (Sweden)

    FIGOVSKY Oleg Lvovich

    2016-10-01

    Full Text Available The performance of innovative training system aimed at highly intellectual specialists in the area of nanotechnologies for Kazakhstan’s economy demands establishment and development of nanotechnological market in the country, teaching of innovative engineering combined with consistent research, integration of trained specialists with latest technologies and sciences at the international level. Methodological aspects of training competitive specialists for nanotechnological field are specific. The paper presents methodological principles of innovative training of specialists for science-intensive industry that were realized according to grant given by the Ministry of Education and Science of the Republic of Kazakhstan.

  1. The implications and applications of nanotechnology in dentistry: A review.

    Science.gov (United States)

    AlKahtani, Rawan N

    2018-04-01

    The emerging science of nanotechnology, especially within the dental and medical fields, sparked a research interest in their potential applications and benefits in comparison to conventional materials used. Therefore, a better understanding of the science behind nanotechnology is essential to appreciate how these materials can be utilised in our daily practice. The present paper will help the reader understand nanoscience, and the benefits and limitations of nanotechnology by addressing its ethical, social, and health implications. Additionally, nano-applications in dental diagnostics, dental prevention, and in dental materials will be addressed, with examples of commercially available products and evidence on their clinical performance.

  2. The use of microtechnology and nanotechnology in fabricating vascularized tissues.

    Science.gov (United States)

    Obregón, Raquel; Ramón-Azcón, Javier; Ahadian, Samad; Shiku, Hitoshi; Bae, Hojae; Ramalingam, Murugan; Matsue, Tomokazu

    2014-01-01

    Tissue engineering (TE) is a multidisciplinary research area that combines medicine, biology, and material science. In recent decades, microtechnology and nanotechnology have also been gradually integrated into this field and have become essential components of TE research. Tissues and complex organs in the body depend on a branched blood vessel system. One of the main objectives for TE researchers is to replicate this vessel system and obtain functional vascularized structures within engineered tissues or organs. With the help of new nanotechnology and microtechnology, significant progress has been made. Achievements include the design of nanoscale-level scaffolds with new functionalities, development of integrated and rapid nanotechnology methods for biofabrication of vascular tissues, discovery of new composite materials to direct differentiation of stem and inducible pluripotent stem cells into the vascular phenotype. Although numerous challenges to replicating vascularized tissue for clinical uses remain, the combination of these new advances has yielded new tools for producing functional vascular tissues in the near future.

  3. Nanotechnology in Military Development

    OpenAIRE

    Andrus Pedai; Igor Astrov

    2014-01-01

    Nanotechnology is the new cyber, according to several major leaders in this field. Just as cyber is entrenched across global society now, nano is poised to be major capabilities enabler of the next decades. Expert members from the National Nanotechnology Initiative (in U.S.) representing government and science disciplines say nano has great significance for the military and the general public. It is predicted that after next 15 years nanotechnology will replace information technology as the m...

  4. The National Research Council study: "Making sense of ballistic missile defense"

    Science.gov (United States)

    Wilkening, Dean A.

    2014-05-01

    This chapter explains and summarizes the main findings of a recent National Research Council study entitled Making Sense of Ballistic Missile Defense: An Assessment of Concepts and Systems for U.S. Boost-Phase Missile Defense in Comparison to Other Alternatives.

  5. Nanoparticles, nanotechnology – potential environmental and occupational hazards

    Directory of Open Access Journals (Sweden)

    Henryka Langauer-Lewowicka

    2014-06-01

    Full Text Available The paper presents some information about current state of knowledge of the risk of engineered nanoparticles and nanotechnology for the environment and human health. The nanotechnology influences all industrial and public sectors including healthcare, agriculture, transport, energy, information and communication technologies. Both, the potential benefits and risks, associated with the application of engineered nanoparticles have been widely debated in recent years. The most important problem for the future research is the evaluation of the risk associated with nanomaterials exposure.

  6. The slings and arrows of communication on nanotechnology

    International Nuclear Information System (INIS)

    Simons, Johannes; Zimmer, Rene; Vierboom, Carl; Haerlen, Ingo; Hertel, Rolf; Boel, Gaby-Fleur

    2009-01-01

    According to numerous surveys the perceived risk of nanotechnology is low and most people feel that the benefits outweigh the risks. This article provides greater insight into risk perception and concludes that the positive attitude to nanotechnology is based not on knowledge but on hope and fascination. The perceived risk is low because of a lack of vivid and frightening images of possible hazards. If news flashes were to link nanotechnology to concrete hazards or actual harm to people, attitudes might suddenly change. Risk communication faces the problem of dealing with a public at large that has little or no knowledge about the technology. As it takes time and extensive additional research to develop appropriate communication strategies and disseminate them to the relevant institutions, this exercise should be started immediately.

  7. Novel Nanotechnology Strategies for the Treatment and Prevention of HIV Infection

    Science.gov (United States)

    Tan, Jian Jun; Sun, Xiao Hui; Ma, Xue Ting; Guan, Jian Qing; Wang, Cun Xin

    2013-09-01

    It is a hard work to develop an hightly effective cure and prevention of HIV/AIDS. The widespread used of some therapy approaches such as highly active anti retroviral therapy (HAART) has improved life quality and span of infected individuals. However, some limitations of these approaches prevent them achieving further advancement. Recent research on drug delivery approaches indicates that engineered nanosystems may bring positive effect on the improvement of current antiretroviral therapy. Furthermore, the basic researches of nanotechnology- based systems which prevent HIV transmission have been started. Therefore, nanotechnology may become a potential approach in the field of HIV/AIDS treatment and prevention. This chapter reviews the latest advancement in the field of nanotechnology-based systems which improve the fields of HIV/AIDS treatment and prevention.

  8. The National Nanotechnology Initiative: Second Assessment and Recommendations of the National Nanotechnology Advisory Panel

    Science.gov (United States)

    2008-04-01

    Council on Bioethics . NNI member agencies and the National Nanotechnology Coordination Office (NNCO) also provided valuable information. The NNAP...societal aspects of nanotechnology. In consultation with the President’s Council on Bioethics , the panel concluded that at present, nanotechnology...biomarker. One is a magnetic particle probe that captures the target from complex media . The other is a gold nanoparticle probe that is specific to the

  9. Bladder tissue engineering through nanotechnology.

    Science.gov (United States)

    Harrington, Daniel A; Sharma, Arun K; Erickson, Bradley A; Cheng, Earl Y

    2008-08-01

    The field of tissue engineering has developed in phases: initially researchers searched for "inert" biomaterials to act solely as replacement structures in the body. Then, they explored biodegradable scaffolds--both naturally derived and synthetic--for the temporary support of growing tissues. Now, a third phase of tissue engineering has developed, through the subcategory of "regenerative medicine." This renewed focus toward control over tissue morphology and cell phenotype requires proportional advances in scaffold design. Discoveries in nanotechnology have driven both our understanding of cell-substrate interactions, and our ability to influence them. By operating at the size regime of proteins themselves, nanotechnology gives us the opportunity to directly speak the language of cells, through reliable, repeatable creation of nanoscale features. Understanding the synthesis of nanoscale materials, via "top-down" and "bottom-up" strategies, allows researchers to assess the capabilities and limits inherent in both techniques. Urology research as a whole, and bladder regeneration in particular, are well-positioned to benefit from such advances, since our present technology has yet to reach the end goal of functional bladder restoration. In this article, we discuss the current applications of nanoscale materials to bladder tissue engineering, and encourage researchers to explore these interdisciplinary technologies now, or risk playing catch-up in the future.

  10. National Nanotechnology Initiative Strategic Plan

    Science.gov (United States)

    2011-02-01

    Manufactured Nanomaterials, supported by NIST staff in important leadership roles and coordinated with other agencies through the Global Issues in...groups are Global Issues in Nanotechnology (GIN); Nanotechnology Environmental and Health Implications (NEHI); Nanomanufacturing, Industry Liaison...existing or new working groups in terms of focus, intended participation, and scope, as reflected in the groups’ charters. Global Issues in Nanotechnology

  11. RISKS AND SAFETY OF USING NANOTECHNOLOGIES OF FOOD PRODUCTS: A REVIEW

    Directory of Open Access Journals (Sweden)

    N. A. Gorbunova

    2016-01-01

    Full Text Available The problem of healthy and quality nutrition has a global character. The modern development of technologies including nanotechnologies allowed obtaining materials with unique properties, which began to be actively used in food industry and agriculturebut, at the same time, require thorough investigation of their properties and effects on the human body and environment. The paper demonstrates the main directions of the nanotechnology use in the agricultural production and food industry, examines the safetyproblems and risks occurred when using nanotechnologies in food industry with account for insufficient research on the influence of food nanotechnologies on human health and environmental ecology, and presents the normative and methodical base of the RussianFederation for assurance of safe consumption of food products produced from nanomaterials.

  12. NANOTECHNOLOGY: THE COMING REVOLUTION IN MODERN BIOLOGY AND MEDICINE

    OpenAIRE

    Sharma Rupali; Mukhopadhyay Sayantan; Lakshmayya; Goswami Laxmi

    2012-01-01

    Nanotechnology is a wide field that covers a variety of devices derived from engineering, physics, chemistry, and biology. The promising new field of nanotechnology, created up by rapid advances in life science and technology, gained countless new opportunities for modern medical science and disease treatment in human health care. Among the various researches in delivery of therapeutic and diagnostic agents for the diagnosis and treatment of a number of diseases. The development of nanopharma...

  13. Strategic Workshops on Cancer Nanotechnology

    Science.gov (United States)

    Nagahara, Larry A.; Lee, Jerry S H.; Molnar, Linda K.; Panaro, Nicholas J.; Farrell, Dorothy; Ptak, Krzysztof; Alper, Joseph; Grodzinski, Piotr

    2010-01-01

    Nanotechnology offers the potential for new approaches to detecting, treating and preventing cancer. To determine the current status of the cancer nanotechnology field and the optimal path forward, the National Cancer Institute’s Alliance for Nanotechnology in Cancer held three strategic workshops, covering the areas of in-vitro diagnostics and prevention, therapy and post-treatment, and in-vivo diagnosis and imaging. At each of these meetings, a wide range of experts from academia, industry, the non-profit sector, and the Federal government discussed opportunities in the field of cancer nanotechnology and barriers to its implementation. PMID:20460532

  14. JRCAT - A Nanotechnology Center in Tsukuba

    International Nuclear Information System (INIS)

    Tanaka, Kazunobu

    2000-01-01

    Joint Research Center for Atom Technology (JRCAT) and its Atom Technology Project are described. The project covers a wide range of research subjects; manipulation of atoms and molecules, formation of nanostructures of semiconductors, spin electronics and first-principles calculation of dynamic processes of atoms and molecules on solid-state surfaces. Several recent achievements on nanotechnology and nanoscience are roughly sketched

  15. PHANTOMS: Nanotechnology network for information processing and storage*

    Science.gov (United States)

    Correia, Antonio

    2001-06-01

    It is now accepted that nanotechnology is one of the key enabling technologies for sustainable and competitive growth in Europe. Nanoelectronics is certainly the branch with the most significant commercial impact and covers a huge range of interdisciplinary areas of research and development such as molecular electronics, bioelectronics, spintronics, nanoimprint, nanoscale optics, lithography, architecture and nanoprobes. It is also accepted that a significant investment will be required to ensure Europe's competitiveness in nanotechnology. At this stage it is impossible to predict the exact course that the nanoelectronics revolution will take and, therefore, its effect on our daily lives. We can, however, be resonably sure that nanotechnology will have a profound impact on the future development of many commercial sectors. The greatest impact is likely to be in the electronics sector, where the demand for technologies permitting faster processing of data at lower costs will remain undiminished. In order to avoid European industry and R & D being left behind the United States and Japan in this fast emerging nanoelectronics field, the PHANTOMS Network Scheme will promote European science and research through a pluri-national networking action, put together research capacities present in the various European regions and stimulate commercial nanoelectronic applications.

  16. Emerging applications of radiation in nanotechnology. Proceedings of a consultants meeting

    International Nuclear Information System (INIS)

    2005-03-01

    Nanotechnology is one of the fastest growing areas in science and engineering, for synthesis of nanoparticles and nanocomposites with improved characteristics. Radiation-based technology using X rays, e-beams and ion beams is the key to a variety of different approaches to micropatterning. Radiation processed nanomaterials with high abrasion and high scratch resistance or biomedical usage (controlled release drug delivery systems) are of increasing importance. The ability to fabricate structures with nanometric precision is fundamental to any exploitation of nanotechnology. The report covers selected developments in nanotechnology and on this basis presents the potential role of radiation applications in the field. It is the first publication on radiation applications in nanotechnology and therefore will play an important role in stimulating further research on the subject. The main topics reported and discussed are recent trends in nanotechnology, fundamental issues in the effects of radiation on nanostructures, fabrication of nanostructures using radiation, technological applications including electron, ion beam and X ray lithography, polymeric nanostructures and nanoparticle reinforced polymers

  17. The future of nanotechnology

    International Nuclear Information System (INIS)

    Jones, Richard

    2005-01-01

    Visions of self-replicating nanomachines that could devour the Earth in a 'grey goo' are probably wide of the mark, but 'radical nanotechnology' could still deliver great benefits to society. The question is how best to achieve this goal. What we could call 'incremental nanotechnology' involves improving the properties of many materials by controlling their nano-scale structure. Plastics, for example, can be reinforced using nano-scale clay particles, making them stronger, stiffer and more chemically resistant. Cosmetics can be formulated such that the oil phase is much more finely dispersed, thereby improving the feel of the product on the skin. These are the sorts of commercially available products that are said to be based on nanotechnology. The science underlying them is sophisticated and the products are often big improvements on what has gone before. However, they do not really represent a decisive break from the past. In 'evolutionary nanotechnology' we move beyond simple materials that have been redesigned at the nano-scale to actual nano-scale devices that do something interesting. Such devices can, for example, sense the environment, process information or convert energy from one form to another. They include nano-scale sensors, which exploit the huge surface area of carbon nanotubes and other nano-structured materials to detect environmental contaminants or biochemicals. Other products of evolutionary nanotechnology are semiconductor nanostructures - such as quantum dots and quantum wells - that are being used to build better solid-state lasers. Scientists are also developing ever more sophisticated ways of encapsulating molecules and delivering them on demand for targeted drug delivery. Taken together, incremental and evolutionary nanotechnology are driving the current excitement in industry and academia for all things nano-scale. The biggest steps are currently being made in evolutionary nanotechnology, more and more products of which should appear on

  18. Nanotechnology Environmental and Health Implications (NEHI) | Nano

    Science.gov (United States)

    Skip main navigation Nano.gov Nanotechnology 101 What It Is and How It Works What is Nanotechnology What's So Special about the Nanoscale? NNI Accomplishments NNI Accomplishments Archive Nanotechnology Timeline Frequently Asked Questions Glossary Nanotechnology and You Benefits and Applications Networks and

  19. Nanotechnology in cancer treatment

    Science.gov (United States)

    Mironidou-Tzouveleki, Maria; Imprialos, Konstantinos; Kintsakis, Athanasios

    2011-10-01

    The purpose of this paper is to analyze the current evolutions on nanotechnology and its applications on cancer theragnostics.Rapid advances and emerging technologies in nanotechnology are having a profound impact on cancer treatment. Applications of nanotechnology, which include liposomes, nanoparticles, polymeric micelles, dendrimers, nanocantilever, carbon nanotubes and quantum dots have significantly revolutionized cancer theragnostics. From a pharmaceutical viewpoint, it is critical that the biodistribution of active agents has to be controlled as much as possible. This aspect is vital in order to assure the proper efficiency and safety of the anticancer agents. These biocompatible nanocomposites provide specific biochemical interactions with receptors expressed on the surface of cancer cells. With passive or active targeting strategies, an increased intracellular concentration of drugs can be achieved in cancer cells , while normal cells are being protected from the drug simultaneously. Thus, nanotechnology restricts the extent of the adverse effects of the anticancer therapy. Treatment for metastatic breast cancer, sarcoma in AIDS patients, ovarian and lung cancer is already on market or under final phases of many clinical trials, showing remarkable results. As nanotechnology is perfected, side effects due to normal cell damage will decrease, leading to better results and lengthening patient's survival.

  20. The Legitimation of Novel Technologies: The Case of Nanotechnology

    Science.gov (United States)

    Thyroff, Anastasia E.

    Nanotechnology is the control, manipulation, and application of matter on an atomic and molecular level. The technology is complex and confusing to consumers, and its long-term safety and effect on the human body, as well as the environment, are unknown. However, for the past decade, nanotechnology has been used to develop consumer products and food with novel and attractive attributes. Since nanotechnology is still not well known, it is not legitimized; that is, it has not been deemed safe and accepted by society. However, the market for nanotechnology is in the legitimation process. It will take an entire network of key stakeholders playing a specific roles for nanotechnology to legitimize. Specifically, each key stakeholder will align with a certain cultural discourse to frame nanotechnology in a particular way that complements their values. In Essay 1, I follow previous market system dynamic's literature and combine Actor Network Theory (ANT), Foucault's Discourse on Power and Goffman's Frame analysis to theoretically explore what the actor network for nanotechnology looks like. Four dominate frames are identified: 1) Advancement (i.e., government), 2) Management (i.e., industry), 3) Development (i.e., academia/scientists), and 4) Informant (i.e., NGO). Essay 2 empirically explores each actor's perspective on the nanotechnology network through a total of 24 interviews. A hermeneutic approach is used to analyze the 208 page text and themes describing each actor's role from a self and other's perspective are discussed. Additionally, three overarching themes (i.e., contradiction, constance, and cutoff) emerge; these themes describe the degree of similarity in how actors view their role in the nanotechnology network compared to how other actor's view that actor's role. In Essay 3, I bring critical theory into market system's research to better contextualize market formation theories. Specifically, I discuss how critical theory can be used to supplement ANT. I

  1. Hans Jonas: The Principle Responsability, Limits of Research (? and Nanotechnologies

    Directory of Open Access Journals (Sweden)

    Patricia Santos Martins

    2015-12-01

    Full Text Available The study intends to carry out the reading of the responsibility principle and the new ethical model narrated by Hans Jones to nanotechnology context. Study the historical context of political and economic development and the interrelations with technological development, visiting the transformation of homo sapiens - homo faber - homo tecnologicus. Check if operating at the nanoscale, comprised in the billionth of meter, has elements that may indicate possible damage that might compromise or offer risks to the exercise of rights for future generations. Therefore, we intend to find points of convergence between the management of the potential risks of nanotechnologies and the new ethical model proposed by Hans Jonas in his work "The principle responsibility test an ethics for technological civilization". The study sheds bases in the work cited as theoretical foundation for the study and is based on the notion of risk proposed by Niklas Luhmann, and uses the method of literature refers to these works as well as published articles involving the topics covered.

  2. [Nanotechnology--possibilities and hazards].

    Science.gov (United States)

    Snopczyński, Tomasz; Góralczyk, Katarzyna; Czaja, Katarzyna; Struciński, Paweł; Hernik, Agnieszka; Korcz, Wojciech; Ludwicki, Jan K

    2009-01-01

    Nanoparticles are the objects with at least one demension smaller than 100 nm. Nanoparticles exist in nature or can be produced by human activities, intentionally or unintentionally. Nanotechnology is an emerging science involving manipulation of matter at nanometer scale. Nanoparticles find numerous applications in many fields, starting with electronics, throught medicine, cosmetology, and ending with automotive industry and construction industry. Depending on the use of nanoparticles, the routes of exposure may be inhalation, dermal, oral or parenteral. Nanoparticles have a greater active surface area per unit mass than larger particles. Together with an increase of surface area, toxicity and potential health effects may also increase. Toxicity of nanoparticles depend on many factors, for example: size, shape, chemical composition, solubility, surface area and surface charge. Risk assessment related to human health, should be integrated at all stages of the life cycle of the nanotechnology, starting at the point of conception and including research and development, manufacturing, distribution, use and disposal or recycling.

  3. [Nanotechnology, nanomedicine and nanopharmacology].

    Science.gov (United States)

    Fernández, Pedro Lorenzo

    2007-01-01

    Based on Nanotechnology methods, Nanomedicine and Nanotecnology will obtain significant advances in areas such as Diagnostic, Regenerative Medicine and pharmacological Therapeutics. With nanotechnology-based drug delivery systems,important improvement on pharmacokinetics of drugs will take place, due to increased solubility, protection against decrease in drug effects due to excessive metabolism and subsequent increase of bioavailability. Improvement on pharmacodynamic parameters will occur also due to increased drug concentration in target tissues. Also the use of Nanotechnology in the modern pharmacology will serve for a more accurate control of doses, which will decrease significantly drug toxicity.

  4. The social and economic challenges of nanotechnology

    International Nuclear Information System (INIS)

    Wood, Stephen; Jones, Richard; Geldart, Alison

    2003-01-01

    . While there is some debate about whether this vision is realisable, amongst those who accept it the discussion focuses on rather extreme outcomes, both utopian and dystopian. There is also an emerging debate amongst those more focused on short-term outcomes. This pits those who believe that the rapid growth of nanotechnotogy will have strongly positive economic benefits, and those who on the grounds of environmentalism and social equity seek to slow or halt its development. One immediate issue that is growing in prominence is whether existing regulatory regimes are robust enough to deal with any special qualities that nanostructured materials may have, or whether new solutions are required. These diverging views on nanotechnotogy and the increasingly public debate, involving civil society, non-governmental organisations and the media, have led to concerns that there will be a backlash against nanotechnology akin to that over genetic modification. In response the call is for social science to take a role focused on promoting social awareness and acceptance of nanotechnology. The agenda for the social sciences needs to be broader than the public-science interface. Three themes stand out as important: the governance of technological change; social learning and the evaluation of risk and opportunity under uncertainty; the role of new technology in ameliorating or accentuating inequity and economic divides. Tackling these themes will involve a range of social science issues, many of which are topical independently of nanotechnology, for instance technology transfer, ageing, the commercialisation of science, and change management. Nonetheless there may well be issues unique to nanotechnology, arising from its inherent interdisciplinarity and its capacity to affect the human-machine-nature interface. A programme of research designed to address the diverse social science issues should thus both build on existing research and develop fresh avenues, particularly through

  5. The social and economic challenges of nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Wood, Stephen; Jones, Richard; Geldart, Alison

    2003-07-01

    . While there is some debate about whether this vision is realisable, amongst those who accept it the discussion focuses on rather extreme outcomes, both utopian and dystopian. There is also an emerging debate amongst those more focused on short-term outcomes. This pits those who believe that the rapid growth of nanotechnotogy will have strongly positive economic benefits, and those who on the grounds of environmentalism and social equity seek to slow or halt its development. One immediate issue that is growing in prominence is whether existing regulatory regimes are robust enough to deal with any special qualities that nanostructured materials may have, or whether new solutions are required. These diverging views on nanotechnotogy and the increasingly public debate, involving civil society, non-governmental organisations and the media, have led to concerns that there will be a backlash against nanotechnology akin to that over genetic modification. In response the call is for social science to take a role focused on promoting social awareness and acceptance of nanotechnology. The agenda for the social sciences needs to be broader than the public-science interface. Three themes stand out as important: the governance of technological change; social learning and the evaluation of risk and opportunity under uncertainty; the role of new technology in ameliorating or accentuating inequity and economic divides. Tackling these themes will involve a range of social science issues, many of which are topical independently of nanotechnology, for instance technology transfer, ageing, the commercialisation of science, and change management. Nonetheless there may well be issues unique to nanotechnology, arising from its inherent interdisciplinarity and its capacity to affect the human-machine-nature interface. A programme of research designed to address the diverse social science issues should thus both build on existing research and develop fresh avenues, particularly through

  6. Nanotechnologies for sustainable construction

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Andersen, Maj Munch

    2009-01-01

    This chapter aims to highlight key aspects and recent trends in the development and application of nanotechnology to facilitate sustainable construction, use and demolition of buildings and infrastructure structures, ‘nanoconstruction’. Nanotechnology is not a technology but a very diverse...

  7. Scope of Nanotechnology in Crop Science: Profit or Loss

    OpenAIRE

    Anita Singh; Shikha Singh; Sheo Mohan Prasad

    2016-01-01

    Nanotechnology is an interdisciplinary area of science and it has encountered immense progress due to its applications in recent decades. The term "Nanotechnology" is the study of manipulating matter up to atomic and molecular scale. It is an exciting field of research and there is growing interest in its application for biological and environmental safety. The particles having a size less than 100 nm diameters are called nanoparticles with different size-dependent properties compared to its ...

  8. Application of Radiation in Nanotechnology

    International Nuclear Information System (INIS)

    Chmielewska, D.K.; Chmielewski, A.G.; Michalik, J.

    2005-01-01

    The Nanotechnology is one of the fastest growing new areas in science and engineering. The subject arises from the convergence of electronics, physics, chemistry, biology and materials science to create new functional systems of nano-scale dimensions. Nanotechnology deals with science and technology associated with dimensions in the range of 0.1 to 100 nm. The ability to fabricate structures with nano-metric precision is of fundamental importance to any exploitation of nanotechnology. Nanotechnology is predicted to have a major impact on the manufacturing technology in 20 to 30 years from now. The ability to fabricate structures with nano-metric precision is of fundamental importance to any exploitation of nanotechnology. The potential of combining radiation effects with nano-materials has been recognized from the very early stages of nano-science research. In the many uses of nano- structures, and nano-particles in particular, from catalysis, bio-sensing, nano-electronics, magnetic applications including separations, mechano-chemical conversion, and to molecular computing, radiation can play a significant role. The use of radiation, UV beam, electron-beam, or focused ion-beam is clearly central to the fabrication of the nanostructured systems. The relative advantages and deficiencies of each of them are still to be clarified as the technology advances. Whether UV or electron beam will lead to the highest resolution is still debated but it is clear that these techniques offer unmatched reproducibility and very narrow size distribution. Other studies concern formation and synthesis of nano-particles and nano-composites. Radiation synthesis of copper, silver and other metals' nanoparticles is studied. Metal and salt-polymer composites are synthesized by this method. Metal sulphide semiconductors of nano-metric matrices are prepared using gamma irradiation of a suitable solution of monomer, sulphur and metal sources. These products find application in photoluminescent

  9. An intelligent approach to nanotechnology

    Science.gov (United States)

    Demming, Anna

    2013-11-01

    Control counts for little without a guiding principle. Whether manipulating atoms with a scanning probe or controlling carrier concentration in thin film deposition, intelligent intervention is required to steer the process from aimless precision towards a finely optimized design. In this issue G M Sacha and P Varona describe how artificial intelligence approaches can help towards modelling and simulating nanosystems, increasing our grasp of the nuances of these systems and how to optimize them for specific applications [1]. More than a labour-saving technique their review also suggests how genetic algorithms and artificial neural networks can supersede existing capabilities to tackle some of the challenges in moving a range of nanotechnologies forward. Research has made giant strides in determining not just what system parameters enhance performance but how. Nanoparticle synthesis is a typical example, where the field has shifted from simple synthesis and observation to unearthing insights as to dominating factors that can be identified and enlisted to control the morphological and chemical properties of synthesized products. One example is the neat study on reaction media viscosity for silver nanocrystal synthesis, where Park, Im and Park in Korea demonstrated a level of size control that had previously proved hard to achieve [2]. Silver nanoparticles have many potential applications including catalysis [3], sensing [4] and surface enhanced Raman scattering [5]. In their study, Park and colleagues obtain size-controlled 30 nm silver nanocrystals in a viscosity controlled medium of 1,5-pentanediol and demonstrate their use as sacrificial cores for the fabrication of a low-refractive filler. Another nanomaterial that has barely seen an ebb in research activity over the past two decades is ZnO, with a legion of reports detailing how to produce ZnO in different nanoscale forms from rods [6], belts [7] and flowers [8] to highly ordered arrays of vertically aligned

  10. Nanotechnology Safety Self-Study

    Energy Technology Data Exchange (ETDEWEB)

    Grogin, Phillip W. [Los Alamos National Laboratory

    2016-03-29

    Nanoparticles are near-atomic scale structures between 1 and 100 nanometers (one billionth of a meter). Engineered nanoparticles are intentionally created and are used in research and development at Sandia National Laboratories (SNL) and Los Alamos National Laboratory (LANL). This course, Nanotechnology Safety Self-Study, presents an overview of the hazards, controls, and uncertainties associated with the use of unbound engineered nanoscale particles (UNP) in a laboratory environment.

  11. Nanotechnology and society

    International Nuclear Information System (INIS)

    Keller, Kenneth H.

    2007-01-01

    Past experience has shown that the successful introduction of a new technology requires careful attention to the interactions between the technology and society. These interactions are bi-directional: on the one hand, technology changes and challenges social patterns and, on the other hand, the governance structures and values of the society affect progress in developing the technology. Nanotechnology is likely to be particularly affected by these kinds of interactions because of its great promise and the unusually early public attention it has received. Moreover, it represents a new kind of experiment in packaging a rather wide range of fundamental research activities under a single 'mission-like' umbrella. Although this gives it more impetus as a field, it sets a higher bar for showing successful applications early on and because it links disparate fields, regulatory regimes reasonable for one kind of nanotechnology development may be inappropriately extended to others. There are a number of lessons to be gleaned from experience with the introduction of other technologies, which offer guidance with respect to what pitfalls to avoid and what issues to be sensitive to as we move forward with the development of nanotechnology applications. The problems encountered by nuclear power point out the dangers of over-promising and the role the need for the technology plays in ameliorating fears of risk. The public reaction to biomedical engineering and biotechnology highlights, in addition, the cultural factors that come into play when technologies raise questions about what is 'natural' and what is 'foreign' and what conceptions are involved in defining 'personhood'. In all cases, it has been clear that a main task for those introducing new technology is building public trust-in the safety of the technologies and the integrity of those introducing it. The advocates of nanotechnology have already shown that they are generally aware of the need to consider the public

  12. Overview of Nanotechnology in Road Engineering

    OpenAIRE

    Arpit Singh; Dr. Sangita; Arpan Singh

    2015-01-01

    Nanotechnology has changed our vision, expectations, and abilities to control the material world. This paper examines and document applicable nanotechnology based product that can be improve the overall competitiveness of the Road engineering industry. In this review, nanotechnology is applying in road sector.

  13. PREFACE: Rusnanotech 2010 International Forum on Nanotechnology

    Science.gov (United States)

    Kazaryan, Konstantin

    2011-03-01

    D (Moscow State University).Section "Nanotechnology in medicine" - Denis Logunov, PhD (Gamaleya Research Institute of Epidemiology and Microbiology, RAMS).Section "Nanobiotechnology" - Member of Russian Academy of Sciences, Professor Konstantin Skryabin (Bioengineering Center, RAS), Member of Russian Academy of Sciences, Professor Rem Petrov (RAS), Corresponding Member of Russian Academy of Sciences, Professor Sergey Deev (Institute of Bioorganic Chemistry).

  14. Nanotechnology based diagnostics for neurological disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kurek, Nicholas S; Chandra, Sathees B., E-mail: schandra@roosevelt.edu [Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL (United States)

    2012-07-01

    Nanotechnology involves probing and manipulating matter at the molecular level. Nanotechnology based molecular diagnostics have the potential to alleviate the suffering caused by many diseases, including neurological disorders, due to the unique properties of nanomaterials. Most neurological illnesses are multifactorial conditions and many of these are also classified as neurobehavioral disorders. Alzheimer's disease, Parkinson's disease, Huntington disease, cerebral ischemia, epilepsy, schizophrenia and autism spectrum disorders like Rett syndrome are some examples of neurological disorders that could be better treated, diagnosed, prevented and possibly cured using nanotechnology. In order to improve the quality of life for disease afflicted people, a wide range of nanomaterials that include gold and silica nanoparticles, quantum dots and DNA along with countless other forms of nanotechnology have been investigated regarding their usefulness in advancing molecular diagnostics. Other small scaled materials like viruses and proteins also have potential for use as molecular diagnostic tools. Information obtained from nanotechnology based diagnostics can be stored and manipulated using bioinformatics software. More advanced nanotechnology based diagnostic procedures for the acquisition of even greater proteomic and genomic knowledge can then be developed along with better ways to fight various diseases. Nanotechnology also has numerous applications besides those related to biotechnology and medicine. In this article, we will discuss and analyze many novel nanotechnology based diagnostic techniques at our disposal today. (author)

  15. Nanotechnology based diagnostics for neurological disorders

    Energy Technology Data Exchange (ETDEWEB)

    Kurek, Nicholas S.; Chandra, Sathees B., E-mail: schandra@roosevelt.edu [Department of Biological, Chemical and Physical Sciences, Roosevelt University, Chicago, IL (United States)

    2012-07-01

    Nanotechnology involves probing and manipulating matter at the molecular level. Nanotechnology based molecular diagnostics have the potential to alleviate the suffering caused by many diseases, including neurological disorders, due to the unique properties of nanomaterials. Most neurological illnesses are multifactorial conditions and many of these are also classified as neurobehavioral disorders. Alzheimer's disease, Parkinson's disease, Huntington disease, cerebral ischemia, epilepsy, schizophrenia and autism spectrum disorders like Rett syndrome are some examples of neurological disorders that could be better treated, diagnosed, prevented and possibly cured using nanotechnology. In order to improve the quality of life for disease afflicted people, a wide range of nanomaterials that include gold and silica nanoparticles, quantum dots and DNA along with countless other forms of nanotechnology have been investigated regarding their usefulness in advancing molecular diagnostics. Other small scaled materials like viruses and proteins also have potential for use as molecular diagnostic tools. Information obtained from nanotechnology based diagnostics can be stored and manipulated using bioinformatics software. More advanced nanotechnology based diagnostic procedures for the acquisition of even greater proteomic and genomic knowledge can then be developed along with better ways to fight various diseases. Nanotechnology also has numerous applications besides those related to biotechnology and medicine. In this article, we will discuss and analyze many novel nanotechnology based diagnostic techniques at our disposal today. (author)

  16. Nanotechnology based diagnostics for neurological disorders

    International Nuclear Information System (INIS)

    Kurek, Nicholas S.; Chandra, Sathees B.

    2012-01-01

    Nanotechnology involves probing and manipulating matter at the molecular level. Nanotechnology based molecular diagnostics have the potential to alleviate the suffering caused by many diseases, including neurological disorders, due to the unique properties of nanomaterials. Most neurological illnesses are multifactorial conditions and many of these are also classified as neurobehavioral disorders. Alzheimer's disease, Parkinson's disease, Huntington disease, cerebral ischemia, epilepsy, schizophrenia and autism spectrum disorders like Rett syndrome are some examples of neurological disorders that could be better treated, diagnosed, prevented and possibly cured using nanotechnology. In order to improve the quality of life for disease afflicted people, a wide range of nanomaterials that include gold and silica nanoparticles, quantum dots and DNA along with countless other forms of nanotechnology have been investigated regarding their usefulness in advancing molecular diagnostics. Other small scaled materials like viruses and proteins also have potential for use as molecular diagnostic tools. Information obtained from nanotechnology based diagnostics can be stored and manipulated using bioinformatics software. More advanced nanotechnology based diagnostic procedures for the acquisition of even greater proteomic and genomic knowledge can then be developed along with better ways to fight various diseases. Nanotechnology also has numerous applications besides those related to biotechnology and medicine. In this article, we will discuss and analyze many novel nanotechnology based diagnostic techniques at our disposal today. (author)

  17. Expert opinion on nanotechnology: risks, benefits, and regulation

    Energy Technology Data Exchange (ETDEWEB)

    Besley, John C., E-mail: jbesley@sc.edu; Kramer, Victoria L. [University of South Carolina, School of Journalism and Mass Communications (United States); Priest, Susanna H. [University of Nevada, Hank Greenspun School of Journalism and Media Studies (United States)

    2008-04-15

    A survey of American (US) nanotechnology researchers (N = 177) suggests a diversity of views about what areas are most important to the burgeoning field, as well as perceptions about the overall benefits and risks of such research. On average, respondents saw a range of technologies as key and viewed public health and environmental issues as areas where both risks and the need for regulation are greatest. These areas were also where respondents said current regulations were least adequate. Factor analyses of the survey questions suggest that, when considering both risks and regulations, respondents make a distinction between health and environmental risks, and what might be termed 'social risks' (e.g., invasion of privacy, use of nanotechnology in weapons, and economic impacts)

  18. Expert opinion on nanotechnology: risks, benefits, and regulation

    International Nuclear Information System (INIS)

    Besley, John C.; Kramer, Victoria L.; Priest, Susanna H.

    2008-01-01

    A survey of American (US) nanotechnology researchers (N = 177) suggests a diversity of views about what areas are most important to the burgeoning field, as well as perceptions about the overall benefits and risks of such research. On average, respondents saw a range of technologies as key and viewed public health and environmental issues as areas where both risks and the need for regulation are greatest. These areas were also where respondents said current regulations were least adequate. Factor analyses of the survey questions suggest that, when considering both risks and regulations, respondents make a distinction between health and environmental risks, and what might be termed 'social risks' (e.g., invasion of privacy, use of nanotechnology in weapons, and economic impacts)

  19. Nanotechnology Cancer Therapy and Treatment

    Science.gov (United States)

    Nanotechnology offers the means to target therapies directly and selectively to cancerous cells and neoplasms. With these tools, clinicians can safely and effectively deliver chemotherapy, radiotherapy, and the next generation of immuno- and gene therapies to the tumor. Futhermore, surgical resection of tumors can be guided and enhanced by way of nanotechnology tools. Find out how nanotechnology will offer the next generation of our therapeutic arsenal to the patient.

  20. NANOTECHNOLOGY AND SPORT

    Directory of Open Access Journals (Sweden)

    Zoran Mašić

    2010-03-01

    Full Text Available We can say that sports are continuously evolving. To improve the quality of this work, changes are being made in all of these segments: development and selection of athletes, the improvement of technology for preparation and performance tactics, training methods for relaxation. On the other hand these are followed by rule changes, modern sports facilities, as well as legal regulations. One direction in the improvement of sports results is an attempt at rational spending of existing resources for athletes, regardless of whether in team or individual sports. Nanotechnology is also contributioning toward this direction. This paper points out the appearance of nanotechnology, its essence, i.e., the way it may effect the development of sports. Of course, it also points to the potential risk of applying nanotechnology to sports.

  1. Application of Nanotechnology-Based Thermal Insulation Materials in Building Construction

    Directory of Open Access Journals (Sweden)

    Bozsaky David

    2016-03-01

    Full Text Available Nanotechnology-based materials have previously been used by space research, pharmaceuticals and electronics, but in the last decade several nanotechnology-based thermal insulation materials have appeared in building industry. Nowadays they only feature in a narrow range of practice, but they offer many potential applications. These options are unknown to most architects, who may simply be afraid of these materials owing to the incomplete and often contradictory special literature. Therefore, they are distrustful and prefer to apply the usual and conventional technologies. This article is intended to provide basic information about nanotechnology-based thermal insulation materials for designers. It describes their most important material properties, functional principles, applications, and potential usage options in building construction.

  2. Nanotechnology Strategies To Advance Outcomes in Clinical Cancer Care.

    Science.gov (United States)

    Hartshorn, Christopher M; Bradbury, Michelle S; Lanza, Gregory M; Nel, Andre E; Rao, Jianghong; Wang, Andrew Z; Wiesner, Ulrich B; Yang, Lily; Grodzinski, Piotr

    2018-01-23

    Ongoing research into the application of nanotechnology for cancer treatment and diagnosis has demonstrated its advantages within contemporary oncology as well as its intrinsic limitations. The National Cancer Institute publishes the Cancer Nanotechnology Plan every 5 years since 2005. The most recent iteration helped codify the ongoing basic and translational efforts of the field and displayed its breadth with several evolving areas. From merely a technological perspective, this field has seen tremendous growth and success. However, an incomplete understanding of human cancer biology persists relative to the application of nanoscale materials within contemporary oncology. As such, this review presents several evolving areas in cancer nanotechnology in order to identify key clinical and biological challenges that need to be addressed to improve patient outcomes. From this clinical perspective, a sampling of the nano-enabled solutions attempting to overcome barriers faced by traditional therapeutics and diagnostics in the clinical setting are discussed. Finally, a strategic outlook of the future is discussed to highlight the need for next-generation cancer nanotechnology tools designed to address critical gaps in clinical cancer care.

  3. Nanotechnology: current uses and future applications in the food industry.

    Science.gov (United States)

    Thiruvengadam, Muthu; Rajakumar, Govindasamy; Chung, Ill-Min

    2018-01-01

    Recent advances in nanoscience and nanotechnology intend new and innovative applications in the food industry. Nanotechnology exposed to be an efficient method in many fields, particularly the food industry and the area of functional foods. Though as is the circumstance with the growth of any novel food processing technology, food packaging material, or food ingredient, additional studies are needed to demonstrate the potential benefits of nanotechnologies and engineered nanomaterials designed for use in foods without adverse health effects. Nanoemulsions display numerous advantages over conventional emulsions due to the small droplets size they contain: high optical clarity, excellent physical constancy against gravitational partition and droplet accumulation, and improved bioavailability of encapsulated materials, which make them suitable for food applications. Nano-encapsulation is the most significant favorable technologies having the possibility to ensnare bioactive chemicals. This review highlights the applications of current nanotechnology research in food technology and agriculture, including nanoemulsion, nanocomposites, nanosensors, nano-encapsulation, food packaging, and propose future developments in the developing field of agrifood nanotechnology. Also, an overview of nanostructured materials, and their current applications and future perspectives in food science are also presented.

  4. Nanotechnology and the millennium development goals: water, energy, and agri-food

    International Nuclear Information System (INIS)

    Cozzens, Susan; Cortes, Rodrigo; Soumonni, Ogundiran; Woodson, Thomas

    2013-01-01

    The claim has often been made that nanotechnologies will contribute to the global development process. In 2005, a careful study identified specific areas where nanotechnologies could help developing countries achieve the millennium development goals. This article examines whether the research agenda of nanotechnology in the intervening period, as reflected in publications, has followed the directions identified at that time, in three key areas, water, energy, and agri-food. We find that the research community has taken up the broad directions indicated in the earlier study, although not so often the detailed applications of specific nanoscale techniques or phenomena. However, the impact on global development is unclear, both because the same applications can be useful in both developed and developing countries, and because the conditions in developing countries may not match the socio-technical requirements of the applications

  5. Nanotechnology for telecommunications

    CERN Document Server

    Anwar, Sohail; Qazi, Salahuddin; Ilyas, Mohammad

    2010-01-01

    With its unique promise to revolutionize science, engineering, technology, and other fields, nanotechnology continues to profoundly impact associated materials, components, and systems, particularly those used in telecommunications. These developments are leading to easier convergence of related technologies, massive storage data, compact storage devices, and higher-performance computing. Nanotechnology for Telecommunications presents vital technical scientific information to help readers grasp issues and challenges associated with nanoscale telecommunication system development and commerciali

  6. Accelerating nano-technological innovation in the Danish construction industry

    DEFF Research Database (Denmark)

    Koch, Christian; Stissing Jensen, Jens

    2007-01-01

    . The institutional features of the system are furthermore poorly equipped at identifying potentials within high-tech areas. In order to exploit the potentials of nano-technology it is thus argued that an alternative TIS needs to be established. Initiatives should identify and support "incubation rooms" or marked......  By viewing the construction industry as a technological innovation system (TIS) this paper discusses possible initiatives to accelerate nanotechnological innovations. The point of departure is a recent report on the application of nano-technology in the Danish construction industry, which...... concludes that opportunities are generally poorly appreciated by the industry and research communities alike. It is found that the construction industry is characterised by low-tech trajectories where dedicated innovation networks are often too fragile for innovations to stabilize and diffuse...

  7. 2nd international conference on advanced nanomaterials and nanotechnology

    CERN Document Server

    Goswami, D; Perumal, A

    2013-01-01

    Nanoscale science and technology have occupied centre stage globally in modern scientific research and discourses in the early twenty first century. The enabling nature of the technology makes it important in modern electronics, computing, materials, healthcare, energy and the environment. This volume contains selected articles presented (as Invited/Oral/Poster presentations) at the 2nd international conference on advanced materials and nanotechnology (ICANN-2011) held recently at the Indian Institute of Technology Guwahati, during Dec 8-10, 2011. The list of topics covered in this proceedings include: Synthesis and self assembly of nanomaterials Nanoscale characterisation Nanophotonics & Nanoelectronics Nanobiotechnology Nanocomposites  F   Nanomagnetism Nanomaterials for Enery Computational Nanotechnology Commercialization of Nanotechnology The conference was represented by around 400 participants from several countries including delegates invited from USA, Germany, Japan, UK, Taiwan, Italy, Singapor...

  8. 3rd International Conference on Nanotechnologies and Biomedical Engineering

    CERN Document Server

    Tiginyanu, Ion

    2016-01-01

    This volume presents the proceedings of the 3rd International Conference on Nanotechnologies and Biomedical Engineering which was held on September 23-26, 2015 in Chisinau, Republic of Moldova. ICNBME-2015 continues the series of International Conferences in the field of nanotechnologies and biomedical engineering. It aims at bringing together scientists and engineers dealing with fundamental and applied research for reporting on the latest theoretical developments and applications involved in the fields. Topics include Nanotechnologies and nanomaterials Plasmonics and metamaterials Bio-micro/nano technologies Biomaterials Biosensors and sensors systems Biomedical instrumentation Biomedical signal processing Biomedical imaging and image processing Molecular, cellular and tissue engineering Clinical engineering, health technology management and assessment; Health informatics, e-health and telemedicine Biomedical engineering education Nuclear and radiation safety and security Innovations and technology transfer...

  9. Articulation: how societal goals matter in nanotechnology

    NARCIS (Netherlands)

    Bos, C.|info:eu-repo/dai/nl/338018387

    2016-01-01

    Science policies try to steer scientists to conduct societally relevant research. This societal relevance is often expressed in large societal goals, such as addressing sustainability or helping with the problems that an ageing society might bring. Emerging technologies, like nanotechnology, are

  10. Small-world network effects on innovation: evidences from nanotechnology patenting

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Yuan [University of Maryland, Robert H. Smith School of Business (United States); Guan, JianCheng, E-mail: guanjianch@ucas.ac.cn [University of Chinese Academy of Sciences, School of Economics and Management (China)

    2016-11-15

    This paper explores the effects of collaboration network on innovation in nanotechnology. We extend the idea of small-world to the heterogeneous network positions of actors by capturing the variation of how closely a given actor is connected to others in the same network and how clustered its neighbors are. We test the effects of small-world network in the context of nanotechnology patenting in China. Empirical results reveal that small-worldness, or the co-existence of high clustering and low path length in the network, displays inverse U-shape relationships with future patent output of the individual inventors and the system. Interestingly, the inflection point of the nonlinear relationship is significantly higher at the individual level. Based on these findings, we suggest that researchers of nanotechnology maintain a balance between friends in close-knit inner circles and colleagues in distant areas in their collaboration decisions and that policymakers interested in furthering the field offer collaboration opportunities for researchers in distant locations and areas.

  11. Small-world network effects on innovation: evidences from nanotechnology patenting

    International Nuclear Information System (INIS)

    Shi, Yuan; Guan, JianCheng

    2016-01-01

    This paper explores the effects of collaboration network on innovation in nanotechnology. We extend the idea of small-world to the heterogeneous network positions of actors by capturing the variation of how closely a given actor is connected to others in the same network and how clustered its neighbors are. We test the effects of small-world network in the context of nanotechnology patenting in China. Empirical results reveal that small-worldness, or the co-existence of high clustering and low path length in the network, displays inverse U-shape relationships with future patent output of the individual inventors and the system. Interestingly, the inflection point of the nonlinear relationship is significantly higher at the individual level. Based on these findings, we suggest that researchers of nanotechnology maintain a balance between friends in close-knit inner circles and colleagues in distant areas in their collaboration decisions and that policymakers interested in furthering the field offer collaboration opportunities for researchers in distant locations and areas.

  12. EDITORIAL: Nanotechnology in motion Nanotechnology in motion

    Science.gov (United States)

    Demming, Anna

    2012-02-01

    development of the electron microscope, which aimed to exceed the resolving power of diffraction-limited optical microscopes. Since the diffraction limit is proportional to the incident wavelength, the shorter wavelength electron beam allows smaller features to be resolved than optical light. Ernst Ruska shared the Nobel Prize for Physics in 1986 for his work in developing the transmission electron microscope [5]. The technique continues to provide an invaluable tool in nanotechnology studies, as demonstrated recently by a collaboration of researchers in the US, Singapore and Korea used electron and atomic force microscopy in their investigation of the deposition of gold nanoparticles on graphene and the enhanced conductivity of the doped film [6]. The other half of the 1986 Nobel Prize was awarded jointly to Gerd Binnig and Heinrich Rohrer 'for their design of the scanning tunnelling microscope'. The scanning tunnelling microscope offered the first glimpses of atomic scale features, galvanizing research in nanoscale science and technology into a burst of fruitful activity that persists to this day. Instead of using the diffraction and scattering of beams to 'see' nanoscale structures, the atomic force microscope developed by Binnig, Quate and Gerber in the 1980s [1] determines the surface topology 'by touch'. The device uses nanoscale changes in the forces exerted on a tip as it scans the sample surface to generate an image. As might be expected, innovations on the original atomic force microscope have now been developed achieving ever greater sensitivities for imaging soft matter without destroying it. Recent work by collaborators at the University of Bristol and the University of Glasgow used a cigar-shaped nanoparticle held in optical tweezers as the scanning tip. The technique is not diffraction limited, imparts less force on samples than contact scanning probe microscopy techniques, and allows highly curved and strongly scattering samples to be imaged [7]. In this issue

  13. A framing theory-based content analysis of a Turkish newspaper's coverage of nanotechnology

    Science.gov (United States)

    Şenocak, Erdal

    2017-07-01

    This study aims at examining how nanotechnology is covered in Turkish print media. As an initial part of this objective, a total of 76 articles derived from a widespread national newspaper were analyzed based on the framing theory. These articles were analyzed using both quantitative and qualitative traditions of content analysis; however, the quantitative method was the primary form of investigation. The analyses showed that the first news about nanotechnology appeared in 1991 and the frequencies of articles had increased in the subsequent years; but the number of articles had decreased after a while. The findings demonstrated a remarkable positive tone in the articles; there were only a few articles in negative tones and these articles were published in the first years of nanotechnology news. It was further found that the articles were mostly concerned with the implementations of nanotechnology, such as research and education centers, medical, and electronics. The study also investigated the presentation style of nanotechnology news. In other words, it investigated how the articles were framed. The results showed that the articles were mostly framed with scientific researches or discoveries and future expectations.

  14. In-vitro nanodiagnostic platform through nanoparticles and DNA-RNA nanotechnology.

    Science.gov (United States)

    Chan, Ki; Ng, Tzi Bun

    2015-04-01

    Nanocomposites containing nanoparticles or nanostructured domains exhibit an even higher degree of material complexity that leads to an extremely high variability of nanostructured materials. This review introduces analytical concepts and techniques for nanomaterials and derives recommendations for a qualified selection of characterization techniques for specific types of samples, and focuses the characterization of nanoparticles and their agglomerates or aggregates. In addition, DNA nanotechnology and the more recent newcomer RNA nanotechnology have achieved almost an advanced status among nanotechnology researchers¸ therefore, the core features, potential, and significant challenges of DNA nanotechnology are also highlighted as a new discipline. Moreover, nanobiochips made by nanomaterials are rapidly emerging as a new paradigm in the area of large-scale biochemical analysis. The use of nanoscale components enables higher precision in diagnostics while considerably reducing the cost of the platform that leads this review to explore the use of nanoparticles, nanomaterials, and other bionanotechnologies for its application to nanodiagnostics in-vitro.

  15. Emergence of nanotechnology in the oil and gas industry: Emphasis on the application of silica nanoparticles

    Directory of Open Access Journals (Sweden)

    Muili Feyisitan Fakoya

    2017-12-01

    Full Text Available The application of nanotechnology in the oil and gas industry is on the rise as evidenced by the number of researches undertaken in the past few years. The quest to develop more game-changing technologies that can address the challenges currently facing the industry has spurred this growth. Several nanoparticles, of different sizes and at different concentrations, have been used in many investigations.In this work, the scope of the study covered the application of nanotechnology in drilling and hydraulic fracturing fluids, oilwell cementing, enhanced oil recovery (which includes transport study, and foam and emulsion stability, corrosion inhibition, logging operations, formation fines control during production, heavy oil viscosity reduction, hydrocarbon detection, methane release from gas hydrates, and drag reduction in porous media. The observed challenges associated with the use of nanoparticles are their stability in a liquid medium and transportability in reservoir rocks. The addition of viscosifier was implemented by researchers to ensure stability, and also, surface-treated nanoparticles have been used to facilitate stability and transportability.For the purpose of achieving better performance or new application, studies on synergistic effects are suggested for investigation in future nanotechnology research. The resulting technology from the synergistic studies may reinforce the current and future nanotechnology applications in the oil and gas industry, especially for high pressure and high temperature (HPHT applications. To date, majority of the oil and gas industry nanotechnology publications are reports of laboratory experimental work; therefore, more field trials are recommended for further advancement of nanotechnology in this industry. Usually, nanoparticles are expensive; so, it will be cost beneficial to use the lowest nanoparticles concentration possible while still achieving an acceptable level of a desired performance. Hence

  16. Vulnerability and social justice as factors in emergent U.S. nanotechnology risk perceptions.

    Science.gov (United States)

    Conti, Joseph; Satterfield, Terre; Harthorn, Barbara Herr

    2011-11-01

    As an emerging domain of risk research, nanotechnologies engender novel research questions, including how new technologies are encountered given different framing and contextual detail. Using data from a recent U.S. national survey of perceived risks (N= 1,100), risk versus benefit framings and the specific social positions from which people encounter or perceive new technologies are explored. Results indicate that vulnerability and attitudes toward environmental justice significantly influenced risk perceptions of nanotechnology as a broad class, while controlling for demographic and affective factors. Comparative analyses of different examples of nanotechnology applications demonstrated heightened ambivalence across acceptability when risk versus benefit information was provided with application descriptions (described in short vignettes as compared to the general category "nanotechnology," absent of risk or benefit information). The acceptability of these nano-specific vignettes varied significantly in only some cases given indexes of vulnerability and attitudes toward environmental justice. However, experimental narrative analyses, using longer, more comprehensive descriptive passages, show how assessments of risks and benefits are tied to the systematically manipulated psychometric qualities of the application (its invasiveness and controllability), risk messaging from scientists, and the social implications of the technology with regard to justice. The article concludes with discussion of these findings for risk perception research and public policy related to nanotechnology and possibly other emerging technologies. © 2011 Society for Risk Analysis.

  17. Nanotechnology in dentistry: prevention, diagnosis, and therapy

    Directory of Open Access Journals (Sweden)

    Abou Neel EA

    2015-10-01

    Full Text Available Ensanya Ali Abou Neel,1–3 Laurent Bozec,3 Roman A Perez,4,5 Hae-Won Kim,4–6 Jonathan C Knowles3,5 1Division of Biomaterials, Operative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia; 2Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt; 3UCL Eastman Dental Institute, Biomaterials and Tissue Engineering, London, UK; 4Institute of Tissue Regenerative Engineering (ITREN, 5Department of Nanobiomedical Science and BK21 Plus NBM Global Research Center for Regenerative Medicine, 6Department of Biomaterials Science, College of Dentistry, Dankook University, Cheonan, Republic of Korea Abstract: Nanotechnology has rapidly expanded into all areas of science; it offers significant alternative ways to solve scientific and medical questions and problems. In dentistry, nanotechnology has been exploited in the development of restorative materials with some significant success. This review discusses nanointerfaces that could compromise the longevity of dental restorations, and how nanotechnolgy has been employed to modify them for providing long-term successful restorations. It also focuses on some challenging areas in dentistry, eg, oral biofilm and cancers, and how nanotechnology overcomes these challenges. The recent advances in nanodentistry and innovations in oral health-related diagnostic, preventive, and therapeutic methods required to maintain and obtain perfect oral health, have been discussed. The recent advances in nanotechnology could hold promise in bringing a paradigm shift in dental field. Although there are numerous complex therapies being developed to treat many diseases, their clinical use requires careful consideration of the expense of synthesis and implementation. Keywords: nanotechnology, nanointerfaces, biofilm-related oral diseases, tissue engineering, drug delivery, toxicity

  18. The risks of nanotechnology.

    Science.gov (United States)

    Williams, David

    2005-11-01

    Nanotechnology is extremely fashionable, especially in the medical products sector, but questions are now being asked about the potential for new health risks that are introduced with the products and processes associated with nanotechnology. This article discusses some of the principal findings of a new report on this subject.

  19. International perspective on nanotechnology papers, patents, and NSF awards (2000-2016)

    Science.gov (United States)

    Zhu, Hongyi; Jiang, Shan; Chen, Hsinchun; Roco, Mihail C.

    2017-11-01

    This paper presents the development of nanotechnology between 2000 and 2016 as reflected in the Web of Science papers, United States Patent and Trademark Office (USPTO), World International Property Organization (WIPO) patents, and National Science Foundation (NSF) awards, with a special reference to the United States (US), European Union (EU27), P.R. China, Japan, and South Korea. The field of nanotechnology is branching out into novel scientific and technology platforms, and it is increasingly difficult to separate foundational nanoscale components from divergent application areas. The average global growth rate has been sustained at about 15% for both papers and patents in the selected interval. The growth rates among regions are non-uniform. P.R. China and South Korea have increased faster in both the numbers and quality of their scientific publications, and currently P.R. China has the largest volume of nanotechnology publications and South Korea the most publications per capita in the field of nanotechnology. The US, EU27, and Japan are maintaining leadership in the upstream, better cited, conceptual components of nanotechnology research and development.

  20. The track nanotechnology

    International Nuclear Information System (INIS)

    Waheed, A.; Forsyth, D.; Watts, A.; Saad, A.F.; Mitchell, G.R.; Farmer, M.; Harris, P.J.F.

    2009-01-01

    The discipline now called Solid State Nuclear Track Detection (SSNTD) dates back to 1958 and has its roots in the United Kingdom. Its strength stems chiefly from factors such as its simplicity, small geometry, permanent maintenance of the nuclear record and other diversified applications. A very important field with exciting applications reported recently in conjuction with the nuclear track technique is nanotechnology, which has applications in biology, chemistry, industry, medicare and health, information technology, biotechnology, and metallurgical and chemical technologies. Nanotechnology requires material design followed by the study of the quantum effects for final produced applications in sensors, medical diagnosis, information technology to name a few. We, in this article, present a review of past and present applications of SSNTD suggesting ways to apply the technique in nanotechnology, with special reference to development of nanostructure for applications utilising nanowires, nanofilters and sensors.

  1. The track nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Waheed, A. [British Institute of Technology and E-Commerce, London E7 9HZ (United Kingdom); Physics Department, University of Reading, Reading RG6 6AF (United Kingdom); Forsyth, D., E-mail: dforsyth@bite.ac.u [British Institute of Technology and E-Commerce, London E7 9HZ (United Kingdom); Watts, A. [Department of Physics, UCL, London Centre of Nanotechnology (LCN), 17-19 Gordon Street, London WC1H OAH (United Kingdom); Saad, A.F. [Physics Department, Faculty of Science, Garyounis University, Benghazi (Libyan Arab Jamahiriya); Mitchell, G.R. [British Institute of Technology and E-Commerce, London E7 9HZ (United Kingdom); Physics Department, University of Reading, Reading RG6 6AF (United Kingdom); Farmer, M. [British Institute of Technology and E-Commerce, London E7 9HZ (United Kingdom); Harris, P.J.F. [Physics Department, University of Reading, Reading RG6 6AF (United Kingdom)

    2009-10-15

    The discipline now called Solid State Nuclear Track Detection (SSNTD) dates back to 1958 and has its roots in the United Kingdom. Its strength stems chiefly from factors such as its simplicity, small geometry, permanent maintenance of the nuclear record and other diversified applications. A very important field with exciting applications reported recently in conjuction with the nuclear track technique is nanotechnology, which has applications in biology, chemistry, industry, medicare and health, information technology, biotechnology, and metallurgical and chemical technologies. Nanotechnology requires material design followed by the study of the quantum effects for final produced applications in sensors, medical diagnosis, information technology to name a few. We, in this article, present a review of past and present applications of SSNTD suggesting ways to apply the technique in nanotechnology, with special reference to development of nanostructure for applications utilising nanowires, nanofilters and sensors.

  2. The Dartmouth Center for Cancer Nanotechnology Excellence: magnetic hyperthermia.

    Science.gov (United States)

    Baker, Ian; Fiering, Steve N; Griswold, Karl E; Hoopes, P Jack; Kekalo, Katerina; Ndong, Christian; Paulsen, Keith; Petryk, Alicea A; Pogue, Brian; Shubitidze, Fridon; Weaver, John

    2015-01-01

    The Dartmouth Center for Cancer Nanotechnology Excellence - one of nine funded by the National Cancer Institute as part of the Alliance for Nanotechnology in Cancer - focuses on the use of magnetic nanoparticles for cancer diagnostics and hyperthermia therapy. It brings together a diverse team of engineers and biomedical researchers with expertise in nanomaterials, molecular targeting, advanced biomedical imaging and translational in vivo studies. The goal of successfully treating cancer is being approached by developing nanoparticles, conjugating them with Fabs, hyperthermia treatment, immunotherapy and sensing treatment response.

  3. Regulation and safety implementation of nanotechnology for chemical enterprises in the Central Europe Space

    Science.gov (United States)

    Falk, A.; Hartl, S.; Sinner, F.

    2013-04-01

    As result of the gradually increasing nanotechnology sector there is the necessity of a contemporary analysis of the present regulations used for nanomaterials, to outline the current situation of the nanotechnology sector, to promote international cooperation and research's coordination to overcome disciplinary boundaries, to fill the gap between more and less experienced regions and to turn investments in R&D in industrial innovations. The general objective of the Central Europe project NANOFORCE, which is developed by national and regional chemistry associations and R&D Centres of the Central Europe area, is to foster the innovative nanotechnology-sector networks across Central Europe regions by bringing together public and private organizations to carry out collaborative and interdisciplinary researches on nanomaterials (in the frame of REACH Regulation) and to turn the most promising laboratory results into innovative industrial applications. To build up a legal advisory board for chemical enterprises starting in nanotechnology, a state of the art report on existing safety procedures and nanotech related regulations was produced to give an overview on currently available regulations used by chemical industries and manufacturing companies within the European region to secure their products. The main emphasis was placed on REACH regulation to search for relevant sections concentrating on nanomaterials which are applicable for nanotechnology. In addition, all relevant directives and amendments of REACH were screened with regard to identify gaps where action is still needed and give possible recommendations for the European Commission. Beyond literature research a questionnaire for producers, users, researchers and financiers was developed with the goal to collect information about the nanotechnology sector in the CE region concerning development, financial status, and international cooperation within joint ventures, safety and nanotoxicology.

  4. Application of nanotechnologies and nanomaterials

    International Nuclear Information System (INIS)

    Vissokov, G.

    2011-01-01

    Full text: In the present report, we give a brief description of the present state, development, and application of nanotechnologies (NT) and nanomaterials (NM) in some key industries, such as chemical industry and power industry (nanocatalysts, and nanocatalysis, hydrogen storage and fuel cells, artificial photosynthesis and Gratzel's cell, energy efficiency, energy storage); fabrication of consolidated nanostructures (ceramic nano-materials, nanostructured coatings, production of low-combustibility plastics, nanostructured hard materials, nanostructures with colossal magnetoresistance); fabrication of ultra-high strength carbon fibres; nano-technologies for environmental protection (adsorption of heavy metals by self-ordered self-organized nano-structure ensembles, photocatalyric purification of liquids, fabrication of mesoporous materials, application of nanoporous polymers for water purification, nanoparticles and environment); medical applications; military applications and fight against terrorism; household applications; energetic and some other [1-7].; In 2010, the European Union and the governments of the USA and Japan each invested over $ 2 billion in nanoscience, which is ample evidence to substantiate the claim that the 21 st century will be the century of nanotechnologies. Some of the optimistic forecasts predict that in 2014 the total revenues from NT will exceed those brought by the information technologies and telecommunications combined. At present, more than 800 companies are involved in R&TD in this field (including giants such as Intel, IBM, Samsung, and Mitsubishi) while more than ten Nobel prizes were awarded for research in nanoscience

  5. Worldwide nanotechnology development: a comparative study of USPTO, EPO, and JPO patents (1976-2004)

    International Nuclear Information System (INIS)

    Li Xin; Lin Yiling; Chen Hsinchun; Roco, Mihail C.

    2007-01-01

    To assess worldwide development of nanotechnology, this paper compares the numbers and contents of nanotechnology patents in the United States Patent and Trademark Office (USPTO), European Patent Office (EPO), and Japan Patent Office (JPO). It uses the patent databases as indicators of nanotechnology trends via bibliographic analysis, content map analysis, and citation network analysis on nanotechnology patents per country, institution, and technology field. The numbers of nanotechnology patents published in USPTO and EPO have continued to increase quasi-exponentially since 1980, while those published in JPO stabilized after 1993. Institutions and individuals located in the same region as a repository's patent office have a higher contribution to the nanotechnology patent publication in that repository ('home advantage' effect). The USPTO and EPO databases had similar high-productivity contributing countries and technology fields with large number of patents, but quite different high-impact countries and technology fields after the average number of received cites. Bibliographic analysis on USPTO and EPO patents shows that researchers in the United States and Japan published larger numbers of patents than other countries, and that their patents were more frequently cited by other patents. Nanotechnology patents covered physics research topics in all three repositories. In addition, USPTO showed the broadest representation in coverage in biomedical and electronics areas. The analysis of citations by technology field indicates that USPTO had a clear pattern of knowledge diffusion from highly cited fields to less cited fields, while EPO showed knowledge exchange mainly occurred among highly cited fields

  6. 4th International Conference Nanotechnology and Nanomaterials

    CERN Document Server

    Yatsenko, Leonid

    2017-01-01

    This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 4th International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2016) held in Lviv, Ukraine on August 24-27, 2016. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, Ivan Franko National University of Lviv (Ukraine), University of Tartu (Estonia), University of Turin (Italy), and Pierre and Marie Curie University (France). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications. Presents cutting-edge advances in nanocomposites and carbon and silicon-based nanomaterials for a wide range of engineering and medical applications Co...

  7. 3rd International Conference Nanotechnology and Nanomaterials

    CERN Document Server

    Yatsenko, Leonid

    2016-01-01

    This book presents some of the latest achievements in nanotechnology and nanomaterials from leading researchers in Ukraine, Europe, and beyond. It features contributions from participants in the 3rd International Science and Practice Conference Nanotechnology and Nanomaterials (NANO2015) held in Lviv, Ukraine on August 26-30, 2015. The International Conference was organized jointly by the Institute of Physics of the National Academy of Sciences of Ukraine, University of Tartu (Estonia), Ivan Franko National University of Lviv (Ukraine), University of Turin (Italy), Pierre and Marie Curie University (France), and European Profiles A.E. (Greece). Internationally recognized experts from a wide range of universities and research institutions share their knowledge and key results on topics ranging from nanooptics, nanoplasmonics, and interface studies to energy storage and biomedical applications. Presents cutting-edge advances in nanocomposites and carbon and silicon-based nanomaterials for a wide range of engine...

  8. Nanotechnology in dentistry: Current achievements and prospects

    OpenAIRE

    Ramandeep Singh Gambhir; G M Sogi; Ashutosh Nirola; Rajdeep Brar; Tegbir Sekhon; Heena Kakar

    2013-01-01

    Nanotechnology offers advances particularly in each and every field of human activity such as electronics, industry, telecommunications, environmental science, etc., The field of nanotechnology has got remarkable potential that can bring considerable improvements to the human health, enhanced use of natural resources, and reduced environmental pollution. Since 1990s, nanotechnology has been exploited for potential medical and dental applications. Nanotechnology holds promise for advanced diag...

  9. NANOTECHNOLOGY IN TEXTILE INDUSTRY [REVIEW

    Directory of Open Access Journals (Sweden)

    RATIU Mariana

    2015-05-01

    Full Text Available Nanoscience and nanotechnology are the study and application of extremely small things and can be used across all the other science fields, such as chemistry, biology, physics, materials science, and engineering. Nanotechnology overcomes the limitation of applying conventional methods to impart certain properties to textile materials. There is no doubt that in the next few years nanotechnology will penetrate into every area of the textile industry. Nanotextiles are nanoscale fibrous materials that can be fictionalized with a vast array of novel properties, including antibiotic activity, self-cleaning and the ability to increase reaction rates by providing large surface areas to potential reactants. These materials are used not only as cloth fabric, but as filter materials, wound-healing gauzes and antibacterial food packaging agents in food industry. World demand for nano-materials will rise more than two-and-a-half times to $5.5 billion in 2016 driven by a combination of increased market penetration of existing materials, and ongoing development of new materials and applications. In recent years was demonstrated that nanotechnology can be used to enhance textile attributes, such as fabric softness, durability and breathability, water repellency, fire retardancy, antimicrobial properties in fibers, yarns and fabrics. The development of smart nanotextiles has the potential to revolutionize the production of fibers, fabrics or nonwovens and functionality of our clothing and all types of textile products and applications. Nanotechnology is considered one of the most promising technologies for the 21st century. Today is said that if the IT is the wave of the present, the nanotechnology is the wave of the present, the nanotechnology is the wave of the future.

  10. Restrictions of comparative analysis of investing in scientific research and scientific outcomes of the countries in nanotechnology

    OpenAIRE

    Milanović, Vesna; Bučalina-Matić, Andrea; Golubović, Marina

    2016-01-01

    The aim of this paper is to provide an insight into restrictions of comparative analysis of investing in scientific research and scientific outcomes of the countries in nanotechnology, having in mind that it is a developing technology which is expected to give significant contribution to science, economy and society in the future. Using the methods of content analysis, comparative methods and relevant literature, certain restrictions of this comparative analysis have been established. They ar...

  11. Nanotechnology: “Revolutionary Developments in Future”

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Introductory notes will be made on the definition, structures, phenomena, functions, synthesis, properties, and characterization at the nanoscale. Some indications on nanoMaterials research and markets in Europe will be given. The spectrum of structural and functional/smart nanomaterials: metallic and ceramic materials, coating, composites ….will be reviewed Key challenges for nanomaterials design and engineering will be highlighted. The range of applications for nanotechnologies will be sumarized: for nano-electronics (information and communication), health care, energy and transport, nuclear and accelerator technologies, security and safety etc NanoMaterials and Technologies are key in future accelerator engineering: construction, operation and experimentation. Nanotechnology in next generation industries is a must. Nanometrology and standardisation (materials and equipment) are also an important items. Environmental and health implications of nanomaterials science and technology: Some guidance and safe...

  12. The US Department of Defense Hemorrhage and Resuscitation Research and Development Program.

    Science.gov (United States)

    Pusateri, Anthony E; Dubick, Michael A

    2015-08-01

    Data from recent conflicts demonstrate the continuing need for research and development focusing on hemorrhage control, fluid resuscitation, blood products, transfusion, and pathophysiologic responses to traumatic hemorrhage. The US Department of Defense Hemorrhage and Resuscitation Research and Development Program brings together US Department of Defense efforts and is coordinated with efforts of our other federal government, industry, international, and university-based partners. Military medical research has led to advances in both military and civilian trauma care. A sustained effort will be required to continue to advance the care of severely injured trauma patients.

  13. Nanotechnology in the regulation of stem cell behavior

    International Nuclear Information System (INIS)

    Wu, King-Chuen; Tseng, Ching-Li; Wu, Chi-Chang; Wang, Yang-Kao; Kao, Feng-Chen; Tu, Yuan-Kun; C So, Edmund

    2013-01-01

    Stem cells are known for their potential to repair damaged tissues. The adhesion, growth and differentiation of stem cells are likely controlled by the surrounding microenvironment which contains both chemical and physical cues. Physical cues in the microenvironment, for example, nanotopography, were shown to play important roles in stem cell fate decisions. Thus, controlling stem cell behavior by nanoscale topography has become an important issue in stem cell biology. Nanotechnology has emerged as a new exciting field and research from this field has greatly advanced. Nanotechnology allows the manipulation of sophisticated surfaces/scaffolds which can mimic the cellular environment for regulating cellular behaviors. Thus, we summarize recent studies on nanotechnology with applications to stem cell biology, including the regulation of stem cell adhesion, growth, differentiation, tracking and imaging. Understanding the interactions of nanomaterials with stem cells may provide the knowledge to apply to cell–scaffold combinations in tissue engineering and regenerative medicine. (review)

  14. Nanotechnology as a potential therapeutic alternative for schistosomiasis.

    Science.gov (United States)

    Tomiotto-Pellissier, Fernanda; Miranda-Sapla, Milena Menegazzo; Machado, Laís Fernanda; Bortoleti, Bruna Taciane da Silva; Sahd, Claudia Stoeglehner; Chagas, Alan Ferreira; Assolini, João Paulo; Oliveira, Francisco José de Abreu; Pavanelli, Wander Rogério; Conchon-Costa, Ivete; Costa, Idessania Nazareth; Melanda, Francine Nesello

    2017-10-01

    Schistosomiasis is a neglected disease that affects millions of people worldwide, recognized as the most important human helminth infection in terms of morbidity and mortality. The treatment of choice presents low bioavailability and water solubility, in addition to the induction of parasite resistance. In this context, researchers have been conducting studies seeking to develop new drugs to ensure safety, quality, and efficacy against this parasitosis. In this scenario, nanotechnology arises including the drug delivery systems in nanoscale: nanoemulsions, liposomes and nanoparticles. These drug delivery systems have been extensively applied for in vitro and in vivo studies against Schistosoma spp. with promising results. This review pointed out the most relevant development scenarios regarding the treatment of schistosomiasis as well as the application of nanotechnology as a vaccine, highlighting the use of nanotechnology as an alternative therapy for both the repositioning of drugs and the use of new pharmaceutical products, with promising results regarding the aforementioned disease. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Russia's Policy and Standing in Nanotechnology

    Science.gov (United States)

    Terekhov, Alexander I.

    2013-01-01

    In this article, I consider the historical stages of development of nanotechnology in Russia as well as the political framework for this. It is shown that early federal nanotechnology programs in Russia date back to the 1990s and that since the mid-2000s, nanotechnology has attracted the increasing attention of government. I characterize the…

  16. Proceedings of the second national seminar on new materials research and nanotechnology

    International Nuclear Information System (INIS)

    Joseph John, N.

    2013-01-01

    The contents of the presentations cover new materials, advanced materials, biomaterials, carbon nanomaterials, computational material science, diamond and diamond related materials, electronic materials, ferroelectric materials, fiber optics, fluorescent materials, functional materials, inorganic materials, lasers materials processing, laser and plasma technology, luminescence materials, magnetic and superconducting materials, materials for defence applications, mesoporous materials, materials for solar energy and energy storing devices, NLO materials, organic materials/electronics, photonic materials, piezoelectric materials, semiconductor materials, smart materials, nanomaterials and composites, nanoelectronics and spintronics, environment and nanotechnology, nano environmental devices, nano fluids, nanobiotechnology, nanomedicine, nanomagnetism, nanopharmacy, sensors, nano sensors/actuatoes, nanotechnology for hill area development, simulation and modeling of nanodevices, crystals, crystal growth, crystal growth methods, characterization techniques, crystal defects, liquid crystals, optoelectronic crystals, polymers, polymer composites, nano polymers, spectroscopy, thin films, deposition, characterization, applications and ultrasonics. Papers relevant to INIS are indexed separately. (author)

  17. Effect of Nanotechnology

    OpenAIRE

    D.Baswaraj; Vasanthi,; Sareddy Deepthi; Mohammad Zainuddin

    2012-01-01

    In this paper, we will put forward the vast effect on nanotechnology in various fields. A basic definition of Nanotechnology is the study manipulation and manufacture of extremely minute machines or devices. The future of technology at times becomes easier to predict. Computers will compute faster, materials will become stronger and medicine will cure more diseases .the technology that works at the nanometer scale of molecules and atoms will be a large part of this future, enabling great impr...

  18. Is there a relationship between research sponsorship and publication impact? An analysis of funding acknowledgments in nanotechnology papers.

    Directory of Open Access Journals (Sweden)

    Jue Wang

    Full Text Available This study analyzes funding acknowledgments in scientific papers to investigate relationships between research sponsorship and publication impacts. We identify acknowledgments to research sponsors for nanotechnology papers published in the Web of Science during a one-year sample period. We examine the citations accrued by these papers and the journal impact factors of their publication titles. The results show that publications from grant sponsored research exhibit higher impacts in terms of both journal ranking and citation counts than research that is not grant sponsored. We discuss the method and models used, and the insights provided by this approach as well as it limitations.

  19. The multi-facets of sustainable nanotechnology – Lessons from a nanosafety symposium

    Science.gov (United States)

    George, Saji; Ho, Shirley S.; Wong, Esther S. P.; Tan, Timothy Thatt Yang; Verma, Navin Kumar; Aitken, Robert J.; Riediker, Michael; Cummings, Christopher; Yu, Liya; Wang, Zheng Ming; Zink, Daniele; Ng, Zhihan; Loo, Say Chye Joachim; Ng, Kee Woei

    2015-01-01

    Abstract An international symposium for nanosafety was held recently at the Nanyang Technological University in Singapore. Topics relating to understanding nanomaterial properties, tools, and infrastructure required for predicting hazardous outcomes, measuring nanomaterial exposure levels, systems approach for risk assessment and public’s perception of nanotechnology were covered. The need for a multidisciplinary approach, across both natural and social sciences, for developing sustainable nanotechnology solutions was heavily emphasized. This commentary highlights the major issues discussed and the commitment of the nanosafety research community in Singapore to contribute collectively to realise the vision of sustainable nanotechnology. PMID:25976321

  20. Engineering applications of nanotechnology from energy to drug delivery

    CERN Document Server

    Hamid, Nor

    2017-01-01

    This book focuses on the use of nanotechnology in several fields of engineering. Among others, the reader will find valuable information as to how nanotechnology can aid in extending the life of component materials exposed to corrosive atmospheres, in thermal fluid energy conversion processes, anti-reflection coatings on photovoltaic cells to yield enhanced output from solar cells, in connection with friction and wear reduction in automobiles, and buoyancy suppression in free convective heat transfer. Moreover, this unique resource presents the latest research on nanoscale transport phenomena and concludes with a look at likely future trends.

  1. Department of Defense Research, Development, Test, and Evaluation (RDT and E): Appropriations Structure

    Science.gov (United States)

    2016-12-13

    Research Projects Agency website, accessed December 5, 2016, http://www.darpa.mil/about-us/mission. Appropriations Structure of Defense RDT&E...funding streams. Among the many other factors that may affect the effectiveness of the performance of RDT&E are: organizational structures and...Department of Defense Research, Development, Test, and Evaluation (RDT&E): Appropriations Structure John F. Sargent Jr. Specialist in

  2. Welcome to NNIN | National Nanotechnology Infrastructure Network

    Science.gov (United States)

    Skip to main content National Nanotechnology Infrastructure Network National Nanotechnology Infrastructure Network Serving Nanoscale Science, Engineering & Technology Search form Search Search Home facilities feature over 1100 modern nanotechnology instruments such as these Reactive Ion Etch systems at the

  3. NANOTR9: 9th Nanoscience and Nanotechnology Conference

    Science.gov (United States)

    2014-11-01

    The conference series NanoTR is the major conference on nanoscience and nanotechnology in Turkey. It brings together leading scientists and engineers in nanotechnology to exchange information on their latest research progress. An exhibition of the companies working in the related field is also organized as a part of the event. With intensive international participation, NanoTR conference series has spread outside the national border and has become an international event in this field. Among international contributions, a wide interest from the countries around Turkey should be emphasized. 9th in the series was organized by Atatürk University in Erzurum-Turkey on June 24-28, 2013 with more than 900 scientists, researchers, private sector representatives from around the world. Conference program included 6 plenary speakers, 35 invited speakers (18 of them were from outside the country), 116 oral presentations, and 340 poster presentations. In addition to 6 plenary sessions, 17 oral and 4 poster sessions created very lively discussion forums covering a vast range of current and emerging sciences from nano-materials, nanoscience, nanofabrication, nano-engineering, nano-electronics, nano-biotechnology, to ethical and social issues of nanoscience and nanotechnology. Also, panel discussions about industrial applications, tutorial sessions have been organized for students, new-comers and company employees.

  4. Food neophobia, nanotechnology and satisfaction with life.

    Science.gov (United States)

    Schnettler, Berta; Crisóstomo, Gloria; Sepúlveda, José; Mora, Marcos; Lobos, Germán; Miranda, Horacio; Grunert, Klaus G

    2013-10-01

    This study investigates the relationship between food neophobia, satisfaction with life and food-related life, and acceptance of the use of nanotechnology in food production. Questionnaire data was collected from a sample of 400 supermarket shoppers in southern Chile. The questionnaire measured knowledge of nanotechnology and willingness to purchase food products involving nanotechnology, and included the SWLS (Satisfaction with Life Scale), SWFL (Satisfaction with Food-related Life) and FNS (Food Neophobia Scale) scales. Using cluster analysis, four consumer types were distinguished with significant differences in their scores on the SWLS, SWFL and FNS. The types differed in their knowledge of nanotechnology, willingness to purchase foods involving nanotechnology, age, socioeconomic level and lifestyle. The least food-neophobic type had the highest levels of satisfaction with life and with food-related life and also had the highest acceptance of packaging and foods produced with nanotechnology. The results suggest that the degree of food neophobia is associated with satisfaction with life and with food-related life, as well as with the acceptance of products with nanotechnological applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  5. National symposium on application of nanotechnology in human welfare: abstract proceedings

    International Nuclear Information System (INIS)

    2012-01-01

    The term nanotechnology has been discussed about for years among the scientific and engineering community. However the fruits of the actual technologies are yet to be reaped fully by humanity. Nanotechnology holds tremendous promise in every field of human activity and has the ability to manipulate all of Earth's resources more efficiently. The proceedings of the symposium is a resource material for future researchers. Papers relevant to INIS are indexed separately

  6. Broadening nanotechnology's impact on development

    NARCIS (Netherlands)

    Beumer, K.

    2016-01-01

    Discussions about nanotechnology and development focus on applications that directly address the needs of the world’s poor. Nanotechnology can certainly make an impact in the fight against global poverty, but we need to broaden our imagination.

  7. Inequality gaps in nanotechnology development in Latin America

    Directory of Open Access Journals (Sweden)

    Guillermo Foladori

    2013-06-01

    The third characteristic is the absence of research on potential impacts of nanotechnology on human health and the environment, as well as other societal implications, which may generate new forms of unequal distribution of benefits and risks.

  8. QUALITY PARAMETERS IN NANOTECHNOLOGIC APPLICATIONS

    Directory of Open Access Journals (Sweden)

    Ayşegül Akdoğan Eker

    2013-06-01

    Full Text Available Nanotechnology concept which has added a new dimension to our lives in recent years, is finding a place in every sector day by day. The combined effect of nanotechnology is almost equal to the industrial revolution of last 200 years and have is able to fill all developments in a few years. However this development should be taken under control. Otherwise unstoppable new structures will not ease life but will be a problem for humanity. For this purpose, the main parameters (from the start up stage of nano-technologic applications to the obtained product should be checked. These parameters are actually not different than the adaptation of the classical quality indicators for nanotechnology applications. Especially it plays an important role in obtaining a uniform distribution and regarding the features of the end product in nano-technological ceramic and etc. applications. The most important problem faced in particles of that size is the accumulation they create. Another problem is the increasing friction force as size gets smaller. The friction force of asubstance increases proportionally with the cube of its surface area. Another problem is surface tension. The increasing surface tension due to increasing surface area will cause the particles to attract and stick to each other. The structures aimed to be obtained are mostly complex and especially in upwards approach, it is thermodynamically very hard for the atoms to get into that order. Therefore in this announcement, we stated the quality parameters that will be taken into consideration in nano-technological applications and the methods for obtaining those parameters. The aim is to explain these parameters with all dimensions so that they will lead the way to the future nano-technological applications.

  9. Molecular Building Blocks for Nanotechnology From Diamondoids to Nanoscale Materials and Applications

    CERN Document Server

    Mansoori, G. Ali; Assoufid, Lahsen; Zhang, Guoping

    2007-01-01

    This book is a result of the research and educational activities of a group of outstanding scientists worldwide who have authored the chapters of this book dealing with the behavior of nanoscale building blocks. It contains a variety of subjects covering computational, dry and wet nanotechnology. The state-of-the-art subject matters presented here provide the reader with the latest developments on ongoing nanoscience and nanotechnology research from the bottom-up approach, which starts with with atoms and molecules as molecular building blocks.

  10. Applying Nanotechnology to Human Health: Revolution in Biomedical Sciences

    Directory of Open Access Journals (Sweden)

    Siddhartha Shrivastava

    2009-01-01

    Full Text Available Recent research on biosystems at the nanoscale has created one of the most dynamic science and technology domains at the confluence of physical sciences, molecular engineering, biology, biotechnology, and medicine. This domain includes better understanding of living and thinking systems, revolutionary biotechnology processes, synthesis of new drugs and their targeted delivery, regenerative medicine, neuromorphic engineering, and developing a sustainable environment. Nanobiosystems research is a priority in many countries and its relevance within nanotechnology is expected to increase in the future. The realisation that the nanoscale has certain properties needed to solve important medical challenges and cater to unmet medical needs is driving nanomedical research. The present review explores the significance of nanoscience and latest nanotechnologies for human health. Addressing the associated opportunities, the review also suggests how to manage far-reaching developments in these areas.

  11. Regulation and safety implementation of nanotechnology for chemical enterprises in the Central Europe Space

    International Nuclear Information System (INIS)

    Falk, A; Hartl, S; Sinner, F

    2013-01-01

    As result of the gradually increasing nanotechnology sector there is the necessity of a contemporary analysis of the present regulations used for nanomaterials, to outline the current situation of the nanotechnology sector, to promote international cooperation and research's coordination to overcome disciplinary boundaries, to fill the gap between more and less experienced regions and to turn investments in R and D in industrial innovations. The general objective of the Central Europe project NANOFORCE, which is developed by national and regional chemistry associations and R and D Centres of the Central Europe area, is to foster the innovative nanotechnology-sector networks across Central Europe regions by bringing together public and private organizations to carry out collaborative and interdisciplinary researches on nanomaterials (in the frame of REACH Regulation) and to turn the most promising laboratory results into innovative industrial applications. To build up a legal advisory board for chemical enterprises starting in nanotechnology, a state of the art report on existing safety procedures and nanotech related regulations was produced to give an overview on currently available regulations used by chemical industries and manufacturing companies within the European region to secure their products. The main emphasis was placed on REACH regulation to search for relevant sections concentrating on nanomaterials which are applicable for nanotechnology. In addition, all relevant directives and amendments of REACH were screened with regard to identify gaps where action is still needed and give possible recommendations for the European Commission. Beyond literature research a questionnaire for producers, users, researchers and financiers was developed with the goal to collect information about the nanotechnology sector in the CE region concerning development, financial status, and international cooperation within joint ventures, safety and nanotoxicology.

  12. Multi-disciplinarity breeds diversity : the influence of innovation project characteristics on diversity creation in nanotechnology

    NARCIS (Netherlands)

    Páez-Avilés, Cristina; van Rijnsoever, Frank J.|info:eu-repo/dai/nl/314100334; Juanola-Feliu, Esteve; Samitier, Josep

    Nanotechnology is an emerging and promising field of research. Creating sufficient technological diversity among its alternatives is important for the long-term success of nanotechnologies, as well as for other emerging technologies. Diversity prevents early lock-in, facilitates recombinant

  13. Recent Advances in Nanotechnology for Diabetes Treatment

    Science.gov (United States)

    DiSanto, Rocco Michael; Subramanian, Vinayak; Gu, Zhen

    2015-01-01

    Nanotechnology in diabetes research has facilitated the development of novel glucose measurement and insulin delivery modalities which hold the potential to dramatically improve quality of life for diabetics. Recent progress in the field of diabetes research at its interface with nanotechnology is our focus. In particular, we examine glucose sensors with nanoscale components including metal nanoparticles and carbon nanostructures. The addition of nanoscale components commonly increases glucose sensor sensitivity, temporal response, and can lead to sensors which facilitate continuous in vivo glucose monitoring. Additionally, we survey nanoscale approaches to “closed-loop” insulin delivery strategies which automatically release insulin in response to fluctuating blood glucose levels. “Closing the loop” between blood glucose level (BGL) measurements and insulin administration by removing the requirement of patient action holds the potential to dramatically improve the health and quality of life of diabetics. Advantages and limitations of current strategies, as well as future opportunities and challenges are also discussed. PMID:25641955

  14. Nanopsychiatry--the potential role of nanotechnologies in the future of psychiatry: a systematic review.

    Science.gov (United States)

    Fond, G; Macgregor, A; Miot, S

    2013-09-01

    Nanomedicine is defined as the area using nanotechnology's concepts for the benefit of human beings' health and well being. In this article, we aimed to provide an overview of areas where nanotechnology is applied and how they could be extended to care for psychiatric illnesses. The main applications of nanotechnology in psychiatry are (i) pharmacology. There are two main difficulties in neuropharmacology: drugs have to pass the blood-brain barrier and then to be internalized by targeted cells. Nanoparticles could increase drugs bioavailability and pharmacokinetics, especially improving safety and efficacy of psychotropic drugs. Liposomes, nanosomes, nanoparticle polymers, nanobubbles are some examples of this targeted drug delivery. Nanotechnologies could also add new pharmacological properties, like nanoshells and dendrimers (ii) living analysis. Nanotechnology provides technical assistance to in vivo imaging or metabolome analysis (iii) central nervous system modeling. Research teams have succeeded to modelize inorganic synapses and mimick synaptic behavior, a step essential for further creation of artificial neural systems. Some nanoparticle assemblies present the same small worlds and free-scale networks architecture as cortical neural networks. Nanotechnologies and quantum physics could be used to create models of artificial intelligence and mental illnesses. We are not about to see a concrete application of nanomedicine in daily psychiatric practice. Even if nanotechnologies are promising, their safety is still inconsistent and this must be kept in mind. However, it seems essential that psychiatrists do not forsake this area of research the perspectives of which could be decisive in the field of mental illness. Copyright © 2012 Elsevier B.V. and ECNP. All rights reserved.

  15. The Public and Nanotechnology: How Citizens Make Sense of Emerging Technologies

    International Nuclear Information System (INIS)

    Scheufele, Dietram A.; Lewenstein, Bruce V.

    2005-01-01

    We report findings from a national telephone survey on levels of knowledge about and attitudes toward nanotechnology that demonstrate how people make decisions about emerging technologies. Our findings confirm previous research that suggests that people form opinions and attitudes even in the absence of relevant scientific or policy-related information. In fact, our data show that cognitive shortcuts or heuristics - often provided by mass media - are currently a key factor in influencing how the public thinks about nanotechnology and about its risks and benefits, and in determining the level of support among the public for further funding for research in this area

  16. The Public and Nanotechnology: How Citizens Make Sense of Emerging Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Scheufele, Dietram A. [University of Wisconsin, Madison School of Journalism and Mass Communication (United States)], E-mail: scheufele@wisc.edu; Lewenstein, Bruce V. [Cornell University, Department of Communication and Department of Science and Technology Studies (United States)

    2005-12-15

    We report findings from a national telephone survey on levels of knowledge about and attitudes toward nanotechnology that demonstrate how people make decisions about emerging technologies. Our findings confirm previous research that suggests that people form opinions and attitudes even in the absence of relevant scientific or policy-related information. In fact, our data show that cognitive shortcuts or heuristics - often provided by mass media - are currently a key factor in influencing how the public thinks about nanotechnology and about its risks and benefits, and in determining the level of support among the public for further funding for research in this area.

  17. Nanotechnology in Textiles.

    Science.gov (United States)

    Yetisen, Ali K; Qu, Hang; Manbachi, Amir; Butt, Haider; Dokmeci, Mehmet R; Hinestroza, Juan P; Skorobogatiy, Maksim; Khademhosseini, Ali; Yun, Seok Hyun

    2016-03-22

    Increasing customer demand for durable and functional apparel manufactured in a sustainable manner has created an opportunity for nanomaterials to be integrated into textile substrates. Nanomoieties can induce stain repellence, wrinkle-freeness, static elimination, and electrical conductivity to fibers without compromising their comfort and flexibility. Nanomaterials also offer a wider application potential to create connected garments that can sense and respond to external stimuli via electrical, color, or physiological signals. This review discusses electronic and photonic nanotechnologies that are integrated with textiles and shows their applications in displays, sensing, and drug release within the context of performance, durability, and connectivity. Risk factors including nanotoxicity, nanomaterial release during washing, and environmental impact of nanotextiles based on life cycle assessments have been evaluated. This review also provides an analysis of nanotechnology consolidation in the textiles market to evaluate global trends and patent coverage, supplemented by case studies of commercial products. Perceived limitations of nanotechnology in the textile industry and future directions are identified.

  18. Future market sustainable water management and nanotechnology; Zukunftsmarkt Nachhaltige Wasserwirtschaft und Nanotechnologie

    Energy Technology Data Exchange (ETDEWEB)

    Luther, Wolfgang; Bachmann, Gerd; Grimm, Vera; Schug, Hartmut; Zweck, Axel [VDI Technologiezentrum GmbH, Duesseldorf (Germany); Marscheider-Weidemann, Frank [Fraunhofer-Institut fuer Systemtechnik und Innovationsforschung (ISI), Karlsruhe (Germany)

    2007-12-15

    This case study on nanotechnology with a focus on sustainable water management was done within the scope of the research project ''Future markets - innovative environmental policy in important fields of action''. Nanotechnology is a broad cross-cutting technology with a multitude of process and technology platforms. Nanotechnologies can contribute to preventing water pollution (e. g. by substituting water polluting processes) or removing this (e. g. nanomaterials/ membranes in wastewater treatment) and can be used to monitor water quality (e. g. nanosensors). Water plays a key role in nutrition and health, in agriculture (irrigation) and as a solvent in industrial processes. A globally sustainable supply of drinking water and industrial water is seen as one of the main challenges of the next decades. The world water supply market is predicted to be more than 400 billion US-$ (2010), in which membrane technologies will play a key role. The rapid development of nanotechnologies is reflected in the constant growth in the number of nanotechnology patents and publications. New types of filtration membranes and nanomaterials for the catalytic, adsorptive or magnetic-separation purification of wastewater constitute an important segment; some marketable products have already been developed in this field. In the long term, convergence in the fields of electronics, biotechnology, nanotechnology and microsystems will offer new perspectives and applications, in sustainable water management as well. Germany has high technological competence in membrane and nanofiltration technology, mostly based on the strength of its basic research, which can serve as a good basis from which to tap foreign markets. The USA is the leader in the field of nanotechnology and in water management applications. Starting points for policy measures are the initiation and implementation of innovationsupporting measures for the further development of these technologies -particularly

  19. Generality in nanotechnologies and its relationship to economic performance

    Science.gov (United States)

    Gomez Baquero, Fernando

    In the history if economic analysis there is perhaps no more important question than the one of how economic development is achieved. For more than a century, economists have explored the role of technology in economic growth but there is still much to be learned about the effect that technologies, in particular emerging ones, have on economic growth and productivity. The objective of this research is to understand the relationship between nanotechnologies and economic growth and productivity, using the theory of General Purpose Technology (GPT)-driven economic growth. To do so, the Generality Index (calculated from patent data) was used to understand the relative pervasiveness of nanotechnologies. The analysis of trends and patterns of Generality Index, using the largest group of patents since the publication of the NBER Patent Database, indicates that nanotechnologies possess a higher average Generality than other technological groups. Next, the relationship between the Generality Index and Total Factor Productivity (TFP) was studied using econometric analysis. Model estimates indicate that the variation in Generality for the group of nanotechnologies can explain a large proportion of the variation in TFP. However, the explanatory power of the entire set of patents (not just nanotechnologies) is larger and corresponds better to the expected theoretical models. Additionally, there is a negative short-run relationship between Generality and TFP, conflicting with part of the theoretical GPT-models. Finally, the relationship between the Generality of nanotechnologies and policy-driven investment events, such as R&D investments and grant awards, was studied using econometric methods. The statistical evidence suggests that NSF awards are related to technologies with higher Generality, while NIH awards and NNI investments are related to a lower average Generality. Overall, results of this research work indicate that the introduction of pervasive technologies into an

  20. Bio-inspired nanotechnology from surface analysis to applications

    CERN Document Server

    Walsh, Tiffany

    2014-01-01

    This book focuses on the use of bio-inspired and biomimetic methods for the fabrication and activation of nanomaterials. This includes studies concerning the binding of the biomolecules to the surface of inorganic structures, structure/function relationships of the final materials, and extensive discussions on the final applications of such biomimetic materials in unique applications including energy harvesting/storage, biomedical diagnostics, and materials assembly. This book also: ·          Covers the sustainable features of bio-inspired nanotechnology ·          Includes studies on the unique applications of biomimetic materials, such as energy harvesting and biomedical diagnostics Bio-Inspired Nanotechnology: From Surface Analysis to Applications is an ideal book for researchers, students, nanomaterials engineers, bioengineers, chemists, biologists, physicists, and medical researchers.

  1. The effect of activity-based nanoscience and nanotechnology education on pre-service science teachers' conceptual understanding

    Science.gov (United States)

    Şenel Zor, Tuba; Aslan, Oktay

    2018-03-01

    The purpose of the study was to examine the effect of activity-based nanoscience and nanotechnology education (ABNNE) on pre-service science teachers' (PST') conceptual understanding of nanoscience and nanotechnology. Within this context, the study was conducted according to mixed methods research with the use of both quantitative and qualitative methods. The participants were 32 PST who were determined by using criterion sampling that is one of the purposive sampling methods. ABNNE was carried out during 7 weeks as 2 h per week in special issues at physics course. Design and implementation of ABNNE were based on "Big Ideas" which was found in literature and provided guidance for teaching nanoscience and nanotechnology. All activities implemented during ABNNE were selected from literature. "Nanoscience and Nanotechnology Concept Test (NN-CT)" and "Activity-Based Nanoscience and Nanotechnology Education Assessment Form (ABNNE-AF)" were used as data collection tools in research. Findings obtained with data collection tools were discussed with coverage of literature. The findings revealed that PST conceptual understanding developed following ABNNE. Various suggestions for increasing PST conceptual understanding of nanoscience and nanotechnology were presented according to the results of the study.

  2. Recent Advances in Nanotechnology-Based Diagnosis and Treatments of Diabetes.

    Science.gov (United States)

    Rao, Pasupuleti Visweswara; Gan, Siew Hua

    2015-01-01

    Nanotechnology is a field encompassing nanostructures, nanomaterials and nanoparticles, which are of increasing importance to researchers and industrial players alike. Nanotechnology addresses the construction and consumption of substances and devices on the nanometer scale. Nanomedicine is a new field that combines nanotechnology with medicine to boost human health care. Nanomedicine is an interdisciplinary field that includes various areas of biology, chemistry, physics and engineering. The most important problems related to diabetes management, such as self-monitoring of blood glucose levels and insulin injections, can now be conquered due to progress in nanomedicine, which offers glucose nanosensors, the layer-by-layer technique, carbon nanotubes, quantum dots, oral insulins, microspheres, artificial pancreases and nanopumps. In this review, the key methodological and scientific characteristics of nanomedicine related to diabetes treatment, glucose monitoring and insulin administration are discussed.

  3. International conference on advanced nanomaterials and nanotechnology

    International Nuclear Information System (INIS)

    2009-01-01

    Nanoscale science and technology have occupied centre stage globally in modern scientific research and discourses in early twenty first century. The enabling nature of the technology makes it important in modern electronics, computing, materials, healthcare, energy, the environment and with specific emphasis on the multidisciplinary nature of the subject. Indian Institute of Technology Guwahati has taken a proactive role in promoting Nanotechnology by establishing and nurturing a centre for nanotechnology with the aim of generation of knowledge in the field and development of human resources for meeting demands in academics and industry. ICANN-2009 aims to promote sharing of new knowledge and exchange of the latest ideas in the field, through deliberations in the conference. Papers relevant to INIS are indexed separately

  4. Nanotechnology in respiratory medicine.

    Science.gov (United States)

    Omlor, Albert Joachim; Nguyen, Juliane; Bals, Robert; Dinh, Quoc Thai

    2015-05-29

    Like two sides of the same coin, nanotechnology can be both boon and bane for respiratory medicine. Nanomaterials open new ways in diagnostics and treatment of lung diseases. Nanoparticle based drug delivery systems can help against diseases such as lung cancer, tuberculosis, and pulmonary fibrosis. Moreover, nanoparticles can be loaded with DNA and act as vectors for gene therapy in diseases like cystic fibrosis. Even lung diagnostics with computer tomography (CT) or magnetic resonance imaging (MRI) profits from new nanoparticle based contrast agents. However, the risks of nanotechnology also have to be taken into consideration as engineered nanomaterials resemble natural fine dusts and fibers, which are known to be harmful for the respiratory system in many cases. Recent studies have shown that nanoparticles in the respiratory tract can influence the immune system, can create oxidative stress and even cause genotoxicity. Another important aspect to assess the safety of nanotechnology based products is the absorption of nanoparticles. It was demonstrated that the amount of pulmonary nanoparticle uptake not only depends on physical and chemical nanoparticle characteristics but also on the health status of the organism. The huge diversity in nanotechnology could revolutionize medicine but makes safety assessment a challenging task.

  5. Nanotechnology applications in urology: a review.

    Science.gov (United States)

    Maddox, Michael; Liu, James; Mandava, Sree Harsha; Callaghan, Cameron; John, Vijay; Lee, Benjamin R

    2014-11-01

    The objectives of this review are to discuss the current literature and summarise some of the promising areas with which nanotechnology may improve urological care. A Medline literature search was performed to elucidate all relevant studies of nanotechnology with specific attention to its application in urology. Urological applications of nanotechnology include its use in medical imaging, gene therapy, drug delivery, and photothermal ablation of tumours. In vitro and animal studies have shown initial encouraging results. Further study of nanotechnology for urological applications is warranted to bridge the gap between preclinical studies and translation into clinical practice, but nanomedicine has shown significant potential to improve urological patient care. © 2014 The Authors. BJU International © 2014 BJU International.

  6. The structure and infrastructure of the global nanotechnology literature

    International Nuclear Information System (INIS)

    Kostoff, Ronald N.; Stump, Jesse A.; Johnson, Dustin; Murday, James S.; Lau, Clifford G.Y.; Tolles, William M.

    2006-01-01

    Text mining is the extraction of useful information from large volumes of text. A text mining analysis of the global open nanotechnology literature was performed. Records from the Science Citation Index (SCI)/Social SCI were analyzed to provide the infrastructure of the global nanotechnology literature (prolific authors/journals/institutions/countries, most cited authors/papers/journals) and the thematic structure (taxonomy) of the global nanotechnology literature, from a science perspective. Records from the Engineering Compendex (EC) were analyzed to provide a taxonomy from a technology perspective.The Far Eastern countries have expanded nanotechnology publication output dramatically in the past decade.The Peoples Republic of China ranks second to the USA (2004 results) in nanotechnology papers published in the SCI, and has increased its nanotechnology publication output by a factor of 21 in a decade.Of the six most prolific (publications) nanotechnology countries, the three from the Western group (USA, Germany, France) have about eight percent more nanotechnology publications (for 2004) than the three from the Far Eastern group (China, Japan, South Korea).While most of the high nanotechnology publication-producing countries are also high nanotechnology patent producers in the US Patent Office (as of 2003), China is a major exception. China ranks 20th as a nanotechnology patent-producing country in the US Patent Office

  7. The structure and infrastructure of the global nanotechnology literature

    Energy Technology Data Exchange (ETDEWEB)

    Kostoff, Ronald N., E-mail: kostofr@onr.navy.mil; Stump, Jesse A. [Office of Naval Research (United States); Johnson, Dustin [Northrop Grumman TASC (United States); Murday, James S. [Naval Research Laboratory, Chemistry Division, Code 6100 (United States); Lau, Clifford G.Y. [Institute for Defense Analyses (United States); Tolles, William M

    2006-08-15

    Text mining is the extraction of useful information from large volumes of text. A text mining analysis of the global open nanotechnology literature was performed. Records from the Science Citation Index (SCI)/Social SCI were analyzed to provide the infrastructure of the global nanotechnology literature (prolific authors/journals/institutions/countries, most cited authors/papers/journals) and the thematic structure (taxonomy) of the global nanotechnology literature, from a science perspective. Records from the Engineering Compendex (EC) were analyzed to provide a taxonomy from a technology perspective.The Far Eastern countries have expanded nanotechnology publication output dramatically in the past decade.The Peoples Republic of China ranks second to the USA (2004 results) in nanotechnology papers published in the SCI, and has increased its nanotechnology publication output by a factor of 21 in a decade.Of the six most prolific (publications) nanotechnology countries, the three from the Western group (USA, Germany, France) have about eight percent more nanotechnology publications (for 2004) than the three from the Far Eastern group (China, Japan, South Korea).While most of the high nanotechnology publication-producing countries are also high nanotechnology patent producers in the US Patent Office (as of 2003), China is a major exception. China ranks 20th as a nanotechnology patent-producing country in the US Patent Office.

  8. Review of the federal strategy for nanotechnology-related environmental, health, and safety research

    National Research Council Canada - National Science Library

    Committee for Review of the Federal Strategy to Address Environmental, Health, and Safety Research Needs for Engineered Nanoscale Materials

    ...s, which are increasingly being used in consumer goods and industry. An effective national plan for identifying and managing potential risks is essential to the successful development and public acceptance of nanotechnology-enabled products...

  9. Food neophobia, nanotechnology and satisfaction with life

    DEFF Research Database (Denmark)

    Schnettler, Berta; Crisóstomo, Gloria; Sepúlveda, José

    2013-01-01

    This study investigates the relationship between food neophobia, satisfaction with life and food-related life, and acceptance of the use of nanotechnology in food production. Questionnaire data was collected from a sample of 400 supermarket shoppers in southern Chile. The questionnaire measured...... knowledge of nanotechnology and willingness to purchase food products involving nanotechnology, and included the SWLS (Satisfaction with Life Scale), SWFL (Satisfaction with Foodrelated Life) and FNS (Food Neophobia Scale) scales. Using cluster analysis, four consumer types were distinguished...... with significant differences in their scores on the SWLS, SWFL and FNS. The types differed in their knowledge of nanotechnology, willingness to purchase foods involving nanotechnology, age, socioeconomic level and lifestyle. The least food-neophobic type had the highest levels of satisfaction with life...

  10. Food neophobia, nanotechnology and satisfaction with life

    DEFF Research Database (Denmark)

    Schnettler, Berta; Crisóstomo, Gloria; Sepúlveda, José

    2013-01-01

    knowledge of nanotechnology and willingness to purchase food products involving nanotechnology, and included the SWLS (Satisfaction with Life Scale), SWFL (Satisfaction with Foodrelated Life) and FNS (Food Neophobia Scale) scales. Using cluster analysis, four consumer types were distinguished......This study investigates the relationship between food neophobia, satisfaction with life and food-related life, and acceptance of the use of nanotechnology in food production. Questionnaire data was collected from a sample of 400 supermarket shoppers in southern Chile. The questionnaire measured...... with significant differences in their scores on the SWLS, SWFL and FNS. The types differed in their knowledge of nanotechnology, willingness to purchase foods involving nanotechnology, age, socioeconomic level and lifestyle. The least food-neophobic type had the highest levels of satisfaction with life...

  11. NANOTECHNOLOGY APPLICATIONS IN AGRICULTURE: AN UPDATE

    OpenAIRE

    Tejpal Dhewa

    2015-01-01

    Although the scientific studies on the applications of nanotechnology in the agriculture are less than a decade old yet the prospects of nanotechnology in this field has been considerable. The rapid developments in the nanosciences have a great impact on agricultural practices and food manufacturing industries. Nanotechnology has an enormous potential to offer smarter, stronger, cost-effective packaging materials, biosensors for the rapid detection of the food pathogens, toxins and other cont...

  12. Inventory of nanotechnology companies in Mexico

    International Nuclear Information System (INIS)

    Appelbaum, Richard; Zayago Lau, Edgar; Foladori, Guillermo; Parker, Rachel; Vazquez, Laura Liliana Villa; Belmont, Eduardo Robles; Figueroa, Edgar Ramón Arteaga

    2016-01-01

    This study presents an inventory of 139 nanotechnology companies in Mexico, identifying their geographic distribution, economic sector classification, and position in the nanotechnology value chain. We find that the principal economic sector of nanotechnology-engaged firms involves the manufacture of chemical products, which largely serve as means of production (primary or intermediate materials; instruments and equipment) for industrial processes. The methodology used in this analysis could be replicated in other countries without major modifications

  13. Inventory of nanotechnology companies in Mexico

    Science.gov (United States)

    Appelbaum, Richard; Zayago Lau, Edgar; Foladori, Guillermo; Parker, Rachel; Vazquez, Laura Liliana Villa; Belmont, Eduardo Robles; Figueroa, Edgar Ramón Arteaga

    2016-02-01

    This study presents an inventory of 139 nanotechnology companies in Mexico, identifying their geographic distribution, economic sector classification, and position in the nanotechnology value chain. We find that the principal economic sector of nanotechnology-engaged firms involves the manufacture of chemical products, which largely serve as means of production (primary or intermediate materials; instruments and equipment) for industrial processes. The methodology used in this analysis could be replicated in other countries without major modifications.

  14. Inventory of nanotechnology companies in Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Appelbaum, Richard, E-mail: rich@global.ucsb.edu [University of California at Santa Barbara, MacArthur Foundation Chair in Sociology and Global & International Studies Co-PI, Center for Nanotechnology and Society, Social Science and Media Studies 2103 (United States); Zayago Lau, Edgar [Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV, Zacatenco)., Multidisciplinary Graduate Programs (Mexico); Foladori, Guillermo [Universidad Autónoma de Zacatecas. Latin American Nanotechnology & Society Network (ReLANS), Unidad Académica en Estudios del Desarrollo (Mexico); Parker, Rachel [Canadian Institute for Advanced Research, Research Programs (Canada); Vazquez, Laura Liliana Villa [Universidad Autónoma de Zacatecas (Mexico); Belmont, Eduardo Robles [UNAM, Institute for Research in Applied Mathematics and Systems (IIMAS) (Mexico); Figueroa, Edgar Ramón Arteaga [Universidad Autónoma de Zacatecas. Latin American Nanotechnology & Society Network (ReLANS), Unidad Académica en Estudios del Desarrollo (Mexico)

    2016-02-15

    This study presents an inventory of 139 nanotechnology companies in Mexico, identifying their geographic distribution, economic sector classification, and position in the nanotechnology value chain. We find that the principal economic sector of nanotechnology-engaged firms involves the manufacture of chemical products, which largely serve as means of production (primary or intermediate materials; instruments and equipment) for industrial processes. The methodology used in this analysis could be replicated in other countries without major modifications.

  15. Nanotechnology tools in pharmaceutical R&D

    OpenAIRE

    Challa S.S.R. Kumar

    2010-01-01

    Nanotechnology is a new approach to problem solving and can be considered as a collection of tools and ideas which can be applied in pharmaceutical industry. Application of nanotechnology tools in pharmaceutical R&D is likely to result in moving the industry from ‘blockbuster drug’ model to ‘personalized medicine’. There are compelling applications in pharmaceutical industry where inexpensive nanotechnology tools can be utilized. The review explores the possibility of categorizing various nan...

  16. Forming the Research Component of the U.S. Defense Budget Policy

    Directory of Open Access Journals (Sweden)

    Alexandr V. Balyshev

    2015-01-01

    Full Text Available The authors examine the structure and principles of the defense spending for research and development in the U.S., as well as the main agencies and contractors involved. The article offers specific cases to illustrate the role of key players of the U.S. budgetary process, the U.S. President, Congress, Department of Defense, and their relations with the scientific community. Spending in this area is organized as a three-level structure, which includes development of new weapons systems, creation of military platforms and systemic integration of the armed forces. One of the most noteworthy participants on the weapons development level is the Defense advanced research projects agency (DARPA, which provides support for R&D projects able to facilitate technological breakthroughs and provide results applicable by the armed forces. The emphasis of the article is on the participation of the private sector on all levels of the defense spending and especially in the systemic integration. At this level even formulating the request becomes a highly challenging task, which demands involvement of the most highly qualified specialists and organizations. The authors analyze the advantages and disadvantages of the wide participation of commercial enterprises and provide cases illustrating possible conflicts between government and private actors and ways of their resolution.

  17. Global nanotechnology development from 1991 to 2012: patents, scientific publications, and effect of NSF funding

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Hsinchun [The University of Arizona, Department of Management Information Systems (United States); Roco, Mihail C. [National Science Foundation (United States); Son, Jaebong; Jiang, Shan, E-mail: jiangs@email.arizona.edu; Larson, Catherine A.; Gao, Qiang [The University of Arizona, Department of Management Information Systems (United States)

    2013-09-15

    In a relatively short interval for an emerging technology, nanotechnology has made a significant economic impact in numerous sectors including semiconductor manufacturing, catalysts, medicine, agriculture, and energy production. A part of the United States (US) government investment in basic research has been realized in the last two decades through the National Science Foundation (NSF), beginning with the nanoparticle research initiative in 1991 and continuing with support from the National Nanotechnology Initiative after fiscal year 2001. This paper has two main goals: (a) present a longitudinal analysis of the global nanotechnology development as reflected in the United States Patent and Trade Office (USPTO) patents and Web of Science (WoS) publications in nanoscale science and engineering (NSE) for the interval 1991-2012; and (b) identify the effect of basic research funded by NSF on both indicators. The interval has been separated into three parts for comparison purposes: 1991-2000, 2001-2010, and 2011-2012. The global trends of patents and scientific publications are presented. Bibliometric analysis, topic analysis, and citation network analysis methods are used to rank countries, institutions, technology subfields, and inventors contributing to nanotechnology development. We then, examined how these entities were affected by NSF funding and how they evolved over the past two decades. Results show that dedicated NSF funding used to support nanotechnology R and D was followed by an increased number of relevant patents and scientific publications, a greater diversity of technology topics, and a significant increase of citations. The NSF played important roles in the inventor community and served as a major contributor to numerous nanotechnology subfields.

  18. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory

    Directory of Open Access Journals (Sweden)

    Marina E. Vance

    2015-08-01

    Full Text Available To document the marketing and distribution of nano-enabled products into the commercial marketplace, the Woodrow Wilson International Center for Scholars and the Project on Emerging Nanotechnologies created the Nanotechnology Consumer Products Inventory (CPI in 2005. The objective of this present work is to redevelop the CPI by leading a research effort to increase the usefulness and reliability of this inventory. We created eight new descriptors for consumer products, including information pertaining to the nanomaterials contained in each product. The project was motivated by the recognition that a diverse group of stakeholders from academia, industry, and state/federal government had become highly dependent on the inventory as an important resource and bellweather of the pervasiveness of nanotechnology in society. We interviewed 68 nanotechnology experts to assess key information needs. Their answers guided inventory modifications by providing a clear conceptual framework best suited for user expectations. The revised inventory was released in October 2013. It currently lists 1814 consumer products from 622 companies in 32 countries. The Health and Fitness category contains the most products (762, or 42% of the total. Silver is the most frequently used nanomaterial (435 products, or 24%; however, 49% of the products (889 included in the CPI do not provide the composition of the nanomaterial used in them. About 29% of the CPI (528 products contain nanomaterials suspended in a variety of liquid media and dermal contact is the most likely exposure scenario from their use. The majority (1288 products, or 71% of the products do not present enough supporting information to corroborate the claim that nanomaterials are used. The modified CPI has enabled crowdsourcing capabilities, which allow users to suggest edits to any entry and permits researchers to upload new findings ranging from human and environmental exposure data to complete life cycle

  19. INDUSTRIAL TECHNOLOGICAL RESEARCH «DEVELOPMENT OF RUSSIAN MARKET OF NANOTECHNOLOGICAL PRODUCTS IN CONSTRUCTION UNTIL 2020». PART 2. ANALYSIS OF THE WORLD MARKET

    Directory of Open Access Journals (Sweden)

    GUSEV Boris Vladimirovich

    2013-04-01

    Full Text Available Some results of the industrial research «Development of Russian market of nanotechnological products in construction until 2020» have been published. Authors invite all interested specialists and specialized organization to take part in the broad public discussion.

  20. Public perceptions about nanotechnology: Risks, benefits and trust

    International Nuclear Information System (INIS)

    Cobb, Michael D.; Macoubrie, Jane

    2004-01-01

    We report data from the first representative national phone survey of Americans' perceptions about nanotechnology (N =1536). Public opinion about nanotechnology is in its infancy, and knowledge about it is quite limited. Yet, Americans' initial reaction to nanotechnology is thus far generally positive, probably rooted in a generally positive view of science overall. Survey respondents expected benefits of nanotechnology to be more prevalent than risks, and they reported feeling hopeful about nanotechnology rather than worried. Their most preferred potential benefit of nanotechnology is 'new and better ways to detect and treat human diseases,' and they identified 'losing personal privacy to tiny new surveillance devices' as the most important potential risk to avoid. The most discouraging aspect to the data is respondents' lack of trust in business leaders to minimize nanotechnology risks to human health. Overall, these data indicate that while Americans do not necessarily presume benefits and the absence of risks, their outlook is much more positive than not

  1. Public perceptions about nanotechnology: Risks, benefits and trust

    Energy Technology Data Exchange (ETDEWEB)

    Cobb, Michael D.; Macoubrie, Jane [North Carolina State University, Department of Political Science (United States)

    2004-08-15

    We report data from the first representative national phone survey of Americans' perceptions about nanotechnology (N =1536). Public opinion about nanotechnology is in its infancy, and knowledge about it is quite limited. Yet, Americans' initial reaction to nanotechnology is thus far generally positive, probably rooted in a generally positive view of science overall. Survey respondents expected benefits of nanotechnology to be more prevalent than risks, and they reported feeling hopeful about nanotechnology rather than worried. Their most preferred potential benefit of nanotechnology is 'new and better ways to detect and treat human diseases,' and they identified 'losing personal privacy to tiny new surveillance devices' as the most important potential risk to avoid. The most discouraging aspect to the data is respondents' lack of trust in business leaders to minimize nanotechnology risks to human health. Overall, these data indicate that while Americans do not necessarily presume benefits and the absence of risks, their outlook is much more positive than not.

  2. Defense, basic, and industrial research at the Los Alamos Neutron Science Center: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Longshore, A.; Salgado, K. [comps.

    1995-10-01

    The Workshop on Defense, Basic, and Industrial Research at the Los Alamos Neutron Science Center gathered scientists from Department of Energy national laboratories, other federal institutions, universities, and industry to discuss the use of neutrons in science-based stockpile stewardship, The workshop began with presentations by government officials, senior representatives from the three weapons laboratories, and scientific opinion leaders. Workshop participants then met in breakout sessions on the following topics: materials science and engineering; polymers, complex fluids, and biomaterials; fundamental neutron physics; applied nuclear physics; condensed matter physics and chemistry; and nuclear weapons research. They concluded that neutrons can play an essential role in science-based stockpile stewardship and that there is overlap and synergy between defense and other uses of neutrons in basic, applied, and industrial research from which defense and civilian research can benefit. This proceedings is a collection of talks and papers from the plenary, technical, and breakout session presentations. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  3. Overview of the Defense Programs Research and Technology Development Program for fiscal year 1993. Appendix II research laboratories and facilities

    Energy Technology Data Exchange (ETDEWEB)

    1993-09-30

    This document contains summaries of the research facilities that support the Defense Programs Research and Technology Development Program for FY 1993. The nine program elements are aggregated into three program clusters as follows: (1) Advanced materials sciences and technologies; chemistry and materials, explosives, special nuclear materials (SNM), and tritium. (2) Design sciences and advanced computation; physics, conceptual design and assessment, and computation and modeling. (3) Advanced manufacturing technologies and capabilities; system engineering science and technology, and electronics, photonics, sensors, and mechanical components. Section I gives a brief summary of 23 major defense program (DP) research and technology facilities and shows how these major facilities are organized by program elements. Section II gives a more detailed breakdown of the over 200 research and technology facilities being used at the Laboratories to support the Defense Programs mission.

  4. Political incentives towards replacing animal testing in nanotechnology?

    Science.gov (United States)

    Sauer, Ursula G

    2009-01-01

    The Treaty of Lisbon requests the European Union and the Member States to pay full regard to animal welfare issues when implementing new policies. The present article discusses how these provisions are met in the emerging area of nanotechnology. Political action plans in Europe take into account animal welfare issues to some extent. Funding programmes promote the development of non-animal test methods, however only in the area of nanotoxicology and also here not sufficiently to "pay full regard" to preventing animal testing, let alone to bring about a paradigm change in toxicology or in biomedical research as such. Ethical deliberations on nanotechnology, which influence future policies, so far do not address animal welfare at all. Considering that risk assessment of nanoproducts is conceived as a key element to protect human dignity, ethical deliberations should address the choice of the underlying testing methods and call for basing nanomaterial safety testing upon the latest scientific--and ethically acceptable--technologies. Finally, public involvement in the debate on nanotechnology should take into account information on resulting animal experiments.

  5. The applications of nanotechnology in food industry.

    Science.gov (United States)

    Rashidi, Ladan; Khosravi-Darani, Kianoush

    2011-09-01

    Nanotechnology has the potential of application in the food industry and processing as new tools for pathogen detection, disease treatment delivery systems, food packaging, and delivery of bioactive compounds to target sites. The application of nanotechnology in food systems will provide new methods to improve safety and the nutritional value of food products. This article will review the current advances of applications of nanotechnology in food science and technology. Also, it describes new current food laws for nanofood and novel articles in the field of risk assessment of using nanotechnology in the food industry.

  6. Risk of nanotechnology

    Science.gov (United States)

    Louda, Petr; Bakalova, Totka

    2014-05-01

    Nano-this and nano-that. These days it seems you need the prefix "nano" for products or applications if you want to be either very trendy or incredibly scary. This "nano-trend" has assumed "mega" proportions. Vague promises of a better life are met by equally vague, generalized fears about a worse future. These debates have some aspects in common: the subject is complex and not easy to explain; there is no consensus on risks and benefits. - A particular problem with nanotechnology lies in the huge gap between the public perception of what the hype promises and the scientific and commercial reality of what the technology actually delivers today and in the near future. There is nanoscience, which is the study of phenomena and manipulation of material at the nanoscale, in essence an extension of existing sciences into the nanoscale. Then there is nanotechnology, which is the design, characterization, production and application of structures, devices and systems by controlling shape and size at the nanoscale. Nanotechnology should really be called nanotechnologies: There is no single field of nanotechnology. The term broadly refers to such fields as biology, physics or chemistry, any scientific field really, or a combination thereof, that deals with the deliberate and controlled manufacturing of nanostructures. In addressing the health and environmental impact of nanotechnology we need to differentiate two types of nanostructures: (1) Nanocomposites, nanostructured surfaces and nanocomponents (electronic, optical, sensors etc.), where nanoscale particles are incorporated into a substance, material or device ("fixed" nanoparticles); and (2) "free" nanoparticles, where at some stage in production or use individual nanoparticles of a substance are present. There are four entry routes for nanoparticles into the body: they can be inhaled, swallowed, absorbed through skin or be deliberately injected during medical procedures. Once within the body they are highly mobile and

  7. Dynamic defense workshop :

    Energy Technology Data Exchange (ETDEWEB)

    Crosby, Sean Michael; Doak, Justin E.; Haas, Jason Juedes.; Helinski, Ryan; Lamb, Christopher C.

    2013-02-01

    On September 5th and 6th, 2012, the Dynamic Defense Workshop: From Research to Practice brought together researchers from academia, industry, and Sandia with the goals of increasing collaboration between Sandia National Laboratories and external organizations, de ning and un- derstanding dynamic, or moving target, defense concepts and directions, and gaining a greater understanding of the state of the art for dynamic defense. Through the workshop, we broadened and re ned our de nition and understanding, identi ed new approaches to inherent challenges, and de ned principles of dynamic defense. Half of the workshop was devoted to presentations of current state-of-the-art work. Presentation topics included areas such as the failure of current defenses, threats, techniques, goals of dynamic defense, theory, foundations of dynamic defense, future directions and open research questions related to dynamic defense. The remainder of the workshop was discussion, which was broken down into sessions on de ning challenges, applications to host or mobile environments, applications to enterprise network environments, exploring research and operational taxonomies, and determining how to apply scienti c rigor to and investigating the eld of dynamic defense.

  8. Ultimate Atomic Bling: Nanotechnology of Diamonds

    Energy Technology Data Exchange (ETDEWEB)

    Dahl, Jeremy

    2010-05-25

    Diamonds exist in all sizes, from the Hope Diamond to minuscule crystals only a few atoms across. The smallest of these diamonds are created naturally by the same processes that make petroleum. Recently, researchers discovered that these 'diamondoids' are formed in many different structural shapes, and that these shapes can be used like LEGO blocks for nanotechnology. This talk will discuss the discovery of these nano-size diamonds and highlight current SLAC/Stanford research into their applications in electronics and medicine.

  9. Ultimate Atomic Bling: Nanotechnology of Diamonds

    International Nuclear Information System (INIS)

    Dahl, Jeremy

    2010-01-01

    Diamonds exist in all sizes, from the Hope Diamond to minuscule crystals only a few atoms across. The smallest of these diamonds are created naturally by the same processes that make petroleum. Recently, researchers discovered that these 'diamondoids' are formed in many different structural shapes, and that these shapes can be used like LEGO blocks for nanotechnology. This talk will discuss the discovery of these nano-size diamonds and highlight current SLAC/Stanford research into their applications in electronics and medicine.

  10. 2004 annual report. Defense, safety, energy, information, health. CEA in the center of big European challenges; Rapport annuel 2004. Defense, securite, energie, information, sante. Le CEA au coeur des grands defis europeens

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    This document is the 2004 annual report of the French atomic energy commission (CEA). It presents the R and D activities of the CEA in three main domains: 1 - defense and safety, maintaining perenniality of nuclear dissuasion and nuclear safety: supplying nuclear weapons to armies, maintaining dissuasion capability with the simulation program, sharing R and D means with the scientific community and the industrial world, designing and maintaining naval nuclear propulsion reactors, cleansing Marcoule and Pierrelatte facilities, monitoring treaties and fighting against proliferation and terrorism; 2 - energy, developing more competitive and cleaner energy sources: nuclear waste management, optimization of industrial nuclear activities, future nuclear systems and new energy technologies, basic research on energy, radiobiology and toxicology; 3 - information and health, valorizing industry thanks to technological research and supplying new tools for health and medical research: micro- and nano-technologies, software technologies, basic research for industrial innovation, nuclear technologies for health and bio-technologies. (J.S.)

  11. Nanotechnology overview: Opportunities and challenges

    Science.gov (United States)

    Nanotechnology can be defined as the science of manipulating matter at the nanometer scale in order to discover new properties and possibly produce new products. For the past 30 years, a considerable amount of scientific interest and R&D funding devoted to nanotechnology has led to rapid developmen...

  12. Nanotechnology: From "Wow" to "Yuck"?

    Science.gov (United States)

    Kulinowski, Kristen

    2004-01-01

    Nanotechnology is science and engineering resulting from the manipulation of matter's most basic building blocks: atoms and molecules. As such, nanotechnology promises unprecedented control over both the materials we use and the means of their production. Such control could revolutionize nearly every sector of our economy, including medicine,…

  13. Taking nanotechnology to schools

    OpenAIRE

    Lakhtakia, Akhlesh

    2005-01-01

    After a primer on nanotechnology and a review of current educational practices in secondary schools, the concept of just-in-time education is proposed to integrate technosciences and humanities so that both future technoscientists and non-technoscientists develop a common understanding, possibly even a common language, to deal with social, ethical, legal, and political issues that arise from the development of nanotechnology and its convergence with other technoscientific developments.

  14. DNA nanotechnology

    Science.gov (United States)

    Seeman, Nadrian C.; Sleiman, Hanadi F.

    2018-01-01

    DNA is the molecule that stores and transmits genetic information in biological systems. The field of DNA nanotechnology takes this molecule out of its biological context and uses its information to assemble structural motifs and then to connect them together. This field has had a remarkable impact on nanoscience and nanotechnology, and has been revolutionary in our ability to control molecular self-assembly. In this Review, we summarize the approaches used to assemble DNA nanostructures and examine their emerging applications in areas such as biophysics, diagnostics, nanoparticle and protein assembly, biomolecule structure determination, drug delivery and synthetic biology. The introduction of orthogonal interactions into DNA nanostructures is discussed, and finally, a perspective on the future directions of this field is presented.

  15. Patent, Nanotechnology, and the Role of University

    OpenAIRE

    Sardjono, Agus

    2011-01-01

    University has significant contribution tot the development of nanotechnology, The role of university can be implemented through the TTLO, particulary in an effort to build a bridge for bottom-up nanotechnology for commercial purposes. There will be an increasingly significant link betweent the patent system on the university role in the development of nanotechnology.

  16. Nanoscience and nanotechnologies in food industries: opportunities and research trends

    Science.gov (United States)

    Ranjan, Shivendu; Dasgupta, Nandita; Chakraborty, Arkadyuti Roy; Melvin Samuel, S.; Ramalingam, Chidambaram; Shanker, Rishi; Kumar, Ashutosh

    2014-06-01

    Nanomaterials have gained importance in various fields of science, technology, medicine, colloid technologies, diagnostics, drug delivery, personal care applications and others due to their small size and unique physico-chemical characteristic. Apart from above mentioned area, it is also extensively being used in food sector specifically in preservation and packaging. The future applications in food can also be extended to improve the shelf life, food quality, safety, fortification and biosensors for contaminated or spoiled food or food packaging. Different types and shapes of nanomaterials are being employed depending upon the need and nature of the food. Characterisation of these nanomaterials is essential to understand the interaction with the food matrix and also with biological compartment. This review is focused on application of nanotechnology in food industries. It also gives insight on commercial products in market with usage of nanomaterials, current research and future aspects in these areas. Currently, they are being incorporated into commercial products at a faster rate than the development of knowledge and regulations to mitigate potential health and environmental impacts associated with their manufacturing, application and disposal. As nanomaterials are finding new application every day, care should be taken about their potential toxic effects.

  17. NASA Applications of Molecular Nanotechnology

    Science.gov (United States)

    Globus, Al; Bailey, David; Han, Jie; Jaffe, Richard; Levit, Creon; Merkle, Ralph; Srivastava, Deepak

    1998-01-01

    Laboratories throughout the world are rapidly gaining atomically precise control over matter. As this control extends to an ever wider variety of materials, processes and devices, opportunities for applications relevant to NASA's missions will be created. This document surveys a number of future molecular nanotechnology capabilities of aerospace interest. Computer applications, launch vehicle improvements, and active materials appear to be of particular interest. We also list a number of applications for each of NASA's enterprises. If advanced molecular nanotechnology can be developed, almost all of NASA's endeavors will be radically improved. In particular, a sufficiently advanced molecular nanotechnology can arguably bring large scale space colonization within our grasp.

  18. Nanotechnology in Radiation Oncology

    Science.gov (United States)

    Wang, Andrew Z.; Tepper, Joel E.

    2014-01-01

    Nanotechnology, the manipulation of matter on atomic and molecular scales, is a relatively new branch of science. It has already made a significant impact on clinical medicine, especially in oncology. Nanomaterial has several characteristics that are ideal for oncology applications, including preferential accumulation in tumors, low distribution in normal tissues, biodistribution, pharmacokinetics, and clearance, that differ from those of small molecules. Because these properties are also well suited for applications in radiation oncology, nanomaterials have been used in many different areas of radiation oncology for imaging and treatment planning, as well as for radiosensitization to improve the therapeutic ratio. In this article, we review the unique properties of nanomaterials that are favorable for oncology applications and examine the various applications of nanotechnology in radiation oncology. We also discuss the future directions of nanotechnology within the context of radiation oncology. PMID:25113769

  19. EDITORIAL: New Editor-in-Chief for Nanotechnology New Editor-in-Chief for Nanotechnology

    Science.gov (United States)

    Couzin, Nina

    2009-01-01

    Nanotechnology is proud to announce the appointment of Professor Mark Reed, Yale University, as the new Editor-in-Chief from January 2009. Mark Reed holds the Harold Hodgkinson Chair of Engineering and Applied Science at Yale University. He has made significant contributions in the areas of quantum dots, electronic transport in nanoscale and mesoscopic systems, artificially structured materials and devices, and molecular electronics. Professor Reed has been associated with the journal as an Editorial Board member for a number of years and we are delighted that he has agreed to take on the scientific leadership of the journal in its 20th year. We also take the opportunity to thank Professor Mark Welland, Cambridge University, for his work as Editor-in-Chief since 2001, and for presiding over the re-launch and remarkable growth of the journal since then. Nanotechnology is unique in that it was the first peer-reviewed journal in the area of nanoscience, the first issue appearing in 1990. Since then it has established a distinguished publication record and has become a leading journal covering all aspects of nanoscale science and technology, as well as specializing in in-depth, comprehensive articles not seen in letter format journals. Published weekly and featuring subject sections, the journal is truly multidisciplinary in nature and is an excellent medium to quickly deliver your research results to readers worldwide. Nanotechnology is proud to be offering some of the fastest publication times around (less than three months on average from receipt to online publication). We offer free online access to all published papers for 30 days, ensuring that anyone with access to the internet will be able to read your paper. We were also the first journal to give our authors the opportunity to communicate their research to a wider audience through nanotechweb.org and other IOP websites. See the journal's homepage at www.iop.org/Journals/nano for more details. We are looking

  20. When nano meets stem: the impact of nanotechnology in stem cell biology.

    Science.gov (United States)

    Kaur, Savneet; Singhal, Barkha

    2012-01-01

    Nanotechnology and biomedical treatments using stem cells are among the latest conduits of biotechnological research. Even more recently, scientists have begun finding ways to mate these two specialties of science. The advent of nanotechnology has paved the way for an explicit understanding of stem cell therapy in vivo and by recapitulation of such in vivo environments in the culture, this technology seems to accommodate a great potential in providing new vistas to stem cell research. Nanotechnology carries in its wake, the development of highly stable, efficient and specific gene delivery systems for both in vitro and in vivo genetic engineering of stem cells, use of nanoscale systems (such as microarrays) for investigation of gene expression in stem cells, creation of dynamic three-dimensional nano-environments for in vitro and in vivo maintenance and differentiation of stem cells and development of extremely sensitive in vivo detection systems to gain insights into the mechanisms of stem cell differentiation and apoptosis in different disease models. The present review presents an overview of the current applications and future prospects for the use of nanotechnology in stem cell biology. Copyright © 2011 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  1. Nanotechnologies in regenerative medicine

    Czech Academy of Sciences Publication Activity Database

    Kubinová, Šárka; Syková, Eva

    2010-01-01

    Roč. 19, 3-4 (2010), s. 144-156 ISSN 1364-5706 R&D Projects: GA AV ČR IAA500390902; GA MŠk(CZ) LC554; GA AV ČR KAN201110651 Grant - others:GA ČR(CZ) 1M0538; GA ČR(CZ) GA203/09/1242; GA AV ČR(CZ) KAN200520804; EC FP6 project ENIMET(XE) LSHM-CT-2005-019063 Program:1M; GA; KA Institutional research plan: CEZ:AV0Z50390703 Keywords : Nanotechnology * regenerative medicine * nanofibers Subject RIV: FH - Neurology Impact factor: 1.051, year: 2010

  2. Nanotechnologies for sustainable construction

    DEFF Research Database (Denmark)

    Geiker, Mette Rica; Andersen, Maj Munch

    2009-01-01

    This chapter aims to highlight key aspects and recent trends in the development and application of nanotechnology to facilitate sustainable construction, use and demolition of buildings and infrastructure structures, ‘nanoconstruction’. Nanotechnology is not a technology but a very diverse...... technological field which covers many aspects. The chapter therefore seeks to provide a framework for addressing relevant issues of green nanoconstruction and to bring an overview and illustrative examples of current early developments....

  3. The governance of nanotechnology

    OpenAIRE

    Jim Whitman

    2007-01-01

    Despite the promises made for nanotechology, its direction and momentum as it has developed to date already pose very considerable problems of regulation and control in quite fundamental ways. This article will review these difficulties under four themes. First, the principal agents for framing governance agreements (states) are also the principal proponents of nanoscience and nanotechnology. Second, the speed of new advances in nanotechnology and the reach of their implications are already o...

  4. Nanotechnology Concepts at MSFC: Engineering Directorate

    Science.gov (United States)

    Bhat, Biliyar; Kaul, Raj; Shah, Sandeep; Smithers, Gweneth; Watson, Michael D.

    2000-01-01

    Nanotechnology is the art and science of building materials and devices at the ultimate level of finesse: atom by atom. Our nation's space program has needs for miniaturization of components, minimization of weight and maximization of performance, and nanotechnology will help us get there. MSFC - Engineering Directorate (ED) is committed to developing nanotechnology that will enable MSFC missions in space transportation, space science and space optics manufacturing. MSFC-ED has a dedicated group of technologists who are currently developing high pay-off nanotechnology concepts. This poster presentation will outline some of the concepts being developed at this time including, nanophase structural materials, carbon nanotube reinforced metal and polymer matrix composites, nanotube temperature sensors and aerogels. The poster will outline these concepts and discuss associated technical challenges in turning these concepts into real components and systems.

  5. Nanotechnology: an evidence-based analysis.

    Science.gov (United States)

    2006-01-01

    Due to continuing advances in the development of structures, devices, and systems with a length of about 1 to 100 nanometres (nm) (1 nm is one billionth of a metre), the Medical Advisory Secretariat conducted a horizon scanning appraisal of nanotechnologies as new and emerging technologies, including an assessment of the possibly disruptive impact of future nanotechnologies. The National Cancer Institute (NCI) in the United States proclaimed a 2015 challenge goal of eliminating suffering and death from cancer. To help meet this goal, the NCI is engaged in a concerted effort to introduce nanotechnology "to radically change the way we diagnose, treat and prevent cancer." It is the NCI's position that "melding nanotechnology and cancer research and development efforts will have a profound, disruptive effect on how we diagnose, treat, and prevent cancer." Thus, this appraisal sought to determine the systemic effects of nanotechnologies that target, image and deliver drugs, for example, with respect to health human resources, training, and new specialties; and to assess the current status of these nanotechnologies and their projected timeline to clinical utilization. TARGET POPULATION AND CONDITION Cancer is a heterogeneous set of many malignant diseases. In each sex, 3 sites account for over one-half of all cancers. In women, these are the breast (28%), colorectum (13%) and lungs (12%). In men, these are the prostate (28%), lungs (15%), and the colorectum (13%). It is estimated that 246,000 people in Ontario (2% of the population) have been diagnosed with cancer within the past 10 years and are still alive. Most were diagnosed with cancer of the breast (21%), prostate (20%), or colon or rectum (13%). The number of new cancer cases diagnosed each year in Ontario is expected to increase from about 53,000 in 2001 to 80,000 in 2015. This represents more than a 50% increase in new cases over this period. An aging population, population growth, and rising cancer risk are

  6. Technological agglomeration and the emergence of clusters and networks in nanotechnology

    NARCIS (Netherlands)

    Robinson, D.K.R.; Rip, Arie; Mangematin, Vincent

    2007-01-01

    Research and development at the nanoscale requires a large degree of integration, from convergence of research disciplines in new fields of enquiry to new linkages between start-ups, regional actors and research facilities. Based on the analysis of two clusters in nanotechnologies (MESA+ (Twente)

  7. Nanotechnology: The Incredible Invisible World

    Science.gov (United States)

    Roberts, Amanda S.

    2011-01-01

    The concept of nanotechnology was first introduced in 1959 by Richard Feynman at a meeting of the American Physical Society. Nanotechnology opens the door to an exciting new science/technology/engineering field. The possibilities for the uses of this technology should inspire the imagination to think big. Many are already pursuing such feats…

  8. Nanotechnology Applications

    Science.gov (United States)

    This book chapter discusses various nanotechnologies for water sustainability. Detailed information on catalysis as an advanced oxidation process, nanofiltration, adsorption, water disinfection, and groundwater remediation is provided for water treatment. These nanomaterials effe...

  9. Review of health safety aspects of nanotechnologies in food production.

    Science.gov (United States)

    Bouwmeester, Hans; Dekkers, Susan; Noordam, Maryvon Y; Hagens, Werner I; Bulder, Astrid S; de Heer, Cees; ten Voorde, Sandra E C G; Wijnhoven, Susan W P; Marvin, Hans J P; Sips, Adriënne J A M

    2009-02-01

    Due to new, previously unknown, properties attributed to engineered nanoparticles many new products are introduced in the agro-food area. Nanotechnologies cover many aspects, such as disease treatment, food security, new materials for pathogen detection, packaging materials and delivery systems. As with most new and evolving technologies, potential benefits are emphasized, while little is known on safety of the application of nanotechnologies in the agro-food sector. This review gives an overview of scientific issues that need to be addressed with priority in order to improve the risk assessment for nanoparticles in food. The following research topics are considered to contribute pivotally to risk assessment of nanotechnologies and nanoparticles in food products. Set a definition for NPs to facilitate regulatory discussions, prioritization of research and exchange of study results. Develop analytical tools for the characterization of nanoparticles in complex biological matrices like food. Establish relevant dose metrics for nanoparticles used for both interpretation of scientific studies as well as regulatory frameworks. Search for deviant behavior (kinetics) and novel effects (toxicity) of nanoparticles and assess the validity of currently used test systems following oral exposure. Estimate the consumer exposure to nanoparticles.

  10. Role of Nanotechnology in Cosmeceuticals: A Review of Recent Advances

    Directory of Open Access Journals (Sweden)

    Shreya Kaul

    2018-01-01

    Full Text Available Nanotechnology manifests the progression in the arena of research and development, by increasing the efficacy of the product through delivery of innovative solutions. To overcome certain drawbacks associated with the traditional products, application of nanotechnology is escalating in the area of cosmeceuticals. Cosmeceuticals are regarded as the fastest growing segment of the personal care industry and the use has risen drastically over the years. Nanocosmeceuticals used for skin, hair, nail, and lip care, for conditions like wrinkles, photoaging, hyperpigmentation, dandruff, and hair damage, have come into widespread use. Novel nanocarriers like liposomes, niosomes, nanoemulsions, microemulsion, solid lipid nanoparticles, nanostructured lipid carrier, and nanospheres have replaced the usage of conventional delivery system. These novel nanocarriers have advantages of enhanced skin penetration, controlled and sustained drug release, higher stability, site specific targeting, and high entrapment efficiency. However, nanotoxicological researches have indicated concern regarding the impact of increased use of nanoparticles in cosmeceuticals as there are possibilities of nanoparticles to penetrate through skin and cause health hazards. This review on nanotechnology used in cosmeceuticals highlights the various novel carriers used for the delivery of cosmeceuticals, their positive and negative aspects, marketed formulations, toxicity, and regulations of nanocosmeceuticals.

  11. Determining the Scope of Collection Development and Research Assistance for Cross-Disciplinary Areas: A Case Study of Two Contrasting Areas, Nanotechnology and Transportation Engineering

    Science.gov (United States)

    Williamson, Jeanine M.; Han, Lee D.; Colon-Aguirre, Monica

    2009-01-01

    The study examined the extent of cross-disciplinarity in nanotechnology and transportation engineering research. Researchers in these two fields were determined from the web sites of the U.S. News and World Report top 100 schools in civil engineering and materials science. Web of Science searches for 2006 and 2007 articles were obtained and the…

  12. PREFACE: IV Nanotechnology International Forum (RUSNANOTECH 2011)

    Science.gov (United States)

    Dvurechenskii, Anatoly; Alfimov, Mikhail; Suzdalev, Igor; Osiko, Vyacheslav; Khokhlov, Aleksey; Son, Eduard; Skryabin, Konstantin; Petrov, Rem; Deev, Sergey

    2012-02-01

    Logo The RUSNANOTECH 2011 International Forum on Nanotechnology was held from 26-28 October 2011, in Moscow, Russia. It was the fourth forum organized by RUSNANO (Russian Corporation of Nanotechnologies) since 2008. In March 2011 RUSNANO was established as an open joint-stock company through the reorganization of the state corporation Russian Corporation of Nanotechnologies. RUSNANO's mission is to develop the Russian nanotechnology industry through co-investment in nanotechnology projects with substantial economic potential or social benefit. Within the framework of the Forum Science and Technology Program, presentations on key trends of nanotechnology development were given by foreign and Russian scientists, R&D officers of leading international companies, universities and scientific centers. The science and technology program of the Forum was divided into four sections as follows (by following hyperlinks you may find each section's program including videos of all oral presentations): Nanoelectronics and Nanophotonics Nanomaterials Nanotechnology and Green Energy Nanotechnology in Healthcare and Pharma (United business and science & technology section on 'RUSNANOTECH 2011') The scientific program of the forum included more than 50 oral presentations by leading scientists from 15 countries. Among them were world-known specialists such as Professor S Bader (Argonne National Laboratory, USA), Professor O Farokzhad (Harvard Medical School, USA), Professor K Chien (Massachusetts General Hospital, USA), Professor L Liz-Marzan (University of Vigo), A Luque (Polytechnic University of Madrid) and many others. The poster session consisted of over 120 presentations, 90 of which were presented in the framework of the young scientists' nanotechnology papers competition. This volume of Journal of Physics: Conference Series includes a selection of 47 submissions. Section editors of the proceedings: Nanoelectronics and nanophotonics Corresponding Member of Russian Academy of

  13. Material Binding Peptides for Nanotechnology

    Directory of Open Access Journals (Sweden)

    Urartu Ozgur Safak Seker

    2011-02-01

    Full Text Available Remarkable progress has been made to date in the discovery of material binding peptides and their utilization in nanotechnology, which has brought new challenges and opportunities. Nowadays phage display is a versatile tool, important for the selection of ligands for proteins and peptides. This combinatorial approach has also been adapted over the past decade to select material-specific peptides. Screening and selection of such phage displayed material binding peptides has attracted great interest, in particular because of their use in nanotechnology. Phage display selected peptides are either synthesized independently or expressed on phage coat protein. Selected phage particles are subsequently utilized in the synthesis of nanoparticles, in the assembly of nanostructures on inorganic surfaces, and oriented protein immobilization as fusion partners of proteins. In this paper, we present an overview on the research conducted on this area. In this review we not only focus on the selection process, but also on molecular binding characterization and utilization of peptides as molecular linkers, molecular assemblers and material synthesizers.

  14. Functionalized surfaces and nanostructures for nanotechnological applications

    Science.gov (United States)

    2003-01-01

    1. Introduction Despite unprecedented government funding and public interest in nanotechnology, few can accurately define the scope, range or potential applications of this technology. One of the most pressing issues facing nanoscientists and technologists today is that of communicating with the non-scientific community. As a result of decades of speculation, a number of myths have grown up around the field, making it difficult for the general public, or indeed the business and financial communities, to understand what is a fundamental shift in the way we look at our interactions with the natural world. This article attempts to address some of these misconceptions, and explain why scientists, businesses and governments are spending large amounts of time and money on nanoscale research and development. 2. What is nanotechnology? Take a random selection of scientists, engineers, investors and the general public and ask them what nanotechnology is and you will receive a range of replies as broad as nanotechnology itself. For many scientists, it is nothing startlingly new; after all we have been working at the nanoscale for decades, through electron microscopy, scanning probe microscopies or simply growing and analysing thin films. For most other groups, however, nanotechnology means something far more ambitious, miniature submarines in the bloodstream, little cogs and gears made out of atoms, space elevators made of nanotubes, and the colonization of space. It is no wonder people often muddle up nanotechnology with science fiction. 3. What is the nanoscale? Although a metre is defined by the International Standards Organization as `the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second' and a nanometre is by definition 10- 9 of a metre, this does not help scientists to communicate the nanoscale to non-scientists. It is in human nature to relate sizes by reference to everyday objects, and the commonest definition of

  15. Global nanotechnology development from 1991 to 2012: patents, scientific publications, and effect of NSF funding

    International Nuclear Information System (INIS)

    Chen, Hsinchun; Roco, Mihail C.; Son, Jaebong; Jiang, Shan; Larson, Catherine A.; Gao, Qiang

    2013-01-01

    In a relatively short interval for an emerging technology, nanotechnology has made a significant economic impact in numerous sectors including semiconductor manufacturing, catalysts, medicine, agriculture, and energy production. A part of the United States (US) government investment in basic research has been realized in the last two decades through the National Science Foundation (NSF), beginning with the nanoparticle research initiative in 1991 and continuing with support from the National Nanotechnology Initiative after fiscal year 2001. This paper has two main goals: (a) present a longitudinal analysis of the global nanotechnology development as reflected in the United States Patent and Trade Office (USPTO) patents and Web of Science (WoS) publications in nanoscale science and engineering (NSE) for the interval 1991–2012; and (b) identify the effect of basic research funded by NSF on both indicators. The interval has been separated into three parts for comparison purposes: 1991–2000, 2001–2010, and 2011–2012. The global trends of patents and scientific publications are presented. Bibliometric analysis, topic analysis, and citation network analysis methods are used to rank countries, institutions, technology subfields, and inventors contributing to nanotechnology development. We then, examined how these entities were affected by NSF funding and how they evolved over the past two decades. Results show that dedicated NSF funding used to support nanotechnology R and D was followed by an increased number of relevant patents and scientific publications, a greater diversity of technology topics, and a significant increase of citations. The NSF played important roles in the inventor community and served as a major contributor to numerous nanotechnology subfields

  16. Recent developments in nanotechnology transforming the agricultural sector: a transition replete with opportunities.

    Science.gov (United States)

    Kim, Dae-Young; Kadam, Avinash; Shinde, Surendra; Saratale, Rijuta Ganesh; Patra, Jayanta; Ghodake, Gajanan

    2018-02-01

    The applications and benefits of nanotechnology in the agricultural sector have attracted considerable attention, particularly in the invention of unique nanopesticides and nanofertilisers. The contemporary developments in nanotechnology are acknowledged and the most significant opportunities awaiting the agriculture sector from the recent scientific and technical literature are addressed. This review discusses the significance of recent trends in nanomaterial-based sensors available for the sustainable management of agricultural soil, as well as the role of nanotechnology in detection and protection against plant pathogens, and for food quality and safety. Novel nanosensors have been reported for primary applications in improving crop practices, food quality, and packaging methods, thus will change the agricultural sector for potentially better and healthier food products. Nanotechnology is well-known to play a significant role in the effective management of phytopathogens, nutrient utilisation, controlled release of pesticides, and fertilisers. Research and scientific gaps to be overcome and fundamental questions have been addressed to fuel active development and application of nanotechnology. Together, nanoscience, nanoengineering, and nanotechnology offer a plethora of opportunities, proving a viable alternative in the agriculture and food processing sector, by providing a novel and advanced solutions. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  17. Introduction to the Field of Nanotechnology Ethics and Policy

    NARCIS (Netherlands)

    Linton, J.D.; Linton, Jonathan; Walsh, Steven Thomas

    2012-01-01

    Nanotechnologies and nanoscience have generated an unprecedented global research and development race involving dozens of countries. The understanding of associated environmental, ethical, and societal implications lags far behind the science and technology. Consequently, it is critical to consider

  18. Awareness on adverse effects of nanotechnology increases negative perception among public: survey study from Singapore

    International Nuclear Information System (INIS)

    George, Saji; Kaptan, Gulbanu; Lee, Joel; Frewer, Lynn

    2014-01-01

    As has been demonstrated by recent societal controversies associated with the introduction of novel technologies, societal acceptance of a technology and its applications is shaped by consumers’ perceived risks and benefits. The research reported here investigates public perceptions of nanotechnology in Singapore, where technological innovation is an established part of the economy, and it might be expected that consumer perceptions of risk are low, and those of benefit are high. The contribution of socio-demographic variables, knowledge level and exposure to risk information in shaping risk perception about nanotechnology applications within different application sectors were analysed. About ∼80 % of respondents have some understanding of nanotechnology, 60 % report having heard some negative information, and 39 % perceive nanotechnology as beneficial, while 27.5 % perceive it as risky. Nanotechnology application in food was reported to cause the most concern in the consumers included in the sample. Two-step cluster analysis of the data enabled grouping of respondents into those who expressed ‘less concern’ or ‘more concern’ based on their average scores for concern levels expressed with applications of nanotechnology in different sectors. Profiling of these clusters revealed that, apart from various socio-demographic factors, exposure to risk-related information, rather than awareness in nanotechnology itself, resulted in respondents expressing greater concern about nanotechnology applications. The results provide evidence upon which regulatory agencies and industries can base policies regarding informed risk–benefit communication and management associated with the introduction of commercial applications of nanotechnology

  19. Awareness on adverse effects of nanotechnology increases negative perception among public: survey study from Singapore

    Energy Technology Data Exchange (ETDEWEB)

    George, Saji, E-mail: saji-george@nyp.edu.sg [Nanyang Polytechnic, Centre for Sustainable Nanotechnology, School of Chemical & Life Sciences (Singapore); Kaptan, Gulbanu [Newcastle University, Food and Society Group, CRE School of Agriculture, Food and Rural Development (United Kingdom); Lee, Joel [Nanyang Polytechnic, Centre for Sustainable Nanotechnology, School of Chemical & Life Sciences (Singapore); Frewer, Lynn, E-mail: lynn.frewer@newcastle.ac.uk [Newcastle University, Food and Society Group, CRE School of Agriculture, Food and Rural Development (United Kingdom)

    2014-12-15

    As has been demonstrated by recent societal controversies associated with the introduction of novel technologies, societal acceptance of a technology and its applications is shaped by consumers’ perceived risks and benefits. The research reported here investigates public perceptions of nanotechnology in Singapore, where technological innovation is an established part of the economy, and it might be expected that consumer perceptions of risk are low, and those of benefit are high. The contribution of socio-demographic variables, knowledge level and exposure to risk information in shaping risk perception about nanotechnology applications within different application sectors were analysed. About ∼80 % of respondents have some understanding of nanotechnology, 60 % report having heard some negative information, and 39 % perceive nanotechnology as beneficial, while 27.5 % perceive it as risky. Nanotechnology application in food was reported to cause the most concern in the consumers included in the sample. Two-step cluster analysis of the data enabled grouping of respondents into those who expressed ‘less concern’ or ‘more concern’ based on their average scores for concern levels expressed with applications of nanotechnology in different sectors. Profiling of these clusters revealed that, apart from various socio-demographic factors, exposure to risk-related information, rather than awareness in nanotechnology itself, resulted in respondents expressing greater concern about nanotechnology applications. The results provide evidence upon which regulatory agencies and industries can base policies regarding informed risk–benefit communication and management associated with the introduction of commercial applications of nanotechnology.

  20. Awareness on adverse effects of nanotechnology increases negative perception among public: survey study from Singapore

    Science.gov (United States)

    George, Saji; Kaptan, Gulbanu; Lee, Joel; Frewer, Lynn

    2014-12-01

    As has been demonstrated by recent societal controversies associated with the introduction of novel technologies, societal acceptance of a technology and its applications is shaped by consumers' perceived risks and benefits. The research reported here investigates public perceptions of nanotechnology in Singapore, where technological innovation is an established part of the economy, and it might be expected that consumer perceptions of risk are low, and those of benefit are high. The contribution of socio-demographic variables, knowledge level and exposure to risk information in shaping risk perception about nanotechnology applications within different application sectors were analysed. About 80 % of respondents have some understanding of nanotechnology, 60 % report having heard some negative information, and 39 % perceive nanotechnology as beneficial, while 27.5 % perceive it as risky. Nanotechnology application in food was reported to cause the most concern in the consumers included in the sample. Two-step cluster analysis of the data enabled grouping of respondents into those who expressed `less concern' or `more concern' based on their average scores for concern levels expressed with applications of nanotechnology in different sectors. Profiling of these clusters revealed that, apart from various socio-demographic factors, exposure to risk-related information, rather than awareness in nanotechnology itself, resulted in respondents expressing greater concern about nanotechnology applications. The results provide evidence upon which regulatory agencies and industries can base policies regarding informed risk-benefit communication and management associated with the introduction of commercial applications of nanotechnology.

  1. Defense Coastal/Estuarine Research Program 2 (DCERP2)

    Science.gov (United States)

    2013-05-01

    Assessing TMDL effectiveness using flow-adjusted concentrations:  A case study of the Neuse River , North Carolina. Environmental Science & Technology 37...activities, and data collection in the NRE Basin and New River by local stakeholder groups. Defense Coastal/Estuarine Research Program (DCERP) Monitoring...relationships between light penetration and solids/chl a levels. ArcGIS and spatial statistics will be used to estimate average bathymetric areas

  2. Defense Coastal/Estuarine Research Program (DCERP) Strategic Plan

    Science.gov (United States)

    2007-09-01

    availability to phytoplankton in the water column, as well as to benthic microalgae, macroalgae , and seagrasses in bottom waters (Gallegos et al., 2005...further another of MCBCL’s key management objectives for meeting the requirements of the CWA. How wetlands may be utilized for water treatment ...Regulations Appendix B Prioritized list of MCBCL’s conservation and water quality needs Defense Coastal/Estuarine Research Program (DCERP) Strategic

  3. Longitudinal Nanotechnology Development (1991-2002): National Science Foundation Funding and its Impact on Patents

    Energy Technology Data Exchange (ETDEWEB)

    Huang Zan, E-mail: zhuang@eller.arizona.edu; Chen Hsinchun; Yan Lijun [University of Arizona, Department of Management Information Systems, Artificial Intelligence Lab, Eller College of Management (United States); Roco, Mihail C. [National Science Foundation (United States)

    2005-10-15

    Nanotechnology holds the promise to revolutionize a wide range of products, processes and applications. It is recognized by over sixty countries as critical for their development at the beginning of the 21st century. A significant public investment of over $1 billion annually is devoted to nanotechnology research in the United States. This paper provides an analysis of the National Science Foundation (NSF) funding of nanoscale science and engineering (NSE) and its relationship to the innovation as reflected in the United States Patent and Trade Office (USPTO) patent data. Using a combination of bibliometric analysis and visualization tools, we have identified several general trends, the key players, and the evolution of technology topics in the NSF funding and commercial patenting activities. This study documents the rapid growth of innovation in the field of nanotechnology and its correlation to funding. Statistical analysis shows that the NSF-funded researchers and their patents have higher impact factors than other private and publicly funded reference groups. This suggests the importance of fundamental research on nanotechnology development. The number of cites per NSF-funded inventor is about 10 as compared to 2 for all inventors of NSE-related patents recorded at USPTO, and the corresponding Authority Score is 20 as compared to 1.8.

  4. Longitudinal Nanotechnology Development (1991-2002): National Science Foundation Funding and its Impact on Patents

    International Nuclear Information System (INIS)

    Huang Zan; Chen Hsinchun; Yan Lijun; Roco, Mihail C.

    2005-01-01

    Nanotechnology holds the promise to revolutionize a wide range of products, processes and applications. It is recognized by over sixty countries as critical for their development at the beginning of the 21st century. A significant public investment of over $1 billion annually is devoted to nanotechnology research in the United States. This paper provides an analysis of the National Science Foundation (NSF) funding of nanoscale science and engineering (NSE) and its relationship to the innovation as reflected in the United States Patent and Trade Office (USPTO) patent data. Using a combination of bibliometric analysis and visualization tools, we have identified several general trends, the key players, and the evolution of technology topics in the NSF funding and commercial patenting activities. This study documents the rapid growth of innovation in the field of nanotechnology and its correlation to funding. Statistical analysis shows that the NSF-funded researchers and their patents have higher impact factors than other private and publicly funded reference groups. This suggests the importance of fundamental research on nanotechnology development. The number of cites per NSF-funded inventor is about 10 as compared to 2 for all inventors of NSE-related patents recorded at USPTO, and the corresponding Authority Score is 20 as compared to 1.8

  5. Nanotechnology and the need for risk governance

    International Nuclear Information System (INIS)

    Renn, O.; Roco, M. C.

    2006-01-01

    After identifying the main characteristics and prospects of nanotechnology as an emerging technology, the paper presents the general risks associated with nanotechnology applications and the deficits of the risk governance process today, concluding with recommendations to governments, industry, international organizations and other stakeholders. The International Risk Governance Council (IRGC) has identified a governance gap between the requirements pertaining to the nano- rather than the micro-/macro- technologies. The novel attributes of nanotechnology demand different routes for risk-benefit assessment and risk management, and at present, nanotechnology innovation proceeds ahead of the policy and regulatory environment. In the shorter term, the governance gap is significant for those passive nanostructures that are currently in production and have high exposure rates; and is especially significant for the several 'active' nanoscale structures and nanosystems that we can expect to be on the market in the near future. Active nanoscale structures and nanosystems have the potential to affect not only human health and the environment but also aspects of social lifestyle, human identity and cultural values. The main recommendations of the report deal with selected higher risk nanotechnology applications, short- and long-term issues, and global models for nanotechnology governance

  6. Anticipatory Standards and the Commercialization of Nanotechnology

    International Nuclear Information System (INIS)

    Rashba, Edward; Gamota, Daniel

    2003-01-01

    Standardization will play an increasing role in creating a smooth transition from the laboratory to the marketplace as products based on nanotechnology are developed and move into broad use. Traditionally, standards have evolved out of a need to achieve interoperability among existing products, create order in markets, simplify production and ensure safety. This view does not account for the escalating trend in standardization, especially in emerging technology sectors, in which standards working groups anticipate the evolution of a technology and facilitate its rapid development and entree to the market place. It is important that the nanotechnology community views standards as a vital tool to promote progress along the nanotechnology value chain - from nanoscale materials that form the building blocks for components and devices to the integration of these devices into functional systems.This paper describes the need for and benefits derived from developing consensus standards in nanotechnology, and how standards are created. Anticipatory standards can nurture the growth of nanotechnology by drawing on the lessons learned from a standards effort that has and continues to revolutionize the telecommunications industry. Also, a brief review is presented on current efforts in the US to create nanotechnology standards

  7. Recent progress in the therapeutic applications of nanotechnology.

    Science.gov (United States)

    Solomon, Melani; D'Souza, Gerard G M

    2011-04-01

    The field of pharmaceutical and medical nanotechnology has grown rapidly in recent decades and offers much promise for therapeutic advances. This review is intended to serve as a quick summary of the major areas in the therapeutic application of nanotechnology. Nanotechnology for therapeutic application falls into two broad categories of particulate systems and nanoengineered devices. Recent studies appear to focus on the development of multifunctional particles for drug delivery and imaging and the development of nanotechnology-based biosensors for diagnostic applications. Cancer treatment and diagnosis appears to be the principal focus of many of these applications, but nanotechnology is also finding application in tissue engineering and surface engineering of medical implants. Particulate drug delivery systems in general appear to be poised for increased use in the clinic, whereas nanoengineered implants and diagnostic sensors might well be the next major wave in the medical use of nanotechnology.

  8. Cultural diversity in nanotechnology ethics.

    Science.gov (United States)

    Schummer, Joachim

    2011-01-01

    Along with the rapid worldwide advance of nanotechnology, debates on associated ethical issues have spread from local to international levels. However unlike science and engineering issues, international perceptions of ethical issues are very diverse. This paper provides an analysis of how sociocultural factors such as language, cultural heritage, economics and politics can affect how people perceive ethical issues of nanotechnology. By attempting to clarify the significance of sociocultural issues in ethical considerations my aim is to support the ongoing international dialogue on nanotechnology. At the same time I pose the general question of ethical relativism in engineering ethics, that is to say whether or not different ethical views are irreconcilable on a fundamental level.

  9. Etude exploratoire de la commercialisation des nanotechnologies au Canada: L'utilisation de la fouille de donnees de contenu Web

    Science.gov (United States)

    Rietsch, Constant

    Companies rely more every day on the Internet, sharing a lot of information to their customers but also their investors and their associates. Most companies share information such as products, services, partnerships, and research and development activities on their website. All this information is much analytical opportunities provided that we can retrieve and interpret. In this context, is the content of a website can be enough to conduct a study on innovation and commercialization? Websites are sources of information available and accessible to everyone. The majority of companies with a website, the coverage of an Internet-based study is an advantage. For our research on the commercialization of nanotechnology in Canada, we recover as many data on websites of Canadian companies listed by various sources as having activities in nanotechnology. From these data we cluster companies according to their nanotechnology field using a list of keywords from scientific papers to estimate the level of advancement of Canadian companies in nanotechnology research. Finally thanks to several indicators of innovation and marketing we describe the current state of nanotechnology in the Canadian industry.

  10. The effectiveness of a popular science promotion program on nanotechnology for elementary school students in I-Lan City

    Science.gov (United States)

    Lin, Show-Yu; Wu, Ming-Ta; Cho, Ya-I.; Chen, Hui-Huang

    2015-01-01

    Background:Nanotechnology education has become an urgent priority to nurture skilled human resources for the rapidly developing nanotechnology-related industries. The promotion of popular science education focusing on nanotechnology is an ideal approach to bridge the gaps in formal curricula, and to stimulate curiosity about and interest in nanotechnology among schoolchildren. Purpose:The objective of this study was to evaluate the effectiveness of the Nanotechnology-based Popular Science Education Promotion and Teaching (NPSEPT) program through camp activity that was implemented in elementary schools in I-Lan City, Taiwan. Program description:To create a competitive advantage, a human resources development program was implemented as one of the nanotechnology incubation projects in Taiwan and focused on developing an appropriately-skilled professional workforce as well as promoting popular science education. Sample:The volunteer research participants were 323 sixth grade students in four elementary schools in I-Lan City, Taiwan, who were evaluated at the beginning and the end of the nanotechnology-based popular science promotion camp activity. Design and methods:A research tool called the 'NPSEPT test' was designed specifically for this study and was approved by experts who evaluated its content and face validity. The questionnaire was divided into three aspects: 'Nanophenomena in the natural world'; 'Nanomaterials and their scaling effects'; and 'Definition, characteristics, and applications of nanotechnology.' The effectiveness of learning among the students was analyzed using descriptive statistics, a paired sample t-test, analysis of variance (ANOVA) and a post hoc comparison. Results:The results of the three-part 'NPSEPT test' revealed that NPSEPT significantly advanced nanotechnology learning performance and outcomes among students in the four participating elementary schools. Of the 15 questions included in the NPSEPT test, positive change for more than 30

  11. Artificial intelligence in nanotechnology

    OpenAIRE

    Sacha, Gómez Moñivas; Varona, Pablo

    2013-01-01

    This is the author’s version of a work that was accepted for publication in Nanotechnology. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Nanotechnology 24.45 (2013): 452002 During the last decade there has been an incre...

  12. Future of Computing. Nanotechnology

    Directory of Open Access Journals (Sweden)

    Florin Frant

    2006-10-01

    Full Text Available Nanotechnology is a field of applied science and technology covering a broad range of topics. The impetus for nanotechnology has stemmed from a renewed interest in colloidal science, coupled with a new generation of analytical tools such as the atomic force microscope (AFM and the scanning tunneling microscope (STM. Combined with refined processes such as electron beam lithography, these instruments allow the deliberate manipulation of nanostructures, and in turn led to the observation of novel phenomena.

  13. Nanotechnology in health care

    CERN Document Server

    Sahoo, Sanjeeb K

    2012-01-01

    Nanomedicine: Emerging Field of Nanotechnology to Human HealthNanomedicines: Impacts in Ocular Delivery and TargetingImmuno-Nanosystems to CNS Pathologies: State of the Art PEGylated Zinc Protoporphyrin: A Micelle-Forming Polymeric Drug for Cancer TherapyORMOSIL Nanoparticles: Nanomedicine Approach for Drug/Gene Delivery to the BrainMagnetic Nanoparticles: A Versatile System for Therapeutic and Imaging SystemNanobiotechnology: A New Generation of Biomedicine Application of Nanotechnology-Based Drug Delivery and Targeting to LungsAptamers and Nanomedicine in C

  14. An evaluation scheme for nanotechnology policies

    International Nuclear Information System (INIS)

    Soltani, Ali M.; Tabatabaeian, Seyed H.; Hanafizadeh, Payam; Bamdad Soofi, Jahanyar

    2011-01-01

    Dozens of countries are executing national nanotechnology plans. No rigorous evaluation scheme for these plans exists, although stakeholders—especially policy makers, top-level agencies and councils, as well as the society at large—are eager to learn the outcome of these policies. In this article, we recommend an evaluation scheme for national nanotechnology policies that would be used to review the whole or any component part of a national nanotechnology plan. In this scheme, a component at any level of aggregation is evaluated. The component may be part of the plan’s overarching policy goal, which for most countries is to create wealth and improve the quality of life of their nation with nanotechnology. Alternatively, the component may be a programme or an activity related to a programme. The evaluation could be executed at different times in the policy’s life cycle, i.e., before the policy is formulated, during its execution or after its completion. The three criteria for policy evaluation are appropriateness, efficiency and effectiveness. The evaluator should select the appropriate qualitative or quantitative methods to evaluate the various components of national nanotechnology plans.

  15. Nanotechnologies and advanced devices; Nanotechnology to sentan device

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, Y [The University of Tokyo, Tokyo (Japan). Institute of Industrial Science

    1994-11-01

    This paper introduces studies on nanotechnologies performed at the Production Technology Research Institute at Tokyo University. Conceiving the future optical devices is based on a desire to control electrons and lights by means of nano construction technologies to use the interactions between electrons and photons in ways as they are wanted and realize the next generation laser. The nano-construction making technology targets working on making boxes and lines with a size of 10 nm in arbitrary patterns at high precision. The method using an atom operating technology is such a method as building a house with bricks of atoms bringing them one by one. The crystallization technology applies some kind of magic on a crystallizing substrate, and then sprinkle crystalline seeds over the substrate to have them grow to crystals that build a structure. The Production Technology Research Institute uses a crystal growing technique called an MOCVD process. This is a representative technology comparable with the MBO in the thin film forming technologies. Because of chemically reactive process entering into the technique, building an interesting self-structural construction can occur. 14 figs.

  16. Development of a platform for roadmapping nanotechnology for energy

    International Nuclear Information System (INIS)

    Sarwqar, Mohammad Sohail

    2004-02-01

    This report includes the vision for global energy sector to develop a highly reliable, economically viable, and environmentally benign power generation and delivery systems with the help of nanotechnology. This scenario will provide indispensable public services and sustain the economic growth. The need to take advantage of the science of ultra-small scales such as nanotechnology is emphasized. The application of nanotechnology in future energy systems, specially the advanced renewables (photovoltaics, fuel cells, etc) are explained in a systematic and organized manner. The role of nanotechnology for the ubiquitous digital society and minimal carbon emissions (clean environment) with the help of nanotechnology is also envisioned. This report attempts to roadmap nanotechnology for energy through to 2030

  17. Nanotechnology in food science: Functionality, applicability, and safety assessment

    Directory of Open Access Journals (Sweden)

    Xiaojia He

    2016-10-01

    Full Text Available Rapid development of nanotechnology is expected to transform many areas of food science and food industry with increasing investment and market share. In this article, current applications of nanotechnology in food systems are briefly reviewed. Functionality and applicability of food-related nanotechnology are highlighted in order to provide a comprehensive view on the development and safety assessment of nanotechnology in the food industry. While food nanotechnology offers great potential benefits, there are emerging concerns arising from its novel physicochemical properties. Therefore, the safety concerns and regulatory policies on its manufacturing, processing, packaging, and consumption are briefly addressed. At the end of this article, the perspectives of nanotechnology in active and intelligent packaging applications are highlighted.

  18. A social shaping perspective on nanotechnologies

    DEFF Research Database (Denmark)

    Clausen, Christian; Jørgensen, Michael Søgaard

    2005-01-01

    in areas where visions are manifold and applications and markets are non-existing or unclear. The emerging idea of 'nanotechnologies' is an example of this kind, where techno-economic networks are unstable or under construction and consequences are difficult, if not impossible to evaluate. The paper...... explores the potential of a social shaping of technology approach in the area of emerging nano-technologies and debate the methodological aspects based on an ongoing Danish foresight project concerned with environmental risks and opportunities in nanotechnologies. The focus is on the identification...

  19. Nanotechnology And Examination Of Multi Walled Carbon Nanotubes

    OpenAIRE

    Kutucu, Burcu

    2010-01-01

    The main subject of this study is the definition of nanotechnology, benefits of nanotechnology, nanotechnology applications in Turkey and world and the history of nanotechnology. Also single and multi walled carbon nanotubes and Van der Waals bands are examined in this study. At first a fixed end frame loaded with a load P is studied and governing equations solved in MATHEMATICA. Secontly the same procedure is repeated for a fixed and frame loaded with moment M is studied and governing equati...

  20. NCI Alliance for Nanotechnology in Cancer

    Science.gov (United States)

    The NCI Alliance for Nanotechnology in Cancer funds the Cancer Nanotechnology Training Centers collectively with the NCI Cancer Training Center. Find out about the funded Centers, to date, that train our next generation of scientists in the field of Canc

  1. Scope of nanotechnology in modern textiles

    Science.gov (United States)

    This review article demonstrates the scope and applications of nanotechnology towards modification and development of advanced textile fibers, yarns and fabrics and their processing techniques. Basically, it summarizes the recent advances made in nanotechnology and its applications to cotton textil...

  2. Nanotechnology in food science: Functionality, applicability, and safety assessment.

    Science.gov (United States)

    He, Xiaojia; Hwang, Huey-Min

    2016-10-01

    Rapid development of nanotechnology is expected to transform many areas of food science and food industry with increasing investment and market share. In this article, current applications of nanotechnology in food systems are briefly reviewed. Functionality and applicability of food-related nanotechnology are highlighted in order to provide a comprehensive view on the development and safety assessment of nanotechnology in the food industry. While food nanotechnology offers great potential benefits, there are emerging concerns arising from its novel physicochemical properties. Therefore, the safety concerns and regulatory policies on its manufacturing, processing, packaging, and consumption are briefly addressed. At the end of this article, the perspectives of nanotechnology in active and intelligent packaging applications are highlighted. Copyright © 2016. Published by Elsevier B.V.

  3. Scenario planning and nanotechnological futures

    International Nuclear Information System (INIS)

    Farber, Darryl; Lakhtakia, Akhlesh

    2009-01-01

    Scenario planning may assist us in harnessing the benefits of nanotechnology and managing the associated risks for the good of the society. Scenario planning is a way to describe the present state of the world and develop several hypotheses about the future of the world, thereby enabling discussions about how the world ought to be. Scenario planning thus is not only a tool for learning and foresight, but also for leadership. Informed decision making by experts and political leaders becomes possible, while simultaneously allaying the public's perception of the risks of new and emerging technologies such as nanotechnology. Two scenarios of the societal impact of nanotechnology are the mixed-signals scenario and the confluence scenario. Technoscientists have major roles to play in both scenarios.

  4. Nanotechnology and Drug Delivery Part 1: Background and ...

    African Journals Online (AJOL)

    Nanotechnology in general and as it relates to drug delivery in humans has been reviewed in a two-part article, the first part of which is this paper. In this paper, nanotechnology in nature, history of nanotechnology and methods of synthesis are discussed, while also outlining its applications, benefits and risks.

  5. Nanotechnology and its application in dentistry | Abiodun‑Solanke ...

    African Journals Online (AJOL)

    Nanotechnology influences almost every facet of everyday life from security to medicine. The concept of nanotechnology is that when one goes down to the bottom of things, one can discover unlimited possibilities and potential of the basic particle. In nanotechnology, analysis can be made to the level of manipulating atoms, ...

  6. Nanotechnology Laboratory Collaborates with Army to Develop Botulism Vaccine | FNLCR

    Science.gov (United States)

    The Nanotechnology Characterization Laboratory (NCL) is collaborating with the Army to develop a candidate vaccine against botulism. Under a collaboration agreement between the National Cancer Institute and the U.S. Army Medical Research Institute of

  7. Update on Nanotechnology-based Drug Delivery Systems in Cancer Treatment.

    Science.gov (United States)

    Ho, Benjamin N; Pfeffer, Claire M; Singh, Amareshwar T K

    2017-11-01

    The emerging field of nanotechnology meets the demands for innovative approaches in the diagnosis and treatment of cancer. The nanoparticles are biocompatible and biodegradable and are made of a core, a particle that acts as a carrier, and one or more functional groups on the core which target specific sites. Nanotech in drug delivery includes nanodisks, High Density Lipoprotein nanostructures, liposomes, and gold nanoparticles. The fundamental advantages of nanoparticles are: improved delivery of water-insoluble drugs, targeted delivery, co-delivery of two or more drugs for combination therapy, and visualization of the drug delivery site by combining imaging system and a therapeutic drug. One of the potential applications of nanotechnology is in the treatment of cancer. Conventional methods for cancer treatments have included chemotherapy, surgery, or radiation. Early recognition and treatment of cancer with these approaches is still challenging. Innovative technologies are needed to overcome multidrug resistance, and increase drug localization and efficacy. Application of nanotechnology to cancer biology has brought in a new hope for developing treatment strategies on cancer. In this study, we present a review on the recent advances in nanotechnology-based approaches in cancer treatment. Copyright© 2017, International Institute of Anticancer Research (Dr. George J. Delinasios), All rights reserved.

  8. Convergence of nanotechnology and cancer prevention: are we there yet?

    Science.gov (United States)

    Menter, David G; Patterson, Sherri L; Logsdon, Craig D; Kopetz, Scott; Sood, Anil K; Hawk, Ernest T

    2014-10-01

    Nanotechnology is emerging as a promising modality for cancer treatment; however, in the realm of cancer prevention, its full utility has yet to be determined. Here, we discuss the potential of integrating nanotechnology in cancer prevention to augment early diagnosis, precision targeting, and controlled release of chemopreventive agents, reduced toxicity, risk/response assessment, and personalized point-of-care monitoring. Cancer is a multistep, progressive disease; the functional and acquired characteristics of the early precancer phenotype are intrinsically different from those of a more advanced anaplastic or invasive malignancy. Therefore, applying nanotechnology to precancers is likely to be far more challenging than applying it to established disease. Frank cancers are more readily identifiable through imaging and biomarker and histopathologic assessment than their precancerous precursors. In addition, prevention subjects routinely have more rigorous intervention criteria than therapy subjects. Any nanopreventive agent developed to prevent sporadic cancers found in the general population must exhibit a very low risk of serious side effects. In contrast, a greater risk of side effects might be more acceptable in subjects at high risk for cancer. Using nanotechnology to prevent cancer is an aspirational goal, but clearly identifying the intermediate objectives and potential barriers is an essential first step in this exciting journey. ©2014 American Association for Cancer Research.

  9. Nanotechnology patenting trends through an environmental lens: analysis of materials and applications

    Energy Technology Data Exchange (ETDEWEB)

    Leitch, Megan E. [Carnegie Mellon University, Department of Civil and Environmental Engineering, Center for the Environmental Implications of NanoTechnology (CEINT) (United States); Casman, Elizabeth [Carnegie Mellon University, Department of Engineering and Public Policy, Center for the Environmental Implications of NanoTechnology (CEINT) (United States); Lowry, Gregory V., E-mail: glowry@cmu.edu [Carnegie Mellon University, Department of Civil and Environmental Engineering, Center for the Environmental Implications of NanoTechnology (CEINT) (United States)

    2012-12-15

    Many international groups study environmental health and safety (EHS) concerns surrounding the use of engineered nanomaterials (ENMs). These researchers frequently use the 'Project on Emerging Nanotechnologies' (PEN) inventory of nano-enabled consumer products to prioritize types of ENMs to study because estimates of life-cycle ENM releases to the environment can be extrapolated from the database. An alternative 'snapshot' of nanomaterials likely to enter commerce can be determined from the patent literature. The goal of this research was to provide an overview of nanotechnology intellectual property trends, complementary to the PEN consumer product database, to help identify potentially 'risky' nanomaterials for study by the nano-EHS community. Ten years of nanotechnology patents were examined to determine the types of nano-functional materials being patented, the chemical compositions of the ENMs, and the products in which they are likely to appear. Patenting trends indicated different distributions of nano-enabled products and materials compared to the PEN database. Recent nanotechnology patenting is dominated by electrical and information technology applications rather than the hygienic and anti-fouling applications shown by PEN. There is an increasing emphasis on patenting of nano-scale layers, coatings, and other surface modifications rather than traditional nanoparticles, and there is widespread use of nano-functional semiconductor, ceramic, magnetic, and biological materials that are currently less studied by EHS professionals. These commonly patented products and the nano-functional materials they contain may warrant life-cycle evaluations to determine the potential for environmental exposure and toxicity. The patent and consumer product lists contribute different and complementary insights into the emerging nanotechnology industry and its potential for introducing nanomaterials into the environment.

  10. Experiences in supporting the structured collection of cancer nanotechnology data using caNanoLab

    Science.gov (United States)

    Gaheen, Sharon; Lijowski, Michal; Heiskanen, Mervi; Klemm, Juli

    2015-01-01

    Summary The cancer Nanotechnology Laboratory (caNanoLab) data portal is an online nanomaterial database that allows users to submit and retrieve information on well-characterized nanomaterials, including composition, in vitro and in vivo experimental characterizations, experimental protocols, and related publications. Initiated in 2006, caNanoLab serves as an established resource with an infrastructure supporting the structured collection of nanotechnology data to address the needs of the cancer biomedical and nanotechnology communities. The portal contains over 1,000 curated nanomaterial data records that are publicly accessible for review, comparison, and re-use, with the ultimate goal of accelerating the translation of nanotechnology-based cancer therapeutics, diagnostics, and imaging agents to the clinic. In this paper, we will discuss challenges associated with developing a nanomaterial database and recognized needs for nanotechnology data curation and sharing in the biomedical research community. We will also describe the latest version of caNanoLab, caNanoLab 2.0, which includes enhancements and new features to improve usability such as personalized views of data and enhanced search and navigation. PMID:26425409

  11. Green Chemistry for Nanotechnology: Opportunities and Future Challenges

    International Nuclear Information System (INIS)

    Preeti Nigam, Joshi

    2016-01-01

    Nanotechnology is a paradigm for emerging technologies and much talked about area of science. It is the technology of future and has revolutionized all fields of medicine, agriculture, environmental and electronics by providing abilities that would never have previously dreamt of. It is a unique platform of multidisciplinary approaches integrating diverse fields of engineering, biology, physics and chemistry. In recent years, nanotechnology has seen the fastest pace in its all aspects of synthesis methodologies and wide applications in all areas of medicine, agricultural, environmental, and electronics. It is the impact of nanotechnology approaches that new fields of nanomedicine, cancer nanotechnology, nanorobotics and nanoelectronics have been emerged and are flourishing with the advances in this expanding field. Nanotechnology holds the potential for pervasive and promising applications and getting significant attention and financial aids also. Although there are different definitions of nanotechnology, in broad prospective, nanotechnology can be described as designing or exploiting materials at nanometer dimensions (i.e., one dimension less than 100 nanometers). At nanoscale, substances have a larger surface area to volume ratio than conventional materials which is the prime reason behind their increased level of reactivity, improved and size tunable magnetic, optical and electrical properties and more toxicity also

  12. Green Chemistry for Nanotechnology: Opportunities and Future Challenges

    Energy Technology Data Exchange (ETDEWEB)

    Preeti Nigam, Joshi, E-mail: ph.joshi@ncl.res.in [Combichem Bioresource Center, National Chemical Laboratory, Pune (India)

    2016-01-26

    Nanotechnology is a paradigm for emerging technologies and much talked about area of science. It is the technology of future and has revolutionized all fields of medicine, agriculture, environmental and electronics by providing abilities that would never have previously dreamt of. It is a unique platform of multidisciplinary approaches integrating diverse fields of engineering, biology, physics and chemistry. In recent years, nanotechnology has seen the fastest pace in its all aspects of synthesis methodologies and wide applications in all areas of medicine, agricultural, environmental, and electronics. It is the impact of nanotechnology approaches that new fields of nanomedicine, cancer nanotechnology, nanorobotics and nanoelectronics have been emerged and are flourishing with the advances in this expanding field. Nanotechnology holds the potential for pervasive and promising applications and getting significant attention and financial aids also. Although there are different definitions of nanotechnology, in broad prospective, nanotechnology can be described as designing or exploiting materials at nanometer dimensions (i.e., one dimension less than 100 nanometers). At nanoscale, substances have a larger surface area to volume ratio than conventional materials which is the prime reason behind their increased level of reactivity, improved and size tunable magnetic, optical and electrical properties and more toxicity also.

  13. New Dimensions for Manufacturing: A UK Strategy for Nanotechnology

    National Research Council Canada - National Science Library

    Taylor, John M

    2002-01-01

    ... R&D for nanotechnology. This report, of the UK Advisory Group on Nanotechnology Applications, examines the growth of nanotechnology, its potential implications for industry in the UK, and proposes the elements of a strategy...

  14. Nanosciences and nanotechnology evolution or revolution?

    CERN Document Server

    Lahmani, Marcel; Dupas-Haeberlin, Claire; Hesto, Patrice

    2016-01-01

    This book provides information to the state of art of research in nanotechnology and nano medicine and risks of nano technology. It covers an interdisciplinary and very wide scope of the latest fundamental research status and industrial applications of nano technologies ranging from nano physics, nano chemistry to biotechnology and toxicology. It provides information to last legislation of nano usage and potential social impact too. The book contains also a reference list of major European research centers and associated universities offering licences and master of nano matter. For clarity and attractivity, the book has many illustrations and specific inserts to complete the understanding of the scientific texts.

  15. Value chain of nanotechnology: a comparative study of some major players

    Energy Technology Data Exchange (ETDEWEB)

    Wang Gangbo [Tsinghua University, China Institute for Science and Technology Policy (CISTP), School of Public Policy and Management (China); Guan Jiancheng, E-mail: guanjianch@buaa.edu.cn [Chinese Academy of Sciences, School of Management, Graduate University (China)

    2012-02-15

    The article provides a general overview for the landscapes of national nanotechnology development from 1991 to 2010. More than 230,000 unique patents are identified based on a composite search strategy in the Derwent innovation index database. According to the concordance between patent classification and industry technology, some main application areas are identified to compare the positions and specializations among the leading countries. By extracting the content of the 'use' subfield in the abstracts and harvesting the keywords representing characteristics of life cycle, nanotechnology patents are grouped into four categories: nanomaterials, nanointermediates, nano-enabled products, and nanotools, which can be seen as four stages of nanotechnology's value chain. These analyses enable us to identify the distributions of value chain and prolific research institutions among the leading countries. It is found that China is productive in nanomaterials and nanointermediates, rather than nano-enabled products and nanotools, which could be mainly explained by the fact that Chinese academia makes a main contribution to nanotechnology patenting. However, there is a big gap between university patenting and market demands, leading to a low rate of technology transfer or licensing.

  16. Value chain of nanotechnology: a comparative study of some major players

    Science.gov (United States)

    Wang, Gangbo; Guan, Jiancheng

    2012-02-01

    The article provides a general overview for the landscapes of national nanotechnology development from 1991 to 2010. More than 230,000 unique patents are identified based on a composite search strategy in the Derwent innovation index database. According to the concordance between patent classification and industry technology, some main application areas are identified to compare the positions and specializations among the leading countries. By extracting the content of the "use" subfield in the abstracts and harvesting the keywords representing characteristics of life cycle, nanotechnology patents are grouped into four categories: nanomaterials, nanointermediates, nano-enabled products, and nanotools, which can be seen as four stages of nanotechnology's value chain. These analyses enable us to identify the distributions of value chain and prolific research institutions among the leading countries. It is found that China is productive in nanomaterials and nanointermediates, rather than nano-enabled products and nanotools, which could be mainly explained by the fact that Chinese academia makes a main contribution to nanotechnology patenting. However, there is a big gap between university patenting and market demands, leading to a low rate of technology transfer or licensing.

  17. Nanotechnology development in Denmark - Environmental opportunities and risk

    DEFF Research Database (Denmark)

    Andersen, M.M.; Rasmussen, B.

    2006-01-01

    The present report represents the nanostudy part of a larger study entitled “Green Technology Foresight about Environmentally Friendly Products and Materials – Challenges from Nanotechnology, Biotechnology and ICT” (Jørgensen et al. 2006). The study wasmade for the Danish Environmental Protection...... (forthcoming in summer 2006). The analysis focuses not only on the environmental impact but even more on the dynamics involved in nanotechnology development ofwhich we currently know very little. Applying an innovation economic perspective focus is placed on analysing the direction of the nano search...... and technology development processes and how environmental issues enter into these. Hereby, the futuretrajectories of nanotechnology development is sought captured, indicating likely long-term perspectives of the Danish nanotechnology development. The content of the report is as follows: What is nanotechnology...

  18. A Review of Published Articles in the Field of Biomedical Nanotechnology in Medline Database during 2000-2010

    OpenAIRE

    Peyman Sheikhzade

    2015-01-01

    Background and objectives : Nanotechnology is a new technology which is increasingly used over the past decade. Due to its great significance, governments are tending to invest greatly on the research and development on nanotechnology in various sectors and aspects. The purpose of this study was to determine the status of biomedical nanotechnology publications over the past ten years (2010-2000) in Medline/ PubMed. Material and Methods : This was a descriptive study. The Medline database wa...

  19. Nanotechnology in glucose monitoring: advances and challenges in the last 10 years.

    Science.gov (United States)

    Scognamiglio, Viviana

    2013-09-15

    In the last decades, a wide multitude of research activity has been focused on the development of biosensors for glucose monitoring, devoted to overcome the challenges associated with smart analytical performances with commercial implications. Crucial issues still nowadays elude biosensors to enter the market, such as sensitivity, stability, miniaturisation, continuous and in situ monitoring in a complex matrix. A noteworthy tendency of biosensor technology is likely to push towards nanotechnology, which allows to reduce dimensions at the nanoscale, consenting the construction of arrays for high throughput analysis with the integration of microfluidics, and enhancing the performance of the biological components by using new nanomaterials. This review aims to highlight current trends in biosensors for glucose monitoring based on nanotechnology, reporting widespread representative examples of the recent approaches for nanobiosensors over the past 10 years. Progress in nanotechnology for the development of biosensing systems for blood glucose level monitoring will be discussed, in view of their design and construction on the bases of the new materials offered by nanotechnology. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Nanotechnology and glaucoma: a review of the potential implications of glaucoma nanomedicine.

    Science.gov (United States)

    Kim, Nathaniel J; Harris, Alon; Gerber, Austin; Tobe, Leslie Abrams; Amireskandari, Annahita; Huck, Andrew; Siesky, Brent

    2014-04-01

    The purpose of this review is to discuss the evolution of nanotechnology and its potential diagnostic and therapeutic applications in the field of ophthalmology, particularly as it pertains to glaucoma. We reviewed literature using MEDLINE and PubMed databases with the following search terms: glaucoma, nanotechnology, nanomedicine, nanoparticles, ophthalmology and liposomes. We also reviewed pertinent references from articles found in this search. A brief history of nanotechnology and nanomedicine will be covered, followed by a discussion of the advantages and concerns of using this technology in the field of glaucoma. We will look at various studies concerning the development of nanomedicine, its potential applications in ocular drug delivery, diagnostic and imaging modalities and, surgical techniques. In particular, the challenges of assuring safety and efficacy of nanomedicine will be examined. We conclude that nanotechnology offers a novel approach to expanding diagnostic, imaging and surgical modalities in glaucoma and may contribute to the knowledge of disease pathogenesis at a molecular level. However, more research is needed to better elucidate the mechanism of cellular entry, the potential for nanoparticle cytotoxicity and the assurance of clinical efficacy.

  1. The current state of public understanding of nanotechnology

    International Nuclear Information System (INIS)

    Waldron, Anna M; Spencer, Douglas; Batt, Carl A

    2006-01-01

    The growing importance of nanotechnology in industry and society has not been accompanied by a widespread understanding of the subject among the general public. Simple questions to initially probe the smallest thing that people can see and can think of reveals a divide in the understanding of the general public. A survey of 1500 individuals ranging in age from 6 to 74 has revealed a lack of knowledge of nanotechnology and especially a lack of understanding of the context of nanotechnology in the world that is too small to see. Survey findings are corroborated by in-depth interviews with 400 adults in studies of nanoscience literacy commisioned by University of California, Berkeley and Cornell in 2002 and 2004, respectively. In general, with the exception of 14-28 year olds, over 60% of respondents say they have never heard of nano or nanotechnology. The results suggest that the general public, especially middle-school children, has no firm foundation to understand nanotechnology and likely will continue to be equally impressed by credible scientific information as well as pure fictional accounts of nanotechnology

  2. The current state of public understanding of nanotechnology

    Energy Technology Data Exchange (ETDEWEB)

    Waldron, Anna M [Cornell University, Nanobiotechnology Center (United States)], E-mail: amw37@cornell.edu; Spencer, Douglas [Edu, Inc. (United States); Batt, Carl A [Cornell University (United States)

    2006-10-15

    The growing importance of nanotechnology in industry and society has not been accompanied by a widespread understanding of the subject among the general public. Simple questions to initially probe the smallest thing that people can see and can think of reveals a divide in the understanding of the general public. A survey of 1500 individuals ranging in age from 6 to 74 has revealed a lack of knowledge of nanotechnology and especially a lack of understanding of the context of nanotechnology in the world that is too small to see. Survey findings are corroborated by in-depth interviews with 400 adults in studies of nanoscience literacy commisioned by University of California, Berkeley and Cornell in 2002 and 2004, respectively. In general, with the exception of 14-28 year olds, over 60% of respondents say they have never heard of nano or nanotechnology. The results suggest that the general public, especially middle-school children, has no firm foundation to understand nanotechnology and likely will continue to be equally impressed by credible scientific information as well as pure fictional accounts of nanotechnology.

  3. Microspheres and Nanotechnology for Drug Delivery.

    Science.gov (United States)

    Jóhannesson, Gauti; Stefánsson, Einar; Loftsson, Thorsteinn

    2016-01-01

    Ocular drug delivery to the posterior segment of the eye can be accomplished by invasive drug injections into different tissues of the eye and noninvasive topical treatment. Invasive treatment involves the risks of surgical trauma and infection, and conventional topical treatments are ineffective in delivering drugs to the posterior segment of the eye. In recent years, nanotechnology has become an ever-increasing part of ocular drug delivery. In the following, we briefly review microspheres and nanotechnology for drug delivery to the eye, including different forms of nanotechnology such as nanoparticles, microparticles, liposomes, microemulsions and micromachines. The permeation barriers and anatomical considerations linked to ocular drug delivery are discussed and a theoretical overview on drug delivery through biological membranes is given. Finally, in vitro, in vivo and human studies of x03B3;-cyclodextrin nanoparticle eyedrop suspensions are discussed as an example of nanotechnology used for drug delivery to the eye. © 2016 S. Karger AG, Basel.

  4. A review on applications of nanotechnology in the enhanced oil recovery part B: effects of nanoparticles on flooding

    Science.gov (United States)

    Cheraghian, Goshtasp; Hendraningrat, Luky

    2016-11-01

    Chemical flooding is of increasing interest and importance due to high oil prices and the need to increase oil production. Research in nanotechnology in the petroleum industry is advancing rapidly, and an enormous progress in the application of nanotechnology in this area is to be expected. The nanotechnology has been widely used in several other industries, and the interest in the oil industry is increasing. Nanotechnology has the potential to profoundly change enhanced oil recovery and to improve mechanism of recovery, and it is chosen as an alternative method to unlock the remaining oil resources and applied as a new enhanced oil recovery method in last decade. This paper therefore focuses on the reviews of the application of nanotechnology in chemical flooding process in oil recovery and reviews the applications of nanomaterials for improving oil recovery that have been proposed to explain oil displacement by polymer flooding within oil reservoirs, and also this paper highlights the research advances of polymer in oil recovery. Nanochemical flooding is an immature method from an application point of view.

  5. Lipid Nanotechnology

    NARCIS (Netherlands)

    Mashaghi, Samaneh; Jadidi, Tayebeh; Koenderink, Gijsje; Mashaghi, Alireza

    2013-01-01

    Nanotechnology is a multidisciplinary field that covers a vast and diverse array of devices and machines derived from engineering, physics, materials science, chemistry and biology. These devices have found applications in biomedical sciences, such as targeted drug delivery, bio-imaging, sensing and

  6. Toward the Responsible Development and Commercialization of Sensor Nanotechnologies.

    Science.gov (United States)

    Fadel, Tarek R; Farrell, Dorothy F; Friedersdorf, Lisa E; Griep, Mark H; Hoover, Mark D; Meador, Michael A; Meyyappan, M

    2016-01-01

    Nanotechnology-enabled sensors (or nanosensors) will play an important role in enabling the progression toward ubiquitous information systems as the Internet of Things (IoT) emerges. Nanosensors offer new, miniaturized solutions in physiochemical and biological sensing that enable increased sensitivity, specificity, and multiplexing capability, all with the compelling economic drivers of low cost and high-energy efficiency. In the United States, Federal agencies participating in the National Nanotechnology Initiative (NNI) "Nanotechnology for Sensors and Sensors for Nanotechnology: Improving and Protecting Health, Safety, and the Environment" Nanotechnology Signature Initiative (the Sensors NSI), address both the opportunity of using nanotechnology to advance sensor development and the challenges of developing sensors to keep pace with the increasingly widespread use of engineered nanomaterials. This perspective article will introduce and provide background on the NNI signature initiative on sensors. Recent efforts by the Sensors NSI aimed at promoting the successful development and commercialization of nanosensors will be reviewed and examples of sensor nanotechnologies will be highlighted. Future directions and critical challenges for sensor development will also be discussed.

  7. 2004 annual report. Defense, safety, energy, information, health. CEA in the center of big European challenges

    International Nuclear Information System (INIS)

    2005-01-01

    This document is the 2004 annual report of the French atomic energy commission (CEA). It presents the R and D activities of the CEA in three main domains: 1 - defense and safety, maintaining perenniality of nuclear dissuasion and nuclear safety: supplying nuclear weapons to armies, maintaining dissuasion capability with the simulation program, sharing R and D means with the scientific community and the industrial world, designing and maintaining naval nuclear propulsion reactors, cleansing Marcoule and Pierrelatte facilities, monitoring treaties and fighting against proliferation and terrorism; 2 - energy, developing more competitive and cleaner energy sources: nuclear waste management, optimization of industrial nuclear activities, future nuclear systems and new energy technologies, basic research on energy, radiobiology and toxicology; 3 - information and health, valorizing industry thanks to technological research and supplying new tools for health and medical research: micro- and nano-technologies, software technologies, basic research for industrial innovation, nuclear technologies for health and bio-technologies. (J.S.)

  8. [The impact of nanotechnologies in the world of work: a challenge for the occupational medicine].

    Science.gov (United States)

    Iavicoli, S; Boccuni, F

    2010-01-01

    Since the beginning of the 21st century the nanotechnologies have grown enormously, judging simply by the number of products now on the market and the funds dedicated to research and development. In 2014 there may be as many as ten million people--about 11% of the total manufacturing sector's workforce--employed in processes using nanotechnologies. Although the whole scientific community has now put its back into narrowing the gaps in scientific knowledge, and promoting research with a view to tackling the potential risks of nanotechnologies, we are still far from any firm agreement. In order to respond to these needs the research in occupational medicine will have to focus on the key questions that are still open, especially those on risk assessment to safeguard the health of the increasing numbers of workers who will be employed in these various sectors. These questions centre on toxicity and health effects, extent of translocation to target organs and importance of dermal exposure.

  9. Nanotechnology: Principles and Applications

    Science.gov (United States)

    Logothetidis, S.

    Nanotechnology is one of the leading scientific fields today since it combines knowledge from the fields of Physics, Chemistry, Biology, Medicine, Informatics, and Engineering. It is an emerging technological field with great potential to lead in great breakthroughs that can be applied in real life. Novel nano- and biomaterials, and nanodevices are fabricated and controlled by nanotechnology tools and techniques, which investigate and tune the properties, responses, and functions of living and non-living matter, at sizes below 100 nm. The application and use of nanomaterials in electronic and mechanical devices, in optical and magnetic components, quantum computing, tissue engineering, and other biotechnologies, with smallest features, widths well below 100 nm, are the economically most important parts of the nanotechnology nowadays and presumably in the near future. The number of nanoproducts is rapidly growing since more and more nanoengineered materials are reaching the global market The continuous revolution in nanotechnology will result in the fabrication of nanomaterials with properties and functionalities which are going to have positive changes in the lives of our citizens, be it in health, environment, electronics or any other field. In the energy generation challenge where the conventional fuel resources cannot remain the dominant energy source, taking into account the increasing consumption demand and the CO2 emissions alternative renewable energy sources based on new technologies have to be promoted. Innovative solar cell technologies that utilize nanostructured materials and composite systems such as organic photovoltaics offer great technological potential due to their attractive properties such as the potential of large-scale and low-cost roll-to-roll manufacturing processes The advances in nanomaterials necessitate parallel progress of the nanometrology tools and techniques to characterize and manipulate nanostructures. Revolutionary new approaches

  10. Nanotechnology and stem cell therapy for cardiovascular diseases: potential applications.

    Science.gov (United States)

    La Francesca, Saverio

    2012-01-01

    The use of stem cell therapy for the treatment of cardiovascular diseases has generated significant interest in recent years. Limitations to the clinical application of this therapy center on issues of stem cell delivery, engraftment, and fate. Nanotechnology-based cell labeling and imaging techniques facilitate stem cell tracking and engraftment studies. Nanotechnology also brings exciting new opportunities to translational stem cell research as it enables the controlled engineering of nanoparticles and nanomaterials that can properly relate to the physical scale of cell-cell and cell-niche interactions. This review summarizes the most relevant potential applications of nanoscale technologies to the field of stem cell therapy for the treatment of cardiovascular diseases.

  11. The analysis of the publications in the most active countries in nanotechnology

    Directory of Open Access Journals (Sweden)

    Joksimović Dušan

    2014-01-01

    Full Text Available Nanotechnology publications as one of the parameters of a country's level of nanotechnology (nanotech innovation, while nanotechnology innovations are considered the source of its competitive advantage. The country's competitiveness in the level of nanotechnology activity determine the total number of nanotechnology publications and the mean number of citations. In this paper, we have analyzed the scientific nanotechnology activity of the most active countries in this field (countries whose number of nanotechnology publications exceeds 1,000 annually. We used data on nanotechnology publications collected from Web of Science - WoS database and published by Nano Statistics - Nano Science, Technology and Industry Scoreboard. We analyzed the trend of the total number of published nanotechnology publications, the mean number of citations trend, trend of the relations of published nanotechnology publications and gross domestic product, and the trend of relations of published nanotechnology publications and the number of residents in the surveyed countries. Based on the regression-correlation analysis, we predicted the expected value of the total number of nanotechnology publications published in 2015 for China and the United States, because these are the countries that dominate in the total number of published nanotechnology publications in the world.

  12. Moving forward responsibly: Oversight for the nanotechnology-biology interface

    International Nuclear Information System (INIS)

    Kuzma, Jennifer

    2007-01-01

    Challenges and opportunities for appropriate oversight of nanotechnology applied to or derived from biological systems (nano-bio interface) were discussed in a public workshop and dialog hosted by the Center for Science, Technology, and Public Policy of the University of Minnesota on September 15, 2005. This paper discusses the themes that emerged from the workshop, including the importance of analyzing potential gaps in current regulatory systems; deciding upon the general approach taken toward regulation; employing non-regulatory mechanisms for governance; making risk and other studies transparent and available to the public; bolstering mechanisms for public participation in risk analysis; creating more opportunities for meaningful discussion of the social and ethical dimensions of the nano-bio interface; increasing funds for implications and problem-solving research in this area; and having independent and reliable sources for communication. The workshop was successful in identifying ways of moving forward responsibly so that ultimately nanotechnology and its products can succeed in developers', researchers', regulators', and the public's eyes

  13. Nanotechnology for Cancer Therapy Based on Chemotherapy

    OpenAIRE

    Chen-Yang Zhao; Rui Cheng; Zhe Yang; Zhong-Min Tian

    2018-01-01

    Chemotherapy has been widely applied in clinics. However, the therapeutic potential of chemotherapy against cancer is seriously dissatisfactory due to the nonspecific drug distribution, multidrug resistance (MDR) and the heterogeneity of cancer. Therefore, combinational therapy based on chemotherapy mediated by nanotechnology, has been the trend in clinical research at present, which can result in a remarkably increased therapeutic efficiency with few side effects to normal tissues. Moreover,...

  14. Emerging applications of nanotechnology for diagnosis and therapy of disease: a review.

    Science.gov (United States)

    Bayford, Richard; Rademacher, Tom; Roitt, Ivan; Wang, Scarlet Xiaoyan

    2017-07-24

    Nanotechnology is of increasing interest in the fields of medicine and physiology over recent years. Its application could considerably improve disease detection and therapy, and although the potential is considerable, there are still many challenges that need to be addressed before it is accepted in routine clinical use. This review focuses on emerging applications that nanotechnology could enhance or provide new approaches in diagnoses and therapy. The main focus of recent research centres on targeted therapies and enhancing imaging; however, the introduction of nanomaterial into the human body must be controlled, as there are many issues with possible toxicity and long-term effects. Despite these issues, the potential for nanotechnology to provide new methods of combating cancer and other disease conditions is considerable. There are still key challenges for researchers in this field, including the means of delivery and targeting in the body to provide effective treatment for specific disease conditions. Nanoparticles are difficult to measure due to their size and physical properties; hence there is still a great need to improve physiological measurement methods in the field to ascertain how effective their use is in the human subject. This review is a brief snapshot into the fast changing research field of measurement and physiological links to nanoparticle use and its potential in the future.

  15. The intertwine of nanotechnology with the food industry.

    Science.gov (United States)

    Hamad, Alshammari Fanar; Han, Jong-Hun; Kim, Byung-Chun; Rather, Irfan A

    2018-01-01

    The past decade has proven the competence of nanotechnology in almost all known fields. The evolution of nanotechnology today in the area of the food industry has been largely and has had a lot of contribution in the food processing, food package, and food preservation. The increasing global human population has come with growing population to be fed, and food production is not adjusted to at par with the growing population. This mismatch has shown the real essence of food preservation so that food products can reach to people on a global scale. The introduction of nanotechnology in the food industry has made it easy to transport foods to different parts of the world by extending the shelf-life of most food products. Even with this beneficial aspect of nanotechnology, it has not been proven an entire full-proof measure, and the field is still open to changing technology. It suffices to note that nanotechnology has to a big extent succeed in curbing the extent of food wastage due to food spoilage by the microbial infestation. Nanotechnology has focused on fresh foods, ensuring a healthier food by employing nano-delivery systems in the process. The delivery systems are the ones, which carries the food supplements. However, these are certain sets of regulations that must be followed to tame or control the health related risks of nanotechnology in food industries. This paper outlines the role of nanotechnology at different levels of the food industry including, packaging of food, processing of food and the various preservation techniques all aiming to increase the shelf life of the food products.

  16. Nanotechnology for forest products. Part 2

    Science.gov (United States)

    Theodore Wegner; Phil Jones

    2005-01-01

    In planning for the Nanotechnology for the Forest products Industry Workshop, we considered many different options for organizing technical focus areas for breakout discussion sessions. We felt the fallowing R&D focus areas provide the best path forward for a nanotechnology roadmap by identifying the underlying science and technology needed: also, they foster...

  17. Nano-technology and nano-toxicology.

    Science.gov (United States)

    Maynard, Robert L

    2012-01-01

    Rapid developments in nano-technology are likely to confer significant benefits on mankind. But, as with perhaps all new technologies, these benefits are likely to be accompanied by risks, perhaps by new risks. Nano-toxicology is developing in parallel with nano-technology and seeks to define the hazards and risks associated with nano-materials: only when risks have been identified they can be controlled. This article discusses the reasons for concern about the potential effects on health of exposure to nano-materials and relates these to the evidence of the effects on health of the ambient aerosol. A number of hypotheses are proposed and the dangers of adopting unsubstantiated hypotheses are stressed. Nano-toxicology presents many challenges and will need substantial financial support if it is to develop at a rate sufficient to cope with developments in nano-technology.

  18. Nanotechnology in reproductive medicine: emerging applications of nanomaterials.

    Science.gov (United States)

    Barkalina, Natalia; Charalambous, Charis; Jones, Celine; Coward, Kevin

    2014-07-01

    In the last decade, nanotechnology has been extensively introduced for biomedical applications, including bio-detection, drug delivery and diagnostic imaging, particularly in the field of cancer diagnostics and treatment. However, there is a growing trend towards the expansion of nanobiotechnological tools in a number of non-cancer applications. In this review, we discuss the emerging uses of nanotechnology in reproductive medicine and reproductive biology. For the first time, we summarise the available evidence regarding the use of nanomaterials as experimental tools for the detection and treatment of malignant and benign reproductive conditions. We also present an overview of potential applications for nanomaterials in reproductive biology, discuss the benefits and concerns associated with their use in a highly delicate system of reproductive tissues and gametes, and address the feasibility of this innovative and potentially controversial approach in the clinical setting and for investigative research into the mechanisms underlying reproductive diseases. This unique review paper focuses on the emerging use of nanotechnology in reproductive medicine and reproductive biology, highlighting the role of nanomaterials in the detection and treatment of various reproductive conditions, keeping in mind the benefits and potential concerns associated with nanomaterial use in the delicate system of reproductive tissue and gametes. Copyright © 2014 Elsevier Inc. All rights reserved.

  19. Manomaterials research activities at the SPring-8

    International Nuclear Information System (INIS)

    Kimura, Sigeru; Kobayashi, Keisuke

    2005-01-01

    The Ministry of Education, Culture, Sports, Science and Technology, Japan started the 'Nanotechnology Support Project' from 2002 for the purpose to support nanotechnology researches. As part of the nanotechnology support project, SPring-8 has supported nanotechnology researches using synchrotron radiation. In this article, some research activities of the project are introduced. (author)

  20. Introductory quantum mechanics for semiconductor nanotechnology

    International Nuclear Information System (INIS)

    Kim, Dae Mann

    2010-01-01

    The result of the nano education project run by the Korean Nano Technology Initiative, this has been recommended for use as official textbook by the Korean Nanotechnology Research Society. The author is highly experienced in teaching both physics and engineering in academia and industry, and naturally adopts an interdisciplinary approach here. He is short on formulations but long on applications, allowing students to understand the essential workings of quantum mechanics without spending too much time covering the wide realms of physics. He takes care to provide sufficient technical background and motivation for students to pursue further studies of advanced quantum mechanics and stresses the importance of translating quantum insights into useful and tangible innovations and inventions. As such, this is the only work to cover semiconductor nanotechnology from the perspective of introductory quantum mechanics, with applications including mainstream semiconductor technologies as well as (nano)devices, ranging from photodetectors, laser diodes, and solar cells to transistors and Schottky contacts. Problems are also provided to test the reader's understanding and supplementary material available includes working presentation files, solutions and instructors manuals. (orig.)